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GLOBAL WEAK SOLUTIONS OF THE TEICHMÜLLER
HARMONIC MAP FLOW INTO GENERAL TARGETS

MELANIE RUPFLIN AND PETER M. TOPPING

We analyse finite-time singularities of the Teichmüller harmonic map flow — a natural gradient flow
of the harmonic map energy — and find a canonical way of flowing beyond them in order to construct
global solutions in full generality. Moreover, we prove a no-loss-of-topology result at finite time, which
completes the proof that this flow decomposes an arbitrary map into a collection of branched minimal
immersions connected by curves.

1. Introduction

The Teichmüller harmonic map flow is a gradient flow of the harmonic map energy that evolves a given
map u0 :M→ N from a closed oriented surface M of arbitrary genus γ ≥0 into a closed target manifold N
of arbitrary dimension, and simultaneously evolves the domain metric on M within the class of constant
curvature metrics. It tries to evolve u0 to a branched minimal immersion — a critical point of the energy
functional in this situation — but in general there is no such immersion homotopic to u0, so something
more complicated must occur.

The development of the theory so far has suggested that the flow should instead decompose u0 into a
collection of branched minimal immersions from lower-genus surfaces. This paper provides the remaining
part of the jigsaw in order to prove this in full generality, by analysing the finite-time singularities that may
occur, finding a canonical way of flowing beyond them, and analysing their fine structure in order to prove
that no topology is lost except by the creation of additional branched minimal immersions and connecting
curves. The resulting global generalised solution will have at most finitely many singular times, together,
possibly, with singular behaviour at infinite time that was analysed in [Rupflin and Topping 2016; Rupflin
et al. 2013; Huxol et al. 2016].

Consider the harmonic map energy

E(u, g)= 1
2

∫
M
|du|2g dvg

acting on a sufficiently regular map u :M→ (N, gN ), and a metric g in the space Mc of constant (Gauss-)
curvature −1, 0 or 1 (depending on the genus) metrics on M with fixed unit area in the case that the
curvature is 0. Critical points are weakly conformal harmonic maps u : (M, g)→ (N, gN ), which are then
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branched minimal immersions [Gulliver et al. 1973] (allowing constant maps in addition). The gradient
flow, introduced in [Rupflin and Topping 2016], can be written with respect to a fixed parameter η > 0 as

∂u
∂t
= τg(u);

∂g
∂t
=

1
4η

2 Re(Pg(8(u, g))), (1-1)

where τg(u)= trg(∇gdu) denotes the tension field of u, Pg represents the L2-orthogonal projection from the
space of quadratic differentials on (M, g) onto the space H(M, g) of holomorphic quadratic differentials,
and 8(u, g) is the Hopf differential. The flow decreases the energy E(t) := E(u(t), g(t)) according to

d E
dt
=−

∫
M

[
|τg(u)|2+

( 1
4η
)2
|Re(Pg(8(u, g)))|2

]
=−‖∂t u‖2L2 −

1
η2 ‖∂t g‖2L2

=−‖τg(u)‖2L2 −
1

32η
2
‖Pg(8(u, g))‖2L2, (1-2)

where we use that ‖Pg(8(u, g))‖2L2 = 2‖Re(Pg(8(u, g))‖2L2 . We refer to [Rupflin and Topping 2016]
for further details.

When the genus γ of M is zero, there are no nonvanishing holomorphic quadratic differentials, so g
remains fixed, and we recover the harmonic map flow [Eells and Sampson 1964], which has been studied
in detail for two-dimensional domains; see [Struwe 1985; Topping 2004, Theorem 1.6] and the references
therein. In the case that γ = 1, this flow can be shown to be equivalent to a flow of Ding, Li and Liu
[Ding et al. 2006], as pointed out in [Rupflin and Topping 2016], and analysed in [Ding et al. 2006; Huxol
et al. 2016].

1.1. Construction of a global flow. In both cases γ = 0 and γ = 1, one obtains global weak solutions
starting with any initial map u0 ∈ H 1(M, N ) and any initial metric g0 ∈Mc [Struwe 1985; Ding et al.
2006]. For γ ≥ 2 it was shown in [Rupflin 2014] that a weak solution exists on a time interval [0, T ) for
some T ∈ (0,∞], and if T <∞ then the domain must degenerate in the sense that the injectivity radius
of (M, g) must approach zero as t ↑ T. In all these cases the flow will be smooth away from finitely
many times and, as time increases to a singular time, the map u splits off one or more (but finitely many)
nonconstant harmonic 2-spheres, which will then automatically be branched minimal spheres (see, e.g.,
[Eells and Lemaire 1978, (10.6)] for this latter fact) as bubbling occurs. At each such singular time τ , the
continuation of this weak solution is constructed by taking a (unique) limit (u(τ ), g(τ ))∈ H 1(M, N )×Mc

as t ↑ τ and continuing the flow past the singular time by restarting with (u(τ ), g(τ )) as new initial data.
This process gives a unique flow within the class of weak solutions with nonincreasing energy. It was
shown in [Ding and Tian 1995; Topping 2004, Theorem 1.6] that for the harmonic map flow, and in
particular for the case γ = 0 above, we have no loss of energy and precise control on the bubble scales
at these singular times. A very similar argument establishes the same properties for all genera γ , and
the case γ ≥ 2 even follows directly from Proposition 3.3 below, which we need for other reasons. The
upshot of this singularity analysis is that the flow map before a singular time can be reconstructed from
the flow map after the singular time together with the branched minimal spheres representing the bubbles.
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Whenever a global weak solution of (1-1) exists, i.e., when T =∞ for γ ≥2, and in all cases for γ =0, 1,
it was shown in [Rupflin and Topping 2016; Rupflin et al. 2013; Huxol et al. 2016], see also [Ding et al.
2006; Struwe 1985], that either the flow subconverges to a branched minimal immersion, or it subconverges
to a collection of branched minimal immersions. This collection may consist partly of bubbles, and it
may include a limit branched minimal immersion parametrised over the original domain, but in general,
for γ ≥ 2, the domain can split into a collection of lower-genus closed surfaces, and the map converges to
a branched minimal immersion on some or all of these lower-genus surfaces. The way the domain surface
can split into lower-genus surfaces is described by the classical Deligne–Mumford-type description of how
hyperbolic surfaces can degenerate; see, e.g., [Rupflin and Topping 2018a, Theorem A.4]. In particular,
when the domain splits, the length of the shortest closed geodesic in the domain will shrink to zero and
so-called collar regions around such shrinking geodesics, described by the collar lemma of Keen and
Randol [Randol 1979], see, e.g., [Rupflin and Topping 2018a, Lemma A.1], will degenerate. In all cases,
if one is careful to capture all bubbles, including those disappearing down any degenerating collars, it was
shown in [Huxol et al. 2016] that all energy in the limit is accounted for by branched minimal immersions
from closed surfaces. The upshot of this asymptotic analysis is that when a global weak solution exists,
for a domain of arbitrary genus, the map u(t) can be reconstructed from the branched minimal immersions
we find, connected together with curves. (See [Huxol et al. 2016] for precise statements.)

The theory above leaves open the possibility of the flow stopping in finite time in the case γ ≥ 2 if it
happens that the injectivity radius of the domain converges to zero, i.e., we have collar degeneration as
above but in finite time. We showed in [Rupflin and Topping 2018b] that the flow exists and is smooth
for all time in the case that the target (N, gN ) has nonpositive sectional curvature, mirroring the seminal
work [Eells and Sampson 1964] (although the asymptotic behaviour is more elaborate in our situation,
with infinite time singularities reflecting the more complicated structure of the space of critical points).
However, in the case of general targets, the theory above has the major omission that the existence time T
for γ ≥ 2 could be finite, and by such time we cannot expect the flow to have decomposed u(t) into
branched minimal immersions. The existence of solutions of variants of Teichmüller harmonic map flow
that degenerate in finite time is proved in [Robertson and Rupflin 2018].

In this paper we show how the flow can be continued in a canonical fashion when this domain
degeneration occurs, with the continuation being a finite collection of new flows. By repeating this process
a finite number of times, we arrive at a global solution that is smooth except at finitely many singular times.
Moreover, our analysis of the collar degeneration singularity allows us to account for all “lost topology”
at the singular time in terms of branched minimal spheres, some of which may be conventional bubbles,
together with connecting curves, despite the tension field diverging to infinity in general. Combined with
the earlier work described above, a consequence is that the flow realises the following:

Any smooth map u0 : M → (N, gN ) is decomposed by the flow (1-1) into a finite collection
of branched minimal immersions vi : 6i → (N, gN ) from closed Riemann surfaces {6i } of
total genus no more than γ . The original M can be reconstructed from the surfaces {6i } by
removing a finite collection of pairs of tiny discs in

∐
i 6i and gluing in cylinders. The map u0
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is homotopic to the corresponding combination of the {vi } together with connecting curves on
the glued-in cylinders.

For other situations in which maps are decomposed into collections of minimal objects, see [Meeks
et al. 1982; Hass and Scott 1988], for example.

In order to make a continuation of the flow, we require the following basic description of the convergence
of the flow as we approach a finite-time singularity. This can be applied to a weak solution (including
bubbling) by restricting to a short time interval just prior to a time when the injectivity radius drops to
zero, thus avoiding the bubbling and allowing us to consider a smooth flow for simplicity. A far more
refined description will be required later in order to ensure that the continuation after the singularity
properly reflects the flow just before.

Theorem 1.1. Let M be any closed oriented surface of genus γ ≥ 2 and let (N, gN ) be any smooth closed
Riemannian manifold. Let (u, g) be a smooth solution of (1-1) defined on a time interval [0, T ) with
T <∞ that is maximal in the sense that

lim inf
t↑T

injg(t)(M)= 0. (1-3)

Then the following properties hold:

(1) The “pinching set” F ⊂ M defined by

F :=
{

p ∈ M : lim inf
t↑T

injg(t)(p)= 0
}

(1-4)

is nonempty and closed, and its complement U := M \ F is nonempty and supports a complete hyperbolic
metric h with finite volume and cusp ends, so that (U, h) is conformally equivalent to a finite disjoint
union of closed Riemann surfaces Mi with finitely many punctures and genus strictly less than that of M ,
and so that

g(t)→ h smoothly locally on U as t ↑ T .

(2) The “bubble” set

S :=
{

p ∈ U : there exists ε > 0 such that lim sup
t↑T

E(u(t), g(t), V )≥ ε
for all neighbourhoods V ⊂ M of p

}
(1-5)

is a finite set, and there exists a smooth map ū : U \ S→ N , with ū ∈ H 1(U, h, N ), such that

u(t)→ ū as t ↑ T

smoothly locally in U \ S and weakly locally in H 1 on U . Moreover, ū extends to a collection of maps
ui ∈ H 1(Mi , N ).

The convergence of the metric g(t) here should be contrasted with the convergence of a sequence g(tn),
with tn ↑ T, that could be deduced from the differential geometric form of Deligne–Mumford compactness;
see, e.g., [Rupflin and Topping 2018a, Theorem A.4]. Our convergence is uniform in time, and does not
require modification by diffeomorphisms.
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This theorem already tells us enough to be able to define the continuation of the flow beyond time T.
We simply take each closed Riemann surface Mi , equip it with a conformal metric gi in the corresponding
space Mc of metrics of constant curvature, and restart the flow on each Mi separately with ui as the
initial map. The choice of gi is uniquely determined when the genus of Mi is at least 1, but on the sphere
it is initially defined only up to pull-back by Möbius maps. In this case, we must find a way of making
a canonical choice of gi in order to obtain a canonical choice of continuation. We do this by returning
to the limit metric h, which induces a smooth conformal complete hyperbolic metric of finite area on
the sphere with punctures, and choose the metric gi to be the limit g∞ of the rescaled Ricci flow on
the sphere that starts with the metric h, as given by the following theorem which follows immediately
from a combination of [Topping 2012, Theorem 1.2] (see also the simplifications arising from [Topping
and Yin 2017]) and [Hamilton 1988; Chow 1991] (see also [Giesen and Topping 2011]). Note that by
Gauss–Bonnet, the volume of the metric h must be 2π(n− 2), where n is the number of punctures.

Theorem 1.2. Suppose {p1, . . . , pn}⊂ S2 is a finite set of points and h is a complete conformal hyperbolic
metric on S2

\ {p1, . . . , pn}. Then there exists a unique smooth Ricci flow g(t) on S2, t ∈ (0, T ),
T = 1

4(n − 2), i.e., a smooth complete solution of ∂g/∂t = −2K g with curvature uniformly bounded
below and such that g(t)→ h smoothly locally on S2

\ {p1, . . . , pn} as t ↓ 0. (Here K is the Gauss
curvature.) Moreover, there exists a smooth conformal metric g∞ on S2 of constant Gauss curvature 1
such that g(t)/(2(T − t))→ g∞ smoothly as t ↑ T.

Theorem 1.1, with the aid of Theorem 1.2, thus establishes that our flow can be continued canonically
beyond the singular time T as a finite collection of flows. The construction does not require us to stop
prior to the singular time T and perform surgery. Instead, we flow right to the singular time, and the
surgery we do consists of nothing more than adding points to fill in punctures in the domain (the analogue
of adding an arbitrary cap in a traditional surgery argument).

1.2. No loss of information at finite-time collar degenerations. At this stage we have however not yet
established a very strong connection between the flow prior to a collar degeneration singularity and the
flows after the singularity. We need to relate the topology of M to the topology of the surfaces Mi , and to
relate the topology of the map u(t) prior to the singularity to the flow maps afterwards, and most of this
paper will be devoted to achieving this. The former issue is dealt with by the following:

Proposition 1.3. In the setting of Theorem 1.1, the injectivity radius converges uniformly to a continuous
limit:

injg(t)(x)→
{

injh(x) for x ∈ U,
0 for x ∈ F = M \U

(1-6)

as t ↑ T. Moreover, the set F from (1-4) consists of k ∈ {1, . . . , 3(γ − 1)} components {Fj }, and the total
number of punctures in Theorem 1.1 is 2k.

Furthermore, there exist δ0 ∈ (0, arsinh(1)) and t0 ∈ [0, T ) such that for every t ∈ [t0, T ) there are
exactly k simple closed geodesics σj (t)⊂ (M, g(t)) with length `j (t)= Lg(t)(σj (t)) < 2δ0 and the lengths
of these geodesics decay according to

`j (t)≤ C(T − t)(E(t)− E(T ))→ 0 as t ↑ T (1-7)
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for some C = C(η, γ ). In addition, for every δ ∈ (0, δ0] and t ∈ [t0, T ) the set δ-thin(M, g(t)) consists
of the union of the (possibly empty) disjoint cylindrical “subcollar” regions Cj = Cj (t, δ) around σj (t)
which are isometric to

(−X j , X j )× S1 equipped with the metric ρ2
j (s)(ds2

+ dθ2) (1-8)

where

X j = X j (t, δ)=
2π
`j (t)

arccos
(

sinh(`j (t)/2)
sinh δ

)
if 2δ ≥ `j (t), while X j = 0 if 2δ < `j (t) (1-9)

and

ρj (s)= ρ`j (t)(s)=
`j (t)

2π cos(`j (t)s/(2π))
,

and for all t sufficiently large (depending in particular on δ) we have Fj ⊂ Cj (t, δ).

The subcollars Cj are subsets of collar neighbourhoods of the collapsing simple closed geodesics
described by the collar lemma; see, e.g., [Rupflin and Topping 2018a, Lemma A.1]. If δ(t)↓ 0 sufficiently
slowly so that δ(t)−1(T − t)(E(t)− E(T ))→ 0 as t ↑ T, then X j (t, δ(t))→∞ as t ↑ T.

This proposition gives us a topological description of how M can be reconstructed from the Mi . We
remove 2k small discs from the Mi at the punctures described in Theorem 1.1, and glue in cylinders
corresponding to the k collar regions from the proposition. (We see that there will be 2k punctures.)

The proposition also demonstrates what we must establish in order to relate the flow map before the
singularity to the flow maps after the singularity. The continuation of the flow is given in terms of the
smooth local limit ū on U \ S from Theorem 1.1. Therefore we can potentially lose parts of the map at
the points S and parts of the map “at infinity” in U . As we shall see in part (1) of Theorem 1.4, the loss
of energy at points in S is entirely accounted for in terms of bubbles, i.e., maps ωi : S2

→ N that are
harmonic and nonconstant and are thus themselves branched minimal spheres.

On the other hand, we have to be concerned about parts of the map that are lost at infinity in U .
By Proposition 1.3, we must specifically be concerned with the restriction of the flow map u(t) to the
collar regions Cj . If we view these collar regions conformally as the cylinder (1-8) with the flat metric
g0= ds2

+dθ2, then any fixed-length portion of an end of these cylinders will have injectivity radius injg(t)

bounded below by a positive number, uniformly as t ↑ T, and thus by Proposition 1.3, it will remain in a
compact subset of U and the map there will be captured in the limit ū. However, this says nothing about
what happens away from the ends of the cylinders, and we have to be concerned because the map there
need not become harmonic since the tension field is a priori unbounded in L2. Nevertheless, part (3) of
Theorem 1.4 will show that near enough the centre of these cylinders — essentially on the [T−t]1/2-thin
part of (M, g(t))— we will be able to describe the map as a collection of bubbles connected together by
curves.

This leaves the worry that a little outside this thin region (for example where the injectivity radius is
of the order of [T−t]1/2−ε) we might accumulate “unstructured” energy that is lost down the collars in
the limit, and does not represent any branched minimal immersion or curve, but instead represents some
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arbitrary map. Again, this is ruled out in the following Theorem 1.4, part (2), where we show that all lost
energy lives not just on the [T−t]1/2-thin part but even on the [T−t]-thin part.

Theorem 1.4. In the setting of Theorem 1.1, we can extract a finite collection of branched minimal
spheres at the singular time in order to obtain no loss of energy/topology in the following sense. There
exists a sequence tn ↑ T such that[

‖τg(u)(tn)‖L2(M,g(tn))+‖Pg(8(u, g))(tn)‖L2(M,g(tn))
]
· (T − tn)1/2→ 0, (1-10)

and so that:

(1) At each x ∈ S, finitely many bubbles, i.e., nonconstant harmonic maps S2
→ (N, gN ), develop as

tn ↑ T. All of these bubbles develop at scales of order o((T − tn)1/2) and they account for all of the energy
that is lost near x ∈ S, as is made precise in part (2) of Proposition 3.3. In particular, if ω1, . . . , ωm is the
complete list of bubbles developing at points in S then

Ethick := lim
δ↓0

lim
t↑T

E(u(t), g(t), δ-thick(U, h))

= E(ū, h,U)+
m∑

l=1

E(ωl)=
∑

i

E(ui ,Mi )+

m∑
l=1

E(ωl). (1-11)

(2) All the energy
Ethin := E(T )− Ethick,

E(T ) := limt↑T E(t), lost down the collars concentrates on the [T−t]-thin part in the sense that

Ethin = lim
t↑T

E
(
u(t), g(t), [T−t]-thin(M, g(t))

)
. (1-12)

In fact, we have the more refined information that

Ethin = lim
K→∞

lim inf
t↑T

E
(
u(t), g(t), [K (T − t)(E(t)− E(T ))]-thin(M, g(t))

)
. (1-13)

(3) The restriction of the maps u(tn) to the (T − tn)1/2-thin part of the degenerating subcollars Cj from
Proposition 1.3 has tension ‖τg0(u(tn))‖L2 → 0 as n→∞ with respect to g0 = ds2

+ dθ2 and hence can
be assumed to converge to a full bubble branch as explained in Proposition 1.5 below.

In the following proposition from [Huxol et al. 2016], we write an � bn , for sequences an and bn if
an < bn for each n and bn − an→∞ as n→∞.

Proposition 1.5 [Huxol et al. 2016, Theorem 1.9 and Definition 1.10]. For any sequence of maps
un : [−X̂n, X̂n]× S1

→ N , X̂n→∞, for which the tension with respect to the flat metric g0 = ds2
+dθ2

satisfies ‖τg0(un)‖L2 → 0, there exists a subsequence that converges to a full bubble branch in the
following sense:

There exist a finite number of sequences sm
n (for m ∈ {0, . . . , m̄}, m̄ ∈ N) with

−X̂n =: s0
n � s1

n � · · · � sm̄
n := X̂n

such that:
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(1) The connecting cylinders (sm−1
n +λ, sm

n −λ)× S1, λ large, are mapped near curves in the sense that

lim
λ→∞

lim sup
n→∞

sup
s∈(sm−1

n +λ,sm
n −λ)

osc(un; {s}× S1)= 0 (1-14)

for each m ∈ {1, . . . , m̄}.

(2) For each m ∈ {1, . . . , m̄− 1} (if nonempty) the translated maps um
n (s, θ) := un(s+ sm

n , θ) converge
weakly in H 1 locally on (−∞,∞)× S1 to a harmonic map ωm and strongly in H 1

loc((−∞,∞)× S1)

away from a finite number of points at which bubbles can be extracted in a way that each bubble is counted
no more than once, and so that in this convergence of um

n to a bubble branch there is no loss of energy on
compact subsets of (−∞,∞)× S1. Since (−∞,∞)× S1 is conformally equivalent to the sphere with
two points removed, ωm extends to a harmonic map from S2. This map can then be considered as a bubble
(in particular a branched minimal immersion) if it is nonconstant. If it is constant, then there must be a
nonzero number of bubbles developing within. (See Theorem 1.5 of [Huxol et al. 2016] for details.)

Remark 1.6. Proposition 3.3 will give a more general version of part (1) of Theorem 1.4, establishing the
no-loss-of-energy property and control on the bubble scales also at finite-time singularities as considered
in [Rupflin 2014] at which the metrics do not degenerate. As mentioned earlier, the analogue of this
result when the underlying surface is M = S2 can already be found in [Topping 2004, Theorem 1.6] since
(1-1) is then just the harmonic map flow. That theorem also elaborates on the sense in which the finite
collection of bubbles develop, and the strategy of its proof broadly carries over to our situation here.

The key point of Theorem 1.4 is that the degenerating collars, and indeed the whole surface, can be
divided up into two regions: First, the cylinders making up [T−t]-thin(M, g(t)) (and even those making
up [T−t]1/2-thin) are sufficiently collapsed that when we rescale, the evolving map u can be seen to have
very small tension and can thus be represented in terms of branched minimal spheres. Second, on the
remaining [T−t]-thick part, the limiting energy is fully accounted for by the energy of the limits ui and
the energy of the bubbles. This latter assertion is not a priori so clear since one might have a part of the
flow map drifting down the collar, always living in a region such as where the injectivity radius is of the
order of, e.g., [T−tn]1/3. Such a part of the map would have no reason to look harmonic in any way, and
might carry some nontrivial topology. This “unstructured” energy could in principle drift down the collar
not because energy was flowing around the domain, but because the injectivity radius itself is evolving.

The key to ruling out this latter bad behaviour is the following theorem, which gives a more precise
description of the convergence of the metric than the one given in Theorem 1.1 and which asserts
essentially that by time t ∈ [0, T ), the metric g(t) has settled down to its limit h on the [T−t]-thick part.
As we shall see, this represents an instance of a more general theory from [Rupflin and Topping 2018a]
describing the convergence of a general “horizontal curve” of hyperbolic metrics.

Theorem 1.7. In the setting of Theorem 1.1, there exists K <∞ depending on η and the genus of M
(and determined in Lemma 2.2) such that the following holds true:

The “pinching set” F ⊂ M defined in (1-4) can be characterised as

F =
⋂
t<T

{p ∈ M : injg(t)(p) < δK (t)} (1-15)
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for any K ≥K , where δK (t) :=K (T−t)(E(t)−E(T ))↓0 as t ↑T and E(T ) := limt↑T E(t). Equivalently,
we have

U := M \ F =
⋃
t<T

[δK (t)]-thick(M, g(t)). (1-16)

In addition to the claims on U , h and the convergence g(t)→ h made in Theorem 1.1, for any K ≥ K ,
t0 ∈ [0, T ) and t ∈ [t0, T ), we have that for every l ∈ N

‖g(t)− h‖C l ([δK (t0)]-thick(M,g(t0)),g(t0))+‖g(t)− h‖C l ([δK (t0)]-thick(U,h),h) ≤ C K−1/2
[
δ(t)
δ(t0)

]1/2

, (1-17)

where we abbreviate δ(t)= δ1(t) and where C depends only on l, the genus of M and η. Furthermore,
for K > 0 sufficiently large (depending on η, the genus of M and an upper bound E0 for the initial energy)
and for all t0 ∈ [0, T )— or for arbitrary K > 0 and t0 ∈ [0, T ) sufficiently large — we have

sup
t∈[t0,T )

‖g(t)− h‖C l ([K (T−t0)]-thick(M,g(t0)),g(t0))+ sup
t∈[t0,T )

‖g(t)− h‖C l ([K (T−t0)]-thick(U,h),h)

≤ C
(E(t0)− E(T ))1/2

K 1/2 → 0 (1-18)

as t0 ↑ T, where C depends on l, the genus of M and η.

Remark 1.8. Although we do not require it here, one should be able to improve the smooth local
convergence u(t)→ ū of Theorem 1.1 to quantitative control on the size of u(t)− ū over, say, the
[T−t]1/2-thick part of (M, g(t)), away from S, with respect to an appropriate weighted norm.

In summary we obtain that the flow (1-1) decomposes any smooth map u0 : M→ N into a collection
of branched minimal immersions vi :6i→ N through global solutions that are smooth away from finitely
many times as follows: As discussed earlier, at each singular time tm for which injg(t)(M)9 0 as t ↑ tm , all
of the lost energy is accounted for in terms of bubbles ω j

m : S2
→ (N, gN ), which we add to the collection

of minimal immersions vi (adding that same number of copies of S2 to the collection of domains 6i ). At
singular times for which injg(t)(M)→ 0, the results discussed above apply and we add both the bubbles
developing at the singular points S ⊂ U and those that are disappearing down one of the degenerating
collars to the set of minimal immersions vi (again adding the corresponding number of S2’s to the
collection of the 6i ’s) and continue the flow on the closed lower-genus surfaces Mi as described above.

If the genus of any of the closed surfaces Mi is 0 or 1, then its continuation will be a weak solution that
flows forever afterwards according to the theory of the harmonic map flow [Struwe 1985] or the theory
in [Ding et al. 2006]. If the genus of any of the surfaces Mi is larger than 1, then the subsequent flow
might develop a further finite-time singularity at which a collar degenerates, in which case we repeat the
process above to continue the flow further still. Each time we restart the flow after a singularity caused
by the degeneration of one or more collars, the genus of the surfaces underlying the continued flows
will decrease, so repeating the process finitely many times gives us a global weak solution as desired.
As the energy is conformally invariant, the resulting global solution has nonincreasing energy and the
total number of singular times tm is a priori bounded in terms of the genus, the initial energy and the
target (N, gN ).
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We can relate the domain(s) and map(s) before a singular time tm to the flow(s) after the singular time
as explained above and can thus reconstruct the initial map and the initial domain in terms of the map(s)
and domain(s) at any time t ∈ (tm, tm+1) and the collection of all of the bubbles vi obtained at the singular
times t1 < · · ·< tm as well as connecting curves on cylinders.

We can then apply the asymptotic analysis as discussed above, principally from [Huxol et al. 2016], to
each of the obtained global flows, eventually adding also the bubbles developing at infinite time as well
as the limiting maps u∞j : M

∞

j → N obtained at infinite time, which are branched minimal immersions
defined on surfaces of total genus no more than γ, to the collection of the (6i , vi ). This gives the
decomposition of the initial map into branched minimal immersions vi :6i → N described earlier on.

This paper is organised as follows. In Section 2 we carry out the analysis of the metric component
of the flow, proving part (1) of Theorem 1.1 as well as Theorem 1.7 and Proposition 1.3. The resulting
control on the evolution of the metric then allows us to analyse the map component in the subsequent
Section 3. In Section 3.2 we focus on the properties of the map on the nondegenerate part of the surface,
stating and proving Proposition 3.3, which yields both part (2) of Theorem 1.1 as well as part (1) of
Theorem 1.4. Parts (2) and (3) of Theorem 1.4 are then proven in Section 3.3 where we analyse the map
component on the degenerating part of the surface.

2. Analysis of the metric component

In this section we analyse the metric component of the flow, proving first part (1) of Theorem 1.1, then
Theorem 1.7, and finally Proposition 1.3. This analysis is based on the theory of general horizontal curves
we developed in [Rupflin and Topping 2018a], henceforth abbreviated [RT2018a], some of which we
recall here.

A horizontal curve of metrics on a smooth closed oriented surface M of genus at least 2 is a smooth
one-parameter family g(t) of hyperbolic metrics on M for t within some interval I ⊂ R so that for each
t ∈ I , there exists a holomorphic quadratic differential 9(t) such that ∂t g = Re(9). This makes g(t)
move orthogonally to modifications by diffeomorphisms, as described in [RT2018a].

An important property of horizontal curves is that we can bound the C l norm of their velocity, l ∈ N,
in terms of a much weaker norm of ∂t g and the injectivity radius. In fact, [RT2018a, Lemma 2.6] gives
that for any x ∈ M and l ∈ N

|∂t g(t)|C l (g(t))(x)≤ C[injg(t)(x)]
−1/2
‖∂t g(t)‖L2(M,g(t)), (2-1)

with C depending only on the genus of M and l, where |�|C l (g)(x) :=
∑l

k=0 |∇
k
g�|g(x), with ∇g the

Levi-Civita connection, or its extension.
We furthermore recall that for every point x ∈ M the map t 7→ injg(t)(x) is locally Lipschitz on the

interval I over which g is defined, see [RT2018a, Lemma 2.1], and that∣∣∣ d
dt
[injg(t)(x)]

1/2
∣∣∣≤ K0‖∂t g(t)‖L2(M,g(t)) (2-2)

holds true for a constant K0 <∞ that depends only on the genus of M , see [RT2018a, Lemma 2.2].
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These estimates play an important role in the proof of the following convergence result for finite-length
horizontal curves, proven in [RT2018a], which we will use to analyse the metric component of the flow.
In order to state this result, we introduce some more notation: If g(t) is defined for t in some interval
[0, T ), then we let

L(s) :=
∫ T

s
‖∂t g(t)‖L2(M,g(t)) dt ∈ [0,∞]

denote the length of the restriction of g to the interval [s, T ). Given a tensor� defined in a neighbourhood
of some K ⊂ M , we write

‖�‖C l (K ,g) := sup
K
|�|C l (g). (2-3)

Theorem 2.1 [RT2018a, Theorem 1.2]. Let M be a closed oriented surface of genus γ ≥ 2, and suppose
g(t) is a smooth horizontal curve in M−1 for t ∈ [0, T ), with finite length L(0) < ∞. Then there
exist a nonempty open subset U ⊂ M , whose complement has k ∈ {0, . . . , 3(γ − 1)} components, and a
complete hyperbolic metric h on U for which (U, h) is of finite volume and is conformally a finite disjoint
union of closed Riemann surfaces (of genus strictly less than that of M if U is not the whole of M) with
2k punctures, such that

g(t)→ h

smoothly locally on U . Moreover, defining I : M→ [0,∞) by

I(x)=
{

injh(x) on U,
0 on F = M \U,

we have injg(t)→ I uniformly on M as t ↑ T, and indeed that

‖[injg(t)]
1/2
− I1/2

‖C0 ≤ K0L(t)→ 0 as t ↑ T, (2-4)

where K0 is chosen as in (2-2) and depends only on γ . Furthermore, for any l ∈ N and δ > 0, if we take
t0 ∈ [0, T ) sufficiently large so that

(2K0L(t0))2 < δ, where K0 is the constant obtained in (2-2), (2-5)

then δ-thick(M, g(s))⊂ U for every s ∈ [t0, T ), and we have for every t ∈ [t0, T )

‖g(t)− h‖C l (δ-thick(U,h),h)+‖g(t)− h‖C l (δ-thick(M,g(s)),g(s)) ≤ Cδ−1/2L(t), (2-6)

where C depends only on l and γ .

We first apply this result to prove the properties of the metric component claimed in our basic
convergence result, i.e., part (1) of Theorem 1.1 To this end we first note that for any smooth solution (u, g)
of (1-1) defined on [0, T ), T <∞, the metric component is by definition a smooth horizontal curve.
Furthermore, its length is finite as

L(t)2 =
(∫ T

t
‖∂t g(t)‖L2(M,g(t)) dt

)2

≤ (T − t)
∫ T

t
‖∂t g(t)‖2L2(M,g(t)) dt

≤ η2(T − t)(E(t)− E(T )), (2-7)
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by (1-2), where we abbreviate E(t) := E(u(t), g(t)) and E(T ) := lims↑T E(s). In particular, defining

K := 5K 2
0η

2 (2-8)

to depend only on η and γ , and defining

δK (t) := K (T − t)(E(t)− E(T )), (2-9)

which we will be considering for K ≥ K and t ∈ [0, T ), we have

[K0L(t)]2 ≤ 1
5δK (t) (2-10)

for all t ∈ [0, T ). We may thus analyse the metric component g of any solution of (1-1) with the above
Theorem 2.1.

In the setting of Theorem 1.1, the assumption (1-3) that the metric component degenerates as t
approaches T combined with the uniform convergence of the injectivity radius furthermore guarantees
that the pinching set F must be nonempty.

Part (1) of Theorem 1.1 concerning the local convergence of g(t) to a limit h and the properties of
h, U and F is thus a direct consequence of Theorem 2.1 and the fact that L(0) <∞.

To prove the refined properties of the metric component stated in Theorem 1.7 and Proposition 1.3 we
shall use the following lemma, where K will be chosen as in (2-8) above.

Lemma 2.2. Let (u, g) be a smooth solution of (1-1) on [0, T ), T <∞, on a surface M of genus γ ≥ 2.
Then there exists a constant K depending only on η and γ so that the following holds true. If we define
δK (t) as in (2-9) then for every t0 ∈ [0, T ) the assumption (2-5) of Theorem 2.1 is satisfied for t0 and any
δ > 0 with δ ≥ δK (t0) and thus estimate (2-6) holds true for any t0 ∈ [0, T ), s, t ∈ [t0, T ), and any δ > 0
with δ ≥ δK (t0). Furthermore:

(1) For every K ≥ K the pinching set F defined in (1-4) can be characterised by (1-15).

(2) The metrics (g(t))t∈[t0,T ) are uniformly equivalent and their injectivity radii are of comparable size at
points x ∈ δK (t0)-thick(M, g(t0)) in the sense that for every s, t ∈ [t0, T )

g(s)(x)≤ C1 · g(t)(x) and C−1
1 · h(x)≤ g(t)(x)≤ C1 · h(x) (2-11)

and
injg(s)(x)≤ C2 · injg(t)(x), (2-12)

where C1 ≥ 1 depends only on the genus of M , while C2 ≥ 1 is a universal constant.

(3) For every K ≥ K , every x ∈ δK (t0)-thick(M, g(t0)), every s, t ∈ [t0, T ) and every l ∈ N we have

|∂t g(t)|C l (g(s))(x)≤ CδK (t0)−1/2
‖∂t g(t)‖L2(M,g(t)), (2-13)

where C depends only on l and the genus of M.

Proof of Lemma 2.2. We first remark that the claims are trivially true if δK (t0)= 0 and hence g|[t0,T ) is
constant in time, so we may assume without loss of generality that δK (t0) > 0.
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Define K as in (2-8). Then (2-10) implies

(2K0L(t0))2 ≤ 4
5δK (t0) < δK (t0), (2-14)

and so (2-5) is satisfied for δ ≥ δK (t0) as claimed in the lemma.
To prove part (1) of the lemma we combine (2-4) with (2-10) to obtain that injg(t)(p)≤(K0L(t))2<δK (t)

for every p ∈ F and every t ∈ [0, T ) and thus that

F ⊂
⋂

t∈[0,T )

δK (t)-thin(M, g(t)) for any K ≥ K.

As the reverse inclusion is trivially satisfied this establishes the characterisation (1-15) of the pinching set
for each K ≥ K .

The proofs of parts (2) and (3) of the lemma are now based on estimates on the velocity and the
injectivity radius that were derived in [RT2018a] for general horizontal curves under the same hypothesis
that (2-5) holds true: Lemma 3.2 and Remark 3.5 of [RT2018a] establish that (2-11) and (2-12) hold true
for arbitrary horizontal curves, times s, t ∈ [t0, T ) and points x ∈ δ-thick(M, g(t0)) provided t0 and δ are
such that (2-5) is satisfied. Combined with (2-14) this immediately yields part (2) of the lemma. Finally,
(2-13), and hence part (3) of the lemma, follows immediately from [RT2018a, Lemma 3.2], with δ there
equal to δK (t0) here, because the hypotheses of that lemma are implied by (2-14). �

Parts (2) and (3) of Lemma 2.2 will be used in the next section for the fine analysis of the map
component, but before that we complete the proofs of Theorem 1.7 and Proposition 1.3.

Proof of Theorem 1.7. We let K be the constant obtained in Lemma 2.2, i.e., given by (2-8), and set as
usual δK (t)= K (T − t)(E(t)− E(T )). For this choice of K the characterisation (1-15) of the pinching
set F has already been proven in Lemma 2.2 and from this lemma we furthermore know that (2-5) holds
true for any t0 and any δ ≥ δK (t0) and thus in particular for δ = δK (t0), K ≥ K . Hence (1-17) follows
from the corresponding estimate (2-6) of Theorem 2.1 and the bound (2-7) on L(t).

It remains to prove (1-18). For this we observe that for K > 0 sufficiently large and for all t0 ∈ [0, T )—
or for arbitrary K > 0 and t0 ∈ [0, T ) sufficiently large — we can be sure that K (E(t0)− E(T ))≤ K and
hence by (2-10) that (2-5) is satisfied for t0 and δ = K (T − t0). This allows us to apply estimate (2-6) of
Theorem 2.1 also for such values of δ, which then gives

sup
t∈[t0,T )

‖g(t)− h‖C l ([K (T−t0)]-thick(M,g(t0)),g(t0)) ≤ C
L(t0)

K 1/2(T − t0)1/2
≤ C

(E(t0)− E(T ))1/2

K 1/2 → 0 (2-15)

as t0 ↑ T, using (2-7), as well as

sup
t∈[t0,T )

‖g(t)− h‖C l ([K (T−t0)]-thick(U,h),h) ≤ C
(E(t0)− E(T ))1/2

K 1/2 → 0, (2-16)

where C depends only on l, η and the genus of M . �

Proof of Proposition 1.3. The uniform convergence of the injectivity radius follows from Theorem 2.1 as
(g(t))t∈[0,T ), T <∞, is a horizontal curve of finite length.
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We furthermore recall that standard results from the theory of hyperbolic surfaces give that for any
δ < arsinh(1) the δ-thin part of a hyperbolic surface is given by the union of disjoint subcollar regions
around the simple closed geodesics of length ` < 2δ as described in the proposition; refer to the appendix
of [Rupflin and Topping 2018b] for further details.

For K ≥ K0, with K0 as in (2-2), we define closed sets

FK (t) := {p : injg(t)(p)≤ (KL(t))2}

for t ∈ [0, T ). It follows from the slightly stronger result [RT2018a, Lemma 3.1] that the sets FK (t) are
nested, becoming only smaller as t increases, and that the pinching set F can be written as

F =
⋂

t∈[0,T )

FK (t). (2-17)

It is useful for us to appeal to this fact for some K > K0, and we choose K = 2K0.
Thus for t0 sufficiently large, chosen in particular so that (2K0L(t0))2 < arsinh(1), the pinching set F

has the same number k ∈ {1, . . . , 3(γ − 1)} of connected components as the sets F2K0(t), t ∈ [t0, T ),
with the connected components of F2K0(t) being disjoint closed subcollars around geodesics σj (t) of
length `j (t)≤ 2(2K0L(t))2 ≤ C(T − t)(E(t)− E(T )) whose interior is as described in the proposition.
In particular given any δ ∈ (0, arsinh(1)) and t ∈ [t0, T ) sufficiently large (depending in particular on δ),
we know that the connected components Fj of the pinching set are contained in the corresponding
subcollar Cj (t, δ), as claimed in the proposition.

It thus remains to show that there exists a number δ0 ∈ (0, arsinh(1)) such that any simple closed
geodesic in (M, g(t)), t ∈ [t0, T ), that does not coincide with one of the σj (t)must have length at least 2δ0.
To this end we observe that the characterisation (2-17), this time with K = K0, gives

� := (2K0L(t0))2-thick(M, g(t0))⊂ M \ FK0(t0)⊂ U

and since � is closed, it is a compact subset of M and hence also of U . Therefore over � the injectivity
radius injg(t)( · ), t ∈ [t0, T ), is bounded uniformly from below by some constant δ0 ∈ (0, arsinh(1))
thanks to (1-6). Consequently, any simple closed geodesic in (M, g(t)) that enters � must have length at
least 2δ0.

The only alternative is that the simple closed geodesic in (M, g(t)) is fully contained in one of the
k cylinders Cj (t0, (2K0L(t0))2), in which case it must be homotopic to σj (t) (up to change of orientation)
and hence coincide with σj (t). �

3. Analysis of the map component

The challenges of analysing the map component are of a different nature depending on whether we
consider a region where the metric has already settled down or a region in a collar that will ultimately
degenerate. Roughly speaking, on the nondegenerate part of the surface we control the metric but cannot
hope to bound the tension, while on the degenerating part of the surface the metric is not controlled but the
tension tends to zero when computed with respect to the flat metric in collar coordinates along a sequence
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of times tn ↑ T as considered in Theorem 1.4. We will analyse the map component separately on these
two different regions, with the analysis on the nondegenerate part, and hence the proofs of part (2) of
Theorem 1.1 and of part (1) of Theorem 1.4, carried out in Section 3.2. Parts (2) and (3) of Theorem 1.4,
which concern the part of the map that is lost on degenerating collars, are then proven in Section 3.3. In
both of these sections we use a local energy estimate that is derived in Section 3.1.

3.1. Local energy estimates. The goal of this section is to prove the following lemma on the evolution
of cut-off energies

Eϕ(t) :=
1
2

∫
ϕ2
|du(t)|2g(t) dvg(t) (3-1)

for functions ϕ ∈ C∞(M, [0, 1]).

Lemma 3.1 (Local energy estimate). Let (u, g) be a smooth solution of (1-1) on a closed surface of
genus at least 2, and for an interval [0, T ), T <∞, and let ϕ ∈ C∞(M, [0, 1]) be such that there exists
t0 ∈ [0, T ) and K ≥ K for K the constant obtained in Lemma 2.2, so that

supp(ϕ)⊂ δK (t0)-thick(M, g(t0)), (3-2)

where as usual δK (t) := K (T − t)(E(t)− E(T )).
Then the limit limt↑T Eϕ(t) exists and (assuming the flow is not constant in time on [t0, T )) for any

t0 ≤ t < s < T we have

|Eϕ(t)− Eϕ(s)| ≤ E(t)− E(s)+C[δK (t0)−1/2
+‖dϕ‖L∞(M,g(t0))](s− t)1/2(E(t)− E(s))1/2

≤ E(t)− E(T )+C[δK (t0)−1/2
+‖dϕ‖L∞(M,g(t0))](T − t)1/2(E(t)− E(T ))1/2, (3-3)

where C depends only on the coupling constant η, the genus of M and an upper bound E0 for the initial
energy.

A first step in the proof of Lemma 3.1 is to show the following analogue of well-known local energy
estimates for harmonic map flow as found, e.g., in [Topping 2004, Section 2].

Lemma 3.2. Let (u, g) be a (smooth) solution of (1-1) on [0, T ) and let ϕ ∈ C∞(M, [0, 1]) be any given
function. Then the evolution of the cut-off energy Eϕ(t) defined in (3-1) is controlled by∣∣∣∣ d
dt

Eϕ +
∫
ϕ2
|τg(u)|2 dvg

∣∣∣∣
≤ 2
√

2E(u, g)1/2‖dϕ‖L∞(M,g)

(∫
ϕ2
|τg(u)|2 dvg

)1/2

+‖∂t g‖L∞(supp(ϕ),g)Eϕ. (3-4)

Proof. The equation of the map component can be described by

∂t u−1gu = Ag(u)(du, du)= gi j A(u)(∂xi u, ∂x j u)⊥ Tu N (3-5)

if we view (N, gN ) as a submanifold of Euclidean space using Nash’s embedding theorem and denote by
A the second fundamental form of N ↪→ RK. We multiply this equation with ϕ2 ∂t u and integrate over
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(M, g) to obtain

0=
∫
ϕ2
|∂t u|2 dvg +

∫
〈∂t du, du〉gϕ2dvg + ∂t u〈du, d(ϕ2)〉g dvg.

We now recall that ∂t g is given as the real part of a quadratic differential and thus has zero trace, which
implies (d/dt)dvg = 0. As ϕ is independent of time while ∂t u = τg(u), we thus obtain∣∣∣∣ d
dt

Eϕ +
∫
ϕ2
|τg(u)|2 dvg

∣∣∣∣
≤

1
2

d
dε

∣∣∣
ε=0

∫
|du|2g(t+ε)ϕ

2 dvg + 2
∫
ϕ|dϕ| · |τg(u)| · |du| dvg

≤ ‖∂t g‖L∞(supp(ϕ),g)Eϕ + 2‖dϕ‖L∞(M,g)(2E(u, g))1/2 ·
(∫

ϕ2
|τg(u)|2 dvg

)1/2

(3-6)

as claimed. �

Based on this lemma, as well as the control on the metric on the δK (t0)-thick part of the domain
obtained in Lemma 2.2, we can now prove our main energy estimate.

Proof of Lemma 3.1. Given K≥K , with K as in Lemma 2.2, we set as usual δK (t):=K(T−t)(E(t)−E(T ))
and consider a cut-off function ϕ as in the lemma for which (3-2) is satisfied for some t0.

This assumption on the support of ϕ allows us to bound any C l norm of ∂t g on supp(ϕ) using estimate
(2-13) of Lemma 2.2, which implies in particular that

‖∂t g(t)‖L∞(suppϕ,g(t)) ≤ C[δK (t0)]−1/2
‖∂t g(t)‖L2(M,g(t)) for any t ∈ [t0, T ) (3-7)

holds true with a constant C that depends only on the genus.
Furthermore, the equivalence (2-11) of the metrics on δK (t0)-thick(M, g(t0)), and thus in particular on

supp(ϕ), obtained in the same lemma, allows us to bound

‖dϕ‖L∞(M,g(t)) ≤
√

C1‖dϕ‖L∞(M,g(t0)) for t ∈ [t0, T ).

The local energy estimate (3-4) of Lemma 3.2 thus reduces to∣∣∣ d
dt

Eϕ
∣∣∣≤‖τg(u)‖2L2(M,g)+C‖dϕ‖L∞(M,g(t0))‖τg(u)‖L2(M,g)+CδK (t0)−1/2

‖∂t g‖L2(M,g)

≤

(
−

d E
dt

)
+C · [‖dϕ‖L∞(M,g(t0))+ δK (t0)−1/2

]

(
−

d E
dt

)1/2
(3-8)

for t ∈ [t0, T ), where the constant C now depends not only on the genus but also on the coupling constant
and an upper bound E0 on E(0) ≥ E(t) and where we used the evolution equation (1-2) of the total
energy in the second step.

Integrating (3-8) over [t, s] ⊂ [t0, T ) yields the claim of Lemma 3.1. �

Lemma 3.1 will allow us to determine both the part of the degenerating collars where energy can be
lost as well as the scale at which energy concentrates around points in the singular set S ⊂ U . This will
then allow us to capture two collections of bubbles, one developing at the bubble points S, but also an
additional collection of bubbles that are disappearing down the collars. By further analysing what can
happen between these bubbles, this will allow us to prove Theorem 1.4.
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This bubbling analysis will be carried out along a sequence of times tn for which (1-10) holds. The
existence of such tn ↑ T follows by a standard argument: Integrating (1-2) in time implies that∫ T

0
‖τg(u)‖2L2 dt and

∫ T

0
‖Pg(8)‖

2
L2 dt

are bounded in terms of an upper bound E0 for the initial energy, and (for the second integral) the coupling
constant η. Here we suppress the dependence of 8 on u and g, of the L2 measure on g, and of u and g
on t . These bounds imply that whenever a smooth function f : [0, T )→ [0,∞) has infinite integral,
there exists a sequence of times tn ↑ T such that

[‖τg(u)‖2L2 +‖Pg(8)‖
2
L2](tn) < f (tn).

In particular, we may always choose some sequence tn ↑ T so that (1-10) holds true for tn (and thus also
for any subsequence that we take later).

3.2. Analysis of the map component on the nondegenerate part of the surface. On compact subsets of
U we can control the metric component using Lemma 2.2 and may thus think of the evolution equation (1-1)
for the map component as a solution of a flow that is akin to the classical harmonic map flow albeit with
a (well-controlled) time-dependent metric. This will allow us to adapt well-known techniques from the
theory of the harmonic map flow, in particular from [Struwe 1985; Topping 2004], to analyse the solution
on this part of the domain in detail: We prove that as t ↑ T , energy concentrates only at finitely many
points S away from which the maps converge in C l, for each l ∈ N, and that, along a subsequence of
times tn ↑ T as in (1-10), we can extract a finite number of bubbles at each point in S which account
for all the energy that is lost near these point. This last part is equivalent to proving that no energy is
lost on so-called neck-regions around the bubbles (not to be confused with collar regions around the
degenerating geodesics). This fine analysis of the map component on the thick part of the surface applies
not only in the case of a finite time degeneration as considered in the present paper but (as a by-product
of the following proposition) also gives refined information at singular times as considered in [Rupflin
2014], across which the metric remains controlled.

Proposition 3.3 (cf. [Topping 2004]). Let (u, g) be any smooth solution of (1-1) for t ∈ [0, T ) on a
surface of genus at least 2. Let F be the (possibly empty) set given by (1-4) and let S be defined as in
(1-5). Then S is a finite set and:

(1) u(t) converges smoothly locally on M \ (F ∪ S) and weakly locally in H 1 on M \ F as t ↑ T, to a
limit that we denote by u(T ).

(2) We have no loss of energy at points in S, and the scales of bubbles developing at the points of S, along
a subsequence of times tn ↑ T as in (1-10), are small compared with (T − tn)1/2. Indeed, if ω1, . . . , ωm′

are the bubbles developing at x ∈ S then for every ν > 0

lim
r↓0

lim
t↑T

E(u(t), g(t), Bh(x, r))= lim
r↓0

lim
t↑T

E(u(t), g(t), Bg(t)(x, r))

= lim
t↑T

E
(
u(t), g(t), Bg(t)(x, ν(T − t)1/2)

)
=

m′∑
l=1

E(ωl). (3-9)



832 MELANIE RUPFLIN AND PETER M. TOPPING

In particular, if ω1, . . . , ωm′′ is the complete list of bubbles developing at points in S and if � b U is
chosen large enough so that S is contained in the interior of � then

lim
t↑T

E(u(t), g(t),�)= E(ū, h, �)+
m′′∑
l=1

E(ωl). (3-10)

In the setting of Theorem 1.1, i.e., in the case that injg(t)(M)→ 0 as t ↑ T, part (1) of the proposition
yields the convergence of the maps u(t) on U and on U \ S claimed in part (2) of Theorem 1.1. As the
resulting limiting maps can be extended across the punctures to H 1 maps from Mi (since their energy
is bounded) and as the properties of the metric component claimed in part (1) of Theorem 1.1 have
already been proven in Section 2, this then completes the proof of Theorem 1.1, modulo the proof of
Proposition 3.3.

The second part of Proposition 3.3 implies part (1) of Theorem 1.4: the first part of (1-11) follows
from (3-10) since δ-thick(U, h) is compact for every δ > 0, while the second part of (1-11) is due to the
conformal invariance of the energy.

For the proof of Proposition 3.3 we shall use the following standard ε-regularity result.

Proposition 3.4. There exist constants ε0 > 0 and C ∈ R depending only on the target manifold so that
the following holds true. Let u : BgH (x, r)→ N be any smooth map from a ball of radius r ∈ (0, 1] in the
hyperbolic plane (H, gH ) with energy

E(u, gH , BgH (x, r))≤ ε0.

Then∫
ϕ2
[|∇gH du|2gH

+|du|4gH
] dvgH ≤C‖dϕ‖2L∞(H,gH )

E(u, gH , BgH (x, r))+C
∫
ϕ2
|τgH (u)|

2 dvgH (3-11)

holds true for every function ϕ ∈ C∞c (BgH (x, r), [0, 1]).

Note that the Hessian term |∇gH du|2gH
is not referring to the intrinsic Hessian. That term is instead

the sum of the corresponding terms for each component of u viewed as a map into Euclidean space, and
depends on the isometric embedding of N that we chose. This term can be controlled in terms of the
integral of ϕ2

|1gu|2 and lower-order terms simply using integration by parts. This leading-order term
can be rewritten using (3-5) and the resulting quartic term in du controlled with the Sobolev inequality.
The details of a very similar argument can be found in [Rupflin 2008, Proposition 2.4].

Proof of Proposition 3.3. Part (1) of the proposition represents the analogue of Lemma 3.10′ of [Struwe
1985] and we shall use properties of horizontal curves from Lemma 2.2 to control the evolution of the
metric; see also [Rupflin 2014] for a related proof in the nondegenerate case.

In the following we shall use several times that for any compact subset �⊂ U = M \ F there exists a
number t0 = t0(�) ∈ [0, T ) so that

�⊂ δ2K (t0)-thick(M, g(t0)), (3-12)

where δK (t)= K (T − t)(E(t)− E(T )) and K are as in Lemma 2.2. Indeed, for solutions of (1-1) which
degenerate as described in (1-3), this is a consequence of the uniform convergence of the injectivity radius
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obtained in Proposition 1.3, while otherwise injg(t)(M) is bounded away from zero uniformly so (3-12) is
trivially satisfied for t0 sufficiently close to T. As a consequence of (3-12) also

injg(t0)(x)≥ δK (t0) for all x ∈ M with distg(t0)(x, �)≤ δK (t0), (3-13)

which allows us to apply Lemma 2.2 to control the evolution of the metric as well as Lemma 3.1 to bound
the cut-energy on this neighbourhood of �.

We first apply this idea to prove that for any point p ∈ U for which

lim sup
t↑T

E(u(t), g(t), V )≥ ε0 for every neighbourhood V ⊂ M of p, (3-14)

where ε0 > 0 is the constant obtained in Proposition 3.4, we also have

lim inf
t↑T

E(u(t), g(t),W )≥ ε0 for every neighbourhood W ⊂ M of p. (3-15)

In particular, the set S̃ of points in U for which (3-14) holds is a finite set and we will later see that it
agrees with the singular set S defined in (1-5).

To show (3-15) for a given p ∈ S̃ we let t0 ∈ [0, T ) be large enough so that (3-12) holds for �= {p}.
Given any neighbourhood W of p we then choose r ∈ (0, δK (t0)) small enough so that Bg(t0)(p, r)⊂W
and select a cut-off function ϕ ∈ C∞c (Bg(t0)(p, r), [0, 1]) with ϕ ≡ 1 in a neighbourhood V of p.

Lemma 3.1 implies that the limit limt↑T Eϕ(t) of the cut-off energy defined in (3-1) exists and thus
that, by (3-14),

lim inf
t↑T

E(u(t), g(t),W )≥ lim
t↑T

Eϕ(t)≥ lim sup
t↑T

E(u(t), g(t), V )≥ ε0

as claimed. Having thus established that there is only a finite subset S̃ of points in U for which (3-14)
holds, we now want to prove that u(t) converges smoothly on every compact subset V of U \ S̃ as t ↑ T.

Given such a compact subset V of U \ S̃ we may choose r0 ∈ (0, 1) small enough that

E(u(t), g(t), Bg(t0)(p, r0)) < ε0 for all t ∈ [0, T ), and all p ∈ V . (3-16)

Then choosing t0 ∈ [0, T ) so that (3-12) holds true for �= V and reducing r0 if necessary to ensure
that r0 < δK (t0), we know from (3-13) that we can apply both Lemmas 2.2 and 3.1 on balls Bg(t0)(p, r),
r ≤ r0, p ∈ V, as they are contained in δK (t0)-thick(M, g(t0)).

We first note that (2-11) from Lemma 2.2 guarantees that for every t ∈ [t0, T )

Bg(t0)

(
p,

r0

C1

)
⊂ Bg(t)

(
p,

r0
√

C1

)
⊂ Bg(t0)(p, r0). (3-17)

We furthermore note that r0/
√

C1 cannot be larger than injg(t)(p) for any t ∈ [t0, T ) as otherwise
Bg(t)(p, r0/

√
C1), and thus also Bg(t0)(p, r0), would need to contain a curve σ starting and ending in p

that is not contractible in M , which would contradict the fact that r0 < injg(t0)(p).
Hence Bg(t)(p, r0/

√
C1) is isometric to a ball in the hyperbolic plane and so the smallness of the energy

E(u(t), g(t), Bg(t)(p, r0/
√

C1)) < ε0 obtained from (3-16) and (3-17) allows us to apply Proposition 3.4
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for any ϕ ∈ C∞c (Bg(t0)(p, r0/C1), [0, 1]) and any time t ∈ [t0, T ). This will be crucial in the proof of the
following:

Claim. For any p ∈ V and ϕ ∈ C∞c (Bg(t0)(p, r0/C1), [0, 1]) (with r0 > 0 chosen as above) we have

sup
t∈[t0,T )

∫
ϕ2
|∂t u|2 dvg <∞. (3-18)

In particular there exists a neighbourhood W of V so that

sup
t∈[t0,T )

‖u(t)‖H2(W,g(t)) <∞.

Proof of Claim. To prove the first part of the claim, we differentiate (3-5) in time, test with ϕ2 ∂t u and use
that (d/dt)dvg = 0 to write

1
2

d
dt

∫
ϕ2
|∂t u|2 dvg +

∫
ϕ2
|d ∂t u|2 dvg

=−

∫
〈d ∂t u, d(ϕ2)〉g · ∂t u dvg +

d
dε

∣∣∣
ε=0

∫
1g(t+ε)u ·ϕ2 ∂t u dvg(t+ε)

+

∫
∂t(Ag(u)(du, du)) ·ϕ2 ∂t u dvg

≤
1
8

∫
ϕ2
|d ∂t u|2 dvg+C‖dϕ‖2L∞(M,g)·‖∂t u‖2L2(M,g)−

d
dε

∣∣∣
ε=0

∫
〈du, d(ϕ2 ∂t u)〉g(t+ε) dvg

+C‖∂t g‖2L∞(supp(ϕ),g)E(u, g)+C
∫
|∂t u|2|du|2gϕ

2 dvg

≤
1
4

∫
ϕ2
|d ∂t u|2 dvg +C‖dϕ‖2L∞(M,g)‖∂t u‖2L2(M,g)+C‖∂t g‖2L∞(supp(ϕ),g)

+ Ĉ
∫
|∂t u|2|du|2gϕ

2 dvg, (3-19)

where C and Ĉ depend only on a bound E0 on the initial energy and the target manifold, and the value of
Ĉ is fixed in what follows.

To estimate the last term in (3-19) we first apply Proposition 3.4 to get∫
ϕ2
|∂t u|2|du|2g dvg ≤ C

(∫
ϕ2
|∂t u|4dvg

)1/2

·

[∫
ϕ2
|∂t u|2 dvg +C‖dϕ‖2L∞(M,g)

]1/2

.

We then recall that supp(ϕ) is contained in the ball Bg(t)(p, r0/
√

C1) for every t ∈ [t0, T ) and that
r0/
√

C1 ≤ min(injg(t)(p), 1). We may thus view (supp(ϕ), g(t)) as a subset of the unit ball in the
hyperbolic plane and apply the Sobolev embedding theorem to estimate the first factor in the above
inequality by(∫

ϕ2
|∂t u|4 dvg

)1/2

= ‖ϕ|∂t u|2‖L2 ≤ C‖d(ϕ|∂t u|2)‖L1

≤ C‖∂t u‖L2(M,g)

(∫
|d ∂t u|2ϕ2 dvg

)1/2

+C‖dϕ‖L∞(M,g)‖∂t u‖2L2(M,g). (3-20)
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Combined, this allows us to estimate the final term in (3-19) by

Ĉ
∫
|∂t u|2|du|2ϕ2 dvg ≤

1
4

∫
|d ∂t u|2ϕ2 dvg +C‖∂t u‖2L2(M,g)

[∫
ϕ2
|∂t u|2 dvg +C‖dϕ‖2L∞(M,g)

]
and thus to reduce (3-19) to

d
dt

∫
ϕ2
|∂t u|2 dvg +

∫
ϕ2
|d ∂t u|2 dvg

≤ C‖∂t u‖2L2(M,g) ·

[
‖dϕ‖2L∞(M,g)+

∫
ϕ2
|∂t u|2 dvg

]
+C‖∂t g‖2L∞(supp(ϕ),g). (3-21)

Since ∂t g is controlled on supp(ϕ) ⊂ δK (t0)-thick(M, g(t0)) by the estimate (2-13) of Lemma 2.2,
while estimate (2-11) from the same lemma implies ‖dϕ‖L∞(M,g(t)) ≤

√
C1‖dϕ‖L∞(M,g(t0)), we thus

conclude that

d
dt

∫
ϕ2
|∂t u|2 dvg

≤ C‖dϕ‖2L∞(M,g(t0))‖∂t u‖2L2(M,g)+C‖∂t u‖2L2(M,g)

∫
ϕ2
|∂t u|2 dvg +CδK (t0)

−1
‖∂t g‖2L2(M,g)

≤ C
(
−

d E
dt

)∫
ϕ2
|∂t u|2 dvg +C

(
−

d E
dt

)
· [‖dϕ‖2L∞(M,g(t0))+ δK (t0)

−1
], (3-22)

by (1-2), where C now depends also on the genus of M and η. Hence (3-18) follows using Gronwall’s
lemma. The second part of the claim is now an immediate consequence of (3-18) and Proposition 3.4. �

Based on the claim we have just proven, we can now establish convergence of u(t) in C l(V ) for every
l ∈ N by well-known arguments: First of all, we may reduce the neighbourhood W of V if necessary
to ensure that W ⊂ δK (t0)-thick(M, g(t0)); compare (3-12) and (3-13). We then apply the Sobolev
embedding theorem to obtain that

sup
t∈[t0,T )

‖du(t)‖L p(W,g(t)) <∞ for every 1≤ p <∞.

The control on the metrics g(t), t ∈ [t0, T ), obtained in Lemma 2.2 thus allows us to view (3-5) as a
uniformly parabolic equation on the fixed surface (W, g(t0)), for times t in this interval [t0, T ), whose
right-hand side is in L p for every p <∞. Standard parabolic theory combined with the fact that u is by
assumption smooth away from T, implies that u is in the parabolic Sobolev space W 2,1;p(W̃ ×[t0, T ))
for every p <∞ for a slightly smaller neighbourhood W̃ of V. In particular u is Hölder continuous with
exponent α for every α < 1 on W̃ ×[0, T ).

Taking covariant derivatives ∇l
g(t) of (3-5) allows us to repeat the above argument and obtain that

(x, t) 7→ (∇l
g(t)u)(x, t) is Hölder continuous on V × [t0, T ) for every l ∈ N. As the metrics converge

smoothly to h on V, this allows us to conclude that also u(t)→ ū in C l(V, h) for every l ∈N, for some ū.
Since the obtained convergence implies in particular that the set S defined in (1-5), as used in

Proposition 3.3, agrees with the set S̃ of points satisfying (3-14) considered here, this completes the proof
of part (1) of Proposition 3.3.
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For the proof of part (2) of the proposition we closely follow the arguments of [Topping 2004, Section 2].
Let p ∈ S. As above we choose t0 < T so that (3-12) holds true for �= {p}, which we recall allows us

to apply Lemmas 2.2 and 3.1 on balls Bg(t0)(p, r0), r0 ∈ (0, δK (t0)) since (3-13) ensures that such balls are
contained in δK (t0)-thick(M, g(t0)). We fix such a radius r0 which is small enough so that Bg(t0)(p, r0)

contains no other element of the singular set S.
Given any fixed cut-off function ψ ∈ C∞c ([0, 1), [0, 1]) with ψ ≡ 1 on

[
0, 1

2

]
and with ‖ψ ′‖L∞ ≤ 4,

we set

ϕr (x) := ψ
(

distg(t0)(p, x)2

r2

)
, 0< r < r0,

and note that ‖dϕr‖L∞(M,g(t0)) ≤ C/r . As supp(ϕr )⊂ Bg(t0)(p, r0) we can apply Lemma 3.1 to control
the associated cut-off energies Er (t) := Eϕr (t) defined in (3-1) and obtain in particular that limt↑T Er (t)
exists for every r ∈ (0, r0). Combined with the local C l convergence of u(t)→ ū on U \ S and the
convergence of the metrics obtained in part (1) of Theorem 1.1 this implies that

Ê p := lim
t↑T

Er (t)−
1
2

∫
ϕ2

r |dū|2h dvh (3-23)

is independent of r ∈ (0, r0).
Let now ν > 0. For t ∈ [t0, T ) sufficiently close to T so that ν(T − t)1/2 < r0 we can apply Lemma 3.1

to s 7→ Eν(T−t)1/2(s), s ∈ [t0, T ), in order to obtain the second inequality of

|Eν(T−t)1/2(t)−Ê p|

≤
∣∣Eν(T−t)1/2(t)−lim

s↑T
Eν(T−t)1/2(s)

∣∣+1
2

∫
ϕ2
ν(T−t)1/2 |dū|2h dvh

≤ E(t)−E(T )+C[ν−1
+δ
−1/2
K

(t0)·(T−t)1/2]·(E(t)−E(T ))1/2+E(ū, h, Bg(t0)(p, ν(T−t)1/2)). (3-24)

We furthermore note that Bg(t0)(p, ν(T − t)1/2) ⊂ Bh(p,
√

C1ν(T − t)1/2), compare with (2-11) of
Lemma 2.2, and thus that the last term in (3-24) tends to zero as t ↑ T. Passing to the limit t ↑ T in (3-24)
we thus obtain that also

lim
t↑T

Eν(T−t)1/2(t)= Ê p for every ν > 0.

Combined with the equivalence (2-11) of the metrics obtained in Lemma 2.2 we therefore get that for
any ν > 0

lim
r↓0

lim
t↑T

E
(
u(t), g(t), Bg(t)(p, r)

)
≤ lim

r↓0
lim
t↑T

E
(
u(t), g(t), Bg(t0)(p,

√
C1r)

)
≤ lim

r↓0
lim
t↑T

E2
√

C1r (t)

= Ê p = lim
t↑T

E
νC−1/2

1 (T−t)1/2(t)

≤ lim inf
t↑T

E
(
u(t), g(t), Bg(t0)(p, νC−1/2

1 (T − t)1/2)
)

≤ lim inf
t↑T

E
(
u(t), g(t), Bg(t)(p, ν(T − t)1/2)

)
. (3-25)
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As the “reverse” inequality

lim sup
t↑T

E
(
u(t), g(t), Bg(t)(p, ν(T − t)1/2)

)
≤ lim

r↓0
lim
t↑T

E
(
u(t), g(t), Bg(t)(p, r)

)
is trivially true, this proves the second equality in (3-9), including the existence of the limits taken, while
the first inequality of (3-9) follows directly from the equivalence (2-11) of the metrics g(t) and h obtained
in Lemma 2.2.

To establish the final inequality of (3-9) we closely follow [Topping 2004, Section 2]. Given a sequence
of times tn ↑ T as in (1-10) and a point p ∈ S, we pick local isothermal coordinates centred at p for
each of the g(tn) by identifying Bg(tn)(p, r0) with the corresponding ball centred at zero of the Poincaré
hyperbolic disc, viewed conformally as the unit disc centred at the origin in R2, and rescale to obtain a
sequence of maps

un(x) := u(rnx, tn), rn := (T − tn)1/2,

for which ‖τ(un)‖L2(K)→ 0 for every K b R2.
Since (3-25) implies E(un, B(0,3) \ B(0, λ))→ 0 for any 0< λ <3, a subsequence of the maps un

converges strongly in H 1 away from 0 to a constant map, while bubbles {ωj }
m′
j=1 develop near the origin

at scales λ̂ j
n→ 0, n→∞.

The scales at which the bubbles ωj develop in the original sequence are thus λ j
n = rnλ̂

j
n = o((T − tn)1/2)

and the “no-loss-of-energy” result for bubble tree convergence of almost harmonic maps of [Ding and
Tian 1995] ensures that all the energy of the un is captured by these bubbles, i.e., for every 3> 0 we have

lim
n→∞

E(un, B3(0))=
m′∑

l=1

E(ωl).

Taking the limit 3 ↓ 0, and bearing in mind that all but the final equality of (3-9) has already been
established, we find that for every p ∈ S, we have

lim
r↓0

lim
t↑T

E(u(t), g(t), Bg(t)(p, r))=
m′∑

l=1

E(ωl), (3-26)

completing the proof of (3-9).
Finally, given any compact subset �b U which is large enough for S to be contained in the interior

of �, we can combine (3-9) with the strong H 1
loc convergence of u(t)→ ū on U \ S and the convergence

of the metrics to obtain that indeed

lim
t↑T

E(u(t), g(t),�)= E(ū, h, �)+
m′′∑
l=1

E(ωl), (3-27)

where {ωl}
m′′
l=1 is the set of all bubbles developing at points in S along a sequence of times tn as considered

in the proposition. �

3.3. All energy lost down collars is represented by bubbles. At this point we have a good description
of the convergence of u(t) and g(t) locally on U = M \ F, with Proposition 3.3 completing the proof
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of Theorem 1.1 and establishing part (1) of Theorem 1.4. In this section we prove parts (2) and (3) of
Theorem 1.4, which show that near the centre of degenerating collars, the map looks like a collection of
bubbles, while on larger scales that are nevertheless vanishing scales, where we have no way of showing
that the map is becoming harmonic, no energy can be lost.

Proof of part (2) of Theorem 1.4. As a next step we now prove part (2) of Theorem 1.4, which can be
seen as quantifying the size of the part of U on which the energy has almost reached its limit. As we can
only apply the local energy estimate from Lemma 3.1 on regions with sufficiently large injectivity radius,
we will obtain the existence of a limit of the energy on the [T−t]-thin part by proving that the limit on
the [T−t]-thick part exists and agrees with Ethick and then appealing to the existence of a limit of the
total energy E(t).

As above it will be more convenient to work not with energies over given sets, but with cut-off
energies Eϕ as defined in (3-1). To this end we let δK (t) = K (T − t)(E(t)− E(T )), K ≥ K , be as in
Lemma 2.2 and recall that the characterisation of the pinching set (1-15) implies in particular that for
every t0 ∈ [0, T )

injg(t0)(M) < δK (t0)

and thus that

AK ,t0 := {x ∈ M : injg(t0)(x)≤ δK (t0)}

is nonempty. We will always assume that t0 ∈ [0, T ) is sufficiently large, depending in particular on K , so
that δK (t0) · (πe) < arsinh(1). In this way, not only can we be sure that every point in AK ,t0 has injectivity
radius less than arsinh(1), and is thus lying within some collar region around a geodesic of length less
than 2 arsinh(1), we can also be sure that the 1-fattening of AK ,t0 , i.e., {p ∈ M : distg(t0)(p, AK ,t0) < 1},
must lie within δeπK (t0)-thin(M, g(t0)), and hence also lie within a union of such (pairwise disjoint)
collars, since by [RT2018a, Lemma A.3] if x ∈ AK ,t0 , and y ∈ Bg(t0)(x, 1) lies in the same collar, then
injg(t0)(y)≤ injg(t0)(x)·(πe)≤ δK (t0)·(πe)< arsinh(1), so we cannot escape this collar within a distance 1
of x . In particular, the function x 7→ distg(t0)(x, AK ,t0) is smooth on the 1-fattening of AK ,t0 .

Given any smooth cut-off function φ : R→ [0, 1] such that φ(x)= 0 for x ≤ 0, φ(x)= 1 for x ≥ 1
and |φ′| ≤ 2, we can thus define the induced smooth cut-off ϕK ,t0 : M→ [0, 1] by

ϕK ,t0(x) := φ(distg(t0)(x, AK ,t0)). (3-28)

It is immediately apparent that

ϕK ,t0 ≡ 0 on δK (t0)-thin(M, g(t0)), (3-29)

and that the support of ϕK ,t0 lies within δK (t0)-thick(M, g(t0)) and hence ϕK ,t0 has compact support
within U owing to (1-16). This will shortly allow us to apply Lemma 3.1 to the corresponding local
energy EK ,t0(t) := EϕK ,t0

(t) that serves as a substitute for the energy of u(t) over δK (t0)-thick(M, g(t0)).
We also claim that

ϕK ,t0 ≡ 1 on δeπK (t0)-thick(M, g(t0)). (3-30)
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Indeed, the only way this could fail would be if we could find a point in the 1-fattening of AK ,t0 that lies
in δeπK (t0)-thick(M, g(t0)), which we ruled out above.

By (3-29), we see that EK ,t0(t)≤ E
(
u(t), g(t), δK (t0)-thick(M, g(t0))

)
, and so

lim
K→∞

lim sup
t↑T

EK ,t(t)≤ lim
K→∞

lim sup
t↑T

E
(
u(t), g(t), δK (t)-thick(M, g(t))

)
. (3-31)

On the other hand, by (3-30), we see that E
(
u(t), g(t), δeπK (t0)-thick(M, g(t0))

)
≤ EK ,t0(t), and hence

we have the converse inequality

lim
K→∞

lim sup
t↑T

E
(
u(t), g(t), δK (t)-thick(M, g(t))

)
≤ lim

K→∞
lim sup

t↑T
EK ,t(t), (3-32)

i.e., we have equality in (3-31) and (3-32). Therefore to prove (1-13), it suffices to show that

Ethick = lim
K→∞

lim sup
t↑T

EK ,t(t). (3-33)

We claim first that
Ethick = lim sup

t0↑T
lim
t↑T

EK ,t0(t), (3-34)

where the existence of limt↑T EK ,t0(t) is guaranteed by Lemma 3.1. To see (3-34), first recall that for
K , t0 as above, the support of ϕK ,t0 is compact within U , and is thus contained within δ-thick(U, h) for
sufficiently small δ > 0. By reducing δ further, we may assume that all bubble points in S lie within
the interior of δ-thick(U, h). Therefore we have E(u(t), g(t), δ-thick(U, h))≥ EK ,t0(t), and taking the
limits t ↑ T, δ ↓ 0 and t0 ↑ T in that order, we find that Ethick ≥ lim supt0↑T limt↑T EK ,t0(t). To see the
converse inequality, we observe that by (3-30), for any δ > 0 and t0 < T sufficiently large (depending on
δ, K etc.) we have ϕK ,t0 ≡ 1 on δ-thick(M, g(t0)), and so E(u(t), g(t), δ-thick(U, h))≤ EK ,t0(t). This
time we take limits in the order t ↑ T, t0 ↑ T and then δ ↓ 0 to give Ethick ≤ lim supt0↑T limt↑T EK ,t0(t),
and hence (3-34).

Thus (1-13) would follow if we could prove that as K →∞ we have

lim sup
t0↑T
|EK ,t0(t0)− lim

t↑T
EK ,t0(t)| → 0. (3-35)

But this follows from Lemma 3.1, which implies that for t0 ∈ [0, T ) as large as considered above, and
every t ∈ [t0, T ), we have

|EK ,t0(t)− EK ,t0(t0)| ≤ E(t0)− E(T )+
C

K 1/2 +C(T − t0)1/2(E(t0)− E(T ))1/2, (3-36)

with C depending only on the genus of M , η and an upper bound on the initial energy, which thus yields
(3-35) after taking the limits t ↑ T, t0 ↑ T and K →∞, in that order.

Now that (1-13) has been proved, we verify that (1-12) follows as a result. In particular, we verify
that the limit taken in (1-12) exists. However large we take K > 0, for sufficiently large t < T we have
T − t ≥ δK (t), and hence

E
(
u(t), g(t), [T−t]-thin(M, g(t))

)
≥ E

(
u(t), g(t), δK (t)-thin(M, g(t))

)
.
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Taking a lim inf as t ↑ T and then the limit K →∞, and using (1-13) we find that

lim inf
t↑T

E
(
u(t), g(t), [T−t]-thin(M, g(t))

)
≥ Ethin. (3-37)

To obtain the converse inequality, observe that given any δ > 0, for sufficiently large t < T we have
δ-thin(U, h)⊃ [T−t]-thin(M, g(t)), see (1-6), and therefore

E
(
u(t), g(t), δ-thin(U, h)

)
≥ E

(
u(t), g(t), [T−t]-thin(M, g(t))

)
.

Provided δ > 0 is sufficiently small (so that the singular set S is in the interior of δ-thick(U, h)), we can
then take a limit as t ↑ T, followed by a limit as δ ↓ 0, to give

Ethin ≥ lim sup
t↑T

E
(
u(t), g(t), [T−t]-thin(M, g(t))

)
,

which when combined with (3-37) completes the proof of (1-12) and hence of part (2) of the theorem. �

While part (2) of Theorem 1.4 gives good control on where energy can concentrate on the degenerating
part of the surface, we currently have no control of what parts of the map are lost down the degenerating
parts of the collar at the singular time T. This is addressed by part (3), which we shall now prove.

Proof of part (3) of Theorem 1.4. Proposition 1.3 tells us that the length `(tn) of the central geodesic of
each degenerating collar is controlled like `(tn)= o(T − tn) and hence that the [T−tn]-thin part of such
a collar, where all of the lost energy lives, is represented by longer and longer cylinders C̃n := C(tn, δn)=

(−X̃n, X̃n)× S1, δn = T − tn , equipped with the corresponding collar metrics g = ρ2g0.
We can indeed consider the maps on the larger subcollars Ĉn = (−X̂n, X̂n) which correspond to the
[T−tn]1/2-thin parts of the collar, where we note that 1� X̃n � X̂n � X (`n); compare with (1-9).

We recall from [Rupflin and Topping 2018b, (A.9)] that ρ(y)≤ injg(t)(y) as y varies within each collar.
Therefore, throughout Ĉn we have ρ ≤ (T − tn)1/2. By the scaling of the tension field, if we switch from
the hyperbolic metric gn = g(tn) to the flat cylinder metric g0 = ds2

+ dθ2 on each such subcollar, then
we can estimate the tension of un := u(tn) according to

‖τg0(un)‖L2(Ĉn,g0)
≤
(
sup
Ĉn

ρ
)
‖τgn (un)‖L2(Ĉn,gn)

≤ (T − tn)1/2‖τgn (un)‖L2(M,gn)→ 0 (3-38)

by (1-10).
We can thus view the un’s as almost-harmonic maps from longer and longer cylinders (Ĉn, g0) and

apply Proposition 1.5 to pass to a subsequence that converges to a full bubble branch.
It is this estimate (3-38) and the precise information on the degenerate region where energy can

concentrate obtained in part (2) of Theorem 1.4 that allows us to represent the maps on these parts in
terms of branched minimal immersions and curves. We stress that we would not be able to perform this
analysis on the whole collar.

We also remark that in our situation we obtain the additional information that any bubble obtained in the
convergence to a full bubble branch described in Proposition 1.5 will be contained in the [T−tn]-thin part
of the surface, as we already know that no energy can be lost on {p : injg(t)(p)∈ [(T − t), (T − t)1/2]}. �
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