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THE BMO-DIRICHLET PROBLEM FOR
ELLIPTIC SYSTEMS IN THE UPPER HALF-SPACE AND

QUANTITATIVE CHARACTERIZATIONS OF VMO

JOSÉ MARÍA MARTELL, DORINA MITREA, IRINA MITREA AND MARIUS MITREA

We prove that for any homogeneous, second-order, constant complex coefficient elliptic system L in Rn,
the Dirichlet problem in RnC with boundary data in BMO.Rn�1/ is well-posed in the class of functions u
for which the Littlewood–Paley measure associated with u, namely

d�u.x
0; t / WD jru.x0; t /j2 t dx0 dt;

is a Carleson measure in RnC.
In the process we establish a Fatou-type theorem guaranteeing the existence of the pointwise nontan-

gential boundary trace for smooth null-solutions u of such systems satisfying the said Carleson measure
condition. In concert, these results imply that the space BMO.Rn�1/ can be characterized as the collection
of nontangential pointwise traces of smooth null-solutions u to the elliptic system L with the property
that �u is a Carleson measure in RnC.

We also establish a regularity result for the BMO-Dirichlet problem in the upper half-space, to
the effect that the nontangential pointwise trace on the boundary of RnC of any given smooth null-
solutions u of L in RnC satisfying the above Carleson measure condition actually belongs to Sarason’s
space VMO.Rn�1/ if and only if �u.T .Q//=jQj ! 0 as jQj ! 0, uniformly with respect to the location
of the cubeQ�Rn�1 (where T .Q/ is the Carleson box associated withQ, and jQj denotes the Euclidean
volume of Q).

Moreover, we are able to establish the well-posedness of the Dirichlet problem in RnC for a system L as
above in the case when the boundary data are prescribed in Morrey–Campanato spaces in Rn�1. In such
a scenario, the solution u is required to satisfy a vanishing Carleson measure condition of fractional order.

By relying on these well-posedness and regularity results we succeed in producing characterizations
of the space VMO as the closure in BMO of classes of smooth functions contained in BMO within which
uniform continuity may be suitably quantified (such as the class of smooth functions satisfying a Hölder
or Lipschitz condition). This improves on Sarason’s classical result describing VMO as the closure in
BMO of the space of uniformly continuous functions with bounded mean oscillations. In turn, this allows
us to show that any Calderón–Zygmund operator T satisfying T .1/D 0 extends as a linear and bounded
mapping from VMO (modulo constants) into itself. In turn, this is used to describe algebras of singular
integral operators on VMO, and to characterize the membership to VMO via the action of various classes
of singular integral operators.

MSC2010: primary 35B65, 35C15, 35J47, 35J57, 35J67, 42B37; secondary 35E99, 42B20, 42B30, 42B35.
Keywords: BMO Dirichlet problem, VMO Dirichlet problem, Carleson measure, vanishing Carleson measure, second-order

elliptic system, Poisson kernel, Lamé system, nontangential pointwise trace, Fatou-type theorem, Hardy space, Holder space,
Morrey–Campanato space, square function, quantitative characterization of VMO, dense subspaces of VMO, boundedness of
Calderón–Zygmund operators on VMO.
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1. Introduction and statement of main theorems

In his ground-breaking article, C. Fefferman [1971] writes “The main idea in proving [that the dual of
the Hardy space H 1 is the John–Nirenberg space BMO] is to study the Poisson integral of a function in
BMO.” Implicit in this quote is the fact that the Poisson kernel is associated with the Laplace operator,
and one of the primary aims of the present paper is to advance this line of work by considering more
general systems of partial differential operators than the Laplacian. For example, the key PDE result
announced in [Fefferman 1971] states that

a measurable function f with
R

Rn�1
jf .x0/j.1Cjx0j/�n dx0 <C1

belongs to the space BMO.Rn�1/ if and only if its Poisson integral
u W Rn

C
! R, with respect to the Laplace operator in Rn, satisfies

supx02Rn�1 supr>0
˚
r1�n

R
jx0�y0j<r

R r
0 j.ru/.y

0; t /j2 t dt dx0
	
<C1,

(1-1)

and one of the main goals here is to develop machinery that permits us to replace the Laplacian in (1-1)
with much more general second-order elliptic systems with complex coefficients. In order to be more
specific, we proceed to elaborate on the actual setting adopted in this paper.

Let M 2 N and consider a second-order, homogeneous, M �M system, with constant complex
coefficients, written (with the usual convention of summation over repeated indices in place) as

Lu WD .@r.a
˛ˇ
rs @suˇ //1�˛�M ; (1-2)

when acting on a C 2 vector-valued function uD .uˇ /1�ˇ�M defined in an open subset of Rn. Assume
that L is strongly elliptic in the sense that there exists �o 2 .0;1/ such that

ReŒa˛ˇrs �r�s N�˛�ˇ �� �oj�j
2
j�j2 for every � D .�r/1�r�n 2 Rn and �D .�˛/1�˛�M 2 CM : (1-3)

Examples include scalar operators, such as the Laplacian �D
Pn
jD1 @

2
j or, more generally, operators of

the form divAr with AD .ars/1�r;s�n an n� n matrix with complex entries satisfying the ellipticity
condition

inf
�2Sn�1

ReŒars�r�s� > 0 (1-4)

(where Sn�1 denotes the unit sphere in Rn), as well as complex versions of the Lamé system of elasticity

Lu WD ��uC .�C�/r divu; uD .u1; : : : ; un/ 2 C 2: (1-5)



THE BMO-DIRICHLET PROBLEM AND QUANTITATIVE CHARACTERIZATIONS OF VMO 607

Above, the constants �;� 2 C (typically called Lamé moduli) are assumed to satisfy

Re� > 0 and Re.2�C�/ > 0; (1-6)

a condition equivalent to the demand that the Lamé system (1-5) satisfies the Legendre–Hadamard
ellipticity condition (1-3). While the Lamé system is symmetric, we stress that the results in this paper
require no symmetry for the systems involved.

Returning to the general framework, with every system L as in (1-2)–(1-3) one may associate a Poisson
kernel, PL, which is a CM�M -valued function defined in Rn�1 described in detail in Theorem 2.3. This
Poisson kernel played a pivotal role in the treatment of the Lp-Dirichlet boundary value problem for L in
the upper half-space in [Martell et al. 2016].

To state our main results, some notation is needed. For a function � W Rn�1! C set

�t .x
0/ WD t1�n�.x0=t/ for every x0 2 Rn�1 and every t > 0. (1-7)

In particular, PLt .x
0/D t1�nPL.x0=t/ for every x0 2Rn�1 and t > 0. We agree to identify the boundary

of the upper half-space

RnC WD fx D .x
0; xn/ 2 Rn D Rn�1 �R W xn > 0g (1-8)

with the horizontal hyperplane Rn�1 via .x0; 0/� x0 for any x0 2 Rn�1. The origin in Rn�1 is denoted
by 00. Having fixed some background parameter � > 0, at each point x0 2 @Rn

C
we define the conical

nontangential approach region with vertex at x0 as

��.x
0/ WD fy D .y0; t / 2 RnC W jx

0
�y0j< �tg: (1-9)

Whenever meaningful, the nontangential pointwise trace of a continuous vector-valued function u defined
in Rn

C
is given by

.ujn:t:
@Rn
C

/.x0/ WD lim
��.x0/3y!.x0;0/

u.y/ for x0 2 @RnC � Rn�1: (1-10)

For each positive integer k denote by L k the k-dimensional Lebesgue measure in Rk. A Borel
measure � in Rn

C
is said to be a Carleson measure in Rn

C
provided

k�kC.Rn
C
/ WD sup

Q�Rn�1

1

jQj

Z `.Q/

0

Z
Q

d�.x0; t / <1; (1-11)

where the supremum runs over all cubes Q in Rn�1. Here and elsewhere in the paper, by a cube Q in
Rn�1 we shall understand a cube with sides parallel to the coordinate axes, and its side-length will be
denoted by `.Q/. Also, the L n�1 measure of Q is denoted by jQj and if � > 0 then �Q denotes the
cube concentric with Q whose side-length is �`.Q/. Call a Borel measure � in Rn

C
a vanishing Carleson

measure whenever � is a Carleson measure to begin with and, in addition,

lim
r!0C

�
sup

Q�Rn�1; `.Q/�r

1

jQj

Z `.Q/

0

Z
Q

d�.x0; t /

�
D 0: (1-12)
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Next, the Littlewood–Paley measure associated with a continuously differentiable function u in Rn
C

is
jru.x0; t /j2 t dx0 dt , and we set

kuk�� WD sup
Q�Rn�1

�
1

jQj

Z `.Q/

0

Z
Q

jru.x0; t /j2 t dx0 dt

�1
2

: (1-13)

In particular, for a continuously differentiable function u in Rn
C

we have

kuk�� <1 () jru.x0; t /j2 t dx0 dt is a Carleson measure in RnC: (1-14)

We next introduce BMO.Rn�1;CM /, the John–Nirenberg space of vector-valued functions of bounded
mean oscillations in Rn�1, as the collection of CM -valued functions f D .f˛/1�˛�M with components
in L1loc.R

n�1/ satisfying

kf kBMO.Rn�1;CM / WD sup
Q�Rn�1

�

Z
Q

jf .x0/�fQj dx
0 <1: (1-15)

Above, for every cube Q in Rn�1 and every function h 2 L1loc.R
n�1;CM / we have abbreviated

hQ WD �

Z
Q

h.x0/ dx0 WD
1

jQj

Z
Q

h.x0/ dx0 2 CM ; (1-16)

where the last integration is performed componentwise. To lighten notation, when M D 1 we simply
write BMO.Rn�1/ in place of BMO.Rn�1;C/. Clearly, for every f 2 L1loc.R

n�1;CM / we have

kf kBMO.Rn�1;CM / D kf CCkBMO.Rn�1;CM / for all C 2 CM ;

kf kBMO.Rn�1;CM / D k�z0f kBMO.Rn�1;CM / for all z0 2 Rn�1;

kf kBMO.Rn�1;CM / D kı�f kBMO.Rn�1;CM / for all � 2 .0;1/;

(1-17)

where �z0 is the operator of translation by z0, i.e., .�z0f /.x0/ WD f .x0C z0/ for every x0 2 Rn�1, and ı�
is the operator of dilation by �, i.e., .ı�f /.x0/ WD f .�x0/ for every x0 2 Rn�1.

We wish to note here that k � kBMO.Rn�1;CM / is only a seminorm, since for every function f 2
L1loc.R

n�1;CM / we have

kf kBMO.Rn�1;CM / D 0 () f is constant L n�1-a.e. in Rn�1 (in CM ): (1-18)

Occasionally, we find it useful to mod out its null-space, in order to render the resulting quotient space
Banach. Specifically, for two CM -valued Lebesgue-measurable functions f; g defined in Rn�1 we say
that f � g provided f �g is constant L n�1-a.e. in Rn�1. This is an equivalence relation and we let

Œf � WD fg W Rn�1! CM W g measurable and f � gg (1-19)

denote the equivalence class of any given CM -valued Lebesgue-measurable function f defined in Rn�1.
If for each f 2 BMO.Rn�1;CM / we now set

kŒf �keBMO.Rn�1;CM / WD kf kBMO.Rn�1;CM /; (1-20)
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then kŒ � �keBMO.Rn�1;CM / becomes a genuine norm on the quotient space

ABMO.Rn�1;CM / WD fŒf � W f 2 BMO.Rn�1;CM /g: (1-21)

In fact, when equipped with the norm (1-20), the space (1-21) is complete (hence Banach).
Moving on, the Sarason space of CM -valued functions of vanishing mean oscillations in Rn�1 is

defined by

VMO.Rn�1;CM / WD
�
f 2 BMO.Rn�1;CM / W lim

r!0C

�
sup

Q�Rn�1; `.Q/�r

�

Z
Q

jf .x0/�fQj dx
0

�
D 0

�
:

(1-22)
The space VMO.Rn�1;CM / turns out to be a closed subspace of BMO.Rn�1;CM /. In fact, if we let
UC.Rn�1;CM / denote the space of CM -valued uniformly continuous functions in Rn�1, then

UC.Rn�1;CM /\
� [
1�p�1

Lp.Rn�1;CM /

�
� UC.Rn�1;CM /\BMO.Rn�1;CM /

� VMO.Rn�1;CM /: (1-23)

To justify the first inclusion, consider f 2 UC.Rn�1;CM /\Lp.Rn�1;CM / for some p 2 Œ1;1�. Then
there exists r0 2 .0;1/ with the property that jf .x0/�f .y0/j � 1 whenever x0; y0 2 Rn�1 are such that
jx0 � y0j � r0

p
n� 1. Suppose now that some arbitrary cube Q in Rn�1 has been fixed. If `.Q/ � r0,

with the help of Hölder’s inequality we estimate

�

Z
Q

jf �fQj dL n�1
� 2 �

Z
Q

jf j dL n�1
�
2kf kLp.Rn�1;CM /

jQj1=p
�
2kf kLp.Rn�1;CM /

r
.n�1/=p
0

; (1-24)

whereas if `.Q/ < r0 we make use of the uniform continuity of f to estimate

�

Z
Q

jf �fQj dL n�1
� �

Z
Q

�

Z
Q

jf .x0/�f .y0/j dx0 dy0 � 1: (1-25)

In turn, from (1-24)–(1-25) we then conclude that f belongs to BMO.Rn�1;CM /, which establishes the
first inclusion in (1-23). The second inclusion in (1-23) is clear from (1-22).

As regards the second inclusion in (1-23), a well-known result of Sarason [1975, Theorem 1, p. 392]
implies that, in fact,

a given function f 2 BMO.Rn�1;CM / belongs to VMO.Rn�1;CM /
if and only if there is a sequence ffj gj2N � UC.Rn�1;CM /\BMO.Rn�1;CM /

with limj!1 kf �fj kBMO.Rn�1;CM / D 0.
(1-26)

We shall refer to this simply by saying that Sarason’s VMO space is the closure of UC\BMO in the
space BMO. In relation to (1-23) we wish to note that continuity without uniformity will not preserve
the inclusion in (1-23). For example, there exist functions in C1.R/\L1.R/ which do not belong to
VMO.R/. To see this, consider the mutually disjoint intervals Ij WD Œj; j C 2=j � for each j 2 N, j � 3.
Now let f W R! R be a function with the property that, for each j 2 N, j � 3, the graph of f jIj is the
line segment joining the point .j;�1/ with .jC2=j; 1/ and otherwise the graph of f is made up of curves
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joining these line segments smoothly within the strip R� Œ�2; 2�. By design, f 2 C1.R/\L1.R/. In
particular, f 2 BMO.R/. However, for each j 2 N, j � 3, we have fIj D 0 and

�

Z
Ij

jf �fIj j dL 1
D �

Z
Ij

jf j dL 1
D

1
2
: (1-27)

Since jIj j D 2=j ! 0 as j !1, from (1-27) and (1-22) it is then clear that f 62 VMO.R/.

Another characterization of VMO.Rn�1;CM / due to Sarason [1975, Theorem 1, p. 392] is as follows:

a given function f 2 BMO.Rn�1;CM / belongs to the space VMO.Rn�1;CM /
if and only if limRn�13z0!00 k�z0f �f kBMO.Rn�1;CM / D 0.

(1-28)

We are now ready to state our first main result. This concerns the well-posedness of the BMO-Dirichlet
problem in the upper half-space for systems L as in (1-2)–(1-3). The existence of a unique solution
is established in the class of functions u satisfying a Carleson measure condition, expressed in terms
of the finiteness of (1-13). The formulation of our theorem emphasizes the fact that this contains as a
“subproblem” the VMO-Dirichlet problem for L in Rn

C
(in which scenario u satisfies a vanishing Carleson

measure condition).

Theorem 1.1. Let L be an M �M elliptic constant complex coefficient system as in (1-2)–(1-3). Then
the BMO-Dirichlet boundary value problem for L in Rn

C
, namely8̂̂̂<̂

ˆ̂:
u 2 C1.Rn

C
;CM /;

LuD 0 in Rn
C
;

jru.x0; t /j2 t dx0 dt is a Carleson measure in Rn
C
;

ujn:t:
@Rn
C

D f a.e. in Rn�1; f 2 BMO.Rn�1;CM /;

(1-29)

has a unique solution. Moreover, this unique solution satisfies the following additional properties:

(i) With PL denoting the Poisson kernel for L in Rn
C

from Theorem 2.3, one has the Poisson integral
representation formula

u.x0; t /D .PLt �f /.x
0/ for all .x0; t / 2 RnC: (1-30)

(ii) There exists a constant C D C.n;L/ 2 .1;1/ with the property that the solution u of the Dirichlet
problem (1-29) satisfies the two-sided estimate

C�1kf kBMO.Rn�1;CM / � kuk�� � Ckf kBMO.Rn�1;CM /: (1-31)

That is, the size of the solution is comparable to the size of the boundary datum.

(iii) For each " > 0 the function u. � ; "/ belongs to BMO.Rn�1;CM / and there exists a constant C D
C.n;L/ 2 .0;1/ independent of u with the property that the following uniform BMO estimate holds:

sup
">0

ku. � ; "/kBMO.Rn�1;CM / � Ckuk��: (1-32)
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Moreover,

lim
"!0C

ku. � ; "/�f kBMO.Rn�1;CM / D 0 ()

�
jru.x0; t /j2 t dx0 dt is a vanishing
Carleson measure in Rn

C
:

(1-33)

That is, u satisfies a vanishing Carleson measure condition in Rn
C

if and only if u converges to its
boundary datum vertically in BMO.Rn�1;CM /.

(iv) The following regularity results hold:

f 2 VMO.Rn�1;CM / ()

�
jru.x0; t /j2 t dx0 dt is a vanishing
Carleson measure in Rn

C

(1-34)

() lim
Rn
C
3z!0

k�zu�uk�� D 0; (1-35)

where .�zu/.x/ WD u.xC z/ for each x; z 2 Rn
C

.

As a consequence, the VMO-Dirichlet boundary value problem for L in Rn
C

, i.e.,8̂̂̂<̂
ˆ̂:
u 2 C1.Rn

C
;CM /;

LuD 0 in Rn
C
;

jru.x0; t /j2 t dx0 dt is a vanishing Carleson measure in Rn
C
;

ujn:t:
@Rn
C

D f a.e. in Rn�1; f 2 VMO.Rn�1;CM /;

(1-36)

is well-posed. Moreover, its unique solution is given by (1-30), satisfies (1-31)–(1-32), and

lim
"!0C

ku. � ; "/�f kBMO.Rn�1;CM / D 0: (1-37)

It is reassuring to remark that replacing the boundary datum f by f CC where C 2 CM in (1-29)
changes the solution u into uCC (given that convolution with the Poisson kernel reproduces constants
from CM ; see (2-36). As such, the ABMO-Dirichlet problem for L in Rn

C
is also well-posed, if uniqueness

of the solution is now understood modulo constants from CM.

As regards the right-pointing implication in (1-34), for suitable dense subspaces of VMO we are able
to precisely quantify the rate at which the Carleson measure jru.x0; t /j2 t dx0 dt vanishes in Rn

C
. For

example, with PC �.Rn�1;CM / denoting the homogeneous Hölder space of order � 2 .0; 1/ of CM -valued
functions defined in Rn�1, it follows from (3-9) in Proposition 3.1, see also (2-19), that

if f 2 PC �.Rn�1;CM / with � 2 .0; 1/ and u is as in (1-30), then
supQ�Rn�1; `.Q/�r

�R `.Q/
0

�
R
Q jru.x

0; t /j2 t dx0 dt
�1=2
DO.r�/ as r! 0C;

(1-38)

where the multiplicative constant implicit in the big-O condition above depends only on n;L, �, and
kf k PC �.Rn�1;CM /. The relevance of this result stems from the fact that, for each � 2 .0; 1/, the collection
of functions from BMO.Rn�1;CM / which also belong to PC �.Rn�1;CM / makes up a dense subspace
of VMO.Rn�1;CM /. The latter density result constitutes one of the main results in this paper, and is
formally stated in Theorem 1.5, along with a number of variants and generalizations. Let us also point
out here that the decay rate in (1-38) is in agreement with the format of the well-posedness result proved
later in Theorem 1.21, in view of (1-164) and (1-160).
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The proof of Theorem 1.1 relies on a quantitative Fatou-type theorem, which includes a Poisson integral
representation formula along with a characterization of BMO in terms of the traces of solutions to elliptic
systems. This is stated next as Theorem 1.2. Among other things, this theorem shows that the conditions
stipulated in the first three lines of (1-29) imply that the pointwise nontangential limit considered in the
fourth line of (1-29) is always meaningful, and that the boundary datum should necessarily be selected
from the space BMO. It also highlights the fact that it is natural to seek a solution of the BMO-Dirichlet
problem by taking the convolution of the boundary datum with the Poisson kernel of L in the upper
half-space. Finally, Theorem 1.2 is the key ingredient in the proof of uniqueness for the BMO-Dirichlet
boundary value problem formulated in (1-29).

Theorem 1.2. Let L be anM �M elliptic system with constant complex coefficients as in (1-2)–(1-3) and
consider PL, the associated Poisson kernel for L in Rn

C
from Theorem 2.3. Then there exists a constant

C D C.L; n/ 2 .1;1/ with the property that

u 2 C1.Rn
C
;CM /;

LuD 0 in Rn
C

and kuk�� <1

9>=>; D)

8̂̂<̂
:̂
ujn:t:
@Rn
C

exists a.e. in Rn�1; lies in BMO.Rn�1;CM /;

u.x0; t /D .PLt � .uj
n:t:
@Rn
C

//.x0/ for all .x0; t / 2 Rn
C
;

and C�1kuk�� � kujn:t:@Rn
C

kBMO.Rn�1;CM / � Ckuk��:

(1-39)

In fact, the following characterization of BMO.Rn�1;CM /, adapted to the system L, holds:

BMO.Rn�1;CM /D fujn:t:
@Rn
C

W u 2 C1.RnC;C
M /; LuD 0 in RnC; kuk�� <1g: (1-40)

Moreover,
LMO.RnC/ WD fu 2 C1.RnC;C

M / W LuD 0 in RnC; kuk�� <1g (1-41)

is a linear space on which k � k�� is a seminorm with null-space CM, the quotient space LMO.Rn
C
/=CM

becomes complete (hence Banach) when equipped with k � k��, and the nontangential pointwise trace
operator acting on equivalence classes in the context

LMO.RnC/=CM 3 Œu� 7! Œujn:t:
@Rn
C

� 2ABMO.Rn�1;CM / (1-42)

is a well-defined linear isomorphism between Banach spaces, where Œu� in (1-42) denotes the equivalence
class of u in LMO.Rn

C
/=CM and Œujn:t:

@Rn
C

� is interpreted as in (1-19).

There is a counterpart of the Fatou-type result stated as Theorem 1.2 emphasizing the space VMO in
place of BMO. Specifically, we prove the following theorem.

Theorem 1.3. Let L be an M �M elliptic system with constant complex coefficients as in (1-2)–(1-3)
and consider PL, the associated Poisson kernel for L in Rn

C
from Theorem 2.3. Then for any function

u 2 C1.RnC;C
M / satisfying LuD 0 in RnC and kuk�� <1 (1-43)

one has
jru.x0; t /j2 t dx0 dt is a vanishing

Carleson measure in Rn
C

�
D) ujn:t:

@Rn
C

2 VMO.Rn�1;CM /: (1-44)
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Furthermore, the following characterization of the space VMO.Rn�1;CM /, adapted to the system L,
holds:

VMO.Rn�1;CM /D
˚
ujn:t:
@Rn
C

W u 2 LMO.RnC;C
M / and jru.x0; t /j2 t dx0 dt

is a vanishing Carleson measure in RnC
	
: (1-45)

The analogue of Fefferman’s theorem, characterizing BMO as in (1-1), in the case of elliptic systems
with complex coefficients is the topic of the first item of our next theorem. The second item may be
viewed as a characterization of VMO in the spirit of Fefferman’s original result.

Theorem 1.4. Let L be an M �M elliptic system with constant complex coefficients as in (1-2)–(1-3)
and consider PL, the associated Poisson kernel for L in Rn

C
from Theorem 2.3. Assume f W Rn�1! CM

is a Lebesgue-measurable function such thatZ
Rn�1

jf .x0/j

1Cjx0jn
dx0 <1: (1-46)

Let u be the Poisson integral of f with respect to the system L, i.e., u W Rn
C
! CM is given by u.x0; t / WD

.PLt �f /.x
0/ for each .x0; t / 2 Rn

C
. Then the following are true:

(1) f belongs to the space BMO.Rn�1ICM / if and only if kuk�� <1.

(2) f belongs to the space VMO.Rn�1ICM / if and only if jru.x0; t /j2 t dx0 dt is a vanishing Carleson
measure in Rn

C
.

In our next result we shall revisit the issue of describing VMO as the closure within BMO of a subspace
of functions whose pointwise oscillations vanish as the scale decreases to zero. One such description
is contained in (1-26). However, for a variety of purposes (such as the proof of the result recorded in
Theorem 1.13 below), the fact that the condition of uniform continuity is of a purely qualitative nature
renders the space UC difficult to work with. As such, it is very desirable to replace it, in the context of
Sarason’s density result recorded in (1-26), by smaller subspaces within which uniform continuity may
be suitably quantified. This issue is addressed in Theorem 1.5 below. As a preamble, we introduce some
notation. Pick a modulus of continuity, i.e., a function

‡ W Œ0;1/! Œ0;1� nondecreasing and such that lims!0C ‡.s/D 0: (1-47)

Given m 2 N, consider the space

C‡ .Rm/ WD
˚
f W Rm! C W there exists C 2 .0;1/ such that

jf .a/�f .b/j � C‡.ja� bj/ for all a; b 2 Rm
	

(1-48)

and define kf kC‡ .Rm/ to be the smallest constant C intervening above. In the sequel, the space of CM -
valued functions with components in C‡ .Rm/ will be denoted by C‡ .Rm;CM /. Clearly, C‡ .Rm/�

UC.Rm/ and, in fact,

UC.Rm/D
[

‡ modulus of
continuity

C‡ .Rm/: (1-49)
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To see the left-to-right inclusion in (1-49), observe that if f 2 UC.Rm/ is arbitrary and we define
‡f .s/ WD supfjf .x/� f .y/j W x; y 2 Rm; jx � yj � sg for each s 2 Œ0;1/, then ‡f is a modulus of
continuity and jf .a/�f .b/j � ‡f .ja� bj/ for all a; b 2 Rm; hence f 2 C‡f .Rm/, as wanted.

Examples of interest are obtained by taking � 2 .0; 1� and defining ‡�.s/ WD s� for every s � 0. Then
the space C‡�.Rm/ becomes precisely PC �.Rm/, the space of functions satisfying a homogeneous Hölder
condition of order � in Rm in the case when � 2 .0; 1/, and becomes Lip.Rm/, the space of Lipschitz
functions in Rm, in the case when �D 1.

Here is the theorem advertised earlier, which may be regarded as a quantitative description of VMO,
improving on Sarason’s classical result (1-26).

Theorem 1.5. Consider the function ‡# W Œ0;1/! Œ0;1/ given at each s � 0 by

‡#.s/ WDminf1; sgCmaxf0; ln sg D
�
s if s � 1;
1C ln s if s > 1:

(1-50)

Then for every modulus of continuity ‡ with the property that ‡# �C‡ on Œ0;1/ for some finite constant
C > 0, the following density result holds for each n 2 N:

for every function f 2 VMO.Rn/ there exists a sequence
ffj gj2N � C‡ .Rn/\C1.Rn/\BMO.Rn/ such that kf �fj kBMO.Rn/! 0 as j !1.

(1-51)

In short, C‡ .Rn/\C1.Rn/\BMO.Rn/ is dense in VMO.Rn/. In fact,

the smaller space, consisting of f 2 C‡ .Rn/\C1.Rn/\BMO.Rn/ such that
@˛f 2 C‡ .Rn/\L1.Rn/ for every ˛ 2 Nn0 with j˛j � 1, is also dense in VMO.Rn/.

(1-52)

The proof of Theorem 1.5 (stated with n� 1 in place of n) relies on the fact that, given any f 2
BMO.Rn�1;CM /, we have, as seen from (1-30) and (1-33)–(1-34),

PLt �f ! f in BMO.Rn�1;CM / as t ! 0C () f 2 VMO.Rn�1;CM / (1-53)

for some (or any) M �M elliptic system L with constant complex coefficients as in (1-2)–(1-3).
A posteriori, once the density result in Theorem 1.5 has been established, we can considerably enlarge
the class of approximations to the identity for which a result as in (1-53) holds, as described below.

Theorem 1.6. Suppose ' W Rn! CM�M has the property that there exist C 2 .0;1/ and " 2 .0; 1� such
that

j'.x/j � C.1Cjxj/�n�" for every x 2 Rn n f0g; (1-54)

and

j'.xC h/�'.x/j �
C jhj"

jxjnC"
for all x 2 Rn n f0g; h 2 Rn; jhj< jxj=2: (1-55)

In addition, assume Z
Rn
'.x/ dx D IM�M (1-56)
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(where IM�M is the M �M identity matrix). Then

for each f 2 VMO.Rn;CM /, it holds that 't �f ! f in BMO.Rn;CM / as t ! 0C; (1-57)

where, in the present context, 't .x/ WD t�n'.x=t/ for each x 2 Rn and each t > 0.
As a consequence, given ' 2 C 1.Rn;CM�M / such that (1-56) holds and such that there exists

C 2 .0;1/ for which

j'.x/jC j.r'/.x/j � C.1Cjxj/�n�1 for every x 2 Rn; (1-58)

one has the following real-variable characterization of the membership to VMO:

for every function f 2 BMO.Rn;CM / there holds

't �f ! f in BMO.Rn;CM / as t ! 0C() f 2 VMO.Rn;CM /:
(1-59)

Several density results, of independent interest, are obtained by specializing Theorem 1.5 to moduli
of continuity of the form ‡�.s/ WD s

� for s � 0, with � 2 .0; 1�, simply by observing that there exists
some finite constant C� > 0 with the property that ‡# � C�‡� on Œ0;1/. To state these, recall that the
inhomogeneous Hölder space of order � 2 .0; 1/ in Rn is defined as

C �.Rn/ WD PC �.Rn/\L1.Rn/: (1-60)

Corollary 1.7. For each � 2 .0; 1/,

the space consisting of f 2 PC �.Rn/\C1.Rn/\BMO.Rn/ such that
@˛f 2 C �.Rn/ for every ˛ 2 Nn0 with j˛j � 1 is dense in VMO.Rn/.

(1-61)

Consequently, for each � 2 .0; 1/,

PC �.Rn/\C1.Rn/\BMO.Rn/ is a dense subspace of VMO.Rn/: (1-62)

In particular, for each � 2 .0; 1/ the space PC �.Rn/\BMO.Rn/ is dense in VMO.Rn/. Moreover,

the space consisting of functions f 2 Lip.Rn/\C1.Rn/\BMO.Rn/ such that
@˛f 2 Lip.Rn/\L1.Rn/ for every ˛ 2 Nn0 with j˛j � 1 is dense in VMO.Rn/.

(1-63)

In particular,

Lip.Rn/\C1.Rn/\BMO.Rn/ is a dense subspace of VMO.Rn/: (1-64)

An interesting feature of Theorem 1.5 is that even though the conclusions are of a purely real-variable
nature, its proof makes essential use of the PDE-rooted results established earlier (such as the well-
posedness of the BMO-Dirichlet problem for, say, the Laplacian in Rn

C
). See Section 5 for details.

Theorem 1.5 should be contrasted with the following negative result.

Theorem 1.8. The space UC.Rn/\L1.Rn/ is not dense in VMO.Rn/.

An example of an unbounded function belonging to VMO.Rn/ is

f .x/ WD

�
ln ln.1=jxj/ if jxj � 1=e;
0 if jxj> 1=e

for all x 2 Rn: (1-65)
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In the context of the main density result presented in Theorem 1.5, the function ‡# defined in (1-50)
exhibits an optimal behavior both at small and large scales, which cannot be improved, in the following
precise sense: if ‡ is a modulus of continuity with the property that

either ‡.s/=s D o.1/ as s! 0C; or ‡.s/DO.1/ as s!1; (1-66)
then

C‡ .Rn/\BMO.Rn/ is not dense in VMO.Rn/: (1-67)

Indeed, (1-67) is clear when the first eventuality in (1-66) materializes since the space C‡ .Rn/ reduces to
just constants in this case. Also, in the scenario when the second possibility in (1-66) takes place, C‡ .Rn/

becomes a subspace of UC.Rn/\L1.Rn/, in which case the desired conclusion follows from Theorem 1.8.
Among other things, the density result stated in Corollary 1.7 permits us to quantify the proximity of a

Littlewood–Paley-type measure to the class of vanishing Carleson measures in the upper half-space. This
result, of a purely real variable nature, is formally stated in the theorem below.

Theorem 1.9. Let  2 C 1.Rn/ be a function with the property that there exists C 2 .0;1/ such that

j .x/j�
C

.1Cjxj/nC1
and j.r /.x/j�

C

.1Cjxj/nC2
for every x2Rn; as well as

Z
Rn
 .x/dxD0:

(1-68)
For each x 2 Rn and t > 0 set  t .x/ WD t�n .x=t/. Then for each function f 2 BMO.Rn/

�f .x; t/ WD j. t �f /.x/j
2 dx dt

t
(1-69)

is a Carleson measure in RnC1
C

satisfying

lim
r!0C

�
sup
Q�Rn

`.Q/�r

1

jQj

Z `.Q/

0

Z
Q

j. t �f /.x/j
2 dx dt

t

�
� C dist.f;VMO.Rn//2; (1-70)

where dist.f;VMO.Rn// WD inffkf �gkBMO.Rn/ W g 2 VMO.Rn/g.
As a corollary,

if  2 C 1.Rn/ is a function satisfying the conditions in (1-68) and f 2 VMO.Rn/,
it follows that �f .x; t/, defined as in (1-69), is a vanishing Carleson measure in RnC1

C
.

(1-71)

Theorem 1.9 allows us to establish the result stated below, which may be regarded as a quantified
version of the equivalence (1-34) in Theorem 1.1.

Theorem 1.10. Let L be an M �M elliptic constant complex coefficient system as in (1-2)–(1-3). Then
there exists a constant C D C.n;L/ 2 .0;1/ with the property that for any given f 2 BMO.Rn�1;CM /
the unique solution u of the BMO-Dirichlet boundary value problem (1-29) for L in Rn

C
with boundary

datum f satisfies

lim
r!0C

�
sup

Q�Rn�1; `.Q/�r

Z `.Q/

0

�

Z
Q

jru.x0; t /j2 t dx0 dt

�
� C dist.f;VMO.Rn�1;CM //2; (1-72)

where dist.f;VMO.Rn�1;CM // WD infg2BMO.Rn�1;CM / kf �gkBMO.Rn�1;CM /.
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Moving on, if in analogy with (1-21) we also define

AVMO.Rn/ WD fŒf � W f 2 VMO.Rn/g; (1-73)

then AVMO.Rn/ becomes a closed subspace of the Banach space .BMO.Rn/; kŒ � �keBMO.Rn//. In particular,
.AVMO.Rn/; kŒ � �keBMO.Rn// is itself a Banach space. Likewise, for each � 2 .0; 1/ let us introduce the
quotient space1

PC �.Rn/=� WD fŒf � W f 2 PC
�.Rn/g (1-74)

and equip it with the norm

kŒf �k PC �.Rn/=� WD kf k PC �.Rn/ for all Œf � 2 PC �.Rn/=�: (1-75)

Then . PC �.Rn/=�; kŒ � �k PC �.Rn/=�/ becomes a Banach space.
Regarding AVMO.Rn/ as a Banach space in the fashion described above, Corollary 1.7 readily implies

the following density result.

Corollary 1.11. For each � 2 .0; 1/ the set . PC �.Rn/=�/\ABMO.Rn/ is dense in AVMO.Rn/.

The quantitative characterizations of the Sarason space provided in Theorem 1.5, Corollary 1.7, and
Corollary 1.11 have important consequences as far as the mapping properties of Calderón–Zygmund
operators on VMO are concerned. To elaborate on this aspect, we first recall the definition of the latter
class of operators.

Definition 1.12. Given n 2 N, for each  2 .0; 1� denote by SCZ.n; / the collection of all linear and
continuous mappings T WS .Rn/!S 0.Rn/ which extend to a bounded operator on L2.Rn/ and have
the property that there exist C 0; C 00 2 .0;1/ such that the Schwartz kernel K. � ; � / of T satisfies

K 2 L1loc.R
n
�Rn n diag/ (1-76)

and, for every x; y 2 Rn with x 6D y, and each z 2 Rn with jx� zj< 1
2
jx�yj,

jK.x; y/j �
C 0

jx�yjn
and jK.x; y/�K.z; y/j � C 00

jx� zj

jx�yjnC
: (1-77)

Simply call T a semi-Calderón–Zygmund operator in Rn if T 2
S
0<�1SCZ.n; /.

Also, for each  2 .0; 1� introduce CZ.n; / WD fT 2 SCZ.n; / W T> 2 SCZ.n; /g (where T> W
S .Rn/!S 0.Rn/ is the transpose of T, with Schwartz kernel K>.x; y/ WDK.y; x/), and refer to the
operators in

S
0<�1CZ.n; / as being Calderón–Zygmund operators in Rn.

Fix a semi-Calderón–Zygmund operator T in Rn. A classical result in harmonic analysis (see, e.g., the
proof of [Stein 1993, Theorem 3, p. 114], which readily adapts to the present setting) is the fact that T>

maps the Hardy space H 1 boundedly into the space of absolutely integrable functions; i.e.,

T> WH 1.Rn/! L1.Rn/ (1-78)

1Observe that since we are presently dealing with continuous functions, f � g means that f �g is everywhere equal to a
constant.
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is a well-defined, linear, and bounded operator. In particular, this allows us to define T .1/ as a functional
in ABMO.Rn/D .H 1.Rn//� acting on any h 2H 1.Rn/ according to

hT .1/; hi WD

Z
Rn
T>h dL n: (1-79)

In particular, with the notion of H 1-atom as in (3-37),

T .1/D 0 in ABMO.Rn/ ()

Z
Rn
T>a dL n

D 0 for each H 1-atom a: (1-80)

Via interpolation and duality we have

if T is a semi-Calderón–Zygmund operator then T is bounded
on Lp.Rn/ for each p 2 .2;1/; as a consequence, if T is a

Calderón–Zygmund operator then T is bounded on Lp.Rn/ for p 2 .1;1/.
(1-81)

In this vein, we wish to remark that (recall that a function ‚ W Rn n f0g ! C is said to be positive
homogeneous of degree m provided ‚.�x/D �m‚.x/ for each x 2 Rn n f0g and each � 2 .0;1/)

a principal-value convolution-type operator T‚ WS .Rn/!S 0.Rn/, given by
T‚f .x/ WD lim"!0C

R
y2RnnB.x;"/‚.x � y/f .y/ dy for f 2S .Rn/ and x 2 Rn,

with a kernel ‚ 2 C 1.Rn n f0g/ which is positive homogenous of degree �n and
such that

R
Sn�1 ‚.!/ d! D 0, is a Calderón–Zygmund operator in Rn (in the sense

of Definition 1.12 with  D 1, C 0 D k‚kL1.Sn�1/, and C 00 D kr‚kL1.Sn�1/)
which satisfies T‚.1/D .T‚/>.1/D 0 in ABMO.Rn/. Moreover, if we define
z‚.x/ WD‚.�x/ for each x 2 Rn n f0g, then the transpose of T‚ acting on Lp.Rn/
with 1 < p <1 is the operator Tz‚ acting on Lp

0

.Rn/ where, 1=pC 1=p0 D 1.

(1-82)

This is a consequence of the fact that such an operator T‚ is a multiplier (see, e.g., [Mitrea 2013,
Theorem 4.96, pp. 172–173]), i.e., it satisfies bT‚' D m‚ O' for each ' 2 S .Rn/, where “hat” stands
for the Fourier transform. The symbol m‚ is the Fourier transform of the tempered distribution P:V: ‚,
defined as, see [loc. cit., (4.4.2), p. 136],

hP:V: ‚; 'i WD lim
"!0C

Z
x2Rn; jxj>"

‚.x/'.x/ dx for all ' 2S .Rn/I (1-83)

i.e.,

m‚ D2P:V: ‚ in S 0.Rn/: (1-84)

From [loc. cit., Theorem 4.71, p. 142] it is known that

m‚.�/D�

Z
Sn�1

‚.!/ log.i � �!/ d!

D�

Z
Sn�1

‚.!/

�
ln
ˇ̌̌̌
�

j�j
�!

ˇ̌̌̌
C i

�

2
sgn.� �!/

�
d! for each � 2 Rn n f0g; (1-85)
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where the last equality uses the vanishing-moment property of ‚; see [loc. cit., (4.5.15), p. 143]. From
this representation it is then apparent (reasoning as in [loc. cit, Step II, pp. 349–350]) that

the restriction of m‚ to Rn nf0g is a function having the same order of differentiability
as ‚, is positive homogeneous of degree zero bounded, satisfies mz‚ Dm‚ andR

Sn�1 m‚.!/ d! D 0, as well as mz‚.�/Dm‚.��/ for each � 2 Rn n f0g.
(1-86)

Let us also note that, starting with (1-85) and making use of [loc. cit, Proposition 13.46, p. 439] it is not
difficult to see that

for each p 2 .1;1� there exists Cn;p 2 Œ0;1/ such that km‚kL1.Rn/ � Cn;pk‚kLp.Sn�1/. (1-87)

In turn, via Parseval’s formula these properties imply that T‚ extends to a linear and bounded operator
on L2.Rn/ which satisfies

bT‚f Dm‚ Of for each f 2 L2.Rn/: (1-88)

In addition, for each f; g 2 L2.Rn/, we haveZ
Rn
.T‚f /.x/g.x/ dx D .2�/

�n

Z
Rn

bT‚f .�/ Og.��/ d� D .2�/�n
Z

Rn
m‚.�/ Of .�/ Og.��/ d�

D .2�/�n
Z

Rn

Of .�/bTz‚g.��/ d� D
Z

Rn
f .x/.Tz‚g/.x/ dx; (1-89)

from which we ultimately conclude that the transpose of T‚ is Tz‚. Moreover, for each given H 1-atom a,
the fact that T‚a belongs to L1.Rn/, see (1-78), implies that bT‚a is a continuous function satisfyingR

Rn
T‚a dL n D bT‚a.0/D lim�!0m‚.�/ Oa.�/D 0 since m‚ is bounded, Oa is continuous (given that

a 2 L1.Rn/), and Oa.0/D
R

Rn
a dL n D 0 thanks to the vanishing-moment property of the atom. In light

of (1-80), this shows that T‚.1/D 0. Finally, in a similar fashion, .T‚/>.1/D 0.
Natural examples of operators of the sort discussed in (1-82) are offered by the Riesz transforms in Rn.

These are defined as the family .Rj /1�j�n where, for each j 2 f1; : : : ; ng and each f 2 Lp.Rn/ with
1� p <1, we set

.Rjf /.x/ WD lim
"!0C

Z
y2RnnB.x;"/

Kj .x�y/f .y/ dy; x 2 Rn;

Kj .z/ WD
�..nC 1/=2/

�.nC1/=2

zj

jzjnC1
for each z 2 Rn n f0g.

(1-90)

These are singular integral operators of convolution type involving odd kernels. A prominent example of
a singular integral operator of convolution type involving an even kernel (with vanishing integral on the
unit sphere) is offered by the Beurling (or Beurling–Ahlfors) transform in the complex plane

.Sf /.z/ WD � lim
"!0C

1

�

Z
�2C
jz�� j>"

f .�/

.z� �/2
dL 2.�/; z 2 C: (1-91)

This has the basic property that

S.@ Nzf /D @zf for each Schwartz function f 2S .C/; (1-92)
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where @ Nz WD 1
2
.@x�.1=i/@y/ and @z WD 1

2
.@xC.1=i/@y/ are, respectively, the Cauchy–Riemann operator

and its complex conjugate.
To state the result pertaining to the boundedness of semi-Calderón–Zygmund operators on the space of

functions of vanishing mean oscillations advertised earlier, recall that the quotient space AVMO.Rn/ was
defined in (1-73).

Theorem 1.13. Consider a semi-Calderón–Zygmund operator T in Rn satisfying T .1/D 0. Extend T to
a linear and bounded operator zT from ABMO.Rn/ into itself by setting (with h � ; � i denoting the ABMO-H 1

duality pairing; see item (iv) of Proposition 7.6)

zT WABMO.Rn/!ABMO.Rn/;

h zT Œf �; gi WD hŒf �; T>gi for all Œf � 2ABMO.Rn/; for all g 2H 1.Rn/:
(1-93)

Then AVMO.Rn/ is an invariant subspace of zT. In particular, its restriction to AVMO.Rn/,

zT jVMO WAVMO.Rn/!AVMO.Rn/;

. zT jVMO/Œf � WD zT Œf � for each Œf � 2AVMO.Rn/;
(1-94)

is a well-defined, linear and bounded operator. Moreover, zT jVMO is compatible with the action of T on
Lebesgue spaces in the sense that for each p 2 Œ2;1/ one has

. zT jVMO/Œf �D ŒTf � for all f 2 VMO.Rn/\Lp.Rn/: (1-95)

Example 1. In view of (1-82), Theorem 1.13 applies directly to the Riesz transforms in Rn, as well as
the Beurling transform in C. More generally, given any principal-value convolution-type operator T‚ as
in (1-82), its realization as a linear and bounded mapping from the space ABMO.Rn/ into itself, via the
transposition formula

zT‚ WABMO.Rn/!ABMO.Rn/;

h zT‚Œf �; gi WD hŒf �; Tz‚gi for all Œf � 2ABMO.Rn/; for all g 2H 1.Rn/;
(1-96)

where h � ; � i stands for the ABMO-H 1 duality pairing, and z‚.x/ WD‚.�x/ for each x 2 Rn n f0g, induces
a well-defined, linear and bounded operator

zT‚jVMO WAVMO.Rn/!AVMO.Rn/: (1-97)

Example 2. Recall that, for a given Lipschitz functionAWR!C, the Calderón commutator of orderm2N0

is the principal-value singular integral operator Cm on the real line whose kernel is given by

Km.x; y/ WD
.A.x/�A.y//m

.x�y/mC1
; x; y 2 R; x 6D y: (1-98)

It is then a basic fact that each Cm is a Calderón–Zygmund operator (e.g., C0 is, up to normalization,
the Hilbert transform on the real line). In particular, they all extend to well-defined and bounded linear
operators from L1.R/ into BMO.R/. Retaining the same notation for the said extensions, a well-known
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trick (based on integration by parts) then yields the following remarkable recursive identity, see [Meyer
1990, (2.14), p. 266],

Cm.1/D Cm�1.A
0/ for each m 2 N: (1-99)

In relation to the above family of operators, for each m 2N let us consider the principal-value singular
integral operator Tm on the real line associated with the modified kernel

km.x; y/ WDKm.x; y/�Km�1.x; y/A
0.y/

D
.A.x/�A.y//m�1

.x�y/mC1
fA.x/�A.y/� .x�y/A0.y/g; x; y 2 R; x 6D y: (1-100)

Since, generally speaking, the function A0 is only essentially bounded, the operator Tm is only semi-
Calderón–Zygmund (as opposed to Cm which is a genuine Calderón–Zygmund operator). This being said,
in contrast with (1-99) we presently have Tm.1/DCm.1/�Cm�1.A0/D 0. Granted these, Theorem 1.13
applies and gives that

Tm, the modified Calderón commutator of order m 2 N on the
real line, associated with the kernel km defined in (1-100),

induces a bounded operator from the space AVMO.R/ into itself.
(1-101)

Example 3. Consider the principal-value Cauchy singular integral operator C on a curve †� C which
is the graph of a Lipschitz function A W R! R. That is, † WD fz D xC iA.x/ W x 2 Rg and C acts on a
function f W†! C according to

Cf .z/ WD lim
"!0C

1

2�i

Z
�2†nB.z;"/

f .�/

� � z
d�; z 2†: (1-102)

Making the bi-Lipschitz change of variables R 3 x 7! xC iA.x/ 2† and identifying f with the function
g.x/ WD f .xC iA.x// for x 2 R, this becomes (after adjusting the truncation; see [Hofmann et al. 2015,
Lemma B.1] in this regard) the principal-value singular integral operator on the real line

Tg.x/ WD lim
"!0C

1

2�i

Z
y2Rn.x�";xC"/

.1C iA0.y//g.y/

y � xC i.A.y/�A.x//
dy; x 2 R: (1-103)

While the above integral kernel is, generally speaking, lacking smoothness in the y-variable, T is
nonetheless a semi-Calderón–Zygmund operator on R, and we claim that T .1/D 0. To justify this claim,
pick an arbitrary H 1-atom a on the real line and observe that if

b W†! C is defined as b.xC iA.x// WD
a.x/

1C iA0.x/
for x 2 R; (1-104)

then
R
† b.z/ dz D

R
R
a dL 1 D 0 andZ

R

T>a dL 1
D�

Z
†

.Cb/.z/ dz D�
Z
†

��
1
2
I C C

�
b
�
.z/ dz D 0: (1-105)

The last equality above relies on Cauchy’s vanishing formula, see [Mitrea et al. 2017], applied to the
function defined in the domain��C lying above the graph† by u.z/ WD1=.2�i/

R
† b.�/.��z/

�1 d� for
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each z 2�, which has an integrable nontangential maximal function on †D @� and whose nontangential
boundary trace is precisely

�
1
2
I C C

�
b at a.e. point on †D @�. In view of (1-80), we conclude from

(1-105) that, indeed, T .1/D 0.
With the knowledge that T is a semi-Calderón–Zygmund operator on R satisfying T .1/D 0, we can

apply Theorem 1.13, which gives that

the principal-value Cauchy singular integral operator, defined on the real line as in (1-103),
induces a well-defined, linear and bounded operator from the space AVMO.R/ into itself.

(1-106)

This result may be further generalized to higher dimensions by considering the principal-value Cauchy–
Clifford singular integral operator on a Lipschitz surface as in [Mitrea 1994].

Example 4. Having fixed n 2N, recall the principal-value harmonic double-layer K, defined on a surface
†� RnC1 which is the graph of a Lipschitz function A W Rn! R. Specifically,

† WD fX D .x; A.x// 2 RnC1 W x 2 Rng;

and K maps a function f W†! C into

Kf .X/ WD lim
"!0C

1

!n

Z
Y2†nB.X;"/

h�.Y /; Y �Xi

jX �Y jnC1
d�.Y /; X 2†; (1-107)

where � and � , the unit normal and surface measure to †, are given by

�.x; A.x//D
.rA.x/;�1/p
1CjrA.x/j2

; d�.x; A.x//D

q
1CjrA.x/j2 dx; x 2 Rn: (1-108)

Much as in the case of the Cauchy operator considered earlier, make the bi-Lipschitz change of variables
Rn 3 x 7! .x; A.x//2† and identify f with the function g.x/ WD f .x;A.x// for x 2Rn. This permits us
to identify the harmonic double-layer K with the principal-value singular integral operator in Rn given by

Tg.x/ WD lim
"!0C

1

!n

Z
y2RnnB.x;"/

A.x/�A.y/� hx�y;rA.y/i

.jx�yj2C .A.x/�A.y//2/.nC1/=2
g.y/ dy; x 2 Rn: (1-109)

We remark that the integral kernel above does not, generally speaking, possess any smoothness in the
y-variable. Nonetheless, T is bounded on L2.Rn/, see [Meyer 1990, Théorème 11, p. 320]; hence T is a
semi-Calderón–Zygmund operator on Rn. We claim that T .1/D 0. To see that this is the case, pick an
arbitrary H 1-atom a in Rn and note that if

b W†! C is defined as b.x; A.x// WD
a.x/p

1CjrA.x/j2
for x 2 Rn; (1-110)

then
R
† b d� D

R
Rn
a dL n D 0. Also, if we denote by K> the transpose of K on L2.†/, thenZ

Rn
T>a dL n

D

Z
†

K>b d� D
Z
†

�
�
1
2
I CK>

�
b d� D 0: (1-111)
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The last equality above relies on the version of the divergence formula established in [Mitrea et al. 2017],
currently used for the vector field defined in the domain �� RnC1 lying above the surface † by

EF .X/ WD
1

!n

Z
†

X �Y

jX �Y jnC1
b.Y / d�.Y / for all X 2�; (1-112)

which is smooth and divergence-free in �, has an integrable nontangential maximal function, and whose
nontangential boundary trace EF jn:t:

@�
satisfies � � . EF jn:t:

@�
/ D

�
�
1
2
I CK>

�
b at �-a.e. point on † D @�;

see [Mitrea et al. 2017] for more details. Having proved (1-111) we then conclude from (1-80) that
T .1/D 0, as wanted. Given that T is a semi-Calderón–Zygmund operator in Rn satisfying T .1/D 0,
from Theorem 1.13 we may then conclude that

the principal-value harmonic double-layer operator, defined in Rn as in (1-109), induces a
well-defined, linear and bounded operator from the space AVMO.Rn/ into itself.

(1-113)

To close, we mention that similar results are valid for the pull-back from a Lipschitz graph to the Euclidean
space of any double-layer potential operator associated with a homogeneous second-order elliptic system.

Moving on, we note that the argument which proves Theorem 1.13 is indicative of a more general
principle at play here, to the effect that, regardless of its actual format,

any linear operator which is bounded both on BMO and on a
(homogeneous) Hölder space is also bounded on VMO.

(1-114)

In relation to (1-114), it is also worth pointing out that the class of operators which are simultaneously
bounded on BMO as well as on some common (homogeneous) Hölder space is considerably larger than
the class of the semi-Calderón–Zygmund operators considered in Theorem 1.13 since, as opposed to the
latter, the former is stable under composition, and hence, in particular, constitutes an algebra. This being
said, by additionally hypothesizing a suitable cancellation condition for the transpose, one can identify a
(maximal) subfamily of Calderón–Zygmund operators which do make up an algebra. To facilitate stating
such a result, for any given Banach space X we agree to denote by B.X / the Banach algebra of linear and
bounded operators from X into itself (with respect to the ordinary addition and composition of operators,
and ordinary operator norm).

Theorem 1.14. Fix n 2N arbitrary. Then the family A 0eCZ
consisting of all operators zT jVMO as in (1-94),

where T is a Calderón–Zygmund operator in Rn satisfying T .1/ D T>.1/ D 0, is a subalgebra of
B.AVMO.Rn//.

The family of principal-value convolution-type operators T‚ associated as in (1-82) with kernels ‚
which are actually of class C1 in Rn n f0g also gives rise to an algebra of linear and bounded operators
on AVMO.Rn/, of the sort described in our next theorem.

Theorem 1.15. Fix n 2 N arbitrary. Associate with each complex-valued function

‚ 2 C1.Rn n f0g/, positive homogenous of degree �n, and with
the cancellation property

R
Sn�1 ‚.!/ d! D 0

(1-115)
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the principal-value convolution-type singular integral operator T‚ defined as in (1-82), and denote by zT‚
its realization as a linear and bounded mapping from the space ABMO.Rn/ into itself as in (1-96). Then,
with I denoting the identity operator, the following properties hold:

(a) The set

AfSIO WD fcI C
zT‚jVMO WAVMO.Rn/!AVMO.Rn/ W c 2 C and ‚ as in (1-115)g (1-116)

is a commutative unital subalgebra of B.AVMO.Rn//. In AfSIO the following composition law holds: if
c 2 C and the functions ‚1; : : : ; ‚N ; ‚01; : : : ; ‚0N ; ‚ are as in (1-115) and satisfy

NX
jD1

mz‚0
j

mz‚j
D cCmz‚ in Rn n f0g; (1-117)

then NX
jD1

. zT‚0j jVMO/. zT‚j jVMO/D cI C zT‚jVMO in B.AVMO.Rn//: (1-118)

(b) With the bar denoting the closure in B.AVMO.Rn//,

A fSIO D spanf zRj jVMOg1�j�nI (1-119)

that is, A fSIO coincides with the smallest closed subalgebra of B.AVMO.Rn// containing the Riesz
transforms, zRj jVMO 2B.AVMO.Rn// with 1� j � n.

(c) Whenever the function ‚ is as in (1-115) and

c 2 C n f�mz‚.�/ W � 2 Rn n f0gg; (1-120)

it follows that cI C zT‚jVMO has an inverse in AfSIO. More specifically, whenever ‚ is as in (1-115)
and c is as in (1-120), the operator cI C zT‚ 2B.ABMO.Rn// has an inverse in ABMO.Rn/ of the form
c0IC zT‚0 2B.ABMO.Rn// for some c0 2C and‚0 as in (1-115), with the property that c0IC zT‚0 jVMO

is the inverse of cI C zT‚jVMO in AfSIO.

(d) Suppose ‚ is as in (1-115) and c is as in (1-120). Then for each f 2 BMO.Rn/ one has

f 2 VMO.Rn/ () .cI C zT‚/Œf � 2AVMO.Rn/: (1-121)

More generally, let N 2 N be a given integer and assume ‚1; : : : ; ‚N is a family of functions, each of
which as in (1-115). Also, fix

.c1; : : : ; cN / 2 CN n
˚
.�mz‚j

.�//1�j�N W � 2 Rn n f0g
	
: (1-122)

Then for each given function f 2 BMO.Rn/ one has

f 2 VMO.Rn/ () .cj I C zT‚j /Œf � 2AVMO.Rn/ for each j 2 f1; : : : ; N g: (1-123)

(e) Items (a), (c), and the first part of (d), have natural versions in the case when the functions involved
are vector-valued and the kernels of the singular integral operators are matrix-valued. The specifics of
this more general setting are as follows. Given a finite-dimensional complex vector space V , consider
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V -valued functions whose scalar components (with respect to some fixed basis of V ) are from AVMO.Rn/
(or ABMO.Rn/, depending on the context). Also, consider principal-value convolution-type operators T‚
defined as in (1-82), associated with kernels ‚ as in (1-115) taking values in Hom.V ;V /. In particular,
T‚ may be viewed as a matrix of ordinary scalar, principal-value, convolution-type operators, and
extending each individual entry in this matrix as in (1-96) then yields a linear and bounded operator zT‚
from ABMO.Rn/˝V into itself which leaves the subspace AVMO.Rn/˝V invariant.

The version of item (a) in this setting is that if one now defines AfSIO as in (1-116), but with the
intervening singular integral operators as just described above and with cI now replaced by c 2
Hom.V ;V / arbitrary, then AfSIO becomes a (typically noncommutative) subalgebra of B.AVMO.Rn/˝V /.
Finally, in the case of item (c) and the first part of item (d), condition (1-120) is now replaced by

cCmz‚.�/ is invertible in Hom.V ;V / for each � 2 Rn n f0g: (1-124)

Theorem 1.15, whose proof is presented in Section 7, has many consequences of independent interest,
which we shall now explore. We begin by stating a version of the first claim in item (d) of Theorem 1.15
for kernels taking values in a finite-dimensional algebra (again, proved in Section 7).

Corollary 1.16. Let AD .A;C;ˇ; 1/ be a finite-dimensional (complex) unital associative algebra. Fix
n 2 N arbitrary and associate with each A-valued function

‚ W Rn n f0g ! A which is of class C1, positive homogenous of
degree �n, and with the cancellation property

R
Sn�1 ‚.!/ d! D 0;

(1-125)

consider the principal-value convolution-type operator T‚ acting on A-valued Schwartz functions f 2
S .Rn/˝A according to T‚f .x/ WD lim"!0C

R
y2RnnB.x;"/‚.x�y/ˇf .y/ dy for x 2 Rn.

Denote by zT‚ the realization of the operator T‚ as a linear and bounded mapping from the space
ABMO.Rn/˝A into itself , obtained by extending each scalar component of T‚ to ABMO.Rn/ as in (1-96).
Also, fix some

c 2 A such that cCmz‚.�/ is invertible in A from the right for each � 2 Rn n f0g. (1-126)

Then, with I denoting the identity operator, for each f 2 BMO.Rn/˝A one has

f 2 VMO.Rn/˝A () .cI C zT‚/Œf � 2AVMO.Rn/˝A: (1-127)

Historically, the Riesz transforms have been successfully employed in characterizing the regularity of
functions in the Euclidean space. For example, it is well known, see, e.g., [García-Cuerva and Rubio de
Francia 1985, (4.11), p. 284], that the Hardy space H 1.Rn/ may be described as

H 1.Rn/D ff 2 L1.Rn/ WRjf 2 L
1.Rn/ for 1� j � ng: (1-128)

Also, if for each j 2 f1; : : : ; ng we denote by zRj the extension of the j -th Riesz transform, originally
acting on L2.Rn/ as in (1-90), to a bounded operator on ABMO.Rn/ defined as in (1-96), then the following
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characterization of the space ABMO.Rn/ may be deduced from [Fefferman 1971, Theorem 2, p. 587]:

ABMO.Rn/D
�
Œg0�C

nX
jD1

zRj Œgj � W g0; g1; : : : ; gn 2 L
1.Rn/

�
: (1-129)

In a similar vein, a characterization of the space VMO.R/ as (where H is the Hilbert transform on the
real line)

VMO.R/D fuCHv W u; v 2 L1.R/\UC.R/g (1-130)

was given by Sarason [1975, Theorem 1, p. 392]. Let us also mention that regularity results of a geometric
flavor involving the Riesz transforms were established in [Mitrea et al. 2016b]. Here is a result along
this line of work, providing characterizations of the Sarason space VMO in terms of Riesz and Beurling
transforms in the complex plane.

Corollary 1.17. Work in the two-dimensional setting R2 � C and consider the complex Riesz transform

RCf .z/ WD lim
"!0C

1

2�

Z
�2CnB.z;"/

z� �

jz� �j3
f .�/ dL 2.�/; z 2 C: (1-131)

Denote by zRC the extension of the complex Riesz transform, originally considered as in (1-131) on L2.C/,
see (1-82), to a linear and bounded operator on ABMO.C/, see (1-96). Analogously, denote by zS the
extension of the Beurling transform defined as in (1-91) on L2.C/ to a linear and bounded operator on
ABMO.C/. Finally, fix an arbitrary number c 2 C such that jcj 6D 1.

Then for each given function f 2 BMO.C/ the following conditions are equivalent:

(i) f belongs to the Sarason space VMO.C/.

(ii) .cI C zRC/Œf � belongs to AVMO.C/.

(iii) .cI C zS/Œf � belongs to AVMO.C/.

The key ingredient in the proof of Corollary 1.17, presented in Section 7, is Theorem 1.13. In turn, the
equivalence of (i)–(iv) in Corollary 1.17 may be generalized to higher dimensions using Clifford algebras
as a substitute for the field of complex numbers. Specifically, given any n 2 N, denote by .C`n;C;ˇ/
the (complex) Clifford algebra generated by n anticommuting imaginary units, denoted by .ej /1�j�n.
Hence,

ej ˇ ej D�1 and ej ˇ ek D�ekˇ ej whenever 1� j ¤ k � n: (1-132)

The Euclidean ambient Rn embeds canonically into C`n by identifying .ej /1�j�n with the standard
orthonormal basis in Rn, i.e.,

Rn 3 x D .x1; : : : ; xn/� x WD

nX
jD1

xj ej 2 C`n: (1-133)

Under this embedding, (1-132) implies that

xˇ x D�jxj2 for each x 2 Rn ,! C`n: (1-134)
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More information on this topic may be found in [Mitrea 1994]. Here is the higher-dimensional version of
the portion of Corollary 1.17 dealing with the complex Riesz transform.

Corollary 1.18. Consider the Clifford–Riesz transform acting on C`n-valued functions f defined in Rn

according to

RC`f .x/ WD lim
"!0C

�..nC 1/=2/

�.nC1/=2

Z
y2RnnB.x;"/

x�y

jx�yjnC1
ˇf .y/ dy; x 2 Rn; (1-135)

and denote by zRC` its extension to a bounded operator on ABMO.Rn/˝ C`n. Also, consider

c 2 C`n such that cC i! is invertible in C`n from the
right for each vector ! 2 Sn�1 � Rn ,! C`n.

(1-136)

Then for each given function f 2 BMO.Rn/˝ C`n one has

f 2 VMO.Rn/˝ C`n () .cI C zRC`/Œf � 2AVMO.Rn/˝ C`n: (1-137)

As discussed in Section 7, the above result is readily implied by Corollary 1.16. We single out another
immediate consequence of Theorem 1.15 formulated in terms of scalar-valued functions.

Corollary 1.19. For each j 2f1; : : : ; ng denote by zRj the extension of the j -th Riesz transform, originally
acting on L2.Rn/ as in (1-90), to a bounded operator on ABMO.Rn/ defined as in (1-96). Then for each
complex-valued function f 2 BMO.Rn/ and each .c1; : : : ; cn/ 2 Cn n iSn�1 one has

f 2 VMO.Rn/ () .cj I C zRj /Œf � 2AVMO.Rn/ for each j 2 f1; : : : ; ng: (1-138)

In particular, corresponding to the special case when c1D � � �D cnD 0, for each complex-valued function
f 2 BMO.Rn/ one has2

f 2 VMO.Rn/ () zRj Œf � 2AVMO.Rn/ for each j 2 f1; : : : ; ng: (1-139)

Finally, we note that it is also possible to extend the characterizations of the membership to VMO given
in the two-dimensional setting in Corollary 1.17 to higher dimensions and differential forms by introducing
suitable higher-dimensional versions of the Beurling and Riesz transforms acting on differential forms.
To describe them, we need a some standard notation from differential geometry; see, e.g., [Mitrea et al.
2016a, §2.1]. For each ` 2 f0; 1; : : : ; ng let ƒ` denote the space of differential forms of degree ` in Rn,
and set ƒ WD

Ln
`D0ƒ

` for the space of differential forms of arbitrary mixed degrees in Rn. The exterior
derivative operator d and its formal adjoint ı in Rn are defined, respectively, as

df WD

nX
jD1

dxj ^ .@jf /; ıf WD �

nX
jD1

dxj _ .@jf / for all f 2 D0.Rn/˝ƒ; (1-140)

where ^, _ stand for the exterior and interior product on ƒ, and where the partial derivatives are applied
to the individual components of the differential form f . For each � 2Cnf0g consider then the � -Beurling

2Martell would like to express his gratitude to L. Escauriaza for some conversations pertaining to the one-dimensional case of
(1-139).
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transform in Rn defined (on the frequency side) as

S� WD .� dı� �
�1 ıd/��1 WS .Rn/˝ƒ!S 0.Rn/˝ƒ: (1-141)

In the particular case when � D 1, this operator appears in [Iwaniec and Martin 2001, (12.71), p. 326].
It is reasonable to think of S� above as some kind of generalization of the classical Beurling transform
defined in the complex plane in (1-91) due to the following: If for each � 2 C n f0g we also introduce the
first-order differential operators

D� WD i.� d � �
�1 ı/; (1-142)

then .D� /2 D dıC ıd D��, so each D� may be regarded as a square root of the negative Laplacian.
Hence, each D� is a Dirac-type operator, much like the Cauchy–Riemann operator @ Nz and its complex
conjugate @z in the complex plane. Moreover, a simple computation (which makes use of the facts that
d2 D 0, ı2 D 0, and �D�dı� ıd ) shows that

S�1D�2 D i Di�1��2 for each �1; �2 2 C n f0g; (1-143)

which may be viewed as an extension of the classical intertwining properties recorded in (1-92).
An alternative representation of S� as an operator onL2.Rn/˝ƒ, which is visible from (1-140)–(1-141)

(upon recalling that the j -th Riesz transform on L2.Rn/ is the multiplier with symbol �i�j =j�j), is

S�f D�� R^ .R_f /C �
�1R_ .R^f /; f 2 L2.Rn/˝ƒ; (1-144)

with the understanding that, in analogy to (1-140),

R^f WD

nX
jD1

dxj ^ .Rjf /; R_f WD �

nX
jD1

dxj _ .Rjf / for all f 2 L2.Rn/˝ƒ; (1-145)

where the Riesz transforms Rj act on the individual components of the differential form f . In particular,
if for each f 2ABMO.Rn/˝ƒ we also define (with similar conventions as above)

zR^ Œf � WD

nX
jD1

dxj ^ . zRj Œf �/; zR_ Œf � WD �

nX
jD1

dxj _ . zRj Œf �/; (1-146)

then Theorem 1.13 permits us to extend the �-Beurling transform, originally considered as in (1-144),
to a linear and bounded operator zS� from ABMO.Rn/˝ƒ into itself given by

zS� Œf � WD �� zR^ . zR_ Œf �/C �
�1 zR_ . zR^ Œf �/; Œf � 2ABMO.Rn/˝ƒ: (1-147)

In this vein, let us also introduce the � -Riesz transforms (once again, on the frequency side) as

R� WD
D�
p
��
D i�

d
p
��
� i��1

ı
p
��

for all � 2 C n f0g; (1-148)

and note that they induce linear and bounded mappings on L2.Rn/˝ƒ according to

R�f D�i.� R^f C �
�1R_f /; f 2 L2.Rn/˝ƒ: (1-149)
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Thanks to Theorem 1.13, the �-Riesz transforms above may further be extended to linear and bounded
operators zR� on ABMO.Rn/˝ƒ according to

zR� Œf �D�i.� zR^ Œf �C �
�1 zR_ Œf �/; Œf � 2ABMO.Rn/˝ƒ: (1-150)

In relation to the � -Beurling transforms in (1-147) and the � -Riesz transforms in (1-150), we have the
following result, akin to the characterization of the membership to VMO in the two-dimensional case
given in Corollary 1.17:

Corollary 1.20. For each j; k 2 f1; : : : ; ng introduce

‚jk.x/ WD
�nxjxkC ıjkjxj

2

jxjnC2
for all x 2 Rn n f0g; (1-151)

and note that

‚jk 2 C1.Rn n f0g/; ‚kj D‚jk;
R
Sn�1 ‚jk.!/ d! D 0; and

‚jk is even and positive homogeneous of degree �n in Rn n f0g:
(1-152)

In particular, these permit introducing the principal-value singular integral operators of convolution type
T‚jk associated with the ‚jk’s as in (1-82). Then for each � 2 C n f0g the operator S� is symmetric
on L2.Rn/˝ƒ and for each f 2 L2.Rn/˝ƒ one has (with T‚jk acting on the differential form f

componentwise)

S�f D�
�

!n�1

nX
j;kD1

dxj ^ .dxk _ .T‚jkf //C
��1

!n�1

nX
j;kD1

dxj _ .dxk ^ .T‚jkf //

�
�

n

nX
jD1

dxj ^ .dxj _f /C
��1

n

nX
jD1

dxj _ .dxj ^f /; (1-153)

while for each Œf � 2ABMO.Rn/˝ƒ one has (with similar conventions as above)

zS� Œf �D�
�

!n�1

nX
j;kD1

dxj ^ .dxk _ . zT‚jk Œf �//C
��1

!n�1

nX
j;kD1

dxj _ .dxk ^ . zT‚jk Œf �//

�
�

n

nX
jD1

dxj ^ .dxj _ Œf �/C
��1

n

nX
jD1

dxj _ .dxj ^ Œf �/: (1-154)

Moreover, for each given differential form f 2 BMO.Rn/˝ƒ the following three conditions are
equivalent:

(i) f belongs to the space VMO.Rn/˝ƒ.

(ii) .cI C zS� /Œf � 2AVMO.Rn/˝ƒ for some (or every) � 2 C n f0g and c 2 C n f�;���1g.

(iii) .cI C zR� /Œf � 2AVMO.Rn/˝ƒ for some (or every) � 2 C n f0g and c 2 C n f˙1g.

This paper is part of a larger program aimed at treating Dirichlet boundary value problems for M �M
systems with constant complex coefficients as in (1-2)–(1-3) in the upper half-space Rn

C
with boundary

datum in various function spaces on Rn�1. The space BMO, presently considered, lies at the crossroads
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of several fundamental scales of function spaces in analysis. For one thing, BMO.Rn�1;CM / may be
regarded as a natural (rightmost) end-point of the Lebesgue scale Lp.Rn�1;CM / with p 2 .1;1/. The
Dirichlet boundary value problem for elliptic systems L as in (1-2)–(1-3) in the upper half-space with
data from the latter scale of spaces has been recently treated in [Martell et al. 2016], where the size of the
solution u W Rn

C
! CM is measured using the nontangential maximal operator defined as

.Nu/.x0/ WD .N�u/.x0/ WD supfju.y/j W y 2 ��.x0/g for all x0 2 Rn�1: (1-155)

In this endeavor, the crux of the matter is the pointwise inequality, see (2-40),

.Nu/.x0/� C.Mf /.x0/ at each point x0 2 Rn�1 if u.x0; t / WD .PLt � f /.x
0/ for

every .x0; t / 2 Rn
C

and for some function f 2 L1.Rn�1; 1=.1C jx0jn/ dx0/M ,
(1-156)

where M is the Hardy–Littlewood maximal operator on Rn�1; see (2-4).
In fact, estimate (1-156) permitted the treatment in [Martell et al. 2016] of a much larger variety of

function lattice spaces. Indeed, one of the main results established in that paper is that the boundedness
of the Hardy–Littlewood maximal operator on a Köthe function space X and on its Köthe dual X0 (both
considered in Rn�1) is actually equivalent to the well-posedness of the X-Dirichlet and X0-Dirichlet
problems in Rn

C
in the class of all second-order, homogeneous, elliptic systems, with constant complex

coefficients. As a consequence, in [Martell et al. 2016] the Dirichlet problem for such systems was shown
to be well-posed for boundary data in Lebesgue spaces, variable-exponent Lebesgue spaces, Lorentz
spaces, and Zygmund spaces, as well as their weighted versions with weights in the Muckenhoupt class.

This being said, the John–Nirenberg space BMO.Rn�1/ is not a lattice space (in the sense that a
nonnegative measurable function with a pointwise majorant in BMO does not necessarily belong to
BMO), so a fresh look at the corresponding Dirichlet problem is warranted. In particular, the nature of
the space of solutions (which should be suitably tailored to the specific space of boundary data) now
involves a Carleson measure condition in place of the nontangential maximal operator (1-155) which has
been extensively used in [Martell et al. 2016].

Another point of view places the John–Nirenberg space BMO.Rn�1;CM / as a (leftmost) endpoint
for the scale of homogeneous Hölder spaces PC �.Rn�1;CM / with � 2 .0; 1/ (for pertinent definitions
and basic properties regarding this scale see the discussion in the first part of Section 2). Bearing this
in mind, it is possible to formulate (a significant portion of) Theorem 1.1 in a manner that reflects the
aforementioned feature of BMO. To elaborate on this idea, given � 2 Œ0; 1/ and p 2 Œ1;1/, for every
f 2 L1loc.R

n�1;CM / define

kf k
.�;p/
� WD sup

Q�Rn�1
`.Q/��

�
�

Z
Q

jf .x0/�fQj
p dx0

�1
p

; (1-157)

and introduce the Morrey–Campanato space (which may be regarded as a fractional BMO space,Lp-based,
of order �) by setting

E �;p.Rn�1;CM / WD ff 2 L1loc.R
n�1;CM / W kf k

.�;p/
� <1g: (1-158)
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By the John–Nirenberg inequality it follows that, corresponding to the end-point case �D 0, we have

E 0;p.Rn�1;CM /D BMO.Rn�1;CM /; (1-159)

and it is clear from definitions that, in the regime � > 0, the vanishing mean oscillation condition (1-22)
holds (this time, at a precisely quantified rate of decay) for every function f 2 E �;p.Rn�1;CM /. Going
further, for every u 2 C 1.Rn

C
;CM / set

kuk
.�;p/
�� WD sup

Q�Rn�1
`.Q/��

�
�

Z
Q

�Z `.Q/

0

jru.x0; t /j2 t dt

�p
2

dx0
�1
p

: (1-160)

The finiteness demand kuk.�;p/�� <1 may be viewed, compare with (1-14), as a fractional Carleson
measure condition (Lp-based, of order �). In particular, it implies that the measure d�.x0; t / WD
jru.x0; t /j2 t dt dx0 satisfies the vanishing condition (1-12), with a precisely quantified rate of decay.

Here is the statement of the theorem advertised earlier which deals with the larger, more inclusive
context considered above and which complements the end-point case �D 0 corresponding to the portion
of Theorem 1.1 pertaining to the well-posedness of the BMO-Dirichlet boundary value problem.

Theorem 1.21. Let L be an M �M elliptic constant complex coefficient system as in (1-2)–(1-3), and fix
� 2 .0; 1/ along with p; q 2 Œ1;1/. Then the Morrey–Campanato–Dirichlet boundary value problem for
L in Rn

C
, formulated as8̂̂̂<̂

ˆ̂:
u 2 C1.Rn

C
;CM /;

LuD 0 in Rn
C
;

kuk
.�;q/
�� <1;

ujn:t:
@Rn
C

D f a.e. in Rn�1; f 2 E �;p.Rn�1;CM /;

(1-161)

has a unique solution. The solution u of (1-161) is given by (1-30) and there exists a constant C D
C.n;L; �; p; q/ 2 .1;1/ with the property that

C�1kf k
.�;p/
� � kuk

.�;q/
�� � Ckf k

.�;p/
� : (1-162)

Moreover, u belongs to PC �.Rn
C
;CM /D PC �.Rn

C
;CM / and, with C 2 .1;1/ as above,

C�1kf k
.�;p/
� � kuk PC �.Rn

C
;CM / � Ckf k

.�;p/
� : (1-163)

As a consequence of Theorem 1.21 and its proof, see also (2-2), we obtain that, in fact,

E �;p.Rn�1;CM /D PC �.Rn�1;CM / (1-164)

as vector spaces, with equivalent norms (the left-to-right inclusion is understood in the sense that if
f 2 E �;p.Rn�1;CM / then there exists some g 2 PC �.Rn�1;CM / such that f D g a.e. in Rn�1). This
offers a new proof (of a PDE flavor) of an old embedding result of N. Meyers [1964]. An inspection
of the proof of Theorem 1.21 also reveals that there is a Fatou-type result naturally accompanying the
well-posedness result for the boundary value problem (1-161).
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We shall now succinctly comment on the literature dealing with Dirichlet boundary value problems
for elliptic operators in the upper half-space. As already noted, the nature of these problems strongly
depends on the choice of the function space from which the boundary datum f is selected, the specific
way in which the size of the solution u is measured, and the very manner in which its boundary trace
is considered. To illustrate these distinctions, recall first that there is a vast body of work targeting the
case when the solution u is sought in various Sobolev spaces in Rn

C
, the boundary datum f belongs to

suitable Besov spaces on Rn�1, and the boundary trace of u is considered in the sense of Sobolev space
theory. Classical references in this regard include [Agmon et al. 1959; 1964, Lions and Magenes 1972;
Maz’ya and Shaposhnikova 1985; Taylor 2011a; 2011b; 2011c].

The scenario in which the size of u is measured in terms of the nontangential maximal operator
(1-155) and when the trace of u on the boundary of Rn

C
is taken in a nontangential pointwise sense, see

(1-10), was treated in [Martell et al. 2016] for the general class of M �M systems L with constant
complex coefficients as in (1-2)–(1-3). This extends classical work carried out in the particular case when
LD�, where � is the Laplacian in Rn, treated in a number of monographs, including [Axler et al. 2001;
García-Cuerva and Rubio de Francia 1985; Stein 1970; 1993; Stein and Weiss 1971]. The corresponding
higher-order regularity Dirichlet problem in a similar framework was recently considered in [Martell et al.
2014]. See also [Martell et al. 2017] for related work, emphasizing semigroup techniques.

There is also a significant amount of work focused on the classical Dirichlet problem for the Laplacian
in the upper half-space with a continuous boundary datum f . In such a case, one seeks a harmonic function
u 2 C1.Rn

C
/\C 0.Rn

C
/ satisfying uj@Rn

C
D f . A remarkable feature, noted in [Helms 1969, p. 42 and

p. 158], is that even in the case when the boundary datum f is a bounded continuous function in Rn�1,
the solution u of this classical Dirichlet problem is not unique. To ensure uniqueness in such a setting
one typically specifies the behavior of u.x0; t / as t !1. A case in point is [Siegel and Talvila 1996],
where uniqueness is established in the class of harmonic functions u 2 C1.Rn

C
/\C 0.Rn

C
/ satisfying

u.x/ D o.jxj sec �/ as jxj ! 1 (where � WD arccos.xn=jxj/ and  2 R is arbitrary), by proving a
Phragmén–Lindelöf principle under the latter growth condition. This builds on the work of [Siegel 1988;
Wolf 1941; Yoshida 1996], and others. The works just cited crucially rely on positivity and other various
highly specialized properties of the Laplace operator, so the techniques employed there do not adapt to
the considerably more general class of elliptic systems considered in the present paper.

In relation to the context just described above, it is instructive to make the following observations. First,
the collection of uniformly continuous functions belonging to BMO.Rn�1;CM / is a dense subspace of
VMO.Rn�1;CM /; see (1-26). Second, in the last part of Theorem 1.1 we have succeeded in proving the
well-posedness of the VMO-Dirichlet problem in the class of null-solutions u of a given elliptic system L

as in (1-2)–(1-3) which satisfy a vanishing Carleson measure condition. This is a natural condition from
the point of view of harmonic analysis which replaces the demand that the solution extends continuously
on Rn

C
, required in the formulation of the classical Dirichlet problem with continuous data.

Apparently, the closest results in the literature to some of the work carried out in this paper are those
of E. Fabes, R. Johnson, and U. Neri [Fabes et al. 1976]. Indeed, in their paper they dealt with the BMO-
Dirichlet problem for the Laplacian in the upper half-space in the class of harmonic functions satisfying



THE BMO-DIRICHLET PROBLEM AND QUANTITATIVE CHARACTERIZATIONS OF VMO 633

a Carleson measure condition (this being said, we would like to point out that there are certain gaps in
some of the key steps of the treatment in that paper, such as the proof of Lemma 1.3 on pp. 161–162,3

and the proof of estimate (1.5) on page 1634). The portion of Theorem 1.1 dealing with (1-29) is a
significant generalization of their work, which is thereby extended to a much larger class of systems.
Similar attributes are shared by our Theorem 1.21 in relation to the work in [Fabes et al. 1976] dealing
with harmonic functions in the upper half-space with traces in Morrey–Campanato spaces. Generalizations
of these results appear in [Duong et al. 2014] for the Schrödinger operator of the form ��CV with V
being a nonnegative potential belonging to some reverse Hölder class (hence 0 < V <1 a.e.).

We also wish to mention here the work of B. Dahlberg and C. Kenig [1987, Theorem 4.18, p. 463],
who have treated the BMO-Dirichlet problem for the Laplacian in bounded Lipschitz domains via layer
potentials, building on the earlier work of E. Fabes and U. Neri [1980] who employed harmonic measure
techniques. For related work see also [Dindos et al. 2011].

The techniques employed in [Dahlberg and Kenig 1987; Duong et al. 2014; Dindos et al. 2011; Fabes
et al. 1976; Fabes and Neri 1980] are largely restricted to scalar equations (as they make essential use
of positivity and/or maximum principles). Also, the fact that in [Dahlberg and Kenig 1987; Dindos et al.
2011; Fabes and Neri 1980] the underlying domain is bounded makes the task of proving uniqueness
considerably more manageable. In addition, the consideration of PDEs for which the well-posedness of
the L2-Dirichlet problem is known in arbitrary Lipschitz subdomains allows these authors to successfully
employ a variety of localization arguments. By way of contrast, most of these key features cease to be
effective in the geometric/analytic context considered in this paper. In proving the solvability of the BMO-
Dirichlet boundary value problem for an elliptic system L in Rn

C
as formulated in (1-29), our approach

makes essential use of the existence and properties of the Poisson kernel associated with L from the work
of [Agmon et al. 1959; 1964]. Uniqueness is derived with the help of the Fatou-type result recorded in
Theorem 1.2. A considerable amount of effort then goes into establishing the latter theorem, with square-
function estimates (see Proposition 3.2), elements of tent-space theory (see Lemma 4.10), interior estimates
(see Theorem 2.4), and certain estimates near the boundary from [Maz’ya et al. 2010] for null-solutions
of L vanishing on the boundary (see Proposition 2.5), among the tools playing a key role in this regard.

We conclude with a brief overview of the contents of the sections of this paper. Useful background
material and auxiliary results are collected in Section 2. The proofs of the existence statements in
Theorem 1.1, both for the BMO-Dirichlet problem and the VMO-Dirichlet problem, are carried out in
Section 3. Next, Section 4 is reserved for establishing a Fatou result for smooth null-solutions of L
satisfying a Carleson measure condition, as well as uniqueness in the BMO-Dirichlet problem, in the
upper half-space. Finally, the proofs of Theorems 1.1–1.6, as well as Theorems 1.8–1.10, are given in
Section 5, the proof of Theorem 1.21 is contained in Section 6, while the proofs of Theorems 1.13–1.15
and Corollaries 1.16–1.20 are presented in Section 7.

3The second equality in the first formula displayed on page 162 is questionable, given that this involves the global gradient
in RnC1, which includes the transversal variable t .

4Here the authors rely on the implication 3.iii/) 2 from [Fefferman and Stein 1972, pp. 147–148] which is only established
under the additional membership to L2.Rn/.
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2. Background material and preliminary results

In this section we collect a number of preliminary results that are useful in the sequel. Throughout, we let
N stand for the collection of all positive integers, and set N0 WDN[f0g. In this way Nk0 stands for the set
of multi-indices ˛D .˛1; : : : ; ˛k/ with j̨ 2N0 for 1� j � k. Also, fix n2N with n� 2. For an arbitrary
multi-index ˛ D .˛1; : : : ; ˛n/ 2 Nn0 we use the standard notation @˛ WD @˛1x1 � � � @

˛n
xn and we occasionally

abbreviate @xj by simply @j for j 2 f1; : : : ; ng. The length of the multi-index ˛D .˛1; : : : ; ˛n/ is defined
as j˛j WD ˛1 C � � � C ˛n. We agree to let fej g1�j�n stand for the standard orthonormal basis in Rn.
Occasionally, we canonically identify ej with a multi-index in N0 (of length 1). Given an arbitrary set
E � Rn�1 we denote by 1E the characteristic function of E.

Generally speaking, given a metric space .X; d/, corresponding to each subset E of X (of cardinality
at least 2) and number � > 0, we associate the homogeneous Hölder space or order �, denoted by
PC �.E;CM /, as the collection of functions w WE! CM satisfying

kwk PC �.E;CM / WD sup
x;y2X
x 6Dy

jw.x/�w.y/j

d.x; y/�
<1: (2-1)

Whenever E � F �X (with E having cardinality at least 2) we then have

PC �.E;CM /D PC �.E;CM / isometrically, and
PC �.F;CM / 3 w 7! wjE 2 PC

�.E;CM / continuously:
(2-2)

Also,
PC �.E;CM /� UC.E;CM /; (2-3)

where the latter denotes the space of CM -valued functions which are uniformly continuous on the
set E. Finally, we agree to drop the dependence on the range when M D 1, and denote by Lip.E/ the
homogeneous Hölder space on E of order �D 1.

Moving on, we denote by M the Hardy–Littlewood maximal operator on Rn�1 which acts on vector-
valued functions with components in L1loc.R

n�1/ according to

.Mf /.x0/ WD sup
Q3x0

�

Z
Q

jf .y0/j dy0 for all x0 2 Rn�1; (2-4)

where the supremum runs over all cubes Q in Rn�1 containing x0.
We will often work with the weighted Lebesgue space of the form

L1
�

Rn�1;
dx0

1Cjx0ja

�
WD

�
f W Rn�1! C Lebesgue-measurable W

Z
Rn�1

jf .x0/j

1Cjx0ja
dx0 <1

�
; (2-5)

where a2 .0;1/, and we shall denote by L1.Rn�1; dx0=.1Cjx0ja//M the space of CM -valued functions
with components in (2-5). Clearly,

L1
�

Rn�1;
dx0

1Cjx0ja

�M
� L1loc.R

n�1;CM / for all a > 0: (2-6)
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Next, we record several useful properties of mean oscillations (recall the piece of notation introduced
in (1-16)). First we note that if Q and Q0 are cubes in Rn�1 with the property that Q0 �Q, then for any
f 2 L1loc.R

n�1;CM / and any p 2 Œ1;1/ we have�
�

Z
Q0
jf .y0/�fQ0 j

p dy0
�1
p

� 2

�
`.Q/

`.Q0/

�n�1
p
�
�

Z
Q

jf .y0/�fQj
p dy0

�1
p

(2-7)

and �
�

Z
Q

jf .y0/�fQ0 j
p dy0

�1
p

�

�
1C

�
`.Q/

`.Q0/

�n�1
p
��
�

Z
Q

jf .y0/�fQj
p dy0

�1
p

: (2-8)

Also,

1

2

�
�

Z
Q

jf .y0/�fQj
p dy0

�1
p

� inf
c2CM

�
�

Z
Q

jf .y0/� cjp dy0
�1
p

�

�
�

Z
Q

jf .y0/�fQj
p dy0

�1
p

: (2-9)

Second, we recall the John–Nirenberg inequality asserting that there exist two-dimensional constants
C1; C2 2 .0;1/ with the following significance. Consider an arbitrary cube Q � Rn�1 along with a
function f 2 L1.Q/ with the property that

NQ.f / WD sup
Q0�Q

�

Z
Q0
jf .y0/�fQ0 j dy

0 <1; (2-10)

where the above supremum involves cubes Q0 � Rn�1 contained in Q. Then there holds, see, e.g., [Stein
1993, Corollary 2, p. 154],

L n�1
�
fy0 2Q W jf .y0/�fQj> �g

�
� C1 e

�. C2
NQ.f /

/�
jQj for all � > 0: (2-11)

Third, as a corollary of the John–Nirenberg inequality, we obtain that for every p 2 .0;1/ there exists a
constantCn;p 2 .0;1/with the property that for every cubeQ�Rn�1 and every function f 2L1.Q;CM /
we have �

�

Z
Q

jf .y0/�fQj
p dy0

�1
p

� Cn;p sup
Q0�Q

�

Z
Q0
jf .y0/�fQ0 j dy

0: (2-12)

To proceed, for each p 2 Œ1;1/, r 2 .0;1/, and f 2 L1loc.R
n�1;CM / define the Lp-based mean

oscillations of f at a given scale r 2 .0;1/ as

oscp.f I r/ WD sup
Q�Rn�1; `.Q/�r

�
�

Z
Q

jf .x0/�fQj
p dx0

�1
p

2 Œ0;1�: (2-13)

Some of the main properties of this function are summarized next.

Lemma 2.1. For each f 2 L1loc.R
n�1;CM / the following properties hold:

(a) Fix p 2 Œ1;1/. Then, as a function of r , the quantity oscp.f I r/ is nondecreasing in r .
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(b) For every p; q 2 Œ1;1/ there exists a constant C D C.p; q; n/ 2 .1;1/, independent of f , with the
property that

C�1oscp.f I r/� oscq.f I r/� Coscp.f I r/ for every r 2 .0;1/: (2-14)

(c) The function f belongs to BMO.Rn�1;CM / if and only if oscp.f I r/ as a function in r is bounded
on .0;1/ for some, or any, p 2 Œ1;1/. Moreover, for each p 2 Œ1;1/ there exists a constant C D
C.n; p/ 2 .1;1/, independent of f , with the property that

C�1kf kBMO.Rn�1;CM / � sup
r>0

oscp.f I r/D lim
r!1

oscp.f I r/� Ckf kBMO.Rn�1;CM /: (2-15)

(d) The function f belongs to VMO.Rn�1;CM / if and only if for some, or any exponent p 2 Œ1;1/ one
has

lim
r!0C

oscp.f I r/D 0 and lim
r!1

oscp.f I r/ <1: (2-16)

(e) For every � 2 Œ0; 1/ and p 2 Œ1;1/ we have, recall (1-157),

oscp.f I r/� r�kf k
.�;p/
� for all r 2 .0;1/: (2-17)

(f) If f belongs to C‡ .Rn�1;CM / for some modulus of continuity ‡ , recall (1-47)–(1-48), then for each
p 2 Œ1;1/ one has

oscp.f I r/� kf kC‡ .Rn�1;CM /‡.
p
n r/ for all r 2 .0;1/: (2-18)

In particular, for each p 2 Œ1;1/ and � 2 .0; 1/ there exists C 2 .0;1/ such that for every function
f 2 PC �.Rn�1;CM / one has

oscp.f I r/� Cr�kf k PC �.Rn�1;CM / for all r 2 .0;1/: (2-19)

Proof. The claim made in part (a) follows directly from (2-13). The claim in part (b) is a direct consequence
of Hölder’s inequality and John–Nirenberg’s inequality; see (2-12). The latter also implies the claims
made in part (c). The claim in part (d) is a consequence of (a)–(c) and (1-22). Estimate (2-17) is immediate
from (2-13) and (1-157). Finally, if f 2 C‡ .Rn�1;CM / then for each p 2 Œ1;1/ and each cube Q
in Rn�1 Hölder’s inequality gives�

�

Z
Q

jf .x0/�fQj
p dx0

�1
p

�

�
�

Z
Q

�

Z
Q

jf .x0/�f .y0/jpdy0 dx0
�1
p

� kf kC‡ .Rn�1;CM /‡.
p
n `.Q//: (2-20)

Then (2-18) follows from (2-20) given that ‡ is nondecreasing. �

Next, we discuss the manner in which global integrability properties of a given function are related to
the behavior at infinity of its mean oscillation function.
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Lemma 2.2. Fix " > 0 arbitrary. Then there exists a constant Cn;" 2 .0;1/ such that for each function
f 2 L1loc.R

n�1;CM / and each cube Q � Rn�1, with center x0Q 2 Rn�1, there holdsZ
Rn�1

jf .y0/�fQj

Œ`.Q/Cjx0Q �y
0j�n�1C"

dy0 �
Cn;"

`.Q/"

Z 1
1

�
�

Z
�Q

jf .y0/�f�Qj dy
0

�
d�

�1C"

�
Cn;"

`.Q/"

Z 1
1

osc1.f I�`.Q//
d�

�1C"
: (2-21)

As a consequence, for each f 2 L1loc.R
n�1;CM / one hasZ 1

1

osc1.f I�/
d�

�1C"
<1 D) f 2 L1

�
Rn�1;

dx0

1Cjx0jn�1C"

�M
(2-22)

and there exists a constant Cn;" 2 .0;1/ with the property thatZ
Rn�1

jf .x0/j

1Cjx0jn�1C"
dx0 � Cn;"

Z 1
1

osc1.f I�/
d�

�1C"
CCn;"�

Z
Q0

jf .x0/j dx0; (2-23)

where Q0 WD
�
�
1
2
; 1
2

�n�1 is the cube centered at the origin 00 of Rn�1 with side-length 1.
In particular, we have

BMO.Rn�1;CM /� L1
�

Rn�1;
dx0

1Cjx0jn�1C"

�M
for all " > 0; (2-24)

and for each p 2 Œ1;1/, recall (1-158),

E �;p.Rn�1;CM /� L1
�

Rn�1;
dx0

1Cjx0jn�1C"

�M
for all " > 0; for all � 2 Œ0; "/; (2-25)

while in view of (2-19) and (2-22) we obtain

PC �.Rn�1;CM /� L1
�

Rn�1;
dx0

1Cjx0jn�1C"

�M
for all � 2 .0; "/: (2-26)

Proof. Given f 2L1loc.R
n�1;CM / and a cube Q�Rn�1 with center x0Q 2Rn�1, breaking up the domain

of integration allows us to estimateZ
Rn�1

jf .y0/�fQj

Œ`.Q/Cjx0Q �y
0j�n�1C"

dy0

� `.Q/�nC1�"
Z
Q

jf .y0/�fQj dy
0
C

1X
kD0

Z
2kC1Qn2kQ

jf .y0/�fQj

jx0Q �y
0jn�1C"

dy0

� `.Q/�"�

Z
Q

jf .y0/�fQj dy
0
C 22.n�1/C"`.Q/�"

1X
kD0

2�k"�

Z
2kC1Q

jf .y0/�fQj dy
0: (2-27)
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Next, for each k 2 N0 we have

�

Z
2kC1Q

jf .y0/�fQj dy
0
� �

Z
2kC1Q

jf .y0/�f2kC1Qj dy
0
C

kX
jD0

jf2jQ�f2jC1Qj

� �

Z
2kC1Q

jf .y0/�f2kC1Qj dy
0
C2n�1

kX
jD0

�

Z
2jC1Q

jf .y0/�f2jC1Qj dy
0
I (2-28)

hence,

1X
kD0

2�k"�

Z
2kC1Q

jf .y0/�fQj dy
0

�

1X
kD0

2�k"�

Z
2kC1Q

jf .y0/�f2kC1Qj dy
0
C 2n�1

1X
kD0

2�k"
� kX
jD0

�

Z
2jC1Q

jf .y0/�f2jC1Qj dy
0

�

D

1X
kD0

2�k"�

Z
2kC1Q

jf .y0/�f2kC1Qj dy
0
C

2n�1

1� 2�"

1X
jD0

2�j"�

Z
2jC1Q

jf .y0/�f2jC1Qj dy
0

D

�
1C

2n�1

1� 2�"

� 1X
kD0

2�k"�

Z
2kC1Q

jf .y0/�f2kC1Qj dy
0; (2-29)

where the first equality has been obtained by interchanging the sums in k and j . Collectively, (2-27) and
(2-29) permit us to conclude thatZ

Rn�1

jf .y0/�fQj

Œ`.Q/Cjx0Q �y
0j�n�1C"

dy0�4n�1C"
�
1C

2n�1

1� 2�"

�
`.Q/�"

1X
kD0

2�k"�

Z
2kQ

jf .y0/�f2kQj dy
0:

(2-30)
To proceed, observe that (2-7) yields

�

Z
2kQ

jf .y0/�f2kQj dy
0
�2n�

Z
�Q

jf .y0/�f�Qj dy
0 for each k 2 N0 and each � 2 Œ2k; 2kC1�: (2-31)

This, in turn, implies that for each k 2 N0 we have

2�k"�

Z
2kQ

jf .y0/�f2kQj dy
0
�

2n"

1� 2�"

Z 2kC1

2k

�
�

Z
�Q

jf .y0/�f�Qj dy
0

�
d�

�1C"
: (2-32)

Availing ourselves of this estimate in (2-30) then establishes the first inequality in (2-21) for the choice

Cn;" WD 2
n 4n�1C"

�
1C

2n�1

1� 2�"

�
�

"

1� 2�"
: (2-33)

The second inequality in (2-21) is a direct consequence of this and (2-13). Going further, (2-22)–(2-23)
follow from the second inequality in (2-21) with Q WD

�
�
1
2
; 1
2

�n�1. In turn, (2-23) together with part (c)
in Lemma 2.1 give (2-24), while (2-23) together with part (e) in Lemma 2.1 give (2-25). �
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Poisson kernels for elliptic operators in a half-space have a long history; see, e.g., [Agmon et al. 1959;
1964; Solonnikov 1964; 1966]. Here we record the following useful existence and uniqueness result. In
its statement (as well as elsewhere in the paper), we make the convention that the convolution between
two functions, which are matrix-valued and vector-valued, respectively, takes into account the algebraic
multiplication between a matrix and a vector in a natural fashion.

Theorem 2.3. Let L be an M �M elliptic system with constant complex coefficients as in (1-2)–(1-3).
Then there exists a matrix-valued function PL D .PL

˛ˇ
/1�˛;ˇ�M W R

n�1! CM�M (called the Poisson
kernel for L in Rn

C
) satisfying the following properties:

(1) There exists C 2 .0;1/ such that

jPL.x0/j �
C

.1Cjx0j2/n=2
for each x0 2 Rn�1: (2-34)

(2) The function PL is Lebesgue-measurable andZ
Rn�1

PL.x0/ dx0 D IM�M ; (2-35)

where IM�M is theM�M identity matrix. In particular, for every constant vectorCD.C˛/1�˛�M 2CM

one has Z
Rn�1

X
1�ˇ�M

.PL˛ˇ /t .x
0
�y0/Cˇ dy

0
D C˛ for all .x0; t / 2 RnC: (2-36)

(3) If one sets

KL.x0; t / WD PLt .x
0/D t1�nPL.x0=t/ for each x0 2 Rn�1 and t > 0; (2-37)

then the function KL D .KL
˛ˇ
/1�˛;ˇ�M satisfies (in the sense of distributions)

LKL
�ˇ D 0 in RnC for each ˇ 2 f1; : : : ;M g; (2-38)

where KL
�ˇ
WD .KL

˛ˇ
/1�˛�M is the ˇ-th column in KL.

Moreover, PL is unique in the class of CM�M -valued functions defined in Rn�1 and satisfying (1)–(3)
above, and has the following additional properties:

(4) One has PL 2 C1.Rn�1/ and KL 2 C1.Rn
C
nB.0; "// for every " > 0. Consequently, (2-38) holds

in a pointwise sense.

(5) There holds KL.�x/D �1�nKL.x/ for all x 2 Rn
C

and � > 0. In particular, for each multi-index
˛ 2 Nn0 there exists C˛ 2 .0;1/ with the property that

j.@˛KL/.x/j � C˛ jxj
1�n�j˛j for all x 2 Rn

C
n f0g: (2-39)
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(6) For each � > 0 there exists a finite constant C� > 0 with the property that for each x0 2 Rn�1,

sup
jx0�y0j<�t

j.PLt �f /.y
0/j � C�Mf .x0/ for all f 2 L1

�
Rn�1;

1

1Cjx0jn
dx0

�M
: (2-40)

(7) Fix an arbitrary � > 0 and a function

f D .fˇ /1�ˇ�M 2 L
1

�
Rn�1;

1

1Cjx0jn
dx0

�M
: (2-41)

Then the function u.x0; t / WD .PLt �f /.x
0/ for each .x0; t /2Rn

C
is meaningfully defined via an absolutely

convergent integral, satisfies

u 2 C1.RnC;C
M /; LuD 0 in RnC; (2-42)

and, at every Lebesgue point x00 2 Rn�1 of f ,

.ujn:t:
@Rn
C

/.x00/ WD lim
.x0; t/!.x00;0/

jx0�x00j<�t

.PLt �f /.x
0/D f .x00/: (2-43)

(8) The function PL satisfies the semigroup property

PLt1 �P
L
t2
D PLt1Ct2 for every t1; t2 > 0: (2-44)

Concerning Theorem 2.3, we note that the existence part follows from the classical work of S. Agmon,
A. Douglis, and L. Nirenberg [Agmon et al. 1964]. The uniqueness property was recently proved in
[Martell et al. 2016], where (2-40), (2-42), (2-43), as well as the semigroup property (2-44), were also
established.

Next, we record the following versatile version of interior estimates for higher-order elliptic systems.
A proof may be found in [Mitrea 2013, Theorem 11.9, p. 364].

Theorem 2.4. Assume the system L is as in (1-2)–(1-3). Then for each null-solution u of L in a ball
B.x;R/ (where x 2 Rn and R > 0), p 2 .0;1/, � 2 .0; 1/, ` 2 N0, and r 2 .0; R/, one has

sup
z2B.x;�r/

jr
`u.z/j �

C

r`

�
�

Z
B.x;r/

jujp dL n

�1
p

; (2-45)

where C D C.L; p; `; �; n/ > 0 is a finite constant.

To proceed we need to introduce some additional terminology. Let

W
1;2

bd .RnC/ WD
˚
w Lebesgue-measurable in RnC W w;rw 2 L

2.RnC\B.x; r//

for all x 2 RnC; for all r 2 .0;1/
	
: (2-46)

In the sequel, the space of CM -valued functions with components in W 1;2
bd .Rn

C
/ will be denoted by

W
1;2

bd .Rn
C
;CM /. Also, (whenever meaningful) the Sobolev trace Tr is defined as

.Trw/.x0/ WD lim
r!0C

�

Z
B..x0;0/;r/\Rn

C

w dL n; x0 2 Rn�1: (2-47)
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The following result can be found in [Maz’ya et al. 2010, Corollary 2.4], and it is a consequence of the
a priori regularity estimates obtained in [Agmon et al. 1964] and Sobolev embeddings.

Proposition 2.5. Let L be an M �M elliptic system as in (1-2)–(1-3) and consider a vector-valued
function w 2W 1;2

bd .Rn
C
;CM / such that�

Lw D 0 in Rn
C
;

Trw D 0 L n�1-a.e. on Rn�1:
(2-48)

Then w 2 C1.Rn
C
;CM /, and for each z 2 Rn

C
and � > 0 one has

sup
Rn
C
\B.z;�/

jrwj � C��1 sup
Rn
C
\B.z;2�/

jwj; (2-49)

where C 2 .0;1/ is a constant independent of the scale �, the point z, and the function w.

We will also need an Lp-Fatou-type result obtained in [Martell et al. 2016, Corollary 6.3]. To state it,
the reader is invited to recall the nontangential maximal operator from (1-155).

Corollary 2.6. Assume L is an elliptic M �M system as in (1-2)–(1-3). Then for each p 2 Œ1;1/,

u 2 C1.Rn
C
;CM /;

LuD 0 in Rn
C
;

Nu 2 Lp.Rn�1/

9>=>; D)

(
ujn:t:
@Rn
C

exists a.e. in Rn�1; belongs to Lp.Rn�1;CM /,

and u.x0; t /D .PLt � .uj
n:t:
@Rn
C

//.x0/ for all .x0; t / 2 Rn
C
;

(2-50)

where PL is the Poisson kernel for L in Rn
C

from Theorem 2.3.

Our last auxiliary result, of a purely real-variable nature, can be found in [Martell et al. 2016,
Lemma 3.3].

Lemma 2.7. Fix M 2 N and let P D .P˛ˇ /1�˛;ˇ�M W Rn�1 ! CM�M be a Lebesgue-measurable
function satisfying, for some c 2 .0;1/,

jP.x0/j �
c

.1Cjx0j2/n=2
for each x0 2 Rn�1: (2-51)

Recall that Pt .x0/D t1�nP.x0=t/ for each x0 2 Rn�1 and t 2 .0;1/.
Then, for each t 2 .0;1/ fixed, the operator

L1
�

Rn�1;
1

1Cjx0jn
dx0

�M
3 f 7! Pt �f 2 L

1

�
Rn�1;

1

1Cjx0jn
dx0

�M
(2-52)

is well-defined, linear and bounded, with operator norm controlled by C.t C 1/. Moreover, for every
� > 0 there exists a finite constant C� > 0 with the property that for each x0 2 Rn�1,

sup
jx0�y0j<�t

j.Pt �f /.y
0/j � C�Mf .x0/ for all f 2 L1

�
Rn�1;

1

1Cjx0jn
dx0

�M
: (2-53)

Finally, given any function

f D .fˇ /1�ˇ�M 2 L
1

�
Rn�1;

1

1Cjx0jn
dx0

�M
� L1loc.R

n�1;CM /; (2-54)
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at every Lebesgue point x00 2 Rn�1 of f there holds

lim
.x0; t/!.x00;0/

jx0�x00j<�t

.Pt �f /.x
0/D

�Z
Rn�1

P.x0/ dx0
�
f .x00/; (2-55)

and the function

RnC 3 .x
0; t / 7! .Pt �f /.x

0/ 2 CM is locally integrable in RnC: (2-56)

3. Proof of the existence statements in Theorem 1.1

This section is devoted to proving Proposition 3.1, dealing with the issue of existence for the BMO-
Dirichlet boundary value problem (1-29), the upper estimate in (1-31), and the issue of existence for the
VMO-Dirichlet boundary value problem (1-36).

In this regard, we find it useful to adopt a more general point of view, by going beyond the class BMO
through the consideration of convolutions of the Poisson kernel with functions f from the weighted
Lebesgue space L1.Rn�1; dx0=.1Cjx0jn//M ; recall the inclusion in (2-24). The aforementioned convo-
lutions are then shown to satisfy a variety of Carleson-measure-like conditions, which only require, recall
(2-13), Z 1

1

osc1.f I�/
d�

�2
<1: (3-1)

Note that this permits the oscillations osc1.f I�/ of the given function f to grow with the scale �. In
particular, this allows us to simultaneously treat several scales of spaces of interest, including Hölder
spaces PC �.Rn�1;CM / with � 2 .0; 1/, the Morrey–Campanato space E �;p.Rn�1;CM / with � 2 .0; 1/
and p 2 Œ1;1/, as well as the John–Nirenberg space BMO.Rn�1;CM /.

An example of a function f 2 PC �.Rn�1;CM /with �2.0; 1/which does not belong to BMO.Rn�1;CM /
is offered by

f .x0/ WD jx0j� for all x0 2 Rn�1: (3-2)

Indeed, kf k PC �.Rn�1;CM / � 1 and since ı�f D ��f , it follows from the last line in (1-17) that necessarily
kf kBMO.Rn�1;CM / D1. Incidentally, for f as in (3-2), we have osc1.f I�/DO.��/ as �!1; hence
(3-1) holds in this case.

Here is the formal statement of the result just advertised above.

Proposition 3.1. Let L be an M �M elliptic system with constant complex coefficients as in (1-2)–(1-3)
and let PL be the Poisson kernel for L in Rn

C
from Theorem 2.3. Select f 2L1.Rn�1; dx0=.1Cjx0jn//M

and set
u.x0; t / WD .PLt �f /.x

0/ for all .x0; t / 2 RnC: (3-3)

Then u is meaningfully defined via an absolutely convergent integral and satisfies

u 2 C1.RnC;C
M /; LuD 0 in RnC; and ujn:t:

@Rn
C

D f a.e. in Rn�1: (3-4)

In addition, u enjoys the following properties:
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(a) For each integer `� 1 there exists a constant C 2 .0;1/ with the property that the following pointwise
estimate holds for every .x0; t / 2 Rn

C
:

j.r`u/.x0; t /j �
C

t`

Z 1
1

osc1.f I�t/
d�

�1C`
: (3-5)

In particular, there exists C 2 .0;1/ such that

j.ru/.x0; t /j �
C

t

Z 1
1

osc1.f I�t/
d�

�2
for all .x0; t / 2 RnC: (3-6)

(b) There exists a constant C 2 .0;1/ such that for every cube Q in Rn�1 the following “cube-by-cube”
Carleson measure estimates hold:�Z `.Q/

0

�

Z
Q

j.ru/.x0; t /j2 t dx0 dt

�1
2

� C

Z 1
1

�
�

Z
�Q

jf .y0/�f�Qj dy
0

�
d�

�2
CC sup

Q0�4Q

�

Z
Q0
jf .y0/�fQ0 j dy

0 (3-7)

and �Z `.Q/

0

�

Z
Q

j.ru/.x0; t /j2 t dx0 dt

�1
2

� C

Z 1
1

osc1.f I�`.Q//
d�

�2
: (3-8)

(c) There exists C 2 .0;1/ such that the following local Carleson measure estimate holds for every scale
r 2 .0;1/:

sup
Q�Rn�1; `.Q/�r

�Z `.Q/

0

�

Z
Q

j.ru/.x0; t /j2 t dx0 dt

�1
2

� C

Z 1
1

osc1.f I r�/
d�

�2
: (3-9)

(d) Whenever f satisfies Z 1
1

osc1.f I�/
d�

�2
<1; (3-10)

the global weighted Carleson measure estimate

sup
Q�Rn�1

��Z 1
1

osc1.f I�`.Q//
d�

�2

��1�Z `.Q/

0

�

Z
Q

j.ru/.x0; t /j2 t dx0 dt

�1
2
�
� C (3-11)

holds for some C 2 .0;1/ independent of f .

(e) There exists a constant C 2 .0;1/ such that the following global Carleson measure estimate holds:

kuk�� D sup
Q�Rn�1

�Z `.Q/

0

�

Z
Q

j.ru/.x0; t /j2 t dx0 dt

�1
2

� Ckf kBMO.Rn�1;CM /: (3-12)

In particular, thanks to (2-24), estimate (3-12) holds for every f 2 BMO.Rn�1;CM /.
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(f) Whenever f satisfiesZ 1
1

osc1.f I�/
d�

�2
<1 and lim

r!0C
osc1.f I r/D 0; (3-13)

the following vanishing Carleson measure condition holds:

lim
r!0C

�
sup

Q�Rn�1; `.Q/�r

�Z `.Q/

0

�

Z
Q

j.ru/.x0; t /j2 t dx0 dt

�1
2
�
D 0: (3-14)

In particular, in the case when f 2 VMO.Rn�1;CM / to begin with, u has the additional property that

jru.x0; t /j2 t dx0 dt is a vanishing Carleson measure in RnC: (3-15)

Ultimately, the proof of Proposition 3.1 relies on square-function estimates. For now, assuming a
suitable L2 bound (implicit in (3-19) below) we may establish some versatile Carleson measure estimates
(of local and global nature), as well as vanishing Carleson measure properties for integral operators
(modeled upon the gradient of the convolution with the Poisson kernel) acting on function spaces larger
than the standard BMO. This is made precise in the following proposition.

Proposition 3.2. Let � W Rn
C
�Rn�1! CM�M be a matrix-valued Lebesgue-measurable function, with

the property that there exist " 2 .0;1/ and C 2 .0;1/ such that

j�.x0; t Iy0/j �
Ct"

j.x0�y0; t /jn�1C"
for all .x0; t / 2 RnC; for all y0 2 Rn�1; (3-16)

and the following cancellation condition holds:Z
Rn�1

�.x0; t Iy0/ dy0 D 0 2 CM�M for all .x0; t / 2 RnC: (3-17)

In relation to the kernel � , one may then consider the integral operator ‚ acting on arbitrary functions
f 2 L1.Rn�1; dx0=.1Cjx0jn�1C"//M according to (the absolutely convergent integral)

.‚f /.x0; t / WD

Z
Rn�1

�.x0; t Iy0/ f .y0/ dy0 for all .x0; t / 2 RnC: (3-18)

Then, under the assumption that the operator

‚ W L2.Rn�1;CM /! L2
�

RnC;
dx0 dt

t

�M
is bounded; (3-19)

the following properties hold:

(a) There exists a constant C 2 .0;1/ such that for every f 2 L1.Rn�1; dx0=.1C jx0jn�1C"//M and
every cube Q in Rn�1 the following “cube-by-cube” Carleson measure estimates hold:�Z `.Q/

0

�

Z
Q

j.‚f /.x0; t /j2
dx0 dt

t

�1
2

� C

Z 1
1

�
�

Z
�Q

jf .y0/�f�Qj dy
0

�
d�

�1C"
CC sup

Q0�4Q

�

Z
Q0
jf .y0/�fQ0 j dy

0 (3-20)
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and �Z `.Q/

0

�

Z
Q

j.‚f /.x0; t /j2
dx0 dt

t

�1
2

� C

Z 1
1

osc1.f I�`.Q//
d�

�1C"
: (3-21)

(b) There exists C 2 .0;1/ such that for every function f 2 L1.Rn�1; dx0=.1C jx0jn�1C"//M the
following local Carleson measure estimate holds for every scale r 2 .0;1/:

sup
Q�Rn�1; `.Q/�r

�Z `.Q/

0

�

Z
Q

j.‚f /.x0; t /j2
dx0 dt

t

�1
2

� C

Z 1
1

osc1.f I r�/
d�

�1C"
: (3-22)

(c) There exists C 2 .0;1/ such that for any given function f 2 L1loc.R
n�1;CM / with the property thatZ 1

1

osc1.f I�/
d�

�1C"
<1 (3-23)

(which necessarily places f into the space L1.Rn�1; dx0=.1C jx0jn�1C"//M by (2-23)) the following
global weighted Carleson measure estimate holds:

sup
Q�Rn�1

��Z 1
1

osc1.f I�`.Q//
d�

�1C"

��1�Z `.Q/

0

�

Z
Q

j.‚f /.x0; t /j2
dx0 dt

t

�1
2
�
� C: (3-24)

(d) There exists a constant C 2 .0;1/ such that for every f 2 BMO.Rn�1;CM / the following global
Carleson measure estimate holds:

sup
Q�Rn�1

�Z `.Q/

0

�

Z
Q

j.‚f /.x0; t /j2
dx0 dt

t

�1
2

� Ckf kBMO.Rn�1;CM /: (3-25)

(e) Whenever f 2 L1loc.R
n�1;CM / is such thatZ 1

1

osc1.f I�/
d�

�1C"
<1 and lim

r!0C
osc1.f I r/D 0; (3-26)

then f 2 L1.Rn�1; dx0=.1C jx0jn�1C"//M and the following vanishing Carleson measure condition
holds:

lim
r!0C

�
sup

Q�Rn�1; `.Q/�r

�Z `.Q/

0

�

Z
Q

j.‚f /.x0; t /j2
dx0 dt

t

�1
2
�
D 0: (3-27)

In particular, (3-27) holds for every function f 2 VMO.Rn�1;CM /.

Proof. Start by fixing an arbitrary cube Q in Rn�1 and denote by x0Q its center. Given a function
f 2 L1.Rn�1; dx0=.1Cjx0jn�1C"//M, use (3-17) in order to write�Z `.Q/

0

�

Z
Q

j.‚f /.x0; t /j2
dx0 dt

t

�1
2

D

�Z `.Q/

0

�

Z
Q

j.‚.f �fQ//.x
0; t /j2

dx0 dt

t

�1
2

� I C II; (3-28)

where

I WD

�Z `.Q/

0

�

Z
Q

j‚..f �fQ/ 14Q/.x0; t /j2
dx0 dt

t

�1
2

(3-29)
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and

II WD

�Z `.Q/

0

�

Z
Q

j‚..f �fQ/ 1Rn�1n4Q/.x
0; t /j2

dx0 dt

t

�1
2

: (3-30)

To estimate I , invoke (3-19), (2-8) with p D 2, and (2-12) to estimate

I �
1

jQj1=2

�Z
Rn
C

j‚..f �fQ/ 14Q/.x0; t /j2
dx0 dt

t

�1
2

� C

�
�

Z
4Q

jf .y0/�fQj
2 dy0

�1
2

� C

�
�

Z
4Q

jf .y0/�f4Qj
2 dy0

�1
2

� C sup
Q0�4Q

�

Z
Q0
jf .y0/�fQ0 j dy

0; (3-31)

where C 2 .0;1/ is independent of f and Q. To proceed, observe that there exists a purely dimensional
constant cn 2 .0;1/ (e.g., the choice cn WD 3=.6C 2

p
n� 1 / will do) with the property that

jx0�y0j � cn.`.Q/Cjx
0
Q �y

0
j/ for each x0 2Q; y0 2 Rn�1 n 4Q: (3-32)

Based on this, (3-18), and (3-16), we may then estimate

j‚..f �fQ/ 1Rn�1n4Q/.x
0; t /j � Ct"

Z
Rn�1

jf .y0/�fQj

Œ`.Q/Cjx0Q �y
0j�n�1C"

dy0

for every point x0 2Q and every number t > 0;

(3-33)

for some C 2 .0;1/ depending only on n and the constant appearing in (3-16). In turn, from (3-33) and
(2-21) we conclude that

II � C

�Z `.Q/

0

�
t

`.Q/

�2" dt
t

�1
2

�

Z 1
1

�
�

Z
�Q

jf .y0/�f�Qj dy
0

�
d�

�1C"

D C

Z 1
1

�
�

Z
�Q

jf .y0/�f�Qj dy
0

�
d�

�1C"
: (3-34)

At this stage, (3-28), (3-31), and (3-34) combine to give (3-20). In turn, (3-21) readily follows from
(3-20) and part (a) in Lemma 2.1, which allows us to estimate

osc1.f I 4`.Q//� ".4�"� 5�"/�1
Z 5

4

osc1.f I�`.Q//
d�

�1C"

� C"

Z 1
1

osc1.f I�`.Q//
d�

�1C"
: (3-35)

In concert with part (a) in Lemma 2.1, estimate (3-21) immediately gives (3-22). Estimate (3-21) also
implies the global weighted Carleson measure estimate formulated in (3-24). From (3-22) and part (c) in
Lemma 2.1, the global Carleson measure estimate stated in (3-25) follows.

Going further, assume the function f 2 L1loc.R
n�1;CM / satisfies the properties listed in (3-26). Then

f 2 L1.Rn�1; dx0=.1C jx0jn�1C"//M by (2-22). Also, thanks to (3-26) and part (a) in Lemma 2.1,
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Lebesgue’s dominated convergence theorem applies and yields

lim
r!0C

Z 1
1

osc1.f I r�/
d�

�1C"
D 0: (3-36)

Together with (3-22), this ultimately proves the vanishing Carleson measure condition stated in (3-27).
Finally, that any function f 2 VMO.Rn�1;CM / actually satisfies the properties listed in (3-26) is clear
from (1-22), (2-13), and part (c) in Lemma 2.1. This completes the proof of Proposition 3.2. �

Next the goal is to identify a class of integral kernels � satisfying (3-16)–(3-17) with the property that
the operator ‚ associated with � as in (3-18) enjoys the L2-boundedness condition formulated in (3-19).
We adopt a broader point of view by considering a larger variety of spaces, which turns out to be useful later.
To set the stage, let us recall the definition of the Hardy spaceH 1.Rn�1/ using .1;1/-atoms. Specifically,
a Lebesgue-measurable function a W Rn�1! C is said to be a .1;1/-atom provided there exists a cube
Q � Rn�1 such that the following localization, normalization, and cancellation properties hold:

supp a �Q; kakL1.Rn�1/ � jQj
�1;

Z
Rn�1

a.y0/ dy0 D 0: (3-37)

The space H 1.Rn�1/ is then defined as the collection of all Lebesgue-measurable functions f defined
in Rn�1 such that

f D

1X
jD1

�jaj a.e. in Rn�1; (3-38)

with the aj ’s being .1;1/-atoms, and where the sequence f�j gj2N � C satisfies
P1
jD1 j�j j<1. The

norm in H 1.Rn�1/ is defined as

kf kH1.Rn�1/ WD inf
1X
jD1

j�j j; (3-39)

where the infimum runs over all the atomic decompositions of f as in (3-38). In particular, the series
in (3-38) converges in H 1.Rn�1/. Let us also write H 1.Rn�1;CM / for the collection of all CM -valued
functions f D .f˛/1�˛�M with components in H 1.Rn�1/. In such a scenario, we set

kf kH1.Rn�1;CM / WD

MX
˛D1

kf˛kH1.Rn�1/: (3-40)

Here are the square-function estimates alluded to earlier. For more background and relevant references
the reader is referred to the recent exposition in [Hofmann et al. 2017].

Proposition 3.3. Let � and ‚ be as in (3-16)–(3-18) with "D 1 and M D 1. In addition, assume � is of
class C 1 in the variable y0 2 Rn�1 and suppose there exists some C 2 .0;1/ with the property that

jry0�.x
0; t Iy0/j �

Ct

j.x0�y0; t /jnC1
for all .x0; t / 2 RnC; for all y0 2 Rn�1: (3-41)
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Fix a background parameter � > 0 and, with the nontangential cone ��.x0/ as in (1-9) for each x0 2Rn�1,
define the square function operator S‚ by setting

.S‚f /.x
0/ WD

�Z
��.x0/

j.‚f /.y0; t /j2
dy0 dt

tn

�1
2

for all x0 2 Rn�1: (3-42)

Then the following are well-defined, linear, and bounded operators:

‚ W L2.Rn�1/! L2
�

RnC;
dx0 dt

t

�
; (3-43)

S‚ W L
p.Rn�1/! Lp.Rn�1/ for all p 2 .1;1/; (3-44)

S‚ W L
1.Rn�1/! L1;1.Rn�1/; (3-45)

S‚ WH
1.Rn�1/! L1.Rn�1/: (3-46)

Proof. We are going to use [Christ 1990, Theorem 20, p. 69]; see also [Christ and Journé 1987]. First
observe that (3-16) with "D 1 presently implies

j�.x0; t Iy0/j � C
t

.t Cjx0�y0j/n
for all x0; y0 2 Rn�1; for all t > 0: (3-47)

Second, if x0, y0, z0 2 Rn�1 and t > 0 are such that jy0� z0j � .t Cjx0�y0j/=2, the mean value theorem
and (3-41) imply (here and elsewhere, Œa; b� denotes the line segment with end-points a; b 2 Rn�1)

j�.x0; t Iy0/� �.x0; t I z0/j � jy0� z0j sup
w 02Œy0;z0�

jry0�.x
0; t Iw0/j

� C jy0� z0j sup
w 02Œy0;z0�

t

.t Cjx0�w0j/nC1

� C
jy0� z0j t

.t Cjx0�y0j/nC1
: (3-48)

This proves that the family of kernels f�.x0; t Iy0/gt2.0;1/ is a standard family in Rn�1 as in [Christ 1990,
Definition 19, p. 69]. Third, (3-17) implies that ‚1.x0; t /D 0 for every .x0; t / 2 Rn

C
. We can therefore

apply [loc. cit., Theorem 20, p. 69] to conclude that the operator in (3-43) is well-defined, linear and
bounded. In particular, the boundedness of the operator in (3-43) implies that there exists a constant
C 2 .0;1/ such that for every function f 2 L2.Rn�1/ there holds

kS‚f k
2
L2.Rn�1/

D Cn;�

Z
Rn
C

j.‚f /.y0; t /j2
dy0 dt

t
� C

Z
Rn�1
jf .x0/j2 dx0: (3-49)

Proving the boundedness of the operator in (3-45) comes down to establishing the weak-type-.1; 1/
estimate for S‚. In a first stage, we claim that there exists some constant C 2 .0;1/ with the property
that for any cube Q in Rn�1 and any function h satisfying

h 2 L1.Rn�1/; supp h�Q; and
Z

Rn�1
h.y0/ dy0 D 0 (3-50)
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we have

j.S‚h/.x
0/j � CkhkL1.Rn�1/

`.Q/

jx0� x0Qj
n

for every x0 2 Rn�1 n 2Q; (3-51)

where x0Q is the center of the cube Q. To justify the claim, given x0; z0 2 Rn�1 with x0 ¤ z0 we first use
(3-41) combined with natural changes of variables to writeZ
��.x0/

jry0�.y
0; t I z0/j2

dy0 dt

tn

� C

Z
jy0�x0j<�t

t2

j.y0� z0; t /j2.nC1/

dy0 dt

tn

D C

Z 1
0

Z
jy0j<�

t2

j.y0t C .x0� z0/; t/j2.nC1/

dy0 dt

t

D C

Z 1
0

Z
jy0j<�

t�2n

j.y0C .x0� z0/=t; 1/j2.nC1/

dy0 dt

t

� C jx0� z0j�2n
Z 1
0

Z
jy0j<�

t�2n

j.y0C .x0� z0/=.t jx0� z0j/; 1/j2.nC1/

dy0 dt

t

� C jx0� z0j�2n sup
jv0jD1

Z 1
0

Z
jy0j<�

t�2n

jy0C v0=t j2.nC1/C 1

dy0 dt

t
: (3-52)

Next, fix v0 2 Rn�1 with jv0j D 1. If t < 1=.2�/ and jy0j< � we have

t�1 D
jv0j

t
�

ˇ̌̌̌
y0C

v0

t

ˇ̌̌̌
Cjy0j<

ˇ̌̌̌
y0C

v0

t

ˇ̌̌̌
C
1

2t
(3-53)

and therefore jy0C v0=t j> 1=.2t/. Thus,Z 1
2�

0

Z
jy0j<�

t�2n

jy0C v0=t j2.nC1/C 1

dy0 dt

t
� C

Z 1
2�

0

Z
jy0j<�

t dy0 dt � C: (3-54)

Also, it is immediate thatZ 1
1
2�

Z
jy0j<�

t�2n

jy0C v0=t j2.nC1/C 1

dy0 dt

t
� C

Z 1
1
2�

Z
jy0j<�

t�2n
dy0 dt

t
� C: (3-55)

Combining (3-52), (3-54), and (3-55) we may conclude that�Z
��.x0/

jry0�.y
0; t I z0/j2

dy0 dt

tn

�1
2

�
C

jx0� z0jn
if x0 ¤ z0: (3-56)

At this point we return to the proof of (3-51). Fix x0 2 Rn�1 n2Q and consider h as in (3-50). Making
use of the last property of h recorded in (3-50), the fundamental theorem of calculus, Minkowski’s
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inequality, and (3-56) we may compute

.S‚h/.x
0/D

�Z
��.x0/

j.‚h/.y0; t /j2
dy0 dt

tn

�1
2

�

�Z
��.x0/

�Z
Rn�1
j�.y0; t I z0/� �.y0; t I x0Q/jjh.z

0/j dz0
�2 dy0 dt

tn

� 1
2

�

Z 1

0

Z
Rn�1

�Z
��.x0/

jrz0�.y
0; t I x0QC s .z

0
� x0Q//j

2 dy
0 dt

tn

�1
2

jh.z0/jjz0� x0Qj dz
0 ds

� C

Z 1

0

Z
Q

1

jx0� .x0QC s .z
0� x0Q//j

n
jh.z0/jjz0� x0Qj dz

0 ds

� CkhkL1.Rn�1/
`.Q/

jx0� x0Qj
n
: (3-57)

For the last inequality in (3-57) we used the observation that for every s 2 .0; 1/ and every z0 2Q one
has (keeping in mind that x0 2 Rn�1 n 2Q and x0QC s .z

0� x0Q/ 2Q)

jx0� x0Qj � jx
0
� .x0QC s .z

0
� x0Q//jC

1
2
.
p
n� 1 `.Q//

� jx0� .x0QC s .z
0
� x0Q//jC

p
n� 1 jx0� .x0QC s .z

0
� x0Q//j

D .1C
p
n� 1/jx0� .x0QC s .z

0
� x0Q//j: (3-58)

This finishes the proof of (3-51).
Let us momentarily digress to show thatZ

Rn�1nQ

`.Q/

jx0� x0Qj
n
dx0 �

1X
kD0

Z
2kC1Qn2kQ

`.Q/

.`.2kQ/=2/n
dx0 � 22n�1

1X
kD0

2�k D 4n: (3-59)

We are now ready to show that S‚ maps L1.Rn�1/ continuously into L1;1.Rn�1/. Following
[García-Cuerva and Rubio de Francia 1985, p. 140], given a function f 2 L1.Rn�1/ and fixed � > 0, let
fQj gj � Rn�1 be the nonoverlapping cubes of the Calderón–Zygmund decomposition of jf j at height �.
That is, the Qj ’s are the maximal dyadic cubes for which jQj j�1

R
Qj
jf .y0/j dy0 > �. Set

�� D

1[
jD1

Qj (3-60)

and observe that we have the following properties:

L n�1.��/� �
�1
kf kL1.Rn�1/; (3-61)

� < �

Z
Qj

jf .y0/j dy0 � 2n�1� for all j 2 N; (3-62)

jf .x0/j � � for L n�1-a.e. x0 2 Rn�1 n��: (3-63)



THE BMO-DIRICHLET PROBLEM AND QUANTITATIVE CHARACTERIZATIONS OF VMO 651

Finally, split f D gC b, where, see [loc. cit., p. 198],

g WD f 1Rn�1n��
C

1X
jD1

fQj 1Qj ; b D

1X
jD1

bj ; with bj WD .f �fQj / 1Qj for each j 2 N: (3-64)

In particular, (3-60)–(3-64) imply, see [loc. cit., p. 198], that for some constant C 2 .0;1/ independent
of f and � we have

kgk2
L2.Rn�1/

� 2n�1�kf kL1.Rn�1/: (3-65)

Making use of (3-64), (3-61), (3-65), (3-49)–(3-51), (3-59) (used with Qj in place of Q), and bearing
in mind that for each j 2 N we have supp bj �Qj and

R
Rn�1

bj .y
0/ dy0 D 0, we may then estimate

�L n�1.fx0 2 Rn�1 W .S‚f /.x
0/ > �g/

� �L n�1.fx0 2 Rn�1 W .S‚g/.x
0/ > �=2g/C�L n�1.fx0 2 Rn�1 W .S‚b/.x

0/ > �=2g/

�
4

�

Z
Rn�1
j.S‚g/.x

0/j2 dx0C�L n�1

� 1[
jD1

2Qj

�
C 2

1X
jD1

Z
Rn�1n2Qj

j.S‚bj /.x
0/j dx0

�
C

�

Z
Rn�1
jg.x0/j2 dx0CCkf kL1.Rn�1/CC

1X
jD1

kbj kL1.Rn�1/

Z
Rn�1n2Qj

`.Qj /

jx0� x0Qj
jn
dx0

� Ckf kL1.Rn�1/CC

1X
jD1

kbj kL1.Rn�1/

� Ckf kL1.Rn�1/CC

� 1X
jD1

Z
Qj

jf .y0/j dy0
�

� Ckf kL1.Rn�1/: (3-66)

This proves that the operator in (3-45) is well-defined, linear and bounded. The latter and Marcinkiewicz’s
interpolation theorem imply the boundedness of the operator in (3-44) when 1 < p � 2. We may handle
the full range 1 < p <1 by invoking [Hofmann et al. 2017, Theorem 1.1, p. 6], applied with X WD Rn

C

equipped with the standard Euclidean distance and Lebesgue measure, E WDRn�1�f0g, mDn, d Dn�1,
� D 1, ˛ D 1, � WD L n�1, and the integral operator with kernel t�1�.x0; t Iy0/. The fact that (3-43)
holds implies that [loc. cit., (1.25), p. 6] is satisfied. As such, [loc. cit., Theorem 1.1, p. 6] guarantees the
validity of [loc. cit., (1.34), p. 7], which, in our current notation, implies that the operator in (3-44) is
bounded for every p 2 .1;1/.

Next we consider S‚ in the context of (3-46). In this regard, we shall first show that there exists some
constant C 2 .0;1/ such that for every .1;1/-atom a one has

kS‚ akL1.Rn�1/ � C: (3-67)

To justify (3-67) fix an arbitrary function a satisfying the conditions listed in (3-37). On the one hand,
based on Hölder’s inequality, (3-49) and the first two properties in (3-37) we may writeZ

2Q

j.S‚ a/.x
0/j dx0 � C jQj

1
2 kS‚ akL2.Rn�1/ � C jQj

1
2 kakL2.Rn�1/ � C (3-68)
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for some finite constant C > 0 independent of a. On the other hand, (3-37) allows us to make use of
(3-51) (with a in place of h), which we combine with the second property in (3-37) and (3-59) to obtainZ

Rn�1n2Q

j.S‚ a/.x
0/j dx0 � CkakL1.Rn�1/

Z
Rn�1n2Q

`.Q/

jx0� x0Qj
n
dx0 � C; (3-69)

with C 2 .0;1/ independent of the atom a. Combining (3-68) and (3-69) then proves that (3-67) holds.
Here is the end-game in the proof of the fact that S‚ maps H 1.Rn�1/ boundedly into L1.Rn�1/.

Let f 2 H 1.Rn�1/ be arbitrary and consider an atomic decomposition f D
P1
jD1 �j aj convergent

in H 1.Rn�1/, where the aj ’s are .1;1/-atoms, which is quasioptimal in the sense that
P1
jD1 j�j j �

kf kH1.Rn�1/, where the proportionality constants do not depend on f . In particular, this forces f DP1
jD1 �j aj in L1.Rn�1/ and the weak-type-.1; 1/ estimate for S‚ then implies S‚f D

P1
jD1 �j S‚ aj

in L1;1.Rn�1/. Then the sequence of partial sums associated with the latter series has a subsequence
which converges a.e. to S‚f . In turn, this allows us to conclude that

j.S‚f /.x
0/j �

1X
jD1

j�j jj.S‚ aj /.x
0/j for a.e. x0 2 Rn�1: (3-70)

In concert, (3-70) and (3-67) then imply

kS‚f kL1.Rn�1/ �

1X
jD1

j�j jkS‚aj kL1.Rn�1/ � C

1X
jD1

j�j j � Ckf kH1.Rn�1/; (3-71)

as desired, for some constant C 2 .0;1/ independent of f . �

We now have all the ingredients to proceed with the proof of Proposition 3.1.

Proof of Proposition 3.1. Fix an arbitrary f 2 L1.Rn�1; dx0=.1C jx0jn//M and define u as in (3-3).
Part (7) in Theorem 2.3 then ensures that this function satisfies all properties listed in (3-4).

As in (2-37), write KL.x0; t / D PLt .x
0/ for each .x0; t / 2 Rn

C
. To proceed, fix an arbitrary point

.x0; t / 2 Rn
C

and denote by Qx0;t the cube in Rn�1 centered at x0 with side-length t . Making use of
(2-36) we obtainZ

Rn�1
r
`ŒPLt .x

0
�y0/� dy0 D 0 for all x0 2 Rn�1; for all t > 0; for all ` 2 N: (3-72)

Based on this, for each ` 2 N we may then write

.r`u/.x0; t /D

Z
Rn�1
r
`ŒPLt .x

0
�y0/�f .y0/ dy0

D

Z
Rn�1
r
`ŒPLt .x

0
�y0/�Œf .y0/�fQx0;t � dy

0

D

Z
Rn�1

.r`KL/.x0�y0; t /Œf .y0/�fQx0;t � dy
0: (3-73)
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Combining (3-73), (2-39), and (2-21) (with "D `), we may now estimate

j.r`u/.x0; t /j � C

Z
Rn�1

jf .y0/�fQx0;t j

j.x0�y0; t /jn�1C`
dy0 �

C

t`

Z 1
1

osc1.f I�t/
d�

�1C`
; (3-74)

from which the claims in part (a) of the statement follow.
Moving on, fix an arbitrary j 2 f1; : : : ; ng and, for each ˛; ˇ 2 f1; : : : ;M g, set

�
j

˛ˇ
.x0; t Iy0/ WD t @jK

L
˛ˇ .x

0
�y0; t / for all x0; y0 2 Rn�1C ; for all t > 0: (3-75)

In this regard, first observe that (2-39) in Theorem 2.3 implies

j�
j

˛ˇ
.x0; t Iy0/j D t j@jK

L
˛ˇ .x

0
�y0; t /j � Ct j.x0�y0; t /j�n (3-76)

and

jry0�
j

˛ˇ
.x0; t Iy0/j � t jr2KL˛ˇ .x

0
�y0; t /j � Ct j.x0�y0; t /j�n�1: (3-77)

Hence, (3-16) (with "D 1) and (3-41) hold for �j
˛ˇ

. Moreover,Z
Rn�1

�
j

˛ˇ
.x0; t Iy0/ dy0 D

Z
Rn�1

t @jK
L
˛ˇ .x

0
�y0; t / dy0 D t @j

Z
Rn�1

KL˛ˇ .y
0; t / dy0 D 0 (3-78)

since @j
R

Rn�1
.PL
˛ˇ
/t .y

0/ dy0D 0 by (3-72). Writing ‚j
˛ˇ

for the operator associated with the kernel �j
˛ˇ

(in place of �) as in (3-18), it follows from (3-76), (3-77), (3-78), and Proposition 3.3 that each matrix
integral operator ‚j WD .‚j

˛ˇ
/1�˛;ˇ�M satisfies all hypotheses in Proposition 3.2, including (3-19). In

addition,�Z `.Q/

0

�

Z
Q

jru.x0; t /j2 t dx0 dt

�1
2

D

�Z `.Q/

0

�

Z
Q

jtr.PLt �f /.x
0/j2

dx0 dt

t

�1
2

�

nX
jD1

�Z `.Q/

0

�

Z
Q

jt .@jK
L. � ; t /�f /.x0/j2

dx0 dt

t

�1
2

D

nX
jD1

�Z `.Q/

0

�

Z
Q

j.‚jf /.x0; t /j2
dx0 dt

t

�1
2

: (3-79)

Granted this, all remaining conclusions in parts (b)–(f) of the statement become direct consequences of
Proposition 3.2. �

4. A Fatou result and uniqueness in the BMO-Dirichlet problem

The main result in this section is the following Poisson representation formula and Fatou theorem.

Proposition 4.1. Let L be an M �M elliptic system with constant complex coefficients as in (1-2)–(1-3).
Assume that

u 2 C1.RnC;C
M /; LuD 0 in RnC; and kuk�� <1: (4-1)
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Then there exists a unique function f 2 L1.Rn�1; 1=.1Cjx0jn/ dx0/M such that

u.x0; t /D .PLt �f /.x
0/ for all .x0; t / 2 RnC; (4-2)

where PL is the Poisson kernel for L in Rn
C

from Theorem 2.3.
In fact, ujn:t:

@Rn
C

exists at a.e. point in Rn�1, belongs to BMO.Rn�1;CM /, and f D ujn:t:
@Rn
C

. Moreover,
there exists a constant C D C.n;L/ 2 .1;1/ such that

C�1kf kBMO.Rn�1;CM / � kuk�� � Ckf kBMO.Rn�1;CM /: (4-3)

Also, as a corollary of Proposition 4.1 we have the following result which, in view of (1-14), implies the
uniqueness statements for the BMO-Dirichlet problem and the VMO-Dirichlet problem from Theorem 1.1.

Proposition 4.2. Let L be an M �M elliptic system with constant complex coefficients as in (1-2)–(1-3).
Assume that

u 2 C1.RnC;C
M /; LuD 0 in RnC; kuk�� <1;

ujn:t:
@Rn
C

exists and vanishes at a.e. point in Rn�1:
(4-4)

Then necessarily u� 0 in Rn
C

.

The proof of Proposition 4.1 occupies the bulk of this section. To set the stage, we first prove some
auxiliary lemmas. The first such lemma contains Bloch-like estimates for smooth null-solutions of L
satisfying a Carleson measure condition in the upper half-space. To place things in perspective, recall
that a holomorphic function u in the upper half-plane is said to satisfy a Bloch estimate provided

sup
x2R; y>0

.yju0.xC iy/j/ <1: (4-5)

Lemma 4.3. Let L be an M �M elliptic system with constant complex coefficients as in (1-2)–(1-3).
Then for every multi-index ˛ 2 Nn0 with j˛j � 1 there exists a finite constant C D C.n;L; ˛/ > 0 with the
property that for every function u 2 C1.Rn

C
;CM / satisfying LuD 0 in Rn

C
and kuk�� <1 one has

sup
.x0;t/2Rn

C

ft j˛j j.@˛u/.x0; t /jg � Ckuk��: (4-6)

In particular, there exists a finite constant C D C.n;L/ > 0 with the property that for every function
u 2 C1.Rn

C
;CM / such that LuD 0 in Rn

C
and kuk�� <1 one has

sup
.x0;t/2Rn

C

t jru.x0; t /j � Ckuk��: (4-7)

Proof. Given a multi-index ˛ 2 Nn0 with j˛j � 1, select j 2 f1; : : : ; ng and ˇ 2 Nn0 such that ˛ D ˇC ej .
Fix x D .x0; t / 2 Rn

C
and write Rx for the cube in Rn centered at x with side-length t . Also, let Qx0

be the cube in Rn�1 centered at x0 with side-length t . Since the function @ju is a null-solution of the
system L, we may invoke Theorem 2.4 (with @ju in place of u and p D 2) in order to conclude

j@ˇ .@ju/.x
0; t /j �

Cˇ

t jˇ j

�
�

Z
Rx

j@juj
2 dL n

�1
2

: (4-8)
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Hence,

t j˛jj.@˛u/.x0; t /j �Ct

�
�

Z
Rx

jruj2 dL n

�1
2

�C

�Z 3t
2

t
2

�

Z
Qx0

jru.y0; s/j2 s dy0 ds

�1
2

�Ckuk��; (4-9)

proving (4-6). Estimate (4-7) is a particular case of (4-6). �

We continue by discussing two purely real-variable results. To state the first one, recall the function
‡# W Œ0;1/! Œ0;1/ from (1-50). In relation to this, we make two observations. First,

for each " 2 .0;1/ there exists C" 2 .1;1/ such that
C�1" ‡#.s/� ‡#.s="/� C"‡#.s/ for every s 2 Œ0;1/.

(4-10)

Second, since for every � 2 .0; 1� there exists a constant C D C� 2 .0;1/ with the property that

‡#.s/� Cs
� for all s � 0; (4-11)

we have, see (1-48),

C‡#.Rn�1;CM /� Lip.Rn�1;CM /\
� \
0<�<1

PC �.Rn�1;CM /

�
: (4-12)

This is going to be relevant later on, in the proof of Lemma 4.6. For now, here is the first real-variable
result advertised above.

Lemma 4.4. Recall ‡# from (1-50) and let u 2 C 1.Rn
C
;CM / be such that

Cu WD sup
.x0;t/2Rn

C

t jru.x0; t /j<1: (4-13)

Then, for every .x0; t / and .y0; t / in Rn
C

one has

ju.x0; t /�u.y0; t /j � 2Cu‡#

�
jx0�y0j

t

�
: (4-14)

Proof. The proof follows the argument in [Fabes et al. 1976]. Fix .x0; t / and .y0; t / in Rn
C

. Based on the
mean value theorem and (4-13) we may estimate

ju.x0; t /�u.y0; t /j � sup
�2Œx0;y0�

jru.�; t/jjx0�y0j � Cu
jx0�y0j

t
: (4-15)

Suppose now that jx0 � y0j > t and set r WD jx0 � y0j. Applying the fundamental theorem of calculus,
(4-15), and (4-13) we obtain

ju.x0; t /�u.y0; t /j � ju.x0; t /�u.x0; r/jC ju.x0; r/�u.y0; r/jC ju.y0; r/�u.y0; t /j

�

Z r

t

j@nu.x
0; �/j d�CCuC

Z r

t

j@nu.y
0; �/j d�

� CuC 2Cu

Z r

t

1

�
d�� 2Cu

�
1C ln

jx0�y0j

t

�
: (4-16)

With this in hand, (4-14) follows from (4-16) (which is valid for jx0 � y0j > t) and (4-15) used for
jx0�y0j � t . �
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The second real-variable result mentioned earlier reads as follows.

Lemma 4.5. Let ‡# be the function defined in (1-50). Then for every a > 0 one has

‰.a/ WD

Z 1
0

sn�1

.aC s/n
‡#.s/

ds

s
� 3

�
1C ln.1=a/ if a � 1;
.1C ln a/=a if a > 1:

(4-17)

In particular, ‰.a/� 3 .1C logC 1=a/, where logC s WDmaxfln s; 0g for every s 2 .0;1/.

Proof. If a � 1, we use that sn�2‡#.s/ is increasing and elementary calculus to obtain

‰.a/� a�n
Z a

0

sn�2‡#.s/ dsC

Z 1
a

1C ln s
s2

ds

� a�n an�2‡#.a/ aC a
�1
C

�
�1� ln s

s

�sD1
sDa

� 3
1C ln a
a

: (4-18)

On the other hand, if a < 1 then

‰.a/�

Z a

0

sn�1

an
s
ds

s
C

Z 1

a

sn�1

sn
s
ds

s
C

Z 1
1

sn�1

sn
.1C ln s/

ds

s

D
1

n
C ln 1

a
C 2� 3

�
1C ln 1

a

�
: (4-19)

Collectively, (4-18)–(4-19) prove the lemma. �

Having dealt with Lemmas 4.4–4.5, in our next two lemmas we study the boundary behavior of the
vertical shifts of a smooth null-solution of L which satisfies a Carleson measure condition in the upper
half-space.

Lemma 4.6. Let L be an M �M elliptic system with constant complex coefficients as in (1-2)–(1-3) and
consider PL, the associated Poisson kernel for L in Rn

C
from Theorem 2.3. Suppose u 2 C1.Rn

C
;CM /

satisfies Lu D 0 in Rn
C

and kuk�� < 1. For each " > 0, define u".x0; t / WD u.x0; t C "/ for every
.x0; t / 2 Rn

C
and f".x0/ WD u.x0; "/ for every x0 2 Rn�1. Then there exists a constant C 2 .0;1/ such

that for every " > 0 the following properties are valid:

(a) The function u" belongs to C1.Rn
C
;CM / and Lu" D 0 in Rn

C
.

(b) One has ku"k�� � Ckuk��. In fact, for every multi-index ˛ 2Nn0 there exists a constant C˛ 2 .0;1/,
independent of u and ", with the property that k@˛u"k�� � C˛"�j˛jkuk��.

(c) For every multi-index ˛ 2Nn0 with j˛j � 1 there exists a constant C˛ 2 .0;1/, independent of u, with
the property that k@˛u"kL1.Rn

C
/ � C˛ "

�j˛j kuk��.

(d) The function f" belongs to C1.Rn�1;CM /\C‡#.Rn�1;CM /, where ‡# is as in (1-50). In particular,

f" 2 Lip.Rn�1;CM /\
� \
0<�<1

PC �.Rn�1;CM /

�
I (4-20)

hence also f" 2 UC.Rn�1;CM / and

f" 2 L
1

�
Rn�1;

1

1Cjx0jn
dx0

�M
: (4-21)
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Moreover,

for every ˛0 2 Nn�10 with j˛0j � 1 one has @˛
0

f" 2 L
1.Rn�1;CM /\C‡#.Rn�1;CM /: (4-22)

(e) The function v".x0; t / WD .PLt �f"/.x
0/ is well-defined for all .x0; t /2Rn

C
via an absolutely convergent

integral and

v" 2 C1.RnC;C
M /; Lv" D 0 in RnC; v"j

n:t:
@Rn
C

D f" everywhere in Rn�1: (4-23)

(f) For every .y0; t / 2 Rn
C

one has

jv".y
0; t /�f".y

0/jC t jrv".y
0; t /j � Ckuk�� .t="/ .1C logC."=t//: (4-24)

Proof. The claim in part (a) is clear from definitions. To prove the estimate in part (b), fix a cube
Q � Rn�1. Consider first the case `.Q/� ", in which scenario a change of variables yields

1

jQj

Z `.Q/

0

Z
Q

jru.x0; t C "/j2 t dx0 dt �
1

jQj

Z `.Q/C"

"

Z
Q

jru.x0; t /j2 t dx0 dt

� 2n�1
1

j2Qj

Z 2`.Q/

0

Z
2Q

jru.x0; t /j2 t dx0 dt

� 2n�1 kuk2��: (4-25)

In the case `.Q/ < ", use Lemma 4.3 to conclude that

1

jQj

Z `.Q/

0

Z
Q

jru.x0; t C "/j2 t dx0 dt � C 2 kuk2��
1

jQj

Z `.Q/

0

Z
Q

1

.t C "/2
t dx0 dt

� C 2 kuk2�� "
�2

Z `.Q/

0

t dt �
C 2

2
kuk2�� (4-26)

for some C 2 .0;1/ independent of u and ". Combining (4-25) and (4-26) and taking the supremum
over all cubes Q then proves the first estimate in part (b) for some C 2 .0;1/ independent of u and ".

To justify the second estimate in part (b), it suffices to consider the case when the multi-index ˛ 2Nn0
has length j˛j � 1. Assume that this is the case and pick an arbitrary cube Q � Rn�1. Making use of
(4-6) and bearing in mind that j˛j � 1 we may then estimate

1

jQj

Z `.Q/

0

Z
Q

ˇ̌
rŒ.@˛u"/.x

0; t /�
ˇ̌2
t dx0 dt D

1

jQj

Z `.Q/

0

Z
Q

ˇ̌
rŒ.@˛u/.x0; tC"/�

ˇ̌2
t dx0 dt

�
C˛kuk

2
��

jQj

Z `.Q/

0

Z
Q

1

.tC"/2j˛jC1
dx0 dt

�C˛kuk
2
��

Z 1
0

1

.tC"/2j˛jC1
dt �C˛kuk

2
�� "
�2j˛j; (4-27)

from which the desired conclusion readily follows.
Consider next the claim in part (c). Given a multi-index ˛ 2Nn0 with j˛j � 1 we may invoke Lemma 4.3,

keeping in mind the conclusions in part (a), in order to conclude that there exists a constant C˛ 2 .0;1/,
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independent of u, such that

sup
.x0;t/2Rn

C

j.@˛u"/.x
0; t /j� sup

.x0;t/2Rn
C

Œ.tC"/j˛jj.@˛u/.x0; tC"/j� sup
.x0;t/2Rn

C

.tC"/�j˛j�C˛ kuk�� "
�j˛j: (4-28)

We now turn to proving the claims in part (d). First, since f".y0/D u.y0; "/ for every y0 2 Rn�1 we
have f" 2C1.Rn�1;CM /. Second, by using (4-14) (with t D "), (4-7), and (4-10), for each x0; y0 2Rn�1

we may estimate

jf".x
0/�f".y

0/j � Ckuk��‡#

�
jx0�y0j

"

�
� Cn;L;u;"‡#.jx

0
�y0j/: (4-29)

This places f" in C‡#.Rn�1;CM /. With this in hand, the conclusions in (4-20) follow with the help of
(4-12). As a Hölder function, f" also belongs toL1.Rn�1; 1=.1Cjx0jn/ dx0/M, see (2-26), proving (4-21).

Next, fix a multi-index ˛0 2 Nn�10 of length j˛0j � 1. Then @.˛
0;0/u" 2 C1.Rn

C
;CM / is a null-

solution of L in Rn
C

and @˛
0

f" D .@
.˛0;0/u"/j@Rn

C
. Now the claim in (4-22) is a consequence of parts (c)

and (b), bearing in mind that k@.˛
0;0/u"k�� <1 (hence, the same type of argument that placed f" in

C‡#.Rn�1;CM / now ensures the membership of @˛
0

f" to the latter space).
Moving on, the claim made in part (e) is a consequence of the current part (d) together with part (7) in

Theorem 2.3 and the fact that since f" 2 C1.Rn�1;CM /, all points in Rn�1 are Lebesgue points for f".
Finally, consider the claim in part (f). Fix .y0; t / 2 Rn

C
. Then the properties of the Poisson kernel

recalled in Theorem 2.3, together with Lemmas 4.3, 4.4, and 4.5 permit us to estimate, bearing in mind
that f" D u. � ; "/,

jv".y
0; t /�f".y

0/j �

Z
Rn�1
jPL.z0/jjf".y

0
� tz0/�f".y

0/j dz0

� Ckuk��

Z
Rn�1

1

.1Cjz0j/n
‡#

�
t jz0j

"

�
dz0

� Ckuk��

Z 1
0

rn�1

.1C r/n
‡#

�
t r

"

�
dr

r

� Ckuk�� .t="/

Z 1
0

sn�1

.t="C s/n
‡#.s/

ds

s

D Ckuk�� .t="/‰.t="/� Ckuk�� .t="/ .1C logC."=t//: (4-30)

This suits our current purposes.
Consider next the task of estimating rv". Using the properties of the Poisson kernel, Theorem 2.3

(recall (2-37) and (2-39)) and Lemmas 4.3, 4.4, 4.5, we write

jrv".x
0; t /j D

ˇ̌
r.PLt � .f". � /�f".x

0///.x0/
ˇ̌

�

Z
Rn�1
jrKL.x0�y0; t /jjf".y

0/�f".x
0/j dy0

� Ckuk��

Z
Rn�1

1

.t Cjx0�y0j/n
‡#

�
jx0�y0j

"

�
dy0
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� Ckuk�� "
�1

Z 1
0

sn�1

.sC t="/n
‡#.s/

ds

s

D Ckuk�� "
�1‰.t="/� Ckuk�� "

�1 .1C logC."=t//: (4-31)

Collectively, (4-30) and (4-31) prove (4-24). �

We are now ready to prove that each vertical shift of a smooth null-solution of L which satisfies a
Carleson measure condition in the upper half-space has a Poisson integral representation formula.

Lemma 4.7. Let L be an M �M elliptic system with constant complex coefficients as in (1-2)–(1-3)
and consider PL, the associated Poisson kernel for L in Rn

C
from Theorem 2.3. Let u 2 C1.Rn

C
;CM /

satisfy LuD 0 in Rn
C

and kuk�� <1. For each given " > 0, define u".x0; t / WD u.x0; t C "/ for every
.x0; t / 2 Rn

C
.

Then for every "> 0 one has u" 2C1.Rn
C
;CM /, the restriction u"j@Rn

C
belongs to the space L1.Rn�1;

1=.1Cjx0jn/ dx0/M, and the following Poisson integral representation formula holds:

u".x
0; t /D .PLt � .u"j@Rn

C
//.x0/ for all .x0; t / 2 RnC: (4-32)

Proof. For each " > 0 set f" WD u"j@Rn
C

and note that by part (d) in Lemma 4.6 we have that f" belongs to
L1.Rn�1; 1=.1Cjx0jn/dx0/M \C1.Rn�1;CM /. Next, for each " > 0 define v".x0; t / WD .PLt �f"/.x

0/

for every .x0; t / 2 Rn
C

. The goal is to show that w" WD v"�u" � 0 in Rn
C

. A key ingredient in this regard
is Proposition 2.5.

Notice first that w" 2 C1.Rn
C
;CM / and Lw" D 0 in Rn

C
by parts (a) and (e) in Lemma 4.6. Next, we

propose to show that Trw" D 0, where Tr is as introduced in (2-47). Since by part (a) in Lemma 4.6 we
have Tru" D f", it remains to prove Tr v" D f" in Rn�1. To this end, given x0 2 Rn�1, we use part (f)
in Lemma 4.6, the fact that f".x0/D u.x0; "/, Lemma 4.3 and Lemma 4.4 (recall that ‡# is defined in
(1-50)) to writeˇ̌̌̌
�

Z
B..x0;0/;r/\Rn

C

v" dL n
�f".x

0/

ˇ̌̌̌
� �

Z
B..x0;0/;r/\Rn

C

jv".y
0; t /�f".x

0/j dy0 dt

� �

Z
B..x0;0/;r/\Rn

C

jv".y
0; t /�f".y

0/j dy0 dt C�

Z
B..x0;0/;r/\Rn

C

jf".y
0/�f".x

0/j dy0 dt

� Ckuk���

Z
B..x0;0/;r/\Rn

C

.t="/ .1C logC."=t// dy0 dt

CCkuk���

Z
B..x0;0/;r/\Rn

C

‡#.jx
0
�y0j="/ dy0 dt

� Ckuk��
r

"
.1C logC."=r//CCkuk��‡#.r="/! 0 as r! 0C: (4-33)

Thus we conclude that Tr v".x0/D f".x0/ for every x0 2 Rn�1 as desired.
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Next we claim that w" 2W
1;2

bd .Rn
C
;CM /; recall the latter space from (2-46). By parts (a) and (c) in

Lemma 4.6 we have that u" 2W
1;2

bd .Rn
C
;CM /. For v", fix R > 0 arbitrary and rely on (4-24) to estimate

kv"kL2.B.0;R/\Rn
C
/ �

�Z R

0

Z
jx0j�R

jv".x
0; t /�f".x

0/j2 dx0 dt

�1
2

C

�Z R

0

Z
jx0j�R

jf".x
0/j2 dx0 dt

� 1
2

� Ckuk�� .R="/ .1C logC."=R//R
n
2 CR

1
2 kf"kL2.Bn�1.00;R// <1;

(4-34)
since f" 2 C1.Rn�1;CM /. Above and elsewhere in the paper we make the convention that

Bn�1.x
0; R/ denotes the ball in Rn�1 centered at x0 2 Rn�1 and of radius R. (4-35)

As regards rv", we use (4-24) to write

krv"kL2.B.0;R/\Rn
C
/ � C R

n�1
2 kuk�� "

�1

�Z R

0

.1C logC."=t//2 dt
�1
2

D C R
n�1
2 kuk�� "

�1

�Z "

0

.1C ln."=t//2 dt C
Z R

"

dt

�1
2

� C R
n�1
2 kuk�� "

�1

�
"

Z 1

0

.1C ln.1=s//2 dsCR
�1
2

� C R
n�1
2 kuk�� "

�1 ."CR/
1
2 <1: (4-36)

From (4-34) and (4-36) we conclude that v" and, therefore w", belongs to W 1;2
bd .Rn

C
;CM /.

Having established these, we may apply Proposition 2.5 and obtain that for every z 2 Rn
C

and � > 0

sup
Rn
C
\B.z;�/

jrw"j

� C��1 sup
Rn
C
\B.z;2�/

jw"j D C�
�1 sup

Rn
C
\B.z;2�/

ju"� v"j

� C��1 sup
.y0;t/2Rn

C
\B.z;2�/

ju".y
0; t /�f".y

0/jCC��1 sup
.y0;t/2Rn

C
\B.z;2�/

jv".y
0; t /�f".y

0/j: (4-37)

Let .y0; t / 2 Rn
C
\B.z; 2�/ and note that Lemma 4.3 implies

ju".y
0; t /�f".y

0/j D ju.y0; t C "/�u.y0; "/j

�

Z tC"

"

j@nu.y
0; �/j d�

� Ckuk��

Z tC"

"

1

�
d�

D Ckuk�� ln
t C "

"
: (4-38)

Proceeding as in (4-30), Lemma 4.5 implies that for every t > " we have

jv".y
0; t /�f".y

0/j � Ckuk�� .t="/‰.t="/� Ckuk�� .1C ln.t="//: (4-39)
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Returning with (4-38), (4-39) and (4-24) back to (4-37) we obtain that for every z 2 @Rn
C

and every � > "

sup
Rn
C
\B.z;�/

jrw"j �Ckuk��

�
��1 sup

0<t<2�

ln
tC"

"
C��1 sup

0<t<"

.t="/.1ClogC."=t//C��1 sup
"<t<2�

.1Cln.t="//
�

�Ckuk��

�
��1 ln

2�C"

"
C��1C��1.1Cln.2�="//

�
: (4-40)

Since the last expression converges to 0 as �!1 we obtain that rw" � 0 in Rn
C

. As we have already
shown that w" 2C1.Rn

C
;CM / this forces w" to be constant in Rn

C
. In concert with the fact that Trw"D 0

this ultimately implies w" � 0 in Rn
C

as desired. �

Moving on, in Lemmas 4.8–4.12 below we develop essential tools for the proof of Proposition 4.13,
where we prove a partial converse to part (e) in Proposition 3.1. Concretely, there we show that if f 2
L1.Rn�1; 1=.1Cjx0jn/ dx0/M has the property that the Littlewood–Paley measure jru.x0; t /j2 t dx0 dt
associated with the function u defined as in (3-3) is a Carleson measure in Rn

C
then necessarily f belongs

to BMO.Rn�1;CM /.
We begin by introducing some notation. Specifically, consider

H 1
a .R

n�1/ WD

�
g 2 L1comp.R

n�1/ W

Z
Rn�1

g dL n�1
D 0

�
; (4-41)

where L1comp.R
n�1/ stands for the space of essentially bounded functions with compact support in Rn�1.

In particular, since any g 2H 1
a .R

n�1/ is a scalar multiple of a .1;1/-atom, recall (3-37), it follows that

H 1
a .R

n�1/ is a dense subspace of H 1.Rn�1/. (4-42)

In the lemma below we prove a pointwise decay estimate for the vertical maximal operator acting on
functions from H 1

a .R
n�1/. Recall the definition from (1-7).

Lemma 4.8. Let � D .�˛ˇ /1�˛;ˇ�M W Rn�1! CM�M be a matrix-valued function with differentiable
entries satisfying the property that there exists C 2 .0;1/ such that

j�.x0/jC jr�.x0/j �
C

1Cjx0jn
for every x0 2 Rn�1: (4-43)

Pick a function gD .g˛/1�˛�M with components inH 1
a .R

n�1/. Then there exists a constant Cg 2 .0;1/,
depending on g, such that

sup
t>0

j.�t �g/.x
0/j �

Cg

1Cjx0jn
for every x0 2 Rn�1: (4-44)

Proof. Take RDRg � 1 sufficiently large so that, recall (4-35), suppg � Bn�1.00; R/DW B . In the case
when x0 2 2B , for each t > 0 we have

j.�t �g/.x
0/j � kgkL1.Rn�1/ k�tkL1.Rn�1/ D kgkL1.Rn�1/ k�kL1.Rn�1/

�
kgkL1.Rn�1/ k�kL1.Rn�1/.1C .2R/

n/

1Cjx0jn
: (4-45)
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Corresponding to x0 … 2B , first we use that g has vanishing integral and its support condition to write

j.�t �g/.x
0/j �

Z
Rn�1
j�t .x

0
�y0/��t .x

0/jjg.y0/j dy0

�

Z
B

j�t .x
0
�y0/��t .x

0/jjg.y0/j dy0: (4-46)

Next, we estimate the integrand in the right-hand side. By recalling (1-7), an application of the mean
value theorem combined with (4-43) for each x0 … 2B , y0 2 B , and t > 0, allows us to write

j�t .x
0
�y0/��t .x

0/j � t1�n
jy0j

t
sup
�2Œ0;1�

jr�..x0� � y0/=t/j

� C jy0j sup
�2Œ0;1�

1

jx0� � y0jn
: (4-47)

Moreover, whenever x0 … 2B and y0 2 B , for each � 2 Œ0; 1� we have

jx0j � jx0� � y0jC � jy0j � jx0� � y0jCR � jx0� � y0jC 1
2
jx0j; (4-48)

which implies jx0 � � y0j � 1
2
jx0j � 1

3
.1C jx0j/. The latter, when used in (4-47) in combination with

(4-46), implies

j.�t �g/.x
0/j �R

CkgkL1.Rn�1/

1Cjx0jn
for all x0 2 Rn�1 n .2B/; for all t > 0: (4-49)

Now the desired conclusion follows from (4-45) and (4-49) by taking

Cg WDmaxfkgkL1.Rn�1/ k�kL1.Rn�1/.1C .2R/
n/; CRkgkL1.Rn�1/g: (4-50)

The proof of the lemma is therefore complete. �

Our next preparatory lemma is needed in the proof of Proposition 4.13.

Lemma 4.9. Let L be an M �M elliptic system with constant complex coefficients as in (1-2)–(1-3) and
consider PL, the associated Poisson kernel for L in Rn

C
from Theorem 2.3, as well as KL, defined in

(2-37). Write

ˆ.x0/ WD .@nK
L/.x0; 1/ for every x0 2 Rn�1; (4-51)

and, whenever 0 < a < b <1, also set

‰a;b.x
0/ WD 4

Z b

a

.ˆt �ˆt /.x
0/
dt

t
for all x0 2 Rn�1: (4-52)

Then, whenever 0 < a < b <1, there holds

‰a;b.x
0/Dˆ2b.x

0/�PL2b.x
0/�ˆ2a.x

0/CPL2a.x
0/ for all x0 2 Rn�1: (4-53)
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Proof. Since rKL is homogeneous of order �n (recall item (5) in Theorem 2.3), for every .x0; t / 2 Rn
C

we may write

ˆt .x
0/D t1�nˆ.x0=t/D t1�n.@nK

L/.x0=t; 1/D t .@nK
L/.x0; t /D t@tK

L.x0; t /: (4-54)

Consequently, in view of definition (2-37), in the current notation we have

ˆt .x
0/D t@t ŒP

L
t .x

0/� for all .x0; t / 2 RnC: (4-55)

Fix h 2 C10 .R
n�1;CM /. Observe that

.‰a;b � h/.x
0/D 4

Z b

a

Z
Rn�1

Z
Rn�1

ˆt .x
0
� z0�y0/ˆt .z

0/ h.y0/ dz0 dy0
dt

t
(4-56)

since the triple integral is absolutely convergent in view of the assumptions made on h and (2-39). Set
u.x0; t / WD .PLt � h/.x

0/ for each .x0; t / 2 Rn
C

and in light of (4-55) further write (4-56) in the form

.‰a;b � h/.x
0/D 4

Z b

a

Z
Rn�1

Z
Rn�1

@nK
L.x0� z0�y0; t / @nK

L.z0; t / h.y0/ dz0 dy0 t dt

D 4

Z b

a

Z
Rn�1

Z
Rn�1

@nK
L.z0; t / @nK

L.x0� z0�y0; t / h.y0/ dy0 dz0 t dt

D 4

Z b

a

Z
Rn�1

@nK
L.z0; t / @nu.x

0
� z0; t / dz0 t dt: (4-57)

Next, for every .x0; t / 2 Rn
C

, define v.x0; t / WD .@nu/.x0; t /. By part (7) in Theorem 2.3 we have that
u 2 C1.Rn

C
;CM / and LuD 0 in Rn

C
. In turn, these imply v 2 C1.Rn

C
;CM / and Lv D 0 in Rn

C
.

Moving on, for each s > 0 set vs.x0; t / WD v.x0; t C s/ for every .x0; t / 2 Rn
C

. Then we have
vs 2 C1.Rn

C
;CM / and Lvs D 0 in Rn

C
. Now recall (1-155). For � 2 .0;1/ arbitrary, if x0 2 Rn�1 is

fixed, Theorem 2.4 allows us to estimate

jvs.y
0; t /j D j.@nu/.y

0; t C s/j

�
C

s
�

Z
B..y0;tCs/;�s=

p
1C�2/

juj dL n
�
C

s
Nu.x0/ for all .y0; t / 2 ��.x0/; (4-58)

where for the last inequality we have used that B..y0; t C s/; �s=
p
1C �2/ � ��.x

0/. Hence, (4-58)
combined with (2-40) yields

.Nvs/.x0/�
C

s
.Nu/.x0/�

C

s
.Mh/.x0/ for all x0 2 Rn�1: (4-59)

Upon recalling that h 2 C10 .R
n�1;CM / and that the Hardy–Littlewood maximal operator is bounded

on Lp.Rn�1/ for p 2 .1;1/, from (4-59) we may infer that Nvs 2 Lp.Rn�1/ for every p 2 .1;1/. In
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view of all these, we may apply Corollary 2.6 to vs and obtain that for each s 2 .0;1/

vs.x
0; t /D .PLt � .vsj@Rn

C
//.x0/D

Z
Rn�1

PLt .z
0/ vs.x

0
� z0; 0/ dz0

D

Z
Rn�1

KL.z0; t / vs.x
0
� z0; 0/ dz0

D

Z
Rn�1

KL.z0; t / .@nu/.x
0
� z0; s/ dz0 for all .x0; t / 2 RnC: (4-60)

Thus, for every .x0; t / 2 Rn
C

and every s > 0 we have

.@2nu/.x
0; t C s/D @nvs.x

0; t /D

Z
Rn�1

@nK
L.z0; t / .@nu/.x

0
� z0; s/ dz0: (4-61)

Applying (4-61) with s D t , substituting the resulting equality into (4-57), and making use of (4-55) we
obtain

.‰a;b � h/.x
0/D 4

Z b

a

.@2nu/.x
0; 2t/ t dt D 4

�
1
2
t .@nu/.x

0; 2t/� 1
4
u.x0; 2t/

�tDb
tDa

D Œˆ2t � h.x
0/�PL2t � h.x

0/�tDbtDa: (4-62)

This readily yields

.‰a;b � h/.x
0/D .ˆ2b � h/.x

0/� .PL2b � h/.x
0/� .ˆ2a � h/.x

0/C .PL2a � h/.x
0/ (4-63)

for every x0 2 Rn�1. Note that (4-63) holds for every h 2 C10 .R
n�1;CM / and therefore (4-53) holds for

a.e. x0 2 Rn�1. In addition, by Theorem 2.3 and the fact that 0 < a < b <1, we see that both sides of
(4-53) are continuous functions in Rn�1. Consequently, the desired equality holds everywhere. The proof
of the lemma is complete. �

Given a Lebesgue-measurable function F W Rn
C
! C, for every x0 2 Rn�1 introduce the Lusin area

function

.AF /.x0/ WD
�Z

��.x0/

jF.y0; t /j2
dy0 dt

tn

�1
2

(4-64)

and the Carleson operator

.CF /.x0/ WD sup
Q3x0

�Z `.Q/

0

�

Z
Q

jF.y0; t /j2
dy0 dt

t

�1
2

: (4-65)

In relation to these operators we recall a result from [Coifman et al. 1985, Theorem 1, p. 313].

Lemma 4.10. There exists some constant C 2 .0;1/, which depends only on n and �, with the property
that for any Lebesgue-measurable functions F;G W Rn

C
! C there holdsZ

Rn
C

jF.x0; t / G.x0; t /j
dx0 dt

t
� C

Z
Rn�1

CF.x0/AG.x0/ dx0: (4-66)

Strictly speaking, the statement in [Coifman et al. 1985] contains as assumptions the additional
requirements CF 2L1.Rn�1/ and AG 2L1.Rn�1/. However, these extra assumptions may be eliminated
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a posteriori via a suitable limiting argument. Specifically, for each N 2 N introduce

DN WD f.x
0; t / 2 RnC W j.x

0; t /j<N; t > 1=N g (4-67)

and for a generic function f W Rn
C
! C define fN W Rn

C
! C by setting fN .x/ WD f .x/ if x 2 DN

and jf .x/j � N and fN .x/ WD 0 if either x 2 Rn nDN or jf .x/j > N for each x 2 Rn
C

. Then, given
F;G W Rn

C
! C arbitrary Lebesgue-measurable functions, for each N 2 N the functions FN , GN

are Lebesgue-measurable and bounded. It is also immediate from definitions that CFN 2 L1.Rn�1/
and AGN 2 L1comp.R

n�1/ � L1.Rn�1/. Based on [Coifman et al. 1985, Theorem 1, p. 313] and the
monotonicity of the operators C and A (with respect to the absolute value of the function to which they
are applied) we may writeZ

Rn
C

jFN .x
0; t / GN .x

0; t /j
dx0 dt

t
� C

Z
Rn�1

CFN .x0/AGN .x0/ dx0

� C

Z
Rn�1

CF.x0/AG.x0/ dx0: (4-68)

Now (4-66) follows by taking the limit as N !1 of the inequality resulting from (4-68) and applying
Lebesgue’s monotone convergence theorem.

For further reference we also prove the following companion to Lemma 4.10.

Lemma 4.11. There exists some constant C 2 .0;1/ (depending only on n and �) such that for any two
Lebesgue-measurable functions F;G W Rn

C
! C one hasZ

Rn
C

jF.x0; t / G.x0; t /j
dx0 dt

t
� C

Z
Rn�1

AF.x0/AG.x0/ dx0: (4-69)

Proof. The idea is to estimate the expression

I WD

Z
Rn�1

�Z
��.x0/

jF.y0; t / G.y0; t /j
dy0 dt

tn

�
dx0 (4-70)

in two ways. On the one hand, using Fubini’s theorem we may write

I D

Z
Rn
C

jF.y0; t /jjG.y0; t /j

�Z
Rn�1

1��.x0/.y
0; t / dx0

�
dy0 dt

tn

D C�;n

Z
Rn
C

jF.y0; t /jjG.y0; t /j
dy0 dt

t
: (4-71)

On the other hand, based on Cauchy–Schwarz’ inequality we may estimate

I �

Z
Rn�1

�Z
��.x0/

jF.y0; t /j2
dy0 dt

tn

�1
2
�Z

��.x0/

jG.y0; t /j2
dy0 dt

tn

�1
2

dx0

D

Z
Rn�1

AF.x0/AG.x0/ dx0: (4-72)

Now, (4-69) follows from (4-71) and (4-72). �
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To state the final preparatory lemma required in the proof of Proposition 4.13, one more piece of
notation is needed. In the sequel, A> denotes the transpose of a given matrix A.

Lemma 4.12. Let L be an M �M elliptic system with constant complex coefficients as in (1-2)–(1-3)
and consider PL, the associated Poisson kernel for L in Rn

C
from Theorem 2.3, as well as KL as in

(2-37). Recall ˆ from (4-51) and for each x0 2 Rn�1 set ẑ .x0/ WDˆ>.�x0/. Furthermore fix � 2 .0;1/
arbitrary and, given a function f D .fˇ /1�ˇ�M WRn�1!CM with Lebesgue-measurable entries, define
for each x0 2 Rn�1

.S ẑf /.x
0/W D

�Z
��.x0/

j. ẑ t �f /.y
0/j2

dy0 dt

tn

�1
2

D

��Z
��.x0/

MX
ˇD1

j.. ẑ t /˛ˇ �fˇ /.y
0/j2

dy0 dt

tn

�1
2
�
1�˛�M

: (4-73)

Then S ẑ is a bounded operator from H 1.Rn�1;CM / into L1.Rn�1/.

Proof. For each ˛; ˇ 2 f1; : : : ;M g, write �˛ˇ .x0; t Iy0/ WD t @nKLˇ˛.y
0 � x0; t / for every x0; y0 2 Rn�1

and t > 0, and denote by ‚˛ˇ the integral operator as in (3-18) corresponding to �˛ˇ in place of � .
Notice that (3-76), (3-77) and (3-78) (with j D n and the roles of ˛ and ˇ reversed) allow us to apply
Proposition 3.3 and write

kS ẑf kL1.Rn�1/ �
X

1�˛;ˇ�M

kS‚˛ˇfˇkL1.Rn�1/

� C
X

1�ˇ�M

kfˇkH1.Rn�1/ D Ckf kH1.Rn�1;CM /: (4-74)

The desired conclusion now follows from (4-74). �

We have seen in Proposition 3.1 part (e) that if f 2 BMO.Rn�1;CM / then the Littlewood–Paley
measure jru.x0; t /j2 t dx0 dt associated with the function u defined as in (3-3) is a Carleson measure
in Rn

C
; see (1-11). In the proposition below we shall establish the converse implication along with the

estimate which naturally accompanies this statement. In the proof, Lemmas 4.8–4.12, as well as the
fundamental duality result from [Fefferman and Stein 1972] asserting that

.H 1.Rn�1;CM //� DABMO.Rn�1;CM / (4-75)

are going to play a key role.

Proposition 4.13. Let L be anM �M elliptic system with constant complex coefficients as in (1-2)–(1-3)
and consider PL, the associated Poisson kernel for L in Rn

C
from Theorem 2.3, together with KL as in

(2-37). Recall ˆ from (4-51). Let f 2 L1.Rn�1; 1=.1C jx0jn/ dx0/M and consider the measure in Rn
C

defined by

d�.x0; t / WD j.ˆt �f /.x
0/j2

dx0 dt

t
: (4-76)
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Then whenever � is a Carleson measure, that is,

k�kC.Rn
C
/ D sup

Q�Rn�1

Z `.Q/

0

�

Z
Q

j.ˆt �f /.x
0/j2

dx0 dt

t
<1; (4-77)

one necessarily has f 2 BMO.Rn�1;CM / and

kf k2BMO.Rn�1;CM / � Ck�kC.RnC/ (4-78)

for some constant C 2 .0;1/ independent of f .

Proof. Fix a function f as in the hypotheses of the proposition and suppose � satisfies (4-77). Let
g 2H 1

a .R
n�1/, see (4-41), and for some arbitrary ˛0 2 f1; : : : ;M g define

h WD .g ı˛˛0/1�˛�M 2 ŒH
1
a .R

n�1/�M �H 1.Rn�1;CM /; (4-79)

where ı˛˛0 denotes the standard Kronecker symbol.
Next, recall the expression of the classical harmonic Poisson kernel (that is, the Poisson kernel

associated with the Laplacian �)

P�.x0/ WD
2

!n�1

1

.1Cjx0j2/n=2
for all x0 2 Rn�1; (4-80)

where !n�1 stands for the area of the unit sphere in Rn. Then the definition of ˆ, (2-39) in Theorem 2.3,
and (4-80) imply

jˆt .x
0/j � CP�t .x

0/ for all x0 2 Rn�1; for all t 2 .0;1/: (4-81)

Also, by the semigroup property, (see, e.g., [Stein 1970, (vi), p. 62], or part (8) in Theorem 2.3), for every
" 2 .0; 1/ and every t 2 ."; "�1/ we have

P�t �P
�
t D P

�
2t � C" P

�: (4-82)

Combining (4-81) and (4-82), for each " 2 .0; 1/ we may writeZ "�1

"

Z
Rn�1

Z
Rn�1

Z
Rn�1
jˆt .x

0
�y0� z0/jjˆt .z

0/jjf .y0/jjh.x0/j dz0 dy0 dx0
dt

t

� C

Z "�1

"

Z
Rn�1

Z
Rn�1

Z
Rn�1

P�t .x
0
�y0� z0/ P�t .z

0/ jf .y0/jjg.x0/j dz0 dy0 dx0
dt

t

� C"

Z
Rn�1

Z
Rn�1

P�.x0�y0/ jf .y0/jjg.x0/j dy0 dx0

� C"

�Z
Rn�1

.1Cjx0jn/ jg.x0/j dx0
��Z

Rn�1

jf .y0/j

1Cjy0jn
dx0

�
<1; (4-83)

where for the last inequality we have used the fact that 1C jy0j � .1C jx0j/ .1C jx0 � y0j/ for every
x0; y0 2 Rn�1, while the finiteness of the rightmost term in (4-83) follows from our assumptions on f
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and g. Thus, recalling the definition of ‰";"�1 from (4-52) we have thatZ
Rn�1

˝
.‰";"�1 �f /.x

0/; h.x0/
˛
dx0

D

Z "�1

"

Z
Rn�1

Z
Rn�1

Z
Rn�1

˝
ˆt .x

0
�y0� z0/ˆt .z

0/ f .y0/; h.x0/
˛
dz0 dy0 dx0

dt

t
(4-84)

is an absolutely convergent integral. Here and elsewhere we use the notation

h�; �0i WD

MX
˛D1

�˛ �
0
˛; �D .�˛/1�˛�M ; �0 D .�0˛/1�˛�M 2 CM : (4-85)

To continue, we introduce the (matrix-valued) functions

ẑ .x0/ WDˆ>.�x0/;

z‰";"�1.x
0/ WD‰>

";"�1
.�x0/

zPL.x0/ WD .PL/>.�x0/;

(4-86)

defined for every x0 2 Rn�1. Then, for every " > 0, we may writeˇ̌̌̌Z
Rn�1

˝
f .x0/; .z‰";"�1 � h/.x

0/
˛
dx0

ˇ̌̌̌
D

ˇ̌̌̌Z
Rn�1

˝
.‰";"�1 �f /.x

0/; h.x0/
˛
dx0

ˇ̌̌̌
D

ˇ̌̌̌Z "�1

"

Z
Rn�1

˝
.ˆt �ˆt �f /.x

0/; h.x0/
˛
dx0

dt

t

ˇ̌̌̌
D

ˇ̌̌̌Z "�1

"

Z
Rn�1

˝
.ˆt �f /.x

0/; . ẑ t � h/.x
0/
˛
dx0

dt

t

ˇ̌̌̌
D

ˇ̌̌̌Z "�1

"

Z
Rn�1
hF.x0; t /;H.x0; t /i dx0

dt

t

ˇ̌̌̌
�

Z
Rn
C

jhF.x0; t /;H.x0; t /ij dx0
dt

t
; (4-87)

whereF.x0; t / WD .ˆt�f /.x0/ andH.x0; t / WD . ẑ t�h/.x0/ for every .x0; t /2Rn
C

. Denote by .F˛/1�˛�M
and .H˛/1�˛�M the scalar components of F and H , respectively. Note that (4-65), the definition of F,
and (4-77) imply

kCF˛kL1.Rn�1/ � k�k
1
2

C.Rn
C
/
<1 for all ˛ 2 f1; : : : ;M g: (4-88)

Also, (4-79), (4-64), and Lemma 4.12 permit us to write

kAH˛kL1.Rn�1/ � kS ẑhkL1.Rn�1/

� CkhkH1.Rn�1;CM /

D CkgkH1.Rn�1/ for all ˛ 2 f1; : : : ;M g: (4-89)
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Consequently, Lemma 4.10, (4-88), and (4-89) allow us to estimateZ
Rn
C

jhF.x0; t /;H.x0; t /ij dx0
dt

t
�

MX
˛D1

Z
Rn
C

jF˛.x
0; t /H˛.x

0; t /j dx0
dt

t

� C

MX
˛D1

Z
Rn�1

CF˛.x0/AH˛.x0/ dx0

� C

MX
˛D1

kCF˛kL1.Rn�1/ kAH˛kL1.Rn�1/

D Ck�k
1
2

C.Rn
C
/
kgkH1.Rn�1/: (4-90)

At this point we make the claim that

lim
"!0C

Z
Rn�1

˝
f .x0/; .z‰";"�1 � h/.x

0/
˛
dx0 D

Z
Rn�1
hf .x0/; h.x0/i dx0: (4-91)

The idea is to show that Lebesgue’s dominated convergence theorem applies in our setting. With this goal
in mind, first observe that by part (5) in Theorem 2.3, for every multi-index ˛ 2 Nn�10 , we have

j@˛ˆ.x0/j D j@˛@nK
L.x0; 1/j � C˛j.x

0; 1/j�n�j˛jI (4-92)

hence ẑ satisfies the hypotheses of Lemma 4.8. Moreover, by parts (1) and (5) in Theorem 2.3 we also
have that zPL satisfies the hypotheses of Lemma 4.8. Hence, Lemma 4.8 and (4-79) give

sup
t>0

j. ẑ t � h/.x
0/jC sup

t>0

j. zPLt � h/.x
0/j �

Ch

1Cjx0jn
for every x0 2 Rn�1: (4-93)

In light of (4-53), the latter yields

sup
0<"<1

j.z‰";"�1 � h/.x
0/j �

Ch

1Cjx0jn
for every x0 2 Rn�1: (4-94)

From this and the fact that f 2 L1.Rn�1; 1=.1Cjx0jn/ dx0/M we arrive at the conclusion that

sup
0<"<1

jhf; z‰";"�1 � hij 2 L
1.Rn�1/: (4-95)

Next, we focus on the pointwise convergence of the functions under the integral in the left-hand side of
(4-91). First, by (2-34), (2-55) in Lemma 2.7, and (2-35) in Theorem 2.3 we obtain

lim
s!0C

. zPLs � h/.x
0/D

�Z
Rn�1

zPL.y0/ dy0
�
h.x0/D h.x0/ for a.e. x0 2 Rn�1: (4-96)

Second, using a suitable change of variables, the properties of h, and Lebesgue’s dominated convergence
theorem we have

lim
s!1

. zPLs � h/.x
0/D lim

s!1

Z
Rn�1

zPL.y0/ h.x0� sy0/ dy0 D 0: (4-97)



670 JOSÉ MARÍA MARTELL, DORINA MITREA, IRINA MITREA AND MARIUS MITREA

Third, by (3-72) for every t > 0 we haveZ
Rn�1

.@nK/.x
0; t / dx0 D 0 for all t > 0; (4-98)

which when specialized to t D 1 yieldsZ
Rn�1

ẑ .x0/ dx0 D

�Z
Rn�1

ˆ.�x0/ dx0
�>
D

�Z
Rn�1

ˆ.x0/ dx0
�>
D 0: (4-99)

This, (4-92), and Lemma 2.7 applied to ẑ then give that

lim
s!0C

. ẑ s � h/.x
0/D

�Z
Rn�1

ẑ .y0/ dy0
�
h.x0/D 0 for a.e. x0 2 Rn�1: (4-100)

Fourth, a suitable change of variables, the properties of h, and Lebesgue’s dominated convergence theorem
also yield

lim
s!1

. ẑ s � h/.x
0/D lim

s!1

Z
Rn�1

ẑ .y0/ h.x0� sy0/ dy0 D 0: (4-101)

In concert, (4-96), (4-97), (4-100), (4-101), and (4-53) imply the pointwise convergence

lim
"!0C

.z‰";"�1 � h/.x
0/D h.x0/ for a.e. x0 2 Rn�1: (4-102)

Having dispensed of (4-95) and (4-102), we may apply Lebesgue’s dominated convergence theorem to
write

lim
"!0C

Z
Rn�1

˝
f .x0/; .z‰";"�1 � h/.x

0/
˛
dx0 D

Z
Rn�1

˝
f .x0/; lim

"!0C
.z‰";"�1 � h/.x

0/
˛
dx0

D

Z
Rn�1
hf .x0/; h.x0/i dx0; (4-103)

finishing the proof of the claim in (4-91).
From the definition of h, (4-91), (4-87), and (4-90) we may conclude thatˇ̌̌̌Z

Rn�1
f˛0.x

0/ g.x0/ dx0
ˇ̌̌̌
� Ck�k

1
2

C.Rn
C
/
kgkH1.Rn�1/: (4-104)

In particular, if we define the functional ƒ˛0
f
WH 1

a .R
n�1/! C by setting

ƒ
˛0
f
.g/ WD

Z
Rn�1

f˛0g dL n�1 for every g 2H 1
a .R

n�1/; (4-105)

then (4-104) implies ƒ˛0
f
2 .H 1.Rn�1//�; here we also used (4-42). Recalling (4-75), it follows that

there exists b˛0 2 BMO.Rn�1/ such that kb˛0kBMO.Rn�1/ � Ck�k
1
2

C.Rn
C
/

and ƒ˛0
f
.g/D

R
Rn�1

b˛0 g dL n�1 for every function g 2H 1
a .R

n�1/:
(4-106)

Thus, Z
Rn�1

.b˛0 �f˛0/g dL n�1
D 0 for all g 2H 1

a .R
n�1/: (4-107)

Hence, if we set v˛0 WD b˛0 �f˛0 , then (4-107) implies that

v˛0 is constant almost everywhere in Rn�1: (4-108)
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Indeed, if the latter were not true, one could find two bounded Lebesgue-measurable sets EC, E� in
Rn�1 such that 0 < jE˙j<1 and v˛0.x

0/� a < b � v˛0.y
0/ for all x0 2E�, y0 2EC. Then

g WD
1EC
jECj

�
1E�
jE�j

belongs to H 1
a .R

n�1/ (4-109)

and, when used in (4-107), forces

0D

Z
Rn�1

v˛0g dL n�1
� b� a > 0: (4-110)

This contradiction proves (4-108). In summary, we have shown that b˛0 � f˛0 is constant almost
everywhere in Rn�1. Upon recalling the first line in (4-106), it follows that f˛0 2 BMO.Rn�1/ with

kf˛0kBMO.Rn�1/ � Ck�k
1
2

C.Rn
C
/
: (4-111)

Since ˛0 2 f1; : : : ;M g is arbitrary, we may further conclude that f 2 BMO.Rn�1;CM / and satisfies
(4-78), as wanted. �

In turn, Proposition 4.13 is one of the main ingredients in the proof of the fact that the boundary traces
of vertical shifts of a smooth null-solution of L satisfying a Carleson measure condition in the upper
half-space belong to BMO, uniformly with respect to the shift.

Lemma 4.14. Let L be anM �M elliptic system with constant complex coefficients as in (1-2)–(1-3) and
consider PL, the associated Poisson kernel for L in Rn

C
from Theorem 2.3. Suppose u 2 C1.Rn

C
;CM /

satisfies LuD 0 in Rn
C

and kuk��<1. For each "> 0, set u".x0; t / WDu.x0; tC"/ for every .x0; t /2Rn
C

and f" WD u"j@Rn
C

. Then for each " > 0 we have f" 2 BMO.Rn�1;CM / and

kf"kBMO.Rn�1;CM / � Ckuk�� (4-112)

for some C 2 .0;1/ independent of ".

Proof. We are going to apply Proposition 4.13 to f". Note first that by part (d) in Lemma 4.6 we have
f" 2L

1.Rn�1; 1=.1Cjx0jn/ dx0/M \C1.Rn�1;CM /. Hence we may define �" as in (4-76) associated
with f", where we recall that ˆ.x0/D @nKL.x0; 1/ for every x0 2 Rn�1 and KL.x0; t /D t1�nPL.x0=t/
for every x0 2 Rn

C
. Also, Lemma 4.7 and (4-55) imply

t @tu".x
0; t /D t @t .P

L
t �f"/.x

0/D .ˆt �f"/.x
0/ for all .x0; t / 2 RnC: (4-113)

Thus part (b) in Lemma 4.6 yields

k�"kC.Rn
C
/ D sup

Q�Rn�1

1

jQj

Z `.Q/

0

Z
Q

jˆt �f".x
0/j2

dx0 dt

t

D sup
Q�Rn�1

1

jQj

Z `.Q/

0

Z
Q

j@tu".x
0; t /j2 t dx0 dt

� ku"k
2
�� � Ckuk

2
�� <1: (4-114)
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Consequently, we may invoke Proposition 4.13 to conclude that f" 2 BMO.Rn�1;CM / and

kf"kBMO.Rn�1;CM / � Ck�"k
1
2

C.Rn
C
/
� Ckuk��; (4-115)

as wanted. �

The aim in Lemma 4.15 below is to show that derivatives of the kernel function KL are multiples
of molecules in the sense of Hardy space theory. To make this precise, let us recall the definition of
L2.Rn�1/-molecules for the Hardy space H 1.Rn�1/. Specifically, given " > 0 and a ball B � Rn�1, a
function m 2 L1.Rn�1/ is said to be an .L2.Rn�1/; "/-molecule relative to B providedZ

Rn�1
m.x0/ dx0 D 0 (4-116)

and

kmkL2.B/ � jBj
� 1
2 ; kmkL2.2k Bn2k�1B/ � j2

k Bj�
1
2 2�k " for all k 2 N: (4-117)

Lemma 4.15. Let L be anM �M elliptic system with constant complex coefficients as in (1-2)–(1-3) and
consider PL, the associated Poisson kernel for L in Rn

C
from Theorem 2.3. Then there exists a constant

C 2 .0;1/ such that for any fixed t > 0, the components of CtrKL. � ; t / are .L2.Rn�1/; 1/-molecules
relative to Bn�1.00; t /. In particular,

sup
t>0

ktrKL. � ; t /kH1.Rn�1/ <1: (4-118)

Consequently, if f 2 BMO.Rn�1;CM / and the sequence ffkgk2N � BMO.Rn�1;CM / is such that
Œfk�! Œf � in the weak-* topology on ABMO.Rn�1;CM / as k!1, i.e.,

lim
k!1

Z
Rn�1

fkg dL n�1
D

Z
Rn�1

fg dL n�1 for all g 2H 1.Rn�1;CM /; (4-119)

then for every .x0; t / 2 Rn
C

fixed one has

lim
k!1

Z
Rn�1

t rKL.x0�y0; t / fk.y
0/ dy0 D

Z
Rn�1

t rKL.x0�y0; t / f .y0/ dy0: (4-120)

Proof. Fix t > 0, set Bt WD Bn�1.00; t /, and write m.x0/D trKL.x0; t / for every x0 2 Rn�1. We have
already shown in (3-78) that Z

Rn�1
m.x0/ dx0 D 0: (4-121)

Also, by part (5) in Theorem 2.3 we haveZ
Bt

jm.x0/j2 dx0 � C

Z
jx0j<t

t2

.t Cjx0j/2n
dx0 � C

Z
jx0j<t

t2

t2n
dx0

D Ct1�n � C 20 jBt j
�1; (4-122)
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and, for every k � 1,Z
2k Btn2k�1Bt

jm.x0/j2 dx0 � C

Z
2k�1 t<jx0j<2k t

t2

.t Cjx0j/2n
dx0 � C

Z
2k Bt

t2

.2k t /2n
dx0

D C2�2k.2k t /1�n � C 20 2
�2k
j2k Bt j

�1 (4-123)

for some constant C0 2 .0;1/ independent of k, x0, and t . All these give that C�10 m is an .L2.Rn�1/; 1/-
molecule relative to Bt and (4-118) follows from the molecular characterization of H 1.Rn�1/; see
[Alvarado and Mitrea 2015].

In addition, for each x0 2Rn�1 fixed, the function C�10 m.x0� � / is an .L2.Rn�1/; 1/-molecule relative
to Bn�1.x0; t / and therefore belongs to H 1.Rn�1/. Hence, (4-120) follows from the definition of the
weak-* convergence. �

We now have all the ingredients to prove Proposition 4.1:

Proof of Proposition 4.1. Under the notation of Lemma 4.14, from (4-112) we know that the sequence
fŒf"�g0<"<1 is bounded in the Banach space ABMO.Rn�1;CM /. By eventually passing to a subsequence,
Alaoglu’s theorem guarantees that there is no loss of generality in assuming that fŒf"�g0<"<1 converges
weakly in ABMO.Rn�1;CM / to some Œg� 2ABMO.Rn�1;CM /, where g 2 BMO.Rn�1;CM /, satisfying

kŒg�keBMO.Rn�1;CM / � Ckuk�� (4-124)

for some finite constant C >0 which does not depend on u. Applying Lemma 4.15, for every .x0; t /2Rn
C

fixed we may conclude with the help of (4-75) that

lim
"!0C

rŒ.PLt �f"/.x
0/�D lim

"!0C

Z
Rn�1

.rKL/.x0�y0; t /f".y
0/ dy0

D

Z
Rn�1

.rKL/.x0�y0; t /g.y0/ dy0

DrŒ.PLt �g/.x
0/�: (4-125)

On the other hand, by Lemma 4.7 we have

ru.x0; t C "/Dru".x
0; t /DrŒ.PLt �f"/.x

0/� for all .x0; t / 2 RnC: (4-126)

Together, (4-125) and (4-126) give (keeping in mind part (a) in Lemma 4.6)

ru.x0; t /D lim
"!0C

ru.x0; t C "/DrŒ.PLt �g/.x
0/� for all .x0; t / 2 RnC: (4-127)

Consequently, there exists C 2 CM with the property that

u.x0; t /D .PLt �g/.x
0/CC for all .x0; t / 2 RnC: (4-128)

Then f WD gCC 2 BMO.Rn�1;CM / satisfies, thanks to (4-124) and (1-20),

kf kBMO.Rn�1;CM / D kgkBMO.Rn�1;CM / D kŒg�keBMO.Rn�1;CM / � Ckuk��; (4-129)
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where C > 0 is a finite constant which does not depend on u. Moreover, (2-24) ensures that f 2
L1.Rn�1; 1=.1 C jx0jn/ dx0/M, while formula (4-128) becomes, in light of (2-36), precisely (4-2).
Granted this, the first conclusion in Proposition 3.1 implies that f is the only function in L1.Rn�1;
1=.1Cjx0jn/ dx0/M for which the representation formula (4-2) holds, ujn:t:

@Rn
C

exists at a.e. point in Rn�1,
and f D ujn:t:

@Rn
C

. To conclude the proof of Proposition 4.1 it remains to observe that (4-3) is a consequence
of (4-129), (4-2), and (3-12). �

5. Proofs of Theorems 1.1–1.6 and 1.8–1.10

We begin by presenting the proof of the Fatou-type result stated in Theorem 1.2. The main ingredients
involved are Propositions 3.1, 4.1, and 4.2.

Proof of Theorem 1.2. The implication in (1-39) is seen directly from Proposition 4.1, which also
guarantees the right-to-left inclusion in (1-40). The left-to-right inclusion in (1-40) is a consequence of
Proposition 3.1. Going further, it is clear from definitions that LMO.Rn

C
/ is a linear space on which k�k��

is a seminorm with null-space CM. The linear mapping in (1-42) is bounded (by the estimate in (1-39)),
injective (by Proposition 4.2), and surjective (by Proposition 3.1). Moreover, another reference to the
estimate in (1-39) shows that the inverse of the mapping (1-42) is also bounded. Given that ABMO.Rn

C
/ is

complete, it follows that the quotient space LMO.Rn
C
/=CM is also complete when equipped with k�k��. �

Anticipating the proof of Theorem 1.3, below we isolate a key result to the effect that any smooth
null-solution of L satisfying a vanishing Carleson measure condition in the upper half-space converges
vertically to its nontangential boundary trace in BMO.

Lemma 5.1. Let L be an M �M elliptic system with constant complex coefficients as in (1-2)–(1-3) and
consider PL, the associated Poisson kernel for L in Rn

C
from Theorem 2.3. Suppose u 2 C1.Rn

C
;CM /

satisfies LuD 0 in Rn
C

and kuk�� <1 and use Theorem 1.2 to write

f WD ujn:t:
@Rn
C

2 BMO.Rn�1;CM /: (5-1)

For each number "> 0, define u".x0; t / WDu.x0; tC"/ for every .x0; t /2Rn
C

and consider f" WDu"j@Rn
C
2

BMO.Rn�1;CM / (see Lemma 4.14 ). Then

jru.x0; t /j2 t dx0 dt is a vanishing
Carleson measure in Rn

C

�
D) lim

"!0C
kf"�f kBMO.Rn�1;CM / D 0: (5-2)

Proof. By Theorem 1.2 we have u.x0; t /D .PLt �f /.x
0/ for every .x0; t /2Rn

C
. Also, Lemma 4.7 implies

u".x
0; t /D .PLt �f"/.x

0/ for every .x0; t / 2 Rn
C

and each " > 0. To proceed, for every .x0; t / 2 Rn
C

set

v".x
0; t / WD .PLt � .f"�f //.x

0; t /

D .PLt �f /.x
0; t /� .PLt �f"/.x

0; t /

D u".x
0; t /�u.x0; t /: (5-3)
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Given that for each parameter " > 0 the function v" satisfies the hypotheses of Theorem 1.2 and almost
everywhere v"jn:t:@Rn

C

D f"�f 2 BMO.Rn�1/, it follows that

kf"�f kBMO.Rn�1;CM / � Ckv"k�� D Cku"�uk�� (5-4)

for every " > 0. Hence, to complete the proof of (5-2) it suffices to show that

lim
"!0C

ku"�uk�� D 0: (5-5)

To this end, for each r > 0 we introduce

kuk��;r WD sup
Q�Rn�1; `.Q/�r

�Z `.Q/

0

�

Z
Q

jru.x0; t /j2 t dx0 dt

�1
2

: (5-6)

Note that
kuk��;r � kuk��;s � kuk�� if r � s; (5-7)

and the fact that jru.x0; t /j2 t dx0 dt is a vanishing Carleson measure in Rn
C

, recall (1-12), may be
rephrased as

kuk��;r ! 0 as r! 0C: (5-8)

We now make the claim that there exists a constant C D C.n;L/ 2 .0;1/ such that

ku�u"k�� � C
�
kuk��;4 maxfr;"gCkuk�� minf"=r; 1g

�
for all r; " 2 .0;1/: (5-9)

Assume the claim for now and based on (5-9), for every 0 < r <1, we may write

0� lim sup
"!0C

ku�u"k��

� C lim sup
"!0C

kuk��;4 maxfr;"gCCkuk�� lim sup
"!0C

Œminf"=r; 1g�

D Ckuk��;4 r : (5-10)

Recalling now (5-8), we may further take the limit as r! 0C in the resulting inequality in (5-10) and
conclude that

lim sup
"!0C

ku�u"k�� D 0:

This proves (5-5) as wanted.
To finish the proof of the lemma we are left with showing the claim. To do so, we first note that in

light of the notation in (5-6), the reasoning in (4-9) (corresponding to j˛j D 1) yields

t jru.x0; t /j � C

�
1

jQx0 j

Z 3t
2

t
2

Z
Qx0

jru.y0; s/j2 s dy0 ds

�1
2

� Ckuk��;2t (5-11)

for each .x0; t / 2 Rn
C

, where Qx0 denotes the cube in Rn�1 centered at x0 with side-length t .
Next, fix a cube Q�Rn�1 and numbers r; " 2 .0;1/ and proceed by analyzing the following possible

three cases.
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Case 1: `.Q/� ". Under this assumption, recalling also (5-11) and (5-7), we obtain�Z `.Q/

0

�

Z
Q

jru".x
0; t /�ru.x0; t /j2 t dx0 dt

�1
2

�

�Z `.Q/C"

"

�

Z
Q

jru.x0; t /j2 t dx0 dt

�1
2

C

�Z `.Q/

0

�

Z
Q

jru.x0; t /j2 t dx0 dt

�1
2

�

�Z 2"

"

�

Z
Q

jru.x0; t /j2 t dx0 dt

� 1
2

Ckuk��;"

� C

�Z 2"

"

kuk2
��;2t

t
dt

�1
2

Ckuk��;4"

� Ckuk��;4" � Ckuk��;4maxfr;"g (5-12)

for some constant C D C.n;L/ 2 .0;1/ independent of u, ", and r .

Case 2: " < `.Q/� r . Note that in this case r Dmaxfr; "g and using again (5-11) and (5-7) we have�Z `.Q/

0

�

Z
Q

jru".x
0; t /�ru.x0; t /j2 t dx0 dt

�1
2

�

�Z `.Q/C"

"

�

Z
Q

jru.x0; t /j2 t dx0 dt

�1
2

Ckuk��;r

�

�Z 2`.Q/

0

�

Z
Q

jru.x0; t /j2 t dx0 dt

�1
2

Ckuk��;maxfr;"g

� Ckuk��;4maxfr;"g (5-13)

for some constant C D C.n;L/ 2 .0;1/ independent of u, ", and r .

Case 3: `.Q/ >maxfr; "g. In this case, set � WDmaxfr; "g and write�
1

jQj

Z `.Q/

0

Z
Q

jru".x
0; t /�ru.x0; t /j2 t dx0 dt

�1
2

�

�
1

jQj

Z �

0

Z
Q

jru".x
0; t /�ru.x0; t /j2 t dx0 dt

�1
2

C

�
1

jQj

Z `.Q/

�

Z
Q

jru".x
0; t /�ru.x0; t /j2 t dx0 dt

�1
2

DW I C II: (5-14)

To analyze I , let k0 be the nonnegative integer such that

2k0 � < `.Q/� 2k0C1 �:

Also, consider fQj gj2N, the collection of subcubes of Q with pairwise disjoint interiors, satisfying

`.Qj /D 2
�k0 `.Q/ for each j 2 N and

[
j2N

Qj DQ:
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Then `.Qj / 2 .�; 2�� for every j 2N. Bearing this in mind and using the fact that "� �, we may then
estimate

I �

�
1

jQj

Z �C"

"

Z
Q

jru.x0; t /j2 t dx0 dt

�1
2

C

�
1

jQj

Z �

0

Z
Q

jru.x0; t /j2 t dx0 dt

�1
2

� 2

�
1

jQj

Z 2�

0

Z
Q

jru.x0; t /j2 t dx0 dt

�1
2

� 2

�
1

jQj

X
j2N

Z 2`.Qj /

0

Z
Qj

jru.x0; t /j2 t dx0 dt

�1
2

� 2

�
1

jQj

X
j2N

kuk2
��;2`.Qj /

j2Qj j

�1
2

� 2
nC1
2 kuk��;4� D 2

nC1
2 kuk��;4maxfr;"g: (5-15)

Up to this point our treatment involved estimating u" and u separately, without exploiting any potential
cancellations generated by the fact that we are dealing with their difference. However, in the task of
estimating II , having the difference u"�u plays a crucial role, as seen next. Given .x0; t / 2 Rn

C
, from

Lemma 4.3 we conclude that
jr
2u.x0; t /j � Ckuk�� t

�2: (5-16)

In light of this, the mean value theorem implies that for some � 2 .0; 1/ there holds

jru".x
0; t /�ru.x0; t /j D jru.x0; t C "/�ru.x0; t /j � " jr2u.x0; t C � "/j

� C"kuk�� .t C � "/
�2

� C"kuk�� t
�2: (5-17)

Having established (5-17), we may turn to estimating II as follows:

II D

�
1

jQj

Z `.Q/

�

Z
Q

jru".x
0; t /�ru.x0; t /j2 t dx0 dt

�1
2

� C" kuk��

�Z `.Q/

�

t�3 dt

�1
2

� C" kuk�� �
�1

D C" kuk�� .maxfr; "g/�1 D Ckuk�� minf"=r; 1g: (5-18)

In concert, (5-14), (5-15), and (5-18), allow us to conclude that, under the current assumption `.Q/ >
maxfr; "g, we have�Z `.Q/

0

�

Z
Q

jru".x
0; t /�ru.x0; t /j2 t dx0 dt

�1
2

� C
�
kuk��;4 maxfr;"gCkuk�� minf"=r; 1g

�
: (5-19)

Combining (5-12), (5-13), and (5-19), we obtain that the estimate in (5-19) actually holds for arbitrary
cubes Q in Rn�1. In turn, the latter yields (5-9) after taking the supremum over all cubes Q in Rn�1.
With this, the proof of the lemma is completed. �
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Having proved the convergence result in Lemma 5.1, we are now prepared to present the proof of
Theorem 1.3.

Proof of Theorem 1.3. We start by noticing that since u satisfies the conditions in (1-43), the conclusions
in (1-39) hold. Hence if we set f WD ujn:t:

@Rn
C

, we have that f exists almost everywhere in Rn�1 and
belongs to BMO.Rn�1;CM /. To proceed in showing that f 2 VMO.Rn�1;CM /, for each " > 0 define
u".x

0; t / WD u.x0; t C "/ for every .x0; t / 2 Rn
C

, and f".x0/ WD u.x0; "/ for every x0 2 Rn�1. Then from
Lemma 4.14 and part (d) in Lemma 4.6 we obtain f" 2 BMO.Rn�1;CM /\C1.Rn�1;CM /. In addition,
for every " > 0, based on Lemma 4.3 we obtain

sup
x02Rn�1

jrx0f".x
0/j D sup

x02Rn�1
jrx0u.x

0; "/j � C"�1kuk�� <1: (5-20)

Fix r 2 .0;1/ and let Q � Rn�1 be a cube in Rn
C

with `.Q/� r . Then using (5-20) we may estimate

�

Z
Q

jf .x0/�fQj dx
0
� �

Z
Q

j.f �f"/.x
0/� .f �f"/Qj dx

0
C�

Z
Q

jf".x
0/� .f"/Qj dx

0 (5-21)

� kf"�f kBMO.Rn�1;CM /C sup
x02Rn�1

jrx0f".x
0/j
p
n� 1 `.Q/ (5-22)

� kf"�f kBMO.Rn�1;CM /CCr"
�1
kuk��: (5-23)

Hence,

sup
Q�Rn�1; `.Q/�r

�

Z
Q

jf .x0/�fQj dx
0
� kf"�f kBMO.Rn�1;CM /CCr"

�1
kuk��: (5-24)

Letting r ! 0C first, then sending "! 0C in (5-24) and recalling that since jru.x0; t /j2 t dx0 dt is a
vanishing Carleson measure in Rn

C
implication (5-2) holds, we conclude that

lim
r!0C

sup
Q�Rn�1; `.Q/�r

�

Z
Q

jf .x0/�fQj dx
0
D 0: (5-25)

Hence, f 2 VMO.Rn�1;CM /, as wanted.
To complete the proof, it remains to establish (1-45). However, the right-to-left inclusion follows from

(1-44), while the opposite inclusion is a consequence of Proposition 3.1. �

We continue by presenting the proof of Theorem 1.4.

Proof of Theorem 1.4. Consider first the equivalence in item (1) of Theorem 1.4. The fact that f 2
BMO.Rn�1ICM / implies kuk�� <1 is part (e) of Proposition 3.1 and (2-24), whereas the converse
follows from Proposition 4.1. Regarding the equivalence in item (2) of Theorem 1.4, to see that f 2
VMO.Rn�1ICM / implies jru.x0; t /j2 t dx0 dt is a vanishing Carleson measure in Rn

C
we use what we

just proved in item (1), bearing in mind (1-22), combined with part (f) of Proposition 3.1. The converse
follows from (1-44). �

Having dealt with the Fatou-type results from Theorems 1.2 and 1.3, we turn our attention to the proof
of Theorem 1.1.
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Proof of Theorem 1.1. The fact that the function u defined in (1-30) solves the BMO-Dirichlet boundary
value problem (1-29) follows from Proposition 3.1. By Proposition 4.2, this is the only solution of (1-29).
Next, the double estimate in (1-31) is a direct consequence of (1-30) and (4-3). The uniform BMO
estimate in (1-32) is seen straight from Lemma 4.14.

Moving on, the left-pointing implication in (1-33) follows from Lemma 5.1. For the opposite implication,
invoke part (d) in Lemma 4.6 together with (1-32) to conclude that f is the limit in BMO.Rn�1;CM / of
the sequence fu. � ; "/g">0 � UC.Rn�1;CM /\BMO.Rn�1;CM /. This places f in VMO.Rn�1;CM /;
see (1-26). Having established this, part (f) in Proposition 3.1 gives that jru.x0; t /j2 t dx0 dt is a vanishing
Carleson measure in Rn

C
. Going further, the equivalence in (1-34) is seen from (1-44) and the last part in

Proposition 3.1.
As regards the equivalence in (1-35), let us first observe that, as is apparent from its definition in (1-13),

the seminorm k � k�� is invariant to horizontal translations. That is, for every u 2 C 1.Rn
C
;CM / we have

k�.z0;0/uk�� D kuk�� for every z0 2 Rn�1: (5-26)

Given f 2 VMO.Rn�1;CM /, the right-pointing implication in (1-34) ensures that

jru.x0; t /j2 t dx0 dt is a vanishing Carleson measure in RnC: (5-27)

For each z D .z0; s/ 2 Rn
C

we may write, thanks to (5-26) and the estimate in (1-39),

k�zu�uk�� � k�zu� �.z0;0/uk��Ck�.z0;0/u�uk��

D k�.0;s/u�uk��Ck�.z0;0/u�uk��

� Cku. � ; s/�f kBMO.Rn�1;CM /CCk�z0f �f kBMO.Rn�1;CM / (5-28)

for some constant C D C.n;L/ 2 .0;1/. In light of (5-27), the left-pointing implication in (1-33), and
(1-28), we then conclude from (5-28) that

lim
Rn
C
3z!0

k�zu�uk�� D 0; (5-29)

as wanted. Conversely, suppose now that (5-29) holds. Specializing this to the case when z WD .00; "/
with " > 0 then yields, on account of the estimate in (1-39),

ku. � ; "/�f kBMO.Rn�1;CM / � Ck�.00;"/u�uk��! 0 as "! 0C: (5-30)

Hence, ku. � ; "/ � f kBMO.Rn�1;CM / ! 0 as " ! 0C which, by virtue of (1-33)–(1-34), implies that
f 2 VMO.Rn�1;CM /. This finishes the proofs of the equivalences in part (iv) of the statement.

Finally, all claims about the VMO-Dirichlet boundary value problem (1-36) are direct consequences of
what we have proved up to this point. �

Going further, we present the proof of the quantitative characterization of VMO from Theorem 1.5.

Proof of Theorem 1.5. We shall establish all claims stated with n� 1 in place of n. Fix a modulus of
continuity ‡ satisfying ‡# � C‡ on Œ0;1/ for some finite constant C > 0. This implies that

C‡#.Rn�1/� C‡ .Rn�1/: (5-31)
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Consider next an arbitrary function f 2 VMO.Rn�1/ and define u 2 C1.Rn
C
/ by setting u.x0; t / WD

.P�t � f /.x
0/ for .x0; t / 2 Rn

C
. Then from item (d) in Lemma 4.6, Theorem 1.1 part (iii), and (1-37)

we conclude that the sequence of functions ff"g">0 defined for every " > 0 by f" WD u. � ; "/ in Rn�1

satisfies, for each " > 0,

f" 2 C‡ .Rn�1/\C1.Rn�1/\BMO.Rn�1/ and
@˛
0

f 2 C‡ .Rn�1/\L1.Rn�1/ for every ˛0 2 Nn�10 with j˛0j � 1;
(5-32)

as well as

kf �f"kBMO.Rn�1/! 0 as "! 0C: (5-33)

This establishes (1-51), as well as the stronger claim made in (1-52). �

Going further, we provide the proof of Theorem 1.6.

Proof of Theorem 1.6. First note that condition (1-55) implies that ' is continuous on Rn n f0g. As such,
' is a Lebesgue-measurable function Rn which, in turn, ensures that condition (1-56) is meaningful.

To proceed, observe that if f 2 L1.Rn; dx=.1CjxjnC"//M then for each x 2 Rn we haveZ
Rn
jf .y/jj'.x�y/j dy � C

Z
Rn

jf .y/j

.1Cjyj/nC"
�
.1Cjyj/nC"

.1Cjx�yj/nC"
dy

� C.1Cjxj/nC"
Z

Rn

jf .y/j

.1Cjyj/nC"
dy <1: (5-34)

In light of (2-24) (used here with nC1 in place of n), this implies that for every t >0 the convolution 't�f
is well-defined via an absolutely convergent integral whenever the function f belongs to BMO.Rn;CM /.
In particular, this is the case whenever f 2 VMO.Rn;CM /.

Next, fix t > 0 and define

Ttf WD 't �f for every f 2 BMO.Rn;CM /: (5-35)

We first claim that there exists some constant C 2 .0;1/ independent of t such that

kTtf kBMO.Rn;CM / � Ckf kBMO.Rn;CM / for all f 2 BMO.Rn;CM /: (5-36)

To prove this claim, fix f 2 BMO.Rn;CM / and an arbitrary cube Q in Rn with center xQ; then we have
the decomposition

f D .f �fQ/1�QC .f �fQ/1Rnn�QCfQ; where � WD 2
p
n: (5-37)

Thus, using (1-56) we have

.Ttf /.x/D Tt Œ.f �fQ/1�Q�.x/CTt Œ.f �fQ/1Rnn.�Q/�.x/CfQ for all x 2 Rn; (5-38)

and if we set

cQ WD Tt Œ.f �fQ/1Rnn.�Q/�.xQ/CfQ 2 CM (5-39)
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it follows that

�

Z
Q

j.Ttf /.x/� cQj dx

� �

Z
Q

jTt Œ.f �fQ/1�Q�.x/j dxC �
Z
Q

ˇ̌
Tt Œ.f �fQ/1Rnn�Q�.x/�Tt Œ.f �fQ/1Rnn�Q�.xQ/

ˇ̌
dx

DW I C II: (5-40)

Since f 2 BMO.Rn;CM / we have .f �fQ/1�Q 2 L1.Rn;CM /. On the other hand, assumption (1-54)
implies that Tt is bounded in L1.Rn;CM / uniformly in t . In concert with (2-8), this permits us to estimate

I D
1

jQj
kTt Œ.f �fQ/1�Q�kL1.Rn;CM /

�
C

jQj
k.f �fQ/1�QkL1.Rn;CM / � Ckf kBMO.Rn;CM / (5-41)

for some C 2 .0;1/ independent of f , Q, and t . To treat II , first we derive a pointwise estimate. For
each x 2Q we haveˇ̌
Tt Œ.f �fQ/1Rnn�Q�.x/�Tt Œ.f �fQ/1Rnn�Q�.xQ/

ˇ̌
� t�n

Z
Rnn�Q

jf .y/�fQj

ˇ̌̌̌
'

�
x�y

t

�
�'

�
xQ �y

t

�ˇ̌̌̌
dy: (5-42)

Next, pick some arbitrary x 2 Q and y 2 Rn n �Q; then consider z WD .xQ � y/=t 2 Rn n f0g and
h WD .x� xQ/=t 2 Rn. Since in view of the choice of � in (5-37) we have

jhj �

p
n`.Q/

2t
D
�`.Q/

4t
�
jzj

2
; (5-43)

it follows from (1-55) thatˇ̌̌̌
'

�
x�y

t

�
�'

�
xQ �y

t

�ˇ̌̌̌
D j'.zC h/�'.z/j �

C jhj"

jzjnC"

�
C`.Q/"tn

jy � xQjnC"
�

C`.Q/"tn

.`.Q/Cjy � xQj/nC"
: (5-44)

Combining (5-42)–(5-44) with (2-21) (used here with nC 1 in place of n) and part (c) in Lemma 2.1, it
follows thatˇ̌
Tt Œ.f �fQ/1Rnn�Q�.x/�Tt Œ.f �fQ/1Rnn�Q�.xQ/

ˇ̌
�C`.Q/"

Z
Rn

jf .y/�fQj

.`.Q/Cjy�xQj/nC"
dy

�C

Z 1
1

osc1.f I�`.Q//
d�

�1C"

�Ckf kBMO.Rn;CM / for all x 2Q; (5-45)

where C 2 .0;1/ is independent of f;Q and t . From (5-45) and (5-40) we obtain

II � Ckf kBMO.Rn;CM / (5-46)
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for some C 2 .0;1/ independent of f , Q, and t . In concert, (5-40), (5-41), and (5-46) yield

�

Z
Q

j.Ttf /.x/� cQj dx � Ckf kBMO.Rn;CM /; (5-47)

with cQ 2 CM as in (5-39). In view of (2-9), this ultimately implies the claim in (5-36).
The second claim we make is that there exists some constant C 2 .0;1/ with the property that for

every t > 0 and every � 2 .0; "/ there holds

kTtg�gkL1.Rn;CM / � Ct
�
kgk PC �.Rn;CM / for all g 2 PC �.Rn;CM /: (5-48)

To prove this claim, fix t > 0, � 2 .0; "/, g 2 PC �.Rn;CM /, and, for x 2 Rn arbitrary, estimate

j.Ttg/.x/�g.x/j �

Z
Rn
jg.x�y/�g.x/jj't .y/j dy

� t�kgk PC �.Rn;CM /

Z
Rn

jyj�

t�
j't .y/j dy

� t�kgk PC �.Rn;CM /

Z
Rn
jzj� .1Cjzj/�n�" dz

� Ct�kgk PC �.Rn;CM / (5-49)

for some constant C D C."; �; n; '/ 2 .0;1/ independent of t and g. The first inequality in (5-49) relies
on (1-56), for the third one we have used (1-54) and the change of variables z D y=t , while the last one
is a consequence of having � 2 .0; "/.

Here is the argument involved in the endgame of the proof of Theorem 1.6. Fix � 2 .0; "/ and given
f 2 VMO.Rn;CM / pick g 2 PC �.Rn;CM /\BMO.Rn;CM /. Then for each t > 0, we use (5-36) and
(5-48) to estimate

kTtf �f kBMO.Rn;CM / � kTt .f �g/kBMO.Rn;CM /CkTtg�gkBMO.Rn;CM /Ckg�f kBMO.Rn;CM /

� Ckg�f kBMO.Rn;CM /C 2kTtg�gkL1.Rn;CM /

� Ckg�f kBMO.Rn;CM /CCt
�
kgk PC �.Rn;CM /: (5-50)

Thus,

lim sup
t!0C

kTtf �f kBMO.Rn;CM / � Ckg�f kBMO.Rn;CM /: (5-51)

Now (1-57) follows from (5-51) in light of the density result recorded in (1-62).
To prove the very last claim in the statement of Theorem 1.6, let ' 2 C 1.Rn;CM�M / be a function

satisfying (1-58). Then for each x 2Rn nf0g and h2Rn with jhj< jxj=2 the mean value theorem permits
us to estimate

j'.xC h/�'.x/j � jhj sup
�2Œx;xCh�

j.r'/.�/j

� C jhj sup
�2Œx;xCh�

.1Cj�j/�n�1 �
C jhj

jxjnC1
: (5-52)
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Hence, both (1-54) and (1-55) hold with "D 1 in this case, so the left-pointing implication in (1-59) is a
consequence of (1-57).

As regards the right-pointing implication in (1-59), let us first observe that from (1-56) and (1-58) we
have Z

Rn
.@j'/..x�y/=t/ dy D 0 for all x 2 Rn; for all j 2 f1; : : : ; ng: (5-53)

Next, given a function f 2 BMO.Rn;CM /, fix x 2 Rn and t > 0 arbitrary and denote by Qx;t the cube
in Rn centered at x and of side-length t . As usual, abbreviate fQx;t WD �

R
Qx;t

f .y/ dy. On account of
(5-53), (1-58), (2-21) (used here with "D 1 and n in place of n� 1), and (2-15) (used with p D 1 and n
in place of n� 1), for each j 2 f1; : : : ; ng we may then estimate

j@j .'t �f /.x/j D t
�n�1

ˇ̌̌̌Z
Rn
.@j'/

�
x�y

t

�
f .y/ dy

ˇ̌̌̌
D t�n�1

ˇ̌̌̌Z
Rn
.@j'/

�
x�y

t

�
Œf .y/�fQx;t � dy

ˇ̌̌̌
� C

Z
Rn

jf .y/�fQx;t j

Œt Cjx�yj�nC1
dy � Ct�1kf kBMO.Rn;CM / (5-54)

for some constant C 2 .0;1/ independent of f; x; t . In concert with (5-36), this proves that

't �f 2 BMO.Rn;CM /\Lip.Rn;CM / for each t > 0: (5-55)

With this in hand, the right-pointing implication in (1-59) readily follows (compare with (1-64)), finishing
the proof of Theorem 1.6. �

The proof of the negative result stated in Theorem 1.8 is discussed next.

Proof of Theorem 1.8. From [Bourdaud 2002, Proposition 9, p. 1208] we know that there exists f 2
C1.Rn/ such that

@˛f 2 BMO.Rn/ for all ˛ 2 Nn0; (5-56)

and
inffkf �gkBMO.Rn/ W g 2 L

1.Rn/g> 0: (5-57)

In concert with [loc. cit., Lemme 6, p. 1211], property (5-56) (used for multi-indices ˛ 2Nn0 with j˛j D 1)
gives f 2UC.Rn/. By once again using (5-56) (with j˛j D 0), this proves that f 2UC.Rn/\BMO.Rn/;
hence f 2 VMO.Rn/. On the other hand, (5-57) implies that f does not belong to the closure of
L1.Rn/ in BMO.Rn/; hence also f does not belong to the closure of UC.Rn/\L1.Rn/ in BMO.Rn/.
Ultimately, this proves that the space UC.Rn/\L1.Rn/ is not dense in VMO.Rn/. �

The penultimate proof in this section is that of Theorem 1.9.

Proof of Theorem 1.9. That for each f 2 BMO.Rn/ the measure �f associated with f as in (1-69)
satisfies Carleson’s condition

k�f kC.RnC1
C

/
D sup
Q�Rn

1

jQj

Z `.Q/

0

Z
Q

j. t �f /.x/j
2 dx dt

t
� Ckf k2BMO.Rn/ (5-58)
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for some constant C 2 .0;1/ which depends only on the dimension n and the constant in (1-68), is fairly
standard. Specifically, having fixed an arbitrary cubeQ�Rn, take the decomposition f Df0Cf1Cf2Q,
where f0 WD .f �f2Q/12Q and f1 WD .f �f2Q/1Rnn2Q. On account of the cancellation property of  ,
we may write  t �f D  t �f0C t �f1. Then, on the one hand,

1

jQj

Z `.Q/

0

Z
Q

j. t �f0/.x/j
2 dx dt

t
�

1

jQj

Z
R
nC1
C

j. t �f0/.x/j
2 dx dt

t

� C jQj�1kf0k
2
L2.Rn/

� Ckf k2BMO.Rn/; (5-59)

thanks to the square-function estimate (3-43) in Proposition 3.3 (used with n replaced by nC 1 and the
kernel �.x; t Iy/ WD  t .x�y/ for each x; y 2 Rn, t > 0), and (2-15). On the other hand, for each x 2Q
and t 2 .0; `.Q// we may estimate

j. t �f1/.x/j �

Z
Rnn2Q

t�n
ˇ̌̌̌
 

�
x�y

t

�ˇ̌̌̌
jf .y/�f2Qj dy

� Ct

Z
Rnn2Q

jf .y/�f2Qj

Œt Cjx�yj�nC1
dy � Ct

Z
Rnn2Q

jf .y/�f2Qj

jxQ �yjnC1
dy

� Ct

Z
Rn

jf .y/�f2Qj

Œ`.Q/CjxQ �yj�nC1
dy �

Ct

`.Q/
kf kBMO.Rn/; (5-60)

by virtue of (2-21) in Lemma 2.2 (used with n replaced by nC 1 and "D 1). Combining (5-59) with
(5-60) then readily yields (5-58).

Let us next observe that if g 2 PC �.Rn/ for some � 2 .0; 1/ then for each x 2 Rn and t > 0 we may
estimate, on account of (1-68),

j. t �g/.x/j D

ˇ̌̌̌Z
Rn
 t .y/.g.x�y/�g.x// dy

ˇ̌̌̌
� kgk PC �.Rn/

Z
Rn
j t .y/jjyj

� dy

� Ct�kgk PC �.Rn/

Z
Rn

jyj�

.1Cjyj/nC1
dy D Ct�kgk PC �.Rn/: (5-61)

Assume now that some function f 2 BMO.Rn/ has been fixed. Pick � 2 .0; 1/ and choose g 2
PC �.Rn/\BMO.Rn/ arbitrary. Then, making use of (5-58) and (5-61), for each cube Q � Rn we may

bound

1

jQj

Z `.Q/

0

Z
Q

j. t �f /.x/j
2 dx dt

t

�
2

jQj

Z `.Q/

0

Z
Q

j. t � .f �g//.x/j
2 dx dt

t
C

2

jQj

Z `.Q/

0

Z
Q

j. t �g/.x/j
2 dx dt

t

� Ckf �gk2BMO.Rn/CC`.Q/
2�
kgk2

PC �.Rn/
: (5-62)
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In turn, (5-62) allows us to conclude that

lim
r!0C

�
sup
Q�Rn

`.Q/�r

1

jQj

Z `.Q/

0

Z
Q

j. t �f /.x/j
2 dx dt

t

�
� Ckf �gk2BMO.Rn/; (5-63)

which, after taking the infimum over all g 2 PC �.Rn/\BMO.Rn/ and bearing in mind the density result
in (1-62), yields (1-70). �

We conclude this section by giving the proof of Theorem 1.10.

Proof of Theorem 1.10. Fix f 2 BMO.Rn;CM / and let u be the unique solution u of the BMO-Dirichlet
boundary value problem (1-29) for L in Rn

C
with boundary datum f . By (1-30) in Theorem 1.1, we have

(with PL denoting the Poisson kernel for L in Rn
C

from Theorem 2.3)

u.x0; t /D .PLt �f /.x
0/D

Z
Rn�1
C

KL.x0�y0; t /f .y0/ dy0 for .x0; t / 2 RnC; (5-64)

where KL is as in (2-37). Consider now

 .z0/ WD . 1; : : : ;  n/ WD ..@jK
L/.z0; 1//1�j�n for each z0 2 Rn�1: (5-65)

Then, from item (4) and (2-39) in Theorem 2.3 we deduce that  j 2 C1.Rn�1;CM�M / for each
j 2 f1; : : : ; ng and there exists some constant C 2 .0;1/ such that

j .z0/j �
C

.1Cjz0j/n
and jr .z0/j �

C

.1Cjz0j/nC1
for each z0 2 Rn�1: (5-66)

We also claim that Z
Rn�1

 j .z
0/ dz0 D 0 2 CM�M for each j 2 f1; : : : ; ng: (5-67)

To see why (5-67) is true, note that based on (5-65) and (2-37) we have

 j .z
0/D @jP

L.z0/ for all z0 2 Rn�1 and each j 2 f1; : : : ; n� 1g; (5-68)

while

 n.z
0/D .1�n/PL.z0/� z0 � rPL.z0/ for all z0 2 Rn�1: (5-69)

Now (5-67) follows from (5-68)–(5-69) and (2-35) via integration by parts.
Next, for each x0 2 Rn�1 and t > 0 set  t .x0/ WD t1�n .x0=t/. Then from item (5) in Theorem 2.3 it

follows that rKL is homogeneous of order �n; thus

 t .x
0/D t1�n.rKL/.x0=t; 1/D t .rKL/.x0; t / for each .x0; t / 2 Rn�1C : (5-70)

Combining (5-64) and (5-70) yields

t .ru/.x0; t /D

Z
Rn�1

t .rKL/.x0�y0; t /f .y0/ dy0 D . t �f /.x
0/ (5-71)
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for each x0 2 Rn�1 and each t > 0. Consequently,

j. t �f /.x
0/j2

dx0 dt

t
D t j.ru/.x0; t /j2 dx0 dt: (5-72)

In light of (5-66)–(5-67) we see that Theorem 1.9 applies componentwise in the current setting (with n
replaced by n�1) and yields a constant C for which (1-70) holds. The latter becomes (1-72) by invoking
(5-72) and finishes the proof of the theorem. �

6. Proof of the well-posedness of the Morrey–Campanato–Dirichlet problem

This section is devoted to presenting the proof of Theorem 1.21. Throughout fix p; q 2 Œ1;1/. We divide
the proof into several steps, the starting point being the following claim:

Step 1: There exists a constant C D C.n;L; �/ 2 .0;1/ such that if f 2 E �;p.Rn�1;CM / then the
function u given at every point .x0; t / 2Rn

C
by u.x0; t / WD .PLt �f /.x

0/ is well-defined (via an absolutely
convergent integral) and satisfies u 2 C1.Rn

C
;CM /, LuD 0 in Rn

C
, ujn:t:

@Rn
C

D f a.e. in Rn�1, as well as

sup
.x0;t/2Rn

C

Œt1��j.ru/.x0; t /j�� Ckf k
.�;p/
� : (6-1)

The fact that u is well-defined and is a smooth null-solution of L in the upper half-space whose
nontangential trace matches f a.e. in Rn�1 follows from (2-25) with "D 1 and item (7) in Theorem 2.3.
To proceed, fix an arbitrary point .x0; t / 2 Rn

C
and, making use of (3-6) and (2-17), estimate

j.ru/.x0; t /j �
C

t

Z 1
1

osc1.f I�t/
d�

�2
�

C

t1��
kf k

.�;p/
� ; (6-2)

from which (6-1) readily follows.

Step 2: For every function u 2 C 1.Rn
C
;CM / there holds

kuk
.�;q/
�� � .2�/�

1
2 sup
.x0;t/2Rn

C

Œt1��j.ru/.x0; t /j�: (6-3)

This is readily seen from (1-160).

Step 3: There exists a constant C D C.n;L; �; q/ 2 .0;1/ with the property that for every function
u 2 C1.Rn

C
;CM / satisfying LuD 0 in Rn

C
there holds

sup
.x0;t/2Rn

C

Œt1��j.ru/.x0; t /j�� Ckuk
.�;q/
�� : (6-4)

For each fixed point .x0; t / 2 Rn
C

use Theorem 2.4 and repeated applications of Hölder’s inequality in
order to estimate (recall that Qx0;t is the cube in Rn�1 centered at x0 and of side-length t )

j.ru/.x0; t /j � C �

Z
Qx0;t�.

t
2
; 3t
2
/
j.ru/.y0; s/j dy0 ds

D C �

Z
Qx0;t

�
�

Z
. t
2
; 3t
2
/
j.ru/.y0; s/j ds

�
dy0
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� C

�
�

Z
Qx0;t

�
�

Z
. t
2
; 3t
2
/
j.ru/.y0; s/j2 ds

�q
2

dy0
�1
q

� Ct�
1
2

�
�

Z
Qx0;t

�
�

Z
. t
2
; 3t
2
/
j.ru/.y0; s/j2s ds

�q
2

dy0
�1
q

� Ct�1
�
�

Z
Qx0;t

�Z 3t
2

0

j.ru/.y0; s/j2s ds

�q
2

dy0
�1
q

� Ct�1
�

1ˇ̌
3
2
Qx0;t

ˇ̌ Z
3
2
Qx0;t

�Z `. 3
2
Qx0;t/

0

j.ru/.y0; s/j2s ds

�q
2

dy0
�1
q

� Ct��1kuk
.�;q/
�� ; (6-5)

where the last inequality is a consequence of (1-160). With this in hand, (6-4) follows.

Step 4: For every function u 2 C 1.Rn
C
;CM / one has

sup
x;y2Rn

C

x 6Dy

ju.x/�u.y/j

jx�yj�
�

�
1C

2

�

�
sup

.x0;t/2Rn
C

Œt1��j.ru/.x0; t /j�: (6-6)

In fact, the opposite inequality holds for smooth null-solutions of L in the upper half-space. Specifically,
there exists a constantC DC.n;L; �/2 .0;1/ with the property that for every function u2C1.Rn

C
;CM /

satisfying LuD 0 in Rn
C

there holds

sup
.x0;t/2Rn

C

Œt1��j.ru/.x0; t /j�� C sup
x;y2Rn

C

x 6Dy

ju.x/�u.y/j

jx�yj�
: (6-7)

To justify (6-6), abbreviate

Cu;� WD sup
.x0;t/2Rn

C

Œt1��j.ru/.x0; t /j�: (6-8)

Pick two arbitrary distinct points x D .x0; t / 2 Rn
C

, y D .y0; s/ 2 Rn
C

, and set r WD jx�yj> 0. Then

r��ju.x/�u.y/j � I C II C III; (6-9)
where

I WD r��ju.x0; t /�u.x0; t C r/j;

II WD r��ju.x0; t C r/�u.y0; sC r/j;

III WD r��ju.y0; sC r/�u.y0; s/j:

(6-10)

Then by the fundamental theorem of calculus and the assumption on u,

I D r��ju.x0; t /�u.x0; t C r/j D r��
ˇ̌̌̌Z r

0

.@nu/.x
0; t C �/ d�

ˇ̌̌̌
� Cu;�r

��

Z r

0

.t C �/��1 d� � Cu;�r
��

Z r

0

���1 d�

D Cu;�r
����1r� D Cu;�=�: (6-11)
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Moreover, III may be estimated in a similar manner (with the same bound Cu;�=�), while

II D r��ju.x0; t C r/�u.y0; sC r/j

D r��
ˇ̌̌̌Z 1

0

d

d�
Œu.�.x0; t C r/C .1� �/.y0; sC r//� d�

ˇ̌̌̌
D r��

ˇ̌̌̌Z 1

0

.x0�y0; t � s/ � .ru/.�.x0; t C r/C .1� �/.y0; sC r// d�

ˇ̌̌̌
� Cu;�r

��
jx�yj

Z 1

0

Œdist.�.x0; t C r/C .1� �/.y0; sC r/; @RnC/�
��1 d�

� Cu;�r
��r

Z 1

0

Œ.1� �/sC � t C r���1 d� � Cu;�r
�� r r��1 D Cu;�: (6-12)

Now (6-6) follows from (6-9)–(6-12).
Consider next (6-7). Recall (2-1). Fix a point x D .x0; t / 2 Rn

C
and write Rx for the cube in Rn

centered at x with side-length t=2. Using that the function u. � /�u.x/ is a null-solution of the system L,
we may apply Theorem 2.4 (with `D 1 and p D 1) to write

t j.ru/.x0; t /j � C �

Z
Rx

ju.y/�u.x/j dy

� Ckuk PC �.Rn
C
;CM /
�

Z
Rx

jx�yj� dy

� Ckuk PC �.Rn
C
;CM / t

�: (6-13)

This readily implies (6-7).

Step 5: There exists a constant C DC.n; �/2 .0;1/ such that for every continuous function f WRn�1!
CM one has

kf k
.�;p/
� � C sup

x0;y02Rn�1

x0 6Dy0

jf .x0/�f .y0/j

jx0�y0j�
: (6-14)

In particular, the inclusion

PC �.Rn�1;CM / ,! E �;p.Rn�1;CM / is continuous: (6-15)

This is a direct consequence of (1-157).

Step 6: Given f 2 E �;p.Rn�1;CM /, the function u defined as in (1-30) solves the Dirichlet boundary
value problem (1-161) and obeys the estimates in (1-162). Moreover, u 2 PC �.Rn

C
;CM / and (1-163) holds

as well.
Fix an arbitrary function f 2 E �;p.Rn�1;CM /. From Step 1 we know that u given as in (1-30) is

well-defined, u 2 C1.Rn
C
;CM /, LuD 0 in Rn

C
, f D ujn:t:

@Rn
C

a.e. in Rn, and satisfies (6-1). To proceed,
observe that when used in concert, (6-1) and (6-3) imply that

kuk
.�;q/
�� � Ckf k

.�;p/
� : (6-16)
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Hence, kuk.�;q/�� <1. On the other hand, combining the results proved in Steps 3 and 4 establishes the
membership of u to PC �.Rn

C
;CM /D PC �.Rn

C
;CM /, see (2-2), along with the estimate

kuk PC �.Rn
C
;CM / � Ckuk

.�;q/
�� : (6-17)

Thanks to (6-16)–(6-17) and (2-2), we therefore have u 2 PC �.Rn
C
;CM / and

kf k PC �.Rn�1;CM / D kuj
n:t:
@Rn
C

k PC �.Rn�1;CM /

D kuj@Rn
C
k PC �.Rn�1;CM /

� kuk PC �.Rn
C
;CM /

D kuk PC �.Rn
C
;CM /

� Ckuk
.�;q/
�� � Ckf k

.�;p/
� : (6-18)

Using (6-14) and recycling part of the above estimate then yields

kf k
.�;p/
� � Ckf k PC �.Rn�1;CM / � Ckuk

.�;q/
�� : (6-19)

At this stage, all desired properties of u have been established.

Step 7: Assume that u 2 C1.Rn
C
;CM /\ PC �.Rn

C
;CM / for some � 2 .0; 1/ satisfies LuD 0 in Rn

C
. Then

u 2 PC �.Rn
C
;CM /; uj@Rn

C
2 PC �.Rn�1;CM /� L1

�
Rn�1;

1

1Cjx0jn
dx0

�M
(6-20)

and
u.x0; t /D .PLt � .uj@Rn

C
//.x0/ for all .x0; t / 2 RnC: (6-21)

To justify this, observe that the two memberships listed in (6-20) are direct consequences of (2-2),
while the inclusion in (6-20) was proved earlier; see (2-26).

For each fixed " > 0 consider now the function

u". � / WD u. � C "en/ in RnC; (6-22)

which satisfies

u" 2 C1.Rn
C
;CM /; Lu" D 0 in RnC and

u" 2 PC
�.Rn
C
;CM / with ku"k PC �.Rn

C
;CM /

� kuk PC �.Rn
C
;CM /:

(6-23)

These and (6-7) yield
sup
x2Rn
C

j.ru"/.x/j � C.L; �; "/kuk PC �.Rn
C
;CM /: (6-24)

In light of (6-23) (which implies that u" is bounded on bounded subsets of Rn
C

), (6-24) allows us to
conclude that

u" 2W
1;2

bd .RnC;C
M /: (6-25)

Going further, set f".x0/ WD u.x0; "/ for each x0 2 Rn�1. Then, on the one hand,

jf".x
0/�f".y

0/j D ju.x0; "/�u.y0; "/j � kuk PC �.Rn
C
;CM /jx

0
�y0j� for all x0; y0 2 Rn�1: (6-26)



690 JOSÉ MARÍA MARTELL, DORINA MITREA, IRINA MITREA AND MARIUS MITREA

On the other hand, for all x0; y0 2Rn�1 we have (with r 0 denoting the gradient in the first n�1 variables
in Rn�1)

jf".x
0/�f".y

0/j D ju.x0; "/�u.y0; "/j � jx0�y0j sup
z02Œx0;y0�

j.r 0u/.z0; "/j

D jx0�y0j sup
z02Œx0;y0�

j.r 0u"=2/.z
0; "=2/j

� jx0�y0jC.L; �; "=2/kuk PC �.Rn
C
;CM /; (6-27)

where the last inequality uses (6-24) (written for u"=2 and for x D .z0; "=2/). A logarithmically con-
vex combination of (6-26)–(6-27) then proves that for every � 2 Œ�; 1� there exists a finite constant
C.�;L; "; u/ > 0 such that

jf".x
0/�f".y

0/j � C.�;L; "; u/jx0�y0j� for all x0; y0 2 Rn�1: (6-28)

Hence,

f" 2
\

���<1

PC � .Rn�1;CM /: (6-29)

Combining (6-29), (6-15), and Step 6 then shows that the function

w".x
0; t / WD .PLt �f"/.x

0/ for all .x0; t / 2 RnC (6-30)

satisfies

w" 2 C1.RnC;C
M /; Lw" D 0 in RnC; w" 2

\
���<1

PC � .Rn
C
;CM /: (6-31)

In addition, from (6-28)–(6-30), Step 5, and Step 1, we see that w" has the property that for each � 2 Œ�; 1/
there exists a finite constant C.�;L; "; u/ > 0 such that

Œdist.x; @RnC/�
1��
j.rw"/.x/j � C.�;L; "; u/ for all x 2 RnC: (6-32)

In particular, choosing � 2
�
max

˚
�; 1
2

	
; 1
�
, the latter property allows us to estimate for every R > 0Z

B.0;R/\Rn
C

j.rw"/.x/j
2 dx � C.�;L; "; u/

Z
B.0;R/\Rn

C

Œdist.x; @RnC/�
2.��1/ dx

D C.�;L; "; R; u/ <C1: (6-33)

In concert with the last property in (6-31) (which goes to show that w" is bounded on bounded subsets
of Rn

C
), this permits us to conclude that

w" 2W
1;2

bd .RnC;C
M /: (6-34)

From (6-23), (6-25), (6-30), (6-31), and (6-34), we then conclude that the function v" WD u"�w" belongs
to C1.Rn

C
;CM / and satisfies

v" 2W
1;2

bd .RnC;C
M /\ PC �.Rn

C
;CM /; Lv" D 0 in RnC; v"j@Rn

C
D 0: (6-35)
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Moreover, the Hölder property gives the growth estimate

jv".x/j � C.1Cjxj
�/ for all x 2 RnC; (6-36)

where C WDmaxfkv"k PC �.Rn
C
;CM /; jv".0/jg 2 .0;1/.

The estimates near the boundary from Proposition 2.5 then imply (by sending �!1) that v" � 0.
This ultimately translates into saying that for each " > 0 we have

u.x0; t C "/D .PLt �f"/.x
0/ for all .x0; t / 2 RnC: (6-37)

Let us also note that for each " > 0,

sup
y02Rn�1

jf".y
0/�u.y0; 0/j D sup

y02Rn�1
ju.y0; "/�u.y0; 0/j � "�kuk PC �.Rn

C
;CM /

: (6-38)

Hence, f"! uj@Rn
C

as "! 0C, uniformly in Rn�1. Since PLt is absolutely integrable in Rn�1, formula
(6-21) then readily follows by passing to limit "! 0C in (6-37).

Step 8: Assume that

u 2 C1.RnC;C
M /; LuD 0 in RnC; kuk

.�;q/
�� <1; ujn:t:

@Rn
C

D 0: (6-39)

Then necessarily u� 0 in Rn
C

.
This is a consequence of Steps 3, 4, and 7.

Step 9: The end-game in the proof of Theorem 1.21.
Existence for the Dirichlet boundary value problem (1-161) follows from Step 6. Uniqueness of the

Dirichlet boundary value problem (1-161) is seen from Step 8.

7. Calderón–Zygmund operators on VMO

The main goal of this section is to develop the machinery which eventually permits us to prove
Theorem 1.13.

We begin by recalling, see, e.g., [Stein 1993, Theorem 1, p. 91], that for each q 2 .0;1/, the Hardy
space H q.Rn/ consists of tempered distributions g in Rn with the property that their radial maximal
function, defined as .Mrad g/.x/ WD supt>0 j.ˆt �g/.x/j for each x 2Rn (where ˆ is a fixed background
Schwartz function in Rn with

R
Rn
ˆdL n 6D 0 and ˆt .x/ WD t�nˆ.x=t/ for each t > 0 and x 2 Rn),

satisfies
kgkHq.Rn/ WD kMrad gkLq.Rn/ <C1: (7-1)

It is then well known that
H q.Rn/D Lq.Rn/ if 1 < q <1: (7-2)

Another classical result in harmonic analysis, see, e.g., [Stein 1993, Theorem 2, p. 107] or [García-Cuerva
and Rubio de Francia 1985, Theorem 4.10, p. 283], is the fact that distributions belonging to H q.Rn/

with q 2 .0; 1� admit atomic decompositions. To elaborate on this aspect, having fixed r 2 Œ1;1�, call a
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Lebesgue-measurable function a W Rn! C a .q; r/-atom provided there exists a cube Q � Rn such that
the following localization, normalization, and cancellation properties hold:

supp a �Q; kakLr .Rn/ � jQj
1
r
� 1
q ; and

Z
Rn
x˛a.x/ dx D 0 (7-3)

for every multi-index ˛ 2Nn0 with j˛j � n.1=q�1/. Then, given q 2 .0; 1� and r 2 Œ1;1� with q < r , any
g 2H q.Rn/ may be written as gD

P
j2N �jaj in H q.Rn/ for a numerical sequence f�j gj2N satisfying�P

j2N j�j j
q
�1=q
� kgkHq.Rn/ and with each aj a .q; r/-atom. In particular, this implies that if for each

q 2 .0; 1� and r 2 Œ1;1� with q < r we let H q;r
fin .R

n/ stand for the vector space consisting of all finite
linear combinations of .q; r/-atoms, then

H
q;r
fin .R

n/D

�
f 2 Lrcomp.R

n/ W

Z
Rn
x˛f .x/ dx D 0 if j˛j � n

�
1

q
� 1
��
;

H
q;r
fin .R

n/�H q.Rn/ densely; and H
s;r
fin .R

n/�H
q;r
fin .R

n/ if 0 < s � q.
(7-4)

It turns out that if a given distribution g 2H q.Rn/ with 0 < q � 1 additionally belongs to a Lebesgue
space, or another Hardy space, then one may perform an atomic decomposition which converges to g
simultaneously in all the said spaces. This is made precise in the lemma below.

Lemma 7.1. Suppose 0 < p <1, 0 < q � 1, r 2 .1;1/ with r � p, and 0 < s �minfp; qg are given.
Then for any g 2H q.Rn/\Hp.Rn/ one can find a sequence fgN gN2N �H

s;r
fin .R

n/ which converges
to g both in H q.Rn/ and in Hp.Rn/.

Proof. Following the suggestion in [Pipher and Verchota 1992, p. 948] (where the treatment in the case
p D 2 and q D 1 is outlined), we revisit the technology used to perform atomic decompositions of
distributions in H q.Rn/ presented in [Torchinsky 1986, pp. 345-348], from which we borrow notation
and results; see also the proof of [García-Cuerva and Rubio de Francia 1985, Theorem 4.6, pp. 278-282].
The starting point is the consideration of a function  as in [Torchinsky 1986, Lemma 1.7, p. 345].
Among other things,

 2 C10 .R
n/;

Z
Rn
x˛ .x/ dx D 0 if j˛j � n

�
1

s
� 1

�
and  is radial: (7-5)

The latter condition implies that O , the Fourier transform of  , normalized as in [Mitrea 2013], is also
radial. Hence, there exists a real-valued function Q defined on Œ0;1/ such that O .x/D Q .jxj/ for each
x 2 Rn. Note that Q necessarily satisfies

Q 2 C1.Œ0;1//; Q .0/D 0; and Q has rapid decay at infinity: (7-6)

For each t > 0 define  t .x/ WD t�n .x=t/ for every x 2 Rn.
Fix now an arbitrary distribution g 2H q.Rn/. From [Torchinsky 1986, Proposition 1.9, p. 346] and

the formula at the bottom of page 347 in that paper we know that there exists

a partition fTj;kgj;k of RnC1
C

consisting of pairwise disjoint
measurable sets which depend only on g

(7-7)
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such that, if P� is the Poisson kernel for the Laplacian in RnC1 (see (4-80) with n replaced by nC 1)
and P�t .x/ WD t

�nP�.x=t/ for each x 2 Rn and t > 0, then the following properties hold:

(a) For each j; k, the function

aj;k.x/ WD

Z
Tj;k

@t .P
�
t �g/.y/ t .y � x/ dy dt; x 2 Rn; (7-8)

is a multiple of an .s; r/-atom.

(b) Moreover, each aj;k is also a multiple of an .q; r/-atom, and if we write

aj;k D �j;k Qaj;k for some �j;k 2 C and Qaj;k a genuine .q; r/-atom, (7-9)

then there exists a constant C > 0, independent of g, with the property that�X
j;k

j�j;kj
q

�1
q

� CkgkHq.Rn/: (7-10)

(c) One has

g D
X
j;k

aj;k in H q.Rn/: (7-11)

If we now set

gN WD
X

jCk�N

aj;k for each N 2 N; (7-12)

then each gN belongs to H s;r
fin .R

n/�H
q;r
fin .R

n/, and (7-11) implies

lim
N!1

gN D g in H q.Rn/: (7-13)

Next, if 0 < p � 1 and g 2H q.Rn/\Hp.Rn/, then running the same argument as in (7-7)–(7-13)
(in which we now view g as a distribution in Hp.Rn/) leads to the conclusion that the sequence
fgN gN2N �H

s;r
fin .R

n/ constructed earlier in (7-12) also satisfies

lim
N!1

gN D g in Hp.Rn/: (7-14)

The lemma is therefore established in the case when p 2 .0; 1�.
Henceforth, consider the case when 1 < p <1, i.e., assume g 2H q.Rn/\Lp.Rn/; see (7-2). The

goal is to show that, with gN as in (7-12), we also have

lim
N!1

gN D g in Lp.Rn/: (7-15)

This requires some preparation. Since the radial maximal function of g is pointwise dominated by a
multiple of the Hardy–Littlewood maximal function of g, see, e.g., [Stein 1993, (16), p. 57], it follows that
Mrad g 2L

p.Rn/\Lq.Rn/. Given that in the current case q� 1<p, this forces Mrad g 2L
1.Rn/; hence

g 2H 1.Rn/. With this in hand, the same reasoning that has led to (7-13) now gives limN!1 gN D g
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in H 1.Rn/. This further implies limN!1 gN D g in L1.Rn/; hence also (by eventually restricting the
index N to a subsequence of N)

lim
N!1

gN .x/D g.x/ for a.e. x 2 Rn. (7-16)

Consequently, if we set
DN WD

[
jCk�N

Tj;k for each N 2 N; (7-17)

then for each M;N 2 N with N <M we have

gM .x/�gN .x/D

Z
DM nDN

@t .P
�
t �g/.y/ t .y � x/ dy dt; x 2 Rn: (7-18)

Hence, if p0 is such that 1=pC1=p0D 1, for each function h2Lp
0

.Rn/ and M;N 2N such that N <M

we may write Z
Rn
.gM �gN /.x/h.x/ dx D

Z
DM nDN

@t .P
�
t �g/.y/. t � h/.y/ dy dt: (7-19)

Next, define

G.y; t/ WD t @t .P
�
t �g/.y/; F.y; t/ WD . t � h/.y/;

and GN .y; t/ WD 1DN .y; t/ �G.y; t/
(7-20)

for each .y; t/ 2 RnC1
C

and N 2 N. With the Lusin area function A defined as in (4-64) (with n replaced
by nC1), from (7-19), Lemma 4.11 (used with n replaced by nC1), and Hölder’s inequality we see thatˇ̌̌̌Z

Rn
.gM �gN /.x/h.x/ dx

ˇ̌̌̌
� CkAF kLp0 .Rn/kA.GM �GN /kLp.Rn/: (7-21)

We claim that there exists a finite constant C > 0, independent of h, such that

kAF kLp0 .Rn/ � CkhkLp0 .Rn/; (7-22)

and that
A.G �GN /! 0 in Lp.Rn/ as N !1: (7-23)

Granted these, we may then conclude from (7-21) that

kgM�gN kLp.Rn/D sup
h2Lp

0
.Rn/;khk

Lp
0
.Rn/
�1

ˇ̌̌̌Z
Rn
.gM�gN /.x/h.x/dx

ˇ̌̌̌
�CkA.GM�GN /kLp.Rn/
�CkA.GM�G/kLp.Rn/CCkA.GN�G/kLp.Rn/! 0 as M;N !1I (7-24)

thus, fgN gN2N is Cauchy in Lp.Rn/. The latter combined with (7-16) yields (7-15).
Turning our attention to (7-22) we first observe that

kAF kLp0 .Rn/ D CkS‚hkLp0 .Rn/; (7-25)
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where S‚ is as in (3-42) (with n replaced by nC 1) corresponding to

.‚h/.y; t/ WD

Z
Rn
 t .y � z/h.z/ dz for all .y; t/ 2 RnC1

C
: (7-26)

Since the kernel �.y; t I z/ WD  t .y � z/ of the operator ‚ satisfies (with " D 1 and n replaced
by nC 1) (3-16), (3-17), and (3-41), the hypotheses of Proposition 3.3 are satisfied, and (3-44) gives that
kS‚hkLp0 .Rn/ � CkhkLp0 .Rn/. The estimate claimed in (7-22) now follows from this and (7-25).

Finally, consider the claim made in (7-23). For starters, observe that

0�AGN �AG in Rn; for each N 2 N: (7-27)

Also,

kAGkLp.Rn/ D kS‚gkLp.Rn/; (7-28)

where now the operator ‚ is taken to be

.‚g/.y; t/ WD

Z
Rn
t@t .P

�
t .y � z//g.z/ dz for all .y; t/ 2 RnC1

C
: (7-29)

Since its kernel �.y; t I z/ WD t@t .P�t .y � z// once again satisfies (with "D 1 and n replaced by nC 1)
(3-16), (3-17), and (3-41), Proposition 3.3 applies and (3-44) guarantees that kS‚gkLp.Rn/�CkgkLp.Rn/.
Together with (7-28), this shows that

AG 2 Lp.Rn/: (7-30)

In particular, there exists a Lebesgue-measurable set E � Rn satisfying

L n.E/D 0 and .AG/.x/ <C1 for each x 2 Rn nE: (7-31)

For each fixed x 2 Rn nE, we have

.A.G �GN //.x/D
�Z

��.x/

1
R
nC1
C
nDN

.y; t/jG.y; t/j2
dy dt

tnC1

�1
2

; (7-32)

and the fact that .AG/.x/ <C1 implies that

0� 1
R
nC1
C
nDN
jGj � jGj 2 L2

�
��.x/;

dy dt

tnC1

�
: (7-33)

Since, clearly, 1
R
nC1
C
nDN
jGj converges pointwise to zero as N !1, Lebesgue’s dominated convergence

theorem applies and gives that .A.G�GN //.x/!0 asN!1. With this in hand, one more application of
Lebesgue’s dominated convergence theorem (bearing in mind (7-30), (7-27), and the fact that L n.E/D 0)
proves (7-23). This completes the proof of Lemma 7.1. �

Having disposed of Lemma 7.1, we now proceed to show that the ABMO-H 1 duality pairing is compatible
with integral pairing for dual Lebesgue spaces, as made precise in the next lemma. As a preamble, we
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recall the specific nature of the duality pairing h � ; � i between ABMO.Rn/ and H 1.Rn/. Concretely, [Stein
1993, Theorem 1, p. 142] gives that for each r 2 .1;1�

hŒf �; gi D

Z
Rn
fg dL n for all f 2 BMO.Rn/; for all g 2H 1;r

fin .R
n/; (7-34)

which further implies that whenever f 2 BMO.Rn/, g 2H 1.Rn/, and fgN gN2N �H
1;r
fin .R

n/ is such
that limN!1 gN D g in H 1.Rn/, then

lim
N!1

Z
Rn
fgN dL n exists and equals hŒf �; gi: (7-35)

As a consequence, whenever f 2 BMO.Rn/, and g 2 H 1.Rn/ may be written as g D
P
j2N�jaj in

H 1.Rn/ for a numerical sequence f�j gj2N satisfying
P
j2N j�j j <1 and with each aj a .1; r/-atom,

we may write

hŒf �; gi D

1X
jD1

�j

Z
Rn
faj dL n: (7-36)

Lemma 7.2. Consider f 2 BMO.Rn/\Lp
0

.Rn/ and g 2H 1.Rn/\Lp.Rn/, where p; p0 2 .1;1/ are
such that 1=pC 1=p0 D 1. Then, with h � ; � i denoting the ABMO-H 1 duality bracket, one has

hŒf �; gi D

Z
Rn
fg dL n: (7-37)

Proof. Having picked r 2 Œp;1/, Lemma 7.1 guarantees the existence of a sequence fgN gN2N �

H
1;r
fin .R

n/ such that limN!1 gN D g both in H 1.Rn/ and in Lp.Rn/. Then, thanks to (7-35) and the
Lp-Lp

0

duality, we have

hŒf �; gi D lim
N!1

Z
Rn
fgN dL n

D

Z
Rn
fg dL n; (7-38)

which establishes (7-37). �

Recall from [García-Cuerva and Rubio de Francia 1985, Theorem 5.30, p. 307] that

.H q.Rn//� D PC �.Rn/=�;
n

nC 1
< q < 1; �D n

�
1

q
� 1

�
2 .0; 1/: (7-39)

The manner in which the Hölder–Hardy duality is understood in (7-39) is similar to (7-34)–(7-35).
Specifically, with . � ; � / denoting the said Hölder–Hardy duality bracket, q; � as in (7-39), and with
r 2 .1;1� fixed, we have

.Œf �; g/D

Z
Rn
fg dL n for all f 2 PC �.Rn/; for all g 2H q;r

fin .R
n/: (7-40)

This further implies that whenever f 2 PC �.Rn/, g 2H q.Rn/, and fgN gN2N �H
q;r
fin .R

n/ is such that
limN!1 gN D g in H q.Rn/, then

lim
N!1

Z
Rn
fgN dL n exists and equals .Œf �; g/: (7-41)
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In particular, whenever f 2 PC �.Rn/, and g 2H q.Rn/ may be written as g D
P
j2N �jaj in H q.Rn/

for a numerical sequence f�j gj2N satisfying
P
j2N j�j j

q <1 and with each aj a .q; r/-atom, we have

.Œf �; g/D

1X
jD1

�j

Z
Rn
faj dL n: (7-42)

In a parallel fashion to Lemma 7.2 we have the following compatibility result.

Lemma 7.3. Suppose f 2 PC �.Rn/\Lp
0

.Rn/ and g 2H q.Rn/\Lp.Rn/, where p; p0 2 .1;1/ are such
that 1=pC 1=p0 D 1, while q 2 .n=.nC 1/; 1/ and �D n.1=q � 1/ 2 .0; 1/. Then, with . � ; � / denoting
the PC �=�-H q duality bracket, there holds

.Œf �; g/D

Z
Rn
fg dL n: (7-43)

Proof. Choose some r 2 Œp;1/. From Lemma 7.1 we then know that there exists a sequence fgN gN2N�

H
q;r
fin .R

n/ such that limN!1 gN D g both in H q.Rn/ and in Lp.Rn/. By virtue of (7-41) and the
Lp-Lp

0

duality we may then write

.Œf �; g/D lim
N!1

Z
Rn
fgN dL n

D

Z
Rn
fg dL n; (7-44)

which proves (7-43). �

There is another compatibility result, discussed in the next lemma, which is going to be relevant for us
shortly.

Lemma 7.4. Suppose f 2 PC �.Rn/\BMO.Rn/ and g 2H q.Rn/\H 1.Rn/ where q 2 .n=.nC 1/; 1/
and � 2 .0; 1/ are related via � D n.1=q � 1/. Then, with . � ; � / and h � ; � i denoting, respectively, the
PC �=�-H q and ABMO-H 1 duality brackets, there holds

.Œf �; g/D hŒf �; gi: (7-45)

Proof. Fix some r 2 .1;1/ and once again invoke Lemma 7.1 to produce a sequence fgN gN2N �

H
q;r
fin .R

n/ such that limN!1 gN D g both in H 1.Rn/ and in H q.Rn/. Then

.Œf �; g/D lim
N!1

Z
Rn
fgN dL n

D hŒf �; gi; (7-46)

where the first equality is provided by (7-41) and the second equality is given by (7-35). �

Finally, we record a compatibility result for the Hölder–Hardy duality bracket considered for two
choices of the parameters involved in the definitions of these spaces.

Lemma 7.5. Assume f 2 PC �1.Rn/\ PC �2.Rn/ and g 2H q1.Rn/\H q2.Rn/, where qj 2 .n=.nC1/; 1/
and �j 2 .0; 1/ are related via �j D n.1=qj � 1/ for j D 1; 2. Then, if for each j D 1; 2 one denotes by
. � ; � /j the PC �j =�-H qj duality bracket, there holds

.Œf �; g/1 D .Œf �; g/2: (7-47)
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Proof. Pick some r 2 .1;1/ and introduce q WDminfq1; q2g. By once more invoking Lemma 7.1, we can
find a sequence fgN gN2N �H

q;r
fin .R

n/ such that limN!1 gN D g both in H q1.Rn/ and in H q2.Rn/.
Bearing in mind that each gN belongs to both H q1;r

fin .Rn/ and H q2;r
fin .Rn/, see (7-4), we may write

.Œf �; g/1 D lim
N!1

Z
Rn
fgN dL n

D .Œf �; g/2; (7-48)

where both equalities are implied by (7-40). �

In the proposition below we elaborate on a standard duality procedure according to which one associates
a certain bounded mapping on BMO with any given Calderón–Zygmund operator which annihilates
constants; see, e.g., [Meyer 1990, Corollaire, p. 239; Stein 1993, p. 156; Fefferman and Stein 1972,
Corollary 2, p. 151]. The goal is to prove that the mappings induced by such a Calderón–Zygmund
operator on a variety of spaces (Lebesgue, Hardy, BMO, Hölder) are all compatible with one another,
and to provide norm estimates in cases of interest. To state this result in precise terms, recall that the
class SCZ.n; / was introduced in Definition 1.12.

Proposition 7.6. Fix n 2 N,  2 .0; 1�, and let T 2 SCZ.n; / satisfy T .1/ D 0. Then the following
statements are true.

(i) For each p 2 Œ2;1/ the operator T, originally considered on Lp.Rn/\L2.Rn/, extends uniquely to
a linear and bounded mapping

T W Lp.Rn/! Lp.Rn/: (7-49)

Moreover, the operators defined as above for any two arbitrary choices of p in Œ2;1/ act in a compatible
fashion with one another.

(ii) For each p0 2 .1; 2� the operator T>, originally considered on Lp
0

.Rn/\L2.Rn/, extends uniquely
to a linear and bounded mapping

T> W Lp
0

.Rn/! Lp
0

.Rn/: (7-50)

Moreover, the operators defined as above for any two arbitrary choices of p0 in .1; 2� act in a compatible
fashion with one another, and whenever p 2 Œ2;1/ and p0 2 .1; 2� are such that 1=pC 1=p0 D 1, the
transpose of (7-49) is precisely (7-50).

(iii) The operator (7-50) further extends uniquely to a well-defined, linear and bounded mapping in the
context of Hardy spaces. Specifically, whenever n=.nC / < q � 1, there exists a unique linear and
bounded operator

T> WH q.Rn/!H q.Rn/; (7-51)

which acts in a compatible fashion with (7-50). Moreover, the operators in (7-51), considered for two
arbitrary choices of q, are compatible with one another. Also, for each p 2 Œ2;1/ there exist � 2 .0; 1/
and c 2 .0;1/ depending only on n; ; q; p such that, with C 00 as in (1-77),

kT>kB.Hq.Rn// � ckT k
1��
B.Lp.Rn//.C

00
CkT kB.Lp.Rn///

� : (7-52)



THE BMO-DIRICHLET PROBLEM AND QUANTITATIVE CHARACTERIZATIONS OF VMO 699

(iv) The operator
zT WABMO.Rn/!ABMO.Rn/; (7-53)

defined by setting (with h � ; � i denoting the ABMO-H 1 duality pairing)

h zT Œf �; gi WD hŒf �; T>gi for all Œf � 2ABMO.Rn/; for all g 2H 1.Rn/; (7-54)

is well-defined, linear, bounded, and compatible with (7-49) in the sense that for each p 2 Œ2;1/ one has

zT Œf �D ŒTf � for all f 2 BMO.Rn/\Lp.Rn/: (7-55)

Moreover, for each p 2 Œ2;1/ there exist � 2 .0; 1/ and c 2 .0;1/ depending only on n; ; p such that,
with C 00 as in (1-77),

k zT k
B.eBMO.Rn// � ckT k

1��
B.Lp.Rn//.C

00
CkT kB.Lp.Rn///

� : (7-56)

(v) Given any � 2 .0; /, the operatorbT W PC �.Rn/=� ! PC �.Rn/=�; (7-57)

defined by setting, with q WD n=.nC�/2 .n=.nC/; 1/ and . � ; � / denoting the PC �=�-H q duality pairing,

.bT Œf �; g/ WD .Œf �; T>g/ for all Œf � 2 PC �.Rn/=�; for all g 2H q.Rn/; (7-58)

is well-defined, linear, bounded, and compatible with (7-49) and (7-53), in the sense that for each
p 2 Œ2;1/ one has bT Œf �D ŒTf � for all f 2 PC �.Rn/\Lp.Rn/; (7-59)bT Œf �D zT Œf � for all f 2 PC �.Rn/\BMO.Rn/: (7-60)

In addition, the operators in (7-57), considered for two arbitrary choices of �, are also compatible with
one another.

Of course, if actually T 2 CZ.n; / then we may take p; p0 2 .1;1/ arbitrary (retaining condition
1=pC 1=p0 D 1 in the second part of item (ii) though) throughout the statement of Proposition 7.6.

Proof of Proposition 7.6. Working with T> which, by design, is a bounded operator on L2.Rn/ and
whose kernel K> 2L1loc.R

n�Rn ndiag/ has the property that there exist C 0K ; C
00
K 2 .0;1/ such that, for

every x; y 2 Rn with x 6D y and each z 2 Rn with jx� zj< 1
2
jx�yj,

jK>.x; y/j �
C 0K
jx�yjn

and jK>.y; x/�K>.y; z/j � C 00K
jx� zj

jx�yjnC
; (7-61)

and relying on the Calderón–Zygmund lemma in the usual fashion, it follows that T> induces a well-
defined linear and bounded mapping

T> W L1.Rn/! L1;1.Rn/: (7-62)

Hence, via Marcinkiewicz’s interpolation theorem, we conclude that T> W L2.Rn/! L2.Rn/ has a
unique extension to a linear and bounded operator from Lp

0

.Rn/ into itself for each p0 2 .1; 2�. From
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[Rudin 1987, Theorem 1.17, p.15] it follows that

given p1; p2 2 .1;1/ and f 2 Lp1.Rn/\Lp2.Rn/, there exists a
sequence fsj gj2N of simple functions in Rn which converges

to f simultaneously in Lp1.Rn/ and in Lp2.Rn/.
(7-63)

In turn, this readily implies that the operators in (7-50), considered for any two arbitrary choices of p0 in
.1; 2�, act in a compatible fashion with one another. Consider next p 2 Œ2;1/ such that 1=pC 1=p0 D 1.
Since for each f 2 Lp.Rn/\L2.Rn/ and g 2 Lp

0

.Rn/\L2.Rn/ we may estimateˇ̌̌̌Z
Rn
.Tf /g dL n

ˇ̌̌̌
D

ˇ̌̌̌Z
Rn
f .T>g/ dL n

ˇ̌̌̌
� kf kLp.Rn/kT

>gkLp0 .Rn/

� Ckf kLp.Rn/kgkLp0 .Rn/; (7-64)

and since, generally speaking,

if h 2 L2.Rn/ then khkLp.Rn/ D sup
g2Lp

0
.Rn/\L2.Rn/

kgk
Lp
0
.Rn/
�1

ˇ̌̌̌Z
Rn
hg dL n

ˇ̌̌̌
; (7-65)

we conclude that there exists C 2 .0;1/ such that kTf kLp.Rn/ � Ckf kLp.Rn/ for every function
f 2Lp.Rn/\L2.Rn/. By density it follows that T , originally considered on Lp.Rn/\L2.Rn/, extends
uniquely to a linear and bounded mapping as in (7-49). By once again appealing to (7-63) we see that the
operators in (7-49), considered for any two arbitrary choices of p in Œ2;1/, act in a compatible fashion
with one another. Finally, granted the continuity properties established above, the identityZ

Rn
.Tf /g dL n

D

Z
Rn
f .T>g/ dL n; f 2 Lp.Rn/\L2.Rn/; g 2 Lp

0

.Rn/\L2.Rn/; (7-66)

further extends by density toZ
Rn
.Tf /g dL n

D

Z
Rn
f .T>g/ dL n for all f 2 Lp.Rn/; for all g 2 Lp

0

.Rn/; (7-67)

where T is as in (7-49) and T> is as in (7-50). This finishes the proofs of the claims in items (i)–(ii).
Consider next the claims made in item (iii). Throughout, fix an exponent p0 2 .1; 2�, set p WD

p0=.p0� 1/ 2 Œ2;1/, take r 2 .p0;1/, and pick q 2 .n=.nC /; 1� arbitrary. Since these choices give
.nC /=n� 1=p0 > 1=q� 1=p0, it is possible to select

� 2 .0; 1/ such that .nC /=n� 1=p0 > .1=q� 1=p0/=�: (7-68)

We first claim that

for each .q; r/-atom a in Rn we have T>a 2H q.Rn/ and
kT>akHq.Rn/ � C WD ckT k

1��
B.Lp.Rn//.C

00
K CkT kB.Lp.Rn///

� ;
(7-69)

where c 2 .0;1/ depends only on n; ; q; p, and where C 00K is as in (7-61). To see that this is the
case, fix some .q; r/-atom a as in (7-3) and observe that, since a 2 Lp

0

.Rn/, the function m WD T>a is
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meaningfully defined, see (7-50), and satisfies, thanks to (7-50),

kmkLp0 .Rn/ � kT
>
kB.Lp0 .Rn//kakLp0 .Rn/ � kT kB.Lp.Rn//jQj

1
p0
� 1
q : (7-70)

In addition, the vanishing-moment condition of the atom, in concert with the second estimate for the
kernel K> of T> in (7-61) and the size estimate for the atom, yield the decay property

jm.x/j �
cnC

00
K`.Q/



jx� xQjnC
jQj1�

1
q for each x 2 Rn n .2Q/; (7-71)

where cn 2 .0;1/ is a purely dimensional constant and C 00K is as in (7-61). Let us also observe that since
any .q; r/-atom is a multiple of some .1; r/-atom, we have that a 2H 1.Rn/. Granted this, from (1-78)
and the fact that T .1/D 0 we conclude that, see (1-79),

m 2 L1.Rn/ and
Z

Rn
m.x/ dx D 0: (7-72)

In turn, from the estimates recorded in (7-70)–(7-71) one may readily check that if we now introduce
b WD .1=q� 1=p0/=� 2 .1=q� 1=p0;1/ we have

kmk1��
Lp
0
.Rn/

j � �xQjnbm�Lp0 .Rnn2Q/ � ckT k1��B.Lp.Rn//.C
00
K/
� ; (7-73)

kmk1��
Lp
0
.Rn/

j � �xQjnbm�Lp0 .2Q/ � ckT kB.Lp.Rn//; (7-74)

where c 2 .0;1/ depends only on n; ; q; p, and where C 00K is as in (7-61). In the language of [García-
Cuerva and Rubio de Francia 1985, Definition 7.13, p. 328], (7-72)–(7-74) amount to saying that m is
a .q; p0; b/-molecule centered at xQ. Having established this, we may invoke [loc. cit., Theorem 7.16,
p. 330] to conclude that m 2H q.Rn/ and kmkHq.Rn/ � ckT k

1��
B.Lp.Rn//

.C 00K CkT kB.Lp.Rn///
� . This

proves (7-69).
We next claim that

for each given g 2 Lp
0

.Rn/\H q.Rn/, the function T>g, originally regarded in Lp
0

.Rn/ by
considering the operator T> as in (7-50), actually belongs to H q.Rn/ and satisfies the

estimate kT>gkHq.Rn/ � CkgkHq.Rn/ with C of the same format as in (7-69).
(7-75)

With this goal in mind, from (7-12)–(7-14) and items (a)–(c) in the proof of Lemma 7.1 we conclude that
there exist a constant c D cn;p;q;r 2 .0;1/, along with .q; r/-atoms faj gj2N and numbers f�j gj2N, such
that �X

j2N

j�j j
q

�1
q

� ckgkHq.Rn/; (7-76)

and if

gN WD

NX
jD1

�jaj for each N 2 N (7-77)

then
lim
N!1

gN D g both in H q.Rn/ and in Lp
0

.Rn/: (7-78)
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Note that whenever N;M 2 N are such that N <M , we may rely on (7-69) to conclude that

T>gN ; T
>gM 2H

q.Rn/ and kT>gN �T
>gMkHq.Rn/ � C

� MX
jDNC1

j�j j
q

�1
q

: (7-79)

Given that f�j gj2N 2 `
q , this proves that the sequence fT>gN gN2N is Cauchy in H q.Rn/. Since the

latter is a quasi-Banach space, it follows that there exists some h2H q.Rn/ such that limN!1 T>gN Dh
in H q.Rn/. On the other hand, from (7-78) and (7-50) we conclude that limN!1 T>gN D T>g in
Lp
0

.Rn/. Hence, necessarily, T>g D h as distributions in Rn. This goes to show that T>g 2H q.Rn/,
and we may also estimate

kT>gkHq.Rn/ D khkHq.Rn/ D lim
N!1

kT>gN kHq.Rn/

� C lim sup
N!1

� NX
jD1

j�j j
q

�1
q

D C

� 1X
jD1

j�j j
q

�1
q

� CkgkHq.Rn/; (7-80)

where the constant C has the same format as in (7-69). Above, the second equality uses the fact that
k�kHq.Rn/ is a q-norm which defines the topology onH q.Rn/, the subsequent inequality is a consequence
of (7-77), (7-69), and the subadditivity of k � kq

Hq.Rn/
, while the last inequality comes from (7-76). This

finishes the proof of (7-75).
Moving on, consider now an arbitrary g 2H q.Rn/. Since Lp

0

.Rn/\H q.Rn/ is dense in H q.Rn/,
there exists a sequence fgj gj2N�L

p0.Rn/\H q.Rn/ such that limj!1 gj D g inH q.Rn/. From (7-75)
it follows that fT>gj gj2N is Cauchy in H q.Rn/. Define T>g to be the limit of fT>gj gj2N in H q.Rn/.
By interlacing sequences, it may shown that the limit defining T>g does not depend on the actual choice
of the sequence fgj gj2N. In turn, this implies that T> WH q.Rn/!H q.Rn/ is well-defined, linear, and
compatible with the action of T> on Lp

0

.Rn/. To see that the operator just defined is also bounded, if g
and fgj gj2N are as before, write

kT>gkHq.Rn/ D lim
j!1

kT>gj kHq.Rn/ � C lim sup
j!1

kgj kHq.Rn/ D CkgkHq.Rn/; (7-81)

where the constant C has the same format as in (7-69). In (7-81), we have used the definition of T> on
H q.Rn/, the fact that limj!1 gj D g in H q.Rn/, the estimate in (7-75), and the fact that k � kHq.Rn/ is
a q-norm which defines the topology on H q.Rn/ (in the first and last equalities in (7-81)).

In summary, for each q 2 .n=.nC/; 1�, we have succeeded in producing a linear and bounded operator
T> W H q.Rn/! H q.Rn/ which acts in a compatible fashion with T> in (7-50) and which satisfies
the estimate in (7-52). It remains to show that these newly produced operators are also compatible
with one another as q varies through .n=.n C /; 1�. To this end, fix q1; q2 2 .n=.n C /; 1� and
consider some arbitrary g 2H q1.Rn/\H q2.Rn/. Also, fix p0 2 .1; 2�, choose r 2 .1;1/ with r � p0,
and set s WD minfq1; q2g. Then Lemma 7.1 ensures that there exists some sequence fgN gN2N �

H
s;r
fin .R

n/�Lp
0

.Rn/ which converges to g both inH q1.Rn/ and inH q2.Rn/. Then, with T> considered
in the sense of (7-50), the sequence fT>gN gN2N converges both in H q1.Rn/ and in H q2.Rn/. In
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light of the manner in which the extension to Hardy spaces has been defined earlier, this shows that
the operator T> W H q1.Rn/ ! H q1.Rn/ acting on g, viewed in H q1.Rn/, agrees with the operator
T> WH q2.Rn/!H q2.Rn/ acting on g now viewed as a distribution in H q2.Rn/. This concludes the
justification of the claims made in item (iii).

Going further, the well-definedness, linearity, and boundedness of T> in (7-51), together with Feffer-
man’s basic duality result .H 1.Rn//� DABMO.Rn/, ensure that zT defined as in (7-54) is a well-defined,
linear and bounded operator in the context of (7-53). To prove the compatibility condition described in
(7-55), fix some p 2 Œ2;1/ along with an arbitrary function f 2BMO.Rn/\Lp.Rn/. Then, if p0 2 .1; 2�
is such that 1=pC 1=p0 D 1, for each function g 2H 1.Rn/\Lp

0

.Rn/ we may compute

h zT Œf �; gi D hŒf �; T>gi D

Z
Rn
f .T>g/ dL n

D

Z
Rn
.Tf /g dL n: (7-82)

Above, the first equality is simply (7-54), the second equality is implied by the fact that T>g 2H 1.Rn/\

Lp
0

.Rn/ (see (7-50), (7-51)) and Lemma 7.2, while the last equality is seen from the fact that the
adjoint of (7-49) is (7-50). Let us now select a representative h 2 BMO.Rn/ of the equivalence class
zT Œf � 2ABMO.Rn/, and specialize (7-82) to the case when g is a .1; r/-atom for some r 2 .1;1/. On
account of (7-34), this yieldsZ

Rn
ha dL n

D

Z
Rn
.Tf /a dL n for each .1; r/-atom a: (7-83)

It is not difficult to see that, generally speaking,

if q 2 .n=.nC 1/; 1� and r; r 0 2 Œ1;1� are such that 1=r C 1=r 0 D 1 and q < r ,
then a function � 2 Lr

0

loc.R
n/ satisfying

R
Rn
� a dL n D 0 for

each .q; r/-atom a is necessarily constant in Rn.
(7-84)

This may be seen by considering scalar multiples of .q; r/-atoms of the form

aD 1B.x;R/=L n.B.x;R//� 1B.0;1/=L n.B.0; 1//; (7-85)

with x 2 Rn and R > 0 arbitrary, then letting R! 0C and invoking Lebesgue’s differentiation theorem.
In concert, (7-83) and (7-84) then prove that h and Tf differ by a constant. Hence, zT Œf �D Œh�D ŒTf �,
finishing the proof of (7-55). Finally, the estimate recorded in (7-56) is obtained by noting that (7-54)
and the quantitative aspect of the ABMO-H 1 duality yield

k zT k
B.eBMO.Rn// � cnkT

>
kB.H1.Rn//; (7-86)

and then combining this with (7-52) (used here with q D 1).
Moving on, from the well-definedness, linearity, and boundedness of T> in (7-51), together with

the duality result recorded in (7-39) we conclude that bT defined in (7-58) is a well-defined, linear and
bounded operator in the context of (7-57). Next, the compatibility condition (7-59) is proved much like
(7-55), this time making use of Lemma 7.3 instead of Lemma 7.2.
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Consider next the compatibility condition in (7-60). With this in mind, select an arbitrary function
f 2 PC �.Rn/\BMO.Rn/. Then for each g 2H 1.Rn/\H q.Rn/ we have

.bT Œf �; g/D .Œf �; T>g/D hŒf �; T>gi D h zT Œf �; gi: (7-87)

Here, the first equality is based on (7-58), the second equality takes into account the fact that T>g 2
H 1.Rn/\H q.Rn/, see (7-51), and uses Lemma 7.4, whereas the last equality is implied by (7-51) and
(7-54). Pick a representative Qh of zT Œf � 2ABMO.Rn/ along with a representative Oh of bT Œf � 2 PC �.Rn/=�.
If we now fix r 2 .1;1/ and specialize the equality of the most extreme sides of (7-87) to the case when
g is an arbitrary .q; r/-atom we arrive at the conclusion thatZ

Rn

Oha dL n
D

Z
Rn

Qha dL n for each .q; r/-atom a. (7-88)

On account of this and (7-84) we may then conclude that the functions Oh and Qh differ by a constant, which
ultimately goes to show that (7-60) holds.

At this stage, it remains to prove that the operators in (7-57) considered for two arbitrary choices of the
smoothness parameter are compatible with one another. To this end, pick arbitrary f 2 PC �1.Rn/\ PC �2.Rn/
and g 2H q1.Rn/\H q2.Rn/, where qj 2 .n=.nC1/; 1/ and �j 2 .0; 1/ are related via �j D n.1=qj �1/
for j D 1; 2. For each j D 1; 2, we agree to denote the PC �j =�-H qj duality bracket by . � ; � /j . Then

.bT Œf �; g/1 D .Œf �; T>g/1 D .Œf �; T>g/2 D .bT Œf �; g/2; (7-89)

where the first and last equalities are based on (7-58), while the middle equality is a consequence of
Lemma 7.5. Specializing the coincidence of the most extreme terms in (7-89) to the case when g is a
.q; r/-atom for some r 2 .1;1/ and q WDminfq1; q2g then yields, on account of (7-40),Z

Rn
h1a dL n

D

Z
Rn
h2a dL n for each .q; r/-atom a; (7-90)

where hj 2 PC �j .Rn/ is a representative of bT Œf � 2 PC �j .Rn/=� for j D 1; 2. At this point we invoke
(7-84) to conclude that h1�h2 is constant in Rn, from which the very last claim in Proposition 7.6 follows.
The proof of Proposition 7.6 is therefore complete. �

Having dealt with Proposition 7.6 we are now ready to present the proof of Theorem 1.13.

Proof of Theorem 1.13. Fix n 2 N along with  2 .0; 1� and suppose T 2 SCZ.n; /. Pick � 2 .0; /
arbitrary. By Proposition 7.6, the operator T extends to a bounded linear mapping zT from ABMO.Rn/
into itself and to a bounded linear mapping bT from PC �.Rn/=� into itself. In addition, these extensions
are compatible in the sense of (7-60). From these we deduce that zT maps the linear subspace X WD
. PC �.Rn/=�/\ABMO.Rn/ of ABMO.Rn/ into X . Since zT is continuous on ABMO.Rn/, it follows that zT
maps the closure of X in ABMO.Rn/ linearly and boundedly into itself. Corollary 1.11 tells us that the said
closure is simply AVMO.Rn/, so we ultimately conclude that zT maps AVMO.Rn/ linearly and boundedly
into itself. Keeping in mind that the action of zT in this setting is compatible with that of the original
operator T, see (7-55), the desired conclusion follows. �
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Theorem 1.13 is the main ingredient in the proof of Theorem 1.14, discussed next.

Proof of Theorem 1.14. According to [Meyer 1990, §9], see also [Meyer 1985, Theorem 5, p. 231],

A 0
CZ WD

[
0<�1

fT 2 CZ.n; / W T .1/D T>.1/D 0g (7-91)

is the largest subalgebra of B.L2.Rn// consisting of Calderón–Zygmund operators in Rn. Since A 0
CZ is

invariant under transposition, we conclude from Proposition 7.6 and Theorem 1.13 that A 0eCZ
is indeed a

subalgebra of B.AVMO.Rn//. �

Next, we present the proof of Theorem 1.15 which, once again, makes essential use of Theorem 1.13.

Proof of Theorem 1.15. Proposition 7.6 ensures that each principal-value convolution-type operator
T‚ associated as in (1-82) with a function ‚ as in (1-115) induces a well-defined linear and bounded
mapping zT‚ on ABMO.Rn/. From Theorem 1.13 we also know that zT‚jVMO, the restriction of zT‚ to
AVMO.Rn/, is a well-defined linear and bounded operator from the space AVMO.Rn/ into itself. Hence,
AfSIO defined in (1-116) is a subset of B.AVMO.Rn//. Proving that AfSIO is actually a commutative
subalgebra of B.AVMO.Rn// requires some preparations.

Regarding the relationship between a kernel ‚ as in (1-115) and its associated symbol m‚ as in (1-84),
two features are particularly significant for us here. First, from (1-86) we know that

if ‚ is as in (1-115), then m‚ given by (1-84) is positive
homogeneous of degree zero and of class C1 in Rn n f0g.

(7-92)

Second, from [Stein 1970, Theorem 6, p. 75], or [Grafakos 2004, Proposition 2.4.7 on p. 128, and
Proposition 4.2.3 on p. 267], it follows that

given any function m 2 C1.Rn n f0g/ which is positive homogeneous of degree zero,
there exist some unique function ‚ as in (1-115) and some unique number c 2 C

such that mD cCm‚
�
actually c D

R
Sn�1 m.!/ d! 2 C

�
.

(7-93)

Consider next two functions ‚1; ‚2 as in (1-115) and associate with them m‚1 , m‚2 as in (1-84).
Since then their productm‚1m‚2 belongs to C1.Rnnf0g/, thanks to (7-92), and is positive homogeneous
of degree zero (given that both m‚1 and m‚2 are), we may invoke (7-93) to conclude that

there exists a function ‚ as in (1-115) with the property that
m‚1m‚2 D cCm‚ in Rn n f0g; where c WD

R
Sn�1 m‚1.!/m‚2.!/ d!:

(7-94)

If F�1
�!x

denotes the inverse Fourier transform (taking functions in the variable � into functions in the
variable x), then for each f 2 L2.Rn/ we may write

.T‚1 ıT‚2/f .x/D F�1�!xŒm‚1.�/m‚2.�/ Of .�/�

D F�1�!xŒ.cCm‚.�// Of .�/�D cf .x/C .T‚f /.x/; x 2 Rn: (7-95)
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Hence, T‚1 ıT‚2 D cI CT‚ as operators from the space L2.Rn/ into itself. Also,

.T‚1 ıT‚2/f .x/D F�1�!xŒm‚1.�/m‚2.�/ Of .�/�

D F�1�!xŒm‚2.�/m‚1.�/ Of .�/�D .T‚2 ıT‚1/f .x/; x 2 RnI (7-96)

thus T‚1 ıT‚2 D T‚2 ıT‚1 on L2.Rn/. In turn, given that H 1.Rn/\L2.Rn/ is dense in L2.Rn/, see
(7-4), and since T‚1 ; T‚2 ; T‚ map H 1.Rn/ into itself boundedly and in a compatible fashion with their
action on L2.Rn/, see Proposition 7.6, we may conclude that

T‚1 ıT‚2 D T‚2 ıT‚1 and T‚1 ıT‚2 D cI CT‚ on H 1.Rn/;

whenever c, ‚ are related to ‚1, ‚2 as in (7-94).
(7-97)

Going further, fix ‚1, ‚2, ‚ as in (1-115). With h � ; � i denoting the ABMO-H 1 duality bracket, from
Proposition 7.6 and (1-82) it follows that T‚1 ; T‚2 ; T‚ induce linear and bounded operators zT‚1 ; zT‚2 ; zT‚
from ABMO.Rn/ into itself according to

h zT‚j Œf �; gi D hŒf �; Tz‚j
gi for all f 2 BMO.Rn/; for all g 2H 1.Rn/; for all j 2 f1; 2g;

and h zT‚Œf �; gi D hŒf �; Tz‚gi for all f 2 BMO.Rn/; for all g 2H 1.Rn/;
(7-98)

where z‚j .x/ WD ‚j .�x/ for j 2 f1; 2g, and z‚.x/ WD ‚.�x/ for each x 2 Rn n f0g. Retaining the
symbol I for the identity operator on ABMO.Rn/, we claim that these extensions satisfy

zT‚1 ı
zT‚2 D

zT‚2 ı
zT‚1 and zT‚1 ı zT‚2 D cI C zT‚ on ABMO.Rn/

provided mz‚1mz‚2 D cCmz‚ in Rn n f0g for some c 2 C.
(7-99)

Indeed, for each f 2 BMO.Rn/ and g 2H 1.Rn/ based on (7-98) and (7-97) (applied to z‚1, z‚2 in place
of ‚1, ‚2) we may write

h zT‚1
zT‚2 Œf �; gi D hŒf �; Tz‚2

Tz‚1
gi D hŒf �; Tz‚1

Tz‚2
gi D h zT‚2

zT‚1 Œf �; gi; (7-100)

which, in view of the fact that ABMO.Rn/ is the dual of H 1.Rn/, establishes the first formula in (7-99).
As regards the second formula in (7-99), for each f 2 BMO.Rn/ and g 2 H 1.Rn/ using (7-98) and
(7-97) (applied to z‚1, z‚2 in place of ‚1, ‚2) we may compute

h zT‚1
zT‚2 Œf �; gi D hŒf �; Tz‚2

Tz‚1
gi D hŒf �; Tz‚1

Tz‚2
gi

D hŒf �; .cI CTz‚/gi D h.cI C
zT‚/Œf �; gi: (7-101)

The third equality above is provided by the second formula in (7-97), written for z‚1, z‚2, z‚ in place
of ‚1, ‚2, ‚ (whose validity is ensured by the assumptions we make on c 2 C and ‚ in (7-99)). By
once again relying on the fact that ABMO.Rn/ is the dual of H 1.Rn/, the second formula in (7-99)
follows from (7-101). Having established (7-99), we may now conclude (with the help of Theorem 1.13)
that AfSIO defined as in (1-116) is a commutative unital subalgebra of the algebra of all linear and
bounded operators from the space AVMO.Rn/ into itself. Also, the fact that if c 2 C and the functions
‚1; : : : ; ‚N ; ‚

0
1; : : : ; ‚

0
N ; ‚ are as in (1-115) and satisfy (1-117) then (1-118) holds is established in a

similar fashion to the second formula in (7-99).
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Consider next the claim made in item (b). For starters, the right-to-left inclusion in (1-119) is
clear from definitions. As regards the opposite inclusion in (1-119), it suffices to show that AfSIO �

spanf zRj jVMOg1�j�n. Since (1-117) holds with c D�1, ‚D 0, and ‚0j D‚j DKj , defined in (1-90),
for each j 2 f1; : : : ; ng, we conclude from (1-117) that

nX
jD1

. zRj jVMO/
2
D�I in B.AVMO.Rn//: (7-102)

In particular, this proves that the identity operator I belongs to the subalgebra spanned by f zRj jVMOg1�j�n

in B.AVMO.Rn//. Keeping this in mind, formula (1-119) is established as soon as we show that

zT‚ 2 spanf zRj jVMOg1�j�n for each ‚ as in (1-115): (7-103)

To this end, fix an arbitrary ‚ as in (1-115). To perform a spherical decomposition of ‚jSn�1 , we bring
in some notation and recall some basic results. Specifically, define the integers

H0 WD 1; H1 WD n; and H` WD
�n�1C`

`

�
�

�nC`�3
`�2

�
if `� 2; (7-104)

and, for each ` 2 N0, let f‰i`g1�i�H` be an orthonormal basis for the space of spherical harmonics of
degree ` on the .n�1/-dimensional sphere Sn�1 in Rn. In particular,

H` � .`C 1/ � .`C 2/ � � � .nC `� 2/ � .nC `� 1/� Cn `
n�1 for `� 2 (7-105)

and, if �Sn�1 denotes the Laplace–Beltrami operator on Sn�1, then for each ` 2 N0 and 1� i �H`,

�Sn�1‰i` D�`.nC `� 2/‰i` on Sn�1;

‰i`.x=jxj/D Pi`.x/=jxj
` for every x 2 Rn n f0g;

(7-106)

for some homogeneous harmonic polynomial Pi` of degree ` in Rn. Also,

f‰i`g`2N0; 1�i�H` is an orthonormal basis for L2.Sn�1/I (7-107)
hence,

k‰i`kL2.Sn�1/ D 1 for each ` 2 N0 and 1� i �H`: (7-108)

More details on these matters may be found in, e.g., [Stein and Weiss 1971, pp. 137–152; Stein 1993,
pp. 68–75]. For further reference let us note here that, having fixed

an even integer d 2 N with d > Œ.nC 1/=2�, (7-109)

Sobolev’s embedding theorem then gives that for each ` 2 N0 and 1� i �H` we have (with I standing
for the identity operator on Sn�1)

k‰i`kC 1.Sn�1/ � Cnk.I ��Sn�1/
d
2‰i`kL2.Sn�1/ � Cn`

d ; (7-110)

where the last inequality is a consequence of (7-106)–(7-108) and, generally speaking,

k‰kC 1.Sn�1/ WD k‰kL1.Sn�1/Ckrtan‰kL1.Sn�1/ for all ‰ 2 C 1.Sn�1/; (7-111)

with rtan denoting the tangential gradient to Sn�1.
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At this stage, observe that ‚jSn�1 2 L
2.Sn�1/; hence we may expand

‚jSn�1 D

1X
`D0

HX̀
iD1

�i`‰i` in L2.Sn�1/; (7-112)

where

�i` WD

Z
Sn�1

‚.!/‰i`.!/ d! for each ` 2 N0 and 1� i �H`. (7-113)

In relation to (7-113) we claim that �i` decays faster than any power of `; i.e.,

for each m 2 N there exists Cm 2 .0;1/ such that
j�i`j � Cm.1C `/

�m for each ` 2 N0 and 1 � i � H`.
(7-114)

Indeed, if `D0, this is immediate from (7-113). In the case when `2N, for eachm2N and i 2f1; : : : ;H`g
we may estimate

j�i`Œ�`.nC `� 2/�
m
j D

ˇ̌̌̌Z
Sn�1

‚.!/Œ�`.nC `� 2/�m‰i`.!/ d!

ˇ̌̌̌
D

ˇ̌̌̌Z
Sn�1

�m
Sn�1

.‚jSn�1/.!/‰i`.!/ d!

ˇ̌̌̌
� k�m

Sn�1
.‚jSn�1/kL2.Sn�1/ DW Cm <C1; (7-115)

thanks to (7-113), the first formula in (7-106), repeated integrations by parts, the Cauchy–Schwarz
inequality, and (7-108) (bearing in mind that the finiteness of Cm above is implied by the smoothness
of ‚). Now (7-114) readily follows from (7-115).

To proceed, we recall a basic formula and make some notational conventions. Concretely, it is well
known, see, e.g., [Stein 1970, Theorem 5, p. 73], that, in general,

if Pk is a harmonic homogeneous polynomial of degree k 2 N in Rn then

F
�

P:V:
Pk.x/

jxjnCk

�
.�/D .�i/k�

n
2

�.k=2/

�..kCn/=2/

Pk.�/

j�jk
; � 2 Rn n f0g:

(7-116)

Also, for each multi-index ˛ D .˛1; : : : ; ˛n/ 2 N0 we abbreviate

R˛ WDR
˛1
1 ı � � � ıR

˛n
n in B.L2.Rn//;

zR˛ WD zR
˛1
1 ı � � � ı

zR˛nn in B.ABMO.Rn//;

. zRjVMO/
˛
WD . zR1jVMO/

˛1 ı � � � ı . zRnjVMO/
˛n in B.AVMO.Rn//;

(7-117)

and then use these abbreviations to define, for each given polynomial P.x/D
P
j˛j�M c˛x

˛ in Rn,

P.R/ WD
X
j˛j�M

c˛R
˛; P. zR/ WD

X
j˛j�M

c˛ zR
˛; and P. zRjVMO/ WD

X
j˛j�M

c˛. zRjVMO/
˛: (7-118)
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For further reference, let us also observe that if A 2 B.ABMO.Rn// is an operator leaving the space
AVMO.Rn/ invariant then AjeVMO.Rn/ 2B.AVMO.Rn// and

kAjeVMO.Rn/kB.eVMO.Rn// � kAkB.eBMO.Rn//: (7-119)

Returning to the mainstream discussion, we claim that, with the polynomials Pi` as in (7-106) and the
�i`’s as in (7-113), we have

�
n
2

NX
`D0

HX̀
iD1

�i`
�.`=2/

�..`Cn/=2/
Pi`. zR/! zT‚ in B.ABMO.Rn// as N !1: (7-120)

Once this is established, we may conclude with the help of (7-117)–(7-119) that the claim in (7-103)
holds. This finishes the proof of (1-119), modulo the justification of (7-120).

To facilitate the proof of (7-120), for each N 2 N introduce

‚N .x/ WD

NX
`D0

HX̀
iD1

�i`
Pi`.x/

jxjnC`
D

NX
`D0

HX̀
iD1

�i`

jxjn
‰i`

�
x

jxj

�
for all x 2 Rn n f0g: (7-121)

Note that (7-113) implies �10 D 0, given the vanishing-moment of ‚ and the fact that ‰10jSn�1 is a
constant (as seen from the second line in (7-106), noting that the polynomial P10 has degree zero). Then
for each N 2 N the function ‚N is as in (1-115). Bearing this in mind, we may rely on (1-84), (7-121),
(7-116), and the fact that each Pi` is a homogeneous harmonic polynomial of degree ` in Rn to write

m‚N .�/D .
3P:V:‚N /.�/D

NX
`D0

HX̀
iD1

�i` F
�

P:V:
Pi`.x/

jxjnC`

�
.�/

D �
n
2

NX
`D0

HX̀
iD1

�i`
�.`=2/

�..`Cn/=2/
Pi`

�
�i

�

j�j

�
for all � 2 Rn n f0g; (7-122)

for each N 2 N. In turn, from (1-88) and (7-122) we see that for each N 2 N and each f 2 L2.Rn/ we
have

2T‚N f Dm‚ Of D �
n
2

NX
`D0

HX̀
iD1

�i`
�.`=2/

�..`Cn/=2/
3Pi`.R/f : (7-123)

Thus, for each N 2 N,

T‚N D �
n
2

NX
`D0

HX̀
iD1

�i`
�.`=2/

�..`Cn/=2/
Pi`.R/ in B.L2.Rn//; (7-124)

which, with the help of Proposition 7.6, eventually permits us to conclude that

zT‚N D �
n
2

NX
`D0

HX̀
iD1

�i`
�.`=2/

�..`Cn/=2/
Pi`. zR/ in B.ABMO.Rn// for each N 2 N: (7-125)
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In view of (7-125) and (7-120), the ultimate goal then becomes proving

zT‚N !
zT‚ in B.ABMO.Rn// as N !1: (7-126)

With this aim in mind, recall from (7-56) (used with p D 2) that there exists � 2 .0; 1/ such that for
each N 2 N we have

k zT‚� zT‚N kB.eBMO.Rn//

D kzT‚�‚N kB.eBMO.Rn//

� CnkT‚�‚N k
1��
B.L2.Rn//

kr‚�r‚N k
�
L1.Sn�1/

CCnkT‚�‚N kB.L2.Rn//; (7-127)

where the last inequality uses the current format of the constant C 00 from (7-56) given in (1-82). Next,
from (1-88) and (1-87) (used with p D 2) we deduce that, for each N 2 N,

kT‚�‚N kB.L2.Rn// � Cnkm‚�‚N kL1.Rn/ � Cnk‚�‚N kL2.Sn�1/: (7-128)

Since (7-121) and (7-112) imply

‚N jSn�1 D

NX
`D0

HX̀
iD1

�i`‰i`!‚jSn�1 in L2.Sn�1/ as N !1; (7-129)

it follows that k‚�‚N kL2.Sn�1/! 0 as N !1. Granted this, (7-126) becomes a consequence of
(7-127) and (7-128) as soon as we establish that

sup
N2N

kr‚N kL1.Sn�1/ <C1: (7-130)

To justify (7-130), fixN 2N arbitrary and observe that since‚N is positive homogeneous of degree�n,
Euler’s formula implies

x � .r‚N /.x/D�n‚N .x/ for all x 2 Rn n f0g: (7-131)

Consequently,

rtan.‚N jSn�1/.x/D .r‚N /.x/� .x � .r‚N /.x//x

D .r‚N /.x/Cn‚N .x/x for each x 2 Sn�1; (7-132)

which, in light of (7-111), further implies

kr‚N kL1.Sn�1/ � nk‚N kC 1.Sn�1/: (7-133)

On the other hand, from (7-121) we know that ‚N D
PN
`D0

PH`
iD1�i`‰i` on Sn�1; hence for each

m 2 N there exists Cm 2 .0;1/ such that

kr‚N kL1.Sn�1/ � nk‚N kC 1.Sn�1/

� n

NX
`D0

HX̀
iD1

j�i`jk‰i`kC 1.Sn�1/ � CmCn

NX
`D0

.1C `/�m`d`n�1; (7-134)
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where the last inequality is based on (7-114), (7-110), and (7-105). Choosing m large enough (depending
on n and d ) so that the partial sums above converge, we ultimately see that

sup
N2N

kr‚N kL1.Sn�1/ � CnCm

1X
`D0

.1C `/�m`d`n�1 <C1; (7-135)

which establishes (7-130). This finishes the proof of (1-119).
To deal with item (c), assume next that ‚ is as in (1-115) and c is as in (1-120). Then

m.�/ WD .cCmz‚.�//
�1 for each � 2 Rn n f0g (7-136)

is a well-defined function, which belongs to C1.Rnnf0g/ and is positive homogeneous of degree zero. As
such, (7-93) guarantees the existence of a function ‚0 as in (1-115) with the property that mD c0Cmz‚0 ,
where c0 WD

R
Sn�1 m.!/ d! 2 C. We claim that

mz‚mz‚0
D .1� cc0/Cm�c z‚0�c0 z‚

: (7-137)

This is seen by expanding m
�c z‚0�c0 z‚

D �cmz‚0
� c0mz‚, then replacing mz‚0 by .c Cmz‚/

�1 � c0

throughout. After some simple algebra, (7-137) follows. By virtue of the second formula in (7-99), the
identity in (7-137) implies

zT‚ ı zT‚0 D .1� cc0/I C
zT
�c z‚0�c0 z‚

D .1� cc0/I � c zTz‚0
� c0 zTz‚ on ABMO.Rn/: (7-138)

The above formula may be recast as

.cI C zT‚/ ı .c0I C zT‚0/D I on ABMO.Rn/: (7-139)

In a similar manner we also obtain

.c0I C zT‚0/ ı .cI C
zT‚/D I on ABMO.Rn/: (7-140)

From (7-139)–(7-140) we conclude that cI C zT‚ is invertible as an operator on ABMO.Rn/, whose inverse
is c0I C zT‚0 2B.ABMO.Rn//. Since both operators map AVMO.Rn/ into itself (see Theorem 1.13), it
follows that c0I C zT‚0 jVMO 2 AfSIO is the inverse of cI C zT‚jVMO. This concludes the treatment of
item (c).

Moving on, the first claim made in item (d), pertaining to the equivalence stated in (1-121), is seen
directly from item (c) (which yields the left-pointing implication), and Theorem 1.13 (which gives the
right-pointing implication). Consider next the second claim made in item (d). To set the stage, pick
N 2 N and assume ‚1; : : : ; ‚N are as in (1-115), while c1; : : : ; cN are as in (1-122). If we set

Q.�/ WD

NX
jD1

jcj Cmz‚j
.�/j2 for each � 2 Rn n f0g; (7-141)

then the present assumptions ensure that Q is a real-valued function which is well-defined, of class C1,
positive homogeneous of degree zero, and never zero in Rn n f0g. As such, if for each j 2 f1; : : : ; N g we
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now introduce

mj .�/ WD
Ncj Cm‚j .�/

Q.�/
D

cj Cmz‚j
.�/

Q.�/
for each � 2 Rn n f0g; (7-142)

where the second equality is a consequence of one of the formulas in (1-86), then each mj is a complex-
valued function which is well-defined, of class C1, and positive homogeneous of degree zero in Rn n f0g.
According to (7-93), these properties guarantee the existence of numbers c0j 2 C and functions ‚0j as in
(1-115) such that

mj D c
0
j Cmz‚0

j

in Rn n f0g for each j 2 f1; : : : ; N g: (7-143)

Since, by design,
PN
jD1mj .�/.cj Cmz‚j

.�//D 1 for each � 2 Rn n f0g, we then conclude that

NX
jD1

.c0j Cmz‚0
j

.�//.cj Cmz‚j
.�//D 1 for each � 2 Rn n f0g (7-144)

or, equivalently,
NX
jD1

mz‚0
j

mz‚j
D cCmz‚ in Rn n f0g; (7-145)

where

c WD

�
1�

NX
jD1

c0j cj

�
2 C and ‚ WD �

NX
jD1

fc0j‚j C cj‚
0
j g is as in (1-115): (7-146)

Similarly to (7-99), from (7-145)–(7-146) we conclude that
NX
jD1

zT‚0j
zT‚j D cI C

zT‚ D

�
1�

NX
jD1

c0j cj

�
I �

NX
jD1

fc0j
zT‚j C cj

zT‚0j g; (7-147)

which, in turn, implies
NX
jD1

.c0j I C
zT‚0j /.cj I C

zT‚j /D I in B.ABMO.Rn//: (7-148)

With this in hand, we may turn to the proof of the equivalence recorded in (1-123) in earnest. The
right-pointing implication is clear from Theorem 1.13. As regards the left-pointing implication, assume
f 2 BMO.Rn/ is such that there exist g1; : : : ; gN 2 VMO.Rn/ with the property that

Œgj �D .cj I C zT‚j /Œf � in ABMO.Rn/ for each j 2 f1; : : : ; N g: (7-149)

Then (7-148) permits us to express Œf � 2ABMO.Rn/ as

Œf �D

NX
jD1

.c0j I C
zT‚0j /.cj I C

zT‚j /Œf �D

NX
jD1

.c0j I C
zT‚0j /Œgj � 2AVMO.Rn/; (7-150)

where the membership above is provided by Theorem 1.13. Ultimately, from (7-150) we conclude that
f 2 VMO.Rn/, finishing the proof of (1-123).
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Finally, the proofs of the claims in item (e) closely parallel those in the scalar case, with minor natural
adjustments of a purely algebraic nature (designed to accommodate the present matrix-formalism). �

In turn, Theorem 1.15 may be specialized as to yield Corollaries 1.16–1.20 as indicated below.

Proof of Corollary 1.16. The strategy is to devise a suitable dictionary between the algebra formalism,
currently used, and the matrix formalism described in item (e) of Theorem 1.15, which is going to yield
(1-127) at once. To get started, fix a linear basis fe1; : : : ; eN g in A, regarded as a vector space. Then we
have a linear isomorphism

A 3 aD

NX
jD1

aj ej 7! aV WD .aj /1�j�N 2 CN (7-151)

identifying algebra elements a 2A with their vector realizations aV 2 CN . We shall also need to identify
each algebra element a 2A with a certain matrix aM 2CN�N. To define this matrix realization, consider
the family of complex numbers �`kj , with 1� `; k; j �N , such that

ej ˇ ek D

NX
`D1

�`kj e` for each j; k 2 f1; : : : ; N g; (7-152)

then set

aM WD

� NX
jD1

�`kjaj

�
1�`;k�N

2 CN�N for all aD
NX
jD1

aj ej 2 A: (7-153)

In relation to these realizations of algebra elements, the following identity holds:

aˇ b D c () aMbV D cV for all a; b; c 2 A: (7-154)

We next claim that

if a 2 A is invertible in A from the right then the matrix aM is invertible in CN�N. (7-155)

To see this, fix a2Awhich has an inverse a�1R 2A from the right, and pick some arbitrary .z1; : : : ; zN /2CN .
Set c WD

PN
`D1z`e` 2 A and consider b WD a�1R ˇ c 2 A. According to (7-154), the fact that aˇ b D c

then translates into aMbV D cV D .z1; : : : ; zN /. Since the latter is an arbitrary vector in CN, this proves
that, as a linear map from CN into itself, the matrix aM is surjective, and hence ultimately, invertible.

Consider next an A-valued kernel ‚ as in (1-125). Then ‚D
PN
jD1‚j ej with each scalar component

‚j as in (1-115) and, by definition and (7-152),

zT‚Œf �D

NX
j;kD1

zT‚j Œfk�ej ˇ ek D

NX
j;k;`D1

�`kj zT‚j Œfk�e` for every f D
NX
kD1

fkek 2 BMO.Rn/˝A:

(7-156)
If we also associate with the A-valued kernel ‚ the matrix-valued kernel ‚M as in (7-153), we may
rewrite (7-156) simply as

. zT‚Œf �/
V
D zT‚M Œf �

V for all f 2 BMO.Rn/˝A: (7-157)
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Since (7-154) also gives

.cˇ Œf �/V D cM Œf �V for all c 2 A; for all f 2 BMO.Rn/˝A; (7-158)

from (7-157)–(7-158) we finally conclude that

..cI C zT‚/Œf �/
V
D .cM C zT‚M /Œf �

V for all c 2 A; for all f 2 BMO.Rn/˝A: (7-159)

It remains to observe that, since .cCmz‚.�//
M D cM Cmz‚M .�/ for each � 2 Rn n f0g, from (7-155)

we have that

if c is as in (1-126) then for each � 2 Rn n f0g

the matrix cM Cmz‚M .�/ is invertible in CN�N .
(7-160)

Then (7-159)–(7-160) ensure that item (e) of Theorem 1.15 applies (with V WD CN ), which proves
(1-127). �

Proof of Corollary 1.17. The complex Riesz transform defined in (1-131) as well as the Beurling transform
(1-91) are principal-value convolution operators of the sort discussed in (1-82). Specifically,

RC D T‚1 with ‚1.z/ WD
z

2�jzj3
for z 2 C n f0g; (7-161)

S D T‚2 with ‚2.z/ WD �
1

�z2
D�

. Nz/2

�jzj4
for z 2 C n f0g: (7-162)

Their associated symbols are given by, see (7-116),

m‚1.�/D .
2P:V:‚1/.�/D�i�=j�j for � 2 C n f0g;

m‚2.�/D .
2P:V:‚2/.�/D . N�/2=j�j2 D N�=� for � 2 C n f0g: (7-163)

Upon observing that for j 2 f1; 2g we have

c 2 C with jcj 6D 1 D) c 2 C n f�mz‚j
.�/ W � 2 C n f0gg; (7-164)

the first part of item (d) in Theorem 1.15 applies and gives that (i), (ii) as well as (i), (iii). This
finishes the proof of Corollary 1.17. �

Proof of Corollary 1.18. The Clifford–Riesz transform defined in (1-135) is a principal-value convolution
operator of form RC` D T‚, where the kernel is the Clifford-algebra-valued function, see the convention
in (1-133),

‚ W Rn n f0g ! C`n given by ‚.x/ WD
�..nC 1/=2/

�.nC1/=2

x

jxjnC1
for x 2 Rn n f0g: (7-165)

Thanks to (7-116), its associated symbol may be explicitly identified as

m‚.�/D .1P:V:‚/.�/D�i�=j�j for � 2 Rn n f0g: (7-166)
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In particular, if c 2 C`n is such that cC i! is invertible in C`n from the right for each vector ! 2 Sn�1 �
Rn ,! C`n, then

cCmz‚.�/ is invertible in C`n from the right for each � 2 Rn n f0g: (7-167)

Granted this, Corollary 1.16 applies with A WD C`n and gives the equivalence in (1-137). �

Proof of Corollary 1.19. The equivalence stated in (1-138) is an immediate consequence of (1-123) (used
with N D n and ‚j WDKj , defined in (1-90), for 1� j � n) upon noting that condition (1-122) presently
reads .c1; : : : ; cn/ 2 Cn n iSn�1. �

Proof of Corollary 1.20. To recast the operator S� in the manner described in (1-153), fix some arbitrary
differential form f 2 L2.Rn/˝ƒ and, starting with (1-144)–(1-145), write (bearing in mind that the
j -th Riesz transform on L2.Rn/ is the multiplier with symbol �i�j =j�j)

bS�f .�/D��
nX

j;kD1

dxj ^

�
dxk _

�
�j �k

j�j2
Of .�/

��
C ��1

nX
j;kD1

dxj _

�
dxk ^

�
�j �k

j�j2
Of .�/

��
: (7-168)

Granted (1-151)–(1-152), we may consider the principal-value distribution P:V: ‚jk associated with ‚jk
as in (1-83). Upon recalling, see [Mitrea 2013, Proposition 4.70, p. 141], that for each pair of indices
j; k 2 f1; : : : ; ng we have (with F used as an alternative notation for the Fourier transform hat in Rn, and
with ı denoting the standard Dirac distribution in Rn)

�j �k

j�j2
D F

�
1

!n�1
.P:V: ‚jk/C

1

n
ıjk ı

�
.�/; (7-169)

for each j; k 2 f1; : : : ; ng we may express

�j �k

j�j2
Of .�/D F

��
1

!n�1
.P:V: ‚jk/C

1

n
ıjk ı

�
�f

�
.�/D F

�
1

!n�1
T‚jkf C

1

n
ıjkf

�
.�/: (7-170)

In turn, from (7-168) and (7-170) we readily conclude that (1-153) holds.
Next, Proposition 7.6 ensures that S� , originally considered as in (1-153), further extends to a well-

defined linear and bounded operator from the space H 1.Rn/˝ƒ into itself. Keeping this in mind, for
each Œf � 2ABMO.Rn/˝ƒ and each g 2H 1.Rn/˝ƒ we may write

hŒf �;S�giD�
�

!n�1

nX
j;kD1

˝
Œf �;dxk^.dxj_.Tz‚jk

g//
˛
C
��1

!n�1

nX
j;kD1

˝
Œf �;dxk_.dxj^.Tz‚jk

g//
˛

�
�

n

nX
jD1

˝
Œf �;dxj^.dxj_g/

˛
C
��1

n

nX
jD1

˝
Œf �;dxj_.dxj^g/

˛
D�

�

!n�1

nX
j;kD1

˝
dxj^.dxk_. zT‚jk Œf �//;g

˛
C
��1

!n�1

nX
j;kD1

˝
dxj_.dxk^. zT‚jk Œf �//;g

˛
�
�

n

nX
jD1

˝
dxj^.dxj_Œf �/;g

˛
C
��1

n

nX
jD1

˝
dxj_.dxj^Œf �/;g

˛
: (7-171)



716 JOSÉ MARÍA MARTELL, DORINA MITREA, IRINA MITREA AND MARIUS MITREA

The first equality above uses z‚jk D‚jk D‚kj , see (1-152), while the second equality is based on the
transposition formula (1-96) and the fact that the interior and exterior product of forms are dual to one
another. On the other hand, since for each Œf � 2ABMO.Rn/˝ƒ and g 2H 1.Rn/˝ƒ we have

h zR^ Œf �; gi D

� nX
jD1

dxj ^ zRj Œf �; g

�
D

nX
jD1

h zRj Œf �; dxj _gi

D �

nX
jD1

hŒf �; dxj _Rjgi D �hŒf �; R_gi; (7-172)

and, similarly,
h zR_ Œf �; gi D �hŒf �; R^gi; (7-173)

from (1-147) and (7-172)–(7-173) we conclude that

h zS� Œf �; gi D hŒf �; S�gi for all Œf � 2ABMO.Rn/˝ƒ; for all g 2H 1.Rn/˝ƒ: (7-174)

At this stage, by comparing (7-171) with (7-174) and keeping in mind the ABMO-H 1 duality, we conclude
that (1-154) holds.

Let us now turn our attention to the equivalences in the last part of the statement of the corollary.
As a preamble, for each ! D .!1; : : : ; !n/ 2 Sn�1, identified with the differential form of degree one
!1 dx1C � � � C!n dxn in Rn, introduce the operators P! ;Q! acting on an arbitrary differential form
u 2ƒ according to

P!u WD ! ^ .! _u/; Q!u WD ! _ .! ^u/: (7-175)

In the same vein, for each � 2 C n f0g and ! 2 Sn�1 let us also set

��;! u WD �! ^uC �
�1! _u for all u 2ƒ: (7-176)

Then, with I denoting the identity operator on ƒ, for each ! 2 Sn�1 and � 2Cnf0g we have, see [Mitrea
et al. 2016a, Lemma 2.2, p. 54],

P!Q! DQ!P! D 0; P! CQ! D I;

P 2! D P! ; Q2! DQ! ; and ��;!��;! D I:
(7-177)

In this notation, it follows from (1-140)–(1-141) that

S� W L
2.Rn/˝ƒ! L2.Rn/˝ƒ acts on each f 2 L2.Rn/˝ƒ

according to S�f .x/D F�1�!x..��P�=j�jC �
�1Q�=j�j/ Of .�// for a.e. x 2 Rn:

(7-178)

Hence, S� is a multiplier operator with symbol given by

m.�/ WD ��P�=j�jC �
�1Q�=j�j 2 Hom.ƒ;ƒ/ for � 2 Rn n f0g: (7-179)

We now claim that

if � 2 C n f0g and c 2 C n f�;���1g then cI Cm.�/ is
invertible in Hom.ƒ;ƒ/ for each � 2 Rn n f0g.

(7-180)
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To see this, assume � and c are as above and fix some � 2 Rn n f0g arbitrary. Then, based on (7-177) it
is easy to see that cI Cm.�/ 2 Hom.ƒ;ƒ/ and cI C ��1P�=j�j� �Q�=j�j 2 Hom.ƒ;ƒ/ commute and
their composition is .c � �/.cC ��1/I. Hence, (7-180) follows. Granted this, we may then conclude
from item (e) of Theorem 1.15 (applied with V WDƒ) that the equivalence (i), (ii) in the last part of
Corollary 1.20 holds.

Likewise, it is visible from (1-149) that

R� W L
2.Rn/˝ƒ! L2.Rn/˝ƒ acts on each f 2 L2.Rn/˝ƒ

according to R�f .x/D �F�1�!x.��; �=j�j Of .�// for a.e. x 2 Rn;
(7-181)

hence R� is a multiplier operator with symbol given by

m.�/ WD ���; �=j�j 2 Hom.ƒ;ƒ/ for � 2 Rn n f0g: (7-182)

Since, thanks to the last formula in (7-177), for each vector � 2 Rn n f0g we may write

.cI ���; �=j�j/.cI C��; �=j�j/D .c
2
� 1/I;

we conclude that
if � 2 C n f0g and c 2 C n f˙1g then cI Cm.�/
is invertible in Hom.ƒ;ƒ/ for each � 2 Rn n f0g.

(7-183)

As such, item (e) of Theorem 1.15 (once again applied with V WDƒ) proves the equivalence (i), (iii) in
the last part of Corollary 1.20. �
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CONVERGENCE OF THE KÄHLER–RICCI ITERATION

TAMÁS DARVAS AND YANIR A. RUBINSTEIN

The Ricci iteration is a discrete analogue of the Ricci flow. According to Perelman, the Ricci flow
converges to a Kähler–Einstein metric whenever one exists, and it has been conjectured that the Ricci
iteration should behave similarly. This article confirms this conjecture. As a special case, this gives a new
method of uniformization of the Riemann sphere.

1. Introduction

Let .M;g1/ be a compact Riemannian manifold. A Ricci iteration is a sequence of metrics fgigi2N on M

satisfying
Ric giC1 D gi ; i 2 N; (1)

where Ric giC1 denotes the Ricci curvature of giC1. One may think of (1) as a dynamical system on
the space of Riemannian metrics on M. Part of the interest in the Ricci iteration is that, clearly, Einstein
metrics are fixed points, and so (1) aims to provide a natural theoretical and numerical approach to
uniformization in the challenging case of positive Ricci curvature (different Ricci iterations can be defined
in the context of nonpositive curvature, but these are typically easier to understand and will not be
discussed here). In essence, the Ricci iteration aims to reduce the Einstein equation to a sequence of
prescribed Ricci curvature equations and can be thought of as a discretization of the Ricci flow. Going back
to [Rubinstein 2007; 2008c], it has been studied since by a number of authors [Berman 2013; Berman et al.
2016a; Cheltsov et al. 2010; Cheltsov and Shramov 2011a; 2011b; Cheltsov and Wilson 2013; Guedj et al.
2013; Jeffres et al. 2016; Keller 2009; Pulemotov and Rubinstein 2016]; see also the survey [Rubinstein
2014, §6.5]. One of the motivations for considering (1) and not simply repeatedly applying the Ricci
tensor (as in [Nadel 1995], see also [Rubinstein 2008a, Remark 4.63]) is the gain of derivatives inherent
in (1) as well as monotonicity of certain functionals. Both of these properties will feature below.

Of particular interest has been the study of the Ricci iteration on Kähler manifolds (for the non-Kähler
case results are scarce, see [Pulemotov and Rubinstein 2016]). When .M; J;g1/ is Kähler, the Calabi–Yau
theorem [Yau 1978] guarantees the existence and uniqueness of the sequence fgigi2N if and only if M is
Fano (i.e., has positive first Chern class c1.M; J/) and the Kähler class associated to g1 is c1.M; J/. Under
a rather restrictive technical assumption, one of us showed that gi converges smoothly to a Kähler–Einstein
metric [Rubinstein 2008c, Theorem 3.3] and made the following general conjecture (see Conjecture 3.2
of the same work):

MSC2010: primary 32Q20; secondary 14J45, 32W20.
Keywords: Ricci iteration, Kähler–Einstein metrics, Fano manifolds.
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Conjecture 1.1. Let .M; J;g1/ be a compact Kähler manifold admitting a Kähler–Einstein metric.
Suppose the Kähler class associated to g1 is c1.M; J/. Then the Ricci iteration (1) converges in the sense
of Cheeger–Gromov to a Kähler–Einstein metric.

Roughly speaking, .M;gk/ converges in the sense of Cheeger–Gromov to a Kähler–Einstein metric
if there exist smooth diffeomorphisms fk WM !M such that f �

k
gk converges smoothly to a Kähler–

Einstein metric. As we will see, our methods will actually produce biholomorphisms fk . For more on
Cheeger–Gromov convergence we refer to [Petersen 2016, Chapter 10].

The best result so far on this conjecture is due to Berman et al. [2016a], who replaced the technical
assumption of [Rubinstein 2008c, Theorem 3.3] concerning Tian’s ˛-invariant by the weaker assumption
of the Mabuchi energy being proper (both of these assumptions imply a Kähler–Einstein metric exists).
Therefore, by a classical result of Tian [1997], Conjecture 1.1 holds if M admits no holomorphic vector
fields. However, the properness assumption is still too restrictive and fails in general. For example,
Conjecture 1.1 is still open even for M D S2, the two-sphere. Furthermore, as recent counterexamples
show [Darvas and Rubinstein 2017], certain key theorems in Kähler geometry that one might naively
expect to generalize in a straightforward manner from the case of no automorphisms require new tools
and ideas when automorphisms are present.

The main result of the present article is the resolution of Conjecture 1.1, and in fact with a stronger
convergence:

Theorem 1.2. Let .M; J;g1/ be a compact Kähler manifold admitting a Kähler–Einstein metric. Suppose
the Kähler class associated to g1 is c1.M; J/ and let fgigi2N be given by (1). Then there exist holomorphic
diffeomorphisms hk such that h�

k
gk converges smoothly to a Kähler–Einstein metric.

A key ingredient in establishing this result is our use of a Finsler metric structure on the space of Kähler
metrics introduced previously by one of us [Darvas 2015]. In this infinite-dimensional geometry, the
automorphisms of X act by isometries. We establish the boundedness of the Ricci iteration with respect
to this Finsler metric, up to automorphisms of X. This is then shown to imply the key a priori estimates
with respect to the stronger C k norms. In fact, we also show a rather stronger result: discretizations of
the Kähler–Ricci flow for any time step converge. This is new even for the case of no automorphisms
considered in [Rubinstein 2008c; Berman et al. 2016a] and resolves a more general conjecture than
Conjecture 1.1; see Theorem 1.6 below.

Uniformization of the two-sphere. As a very special case we obtain the following new method of
uniformization. Fix a conformal class of volume V on S2. As we know, in this class there is a constant
curvature metric, the round one. More precisely, let !c denote the round form of the constant-c Ricci
curvature metric on M D .S2; J/, given locally by

!c D

p
�1

c�

dz ^ d Nz

.1Cjzj2/2
:

Here V D
R

S2 !c D c1.ŒM �/=c D 2=c. Consequently, c D 1
2�

in the case where we restrict the Euclidean
metric of R3 to the unit sphere.
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Let ! be any metric on S2 with
R

S2 ! D V D 2=c. Introduce u0 D 0, and we solve iteratively to find
ui 2 C1.S2/ satisfying

�!ui DR! � 2eui�1 and
Z

S2

eui! D
2

c
; (2)

so that the scalar curvature of !i WD eui! satisfies R!i
D 2eui�1�ui, or equivalently, Ric!i D !i�1.

(In two dimensions, Ric! D 1
2
R!!, where R! is the scalar curvature. If !1 D e�!0, then the scalar

curvatures of these two metrics satisfy

�!0
� �R!0

CR!1
e� D 0:

We note that the conformal factor is often written e2� elsewhere, but this is compensated for here by the
fact that R! D 2K! , where K! is the Gauss curvature.)

Corollary 1.3. We fix c > 0 and let ! be any Kähler form on S2 with
R
X ! D 2=c. We introduce fuig �

C1.S2/ by repeatedly solving the Poisson equation (2). Then, there exist Möbius transformations hi

such that h�i .e
ui!/ converges smoothly to the round metric !c .

Discretization of the Ricci flow. One of the original motivations for introducing the Ricci iteration, going
back to [Rubinstein 2007; 2008c], is its relation to the Ricci flow. Hamilton’s Ricci flow on a Kähler
manifold of definite or zero first Chern class is defined as f!.t/gt2RC satisfying the evolution equation

@!.t/

@t
D�Ric!.t/C�!.t/; t 2 RC;

!.0/D !;

where � is a Kähler class satisfying ��D c1.M; J/ for � 2 f�1; 0; 1g and Œ!�D� [Hamilton 1982].
The following dynamical system is seen to be a discrete version of this flow [Rubinstein 2008c,

Definition 3.1], obtained by a backward Euler discretization with time step � .

Definition 1.4. Let � be a Kähler class satisfying ��D c1.M; J/ for � 2 f�1; 0; 1g. Given a Kähler
form ! with Œ!�D� and a number � > 0, define the time-� Ricci iteration to be the sequence of forms
f!k�gk�0 satisfying the equations

!k� �!.k�1/�

�
D�Ric!k� C�!k� ; k 2 N;

!0 D !:

Let us assume that �D 1 from now on; for the cases � 2 f�1; 0g see [Rubinstein 2008c, Theorem 3.3].
Observe that in the case when � D 1, the time-� Ricci iteration is precisely the Ricci iteration from (1).
Indeed, Conjecture 1.1 is in fact a special case of the following conjecture concerning the time-� Ricci
iteration for any � > 0 [Rubinstein 2008c, Conjecture 3.2].

Conjecture 1.5. Let .M; J/ be a compact Kähler manifold admitting a Kähler–Einstein metric. Let � be
a Kähler class such that �D c1.M; J/. Then for any ! with Œ!�D� and for any � > 0, the time-� Ricci
iteration exists for all k 2 N and converges in the sense of Cheeger–Gromov to a Kähler–Einstein metric.
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The case when � > 1 is treated in [Rubinstein 2008c, Theorem 3.3]. However, it is the case � � 1

that is the most interesting and challenging. The case � D 1 is perhaps the most interesting due to the
simple geometrical interpretation (1), while the cases � < 1 are interesting due to the connection to the
Kähler–Ricci flow. In this regime one may expect the Ricci iteration to converge to the Ricci flow in a
certain scaling limit as �! 0. The cases � � 1 are challenging since the a priori estimates are considerably
harder then. While in the regime � > 1, one has a uniform positive Ricci lower bound along the iteration;
this is no longer true when � � 1. Thus, there is no a priori control on the diameter or the Poincaré
and Sobolev constants. We work around these difficulties by analyzing the Ricci iteration in the metric
geometry of the space of Kähler potentials [Darvas 2015].

In this article, we confirm the more general Conjecture 1.5, and treat the iteration for all time steps �
by proving the following result, of which Theorem 1.2 is a special case.

Theorem 1.6. Let .M; J;g1/ be a compact Kähler manifold admitting a Kähler–Einstein metric. Suppose
the Kähler class associated to g1 is c1.M; J/ and let f!k�gk2N be the time-� Ricci iteration given by
Definition 1.4. Then there exist holomorphic diffeomorphisms hk such that h�

k
!k� converges smoothly to

a Kähler–Einstein form.

2. Energy functionals

Let .M; !/ denote a connected compact closed Kähler manifold. The space of smooth strictly !-
plurisubharmonic functions (Kähler potentials)

H! WD f' 2 C1.M / W !' WD !C
p
�1 @N@' > 0g (3)

can be identified with H�R, where

HD f!' W ' 2 C1.M /; !' > 0g (4)

is the space of all Kähler metrics (or forms) representing the fixed cohomology class Œ!�.
From now on let ! be a Kähler form on M, cohomologous to c1.M; J/. The Aubin–Mabuchi functional

was introduced by Mabuchi [1986, Theorem 2.3],

AM.'/ WD
V �1

nC 1

nX
jD0

Z
M

'!j
^!n�j

' ; (5)

where V WD
R

M !n
' D

R
M !n

' is the total volume of the Kähler class. Integration by parts gives the useful
estimates

1

V

Z
M

.u� v/!n
u � AM.u/�AM.v/�

1

V

Z
M

.u� v/!n
v : (6)

The subspace

H0 WD AM�1.0/\H! (7)

is isomorphic to H (4), the space of Kähler metrics.
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Let f!' 2 C1.M / denote the unique function (called the Ricci potential of !') satisfying

p
�1 @N@f!' D Ric!' �!' ;

1

V

Z
M

ef!'!n
' D 1:

The Ding and Mabuchi functionals are given by [Ding 1988; Mabuchi 1986]

D.'/ WD �AM.'/� log
1

V

Z
M

ef!�'!n;

E.'/ WD
1

V

Z
X

log
!n
'

ef!!n
!n
' �AM.'/C

1

V

Z
M

'!n
' C

1

V

Z
M

f!!
n:

(8)

Notice that these functionals are invariant under addition of constants to '; hence they descend to H.
Additionally, the critical points of these functionals are exactly the Kähler–Einstein metrics.

For ' 2H! with
R

M ef!�'!n D V , Jensen’s inequality for the convex weight t ! t log t yields

Ent.ef!�'!n; !n
'/ WD

1

V

Z
X

log
!n
'

ef!�'!n
!n
' D

1

V

Z
X

!n
'

ef!�'!n
log

!n
'

ef!�'!n
ef!�'!n

� 0: (9)

Thus,

E.!'/�
1

V

Z
M

f!!
n
D Ent.ef!�'!n; !n

'/�AM.'/� �AM.'/DD.!'/:

Moreover, if

D.!'/DE.!'/�
1

V

Z
M

f!!
n

then equality holds in (9). As a result, !n
' D ef!�'!n D ef!'!n

' ; i.e., !' is Kähler–Einstein. This
together with the fact that Kähler–Einstein metrics minimize both D and E allows us to conclude the
following result; see also [Rubinstein 2008b, (24)].

Proposition 2.1. For ' 2H! ,

D.!'/�E.!'/�
1

V

Z
M

f!!
n;

with equality if and only if Ric!' D !' .

3. The metric completion

All of the functionals introduced in the previous section can be extended to the potential space E1

introduced by Guedj and Zeriahi [2007], which can be identified with a natural metric completion of H
[Darvas 2015]. The resulting metric theory provides essential tools for proving our main result concerning
convergence of the Ricci iteration. We briefly recall this machinery, referring to [Darvas and Rubinstein
2017, §4–5] for more details.

Let

PSH.M; !/D f' 2L1.M; !n/ W ' is upper semicontinuous and !' � 0g:
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Following [Guedj and Zeriahi 2007, Definition 1.1] we define the subset of full mass potentials

E.M; !/ WD

�
' 2 PSH.M; !/ W lim

j!�1

Z
f'�jg

.!C
p
�1 @N@maxf'; j g/n D 0

�
:

For each '2E.M; !/, define!n
' WD limj!�1 1f'>jg.!C

p
�1 @N@maxf'; j g/n:By definition, 1f'>jg.x/

is equal to 1 if '.x/ > j and zero otherwise, and the measure .! C
p
�1 @N@maxf'; j g/n is defined

by [Bedford and Taylor 1982] since maxf'; j g is bounded. Consequently, ' 2 E.M; !/ if and only ifR
X !n

' D
R
X !n, justifying the name of E.M; !/.

Next, define a further subset, the space of finite 1-energy potentials

E1 WD

�
' 2 E.M; !/ W

Z
j'j!n

' <1

�
:

Consider the following weak Finsler metric on H! [Darvas 2015]:

k�k' WD V �1

Z
M

j�j!n
' ; � 2 T'H! D C1.M /: (10)

We denote by d1 the associated pseudometric and recall the result alluded to above, characterizing the
d1-metric completion of H! [Darvas 2015, Theorems 2 and 3.5]:

Theorem 3.1. .H! ; d1/ is a metric space whose completion can be identified with .E1; d1/, where

d1.u0;u1/ WD lim
k!1

d1.u0.k/;u1.k//

for any smooth decreasing sequences fui.k/gk2N �H! converging pointwise to ui 2 E1, i D 0; 1.

Also, by [Darvas 2015, Theorem 3], we have the following qualitative estimates for the d1-metric in
terms of analytic quantities:

1

C
d1.u; v/�

Z
M

ju� vj!n
u C

Z
M

ju� vj!n
v � Cd1.u; v/; u; v 2 E1; (11)

where C > 1 only depends on !.
A crucial fact is that the formulas defining the energy functionals discussed in Section 2 actually make

sense on the metric completion E1, and then coincide with the greatest lower semicontinuous extension
of the said functionals restricted to H! [Darvas and Rubinstein 2017, Lemma 5.2, Propositions 5.19
and 5.21]:

Lemma 3.2. (i) AM;D W H! ! R each admit a unique d1-continuous extension to E1 and these
extensions still satisfy (5) and (8) respectively.

(ii) E WH!! R admits a d1-lower semicontinuous extension to E1 and the greatest such extension still
satisfies (8).

Proposition 2.1 was generalized by Berman [2013, Theorem 1.1] to the context of the metric completion
(for a proof using the Ricci iteration see [Darvas 2017, Proposition 4.42]):

Theorem 3.3. Proposition 2.1 holds more generally for all ' 2 E1.
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Let G WD Aut0.M / denote the connected component of the complex Lie group of automorphisms
(biholomorphisms) of M. The automorphism group acts on H by pullback:

f:� WD f ?�; f 2G; � 2H: (12)

Given the one-to-one correspondence between H and H0, recall (7), the group G also acts on H0. The
precise action is described in the next lemma [Darvas and Rubinstein 2017, Lemma 5.8].

Lemma 3.4. For ' 2H0 and f 2G let f:' 2H0 be the unique potential such that f �!' D !f:' . Then,

f:' D f:0C' ıf: (13)

Complementing the above, G acts on H0 by d1-isometries [Darvas and Rubinstein 2017, Lemma 5.9],
which allows us to introduce a natural (pseudo-)metric on the space H0=G:

d1;G.Gu;Gv/D inf
g2G

d1.u;g:v/; u; v 2H0: (14)

4. Metric convergence of the iteration

We consider the � -step Ricci iteration equation
! .kC1/�

�! k�

�
D ! .kC1/�

�Ric! .kC1/�

for � 2 .0; 1�. When � D 1, the iteration simply becomes Ric! kC1
D ! k

. As explained in [Rubinstein
2008c, (33)], on the level of scalars the iteration can be written in the following manner:

!n
 .kC1/�

D ef!�
1
�
 k��.1� 1

�
/ .kC1/�!n; k 2 N; (15)

with the natural normalization

1

V

Z
M

ef!�
1
�
 k��.1� 1

�
/ .kC1/�!n

D 1: (16)

Since � 2 .0; 1�, note that (15)–(16) has a unique solution  .kC1/� 2H! , according to [Aubin 1984; Yau
1978].

In our particular case, there will be special emphasis on working in the geodesically complete potential
space H0, and we introduce accordingly

 0k� WD  k� �AM. k� / 2H0: (17)

First we generalize an inequality of [Rubinstein 2008c] (in the case � D 1) that provides a comparison
of the Ding and Mabuchi energies along the � -iteration:

Proposition 4.1. Suppose � 2 .0; 1� and .M; !/ is a Fano manifold and  1� 2H! . Then the following
estimate holds along the iteration:

E.! .kC1/�
/�

1

V

Z
M

f!!
n
�

1

�
D.! k�

/C

�
1�

1

�

�
D.! .kC1/� / for all k 2 N: (18)
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In the argument below (and thereafter) we will suppress the parameter � from superscripts whenever
this will cause no confusion.

Proof. Using (8) and (15),

E.! kC1
/�

1

V

Z
M

f!!
n
D

1

V

Z
X

log
!n
 kC1

ef!!n
!n
 kC1

�AM. kC1/C
1

V

Z
M

 kC1!
n
 kC1

D�
1

V

Z
M

�
1

�
 kC

�
1�

1

�

�
 kC1

�
!n
 kC1

�AM. kC1/C
1

V

Z
M

 kC1!
n
 kC1

D
1

�V

Z
M

. kC1� k/!
n
 kC1

�AM. kC1/:

Using this identity, to finish the proof, we notice that it is enough to prove the following two inequalities
(and later add them up):

1

�V

Z
M

. kC1� k/!
n
 kC1

�AM. kC1/� �
1

�
AM. k/�

�
1�

1

�

�
AM. kC1/; (19)

0� �
1

�
log
�

1

V

Z
M

ef!� k!n

�
�

�
1�

1

�

�
log
�

1

V

Z
M

ef!� kC1!n

�
: (20)

Notice that, after rearranging terms, (19) is seen to be equivalent to

1

V

Z
M

. kC1� k/!
n
 kC1

� AM. kC1/�AM. k/:

Thus, (19) follows from (6). To address (20) we prove the following more general claim.

Claim 4.2. For � 2 .0; 1� and g; h 2 C1.X / the following estimate holds:�
1

V

Z
M

ef!�g!n

�1
�
�

1

V

Z
M

ef!�h!n

�1� 1
�

�
1

V

Z
M

ef!�
1
�

g�.1� 1
�
/h!n: (21)

By our choice of normalization (16), this inequality implies (20).

As (21) is seen to be invariant under adding constants to g and h, we can assume that

1

V

Z
M

ef!�h!n
D 1:

In particular, we only have to argue that�
1

V

Z
M

e�gChef!�h!n

�1
�

�
1

V

Z
M

.e�gCh/
1
� ef!�h!n:

This follows from Jensen’s inequality, as the function f .t/D t
1
� is convex for t > 0. �

Next we show that in the case a Kähler–Einstein metric exists, the iteration f 0
k
gk d1-converges up to

pullbacks:



CONVERGENCE OF THE KÄHLER–RICCI ITERATION 729

Proposition 4.3. Let � 2 .0; 1�. Suppose a Kähler–Einstein metric exists in H, and let f k�gk2N be the
solutions of (15). Then there exist gk 2G such that gk : 

0
k�

d1-converges to a Kähler–Einstein potential.

Proof. Proposition 4.1 combined with Proposition 2.1 gives

D.! kC1
/�E.! kC1

/�
1

V

Z
M

f!!
n
�

1

�
D.! k

/C

�
1�

1

�

�
D.! kC1

/; k 2 N: (22)

As a result, fD.! l
/gl is a decreasing sequence (this is proved in [Rubinstein 2008c, Proposition 4.2(ii)]

for � D 1). We fix a Kähler–Einstein potential

 KE 2H0:

Existence of such a potential implies that both D and E are bounded below [Bando and Mabuchi 1987;
Ding and Tian 1992]. Therefore, the (monotone) sequence fD.! l

/gl converges. Additionally, by (22),˚
E.! l

/� 1
V

R
M f!!

n
	

l
converges and

� WD lim
l

E.! l
/�

1

V

Z
M

f!!
n
D lim

l
D.! l

/ 2 R:

Next we focus on the potentials  0
l
2 H0. By [Darvas and Rubinstein 2017, Theorem 2.4], E is

G-invariant and
E. 0l/� C1d1;G.0;  

0
l/�C2;

and so d1;G.0;  
0
l
/� C 0. By definition, see (14), there exists gl 2G such that

d1. KE;gl : 
0
l/� d1;G.G KE;G 

0
l/C

1

l
� C 0C 1: (23)

Remark 4.4. In fact, there exists gl which achieve the equality d1. KE;gl : 
0
l
/D d1;G.G KE;G 

0
l
/ by

[Darvas and Rubinstein 2017, Proposition 6.8] but we do not have to know that for our proof here.

Setting
vl WD gl : 

0
l ;

by the G-invariance of E, we obtain that E.vl/ is bounded. On the other hand, a combination of (11)
and (23) gives that AM.vl/ D 0 and

R
M vl!

n
vl

are bounded as well. Comparing with (4), we see that
Ent.ef0!n; !n

vl
/ is bounded too.

By (11), d1-boundedness of potentials implies L1-boundedness, which in turn implies boundedness of
the supremum. As a result, we can apply the compactness result of [Berman et al. 2016a] (see [Darvas
and Rubinstein 2017, Theorem 5.6] for a convenient formulation for our context) to conclude that fvlgl is
d1-precompact.

Next we claim that d1. KE; vl/! 0. If this is not the case, then by possibly choosing a subsequence,
we can assume that d1. KE; vl/ > " > 0. By possibly choosing another subsequence, we can assume that
d1.vl ;u/! 0 for some u 2 E1. Lemma 3.2 gives that

�DD.u/DE.u/�
1

V

Z
M

f!!
n;

and in particular u is a Kähler–Einstein potential by Theorem 3.3.
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By the Bando–Mabuchi uniqueness theorem [1987] uD h: KE for some h 2G. Combining this with
(23), we conclude that

d1.vkl
;  KE/�

1

kl

� d1;G.Gvl ;G KE/� d1.h
�1vl ;  KE/D d1.vl ; h: KE/D d1.vl ;u/:

By choice, the right-hand side converges to zero, and the lim inf of left-hand side is bounded below by
" > 0, giving a contradiction. This implies that d1.vk ;  KE/! 0, concluding the proof. �

5. A priori estimates and smooth convergence

In this section we prove our main result by strengthening Proposition 4.3.

Theorem 5.1. Let � 2 .0; 1�. Suppose a Kähler–Einstein metric exists in H, and let f k�gk2N be the
solutions of (15). Then there exist gk 2 G such that gk : 

0
k�

converges smoothly to a Kähler–Einstein
potential. In particular, g�

k
! k�

converges smoothly to a Kähler–Einstein metric.

Proof. By Proposition 4.3 there exists gk 2 G and a Kähler–Einstein potential  KE 2 H0 such that
d1.gk : 

0
k
;  KE/! 0. We show below that in fact gk : 

0
k
!C1  KE.

Focusing on the � -step Ricci iteration recursion, we can write

.g�1
kC1 ıgk/

� Ric!gkC1: 
0
kC1
D g�k Ric! 0

kC1
D g�k

�
1

�
! 0

k
C

�
1�

1

�

�
! 0

kC1

�
D

1

�
!gk : 

0
k
C

�
1�

1

�

�
!gk : 

0
kC1

D
1

�
!gk : 

0
k
C

�
1�

1

�

�
!.g�1

kC1
ıgk/:gkC1: 

0
kC1

: (24)

Set
'k WD gk : 

0
k 2H0;

fk WD g�1
k ıgk�1 2G:

With this notation, (24) becomes

Ric!fkC1:'kC1
D

1

�
!'k
C

�
1�

1

�

�
!fkC1:'kC1

: (25)

Without loss of generality we assume that ! (the reference form) is Kähler–Einstein. Using (25) we
can write

p
�1 @N@

�
1

�
'k�1C

�
1�

1

�

�
fk :'k

�
D Ric!fk :'k

�Ric! D
p
�1 @N@ log.!n=!n

fk :'k
/:

This implies
1

�
'k�1C

�
1�

1

�

�
fk :'k C log.!n

fk :'k
=!n/D Bj 2 R:

Since log is a concave function, by Jensen’s inequality,

1

V

Z
M

log.!n
fk :'k

=!n/!n
� log

1

V

Z
M

!n
fk :'k

D 0:
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By the triangle inequality, for k sufficiently large,

d1.0; 'k�1/� d1. KE; 0/C 1:

Using (11) we conclude that
R

M 'k�1!
n � C. These last two estimates combine to give

Bj �

�
1�

1

�

�
1

V

Z
M

fk :'k!
n
D

1

V

Z
M

'k�1!
n
C

1

V

Z
M

log.!n
fk :'k

=!n/!n
� C:

Since fk :'k 2 PSH.M; !/, it is well known that
R

M fk :'k!
n and supM fk :'k are comparable. As a

result,

Bj �

�
1�

1

�

�
sup
M

fk :'k � C I

hence we can write

!n
fk :'k

D eBj�.1� 1
�
/fk :'k�

1
�
'k�1!n

� eC� 1
�
'k�1!n: (26)

Moreover, by Zeriahi’s version of the Skoda integrability theorem [Zeriahi 2001] (see [Darvas and
Rubinstein 2017, Theorem 5.7] for a formulation that fits our context most), there exists C > 0 such that,
say, Z

M

e�
3
�
'k�1!n

� C; k 2 N:

Combining this estimate with (26), we get that

k!n
fk :'k

=!n
kL3.M;!n/ � C:

Now Kołodziej’s estimate [2005], see also [Błocki 2005], allows us to conclude that the oscillation
satisfies oscfk :'k � C for some uniform C. Note that for any u 2H0, it follows from (6) that

inf u�
1

V

Z
u!n

u � 0�
1

V

Z
u!n
� sup u;

so u changes signs on M. Thus, since fk :'k 2H0, the oscillation bound implies the uniform bound

kfk :'kkL1.M / � C: (27)

Consequently, (11) yields

d1.0; fk :'k/D d1.f
�1

k :0; 'k/� C:

Thus,

d1.f
�1

k :0; 0/� d1.f
�1

k :0; 'k/C d1.'k ; 0/� C 0:

From Lemma 5.2, proved below, it follows that ff �1
k
gk is contained in a bounded set of G. In particular,

all derivatives up to order m of f �1
k

are bounded by some Cm, independent of k. So, to finish the proof,
it suffices to estimate derivatives of

hk WD fk :'k
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(since that will imply the same estimates on f �1
k
:hk D 'k). From (25) it follows that

Ric!hkC1
D Ric!fkC1:'kC1

�

�
1�

1

�

�
!fkC1:'kC1

D

�
1�

1

�

�
!hkC1

:

Using this, Lemma 5.3 implies tr!hk
! < C, and using the fact that !n

hk
=!n < C by (26) we thus obtain

tr! !hk
< C 0 so j�!hk j< C 00, as in [Rubinstein 2008c, p. 1540]. Given the Laplacian bound, the C 2;˛

and higher-order estimates then follow the same way as in [Rubinstein 2008c, Theorem 3.3] (or by
applying [Błocki 2012, Theorem 5.1] directly to (26), followed by bootstrapping).

By the Arzelà–Ascoli compactness theorem, f'kgk is C k-precompact. From (11) it follows that
C k-convergence implies d1-convergence. Consequently, any C k-convergent subsequence of f'kgk

d1-converges to  KE. As a result, f'kgk C k-converges to  KE, finishing the proof. �

We note that in our arguments above the estimates depend on a positive lower bound to � > 0. If this
could be avoided, then one could hope that these estimates also hold in a scaled limit, as the iteration is
expected to converge to the Kähler–Ricci flow.

Lemma 5.2. Let .X; !/ be a Fano Kähler–Einstein manifold. Let C > 0 and suppose that d1.g:0; 0/�C

for some g 2G. Then g is contained in a geodesic ball B �G centered at Id with radius R WDR.C / > 0.

This result is implicit in the arguments of [Darvas and Rubinstein 2017, Proposition 6.8]; see also
[Berman et al. 2016b, Lemma 2.7; Darvas and Rubinstein 2017, Claim 7.11].

Proof. By [Darvas and Rubinstein 2017, Propositions 6.2 and 6.9] there exists k 2 Isom0.X; !/ and a
Hamiltonian vector field X 2 isom.X; !/ such that g D k expId JX , where expId is the exponential map
of the Lie group G (recall that J is the complex structure of X ). It is clear from the definition of the action
of G on the level of potentials that k�1:0D 0. Thus we can write

C � d1.g:0; 0/D d1.k expId.JX /:0; 0/D d1.expId.JX /:0; k
�1:0/D d1.expId.JX /:0; 0/:

As shown in [Darvas and Rubinstein 2017, Section 7.1], the curve Œ0;1/ 3 t ! expId.tJX /:0 2H0 is a
d1-geodesic ray, and hence kXk is bounded. Since Isom0.X; !/ is compact, we obtain that gDk expId JX
is contained in a geodesic ball B �G centered at Id with radius R WDR.C / > 0. �

For the sake of completeness we recall a version of the Chern–Lu inequality, going back to [Lu 1968],
that gives the Laplacian estimate based on a C 0 estimate, elaborated in [Rubinstein 2008c, pp. 1539–
1540]; see also [Jeffres et al. 2016, Lemma 7.2]. Since it is stated there in the context of incomplete edge
metrics, we state here the simpler smooth version, which follows by setting D D∅ in [Jeffres et al. 2016,
Lemma 7.2] or [Rubinstein 2014, Corollary 7.8(i)]. Recall that oscf WD supf � inff .

Lemma 5.3. Let ' 2 C 4.M / \ H! . Suppose that Ric!' � �C1! � C2!' . Then for some C D

C.M; !;C1;C2; osc'/ > 0,

tr!' ! � C: (28)
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Proof. Let f W .M; !'/! .M; !/ be the identity map. Then consider the Chern–Lu inequality, see, e.g.,
[Rubinstein 2014, Proposition 7.1],

j@f j2�!' log j@f j2 � .Ric!'/#˝!.@f; N@f /�!'#
˝!'

#
˝R!.@f; N@f; @f; N@f /; (29)

whose meaning (and proof) in local coordinates we now explain. Write

!' D
p
�1gi Nj .z/dzi

^ dzj ; ! D
p
�1hi Nj .w/dw

i
^ dwj ;

where we choose two holomorphic coordinate charts .z1; : : : ; zn/ and .w1; : : : ; wn/, respectively, centered
at the same point z0 D f .z0/ 2M such that the first is normal for !' , while the second is normal for !.
Write f W z D .z1; : : : ; zn/ 7! f .z/D .f 1.z/; : : : ; f n.z//: Then,

@f D f
j

i dzi
jz˝

@

@wj

ˇ̌̌̌
f .z/

;

and the norm of @f induced from considering f as the map f W .M; !'/! .M; !/ is then j@f j2 D

gi Nl.z/h
j Nk
.f .z//f

j
i .z/f

k
l
.z/: Thus, at z0,

�! j@f j
2
D

X
p;q

gp Nq
@2.gi Nlh

j Nk
f

j
i f

k
l
/

@zp@zp

D

X
p

gp Nq Œgi Nlh
j Nk;d Ne

f
j

i f
k

l
f d

p f
e

q � h
j Nk

gi Ntgs Nlgs Nt ;p Nqf
j

i f
k

l
Cgi Nlh

j Nk
f

j
ipf

k
lq
�

D�!#
' ˝!

#
' ˝R!.@f; N@f; @f; N@f /C .Ric!'/#˝!.@f; N@f /Cgp Nqgi Nlh

j Nk
f

j
ipf

k
lq
: (30)

Here R! denotes the curvature tensor of � (of type .0; 4/), while !# denotes the metric g�1 on T 1;0?M

(i.e., of type .2; 0/), and similarly .Ric!/# denotes the .2; 0/-type tensor obtained from Ric!' by raising
indices using g. The proof of (29) now follows from (30), the identity u�! log uD�!u�uj@ log uj2,
and the Cauchy–Schwarz inequality; see [Rubinstein 2014, p. 102].

We claim that (29) implies

�!' .log tr!' ! � .C2C 2C3C 1/'/� �C1� .C2C 2C3C 1/nC tr!' !; (31)

where C3 depends on the curvature of !. Indeed, the assumption on Ric!' implies

.Ric!'/#˝!.@f; N@f /D gi Nlgk Nj Ri Nj h
k Nl

� �C1gi Nlgk Nj gi Nj h
k Nl
�C2gi Nlgk Nj hi Nj h

k Nl

� �C1 tr!' ! �C2.tr!' !/
2:

Similarly, we also have

�!'
#
˝!'

#
˝R!.@f; N@f; @f; N@f /D�gi Nj gk NlR!

i Njk Nl

� �C3gi Nj gk Nl.hi Nj h
k Nl
C h

i Nl
hk Nj /� �2C3.tr!' !/

2;
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where C3 is an upper bound for the bisectional curvature of !. Finally, the claim follows since tr!' ! D
tr!' .!' �

p
�1 @N@'/D n��!''.

Using the inequality now in (31) (at the point where the maximum of log tr!' !� .C2C 2C3C 1/' is
attained), the maximum principle thus gives an estimate on tr!' !, depending of course also on osc'. �
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CONCENTRATION OF GROUND STATES IN
STATIONARY MEAN-FIELD GAMES SYSTEMS

ANNALISA CESARONI AND MARCO CIRANT

We provide the existence of classical solutions to stationary mean-field game systems in the whole
space RN, with coercive potential and aggregating local coupling, under general conditions on the
Hamiltonian. The only structural assumption we make is on the growth at infinity of the coupling term in
terms of the growth of the Hamiltonian. This result is obtained using a variational approach based on the
analysis of the nonconvex energy associated to the system. Finally, we show that in the vanishing viscosity
limit, mass concentrates around the flattest minima of the potential. We also describe the asymptotic shape
of the rescaled solutions in the vanishing viscosity limit, in particular proving the existence of ground
states, i.e., classical solutions to mean-field game systems in the whole space without potential, and with
aggregating coupling.
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1. Introduction

We consider a class of ergodic mean-field games systems set on the whole space RN with unbounded
decreasing coupling: our problem is, given " > 0 and M > 0, to find a constant � 2 R for which there
exists a pair .u;m/ 2 C 2.RN /�W 1;p.RN /, for any p > 1, solving8<:

�"�uCH.ru/C�D f .m/CV.x/;

�"�m� div.mrH.ru//D 0 on RN,R
RN

mDM:

(1-1)

The aim of this work is two-fold. Firstly, for any fixed " > 0, we prove the existence of classical ground
states of (1-1). Secondly, we study their behavior in the vanishing viscosity limit "! 0.
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The Hamiltonian H W RN ! R is strictly convex, H 2 C 2.RN n f0g/ and it has superlinear growth:
we assume that there exist CH > 0, K > 0 and  > 1 such that, for all p 2 RN,

CH jpj

�K �H.p/� CH jpj

 ;

rH.p/ �p�H.p/�K�1jpj �K and jrH.p/j �Kjpj�1:
(1-2)

The coupling term f W Œ0;C1/! R is a locally Lipschitz continuous function such that there exist
Cf > 0 and K > 0 for which

�Cfm
˛
�K � f .m/� �Cfm

˛
CK; (1-3)

with

0 < ˛ <


N. � 1/
D
 0

N
; (1-4)

where  0 D 
�1

is the conjugate exponent of  .
Finally, we assume that the potential V is a locally Hölder continuous function, and that there exist

b > 0 and a constant CV > 0 such that

C�1V .maxfjxj �CV ; 0g/b � V.x/� CV .1Cjxj/b: (1-5)

Note that the requirement of V to be nonnegative is not crucial; we just need it to be bounded from below.
Mean-field games (MFG) is a recent theory that models the behavior of a very large number of

indistinguishable rational agents, aiming at minimizing a common cost. The theory was introduced in the
seminal works by Lasry and Lions [2006a; 2006b; 2007] and by Huang, Malhamé and Caines [Huang
et al. 2006], and has been rapidly growing during the last decade due to its mathematical challenges
and several potential applications (from economics and finance, to engineering and models of social
systems). In the ergodic MFG setting, the dynamics of a typical agent is given by the controlled stochastic
differential equation

dXs D�vs dsC
p
2" dBs; s > 0;

where vs is the control and Bs is a Brownian motion, with initial state given by a random variable X0.
The cost (of long-time average form) is given by

lim
T!1

1

T
E

Z T

0

ŒL.vs/CV.Xs/Cf .m.Xs//� ds;

where the Lagrangian L is the Legendre transform of H, see (2-1), and m.x/ denotes the density of
population of small agents at a position x 2 RN. A typical agent minimizes his own cost, and the
density of its corresponding distribution law L.Xs/ converges, as s !1, to a stationary density �,
which is independent of the initial distribution L.X0/. In an equilibrium regime, � coincides with the
population density m. This equilibrium is encoded from the PDE viewpoint in (1-1): a solution u of the
Hamilton–Jacobi–Bellman (HJB) equation gives an optimal control for the typical agent in feedback form
rH.ru. � //, and the Kolmogorov equation provides the densitym of the agents playing in an optimal way.

The two key points of our setting are the following: Firstly, the cost is monotonically decreasing with
respect to the population distribution m; namely, agents are attracted toward congested areas. A large part
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of the MFG literature focuses on the study of systems with competition, namely when the coupling in the
cost is monotonically increasing. This assumption is essential if one seeks for uniqueness of equilibria,
and it is in general crucial in many existence and regularity arguments; see, e.g., [Gomes et al. 2016]. On
the other hand, models with aggregation like (1-1) have been considered in few cases, see [Cesaroni and
Cirant 2017; Cirant 2016; 2017; Cirant and Tonon 2018; Gomes et al. 2018].

Secondly, the state of a typical agent here is the whole euclidean space RN. Usually, the analysis of
(1-1) is carried out in the periodic setting, in order to avoid boundary issues and the noncompactness of RN.
Few investigations are available in the truly nonperiodic setting: see [Porretta 2017] for time-dependent
problems, [Arapostathis et al. 2017] for the case of bounded controls, [Gomes and Pimentel 2016] for
some regularity results and [Bardi and Priuli 2014] for the linear-quadratic framework. We observe that the
noncompact setting is even more delicate for stationary (ergodic) problems like (1-1): a stable long-time
regime of a typical player is ensured if the Brownian motion is compensated by the optimal velocity vs .
In other words, if a force that drives players to bounded states is missing, dissipation eventually leads
their distribution to vanish on the whole RN. This phenomenon is impossible if the state space is compact.
The main issue here is that the behavior of the optimal velocity vs. � /DrH.ru. � // is a priori unknown,
and depends in an implicit way on V and the distribution m itself. Note that V. � / represents the spatial
preference of a single agent; if it grows as jxj ! 1, it discourages agents from being far away from
the origin. At the PDE level, this will compensate the lack of compactness of RN. Let us mention that
even without the coupling term f .m˛/, the ergodic control problem in unbounded domains has received
considerable attention; see, e.g., [Barles and Meireles 2016; Ichihara 2011; 2015].

In our analysis, we exploit the variational nature of the system (1-1), which has been pointed out
already in the first papers on MFG, see [Lasry and Lions 2007], and the more recent work [Mészáros and
Silva 2018]. Indeed, solutions to (1-1) can be put in correspondence with critical points of the energy

E.m;w/ WD
�R

RN
mL

�
�
w
m

�
CV.x/mCF.m/ dx if .m;w/ 2 K";M ;

C1 otherwise;
(1-6)

where F.m/D
Rm
0 f .n/ dn for m� 0 and F.m/D 0 for m� 0 and

L
�
�
w
m

�
WD

8<:
supp2RN

�
�
p�w
m
�H.p/

�
if m> 0;

0 if mD 0; w D 0;
C1 otherwise.

(1-7)

Note that mL
�
�
�
m

�
reads as the Legendre transform of mH. � /. The constraint set is defined as

K";M WD
˚
.m;w/2L1.RN /\Lq.RN /�L1.RN / W

"
R

RN
m.��'/dxD

R
RN
w�r' dx for all ' 2C10 .R

N /;
R

RN
mdxDM; m� 0 a.e.

	
; (1-8)

with

q D

� N
N� 0C1

;  0 �N;

 0;  0 >N:

Under assumption (1-3) on the coupling term, the energy E is not convex. Condition (1-4) is
necessary for the problem e".M/ WD min.m;w/2K";M E.m;w/ to be well-posed. Indeed, consider any
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.m0; w0/ 2 K";M such that m0 has compact support. An easy computation shows that if ˛ >  0

N
, then

E.��Nm0.��1 � /; ��.NC1/w0.��1 � //!�1

as �!0, so E is not bounded from below on K";M . We show that (1-4) is indeed sufficient for e".M/ to be
finite, and allows us to look for ground states of (1-1). This will be accomplished by a study of the Sobolev
regularity of the Kolmogorov equation; see in particular Section 2B. Note that the critical case ˛ D  0

N
is

more delicate, and requires additional analysis. We also mention that another critical exponent is intrinsic
in (1-1): if ˛ >  0

N� 0
, one has to expect nonexistence of solutions; see [Cirant 2016]. We refer to our case

as the subcritical case, in analogy with the L2-subcritical regime in nonlinear Schrödinger equations with
prescribed mass; see [Cirant 2016, Remark 2.9] for additional comments. The analogy can be made precise
in the purely quadratic framework, that is when H.p/D 1

2
jpj2. Indeed, as observed in [Lasry and Lions

2006a; 2006b], the so-called Hopf–Cole transformation permits us to reduce the number of unknowns
in the system. Setting v2.x/ WDm.x/D ce�

u.x/
" , with c a normalizing constant, v is a solution to

�2"2�vC .V .x/��/v D�f .v2/v;

with
R

RN
v2.x/ dx DM. Then the energy reads E.v/D

R
RN

"2jrvj2C 1
2
V.x/v2C 1

2
F.v2/ dx.

In our approach, to construct solutions to (1-1), we look for minimizers .m;w/ 2 K";M of the energy
(1-6). These minimizers can be obtained by classical direct methods, by using in particular estimates
and compactness in some Lp space for elements .m;w/ in K";M with bounded action, i.e., which satisfyR

RN
mL

�
�
w
m

�
dx � C, obtained in Section 2B. Then, the existence of a solution .u"; �"/ of the HJB

equation in (1-1) is obtained by considering another functional with linearized coupling (around the
minimizer) and the associated dual functional in the sense of Fenchel and Rockafellar, as in [Briani and
Cardaliaguet 2018]. One has to take care of the interplay between u and m as jxj ! 1. To handle
the lack of a priori regularity on the function m, we first regularize the problem, by applying standard
regularizing convolution kernels on the coupling (see Section 3). We construct minimizers .mk; wk/ of
the regularized energy and associated solutions .uk; mk/ of the regularized version of (1-1). Then, in
order to come back to the initial problem, we provide some new a priori uniform L1 bounds on mk ,
which in turn imply a priori uniform bounds on jrukj and (local) Hölder regularity of mk that is uniform
in k. This key a priori bound is provided by Theorem 4.1.

Note that we will consider classical solutions to this system (with a slight abuse of terminology), that is,
.u;m/ 2 C 2.RN /�W 1;p.RN / for all p > 1. The existence result, proved in Section 4, is the following.

Theorem 1.1. Under the assumptions (1-2), (1-3), (1-4) and (1-5), for every " > 0 there exists a classical
solution .u"; m"; �"/2C 2.RN /�W 1;p.RN /�R, for all p>1, to (1-1). Moreover, .m";�m"rH.ru"//
is a minimizer in the set K";M of the energy (1-6).

We observe (see Remarks 3.5 and 4.2) that Theorem 1.1 holds under more general conditions on H
and f , that is, if there exist CH , Cf > 0 and K > 0 such that

C�1H jpj

�K �H.p/� CH .jpj


C 1/; �Cfm

˛
�K � f .m/� C�1f m˛CK; (1-9)

where ˛ satisfies (1-4).
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In the second part of the work, in Section 5, we analyze the behavior of the triple .u"; �"; m"/ coming
from a minimizer of E as "! 0, under the assumptions (1-2), (1-3). From the viewpoint of the model,
this amounts to removing the Brownian noise from the agents’ dynamics. Heuristically, if the diffusion
becomes negligible, one should observe aggregation of players (induced by the decreasing monotonicity
of coupling in the cost) towards minima of the potential V , which are the preferred sites. Moreover,
in the case V has a finite number of minima and polynomial behavior (that is, when (1-13) holds) we
specialize the result showing that the limit procedure selects the more stable minima of V , implying, e.g.,
full convergence in the case that there exists a unique flattest minimum.

In order to bring as much information as possible to the limit, we consider an appropriate rescaling of
m;u, namely

Nm". � /D "
N0

0�˛Nm."
0

0�˛N � Cx"/; Nu". � /D "
N˛.0�1/�0

0�˛N .u."
0

0�˛N � Cx"/�u.x"// (1-10)

for all " > 0. The rescaling is designed so that . Nu"; Nm"/ solves an MFG system where the nonlinearities
have the same behavior of the original ones; i.e., H" � jpj as p!1, but the coefficient in front of the
Laplacian is equal to 1 for all "; see (5-19). Moreover, the pair Nu"; Nm" is associated to a minimizer of a
rescaled energy E"; see (5-23). It turns out that in this rescaling process, the potential V becomes

V". � /D "
N˛0

0�˛N V."
0

0�˛N � /;

and vanishes (locally) as "! 0. Therefore, as one passes to the limit, the potential cannot compensate
anymore for the lack of compactness of RN, and the convergence of Nm" in L1.RN / has to be proven by
other methods. Heuristically, the aggregating force should be strong enough to overcome the dissipation
effect, but the clustering point can be hard to predict by lack of spatial preference. This is why we also
have to translate in (1-10) by x". We will select x" to be the minimum of u": heuristically, since u" is
the value function, this is the point where most of the players should be located. In order to recover
compactness for the sequence Nm", we implement some ideas of the celebrated concentration-compactness
method [Lions 1984]. This principle states intuitively that if loss of compactness occurs, Nm" splits in (at
least) two parts which are going infinitely far away from each other; that is,

Nm" � �BR.0/ Nm"C�RN nB2R.0/
Nm"; (1-11)

with R!1,
R
�BR.0/ Nm" � a and

R
�RN nB2R.0/

Nm" �M � a for some a 2 .0;M/ (a third possibility
might happen, but it is easily ruled out here by local estimates). This induces a splitting in the energy E ;
that is,

infR
mDM

E" & infR
mDa

E"C infR
mDM�a

E": (1-12)

One then exploits a special feature of E", which is called subadditivity:

infR
mDM

E" < infR
mDa

E"C infR
mDM�a

E";

which makes (1-12) impossible. While subadditivity is easy to prove for E" (see Lemma 5.5), the splitting
(1-12) requires technical work, in particular due to the presence of the term mL

�
�
w
m

�
in E", which
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becomes increasingly singular as m approaches zero (a simple cut-off as in (1-11) is not useful). The
property (1-12) is proven in Theorem 5.6. It relies on the Brezis–Lieb lemma and a perturbation argument.
The L1 convergence of Nm" enables us to obtain the full convergence of . Nu"; Nm"/ to a limit MFG system.
By a uniform control of the decay of Nm" as jxj ! 1, which comes from a Lyapunov function built
upon Nu", energy arguments and the crucial L1 estimate of Theorem 4.1, we are also able to keep track
of x". In terms of the nonrescaled density m", x" is the point around which most of the mass is located.

The second main result of this work is stated in the following two theorems. The first one is about the
concentration of m".

Theorem 1.2. Under the assumptions of Theorem 1.1, there exist sequences "! 0 and x" such that for
all � > 0 there exist R and "0 for which, for all " < "0,Z

jx�x"j�R"
0=.0�˛N/

m" dx �M � �:

Moreover, x"! Nx, where V. Nx/D 0, i.e., Nx is a minimum of V .
If , in addition, V has the form

V.x/D h.x/

nY
jD1

jx� xj j
bj ; C�1V � h.x/� CV on RN, (1-13)

for some xj 2RN, and bj >0
�
with

Pn
jD1 bj D b

�
, then x"! xi , with i 2 fj D 1; : : : ; n W bj Dmaxk bkg.

Secondly, we describe the asymptotic profile of . Nu"; Nm"/ as "! 0. Note that as a byproduct we obtain
the existence of solutions to MFG systems without potential.

Theorem 1.3. Up to subsequences, . Nu"; Nm"/ converges in C 1loc.R
N /�Cloc.R

N /\Lp.RN /, for all p� 1,
to a solution . Nu; Nm/ of 8<:

��uCCH jruj
 C�D�Cfm

˛;

��m�CH div.mjruj�2ru/D 0;R
RN

mDM:

(1-14)

The function Nu is globally Lipschitz continuous on RN, and there exist c1; c2 > 0 such that 0 < Nm.x/�
c1e
�c2jxj.

Finally, if Nw D�CH Nmjr Nuj�2r Nu, then

E0. Nm; Nw/DminfE0.m;w/ W .m;w/ 2 K1;M ; m.1Cjyjb/ 2 L1.RN /g; (1-15)

where

E0.m;w/D
Z

RN
CL
jwj

0

m
0�1
�

1

˛C 1
m˛C1 dy: (1-16)

We finally observe that by analogous methods, one can prove existence of solutions to more general
potential-free MFG systems; see Remark 5.9.
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Notation. We will denote a classical solution to the system (1-1) by a triple

.u;m; �/ 2 C 2.RN /�W 1;p.RN /�R for all p > 1:

For any given p > 1, we will denote by p0 D p
p�1

the conjugate exponent of p, and set

p� D
Np

N �p
if p < N and p� DC1 if p �N:

For all R > 0, x 2 RN, we define BR.x/ WD fy 2 RN W jx�yj<Rg. We will set !N WD jB1.0/j.
Finally, C;C1; K;K1; : : : denote (positive) constants we need not specify.

2. Some preliminary regularity results

Let L be the Legendre transform of H, i.e.,

L.q/DH�.q/D sup
p2RN

Œp � q�H.p/�; q 2 RN: (2-1)

The assumptions on H guarantee the following; see, e.g., [Cirant 2014, Proposition 2.1].

Proposition 2.1. There exist CL; C1; C2 > 0 depending on CH and on  such that for all p; q 2 RN,

(i) L 2 C 2.RN n f0g/ and it is strictly convex,

(ii) 0� CLjqj
0

� L.q/� CL.jqj
 0 C 1/,

(iii) rL.q/ � q�L.q/� C1jqj
0

�C�11 ,

(iv) C1qj
0�1�C�11 � jrL.q/j � C

�1
1 .jqj

0�1C 1/,

(v) C2jpj�1�C�12 � jrH.p/j � C
�1
2 .jpj�1C 1/.

We will use the following (standard) result on Hölder functions vanishing at infinity.

Lemma 2.2. Suppose that m � 0, kmkC0;� .RN / � ch for some �; ch > 0, and
R

RN
mdx <1. Then,

m.x/! 0 as jxj !1. Moreover, if Z
jxj�R

mdx < �

for some �;R > 0, then

max
jxj�R

m.x/� C�
�

�CN ; (2-2)

where C > 0 depends only on ch; N.

Proof. By contradiction, suppose that there exists ı > 0 and a sequence jxnj !1 such that m.xn/ > ı
for all n. We may also assume that jxnC1j � jxnjC 1 for all n. By the Hölder regularity assumption,

m.x/�m.xn/� chjx� xnj
�
�
1
2
ı;



744 ANNALISA CESARONI AND MARCO CIRANT

provided that x 2 Br.xn/, and r� � ı
2ch

. Choose r D min
˚
1;
�
ı
2ch

� 1
�
	
, so that Br.xn/\Br.xm/D ∅

for all n¤m. Then, Z
RN

mdx �
X
n2N

Z
Br .xn/

mdx �
X
n2N

1
2
ıjBr.0/j D C1;

which is impossible.
As for the second part, let M WD maxjxj�Rm.x/ D m. Nx/, j Nxj � R (note that such a maximum is

achieved as a consequence of the first part of the lemma). As before,

m.x/�m. Nx/� chjx� Nxj
�
�
1
2
M

for all x 2 Br. Nx/, where r D
�
M
2ch

� 1
� . Therefore,

� >

Z
jxj�R

mdx � 1
4
M jBr. Nx/j D

1
4
M jB1.0/j

�
M

2ch

�N
�

;

and (2-2) follows. �

We recall the following well-known result, proved in [Brézis and Lieb 1983, Theorem 1].

Theorem 2.3. Let fn! f a.e. in RN and assume kfnkLp.RN / � C for all n and for some p 2 Œ1;C1/.
Then

lim
n
Œkfnk

p

Lp.RN /
�kfn�f k

p

Lp.RN /
�D kf k

p

Lp.RN /
:

From classical elliptic regularity, we have the following result.

Proposition 2.4. Let p > 1 and m 2 Lp.RN / be such thatˇ̌̌̌Z
RN

m�' dx

ˇ̌̌̌
�Kkr'kLp0 .RN / for all ' 2 C10 .R

N /;

for some K > 0. Then, m 2W 1;p.RN / and there exists C > 0 depending only on p, such that

krmkLp.RN / � CK:

Proof. Fix any R>1. Let  2C10 .B2.0//, '.Rx/ WD .x/ (so, ' 2C10 .B2R.0//) and v.x/ WDm.Rx/
on RN. Then,ˇ̌̌̌Z

B2.0/

v � dx

ˇ̌̌̌
DR2�N

ˇ̌̌̌Z
B2R.0/

m�' dy

ˇ̌̌̌
�KR2�N

�Z
B2R.0/

jr'jp
0

dy

� 1
p0

DKR1�NC
N
p

0
�Z
B2.0/

jr jp
0

dx

� 1
p0

�KR1�
N
p k kW 1;p0 .B2.0//

:

Hence, by [Agmon 1959, Theorem 6.1], v 2W 1;p.B1.0// and there exists a constant C, depending
on p (but not on R), such that

krvkLp.B1.0// � kvkW 1;p.B1.0//
� C.KR1�

N
p CkvkLp.B2.0///:
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Therefore,�Z
BR.0/

jrmjp dy

�1
p

DR
N
p
�1

�Z
B1.0/

jrvjp dx

�1
p

� C

�
KCR

N
p
�1

�Z
B2.0/

jvjp dx

�1
p
�

D C.KCR�1kmkLp.B2R.0///:

Letting R!1, we get that jrmj 2 Lp.Rn/ and the desired estimate. �

2A. The Hamilton–Jacobi–Bellman equation on the whole space. In this section we provide some
a priori regularity estimates and existence results for Hamilton–Jacobi–Bellman equations in whole spaces
of ergodic type. In particular we will consider families of Hamilton–Jacobi–Bellman equations

��unCHn.run/C�n D Fn.x/�fn.x/ on RN; (2-3)

where Fn � fn is locally Hölder continuous, �n 2 R are equibounded in n, that is, j�nj � �, and
fn 2 L

1.RN /, with kfnk1 � cf for some cf > 0 independent of n. Moreover Hn is for every n a
Hamiltonian which satisfies (1-2), with constants  and CH independent of n; finally, there exists CF � 0
and b � 0 independent of n such that

C�1F .maxfjxj �CF ; 0g/b � Fn.x/� CF .1Cjxj/b for all n and all x 2 RN: (2-4)

Note that, differently from assumption (1-5) for the potential V , the function Fn can also be bounded, if
b D 0.

Theorem 2.5. Let un 2 C 2.RN / be a sequence of classical solutions of the HJB equations (2-3). Then
there exists a constant K > 0 depending on CH ; CF ; cf ; ; N; � such that

jrun.x/j �K.1Cjxj/
b
 ; (2-5)

where b � 0 is the growth of Fn appearing in (2-4) and  is the growth of Hn appearing in (1-2).

Proof. Without loss of generality we may consider Hn.p/D CH jpj for all n and p. Indeed, every vn
solves

��unCCH jrunj

C�n D Fn.x/�fn.x/CCH jrunj


�Hn.run/ on RN;

and since jCH jrunj �Hn.run/j �CH by (1-2), we can redefine fn to include CH jrunj �Hn.run/,
which then satisfies the bound kfnk1 � cf CCH .

We first claim that if v 2 C 2.B2.0// satisfiesˇ̌
��vCCH jrvj


ˇ̌
� k on B2.0/

for some k > 0, then we have for any r 2 Œ1;1�,

krvkLr .B1.0// �
zC ; (2-6)

where zC depends only on k; CH ; ; N; r . If r 2 Œ1;1/, this is proven in [Lasry and Lions 1989,
Theorem A.1]; see also [Cirant 2015, Theorem 19]. The case r D 1 follows by classical elliptic
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regularity, since if r in (2-6) is large enough, then ��v is bounded in Lq.B 3
2
.0// for some q > N, and

the statement follows by Sobolev embeddings.
In view of these considerations, the gradient bound (2-5) easily follows if b D 0. For the case b > 0,

fix x0 2 RN, and let ı D .1Cjx0j/
� b
0 . Let

vn.y/ WD ı
2�
�1un.x0C ıy/ on RN:

Then, vn solves

��vnCCH jrvnj

D ı

0

.Fn.x0C ıy/�fn.x0C ıy/��n/:

Since ı � 1,

ı
0

jFn.x0C ıy/�fn.x0C ıy/��nj �
CF .3Cjx0j/

bC cf C�

.1Cjx0j/b
� C1

for all y 2 B2.0/ by (2-4) and the bound on fn.
Therefore, by the first claim,

krvnkL1.B1.0// �
zC

for all n. In particular, choosing y D 0,

jrun.x0/j D ı
� 1
�1 jrvn.0/j � zC.1Cjx0j/

b
 ;

and the desired estimate follows. �

Moreover, we prove the following a priori estimates on bounded-from-below solutions to (2-3).

Theorem 2.6. Let un 2 C 2.RN / be a family of uniformly bounded-from-below classical solutions to
(2-3), that is, for which there exists C > 0 such that un � �C for every n.

If b D 0 in (2-4), we moreover assume that there exists ı > 0 and R > 0 independent of n such that

Fn.x/�fn.x/��n > ı > 0 for all jxj>R: (2-7)

Then there exists C > 0 such that

un.x/� C jxj
1C b

 �C�1 for all n 2 N; x 2 RN; (2-8)

where b � 0 is the growth power appearing in (2-4) and  is the growth power appearing in (1-2).

Proof. The proof is based on the same argument as in [Barles and Meireles 2016, Proposition 3.4], we
sketch it briefly for completeness. Since un is bounded from below we can assume un � 0, up to addition
of constant C (without changing the equation).

We assume by contradiction that (2-8) does not hold. Then there exist sequences xl and unl such that
jxl j> 2R, jxl j !C1, and

unl .xl/

jxl j
1C b



! 0:
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Let al D 1
2
jxl j and we define the function

vl.x/D
1

a1C
b


l

unl .xl C alx/:

By Theorem 2.5, we get jrunl .x/j �K.1Cjxj/
b
 . Therefore, vl, jrvl j are uniformly bounded.

Moreover, vl is a solution to

�a
b

�1

l
�vl CHnl .a

b


l
rvl/C�nl D Fnl .xl C alx/�fnl .xl C alx/:

In particular, recalling (1-2), we get that vl is a supersolution to

�a
b

�1�b

l
�vl CCH jrv

l
j

� a�bl .��nl CFnl .xl C alx/�fnl .xl C alx//:

Note that, for every l sufficiently large, by (2-4) and by (2-7) (in the case b D 0) the right-hand side
above satisfies

a�bl .��nl CFnl .xl C alx/�fnl .xl C alx// > 0

for x such that jxj � 1.
Moreover, passing eventually to a subsequence, we get vl! v locally uniformly in n and a

b

�1�b

l
! 0.

So v is a supersolution to CH jrvj � ı > 0 in B.0; 1/ with homogeneous boundary conditions (since
v � 0). By comparison, recalling the explicit formula of the solution to the eikonal equation jrf j D C
in B.0; 1/ with homogeneous boundary conditions, we conclude that v.x/� C

1
 .1� jxj/ for all x such

that jxj � 1. Moreover, by uniform convergence, we get that, eventually enlarging C and taking l
sufficiently large, vl.x/ � C

1
 .1� jxj/ for all x with jxj � 1; in particular vl.0/ � C

1
 . Recalling the

definition of vl, we get that vl.0/! 0, which yields a contradiction. �

Define
N�n WD supf� 2 R W (2-3) has a solution un 2 C 2.RN /g:

Theorem 2.7. Assume that for every n the function Fn�fn is bounded from below uniformly in n:

(i) N�n <1 for every n, and there exists, for every n, a solution un 2 C 2.RN / to (2-3) with �n D N�n.
Moreover

N�n WD supf� 2 R W (2-3) has a subsolution un 2 C 2.RN /g:

(ii) If Fn satisfies (2-4), with b > 0, then, for every n, the solution un to (2-3) with �n D N�n is unique up
to addition of constants and satisfies (2-8).

(iii) If Fn � 0, and there exists ı > 0 independent of n such that

lim sup
jxj!C1

fn.x/C N�n < �ı < 0; (2-9)

then for every n there exists a solution to (2-3) with �n D N�n which satisfies (2-8) with b D 0.
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Proof. (i) The proof of this result can be obtained by a straightforward adaptation of the proof of Theo-
rem 2.1 in [Barles and Meireles 2016], using the a priori estimates on the gradient given in Theorem 2.5.
Observe that actually in that paper a stronger assumption on the regularity of Fn � fn is required, in
particular local Lipschitz continuity. This assumption is used to derive a priori estimates on the gradient
of solutions by using the so-called Bernstein method, see Appendix A in [Barles and Meireles 2016],
which depends also on the L1 norm of r.Fn�fn/. In our case we can weaken this assumption to just
Hölder continuity (so still ensuring classical elliptic regularity) since we are using a priori estimates on
the gradient given in Theorem 2.5, which depends only on the L1 norm of Fn� fn, and are obtained in
[Lasry and Lions 1989] by the so-called integral Bernstein method.

(ii) For the proof we refer to [Ichihara 2011]; see also [Barles and Meireles 2016; Cirant 2014]. In
particular in [Ichihara 2011], it is proved that un is bounded from below. By looking at the proof, it
is easy to check that, due to the uniformity in n of the norms of coefficients, the bound can be taken
independent of n, and by Theorem 2.6 we get the estimate on the growth.

(iii) By adapting the argument in [Barles and Meireles 2016, Theorem 2.6], we get that there exists a
bounded-from-below solution to (2-3) with �n D N�n, with bound uniform in n. Then using Theorem 2.6,
we get the estimate on the growth. We give a brief sketch of the proof of the existence of a bounded-
from-below solution. For every R > 0, we consider the ergodic problem�

��uRn CHn.ru
R
n /C�

R
n D�f; jxj<R;

uRn .x/!C1; jxj !R:
(2-10)

Using the result in [Barles et al. 2010], we get that for every R > 0 there exists a unique �Rn and a unique
up to addition of constant solution uRn 2 C

2.BR/.
First of all we claim that limR �Rn D N�n. It is easy to check that ifR0>R, then �R

0

n ��
R
n , and moreover

that �Rn � N�n. So, the sequence �Rn is converging as R!C1 to some �?n � N�n. Additionally, by the
same argument as in Theorem 2.5, we get that for every compact K � RN, there exists a constant C > 0
such that jruRn j � C in K for every R sufficiently large and for all n. Without loss of generality we can
assume that uRn .0/D 0 for every R. So, using the gradient bound, and elliptic regularity, we conclude that
uRn is bounded in C 2.K/ by some constant independent of R. Hence, by the Ascoli–Arzelà theorem, and
via a diagonalization procedure, we get that uRn converges locally in RN, with un 2 C 2.RN /. Moreover,
un is a solution to (2-3), with �D �?n. Recalling the characterization of N�n and the fact that �?n � N�n, we
conclude that �?n D N�n.

Then, we consider xRn 2 BR such that

uRn .x
R
n /D min

jxj�R
uRn :

Recalling that uRn is a solution to (2-10), we get by computing the equation at xRn and by recalling that
Hn.0/� 0, that

�Rn Cf .x
R
n /�Hn.0/C�

R
n Cf .x

R
n /� 0:

Using condition (2-9), and recalling that �Rn ! N�n, we get that there exists a compact set K (independent
of R and of n) and R0 > 0 such that for all R >R0 we have xRn 2K.
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Recalling that uRn .0/ D 0 and jruRn j � C in K with C independent of n;R, we conclude that
uRn .xR/� �C for some constant C independent of n;R. But, this implies, since uRn .x/� u

R
n .x

R
n / for

every R, that passing to the limit un.x/� �C, with C independent of n. �

2B. A priori estimates for the Kolmogorov equation. In this section we provide general a priori estimates
for pairs .m;w/ 2 .L1.RN /\W 1;q.RN //�L1.RN / such that

R
RN

m.x/DM and �"�mCdivwD 0,
where

q D

�
 0;  0 �N;

N
N� 0C1

;  0 <N:
(2-11)

Lemma 2.8. Let ˇ � Nq
N�q

for q < N, and ˇ <C1 for q �N. We define 1� r � ˇ as follows:

1

r
D
1

 0
C

�
1�

1

 0

�
1

ˇ
: (2-12)

Then, there exists a constant C, depending only on N and ˇ, such that

kmkW 1;r .RN / � C

�
1

"
0

Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dxCM

� 1
0

kmk
1


Lˇ.RN /

� C

�
CL

"
0

Z
RN

mL

�
�
w

m

�
dxCM

� 1
0

kmk
1


Lˇ.RN /
; (2-13)

where CL D CL.CH ; / is the constant appearing in Proposition 2.1.
We now assume that

1 < ˇ < 1C
 0

N
: (2-14)

Then, there exists ı > 0 such that

kmk
.1Cı/ˇ

Lˇ.RN /
�C

1

"
0M

.1Cı/ˇ�1

�Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dx

�
�CCL

1

"
0M

.1Cı/ˇ�1

Z
RN

mL

�
�
w

m

�
dx; (2-15)

where the constant C depends only on  , N, and ˇ.

Proof. Since m 2W 1;q.RN /, by Sobolev embedding and interpolation, we get that m 2 Lˇ .RN /. Using
�"�mC divw D 0, we get for all ' 2 C10 .R

N /,

"

Z
RN
rm � r' dx D

Z
RN

w � r' dx:

Using the Hölder inequality, recalling (2-12), we obtainˇ̌̌̌
1

"

Z
RN

w � r' dx

ˇ̌̌̌
�

Z
RN

1

"

ˇ̌̌̌
w

m

ˇ̌̌̌
m

1
0m

1� 1
0 jr'j dx

�

�
1

"
0

Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dx

� 1
0

kmk
1


Lˇ.RN /
kr'kLr0 .RN /:
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Therefore, we get that for all ' 2 C10 .R
N /,ˇ̌̌̌Z

RN
rm � r' dx

ˇ̌̌̌
�

�
1

"
0

Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dx

� 1
0

kmk
1


Lˇ.RN /
kr'kr 0 :

We apply then Proposition 2.4 and we obtain that m 2 W 1;r.RN / and that there exists a constant C,
depending only on r , such that

krmkLr .RN / � C

�
1

"
0

Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dx

� 1
0

kmk
1


Lˇ.RN /
: (2-16)

From this inequality, using Proposition 2.1 and recalling that by interpolation, since kmkL1.RN / DM,

kmkLr .RN / � kmk
1


Lˇ.RN /
M

1
0 ;

we conclude the desired inequality (2-13).
Now we fix � such that

1

�
D

�
1

r
�
1

N

�
N

N C 1
C 1�

N

N C 1
D

N

N C 1

1

r
:

Note that, by a simple computation using (2-12), we get

1

�
�
1

ˇ
D

N

N C 1

1

ˇ 0

�̌
� 1�

 0

N

�
I

therefore, by (2-14), we conclude that � > ˇ. By the Gagliardo–Nirenberg inequality, and recalling that
kmk1 DM, we get

kmkL�.RN / � Ckrmk
N
NC1

Lr .RN /
M

1
NC1 : (2-17)

Since � > ˇ, by interpolation we get that there exists � > 1 such that kmk�
Lˇ.RN /

� kmkL�.RN /M
��1.

Actually
1

�
D

�
1�

1

ˇ

�
.N C 1/

1

1CN
�
1� 1

ˇ

��
1� 1

 0

� :
So, we substitute in (2-17) and (2-16) and we get, elevating both terms to  0NC1

N
,

kmk
� 0NC1

N

Lˇ.RN /
� C

1

"
0M

 0.� NC1
N
�1/

�Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dx

�
kmk

0



Lˇ.RN /
: (2-18)

Now, since � > 1, by (2-14), we get

� 0
N C 1

N
�
 0


D

ˇ 0

N.ˇ� 1/
D ˇC

ˇ

ˇ� 1

�
 0

N
C 1�ˇ

�
> 0:

Therefore we deduce (2-15) from (2-18) with

ı D
1

ˇ� 1

�
 0

N
C 1�ˇ

�
: (2-19)

This concludes the proof. �
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Corollary 2.9. For every r < q, there exists C > 0 depending on N,  0 and r such that

kmkW 1;r .RN / �
C

"
0

�
CL

Z
RN

mL

�
�
w

m

�
dxC "

0

M

�
: (2-20)

Moreover, if  0 >N (so q > N ), then m 2 C 0;� .RN / and

kmkC0;� .RN / �
C

"
0

�
CL

Z
RN

mL

�
�
w

m

�
dxC "

0

M

�
: (2-21)

Proof. For q �N (equivalently  0 �N ), we fix r < q and we choose ˇ which satisfies (2-12) for such r .
By the Sobolev embedding theorem, W 1;r.RN / is continuously embedded in Lˇ .RN /. So, there exists
C depending on N and r such that kmkLˇ.RN / � CkmkW 1;r .RN /. Using inequality (2-13), we get

kmkLˇ.RN / �
C

"
0

�Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dxC "

0

M

�
:

If we substitute again in (2-13) we get

kmkW 1;r .RN / �
C

"
0

�Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dxC "

0

M

�
:

In particular for q > N, we can choose r > N and by the Sobolev embedding theorem we get that there
exists � D 1� N

r
and a constant C > 0 depending on N and r such that

kmkC0;� .RN / �
C

"
0

�Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dxC "

0

M

�
�
C

"
0

�
CL

Z
RN

mL

�
�
w

m

�
dxC "

0

M

�
:

For q < N, we fix r < q, and choose the corresponding ˇ in (2-12), which satisfies ˇ < N
N� 0

. Hence
we conclude again using inequality (2-13). �

3. Regularization procedure and existence of approximate solutions for " > 0

3A. The regularized problem. We consider the approximation of the system (1-1)8<:
�"�uCH.ru/C�D fkŒm�.x/CV.x/;

�"�m� div.mrH.ru//D 0;R
RN

mdx DM;

(3-1)

where

fkŒm�.x/D f .m?�k/ ? �k.x/D

Z
RN

�k.x�y/f

�Z
RN

m.z/�k.y � z/ dz

�
dy (3-2)

and �k , for k > 0, is a sequence of standard symmetric mollifiers approximating the unit as k!1.
We observe that fkŒm�.x/ is the L2-gradient of a C 1 potential Fk W L1.RN /! R, defined as

FkŒm� WD

Z
RN

F.m?�k.x// dx; (3-3)
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where F.m/D
Rm
0 f .n/ dn for m� 0 and F.m/D 0 for m� 0. Note that using Jensen’s inequality and

(1-3), we get that for all m 2 L1.RN / such that m� 0, and
R

RN
m.x/ dx DM,

�
Cf

˛C 1

Z
RN

m˛C1.x/ dx�KM � FkŒm�� �
Cf

˛C 1

Z
RN
.m?�k.x//

˛C1 dxCKM: (3-4)

In order to construct solutions to the system, we follow a variational approach and we associate to
(3-1) an energy, as already described in the Introduction. We define the energy

Ek.m;w/ WD
�R

RN
mL

�
�
w
m

�
CV.x/mdxCFkŒm� if .m;w/ 2 K";M ;

C1 otherwise;
(3-5)

where K";M is defined in (1-8) and L is defined in (1-7). We recall that the exponent q appearing in the
definition of K";M is

q D

� N
N� 0C1

;  0 �N;

 0;  0 >N:

Therefore, q �  0. Observe that, if q < N,

q� D
qN

N � q
D

N

N �  0
;

and that q� > 1C  0

N
> 1C˛ by (1-4). If q D  0 �N, then we let q� DC1.

3B. A priori estimates and energy bounds. In this section, we provide bounds from below for the
energy Ek , ensuring in particular that the minimum problem is well-defined.

Lemma 3.1. Let .m;w/ 2 K";M . Then

Ek.m;w/� �K �C"
�
0˛N

0�˛N ; (3-6)

where C;K > 0 are constants depending only on N;M;CL; ; ˛;M.
In particular there exists finite

ek;".M/D inf
.m;w/2K";M

Ek.m;w/:

Proof. Recalling that V � 0, using estimate (3-4) and applying (2-15) with ˛ D ˇ� 1, we get

Ek.m;w/�
Z

RN
mL

�
�
w

m

�
dx�

Cf

˛C 1

Z
RN

m˛C1 dx�KM

� C"
0

M 1�.1Cı/.1C˛/
kmk

.1C˛/.1Cı/

L˛C1
�

1

˛C 1
kmk

.1C˛/

L˛C1
�KM

� �Cı"�
0

ı

�
1

.ıC 1/.˛C 1/

�1C 1
ı

�KM;

where C is a constant depending only on N;M;CL; ; ˛ and

ı D
1

˛

�
 0

N
�˛

�
: (3-7)
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Therefore, substituting in the energy, we get

Ek.m;w/� �C
. 0�˛N/

˛N
"
�
0˛N

0�˛N

�
˛N

 0.˛C 1/

� 0

0�˛N

�KM;

which gives the desired inequality. �

We get also a priori bounds on minimizers and minimizing sequences.

Proposition 3.2. Let .m;w/ 2 K";M be such that ek;".M/� Ek.m;w/� � for some positive �. ThenZ
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
dx � C"

�
0N˛

0�N˛ CK; (3-8)

kmk˛C1
L˛C1.RN /

� C"
�
0N˛

0�N˛ CK (3-9)

for some C;K positive constants which depend only on ˛;N; V; CL; �.

Proof. First of all we observe that there exists C � 0 depending on M;CL; CV such that

ek;".M/� C: (3-10)

Let mD ce�jxj, where c is chosen to have
R

Rn
mdx DM, and w D "rm, so that .m;w/ 2 K";M . By

assumption (1-5), we get
R

Rn
mV.x/ dx � C for some constant C > 0, by (3-4) we get FkŒm� �KM

and by the properties of L in Proposition 2.1 we haveZ
Rn
mL

�
�
w

m

�
dx �

�
"
0

c
0 CCL

�
M:

So, in conclusion ek;".M/� Ek.m;w/� C as required.
Note that if .m;w/ 2 K";M , and e".M/� E.m;w/� � for some positive �, then, by (3-4), by the fact

that V � 0, and by the properties of L in Proposition 2.1, we get

C C �� e".M/C �� Ek.m;w/�
Z

RN
m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
�

Cf

˛C 1
m˛C1 dx �KM: (3-11)

We apply (2-15) with ˛ D ˇ� 1, and we obtain

C C �CKM �

Z
RN

m

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
�

Cf

˛C 1
m˛C1 dx

� C"
0

M 1�.1Cı/.1C˛/
kmk

.1C˛/.1Cı/

L˛C1
�

Cf

˛C 1
kmk

.1C˛/

L˛C1
:

Recall that ıC 1D  0

˛N
, which can be computed using (2-19), so

 0

ı
D

 0N˛

 0�N˛
:

Note that if we choose A sufficiently large (depending on ı;M;Cf ; CL/, we get

C"
0

M 1�.1Cı/.1C˛/."�
0

ı A/1Cı �
Cf

˛C 1
."�

0

ı A/� C C �CKM;
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from which we conclude that kmk.1C˛/
L˛C1

� "�
0

ı A, and so estimate (3-9) holds. Estimate (3-8) comes
from (3-9) and (3-11). �

3C. Existence of a solution. We are now in the position to show existence of minimizers of the energy Ek
in the class K";M for every ";M > 0.

Proposition 3.3. For every " > 0 and M > 0, there exists a minimizer .mk; wk/ 2 K";M of Ek , that is,

Ek.mk; wk/D inf
.m;w/2K";M

Ek.m;w/:

Moreover, for every minimizer .mk; wk/ 2 K";M of Ek , there holds

mk.1Cjxj/
b
2 L1.RN /; wk.1Cjxj/

b
 2 L1.RN /; (3-12)

and there exist constants C > 0 and K, independent of " and k, such thatZ
RN

mk

ˇ̌̌̌
wk

mk

ˇ̌̌̌ 0
dxC

Z
RN

mkV.x/ dxCkmkk
˛C1
L˛C1.RN /

� C"
�
0˛N

0�N˛ CK: (3-13)

Proof. Let .mn; wn/ 2 K";M be a minimizing sequence, that is, Ek.mn; wn/! ek;".M/. This implies
that, choosing n sufficiently large, Ek.mn; wn/� e".M/C 1. From this and (3-4) we getZ

RN
mnL

�
�
wn

mn

�
dxC

Z
RN

V.x/mn dx � Ek.mn; wn/C
Cf

˛C 1

Z
RN

m˛C1n dxCKM

� ek;".M/C 1C
Cf

˛C 1

Z
RN

m˛C1n CKM: (3-14)

By Proposition 3.2, we get

kmnkL˛C1 C

Z
RN

m1�
0

n jwnj
 0 dx � C"

�
0˛N

0�˛N CK:

We conclude also that Z
RN

V.x/mn.x/ dx � C"
�
0˛N

0�˛N CK

for some C;K > 0. These estimates will imply (3-13), after passing to the limit, using Fatou’s lemma.
Moreover, by Corollary 2.9, we have that there exists C" > 0 depending on " such that for all r < q,

kmnkW 1;r .RN / � C":

Moreover, due to Sobolev embeddings, we get kmnkLs.RN / � C" for all s < q�. In addition, by applying
the Hölder inequality, we get that there exists C > 0 such thatZ

RN
jwnj

0˛C0

0C˛ dx � C

�Z
RN

m1�
0

n jwnj
 0 dx

� ˛C1

0C˛

kmnk
0�1

.˛C1/.0C˛/

L˛C1.RN /
:

By these estimates and Sobolev compact embeddings, we get that eventually extracting a subsequence
via a diagonalization procedure, mn!mk weakly in W 1;r.RN / for all r < q and strongly in Ls.K/ for
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all 1� s < q� and for every compact K � RN, and wn!wk weakly in L
0˛C0

0C˛ .RN /. By using the fact
that

R
RN

V.x/mn.x/ dx � C" and (1-5), we get that for all R > 1,

C" �

Z
RN

mn.x/V .x/ dx �

Z
jxj>R

mn.x/V .x/ dx � CR
b

Z
jxj>R

mn.x/ dx:

So for every " > 0 fixed and all �> 0, there exists R>0 for which
R
jxj>Rmn.x/ dx � �: up to extracting

a subsequence we get that mn!mk in L1.RN /, and so
R

RN
mk.x/ dx DM. By the boundedness of

mn in Ls.RN / for all 1� s < q�, we then have mn!mk strongly in L˛C1.RN /. Finally, observe that
from (3-13), using (1-5), we conclude that mk.1Cjxjb/ 2 L1.RN /. Moreover, we getZ

RN
jwkj dx �

Z
RN
jwkj.1Cjxj/

b
 dx �

�Z
RN

jwkj
 0

m
 0�1

k

dx

� 1
0
�Z

RN
mk.1Cjxj/

b dx

�1


;

and so wk.1Cjxj/
b
 2 L1.RN /.

Therefore the convergence is sufficiently strong to ensure that .mk; wk/ 2 K";M . We conclude that
.mk; wk/ is a minimum of the energy, by the lower semicontinuity with respect to weak convergence of
the functional

R
RN

mL
�
�
w
m

�
CV.x/mdx and by using the fact that FkŒmn�! FkŒmk�, since mn!mk

strongly in L˛C1.RN /. �

Using the minimizers we constructed in Proposition 3.3, we prove existence of a classical solution
to (3-1).

Proposition 3.4. There exists a classical solution .uk; mk; �k/ to (3-1) that satisfies for some constant
Ck;" > 0 the inequalities

jruk.x/j � Ck;".1Cjxj
b
 /; uk.x/� C

�1
k;" .1Cjxj

1C b
 /�Ck;": (3-15)

Additionally there exist C;K > 0 not depending on "; k such that

�K �C"
�
0˛N

0�˛N � �k � C"
�
0˛N

0�˛N CK: (3-16)

Proof. Let .mk; wk/ be a minimizer of Ek . Define the space of test functions

ADAb; WD
�
 2 C 2.RN / W lim sup

jxj!1

jr .x/j

jxj
b


<1; lim sup
jxj!1

j� .x/j

jxjb
<1

�
: (3-17)

Note that we also have, for all  2A,

lim sup
jxj!1

j .x/j

jxj
b

C1

<1:

We claim that

�"

Z
RN

mk� dx D

Z
RN

wkr dx for all  2A: (3-18)
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Indeed, consider a radial smooth cutoff function �.x/ which is identically equal to 1 in B1.0/ and
identically zero in RN nB2.0/. Set �R.x/ WD �

�
x
R

�
; we have jr�Rj � CR�1 and j��Rj � CR�2 on

RN for some positive constant C.
Since the equality "�mk D divwk holds in the weak sense on RN, we may multiply it by �R with

 2A and integrate by parts to obtain

�"

Z
B2R

mk.�R� C 2r � r�RC ��R/ dx D

Z
B2R

wk � .�Rr C r�R/ dx: (3-19)

Note that for some positive C,Z
RN
jwkr j dx � C

Z
RN
jwkj.1Cjxj/

b
 dx <1;

Z
RN

mkj� j dx � C

Z
RN

mk.1Cjxj/
b dx <1

by the integrability properties (3-12). Moreover,Z
R�jxj�2R

mkj jj��Rj dx � C

Z
R�jxj�2R

mk
.1Cjxj/

b

C1

R2
dx

� C1

Z
R�jxj�2R

mk.1Cjxj/
b

�1 dx! 0 as R!1,

because b

� 1 � b. Reasoning in a similar way, we also have that

R
R�jxj�2Rmkr � r�R andR

R�jxj�2R wk �  r�R converge to zero as R !1. Equality (3-18) then follows by passing to the
limit in (3-19).

Therefore, recalling the integrability properties of mk; wk obtained in Proposition 3.3, the problem of
minimizing Ek on K";M is equivalent to minimizing Ek on K, where

K WD
˚
.w;m/2 .L1\W 1;r/.RN /�L

0.˛C1/

0C˛ .RN / W .w;m/ satisfies (3-12), (3-18), m� 0,
R

RN
mDM

	
for some r < q. As in [Briani and Cardaliaguet 2018, Proposition 3.1], the convexity of L implies that
.mk; wk/ is also a minimizer of the following convex functional on K:

zJ .m;w/D

Z
RN

mL

�
�
w

m

�
C .V .x/CfkŒmk�/mdx:

We now aim to prove that

sup
˚
�M W �"� CH.r /C�� V.x/CfkŒmk� on RN for some  2A

	
D min
.w;m/2K

zJ .m;w/: (3-20)

We proceed as in [Cardaliaguet and Graber 2015, Theorem 3.5]: Setting

L.m;w; �;  / WD zJ .m;w/C
Z

RN
"m� Cwr ��mdxC�M;

we have

min
.m;w/2K

zJ .m;w/D min
.m;w/

sup
.�; /2R�A

L.m;w; �;  /;
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where the minimum in the right-hand side has to be taken over pairs

.m;w/ 2 .L1\W 1;r/.RN /�L
0.˛C1/

0C˛ .RN /

for some r < q, satisfying (3-12). Note that L. � ; � ; �;  / is convex, and L.m;w; � ; � / is linear. Moreover,
since L. � ; � ; �;  / is weak-* lower semicontinuous, we can use the min-max theorem, see [Borwein and
Vanderwerff 2010, Theorem 2.3.7], to get

min
.m;w/

sup
.�; /2R�A

L.m;w; �;  /

D sup
.�; /2R�A

min
.m;w/

L.m;w; �;  /

D sup
.�; /2R�A

min
.m;w/

Z
RN

mL

�
�
w

m

�
C .V .x/CfkŒmk�/mC "m� Cwr ��mdxC�M

D sup
.�; /2R�A

Z
RN

min
.m;w/2R�RN

mL

�
�
w

m

�
C .V .x/CfkŒmk�/mC "m� Cwr ��mdxC�M;

where the interchange of the min and the integration is possible by standard results in convex optimiza-
tion. By computation, min.m;w/2R�RN mL

�
�
w
m

�
C .V .x/C fkŒmk�/mC "m� Cwr ��m is zero

whenever "� �H.r /� �C .V .x/C fkŒmk�/ is positive, and it is �1 otherwise. Therefore, we
have proven (3-20).

By Theorem 2.7(i)–(ii), there exists uk 2 C 2.RN / such that

�"�ukCH.ruk/C�k D V.x/CfkŒmk� on RN ; (3-21)

which satisfies
jruk.x/j � Ck;".1Cjxj/

b
 ; uk.x/� Ck;"jxj

b

C1
�C�1k;"

for some Ck;" > 0.
Moreover,

"j�uk.x/j � jH.ruk.x//jC j�kjCV.x/�fkŒmk�� Ck;".1Cjxj/
b on RN;

so uk 2A. Thus, the supremum in the left-hand side of (3-20) is achieved by �k , and it holds true that

�kM D zJ .mk; wk/D Ek.mk; wk/C
Z

RN
fkŒmk�mk dx�F Œmk�: (3-22)

This gives in particular (3-16), using Lemma 3.1, estimates (3-10) and recalling Proposition 3.2 and
assumptions (1-3), (3-2) and (3-4).

We now use (3-22), (3-21) and (3-18) with  D uk to get

0D

Z
RN

�
L

�
�
wk

mk

�
CV.x/�m˛k ��k

�
mk dx

D

Z
RN

�
L

�
�
wk

mk

�
� "�ukCH.ruk/

�
mk dx

D

Z
RN

�
L

�
�
wk

mk

�
CH.ruk/Cruk �

wk

mk

�
mk dx;
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which implies
wk

mk
D�rH.ruk/ on the set fmk > 0g:

Hence, the Kolmogorov equation "�mkCdiv.mkrH.ruk//D 0 holds in the weak sense, and by elliptic
regularity we conclude that .uk; mk; �k/ is a classical solution to (1-1). �

Remark 3.5. Note that if we assume that the local term f satisfies (1-9) instead of (1-3), then the same
argument as above applies. In particular there exists a classical solution .uk; mk; �k/ to (3-1) such that

jruk.x/j � Ck;".1Cjxj
b
 /; uk.x/� C

�1
k;" .1Cjxj

1C b
 /�Ck;";Z

RN
m˛C1
k

dx;

Z
RN

mk.x/V .x/ dx � C"
�
0˛N

0�˛N CK:

We finally prove that every mk is bounded from above in RN (this is not obvious from Proposition 3.4
unless  0 >N ). Note that the following result does not provide uniform bounds with respect to k. These
will be produced in Theorem 4.1 using a much more involved argument.

Proposition 3.6. Let .uk; mk; �k/ be as in Proposition 3.4. Then, mk is bounded in L1.RN /.

Proof. Let �.x/D uk.x/p, for p > 1 to be chosen later. Using the fact that uk is a classical solution to
the HJB equation, we get

�"��CrH.ruk/ � r�

D pu
p�1

k

�
��uk � .p� 1/

jrukj
2

uk
CrH.ruk/ � ruk

�
D pu

p�1

k

�
��ukCH.ruk/� .p� 1/

jrukj
2

uk
�H.ruk/CrH.ruk/ � ruk

�
D pu

p�1

k

�
�.p� 1/

jrukj
2

uk
�H.ruk/CrH.ruk/ � ruk ��CfkŒmk�CV

�
: (3-23)

Observe that by (1-2), (1-5), (3-15) and the fact that fkŒmk� is bounded on RN, there exist large R and C
such that

G.x/D�.p� 1/
jrukj

2

uk
�H.ruk/CrH.ruk/ � ruk ��CfkŒmk�CV.x/

�K�1jrukj

� .p� 1/

jrukj
2

uk
�K ��CfkŒmk�CV.x/

� .p� 1/jrukj


�
1

K.p� 1/
�
jrukj

2�

uk

�
�C CC�1V jxj

b
� 1 for all jxj>R:

Hence, again by (3-15), for all jxj>R

�"��CrH.ruk/ � r� � cjxj
.1C b


/.p�1/:
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In view of [Metafune et al. 2005, Proposition 2.6], we have jxj.1C
b

/.p�1/mk 2 L

1.RN /. Recall now that
jrH.ruk/j�C.1Cjxj/

b
0 by (3-15). Therefore, by choosing p large enough, jrH.ruk/jsmk 2L1.RN /

for some s > N. We conclude the boundedness of mk in L1 by [Metafune et al. 2005, Theorem 3.5]. �

4. Existence of a solution to the MFG system for " > 0

Our aim is to pass to the limit k!1 for solutions to (3-1).

4A. A priori L1 bounds. We need first a priori L1 bounds on mk that are independent with respect
to k. These will be achieved by a blow-up argument, as proposed in [Cirant 2016] for systems set on
the flat torus TN. Here, the unbounded space RN and the presence of the unbounded term V make the
argument much more involved than the one in that paper. To control the points xk 2 RN where mk.xk/
possibly explodes, some delicate estimates on the decay (in L1) of its renormalization will be produced.

We provide a more general result, that will be used also in the rescaled framework (Section 5). Let
rk; sk; tk be bounded sequences of positive real numbers.

Theorem 4.1. Let .uk; �k; mk/ be a classical solution to the mean-field game system8<:
��uC r



k
H.r�1

k
ru/C�k D gkŒm�C skV.tkx/;

��m� div.m r�1
k
rH.r�1

k
ru//D 0;R

RN
mdx DM;

where gk W L1.RN /! L1.RN / are such that for all m 2 L1.RN /\L1.RN / and for all k,

kgkŒm�kL1.RN / �K.kmk
˛
L1.RN /

C 1/ (4-1)

for some K > 0. Suppose also that for all k, uk is bounded from below and mk is bounded from above
on RN. Then, there exists a constant C independent of k such that

kmkkL1 � C:

Proof. We argue by contradiction, so we assume that

sup
RN

mk D Lk!C1:

We divide the proof into several steps.

Step 1: rescaling of the solutions. Let

�k WD L
�ˇ

k
; ˇ D ˛

 � 1


> 0:

So, observe that �k! 0 as k! 0. Since uk is bounded from below, up to adding a suitable constant we
can assume that minRN uk D 0. We define the rescaling�

vk.x/D �
2�
�1

k
uk.�kx/C 1;

nk.x/D L
�1
k
mk.�kx/:
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Note that 0� nk.x/� 1. Moreover, due to (1-4),Z
RN

nk.x/ dx DML
˛N.�1/


�1

k
! 0; (4-2)

and min vk D 1. We define

Hk.q/D �

�1

k
r


k
H.r�1k �

1
1�

k
q/; so rHk.q/D �kr

�1

k
rH.r�1k �

1
1�

k
q/:

Recalling (1-2) we have that for all q 2 RN,

CH jqj

�K �Hk.q/� CH .jqj


C 1/;

jrHk.q//j � CH jqj
�1;

rHk.q/ � q�Hk.q/�K
�1
jqj �K:

(4-3)

Moreover, we define

Qgk.x/D �

�1

k
gkŒmk�.�kx/:

Recalling that 0�mk � Lk , by (4-1) we get that for all x and for all k,

j Qgk.x/j � �

�1

k
K.L˛k C 1/� 2K; (4-4)

where we used the fact that �k D L
�ˇ

k
with ˇ D ˛ �1


. Finally, we let

Q�k D �

�1

k
�k D

1

L˛
k

�k

and we observe that
j Q�kj � C: (4-5)

Finally, let

Vk.x/D �

�1

k
skV.�ktkx/:

By assumption (1-5), we get

sk�

�1

k
C�1V .maxfjtk�kxj �CV ; 0g/

b
� Vk.x/� CV .1C �kjxj

b/; (4-6)

where

�k WD �

�1
Cb

k
skt

b
k ! 0 as k!1.

In particular we also have the following bound from below for Vk:

Vk.x/�
C�1V

2b
�kjxj

b for all jxj � 2CV .tk�k/
�1. (4-7)

An easy computation shows that by rescaling we have that .vk; nk; Q�k/ is a solution to�
��vkCHk.rvk/C Q�k D Qgk.x/CVk.x/;

��nk � div.nkrHk.rvk//D 0:
(4-8)
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Step 2: a priori bounds on the rescaled solution to the Hamilton–Jacobi equation. We observe that by
Theorem 2.5 and (4-6), there exists C > 0, independent of k, such that

jrvk.x/j � C.1C �
1


k
jxj

b
 / on RN. (4-9)

We recall that we assumed vk. Oxk/Dmin vk D 1. Since vk is a classical solution to (4-8), at a minimum
point Oxk we have, by (4-3), (4-4), (4-5) and (4-7),

�kj Oxkj
b
� C:

Therefore, by using this estimate and (4-9), since jvk.0/j � jvk. Oxk/j C j Oxkj supjyj�j Oxk j jruk.y/j we
obtain

jvk.0/j � 1CC.1C �
1


k
j Oxkj

1C b
 /� C1.1C �

� 1
b

k
/

and then again by (4-9),

jvk.x/j � C.1C �
� 1
b

k
C �

1


k
jxj

b

C1/ on RN : (4-10)

Let � be a smooth function � W Œ0;C1/! Œ0;C1/ such that �� 0 in
�
0; 1
2

�
[
�
3
2
;C1

�
, �.1/ > 0

and j�0j; j�00j � 1. We fix Qx 2 RN such that j Qxj> 4CV .tk�k/�1, and we set

w.x/D ��
1


k
j Qxj1C

b
 �

�
jxj

j Qxj

�
;

where � � 0 has to be chosen. We have that w.x/� vk.x/ for all x such that jxj � 3
2
j Qxj or jxj � 1

2
j Qxj.

Moreover, for x such that 1
2
j Qxj � jxj � 3

2
j Qxj we have jxj> 2CV .�ktk/�1, so using the estimates (4-3),

(4-4), (4-5) and (4-7),

��wCHk.rw/C Q�k � Qgk.x/�Vk.x/� �N�
1


k
j Qxj

b

�1
CCH�

�kj Qxj
b
CC �

C�1V

2b
�kj Qxj

b:

Note that there exist � > 0 small and C2 > 0 large, depending only CV and CH and not on j Qxj, k, such
that the right-hand side of the last expression is negative if

�kj Qxj
b
� C2

(this also implies that tk�kj Qxj> 4CV , as required). The test function w is then a subsolution of the HJB
equation in (4-8); therefore by comparison we get

vk. Qx/� ��.1/�
1


k
j Qxj1C

b
 :

By the arbitrariness of Qx we conclude that, for some C > 0,

vk.x/� C�
1


k
jxj

b

C1 for all �kjxj

b
� C2: (4-11)

Step 3: estimates on the (approximate) maxima of nk . We now fix 0 < ı � 1 and xk such that
nk.xk/D 1�ı. Two possibilities may arise: either limk �kjxkjbDC1 up to some subsequence, or there
exists C > 0 such that �kjxkjb � C. We rule out the second possibility by contradiction. Suppose indeed
that there exists C >0 such that �kjxkjb �C. By (4-9), jrvkj �C on B2.xk/ for some C >0. Therefore,
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using the fact that nk solves the second equation in (4-8), the elliptic estimates in Proposition 2.4, (4-3),
the interpolation inequality knkq � knk

1
q

1
knk

1� 1
q

1
and the fact that 0� nk � 1, we get for all q > 1,

knkkW 1;q.B1.xk//
� C.1CkrHk.rvk/kL1.B2.xk///knkk

1
q

L1.B2.xk//
� Cq (4-12)

for some Cq > 0 depending on q. This implies, choosing q > N, that for all � 2 .0; 1/ there exists C�
depending on � (but not on k) such that knkkC0;� .B1.xk// � C� . Recalling that nk.xk/D 1� ı, we can
fix r < 1 such that nk.x/� 1

2
for all x 2 Br.xk/. It is sufficient to choose r D C�

1
�

�

�
1
2
� ı
� 1
� . Therefore

we have, by (4-2),

0 < 1
2
!N r

N
�

Z
Br .xk/

nk.x/ dx �

Z
RN

nk.x/ dx DML
˛N.�1/


�1

k
! 0:

This gives a contradiction. Then we deduce that, up to a subsequence,

lim
k
�kjxkj

b
DC1: (4-13)

Step 4: construction of a Lyapunov function. Let �.x/D vk.x/p , for p > 1 to be chosen later. Using the
fact that vk is a classical solution to (4-8), arguing as in (3-23), we get

���CrHk.rvk/�r�Dpv
p�1

k

�
��vk�.p�1/

jrvkj
2

vk
CrHk.rvk/�rvk

�
Dpv

p�1

k

�
�.p�1/

jrvkj
2

vk
�Hk.rvk/CrHk.rvk/�rvk�Q�kCQgk.x/CVk.x/

�
:

We set

Gk.x/D�.p� 1/
jrvkj

2

vk
�Hk.rvk/CrHk.rvk/ � rvk � Q�kC Qgk.x/CVk.x/: (4-14)

Using the previous computation and the fact that nk is a solution to (4-8), we get, by integrating by parts,
that

0D

Z
RN

nk.x/
�
���.x/CrHk.rvk.x// � r�.x/

�
dx D p

Z
RN

nk.x/Gk.x/�
p�1
p .x/ dx:

Therefore from this, for every ƒ> 0 we getZ
f�.x/�ƒpg

nk.x/Gk.x/�
p�1
p .x/ dx D�

Z
f�.x/�ƒpg

nk.x/Gk.x/�
p�1
p .x/ dx: (4-15)

Observe that by (4-3), (4-4), (4-5) and (4-7) we get that for all tk�kjxj � 2CV ,

Gk.x/�K
�1
jrvkj


� .p� 1/

jrvkj
2

vk
�K � Q�kC Qgk.x/CVk.x/

� .p� 1/jrvkj


�
1

K.p� 1/
�
jrvkj

2�

vk

�
�C CCV �kjxj

b: (4-16)
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We first claim that by (4-9) and (4-11),

1

K.p� 1/
�
jrvkj

2�

vk
> 0 if �kjxj

b
� C2;

eventually enlarging C2 in (4-11). Indeed,

jrvk.x/j
2�

vk.x/
� C

Œ1C �
1


k
jxj

b
 �2�

Œ�
1


k
jxj

b
 �jxj

�
CH

p� 1
(4-17)

whenever �kjxjb is large enough. This implies that for all �kjxjb � C2, by (4-16) we have Gk.x/� �C.
On the other hand, again by the gradient bounds in (4-9) we have that jrvk.x/j � C.1CC2/ on the set
�kjxj

b � C2, so (4-16) and min vk D 1 again guarantee that Gk.x/� �C3. In conclusion, there exists
C > 0 such that

Gk.x/� �C for all x 2 RN:

Therefore, going back to (4-15), recalling (4-2), we obtain thatZ
f�.x/�ƒpg

nk.x/Gk.x/

�
�.x/

ƒp

�p�1
p

dx � C

Z
f�.x/�ƒpg

nk.x/ dx � C

Z
RN

nk.x/ dx

D CM�
�NC 

˛.�1/

k
! 0 (4-18)

as k!1.
Note that by (4-16) and (4-17), if x is such that Gk.x/ � 0, then necessarily �kjxjb � C for some

C > 0. Hence, by (4-10), we get that vk.x/� C3.1C ��
1
b

k /. Therefore if we choose ƒDƒk DK��
1
b

k

for a sufficiently large K > 0, we get that Gk.x/ > 0 in the set fx W �.x/�ƒpg.

Step 5: integral estimates on nk . Arguing as in the end of Step 4, we may choose K big enough so that
Gk.x/� 1 in the set fx W �.x/�ƒp

k
g, where ƒk DK��

1
b

k . If k is sufficiently large, by (4-11) and (4-13)
it follows that for some C > 0,

vk.x/� C�
1


k
jxkj

1C b
 in B1.xk/; and B1.xk/� fx W �.x/�ƒ

p

k
g:

Therefore, we may conclude thatZ
f�.x/�ƒ

p

k
g

nk.x/Gk.x/

�
�.x/

ƒ
p

k

�p�1
p

dx � C

�
�
1


k
jxkj

1C b


�
� 1
b

k

�p�1Z
B1.xk/

nk.x/ dx

� C.�
1


k
jxkj

b
 /p�1

Z
B1.xk/

nk.x/ dx; (4-19)

which together with (4-18) gives Z
B1.xk/

nk.x/ dx � .�
1


k
jxkj

b
 /1�p (4-20)

for all k large.
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Reasoning as in Step 3, see in particular (4-12), by Proposition 2.4, (4-3), (4-9) and (4-20), we get that
for all q > 1,

knkkW 1;q.B1=2.xk//
� C.1CkrHk.rvk/kL1.B1.xk///knkk

1
q

L1.B1.xk//

� C4Œ1C .�
1


k
jxkj

b
 /�1�.�

1


k
jxkj

b
 /

1�p
q � 1;

whenever p is such that  � 1C 1�p
q
< 0 and k is large (recall that we are supposing �

1


k
jxkj

b
 !C1).

Therefore, we may conclude as in Step 3: choosing q >N, for some � 2 .0; 1/ there exists C� such that
knkkC0;� .B1=2.xk// �C� . Since nk.xk/D 1�ı, we can fix r < 1 such that nk.x/� 1

2
for all x 2Br.xk/.

Finally, by (4-2)

0 < 1
2
!N r

N
�

Z
Br .xk/

nk.x/ dx �

Z
RN

nk.x/ dx DML
˛N.�1/
�1

k
! 0:

That gives a contradiction and rules out the possibility that �kjxkjb!C1. Therefore, Lk!C1 is
impossible. �

4B. Existence of a solution to the MFG system. Using the a priori bounds we obtained, we can pass to
the limit in k in the MFG system (3-1) to get a solution to (1-1) for every " > 0.

Proof of Theorem 1.1. First, by Proposition 3.4, the existence for all k of a classical solution .uk; mk; �k/
to (3-1) follows. By (3-16), up to passing to a subsequence we have that �k! �".

Note that by Propositions 3.4 and 3.6, uk and mk are bounded by below and above respectively, so
due to Theorem 4.1 (with gŒm�D fkŒm� and rk D sk D tk D 1 for all k), we get that there exists C" > 0
independent of k (but eventually dependent on " > 0) such that kmkkL1.RN / � C". Using Theorem 2.5,
this implies jruk.x/j � C".1Cjxj

b
 / for some C" independent of k. We can normalize uk.0/D 0 and

using the Ascoli–Arzelà theorem we can extract by a diagonalization procedure a sequence uk such
that uk! u" locally uniformly in RN. Moreover, by using the estimates and the equation we have that
actually uk! u" locally uniformly in C 1. Note that, denoting by xk a minimum point of uk on RN, we
have by the HJB equation that

H.0/C�k �fkŒmk�.xk/� V.xk/:

Coercivity (1-5) of V and uniform boundedness of �k and fkŒmk� guarantee that xk remains bounded,
in particular that uk � �C on RN by gradient bounds. Theorem 2.6 then applies, and in particular
uk.x/� C jxj

1C b
 �C�1 for all k. This implies, passing to the limit, that

u".x/� C jxj
1C b

 �C�1 on RN : (4-21)

By the elliptic estimates in Proposition 2.4, we get that mk !m" locally uniformly in C 0;˛ for all
˛ 2 .0; 1/ and weakly in W 1;p.BR/ for every p > 1 and R > 0. Therefore we get that u" is a solution in
the viscosity sense of the Hamilton–Jacobi equation, by stability with respect to uniform convergence,
and m" is a weak solution to the Fokker–Planck equation, by strong convergence of ruk!ru". Finally
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this implies, again by using the regularity of the HJB equation, that uk ! u" locally uniformly in C 2.
Therefore, u"; m" solve in classical sense the system (1-1).

Now we show that
R

RN
m".x/ dx DM. We have that mk!m" locally uniformly in C 0;˛ for every

˛ 2 .0; 1/. Moreover, due to (3-13) and to (1-5), we get that for all R > 1,

C" �

Z
RN

mk.x/V .x/ dx �

Z
jxj>R

mk.x/V .x/ dx � CR
b

Z
jxj>R

mk.x/ dx:

This implies
R
jxj�Rmk.x/ dx �M �C"R

�b and then by uniform convergence we get that for every
" > 0, and � > 0, there exists R > 0 such thatZ

jxj�R

m".x/ dx �M � �:

From this we can conclude that mk!m" in L1.RN /, that is,
R

RN
m".x/ dx DM. By the boundedness

of mk in L1, it also follows that mk!m" in L˛C1.RN /.
Finally, we get that if w" D �m"rH.ru"/, then .m"; w"/ 2 K";M , due to the second equation in

(1-1). Moreover, we have that if mk!m strongly in L˛C1.RN /, then, due to the Lebesgue dominated
convergence theorem and (3-4), F.mk?�k/!F.m/ strongly inL1.RN /. This implies that the energy Ek
�-converges to the energy E , from which we conclude that .m"; w"/ is a minimizer of E in the set K";M . �

Remark 4.2. Note that by the very same arguments, recalling Remark 3.5, we have the existence of
solutions also in the more general case that condition (1-9) is satisfied.

We conclude proving some estimates on the solution .u"; m"; �"/ given in Theorem 1.1 that will be
useful in the following.

Corollary 4.3. Let .u"; m"; �"/ be as in Theorem 1.1. There exist constants C;C1; C2; K;K1; K2 > 0
independent of " such thatZ

RN
m"jru"j

 dxC

Z
RN

m˛C1" dxC

Z
RN

m".x/V .x/ dx � C"
�
0˛N

0�˛N CK; (4-22)

�K1�C1"
�
0˛N

0�˛N � �" �K2�C2"
�
0˛N

0�˛N : (4-23)

Proof. We observe that, by the arguments in the proof of Theorem 1.1, mk!m" and jrukj ! jru"j
almost everywhere, and using the fact that V.x/� 0, we have that by Fatou’s lemmaZ

RN
m".x/jru"j

 dx � lim inf
k

Z
RN

mk.x/jrukj
 dx;Z

RN
m".x/V .x/ dx � lim inf

k

Z
RN

mk.x/V .x/ dx;Z
RN

m˛C1" dx � lim inf
k

Z
RN

m˛C1
k

dx:

So inequality (3-13) gives immediately (4-22).
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Now we prove (4-23). Note that the estimate from below is a direct consequence of (3-16). So, it
remains to show that

�" � C2�C2"
�
0˛N

0�˛N :

Recalling that formula (3-22) holds and
R
f .m/m�F.m/� 2KM by (1-3), it is sufficient to show that

inf
.m;w/2K";M

E.m;w/� �C2"
�
0˛N

0�˛N CC2; (4-24)

where C2 is a constant depending only on N;M;CL; ; ˛; V . We construct a pair .m;w/ 2 K";M as
follows. First of all we consider a smooth function � W Œ0;C1/!R which solves the ordinary differential
equation �

�0.r/D��.r/.1C�.r/˛/
1
0 ;

�.0/D 1
2
:

(�)

Then, it is easy to check that 0 < �.r/� 1
2
e�r . We define m.x/DA�.� jxj/, where A; � are constants to

be fixed, and w.x/D "rm.x/.
First of all we impose

M D

Z
RN

m.x/ dx D
A

�N

Z
RN

�.jyj/ dy D
A

�N
C�1;

recalling that � is exponentially decreasing. So ADM�NC , where C�1 D
R

RN
�.jyj/ dy.

Observe also thatZ
RN

m˛C1.x/ dx DM ˛C1�˛NC ˛C1
Z

RN
�˛C1.jyj/ dy DM ˛C1�˛NC ˛C1C˛; (4-25)

where C˛ D
R

RN
�˛C1.jyj/ dy.

We check, recalling the growth condition (1-5), that the following holds:Z
RN

m.x/V.x/ dx DMC

Z
RN

V

�
y

�

�
�.jyj/ dy D C1

1

�b
; (4-26)

where K is a constant depending on N, �, C0.
Moreover, we compute, recalling that � solves the ODE (�),

jwj
0

D

ˇ̌̌̌
"�m

�
1C

1

M ˛C ˛�N˛
m˛
� 1
0
ˇ̌̌̌ 0
D "

0

�
0

m
0

�
1C

1

M ˛C ˛�N˛
m˛
�
: (4-27)

We consider the energy at .m;w/

E.m;w/D
Z

RN
mL

�
�
w

m

�
CF.m/CmV.x/ dx:

Observe that by (1-3),

F.m/� �
Cf

˛C 1
m˛C1CKm:
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Using Proposition 2.1, computation (4-27) and (4-25), we getZ
RN
mL

�
�
w

m

�
CF.m/dx�

Z
RN
mL

�
�
w

m

�
dx�

Cf

˛C1

Z
RN
m˛C1dxCKM

�CL

Z
RN
m
jwj

0

m
0 dxC.CLCK/M�

Cf

˛C1

Z
RN
m˛C1dx

DCL"
 0�

0

�
MC

Z
RN

1

M ˛C ˛�N˛
m˛C1dx

�
C.CLCK/M�

Cf

˛C1

Z
RN
m˛C1

DCL"
 0�

0

MC.CLCK/M�

�
Cf

˛C1
�
"
0

�
0�N˛

M ˛C ˛

�Z
RN
m˛C1dx

D .MCLCMCC˛/"
 0�

0

�
Cf

˛C1
M ˛C1C ˛C1C˛�

˛N
C.CLCK/M:

We choose now � such that � D 1
a
"
�

0

0�N˛ , where a is sufficiently large, in such a way thatZ
RN

mL

�
�
w

m

�
dxCF.m/ dx � �C"

�
0N˛

0�N˛ CC;

where C is a constant depending on ˛; CL;M. Substituting this in the energy and recalling (4-26), we
get the desired inequality. �

5. Concentration phenomena

In the second part of this work, we are interested in the asymptotic analysis of solutions to (1-1) when
"! 0.

5A. The rescaled problem. We consider the rescaling8̂̂<̂
:̂
Qm.y/ WD "

N0

0�˛Nm."
0

0�˛N y/;

Qu.y/ WD "
N˛.0�1/�0

0�˛N u."
0

0�˛N y/;

Q� WD "
N˛0

0�˛N �:

(5-1)

We introduce the rescaled potential

V".y/D "
N˛0

0�˛N V."
0

0�˛N y/: (5-2)

Note that by (1-5), we get

C�1V "
N˛0

0�˛N .maxfj"
0

0�˛N yj �CV ; 0g/
b
� V".y/� CV "

N˛0

0�˛N .1C "
0

0�˛N jyj/b: (5-3)

The rescaled coupling term is given by

f". Qm.y//D "
N˛0

0�˛N f ."
�

N0

0�˛Nm."
0

0�˛N y//: (5-4)

Note that, using (1-3), we obtain

�Cfm
˛
�K"

N˛0

0�˛N � f".m/� �Cfm
˛
CK"

N˛0

0�˛N : (5-5)
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Then we get that
lim
"!0

f".m/D�Cfm
˛ uniformly in Œ0;C1/: (5-6)

Moreover, we define F".m/D
Rm
0 f".n/ dn if m� 0 and F".m/D 0 otherwise, and we get

�
Cf

˛C 1
m˛C1�K"

N˛0

0�˛Nm� F".m/� �
Cf

˛C 1
m˛C1CK"

N˛0

0�˛Nm: (5-7)

We define also the rescaled Hamiltonian

H".p/D "
N˛0

0�˛NH."
�
N˛.0�1/

0�˛N p/: (5-8)

By (1-2),

CH jpj

� "

N˛0

0�˛NK �H".p/� CH jpj
 ;

jrH".p/j �Kjpj
�1:

(5-9)

So, we get
lim
"!0

H".p/DH0.p/ WD CH jpj
 uniformly in RN: (5-10)

Moreover, if we assume that rH" is locally bounded in C 0;�1.RN /, then

rH".p/!rH0.p/D
CH


jpj�2p locally uniformly.

We can define L" as in (1-7), with H" in place of H and we obtain that condition (5-9) gives that there
exists CL > 0 such that

CLjqj
 0
� L".q/� CLjqj

 0
C "

N˛0

0�˛N CL; (5-11)

which in turns gives that

L".q/! L0.q/D CLjqj
 0 uniformly in RN: (5-12)

The rescalings (5-13) lead to the rescaled system8<:
�� Qu"CH".r Qu"/C Q�" D f". Qm"/CV".y/;

�� Qm"� div. Qm"rH".r Qu"//D 0;R
RN
Qm" DM:

(5-13)

Existence of a triple . Qu"; Qm"; Q�"/ solving the previous system is an immediate consequence of Theorem 1.1.
We first start by stating some a priori estimates.

Lemma 5.1. There exist C;C1; C2 > 0 independent of " such that the following hold:

�C1 � Q�" � �C2; (5-14)Z
RN
Qm"jr Qu"j

 dyC

Z
RN
Qm".y/V".y/ dyCk Qm"k

˛C1
L˛C1.RN /

� C; (5-15)

k Qm"kL1.RN / � C: (5-16)



CONCENTRATION OF GROUND STATES IN STATIONARY MEAN-FIELD GAMES SYSTEMS 769

Proof. Estimates (4-23), (4-22) give (5-14), (5-15) by rescaling.
We apply Theorem 4.1 with gŒm�.x/ D f".m.x//, rk D "

N˛.0�1/

0�˛N , sk D "
N˛0

0�˛N and tk D "
0

0�˛N,
which are all bounded sequences, and we obtain (5-16). �

Using the a priori bounds on the solutions to (5-13), we want to pass to the limit "! 0. The problem
is that these estimates are not sufficient to ensure that there is no loss of mass, namely that the limit of
Qm" still has L1 norm equal to M. Therefore, we need to translate the reference system at a point around

which the mass of Qm" remains positive. This will be done as follows.
Let y" 2 RN be such that

Qu".y"/Dmin
RN
Qu".y/; (5-17)

note that this point exists due to (4-21).
We will define

Nu".y/D Qu".yCy"/� Qu".y"/;

Nm".y/D Qm".yCy"/:
(5-18)

Note that . Nu"; Nm"; Q�"/ is a classical solution to8<:
�� Nu"CH".r Nu"/C Q�" D f". Nm"/CV".yCy"/;

�� Nm"� div. Nm"rH".r Nu"//D 0;R
RN
Nm" DM;

(5-19)

and in addition Nu".0/D 0DminRN Nu".

5B. A preliminary convergence result. In this section, we provide some preliminary convergence results,
where we are not preventing possible loss of mass in the limit. First of all we need some a priori estimates
on the solutions to (5-19).

Proposition 5.2. Let . Nu"; Nm"; Q�"/ be as in (5-18). Then there exists a constant C > 0 independent of "
such that the following hold:

"
.N˛Cb/0

0�N˛ jy"j
b
� C and 0� V".yCy"/� C."

.N˛Cb/0

0�N˛ jyjbC 1/; (5-20)

jr Nu".y/j � C.1Cjyj/
b
 and Nu".y/� C jyj

1C b
 �C�1; (5-21)Z

BR.0/

Nm".y/ dy � C for all R � 1: (5-22)

Finally, if Nw" D� Nm"rH".r Nu"/, then . Nm"; Nw"/ is a minimizer in the set K1;M of the energy

E".m;w/D
Z

RN
mL"

�
�
w

m

�
CV".yCy"/mCF".m/ dy; (5-23)

where L" and F" are defined in Section 5A.

Proof. Since Nu" is a classical solution, we can compute the equation in y D 0, obtaining

H".0/C Q�" � f". Nm".0//CV.y"/:
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Using the a priori estimates (5-14), (5-16), (5-9) and the assumptions (5-5), (5-3), this implies

"
.N˛Cb/0

0�N˛ jy"j
b
� C;

and then, again by assumption (5-3), that (5-20) holds.
Using estimates (5-14), (5-16), and (5-20), we conclude by Theorem 2.5 that estimate (5-21) holds.
Again by the equation computed at yD 0, recalling that H".0/! 0 and V" � 0 and estimate (5-14), we

deduce that �f". Nm".0//��C2 > 0. So, by assumption (5-5), we get that there exists C > 0 independent
of ", such that Qm".0/ > C > 0. Using the estimates (5-21) and (5-16), by Proposition 2.4, we get that
there exists a positive constant depending on p such that k Nm"kW 1;p.B2.0//

� Cp for all p > 1. This, by
Sobolev embeddings, gives that k Nm"kC0;˛.B2.0// �C˛ for every ˛ 2 .0; 1/ and for some positive constant
depending on ˛. We choose now R0 2 .0; 1� such that Nm" � 1

2
C in BR0.0/, using the C ˛ estimate and

the fact that Nm".0/ > C > 0. This implies immediately that
R
BR0 .0/

Nm".y/ dy �
1
2
C jBR0 j > 0. This

gives the estimate (5-22), for all radii bigger than R0.
Finally that . Nm"; Nw"/ is a minimizer of (5-23) in K1;M follows from Theorem 1.1, by rescaling. �

We get the first convergence result.

Proposition 5.3. Let . Nu"; Nm"; Q�"/ be the classical solution to (5-19) constructed above. Up to subse-
quences, we get that Q�"! N�, and

Nu"! Nu; Nm"! Nm; r Nu"!r Nu; rH".r Nu"/!rH0.r Nu/ (5-24)

locally uniformly, where Nu� 0D Nu.0/, and . Nu; Nm; N�/ is a classical solution to�
�� NuCH0.r Nu/C N�D�Cf Nm

˛Cg.x/;

�� Nm� div. NmrH0.r Nu//D 0
(5-25)

for a continuous function g such that 0� g.x/� C on RN for some C > 0.
Moreover, there exist a 2 .0;M�, C;K; � > 0 such that

R
RN
Nmdx D a, and

Nu.x/� C jxj �C; jr Nuj �K on RN ;

Z
RN

e�jxj Nm.x/ dx <C1: (5-26)

Proof. First of all observe that, since V is a locally Hölder continuous function, (5-20) implies that, up to
a subsequence, V".xCy"/! g.x/ locally uniformly as "! 0, where g is a continuous function such
that 0� g.x/� C for some C > 0.

Using the a priori estimate (5-21), and recalling that Nu" is a classical solution to (5-19), by classical
elliptic regularity theory we obtain that Nu" is locally bounded in C 1;˛ in every compact set, uniformly
with respect to ". So, up to extracting a subsequence via a diagonalization procedure, we get that

Nu"! Nu; r Nu"!r Nu; rH".r Nu"/!rH0.r Nu/

locally uniformly, and Q�"! N�. Using the estimates (5-21) and (5-16), by Proposition 2.4, and by Sobolev
embeddings, for every compact set K � RN, we have that k Nm"kC0;˛.K/ � CK;˛ for every ˛ 2 .0; 1/ and
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for some positive constant depending on ˛ andK. So, up to extracting a subsequence via a diagonalization
procedure, we get that Nm"! Nm locally uniformly.

So, we can pass to the limit in (5-19) and obtain that . Nu; Nm; N�/ is a solution to (5-25), which is classical
by elliptic regularity theory.

Using (5-22) and locally uniform convergence, we get that there exists a2.0;M� such that
R

RN
NmdyDa.

Observe that Nu is a solution to

�� NuCH0.r Nu/C N�D�Cf Nm
˛
Cg.x/:

By Theorem 2.5, we get that there exists a constant K depending on supg and �N� such that jr Nuj �K.
Moreover, by construction Nu� 0.

Since Nm is Hölder continuous and such that
R

RN
NmdxD a 2 .0;M�, by Lemma 2.2, we get that Nm! 0

as jxj ! C1. Therefore, we get that lim infjxj!C1.� Nm˛.x/C g.x/� N��H0.0// � �� > 0. So, by
Theorem 2.6, recalling that by construction Nu.0/D 0� Nu.y/, we get that Nu satisfies

Nu.x/� C jxj �C (5-27)

for some C > 0.
To conclude, consider the function ˆ.x/D e� Nu.x/. We claim that we can choose � > 0 such that there

exist R > 0 and ı > 0 with

��ˆCrH0.r Nu/ � rˆ> ıˆ; jxj>R: (5-28)

Indeed, since Nu solves the first equation in (5-25), we get

��ˆCrH0.r Nu/ � rˆ� �.�N�� �jr Nuj
2
� Nm˛/ˆ:

Using (5-27) and Nm! 0 as jxj !C1, we obtain the claim. Reasoning as in [Ichihara 2015, Proposi-
tion 4.3], or [Metafune et al. 2005, Proposition 2.6], we get that

R
RN

e� Nu Nmdx <C1, which concludes
the estimate (5-26). �
Remark 5.4. With estimates (5-26) in force, the pointwise bounds stated in [Metafune et al. 2005,
Theorem 6.1] hold; namely there exist positive constants c1; c2, such that

Nm.x/� c1e
�c2jxj on RN:

5C. Concentration-compactness. In this section we show that actually there is no loss of mass when
passing to the limit as in Proposition 5.3. In order to do so, we apply a kind of concentration-compactness
argument.

First of all we show that the functional E".m;w/ enjoys the following subadditivity property. Let us set

Qe".M/D min
.m;w/2KM

E".m;w/:

Recalling (3-6), (4-24), and the rescaling (5-1), for every M > 0 there exist C1.M/; C2.M/;K1; K2 > 0

depending on M (and on the other constants of the problem) but not on " such that there holds

�C1.M/�K1"
N˛0

0�N˛ � Qe".M/� �C2.M/�K2"
N˛0

0�N˛ : (5-29)
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Lemma 5.5. For all a 2 .0;M/, there exist "0D "0.a/ and a constant C DC.a;M/� 0, depending only
on a;M and the data (not on "), such that C.M;M/D 0D C.0;M/, C.a;M/ > 0 for 0 < a <M and

Qe".M/� Qe".a/C Qe".M � a/�C.a;M/ for all "� "0: (5-30)

Proof. We assume that a � 1
2
M (otherwise it suffices to replace a with M � a).

Let c > 1 and B > 0. For all admissible pairs .m;w/ 2 KB we have, recalling (5-7),

Qe".cB/� E".cm; cw/D
Z

RN
cmL"

�
�
w

m

�
CF".cm/C cV".xCy"/mdx

D cE".m;w/C
Z

RN
F".cm/� cF".m/ dx

� cE".m;w/�
c.c˛ � 1/Cf

˛C 1

Z
RN

m˛C1 dxC 2KcB"
N˛0

0�N˛ : (5-31)

Let now .mn; wn/ be a minimizing sequence of E" in KB such that E".mn; wn/ � Qe".B/C 1
4
C2.B/,

where C2.B/ is the constant appearing in (5-29), which depends on B and on the data of the problem.
Recalling that V" � 0 and L" � 0, and using estimate (5-7), we get

Qe".M/C 1
4
C2.B/� E".mn; wn/�

Z
RN

F".mn/ dx � �
Cf

˛C 1

Z
Rn
m˛C1 dx�KB"

N˛0

0�N˛ :

Using (5-29), we get, for all " sufficiently small,

Cf

˛C 1

Z
RN

m˛C1n dx � 3
4
C2.B/�K"

N˛0

0�˛N > 1
2
C2.B/ > 0:

So, this estimate in particular holds for a minimizer of E". Therefore in (5-31) we get, taking .m;w/ to
be a minimizer of E" (which exists by Proposition 5.2),

Qe".cB/ < c Qe".B/� c.c
˛
� 1/1

2
C2.B/C 2KcB"

N˛0

0�N˛ : (5-32)

Using (5-32) with B D a and c D M
a

we get

Qe".M/ <
M

a
Qe".a/�

M

a

��
M

a

�˛
� 1

�
C2.a/

2
C 2KM"

N˛0

0�N˛ :

If aD 1
2
M , this permits us to conclude, choosing " sufficiently small (depending on a). If a > 1

2
M , we

use (5-32) with B DM � a and c D a
M�a

to get
�
multiplying everything by M�a

a

�
M �a

a
Qe".a/ < Qe".M �a/�

��
a

M �a

�̨
�1

�
C2.M �a/

2
C2K.M �a/"

N˛0

0�N˛

< Qe".M �a/�

��
a

M �a

�̨
�1

�
C2.M �a/

2
C2KM"

N˛0

0�N˛ � Qe".M �a/C2KM"
N˛0

0�N˛ :
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So putting together the last two inequalities we get

Qe".M/ <
M

a
Qe".a/�

M

a

��
M

a

�̨
� 1

�
C2.a/

2
C 2KM"

N˛0

0�N˛

D Qe".a/C
M � a

a
Qe".a/�

M

a

��
M

a

�̨
� 1

�
C2.a/

2
C 2KM"

N˛0

0�N˛

< Qe".a/C Qe".M � a/�
M

a

��
M

a

�̨
� 1

�
C2.a/

2
C 4KM"

N˛0

0�N˛

� Qe".a/C Qe".M � a/�
M

a

��
M

a

�̨
� 1

�
C2.a/

4

for " sufficiently small (depending on a). �

Theorem 5.6. Let . Nm"; Nw"/ be the minimizer of E" as in Proposition 5.2. Let Nu; Nm as in Proposition 5.3,
so that Nm" ! Nm, Nw" ! Nw D � NmrH0.r Nu/ locally uniformly, and Nm satisfies the exponential decay
(5-26). Then, Z

RN
Nmdx DM: (5-33)

Proof. Assume by contradiction that
R

RN
Nmdx D a, with 0 < a <M. We fix "0.a/ as in Lemma 5.5, and

we consider from now on "� "0.a/. Let Nc > 0 be such that Nm� Nce�jxj (such Nc exists by Remark 5.4).
For R sufficiently large (to be chosen later), we define

�R.x/D

�
Nce�R; jxj �R;

Nce�jxj; jxj>R:
(5-34)

So in particular Nm.x/� �R.x/ for jxj>R.
We observe that as R!C1Z

Rn
�R.x/ dx D Nc!N e

�RRN C

Z
RN nBR

Nce�jxj dx � Ce�RRN ! 0: (5-35)

Since Nm"! Nm and rH".r Nu"/!rH0.r Nu/ locally uniformly, there exists "0 D "0.R/ such that for
all "� "0,

j Nm"� NmjC jrH".r Nu"/�rH0.r Nu/j � Nce
�R; jxj �R: (5-36)

We observe that for all "� "0,

Nm"� NmC 2�R � �R.x/ for all x 2 RN: (5-37)

Indeed, if jxj>R, then Nm"� NmC 2�R � Nm"C �R � �R, since Nm� �R. On the other hand, if jxj �R,
then by (5-36) Nm"� NmC 2�R � �Nce�RC 2 Nce�R D Nce�R D �R. From (5-37) we deduce that

j Nm"� Nmj � Nm"� NmC 2�R: (5-38)

Moreover, since Nm"! Nm a.e. by Theorem 2.3, recalling that
R

RN
Nm" dx DM,

R
Rn
NmD a and using

(5-35) and (5-38), we haveZ
RN
. Nm"� NmC 2�R/ dx DM � aC 2

Z
RN

�R dx!M � a as R!C1; (5-39)
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and

lim
"!0

Z
RN
Nm˛C1" dx D

Z
RN
Nm˛C1 dxC lim

"!0

Z
RN
j Nm"� Nmj

˛C1 dx

�

Z
RN
Nm˛C1 dxC lim

"!0

Z
RN
. Nm"� NmC 2�R/

˛C1 dx: (5-40)

We claim that

E". Nm"; Nw"/� E". Nm; Nw/C E". Nm"� NmC 2�R; Nw"� NwC 2r�R/C o".1/C oR.1/; (5-41)

where o".1/ is an error such that lim"!0 o".1/D 0.
We consider the function .m;w/ 7! mL"

�
�
w
m

�
. This is a convex function in .m;w/. We compute

rw

�
mL"

�
�
w
m

��
D�rL"

�
�
w
m

�
, so in particular by (5-11) we get

CL

ˇ̌̌̌
w

m

ˇ̌̌̌ 0�1
�C�1L "

N˛.0�1/

0�˛N �

ˇ̌̌̌
rw

�
mL"

�
�
w

m

��ˇ̌̌̌
� C�1L

ˇ̌̌̌
w

m

ˇ̌̌̌ 0�1
CC�1L "

N˛.0�1/

0�˛N : (5-42)

Moreover, @m
�
mL"

�
�
w
m

��
D L"

�
�
w
m

�
C
w
m
� rL"

�
�
w
m

�
, therefore, again by (5-11) we get

CL

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
�C�1L "

N˛.0�1/

0�˛N �

ˇ̌̌̌
@m

�
mL"

�
�
w

m

��ˇ̌̌̌
� C�1L

ˇ̌̌̌
w

m

ˇ̌̌̌ 0
CC�1L "

N˛.0�1/

0�˛N : (5-43)

Note thatZ
RN

V".yCy"/ Nm" dx

D

Z
RN

V".yCy"/ NmdxC

Z
RN

V".yCy"/. Nm"� NmC 2�R/ dx� 2

Z
RN

V".yCy"/�R dx:

Recalling the estimate (5-20) and the definition of �R, we have

2

Z
RN

V".yCy"/�R dx � CR
bCN e�R:

Hence we obtainZ
RN

V".yCy"/ Nm" dx

�

Z
RN

V".yCy"/ NmdxC

Z
RN

V".yCy"/. Nm"� NmC 2�R/ dx�CR
bCN e�R: (5-44)

By (5-40) and (5-7) we getZ
RN

F". Nm"/ dx � �
Cf

˛C 1

Z
RN
Nm˛C1" dx�KM"

N˛0

0�˛N

� �
Cf

˛C 1

Z
RN
Nm˛C1 dx�

Cf

˛C 1

Z
RN
. Nm"� NmC 2�R/

˛C1 dxC o".1/

�

Z
RN

F". Nm/dxC

Z
RN

F". Nm"� NmC 2�R/ dxC o".1/: (5-45)
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Finally, we estimate the kinetic terms in the energy. SplittingZ
RN
Nm"L"

�
�
Nw"

Nm"

�
dx D

Z
BR

Nm"L"

�
�
Nw"

Nm"

�
dxC

Z
RN nBR

Nm"L

�
�
Nw"

Nm"

�
dx;

we proceed by estimating separately the two terms.

Estimates in RN nBR. First of all, note that by (5-26), (5-9) and (5-11), we get that L"
�
�
Nw
Nm

�
D

L".rH0.r Nu// � C for come constant C > 0, just depending on the data. Moreover, recalling that
Nm� Nce�jxj, we get that, eventually enlarging C,Z

RN nBR

NmL"

�
�
Nw

Nm

�
dx � C

Z
jxj>R

e�jxj dx � CRN e�R: (5-46)

By the convexity of the function .m;w/ 7!mL
�
�
w
m

�
, we getZ

RN nBR

Nm"L

�
�
Nw"

Nm"

�
dx

�

Z
RN nBR

. Nm"� NmC 2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

�
dx

C

Z
RN nBR

@m

�
. Nm"� NmC 2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

��
. Nm� 2�R/ dx (5-47)

C

Z
RN nBR

rw

�
. Nm"� NmC 2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

��
� . Nw� 2r�R/ dx: (5-48)

We recall that j Nwj D NmjrH0.r Nu/j � C Nm by (5-26) and jr�Rj � C�R by definition. Moreover, by
(5-21) and (5-9),

j Nw"j D Nm"jrH".r Nu"/j � C Nm"Œ.1Cjxj/
b
 ��1 � C1 Nm".1Cjxj/

b
0 :

Using the triangle inequality we get the following, where the constant C can change from line to line:ˇ̌̌̌
Nw"� NwC 2r�R

Nm"� NmC 2�R

ˇ̌̌̌
�
Nm"jrH".r Nu"/j

Nm"� NmC 2�R
C
NmjrH0.r Nu/j

Nm"� NmC 2�R
C

C�R

Nm"� NmC 2�R

�
C Nm".1Cjxj/

b
0

Nm"� NmC 2�R
C

C Nm

Nm"� NmC 2�R
C

C�R

Nm"� NmC 2�R
� C.1Cjxj/

b
0 (5-49)

on RN n BR.0/, where we used respectively the fact that Nm" � NmC 2�R � Nm", Nm � �R, and that
Nm"� NmC 2�R � �R.

Now, using (5-43) and (5-49), we can estimate (5-47), and by (5-42) and (5-49) we can estimate (5-48).
Indeed, we getZ

RN nBR

ˇ̌̌̌
@m

�
. Nm"� NmC 2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

��ˇ̌̌̌
j Nm� 2�Rj dx � C

Z
RN nBR

.1Cjxj/b�R.x/ dx

andZ
RN nBR

ˇ̌̌̌
rw

�
. Nm"� NmC2�R/L"

�
�
Nw"� NwC2r�R

Nm"� NmC2�R

��ˇ̌̌̌
.j NwjC2jr�Rj/ dx�C

Z
RN nBR

.1Cjxj/
b
 �R.x/ dx;
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because Nw � C Nm on RN. Therefore, we may conclude, possibly enlarging C, thatZ
RN nBR

Nm"L

�
�
Nw"

Nm"

�
dx

�

Z
RN nBR

. Nm"� NmC 2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

�
dx�C

Z
RN nBR

.1Cjxj/b�R.x/ dx

�

Z
RN nBR

. Nm"� NmC 2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

�
dx�CRNCbe�R: (5-50)

Finally, putting together (5-46) and (5-50), we have, choosing C sufficiently large,Z
RN nBR

Nm"L"

�
�
Nw"

Nm"

�
dx�

Z
RN nBR

NmL"

�
�
Nw

Nm

�
dx

C

Z
RN nBR

. Nm"� NmC2�R/L"

�
�
Nw"� NwC2r�R

Nm"� NmC2�R

�
dx�CRNCbe�R: (5-51)

Estimates in BR. Again by the convexity of the function .m;w/ 7!mL
�
�
w
m

�
, we getZ

BR

Nm"L

�
�
Nw"

Nm"

�
dx �

Z
BR

NmL"

�
�
Nw

Nm

�
dxC

Z
BR

@m

�
NmL"

�
�
Nw

Nm

��
. Nm"� Nm/dx

C

Z
BR

rw

�
NmL"

�
�
Nw

Nm

��
� . Nw"� Nw/ dx: (5-52)

We now estimate (5-52). We recall thatˇ̌̌̌
Nw

Nm

ˇ̌̌̌
� jrH0.r Nu/j �K

and also jrH".r Nu"/j �K for all "� "0.R/. Then, using these facts and (5-42) and (5-43) and recalling
(5-36), we getZ

BR

ˇ̌̌̌
@m

�
NmL"

�
�
Nw

Nm

��ˇ̌̌̌
j Nm"� Nmj dx D

Z
BR

j@m. NmL".rH0.r Nu///jj Nm"� Nmj dx � Ce
�RRN

andZ
BR

jrw Œ NmL".rH0.r Nu//�j
�
jrH".ru"/jj Nm"� NmjC jrH".r Nu"/�rH0.r Nu/j Nm

�
dx � Ce�RRN:

This implies that for all "� "0.R/Z
BR

Nm"L

�
�
Nw"

Nm"

�
dx �

Z
BR

NmL"

�
�
Nw

Nm

�
dx�Ce�RRN: (5-53)

Now we observe that by (5-11),Z
BR

. Nm"� NmC2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

�
dx�C

Z
BR

�ˇ̌̌̌
Nw"� NwC 2r�R

Nm"� NmC 2�R

ˇ̌̌̌ 0
C1

�
. Nm"� NmC2�R/ dx:
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By (5-38) we get that Nm" � NmC 2�R � j Nm" � Nmj C 2�R � Ce�R, eventually enlarging C. Moreover,
reasoning as in (5-49), we getˇ̌̌̌

Nw"� NwC 2r�R

Nm"� NmC 2�R

ˇ̌̌̌
� jrH".r Nu"/j

j Nm"� Nmj

Nm"� NmC 2�R
C
jrH".r Nu"/�rH0.r Nu/j

Nm"� NmC 2�R
Nm� C;

where we used that r�R D 0 for jxj<R, that jrH".r Nu"/j �K, that by (5-38)

j Nm"� Nmj

Nm"� NmC 2�R
� 1;

and that by (5-37) and (5-36)
jrH".r Nu"/�rH0.r Nu/j

Nm"� NmC 2�R
� C:

So, we conclude thatZ
BR

. Nm"� NmC 2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

�
dx � Ce�RRN: (5-54)

Putting together (5-53) and (5-54) we get, choosing C sufficiently large, for all "� "0.R/,Z
BR

Nm"L"

�
�
Nw"

Nm"

�
dx �

Z
BR

NmL"

�
�
Nw

Nm

�
dx

C

Z
BR

. Nm"� NmC 2�R/L"

�
�
Nw"� NwC 2r�R

Nm"� NmC 2�R

�
dx�CRN e�R: (5-55)

Therefore, summing up (5-55), (5-51), (5-44) and (5-45), we conclude for all "� "0.R/,

E". Nm"; Nw"/� E". Nm; Nw/C E". Nm"� NmC 2�R; Nw"� NwC 2r�R/C o".1/�CRbCN e�R: (5-56)

Let now

cR D
M � a

M � aC 2
R

RN
�R dx

:

We have cR!1 asR!C1 and cR<1. In particular, .cR. Nm"� NmC2�R/; cR. Nw"� NwC2r�R//2KM�a.
By the same computation as in (5-31), we get

cRE". Nm"� NmC2�R; Nw"� NwC2r�R/

D E".cR. Nm"� NmC2�R/; cR. Nw"� NwC2r�R//C
Z

RN
cRF". Nm"� NmC2�R/�F".cR. Nm"� NmC2�R// dx

� E".cR. Nm"� NmC2�R/; cR. Nw"� NwC2r�R//

CcR
c˛R�1

˛C1
Cf

Z
RN
. Nm"� NmC2�R/

˛C1 dx�2K

�
M�aC2

Z
RN

�R dx

�
"
N˛0

0�N˛ : (5-57)

Observe that by (5-15) there exists C independent of " such that

0�

Z
RN
. Nm"� NmC 2�R/

˛C1 dx � .k Nm"k˛C1Ck Nmk˛C1Ck2�Rk˛C1/
˛C1
� C:
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Therefore, (5-57) reads (recalling that cR < 1 and enlarging the constants C;K)

cRE". Nm"� NmC 2�R; Nw"� NwC 2r�R/

� E".cR. Nm"� NmC 2�R/; cR. Nw"� NwC 2r�R//C cR
c˛R � 1

˛C 1
C �KM"

N˛0

0�N˛

� Qe".M � a/C cR
c˛R � 1

˛C 1
C �KM"

N˛0

0�N˛ :

Using this inequality, and using the fact that E". Nm"; Nw"/D Qe".M/ and that E". Nm; Nw/� Qe".a/, we obtain
from (5-56)

Qe".M/� Qe".a/C Qe".M � a/C .1� cR/E". Nm"� NmC 2�R; Nw"� NwC 2r�R/

CCcR
c˛R � 1

˛C 1
�KM"

N˛0

0�N˛ C o".1/�CR
bCN e�R:

Moreover by (5-29) we get that there exists K DK.M � a/ > 0 such that

E". Nm"� NmC 2�R; Nw"� NwC 2r�R/� �KI

therefore the previous inequality gives

Qe".M/� Qe".a/C Qe".M � a/� .1� cR/KCCcR
c˛R � 1

˛C 1
C o".1/�CR

bCN e�R: (5-58)

By Lemma 5.5, we get
Qe".M/� Qe".a/C Qe".M � a/�C.a;M/;

where C.a;M/ > 0 for a <M and C.M;M/D 0. This implies in particular that

0 > �C.a;M/� �.1� cR/KCCcR
c˛R � 1

˛C 1
C o".1/�CR

bCN e�R:

Recalling that cR ! 1 as R ! C1, this gives a contradiction, choosing R sufficiently large and
" < "0.R/. �

An immediate corollary of the previous theorem is the following convergence result.

Corollary 5.7. Let . Nu"; Nm"; Q�"/ and . Nu; Nm; N�/ be as in Proposition 5.3. Then,

Nm"! Nm in L1.RN / and L˛C1.RN /: (5-59)

Finally for all � > 0, there exist R > 0 and "0 such that for all "� "0,Z
B.0;R/

Nm" dx �M � �: (5-60)

Proof. By Proposition 5.3 we get that Nm"! Nm almost everywhere, and by Theorem 5.6,
R

RN
Nm" DM DR

RN
Nm. This implies the convergence in L1.RN /. Indeed, by Fatou’s lemma

2M � lim inf
"

Z
RN
Nm"C Nm� j Nm"� Nmj dx � 2M � lim sup

"

Z
RN
j Nm"� Nmj dx:
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Moreover, recalling (5-16), we get

k Nm"� Nmk
˛C1
L˛C1.RN /

� k Nm"� NmkL1.RN /.k NmkL1.RN /Ck Nm"kL1.RN //! 0:

Finally observe that for all R, by Remark 5.4,Z
BR.0/

Nm" dy �

Z
BR.0/

Nmdy �

Z
BR.0/

j Nm"� Nmj dy �M �CR
N�1e�R �

Z
RN
j Nm"� Nmj dy:

So, using the L1 convergence we conclude the desired estimate. �

5D. Existence of ground states. In this subsection we aim at proving that as " goes to zero, . Nu"; Nm"; Q�"/
converges to a solution of the limiting MFG system (1-14), without potential terms. In particular, we will
prove Theorem 1.3.

We first need a �-convergence-type result, proved in the following lemma.

Lemma 5.8. Let .m"; w"/; .m;w/2K1;M be such thatm"!m in L1\L˛C1.RN / and w"*w weakly
in Lq.RN / for some q > 1. Then

lim inf
"
E".m"; w"/� E0.m;w/; (5-61)

where E0 is defined in (1-16).
Let .m;w/ 2 K1;M be such that m.1Cjyjb/ 2 L1.RN /. Then

lim
"

E".m. � �y"/; w. � �y"//� E0.m;w/: (5-62)

Proof. We recall that L".q/! CLjqj
 0 uniformly in RN by (5-11) and F".m/!� 1

˛C1
m˛C1 uniformly

in Œ0;C1/ by (5-7). Moreover we observe that the energy E0 is lower semicontinuous with respect to
weak Lq convergence of w and strong L˛C1\L1 convergence of m. Since V � 0, we get

lim inf
"
E".m"; w"/� lim inf

"

Z
RN

m"L"

�
�
w"

m"

�
CF".m"/ dx

� lim inf
"

Z
RN

CLm
1� 0

" jw"j
 0
�

Cf

˛C 1
m˛C1" dx

�

Z
RN

CLm
1� 0
jwj

0

�
Cf

˛C 1
m˛C1 dx D E0.m;w/:

Now we observe that for all m such that m.1Cjyjb/ 2 L1.RN /, using (5-3), we get

lim
"!0

Z
RN

m.yCy"/V".yCy"/ dy � lim
"
CV "

N˛0

0�˛N

Z
RN
.1Cjyj/bm.y/ dy D 0: (5-63)

Therefore, recalling again the uniform convergence of L".q/! CLjqj
 0 and F".m/!� 1

˛C1
m˛C1, we

conclude (noting that if we translate m;w of y" the energy E0 remains the same)

lim
"

E".m. � �y"/; w. � �y"//D E0.m;w/C lim
"!0

Z
RN

m.yCy"/V".yCy"/ dy � E0.m;w/: �
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Proof of Theorem 1.3. We first show that . Nu; Nm/ obtained in Proposition 5.3 are associated to minimizers
of an appropriate energy, without potential term, so that (1-15) holds.

Note that . Nm; Nw/ 2 K1;M , where Nw D � NmrH0.r Nu/, due to Proposition 5.3 and Theorem 5.6 and
Nm.1Cjyjb/2L1.RN / by the exponential decay (5-26). Moreover Nm"! Nm inL1\L˛C1 by Corollary 5.7

and
Nw" D� Nm"rH".r Nu"/! Nw D� NmrH0.r Nu/

locally uniformly (by Proposition 5.3) and weakly in L
0.˛C1/

0C˛ by the same argument as in the proof of
Proposition 3.3.

Let now .m;w/2K1;M be such that m.1Cjyjb/2L1.RN /. Using the minimality of . Nm"; Nw"/, (5-61)
and (5-62), we conclude that

E0.m;w/� lim
"

E".m. � �y"/; w. � �y"//� lim
"

E". Nm"; Nw"/� E0. Nm; Nw/:

This implies (1-15).

To obtain the first part of the theorem, that is, the existence of a solution to (1-14), we need to prove
that the function g appearing in Proposition 5.3 is actually zero on RN. To do that, we derive a better
estimate on the term V".yCy"/; in particular we show that V".yCy"/! 0 locally uniformly in RN.

By the minimality of . Nm"; Nw"/ and . Nm; Nw/, (5-11), (5-7) and (5-63) we get

E". Nm"; Nw"/� E". Nm. � Cy"/; Nw. � Cy"//

� E0. Nm; Nw/C
Z

RN
Nm.yCy"/V".yCy"/ dyCC"

N˛0

0�N˛ � E0. Nm"; Nw"/CC1"
N˛0

0�N˛ :

Again using (5-7) and (5-11) we get

E0. Nm"; Nw"/CC1"
N˛0

0�N˛ �

Z
RN
Nm"L"

�
�
Nw"

Nm"

�
CF". Nm"/ dyCC"

N˛0

0�˛NM CC"
N˛0

0�N˛ :

So, putting together the last two inequalities, we conclude thatZ
RN
Nm"V".yCy"/ dy � C"

N˛0

0�N˛ : (5-64)

Recalling (5-2), this implies that for all R > 0, we get

C�1V .maxf"
0

0�˛N jy"j � "
0

0�˛N R�CV ; 0g/
b

Z
B.0;R/

Nm" dy � C:

Using (5-60), we conclude that there exists C > 0 such that

"
0

0�˛N jy"j � C: (5-65)

In turn this gives, recalling again (5-2), that

0� V".yCy"/� CV "
N˛0

0�˛N .1C "
0

0�˛N jyjC "
0

0�˛N jy"j/
b
� C"

N˛0

0�˛N .1Cjyj/b;

which implies that V".yCy"/! 0 locally uniformly. �
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Remark 5.9. If H and f satisfy the growth conditions (1-2) and (1-3), arguing as before one has that
there exists a classical solution to the potential-free version of (1-1),8<:

��uCH.ru/C�D f .m/;

��m� div.rH.ru/m/D 0;R
RN

mDM:

(5-66)

In addition, .m;�rH.ru/m/ is a minimizer of

.m;w/ 7!

Z
RN

mL

�
�
w

m

�
CF.m/ dx

among .m;w/ 2 K1;M , m.1C jyjb/ 2 L1.RN /. This can be done as follows: Start with a sequence
.uı ; mı ; �ı/ solving 8<:

��uı CH.ruı/C�ı D f .mı/C ıjxj
b;

��mı � div.rH.ruı/mı/D 0;R
RN

mı DM;

(5-67)

with ı D ın! 0. Such a sequence exists by Theorem 1.1. The problem of passing to the limit in (5-67)
to obtain (5-66) is the same as passing to the limit in (5-13), and it is even simpler: in (5-13), one has
to be careful as the Hamiltonian H" and the coupling f" vary as "! 0 (still, they converge uniformly),
while in (5-67) they are fixed, and only the potential is vanishing. We observe that b > 0 could be chosen
arbitrarily; the perturbation ıjxjb always disappears in the limit. Still, the limit m;u somehow retains
a memory of b in terms of energy properties: m minimizes an energy among competitors satisfying
m.1Cjyjb/ 2 L1.RN /.

Remark 5.10. We stress that uniqueness of solutions for (1-14) does not hold in general; for example, a
triple .u;m; �/ solving the system may be translated in space to obtain a full family of solutions. On the
other hand, a more subtle issue is the uniqueness of m in the second equation (with ru fixed); that is, if
.u;m1; �/ and .u;m2; �/ are solutions, then m1 �m2. This property is intimately related to the ergodic
behavior of the optimal trajectory dXs D �rH0.ru.Xs// ds C

p
2" dBs; see, for example, [Cirant

2014]. It is well known that uniqueness for the Kolmogorov equation is guaranteed by the existence of a
so-called Lyapunov function; in our cases, it can be checked that u itself (or increasing functions of u, as
in (5-28)) acts as a Lyapunov function, so uniqueness of m and ergodicity hold for (1-14) and (1-1).

5E. Concentration of mass. The last problem we address is the localization of the point y", to conclude
the proof of Theorem 1.2. Rewriting (5-60) in view of (5-1) and (5-18), we get that for all � > 0 there
exist R; "0 such that for all "� "0,Z

B."
0

0�˛N y";"
0

0�˛N R/

m.x/ dx �M � �; (5-68)

where m is the classical solution to (1-1) given in Theorem 1.1, and

Nm".y/D "
N0

0�˛Nm."
0

0�˛N yC "
0

0�˛N y"/:
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By (5-65), we know that, up to subsequences, "
0

0�˛N y"! Nx. Our aim is to locate this point, which
is the point where mass concentrates. We need a preliminary lemma stating the existence of suitable
competitors that will be used in the sequel.

Lemma 5.11. For all "� "0, there exists . Om"; Ow"/ 2 K1;M that minimizes

.m;w/ 7!

Z
RN

mL"

�
�
w

m

�
CF".m/ dy (5-69)

among .m;w/2K1;M , m.1Cjyjb/2L1.RN /. Moreover, for some positive constants c1; c2 independent
of ",

Om".y/� c1e
�c2jyj on RN: (5-70)

Proof. The existence of . Om"; Ow"/ is stated in Remark 5.9, together with a solution . Ou"; Om"; O�"/ to the
associated MFG system, as the optimality conditions; see (5-71) below. To obtain the uniform exponential
decay, we can argue by Lyapunov functions as in Proposition 5.3; here, we have to be careful, since the
argument in Proposition 5.3 mainly requires

f". Om"/� O�"�H".0/� �
1
2
O�" > 0

outside some fixed ball Br.0/. This claim can be proved as follows: First, �O�" is bounded away from
zero for " small. Indeed,

O�"M D

Z
RN
Om"L"

�
�
Ow"

Om"

�
Cf". Om"/ Om" dy � E". Nm"; Nw"/C o".1/� �C:

The inequality follows by the minimality of . Om"; Ow"/ and . Nm"; Nw"/, and (rescaled) (4-24).
We now prove that Om" decays as jxj !1 uniformly in ". Note that Ow" D �rH".r Ou"/ Om", where

. Ou"; Om"; O�"/ solves 8<:
�� Ou"CH".r Ou"/C�D f". Om"/;

�� Om"� div.rH".r Ou"/ Om"/D 0;R
RN
Om" DM:

(5-71)

We derive local estimates for Ou" and Om". We shift the x-variable so that Ou".0/D 0DminRN Ou" for all ".
Choose p > N such that

˛ <
 0

p
<
 0

N
:

If one considers the HJB equation solved by Ou", recalling (5-5) and (5-9), Theorem 2.5 gives the existence
of C > 0 such that

kr Ou"kL1.B2R.x0// �K.k Om"k
˛
L1.B4R.x0//

C 1/
1
 :

Note that C > 0 does not depend on " and x0. Turning to the Kolmogorov equation, again by (5-9) and
Proposition 2.4,

k Om"kW 1;p.BR.x0//
� C.kr Ou"k

�1

L1.B2R.x0//
C 1/km"kLp.B2R.x0//:
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By the previous L1 estimate on ru" and interpolation of the Lp norm of m between L1 and L1 we get

k Om"kW 1;p.BR.x0//
� C.k Om"k

˛
0

L1.B4R.x0//
C 1/k Om"k

1
p

L1.B4R.x0//
k Om"k

1� 1
p

L1.B4R.x0//
:

Recall that k Om"kL1.B4R.x0// �M ; then, since p > N, by Sobolev embeddings we obtain that for some
ˇ > 0,

k Om"kC0;ˇ.BR.x0// � C.k Om"k
˛
0

L1.RN /
C 1/k Om"k

1� 1
p

L1.RN /
: (5-72)

First, since C does not depend on x0, this yields k Om"kL1.RN / � C, by the choice of p <  0

˛
. Secondly,

plugging this estimate back into (5-72), we conclude

k Om"kC0;ˇ.RN / � C:

Then, using these estimates, we get that up to subsequences, O�"! O�, Ou"! Ou locally uniformly in C 1,
and Om"! Om locally uniformly, where . Ou; Om; O�/ is a solution to (5-25) with g � 0. Arguing exactly as
in Proposition 5.3, we get that Qu, Qm satisfy the estimates (5-26) (eventually modifying the constants).
Moreover, Z

RN
Omdx D a 2 .0;M�:

Observe now that Lemma 5.5 and Theorem 5.6 hold also for the energy (5-69), since it coincides with the
energy E" without the potential term

R
RN

V"mdx. Therefore we can apply Theorem 5.6 to Om to conclude
that actually

R
RN
Omdx DM. So, by Corollary 5.7, we obtain that for all � > 0, there exist R > 0 and "0

such that for all "� "0, Z
B.0;R/

Om" dx �M � �: (5-73)

By (5-72) and (5-73), using Lemma 2.2, we get

f". Om"/�
1
4
O�"

outside a ball Br.0/. Since H".0/! 0, the claim

f". Om"/� O�"�H".0/� �
1
2
O�" > 0 (5-74)

outside a ball Br.0/ follows. As previously mentioned, we may now proceed and conclude as in
Proposition 5.3; basically, (5-74) implies that x 7! ek Ou".x/ acts as a Lyapunov function for Om" for some
small k > 0, giving

c

Z
RN

ekjxj�k1 Om" �

Z
RN

ek Ou" Om" � C

for all " small, which easily implies the pointwise exponential decay (5-70) of Om" by the Hölder regularity
of Om" itself. �

For general potentials, the point where mass concentrates is a minimum for V .

Proposition 5.12. Up to subsequences, "
0

0�˛N y"! Nx, where V. Nx/D 0, i.e., Nx is a minimum of V .



784 ANNALISA CESARONI AND MARCO CIRANT

Proof. Fix a generic z 2RN and observe that . Om". � Cz/; Ow". � Cz// is still a minimizer of
R
mL"

�
�
w
m

�
C

F".m/. By the minimality of . Nm"; Nw"/ and of . Om". � C z/; Ow". � C z//, we getZ
RN
Nm"L"

�
�
Nw"

Nm"

�
CF". Nm"/ dyC

Z
RN
Nm".y/V".yCy"/ dy

D E". Nm"; Nw"/� E". Om". � C z/; Ow". � C z//

�

Z
RN
Nm"L"

�
�
Nw"

Nm"

�
CF". Nm"/C

Z
RN
Om".yC z/V".yCy"/ dy:

In particular this givesZ
RN
Nm".y/V".yCy"/ dy �

Z
RN
Om".yC z/V".yCy"/ dy

D

Z
RN
Om".y/V".yCy"� z/ dy for all z 2 RN: (5-75)

Recalling the rescaling of V" and of Nm" in (5-1), this is equivalent toZ
RN

m.x/V.x/ dx �

Z
RN
Om".y/V ."

0

0�˛N yC "
0

0�˛N y"� "
0

0�˛N z/ dy for all z 2 RN ; (5-76)

where m is the classical solution to (1-1) given in Theorem 1.1 such that

Nm".y/D "
N0

0�˛Nm."
0

0�˛N yC "
0

0�˛N y"/:

By (5-65), we get that up to passing to a subsequence, "
0

0�˛N y" ! Nx for some Nx 2 RN. Then by
(5-68), we get

lim inf
"!0

Z
RN

m.x/V.x/ dx � lim inf
"!0

Z
B."

0

0�˛N y";"
0

0�˛N R/

m.x/V.x/ dx � .M � �/V . Nx/: (5-77)

We fix Nz such that V. Nz/D 0 and we choose in (5-76) z D y"� "
�

0

0�˛N Nz. We have, by the Lebesgue
convergence theorem and (5-70),

lim sup
"!0

Z
RN
Om".y/V ."

0

0�˛N yC Nz/ dy � lim sup
"!0

c1

Z
RN

e�c2jyjV."
0

0�˛N yC Nz/ dy D 0: (5-78)

By (5-77), (5-78) and (5-76), we conclude V. Nx/D 0. �

If we assume that the potential V has a finite number of minima and polynomial behavior, that is, it
satisfies assumption (1-13), then we get that at the limit "

0

0�˛N y" selects at the limit the more stable
minima of V , as we will show in the next proposition.

Proposition 5.13. Assume that V satisfies assumption (1-13). Then, up to subsequences, there holds

"
0

0�˛N y"! xi as "! 0;

where i 2 fj D 1; : : : ; n W bj Dmaxk bkg.
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Proof. By Proposition 5.12, we know that up to subsequences, "
0

0�˛N y"! x� for some �D 1; : : : n. It
remains to prove that b� Dmaxi bi . Assume by contradiction that it is not true, and then b� <maxi bi .

We compute for j 2 1; : : : n, recalling the uniform exponential decay of Om" given in (5-70),Z
Rn
Om".yCy"� "

�
0

0�˛N xj /V".yCy"/ dy

D

Z
Rn
Om".y/V".yC "

�
0

0�˛N xj / dy

� CV "
0N˛

0�N˛

Z
Rn
Om".y/"

bj 
0

0�N˛ jyjbj
Y
i¤j

j"
0

0�N˛ y � xi C xj j
bi dy

� C"
0.N˛Cbj /

0�N˛

Z
Rn
Om".y/jyj

bj
Y
i¤j

jy � xi C xj j
bi dy � C"

0.N˛Cbj /

0�N˛ : (5-79)

Note in particular that we can choose in the previous inequality bj Dmaxi bi .
We get from (5-75) applied to z D y" � "

�
0

0�˛N xj , where j is such that bj D maxi bi , and from
(5-79) the following improvement of (5-64):Z

B.0;R/

Nm"V".yCy"/ dy �

Z
RN
Om".yCy"� "

�
0

0�˛N xj /V".yCy"/ dy � C"
.N˛Cmaxbi /

0

0�N˛ (5-80)

for all R � 0. We choose R > 0 sufficiently large such that
R
B.0;R/ Nm" dy �

1
2
M . Recalling the rescaling

of V , (5-80) implies

C"
maxbj 

0

0�N˛ �
1
2
MC�1V min

y2B.0;R/

nY
jD1

j"
0

0�N˛ yC "
0

0�N˛ y"� xj j
bj : (5-81)

Note that for " sufficiently small j"
0

0�N˛ yC "
0

0�N˛ y"� xj j � ı > 0 for all i 6D � and all y 2 B.0;R/.
So, by (5-81) we get that there exists C > 0 for which

min
y2B.0;R/

j"
0

0�N˛ yC "
0

0�N˛ y"� x�j
b� � C"

maxbj 
0

0�N˛

and then

j Oy"� "
�

0

0�N˛ x�j
b� D min

y2B.0;R/
jyCy"� "

�
0

0�N˛ x�j
b� � C"

.maxbj�b�/
0

0�N˛ ! 0 (5-82)

for some Oy" 2 B.y"; R/. Let z" D Oy"�y" 2 B.0;R/. Up to subsequences we can assume that z"! Nz 2
B.0;R/.

We use now (5-80), recalling assumption (1-13), and we get

C"
maxbj 

0

0�N˛ � C�1V

Z
B.0;R/

Nm".y/

nY
jD1

j"
0

0�N˛ yC "
0

0�N˛ y"� xj j
bj dy

� c1"
b�
0

0�N˛

Z
B.0;R/

Nm".y/jy � z"C Oy"� "
�

0

0�N˛ x�j
b� dy:
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In particular this implies

lim
"!0

Z
B.0;R/

Nm".y/jy � z"C Oy"� "
�

0

0�N˛ x�j
b� dy D 0: (5-83)

Recalling that Nm"! Nm locally uniformly, see (5-24), that Oy" � "
�

0

0�N˛ x�! 0 by (5-82), and that
z"! Nz, we get

lim
"!0

Z
B.0;R/

Nm".y/jy � z"C Oy"� "
�

0

0�N˛ x�j
b� dy D

Z
B.0;R/

Nm.y/jy � Nzjb� dy > 0:

This gives a contradiction with (5-83). �

As a consequence of the previous results, we can conclude with the following.

Proof of Theorem 1.2. Setting x" D "
0

0�˛N y", it suffices to recall (5-68) and Propositions 5.12, 5.13. �
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GENERALIZED CRYSTALLINE EVOLUTIONS AS
LIMITS OF FLOWS WITH SMOOTH ANISOTROPIES

ANTONIN CHAMBOLLE, MASSIMILIANO MORINI,
MATTEO NOVAGA AND MARCELLO PONSIGLIONE

We prove existence and uniqueness of weak solutions to anisotropic and crystalline mean curvature flows,
obtained as a limit of the viscosity solutions to flows with smooth anisotropies.

1. Introduction

In this note we deal with anisotropic, and possibly crystalline, mean curvature flows, that is, flows of sets
t 7→ E(t) governed by the law

V (x, t)=−ψ(νE(t)(x))(κE(t)
φ (x)+ g(x, t)), (1-1)

where

• V (x, t) stands for the outer normal velocity of the boundary ∂E(t) at x ,

• φ is a given norm on RN representing the surface tension,

• κ
E(t)
φ is the anisotropic mean curvature of ∂E(t) associated with the anisotropy φ,

• ψ is a norm evaluated at the outer unit normal νE(t) to ∂E(t), and g is a forcing term.

The factor ψ plays the role of a mobility.
We refer to [Chambolle et al. 2017a] for the motivations to study this flow, which originate in

problems from phase transitions and materials science; see for instance [Taylor 1978; Gurtin 1993]. Its
mathematical well-posedness is established in the smooth setting, that is, when φ, ψ , g and the initial
set are sufficiently smooth and φ satisfies suitable ellipticity conditions. However, it is also well known
that in dimensions N ≥ 3 singularities may form in finite time even in the smooth case and for regular
initial sets. When this occurs, the strong formulation of (1-1) ceases to be meaningful and thus needs to
be replaced by weaker notions of global-in-time solution.

Among the different weak approaches that have been proposed in the literature for the classical mean
curvature flow (and for several other “regular” flows) here we recall the so-called level-set formulation
[Osher and Sethian 1988; Evans and Spruck 1991; 1992a; Chen et al. 1991; Giga 2006] and the flat flow
formulation, proposed by Almgren, Taylor and Wang [Almgren et al. 1993] and based on the minimizing
movements variational scheme (referred to as the ATW scheme).

MSC2010: 53C44, 49M25, 35D40.
Keywords: geometric evolution equations, crystalline mean curvature flow, level-set formulation, nonlocal curvature flows,

nonlocal geometric flows, minimizing movements, viscosity solutions.
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However, when the anisotropy φ in (1-1) is nondifferentiable or crystalline, the lack of smoothness of
the involved differential operators makes it much harder to pursue the aforementioned approaches. In fact,
in the crystalline case the problem of finding a suitable weak formulation of (1-1) in dimension N ≥ 3
leading to a unique global-in-time solution for general initial sets has remained open until the very recent
works [Chambolle et al. 2017a; 2017b; Giga and Požár 2016; 2018].

We refer also to [Giga et al. 1998; Caselles and Chambolle 2006; Bellettini et al. 2006] for previous
results holding for special classes of initial data, and to [Giga et al. 2014] for a well-posedness result
dealing with a very specific anisotropy. The two-dimensional case is somewhat easier and has been
essentially settled in [Giga and Giga 2001] (when g is constant) by developing a crystalline version of the
viscosity approach for the level-set equation; see also [Taylor 1978; Almgren and Taylor 1995; Angenent
and Gurtin 1989; Giga and Giga 1998; Giga and Gurtin 1996] for relevant former work. We also mention
the recent papers [Chambolle and Novaga 2015; Mercier et al. 2016], where short time existence and
uniqueness of strong solutions for initial “regular” sets (in a suitable sense) is shown.

Let us now briefly describe the most recent progress on the problem. In [Chambolle et al. 2017b],
the first global-in-time existence and uniqueness result for the level-set flow associated to (1-1), valid
in all dimensions, for arbitrary (possibly unbounded) initial sets, and for general (including crystalline)
anisotropies φ was established, but under the particular choice ψ = φ (and g = 0). The main contribution
of that work is the observation that the variant of the ATW scheme proposed in [Chambolle 2004; Caselles
and Chambolle 2006] converges to solutions that satisfy a new stronger distributional formulation of
the problem in terms of distance functions. Such a formulation is only reminiscent of, but not quite the
same as, the distance formulation studied in [Soner 1993], see also [Barles et al. 1993; Ambrosio and
Soner 1996; Caselles and Chambolle 2006; Ambrosio 2000], and because of its distributional character
it enables the use of parabolic PDE’s arguments in order to establish a comparison result yielding
uniqueness.

In [Chambolle et al. 2017a], we first observe that the methods of [Chambolle et al. 2017b] can be
pushed to treat bounded spatially Lipschitz continuous forcing terms g and more general mobilities ψ ,
which are “regular” with respect to the anisotropy φ. More precisely, a norm ψ is said to be φ-regular if
the associated ψ-Wulff shape Wψ satisfies a uniform inner φ-Wulff shape condition at all points of its
boundary. Such a condition implies that the φ-curvature κφ of ∂Wψ is bounded above and it enables us
to show that a distributional formulation in the spirit of [Chambolle et al. 2017b] still holds true. Next,
owing to the simple observation that the φ-regular mobilities are dense, we succeed in extending the
notion of solution to general mobilities by an approximation procedure. More precisely, by establishing
delicate stability estimates on the ATW scheme, we show that if ψ is any norm and ψn→ ψ , with ψn

a φ-regular mobility for every n, then the corresponding distributional level-set solutions uψn, with the
given initial datum u0, admit a unique limit uψ (independent of the choice of the approximating ψn),
which we may therefore regard as the unique solution to the level-set flow with mobility ψ and initial
datum u0. As a byproduct of this analysis, we also settle the problem of the uniqueness (up to fattening)
of flat flows for general mobilities. Once again, our results hold in all dimensions, for arbitrary (possibly
unbounded) initial sets and general, possibly crystalline, anisotropies φ.
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By completely different methods, in [Giga and Požár 2016], and more recently in [Giga and Požár
2018], the authors succeed in extending the viscosity approach of [Giga and Giga 2001] to the case N = 3
and to the general case N ≥ 3, respectively. In fact, as in [Giga and Giga 2001], they are able to deal with
very general equations of the form

V = f (νE,−κE
φ ),

with f continuous and nondecreasing with respect to the second variable, but without spatial dependence,
establishing existence and uniqueness for the corresponding level-set formulation. Important achievements
in their work are the definition of a crystalline curvature for sets with appropriate regularity, a comparison
result for such a curvature, and an approximation result showing that any compact set is arbitrarily
close to sets with well-defined curvature. They can also deduce stability results, [Giga and Požár 2016,
Theorem 8.9; 2018, Theorem 1.5], which ensure in particular that the viscosity solution of the nonsmooth
problem can be built as the limit of a sequence of classical viscosity solutions of the problem with smooth
regularized anisotropies. As our approach in the current paper is based on the same idea, a by-product is
that when both are defined, their evolutions and ours coincide (Remarks 3.8 and 3.9). On the other hand,
their method currently works only for purely crystalline anisotropies φ, bounded initial sets, and constant
forcing terms.

As said, we propose here an approach different from our previous work [Chambolle et al. 2017a]:
Following [Giga and Požár 2016; 2018], we derive existence, uniqueness and some properties of anisotropic
and crystalline flows directly from the corresponding properties of smooth (i.e., with smooth anisotropies)
flows, appropriately defined as viscosity solutions of a geometric PDE. This leads to a more direct and
easier proof of the well-posedness of (1-1) for general mobilities and anisotropies, relying on purely
viscosity methods. On the other hand, our new estimates are too weak to provide information about the
uniqueness of flat flows, shown in [Chambolle et al. 2017a].

Let us describe the new approach in more detail. The starting point is the observation that when the
anisotropy is smooth, the distributional formulation of [Chambolle et al. 2017a; 2017b] is equivalent to
the classical viscosity formulation; see Section 2B. Next, in Section 2C we show that if φn→ φ, with φn

smooth, and ifψn→ψ , withψn φn-regular “uniformly” with respect to n (see the statement of Theorem 2.8
below for the precise meaning), then the corresponding viscosity (and thus distributional) level-set
solutions un converge locally uniformly to the unique distributional level-set flow with anisotropy φ and
(φ-regular) mobility ψ . This leads to a new proof of the existence of distributional level-set solutions for
φ-regular mobilities, without using the ATW scheme as in [Chambolle et al. 2017a].

In Sections 3A and 3B we establish the crucial stability estimates of the flow with respect to changing
φ-regular mobilities. This is achieved once again by exploiting the viscosity formulation in order to prove
first the estimates in the case of smooth anisotropies and to conclude by approximation.

Finally, in Section 3C we prove the main existence and uniqueness result for the level-set formulation
of (1-1), in the case of general anisotropies and mobilities. In this last step we proceed essentially as in
[Chambolle et al. 2017a]: we approximate any mobility ψ by a sequence φ-regular mobilities ψn and
show, by means of the stability estimates of the previous sections, that the corresponding solutions admit
a unique limit.
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2. Distributional mean curvature flows

Given a norm η on RN (a convex, even, one-homogeneous real-valued function with η(ν) > 0 if ν 6= 0),
we define a polar norm η◦ by η◦(ξ) := supη(ν)≤1 ν · ξ and an associated anisotropic perimeter Pη as

Pη(E) := sup
{∫

E
div ζ dx : ζ ∈ C1

c (R
N
;RN ), η◦(ζ )≤ 1

}
.

As is well known, (η◦)◦ = η so that when the set E is smooth enough one has

Pη(E)=
∫
∂E
η(νE) dHN−1,

which is the perimeter of E weighted by the surface tension η(ν).
We will make repeated use of the identities

∂η(ν)= {ξ : η◦(ξ)≤1 and ξ · ν≥η(ν)}

= {ξ : η◦(ξ)=1 and ξ · ν=η(ν)} (2-1)

(and the symmetric statement for η◦) for ν 6= 0, where ∂η(ν) denotes the subdifferential of η at ν.
Moreover, ∂η(0)= {ξ : η◦(ξ)≤ 1}, while ∂η◦(0)= {ξ : η(ξ)≤ 1}. For R > 0 we define

W η(x, R) := {y : η◦(y− x)≤ R}.

Such a set is called the Wulff shape (of radius R and center x) associated with the norm η and represents
the unique (up to translations) solution of the anisotropic isoperimetric problem

min{Pη(E) : |E | = |W η(0, R)|};

see for instance [Fonseca and Müller 1991].
We denote by distη( · , E) the distance from E induced by the norm η; that is, for any x ∈ RN,

distη(x, E) := inf
y∈E

η(x − y) (2-2)

if E 6=∅ and distη(x,∅) :=+∞. Moreover, we denote by dηE the signed distance from E induced by η, i.e.,

dηE(x) := distη(x, E)− distη(x, Ec).

so that distη(x, E)= dηE(x)
+ and distη(x, Ec)= dηE(x)

−, where we adopt the standard notation t+ := t∨0
and t− := (−t)+. Note that by (2-1) we have η(∇dη

◦

E )= η
◦(∇dηE)= 1 a.e. in RN

\ ∂E .
Finally we recall that a sequence of closed sets En in Rm converges to a closed set E in the Kuratowski

sense if the following conditions are satisfied:

(i) if xn ∈ En , any limit point of {xn} belongs to E ,

(ii) any x ∈ E is the limit of a sequence {xn}, with xn ∈ En ,

and we write
En

K
−→ E .
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Since En
K
−→E if and only if (for any norm η) distη( · , En)→ distη( · , E) locally uniformly in Rm, by the

Ascoli–Arzelà theorem any sequence of closed sets admits a converging subsequence in the Kuratowski
sense.

2A. The weak formulation of the crystalline flow. In this section we recall the weak formulation of the
crystalline mean curvature flow introduced in [Chambolle et al. 2017a; 2017b].

In what follows, we will consider forcing terms g : RN
×[0,+∞)→ R satisfying the following two

hypotheses:

(H1) g ∈ L∞(RN
× (0,+∞)).

(H2) There exists L > 0 such that g( · , t) is L-Lipschitz continuous with respect to the metric ψ◦ for a.e.
t > 0. Here ψ is the norm representing the mobility in (1-1).

Remark 2.1. Assumption (H1) can be in fact weakened and replaced by

(H1′) for every T > 0, we have g ∈ L∞(RN
× (0, T )).

Indeed under the weaker assumption (H1′), all the arguments and the estimates presented throughout
the paper continue to work in any time interval (0, T ), with some of the constants involved possibly
depending on T. In the same way, if one restricts our study to the evolution of sets with compact boundary,
then one could assume that g is only locally bounded in space. We assume (H1) instead of (H1′) only to
simplify the presentation.

Let φ, ψ be two (possibly crystalline) norms representing the anisotropy and the mobility in (1-1),
respectively. We recall the following distributional formulation of (1-1).

Definition 2.2 [Chambolle et al. 2017a]. Let E0
⊂ RN be a closed set. Let E be a closed set in

RN
×[0,+∞) and for each t ≥ 0 define E(t) := {x ∈ RN

: (x, t) ∈ E}. We say that E is a superflow of
(1-1) with initial datum E0 if:

(a) (initial condition) E(0)⊆ E0.

(b) (left continuity) E(s) K
−→ E(t) as s↗ t for all t > 0.

(c) (extinction time) If E(t)=∅ for t ≥ 0, then E(s)=∅ for all s > t .

(d) (differential inequality) Set T ∗ := inf{t > 0 : E(s)=∅ for s ≥ t}, and

d(x, t) := distψ
◦

(x, E(t)) for all (x, t) ∈ RN
× (0, T ∗) \ E .

Then there exists M > 0 such that the inequality

∂t d ≥ div z+ g−Md (2-3)

holds in the distributional sense in RN
× (0, T ∗) \ E for a suitable z ∈ L∞(RN

× (0, T ∗)) such that
z ∈ ∂φ(∇d) a.e., div z is a Radon measure in RN

× (0, T ∗) \ E , and

(div z)+ ∈ L∞({(x, t) ∈ RN
× (0, T ∗) : d(x, t)≥ δ}) for every δ ∈ (0, 1).
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We say that A, an open set in RN
× [0,+∞), is a subflow of (1-1) with initial datum E0 if Ac is a

superflow of (1-1) with g replaced by −g and with initial datum (E̊0)c.
Finally, we say that E , a closed set in RN

×[0,+∞), is a solution of (1-1) with initial datum E0 if it
is a superflow and if E̊ is a subflow, both with initial datum E0.

It is shown in [Chambolle et al. 2017a] (see also [Chambolle et al. 2017b] for a simpler equation),
using quite standard parabolic comparison arguments, that such evolutions satisfy a comparison principle:

Theorem 2.3 [Chambolle et al. 2017a, Theorem 2.7]. Let E be a superflow with initial datum E0 and F be
a subflow with initial datum F0 in the sense of Definition 2.2. Assume that distψ

◦

(E0,RN
\ F0)=:1> 0.

Then,
distψ

◦

(E(t),RN
\ F(t))≥1e−Mt for all t ≥ 0,

where M > 0 is as in (2-3) for both E and F.

We now recall the corresponding notion of sub- and supersolution to the level-set flow associated with
(1-1); see again [Chambolle et al. 2017a].

Definition 2.4 (level-set subsolutions and supersolutions). Let u0 be a uniformly continuous function
on RN. We will say that a lower semicontinuous function u :RN

×[0,+∞)→R is a level-set supersolution
corresponding to (1-1), with initial datum u0, if u( · , 0)≥ u0 and if for a.e. λ ∈ R, the closed sublevel set
{(x, t) : u(x, t)≤ λ} is a superflow of (1-1) in the sense of Definition 2.2, with initial datum {u0 ≤ λ}.

We will say that an upper-semicontinuous function u : RN
×[0,+∞)→ R is a level-set subsolution

corresponding to (1-1), with initial datum u0, if −u is a superlevel-set flow in the previous sense, with
initial datum −u0 and with g replaced by −g.

Finally, we will say that a continuous function u : RN
× [0,+∞)→ R is a solution to the level-set

flow corresponding to (1-1) if it is both a level-set subsolution and supersolution.

As shown in [Chambolle et al. 2017a], Theorem 2.3 easily yields that almost all closed sublevels of a
solution of the level-set flows are solutions of (1-1) in the sense of Definition 2.2. Moreover, the following
comparison principle between level-set subsolutions and supersolutions holds true.

Theorem 2.5 [Chambolle et al. 2017a, Theorem 2.8]. Let u0, v0 be uniformly continuous functions on RN

and let u, v be respectively a level-set subsolution with initial datum u0 and a level-set supersolution with
initial datum v0, in the sense of Definition 2.4. If u0

≤ v0, then u ≤ v.

For smooth anisotropies, solutions to the level-set flow and (minus the characteristic function of)
solutions of the geometric flow in the sense of Definition 2.2 are in fact viscosity solutions of the
(degenerate) parabolic equation (2-4) below. This classical fact will be shown and exploited to some
extent to nonsmooth anisotropies in the next two sections.

2B. Viscosity solutions. We show here that in the smooth cases, the notion of solution in Definition 2.2
coincides with the definition of standard viscosity solutions for geometric motions, as for instance
in [Barles and Souganidis 1998]. This property will be helpful to establish estimates using standard
approaches for viscosity solutions.
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Lemma 2.6. Assume that φ,ψ,ψ◦ ∈ C2(RN
\ {0}), and that g is continuous. Let E be a superflow in the

sense of Definition 2.2. Then, −χE is a viscosity supersolution of

ut = ψ(∇u)(div∇φ(∇u)+ g) (2-4)

in RN
× (0, T ∗], where T ∗ is the possible extinction time of E.

Conversely, a viscosity supersolution −χE of (2-4) defines a superflow in the sense of Definition 2.2.

Proof. A similar statement (in a simpler context) is proved in [Chambolle et al. 2017b, Appendix], while
it is proved in [Chambolle et al. 2017a] that a superflow defines a viscosity supersolution. We therefore
here focus on the converse: Given an evolving set E(t) such that −χE is a viscosity supersolution of (2-4),
we show that E(t) is a superflow in the sense of Definition 2.2, with the constant M in (2-3) equal to the
Lipschitz constant L of g( · , t) appearing in the assumption (H2).

Step 1: left continuity and extinction time. Let T ∗ ∈ [0,+∞] be the (first) extinction time of E ,
and assume without loss of generality T ∗ > 0. Let d(x, t) := distψ

◦

(x, E(t)). We fix δ > 0 and we
set A = (RN

× [0, T ∗)) \ E and Aδ = A ∩ {d > δ}. Let (x, t) with d(x, t) = R > δ > 0. Then
Wψ(x, R− ε)∩ E(t) = ∅ for any ε > 0 (small). There exists a constant C (depending on φ,ψ) such
that, letting

W (s)= RN
\Wψ

(
x, R− ε−

(C
R
+‖g‖∞

)
s
)
,

−χW (s) is a viscosity subsolution of (2-6) for s ≤ R2/(2(C + R‖g‖∞)) and ε ≤ R/4. By standard
comparison results [Barles et al. 1993], it follows that E(t + s) ⊂ W (s) for such times s, so that
d(x, t + s)≥ R− ε− (C/R+‖g‖∞)s. Hence, letting ε→ 0, we find that

d(x, t + s)≥ d(x, t)−
(C
δ
+‖g‖∞

)
s if (x, t) ∈ Aδ. (2-5)

In particular, it follows that ∂t d is bounded from below in such sets and hence is a measure. By (2-5) and
the fact that E is closed we deduce that the left continuity (b) of Definition 2.2 holds for E(t). Moreover,
the same argument shows that if t > T ∗ then d(x, t)=+∞, showing also point (c).

Step 2: the distance function is a viscosity supersolution. We now show that the function d(x, t) is a
viscosity supersolution of

ut = ψ(∇u)(D2φ(∇u) : D2u+ g− Lu). (2-6)

In fact, this is essentially classical [Soner 1993]; however the proof in this reference needs to be adapted
to deal with the forcing term. An elementary proof is as follows: Let η be a smooth test function and
assume (x̄, t̄ ) is a contact point, where η(x̄, t̄ )= d(x̄, t̄ ) and η≤ d . If the common value of η, d at (x̄, t̄ )
is zero then it is also a contact point of 1−χE and η, so that

∂tη(x̄, t̄ )≥ ψ(∇η(x̄, t̄ ))
(
D2φ(∇η(x̄, t̄ )) : D2η(x̄, t̄ )+ g(x̄, t̄ )− Lη(x̄, t̄ )

)
(2-7)

obviously holds, by definition (recalling (2-4) and that η(x̄, t̄ )= 0). Hence we consider the case where
R = d(x̄, t̄ ) > 0. Let ȳ ∈ ∂E(t̄ ) such that R = ψ◦(x̄ − ȳ). We let

η′(y, t) := η(y+ x̄ − ȳ, t)− R ≤ d(y+ x̄ − ȳ, t)− R ≤ d(y, t)
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since d is 1-Lipschitz in the ψ◦ norm. In particular, in a neighborhood of (ȳ, t̄ ) we have η′(y, t) ≤
1−χE(t)(y). On the other hand, η′(ȳ, t̄ )= 0= d(ȳ, t̄ )= 1−χE(t̄ )(ȳ). Hence, by (2-4)

∂tη(x̄, t̄ )= ∂tη
′(ȳ, t̄ )≥ ψ(∇η′(ȳ, t̄ ))

(
D2φ(∇η′(ȳ, t̄ )) : D2η′(ȳ, t̄ )+ g(ȳ, t̄ )

)
.

Since g(ȳ, t̄ )≥ g(x̄, t̄ )− Lη(x̄, t̄ ), (2-7) follows.

Step 3: differential inequality. A classical remark is that d2, as an infimum of the uniformly semiconcave
functions ψ◦( · − y)2, y ∈ E(t), is semiconcave; hence in Aδ one has D2d ≤ C/δ I in the sense of
measures for some constant C depending only on ψ◦. In particular, div∇φ(∇d)= D2φ(∇d) : D2d ≤C/δ
in Aδ in the sense of measures.

We proceed as in [Chambolle et al. 2017b]: For n ≥ 1, let dn(x, t) :=mins(d(x, t − s)+ ns2), which
is semiconcave and converges to d as n→∞. Moreover, one can easily check that dn( · , t)→ d( · , t)
locally uniformly if t is a continuity point of d. Let B ⊂ Aδ be an open ball (where in particular d is
bounded from above and it is bounded from below by δ) and observe that dn is still a supersolution
of (2-6), provided g(x, t) is replaced with g(x, t)−ωn for some ωn→ 0 as n→+∞. Since dn , which
is semiconcave, has a second-order jet a.e. in B, (2-6) holds for dn a.e. in B. Reasoning as in [Chambolle
et al. 2017b, Appendix], we deduce that

∂t dn ≥ ψ(∇dn)(div zn + g−ωn − Ldn) (2-8)

in the distributional sense (or as measures) in B, where zn := ∇φ(∇dn). It remains to send n→∞:
Clearly, ∂t dn → ∂t d in the distributional sense. Consider (x, t) a point where ∇d(x, t) and ∇dn(x, t)
exist for all n. First, if d(x, t − s)+ ns2 attains the minimum at sn , one has for any p ∈ ∂+d(x, t − sn)

(the spatial supergradient of the semiconcave function d( · , t − sn)) that

dn(x + h, t)≤ d(x + h, t − sn)+ ns2
n

≤ d(x, t − sn)+ p · h+ C
δ
|h|2+ ns2

n = dn(x, t)+ p · h+ C
δ
|h|2,

showing that p ∈ ∂+dn(x, t) = {∇dn(x, t)}. We deduce that d( · , t − sn) is differentiable at x , with
gradient ∇dn(x, t), and in particular that ψ(∇dn(x, t))= 1.

Assume now that in addition d is continuous at t . Then dn( · , t)→ d( · , t) uniformly in B∩(RN
×{t}),

and using the (uniform) semiconcavity of these functions, one also deduces that ∇dn(x, t)→∇d(x, t)
a.e.; hence, zn(x, t)= ∇φ(∇dn(x, t)) converges to z(x, t)= ∇φ(∇d(x, t)) a.e. Hence we may send n
to∞ in (2-8) to find that

∂t d ≥ div z+ g− Ld

in the distributional sense in B, with z =∇φ(∇d) a.e.
This shows the lemma. �

2C. The level-set formulation. Let u0 be a bounded, uniformly continuous function on RN. Then, it
is well known [Chen et al. 1991] that if φ ∈ C2(RN

\ {0}) and ψ, g are continuous, then there exists a
unique viscosity solution u of (2-4) with initial datum u0. Moreover, for all λ ∈ R, we know −χ{u<λ}
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is a viscosity supersolution and −χ{u≤λ} is a viscosity subsolution of the same equation. If in addition
ψ,ψ◦ ∈ C2(RN

\ {0}), it follows from Lemma 2.6 that Eλ(t) := {u( · , t)≤ λ} is a superflow in the sense
of Definition 2.2, while Aλ(t) := {u( · , t) < λ} is a subflow.1

In what follows we will say that a given norm η is smooth and elliptic if both η and η◦ belong to
C2(RN

\ {0}).
We now consider sequences φn, ψn of smooth and elliptic anisotropies/mobilities converging to

φ,ψ . We also consider gn(x, t) a smooth forcing term, which converges to g(x, t) weakly-∗ in
L∞(RN

×[0,+∞)). We assume also that gn is uniformly spatially Lipschitz continuous and we denote
by L , M the (uniform) Lipschitz constants of gn with respect to ψ◦n and φ◦n , respectively. Given un , the
corresponding unique viscosity solution of (2-4) (with ψn, φn, gn instead of ψ, φ, g) with initial datum u0,
we want to study the possible limits of un . If the limiting anisotropies and forcing term are still smooth
enough, it is well known that the limiting u is the unique viscosity solution of the corresponding limit
problem. If not, we will show that the limit is still unique. We recall, see [Chambolle et al. 2017a], the
following:

Definition 2.7. We will say that a norm ψ is φ-regular if the associated Wulff shape Wψ(0, 1) satisfies a
uniform interior φ-Wulff shape condition, that is, if there exists ε0 > 0 with the following property: for
every x ∈ ∂Wψ(0, 1) there exists y ∈Wψ(0, 1) such that W φ(y, ε0)⊆Wψ(0, 1) and x ∈ ∂W φ(y, ε0).

Notice that it is equivalent to saying that Wψ(0, 1) is the sum of a convex set and W φ(0, ε0), or
equivalently that ψ(ν)= ψ0(ν)+ ε0φ(ν) for some convex function ψ0.

We now show the following result.

Theorem 2.8. Let (ψn)n , (φn)n and (gn)n be as above, and, in addition, assume that the mobilities
(ψn)n are uniformly φn-regular, meaning that ε0 > 0 in Definition 2.7 does not depend on n. Let un

be the level-set solutions to (1-1) in the sense of Definition 2.4, with initial datum u0, anisotropy (ψn)n ,
mobility (φn)n and forcing term (gn)n . Then, the un converge locally uniformly to the unique level-set
solution u to (1-1) in the sense of Definition 2.4, with initial datum u0, anisotropy ψ , mobility φ and
forcing term g.

Proof. A first observation is that the functions un remain uniformly continuous in space and time on
RN
×[0, T ] for all T > 0, with a modulus depending only on the modulus of continuity ω of u0 and the

Lipschitz constant M . Indeed, by Proposition 3.4 below it follows that for any λ < λ′

distφ
◦
n
(
{un( · , t)≤ λ}, {un( · , t)≥ λ′}

)
≥1e−βMt ,

where 1 := ω−1(λ′− λ) ≥ distφ
◦

({u0
≤ λ}, {u0

≥ λ′}) > 0, and β > 0 depends (for large n) only on φ
and ψ ; see (3-16). Therefore, un( · , t) is uniformly continuous with modulus of continuity with respect
to the norm φ◦n given by ω(eβMt

· ). As for the equicontinuity in time, we set ωT (s) := ω(eβMT s) and we
start by observing that for any x ∈ RN, ε > 0, t ∈ (0, T ], and n ∈ N we have

W φn (x, ω−1
T (ε))⊆ {y : un(y, t) > un(x, t)− ε}.

1In the case of “fattening”, also {u < λ} is a superflow, and the interior of {u ≤ λ} a subflow.
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Therefore, by standard comparison results we have un(x, t ′) > un(x, t)− ε provided that 0< t ′− t < τ ,
where τ is the extinction time for W φn (x, ω−1

T (ε)) under the evolution (1-1). Analogously, one shows that
un(x, t ′) < un(x, t)+ ε if 0< t ′− t < τ . Since τ is bounded away from zero by a quantity independent
of n (depending only on ε, supn ‖gn‖∞ and, for n large, on φ and ψ); see for instance [Chambolle et al.
2017a, Remark 4.6]. This establishes the equicontinuity in time.

Hence, up to a subsequence (not relabeled), we may assume that un converges locally uniformly to
some u. In view of Theorem 2.5, it is enough to show that u is a solution in the sense of Definition 2.4, that
is, that for a.e. λ ∈R the set Eλ := {u ≤ λ} is a superflow in the sense of Definition 2.2 and Aλ := {u <λ}
a subflow.

We prove the assertion for Eλ. We first notice that since un→ u locally uniformly, the Kuratowski
limit superior of the sets En := {un ≤ λ} as n→∞ is contained in Eλ.

By Lemma 2.6, the sets En are superflows in the sense of Definition 2.2. We consider dn(x, t) :=
distψ

◦
n (x, En(t)) and d(x, t) := distψ

◦

(x, Eλ(t)), the corresponding distance functions, which are finite up
to some time T ∗n , T ∗ ∈ (0,+∞] respectively, where T ∗ is defined according with Definition 2.2. Notice
that T ∗ is increasing with respect to λ, and that if λ is a continuity point, then we have T ∗n → T ∗, as n→∞.

Recalling (2-5), one can deduce that for s > 0 small,

dn(t + s)− dn(t)
s

≥−
C

dn(t)
−‖g‖∞,

where the constant C does not depend on n, as it is essentially the maximal speed, without forcing, of
the Wulff shape Wψn :=Wψn (0, 1), which is bounded by (maxξ ψn)× (max∂Wψn κφn ). The curvature κφn

of ∂Wψn is in [0, (N − 1)/ε0], thanks to the assumption that ψ ′n := ψn − ε0φn is convex, which yields
that Wψn =Wψ ′n + ε0W φn . We deduce ∂t dn ≥−C/dn −‖g‖∞, which yields that there is an increasing
function 2 : R+→ R+ such that

2(dn(t + s))≥2(dn(t))−‖g‖∞s for all t, s > 0. (2-9)

Actually 2 is explicitly given by

2(d)= d −
C
‖g‖∞

log
(

1+
‖g‖∞

C
d
)

for d ≥ 0. Notice that, for small d ≥ 0, we have 2(d)≈ ‖g‖∞d2/(2C), while 2(d)≈ d for large d .
It follows from (2-9) (see for instance details in the proof of [Chambolle et al. 2017b, Proposition 4.4],

which is an adaptation of Helly’s selection theorem) that one can find an at most countable set N ⊂ (0, T ∗)
such that for all t 6∈N , dn( · , t)→d( · , t) locally uniformly. If Bb (RN

×(0, T ∗))\Eλ, one has B∩En=∅
for n large enough and

∂t dn ≥ div zn + gn − Ldn

in the distributional sense in B, thanks to (2-3) and Lemma 2.6. Here, zn =∇φn(∇dn). Notice that the
zn are (for n large) well-defined and bounded in L∞(RN

× (0, T )) for any T < T ∗. In the limit, we find
that (2-3) holds for d , with z the weak-∗ (local in time) limit of (zn)n (or rather, in fact, a subsequence). It
remains to show that z ∈ ∂φ(∇d) a.e. in B. An important observation is that, using again the φn-regularity
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of ψn , one can show that div∇φn(∇dn)≤ (N − 1)/(ε0dn); hence it is bounded in {dn > δ}. In particular,
in the limit, (div z)+χ{d>δ} ∈ L∞(RN

× (0, T ∗)).
To show z ∈ ∂φ(∇d) a.e. in B, we establish that z · ∇d ≥ φ(∇d) a.e. in B. The proof here is

as in [Chambolle et al. 2017b]. There exists δ such that for all n large enough, dn ≥ δ in B; hence
div zn ≤ (N − 1)/(ε0δ). Let η ∈ C∞c (B;R+); then∫

B
φ(∇d)η dx dt ≤ lim inf

n

∫
B
φn(∇dn)η dx dt = lim inf

n

∫
B
(zn · ∇dn)η dx dt.

On the other hand,∫
B
(zn · ∇dn)η dx dt =

∫
B
(zn · ∇d)η dx dt +

∫
B
(zn · ∇(dn − d))η dx dt, (2-10)

and limn
∫

B(zn · ∇d)η dx dt =
∫

B(z · ∇d)η dx dt since zn
∗⇀ z.

It remains to prove that the second addend in the right hand side of (2-10) tends to zero as n→+∞. Set

mn(t)= min
x :(x,t)∈B

(dn(x, t)− d(x, t)), Mn(t)= max
x :(x,t)∈B

(dn(x, t)− d(x, t)).

Then Mn(t)−mn(t)→ 0 for all t 6∈N. One has∫
B
(zn · ∇(dn − d))η dx dt =

∫
B
(zn · ∇(dn − d −mn(t)))η dx dt

=−

∫
B
(dn − d −mn)η div zn dx dt −

∫
B
(dn − d −mn)zn · ∇η dx dt.

The last integral goes to zero as n→∞. Since (dn − d −mn(t))η ≥ 0 we have

−

∫
B
(dn − d −mn)η div zn dx dt ≥−

N − 1
ε0δ

∫
B
(dn − d −mn)η dx dt n→∞

−−−→ 0.

Using instead dn − d −Mn , we show the reverse inequality, and we deduce∫
B
φ(∇d)η dx dt ≤

∫
B
(z · ∇d)η dx dt,

which concludes the proof. �

3. Existence by approximation

3A. A useful estimate: comparison with different forcing terms. We prove in this section and the
following a series of comparison results, which will then be combined together to deduce a global
comparison result for flows with possibly different mobilities. In this section, we shall assume that the
surface tensions φ, ψ are smooth and elliptic, so that we can work in the classical viscosity setting. In the
limit, our main estimate will also hold for crystalline flows in the sense of Definition 2.2.

We start by recalling standard comparison results for flows with constant velocities; however, we pay
special attention to the particular metrics in which our velocities are expressed. We first consider the



800 ANTONIN CHAMBOLLE, MASSIMILIANO MORINI, MATTEO NOVAGA AND MARCELLO PONSIGLIONE

equation
ut = ψ(∇u)g(x, t). (3-1)

The following is a slight variant of the well-known result [Barles 2013, Theorem 8.1]:

Lemma 3.1. Consider u0
: RN

→ R, bounded and 3-Lipschitz continuous with respect to a norm η,
smooth and elliptic, and let β > 0 be such that

ψ ≤ βη◦. (3-2)

Assume g is bounded, continuous and M-Lipschitz in space in the norm η. Let u(x, t) be a viscosity
solution of (3-1) with initial datum u0. Then for all t ≥ 0, the function u( · , t) is 3eβMt -Lipschitz
continuous in the norm η.

Proof. We start by observing that by classical results the solution u is uniformly continuous locally in
time; see for instance [Giga et al. 1991]. The rest of the proof is an adaptation of the argument in [Barles
2013, proof of Theorem 8.1]. Let δ > 0 be given, and let C be a smooth function such that

C ′−βMC ≥ βMδ > 0, (3-3)

with C(0)=3. Set
σ := sup

x,y∈RN

t∈[0,T ]

u(x, t)− u(y, t)−C(t)η(x − y).

We claim that σ = 0. Using this claim, we have

u(x, t)− u(y, t)≤ (3eβMt
+ δ(eβMt

− 1))η(x − y)

for all x, y, t ≤ T, and sending δ→ 0 we conclude the proof of the lemma.
We are left to prove the claim that σ = 0. Arguing by contradiction, assume that σ > 0. Consider a

maximum point (x̄, ȳ, t̄, s̄) in R2N
×[0, T ]2 for the function

ϕ(x, y, s, t)= u(x, t)− u(y, s)−C(t)η(x − y)−
|t − s|2

2a
− b
|x |2+ |y|2

2
,

where a, b > 0 are small parameters (notice that ϕ(x, y, 0, 0)≤ 0). For b small enough, ϕ(x̄, ȳ, t̄, s̄)≥
σ/2> 0, and then by standard arguments (using in particular that |x̄ |, |ȳ| ≤ c/

√
b, and that for fixed b,

both t̄ and s̄ converge, up to a subsequence, to the same positive value as a→ 0, see for instance [Barles
2013, Lemma 5.2]) we may assume 0< t̄, s̄ ≤ T, so that

C ′(t̄ )η(x̄ − ȳ)+
t̄ − s̄

a
≤ ψ(C(t̄ )∇η(x̄ − ȳ)+ bx̄)g(x̄, t̄ ),

t̄ − s̄
a
≥ ψ(C(t̄ )∇η(x̄ − ȳ)− bȳ)g(ȳ, s̄).

Evaluating the difference and recalling (3-3) we obtain

βM(C(t̄ )+ δ)η(x̄ − ȳ)≤ ψ(C(t̄ )∇η(x̄ − ȳ)+ bx̄)g(x̄, t̄ )−ψ(C(t̄ )∇η(x̄ − ȳ)− bȳ)g(ȳ, s̄).
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For fixed b > 0, we can then let a→ 0 and denote by t̃ ∈ (0, T ] the common limit (along a subsequence)
of t̄ and s̄ as a→ 0, and by x̃ and ỹ the limits (along a subsequence) of x̄ and ȳ, respectively. Thus,
using (3-2), we obtain

M(C(t̃ )+δ)η(x̃− ỹ)

≤
1
β
ψ(C(t̃ )∇η(x̃− ỹ)+bx̃)g(x̃, t̃ )− 1

β
ψ(C(t̃ )∇η(x̃− ỹ)−bỹ)g(ỹ, t̃ )

≤
1
β

(
ψ(C(t̃ )∇η(x̃− ỹ)+bx̃)−ψ(C(t̃ )∇η(x̃− ỹ)−bỹ)

)
g(ỹ, t̃ )+η◦(C(t̃ )∇η(x̃− ỹ)+bx)Mη(x̃− ỹ).

We deduce

C(t̃ )+ δ ≤ η◦(C(t̃ )∇η(x̃ − ỹ)+ bx̃)+
ψ(C(t̃ )∇η(x̃ − ỹ)+ bx̃)−ψ(C(t̃ )∇η(x̃ − ỹ)− bỹ)

βMη(x̃ − ỹ)
‖g‖∞,

and sending b→ 0 (and observing that η(x̃ − ỹ) 6→ 0 as σ > 0 and u is uniformly continuous), we find
that if t̂ is a limit point of t̃ , then C(t̂ )+ δ ≤ C(t̂ ), which gives a contradiction. Hence one must have
σ = 0. �

In the next lemma we show that if E0
⊂ F0 are initial sets and −χE , −χF are viscosity solutions

of (3-1), starting from −χE0 and −χF0 , respectively, then distη(∂E(t), ∂F(t))≥ distη(∂E0, ∂F0)e−βMt.
A splitting strategy will then extend this result to the solutions of (2-4).

Lemma 3.2. Let η be a smooth and elliptic norm satisfying (3-2). Let g1, g2 be two admissible forcing
terms satisfying assumptions (H1), (H2) of Section 2A, and both M-Lipschitz in the η norm. Assume

g2− g1 ≤ c <+∞ in RN
×[0,+∞). (3-4)

Let E0
⊂ F0 be two closed sets with distη(E0,RN

\F0) :=1> 0. Assume that−χE(t) is a viscosity super-
solution of ut = ψ(∇u)g1(x, t) starting from −χE0 , and −χF(t) is a subsolution of vt = ψ(∇v)g2(x, t)
starting from −χF0 . Then at any time t ≥ 0,

distη(E(t),RN
\ F(t))≥1e−βMt

− c
1− e−βMt

M
. (3-5)

Proof. With Lemma 3.1 at hand, this is a straightforward application of standard comparison principles.
We consider first u0(x) := −1∨ (21∧ dηE(x)) and v0(x) := −21∨ (1∧ dηF (x)), so that v0+1 ≤ u0.
These functions are both 1-Lipschitz in the norm η. We then consider the viscosity solutions u of
ut = ψ(∇u)g1(x, t) starting from u0, and v of vt = ψ(∇v)g2(x, t), starting from v0. By standard
comparison results, E(t)⊆ {u(t)≤ 0} and F(t)⊇ {v(t)≤ 0} for all t ≥ 0.

Thanks to Lemma 3.1, u( · , t), v( · , t) are eβMt -Lipschitz. Let now

w( · , t)= v( · , t)+1− c
eβMt
− 1

M
.

Then at t = 0, we have w( · , 0)= v0+1≤ u0. We show that w is a subsolution of ut = ψ(∇u)g1(x, t),
so that w ≤ u. Indeed, if ϕ is a smooth test function and (x̄, t̄ ) is a point of maximum of w− ϕ, then
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it is a point of maximum of v− (ϕ−1+ cβ(eβMt
− 1)/M) so that, using (3-4) and the fact that v is a

subsolution, we get

∂tϕ(x̄, t̄ )+ cβeβMt̄
≤ ψ(∇ϕ(x̄, t̄ ))g2(x̄, t̄ )≤ ψ(∇ϕ(x̄, t̄ ))g1(x̄, t̄ )+ cψ(∇ϕ(x̄, t̄ )).

Since x̄ is a contact point of the smooth function ϕ( · , t̄ ) and the eβMt̄ -Lipschitz function w( · , t̄ ) (in the
η norm), we have η◦(∇ϕ)≤ eβMt̄ at (x̄, t̄ ). By (3-2), cψ(∇ϕ(x̄, t̄ ))≤ cβeβMt̄, whence

∂tϕ ≤ ψ(∇ϕ)g1

and this shows that w is a subsolution of this equation, and hence that w ≤ u. Therefore, for all x, t ,
v(x, t)≤ u(x, t)−1+ c(eβMt

−1)/M . Thus, for t ≥ 0 and x, y ∈RN, recalling that v is eβMt̄ -Lipschitz,

v(y, t)≤ u(x, t)− eβMt
(
1e−βMt

− c
1− e−βMt

M
− η(x − y)

)
.

It follows that if distη(y, E(t))≤1e−βMt
− c(1− e−βMt)/M , then v(y, t)≤ 0, and hence y ∈ F(t),

which shows the lemma. �

3B. Comparison for different mobilities. In this section we provide the crucial stability estimates with
respect to varying mobilities, not necessarily smooth and elliptic.

3B1. A comparison result with a constant forcing term. In this subsection we shall assume that φ,ψ1, ψ2

are smooth and elliptic, and that

(1− δ)ψ2(ξ)≤ ψ1(ξ)≤ (1+ δ)ψ2(ξ) for all ξ ∈ RN, (3-6)

for some (small) δ > 0. We first show the following:

Lemma 3.3. There exists a constant c0 > 0 depending only on N such that the following holds: Let
1 > 0, and let E be a superflow for the equation V = −ψ1(ν)κφ and F be a subflow for the equation
V =−ψ2(ν)(κφ − c0δ/1), with distφ

◦

(E(0),RN
\ F(0))=1. Then for all t until extinction of E or Fc,

we have distφ
◦

(E(t),RN
\ F(t))≥1.

Proof. We first assume that ∂E(t), ∂F(t) are bounded for all t .
We shall use the fact that u(x, t)=−χE(x, t) is a viscosity supersolution of

∂t u = ψ1(∇u) div∇φ(∇u), (3-7)

while v(x, t)=−χF (x, t) is a viscosity subsolution of (see Lemma 2.6)

∂tv = ψ2(∇v)
(
div∇φ(∇v)− c0

δ

1

)
. (3-8)

A first remark is that since the equations are translationally invariant, we also have

u′(x, t)= inf
φ◦(z)≤1/4

u(x + z, t)
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is a supersolution of (3-7), and similarly,

v′(x, t)= sup
φ◦(z)≤1/4

v(x + z, t)

is a subsolution of (3-8). Note that u′ =−χE ′ and v′ =−χF ′ , with the tubes E ′, F ′ defined by

E ′(t)= E(t)+W φ
(
0, 1

41
)
,

RN
\ F ′(t)= (RN

\ F(t))+W φ
(
0, 1

41
)

until their respective extinction times. We denote by t∗ the minimum extinction time of these sets. In
particular,

distφ
◦

(E ′(0),RN
\ F ′(0))= 1

21.

Using [Chambolle et al. 2017a, Lemma 2.6], there is a time t0 such that for t ≤ t0,

distφ
◦

(E ′(t),RN
\ F ′(t))≥ 1

41.

Let ε > 0, and consider a point (x̄, t̄, ȳ, s̄) (depending on ε) which attains

Mε = min
x, y∈RN

0≤s, t<t0

1
ε
(1+ u′(x, t)− v′(y, s))+

φ◦(x − y)
2

2

+
(t − s)2

2ε
+

ε

t0− t
+

ε

t0− s
. (3-9)

Observe that for every fixed x ∈ E ′(0), y 6∈ F ′(0) and s = t = 0, this quantity is less than

φ◦(x − y)
2

2

+ 2
ε

t0

and in particular, Mε ≤1
2/8+ 2ε/t0. If ε is small enough, one must have 1+ u′(x̄, t̄ )− v′(ȳ, s̄) = 0,

that is, x̄ ∈ E ′(t̄ ) and ȳ 6∈ F ′(s̄); hence

φ◦(x̄ − ȳ)= distφ
◦

(E ′(t̄ ),RN
\ F ′(s̄)).

If both t̄, s̄ > 0, then from [Crandall et al. 1992, Theorem 3.2] (with ε = 1 in their notation), there
exist (N + 1)× (N + 1) symmetric matrices

X̃ =
(

X ζ

ζ T ζ0

)
, Ỹ =

(
Y η

ηT η0

)
(3-10)

such that (
s̄− t̄
ε
−

ε

(t0− t̄ )2
,∇φ◦(ȳ− x̄), X̃

)
∈ P2,− u′

ε
(x̄, t̄ ),(

s̄− t̄
ε
+

ε

(t0− s̄)2
,∇φ◦(ȳ− x̄), Ỹ

)
∈ P2,+ v

′

ε
(ȳ, s̄),

(3-11)

and such that

−(1+‖A‖)Id≤
(
−X̃ 0

0 Ỹ

)
≤ A+ A2, (3-12)
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where in (3-11) we used the standard notation for the (closed) parabolic second-order sub/superjets, see
[Crandall et al. 1992], and

A =


D2φ◦(x̄ − ȳ) 0 −D2φ◦(x̄ − ȳ) 0

0 1/ε− 2ε/(t0− t̄ )3 0 −1/ε
−D2φ◦(x̄ − ȳ) 0 D2φ◦(x̄ − ȳ) 0

0 −1/ε 0 1/ε− 2ε/(t0− s̄)3

 .
In particular, for all ξ ∈ RN, letting ξ̃ = (ξ, 0, ξ, 0) ∈ R2N+2, from (3-12) and (3-10) we get

−ξ T Xξ + ξ T Y ξ ≤ ξ̃ T Aξ̃ + ξ̃ T A2ξ̃ = 0,

which gives the inequality

X ≥ Y. (3-13)

Recall that u′/ε is a supersolution and v′/ε is a subsolution. Thanks to (3-11), letting p =∇φ◦(ȳ− x̄)
and a = (s̄− t̄)/ε, one has

a−
ε

(t0− t̄ )2
≥ ψ1(p)D2φ(p) : X,

a+
ε

(t0− s̄)2
≤ ψ2(p)

(
D2φ(p) : Y − c0

δ

1

)
,

yielding

0<
ε

(t0− t̄ )2
+

ε

(t0− s̄)2
≤ ψ2(p)

(
D2φ(p) : Y − c0

δ

1

)
−ψ1(p)D2φ(p) : X. (3-14)

Now, we observe that as E ′(t̄ )= E(t̄ )+W φ(0,1/4) and (necessarily) x̄ ∈ ∂E ′(t̄ ), we find that (p, X)
is also a subjet of −χWφ(x ′,1/4) for some x ′ ∈ E(t̄ ) with φ◦(x̄ − x ′)=1/4. In particular, it follows that
D2φ(p) : X ≤ 4(N − 1)/1. In the same way, D2φ(p) : Y ≥−4(N − 1)/1 and using (3-13), we obtain

−4 N−1
1
≤ D2φ(p) : Y ≤ D2φ(p) : X ≤ 4 N−1

1
. (3-15)

Thanks to (3-6) and (3-15),

−ψ1(p)D2φ(p) : X ≤−ψ2(p)D2φ(p) : X + δψ2(p)|D2φ(p) : X |

≤ −ψ2(p)D2φ(p) : X + 4(N − 1) δ
1
ψ2(p),

so that (3-14) and (3-13) yield

0<ψ2(p)
(

D2φ(p) : Y − c0
δ

1

)
−ψ1(p)D2φ(p) : X

= ψ2(p)
(

D2φ(p) : (Y − X)− c0
δ

1

)
+ (ψ1(p)−ψ2(p))D2φ(p) : X

≤ ψ2(p)
(

D2φ(p) : (Y − X)− (c0− 4(N − 1)) δ
1

)
≤ 0

as soon as c0 ≥ 4(N − 1), yielding a contradiction.
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We deduce that at least one of t̄ or s̄ is zero; without loss of generality let us assume s̄ = 0. For any
t < t0, thanks to (3-9) (choosing s = t), if ε is small enough one has

1
2 distφ

◦

(E ′(t),RN
\ F ′(t))2+ 2

ε

t0− t
≥

1
2 distφ

◦

(E ′(t̄ ),RN
\ F ′(0))2+

t̄ 2

2ε
+

ε

t0− t̄
+
ε

t0
,

from which we see, in particular, that t̄→ 0 as ε→ 0. Hence, in the limit ε→ 0, using also that E is
closed, see [Chambolle et al. 2017a, Remark 2.3] for more details, we deduce

1
2 distφ

◦

(E ′(t),RN
\ F ′(t))2 ≥ lim inf

t̄→0

1
2 distφ

◦

(E ′(t̄ ),RN
\ F ′(0))2

≥
1
2 distφ

◦

(E ′(0),RN
\ F ′(0))2 = 1

81
2,

which shows the thesis of the lemma, until t = t0 (thanks to the continuity property (b)). Starting again
from t0, we have proven the lemma for bounded sets (or sets with bounded boundary).

If ∂E(0) or ∂F(0) is unbounded, we proceed as follows: We first consider, for ε > 0, the sets

Eε0 := E(0)+W φ(0, ε),

Fε0 := RN
\
(
(RN
\ F(0))+W φ(0, ε)

)
,

which satisfy distφ
◦

(Eε0,RN
\ Fε0 )≥1− 2ε.

Then, for R > 0, we consider the initial sets Eε,R0 = Eε0 ∩ BR and Fε,R0 = Fε0 ∩ (BR+W φ(0,1)). The
result holds for the evolutions starting from these two sets, with the distance 1− 2ε. Hence in the limit
R→∞, it must hold for the (viscosity) evolutions starting from Eε0 and Fε0 (which are unique for almost
all ε).

By standard comparison results for discontinuous viscosity solutions [Barles 1994; Barles and Sougani-
dis 1998; Barles et al. 1993], it then follows that the superflow E (which is also a viscosity superflow)
is contained in the evolution starting from Eε0 , while F contains the evolution starting from Fε0 (the
ε-regularization has been introduced to avoid issues due to the possible nonuniqueness of viscosity
solutions).

We deduce that distφ
◦

(E(t),RN
\ F(t))≥1− 2ε for all t , until extinction. Since this is true for any

ε > 0, the lemma is proven. �

3B2. Comparison with a nonconstant forcing term. In this section we prove the crucial stability estimate
for motions corresponding to different but close mobilities. We start with the following:

Proposition 3.4. Assume that φ,ψ1, ψ2 are smooth and elliptic, that ψ1, ψ2 satisfy (3-6), and that β > 0
is such that

ψ2(ξ)≤ βφ(ξ) for all ξ ∈ RN. (3-16)

Let E0 ⊂ F0 be a closed and an open set, respectively, such that distφ
◦

(E0,RN
\ F0)=:1> 0, and let

E , F be a closed and an open “tube” in RN
× [0,∞), respectively, with E(0) = E0, F(0) = F0, such

that −χE is a supersolution of

ut = ψ1(∇u)(div∇φ(∇u)+ g), (3-17)
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and −χF is a subsolution of

ut = ψ2(∇u)(div∇φ(∇u)+ g). (3-18)

Then,

distφ
◦

(E(t),RN
\ F(t))≥1e−βMt

− δ
2c0/1+‖g‖∞

M
(1− e−βMt) (3-19)

as long as this quantity is larger than 1/2, where c0 is as in Lemma 3.3 and M is the Lipschitz constant
of g with respect to φ◦.

Proof. In order to obtain the estimate, we combine the results of Lemmas 3.3 and 3.2 (with η = φ◦),
together with a splitting result which follows from [Barles and Souganidis 1991]; see Example 1 of that
paper, as well as [Barles 2006].

As before, we may need to slightly perturb the initial sets, considering rather E s
0 = E0+W φ(0, s) and

F s
0 = RN

\ (RN
\ F0+W φ(0, s)) for a small s (which eventually will go to 0).

Given s > 0 small, we start with building, for ε > 0 given, the motions uε(x, t), vε(x, t) defined as
follows: We let uε(x, 0)=−χE s

0
and define recursively uε for j ≥ 0 as a viscosity solution of

uεt =


2ψ1(∇uε) div∇φ(∇vε), 2 jε < t ≤ 2 jε+ ε,

2ψ1(∇uε) /
∫ 2( j+1)ε

2 jε
g(x, s) ds, 2 jε+ ε < t ≤ 2( j + 1)ε.

(In the case of nonuniqueness, we select for instance the smallest (super)solution, corresponding to
the largest set Eε(t) = {uε= − 1}.) Similarly, we let vε(x, 0) = −χF s

0
and let vε(x, t) be the largest

(sub)solution of

vεt =


2ψ2(∇v

ε)
(

div∇φ(∇vε)− 2c0
δ

1

)
, 2 jε < t ≤ 2 jε+ ε,

2ψ2(∇v
ε)

(

/

∫ 2( j+1)ε

2 jε
g(x, s) ds+ 2c0

δ

1

)
, 2 jε+ ε < t ≤ 2( j + 1)ε,

where c0 is as in Lemma 3.3. Thanks to [Barles and Souganidis 1991; Barles 2006], as ε→ 0 these func-
tions converge to the viscosity solutions of (3-17) and (3-18), respectively, starting from −χEε0 and −χFε0 ,
provided these solutions are uniquely defined, which is known to be true for almost all ε (in fact all but a
countable set of values), in which case it is also known that they are (negative of) characteristic functions.

We now show that we can estimate the distance between the corresponding geometric evolutions, using
Lemmas 3.3 and 3.2.

Let δ be as in (3-6). A first observation is that, for j≥0, if we consider on the interval [2 jε+ε, 2( j+1)ε]
the smallest solution ũε(x, t) of

ũεt = 2ψ2(∇ũε)
(

/

∫ 2( j+1)ε

2 jε
g(x, s) ds− δ‖g‖∞

)
, ũε( · , 2 jε+ ε)= uε( · , 2 jε+ ε),

then, since for any p ∈ RN,

ψ1(p) /

∫ 2( j+1)ε

2 jε
g(x, s) ds ≥ ψ2(p) /

∫ 2( j+1)ε

2 jε
g(x, s) ds− δψ2(p)‖g‖∞,
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one has ũε(x, t) ≤ uε(x, t) for 2 jε + ε ≤ t ≤ 2( j + 1)ε, and thus Eε(t) ⊆ {ũε( · , t) = −1}. Hence,
Lemma 3.2 yields that for 2 jε+ ε ≤ t ≤ 2( j + 1)ε,

distφ
◦

(Eε(t),RN
\ Fε(t))≥ distφ

◦(
{ũε( · , t)=−1},RN

\ Fε(t)}
)

≥

(
distφ

◦

(Eε(2 jε+ ε),RN
\ Fε(2 jε+ ε))− c

M

)
e−2βM(t−2 jε−ε)

+
c
M

for c =−δ(2c0/1+‖g‖∞). Note that here we use the fact that the mobility 2ψ2 satisfies 2ψ2 ≤ 2βφ;
see (3-16).

On the other hand, Lemma 3.3 yields that for all j ≥ 0 and 2 jε ≤ t ≤ 2 jε+ ε,

distφ
◦

(Eε(t),RN
\ Fε(t))≥ distφ

◦

(Eε(2 jε),RN
\ Fε(2 jε))

as long as distφ
◦

(Eε(2 jε),RN
\ Fε(2 jε))≥1/2.

In particular, setting d j = distφ
◦

(Eε(2 jε),RN
\ Fε(2 jε)), one obtains by induction that

d j+1 ≥

(
d j −

c
M

)
e−2βMε

+
c
M
≥

(
d0−

c
M

)
e−2βM( j+1)ε

+
c
M
,

as long as d j ≥1/2. In the limit, we find that, letting E s(t)= {u( · , t)=−1} and F s(t)= {v( · , t)=−1}
and recalling that distφ

◦

(E s
0,RN

\ F s
0 )≥1− 2s,

distφ
◦

(E s(t),RN
\ F s(t))≥ (1− 2s)e−βMt

− δ
2c0/1+‖g‖∞

M
(1− e−βMt)

as long as this quantity is larger than 1/2.
By comparison, it is clear that E ⊂ E s and F s

⊂ F ; hence (letting eventually s→ 0), we deduce that
(3-19) holds as long as the right-hand side is larger than 1/2. �

We are now ready to state and prove the main result of the section.

Theorem 3.5. Let ψ1, ψ2 and φ satisfy (3-6) and (3-16). Assume also that ψ1, ψ2 are φ-regular in the
sense of Definition 2.7. Let the forcing term g(x, t) be continuous, bounded, and spatially M-Lipschitz
continuous with respect to the distance φ◦, and denote by E a superflow for V = −ψ1(ν)(κφ + g) and
by F a subflow for V = −ψ2(ν)(κφ + g), both in the sense of Definition 2.2. Finally, assume that
distφ

◦

(E(0),RN
\ F(0))≥1> 0. Then for all t ,

distφ
◦

(E(t),RN
\ F(t))≥1e−βMt

− δ
2c0/1+‖g‖∞

M
(1− e−Mβt) (3-20)

as long as this quantity is larger than 1/2.

Proof. Consider smooth, elliptic approximations of ψi (i = 1, 2), φ, denoted by ψn
i , φn, such that (3-6)–

(3-16) hold also for ψn
i , φn (with slightly larger constants δ and β that, with a small abuse of notation,

will not be relabeled) and with ψn
i − εφ

n convex (i = 1, 2), that is, ψn
i are uniformly φn-regular (see the

statement of Theorem 2.8).
Consider as before, for s > 0 small, the initial sets E s

0 := E0+W φn
(0, s) and F s

0 :=RN
\ [(RN

\ F0)+

W φn
(0, s)]. As in Theorem 2.8 we can build subflows As

n and superflows Bs
n for the evolution V =

−ψn
1 (ν)(κφn + g), both starting from E s

0, such that As
n ⊂ Bs

n , and a subflow A′sn and superflow B ′sn for the
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evolution V =−ψn
2 (ν)(κφn+g), both starting from F s

0 , such that A′sn ⊂ B ′sn . Thanks to Lemma 2.6, −χBs
n

is a viscosity supersolution and −χA′sn is a viscosity subsolution, so that we can apply Proposition 3.4 and
estimate their (φn)◦-distance according to (3-19).

Again thanks to Theorem 2.8, RN
\ As

n converges in the Kuratowski sense as n→∞ to the complement
of a subflow, which contains E thanks to Theorem 2.3, and analogously B ′sn converges to a superflow
contained in F. We deduce (3-20), letting s→ 0. �

3C. Existence and uniqueness by approximation. We recall that the existence theory for level-set flows
(in the sense of Definition 2.4) that we have so far works only for φ-regular mobilities. The goal of this
section is to extend the existence theory to general mobilities. To this aim, we consider the following
notion of solution via approximation:

Definition 3.6 (level-set flows via approximation). Let ψ be a mobility, g an admissible forcing term
and u0 a uniformly continuous function on RN.

We will say that a continuous function uψ : RN
× [0,+∞)→ R is a solution via approximation to

the level-set flow corresponding to (1-1), with initial datum u0, if uψ( · , 0) = u0 and if there exists a
sequence {ψn} of φ-regular mobilities such that ψn → ψ and, denoting by uψn the unique solution to
(1-1) (in the sense of Definition 2.4) with mobility ψn and initial datum u0, we have uψn → uψ locally
uniformly in RN

×[0,+∞).

The next theorem is the main result of this section: it shows that for any mobility ψ , a solution via
approximation uψ in the sense of the previous definition always exists; such a solution is also unique
in that it is independent of the choice of the approximating sequence of φ-regular mobilities {ψn}. In
particular, in the case of a φ-regular mobility, the notion of solution via approximation is consistent with
that of Definition 2.4.

Theorem 3.7. Let ψ , g, and u0 be as in Definition 3.6. Then, there exists a unique solution uψ in the
sense of Definition 3.6 with initial datum u0.

Proof. We have to prove that for any sequence {ψn} of φ-regular mobilities such that ψn → ψ , the
corresponding solutions uψn to (1-1) with initial datum u0 converge to some function u locally uniformly
in RN

×[0,+∞). We split the proof of the theorem into two steps.

Step 1. Let β be as in (3-16). Let T0 > 0 be defined by e−2βMT0 =
3
4 , where as usual M is the spatial

Lipschitz constant of the forcing term g with respect to the distance induced by φ◦. We claim that for
every ε > 0 there exists n̄ ∈ N such that

‖uψn − uψm‖L∞(RN×[0,T0]) ≤ ε for all n,m ≥ n̄. (3-21)

To this aim, we observe that since ψn→ ψ , for n large enough

ψn(ξ)≤ 2βφ(ξ) for all ξ ∈ RN, (3-22)

and there exists δ j → 0 such that

(1− δ j )ψn ≤ ψm ≤ (1+ δ j )ψn for all m, n ≥ j. (3-23)
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Set Eψn
λ (t) := {u

ψn ( · , t)≤ λ}, Fψn
λ (t) := {uψn ( · , t) < λ} and recall that Eψn

λ is a superflow, while Fψn
λ

is a subflow in the sense of Definition 2.2.
Let ω be a modulus of continuity for u0 with respect to φ◦ and recall that for any λ ∈ R

distφ
◦

(Eψm
λ (0),RN

\ Fψn
λ+ε(0))= distφ

◦

({u0
≤ λ}, {u0

≥ λ+ ε})≥ ω−1(ε).

By (3-22), (3-23) and Theorem 3.5, for all n,m ≥ j we have

distφ
◦

(Eψm
λ (t),RN

\ Fψn
λ+ε(t))≥ ω

−1(ε)e−2βMt
− δ j

2c0/ω
−1(ε)+‖g‖∞

M
(1− e−2βMt),

as long as the right-hand side is larger than ω−1(ε)/2, that is, for all t ∈ [0, T0], provided j is large enough.
In particular, for n,m large enough Eψm

λ (t)⊂ Fψn
λ+ε(t) for all t ∈ [0, T0], which yields

uψn ( · , t)≤ uψm ( · , t)+ ε for all t ∈ [0, T0].

By switching the roles of n and m we deduce (3-21).

Step 2. First arguing as in the proof of Theorem 2.8 and using (3-22) we see that ω(e2βMt
· ) is a spatial

modulus of continuity for uψn ( · , t) for all n. Observe that from (3-21) it follows that for n,m large
enough we have

Eψm
λ (T0)⊆ Eψn

λ+ε(T0),

which in turn implies

distφ
◦

(Eψm
λ (T0),RN

\ Fψn
λ+2ε(T0))≥ distφ

◦

(Eψn
λ+ε(T0),RN

\ Fψn
λ+2ε(T0))≥ ω

−1(e2βMT0ε).

We can now argue as in Step 1 to conclude that, for n, m large enough,

‖uψn − uψm‖L∞(RN×[T0,2T0]) ≤ 2ε.

Therefore, by an easy iteration argument we can show that, for every given T > 0, the sequence {uψn } is
a Cauchy sequence in L∞(RN

×[0, T ]). �

We conclude by recalling the following remarks, referring to [Chambolle et al. 2017a] for the details.

Remark 3.8 (stability). As a byproduct of the previous theorem, and a standard diagonalization argument,
we have the following stability property for solutions to (1-1): Let {ψn}n∈N be a sequence of mobilities
and φn a sequence of anisotropies such that ψn→ψ and φn→ φ as n→+∞. Then uψn converge to uψ

locally uniformly in RN
×[0,+∞) as h→ 0 (where uψn is the solution to (1-1) with ψ replaced by ψn

and φ replaced by φn).

Remark 3.9 (comparison with the Giga–Požár solution). When φ is purely crystalline and g≡ c for some
c ∈ R, the unique level-set solution in the sense of Definition 3.6 coincides with the viscosity solution
constructed in [Giga and Požár 2016; 2018].

We also recall that when g is constant, (1-1) admits a phase-field approximation by means of the
anisotropic Allen–Cahn equation; see [Chambolle et al. 2017a, Remark 6.2] for the details.
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In the next theorem we recall the main properties of the level-set solutions introduced in Definition 3.6.
In the statement of the theorem, we will say that a uniformly continuous initial function u0 is well-prepared
at λ ∈ R if the following two conditions hold:

(a) If H ⊂ RN is a closed set such that dist(H, {u0 ≥ λ}) > 0, then there exists λ′ < λ such that
H ⊆ {u0 < λ

′
}.

(b) If A ⊂ RN is an open set such that dist({u0 ≤ λ},RN
\ A) > 0, then there exists λ′ > λ such that

{u0 ≤ λ
′
} ⊂ A.

Here dist( · , · ) denotes the distance function with respect to a given norm. Clearly, the properties stated
in (a) and (b) above do not depend on the choice of such a norm.

Remark 3.10. Note that the above assumption of well-preparedness is automatically satisfied if the set
{u0 ≤ λ} is bounded.

Theorem 3.11 (properties of the level-set flow). Let uψ be a solution in the sense of Definition 3.6, with
initial datum u0. The following properties hold true:

(i) (nonfattening of level sets) There exists a countable set N ⊂ R such that for all t ∈ [0,+∞), λ 6∈ N,

{(x, t) : uψ(x, t) < λ} = Int({(x, t) : uψ(x, t)≤ λ}),

{(x, t) : uψ(x, t) < λ} = {(x, t) : uψ(x, t)≤ λ}.
(3-24)

(ii) (distributional formulation when ψ is φ-regular) If ψ is φ-regular, then uψ coincides with the
distributional solution in the sense of Definition 2.4.

(iii) (comparison) Assume that u0
≤ v0 and denote the corresponding level-set flows by uψ and vψ,

respectively. Then uψ ≤ vψ.

(iv) (geometricity) Let f : R→ R be increasing and uniformly continuous. Then uψ is a solution with
initial datum u0 if and only if f ◦ uψ is a solution with initial datum f ◦ u0.

(v) (independence of the initial level-set function) Assume that u0 and v0 are well-prepared at λ. If
{u0<λ}={v0<λ}, then {uψ( · , t)<λ}={vψ( · , t)<λ} for all t>0. Analogously, if {u0

≤λ}={v0
≤λ},

then {uψ( · , t)≤ λ} = {vψ( · , t)≤ λ} for all t > 0.

For the proof we refer to [Chambolle et al. 2017a, Theorem 5.9].

We conclude with a remark about conditions that prevent the occurrence of fattening.

Remark 3.12 (star-shaped sets, convex sets and graphs). It is well-known [Soner 1993, Section 9] that
for the motion without forcing, strictly star-shaped sets do not develop fattening so that, in particular,
their evolution is unique. The proof of this fact, given for instance in [Soner 1993] for the mean curvature
flow, works also for solutions in the sense of Definition 2.2 when the mobility ψ is φ-regular, and in
turn, by approximation, also for the generalized motion associated to level-set solutions in the sense of
Definition 3.6, when ψ is general. Uniqueness also holds for motions with a time-dependent forcing g(t)
[Bellettini et al. 2009, Theorem 5] as long as the set remains strictly star-shaped. This remark obviously
applies to initial convex sets, which, in addition, remain convex for all times, as was shown in [Bellettini
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et al. 2006; 2009; Caselles and Chambolle 2006] with a spatially constant forcing term.2 The case of
unbounded initial convex sets was not considered in these references but can be easily addressed by
approximation (and uniqueness still holds with the same proof).

In the same way, if the initial set E0 = {xN ≤ v
0(x1, . . . , xN−1)} is the subgraph of a uniformly

continuous function v0, and the forcing term does not depend on xN , then one can show that fattening
does not develop and E(t) is still the subgraph of a uniformly continuous function for all t > 0, as in the
classical case [Ecker and Huisken 1989; Evans and Spruck 1992b]; see also [Giga and Giga 1998] for the
two-dimensional crystalline case.
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GLOBAL WEAK SOLUTIONS OF THE TEICHMÜLLER
HARMONIC MAP FLOW INTO GENERAL TARGETS

MELANIE RUPFLIN AND PETER M. TOPPING

We analyse finite-time singularities of the Teichmüller harmonic map flow — a natural gradient flow
of the harmonic map energy — and find a canonical way of flowing beyond them in order to construct
global solutions in full generality. Moreover, we prove a no-loss-of-topology result at finite time, which
completes the proof that this flow decomposes an arbitrary map into a collection of branched minimal
immersions connected by curves.

1. Introduction

The Teichmüller harmonic map flow is a gradient flow of the harmonic map energy that evolves a given
map u0 :M→ N from a closed oriented surface M of arbitrary genus γ ≥0 into a closed target manifold N
of arbitrary dimension, and simultaneously evolves the domain metric on M within the class of constant
curvature metrics. It tries to evolve u0 to a branched minimal immersion — a critical point of the energy
functional in this situation — but in general there is no such immersion homotopic to u0, so something
more complicated must occur.

The development of the theory so far has suggested that the flow should instead decompose u0 into a
collection of branched minimal immersions from lower-genus surfaces. This paper provides the remaining
part of the jigsaw in order to prove this in full generality, by analysing the finite-time singularities that may
occur, finding a canonical way of flowing beyond them, and analysing their fine structure in order to prove
that no topology is lost except by the creation of additional branched minimal immersions and connecting
curves. The resulting global generalised solution will have at most finitely many singular times, together,
possibly, with singular behaviour at infinite time that was analysed in [Rupflin and Topping 2016; Rupflin
et al. 2013; Huxol et al. 2016].

Consider the harmonic map energy

E(u, g)= 1
2

∫
M
|du|2g dvg

acting on a sufficiently regular map u :M→ (N, gN ), and a metric g in the space Mc of constant (Gauss-)
curvature −1, 0 or 1 (depending on the genus) metrics on M with fixed unit area in the case that the
curvature is 0. Critical points are weakly conformal harmonic maps u : (M, g)→ (N, gN ), which are then
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branched minimal immersions [Gulliver et al. 1973] (allowing constant maps in addition). The gradient
flow, introduced in [Rupflin and Topping 2016], can be written with respect to a fixed parameter η > 0 as

∂u
∂t
= τg(u);

∂g
∂t
=

1
4η

2 Re(Pg(8(u, g))), (1-1)

where τg(u)= trg(∇gdu) denotes the tension field of u, Pg represents the L2-orthogonal projection from the
space of quadratic differentials on (M, g) onto the space H(M, g) of holomorphic quadratic differentials,
and 8(u, g) is the Hopf differential. The flow decreases the energy E(t) := E(u(t), g(t)) according to

d E
dt
=−

∫
M

[
|τg(u)|2+

( 1
4η
)2
|Re(Pg(8(u, g)))|2

]
=−‖∂t u‖2L2 −

1
η2 ‖∂t g‖2L2

=−‖τg(u)‖2L2 −
1

32η
2
‖Pg(8(u, g))‖2L2, (1-2)

where we use that ‖Pg(8(u, g))‖2L2 = 2‖Re(Pg(8(u, g))‖2L2 . We refer to [Rupflin and Topping 2016]
for further details.

When the genus γ of M is zero, there are no nonvanishing holomorphic quadratic differentials, so g
remains fixed, and we recover the harmonic map flow [Eells and Sampson 1964], which has been studied
in detail for two-dimensional domains; see [Struwe 1985; Topping 2004, Theorem 1.6] and the references
therein. In the case that γ = 1, this flow can be shown to be equivalent to a flow of Ding, Li and Liu
[Ding et al. 2006], as pointed out in [Rupflin and Topping 2016], and analysed in [Ding et al. 2006; Huxol
et al. 2016].

1.1. Construction of a global flow. In both cases γ = 0 and γ = 1, one obtains global weak solutions
starting with any initial map u0 ∈ H 1(M, N ) and any initial metric g0 ∈Mc [Struwe 1985; Ding et al.
2006]. For γ ≥ 2 it was shown in [Rupflin 2014] that a weak solution exists on a time interval [0, T ) for
some T ∈ (0,∞], and if T <∞ then the domain must degenerate in the sense that the injectivity radius
of (M, g) must approach zero as t ↑ T. In all these cases the flow will be smooth away from finitely
many times and, as time increases to a singular time, the map u splits off one or more (but finitely many)
nonconstant harmonic 2-spheres, which will then automatically be branched minimal spheres (see, e.g.,
[Eells and Lemaire 1978, (10.6)] for this latter fact) as bubbling occurs. At each such singular time τ , the
continuation of this weak solution is constructed by taking a (unique) limit (u(τ ), g(τ ))∈ H 1(M, N )×Mc

as t ↑ τ and continuing the flow past the singular time by restarting with (u(τ ), g(τ )) as new initial data.
This process gives a unique flow within the class of weak solutions with nonincreasing energy. It was
shown in [Ding and Tian 1995; Topping 2004, Theorem 1.6] that for the harmonic map flow, and in
particular for the case γ = 0 above, we have no loss of energy and precise control on the bubble scales
at these singular times. A very similar argument establishes the same properties for all genera γ , and
the case γ ≥ 2 even follows directly from Proposition 3.3 below, which we need for other reasons. The
upshot of this singularity analysis is that the flow map before a singular time can be reconstructed from
the flow map after the singular time together with the branched minimal spheres representing the bubbles.



GLOBAL WEAK SOLUTIONS OF THE TEICHMÜLLER HARMONIC MAP FLOW INTO GENERAL TARGETS 817

Whenever a global weak solution of (1-1) exists, i.e., when T =∞ for γ ≥2, and in all cases for γ =0, 1,
it was shown in [Rupflin and Topping 2016; Rupflin et al. 2013; Huxol et al. 2016], see also [Ding et al.
2006; Struwe 1985], that either the flow subconverges to a branched minimal immersion, or it subconverges
to a collection of branched minimal immersions. This collection may consist partly of bubbles, and it
may include a limit branched minimal immersion parametrised over the original domain, but in general,
for γ ≥ 2, the domain can split into a collection of lower-genus closed surfaces, and the map converges to
a branched minimal immersion on some or all of these lower-genus surfaces. The way the domain surface
can split into lower-genus surfaces is described by the classical Deligne–Mumford-type description of how
hyperbolic surfaces can degenerate; see, e.g., [Rupflin and Topping 2018a, Theorem A.4]. In particular,
when the domain splits, the length of the shortest closed geodesic in the domain will shrink to zero and
so-called collar regions around such shrinking geodesics, described by the collar lemma of Keen and
Randol [Randol 1979], see, e.g., [Rupflin and Topping 2018a, Lemma A.1], will degenerate. In all cases,
if one is careful to capture all bubbles, including those disappearing down any degenerating collars, it was
shown in [Huxol et al. 2016] that all energy in the limit is accounted for by branched minimal immersions
from closed surfaces. The upshot of this asymptotic analysis is that when a global weak solution exists,
for a domain of arbitrary genus, the map u(t) can be reconstructed from the branched minimal immersions
we find, connected together with curves. (See [Huxol et al. 2016] for precise statements.)

The theory above leaves open the possibility of the flow stopping in finite time in the case γ ≥ 2 if it
happens that the injectivity radius of the domain converges to zero, i.e., we have collar degeneration as
above but in finite time. We showed in [Rupflin and Topping 2018b] that the flow exists and is smooth
for all time in the case that the target (N, gN ) has nonpositive sectional curvature, mirroring the seminal
work [Eells and Sampson 1964] (although the asymptotic behaviour is more elaborate in our situation,
with infinite time singularities reflecting the more complicated structure of the space of critical points).
However, in the case of general targets, the theory above has the major omission that the existence time T
for γ ≥ 2 could be finite, and by such time we cannot expect the flow to have decomposed u(t) into
branched minimal immersions. The existence of solutions of variants of Teichmüller harmonic map flow
that degenerate in finite time is proved in [Robertson and Rupflin 2018].

In this paper we show how the flow can be continued in a canonical fashion when this domain
degeneration occurs, with the continuation being a finite collection of new flows. By repeating this process
a finite number of times, we arrive at a global solution that is smooth except at finitely many singular times.
Moreover, our analysis of the collar degeneration singularity allows us to account for all “lost topology”
at the singular time in terms of branched minimal spheres, some of which may be conventional bubbles,
together with connecting curves, despite the tension field diverging to infinity in general. Combined with
the earlier work described above, a consequence is that the flow realises the following:

Any smooth map u0 : M → (N, gN ) is decomposed by the flow (1-1) into a finite collection
of branched minimal immersions vi : 6i → (N, gN ) from closed Riemann surfaces {6i } of
total genus no more than γ . The original M can be reconstructed from the surfaces {6i } by
removing a finite collection of pairs of tiny discs in

∐
i 6i and gluing in cylinders. The map u0
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is homotopic to the corresponding combination of the {vi } together with connecting curves on
the glued-in cylinders.

For other situations in which maps are decomposed into collections of minimal objects, see [Meeks
et al. 1982; Hass and Scott 1988], for example.

In order to make a continuation of the flow, we require the following basic description of the convergence
of the flow as we approach a finite-time singularity. This can be applied to a weak solution (including
bubbling) by restricting to a short time interval just prior to a time when the injectivity radius drops to
zero, thus avoiding the bubbling and allowing us to consider a smooth flow for simplicity. A far more
refined description will be required later in order to ensure that the continuation after the singularity
properly reflects the flow just before.

Theorem 1.1. Let M be any closed oriented surface of genus γ ≥ 2 and let (N, gN ) be any smooth closed
Riemannian manifold. Let (u, g) be a smooth solution of (1-1) defined on a time interval [0, T ) with
T <∞ that is maximal in the sense that

lim inf
t↑T

injg(t)(M)= 0. (1-3)

Then the following properties hold:

(1) The “pinching set” F ⊂ M defined by

F :=
{

p ∈ M : lim inf
t↑T

injg(t)(p)= 0
}

(1-4)

is nonempty and closed, and its complement U := M \ F is nonempty and supports a complete hyperbolic
metric h with finite volume and cusp ends, so that (U, h) is conformally equivalent to a finite disjoint
union of closed Riemann surfaces Mi with finitely many punctures and genus strictly less than that of M ,
and so that

g(t)→ h smoothly locally on U as t ↑ T .

(2) The “bubble” set

S :=
{

p ∈ U : there exists ε > 0 such that lim sup
t↑T

E(u(t), g(t), V )≥ ε
for all neighbourhoods V ⊂ M of p

}
(1-5)

is a finite set, and there exists a smooth map ū : U \ S→ N , with ū ∈ H 1(U, h, N ), such that

u(t)→ ū as t ↑ T

smoothly locally in U \ S and weakly locally in H 1 on U . Moreover, ū extends to a collection of maps
ui ∈ H 1(Mi , N ).

The convergence of the metric g(t) here should be contrasted with the convergence of a sequence g(tn),
with tn ↑ T, that could be deduced from the differential geometric form of Deligne–Mumford compactness;
see, e.g., [Rupflin and Topping 2018a, Theorem A.4]. Our convergence is uniform in time, and does not
require modification by diffeomorphisms.
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This theorem already tells us enough to be able to define the continuation of the flow beyond time T.
We simply take each closed Riemann surface Mi , equip it with a conformal metric gi in the corresponding
space Mc of metrics of constant curvature, and restart the flow on each Mi separately with ui as the
initial map. The choice of gi is uniquely determined when the genus of Mi is at least 1, but on the sphere
it is initially defined only up to pull-back by Möbius maps. In this case, we must find a way of making
a canonical choice of gi in order to obtain a canonical choice of continuation. We do this by returning
to the limit metric h, which induces a smooth conformal complete hyperbolic metric of finite area on
the sphere with punctures, and choose the metric gi to be the limit g∞ of the rescaled Ricci flow on
the sphere that starts with the metric h, as given by the following theorem which follows immediately
from a combination of [Topping 2012, Theorem 1.2] (see also the simplifications arising from [Topping
and Yin 2017]) and [Hamilton 1988; Chow 1991] (see also [Giesen and Topping 2011]). Note that by
Gauss–Bonnet, the volume of the metric h must be 2π(n− 2), where n is the number of punctures.

Theorem 1.2. Suppose {p1, . . . , pn}⊂ S2 is a finite set of points and h is a complete conformal hyperbolic
metric on S2

\ {p1, . . . , pn}. Then there exists a unique smooth Ricci flow g(t) on S2, t ∈ (0, T ),
T = 1

4(n − 2), i.e., a smooth complete solution of ∂g/∂t = −2K g with curvature uniformly bounded
below and such that g(t)→ h smoothly locally on S2

\ {p1, . . . , pn} as t ↓ 0. (Here K is the Gauss
curvature.) Moreover, there exists a smooth conformal metric g∞ on S2 of constant Gauss curvature 1
such that g(t)/(2(T − t))→ g∞ smoothly as t ↑ T.

Theorem 1.1, with the aid of Theorem 1.2, thus establishes that our flow can be continued canonically
beyond the singular time T as a finite collection of flows. The construction does not require us to stop
prior to the singular time T and perform surgery. Instead, we flow right to the singular time, and the
surgery we do consists of nothing more than adding points to fill in punctures in the domain (the analogue
of adding an arbitrary cap in a traditional surgery argument).

1.2. No loss of information at finite-time collar degenerations. At this stage we have however not yet
established a very strong connection between the flow prior to a collar degeneration singularity and the
flows after the singularity. We need to relate the topology of M to the topology of the surfaces Mi , and to
relate the topology of the map u(t) prior to the singularity to the flow maps afterwards, and most of this
paper will be devoted to achieving this. The former issue is dealt with by the following:

Proposition 1.3. In the setting of Theorem 1.1, the injectivity radius converges uniformly to a continuous
limit:

injg(t)(x)→
{

injh(x) for x ∈ U,
0 for x ∈ F = M \U

(1-6)

as t ↑ T. Moreover, the set F from (1-4) consists of k ∈ {1, . . . , 3(γ − 1)} components {Fj }, and the total
number of punctures in Theorem 1.1 is 2k.

Furthermore, there exist δ0 ∈ (0, arsinh(1)) and t0 ∈ [0, T ) such that for every t ∈ [t0, T ) there are
exactly k simple closed geodesics σj (t)⊂ (M, g(t)) with length `j (t)= Lg(t)(σj (t)) < 2δ0 and the lengths
of these geodesics decay according to

`j (t)≤ C(T − t)(E(t)− E(T ))→ 0 as t ↑ T (1-7)
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for some C = C(η, γ ). In addition, for every δ ∈ (0, δ0] and t ∈ [t0, T ) the set δ-thin(M, g(t)) consists
of the union of the (possibly empty) disjoint cylindrical “subcollar” regions Cj = Cj (t, δ) around σj (t)
which are isometric to

(−X j , X j )× S1 equipped with the metric ρ2
j (s)(ds2

+ dθ2) (1-8)

where

X j = X j (t, δ)=
2π
`j (t)

arccos
(

sinh(`j (t)/2)
sinh δ

)
if 2δ ≥ `j (t), while X j = 0 if 2δ < `j (t) (1-9)

and

ρj (s)= ρ`j (t)(s)=
`j (t)

2π cos(`j (t)s/(2π))
,

and for all t sufficiently large (depending in particular on δ) we have Fj ⊂ Cj (t, δ).

The subcollars Cj are subsets of collar neighbourhoods of the collapsing simple closed geodesics
described by the collar lemma; see, e.g., [Rupflin and Topping 2018a, Lemma A.1]. If δ(t)↓ 0 sufficiently
slowly so that δ(t)−1(T − t)(E(t)− E(T ))→ 0 as t ↑ T, then X j (t, δ(t))→∞ as t ↑ T.

This proposition gives us a topological description of how M can be reconstructed from the Mi . We
remove 2k small discs from the Mi at the punctures described in Theorem 1.1, and glue in cylinders
corresponding to the k collar regions from the proposition. (We see that there will be 2k punctures.)

The proposition also demonstrates what we must establish in order to relate the flow map before the
singularity to the flow maps after the singularity. The continuation of the flow is given in terms of the
smooth local limit ū on U \ S from Theorem 1.1. Therefore we can potentially lose parts of the map at
the points S and parts of the map “at infinity” in U . As we shall see in part (1) of Theorem 1.4, the loss
of energy at points in S is entirely accounted for in terms of bubbles, i.e., maps ωi : S2

→ N that are
harmonic and nonconstant and are thus themselves branched minimal spheres.

On the other hand, we have to be concerned about parts of the map that are lost at infinity in U .
By Proposition 1.3, we must specifically be concerned with the restriction of the flow map u(t) to the
collar regions Cj . If we view these collar regions conformally as the cylinder (1-8) with the flat metric
g0= ds2

+dθ2, then any fixed-length portion of an end of these cylinders will have injectivity radius injg(t)

bounded below by a positive number, uniformly as t ↑ T, and thus by Proposition 1.3, it will remain in a
compact subset of U and the map there will be captured in the limit ū. However, this says nothing about
what happens away from the ends of the cylinders, and we have to be concerned because the map there
need not become harmonic since the tension field is a priori unbounded in L2. Nevertheless, part (3) of
Theorem 1.4 will show that near enough the centre of these cylinders — essentially on the [T−t]1/2-thin
part of (M, g(t))— we will be able to describe the map as a collection of bubbles connected together by
curves.

This leaves the worry that a little outside this thin region (for example where the injectivity radius is
of the order of [T−t]1/2−ε) we might accumulate “unstructured” energy that is lost down the collars in
the limit, and does not represent any branched minimal immersion or curve, but instead represents some
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arbitrary map. Again, this is ruled out in the following Theorem 1.4, part (2), where we show that all lost
energy lives not just on the [T−t]1/2-thin part but even on the [T−t]-thin part.

Theorem 1.4. In the setting of Theorem 1.1, we can extract a finite collection of branched minimal
spheres at the singular time in order to obtain no loss of energy/topology in the following sense. There
exists a sequence tn ↑ T such that[

‖τg(u)(tn)‖L2(M,g(tn))+‖Pg(8(u, g))(tn)‖L2(M,g(tn))
]
· (T − tn)1/2→ 0, (1-10)

and so that:

(1) At each x ∈ S, finitely many bubbles, i.e., nonconstant harmonic maps S2
→ (N, gN ), develop as

tn ↑ T. All of these bubbles develop at scales of order o((T − tn)1/2) and they account for all of the energy
that is lost near x ∈ S, as is made precise in part (2) of Proposition 3.3. In particular, if ω1, . . . , ωm is the
complete list of bubbles developing at points in S then

Ethick := lim
δ↓0

lim
t↑T

E(u(t), g(t), δ-thick(U, h))

= E(ū, h,U)+
m∑

l=1

E(ωl)=
∑

i

E(ui ,Mi )+

m∑
l=1

E(ωl). (1-11)

(2) All the energy
Ethin := E(T )− Ethick,

E(T ) := limt↑T E(t), lost down the collars concentrates on the [T−t]-thin part in the sense that

Ethin = lim
t↑T

E
(
u(t), g(t), [T−t]-thin(M, g(t))

)
. (1-12)

In fact, we have the more refined information that

Ethin = lim
K→∞

lim inf
t↑T

E
(
u(t), g(t), [K (T − t)(E(t)− E(T ))]-thin(M, g(t))

)
. (1-13)

(3) The restriction of the maps u(tn) to the (T − tn)1/2-thin part of the degenerating subcollars Cj from
Proposition 1.3 has tension ‖τg0(u(tn))‖L2 → 0 as n→∞ with respect to g0 = ds2

+ dθ2 and hence can
be assumed to converge to a full bubble branch as explained in Proposition 1.5 below.

In the following proposition from [Huxol et al. 2016], we write an � bn , for sequences an and bn if
an < bn for each n and bn − an→∞ as n→∞.

Proposition 1.5 [Huxol et al. 2016, Theorem 1.9 and Definition 1.10]. For any sequence of maps
un : [−X̂n, X̂n]× S1

→ N , X̂n→∞, for which the tension with respect to the flat metric g0 = ds2
+dθ2

satisfies ‖τg0(un)‖L2 → 0, there exists a subsequence that converges to a full bubble branch in the
following sense:

There exist a finite number of sequences sm
n (for m ∈ {0, . . . , m̄}, m̄ ∈ N) with

−X̂n =: s0
n � s1

n � · · · � sm̄
n := X̂n

such that:
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(1) The connecting cylinders (sm−1
n +λ, sm

n −λ)× S1, λ large, are mapped near curves in the sense that

lim
λ→∞

lim sup
n→∞

sup
s∈(sm−1

n +λ,sm
n −λ)

osc(un; {s}× S1)= 0 (1-14)

for each m ∈ {1, . . . , m̄}.

(2) For each m ∈ {1, . . . , m̄− 1} (if nonempty) the translated maps um
n (s, θ) := un(s+ sm

n , θ) converge
weakly in H 1 locally on (−∞,∞)× S1 to a harmonic map ωm and strongly in H 1

loc((−∞,∞)× S1)

away from a finite number of points at which bubbles can be extracted in a way that each bubble is counted
no more than once, and so that in this convergence of um

n to a bubble branch there is no loss of energy on
compact subsets of (−∞,∞)× S1. Since (−∞,∞)× S1 is conformally equivalent to the sphere with
two points removed, ωm extends to a harmonic map from S2. This map can then be considered as a bubble
(in particular a branched minimal immersion) if it is nonconstant. If it is constant, then there must be a
nonzero number of bubbles developing within. (See Theorem 1.5 of [Huxol et al. 2016] for details.)

Remark 1.6. Proposition 3.3 will give a more general version of part (1) of Theorem 1.4, establishing the
no-loss-of-energy property and control on the bubble scales also at finite-time singularities as considered
in [Rupflin 2014] at which the metrics do not degenerate. As mentioned earlier, the analogue of this
result when the underlying surface is M = S2 can already be found in [Topping 2004, Theorem 1.6] since
(1-1) is then just the harmonic map flow. That theorem also elaborates on the sense in which the finite
collection of bubbles develop, and the strategy of its proof broadly carries over to our situation here.

The key point of Theorem 1.4 is that the degenerating collars, and indeed the whole surface, can be
divided up into two regions: First, the cylinders making up [T−t]-thin(M, g(t)) (and even those making
up [T−t]1/2-thin) are sufficiently collapsed that when we rescale, the evolving map u can be seen to have
very small tension and can thus be represented in terms of branched minimal spheres. Second, on the
remaining [T−t]-thick part, the limiting energy is fully accounted for by the energy of the limits ui and
the energy of the bubbles. This latter assertion is not a priori so clear since one might have a part of the
flow map drifting down the collar, always living in a region such as where the injectivity radius is of the
order of, e.g., [T−tn]1/3. Such a part of the map would have no reason to look harmonic in any way, and
might carry some nontrivial topology. This “unstructured” energy could in principle drift down the collar
not because energy was flowing around the domain, but because the injectivity radius itself is evolving.

The key to ruling out this latter bad behaviour is the following theorem, which gives a more precise
description of the convergence of the metric than the one given in Theorem 1.1 and which asserts
essentially that by time t ∈ [0, T ), the metric g(t) has settled down to its limit h on the [T−t]-thick part.
As we shall see, this represents an instance of a more general theory from [Rupflin and Topping 2018a]
describing the convergence of a general “horizontal curve” of hyperbolic metrics.

Theorem 1.7. In the setting of Theorem 1.1, there exists K <∞ depending on η and the genus of M
(and determined in Lemma 2.2) such that the following holds true:

The “pinching set” F ⊂ M defined in (1-4) can be characterised as

F =
⋂
t<T

{p ∈ M : injg(t)(p) < δK (t)} (1-15)
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for any K ≥K , where δK (t) :=K (T−t)(E(t)−E(T ))↓0 as t ↑T and E(T ) := limt↑T E(t). Equivalently,
we have

U := M \ F =
⋃
t<T

[δK (t)]-thick(M, g(t)). (1-16)

In addition to the claims on U , h and the convergence g(t)→ h made in Theorem 1.1, for any K ≥ K ,
t0 ∈ [0, T ) and t ∈ [t0, T ), we have that for every l ∈ N

‖g(t)− h‖C l ([δK (t0)]-thick(M,g(t0)),g(t0))+‖g(t)− h‖C l ([δK (t0)]-thick(U,h),h) ≤ C K−1/2
[
δ(t)
δ(t0)

]1/2

, (1-17)

where we abbreviate δ(t)= δ1(t) and where C depends only on l, the genus of M and η. Furthermore,
for K > 0 sufficiently large (depending on η, the genus of M and an upper bound E0 for the initial energy)
and for all t0 ∈ [0, T )— or for arbitrary K > 0 and t0 ∈ [0, T ) sufficiently large — we have

sup
t∈[t0,T )

‖g(t)− h‖C l ([K (T−t0)]-thick(M,g(t0)),g(t0))+ sup
t∈[t0,T )

‖g(t)− h‖C l ([K (T−t0)]-thick(U,h),h)

≤ C
(E(t0)− E(T ))1/2

K 1/2 → 0 (1-18)

as t0 ↑ T, where C depends on l, the genus of M and η.

Remark 1.8. Although we do not require it here, one should be able to improve the smooth local
convergence u(t)→ ū of Theorem 1.1 to quantitative control on the size of u(t)− ū over, say, the
[T−t]1/2-thick part of (M, g(t)), away from S, with respect to an appropriate weighted norm.

In summary we obtain that the flow (1-1) decomposes any smooth map u0 : M→ N into a collection
of branched minimal immersions vi :6i→ N through global solutions that are smooth away from finitely
many times as follows: As discussed earlier, at each singular time tm for which injg(t)(M)9 0 as t ↑ tm , all
of the lost energy is accounted for in terms of bubbles ω j

m : S2
→ (N, gN ), which we add to the collection

of minimal immersions vi (adding that same number of copies of S2 to the collection of domains 6i ). At
singular times for which injg(t)(M)→ 0, the results discussed above apply and we add both the bubbles
developing at the singular points S ⊂ U and those that are disappearing down one of the degenerating
collars to the set of minimal immersions vi (again adding the corresponding number of S2’s to the
collection of the 6i ’s) and continue the flow on the closed lower-genus surfaces Mi as described above.

If the genus of any of the closed surfaces Mi is 0 or 1, then its continuation will be a weak solution that
flows forever afterwards according to the theory of the harmonic map flow [Struwe 1985] or the theory
in [Ding et al. 2006]. If the genus of any of the surfaces Mi is larger than 1, then the subsequent flow
might develop a further finite-time singularity at which a collar degenerates, in which case we repeat the
process above to continue the flow further still. Each time we restart the flow after a singularity caused
by the degeneration of one or more collars, the genus of the surfaces underlying the continued flows
will decrease, so repeating the process finitely many times gives us a global weak solution as desired.
As the energy is conformally invariant, the resulting global solution has nonincreasing energy and the
total number of singular times tm is a priori bounded in terms of the genus, the initial energy and the
target (N, gN ).
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We can relate the domain(s) and map(s) before a singular time tm to the flow(s) after the singular time
as explained above and can thus reconstruct the initial map and the initial domain in terms of the map(s)
and domain(s) at any time t ∈ (tm, tm+1) and the collection of all of the bubbles vi obtained at the singular
times t1 < · · ·< tm as well as connecting curves on cylinders.

We can then apply the asymptotic analysis as discussed above, principally from [Huxol et al. 2016], to
each of the obtained global flows, eventually adding also the bubbles developing at infinite time as well
as the limiting maps u∞j : M

∞

j → N obtained at infinite time, which are branched minimal immersions
defined on surfaces of total genus no more than γ, to the collection of the (6i , vi ). This gives the
decomposition of the initial map into branched minimal immersions vi :6i → N described earlier on.

This paper is organised as follows. In Section 2 we carry out the analysis of the metric component
of the flow, proving part (1) of Theorem 1.1 as well as Theorem 1.7 and Proposition 1.3. The resulting
control on the evolution of the metric then allows us to analyse the map component in the subsequent
Section 3. In Section 3.2 we focus on the properties of the map on the nondegenerate part of the surface,
stating and proving Proposition 3.3, which yields both part (2) of Theorem 1.1 as well as part (1) of
Theorem 1.4. Parts (2) and (3) of Theorem 1.4 are then proven in Section 3.3 where we analyse the map
component on the degenerating part of the surface.

2. Analysis of the metric component

In this section we analyse the metric component of the flow, proving first part (1) of Theorem 1.1, then
Theorem 1.7, and finally Proposition 1.3. This analysis is based on the theory of general horizontal curves
we developed in [Rupflin and Topping 2018a], henceforth abbreviated [RT2018a], some of which we
recall here.

A horizontal curve of metrics on a smooth closed oriented surface M of genus at least 2 is a smooth
one-parameter family g(t) of hyperbolic metrics on M for t within some interval I ⊂ R so that for each
t ∈ I , there exists a holomorphic quadratic differential 9(t) such that ∂t g = Re(9). This makes g(t)
move orthogonally to modifications by diffeomorphisms, as described in [RT2018a].

An important property of horizontal curves is that we can bound the C l norm of their velocity, l ∈ N,
in terms of a much weaker norm of ∂t g and the injectivity radius. In fact, [RT2018a, Lemma 2.6] gives
that for any x ∈ M and l ∈ N

|∂t g(t)|C l (g(t))(x)≤ C[injg(t)(x)]
−1/2
‖∂t g(t)‖L2(M,g(t)), (2-1)

with C depending only on the genus of M and l, where |�|C l (g)(x) :=
∑l

k=0 |∇
k
g�|g(x), with ∇g the

Levi-Civita connection, or its extension.
We furthermore recall that for every point x ∈ M the map t 7→ injg(t)(x) is locally Lipschitz on the

interval I over which g is defined, see [RT2018a, Lemma 2.1], and that∣∣∣ d
dt
[injg(t)(x)]

1/2
∣∣∣≤ K0‖∂t g(t)‖L2(M,g(t)) (2-2)

holds true for a constant K0 <∞ that depends only on the genus of M , see [RT2018a, Lemma 2.2].
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These estimates play an important role in the proof of the following convergence result for finite-length
horizontal curves, proven in [RT2018a], which we will use to analyse the metric component of the flow.
In order to state this result, we introduce some more notation: If g(t) is defined for t in some interval
[0, T ), then we let

L(s) :=
∫ T

s
‖∂t g(t)‖L2(M,g(t)) dt ∈ [0,∞]

denote the length of the restriction of g to the interval [s, T ). Given a tensor� defined in a neighbourhood
of some K ⊂ M , we write

‖�‖C l (K ,g) := sup
K
|�|C l (g). (2-3)

Theorem 2.1 [RT2018a, Theorem 1.2]. Let M be a closed oriented surface of genus γ ≥ 2, and suppose
g(t) is a smooth horizontal curve in M−1 for t ∈ [0, T ), with finite length L(0) < ∞. Then there
exist a nonempty open subset U ⊂ M , whose complement has k ∈ {0, . . . , 3(γ − 1)} components, and a
complete hyperbolic metric h on U for which (U, h) is of finite volume and is conformally a finite disjoint
union of closed Riemann surfaces (of genus strictly less than that of M if U is not the whole of M) with
2k punctures, such that

g(t)→ h

smoothly locally on U . Moreover, defining I : M→ [0,∞) by

I(x)=
{

injh(x) on U,
0 on F = M \U,

we have injg(t)→ I uniformly on M as t ↑ T, and indeed that

‖[injg(t)]
1/2
− I1/2

‖C0 ≤ K0L(t)→ 0 as t ↑ T, (2-4)

where K0 is chosen as in (2-2) and depends only on γ . Furthermore, for any l ∈ N and δ > 0, if we take
t0 ∈ [0, T ) sufficiently large so that

(2K0L(t0))2 < δ, where K0 is the constant obtained in (2-2), (2-5)

then δ-thick(M, g(s))⊂ U for every s ∈ [t0, T ), and we have for every t ∈ [t0, T )

‖g(t)− h‖C l (δ-thick(U,h),h)+‖g(t)− h‖C l (δ-thick(M,g(s)),g(s)) ≤ Cδ−1/2L(t), (2-6)

where C depends only on l and γ .

We first apply this result to prove the properties of the metric component claimed in our basic
convergence result, i.e., part (1) of Theorem 1.1 To this end we first note that for any smooth solution (u, g)
of (1-1) defined on [0, T ), T <∞, the metric component is by definition a smooth horizontal curve.
Furthermore, its length is finite as

L(t)2 =
(∫ T

t
‖∂t g(t)‖L2(M,g(t)) dt

)2

≤ (T − t)
∫ T

t
‖∂t g(t)‖2L2(M,g(t)) dt

≤ η2(T − t)(E(t)− E(T )), (2-7)
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by (1-2), where we abbreviate E(t) := E(u(t), g(t)) and E(T ) := lims↑T E(s). In particular, defining

K := 5K 2
0η

2 (2-8)

to depend only on η and γ , and defining

δK (t) := K (T − t)(E(t)− E(T )), (2-9)

which we will be considering for K ≥ K and t ∈ [0, T ), we have

[K0L(t)]2 ≤ 1
5δK (t) (2-10)

for all t ∈ [0, T ). We may thus analyse the metric component g of any solution of (1-1) with the above
Theorem 2.1.

In the setting of Theorem 1.1, the assumption (1-3) that the metric component degenerates as t
approaches T combined with the uniform convergence of the injectivity radius furthermore guarantees
that the pinching set F must be nonempty.

Part (1) of Theorem 1.1 concerning the local convergence of g(t) to a limit h and the properties of
h, U and F is thus a direct consequence of Theorem 2.1 and the fact that L(0) <∞.

To prove the refined properties of the metric component stated in Theorem 1.7 and Proposition 1.3 we
shall use the following lemma, where K will be chosen as in (2-8) above.

Lemma 2.2. Let (u, g) be a smooth solution of (1-1) on [0, T ), T <∞, on a surface M of genus γ ≥ 2.
Then there exists a constant K depending only on η and γ so that the following holds true. If we define
δK (t) as in (2-9) then for every t0 ∈ [0, T ) the assumption (2-5) of Theorem 2.1 is satisfied for t0 and any
δ > 0 with δ ≥ δK (t0) and thus estimate (2-6) holds true for any t0 ∈ [0, T ), s, t ∈ [t0, T ), and any δ > 0
with δ ≥ δK (t0). Furthermore:

(1) For every K ≥ K the pinching set F defined in (1-4) can be characterised by (1-15).

(2) The metrics (g(t))t∈[t0,T ) are uniformly equivalent and their injectivity radii are of comparable size at
points x ∈ δK (t0)-thick(M, g(t0)) in the sense that for every s, t ∈ [t0, T )

g(s)(x)≤ C1 · g(t)(x) and C−1
1 · h(x)≤ g(t)(x)≤ C1 · h(x) (2-11)

and
injg(s)(x)≤ C2 · injg(t)(x), (2-12)

where C1 ≥ 1 depends only on the genus of M , while C2 ≥ 1 is a universal constant.

(3) For every K ≥ K , every x ∈ δK (t0)-thick(M, g(t0)), every s, t ∈ [t0, T ) and every l ∈ N we have

|∂t g(t)|C l (g(s))(x)≤ CδK (t0)−1/2
‖∂t g(t)‖L2(M,g(t)), (2-13)

where C depends only on l and the genus of M.

Proof of Lemma 2.2. We first remark that the claims are trivially true if δK (t0)= 0 and hence g|[t0,T ) is
constant in time, so we may assume without loss of generality that δK (t0) > 0.
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Define K as in (2-8). Then (2-10) implies

(2K0L(t0))2 ≤ 4
5δK (t0) < δK (t0), (2-14)

and so (2-5) is satisfied for δ ≥ δK (t0) as claimed in the lemma.
To prove part (1) of the lemma we combine (2-4) with (2-10) to obtain that injg(t)(p)≤(K0L(t))2<δK (t)

for every p ∈ F and every t ∈ [0, T ) and thus that

F ⊂
⋂

t∈[0,T )

δK (t)-thin(M, g(t)) for any K ≥ K.

As the reverse inclusion is trivially satisfied this establishes the characterisation (1-15) of the pinching set
for each K ≥ K .

The proofs of parts (2) and (3) of the lemma are now based on estimates on the velocity and the
injectivity radius that were derived in [RT2018a] for general horizontal curves under the same hypothesis
that (2-5) holds true: Lemma 3.2 and Remark 3.5 of [RT2018a] establish that (2-11) and (2-12) hold true
for arbitrary horizontal curves, times s, t ∈ [t0, T ) and points x ∈ δ-thick(M, g(t0)) provided t0 and δ are
such that (2-5) is satisfied. Combined with (2-14) this immediately yields part (2) of the lemma. Finally,
(2-13), and hence part (3) of the lemma, follows immediately from [RT2018a, Lemma 3.2], with δ there
equal to δK (t0) here, because the hypotheses of that lemma are implied by (2-14). �

Parts (2) and (3) of Lemma 2.2 will be used in the next section for the fine analysis of the map
component, but before that we complete the proofs of Theorem 1.7 and Proposition 1.3.

Proof of Theorem 1.7. We let K be the constant obtained in Lemma 2.2, i.e., given by (2-8), and set as
usual δK (t)= K (T − t)(E(t)− E(T )). For this choice of K the characterisation (1-15) of the pinching
set F has already been proven in Lemma 2.2 and from this lemma we furthermore know that (2-5) holds
true for any t0 and any δ ≥ δK (t0) and thus in particular for δ = δK (t0), K ≥ K . Hence (1-17) follows
from the corresponding estimate (2-6) of Theorem 2.1 and the bound (2-7) on L(t).

It remains to prove (1-18). For this we observe that for K > 0 sufficiently large and for all t0 ∈ [0, T )—
or for arbitrary K > 0 and t0 ∈ [0, T ) sufficiently large — we can be sure that K (E(t0)− E(T ))≤ K and
hence by (2-10) that (2-5) is satisfied for t0 and δ = K (T − t0). This allows us to apply estimate (2-6) of
Theorem 2.1 also for such values of δ, which then gives

sup
t∈[t0,T )

‖g(t)− h‖C l ([K (T−t0)]-thick(M,g(t0)),g(t0)) ≤ C
L(t0)

K 1/2(T − t0)1/2
≤ C

(E(t0)− E(T ))1/2

K 1/2 → 0 (2-15)

as t0 ↑ T, using (2-7), as well as

sup
t∈[t0,T )

‖g(t)− h‖C l ([K (T−t0)]-thick(U,h),h) ≤ C
(E(t0)− E(T ))1/2

K 1/2 → 0, (2-16)

where C depends only on l, η and the genus of M . �

Proof of Proposition 1.3. The uniform convergence of the injectivity radius follows from Theorem 2.1 as
(g(t))t∈[0,T ), T <∞, is a horizontal curve of finite length.
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We furthermore recall that standard results from the theory of hyperbolic surfaces give that for any
δ < arsinh(1) the δ-thin part of a hyperbolic surface is given by the union of disjoint subcollar regions
around the simple closed geodesics of length ` < 2δ as described in the proposition; refer to the appendix
of [Rupflin and Topping 2018b] for further details.

For K ≥ K0, with K0 as in (2-2), we define closed sets

FK (t) := {p : injg(t)(p)≤ (KL(t))2}

for t ∈ [0, T ). It follows from the slightly stronger result [RT2018a, Lemma 3.1] that the sets FK (t) are
nested, becoming only smaller as t increases, and that the pinching set F can be written as

F =
⋂

t∈[0,T )

FK (t). (2-17)

It is useful for us to appeal to this fact for some K > K0, and we choose K = 2K0.
Thus for t0 sufficiently large, chosen in particular so that (2K0L(t0))2 < arsinh(1), the pinching set F

has the same number k ∈ {1, . . . , 3(γ − 1)} of connected components as the sets F2K0(t), t ∈ [t0, T ),
with the connected components of F2K0(t) being disjoint closed subcollars around geodesics σj (t) of
length `j (t)≤ 2(2K0L(t))2 ≤ C(T − t)(E(t)− E(T )) whose interior is as described in the proposition.
In particular given any δ ∈ (0, arsinh(1)) and t ∈ [t0, T ) sufficiently large (depending in particular on δ),
we know that the connected components Fj of the pinching set are contained in the corresponding
subcollar Cj (t, δ), as claimed in the proposition.

It thus remains to show that there exists a number δ0 ∈ (0, arsinh(1)) such that any simple closed
geodesic in (M, g(t)), t ∈ [t0, T ), that does not coincide with one of the σj (t)must have length at least 2δ0.
To this end we observe that the characterisation (2-17), this time with K = K0, gives

� := (2K0L(t0))2-thick(M, g(t0))⊂ M \ FK0(t0)⊂ U

and since � is closed, it is a compact subset of M and hence also of U . Therefore over � the injectivity
radius injg(t)( · ), t ∈ [t0, T ), is bounded uniformly from below by some constant δ0 ∈ (0, arsinh(1))
thanks to (1-6). Consequently, any simple closed geodesic in (M, g(t)) that enters � must have length at
least 2δ0.

The only alternative is that the simple closed geodesic in (M, g(t)) is fully contained in one of the
k cylinders Cj (t0, (2K0L(t0))2), in which case it must be homotopic to σj (t) (up to change of orientation)
and hence coincide with σj (t). �

3. Analysis of the map component

The challenges of analysing the map component are of a different nature depending on whether we
consider a region where the metric has already settled down or a region in a collar that will ultimately
degenerate. Roughly speaking, on the nondegenerate part of the surface we control the metric but cannot
hope to bound the tension, while on the degenerating part of the surface the metric is not controlled but the
tension tends to zero when computed with respect to the flat metric in collar coordinates along a sequence
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of times tn ↑ T as considered in Theorem 1.4. We will analyse the map component separately on these
two different regions, with the analysis on the nondegenerate part, and hence the proofs of part (2) of
Theorem 1.1 and of part (1) of Theorem 1.4, carried out in Section 3.2. Parts (2) and (3) of Theorem 1.4,
which concern the part of the map that is lost on degenerating collars, are then proven in Section 3.3. In
both of these sections we use a local energy estimate that is derived in Section 3.1.

3.1. Local energy estimates. The goal of this section is to prove the following lemma on the evolution
of cut-off energies

Eϕ(t) :=
1
2

∫
ϕ2
|du(t)|2g(t) dvg(t) (3-1)

for functions ϕ ∈ C∞(M, [0, 1]).

Lemma 3.1 (Local energy estimate). Let (u, g) be a smooth solution of (1-1) on a closed surface of
genus at least 2, and for an interval [0, T ), T <∞, and let ϕ ∈ C∞(M, [0, 1]) be such that there exists
t0 ∈ [0, T ) and K ≥ K for K the constant obtained in Lemma 2.2, so that

supp(ϕ)⊂ δK (t0)-thick(M, g(t0)), (3-2)

where as usual δK (t) := K (T − t)(E(t)− E(T )).
Then the limit limt↑T Eϕ(t) exists and (assuming the flow is not constant in time on [t0, T )) for any

t0 ≤ t < s < T we have

|Eϕ(t)− Eϕ(s)| ≤ E(t)− E(s)+C[δK (t0)−1/2
+‖dϕ‖L∞(M,g(t0))](s− t)1/2(E(t)− E(s))1/2

≤ E(t)− E(T )+C[δK (t0)−1/2
+‖dϕ‖L∞(M,g(t0))](T − t)1/2(E(t)− E(T ))1/2, (3-3)

where C depends only on the coupling constant η, the genus of M and an upper bound E0 for the initial
energy.

A first step in the proof of Lemma 3.1 is to show the following analogue of well-known local energy
estimates for harmonic map flow as found, e.g., in [Topping 2004, Section 2].

Lemma 3.2. Let (u, g) be a (smooth) solution of (1-1) on [0, T ) and let ϕ ∈ C∞(M, [0, 1]) be any given
function. Then the evolution of the cut-off energy Eϕ(t) defined in (3-1) is controlled by∣∣∣∣ d
dt

Eϕ +
∫
ϕ2
|τg(u)|2 dvg

∣∣∣∣
≤ 2
√

2E(u, g)1/2‖dϕ‖L∞(M,g)

(∫
ϕ2
|τg(u)|2 dvg

)1/2

+‖∂t g‖L∞(supp(ϕ),g)Eϕ. (3-4)

Proof. The equation of the map component can be described by

∂t u−1gu = Ag(u)(du, du)= gi j A(u)(∂xi u, ∂x j u)⊥ Tu N (3-5)

if we view (N, gN ) as a submanifold of Euclidean space using Nash’s embedding theorem and denote by
A the second fundamental form of N ↪→ RK. We multiply this equation with ϕ2 ∂t u and integrate over
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(M, g) to obtain

0=
∫
ϕ2
|∂t u|2 dvg +

∫
〈∂t du, du〉gϕ2dvg + ∂t u〈du, d(ϕ2)〉g dvg.

We now recall that ∂t g is given as the real part of a quadratic differential and thus has zero trace, which
implies (d/dt)dvg = 0. As ϕ is independent of time while ∂t u = τg(u), we thus obtain∣∣∣∣ d
dt

Eϕ +
∫
ϕ2
|τg(u)|2 dvg

∣∣∣∣
≤

1
2

d
dε

∣∣∣
ε=0

∫
|du|2g(t+ε)ϕ

2 dvg + 2
∫
ϕ|dϕ| · |τg(u)| · |du| dvg

≤ ‖∂t g‖L∞(supp(ϕ),g)Eϕ + 2‖dϕ‖L∞(M,g)(2E(u, g))1/2 ·
(∫

ϕ2
|τg(u)|2 dvg

)1/2

(3-6)

as claimed. �

Based on this lemma, as well as the control on the metric on the δK (t0)-thick part of the domain
obtained in Lemma 2.2, we can now prove our main energy estimate.

Proof of Lemma 3.1. Given K≥K , with K as in Lemma 2.2, we set as usual δK (t):=K(T−t)(E(t)−E(T ))
and consider a cut-off function ϕ as in the lemma for which (3-2) is satisfied for some t0.

This assumption on the support of ϕ allows us to bound any C l norm of ∂t g on supp(ϕ) using estimate
(2-13) of Lemma 2.2, which implies in particular that

‖∂t g(t)‖L∞(suppϕ,g(t)) ≤ C[δK (t0)]−1/2
‖∂t g(t)‖L2(M,g(t)) for any t ∈ [t0, T ) (3-7)

holds true with a constant C that depends only on the genus.
Furthermore, the equivalence (2-11) of the metrics on δK (t0)-thick(M, g(t0)), and thus in particular on

supp(ϕ), obtained in the same lemma, allows us to bound

‖dϕ‖L∞(M,g(t)) ≤
√

C1‖dϕ‖L∞(M,g(t0)) for t ∈ [t0, T ).

The local energy estimate (3-4) of Lemma 3.2 thus reduces to∣∣∣ d
dt

Eϕ
∣∣∣≤‖τg(u)‖2L2(M,g)+C‖dϕ‖L∞(M,g(t0))‖τg(u)‖L2(M,g)+CδK (t0)−1/2

‖∂t g‖L2(M,g)

≤

(
−

d E
dt

)
+C · [‖dϕ‖L∞(M,g(t0))+ δK (t0)−1/2

]

(
−

d E
dt

)1/2
(3-8)

for t ∈ [t0, T ), where the constant C now depends not only on the genus but also on the coupling constant
and an upper bound E0 on E(0) ≥ E(t) and where we used the evolution equation (1-2) of the total
energy in the second step.

Integrating (3-8) over [t, s] ⊂ [t0, T ) yields the claim of Lemma 3.1. �

Lemma 3.1 will allow us to determine both the part of the degenerating collars where energy can be
lost as well as the scale at which energy concentrates around points in the singular set S ⊂ U . This will
then allow us to capture two collections of bubbles, one developing at the bubble points S, but also an
additional collection of bubbles that are disappearing down the collars. By further analysing what can
happen between these bubbles, this will allow us to prove Theorem 1.4.
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This bubbling analysis will be carried out along a sequence of times tn for which (1-10) holds. The
existence of such tn ↑ T follows by a standard argument: Integrating (1-2) in time implies that∫ T

0
‖τg(u)‖2L2 dt and

∫ T

0
‖Pg(8)‖

2
L2 dt

are bounded in terms of an upper bound E0 for the initial energy, and (for the second integral) the coupling
constant η. Here we suppress the dependence of 8 on u and g, of the L2 measure on g, and of u and g
on t . These bounds imply that whenever a smooth function f : [0, T )→ [0,∞) has infinite integral,
there exists a sequence of times tn ↑ T such that

[‖τg(u)‖2L2 +‖Pg(8)‖
2
L2](tn) < f (tn).

In particular, we may always choose some sequence tn ↑ T so that (1-10) holds true for tn (and thus also
for any subsequence that we take later).

3.2. Analysis of the map component on the nondegenerate part of the surface. On compact subsets of
U we can control the metric component using Lemma 2.2 and may thus think of the evolution equation (1-1)
for the map component as a solution of a flow that is akin to the classical harmonic map flow albeit with
a (well-controlled) time-dependent metric. This will allow us to adapt well-known techniques from the
theory of the harmonic map flow, in particular from [Struwe 1985; Topping 2004], to analyse the solution
on this part of the domain in detail: We prove that as t ↑ T , energy concentrates only at finitely many
points S away from which the maps converge in C l, for each l ∈ N, and that, along a subsequence of
times tn ↑ T as in (1-10), we can extract a finite number of bubbles at each point in S which account
for all the energy that is lost near these point. This last part is equivalent to proving that no energy is
lost on so-called neck-regions around the bubbles (not to be confused with collar regions around the
degenerating geodesics). This fine analysis of the map component on the thick part of the surface applies
not only in the case of a finite time degeneration as considered in the present paper but (as a by-product
of the following proposition) also gives refined information at singular times as considered in [Rupflin
2014], across which the metric remains controlled.

Proposition 3.3 (cf. [Topping 2004]). Let (u, g) be any smooth solution of (1-1) for t ∈ [0, T ) on a
surface of genus at least 2. Let F be the (possibly empty) set given by (1-4) and let S be defined as in
(1-5). Then S is a finite set and:

(1) u(t) converges smoothly locally on M \ (F ∪ S) and weakly locally in H 1 on M \ F as t ↑ T, to a
limit that we denote by u(T ).

(2) We have no loss of energy at points in S, and the scales of bubbles developing at the points of S, along
a subsequence of times tn ↑ T as in (1-10), are small compared with (T − tn)1/2. Indeed, if ω1, . . . , ωm′

are the bubbles developing at x ∈ S then for every ν > 0

lim
r↓0

lim
t↑T

E(u(t), g(t), Bh(x, r))= lim
r↓0

lim
t↑T

E(u(t), g(t), Bg(t)(x, r))

= lim
t↑T

E
(
u(t), g(t), Bg(t)(x, ν(T − t)1/2)

)
=

m′∑
l=1

E(ωl). (3-9)
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In particular, if ω1, . . . , ωm′′ is the complete list of bubbles developing at points in S and if � b U is
chosen large enough so that S is contained in the interior of � then

lim
t↑T

E(u(t), g(t),�)= E(ū, h, �)+
m′′∑
l=1

E(ωl). (3-10)

In the setting of Theorem 1.1, i.e., in the case that injg(t)(M)→ 0 as t ↑ T, part (1) of the proposition
yields the convergence of the maps u(t) on U and on U \ S claimed in part (2) of Theorem 1.1. As the
resulting limiting maps can be extended across the punctures to H 1 maps from Mi (since their energy
is bounded) and as the properties of the metric component claimed in part (1) of Theorem 1.1 have
already been proven in Section 2, this then completes the proof of Theorem 1.1, modulo the proof of
Proposition 3.3.

The second part of Proposition 3.3 implies part (1) of Theorem 1.4: the first part of (1-11) follows
from (3-10) since δ-thick(U, h) is compact for every δ > 0, while the second part of (1-11) is due to the
conformal invariance of the energy.

For the proof of Proposition 3.3 we shall use the following standard ε-regularity result.

Proposition 3.4. There exist constants ε0 > 0 and C ∈ R depending only on the target manifold so that
the following holds true. Let u : BgH (x, r)→ N be any smooth map from a ball of radius r ∈ (0, 1] in the
hyperbolic plane (H, gH ) with energy

E(u, gH , BgH (x, r))≤ ε0.

Then∫
ϕ2
[|∇gH du|2gH

+|du|4gH
] dvgH ≤C‖dϕ‖2L∞(H,gH )

E(u, gH , BgH (x, r))+C
∫
ϕ2
|τgH (u)|

2 dvgH (3-11)

holds true for every function ϕ ∈ C∞c (BgH (x, r), [0, 1]).

Note that the Hessian term |∇gH du|2gH
is not referring to the intrinsic Hessian. That term is instead

the sum of the corresponding terms for each component of u viewed as a map into Euclidean space, and
depends on the isometric embedding of N that we chose. This term can be controlled in terms of the
integral of ϕ2

|1gu|2 and lower-order terms simply using integration by parts. This leading-order term
can be rewritten using (3-5) and the resulting quartic term in du controlled with the Sobolev inequality.
The details of a very similar argument can be found in [Rupflin 2008, Proposition 2.4].

Proof of Proposition 3.3. Part (1) of the proposition represents the analogue of Lemma 3.10′ of [Struwe
1985] and we shall use properties of horizontal curves from Lemma 2.2 to control the evolution of the
metric; see also [Rupflin 2014] for a related proof in the nondegenerate case.

In the following we shall use several times that for any compact subset �⊂ U = M \ F there exists a
number t0 = t0(�) ∈ [0, T ) so that

�⊂ δ2K (t0)-thick(M, g(t0)), (3-12)

where δK (t)= K (T − t)(E(t)− E(T )) and K are as in Lemma 2.2. Indeed, for solutions of (1-1) which
degenerate as described in (1-3), this is a consequence of the uniform convergence of the injectivity radius
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obtained in Proposition 1.3, while otherwise injg(t)(M) is bounded away from zero uniformly so (3-12) is
trivially satisfied for t0 sufficiently close to T. As a consequence of (3-12) also

injg(t0)(x)≥ δK (t0) for all x ∈ M with distg(t0)(x, �)≤ δK (t0), (3-13)

which allows us to apply Lemma 2.2 to control the evolution of the metric as well as Lemma 3.1 to bound
the cut-energy on this neighbourhood of �.

We first apply this idea to prove that for any point p ∈ U for which

lim sup
t↑T

E(u(t), g(t), V )≥ ε0 for every neighbourhood V ⊂ M of p, (3-14)

where ε0 > 0 is the constant obtained in Proposition 3.4, we also have

lim inf
t↑T

E(u(t), g(t),W )≥ ε0 for every neighbourhood W ⊂ M of p. (3-15)

In particular, the set S̃ of points in U for which (3-14) holds is a finite set and we will later see that it
agrees with the singular set S defined in (1-5).

To show (3-15) for a given p ∈ S̃ we let t0 ∈ [0, T ) be large enough so that (3-12) holds for �= {p}.
Given any neighbourhood W of p we then choose r ∈ (0, δK (t0)) small enough so that Bg(t0)(p, r)⊂W
and select a cut-off function ϕ ∈ C∞c (Bg(t0)(p, r), [0, 1]) with ϕ ≡ 1 in a neighbourhood V of p.

Lemma 3.1 implies that the limit limt↑T Eϕ(t) of the cut-off energy defined in (3-1) exists and thus
that, by (3-14),

lim inf
t↑T

E(u(t), g(t),W )≥ lim
t↑T

Eϕ(t)≥ lim sup
t↑T

E(u(t), g(t), V )≥ ε0

as claimed. Having thus established that there is only a finite subset S̃ of points in U for which (3-14)
holds, we now want to prove that u(t) converges smoothly on every compact subset V of U \ S̃ as t ↑ T.

Given such a compact subset V of U \ S̃ we may choose r0 ∈ (0, 1) small enough that

E(u(t), g(t), Bg(t0)(p, r0)) < ε0 for all t ∈ [0, T ), and all p ∈ V . (3-16)

Then choosing t0 ∈ [0, T ) so that (3-12) holds true for �= V and reducing r0 if necessary to ensure
that r0 < δK (t0), we know from (3-13) that we can apply both Lemmas 2.2 and 3.1 on balls Bg(t0)(p, r),
r ≤ r0, p ∈ V, as they are contained in δK (t0)-thick(M, g(t0)).

We first note that (2-11) from Lemma 2.2 guarantees that for every t ∈ [t0, T )

Bg(t0)

(
p,

r0

C1

)
⊂ Bg(t)

(
p,

r0
√

C1

)
⊂ Bg(t0)(p, r0). (3-17)

We furthermore note that r0/
√

C1 cannot be larger than injg(t)(p) for any t ∈ [t0, T ) as otherwise
Bg(t)(p, r0/

√
C1), and thus also Bg(t0)(p, r0), would need to contain a curve σ starting and ending in p

that is not contractible in M , which would contradict the fact that r0 < injg(t0)(p).
Hence Bg(t)(p, r0/

√
C1) is isometric to a ball in the hyperbolic plane and so the smallness of the energy

E(u(t), g(t), Bg(t)(p, r0/
√

C1)) < ε0 obtained from (3-16) and (3-17) allows us to apply Proposition 3.4
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for any ϕ ∈ C∞c (Bg(t0)(p, r0/C1), [0, 1]) and any time t ∈ [t0, T ). This will be crucial in the proof of the
following:

Claim. For any p ∈ V and ϕ ∈ C∞c (Bg(t0)(p, r0/C1), [0, 1]) (with r0 > 0 chosen as above) we have

sup
t∈[t0,T )

∫
ϕ2
|∂t u|2 dvg <∞. (3-18)

In particular there exists a neighbourhood W of V so that

sup
t∈[t0,T )

‖u(t)‖H2(W,g(t)) <∞.

Proof of Claim. To prove the first part of the claim, we differentiate (3-5) in time, test with ϕ2 ∂t u and use
that (d/dt)dvg = 0 to write

1
2

d
dt

∫
ϕ2
|∂t u|2 dvg +

∫
ϕ2
|d ∂t u|2 dvg

=−

∫
〈d ∂t u, d(ϕ2)〉g · ∂t u dvg +

d
dε

∣∣∣
ε=0

∫
1g(t+ε)u ·ϕ2 ∂t u dvg(t+ε)

+

∫
∂t(Ag(u)(du, du)) ·ϕ2 ∂t u dvg

≤
1
8

∫
ϕ2
|d ∂t u|2 dvg+C‖dϕ‖2L∞(M,g)·‖∂t u‖2L2(M,g)−

d
dε

∣∣∣
ε=0

∫
〈du, d(ϕ2 ∂t u)〉g(t+ε) dvg

+C‖∂t g‖2L∞(supp(ϕ),g)E(u, g)+C
∫
|∂t u|2|du|2gϕ

2 dvg

≤
1
4

∫
ϕ2
|d ∂t u|2 dvg +C‖dϕ‖2L∞(M,g)‖∂t u‖2L2(M,g)+C‖∂t g‖2L∞(supp(ϕ),g)

+ Ĉ
∫
|∂t u|2|du|2gϕ

2 dvg, (3-19)

where C and Ĉ depend only on a bound E0 on the initial energy and the target manifold, and the value of
Ĉ is fixed in what follows.

To estimate the last term in (3-19) we first apply Proposition 3.4 to get∫
ϕ2
|∂t u|2|du|2g dvg ≤ C

(∫
ϕ2
|∂t u|4dvg

)1/2

·

[∫
ϕ2
|∂t u|2 dvg +C‖dϕ‖2L∞(M,g)

]1/2

.

We then recall that supp(ϕ) is contained in the ball Bg(t)(p, r0/
√

C1) for every t ∈ [t0, T ) and that
r0/
√

C1 ≤ min(injg(t)(p), 1). We may thus view (supp(ϕ), g(t)) as a subset of the unit ball in the
hyperbolic plane and apply the Sobolev embedding theorem to estimate the first factor in the above
inequality by(∫

ϕ2
|∂t u|4 dvg

)1/2

= ‖ϕ|∂t u|2‖L2 ≤ C‖d(ϕ|∂t u|2)‖L1

≤ C‖∂t u‖L2(M,g)

(∫
|d ∂t u|2ϕ2 dvg

)1/2

+C‖dϕ‖L∞(M,g)‖∂t u‖2L2(M,g). (3-20)
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Combined, this allows us to estimate the final term in (3-19) by

Ĉ
∫
|∂t u|2|du|2ϕ2 dvg ≤

1
4

∫
|d ∂t u|2ϕ2 dvg +C‖∂t u‖2L2(M,g)

[∫
ϕ2
|∂t u|2 dvg +C‖dϕ‖2L∞(M,g)

]
and thus to reduce (3-19) to

d
dt

∫
ϕ2
|∂t u|2 dvg +

∫
ϕ2
|d ∂t u|2 dvg

≤ C‖∂t u‖2L2(M,g) ·

[
‖dϕ‖2L∞(M,g)+

∫
ϕ2
|∂t u|2 dvg

]
+C‖∂t g‖2L∞(supp(ϕ),g). (3-21)

Since ∂t g is controlled on supp(ϕ) ⊂ δK (t0)-thick(M, g(t0)) by the estimate (2-13) of Lemma 2.2,
while estimate (2-11) from the same lemma implies ‖dϕ‖L∞(M,g(t)) ≤

√
C1‖dϕ‖L∞(M,g(t0)), we thus

conclude that

d
dt

∫
ϕ2
|∂t u|2 dvg

≤ C‖dϕ‖2L∞(M,g(t0))‖∂t u‖2L2(M,g)+C‖∂t u‖2L2(M,g)

∫
ϕ2
|∂t u|2 dvg +CδK (t0)

−1
‖∂t g‖2L2(M,g)

≤ C
(
−

d E
dt

)∫
ϕ2
|∂t u|2 dvg +C

(
−

d E
dt

)
· [‖dϕ‖2L∞(M,g(t0))+ δK (t0)

−1
], (3-22)

by (1-2), where C now depends also on the genus of M and η. Hence (3-18) follows using Gronwall’s
lemma. The second part of the claim is now an immediate consequence of (3-18) and Proposition 3.4. �

Based on the claim we have just proven, we can now establish convergence of u(t) in C l(V ) for every
l ∈ N by well-known arguments: First of all, we may reduce the neighbourhood W of V if necessary
to ensure that W ⊂ δK (t0)-thick(M, g(t0)); compare (3-12) and (3-13). We then apply the Sobolev
embedding theorem to obtain that

sup
t∈[t0,T )

‖du(t)‖L p(W,g(t)) <∞ for every 1≤ p <∞.

The control on the metrics g(t), t ∈ [t0, T ), obtained in Lemma 2.2 thus allows us to view (3-5) as a
uniformly parabolic equation on the fixed surface (W, g(t0)), for times t in this interval [t0, T ), whose
right-hand side is in L p for every p <∞. Standard parabolic theory combined with the fact that u is by
assumption smooth away from T, implies that u is in the parabolic Sobolev space W 2,1;p(W̃ ×[t0, T ))
for every p <∞ for a slightly smaller neighbourhood W̃ of V. In particular u is Hölder continuous with
exponent α for every α < 1 on W̃ ×[0, T ).

Taking covariant derivatives ∇l
g(t) of (3-5) allows us to repeat the above argument and obtain that

(x, t) 7→ (∇l
g(t)u)(x, t) is Hölder continuous on V × [t0, T ) for every l ∈ N. As the metrics converge

smoothly to h on V, this allows us to conclude that also u(t)→ ū in C l(V, h) for every l ∈N, for some ū.
Since the obtained convergence implies in particular that the set S defined in (1-5), as used in

Proposition 3.3, agrees with the set S̃ of points satisfying (3-14) considered here, this completes the proof
of part (1) of Proposition 3.3.
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For the proof of part (2) of the proposition we closely follow the arguments of [Topping 2004, Section 2].
Let p ∈ S. As above we choose t0 < T so that (3-12) holds true for �= {p}, which we recall allows us

to apply Lemmas 2.2 and 3.1 on balls Bg(t0)(p, r0), r0 ∈ (0, δK (t0)) since (3-13) ensures that such balls are
contained in δK (t0)-thick(M, g(t0)). We fix such a radius r0 which is small enough so that Bg(t0)(p, r0)

contains no other element of the singular set S.
Given any fixed cut-off function ψ ∈ C∞c ([0, 1), [0, 1]) with ψ ≡ 1 on

[
0, 1

2

]
and with ‖ψ ′‖L∞ ≤ 4,

we set

ϕr (x) := ψ
(

distg(t0)(p, x)2

r2

)
, 0< r < r0,

and note that ‖dϕr‖L∞(M,g(t0)) ≤ C/r . As supp(ϕr )⊂ Bg(t0)(p, r0) we can apply Lemma 3.1 to control
the associated cut-off energies Er (t) := Eϕr (t) defined in (3-1) and obtain in particular that limt↑T Er (t)
exists for every r ∈ (0, r0). Combined with the local C l convergence of u(t)→ ū on U \ S and the
convergence of the metrics obtained in part (1) of Theorem 1.1 this implies that

Ê p := lim
t↑T

Er (t)−
1
2

∫
ϕ2

r |dū|2h dvh (3-23)

is independent of r ∈ (0, r0).
Let now ν > 0. For t ∈ [t0, T ) sufficiently close to T so that ν(T − t)1/2 < r0 we can apply Lemma 3.1

to s 7→ Eν(T−t)1/2(s), s ∈ [t0, T ), in order to obtain the second inequality of

|Eν(T−t)1/2(t)−Ê p|

≤
∣∣Eν(T−t)1/2(t)−lim

s↑T
Eν(T−t)1/2(s)

∣∣+1
2

∫
ϕ2
ν(T−t)1/2 |dū|2h dvh

≤ E(t)−E(T )+C[ν−1
+δ
−1/2
K

(t0)·(T−t)1/2]·(E(t)−E(T ))1/2+E(ū, h, Bg(t0)(p, ν(T−t)1/2)). (3-24)

We furthermore note that Bg(t0)(p, ν(T − t)1/2) ⊂ Bh(p,
√

C1ν(T − t)1/2), compare with (2-11) of
Lemma 2.2, and thus that the last term in (3-24) tends to zero as t ↑ T. Passing to the limit t ↑ T in (3-24)
we thus obtain that also

lim
t↑T

Eν(T−t)1/2(t)= Ê p for every ν > 0.

Combined with the equivalence (2-11) of the metrics obtained in Lemma 2.2 we therefore get that for
any ν > 0

lim
r↓0

lim
t↑T

E
(
u(t), g(t), Bg(t)(p, r)

)
≤ lim

r↓0
lim
t↑T

E
(
u(t), g(t), Bg(t0)(p,

√
C1r)

)
≤ lim

r↓0
lim
t↑T

E2
√

C1r (t)

= Ê p = lim
t↑T

E
νC−1/2

1 (T−t)1/2(t)

≤ lim inf
t↑T

E
(
u(t), g(t), Bg(t0)(p, νC−1/2

1 (T − t)1/2)
)

≤ lim inf
t↑T

E
(
u(t), g(t), Bg(t)(p, ν(T − t)1/2)

)
. (3-25)
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As the “reverse” inequality

lim sup
t↑T

E
(
u(t), g(t), Bg(t)(p, ν(T − t)1/2)

)
≤ lim

r↓0
lim
t↑T

E
(
u(t), g(t), Bg(t)(p, r)

)
is trivially true, this proves the second equality in (3-9), including the existence of the limits taken, while
the first inequality of (3-9) follows directly from the equivalence (2-11) of the metrics g(t) and h obtained
in Lemma 2.2.

To establish the final inequality of (3-9) we closely follow [Topping 2004, Section 2]. Given a sequence
of times tn ↑ T as in (1-10) and a point p ∈ S, we pick local isothermal coordinates centred at p for
each of the g(tn) by identifying Bg(tn)(p, r0) with the corresponding ball centred at zero of the Poincaré
hyperbolic disc, viewed conformally as the unit disc centred at the origin in R2, and rescale to obtain a
sequence of maps

un(x) := u(rnx, tn), rn := (T − tn)1/2,

for which ‖τ(un)‖L2(K)→ 0 for every K b R2.
Since (3-25) implies E(un, B(0,3) \ B(0, λ))→ 0 for any 0< λ <3, a subsequence of the maps un

converges strongly in H 1 away from 0 to a constant map, while bubbles {ωj }
m′
j=1 develop near the origin

at scales λ̂ j
n→ 0, n→∞.

The scales at which the bubbles ωj develop in the original sequence are thus λ j
n = rnλ̂

j
n = o((T − tn)1/2)

and the “no-loss-of-energy” result for bubble tree convergence of almost harmonic maps of [Ding and
Tian 1995] ensures that all the energy of the un is captured by these bubbles, i.e., for every 3> 0 we have

lim
n→∞

E(un, B3(0))=
m′∑

l=1

E(ωl).

Taking the limit 3 ↓ 0, and bearing in mind that all but the final equality of (3-9) has already been
established, we find that for every p ∈ S, we have

lim
r↓0

lim
t↑T

E(u(t), g(t), Bg(t)(p, r))=
m′∑

l=1

E(ωl), (3-26)

completing the proof of (3-9).
Finally, given any compact subset �b U which is large enough for S to be contained in the interior

of �, we can combine (3-9) with the strong H 1
loc convergence of u(t)→ ū on U \ S and the convergence

of the metrics to obtain that indeed

lim
t↑T

E(u(t), g(t),�)= E(ū, h, �)+
m′′∑
l=1

E(ωl), (3-27)

where {ωl}
m′′
l=1 is the set of all bubbles developing at points in S along a sequence of times tn as considered

in the proposition. �

3.3. All energy lost down collars is represented by bubbles. At this point we have a good description
of the convergence of u(t) and g(t) locally on U = M \ F, with Proposition 3.3 completing the proof
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of Theorem 1.1 and establishing part (1) of Theorem 1.4. In this section we prove parts (2) and (3) of
Theorem 1.4, which show that near the centre of degenerating collars, the map looks like a collection of
bubbles, while on larger scales that are nevertheless vanishing scales, where we have no way of showing
that the map is becoming harmonic, no energy can be lost.

Proof of part (2) of Theorem 1.4. As a next step we now prove part (2) of Theorem 1.4, which can be
seen as quantifying the size of the part of U on which the energy has almost reached its limit. As we can
only apply the local energy estimate from Lemma 3.1 on regions with sufficiently large injectivity radius,
we will obtain the existence of a limit of the energy on the [T−t]-thin part by proving that the limit on
the [T−t]-thick part exists and agrees with Ethick and then appealing to the existence of a limit of the
total energy E(t).

As above it will be more convenient to work not with energies over given sets, but with cut-off
energies Eϕ as defined in (3-1). To this end we let δK (t) = K (T − t)(E(t)− E(T )), K ≥ K , be as in
Lemma 2.2 and recall that the characterisation of the pinching set (1-15) implies in particular that for
every t0 ∈ [0, T )

injg(t0)(M) < δK (t0)

and thus that

AK ,t0 := {x ∈ M : injg(t0)(x)≤ δK (t0)}

is nonempty. We will always assume that t0 ∈ [0, T ) is sufficiently large, depending in particular on K , so
that δK (t0) · (πe) < arsinh(1). In this way, not only can we be sure that every point in AK ,t0 has injectivity
radius less than arsinh(1), and is thus lying within some collar region around a geodesic of length less
than 2 arsinh(1), we can also be sure that the 1-fattening of AK ,t0 , i.e., {p ∈ M : distg(t0)(p, AK ,t0) < 1},
must lie within δeπK (t0)-thin(M, g(t0)), and hence also lie within a union of such (pairwise disjoint)
collars, since by [RT2018a, Lemma A.3] if x ∈ AK ,t0 , and y ∈ Bg(t0)(x, 1) lies in the same collar, then
injg(t0)(y)≤ injg(t0)(x)·(πe)≤ δK (t0)·(πe)< arsinh(1), so we cannot escape this collar within a distance 1
of x . In particular, the function x 7→ distg(t0)(x, AK ,t0) is smooth on the 1-fattening of AK ,t0 .

Given any smooth cut-off function φ : R→ [0, 1] such that φ(x)= 0 for x ≤ 0, φ(x)= 1 for x ≥ 1
and |φ′| ≤ 2, we can thus define the induced smooth cut-off ϕK ,t0 : M→ [0, 1] by

ϕK ,t0(x) := φ(distg(t0)(x, AK ,t0)). (3-28)

It is immediately apparent that

ϕK ,t0 ≡ 0 on δK (t0)-thin(M, g(t0)), (3-29)

and that the support of ϕK ,t0 lies within δK (t0)-thick(M, g(t0)) and hence ϕK ,t0 has compact support
within U owing to (1-16). This will shortly allow us to apply Lemma 3.1 to the corresponding local
energy EK ,t0(t) := EϕK ,t0

(t) that serves as a substitute for the energy of u(t) over δK (t0)-thick(M, g(t0)).
We also claim that

ϕK ,t0 ≡ 1 on δeπK (t0)-thick(M, g(t0)). (3-30)
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Indeed, the only way this could fail would be if we could find a point in the 1-fattening of AK ,t0 that lies
in δeπK (t0)-thick(M, g(t0)), which we ruled out above.

By (3-29), we see that EK ,t0(t)≤ E
(
u(t), g(t), δK (t0)-thick(M, g(t0))

)
, and so

lim
K→∞

lim sup
t↑T

EK ,t(t)≤ lim
K→∞

lim sup
t↑T

E
(
u(t), g(t), δK (t)-thick(M, g(t))

)
. (3-31)

On the other hand, by (3-30), we see that E
(
u(t), g(t), δeπK (t0)-thick(M, g(t0))

)
≤ EK ,t0(t), and hence

we have the converse inequality

lim
K→∞

lim sup
t↑T

E
(
u(t), g(t), δK (t)-thick(M, g(t))

)
≤ lim

K→∞
lim sup

t↑T
EK ,t(t), (3-32)

i.e., we have equality in (3-31) and (3-32). Therefore to prove (1-13), it suffices to show that

Ethick = lim
K→∞

lim sup
t↑T

EK ,t(t). (3-33)

We claim first that
Ethick = lim sup

t0↑T
lim
t↑T

EK ,t0(t), (3-34)

where the existence of limt↑T EK ,t0(t) is guaranteed by Lemma 3.1. To see (3-34), first recall that for
K , t0 as above, the support of ϕK ,t0 is compact within U , and is thus contained within δ-thick(U, h) for
sufficiently small δ > 0. By reducing δ further, we may assume that all bubble points in S lie within
the interior of δ-thick(U, h). Therefore we have E(u(t), g(t), δ-thick(U, h))≥ EK ,t0(t), and taking the
limits t ↑ T, δ ↓ 0 and t0 ↑ T in that order, we find that Ethick ≥ lim supt0↑T limt↑T EK ,t0(t). To see the
converse inequality, we observe that by (3-30), for any δ > 0 and t0 < T sufficiently large (depending on
δ, K etc.) we have ϕK ,t0 ≡ 1 on δ-thick(M, g(t0)), and so E(u(t), g(t), δ-thick(U, h))≤ EK ,t0(t). This
time we take limits in the order t ↑ T, t0 ↑ T and then δ ↓ 0 to give Ethick ≤ lim supt0↑T limt↑T EK ,t0(t),
and hence (3-34).

Thus (1-13) would follow if we could prove that as K →∞ we have

lim sup
t0↑T
|EK ,t0(t0)− lim

t↑T
EK ,t0(t)| → 0. (3-35)

But this follows from Lemma 3.1, which implies that for t0 ∈ [0, T ) as large as considered above, and
every t ∈ [t0, T ), we have

|EK ,t0(t)− EK ,t0(t0)| ≤ E(t0)− E(T )+
C

K 1/2 +C(T − t0)1/2(E(t0)− E(T ))1/2, (3-36)

with C depending only on the genus of M , η and an upper bound on the initial energy, which thus yields
(3-35) after taking the limits t ↑ T, t0 ↑ T and K →∞, in that order.

Now that (1-13) has been proved, we verify that (1-12) follows as a result. In particular, we verify
that the limit taken in (1-12) exists. However large we take K > 0, for sufficiently large t < T we have
T − t ≥ δK (t), and hence

E
(
u(t), g(t), [T−t]-thin(M, g(t))

)
≥ E

(
u(t), g(t), δK (t)-thin(M, g(t))

)
.
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Taking a lim inf as t ↑ T and then the limit K →∞, and using (1-13) we find that

lim inf
t↑T

E
(
u(t), g(t), [T−t]-thin(M, g(t))

)
≥ Ethin. (3-37)

To obtain the converse inequality, observe that given any δ > 0, for sufficiently large t < T we have
δ-thin(U, h)⊃ [T−t]-thin(M, g(t)), see (1-6), and therefore

E
(
u(t), g(t), δ-thin(U, h)

)
≥ E

(
u(t), g(t), [T−t]-thin(M, g(t))

)
.

Provided δ > 0 is sufficiently small (so that the singular set S is in the interior of δ-thick(U, h)), we can
then take a limit as t ↑ T, followed by a limit as δ ↓ 0, to give

Ethin ≥ lim sup
t↑T

E
(
u(t), g(t), [T−t]-thin(M, g(t))

)
,

which when combined with (3-37) completes the proof of (1-12) and hence of part (2) of the theorem. �

While part (2) of Theorem 1.4 gives good control on where energy can concentrate on the degenerating
part of the surface, we currently have no control of what parts of the map are lost down the degenerating
parts of the collar at the singular time T. This is addressed by part (3), which we shall now prove.

Proof of part (3) of Theorem 1.4. Proposition 1.3 tells us that the length `(tn) of the central geodesic of
each degenerating collar is controlled like `(tn)= o(T − tn) and hence that the [T−tn]-thin part of such
a collar, where all of the lost energy lives, is represented by longer and longer cylinders C̃n := C(tn, δn)=

(−X̃n, X̃n)× S1, δn = T − tn , equipped with the corresponding collar metrics g = ρ2g0.
We can indeed consider the maps on the larger subcollars Ĉn = (−X̂n, X̂n) which correspond to the
[T−tn]1/2-thin parts of the collar, where we note that 1� X̃n � X̂n � X (`n); compare with (1-9).

We recall from [Rupflin and Topping 2018b, (A.9)] that ρ(y)≤ injg(t)(y) as y varies within each collar.
Therefore, throughout Ĉn we have ρ ≤ (T − tn)1/2. By the scaling of the tension field, if we switch from
the hyperbolic metric gn = g(tn) to the flat cylinder metric g0 = ds2

+ dθ2 on each such subcollar, then
we can estimate the tension of un := u(tn) according to

‖τg0(un)‖L2(Ĉn,g0)
≤
(
sup
Ĉn

ρ
)
‖τgn (un)‖L2(Ĉn,gn)

≤ (T − tn)1/2‖τgn (un)‖L2(M,gn)→ 0 (3-38)

by (1-10).
We can thus view the un’s as almost-harmonic maps from longer and longer cylinders (Ĉn, g0) and

apply Proposition 1.5 to pass to a subsequence that converges to a full bubble branch.
It is this estimate (3-38) and the precise information on the degenerate region where energy can

concentrate obtained in part (2) of Theorem 1.4 that allows us to represent the maps on these parts in
terms of branched minimal immersions and curves. We stress that we would not be able to perform this
analysis on the whole collar.

We also remark that in our situation we obtain the additional information that any bubble obtained in the
convergence to a full bubble branch described in Proposition 1.5 will be contained in the [T−tn]-thin part
of the surface, as we already know that no energy can be lost on {p : injg(t)(p)∈ [(T − t), (T − t)1/2]}. �
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A RIGOROUS DERIVATION FROM THE KINETIC CUCKER–SMALE
MODEL TO THE PRESSURELESS EULER SYSTEM

WITH NONLOCAL ALIGNMENT

ALESSIO FIGALLI AND MOON-JIN KANG

We consider the kinetic Cucker–Smale model with local alignment as a mesoscopic description for the
flocking dynamics. The local alignment was first proposed by Karper, Mellet and Trivisa (2014), as a
singular limit of a normalized nonsymmetric alignment introduced by Motsch and Tadmor (2011). The
existence of weak solutions to this model was obtained by Karper, Mellet and Trivisa (2014), and in
the same paper they showed the time-asymptotic flocking behavior. Our main contribution is to provide
a rigorous derivation from a mesoscopic to a macroscopic description for the Cucker–Smale flocking
models. More precisely, we prove the hydrodynamic limit of the kinetic Cucker–Smale model with local
alignment towards the pressureless Euler system with nonlocal alignment, under a regime of strong local
alignment. Based on the relative entropy method, a main difficulty in our analysis comes from the fact
that the entropy of the limit system has no strict convexity in terms of density variable. To overcome this,
we combine relative entropy quantities with the 2-Wasserstein distance.

1. Introduction

This article is mainly devoted to providing a rigorous justification of the hydrodynamic limit of the kinetic
Cucker–Smale model to the pressureless Euler system with nonlocal alignment force. Cucker and Smale
[2007] introduced an agent-based model capturing a flocking phenomenon observed within complex
systems, such as flocks of birds, schools of fish and swarms of insects. The Cucker–Smale (CS) model
has received extensive attention in the mathematical community, as well as physics, biology, engineering
and social science, etc.; see for instance [Carlen et al. 2015; Cañizo et al. 2011; Carrillo et al. 2010; Duan
et al. 2010; Fornasier et al. 2011; Ha et al. 2014c; 2017; Ha and Tadmor 2008; Poyato and Soler 2017;
Zavlanos et al. 2011]. Motsch and Tadmor [2011] proposed a modified Cucker–Smale model by replacing
the original CS alignment by a normalized nonsymmetric alignment. Karper, Mellet, and Trivisa [Karper
et al. 2014] proposed a new kinetic flocking model as a combination of the CS alignment and a local
alignment interaction, where the latter was obtained as a singular limit of the nonsymmetric alignment
introduced by Motsch and Tadmor.

The work of Figalli is supported by the ERC grant “Regularity and stability in partial differential equations (RSPDE)”. The
work of Kang was supported by the NRF grant NRF-2017R1C1B5076510 and Sookmyung Women’s University Research
Grant (1-1703-2045).
MSC2010: primary 35Q70; secondary 35B25.
Keywords: hydrodynamic limit, kinetic Cucker–Smale model, local alignment, pressureless Euler system, relative entropy,

Wasserstein distance.
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We consider the kinetic flocking model without Brownian noise, proposed by Karper, Mellet and
Trivisa [Karper et al. 2013] on Td

×Rd :

∂t f + v · ∇x f +∇v · (L[ f ] f )+∇v · ((u− v) f )= 0,

L[ f ](t, x, v)=
∫

Td

∫
Rd
ψ(x − y) f (t, y, w)(w− v) dw dy,

u(t, x)=

∫
Rd v f dv∫
Rd f dv

, ‖ f (0)‖L1(Td×Rd ) = 1.

(1-1)

Here ψ : Td
→ Rd is a Lipschitz communication weight that is positive and symmetric, i.e., ψ(x − y)=

ψ(y − x). The term ∇v · (L[ f ] f ) describes a nonlocal alignment due to the original Cucker–Smale
flocking mechanism, while the last term ∇v · ((u− v) f ) describes a local alignment interaction, because
of the averaged local velocity u. The global existence of weak solutions to (1-1) was proved in [Karper
et al. 2013]. The flocking behaviors of (1-1), however, have not been studied so far. We here provide its
time-asymptotic behavior.

As a mesoscopic description, the kinetic model (1-1) is posed in (t, x, v) ∈ R× Td
× Rd , i.e., in

2d + 1 dimensions. This feature provides an accurate description for a significant number of particles.
However, its numerical test is very costly with respect to an associated macroscopic description. Hence,
it is very important to find a suitable parameter regime on which the complexity of (1-1) is reduced.

The main goal of this article is to show a singular limit of (1-1) in a regime of strong local alignment:

∂t f ε + v · ∇x f ε +∇v · (L[ f ε] f ε)+
1
ε
∇v · ((uε − v) f ε)= 0,

L[ f ε](t, x, v)=
∫

Td

∫
Rd
ψ(x − y) f ε(t, y, w)(w− v) dw dy,

uε =

∫
Rd v f ε dv∫
Rd f ε dv

,

f ε|t=0 = f ε0 , ‖ f ε0 ‖L1(Td×Rd ) = 1.

(1-2)

As ε→ 0, it is expected that the solution f ε of (1-2) converges, in some weak sense, to a monokinetic
distribution

δv=u(t,x)⊗ ρ(t, x); (1-3)

see Remark 1.1. Here, δv=u(t,x) denotes a Dirac mass in v centered on u(t, x). Also, as we shall explain
later, at least formally ρ and u should solve the associated limit system given by the pressureless Euler
system with nonlocal flocking dissipation:

∂tρ+∇ · (ρu)= 0,

∂t(ρu)+∇ · (ρu⊗ u)=
∫

Td
ψ(x − y)ρ(t, x)ρ(t, y)(u(t, y)− u(t, x)) dy,

ρ|t=0 = ρ0, u|t=0 = u0, ‖ρ0‖L1(Td ) = 1.

(1-4)

The main difficulty in the justification of this limit comes from the singularity of the monokinetic
distribution. To the best of our knowledge, there is no general method to handle the hydrodynamic limit
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from some kinetic equations to the pressureless Euler systems, no matter what regime is considered.
Indeed, there are few results on this kinds of limit; see [Jabin and Rey 2017; Kang 2018; Kang and
Vasseur 2015] (see also [Jabin 2000] for a general treatment of similar regimes that lead to the Dirac
formation and pressureless gases equations).

Remark 1.1. In this paper we will use the symbol ⊗ in two different contexts: if µ is a measure on a
complete metric space X , and {νx}x∈X is a family of measures on a complete metric space Y, then νx ⊗µ

denotes the measure on X × Y defined as∫
X×Y

ϕ d[νx ⊗µ] =

∫
X

(∫
Y
ϕ(x, y) dνx(y)

)
dµ(x) for all ϕ ∈ Cc(X × Y ).

When νx is independent of x (that is, νx = ν for all x), we use the more standard notation µ⊗ ν (instead
of ν⊗µ, as done before) to denote the product measure:∫

X×Y
ϕ d[µ⊗ ν] =

∫
X

(∫
Y
ϕ(x, y) dν(y)

)
dµ(x) for all ϕ ∈ Cc(X × Y ).

Finally, if a, b ∈ Rd are vectors, then a⊗ b denotes the (d × d)-matrix with entries

(a⊗ b)i j = ai bj for all i, j = 1, . . . , d.

The meaning will always be clear from the context.

It is worth mentioning that the pressureless Euler system without the nonlocal alignment has been used
for the formation of large-scale structures in astrophysics and the aggregation of sticky particles [Silk
et al. 1983; Zeldovich 1970]. For more theoretical studies on the pressureless gases, we for example refer
to [Bouchut 1994; Bouchut and James 1999; Boudin 2000; Brenier and Grenier 1998; Huang and Wang
2001; Poupaud and Rascle 1997; Weinan et al. 1996].

The macroscopic flocking model (1-4) or its variants have been formally derived under a monokinetic
ansatz (1-3), and studied in various topics; see for example [Do et al. 2018; Ha et al. 2014a; 2014b; 2015;
Tadmor and Tan 2014]. In [Ha et al. 2014b], the authors showed the global well-posedness of (1-4) with
suitably smooth and small initial data, and the time-asymptotic flocking behavior. In [Ha et al. 2015], the
authors dealt with a moving boundary problem of (1-4) with compactly supported initial density. We also
refer to [Ha et al. 2014a] for a reformulation of (1-4) into hyperbolic conservation laws with damping in
one dimension.

In [Karper et al. 2015], the authors showed the hydrodynamic limit of the kinetic flocking model (1-1)
with Brownian motion, that is, a Vlasov–Fokker–Planck-type equation, under the regime of strong local
alignment and strong Brownian motion:

∂t f ε + v · ∇x f ε +∇v · (L[ f ε] f ε)+
1
ε
∇v · ((uε − v) f ε)− 1

ε
1v f ε = 0. (1-5)

In this case, as ε→ 0, f ε converges to a smooth local equilibrium given by a local Maxwellian, contrary
to (1-3). There, the authors used the relative entropy method, heavily relying on a strict convexity of the
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entropy of the isothermal Euler system (as a limit system of (1-5)):

∂tρ+∇ · (ρu)= 0,

∂t(ρu)+∇ · (ρu⊗ u)+∇ρ =
∫

Td
ψ(x − y)ρ(t, x)ρ(t, y)(u(t, y)− u(t, x)) dy.

The relative entropy method based on a strict convex entropy has been successfully used to prove the
hydrodynamic limit of Vlasov–Fokker–Planck-type equations; we refer to [Berthelin and Vasseur 2005;
Carrillo et al. 2016; Goudon et al. 2004; Mellet and Vasseur 2008; Vasseur 2008].

On the other hand, the pressureless Euler system (1-4) has a convex entropy given by

η(ρ, ρu)= ρ 1
2(|u|

2), (1-6)

which is not strictly convex with respect to ρ. For this reason, the associated relative entropy (1-6) is
not enough to control the convergence of the nonlocal alignment term (compare with [Kang and Vasseur
2015], where the nonlocal alignment is not present). To overcome this difficulty, we first estimate an
L2-distance of characteristics generated by vector fields uε and u that controls the 2-Wasserstein distance
of densities, and then combine the estimates of the relative entropy and the L2-distance of characteristics.

As a related work on (1-5), we refer to [Carrillo et al. 2016], where the authors studied the flocking
behavior and hydrodynamic limit of a coupled system of (1-5) and fluid equations via drag force.

The rest of this paper is organized as follows. In Section 2, we mention different scales of Cucker–Smale
models from a microscopic level to a macroscopic level, and then specify some known existence results
on the two descriptions (1-1) and (1-4). In Section 3, we present our main theorem on the hydrodynamic
limit, and collect some useful results on the relative entropy method and the optimal transportation theory
that are used in the proof of the main theorem. In Section 4, we present some structural hypotheses to
guarantee the hydrodynamic limit in a general setting. Then we apply the general result to our systems by
verifying the hypotheses in Section 5. In the Appendix, we provide the proof of the long time-asymptotic
flocking dynamics and the existence of monokinetic solutions for the kinetic model (1-1).

2. Various scales of Cucker–Smale models

We first present various scales of Cucker–Smale models, from a microscopic level to a macroscopic level.
Then we state some known results on global existence of weak solutions to the kinetic description (1-1),
and local existence of smooth solutions to the limit system (1-4). Those results are crucially used in the
proof of the main theorem. Finally, in Theorem 2.2, we present the time-asymptotic flocking behavior of
the kinetic model (1-1).

Variants of Cucker–Smale models. We briefly present the kinetic CS model and its variants. Cucker and
Smale [2007] proposed a mathematical model to explain the flocking phenomenon:

dxi

dt
= vi , i = 1, . . . , N ,

dvi

dt
=

1
N

N∑
j=1

ψ(x j − xi )(vj − vi ),

(2-1)
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where xi , vi ∈ Rd denote the spatial position and velocity of the i-th particle for an ensemble of N self-
propelled particles. The kernel ψ(|x j − xi |) is a communication weight given by

ψ(x j − xi )=
λ

(1+ |x j − xi |
2)β
, β ≥ 0, λ > 0. (2-2)

The system (2-1) with (2-2) was used as an analytical description of the Vicsek model [Vicsek et al. 1995]
without resorting to the first principle of physics.

When the number of particles is sufficiently large, the ensemble of particles can be described by the
one-particle density function f = f (t, x, v) at the spatial-velocity position (x, v) ∈ Rd

×Rd at time t .
Then, the evolution of f is governed by the following Vlasov-type equation:

∂t f + v · ∇x f +∇v · (L[ f ] f )= 0,

L[ f ](t, x, v)=
∫

R2d
ψ(x − y) f (t, y, w)(w− v) dw dy.

(2-3)

This was first introduced by Ha and Tadmor [2008] using the BBGKY hierarchy from the particle CS
model (2-1). A rigorous mean-field limit was given in [Ha and Liu 2009].

Motsch and Tadmor [2011] recognized a drawback of the CS model (2-1), which is due to the
normalization factor 1/N. More precisely, when a small group of agents are located far away from a
much larger group of agents, the internal dynamics of the small group is almost halted since the total
number of agents is relatively very large. To solve this issue, they replaced the nonlocal alignment L[ f ]
by a normalized nonsymmetric alignment operator:

L[ f ](t, x, v) :=

∫
R2d K r (x − y) f (t, y, w)(w− v) dw dy∫

R2d K r (x − y) f (t, y, w) dw dy
,

where the kernel K r is a communication weight and r denotes the radius of influence of K r.
In [Karper et al. 2014], the authors considered the case when the communication weight is extremely

concentrated near each agent, so that the alignment term L[ f ] corresponds to a short-range interaction.
More precisely, they rigorously justified the singular limit r → 0, i.e., as K r converges to the Dirac
distribution δ0, in which case L[ f ] converges to a local alignment term:

L[ f ](t, x, v)→

∫
Rd f (t, x, w)(w− v) dw∫

Rd f (t, x, w) dw
= u(t, x)− v,

where u(t, x) denotes the averaged local velocity defined as

u(t, x)=

∫
Rd v f (t, x, v) dv∫
Rd f (t, x, v) dv

.

Hence, their new model became (1-1), which consists of two kinds of alignment force: a nonlocal
alignment due to the original CS model, plus a local alignment.
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Existence of weak solutions to (1-2). In [Karper et al. 2013], the authors showed the existence of weak
solutions to the kinetic Cucker–Smale model with local alignment, noise, self-propulsion, and friction:

∂t f + v · ∇x f +∇v · (L[ f ] f )+∇v · ((u− v) f )= σ1v f −∇v · ((a− b|v|2)v f ),

L[ f ] =
∫

R2d
ψ(x − y) f (t, y, w)(w− v) dw dy,

(2-4)

where the kernel ψ is the same as (1-2) and a, b, and σ are nonnegative constants. By their result applied
with a = b= σ = 0 inside the periodic domain Td, we obtain existence of solutions for (1-2). To precisely
state such an existence result, we need to define a (mathematical) entropy F( f ε) and kinetic dissipations
D1( f ε), D2( f ε) for (1-2):

F( f ε) :=
∫

Rd

|v|2

2
f ε dv,

D1( f ε) :=
∫

Td×Rd
f ε|uε − v|2 dv dx,

D2( f ε) := 1
2

∫
T2d×R2d

ψ(x − y) f ε(x, v) f ε(y, w)|v−w|2 dx dy dv dw.

(2-5)

Proposition 2.1. For any ε > 0, assume that f ε0 satisfies

f ε0 ≥ 0, f ε0 ∈ L1
∩ L∞(R2d), |v|2 f ε0 ∈ L1(R2d). (2-6)

Then there exists a weak solution f ε ≥ 0 of (1-2) such that

f ε ∈ C(0, T ; L1(R2d))∩ L∞((0, T )×R2d),

|v|2 f ε ∈ L∞(0, T ; L1(R2d)),
(2-7)

and (1-2) holds in the sense of distributions, that is, for any ϕ ∈ C∞c ([0, T )×R2d), the weak formulation
holds:∫ t

0

∫
R2d

f ε
(
∂tϕ+v ·∇xϕ+ L[ f ε] ·∇vϕ+

1
ε
(uε−v) ·∇vϕ

)
dv dx ds+

∫
R2d

f ε0 ϕ(0, · ) dv dx = 0. (2-8)

Moreover, f ε preserves the total mass and satisfies the entropy inequality∫
Td

F( f ε)(t) dx + 1
ε

∫ t

0
D1( f ε)(s) ds+

∫ t

0
D2( f ε)(s) ds ≤

∫
Td

F( f ε0 ) dx . (2-9)

The entropy inequality (2-9) is crucially used in the proof of Theorem 3.1.

Flocking behavior of the kinetic model (1-1). We now present the time-asymptotic flocking behavior of
solutions to the kinetic model (1-1). For that, we define the following two Lyapunov functionals:

E1(t) :=
∫

Td×Rd
f (t, x, v)|u(t, x)− v|2 dv dx,

E2(t) :=
∫

T2d
ρ(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy,
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where ρ(t, x) =
∫

Rd f (t, x, v) dv. We remark that E1 measures a local alignment, and E2 measures
alignment of the averaged local velocities. Then, for the flocking estimate, we combine the two functionals
as follows:

E(t) := E1(t)+ 1
2E2(t). (2-10)

Theorem 2.2. Let f be a solution to (1-1). Then, we have the time-asymptotic flocking estimate

E(t)≤ E(0) exp (−2 min{1, ψm}t), t > 0, (2-11)

where ψm is the minimum communication weight:

ψm := min
x,y∈Td

ψ(x − y) > 0.

In addition, if u is uniformly Lipschitz continuous on a time interval [0, T ], namely

`T := sup
t∈[0,T ]

‖∇x u‖L∞(Td ) <∞,

then
E1(t)≤ E1(0)e2(`T−1) for all t ∈ [0, T ]. (2-12)

Proof. We postpone the proof to the Appendix. �

Remark 2.3. As an interesting consequence of (2-12) one obtains that, for smooth solutions, E1(0)= 0
implies that E1(t)= 0 for all t ∈ [0, T ]. In other words, monokinetic initial conditions remain monokinetic
as long as the velocity field is Lipschitz. One can note that monokinetic solutions to (1-1) simply
correspond to solutions of the pressureless Euler system (1-4); hence the short time existence of Lipschitz
solutions is guaranteed by Proposition 2.4 and Remark 2.5 below.

Formal derivation of the hydrodynamic Cucker–Smale system (1-4). We consider the hydrodynamic
variables ρε :=

∫
Rd f ε dv and ρεuε :=

∫
Rd v f ε dv.

First of all, integrating (1-2) with respect to v, we get the continuity equation

∂tρ
ε
+∇x · (ρ

εuε)= 0.

Multiplying (1-2) by v, and then integrating it with respect to v, we have

∂t(ρ
εuε)+∇x ·

(∫
Rd
v⊗ v f ε dv

)
=

∫
Td
ψ(x − y)ρε(t, x)ρε(t, y)(uε(t, y)− uε(t, x)) dy,

where we used

uε =

∫
Rd v f ε dv∫
Rd f ε dv

.

Then, we rewrite the system for ρε and uε as

∂tρ
ε
+∇x · (ρ

εuε)= 0,

∂t(ρ
εuε)+∇x · (ρ

εuε⊗ uε + Pε)=
∫

Td
ψ(x − y)ρε(t, x)ρε(t, y)(uε(t, y)− uε(t, x)) dy,

(2-13)
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where Pε is the stress tensor given by

Pε :=
∫

Rd
(v− uε)⊗ (v− uε) f ε dv.

If we take ε→ 0 in (1-2), the local alignment term ∇v · ((uε − v) f ε) converges to 0. Hence, if ρε→ ρ

and ρεuε → ρu for some limiting functions ρ and u, we have that f ε → δv=u ⊗ ρ (in some suitable
sense). Hence, the stress tensor Pε should vanish in the limit, since∫

Rd
(v− u)⊗ (v− u)δv=uρ dv = 0.

Therefore, at least formally, the limit quantities ρ and u satisfy the pressureless Euler system with nonlocal
alignment:

∂tρ+∇x · (ρu)= 0,

∂t(ρu)+∇x · (ρu⊗ u)=
∫

Td
ψ(x − y)ρ(t, x)ρ(t, y)(u(t, y)− u(t, x)) dy.

Existence of classical solutions to (1-4). We present here the local existence of classical solutions to the
pressureless Euler system (1-4).

Proposition 2.4. Assume that

ρ0 > 0 in Td and (ρ0, u0) ∈ H s(Td)× H s+1(Td) for s > 1
2 d + 1. (2-14)

Then, there exists T∗ > 0 such that (1-4) has a unique classical solution (ρ, u) satisfying

ρ ∈ C0([0, T∗]; H s(Td))∩C1([0, T∗]; H s−1(Td)),

u ∈ C0([0, T∗]; H s+1(Td))∩C1([0, T∗]; H s(Td)).
(2-15)

Remark 2.5. Since s > 1
2 d + 1, by the Sobolev inequality it follows that (ρ, u) ∈ C1([0, T∗]×Td).

Proposition 2.4 has been proven in [Ha et al. 2014b]. There, the authors obtained also a global
well-posedness of classical solutions, provided an initial datum is suitably smooth and small.

3. Main result and preliminaries

We first present our main result on the hydrodynamic limit of (1-2). We next present useful results on the
relative entropy method and the optimal transportation theory, which are used as main tools in the next
section.

Main result. For the hydrodynamic limit, we consider a well-prepared initial data f ε0 satisfying (2-6) and

(A1)
∫

Td

∫
Rd ( f ε0

1
2 |v|

2
− ρ0

1
2 |u0|

2) dv dx =O(ε),

(A2) ‖ρε0 − ρ0‖L1(Td ) =O(ε),

(A3) ‖uε0− u0‖L∞(Td ) =O(ε).

We now specify our main result on the hydrodynamic limit.
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Theorem 3.1. Assume that the initial data f ε0 and (ρ0, u0) satisfy (2-6), (2-14), and (A1)–(A3). Let
f ε be a weak solution to (1-2) satisfying (2-9), and (ρ, u) be a local-in-time smooth solution to (1-4)
satisfying (2-15) up to the time T∗. Then, there exists a positive constant C∗ (depending on T∗) such that,
for all t ≤ T∗, ∫

Td
ρε(t)|(uε − u)|2(t) dx +W 2

2 (ρ
ε(t), ρ(t))≤ C∗ε, (3-1)

where ρε =
∫

Rd f ε dv, ρεuε =
∫

Rd v f ε dv, and W2 denotes the 2-Wasserstein distance.
Therefore, we have

f ε⇀ δv=u(t,x)⊗ ρ(t, x) in M((0, T∗)×Td
×Rd), (3-2)

where M((0, T∗)×Td
×Rd) is the space of nonnegative Radon measures on (0, T∗)×Td

×Rd.

The proof of this result is postponed to Section 5. In the next subsections we collect some preliminary
facts that will be used later in the proof.

Relative entropy method. First of all, we rewrite the limit system (1-4) in an abstract form using the
notation

P = ρu, U =
(
ρ

P

)
, A(U )=

(
PT

(P ⊗ P)/ρ

)
,

F(U )=
(

0∫
Td ψ(x − y)ρ(t, x)ρ(t, y)(u(t, y)− u(t, x)) dy

)
.

Then we can rewrite (1-4) as the balance law

∂tU + divx A(U )= F(U ). (3-3)

We consider the relative entropy and relative flux

η(V |U )= η(V )− η(U )− Dη(U ) · (V −U ),

A(V |U )= A(V )− A(U )− D A(U ) · (V −U ),
(3-4)

where D A(U ) · (V −U ) is a matrix defined as

(D A(U ) · (V −U ))i j =

d+1∑
k=1

∂Uk Ai j (U )(Vk −Uk), 1≤ i ≤ d + 1, 1≤ j ≤ d.

By the theory of conservation laws, the system (3-3) has a convex entropy η(U )= ρ 1
2 |u|

2 with entropy
flux G given by the identity

∂Ui G j (U )=
d+1∑
k=1

∂Ukη(U ) ∂Ui Ak j (U ), 1≤ i ≤ d + 1, 1≤ j ≤ d.

Since η(U )= |P|2/(2ρ), and

Dη(U )=
(

Dρη

DPη

)
=

(
−|P|2/(2ρ2)

P/ρ

)
=

(
−|u|2/2

u

)
, (3-5)
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for given V =
( q

qw

)
, U =

(
ρ
ρu

)
, we have

η(V |U )= 1
2q|w|2− 1

2ρ|u|
2
+

1
2 |u|

2(q − ρ)− u(qw− ρu)

=
1
2q|u−w|2. (3-6)

The next proposition provides a cornerstone to verify the hydrodynamic limit through the relative
entropy method. For its proof, we refer to the proof of Proposition 4.2 in [Karper et al. 2015]; see also
[Vasseur 2008].

Proposition 3.2. Let U be a strong solution to balance law (3-3) and V be any smooth function. Then,
the following holds:

d
dt

∫
Td
η(V |U ) dx = d

dt

∫
Td
η(V ) dx −

∫
Td
∇x
(
Dη(U )

)
: A(V |U ) dx

−

∫
Td

Dη(U ) · [∂t V + divx A(V )− F(V )] dx

−

∫
Td
[D2η(U )F(U )(V −U )+ Dη(U )F(V )] dx .

Wasserstein distance and representation formulae for solutions of the continuity equation. For p ≥ 1,
the p-Wasserstein distance between two probability measures µ1 and µ2 on Rd is defined by

W p
p (µ1, µ2) := inf

ν∈3(µ1,µ2)

∫
R2d
|x − y|2 dν(x, y),

where 3(µ1, µ2) denotes the set of all probability measures ν on R2d with marginals µ1 and µ2, i.e,

π1#ν = µ1, π2#ν = µ2,

where π1 : (x, y) 7→ x and π2 : (x, y) 7→ y are the natural projections from Rd
× Rd to Rd, and π#ν

denotes the push forward of ν through a map π , i.e., π#ν(B) := ν(π−1(B)) for any Borel set B. This
same definition can be extended to measures on the torus Td with the understanding that |x − y| denotes
the distance on the torus.

To make a connection between the L2-distance of velocities and the 2-Wasserstein distance of densities
(see Lemma 5.2), we will use two different representation formulas for solutions to the continuity equation

∂tµt + divx(utµt)= 0. (3-7)

Let us recall that, if the velocity field ut : R
d
→ Rd is Lipschitz with respect to x , uniformly in t , then for

any x there exists a global-in-time unique characteristic X generated by ut starting from x ,

Ẋ(t, x)= ut(X (t, x)), X (0, x)= x,

and the solution µt of (3-7) is the push forward of the initial data µ0 through X (t), i.e.,

µt = X (t)#µ0; (3-8)
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e.g., see [Ambrosio et al. 2005, Proposition 8.1.8]. On the other hand, if the velocity field ut is not
Lipschitz with respect to x , the uniqueness of the characteristics is not guaranteed anymore. Still, a
probabilistic representation formula for solutions to (3-7) holds (recall that a curve of probability measures
in Rd is called narrowly continuous if it is continuous in the duality with continuous bounded functions):

Proposition 3.3. For a given T > 0, let µt : [0, T ] → P(Rd) be a narrowly continuous solution of (3-7)
for a Borel vector field ut satisfying∫ T

0

∫
Rd
|ut(x)|p dµt(x) dt <∞ for some p > 1.

Let 0T denote the space of continuous curves from [0, T ] into Rd. Then, there exists a probability
measure η on 0T ×Rd satisfying the following properties:

(i) η is concentrated on the set of pairs (γ, x) such that γ is an absolutely continuous curve solving
the ODE

γ̇ (t)= ut(γ (t)) for a.e. t ∈ (0, T ), with γ (0)= x .

(ii) µt satisfies∫
Rd
ϕ(x) dµt(x)=

∫
0T×Rd

ϕ(γ (t)) dη(γ, x) for all ϕ ∈ C0
b(R

d), t ∈ [0, T ].

Again, this result readily extends on the torus.
Note that, in the case when ut is Lipschitz, there exists a unique curve γ solving the ODE and starting

from x (i.e., γ = X ( · , x)), so the measure η is given by the formula

dη(γ, x)= δγ=X ( · ,x)⊗ dµ0(x).

We refer to [Ambrosio et al. 2005, Theorem 8.2.1] for more details and a proof.

Useful inequality. We here present a standard inequality that is used in the proof of Lemma 5.2, for the
convenience of the reader:

Lemma 3.4. Let ρ1, ρ2 : T
d
→ R be two probability densities. Then

W 2
2 (ρ1, ρ2)≤

1
8 d‖ρ1− ρ2‖L1(Td ).

Proof. The idea is simple: to estimate the transportation cost from ρ1 to ρ2 it suffices to consider a
transport plan that keeps at rest all the mass in common between ρ1 and ρ2 (namely min{ρ1, ρ2}) and
sends ρ1−min{ρ1, ρ2} onto ρ2−min{ρ1, ρ2} in an arbitrary way. For instance, assuming without loss of
generality that ρ1 6= ρ2 (otherwise the result is trivial), we set

m := ‖ρ1−min{ρ1, ρ2}‖L1(Td ) = ‖ρ2−min{ρ1, ρ2}‖L1(Td ) =
1
2‖ρ1− ρ2‖L1(Td ) > 0.

Then, a possible choice of transport plan between ρ1 and ρ2 is given by

π(dx, dy) := δx=y(dy)⊗min{ρ1(x), ρ2(x)}dx

+
1
m
[ρ1(x)−min{ρ1(x), ρ2(x)}]dx ⊗[ρ2(y)−min{ρ1(y), ρ2(y)}]dy.
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Since the diameter of Td is bounded by 1
2

√
d , we deduce that the W 2

2 -cost to transport ρ1−min{ρ1, ρ2}

onto ρ2−min{ρ1, ρ2} is at most∫
T2d
|x− y|2 dπ(x, y)= 1

m

∫
T2d
|x− y|2(ρ1(x)−min{ρ1(x), ρ2(x)})(ρ2(y)−min{ρ1(y), ρ2(y)}) dx dy

≤
1
4 d‖ρ1−min{ρ1, ρ2}‖L1(Td ) =

1
8 d‖ρ1−ρ2‖L1(Td ),

as desired. �

4. Structural lemma

In a general system, we first present some structural hypotheses to provide a Gronwall-type inequality on
the relative entropy that is also controlled by 2-Wasserstein distance.

Hypotheses. Let f ε be a solution to a given kinetic equation KEε scaled with ε > 0 corresponding to
initial data f ε0 . Let U ε and U ε

0 consist of hydrodynamic variables of f ε and f ε0 respectively.
Let U be a solution to a balance law (as a limit system of KEε):

∂tU + divx A(U )= F(U ), U |t=0 =U0.

(H1) The kinetic equation KEε has a kinetic entropy F such that
∫
F( f ε)(t) dx ≥ 0 and∫

F( f ε)(t) dx + 1
ε

∫ t

0
D1( f ε)(s) ds+

∫ t

0
D2( f ε)(s) ds ≤

∫
Td

F( f ε0 ) dx,

where D1, D2 ≥ 0 are some dissipations.

(H2) There exists a constant C > 0 (independent of ε) such that∫
η(U ε

0 |U0) dx ≤ Cε,
∫
(F( f ε0 )− η(U

ε
0 )) dx ≤ Cε,

∫
Td

F( f ε0 ) dx ≤ C.

(H3) The balance law has a convex entropy η, and the following minimization property holds:

η(U ε)≤ F( f ε).

(H4) There exists a constant C > 0 (independent of ε) such that∣∣∣∣∫ ∇x(Dη(U )) : A(U ε
|U ) dx

∣∣∣∣≤ C
∫
η(U ε

|U ) dx .

(H5) There exists a constant C > 0 (independent of ε) such that∣∣∣∣∫ Dη(U ) · [∂tU ε
+ divx A(U ε)− F(U ε)] dx

∣∣∣∣≤ C D1( f ε).

(H6) Let ρε be the hydrodynamic variable of f ε as the local mass, and ρ be the corresponding variable
for the balance law. Then,

−

∫
[D2η(U )F(U )(U ε

−U )+ Dη(U )F(U ε)] dx ≤ D2( f ε)+CW 2
2 (ρ

ε, ρ)+C
∫
η(U ε

|U ) dx .
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(H7) There exists a constant C > 0 (independent of ε) such that

W 2
2 (ρ

ε, ρ)(t)≤ C
∫ t

0

∫
η(U ε

|U ) dx ds+Cε.

Remark 4.1. (1) The hypotheses (H1)–(H5) provide a basic structure in applying the relative entropy
method to hydrodynamic limits as in previous results, for example, [Kang and Vasseur 2015; Karper
et al. 2015; Mellet and Vasseur 2008]. On the other hand, the hypotheses (H6)–(H7) provide a crucial
connection between the relative entropy and Wasserstein distance.

(2) The (kinetic) entropy inequality (H1) plays an important role in controlling the dissipations D1, D2

in (H5) and (H6).

(3) (H2) is related to a kind of well-prepared initial data.

Lemma 4.2. Assume the hypotheses (H1)–(H7). Then, for a given T > 0, there exists a constant C > 0
such that ∫

η(U ε
|U )(t) dx +W 2

2 (ρ
ε, ρ)(t)≤ Cε, t ≤ T .

Proof. First of all, using Proposition 3.2, we have∫
Td
η(U ε

|U )(t) dx ≤ I1+ I2+ I3+ I4+ I5,

where

I1 :=

∫
Td
η(U ε

0 |U0) dx,

I2 :=

∫
Td
(η(U ε)(t)− η(U ε

0 )) dx,

I3 := −

∫ t

0

∫
Td
∇x(Dη(U )) : A(U ε

|U ) dx ds,

I4 := −

∫ t

0

∫
Td

Dη(U ) · [∂tU ε
+ divx A(U ε)− F(U ε)] dx ds,

I5 := −

∫ t

0

∫
Td
[D2η(U )F(U )(U ε

−U )+ Dη(U )F(U ε)] dx ds.

It follows from (H2) that I1 ≤ Cε.
We decompose I2 as

I2 =

∫
Td
(η(U ε)(t)−F( f ε)(t)) dx︸ ︷︷ ︸

=:I 1
2

+

∫
Td
(F( f ε)(t)−F( f ε0 )) dx︸ ︷︷ ︸

=:I 2
2

+

∫
Td
(F( f ε0 )− η(U

ε
0 )) dx︸ ︷︷ ︸

=:I 3
2

. (4-1)

First, I 1
2 ≤ 0 by (H3).

Since (H1) yields

I 2
2 ≤−

∫ t

0
D2( f ε) ds,
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it follows from (H6) that

I 2
2 + I5 ≤ C

∫ t

0
W 2

2 (ρ
ε, ρ) ds+C

∫ t

0

∫
Td
η(U ε

|U ) dx ds.

By (H2), I 3
2 ≤ Cε.

It follows from (H4) that

I3 ≤ C
∫ t

0

∫
Td
η(U ε

|U ) dx ds.

Since (H1) and (H2) imply ∫ t

0
D1( f ε)(s) ds ≤ Cε,

we have I4 ≤ Cε.
Therefore, we have∫

η(U ε
|U )(t) dx ≤ Cε+C

∫ t

0

[∫
η(U ε

|U )(s) dx ds+W 2
2 (ρ

ε, ρ)

]
ds.

Hence, combining it with (H7), and using Gronwall’s inequality, we have the desired result. �

5. Proof of Theorem 3.1

The main part of the proof consists in proving the estimate (3-1).

Proof of (3-1). This will be done by verifying the hypotheses (H1)–(H7), and then completed by
Lemma 4.2.

Verification of (H1). (H1) is satisfied thanks to Lemma 5.1 below. There we show that one can replace
the nonlocal dissipation D2 in the kinetic entropy inequality (2-9) by another dissipation D̃2 defined in
terms of the hydrodynamic variables ρε and uε.

Lemma 5.1. For any ε > 0, assume that f ε0 satisfies

f ε0 ∈ L1
∩ L∞(Td

×Rd), |v|2 f ε0 ∈ L1(Td
×Rd).

Then the weak solution f ε in Proposition 2.1 also satisfies∫
Td

F( f ε)(t) dx + 1
ε

∫ t

0
D1( f ε)(s) ds+

∫ t

0
D̃2( f ε)(s) ds ≤

∫
Td

F( f ε0 ) dx, (5-1)

where F and D1 are as in (2-5), and

D̃2( f ε) := 1
2

∫
T2d
ψ(x − y)ρε(t, x)ρε(t, y)|uε(t, x)− uε(t, y)|2 dx dy.
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Proof. Recalling (2-9), it is enough to show D̃2( f ε)≤ D2( f ε). We first rewrite D̃2( f ε) in terms of the
mesoscopic variables as follows: using ψ(x − y)= ψ(y− x), we have

D̃2( f ε)= 1
2

∫
T2d×R2d

ψ(x − y) f ε(t, x, v) f ε(t, y, w)(v−w) · (uε(t, x)− uε(t, y)) dv dw dx dy

=

∫
T2d×R2d

ψ(x − y) f ε(t, x, v) f ε(t, y, w)(v−w) · uε(t, x) dv dw dx dy

=

∫
T2d×R2d

ψ(x − y) f ε(t, x, v) f ε(t, y, w)(v−w) · v dv dw dx dy︸ ︷︷ ︸
=:I1

+

∫
T2d×R2d

ψ(x − y) f ε(t, x, v) f ε(t, y, w)(v−w) · (uε(t, x)− v) dv dw dx dy︸ ︷︷ ︸
=:I2

.

First, we have

I1 =
1
2

∫
T2d×R2d

ψ(x − y) f ε(t, x, v) f ε(t, y, w)|v−w|2 dx dy dv dw = D2( f ε).

We next claim I2 ≤ 0.
Indeed, since

ρε|uε|2 =

(∫
Rd v f ε dv

)2∫
Rd f ε dv

≤

∫
Rd
|v|2 f ε dv, (5-2)

we have∫
T2d×R2d

ψ(x − y) f ε(t, x, v) f ε(t, y, w)|v|2 dv dw dx dy

≥

∫
T2d
ψ(x − y)ρε(t, y)ρε(t, x)|uε(t, x)|2 dx dy.

Then, since∫
T2d×R2d

ψ(x − y) f ε(t, x, v) f ε(t, y, w)uε(t, x) ·w dv dw dx dy

=

∫
T2d
ψ(x − y)ρε(t, x)ρε(t, y)uε(t, x) · uε(t, y) dx dy,∫

T2d×R2d
ψ(x − y) f ε(t, x, v) f ε(t, y, w)uε(t, x) · v dv dw dx dy

=

∫
T2d
ψ(x − y)ρε(t, x)ρε(t, y)|uε(t, x)|2 dx dy,∫

T2d×R2d
ψ(x − y) f ε(t, x, v) f ε(t, y, w)v ·w dv dw dx dy

=

∫
T2d
ψ(x − y)ρε(t, x)ρε(t, y)uε(t, x) · uε(t, y) dx dy,

we conclude that I2 ≤ 0, as desired. �
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Verification of (H2). We show that the assumptions (A1)–(A3) for initial data imply (H2). Using (3-6)
and assumption (A3), we have∫

Td
η(U ε

0 |U0) dx = 1
2

∫
Td
ρε0 |u

ε
0− u0|

2 dx ≤ Cε2
∫

Td
ρε0 dx ≤ Cε2.

Since it follows from (A1)–(A3) that∫
Td
(F( f ε0 )− η(U0)) dx =O(ε),

and ∫
Td
(η(U0)− η(U ε

0 )) dx = 1
2

∫
Rd
(ρ0|u0|

2
− ρε0 |u

ε
0|

2)

≤
1
2

∫
Td
|ρ0− ρ

ε
0 ||u0|

2
+

1
2

∫
Td
ρε0

∣∣|uε0|2− |u0|
2∣∣=O(ε),

we have ∫
Td
(F( f ε0 )− η(U

ε
0 )) dx =O(ε).

It is obvious that (A1) implies ∫
Td

F( f ε0 ) dx ≤ C.

Verification of (H3). It follows from (5-2) that

η(U ε)= ρε 1
2 |u

ε
|
2
≤

∫
Rd

1
2 |v|

2 f ε dv = F( f ε). (5-3)

Verification of (H4). Since

A(U )=
(

PT

(P ⊗ P)/ρ

)
,

we have

D A(U ) · (U ε
−U )= Dρ A(U )(ρε − ρ)+ DPi A(U )(Pεi − Pi )

=

(
(Pε − P)T

−((ρε − ρ)/ρ2)P ⊗ P + (1/ρ)P ⊗ (Pε − P)+ (1/ρ)(Pε − P)⊗ P

)
,

which yields

A(U ε
|U )

=

(
0

(1/ρε)Pε⊗ Pε−(1/ρ)P⊗ P+((ρε−ρ)/ρ2)P⊗ P−(1/ρ)P⊗(Pε− P)−(1/ρ)(Pε− P)⊗ P

)
=

(
0

ρε(uε−u)⊗(uε−u)

)
.

Therefore, using (3-5) and (3-6), we have∣∣∣∣∫ ∇x(Dη(U )) : A(U ε
|U ) dx

∣∣∣∣= ∣∣∣∣∫ t

0

∫
Td
ρε(uε − u)⊗ (uε − u) : ∇x u dx ds

∣∣∣∣
≤ C‖∇x u‖L∞((0,T∗)×Td )

∫ t

0

∫
Td
η(U ε

|U ) dx ds.
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Verification of (H5). For a weak solution f ε to (1-2), it follows from (2-13) that U ε
=
(
ρε

Pε
)

solves the
system

∂tU ε
+ divx A(U ε)− F(U ε)= divx

(
0

−
∫

Rd (v− uε)⊗ (v− uε) f ε dv

)
, (5-4)

where the equality holds in the sense of distributions; see (2-8). Therefore, we have∣∣∣∣∫ Dη(U ) · [∂tU ε
+ divx A(U ε)− F(U ε)] dx

∣∣∣∣
=

∣∣∣∣∫
Td
∇x u :

(∫
Rd
(v− uε)⊗ (v− uε) f ε dv

)
dx
∣∣∣∣

≤ C‖∇x u‖L∞((0,T∗)×Td )

∫
Td×Rd

|v− uε|2 f ε dv dx = C‖∇x u‖L∞((0,T∗)×Td )D1( f ε).

Verification of (H6). From the proof of Proposition 4.2 in [Karper et al. 2015], we see

−

∫
Td
[D2η(U )F(U )(U ε

−U )+ Dη(U )F(U ε)] dx = K1+ K2+ K3,

where

K1 := −
1
2

∫
T2d
ψ(x − y)ρε(x)ρε(t, y)

∣∣(uε(x)− u(x))− (uε(y)− u(y))
∣∣2 dx dy,

K2 :=
1
2

∫
T2d
ψ(x − y)ρε(x)ρε(y) |uε(x)− uε(y)|2 dx dy,

K3 :=

∫
T2d
ψ(x − y)ρε(x)(ρε(y)− ρ(y))(u(y)− u(x))(uε(x)− u(x)) dx dy.

Notice that K1 ≤ 0, and K2 = D̃2( f ε) where D̃2( f ε) is in Lemma 5.1.
To estimate K3, we separate it into two parts:

K3 =

∫
Td

(∫
Td
ψ(x − y)u(y)(ρε(y)− ρ(y)) dy

)
ρε(x)(uε(x)− u(x)) dx

−

∫
Td

(∫
Td
ψ(x − y)(ρε(y)− ρ(y)) dy

)
u(x)ρε(x)(uε(x)− u(x)) dx .

Sinceψ and u are Lipschitz, we use the Kantorovich–Rubinstein theorem, see [Villani 2009, Theorem 5.10
and Particular Case 5.16], to estimate

K3 ≤W1(ρ
ε, ρ)

(
sup
x∈Td
‖ψ(x − · )u‖L∞(0,T∗;W 1,∞(Td ))+‖ψ‖L∞(0,T∗;W 1,∞(Td ))‖u‖L∞((0,T∗)×Td )

)
×

∫
Td
ρε(x)|uε(x)− u(x)| dx .

Therefore, since W1(ρ
ε, ρ)≤W2(ρ

ε, ρ), we obtain

K3 ≤ C
(

W 2
2 (ρ

ε, ρ)+

∫
Td
ρε(x)|uε(x)− u(x)|2 dx

)
.

Hence we have verified (H6).
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Verification of (H7). This will be shown by Lemma 5.2 below. We first derive some estimates for the
characteristics generated by the velocity fields uε and u.

For the velocity u in the limit system (1-4), let X be a characteristic generated by it, that is,

Ẋ(t, x)= u(t, X (t, x)), X (0, x)= x . (5-5)

Then, thanks to the smoothness of u, it follows from (3-8) that

X (t)#ρ0(x) dx = ρ(t, x) dx .

On the other hand, since uε is not Lipschitz with respect to x , we use a probabilistic representation
for ρε as a solution of the continuity equation in (3-3). More precisely, (5-3) and (2-9) imply∫

Td
|uε(t)|2ρε(t) dx ≤

∫
Td

F( f ε)(t) dx ≤
∫

Td
F( f ε0 ) dx <∞,

so it follows from Proposition 3.3 that there exists a probability measure ηε in 0T∗×Td that is concentrated
on the set of pairs (γ, x) such that γ is a solution of the ODE

γ̇ (t)= uε(γ (t)), γ (0)= x, (5-6)

and ∫
Td
ϕ(x)ρε(t, x) dx =

∫
0T∗×Td

ϕ(γ (t)) dηε(γ, x) for all ϕ ∈ C0(Td), t ∈ [0, T∗]. (5-7)

In particular, this says that the time marginal of the measure ηε at time 0 is given by ρε(0)= ρε0 . Hence,
by the disintegration theorem of measures, see for instance [Ambrosio et al. 2005, Theorem 5.3.1] and
the comments at the end of Section 8.2 in [Ambrosio et al. 2005], we can write

dηε(γ, x)= ηεx(dγ )⊗ ρ
ε
0(x) dx,

where {ηεx}x∈Td is a family of probability measures on 0T ∗ concentrated on solutions of (5-6).
For the flow X in (5-5), we also consider the densities ρ̃ε(t) defined as

ρ̃ε(t, x) dx = X (t)#ρε0(x) dx . (5-8)

Note that, since

‖ρ(t)− ρ̃ε(t)‖L1(Td ) = sup
‖ϕ‖∞≤1

∫
Td
ϕ(x)[ρ(t, x)− ρ̃ε(t, x)] dx

= sup
‖ϕ‖∞≤1

∫
Td
ϕ(X (t, x))[ρ0(x)− ρε0(x)] dx ≤ ‖ρε0 − ρ0‖L1(Td ),

we have
‖ρ(t)− ρ̃ε(t)‖L1(Td ) ≤ ‖ρ

ε
0 − ρ0‖L1(Td ). (5-9)

We now consider the measure νε on 0T∗ ×0T∗ ×Td defined as

dνε(γ, σ, x)= ηεx(dγ )⊗ δX ( · ,x)(dσ)⊗ ρε0(x) dx .
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If we consider the evaluation map

Et : 0T∗ ×0T∗ ×Td
→ Td

×Td , Et(γ, σ, x)= (γ (t), σ (t)),

it follows that the measure π εt := (Et)#ν
ε on Td

×Td has marginals ρε(t, x) dx and ρ̃ε(t, y) dy for all
t ≥ 0. Therefore, we have∫

0T∗×Td
|γ (t)− X (t, x)|2ηεx(dγ )⊗ ρ

ε
0(x) dx =

∫
0T∗×0T∗×Td

|γ (t)− σ(t)|2 dνε(γ, σ, x)

=

∫
T2d
|x − y|2 dπ εt (x, y)

≥W 2
2 (ρ

ε(t), ρ̃ε(t)). (5-10)

We now use the above results to prove the following lemma.

Lemma 5.2. Under the same assumptions as in Theorem 3.1, we have

W 2
2 (ρ

ε(t), ρ(t))≤ CeT∗
∫ t

0

∫
Td
|uε(s, x)− u(s, x)|2ρε(s, x) dx ds+O(ε), t ≤ T∗. (5-11)

Proof. Let ρ̃ε be defined as in (5-8). We begin by observing that, thanks to Lemma 3.4, (5-9), and
assumption (A2), it follows that

W 2
2 (ρ̃

ε(t), ρ(t))≤O(ε).

Hence, to prove (5-11), it is enough to bound W 2
2 (ρ

ε(t), ρ̃ε(t)).
To this aim, we try to get a Gronwall-type inequality on∫

0T∗×Td
|γ (t)− X (t, x)|2ηεx(dγ )⊗ ρ

ε
0(x) dx .

Since

γ̇ (t)− Ẋ(t, x)= (uε(γ (t))− u(γ (t)))+ (u(γ (t))− u(X (t, x)))

by (5-5) and (5-6), we have

1
2

d
dt

∫
0T∗×Td

|γ (t)−X (t, x)|2 dηεx(γ )⊗ρ
ε
0(x) dx ≤

∫
0T∗×Td

|uε(γ (t))−u(γ (t))|2 dηεx(γ )⊗ρ
ε
0(x) dx

+

∫
0T∗×Td

|u(γ (t))−u(X (t, x))|2 dηεx(γ )⊗ρ
ε
0(x) dx

+ 2
∫
0T∗×Td

|γ (t)−X (t, x)|2 dηεx(γ )⊗ρ
ε
0(x) dx .

Notice that, thanks to (5-7),∫
0T∗×Td

|uε(γ (t))− u(γ (t))|2 dηεx(γ )⊗ ρ
ε
0(x) dx =

∫
Td
|uε(t, x)− u(t, x)|2ρε(t, x) dx .
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Moreover, since∫
0T∗×Td

|u(γ (t))− u(X (t, x))|2 dηεx(γ )⊗ ρ
ε
0(x) dx

≤ ‖u‖L∞(0,T∗;W 1,∞(Td ))

∫
0T∗×Td

|γ (t)− X (t, x)|2 dηεx(γ )⊗ ρ
ε
0(x) dx,

we have

d
dt

∫
0T∗×Td

|γ (t)− X (t, x)|2 dηεx(γ )⊗ ρ
ε
0(x) dx

≤ C
∫
0T∗×Td

|γ (t)− X (t, x)|2 dηεx(γ )⊗ ρ
ε
0(x) dx +

∫
Td
|uε(t, x)− u(t, x)|2ρε(t, x) dx .

Therefore, using Gronwall’s inequality together with γ (0)= X (0, x)= x for ηεx -a.e. γ , we obtain∫
0T∗×Td

|γ (t)− X (t, x)|2 dηεx(γ )⊗ρ
ε
0(x) dx ≤CeT∗

∫ t

0

∫
Td
|uε(s, x)−u(s, x)|2ρε(s, x) dx ds, t ≤ T∗.

Hence, using (5-10) we get the desired control on W 2
2 (ρ

ε(t), ρ̃ε(t)), which concludes the proof. �

Proof of (3-2). Here we use the estimate (3-1) to show the convergence (3-2).
First, since (5-1) and (A1) imply ∫ t

0
D1( f ε)(s) ds ≤ Cε,

using (3-1), we have∫ T∗

0

∫
Td×Rd

f ε|v−u|2 dx dv ds ≤ 2
∫ T∗

0

∫
Td×Rd

f ε(|v−uε|2+|uε−u|2) dx dv ds ≤ C(1+T∗)ε. (5-12)

Then, for any ϕ ∈ C1
c ((0, T∗)×Td

×Rd),∫ T∗

0

∫
Td×Rd

ϕ(s, x, v) f ε dx dv ds−
∫ T∗

0

∫
Td×Rd

ϕ(s, x, v)ρ δu(dv) dx ds

=

∫ T∗

0

∫
Td×Rd

ϕ(s, x, v) f ε dx dv ds−
∫ T∗

0

∫
Td
ϕ(s, x, u)ρ dx ds

=

∫ T∗

0

∫
Td×Rd

f ε(ϕ(s, x, v)−ϕ(s, x, u)) dx dv ds︸ ︷︷ ︸
=:I ε1

+

∫ T∗

0

∫
Td
ϕ(s, x, u)(ρε − ρ) dx ds︸ ︷︷ ︸

=:I ε2

.

Using (5-12), we have

I ε1 ≤ ‖∇vϕ‖∞

∫ T∗

0

∫
Td×Rd

f ε|v− u| dx dv ds

= ‖∇vϕ‖∞

(∫ T∗

0

∫
|v−u|≤

√
ε

f ε|v− u| dx dv ds+
∫ T∗

0

∫
|v−u|>

√
ε

f ε|v− u| dx dv ds
)
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≤ ‖∇vϕ‖∞

(
√
εT∗+

1
√
ε

∫ T∗

0

∫
|v−u|>

√
ε

f ε|v− u|2 dv dx ds
)

≤ C(1+ T∗)
√
ε.

Since W1(ρ
ε, ρ)≤W2(ρ

ε, ρ)→ 0 by (3-1), we also have I ε2 → 0 as ε→ 0.
Hence, this completes the proof of (3-2).

Appendix: Proof of Theorem 2.2

We first estimate (d/dt)E1 as follows:

d
dt

E1 = 2
∫

Td×Rd
f (u− v) ∂t u dv dx +

∫
Td×Rd

∂t f |u− v|2 dv dx := I1+ I2.

First of all, by the definition of u, we have
∫

f (u− v) dv = 0; hence I1 = 0.
Concerning I2, it follows from (1-1) that

I2 =

∫
Td×Rd

|u− v|2
(
−∇x · (v f )−∇v · (L[ f ] f )−∇v · ((u− v) f )

)
dv dx

= 2
∫

Td×Rd
∇x u(u− v) · v f dv dx︸ ︷︷ ︸

=:I21

−2
∫

Td×Rd
(u− v) · L[ f ] f dv dx︸ ︷︷ ︸
=:I22

−2
∫

Td×Rd
|u− v|2 f dv dx︸ ︷︷ ︸
=−2E1

.

Then, we use the stress tensor P =
∫

Rd (v− u)⊗ (v− u) f dv to rewrite I21 as

I21 = 2
∫

Td×Rd
∇x u(u− v) · (v− u) f dv dx = 2

∫
Td
(∇x · P) · u dx .

Thanks to the estimate on I2 in the proof of Lemma 5.1, we see that

I22 =−2
∫

T2d×R2d
ψ(x − y) f (t, x, v) f (t, y, w)(u(t, x)− v) · (w− v) dv dw dx dy ≤ 0.

Therefore, we have
d
dt

E1 ≤ 2
∫

Td
(∇x · P) · u dx − 2E1. (A-1)

We next estimate (d/dt)E2 as follows:

d
dt

E2 = 2
∫

T2d
∂tρ(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy

+ 2
∫

T2d
ρ(t, x)ρ(t, y)(u(t, x)− u(t, y))∂t(u(t, x)− u(t, y)) dx dy

:=J1+ J2.

Since it follows from (2-13) with ε = 1 that

∂tρ+∇x · (ρu)= 0,

ρ ∂t u+ ρu · ∇x u+∇x · P =
∫

Rd
L[ f ] f dv,
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we obtain (recall that ‖ρ‖L1(Td ) = 1)

J1 =−2
∫

T2d
∇x · (ρu)(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy

= 4
∫

Td
ρu · ∇x u · u dx − 4

∫
Td
ρu · ∇x u dx ·

∫
Td
ρu dx,

and

J2= 4
∫

T2d
ρ(t, y)u(t, x)ρ(t, x)∂t u(t, x) dx dy− 4

∫
T2d
ρ(t, y)u(t, y)ρ(t, x)∂t u(t, x) dx dy

=−4
∫

Td
ρu·∇x u·u dx− 4

∫
Td
∇x ·P·u dx+ 4

∫
Td×Rd

u·L[ f ] f dx dv︸ ︷︷ ︸
:=J21

+ 4
∫

Td
ρu·∇x u dx ·

∫
Td
ρu dx

+ 4
∫

Td
∇x ·P dx︸ ︷︷ ︸
=0

·

∫
Td
ρu dx− 4

∫
Td×Rd

L[ f ] f dx dv︸ ︷︷ ︸
:=J22

·

∫
Td
ρu dx .

Now, we compute the above terms J21 and J22 as follows:

J21 =

∫
T2d×R2d

ψ(x − y) f (t, x, v) f (t, y, w)(w− v) · u(t, x) dv dw dx dy

=

∫
T2d
ψ(x − y)ρ(t, x)ρ(t, y)(u(t, y)− u(t, x)) · u(t, x) dx dy

=−
1
2

∫
T2d
ψ(x − y)ρ(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy,

J22 =

∫
T2d×R2d

ψ(x − y) f (t, x, v) f (t, y, w)(w− v) dv dw dx dy = 0.

Therefore, we have

d
dt

E2 =−4
∫

Td
∇x · P · u dx − 2

∫
T2d
ψ(x − y)ρ(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy.

Recalling (A-1), proves that

d
dt

E ≤−2E1−

∫
T2d
ψ(x − y)ρ(t, x)ρ(t, y)|u(t, x)− u(t, y)|2 dx dy

≤−2E1−ψmE2 ≤−2 min{1, ψm}E,

which completes the proof of (2-11).
To show the second bound (2-12), note that if `T := supt∈[0,T ] ‖∇x u‖L∞(Td ) <∞ then (A-1) yields

d
dt

E1(t)≤−2
∫

Td
∇x u : P dx − 2E1 ≤ 2`T

∫
Td×Rd

|u− v|2 f dv dx − 2E1(t)= 2(`T − 1)E1(t),

which proves (2-12). �
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