Vol. 12, No. 2, 2019

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 10, 3371–3670
Issue 9, 2997–3369
Issue 8, 2619–2996
Issue 7, 2247–2618
Issue 6, 1871–2245
Issue 5, 1501–1870
Issue 4, 1127–1500
Issue 3, 757–1126
Issue 2, 379–756
Issue 1, 1–377

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1948-206X (online)
ISSN 2157-5045 (print)
 
Author index
To appear
 
Other MSP journals
The Muskat problem in two dimensions: equivalence of formulations, well-posedness, and regularity results

Bogdan-Vasile Matioc

Vol. 12 (2019), No. 2, 281–332
DOI: 10.2140/apde.2019.12.281
Abstract

We consider the Muskat problem describing the motion of two unbounded immiscible fluid layers with equal viscosities in vertical or horizontal two-dimensional geometries. We first prove that the mathematical model can be formulated as an evolution problem for the sharp interface separating the two fluids, which turns out to be, in a suitable functional-analytic setting, quasilinear and of parabolic type. Based upon these properties, we then establish the local well-posedness of the problem for arbitrary large initial data and show that the solutions become instantly real-analytic in time and space. Our method allows us to choose the initial data in the class Hs , s (3 2,2), when neglecting surface tension, respectively in Hs , s (2,3), when surface-tension effects are included. Besides, we provide new criteria for the global existence of solutions.

Keywords
Muskat problem, surface tension, singular integral
Mathematical Subject Classification 2010
Primary: 35R37, 35K59, 35K93, 35Q35, 42B20
Milestones
Received: 18 October 2016
Revised: 17 January 2018
Accepted: 7 May 2018
Published: 14 August 2018
Authors
Bogdan-Vasile Matioc
Fakultät für Mathematik
Universität Regensburg
Regensburg
Germany