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We prove existence and uniqueness of weak solutions to anisotropic and crystalline mean curvature flows,
obtained as a limit of the viscosity solutions to flows with smooth anisotropies.

1. Introduction

In this note we deal with anisotropic, and possibly crystalline, mean curvature flows, that is, flows of sets
t 7→ E(t) governed by the law

V (x, t)=−ψ(νE(t)(x))(κE(t)
φ (x)+ g(x, t)), (1-1)

where

• V (x, t) stands for the outer normal velocity of the boundary ∂E(t) at x ,

• φ is a given norm on RN representing the surface tension,

• κ
E(t)
φ is the anisotropic mean curvature of ∂E(t) associated with the anisotropy φ,

• ψ is a norm evaluated at the outer unit normal νE(t) to ∂E(t), and g is a forcing term.

The factor ψ plays the role of a mobility.
We refer to [Chambolle et al. 2017a] for the motivations to study this flow, which originate in

problems from phase transitions and materials science; see for instance [Taylor 1978; Gurtin 1993]. Its
mathematical well-posedness is established in the smooth setting, that is, when φ, ψ , g and the initial
set are sufficiently smooth and φ satisfies suitable ellipticity conditions. However, it is also well known
that in dimensions N ≥ 3 singularities may form in finite time even in the smooth case and for regular
initial sets. When this occurs, the strong formulation of (1-1) ceases to be meaningful and thus needs to
be replaced by weaker notions of global-in-time solution.

Among the different weak approaches that have been proposed in the literature for the classical mean
curvature flow (and for several other “regular” flows) here we recall the so-called level-set formulation
[Osher and Sethian 1988; Evans and Spruck 1991; 1992a; Chen et al. 1991; Giga 2006] and the flat flow
formulation, proposed by Almgren, Taylor and Wang [Almgren et al. 1993] and based on the minimizing
movements variational scheme (referred to as the ATW scheme).
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However, when the anisotropy φ in (1-1) is nondifferentiable or crystalline, the lack of smoothness of
the involved differential operators makes it much harder to pursue the aforementioned approaches. In fact,
in the crystalline case the problem of finding a suitable weak formulation of (1-1) in dimension N ≥ 3
leading to a unique global-in-time solution for general initial sets has remained open until the very recent
works [Chambolle et al. 2017a; 2017b; Giga and Požár 2016; 2018].

We refer also to [Giga et al. 1998; Caselles and Chambolle 2006; Bellettini et al. 2006] for previous
results holding for special classes of initial data, and to [Giga et al. 2014] for a well-posedness result
dealing with a very specific anisotropy. The two-dimensional case is somewhat easier and has been
essentially settled in [Giga and Giga 2001] (when g is constant) by developing a crystalline version of the
viscosity approach for the level-set equation; see also [Taylor 1978; Almgren and Taylor 1995; Angenent
and Gurtin 1989; Giga and Giga 1998; Giga and Gurtin 1996] for relevant former work. We also mention
the recent papers [Chambolle and Novaga 2015; Mercier et al. 2016], where short time existence and
uniqueness of strong solutions for initial “regular” sets (in a suitable sense) is shown.

Let us now briefly describe the most recent progress on the problem. In [Chambolle et al. 2017b],
the first global-in-time existence and uniqueness result for the level-set flow associated to (1-1), valid
in all dimensions, for arbitrary (possibly unbounded) initial sets, and for general (including crystalline)
anisotropies φ was established, but under the particular choice ψ = φ (and g = 0). The main contribution
of that work is the observation that the variant of the ATW scheme proposed in [Chambolle 2004; Caselles
and Chambolle 2006] converges to solutions that satisfy a new stronger distributional formulation of
the problem in terms of distance functions. Such a formulation is only reminiscent of, but not quite the
same as, the distance formulation studied in [Soner 1993], see also [Barles et al. 1993; Ambrosio and
Soner 1996; Caselles and Chambolle 2006; Ambrosio 2000], and because of its distributional character
it enables the use of parabolic PDE’s arguments in order to establish a comparison result yielding
uniqueness.

In [Chambolle et al. 2017a], we first observe that the methods of [Chambolle et al. 2017b] can be
pushed to treat bounded spatially Lipschitz continuous forcing terms g and more general mobilities ψ ,
which are “regular” with respect to the anisotropy φ. More precisely, a norm ψ is said to be φ-regular if
the associated ψ-Wulff shape Wψ satisfies a uniform inner φ-Wulff shape condition at all points of its
boundary. Such a condition implies that the φ-curvature κφ of ∂Wψ is bounded above and it enables us
to show that a distributional formulation in the spirit of [Chambolle et al. 2017b] still holds true. Next,
owing to the simple observation that the φ-regular mobilities are dense, we succeed in extending the
notion of solution to general mobilities by an approximation procedure. More precisely, by establishing
delicate stability estimates on the ATW scheme, we show that if ψ is any norm and ψn→ ψ , with ψn

a φ-regular mobility for every n, then the corresponding distributional level-set solutions uψn, with the
given initial datum u0, admit a unique limit uψ (independent of the choice of the approximating ψn),
which we may therefore regard as the unique solution to the level-set flow with mobility ψ and initial
datum u0. As a byproduct of this analysis, we also settle the problem of the uniqueness (up to fattening)
of flat flows for general mobilities. Once again, our results hold in all dimensions, for arbitrary (possibly
unbounded) initial sets and general, possibly crystalline, anisotropies φ.
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By completely different methods, in [Giga and Požár 2016], and more recently in [Giga and Požár
2018], the authors succeed in extending the viscosity approach of [Giga and Giga 2001] to the case N = 3
and to the general case N ≥ 3, respectively. In fact, as in [Giga and Giga 2001], they are able to deal with
very general equations of the form

V = f (νE,−κE
φ ),

with f continuous and nondecreasing with respect to the second variable, but without spatial dependence,
establishing existence and uniqueness for the corresponding level-set formulation. Important achievements
in their work are the definition of a crystalline curvature for sets with appropriate regularity, a comparison
result for such a curvature, and an approximation result showing that any compact set is arbitrarily
close to sets with well-defined curvature. They can also deduce stability results, [Giga and Požár 2016,
Theorem 8.9; 2018, Theorem 1.5], which ensure in particular that the viscosity solution of the nonsmooth
problem can be built as the limit of a sequence of classical viscosity solutions of the problem with smooth
regularized anisotropies. As our approach in the current paper is based on the same idea, a by-product is
that when both are defined, their evolutions and ours coincide (Remarks 3.8 and 3.9). On the other hand,
their method currently works only for purely crystalline anisotropies φ, bounded initial sets, and constant
forcing terms.

As said, we propose here an approach different from our previous work [Chambolle et al. 2017a]:
Following [Giga and Požár 2016; 2018], we derive existence, uniqueness and some properties of anisotropic
and crystalline flows directly from the corresponding properties of smooth (i.e., with smooth anisotropies)
flows, appropriately defined as viscosity solutions of a geometric PDE. This leads to a more direct and
easier proof of the well-posedness of (1-1) for general mobilities and anisotropies, relying on purely
viscosity methods. On the other hand, our new estimates are too weak to provide information about the
uniqueness of flat flows, shown in [Chambolle et al. 2017a].

Let us describe the new approach in more detail. The starting point is the observation that when the
anisotropy is smooth, the distributional formulation of [Chambolle et al. 2017a; 2017b] is equivalent to
the classical viscosity formulation; see Section 2B. Next, in Section 2C we show that if φn→ φ, with φn

smooth, and ifψn→ψ , withψn φn-regular “uniformly” with respect to n (see the statement of Theorem 2.8
below for the precise meaning), then the corresponding viscosity (and thus distributional) level-set
solutions un converge locally uniformly to the unique distributional level-set flow with anisotropy φ and
(φ-regular) mobility ψ . This leads to a new proof of the existence of distributional level-set solutions for
φ-regular mobilities, without using the ATW scheme as in [Chambolle et al. 2017a].

In Sections 3A and 3B we establish the crucial stability estimates of the flow with respect to changing
φ-regular mobilities. This is achieved once again by exploiting the viscosity formulation in order to prove
first the estimates in the case of smooth anisotropies and to conclude by approximation.

Finally, in Section 3C we prove the main existence and uniqueness result for the level-set formulation
of (1-1), in the case of general anisotropies and mobilities. In this last step we proceed essentially as in
[Chambolle et al. 2017a]: we approximate any mobility ψ by a sequence φ-regular mobilities ψn and
show, by means of the stability estimates of the previous sections, that the corresponding solutions admit
a unique limit.
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2. Distributional mean curvature flows

Given a norm η on RN (a convex, even, one-homogeneous real-valued function with η(ν) > 0 if ν 6= 0),
we define a polar norm η◦ by η◦(ξ) := supη(ν)≤1 ν · ξ and an associated anisotropic perimeter Pη as

Pη(E) := sup
{∫

E
div ζ dx : ζ ∈ C1

c (R
N
;RN ), η◦(ζ )≤ 1

}
.

As is well known, (η◦)◦ = η so that when the set E is smooth enough one has

Pη(E)=
∫
∂E
η(νE) dHN−1,

which is the perimeter of E weighted by the surface tension η(ν).
We will make repeated use of the identities

∂η(ν)= {ξ : η◦(ξ)≤1 and ξ · ν≥η(ν)}

= {ξ : η◦(ξ)=1 and ξ · ν=η(ν)} (2-1)

(and the symmetric statement for η◦) for ν 6= 0, where ∂η(ν) denotes the subdifferential of η at ν.
Moreover, ∂η(0)= {ξ : η◦(ξ)≤ 1}, while ∂η◦(0)= {ξ : η(ξ)≤ 1}. For R > 0 we define

W η(x, R) := {y : η◦(y− x)≤ R}.

Such a set is called the Wulff shape (of radius R and center x) associated with the norm η and represents
the unique (up to translations) solution of the anisotropic isoperimetric problem

min{Pη(E) : |E | = |W η(0, R)|};

see for instance [Fonseca and Müller 1991].
We denote by distη( · , E) the distance from E induced by the norm η; that is, for any x ∈ RN,

distη(x, E) := inf
y∈E

η(x − y) (2-2)

if E 6=∅ and distη(x,∅) :=+∞. Moreover, we denote by dηE the signed distance from E induced by η, i.e.,

dηE(x) := distη(x, E)− distη(x, Ec).

so that distη(x, E)= dηE(x)
+ and distη(x, Ec)= dηE(x)

−, where we adopt the standard notation t+ := t∨0
and t− := (−t)+. Note that by (2-1) we have η(∇dη

◦

E )= η
◦(∇dηE)= 1 a.e. in RN

\ ∂E .
Finally we recall that a sequence of closed sets En in Rm converges to a closed set E in the Kuratowski

sense if the following conditions are satisfied:

(i) if xn ∈ En , any limit point of {xn} belongs to E ,

(ii) any x ∈ E is the limit of a sequence {xn}, with xn ∈ En ,

and we write
En

K
−→ E .
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Since En
K
−→E if and only if (for any norm η) distη( · , En)→ distη( · , E) locally uniformly in Rm, by the

Ascoli–Arzelà theorem any sequence of closed sets admits a converging subsequence in the Kuratowski
sense.

2A. The weak formulation of the crystalline flow. In this section we recall the weak formulation of the
crystalline mean curvature flow introduced in [Chambolle et al. 2017a; 2017b].

In what follows, we will consider forcing terms g : RN
×[0,+∞)→ R satisfying the following two

hypotheses:

(H1) g ∈ L∞(RN
× (0,+∞)).

(H2) There exists L > 0 such that g( · , t) is L-Lipschitz continuous with respect to the metric ψ◦ for a.e.
t > 0. Here ψ is the norm representing the mobility in (1-1).

Remark 2.1. Assumption (H1) can be in fact weakened and replaced by

(H1′) for every T > 0, we have g ∈ L∞(RN
× (0, T )).

Indeed under the weaker assumption (H1′), all the arguments and the estimates presented throughout
the paper continue to work in any time interval (0, T ), with some of the constants involved possibly
depending on T. In the same way, if one restricts our study to the evolution of sets with compact boundary,
then one could assume that g is only locally bounded in space. We assume (H1) instead of (H1′) only to
simplify the presentation.

Let φ, ψ be two (possibly crystalline) norms representing the anisotropy and the mobility in (1-1),
respectively. We recall the following distributional formulation of (1-1).

Definition 2.2 [Chambolle et al. 2017a]. Let E0
⊂ RN be a closed set. Let E be a closed set in

RN
×[0,+∞) and for each t ≥ 0 define E(t) := {x ∈ RN

: (x, t) ∈ E}. We say that E is a superflow of
(1-1) with initial datum E0 if:

(a) (initial condition) E(0)⊆ E0.

(b) (left continuity) E(s) K
−→ E(t) as s↗ t for all t > 0.

(c) (extinction time) If E(t)=∅ for t ≥ 0, then E(s)=∅ for all s > t .

(d) (differential inequality) Set T ∗ := inf{t > 0 : E(s)=∅ for s ≥ t}, and

d(x, t) := distψ
◦

(x, E(t)) for all (x, t) ∈ RN
× (0, T ∗) \ E .

Then there exists M > 0 such that the inequality

∂t d ≥ div z+ g−Md (2-3)

holds in the distributional sense in RN
× (0, T ∗) \ E for a suitable z ∈ L∞(RN

× (0, T ∗)) such that
z ∈ ∂φ(∇d) a.e., div z is a Radon measure in RN

× (0, T ∗) \ E , and

(div z)+ ∈ L∞({(x, t) ∈ RN
× (0, T ∗) : d(x, t)≥ δ}) for every δ ∈ (0, 1).
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We say that A, an open set in RN
× [0,+∞), is a subflow of (1-1) with initial datum E0 if Ac is a

superflow of (1-1) with g replaced by −g and with initial datum (E̊0)c.
Finally, we say that E , a closed set in RN

×[0,+∞), is a solution of (1-1) with initial datum E0 if it
is a superflow and if E̊ is a subflow, both with initial datum E0.

It is shown in [Chambolle et al. 2017a] (see also [Chambolle et al. 2017b] for a simpler equation),
using quite standard parabolic comparison arguments, that such evolutions satisfy a comparison principle:

Theorem 2.3 [Chambolle et al. 2017a, Theorem 2.7]. Let E be a superflow with initial datum E0 and F be
a subflow with initial datum F0 in the sense of Definition 2.2. Assume that distψ

◦

(E0,RN
\ F0)=:1> 0.

Then,
distψ

◦

(E(t),RN
\ F(t))≥1e−Mt for all t ≥ 0,

where M > 0 is as in (2-3) for both E and F.

We now recall the corresponding notion of sub- and supersolution to the level-set flow associated with
(1-1); see again [Chambolle et al. 2017a].

Definition 2.4 (level-set subsolutions and supersolutions). Let u0 be a uniformly continuous function
on RN. We will say that a lower semicontinuous function u :RN

×[0,+∞)→R is a level-set supersolution
corresponding to (1-1), with initial datum u0, if u( · , 0)≥ u0 and if for a.e. λ ∈ R, the closed sublevel set
{(x, t) : u(x, t)≤ λ} is a superflow of (1-1) in the sense of Definition 2.2, with initial datum {u0 ≤ λ}.

We will say that an upper-semicontinuous function u : RN
×[0,+∞)→ R is a level-set subsolution

corresponding to (1-1), with initial datum u0, if −u is a superlevel-set flow in the previous sense, with
initial datum −u0 and with g replaced by −g.

Finally, we will say that a continuous function u : RN
× [0,+∞)→ R is a solution to the level-set

flow corresponding to (1-1) if it is both a level-set subsolution and supersolution.

As shown in [Chambolle et al. 2017a], Theorem 2.3 easily yields that almost all closed sublevels of a
solution of the level-set flows are solutions of (1-1) in the sense of Definition 2.2. Moreover, the following
comparison principle between level-set subsolutions and supersolutions holds true.

Theorem 2.5 [Chambolle et al. 2017a, Theorem 2.8]. Let u0, v0 be uniformly continuous functions on RN

and let u, v be respectively a level-set subsolution with initial datum u0 and a level-set supersolution with
initial datum v0, in the sense of Definition 2.4. If u0

≤ v0, then u ≤ v.

For smooth anisotropies, solutions to the level-set flow and (minus the characteristic function of)
solutions of the geometric flow in the sense of Definition 2.2 are in fact viscosity solutions of the
(degenerate) parabolic equation (2-4) below. This classical fact will be shown and exploited to some
extent to nonsmooth anisotropies in the next two sections.

2B. Viscosity solutions. We show here that in the smooth cases, the notion of solution in Definition 2.2
coincides with the definition of standard viscosity solutions for geometric motions, as for instance
in [Barles and Souganidis 1998]. This property will be helpful to establish estimates using standard
approaches for viscosity solutions.
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Lemma 2.6. Assume that φ,ψ,ψ◦ ∈ C2(RN
\ {0}), and that g is continuous. Let E be a superflow in the

sense of Definition 2.2. Then, −χE is a viscosity supersolution of

ut = ψ(∇u)(div∇φ(∇u)+ g) (2-4)

in RN
× (0, T ∗], where T ∗ is the possible extinction time of E.

Conversely, a viscosity supersolution −χE of (2-4) defines a superflow in the sense of Definition 2.2.

Proof. A similar statement (in a simpler context) is proved in [Chambolle et al. 2017b, Appendix], while
it is proved in [Chambolle et al. 2017a] that a superflow defines a viscosity supersolution. We therefore
here focus on the converse: Given an evolving set E(t) such that −χE is a viscosity supersolution of (2-4),
we show that E(t) is a superflow in the sense of Definition 2.2, with the constant M in (2-3) equal to the
Lipschitz constant L of g( · , t) appearing in the assumption (H2).

Step 1: left continuity and extinction time. Let T ∗ ∈ [0,+∞] be the (first) extinction time of E ,
and assume without loss of generality T ∗ > 0. Let d(x, t) := distψ

◦

(x, E(t)). We fix δ > 0 and we
set A = (RN

× [0, T ∗)) \ E and Aδ = A ∩ {d > δ}. Let (x, t) with d(x, t) = R > δ > 0. Then
Wψ(x, R− ε)∩ E(t) = ∅ for any ε > 0 (small). There exists a constant C (depending on φ,ψ) such
that, letting

W (s)= RN
\Wψ

(
x, R− ε−

(C
R
+‖g‖∞

)
s
)
,

−χW (s) is a viscosity subsolution of (2-6) for s ≤ R2/(2(C + R‖g‖∞)) and ε ≤ R/4. By standard
comparison results [Barles et al. 1993], it follows that E(t + s) ⊂ W (s) for such times s, so that
d(x, t + s)≥ R− ε− (C/R+‖g‖∞)s. Hence, letting ε→ 0, we find that

d(x, t + s)≥ d(x, t)−
(C
δ
+‖g‖∞

)
s if (x, t) ∈ Aδ. (2-5)

In particular, it follows that ∂t d is bounded from below in such sets and hence is a measure. By (2-5) and
the fact that E is closed we deduce that the left continuity (b) of Definition 2.2 holds for E(t). Moreover,
the same argument shows that if t > T ∗ then d(x, t)=+∞, showing also point (c).

Step 2: the distance function is a viscosity supersolution. We now show that the function d(x, t) is a
viscosity supersolution of

ut = ψ(∇u)(D2φ(∇u) : D2u+ g− Lu). (2-6)

In fact, this is essentially classical [Soner 1993]; however the proof in this reference needs to be adapted
to deal with the forcing term. An elementary proof is as follows: Let η be a smooth test function and
assume (x̄, t̄ ) is a contact point, where η(x̄, t̄ )= d(x̄, t̄ ) and η≤ d . If the common value of η, d at (x̄, t̄ )
is zero then it is also a contact point of 1−χE and η, so that

∂tη(x̄, t̄ )≥ ψ(∇η(x̄, t̄ ))
(
D2φ(∇η(x̄, t̄ )) : D2η(x̄, t̄ )+ g(x̄, t̄ )− Lη(x̄, t̄ )

)
(2-7)

obviously holds, by definition (recalling (2-4) and that η(x̄, t̄ )= 0). Hence we consider the case where
R = d(x̄, t̄ ) > 0. Let ȳ ∈ ∂E(t̄ ) such that R = ψ◦(x̄ − ȳ). We let

η′(y, t) := η(y+ x̄ − ȳ, t)− R ≤ d(y+ x̄ − ȳ, t)− R ≤ d(y, t)
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since d is 1-Lipschitz in the ψ◦ norm. In particular, in a neighborhood of (ȳ, t̄ ) we have η′(y, t) ≤
1−χE(t)(y). On the other hand, η′(ȳ, t̄ )= 0= d(ȳ, t̄ )= 1−χE(t̄ )(ȳ). Hence, by (2-4)

∂tη(x̄, t̄ )= ∂tη
′(ȳ, t̄ )≥ ψ(∇η′(ȳ, t̄ ))

(
D2φ(∇η′(ȳ, t̄ )) : D2η′(ȳ, t̄ )+ g(ȳ, t̄ )

)
.

Since g(ȳ, t̄ )≥ g(x̄, t̄ )− Lη(x̄, t̄ ), (2-7) follows.

Step 3: differential inequality. A classical remark is that d2, as an infimum of the uniformly semiconcave
functions ψ◦( · − y)2, y ∈ E(t), is semiconcave; hence in Aδ one has D2d ≤ C/δ I in the sense of
measures for some constant C depending only on ψ◦. In particular, div∇φ(∇d)= D2φ(∇d) : D2d ≤C/δ
in Aδ in the sense of measures.

We proceed as in [Chambolle et al. 2017b]: For n ≥ 1, let dn(x, t) :=mins(d(x, t − s)+ ns2), which
is semiconcave and converges to d as n→∞. Moreover, one can easily check that dn( · , t)→ d( · , t)
locally uniformly if t is a continuity point of d. Let B ⊂ Aδ be an open ball (where in particular d is
bounded from above and it is bounded from below by δ) and observe that dn is still a supersolution
of (2-6), provided g(x, t) is replaced with g(x, t)−ωn for some ωn→ 0 as n→+∞. Since dn , which
is semiconcave, has a second-order jet a.e. in B, (2-6) holds for dn a.e. in B. Reasoning as in [Chambolle
et al. 2017b, Appendix], we deduce that

∂t dn ≥ ψ(∇dn)(div zn + g−ωn − Ldn) (2-8)

in the distributional sense (or as measures) in B, where zn := ∇φ(∇dn). It remains to send n→∞:
Clearly, ∂t dn → ∂t d in the distributional sense. Consider (x, t) a point where ∇d(x, t) and ∇dn(x, t)
exist for all n. First, if d(x, t − s)+ ns2 attains the minimum at sn , one has for any p ∈ ∂+d(x, t − sn)

(the spatial supergradient of the semiconcave function d( · , t − sn)) that

dn(x + h, t)≤ d(x + h, t − sn)+ ns2
n

≤ d(x, t − sn)+ p · h+ C
δ
|h|2+ ns2

n = dn(x, t)+ p · h+ C
δ
|h|2,

showing that p ∈ ∂+dn(x, t) = {∇dn(x, t)}. We deduce that d( · , t − sn) is differentiable at x , with
gradient ∇dn(x, t), and in particular that ψ(∇dn(x, t))= 1.

Assume now that in addition d is continuous at t . Then dn( · , t)→ d( · , t) uniformly in B∩(RN
×{t}),

and using the (uniform) semiconcavity of these functions, one also deduces that ∇dn(x, t)→∇d(x, t)
a.e.; hence, zn(x, t)= ∇φ(∇dn(x, t)) converges to z(x, t)= ∇φ(∇d(x, t)) a.e. Hence we may send n
to∞ in (2-8) to find that

∂t d ≥ div z+ g− Ld

in the distributional sense in B, with z =∇φ(∇d) a.e.
This shows the lemma. �

2C. The level-set formulation. Let u0 be a bounded, uniformly continuous function on RN. Then, it
is well known [Chen et al. 1991] that if φ ∈ C2(RN

\ {0}) and ψ, g are continuous, then there exists a
unique viscosity solution u of (2-4) with initial datum u0. Moreover, for all λ ∈ R, we know −χ{u<λ}
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is a viscosity supersolution and −χ{u≤λ} is a viscosity subsolution of the same equation. If in addition
ψ,ψ◦ ∈ C2(RN

\ {0}), it follows from Lemma 2.6 that Eλ(t) := {u( · , t)≤ λ} is a superflow in the sense
of Definition 2.2, while Aλ(t) := {u( · , t) < λ} is a subflow.1

In what follows we will say that a given norm η is smooth and elliptic if both η and η◦ belong to
C2(RN

\ {0}).
We now consider sequences φn, ψn of smooth and elliptic anisotropies/mobilities converging to

φ,ψ . We also consider gn(x, t) a smooth forcing term, which converges to g(x, t) weakly-∗ in
L∞(RN

×[0,+∞)). We assume also that gn is uniformly spatially Lipschitz continuous and we denote
by L , M the (uniform) Lipschitz constants of gn with respect to ψ◦n and φ◦n , respectively. Given un , the
corresponding unique viscosity solution of (2-4) (with ψn, φn, gn instead of ψ, φ, g) with initial datum u0,
we want to study the possible limits of un . If the limiting anisotropies and forcing term are still smooth
enough, it is well known that the limiting u is the unique viscosity solution of the corresponding limit
problem. If not, we will show that the limit is still unique. We recall, see [Chambolle et al. 2017a], the
following:

Definition 2.7. We will say that a norm ψ is φ-regular if the associated Wulff shape Wψ(0, 1) satisfies a
uniform interior φ-Wulff shape condition, that is, if there exists ε0 > 0 with the following property: for
every x ∈ ∂Wψ(0, 1) there exists y ∈Wψ(0, 1) such that W φ(y, ε0)⊆Wψ(0, 1) and x ∈ ∂W φ(y, ε0).

Notice that it is equivalent to saying that Wψ(0, 1) is the sum of a convex set and W φ(0, ε0), or
equivalently that ψ(ν)= ψ0(ν)+ ε0φ(ν) for some convex function ψ0.

We now show the following result.

Theorem 2.8. Let (ψn)n , (φn)n and (gn)n be as above, and, in addition, assume that the mobilities
(ψn)n are uniformly φn-regular, meaning that ε0 > 0 in Definition 2.7 does not depend on n. Let un

be the level-set solutions to (1-1) in the sense of Definition 2.4, with initial datum u0, anisotropy (ψn)n ,
mobility (φn)n and forcing term (gn)n . Then, the un converge locally uniformly to the unique level-set
solution u to (1-1) in the sense of Definition 2.4, with initial datum u0, anisotropy ψ , mobility φ and
forcing term g.

Proof. A first observation is that the functions un remain uniformly continuous in space and time on
RN
×[0, T ] for all T > 0, with a modulus depending only on the modulus of continuity ω of u0 and the

Lipschitz constant M . Indeed, by Proposition 3.4 below it follows that for any λ < λ′

distφ
◦
n
(
{un( · , t)≤ λ}, {un( · , t)≥ λ′}

)
≥1e−βMt ,

where 1 := ω−1(λ′− λ) ≥ distφ
◦

({u0
≤ λ}, {u0

≥ λ′}) > 0, and β > 0 depends (for large n) only on φ
and ψ ; see (3-16). Therefore, un( · , t) is uniformly continuous with modulus of continuity with respect
to the norm φ◦n given by ω(eβMt

· ). As for the equicontinuity in time, we set ωT (s) := ω(eβMT s) and we
start by observing that for any x ∈ RN, ε > 0, t ∈ (0, T ], and n ∈ N we have

W φn (x, ω−1
T (ε))⊆ {y : un(y, t) > un(x, t)− ε}.

1In the case of “fattening”, also {u < λ} is a superflow, and the interior of {u ≤ λ} a subflow.
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Therefore, by standard comparison results we have un(x, t ′) > un(x, t)− ε provided that 0< t ′− t < τ ,
where τ is the extinction time for W φn (x, ω−1

T (ε)) under the evolution (1-1). Analogously, one shows that
un(x, t ′) < un(x, t)+ ε if 0< t ′− t < τ . Since τ is bounded away from zero by a quantity independent
of n (depending only on ε, supn ‖gn‖∞ and, for n large, on φ and ψ); see for instance [Chambolle et al.
2017a, Remark 4.6]. This establishes the equicontinuity in time.

Hence, up to a subsequence (not relabeled), we may assume that un converges locally uniformly to
some u. In view of Theorem 2.5, it is enough to show that u is a solution in the sense of Definition 2.4, that
is, that for a.e. λ ∈R the set Eλ := {u ≤ λ} is a superflow in the sense of Definition 2.2 and Aλ := {u <λ}
a subflow.

We prove the assertion for Eλ. We first notice that since un→ u locally uniformly, the Kuratowski
limit superior of the sets En := {un ≤ λ} as n→∞ is contained in Eλ.

By Lemma 2.6, the sets En are superflows in the sense of Definition 2.2. We consider dn(x, t) :=
distψ

◦
n (x, En(t)) and d(x, t) := distψ

◦

(x, Eλ(t)), the corresponding distance functions, which are finite up
to some time T ∗n , T ∗ ∈ (0,+∞] respectively, where T ∗ is defined according with Definition 2.2. Notice
that T ∗ is increasing with respect to λ, and that if λ is a continuity point, then we have T ∗n → T ∗, as n→∞.

Recalling (2-5), one can deduce that for s > 0 small,

dn(t + s)− dn(t)
s

≥−
C

dn(t)
−‖g‖∞,

where the constant C does not depend on n, as it is essentially the maximal speed, without forcing, of
the Wulff shape Wψn :=Wψn (0, 1), which is bounded by (maxξ ψn)× (max∂Wψn κφn ). The curvature κφn

of ∂Wψn is in [0, (N − 1)/ε0], thanks to the assumption that ψ ′n := ψn − ε0φn is convex, which yields
that Wψn =Wψ ′n + ε0W φn . We deduce ∂t dn ≥−C/dn −‖g‖∞, which yields that there is an increasing
function 2 : R+→ R+ such that

2(dn(t + s))≥2(dn(t))−‖g‖∞s for all t, s > 0. (2-9)

Actually 2 is explicitly given by

2(d)= d −
C
‖g‖∞

log
(

1+
‖g‖∞

C
d
)

for d ≥ 0. Notice that, for small d ≥ 0, we have 2(d)≈ ‖g‖∞d2/(2C), while 2(d)≈ d for large d .
It follows from (2-9) (see for instance details in the proof of [Chambolle et al. 2017b, Proposition 4.4],

which is an adaptation of Helly’s selection theorem) that one can find an at most countable set N ⊂ (0, T ∗)
such that for all t 6∈N , dn( · , t)→d( · , t) locally uniformly. If Bb (RN

×(0, T ∗))\Eλ, one has B∩En=∅
for n large enough and

∂t dn ≥ div zn + gn − Ldn

in the distributional sense in B, thanks to (2-3) and Lemma 2.6. Here, zn =∇φn(∇dn). Notice that the
zn are (for n large) well-defined and bounded in L∞(RN

× (0, T )) for any T < T ∗. In the limit, we find
that (2-3) holds for d , with z the weak-∗ (local in time) limit of (zn)n (or rather, in fact, a subsequence). It
remains to show that z ∈ ∂φ(∇d) a.e. in B. An important observation is that, using again the φn-regularity
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of ψn , one can show that div∇φn(∇dn)≤ (N − 1)/(ε0dn); hence it is bounded in {dn > δ}. In particular,
in the limit, (div z)+χ{d>δ} ∈ L∞(RN

× (0, T ∗)).
To show z ∈ ∂φ(∇d) a.e. in B, we establish that z · ∇d ≥ φ(∇d) a.e. in B. The proof here is

as in [Chambolle et al. 2017b]. There exists δ such that for all n large enough, dn ≥ δ in B; hence
div zn ≤ (N − 1)/(ε0δ). Let η ∈ C∞c (B;R+); then∫

B
φ(∇d)η dx dt ≤ lim inf

n

∫
B
φn(∇dn)η dx dt = lim inf

n

∫
B
(zn · ∇dn)η dx dt.

On the other hand,∫
B
(zn · ∇dn)η dx dt =

∫
B
(zn · ∇d)η dx dt +

∫
B
(zn · ∇(dn − d))η dx dt, (2-10)

and limn
∫

B(zn · ∇d)η dx dt =
∫

B(z · ∇d)η dx dt since zn
∗⇀ z.

It remains to prove that the second addend in the right hand side of (2-10) tends to zero as n→+∞. Set

mn(t)= min
x :(x,t)∈B

(dn(x, t)− d(x, t)), Mn(t)= max
x :(x,t)∈B

(dn(x, t)− d(x, t)).

Then Mn(t)−mn(t)→ 0 for all t 6∈N. One has∫
B
(zn · ∇(dn − d))η dx dt =

∫
B
(zn · ∇(dn − d −mn(t)))η dx dt

=−

∫
B
(dn − d −mn)η div zn dx dt −

∫
B
(dn − d −mn)zn · ∇η dx dt.

The last integral goes to zero as n→∞. Since (dn − d −mn(t))η ≥ 0 we have

−

∫
B
(dn − d −mn)η div zn dx dt ≥−

N − 1
ε0δ

∫
B
(dn − d −mn)η dx dt n→∞

−−−→ 0.

Using instead dn − d −Mn , we show the reverse inequality, and we deduce∫
B
φ(∇d)η dx dt ≤

∫
B
(z · ∇d)η dx dt,

which concludes the proof. �

3. Existence by approximation

3A. A useful estimate: comparison with different forcing terms. We prove in this section and the
following a series of comparison results, which will then be combined together to deduce a global
comparison result for flows with possibly different mobilities. In this section, we shall assume that the
surface tensions φ, ψ are smooth and elliptic, so that we can work in the classical viscosity setting. In the
limit, our main estimate will also hold for crystalline flows in the sense of Definition 2.2.

We start by recalling standard comparison results for flows with constant velocities; however, we pay
special attention to the particular metrics in which our velocities are expressed. We first consider the
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equation
ut = ψ(∇u)g(x, t). (3-1)

The following is a slight variant of the well-known result [Barles 2013, Theorem 8.1]:

Lemma 3.1. Consider u0
: RN

→ R, bounded and 3-Lipschitz continuous with respect to a norm η,
smooth and elliptic, and let β > 0 be such that

ψ ≤ βη◦. (3-2)

Assume g is bounded, continuous and M-Lipschitz in space in the norm η. Let u(x, t) be a viscosity
solution of (3-1) with initial datum u0. Then for all t ≥ 0, the function u( · , t) is 3eβMt -Lipschitz
continuous in the norm η.

Proof. We start by observing that by classical results the solution u is uniformly continuous locally in
time; see for instance [Giga et al. 1991]. The rest of the proof is an adaptation of the argument in [Barles
2013, proof of Theorem 8.1]. Let δ > 0 be given, and let C be a smooth function such that

C ′−βMC ≥ βMδ > 0, (3-3)

with C(0)=3. Set
σ := sup

x,y∈RN

t∈[0,T ]

u(x, t)− u(y, t)−C(t)η(x − y).

We claim that σ = 0. Using this claim, we have

u(x, t)− u(y, t)≤ (3eβMt
+ δ(eβMt

− 1))η(x − y)

for all x, y, t ≤ T, and sending δ→ 0 we conclude the proof of the lemma.
We are left to prove the claim that σ = 0. Arguing by contradiction, assume that σ > 0. Consider a

maximum point (x̄, ȳ, t̄, s̄) in R2N
×[0, T ]2 for the function

ϕ(x, y, s, t)= u(x, t)− u(y, s)−C(t)η(x − y)−
|t − s|2

2a
− b
|x |2+ |y|2

2
,

where a, b > 0 are small parameters (notice that ϕ(x, y, 0, 0)≤ 0). For b small enough, ϕ(x̄, ȳ, t̄, s̄)≥
σ/2> 0, and then by standard arguments (using in particular that |x̄ |, |ȳ| ≤ c/

√
b, and that for fixed b,

both t̄ and s̄ converge, up to a subsequence, to the same positive value as a→ 0, see for instance [Barles
2013, Lemma 5.2]) we may assume 0< t̄, s̄ ≤ T, so that

C ′(t̄ )η(x̄ − ȳ)+
t̄ − s̄

a
≤ ψ(C(t̄ )∇η(x̄ − ȳ)+ bx̄)g(x̄, t̄ ),

t̄ − s̄
a
≥ ψ(C(t̄ )∇η(x̄ − ȳ)− bȳ)g(ȳ, s̄).

Evaluating the difference and recalling (3-3) we obtain

βM(C(t̄ )+ δ)η(x̄ − ȳ)≤ ψ(C(t̄ )∇η(x̄ − ȳ)+ bx̄)g(x̄, t̄ )−ψ(C(t̄ )∇η(x̄ − ȳ)− bȳ)g(ȳ, s̄).
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For fixed b > 0, we can then let a→ 0 and denote by t̃ ∈ (0, T ] the common limit (along a subsequence)
of t̄ and s̄ as a→ 0, and by x̃ and ỹ the limits (along a subsequence) of x̄ and ȳ, respectively. Thus,
using (3-2), we obtain

M(C(t̃ )+δ)η(x̃− ỹ)

≤
1
β
ψ(C(t̃ )∇η(x̃− ỹ)+bx̃)g(x̃, t̃ )− 1

β
ψ(C(t̃ )∇η(x̃− ỹ)−bỹ)g(ỹ, t̃ )

≤
1
β

(
ψ(C(t̃ )∇η(x̃− ỹ)+bx̃)−ψ(C(t̃ )∇η(x̃− ỹ)−bỹ)

)
g(ỹ, t̃ )+η◦(C(t̃ )∇η(x̃− ỹ)+bx)Mη(x̃− ỹ).

We deduce

C(t̃ )+ δ ≤ η◦(C(t̃ )∇η(x̃ − ỹ)+ bx̃)+
ψ(C(t̃ )∇η(x̃ − ỹ)+ bx̃)−ψ(C(t̃ )∇η(x̃ − ỹ)− bỹ)

βMη(x̃ − ỹ)
‖g‖∞,

and sending b→ 0 (and observing that η(x̃ − ỹ) 6→ 0 as σ > 0 and u is uniformly continuous), we find
that if t̂ is a limit point of t̃ , then C(t̂ )+ δ ≤ C(t̂ ), which gives a contradiction. Hence one must have
σ = 0. �

In the next lemma we show that if E0
⊂ F0 are initial sets and −χE , −χF are viscosity solutions

of (3-1), starting from −χE0 and −χF0 , respectively, then distη(∂E(t), ∂F(t))≥ distη(∂E0, ∂F0)e−βMt.
A splitting strategy will then extend this result to the solutions of (2-4).

Lemma 3.2. Let η be a smooth and elliptic norm satisfying (3-2). Let g1, g2 be two admissible forcing
terms satisfying assumptions (H1), (H2) of Section 2A, and both M-Lipschitz in the η norm. Assume

g2− g1 ≤ c <+∞ in RN
×[0,+∞). (3-4)

Let E0
⊂ F0 be two closed sets with distη(E0,RN

\F0) :=1> 0. Assume that−χE(t) is a viscosity super-
solution of ut = ψ(∇u)g1(x, t) starting from −χE0 , and −χF(t) is a subsolution of vt = ψ(∇v)g2(x, t)
starting from −χF0 . Then at any time t ≥ 0,

distη(E(t),RN
\ F(t))≥1e−βMt

− c
1− e−βMt

M
. (3-5)

Proof. With Lemma 3.1 at hand, this is a straightforward application of standard comparison principles.
We consider first u0(x) := −1∨ (21∧ dηE(x)) and v0(x) := −21∨ (1∧ dηF (x)), so that v0+1 ≤ u0.
These functions are both 1-Lipschitz in the norm η. We then consider the viscosity solutions u of
ut = ψ(∇u)g1(x, t) starting from u0, and v of vt = ψ(∇v)g2(x, t), starting from v0. By standard
comparison results, E(t)⊆ {u(t)≤ 0} and F(t)⊇ {v(t)≤ 0} for all t ≥ 0.

Thanks to Lemma 3.1, u( · , t), v( · , t) are eβMt -Lipschitz. Let now

w( · , t)= v( · , t)+1− c
eβMt
− 1

M
.

Then at t = 0, we have w( · , 0)= v0+1≤ u0. We show that w is a subsolution of ut = ψ(∇u)g1(x, t),
so that w ≤ u. Indeed, if ϕ is a smooth test function and (x̄, t̄ ) is a point of maximum of w− ϕ, then
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it is a point of maximum of v− (ϕ−1+ cβ(eβMt
− 1)/M) so that, using (3-4) and the fact that v is a

subsolution, we get

∂tϕ(x̄, t̄ )+ cβeβMt̄
≤ ψ(∇ϕ(x̄, t̄ ))g2(x̄, t̄ )≤ ψ(∇ϕ(x̄, t̄ ))g1(x̄, t̄ )+ cψ(∇ϕ(x̄, t̄ )).

Since x̄ is a contact point of the smooth function ϕ( · , t̄ ) and the eβMt̄ -Lipschitz function w( · , t̄ ) (in the
η norm), we have η◦(∇ϕ)≤ eβMt̄ at (x̄, t̄ ). By (3-2), cψ(∇ϕ(x̄, t̄ ))≤ cβeβMt̄, whence

∂tϕ ≤ ψ(∇ϕ)g1

and this shows that w is a subsolution of this equation, and hence that w ≤ u. Therefore, for all x, t ,
v(x, t)≤ u(x, t)−1+ c(eβMt

−1)/M . Thus, for t ≥ 0 and x, y ∈RN, recalling that v is eβMt̄ -Lipschitz,

v(y, t)≤ u(x, t)− eβMt
(
1e−βMt

− c
1− e−βMt

M
− η(x − y)

)
.

It follows that if distη(y, E(t))≤1e−βMt
− c(1− e−βMt)/M , then v(y, t)≤ 0, and hence y ∈ F(t),

which shows the lemma. �

3B. Comparison for different mobilities. In this section we provide the crucial stability estimates with
respect to varying mobilities, not necessarily smooth and elliptic.

3B1. A comparison result with a constant forcing term. In this subsection we shall assume that φ,ψ1, ψ2

are smooth and elliptic, and that

(1− δ)ψ2(ξ)≤ ψ1(ξ)≤ (1+ δ)ψ2(ξ) for all ξ ∈ RN, (3-6)

for some (small) δ > 0. We first show the following:

Lemma 3.3. There exists a constant c0 > 0 depending only on N such that the following holds: Let
1 > 0, and let E be a superflow for the equation V = −ψ1(ν)κφ and F be a subflow for the equation
V =−ψ2(ν)(κφ − c0δ/1), with distφ

◦

(E(0),RN
\ F(0))=1. Then for all t until extinction of E or Fc,

we have distφ
◦

(E(t),RN
\ F(t))≥1.

Proof. We first assume that ∂E(t), ∂F(t) are bounded for all t .
We shall use the fact that u(x, t)=−χE(x, t) is a viscosity supersolution of

∂t u = ψ1(∇u) div∇φ(∇u), (3-7)

while v(x, t)=−χF (x, t) is a viscosity subsolution of (see Lemma 2.6)

∂tv = ψ2(∇v)
(
div∇φ(∇v)− c0

δ

1

)
. (3-8)

A first remark is that since the equations are translationally invariant, we also have

u′(x, t)= inf
φ◦(z)≤1/4

u(x + z, t)
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is a supersolution of (3-7), and similarly,

v′(x, t)= sup
φ◦(z)≤1/4

v(x + z, t)

is a subsolution of (3-8). Note that u′ =−χE ′ and v′ =−χF ′ , with the tubes E ′, F ′ defined by

E ′(t)= E(t)+W φ
(
0, 1

41
)
,

RN
\ F ′(t)= (RN

\ F(t))+W φ
(
0, 1

41
)

until their respective extinction times. We denote by t∗ the minimum extinction time of these sets. In
particular,

distφ
◦

(E ′(0),RN
\ F ′(0))= 1

21.

Using [Chambolle et al. 2017a, Lemma 2.6], there is a time t0 such that for t ≤ t0,

distφ
◦

(E ′(t),RN
\ F ′(t))≥ 1

41.

Let ε > 0, and consider a point (x̄, t̄, ȳ, s̄) (depending on ε) which attains

Mε = min
x, y∈RN

0≤s, t<t0

1
ε
(1+ u′(x, t)− v′(y, s))+

φ◦(x − y)
2

2

+
(t − s)2

2ε
+

ε

t0− t
+

ε

t0− s
. (3-9)

Observe that for every fixed x ∈ E ′(0), y 6∈ F ′(0) and s = t = 0, this quantity is less than

φ◦(x − y)
2

2

+ 2
ε

t0

and in particular, Mε ≤1
2/8+ 2ε/t0. If ε is small enough, one must have 1+ u′(x̄, t̄ )− v′(ȳ, s̄) = 0,

that is, x̄ ∈ E ′(t̄ ) and ȳ 6∈ F ′(s̄); hence

φ◦(x̄ − ȳ)= distφ
◦

(E ′(t̄ ),RN
\ F ′(s̄)).

If both t̄, s̄ > 0, then from [Crandall et al. 1992, Theorem 3.2] (with ε = 1 in their notation), there
exist (N + 1)× (N + 1) symmetric matrices

X̃ =
(

X ζ

ζ T ζ0

)
, Ỹ =

(
Y η

ηT η0

)
(3-10)

such that (
s̄− t̄
ε
−

ε

(t0− t̄ )2
,∇φ◦(ȳ− x̄), X̃

)
∈ P2,− u′

ε
(x̄, t̄ ),(

s̄− t̄
ε
+

ε

(t0− s̄)2
,∇φ◦(ȳ− x̄), Ỹ

)
∈ P2,+ v

′

ε
(ȳ, s̄),

(3-11)

and such that

−(1+‖A‖)Id≤
(
−X̃ 0

0 Ỹ

)
≤ A+ A2, (3-12)
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where in (3-11) we used the standard notation for the (closed) parabolic second-order sub/superjets, see
[Crandall et al. 1992], and

A =


D2φ◦(x̄ − ȳ) 0 −D2φ◦(x̄ − ȳ) 0

0 1/ε− 2ε/(t0− t̄ )3 0 −1/ε
−D2φ◦(x̄ − ȳ) 0 D2φ◦(x̄ − ȳ) 0

0 −1/ε 0 1/ε− 2ε/(t0− s̄)3

 .
In particular, for all ξ ∈ RN, letting ξ̃ = (ξ, 0, ξ, 0) ∈ R2N+2, from (3-12) and (3-10) we get

−ξ T Xξ + ξ T Y ξ ≤ ξ̃ T Aξ̃ + ξ̃ T A2ξ̃ = 0,

which gives the inequality

X ≥ Y. (3-13)

Recall that u′/ε is a supersolution and v′/ε is a subsolution. Thanks to (3-11), letting p =∇φ◦(ȳ− x̄)
and a = (s̄− t̄)/ε, one has

a−
ε

(t0− t̄ )2
≥ ψ1(p)D2φ(p) : X,

a+
ε

(t0− s̄)2
≤ ψ2(p)

(
D2φ(p) : Y − c0

δ

1

)
,

yielding

0<
ε

(t0− t̄ )2
+

ε

(t0− s̄)2
≤ ψ2(p)

(
D2φ(p) : Y − c0

δ

1

)
−ψ1(p)D2φ(p) : X. (3-14)

Now, we observe that as E ′(t̄ )= E(t̄ )+W φ(0,1/4) and (necessarily) x̄ ∈ ∂E ′(t̄ ), we find that (p, X)
is also a subjet of −χWφ(x ′,1/4) for some x ′ ∈ E(t̄ ) with φ◦(x̄ − x ′)=1/4. In particular, it follows that
D2φ(p) : X ≤ 4(N − 1)/1. In the same way, D2φ(p) : Y ≥−4(N − 1)/1 and using (3-13), we obtain

−4 N−1
1
≤ D2φ(p) : Y ≤ D2φ(p) : X ≤ 4 N−1

1
. (3-15)

Thanks to (3-6) and (3-15),

−ψ1(p)D2φ(p) : X ≤−ψ2(p)D2φ(p) : X + δψ2(p)|D2φ(p) : X |

≤ −ψ2(p)D2φ(p) : X + 4(N − 1) δ
1
ψ2(p),

so that (3-14) and (3-13) yield

0<ψ2(p)
(

D2φ(p) : Y − c0
δ

1

)
−ψ1(p)D2φ(p) : X

= ψ2(p)
(

D2φ(p) : (Y − X)− c0
δ

1

)
+ (ψ1(p)−ψ2(p))D2φ(p) : X

≤ ψ2(p)
(

D2φ(p) : (Y − X)− (c0− 4(N − 1)) δ
1

)
≤ 0

as soon as c0 ≥ 4(N − 1), yielding a contradiction.
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We deduce that at least one of t̄ or s̄ is zero; without loss of generality let us assume s̄ = 0. For any
t < t0, thanks to (3-9) (choosing s = t), if ε is small enough one has

1
2 distφ

◦

(E ′(t),RN
\ F ′(t))2+ 2

ε

t0− t
≥

1
2 distφ

◦

(E ′(t̄ ),RN
\ F ′(0))2+

t̄ 2

2ε
+

ε

t0− t̄
+
ε

t0
,

from which we see, in particular, that t̄→ 0 as ε→ 0. Hence, in the limit ε→ 0, using also that E is
closed, see [Chambolle et al. 2017a, Remark 2.3] for more details, we deduce

1
2 distφ

◦

(E ′(t),RN
\ F ′(t))2 ≥ lim inf

t̄→0

1
2 distφ

◦

(E ′(t̄ ),RN
\ F ′(0))2

≥
1
2 distφ

◦

(E ′(0),RN
\ F ′(0))2 = 1

81
2,

which shows the thesis of the lemma, until t = t0 (thanks to the continuity property (b)). Starting again
from t0, we have proven the lemma for bounded sets (or sets with bounded boundary).

If ∂E(0) or ∂F(0) is unbounded, we proceed as follows: We first consider, for ε > 0, the sets

Eε0 := E(0)+W φ(0, ε),

Fε0 := RN
\
(
(RN
\ F(0))+W φ(0, ε)

)
,

which satisfy distφ
◦

(Eε0,RN
\ Fε0 )≥1− 2ε.

Then, for R > 0, we consider the initial sets Eε,R0 = Eε0 ∩ BR and Fε,R0 = Fε0 ∩ (BR+W φ(0,1)). The
result holds for the evolutions starting from these two sets, with the distance 1− 2ε. Hence in the limit
R→∞, it must hold for the (viscosity) evolutions starting from Eε0 and Fε0 (which are unique for almost
all ε).

By standard comparison results for discontinuous viscosity solutions [Barles 1994; Barles and Sougani-
dis 1998; Barles et al. 1993], it then follows that the superflow E (which is also a viscosity superflow)
is contained in the evolution starting from Eε0 , while F contains the evolution starting from Fε0 (the
ε-regularization has been introduced to avoid issues due to the possible nonuniqueness of viscosity
solutions).

We deduce that distφ
◦

(E(t),RN
\ F(t))≥1− 2ε for all t , until extinction. Since this is true for any

ε > 0, the lemma is proven. �

3B2. Comparison with a nonconstant forcing term. In this section we prove the crucial stability estimate
for motions corresponding to different but close mobilities. We start with the following:

Proposition 3.4. Assume that φ,ψ1, ψ2 are smooth and elliptic, that ψ1, ψ2 satisfy (3-6), and that β > 0
is such that

ψ2(ξ)≤ βφ(ξ) for all ξ ∈ RN. (3-16)

Let E0 ⊂ F0 be a closed and an open set, respectively, such that distφ
◦

(E0,RN
\ F0)=:1> 0, and let

E , F be a closed and an open “tube” in RN
× [0,∞), respectively, with E(0) = E0, F(0) = F0, such

that −χE is a supersolution of

ut = ψ1(∇u)(div∇φ(∇u)+ g), (3-17)
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and −χF is a subsolution of

ut = ψ2(∇u)(div∇φ(∇u)+ g). (3-18)

Then,

distφ
◦

(E(t),RN
\ F(t))≥1e−βMt

− δ
2c0/1+‖g‖∞

M
(1− e−βMt) (3-19)

as long as this quantity is larger than 1/2, where c0 is as in Lemma 3.3 and M is the Lipschitz constant
of g with respect to φ◦.

Proof. In order to obtain the estimate, we combine the results of Lemmas 3.3 and 3.2 (with η = φ◦),
together with a splitting result which follows from [Barles and Souganidis 1991]; see Example 1 of that
paper, as well as [Barles 2006].

As before, we may need to slightly perturb the initial sets, considering rather E s
0 = E0+W φ(0, s) and

F s
0 = RN

\ (RN
\ F0+W φ(0, s)) for a small s (which eventually will go to 0).

Given s > 0 small, we start with building, for ε > 0 given, the motions uε(x, t), vε(x, t) defined as
follows: We let uε(x, 0)=−χE s

0
and define recursively uε for j ≥ 0 as a viscosity solution of

uεt =


2ψ1(∇uε) div∇φ(∇vε), 2 jε < t ≤ 2 jε+ ε,

2ψ1(∇uε) /
∫ 2( j+1)ε

2 jε
g(x, s) ds, 2 jε+ ε < t ≤ 2( j + 1)ε.

(In the case of nonuniqueness, we select for instance the smallest (super)solution, corresponding to
the largest set Eε(t) = {uε= − 1}.) Similarly, we let vε(x, 0) = −χF s

0
and let vε(x, t) be the largest

(sub)solution of

vεt =


2ψ2(∇v

ε)
(

div∇φ(∇vε)− 2c0
δ

1

)
, 2 jε < t ≤ 2 jε+ ε,

2ψ2(∇v
ε)

(

/

∫ 2( j+1)ε

2 jε
g(x, s) ds+ 2c0

δ

1

)
, 2 jε+ ε < t ≤ 2( j + 1)ε,

where c0 is as in Lemma 3.3. Thanks to [Barles and Souganidis 1991; Barles 2006], as ε→ 0 these func-
tions converge to the viscosity solutions of (3-17) and (3-18), respectively, starting from −χEε0 and −χFε0 ,
provided these solutions are uniquely defined, which is known to be true for almost all ε (in fact all but a
countable set of values), in which case it is also known that they are (negative of) characteristic functions.

We now show that we can estimate the distance between the corresponding geometric evolutions, using
Lemmas 3.3 and 3.2.

Let δ be as in (3-6). A first observation is that, for j≥0, if we consider on the interval [2 jε+ε, 2( j+1)ε]
the smallest solution ũε(x, t) of

ũεt = 2ψ2(∇ũε)
(

/

∫ 2( j+1)ε

2 jε
g(x, s) ds− δ‖g‖∞

)
, ũε( · , 2 jε+ ε)= uε( · , 2 jε+ ε),

then, since for any p ∈ RN,

ψ1(p) /

∫ 2( j+1)ε

2 jε
g(x, s) ds ≥ ψ2(p) /

∫ 2( j+1)ε

2 jε
g(x, s) ds− δψ2(p)‖g‖∞,
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one has ũε(x, t) ≤ uε(x, t) for 2 jε + ε ≤ t ≤ 2( j + 1)ε, and thus Eε(t) ⊆ {ũε( · , t) = −1}. Hence,
Lemma 3.2 yields that for 2 jε+ ε ≤ t ≤ 2( j + 1)ε,

distφ
◦

(Eε(t),RN
\ Fε(t))≥ distφ

◦(
{ũε( · , t)=−1},RN

\ Fε(t)}
)

≥

(
distφ

◦

(Eε(2 jε+ ε),RN
\ Fε(2 jε+ ε))− c

M

)
e−2βM(t−2 jε−ε)

+
c
M

for c =−δ(2c0/1+‖g‖∞). Note that here we use the fact that the mobility 2ψ2 satisfies 2ψ2 ≤ 2βφ;
see (3-16).

On the other hand, Lemma 3.3 yields that for all j ≥ 0 and 2 jε ≤ t ≤ 2 jε+ ε,

distφ
◦

(Eε(t),RN
\ Fε(t))≥ distφ

◦

(Eε(2 jε),RN
\ Fε(2 jε))

as long as distφ
◦

(Eε(2 jε),RN
\ Fε(2 jε))≥1/2.

In particular, setting d j = distφ
◦

(Eε(2 jε),RN
\ Fε(2 jε)), one obtains by induction that

d j+1 ≥

(
d j −

c
M

)
e−2βMε

+
c
M
≥

(
d0−

c
M

)
e−2βM( j+1)ε

+
c
M
,

as long as d j ≥1/2. In the limit, we find that, letting E s(t)= {u( · , t)=−1} and F s(t)= {v( · , t)=−1}
and recalling that distφ

◦

(E s
0,RN

\ F s
0 )≥1− 2s,

distφ
◦

(E s(t),RN
\ F s(t))≥ (1− 2s)e−βMt

− δ
2c0/1+‖g‖∞

M
(1− e−βMt)

as long as this quantity is larger than 1/2.
By comparison, it is clear that E ⊂ E s and F s

⊂ F ; hence (letting eventually s→ 0), we deduce that
(3-19) holds as long as the right-hand side is larger than 1/2. �

We are now ready to state and prove the main result of the section.

Theorem 3.5. Let ψ1, ψ2 and φ satisfy (3-6) and (3-16). Assume also that ψ1, ψ2 are φ-regular in the
sense of Definition 2.7. Let the forcing term g(x, t) be continuous, bounded, and spatially M-Lipschitz
continuous with respect to the distance φ◦, and denote by E a superflow for V = −ψ1(ν)(κφ + g) and
by F a subflow for V = −ψ2(ν)(κφ + g), both in the sense of Definition 2.2. Finally, assume that
distφ

◦

(E(0),RN
\ F(0))≥1> 0. Then for all t ,

distφ
◦

(E(t),RN
\ F(t))≥1e−βMt

− δ
2c0/1+‖g‖∞

M
(1− e−Mβt) (3-20)

as long as this quantity is larger than 1/2.

Proof. Consider smooth, elliptic approximations of ψi (i = 1, 2), φ, denoted by ψn
i , φn, such that (3-6)–

(3-16) hold also for ψn
i , φn (with slightly larger constants δ and β that, with a small abuse of notation,

will not be relabeled) and with ψn
i − εφ

n convex (i = 1, 2), that is, ψn
i are uniformly φn-regular (see the

statement of Theorem 2.8).
Consider as before, for s > 0 small, the initial sets E s

0 := E0+W φn
(0, s) and F s

0 :=RN
\ [(RN

\ F0)+

W φn
(0, s)]. As in Theorem 2.8 we can build subflows As

n and superflows Bs
n for the evolution V =

−ψn
1 (ν)(κφn + g), both starting from E s

0, such that As
n ⊂ Bs

n , and a subflow A′sn and superflow B ′sn for the
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evolution V =−ψn
2 (ν)(κφn+g), both starting from F s

0 , such that A′sn ⊂ B ′sn . Thanks to Lemma 2.6, −χBs
n

is a viscosity supersolution and −χA′sn is a viscosity subsolution, so that we can apply Proposition 3.4 and
estimate their (φn)◦-distance according to (3-19).

Again thanks to Theorem 2.8, RN
\ As

n converges in the Kuratowski sense as n→∞ to the complement
of a subflow, which contains E thanks to Theorem 2.3, and analogously B ′sn converges to a superflow
contained in F. We deduce (3-20), letting s→ 0. �

3C. Existence and uniqueness by approximation. We recall that the existence theory for level-set flows
(in the sense of Definition 2.4) that we have so far works only for φ-regular mobilities. The goal of this
section is to extend the existence theory to general mobilities. To this aim, we consider the following
notion of solution via approximation:

Definition 3.6 (level-set flows via approximation). Let ψ be a mobility, g an admissible forcing term
and u0 a uniformly continuous function on RN.

We will say that a continuous function uψ : RN
× [0,+∞)→ R is a solution via approximation to

the level-set flow corresponding to (1-1), with initial datum u0, if uψ( · , 0) = u0 and if there exists a
sequence {ψn} of φ-regular mobilities such that ψn → ψ and, denoting by uψn the unique solution to
(1-1) (in the sense of Definition 2.4) with mobility ψn and initial datum u0, we have uψn → uψ locally
uniformly in RN

×[0,+∞).

The next theorem is the main result of this section: it shows that for any mobility ψ , a solution via
approximation uψ in the sense of the previous definition always exists; such a solution is also unique
in that it is independent of the choice of the approximating sequence of φ-regular mobilities {ψn}. In
particular, in the case of a φ-regular mobility, the notion of solution via approximation is consistent with
that of Definition 2.4.

Theorem 3.7. Let ψ , g, and u0 be as in Definition 3.6. Then, there exists a unique solution uψ in the
sense of Definition 3.6 with initial datum u0.

Proof. We have to prove that for any sequence {ψn} of φ-regular mobilities such that ψn → ψ , the
corresponding solutions uψn to (1-1) with initial datum u0 converge to some function u locally uniformly
in RN

×[0,+∞). We split the proof of the theorem into two steps.

Step 1. Let β be as in (3-16). Let T0 > 0 be defined by e−2βMT0 =
3
4 , where as usual M is the spatial

Lipschitz constant of the forcing term g with respect to the distance induced by φ◦. We claim that for
every ε > 0 there exists n̄ ∈ N such that

‖uψn − uψm‖L∞(RN×[0,T0]) ≤ ε for all n,m ≥ n̄. (3-21)

To this aim, we observe that since ψn→ ψ , for n large enough

ψn(ξ)≤ 2βφ(ξ) for all ξ ∈ RN, (3-22)

and there exists δ j → 0 such that

(1− δ j )ψn ≤ ψm ≤ (1+ δ j )ψn for all m, n ≥ j. (3-23)
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Set Eψn
λ (t) := {u

ψn ( · , t)≤ λ}, Fψn
λ (t) := {uψn ( · , t) < λ} and recall that Eψn

λ is a superflow, while Fψn
λ

is a subflow in the sense of Definition 2.2.
Let ω be a modulus of continuity for u0 with respect to φ◦ and recall that for any λ ∈ R

distφ
◦

(Eψm
λ (0),RN

\ Fψn
λ+ε(0))= distφ

◦

({u0
≤ λ}, {u0

≥ λ+ ε})≥ ω−1(ε).

By (3-22), (3-23) and Theorem 3.5, for all n,m ≥ j we have

distφ
◦

(Eψm
λ (t),RN

\ Fψn
λ+ε(t))≥ ω

−1(ε)e−2βMt
− δ j

2c0/ω
−1(ε)+‖g‖∞

M
(1− e−2βMt),

as long as the right-hand side is larger than ω−1(ε)/2, that is, for all t ∈ [0, T0], provided j is large enough.
In particular, for n,m large enough Eψm

λ (t)⊂ Fψn
λ+ε(t) for all t ∈ [0, T0], which yields

uψn ( · , t)≤ uψm ( · , t)+ ε for all t ∈ [0, T0].

By switching the roles of n and m we deduce (3-21).

Step 2. First arguing as in the proof of Theorem 2.8 and using (3-22) we see that ω(e2βMt
· ) is a spatial

modulus of continuity for uψn ( · , t) for all n. Observe that from (3-21) it follows that for n,m large
enough we have

Eψm
λ (T0)⊆ Eψn

λ+ε(T0),

which in turn implies

distφ
◦

(Eψm
λ (T0),RN

\ Fψn
λ+2ε(T0))≥ distφ

◦

(Eψn
λ+ε(T0),RN

\ Fψn
λ+2ε(T0))≥ ω

−1(e2βMT0ε).

We can now argue as in Step 1 to conclude that, for n, m large enough,

‖uψn − uψm‖L∞(RN×[T0,2T0]) ≤ 2ε.

Therefore, by an easy iteration argument we can show that, for every given T > 0, the sequence {uψn } is
a Cauchy sequence in L∞(RN

×[0, T ]). �

We conclude by recalling the following remarks, referring to [Chambolle et al. 2017a] for the details.

Remark 3.8 (stability). As a byproduct of the previous theorem, and a standard diagonalization argument,
we have the following stability property for solutions to (1-1): Let {ψn}n∈N be a sequence of mobilities
and φn a sequence of anisotropies such that ψn→ψ and φn→ φ as n→+∞. Then uψn converge to uψ

locally uniformly in RN
×[0,+∞) as h→ 0 (where uψn is the solution to (1-1) with ψ replaced by ψn

and φ replaced by φn).

Remark 3.9 (comparison with the Giga–Požár solution). When φ is purely crystalline and g≡ c for some
c ∈ R, the unique level-set solution in the sense of Definition 3.6 coincides with the viscosity solution
constructed in [Giga and Požár 2016; 2018].

We also recall that when g is constant, (1-1) admits a phase-field approximation by means of the
anisotropic Allen–Cahn equation; see [Chambolle et al. 2017a, Remark 6.2] for the details.
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In the next theorem we recall the main properties of the level-set solutions introduced in Definition 3.6.
In the statement of the theorem, we will say that a uniformly continuous initial function u0 is well-prepared
at λ ∈ R if the following two conditions hold:

(a) If H ⊂ RN is a closed set such that dist(H, {u0 ≥ λ}) > 0, then there exists λ′ < λ such that
H ⊆ {u0 < λ

′
}.

(b) If A ⊂ RN is an open set such that dist({u0 ≤ λ},RN
\ A) > 0, then there exists λ′ > λ such that

{u0 ≤ λ
′
} ⊂ A.

Here dist( · , · ) denotes the distance function with respect to a given norm. Clearly, the properties stated
in (a) and (b) above do not depend on the choice of such a norm.

Remark 3.10. Note that the above assumption of well-preparedness is automatically satisfied if the set
{u0 ≤ λ} is bounded.

Theorem 3.11 (properties of the level-set flow). Let uψ be a solution in the sense of Definition 3.6, with
initial datum u0. The following properties hold true:

(i) (nonfattening of level sets) There exists a countable set N ⊂ R such that for all t ∈ [0,+∞), λ 6∈ N,

{(x, t) : uψ(x, t) < λ} = Int({(x, t) : uψ(x, t)≤ λ}),

{(x, t) : uψ(x, t) < λ} = {(x, t) : uψ(x, t)≤ λ}.
(3-24)

(ii) (distributional formulation when ψ is φ-regular) If ψ is φ-regular, then uψ coincides with the
distributional solution in the sense of Definition 2.4.

(iii) (comparison) Assume that u0
≤ v0 and denote the corresponding level-set flows by uψ and vψ,

respectively. Then uψ ≤ vψ.

(iv) (geometricity) Let f : R→ R be increasing and uniformly continuous. Then uψ is a solution with
initial datum u0 if and only if f ◦ uψ is a solution with initial datum f ◦ u0.

(v) (independence of the initial level-set function) Assume that u0 and v0 are well-prepared at λ. If
{u0<λ}={v0<λ}, then {uψ( · , t)<λ}={vψ( · , t)<λ} for all t>0. Analogously, if {u0

≤λ}={v0
≤λ},

then {uψ( · , t)≤ λ} = {vψ( · , t)≤ λ} for all t > 0.

For the proof we refer to [Chambolle et al. 2017a, Theorem 5.9].

We conclude with a remark about conditions that prevent the occurrence of fattening.

Remark 3.12 (star-shaped sets, convex sets and graphs). It is well-known [Soner 1993, Section 9] that
for the motion without forcing, strictly star-shaped sets do not develop fattening so that, in particular,
their evolution is unique. The proof of this fact, given for instance in [Soner 1993] for the mean curvature
flow, works also for solutions in the sense of Definition 2.2 when the mobility ψ is φ-regular, and in
turn, by approximation, also for the generalized motion associated to level-set solutions in the sense of
Definition 3.6, when ψ is general. Uniqueness also holds for motions with a time-dependent forcing g(t)
[Bellettini et al. 2009, Theorem 5] as long as the set remains strictly star-shaped. This remark obviously
applies to initial convex sets, which, in addition, remain convex for all times, as was shown in [Bellettini
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et al. 2006; 2009; Caselles and Chambolle 2006] with a spatially constant forcing term.2 The case of
unbounded initial convex sets was not considered in these references but can be easily addressed by
approximation (and uniqueness still holds with the same proof).

In the same way, if the initial set E0 = {xN ≤ v
0(x1, . . . , xN−1)} is the subgraph of a uniformly

continuous function v0, and the forcing term does not depend on xN , then one can show that fattening
does not develop and E(t) is still the subgraph of a uniformly continuous function for all t > 0, as in the
classical case [Ecker and Huisken 1989; Evans and Spruck 1992b]; see also [Giga and Giga 1998] for the
two-dimensional crystalline case.
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