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This article is concerned with the incompressible, infinite-depth water wave equation in two space
dimensions, with gravity and constant vorticity but with no surface tension. We consider this problem
expressed in position-velocity potential holomorphic coordinates, and prove local well-posedness for
large data, as well as cubic lifespan bounds for small-data solutions.
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1. Introduction

The motion of water in contact with air is well described by the incompressible Euler equations in the
fluid domain, combined with two boundary conditions on the free surface, i.e., the interface with air. In
special, but still physically relevant cases, the equations of motion can be viewed as evolution equations
for the free surface. These equations are commonly referred to as the water wave equations. Most notably,
this is the case for irrotational flows. However, in two space dimensions there is a natural extension of
these equations to flows with constant vorticity.

In previous work [Hunter, Ifrim and Tataru 2016; Ifrim and Tataru 2016] we have considered the
local and long-time behavior for the irrotational gravity wave equations with infinite depth in two space
dimensions. In this article we take a first step toward understanding the more difficult question of the
long-time behavior of gravity waves with infinite depth and constant vorticity, either in R×R or in the
periodic case R× T. We begin by establishing a local well-posedness result. Then we consider the
lifespan of small-data solutions, where, like in the zero vorticity case [Hunter, Ifrim and Tataru 2016],
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we are able to prove cubic lifespan bounds. To the best of our knowledge, this is the first long-time
well-posedness result for this problem.

We remark that it is of further interest to consider small localized data, and establish an almost global
in time result, as it was done in the irrotational case in [Hunter, Ifrim and Tataru 2016], improving an
earlier result of [Wu 2009]. However, in the constant vorticity case this problem presents some interesting
new challenges. We hope to consider this in subsequent work.

The motivation to study the constant vorticity problem comes from multiple sources. On one hand,
from a mathematical perspective, it provides us with the possibility to consider vorticity effects in a
framework where the equations of motion can still be described in terms of the water/air interface, while
allowing for a larger range of dynamic behavior, which is particularly interesting over large time scales.
On the other hand, from a practical perspective, constant vorticity flows are good models for the water
motion in the presence of countercurrents. An interesting example of this type is provided by tidal
effects.

The constant vorticity problem is a subset of the full vorticity problem, and as such, local well-posedness
for regular enough data can be viewed as a consequence of results for the general problem. For this we
refer the reader to [Christodoulou and Lindblad 2000; Lannes 2005; Lindblad 2005; Coutand and Shkoller
2007; Shatah and Zeng 2008; Zhang and Zhang 2008]. There has also been a considerable body of work
devoted to the study of solitary waves in constant vorticity flows. A good source of information in this
direction is provided by several recent articles [Constantin and Varvaruca 2011; Kozlov, Kuznetsov and
Lokharu 2014; Constantin, Kalimeris and Scherzer 2015], as well as the survey article [Strauss 2010].
Various ways of formulating the equations have been described in [Wahlén 2007; Ehrnström 2008; Ashton
and Fokas 2011].

The conformal formulation for two-dimensional water waves, which we adopt here, following our
previous work [Hunter, Ifrim and Tataru 2016], originates in early work on traveling waves; see, e.g., [Levi-
Civita 1925]. For the dynamical problem, to the best of our knowledge it first appears in [Ovsjannikov
1974], but was better developed later in [Wu 1997] and also in [Dyachenko, Kuznetsov, Spector and
Zakharov 1996]. It has been widely used since then in order to study a variety of water wave problems.
However, as far as we know, this is the first article where this formulation is fully implemented in the
constant vorticity case.

1A. Equations of motion. The water flow is governed by the incompressible Euler equations in the
fluid domain �t , with a dynamic and a kinematic boundary condition on the free surface of the fluid 0t .
Denoting the fluid velocity by u(t, x, y) = (u(t, x, y), v(t, x, y)), and the pressure by p(t, x, y), the
equations of motion are the equation of mass conservation

ux + vy = 0 in �(t), (1-1)

and Euler’s equations also in �(t) {
ut + uux + vu y =−px ,

vt + uvx + vvy =−py − g,
(1-2)
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where g is the gravitational constant. The boundary conditions for capillary-gravity waves are the dynamic
boundary condition

p = p0 on 0(t), (1-3)

p0 being the constant atmospheric pressure, and the kinematic boundary condition, which asserts that the
free boundary 0(t) is transported along the flow. Since we are in the two-dimensional case, the vorticity
will also be transported along the flow. This makes it possible to study flows with a nonzero constant
vorticity field,

ω = u y − vx =−c, where c is a constant.

Then the velocity field u can be represented as

u = (cy+ϕx , ϕy),

where ϕ(t, x, y) is called the (generalized) velocity potential. Here ϕ it is defined up to an arbitrary
function of time and, by the incompressibility condition, it satisfies the Laplace equation in �(t)

4ϕ(t, x, y)= 0.

This brings us to our boundary condition on the bottom, which asserts that

lim
y→−∞

ϕ(x, y)= 0, uniformly in x .

Then ϕ is uniquely determined by its values on the free surface 0(t).
Introducing its harmonic conjugate θ(t, x, y),

ϕx = θy, ϕy =−θx ,

we can rewrite the equations in (1-2) as a single scalar equation in the fluid domain:

∇
(
ϕt − cθ + cyϕx +

1
2(ϕ

2
x +ϕ

2
y)+ gy

)
= 0.

Since ϕ is only defined up to an arbitrary function of time, we can absorb a function of time into ϕ. Using
the fact that the pressure is constant on 0(t), we obtain the following analogue of Bernoulli’s equation:

ϕt − cθ + cyϕx +
1
2(ϕ

2
x +ϕ

2
y)+ gy = 0 on 0(t). (1-4)

This is the equation that makes possible reduction of dimensionality of the problem, in the same manner
as for purely potential flows. This is in combination with the kinematic boundary condition, which is
already restricted to 0(t). We remark that expressing θ and the full gradient ∇ϕ on 0(t) in terms of the
restriction of ϕ to 0(t) requires using the Dirichlet-to-Neumann map associated to the fluid domain, and
in turn makes our equations nonlocal.
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1B. The equations in holomorphic coordinates. The first issue we need to address is the choice of
coordinates. Here we take our cue from [Hunter, Ifrim and Tataru 2016], henceforth abbreviated [HIT16],
and work in holomorphic coordinates. There are also other ways of expressing the equations, for instance
in Cartesian coordinates using the Dirichlet-to-Neumann map associated to the water domain; see, e.g.,
[Alazard, Burq and Zuily 2011; 2014]. However, we prefer the holomorphic coordinates due to the simpler
form of the equations; in particular, in these coordinates the Dirichlet-to-Neumann map is diagonalized
and given in terms of the standard Hilbert transform.

We obtain a system which models the time evolution of the free surface, described via a function W
as the graph of the function α→W (α)+α, and that of the holomorphic velocity potential Q = ϕ+ iθ
restricted to the free surface. The derivation of the equations is relegated to Appendix B, also using some
of the analysis from the Appendix in [HIT16]. Some minor changes are needed for the periodic case;
these are also described in [HIT16, Appendix B]. The outcome of this computation is the following set of
equations: 

Wt + (Wα + 1)F + i c
2

W = 0,

Qt − igW + F Qα + icQ+ P
[
|Qα|

2

J

]
− i c

2
T1 = 0,

(1-5)

where J := |1+Wα|
2, P is the projection onto negative wave numbers

P = 1
2(I − i H), with H the Hilbert transform,

and

F := P
[

Qα − Qα

J

]
, F1 := P

[
W

1+W α

+
W

1+Wα

]
,

F := F − i c
2

F1, T1 := P
[

W Qα

1+W α

−
W Qα

1+Wα

]
.

These equations are considered either in R×R or in R×S1. They model an evolution in the space of
functions which admit bounded holomorphic extensions to the lower half-space; equivalently, their Fourier
transform is supported on the negative real line. By a slight abuse, we call such functions holomorphic.

This is a Hamiltonian system, where the Hamiltonian has the form

E(W, Q)=<
∫

g|W |2(1+Wα)− i Q Qα + cQα(=W )2−
c3

2i
|W |2W (1+Wα) dα. (1-6)

A second conserved quantity is the horizontal momentum,

P(W, Q)=
∫ {1

i
(QWα − QW α)− c|W |2+ c

2
(W 2W α +W 2Wα)

}
dα, (1-7)

which is the Hamiltonian for the group of horizontal translations.
We remark that if c = 0 then the equations (1-5) are the gravity water wave equations studied in

[HIT16]. The sign of c is not important, as it can be switched via the flip α→−α. For convenience we
assume c > 0. The space-time scaling

(W (t, α), Q(t, α))→ (λ−2W (λt, λ2x), λ−3 Q(λt, λ2x))
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is a symmetry for gravity waves (thus it leaves g unchanged). Here it changes c→ λc. Finally, the purely
spatial scaling

(W (t, α), Q(t, α))→ (λ−2W (t, λ2x), λ−3 Q(t, λ2x))

has the effect of leaving c unaffected, but it changes g→ λ−1g. Thus one could use scaling considerations
to set both c= 1 and g= 1. However, we choose not to do that, and instead use the coefficients c and g to
keep better track of the expressions arising in our analysis. In this context, it is useful to observe that one
can interpret c2/g as an (inverse) semiclassical parameter, so that all energy expressions can be viewed as
homogeneous.

We further remark that the terms involving c are lower-order, though they cannot be viewed as bounded.
Thus, it is natural to expect that the local theory for this problem is not very different from the gravity
waves; indeed, our results in this regard are similar to [HIT16]. However, we will see that the long-time
behavior is quite different in the constant vorticity case.

To further motivate our expectations concerning this system, we note that the linearization of the
system (1-5) around the zero solution is{

wt + qα = 0,
qt + icq − igw = 0,

(1-8)

restricted to holomorphic functions (in our terminology, these are functions with negative spectrum). It is
not difficult to see that this is a dispersive equation. Expressed as a second-order equation this becomes

wt t + icwt + igwα = 0. (1-9)

From here we can deduce the associated dispersion relation,

τ 2
+ cτ + gξ = 0, ξ ≤ 0. (1-10)

This is the intersection of a lateral parabola with the left half-space. It has two branches, intersecting the
axis ξ = 0 at τ = 0 and τ =−c.

The conserved energy and momentum for (1-8) are, respectively,

E0(w, r)=
∫
|w|2− iqq̄α dα = ‖w‖2L2 +‖q‖2Ḣ1/2,

P0(w, r)=
∫

1
i
(q̄wα − qw̄α)− c|w|2 dα.

The former motivates the functional setting where we will study the equations (1-5). The system (1-8) is a
well-posed linear evolution in the space Ḣ0 of holomorphic functions endowed with the L2

× Ḣ 1/2-norm.
To measure higher regularity we will use the spaces Ḣn endowed with the norm

‖(w, r)‖2Ḣn
:=

n∑
k=0

‖∂k
α(w, r)‖

2
L2×Ḣ1/2,

where n ≥ 1.
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1C. The differentiated equations and diagonalization. As the system (1-5) is fully nonlinear, a standard
procedure is to convert it into a quasilinear system by differentiating it. In the case of gravity waves this
yields a self-contained first-order quasilinear system for (Wα, Qα). This is no longer true here, precisely
due to the contributions from F1 and T1.

To write the differentiated system, as well as the linearized system later on, we introduce several
notations. First, as in [HIT16], we set

W =Wα, R =
Qα

1+W
, Y =

W
1+W

.

The expression R has an intrinsic meaning; namely it is the complex velocity on the water surface. Y, on
the other hand, is introduced for computational reasons only, in order to avoid rational expressions in
many places in the sequel.

We also need two key auxiliary real functions. The first is b, which we call the advection velocity, and
is given by

b := b− i c
2

b1, b := P
[

Qα

J

]
+ P

[
Qα

J

]
, b1 := P

[
W

1+W

]
− P

[
W

1+W

]
. (1-11)

The second is the frequency-shift a, given by

a := a+ c
2

a1, a := i(P[R Rα] − P[R Rα]), a1 = R+ R− N , (1-12)

where

N := P[W Rα −W R] + P[W Rα −W R]. (1-13)

The functions a and b are the leading-order coefficients in the linearized equation, and thus fully describe
the quasilinear nature of the problem. The linearized equation is more involved and is described in full
later, but, as a baseline, the reader should keep in mind the linear system{

wt + bwα + qα = 0,
qt + icq − i(g+ a)w = 0.

(1-14)

The real function g+ a has a physical interpretation as the normal derivative of the pressure on the
interface; this is proved in Appendix A. For more regular irrotational waves (i.e., c = 0) this was proved
by Wu [1997] to be positive; an alternate proof was provided in [HIT16] in the context of holomorphic
coordinates, assuming only scale-invariant regularity (W, R) ∈ Ḣ1/2. This positivity, called the Taylor
sign condition [1950], was crucial for the well-posedness of the water wave system, both with gravity
[Wu 1997; Hunter, Ifrim and Tataru 2016] and with surface tension [Ifrim and Tataru 2017].

For the present problem we still need to know that g+ a is nonnegative, which corresponds with the
normal derivative of the pressure being bounded away from zero. But it is no longer the case that this
comes for free. Thus, we will impose the positivity condition on the normal derivative of the pressure and
solve the equations for as long as this condition holds uniformly. We remark that this is always the case if
we assume that R is small in L∞, which is the case for our small-data result.
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Differentiating with respect to α yields a system for (Wα, Qα), which turns out to be degenerate
hyperbolic with a double speed b. This is explained in detail in the context of irrotational gravity waves
in [HIT16], and easily carries over here as the highest-order terms in the equations are the same. Then it
is natural to diagonalize it. This is also done exactly as in [HIT16], using the operator

A(w, q) := (w, q − Rw), R :=
Qα

1+Wα

. (1-15)

Noting that

A(Wα, Qα)= (W, R), W :=Wα,

it follows that the pair (W, R) diagonalizes the differentiated system. Thus, rather than repeating the
more extensive computations in [HIT16], here we directly take advantage of this knowledge to arrive
more efficiently at the differentiated system for the diagonal variables (W, R).

We first introduce b into the equations using the relations

F = b−
R

1+W
, F1 = b1+

W
1+W

, (1-16)

so that the system (1-5) is written in the formWt + b(1+Wα)+ i c
2

W = R+ i c
2

W,

Qt + bQα − igW + icQ− i c
2

RW = P[|R|2] − i c
2

P[W R−W R].

Here the terms on the right are antiholomorphic and disappear when the equations are projected onto the
holomorphic space.

Next we differentiate the equations. For the first equation we need the expression for bα , for which we
introduce one last set of quadratic auxiliary functions M , M1 and M as follows:

M := M − i c
2

M1,

M :=
Rα

1+W
+

Rα
1+W

− bα = P[RYα − RαY ] + P[RY α − RαY ],

M1 :=W −W − b1,α = P[W Y ]α − P[W Y ]α.

(1-17)

Thus, we can substitute bα with

bα =
Rα

1+W
+

Rα
1+W

− i c
2
(W −W)−M . (1-18)

For the second equation we switch directly to R, and then bα is no longer needed in view of the identity

(∂t + b∂α)R = ∂α(∂t + b∂α)Q− R∂α(Wt + b(1+Wα)).
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Taking the above discussion into account, after some straightforward computations, one arrives at the
system 

Wt + bWα +
(1+W)Rα

1+W
= (1+W)M + i c

2
W(W −W),

Rt + bRα + icR− i
gW − a
1+W

= i c
2

RW + RW + N
1+W

.

(1-19)

This governs an evolution in the space of holomorphic functions, and will be used both directly and in its
projected version. Obviously the two forms are algebraically equivalent.

We remark that while the transport coefficient b appears explicitly in these equations, the frequency
shift a does not. This is due to the fact that the right-hand side of the second equation is still fully
nonlinear in W. To understand better the role played by a one needs either to consider the linearized
equations, which are discussed in Section 3, or to further differentiate (1-19), as in Section 4.

1D. The main results. To describe the lifespan of the solutions we begin with the control norms in
[HIT16], namely

A := ‖W‖L∞ +‖Y‖L∞ +‖|D|1/2 R‖L∞∩B0,∞
2
, (1-20)

B := ‖|D|1/2W‖BMO+‖Rα‖BMO, (1-21)

where |D| represents the multiplier with symbol |ξ |. In order to estimate lower-order terms introduced in
conjunction with c we also introduce

A−1/2 := ‖|D|1/2W‖L∞ +‖R‖L∞, (1-22)

A−1 := ‖W‖L∞ . (1-23)

It is also useful to introduce the notations

B := B+ cA+ c2 A−1/2,

A := A+ cA−1/2+ c2 A−1.
(1-24)

Here A is a scale-invariant quantity, while B corresponds to the homogeneous Ḣ1-norm of (W, R) and
A−1/2 corresponds to the homogeneous Ḣ0-norm of (W, R). We note that B, and all but the Y -component
of A are controlled by the energy and Ḣ1-norm of (W, R).

Now we are ready to state our main results. We begin with the local well-posedness result:

Theorem 1. Let n ≥ 1. The system (1-5) is locally well-posed for initial data (W0, Q0) with the regularity

(W0, Q0) ∈ Ḣ0, (W0, R0) ∈ Ḣ1,

and satisfying the pointwise constraints

|W(α)+ 1|> δ > 0 (no interface singularities), (1-25)

g+ a(α) > δ > 0 (Taylor sign condition). (1-26)

Further, the solution can be continued for as long as A and B remain bounded and the pointwise conditions
above hold uniformly. The same result holds in the periodic setting.
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The well-posedness above should be interpreted in the sense of Hadamard. To be more precise, it
means that there exists some time T > 0, depending only on the initial data size and on the constant δ in
the above pointwise constraints, so that the following properties hold:

(1) (regular data) For each data (W0, Q0), which is as above, but with additional regularity (W0, R0)∈ Ḣn ,
with n ≥ 2, there exists a unique solution (W, Q) in [0, T ], with the property that

‖(W, R)‖C[0,T ;Ḣk ]
. ‖(W0, R0)‖Ḣk

, 0≤ k ≤ n.

(2) (rough data) For each data (W0, Q0) as above there exists a solution (W, Q) in [0, T ], with the
property that

‖(W, R)‖C[0,T ;Ḣk ]
. ‖(W0, R0)‖Ḣk

, k = 0, 1.

Further this solution is the unique limit of regular solutions, and depends continuously on the initial
data.

(3) (weak Lipschitz dependence) The solution (W, Q) has a Lipschitz dependence on the initial data in
the Ḣ1 topology.

The implicit constants in all the estimates above depend only on the initial data size and on the constant δ
in the above pointwise constraints. Further, the last part of the Theorem 1 asserts that in effect these
constants can alternatively be estimated purely in terms of our uniform control parameters A and B, rather
than the full Sobolev norm of the data.

Our second result in this paper is a cubic lifespan bound for the small-data problem:

Theorem 2. Let (W, Q) be a solution for the system (1-5) whose initial data satisfies

‖(W0, Q0)‖Ḣ0
+‖(W0, R0)‖Ḣ1

≤ ε� 1. (1-27)

Then the solution exists for a time Tε ≈ ε−2, with bounds

‖(W, Q)(t)‖Ḣ0
+‖(W, R)(t)‖Ḣ1

. ε, |t |< Tε . (1-28)

Further, higher regularity is also preserved,

‖(W, R)(t)‖Ḣn
. ‖(W, R)(0)‖Ḣn

, |t |< Tε, (1-29)

whenever the norm on the right is finite.

To the best of our knowledge this is the first nontrivial lifespan bound for solutions to this problem. A
similar result for the zero-vorticity problem was proved in our earlier article [HIT16]. The problem here
is considerably more difficult than the one in [HIT16], both technically and conceptually. At the technical
level, the normal form for the vorticity problem is much more involved, and quite nontrivial to compute
(see the next section). Qualitatively, here we have stronger quadratic interactions at low frequency, which,
unlike in [HIT16], prevent us from obtaining cubic bounds for the linearized equation (and thus, for
differences of solutions).



912 MIHAELA IFRIM AND DANIEL TATARU

We further remark that in [HIT16] we also provide a proof of an almost global result for small localized
data for gravity waves. Our aim is to also provide a similar result in this context. However, the ideas in
[HIT16] do not directly carry over to this case, due first, to the lack of a scaling symmetry, and secondly,
to the lack of cubic estimates for the linearized equation. We hope to be able to address these issues in
subsequent work.

We note that the periodic case is almost identical and is not discussed separately. The only difference
in the analysis is in how the constant functions are treated. This is discussed in detail in the Appendix to
[HIT16], and carries over to the present paper without any change.

1E. Outline of the paper. There are three key steps in our analysis, which eventually provide all the
ingredients which are necessary in order to prove our main results. These are as follows:

(i) The normal-form analysis. The constant vorticity water wave equation has many quadratic interactions,
yet we seek to prove small-data lifespan bounds as if the nonlinearities were cubic. At least formally the
key to this is the normal-form analysis [Shatah 1985], which allows us to replace quadratic nonlinearities
with cubic ones. While the normal-form transformation for gravity waves is quite straightforward, in the
presence of constant vorticity, this is no longer the case.

Indeed, the normal form turns out to be unbounded both at low frequency and at high frequency. This
computation is fairly involved, and is carried out in the next section. Its redeeming feature is that its
outcome is also quite explicit.

The normal form we calculate here is not directly used in any of the estimates we derive later on.
However, it is crucially used in order to construct modified energies with cubic estimates, which is the
base of our quasilinear modified energy method [Hunter, Ifrim, Tataru and Wong 2015; 2016].1 Even
though the normal form is badly unbounded, it has enough of a “null structure”, or antisymmetry, so that
the cubic energy corrections it generates are all of bounded type.

(ii) The analysis of the linearized equation in Section 3. This is a critical part of any local well-posedness
result for a quasilinear problem. The derivation of the equations is also interesting, as it clarifies the
quasilinear structure and the roles played by the advection coefficient b, and the frequency shift a.

As for the gravity waves in [HIT16], we are able to prove that the linearized problem is well-posed in
our base space Ḣ0. Further, the bounds we prove are in terms of our control parameters A and B, and not
in terms of the full Sobolev norm of the solution.

Unlike in [HIT16], we are no longer able to prove cubic estimates for the linearized equation. This is
due to the unbounded low-frequency part of the normal-form transformation, which loses its skew-adjoint
structure after linearization. Because of this, we are able to use the bounds for the linearized equation in
the proof of local well-posedness, but only partially in the proof of the cubic lifespan result.

(iii) The cubic energy estimates in Section 4. Since we already have the conserved Hamiltonian, which
controls the Ḣ0-norm of (W, Q), our task here is to successively provide bounds for (W, R) in the

1For earlier attempts to adapt normal forms to quasilinear problems we refer the reader to [Wu 2009; Germain and Masmoudi
2014; Ionescu and Pusateri 2015]. Other equally successful approaches are the paradiagonalization method in [Alazard and
Delort 2015], and the flow method of [Hunter and Ifrim 2012].
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Ḣk spaces for k = 0, 1, . . . . In all cases, we control the evolution of these norms using our pointwise
control parameters A and B.

These bounds come in two flavors: (a) local bounds, which apply for large data, and are needed for the
local well-posedness result, and (b) cubic long-time bounds for small data, which are used for the cubic
lifespan result. The former are obtained largely by differentiating the equation, and then by applying the
bounds for the linearized equation. The latter, however, requires computing cubic energy corrections, and
there, we rely heavily on the normal form.

The crucial step is the one for the Ḣ1-norm of (W, R) (i.e., k = 1), as this is the level where we have
our well-posedness result; for this reason, we describe this case in detail. The case k = 0 is simpler since
(W, R) solves the linearized equation, so we already have the local bound. The case k ≥ 2 is discussed
last, without explicitly computing the modified energy.

Once the bounds for the linearized equation and for the differentiated equation are established, the
remaining arguments in the proofs of our main theorems are a fairly straightforward repetition of arguments
in [HIT16]. We outline this in the last section of the paper.

Finally, the Appendix plays two roles. In Appendix B we outline the derivation of the constant-vorticity
gravity wave equation in holomorphic coordinates. Last, but not least, in Appendix A we collect a number
of bilinear Coifman–Meyer and nonlinear Moser-type estimates, some from [HIT16], and prove the ones
which are new in this paper.

2. The normal-form transformation

The nonlinear evolution (1-5) contains quadratic terms, yet for our problem we seek to prove cubic
lifespan bounds, as if the nonlinearity is at least cubic. In this section we consider the question of finding a
normal transformation, whose aim is to replace the original variables (W, Q) with normal-form variables
(W̃, Q̃) of the form {

W̃ =W + PW[2],
Q̃ = Q+ P Q[2],

(2-1)

where W[2] and Q[2] are quadratic forms in (W, Q), so that the normal-form variables satisfy an equation
with only cubic-and-higher terms,{

W̃t + Q̃α = cubic and higher,
Q̃t − igW̃ + icQ̃ = cubic and higher.

(2-2)

We will indeed show that such a normal-form transformation exists; as it turns out, it is highly unbounded,
both at low and at high frequencies. However, this is expected, and it does not cause any difficulties. This
is because we do not use the normal form directly, but only as a tool to help us construct modified energies
in our quasilinear modified energy method. As it turns, even though the normal-form transformation is
unbounded, it has some favorable structure, so that the modified cubic energies are nevertheless bounded.

2A. The resonance analysis. We begin by examining whether our evolution has quadratic resonant
interactions. Taking into account the possible complex conjugations and the dispersion relation (1-10),



914 MIHAELA IFRIM AND DANIEL TATARU

the quadratic resonant interactions are associated with three pairs of characteristic frequencies (τ1, ξ1),
(τ2, ξ2) and (τ, ξ) so that (τ1, ξ1)+ (τ2, ξ2) = (τ, ξ). Combining this with the dispersion relation we
obtain τ 2

1 + τ
2
2 = τ

2, which leads to τ1τ2 = 0. Hence, we either have (τ1, ξ1)= (0, 0) or (τ2, ξ2)= (0, 0).
Thus, resonant interactions occur only when either one of the inputs or the output is at frequency zero.
In terms of the normal-form transformation, this indicates that at most we will have singularities when
either input is at frequency zero, or the output is at frequency zero. We will see that, due to the form of
the quadratic terms in the equation, the former scenario happens, but the latter does not.

2B. The normal-form computation. We begin with the quadratic and expansion in the equation (1-5),
and then we compute the normal-form transformation which eliminates the quadratic terms from the
equation. Starting with

F ≈ Qα − QαWα + P[QαWα − QαW α] + P[(Qα − Qα)(4|<Wα|
2
− |Wα|

2)],

we compute the multilinear expansion{
Wt + Qα = G(2)

+G(3+),

Qt − igW + icQ = K (2)
+ K (3+),

(2-3)

where the quadratic terms (G(2), K (2)) are given byG(2)
=−P[QαWα − QαW α] − i c

2
P[W W α +W Wα] + i c

2
W Wα,

K (2)
=−Q2

α − P[|Qα|
2
] + i c

2
W Qα + i c

2
P[W Qα −W Qα].

The role of the normal-form transformation is to eliminate the quadratic terms (G(2), K (2)) from the
equation (2-3). We can divide the quadratic terms above into two classes:

(a) holomorphic, i.e., those which are the product of two holomorphic functions,

(b) mixed, i.e., those which are the (projected) product of one holomorphic function with another’s
conjugate.

Thus, we expect the normal form to have a similar structure,

W[2] =W h
[2]+W a

[2], Q[2] = Qh
[2]+ Qa

[2], (2-4)

where, allowing for all possible combinations, the above components must have the form

W h
[2] = Bh(W,W )+Ch(Q, Q)+ Dh(W, Q),

W a
[2] = Ba(W,W )+Ca(Q, Q)+ Da(W, Q)+ Ea(Q,W ),

Qh
[2] = Fh(W,W )+ H h(Q, Q)+ Ah(W, Q),

Qa
[2] = Fa(W,W )+ Ha(Q, Q)+ Aa(W, Q)+Ga(Q,W ).

(2-5)

All the above expressions are translation-invariant bilinear forms, whose symbols we need to compute.
Our main result is as follows:
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Proposition 2.1. The equation (2-3) admits a normal-form transformation (2-1) as in (2-4)–(2-5), where
the symbols for the bilinear operators in (2-5) are given by (2-12), (2-13), and (2-16).

For later use, i.e., for computing the modified energy cubic corrections, we also translate the symbols
(2-12), (2-13), and (2-16) into the spatial description. Precisely, the holomorphic terms have the form

Bh(W,W )=−W W + i
c2

2g
(W∂−1

α W +W 2)+
c4

4g2 W∂−1
α W,

Ch(Q, Q)=−
c2

4g2 Q Qα,

Dh(W, Q)=−
c

2g
(W Q+W Qα)+ i

c3

4g
(W Q+ ∂−1

α W Qα),

Fh(W,W )= i
c
4

W 2
+

c3

4g
W∂−1

α W,

H h(Q, Q)=−
c

2g
Q Qα,

Ah(W, Q)=−W Qα + i
c2

2g
∂−1
α W Qα + i

c2

4g
W Q,

(2-6)

and the antiholomorphic counterparts are given by

Ba(W,W )=−W W − i
c2

2g
W∂−1

α W + i
c2

4g
|W |2−

c4

4g2 W∂−1
α W,

Ca(Q, Q)=−
c2

4g2 Q Qα,

Da(W, Q)=−
c

2g
W Q+ i

c3

4g2 W Q,

Ga(Q,W )=−QαW − i
c2

2g
Qα∂

−1
α W,

Ea(Q,W )=−
c

2g
QαW − i

c3

4g2 Qα∂
−1
α W,

Ha(Q, Q)=−
c

2g
Q Qα,

Aa(W, Q)= i
c2

4g
W Q,

Fa(W,W )= i
c
2
|W |2−

c3

4g
W∂−1

α W .

(2-7)

We note that while for computational purposes it is convenient to separate the two components of the
normal form, in order to see the antisymmetric structure of the (low frequency) unbounded part, one has
to consider them together; see the computations in Section 4. Toward that goal, we rewrite the quadratic
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normal-form components in the following form:

W [2] =−(W +W )Wα −
c

2g
[(Q+ Q)Wα + (W +W )Qα]

+ i
c2

2g

[
(∂−1W − ∂−1W )Wα +W 2

+
1
2 |W |

2]
−

c2

4g2 (Q+ Q)Qα

+ i
c3

4g2 [(Q+ Q)W + (∂−1W − ∂−1W )Qα] +
c4

4g2 (∂
−1W − ∂−1W )W,

Q[2] =−(W +W )Qα −
c

2g
(Q+ Q)Qα + i c

4
(W 2
+ 2|W |2)

+ i
c2

2g

[
(∂−1W − ∂−1W )Qα +

1
2(Q+ Q)W

]
+

c3

4g
(∂−1W − ∂−1W )W.

(2-8)

Proof of Proposition 2.1. A priori, computing the normal form, i.e., all symbols of the bilinear expressions
above, might appear quite involved. However, there are several observations which bring this analysis to
a more manageable level:

• The analysis for the holomorphic products, and for the mixed terms is completely separate.

• The system we obtain for the symbols has polynomial coefficients, so the solutions are rational
functions.

• Counting c as one half of a derivative; the problem is homogeneous. Thus, organizing symbols based
on the powers of c, each such term will have a specific homogeneity. Further, at each power of c, we
will encounter only half the terms, as there is a half-derivative difference between the scaling of W
and that of Q.

• The terms without c are already known from the gravity wave problem [HIT16].

Given the above considerations, the natural strategy is to split the analysis into the holomorphic and the
mixed part, and in each of these cases to successively solve for increasing powers of c. The computation
stops at c4.

(i) Holomorphic terms. Here we seek a normal form for the system{
Wt + Qα = i c

2
W Wα,

Qt − igW + icQ =−Q2
α + i c

2
W Qα + cubic.

By checking parity, our normal form must be{
W̃ =W + Bh(W,W )+Ch(Q, Q)+ Dh(W, Q),
Q̃ = Q+ Fh(W,W )+ H h(Q, Q)+ Ah(W, Q),

where Bh, Ch, Fh and H h are symmetric bilinear forms with symbols Bh(ξ, η), Ch(ξ, η), Fh(ξ, η),
H h(ξ, η) and Ah and DH are arbitrary. We compute

W̃t + Q̃α =−2Bh(Qα,W )+ 2igCh(W, Q)− 2icCh(Q, Q)− Dh(Qα, Q)+ igDh(W,W ),

− icDh(W, Q)+ ∂α(Fh(W,W )+ H h(Q, Q)+ Ah(W, Q))+ i c
2

W Wα + cubic,
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Q̃t − igW̃ + icQ̃ =−2Fh(Qα,W )+ 2igH h(W, Q)− icH h(Q, Q)− Ah(Qα, Q)+ ig Ah(W,W )

− igBh(W,W )− igCh(Q, Q)− igDh(W, Q)+ icFh(W,W )− Q2
α

+ i c
2

W Qα + cubic.

We denote the two input frequencies by ξ and η, both of which are negative. Then, matching like terms,
we obtain the following linear system for the symbols:

2ηBh
− 2gCh

+ cDh
− (ξ + η)Ah

= 0,

2cCh
+ [ξDh

]sym− (ξ + η)H h
= 0,

g[Dh
]sym+ (ξ + η)Fh

=−i c
4
(ξ + η),

2ηFh
− 2gH h

+ gDh
= i c

2
η,

cH h
+ [ξ Ah

]sym+ gCh
=−iξη,

g[Ah
]sym− gBh

+ cFh
= 0,

where “sym” stands for symmetrization. Using the first equation in the system above helps us to determine
the symmetrized symbol of Ah ,

Ah
=

1
ξ + η

[cDh
− 2gCh

+ 2ηBh
],

which implies

[Ah
]sym =

1
ξ + η

[
c[Dh
]sym− 2gCh

+ (η+ ξ)Bh],
[ξ Ah
]sym =

1
ξ + η

[
c[ξDh

]sym− g(ξ + η)Ch
+ 2ξηBh]. (2-9)

The fourth equation provides an expression for the symmetrized symbol of Dh ,

Dh
=−

2
g
ηFh
+ 2H h

+ i
c

2g
η,

which implies
g[Dh
]sym =−(ξ + η)Fh

+ 2gH h
+ i c

4
(ξ + η),

[ξDh
]sym =−

2
g
ξηFh

+ (ξ + η)H h
+ i c

2g
ξη,

(2-10)

Using (2-10) in (2-9) gives

[Ah
]sym =

1
ξ + η

[
−

c
g
(ξ + η)Fh

+ 2cH h
+ i

c2

4g
(ξ + η)− 2gCh

+ (η+ ξ)Bh
]
,

[ξ Ah
]sym =

1
ξ + η

[
−

2c
g
ξηFh

+ (ξ + η)cH h
+ i

c2

2g
ξη− g(ξ + η)Ch

+ 2ξηBh
]
.

(2-11)

Thus, we return to the following system
2cCh

+ [ξDh
]sym− (ξ + η)H h

= 0,

g[Dh
]sym+ (ξ + η)Fh

=−i c
4
(ξ + η),

cH h
+ [ξ Ah

]sym+ gCh
=−iξη,

g[Ah
]sym− gBh

+ cFh
= 0,
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where we substitute the corresponding values from (2-10), (2-11), and obtain

2cCh
−

2
g
ξηFh

+ (ξ + η)H h
+ i c

2g
ξη− (ξ + η)H h

= 0,

−(ξ + η)Fh
+ 2gH h

+ i c
4
(ξ + η)+ (ξ + η)Fh

=−i c
4
(ξ + η),

cH h
+

1
ξ + η

[
−

2c
g
ξηFh

+ (ξ + η)cH h
+ i c2

2g
ξη− g(ξ + η)Ch

+ 2ξηBh
]
+ gCh

=−iξη,

1
ξ + η

[
−c(ξ + η)Fh

+ 2cgH h
+ i c2

4
(ξ + η)− 2g2Ch

+ (η+ ξ)gBh
]
− gBh

+ cFh
= 0,

so 

2cCh
−

2
g
ξηFh

=−i c
2g
ξη,

H h
=−i c

4g
(ξ + η),

cH h
−

c
g
ξη

ξ + η
Fh
+

ξη

ξ + η
Bh
=−i

ξη

2
− i

c2

4g
ξη

ξ + η
,

cH h
− gCh

=−i c2

8g
(ξ + η).

The solution is

Bh
=−

i
2
(ξ + η)+ i

c2

4g
(ξ + η)2

ξη
− i

c4

8g2

ξ + η

ξη
,

Ch
=−i

c2

8g2 (ξ + η),

Fh
= i c

4
− i

c3

8g
ξ + η

ξη
,

H h
=−i

c
4g
(ξ + η).

(2-12)

It remains to find Ah and Dh, which we obtain from{
2ηBh

− 2gCh
+ cDh

− (ξ + η)Ah
= 0,

2ηFh
− 2gH h

+ gDh
= i c

2
η.

Thus,

Ah
=−iη+ i

c2

2g
ηξ−1

+ i
c2

4g
,

Dh
= i

c3

4g2

ξ + η

ξ
− i

c
2g
(ξ + η).

(2-13)

(ii) Mixed terms. Here we need a normal form for the systemWt + Qα =−P[QαWα − QαW α] − i c
2

P[W W α +W Wα] + cubic,

Qt − igW + icQ =−P[|Qα|
2
] + i c

2
P[W Qα −W Qα] + cubic.

The general expression for our normal form is{
W̃ =W + Ba(W,W )+Ca(Q, Q)+ Da(W, Q)+ Ea(Q,W ),

Q̃ = Q+ Fa(W,W )+ Ha(Q, Q)+ Aa(W, Q)+Ga(Q,W ),
(2-14)
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where no symmetry assumption is required. We compute

W̃t+ Q̃α =−Ba(Qα,W )−Ba(W, Qα)+ igCa(W, Q)− igCa(Q,W )−Da(Qα, Q)

− igDa(W,W )+ icDa(W, Q)+ igEa(W,W )− icEa(Q,W )−Ea(Q, Qα)

− P[QαWα−QαW α]+∂α[Fa(W,W )+Ha(Q, Q)+ Aa(W, Q)+Ga(Q,W )]

− i c
2

P[W W α+W Wα]+cubic,

Q̃t− igW̃+ icQ̃ =−Fa(Qα,W )−Fa(W, Qα)+ igHa(W, Q)− igHa(Q,W )− Aa(Qα, Q)

− ig Aa(W,W )+ icAa(W, Q)−Ga(Q, Qα)+ igGa(W,W )− igBa(W,W )

− igCa(Q, Q)− igDa(W, Q)− igEa(Q,W )+ icFa(W,W )+ icHa(Q, Q)

+ icAa(W, Q)− P[|Qα|
2
]+ i c

2
P[W Qα−W Qα]+cubic.

Now we denote by ξ the frequency of the holomorphic input and by η the frequency of the conjugated
input (both negative). Matching again like terms, it remains to solve the system

ξ Ba
+ gCa

+ cEa
− (ξ − η)Ga

=−iξη,
ηBa
+ gCa

+ (ξ − η)Aa
+ cDa

=−iξη,
ξDa
− ηEa

− (ξ − η)Ha
= 0,

gDa
− gEa

− (ξ − η)Fa
= i c

2
(η− ξ),

ξFa
+ gHa

+ gEa
=−i c

2
ξ,

ηFa
+ gHa

+ 2cAa
− gDa

= i c
2
η,

ξ Aa
+ gCa

− cHa
− ηGa

= iξη,
g Aa
+ gBa

− cFa
− gGa

= 0.

(2-15)

To avoid solving an 8× 8 system we expand the result in terms of powers of c. A homogeneity analysis
shows that Ba, Ca, Ga and Aa contain only even powers, while the other four symbols contain only odd
powers. We solve for the coefficients of increasing powers of c, noting that at each stage we only need to
solve a 4× 4 system. The outcome of the first step (i.e., if c = 0) is already known from gravity waves
[HIT16]. The computations are somewhat tedious, but quite elementary. We omit them and only write
the final result:

Ca(ξ, η)=−i
c2

4g2 ξ, Ba(ξ, η)=−i
c4

4g2η
−1
+ i

c2

2g
ξη−1

+ i
c2

4g
− iξ,

Da(ξ, η)= i
c3

4g2 − i
c

2g
ξ, Ea(ξ, η)= i

c3

4g2 ξη
−1
− i

c
2g
ξ,

Aa(ξ, η)= i
c2

4g
, Fa(ξ, η)=−i

c3

4g
η−1
+ i c

2
,

Ha(ξ, η)=−i
c

2g
ξ, Ga(ξ, η)= i

c2

2g
ξη−1

− iξ.

(2-16)

�
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3. The linearized equation

In this section we derive the linearized water wave equations, and prove energy estimates for them. We
recall that for the similar problem in [HIT16] we were able to prove quadratic energy estimates in Ḣ0,
which apply for the large-data problem, but also cubic energy estimates for the small-data problem.
By contrast, here we are only able to prove the quadratic energy estimates. This suffices for the local
well-posedness theory, but is not so useful in order to establish improved lifespan bounds. It appears
unlikely that cubic energy estimates hold in Ḣ0 for the linearized problem; in any case, we leave this
question open.

3A. Computing the linearization. The solutions for the linearized water wave equation around a profile
(W, Q) are denoted by (w, q). However, it will be more convenient to immediately switch to diagonal
variables (w, r), where

r := q − Rw.

We first recall the equations,{
Wt + F(Wα + 1)+ i c

2
W = 0,

Qt − igW + F Qα + icQ+ P[|R|2] − i c
2

T1 = 0,
(3-1)

where F = F − i c
2

F1 with

F = P
[

R

1+W
−

R
1+W

]
, F1 = P

[
W

1+W
+

W
1+W

]
, T1 = P[W R−W R].

The linearization of R is

δR =
qα − Rwα

1+W
=

rα + Rαw
1+W

,

and that of |R|2 is

δ|R|2 = n+ n̄, n := RδR =
R(rα + Rαw)

1+W
.

The linearizations of F , F1 and T1 can be expressed in the form

δF = P[m− m̄], δF1 = P[m1+ m̄1], δT1 = P[m2− m̄2],

where the auxiliary variables m,m1,m2 correspond to differentiating F , F1 and T1 with respect to the
holomorphic variables,

m :=
qα − Rwα

J
+

Rwα
(1+W)2

=
rα + Rαw

J
+

Rwα
(1+W)2

,

m1 :=
1

1+W
w−

W
(1+W)2

wα, m2 := Rw−
Wrα +W Rαw

1+W
.
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Given all of the above, it follows that the linearized water wave equations take the formwt + Fwα + (1+W)
(

P[m− m̄] − i c
2

P[m1+ m̄1]

)
+ i c

2
w = 0,

qt + Fqα + Qα

(
P[m− m̄] − i c

2
P[m1+ m̄1]

)
− igw+ icq + P[n+ n̄] − i c

2
P[m2− m̄2] = 0.

Now we transition in both equations from F to the real advection coefficient b using the relations
(1-16). We also move to the right all the terms which we expect to be perturbative. These are terms like
Pm, Pn, Pm1, Pm2, which are lower-order since the differentiated holomorphic variables have to be
lower-frequency. The same applies to their conjugates. Then, our equations are rewritten as

(∂t + b∂α)w+
[

i c
2
w+ (1+W)

(
m− i c

2
m1

)
−

Rwα
1+W

− i c
2

Wwα

1+W

]
= G0

(∂t + b∂α)q − igw+ icq +
[

Qα

(
m− i c

2
m1

)
+ n− i c

2
m2−

Rqα
1+W

− i c
2

Wqα
1+W

]
= K0,

where G0 = (1+W)
(
(Pm̄+ Pm)+ i c

2
(Pm̄1− Pm1)

)
,

K0 = Qα

(
(Pm̄+ Pm)+ i c

2
(Pm̄1− Pm1)

)
+ (Pn− P n̄)− i c

2
(Pm̄2+ Pm2).

Taking advantage of algebraic cancellations in the square brackets above we are left with
(∂t + b∂α)w+

1

1+W

(
rα + Rαw+ i c

2
(W −W)w

)
= G0,

(∂t + b∂α)q − igw+ icq +
R

1+W

(
rα + Rαw+ i c

2
(W −W)w

)
− i c

2
(R+ R)w = K0.

Now we can switch from q to r = q − Rw and obtain a diagonalized system, namely(∂t + b∂α)w+
1

1+W

(
rα + Rαw+ i c

2
(W −W)w

)
= G0,

(∂t + b∂α)r + icr − i
(

g+ c
2
(R− R)+ i(∂t + b∂α)R

)
w = K0− RG0.

For the expression (∂t + b∂α)R in the second equation we use (1-19) and compute the coefficient of w as
follows:

g+ c
2
(R− R)− i(∂t + b∂α)R = g+ c

2
(R− R)+ cR−

gW − a
1+W

−
c
2

RW + RW + N
1+W

=
g+ a+ (c/2)(R+ R− N )

1+W
.

This motivates the definition of a in (1-12). With this notation, we write the final form of the linearized
equations as 

(∂t + b∂α)w+
rα

1+W
+

Rαw

1+W
= G(w, r),

(∂t + b∂α)r + icr − i
g+ a
1+W

w = K(w, r),
(3-2)
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where G(w, r), and K(w, r) are given by

G(w, r)= G(w, r)− i c
2
G1(w, r), K(w, r)= K(w, r)− i c

2
K1(w, r),

where

G(w, r)= (1+W)(Pm̄+ Pm), G1(w, r)=−(1+W)(Pm̄1− Pm1)+
(W −W)w

1+W
, (3-3)

K(w, r)= Pn− P n̄, K1(w, r)= Pm̄2+ Pm2. (3-4)

If c = 0, then these equations coincide with those in [HIT16]. The fact that g+ a is real and positive is
crucial for the well-posedness of the linearized system.

We remark that while (w, r) are holomorphic, it is not directly obvious that the above evolution
preserves the space of holomorphic states. To remedy this, one can also project the linearized equations
onto the space of holomorphic functions via the projection P. Then we obtain the equations

(∂t +Mb∂α)w+ P
[

1

1+W
rα

]
+ P

[
Rα

1+W
w

]
= PG(w, r),

(∂t +Mb∂α)r + icr − i P
[

g+ a
1+W

w

]
= PK(w, r).

(3-5)

Since the original set of equations (1-5) is fully holomorphic, it follows that the two sets of equations
(3-2) and (3-5) are algebraically equivalent.

In order to investigate the possibility of cubic linearized energy estimates it is also of interest to separate
the quadratic parts G2 and K2 of G and K. The holomorphic quadratic parts of G and K, which also appear
in [HIT16], are given by

PG(2)(w, r)=−P[W r̄α] + P[Rw̄α], PK(2)(w, r)=−P[Rr̄α].

Next we compute the similar decomposition for G2
1 and K2

1, since the rest was done in [HIT16]. These
are split into quadratic and cubic-and-higher terms as shown below:

G1 = G(2)1 +G(3+)1 , K1 = K(2)1 +K(3+)1 .

For the quadratic parts we have the holomorphic components{
PG(2)1 (w, r)= P[Ww̄] + P[W w̄α] + P[Ww] − P[Ww],

PK(2)1 (w, r)= P[Wr̄α] − P[Rw̄],
(3-6)

and the antiholomorphic components{
PG(2)1 (w, r)=−P[Ww] − P[Wwα] + P[Ww],

PK(2)1 (w, r)= P[Wrα] − P[Rw].

The cubic terms have the form{
G(3+)1 (w, r)=−W(Pm̄1− Pm1)− (Pm̄(3+)

1 − Pm(3+)
1 )− Y (W −W)w,

K(3+)1 (w, r)= Pm(3+)
2 + Pm̄(3+)

2 .
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For the purpose of simplifying nonlinear estimates, it is convenient to express G(3)1 and K(3)1 in a polynomial
fashion. This is done using the variable Y =W/(1+W). Then we have

Pm1 =−P[Yw+ (Y 2
− 2Y + 1)Wwα],

Pm(3+)
= P[(2Y − Y 2)Wwα],

Pm(3+)
2 = P[W Yrα −W Rα(1− Y )w].

3B. Quadratic estimates for large data. Our goal here is to study the well-posedness of the system (3-5)
in L2

× Ḣ 1/2. We begin with a more general version of the system (3-5), namely
(∂t +Mb∂α)w+ P

[
1

1+W
rα

]
+ P

[
Rα

1+W
w

]
= G,

(∂t +Mb∂α)r + icr − i P
[

g+ a
1+W

w

]
= K ,

(3-7)

and define the associated linear energy

E (2)lin (w, r)=
∫

R

(g+ a)|w|2+=(rr̄α) dα.

We note that the positivity of the energy is closely related to the Taylor sign condition (1-26). Therefore,
when a is positive, we have

E (2)lin (w, r)≈A E0(w, r).

Our first result uses the control parameters A−1/2, A and B defined in (1-22), (1-20), and(1-21),
respectively in order to establish (nearly) cubic bounds for the system (3-7):

Proposition 3.1. The linear equation (3-7) is well-posed in Ḣ0, and the following estimate holds:

d
dt

E (2)lin (w, r)= 2<
∫

R

(g+ a)w̄G− i r̄αK + c2
=R|w|2 dα+ OA(AB)E (2)lin (w, r). (3-8)

We will also need a weighted version of this:

Lemma 3.2. Let f be a real function and (w, r) solutions to (3-7). Then for the difference

I := d
dt
<

∫
f ((g+a)|w|2−i r̄αr) dα−<

∫
f ((g+a)w̄F−i r̄αG)+(∂t+b∂α) f ((g+a)|w|2−i r̄αr) dα

we have the estimate

|I |.A (B‖ f ‖L∞ + A‖|D|1/2 f ‖BMO) ‖(w, r)‖2L2×Ḣ1/2 . (3-9)

Our main use for the result in Proposition 3.1 is to apply it to the linearized equation (3-5):

Proposition 3.3. The linearized equation (3-5) is well-posed in L2
× Ḣ 1/2, and the following estimate

holds:
d
dt

E (2)lin (w, r).A (B+ cA)E (2)lin (w, r). (3-10)



924 MIHAELA IFRIM AND DANIEL TATARU

Proof of Proposition 3.1. A direct computation yields

d
dt

∫
(g+ a)|w|2 dα = 2<

∫
(g+ a)w̄(∂t +Mb∂α)w+ aw̄[b, P]wα dα+

∫
[at + ((g+ a)b)α]|w|2 dα.

A similar computation shows that

d
dt

∫
=(r∂αr̄) dα = 2=

∫
(∂t +Mb∂α)r∂αr̄ dα.

Adding the two and using the equations (3-7), the quadratic <(wr̄α)-term cancels modulo another
commutator term, and we obtain

d
dt

E (2)lin (w, r)= 2<
∫
(g+ a)w̄G− i r̄αK dα+ c2

∫
=R|w|2 dα+ err1, (3-11)

where
err1 =

∫
[at + ((g+ a)b)α − c2

=R]|w|2 dα− 2<
∫
(g+ a)

Rα
1+W

|w|2 dα

− 2<
∫

aw̄[Y , P](rα + Rαw) dα− 2<
∫

aw̄[P, b]wα dα.

Using the auxiliary function M in (1-17), we rewrite it as

err1 =

∫
(at + baα − c2

=R)|w|2− (g+ a)
(

i c
2
(W −W)+M

)
|w|2 dα

− 2<
∫

aw̄([Y , P](rα + Rαw)+ [P, b]wα) dα.

At this point we need to re-express the error in terms of a, a1, b, b1, M , and M1. The terms which do
not have any c-factors were already estimated in [HIT16], so we only need to worry about the remaining
components. There is only one exception: the first term in err1, whose counterpart was estimated separately
in [HIT16], and which we also estimate separately here. Thus, the error we want to bound is composed
of err1 (the same as in [HIT16]) and additional terms, which we call err1,1:

err1 = err1+ err1,1,

where err1,1 is further separated into terms

err1,1 := err1
1,1+ err2

1,1+ err3
1,1− err4

1,1+ err5
1,1+ err6

1,1, (3-12)

which will be estimated separately, and are listed below:

err1
1,1 :=

∫
(at + baα)|w|2 dα,

err2
1,1 :=

c
2

∫
(a1,t + ba1,α − ig(W −W)− 2c=R)|w|2 dα,

err3
1,1 :=

c
2

∫
(i(g+ a)M1− a1 M − ia(W −W))|w|2 dα,

err4
1,1 := 2<

∫
i c

2
aw̄[P, b1]wα dα,
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err5
1,1 := 2<

∫
c
2

a1w̄{[Y , P](rα + Rαw)+ [P, b]wα} dα,

err6
1,1 := <

∫
i c2

4
a1w̄(2[P, b1]wα + (M1−W +W)w) dα.

To conclude the proof of (3-8) we want to show that

|err1|.A (A+ cA−1/2)(B+ cA)E (2)lin (w, r). (3-13)

From [HIT16] we have the bound
|err1|.A AB E (2)lin (w, r),

so it remains to establish (3-13) for each of the err1,1 components. The positive constant c has the role of
a scaling parameter; therefore it makes sense to group terms accordingly.

The bound for err1
1,1. This follows by Proposition A.3 in Appendix A.

The bound for err2
1,1. This follows by Proposition A.4, which we included in Appendix A.

The bound for err3
1,1. Here we use the pointwise estimates

‖a‖L∞ . A2, ‖a1‖L∞ .A A−1/2, ‖M‖L∞ .A AB, ‖M1‖L∞ .A A2.

The first and the third are from [HIT16], while for the second and fourth we use Lemma A.2 and
Proposition A.4. This yields

|err2
1,1|. c(A2

+ AB A−1/2+ A3
+ A4)E (2)lin (w, r).

The bound for err4
1,1. For the terms in err3

1,1 we use the pointwise bounds of a and b1,α (recall that
b1,α =W −W −M1), which were obtained in [HIT16, Proposition 8.6] and in Lemma A.2, respectively:

|a|. A2, ‖b1,α‖L∞ . A+ A2.

To estimate the commutator in L2 we use a Coifman–Meyer bound, see, e.g., Lemma 8.1 in [HIT16]:

‖[P, b1]wα‖L2 . ‖b1,α‖L∞ ‖w‖L2 .

Combining the results above leads to

|err3
1,1|. c(A3

+ A4)E (2)lin (w, r).

The bound for err5
1,1. After using the above pointwise bound on a1 it remains to estimate the commutators

in L2 (as above). The only difficulty here is that we need to move half of a derivative from rα onto Y.
Such estimates were already considered in [HIT16],

‖[Y , P]rα‖L2 . ‖|D|1/2Y‖BMO ‖r‖Ḣ1/2, ‖[P, b]wα‖L2 . ‖bα‖BMO ‖w‖L2,

and suffice due to the bounds for b, a1 and Y in Lemmas 2.5 and 2.7 in [HIT16], and Proposition A.4.
For the remaining term in err4

1,1 we write [Y , P](Rαw)= [P, P[Y Rα]]w and use the Coifman–Meyer
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lemma [1976] (also discussed in Appendix B in [HIT16]) to estimate

‖P[P[Y Rα]w]‖L2 . ‖w‖L2 ‖P[Y Rα]‖BMO . ‖w‖L2 ‖|D|1/2Y‖BMO ‖|D|1/2 R‖BMO,

where the bilinear bound in the second step follows after a bilinear Littlewood–Paley decomposition
(again, see [HIT16]). Hence,

|err4
1,1|.A cA−1/2 AB E (2)lin (w, r).

The bound for err6
1,1. Here we use the pointwise bounds on a1, M1 and b1,α , along with the Coifman–Meyer

commutator estimate.

This concludes the proof of (3-13). �

Proof of Lemma 3.2. We rewrite I in the form

I := D1+ D2+ D3+ D4,

where

D1 =

∫
f (∂t + b∂α)a|w|2 dα, D3 =

∫
f
(

bα|w|2− 2<
(
w̄P

[
Rα

1+W
w

]))
dα,

D2 =<

∫
f P[bwα]w̄ dα, D4 =

∫
i f
(

r̄α P
[
(g+ a)w

1+W

]
− (g+ a)w̄P

[
rα

1+W

])
dα.

For the first term we use the pointwise bounds in Propositions A.3 and A.4.
For the second term we directly use a Coifman–Meyer estimate to bound the middle factor in L2.
For the third term we use the pointwise bound on b1, and then harmlessly replace bα by P[R/(1+W)]α .

Then it remains to estimate in L2 the difference

P
[

R

1+W

]
α

w− P
[

Rα
1+W

w

]
.

If w is the low-frequency factor in either term, then we only need its cofactor in BMO and we win. Else
we can drop the first projection, and we are left with estimating the difference

P
[

R

1+W

]
α

−
Rα

1+W

in L∞, which was done in [HIT16].
Finally, the last term cancels if we drop the projections. Hence we are left with estimating in L2 the

expression

P
[

rα
1+W

]
,

which is done by a Coifman–Meyer estimate. In the first term we bound the expression

P
[

aw
1+W

]
in L2 and then move a half-derivative on f . �
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Proof of Proposition 3.3. To estimate the terms involving G and K we separate the quadratic and cubic
parts, but more importantly we group these expressions keeping track of the scaling parameter c. In our
previous paper [HIT16] we have already established the bounds for the components without c, namely

‖PG(2)(w, r)‖L2 +‖PK(2)(w, r)‖Ḣ1/2 . B(‖w‖L2 +‖r‖Ḣ1/2),

while the cubic-and-higher terms satisfy

‖PG(3+)(w, r)‖L2 +‖PK(3+)(w, r)‖Ḣ1/2 .A AB(‖w‖L2 +‖r‖Ḣ1/2).

Hence it suffices to estimate the terms with the c-factor, and show that the quadratic terms satisfy

‖PG(2)1 (w, r)‖L2 +‖PK(2)1 (w, r)‖Ḣ1/2 . A(‖w‖L2 +‖r‖Ḣ1/2), (3-14)

while the cubic-and-higher terms satisfy

‖PG(3+)1 (w, r)‖L2 +‖PK(3+)1 (w, r)‖Ḣ1/2 .A A2(‖w‖L2 +‖r‖Ḣ1/2). (3-15)

In order to obtain the estimates claimed in (3-14), (3-15) we use the Coifman–Meyer-type commutator
estimates [1976] described in [HIT16, Appendix B, Lemma 8.1],

The bounds for all terms in PG(2)1 (w, r) are immediate, except for the second, where we use (B.10) in
[HIT16] with s = 1

2 and σ = 1
2 , to write

‖[P,W ]w̄α‖L2 . ‖W‖L∞ ‖w‖L2 .

For PK(2)1 (w, r) we use again (B.10) in [HIT16] with s = 1
2 , and σ = 1

2 , and conclude that

‖[P,W ]r̄α‖Ḣ1/2 . ‖|D|1/2W‖L∞ ‖r‖Ḣ1/2, ‖[P, R]w̄‖Ḣ1/2 . ‖|D|1/2 R‖L∞ ‖w‖L2 .

Thus (3-14) follows.
For the cubic-and-higher parts of G1 and K1 we apply the same type of commutator estimates, as well

as the BMO bounds in [Proposition 8.2, HIT16]. Precisely, in G(3+)1 there are three nontrivial terms to be
estimated in L2, namely

P[w̄α(Y 2
− 2Y )W ], W P[w̄α(Y 2

− 2Y + 1)W ], P[W P[wα(Y 2
− 2Y + 1)W ]].

For the first two we use (B.12) and (B.14) from [HIT16] as follows:

‖P[w̄α(Y 2
− 2Y )W ]‖L2 . ‖w‖L2 ‖∂α P[(Y 2

− 2Y )W ]‖BMO .A ‖W‖BMO ‖Y‖L∞ ‖w‖L2 .

Similarly, for the remaining terms we have

‖P[w̄α(Y 2
− 2Y + 1)W ]‖L2 .A ‖W‖BMO‖w‖L2 .

Finally, we estimate the cubic component of K1; we again use (B.12) and (B.15) from [HIT16], and
obtain

‖|D|1/2 P[r̄αY W ]‖L2 . ‖r‖Ḣ1/2 ‖∂α P[Y W ]‖BMO .A ‖r‖Ḣ1/2 ‖Y‖L∞ ‖W‖L∞,
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and also

‖|D|1/2 P[w̄(1− Y )RαW ]‖L2 . ‖w(1− Y )‖L2 ‖|D|1/2 P[RαW ]‖BMO

.A ‖w‖L2 ‖|D|1/2 R‖BMO ‖W‖L∞ .

This concludes the proof of (3-15), and thus of the proposition. �

3C. Nearly cubic estimates for small data. Our goal here is to investigate the possibility of obtaining
cubic estimates for the system (3-5) in L2

× Ḣ 1/2. Unlike in [HIT16], this is no longer possible. Instead,
our more limited goal in this section is to identify a main portion of the linearized equation for which
cubic estimates are valid, precisely up to c2-terms. This will come in very handy later on in the proof of
cubic estimates for the differentiated equation.

Our model problem this time is the following subset of (3-5):
(∂t +Mb∂α)w+ P

[
1

1+W
rα

]
+ P

[
Rα

1+W
w

]
=−P[W r̄α] + P[Rw̄α] +G,

(∂t +Mb∂α)r + icr − i P
[

g+ a
1+W

w

]
=−P[Rr̄α] + K .

(3-16)

In our previous work [HIT16], for the case c = 0, we identified a cubic correction to E (2)lin (w, r) for
which cubic estimates hold for solutions to the linearized equation, namely

E (3)lin (w, r) :=
∫

R

(g+ a)|w|2+=(rr̄α)+ 2=(Rwrα)− 2<(Ww2) dα.

Our next result asserts that in our case the time derivative of E (3)lin will be quartic at the leading order, but
will have a cubic terms with a coefficient of c2.

Proposition 3.4. Assume that A is small. Then we have the energy equivalence

E (3)lin (w, r)≈ E (2)lin (w, r). (3-17)

Further, the linear equation (3-7) is well-posed in Ḣ0, and the following estimate holds:

d
dt

E (3)lin (w, r)= 2<
∫

R

[(g+ a)w̄− i Rαrα − 2Ww]G− i[r̄α − (Rw)α]K dα

+ c2
=R|w|2 dα+ OA(AB)E (2)lin (w, r). (3-18)

Applying this to the linearized equation (3-5) we obtain:

Proposition 3.5. The linearized equation (3-5) is well-posed in L2
× Ḣ 1/2, and the following estimate

holds:

d
dt

E (3)lin (w,r)= 2<
∫

R

c[gwPG(2)1 (w,r)−i r̄α PK(2)1 (w,r)]−i
c2

2
R|w|2 dα+OA(AB)E (2)lin (w,r), (3-19)

where PG(2)1 (w, r), PK(2)1 (w, r) are as in (3-6).
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Proof of Proposition 3.4 . The energy equivalence is immediate due to the estimates in [HIT16] for the
added cubic terms, and the pointwise bounds on a in Lemmas A.3 and A.4.

To prove the estimate in (3-18) we compute the time derivative of the cubic component of the energy
E (3)lin (w, r), using the projected equations for w and r and the unprojected equations for R and W :

d
dt

(
=

∫
Rwrα dα−<

∫
Ww2 dα

)
= =

∫
−igWwrα − Rrαrα + igRwwα + RrαG+ RwKα dα

+<

∫
Rαw2

+ 2Wwrα − 2WwG dα+ err2,

where

err2 = =

∫ {(
i
(

gW2
+a

1+W

)
−bRα− i c

2
RW+ RW+N

1+W

)
wrα

− Rw∂α

(
Mbrα− i P

[
a−W
1+W

w

]
+ P[Rr̄α]

)
− Rrα

(
Mbwα− P

[
W

1+W
rα

]
+ P

[
Rα

1+W
w

]
+ P[W r̄α− Rw̄α]

)}
dα

+<

∫ {
w2
(

bWα+
W−W
1+W

Rα−(1+W)M+ i c
2

W(W−W)

)
+2Ww

(
Mbwα− P

[
W

1+W
rα

]
+ P

[
Rα

1+W
w

]
+ P[W r̄α− Rw̄α]

)}
dα. (3-20)

We now separate (3-20) into two parts, namely err2, which was already estimated in [HIT16], and err2,1:

err2 := err2+ i c
2

err2,1,

where

err2,1 := =

∫ {(
b1 Rα−

RW+ RW+N

1+W

)
wrα+ Rw∂α P[b1rα]− RwP

[
a1

1+W
w

]
+ Rrα P[b1wα]

}
dα

+<

∫
{w2
[−b1Wα−(1+W)M1+W(W−W)]−2WwP[b1wα]} dα. (3-21)

We still need to estimate this last error.
Adding err2 to (3-18) (but applied to solutions to (3-16)) gives us

d
dt

E (3)lin (w, r)=
d
dt

E (2)lin (w, r)+ 2 d
dt

{(
=

∫
Rwrα dα−<

∫
Ww2 dα

)}
= 2<

∫
R

(g+ a)w̄{G− P[W r̄α] + P[Rw̄α]}− i r̄α{K − P[Rr̄α]} dα

+ c2
=

∫
R

R|w|2 dα+ err1

+ 2=
∫
−igWwrα − Rrαrα + igRwwα + RrαG+ RwKα dα

+ 2<
∫

Rαw2
+ 2Wwrα − 2WwG dα+ 2err2.
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Rewriting the above expression leads to

d
dt

E (3)lin (w, r)=
d
dt

E (2)lin (w, r)+ 2 d
dt

{(
=

∫
Rwrα dα−<

∫
Ww2 dα

)}
= 2<

∫
R

(g+ a)w̄G− i r̄αK dα+ c2
=

∫
R

R|w|2 dα+ err1

+ 2<
∫

R

(g+ a)w̄{P[Rw̄α] − P[W r̄α]}+ i r̄α P[Rr̄α] dα

+ 2=
∫
−igWwrα − Rrαrα + igRwwα + RrαG+ RwKα dα

+ 2<
∫

Rαw2
+ 2Wwrα − 2WwG dα+ 2err2.

We obtain
d
dt

E (3)lin (w, r)= 2<
∫

R

[(g+ a)w̄− i Rαrα − 2Ww]G− i[r̄α − (Rw)α]K dα

+ c2
=

∫
R

R|w|2 dα+ 2<
∫

R

aw̄{P[Rw̄α] − P[W r̄α]} dα+ err1+ 2err2.

We introduce

err3 := 2err2− 2<
∫

R

aw̄{P[W r̄α] − P[Rw̄α]} dα,

which implies

d
dt

E (3)lin (w, r)= 2<
∫

R

[(g+a)w̄−i Rαrα−2Ww]G−i[r̄−(Rw)]αK dα+c2
=

∫
R

R|w|2 dα+err1+err3.

Given the bound (3-13) for err1, the proof of (3-18) is concluded if we show that

|err3|. AB E (2)lin (w, r). (3-22)

Due to the pointwise bound for a, proved in Appendix A, and the Coifman–Meyer-type L2-bound for
P[W r̄α]− P[Rw̄α] from [HIT16], it suffices to estimate err2, which in turn reduces to estimating err2,1,

|err2,1|. AB E (2)lin (w, r).

For the remainder of the proof we separately estimate several types of terms in err2,1:

Terms involving b1. Here, we use the bounds for b1 from Lemma A.2:

‖b1,α‖L∞ . A+ A2, ‖|D|1/2b‖L∞ . A−1/2+ A−1/2 A.

We first collect all the terms that are contained in the first integral of err2,1, and which include b1:

I1 :=

∫
R

b1 Rαwrα + Rw∂α P[b1rα] + Rrα P[b1wα] dα.

After integrating by parts, we cancel two of the terms in I1 and obtain

I1 = I2+ I3,

where

I2 :=

∫
R

RαwP[b1rα] dα and I3 :=

∫
R

Rrα P[b1wα] − Rwα P[b1rα] dα.
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The bounds for I2 follow easily because it has a commutator structure:

I2 :=

∫
R

RαwP[b1rα] dα =
∫

R

P[Rαw]P[b1rα] dα =
∫

R

[P, w]Rα · [P, b1]rα dα,

where we can estimate both factors in L2 using Coifman–Meyer estimates,

‖[P, w]Rα‖L2 . ‖w‖L2 ‖Rα‖BMO, ‖[P, b1]rα‖L2 . ‖|D|1/2b1‖BMO ‖r‖Ḣ1/2 .

The bound for I3 follows from Lemma 8.9 in Appendix B of [HIT16].
We next collect all the terms that are contained in the second integral appearing in the expression of

err2,1, and which include b1:

I4 :=

∫
R

−b1Wαw
2
− 2WwP[b1wα] dα.

As before, we integrate by parts and rewrite the expression for I4 as

I4 :=

∫
R

b1,αWw2
+ 2b1Wwwα − 2WwP[b1wα] dα =

∫
R

b1,αWw2
+ 2WwP[b1wα] dα.

The first integral on the right-hand side is easy to bound since we know that b1,α is in L∞:∣∣∣∣∫
R

b1,αWw2 dα
∣∣∣∣. ‖b1,α‖L∞ ‖W‖L∞ ‖w‖

2
L2 .

For the last integral in I4 we use the Coifman–Meyer-type estimate (established first in [HIT16]) to obtain∣∣∣∣∫
R

2WwP[b1wα] dα
∣∣∣∣. ‖W‖L∞ ‖w‖L2 ‖[P, b1]wα‖L2 . ‖b1,α‖L∞ ‖W‖L∞ ‖w‖

2
L2 .

Thus,
|I4|. ‖b1,α‖L∞ ‖W‖L∞ ‖w‖

2
L2 .

Quadrilinear terms bounded via L2
·L2 pairing. Some of the remaining terms in err2,1 have straightforward

bounds:

|I7| :=

∣∣∣∣∫
R

(1+W)M1w
2 dα

∣∣∣∣.A (1+ A)A2
‖w‖2L2,

|I8| :=

∣∣∣∣∫
R

W(W −W)w2 dα
∣∣∣∣.A A2

‖w‖2L2,

but others require a little bit of work. This includes the following expressions:

I5 :=

∫
R

RW + RW + N

1+W
wrα dα,

I6 :=

∫
R

Rw∂α P
[

a1

1+W
w

]
dα =−

∫
R

∂α P[Rw]P[a1(1− Y )w] dα.

To obtain the bound for I6 we use the Cauchy–Schwarz inequality and Lemma 2.1 from [HIT16]

|I6|. ‖∂α P[Rw]‖L2 ‖P[a1(1− Y )w]‖L2 . ‖Rα‖BMO ‖a1‖L∞ (1+‖Y‖L∞) ‖w‖
2
L2 .
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Finally, the bound for I5 is also a consequence of commutator estimates; to see this we rewrite it as

I5 :=

∫
R

fwrα dα =
∫

R

P[ f rα]w dα, where f :=
RW + RW + N

1+W
.

Thus,

|I5| =

∣∣∣∣∫
R

P[ f rα]w dα
∣∣∣∣. ‖[P, f ]rα‖L2 ‖w‖L2 . ‖|D|1/2 f ‖BMO ‖r‖Ḣ1/2 ‖w‖L2,

where
‖|D|1/2 f ‖BMO . AB. �

Proof of Proposition 3.5 . To prove the bound in (3-19) it suffices to apply the estimate in (3-18) with

G = PG, K = PK.

In fact, we only have to resume our work in finding the new terms introduced by the vorticity assumption,
which are the components carrying the c when expanding the right-hand side of (3-5), PG1 and PK1:

G = G− i c
2
G1, K = K− i c

2
K1.

The terms we want to single out are the c-cubic terms appearing in the cubic part of the energy E3(w, r),
(3-8).

For this we need to recall the quadratic components of PG1 and PK1

PG(2)1 (w, r)= P[Ww̄] + P[W w̄α] + P[Ww] − P[Ww],

PK(2)1 (w, r)= P[Wr̄α] − P[Rw̄],

and the antiholomorphic components (which will not matter in this computation since we work with the
projected equations)

PG(2)1 (w, r)=−P[Ww] − P[Wwα] + P[Ww],

PK(2)1 (w, r)= P[Wrα] − P[Rw].

Thus, we need to bound the terms∫
R

gwPG(2)1 (w, r) dα,
∫

R

r̄α PK(2)1 (w, r) dα,
∫

R

c2
=R|w|2 dα.

These bounds are all obtained using Lemma 2.1 in [HIT16], for example, for the first integral we obtain∣∣∣∣∫
R

gw{[P,W ]w̄+ [P,W ]w̄α − [P,W ]w} dα
∣∣∣∣. A‖w‖2L2 .

For the second integral we need to move half of a derivative off of r̄α:∣∣∣∣∫
R

r̄α{[P,W ]r̄α − [P, R]w̄} dα
∣∣∣∣. B‖r‖2Ḣ1/2 + A‖r‖Ḣ1/2‖w‖L2 .

The last one, is trivial ∣∣∣∣∫
R

R|w|2 dα
∣∣∣∣. A−1/2‖w‖

2
L2 . �
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4. Higher-order energy estimates

The main goal of this section is to prove energy bounds for the differentiated equations. These are the
main ingredient for the lifespan part of Theorem 1, as well as for the cubic result in Theorem 2. Precisely,
we will establish two types of energy bounds for (W, R) and their higher derivatives. The first one is a
quadratic bound which applies independently of the size of the initial data; this yields the last part of
Theorem 1. The cubic energy bound applies in the small-data case, and yields the cubic lifespan bound in
our small-data result in Theorem 2. The large-data result is as follows:

Proposition 4.1. For any n ≥ 0 there exists an energy functional En,(2) with the following properties
whenever the conditions (1-25) and (1-26) hold uniformly:

(i) Norm equivalence:
En,(2)(W, R)≈A E0(∂

n W, ∂n R).

(ii) Quadratic energy estimates for solutions to (1-19):

d
dt

En,(2)(W, R).A BE0(∂
n W, ∂n R). (4-1)

The small-data result is as follows:

Proposition 4.2. For any n≥ 0 there exists an energy functional En,(3) which has the following properties
as long as A� 1:

(i) Norm equivalence:

En,(3)(W, R)= (1+ O(A))E0(∂
n W, ∂n R)+ O(c4 A)E0(∂

n−1W, ∂n−1 R).

(ii) Cubic energy estimates:

d
dt

En,(3)(W, R).A B A
(
E0(∂

n W, ∂n R)+ c4E0(∂
n−1W, ∂n−1 R)

)
. (4-2)

Here if n = 0 then E0(∂
−1W, ∂−1 R) is naturally replaced by E(W, Q).

The case n = 0 of Proposition 4.1 corresponds to Ḣ0-bounds for (Wα, R). But these functions solve
the linearized equation, so the desired bounds are a consequence of Proposition 3.1. Hence, we will begin
with the proof of the cubic bounds for the n = 0 case.

Next, we compute the differentiated equations, first for n = 1 and then for n ≥ 2, and show that, up to
a certain class of bounded errors, suitable modifications of (W (n), R(n)) solve a linear system which is
quite similar to the linearized equation. There are two reasons why we separate the case n = 1. First,
this corresponds to Ḣ0-bounds for (Wα, Rα), which play a special role as it is our threshold for local
well-posedness. Secondly, there is a subtle difference in the choice of the modifications alluded to above,
due to the fact that certain terms which are different for n ≥ 2 coincide at n = 1.

At this point, the bounds for the linearized equation already yield the large-data result. What remains
is to establish the cubic small-data result, which is where we implement our quasilinear modified energy
method, using the normal form calculated in Section 2.
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As part of the argument we need to express various nonlinear expressions in terms of their homogeneous
expansions. To describe the decomposition of a nonlinear analytic expression F into homogeneous
components we will use the notation 3k F to denote the component of F of homogeneity k. We similarly
introduce the operators 3≤k and 3≥k. We carefully note that all of our multilinear expansions are with
respect to the diagonal variables W and R, and not with respect to (W, Q).

Compared to [HIT16] here we lack scaling, but we can still introduce a notion of order of a multilinear
expression. We begin with single terms, for which we assign orders as follows:

• The order of W (k) is k− 1.

• The order of R(k) is k− 1
2 .

• The order of c is 1
2 .

For a multilinear form involving products of such terms we define the total order as the sum of the orders
of all factors.

While not all expressions arising in the (W (n), R(n)) are multilinear in (W, R), they can be still viewed
as multilinear in (W, R) and undifferentiated Y. Since Y scales like W, it is natural to assign to it the
homogeneity zero. According to this definition, all terms in the W (n)-equation have order n+ 1

2 , and all
terms in the R-equation have order n. Moving on to integral multilinear forms, all n-th energies have
order 2n, and their time derivatives have order 2n+ 1

2 .
A second useful bookkeeping device will be needed when we deal with integral multilinear forms.

There it makes a difference how derivatives and also complex conjugations are distributed among factors.
To account for this we define the leading order of a multilinear form to be the largest sum of the orders
of two factors with opposite conjugations. Since we only allow nonnegative orders, for the n-th order
energy this is at most 2n. According to our definition, all the terms in our n-th order energy will have
order 2n, and all terms in its time derivative will have order 2n+ 1

2 . We remark that the half-integers in
the definition of the orders impose a parity constraint in the terms associated to each power of c.

If all factors in a multilinear form have nonnegative orders, this imposes a constraint on the order of
each factor. Unfortunately this does not appear to be the case here, as our multilinear forms will also
contain factors of W and R, which have negative order. This is quite inconvenient. Fortunately, there is a
simple way to avoid negative orders altogether. Precisely, we will never consider such factors alone, but
in combination with c; thus, the allowed factors will be cR and c2W, both of which have order 0. We
carefully note last remark applies only partially in the special case n = 0.

4A. The case n= 0. The goal of this subsection is to obtain cubic energy estimates in Ḣ0 for the system
for diagonal variables (W, R). For convenience we recall the system here:

Wt + bWα +
(1+W)Rα

1+W
= G0,

Rt + bRα + icR− i
gW − a
1+W

= K0,

where

G0 = (1+W)M + i c
2

W(W −W), K0 = i c
2

RW + RW + N
1+W

.
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We want to be able to apply the quadratic and cubic bounds for the “modified” model (3-16), respectively.
For that, we rewrite the above systems as

Wt + bWα +
Rα

1+W
+

Rα
1+W

W =−P[RαW ] + P[RWα] +G0,

Rt + bRα + icR− i
(g+ a)W

1+W
=−P[R Rα] + K 0,

(4-3)

where, the expressions for G0 and K 0, for the purpose of this section, are
G0 :=W(P[RWα] − P[RαW ])+ i c

2
(1+W)M1+ i c

2
W(W −W)

+ (1+W){P[RYα − RαY ] − P[R∂α(WY )] + P[RαWY ]},

K 0 := P[R Rα] − i c
2

N .

In (4-3) we have identified the leading part of the equation. We want to interpret the terms (G0, K 0) on
the right as mostly perturbative, but also pay attention to the holomorphic quadratic part, given by

PG(2)
0 = i c

2
(P[W Y ]α +W2

− P[W W ]), P K (2)
0 = i c

2
P[W Rα −W R]. (4-4)

Precisely, we first claim that the quadratic and cubic parts of (G0, K 0) satisfy the bounds

‖(G(2)
0 , K (2)

0 )‖Ḣ0
.A B N0, (4-5)

‖(G(3)
0 , K (3)

0 )‖Ḣ0
.A AB N0, (4-6)

respectively, where

N0 = ‖(W, R)‖L2×Ḣ1/2 .

The bounds for the components of M1 and N are discussed in Lemma A.2. The W prefactors in G0 are
harmless, as they are bounded by A in L∞. For the remaining terms it suffices to use Coifman–Meyer-type
estimates discussed in Appendix A. For instance we have

‖P[RWα]‖L2 . ‖[P, R]Wα‖L2 . ‖|D|1/2W‖BMO ‖R‖Ḣ1/2 .A B N0,

and all other terms in G0 are similar. Finally, for the first term in K 0 we have

‖P[R Rα]‖Ḣ1/2 . ‖|D|1/2 R‖L2‖Rα‖BMO . B N0.

We are now ready to look at the cubic energies. We start by constructing the cubic normal-form energy
by selecting the quadratic and cubic terms from the corresponding linear energy for the normal-form
variables. Precisely, we have

E0(W̃α, Q̃α)= E0(W, Qα)+ 2
∫

R

<W∂αW [2]− 2=Qαα∂αQ[2] dα+ quartic.

In the first term we substitute Qα = R(1+W). In the integral we use the expressions (2-8), integrate
by parts to eliminate the ∂−1W - and Q-factors, and then replace Qα with R. Separating the outcome of
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these computations into a leading part and a lower-order part, we write it in the form

E (3)NF := E (3)NF,high+ E (3)NF,low,

where

E3
NF,high(W, R) :=

∫
R

(g+ c<R)|W |2+=(R Rα)+ 2=(RW Rα)− 2<(W W2) dα,

and

E (3)NF,low(W, R) :=− c
∫

R

2<R{|W |2−=(RαR)}−W W Rα +W2 R dα

−
c2

g

∫
R

5
2=W {|W |2−=(RαR)}− 1

2 W W2
−

1
2 W R2 dα

−
3c3

2g
=

∫
R

RW W dα−
3c4

2g
<

∫
R

W |W |2 dα.

For the leading-order part E (3)NF,high(W, R) we consider the appropriate quasilinear correction

E (3)high(W, R) :=
∫

R

(g+ a)|W |2+=(R Rα)+ 2=(RW Rα)− 2<(W W2) dα,

and the remainder E3
NF,low(W, R) remains unchanged. Hence, we define the quasilinear cubic energy

E0,(3)
:= E3

high+ E3
NF,low.

It remains to show that this energy has all the right properties in Proposition 4.2.
We begin with the energy equivalence. For the leading part this has already been done in the context

of the linearized equation (see Proposition 3.4),

E (3)high(W, R)≈ (1+ O(A))E (2)lin (W, R).

So it remains to show that

E (3)NF,low(W, R)≈ O(A)(E0(W, R)+ c4E(W, Q)).

The bound is straightforward for all terms not containing Rα . So we now consider those. For the first one
we have ∣∣∣∣∫

R

Rα|R|2 dα
∣∣∣∣. ‖R‖Ḣ1/2 ‖|D|1/2(R<R)‖L2 . ‖R‖2Ḣ1/2 ‖R‖L∞ . A−1/2 N2

0 ,

which suffices. For the next term we have∣∣∣∣∫
R

RαW W dα
∣∣∣∣. ‖R‖Ḣ1/2 ‖|D|1/2 P[W W ]‖L2 . ‖R‖Ḣ1/2 ‖|D|1/2W‖BMO ‖W‖L2 . A−1/2 N2

0 .

Finally,

‖RαRW‖L2 . ‖R‖Ḣ1/2 ‖|D|1/2(RW )‖L2 . (‖|D|1/2 R‖BMO ‖W‖L2 +‖R‖L∞ ‖|D|1/2W‖L2) ‖R‖Ḣ1/2 .
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Now we consider the time derivative of modified quasilinear energy E0,(3) in order to prove the bound
(4-2). By construction we know that

3≤3 d
dt

E0,(3)
= 0.

We note that this is an algebraic property which follows from the normal-form-based construction even
though the normal form itself is unbounded. Therefore it remains to estimate

3≥4 d
dt

E3
=3≥4 d

dt
E3

NF,high+3
≥4 d

dt
E3

NF,low.

Due to (4-5) and (4-6) the estimate for the first term on the right-hand side follows directly from the
bound (3-18) in Proposition 3.4 for the leading part of the linearized equation. Hence, it remains to
consider the last term.

E3
NF,low(W, R) is a trilinear form of order zero and leading order zero. We compute its time derivative

using the relation

d
dt

∫
f1 f2 f3 dα =

∫
(∂t + b∂α) f1 f2 f3+ f1(∂t + b∂α) f2 f3+ f1 f2(∂t + b∂α) f3− bα f1 f2 f3 dα. (4-7)

Then its time derivative will be a multilinear form of order 1
2 , and also of leading order 1

2 . By inspection,
we see that in this time derivative we can associate each W with a c2-factor and each R with a c-factor,
so that all each of the factors in all of the multilinear monomials have degree at least zero. Then, each
multilinear monomial in3≥4

( d
dt E3

NF,low

)
contains exactly one factor of order 1

2 , and the rest are all factors
of order zero. The factor of order 1

2 can be either Rα or c, and the factors of order zero could be W, Y,
c2W, or cR. We have two cases to consider:

(a) If the factor of order 1
2 is c, then we simply bound two of the remaining factors in L2 and the others

in L∞.

(b) If the factor of order 1
2 is Rα, then we use the Ḣ 1/2-bound for R, and we are left with estimating

an expression of the form |D|1/2( f1 · · · fk), where k ≥ 3, and each fk has order zero. For this we use
Lemma A.1 to estimate

‖|D|1/2( f1 · · · fk)‖L2 .
∑

j

‖|D|1/2 f j‖L∞

∥∥∥∥∏
l 6= j

fl

∥∥∥∥
L2
,

and conclude as above.

4B. The differentiated equations for n = 1. We begin by differentiating (1-19) in order to obtain a
system for (Wα, Rα):

Wαt + bWαα +
[(1+W)Rα]α

1+W
= (M − bα)Wα + (1+W)(RαY α +Mα)+ i c

2
[W(W −W)]α,

Rαt + bRαα + icRα − i
(
(g+ a)Wα

(1+W)2
−

aα
1+W

)
=−bαRα + i c

2

(
W(R+ R)+ N

1+W

)
α

.

We can expand the last term in the second equation, putting together all terms which involve Wα. The
reason for this is that the Wα-terms will be unbounded in a suitable sense, and need to be treated as part
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of the leading-order linear operator. This will lead us to the coefficient a1, which will be moved to the
left, completing the coupling coefficient a to a. We have(

W(R+ R)+ N
1+W

)
α

=
Wα

(1+W)2
{(R+ R)− N }+

W(Rα + Rα)+ Nα
1+W

=
a1Wα

(1+W)2
+

W(Rα + Rα)+ Nα
1+W

.

Then our system becomes
Wαt + bWαα +

[(1+W)Rα]α
1+W

= (M − bα)Wα + (1+W)(RαY α +Mα)+ i c
2
[W(W −W)]α,

Rtα + bRαα + icRα − i
(g+ a)Wα

(1+W)2
=−bαRα − i

aα
1+W

+ i c
2

W(Rα + Rα)+ Nα
1+W

.

In order to better compare this with the linearized system we introduce the modified variable R :=
Rα(1+W) to further obtain

Wαt+bWαα+
Rα

1+W
= (M−bα)Wα+RY α+(1+W)Mα+i c

2
[W(W−W)]α,

Rt+bRα+icR−i
(g+a)Wα

1+W
=

(
M−bα−

Rα
1+W

+i c
2
(W−W)

)
R−iaα+i c

2
[W Rα+W Rα+Nα].

Expanding the bα-terms via (1-18) this yields
Wαt + bWαα +

Rα
1+W

+
Rα

1+W
Wα = G1,

Rt + bRα + icR− i
(g+ a)Wα

1+W
= K 1,

(4-8)

where on the right we have placed all terms which should be thought of as “bounded”. Precisely, (G1, K 1)

have the form
G1 := G1− i c

2
G1,1, K 1 := K1− i c

2
K1,1,

where the leading components have the same form as in [HIT16],
G1 = RY α −

Rα
1+W

Wα + 2MWα + (1+W)Mα,

K1 =−2
(

Rα
1+W

+
Rα

1+W

)
R+ 2M R+ (RαRα − iaα),

while the extra terms containing the vorticity c are{
G1,1 = 2M1Wα + (1+W)M1,α − 2Wα(W −W)−W(Wα −Wα),

K1,1 = 2M1 R− 2R(W −W)− P[2W Rα +W Rαα −WαR] − P[2W Rα +W Rαα −WαR].

Here on the left we have again the leading part of the linearized equation. Following the same approach
as in [HIT16], we will interpret the terms on the right as mostly perturbative, but also keep track of their
quadratic part. Thus, for bookkeeping purposes, we introduce two types of error terms, denoted err(L2)
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and err(Ḣ 1/2), which correspond to the two equations. The bounds for these errors are in terms of the
control variables A, B, as well as the L2-type norm

N1 = ‖(Wα, Rα)‖L2×Ḣ1/2 .

In [HIT16], by err(L2) we denote terms G1 which satisfy the estimates

‖PG1‖L2 .A AB N1,

as well as either one of the following two:

‖PG1‖L2 .A B N1 or ‖PG1‖Ḣ−1/2 .A AN1.

Here, in order to manage the new c-terms, we also include in err(L2) the terms in G1,1 for which

‖PG1,1‖L2 .A A2 N1,

and either of the following two holds:

‖PG1,1‖L2 .A AN1 or ‖PG1,1‖Ḣ−1/2 .A A−1/2 N1.

Similarly, by err(Ḣ 1/2) we have denoted in [HIT16] the terms K1 which satisfy the estimates

‖P K1‖Ḣ1/2 .A AB N1, ‖P K1‖L2 .A A2 N1,

and

‖P K1‖L2 .A AN1.

To that, for the c-terms we add expressions K1,1 which satisfy the estimates

‖P K1,1‖Ḣ1/2 .A A2 N1, ‖P K2,1‖L2 .A AA−1/2 N1,

and

either ‖P K1,1‖L2 .A A−1/2 N1 or ‖P K1,1‖Ḣ1/2 .A AN1.

We will rely on [HIT16] for the analysis of the expressions G1 and K1, and handle just the new entries,
i.e., the new terms accompanied by the vorticity factor c.

We recall that the use of the more relaxed quadratic control on the antiholomorphic terms, as opposed
to the cubic control on the holomorphic terms, is motivated by the fact that the equations will eventually
get projected on the holomorphic space, so the antiholomorphic components will have less of an impact.
A key property of the space of errors is contained in Lemma 3.3 in [HIT16], which we will refer to as the
multiplicative bounds lemma. For convenience we recall it here:

Lemma 4.3. Let 8 be a function which satisfies

‖8‖L∞ . A, ‖|D|1/28‖BMO . B. (4-9)
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Then, we have the multiplicative bounds

8 · err(L2)= err(L2), 8 · err(Ḣ 1/2)= err(Ḣ 1/2), (4-10)

8 · P err(L2)= A err(L2), 8 · P err(Ḣ 1/2)= A err(Ḣ 1/2). (4-11)

We now expand some of the terms in the above system. For this we will use the following bounds for
M1 (see Lemma A.2):

‖M1‖L∞ . A2, ‖M1‖Ḣ1 . AN1. (4-12)

First we note that
M1Wα = err(L2), M1 R = err(Ḣ 1/2). (4-13)

The first is straightforward in view of pointwise bound for M1. For the second, by the multiplicative bounds
lemma, we can replace M1 R by M1 Rα. After a Littlewood–Paley decomposition, the Ḣ 1/2 estimate for
M1 Rα is a consequence of the pointwise bound in (4-12) for low-high and balanced interactions, and of
the Ḣ 1/2-bound in (4-12) combined with Lemma 8.1 from Appendix B in [HIT16], provided that we also
move half of a derivative from Rα onto M1 for the high-low interactions, arriving at

‖M1 Rα‖Ḣ1/2 . ‖M1‖L∞ ‖Rα‖Ḣ1/2 +‖|D|1/2 R‖L∞ ‖M1‖Ḣ1 . A2 N1.

Next we consider (1+W)M1,α, for which we claim that

M1,α =WαW + 2W Wα + P[W Wαα] + err(L2),

P[W Wαα +WαW ] = A−1 err(L2).
(4-14)

By Lemma 4.3, this shows that

(1+W)M1,α =WαW + 2W Wα + P[W Wαα] + err(L2).

To prove (4-14) we discard cubic terms to rewrite

M1,α =WαY + 2WY α + P[W Y αα] − P[WαY + 2WY α +W αY + 2WYα +W Yαα]

=WαW + 2W Wα + P[W Wαα] − P[ f ] − P[g] + err(L2),

where
f =W (WY )αα, g =WαY + 2WY α +W αY + 2WYα +W Yαα.

Finally, for f and g we have L2-bounds

‖P f ‖L2 . A2 N1, ‖Pg‖L2 . AN1,

which follow from a commutator-type bound

‖P[W8αα]‖L2 . ‖Wα‖BMO‖8α‖L2 (4-15)

derived from Lemma 8.1 in [HIT16].
The last term in K1,1 is antiholomorphic, and also easily placed in err(Ḣ 1/2) by Coifman–Meyer-type

bounds.
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Taking into account all of the above expansions, it follows that our system can be rewritten in the form
Wαt + bWαα +

Rα
1+W

+
Rα

1+W
Wα = Princ(G1)− i c

2
Princ(G1,1)+ err(L2),

Rt + bRα + icR− i
(g+ a)Wα

1+W
= Princ(K1)− i c

2
Princ(K1,1)+ err(Ḣ 1/2),

where Princ(G) refers to the terms in G that cannot be treated as error; they are quadratic and higher-order
terms. We list their expressions below:

Princ(G1) := 2RY α −
2RαWα

1+W
+ P[RWαα − RααW ],

Princ(G1,1) := −3W Wα + 3W Wα + 3W W α + P[W Wαα],

(4-16)

and

Princ(K1) := −2
(

Rα
1+W

+
Rα

1+W

)
R− P[RααR],

Princ(K1,1) := −2R(W −W)− P[2W Rα +W Rαα −WαR].
(4-17)

One might wish to compare this system with the linearized system which was studied before. However,
of the terms on the right, i.e., those in Princ(G1) and Princ(K1), cannot be all bounded in L2

× Ḣ 1/2,
even after applying the projection operator P. Precisely, the terms on the right which cannot be bounded
directly in L2

× Ḣ 1/2 are

−
2RαWα

1+W
and − 2

(
Rα

1+W
+

Rα
1+W

)
R.

There are no such problematic terms in Princ(G1,1) or in Princ(K1,1).
As in [HIT16], we eliminate these terms by conjugation with respect to a real exponential weight e2φ,

where φ =−2< log(1+W). Then

φα =−2<
Wα

1+W
, (∂t + b∂α)φ = 2<

Rα
1+W

− 2M − ic(W −W)<
W

1+W
.

We denote the weighted variables by

w= e2φWα, r= e2φR.

Using (4-13) and Lemma 4.3 it follows that Mw = err(L2) and Mr = err(Ḣ 1/2). Similarly we have

cWα(W −W)<Y = err(L2), cR(W −W)<Y = err(Ḣ 1/2).

Then the only significant effect of the conjugation is to eliminate the above problem terms, and we are
left with

wt + bwα +
rα

1+W
+

Rα
1+W

w= P[RWαα − RααW ] − i c
2

Princ(G1,1)+ err(L2),

rt + brα + icr− i
(g+ a)w

1+W
=−P[RααR] − i c

2
Princ(K1,1)+ err(Ḣ 1/2).
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Finally, as in [HIT16], we can also harmlessly substitute w and r into the leading error terms on the right
to rewrite the above equation as

wt + bwα +
rα

1+W
+

Rα
1+W

w= P[Rw̄α − r̄αW ] − i c
2

Princ(G1,1)+ err(L2),

rt + brα + icr− i
(g+ a)w

1+W
=−P[r̄αR] − i c

2
Princ(K1,1)+ err(Ḣ 1/2).

One downside to the conjugation is that the new variables (w, r) are no longer holomorphic. To remedy
this we project onto the holomorphic space to write a system for the variables (w, r)= (Pw, Pr). At
this point one may legitimately be concerned that restricting to the holomorphic part might remove a
good portion of our variables. However, this is not the case, as one can verify the claim by reviewing the
discussion in Lemma 3.4 in [HIT16]. Following again [HIT16], after estimating some Coifman–Meyer-
type commutators, the system for (w, r) is

wt +Mbwα + P
[

rα
1+W

]
+ P

[
Rα

1+W
w

]
= G,

rt +Mbrα + icr − i P
[
(g+ a)w

1+W

]
= K ,

(4-18)

where 
G := P[Rw̄α − r̄αW ] − i c

2
P[Princ(G1,1)] + err(L2),

K := −P[r̄αR] − i
c
2

P[Princ(K1,1)] + err(Ḣ 1/2).

This is our main system for the (slightly renormalized) differentiated variables (Wα, Rα). In order to use
it we need to properly relate (w, r) to (Wα, Rα), and to estimate the terms in G and K . This is done in
the following lemma.

Lemma 4.4. (a) The energy of (w, r) above is equivalent to that of (Wα, Rα),

‖(w, r)‖L2×Ḣ1/2 ≈A ‖(Wα, Rα)‖L2×Ḣ1/2 = N1, (4-19)

and the difference is estimated by

‖(w, r)− (Wα, Rα)‖L2×Ḣ1/2 .A AN1. (4-20)

(b) The error terms on the right in (4-18) are bounded,

‖(P[Rw̄α −W r̄α], P[Rr̄α])‖L2×Ḣ1/2 .A B N1, ‖P[Rr̄α]‖L2 . AN1, (4-21)

and

‖(P Princ(G1,1), P Princ(K1,1))‖L2×Ḣ1/2 .A AN1, ‖P Princ(K1,1)‖L2 .A A−1/2 N1. (4-22)

Proof. Part (a) and the first estimate in part (b) are from [HIT16], while part (c) follows either directly,
for some terms, or by Coifman–Meyer estimates for the rest. �
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Given the above lemma, the conclusion of Proposition 4.1 for n = 1 follows from the energy estimates
for the linearized equation, namely (3-8) in Proposition 3.1; further, if n = 1 then we can take

En,(2)(W, R)= E (2)lin (w, r).

4C. The differentiated equations for n≥ 2 . The first step is to derive a set of equations for (W (n), R(n)).
We start again with the differentiated equations (1-19) and differentiate n times.

Compared with the case n = 1, we obtain many more terms. To separate them into leading order and
lower order, we call lower-order terms any terms which do not involve W (n), R(n) or derivatives thereof.
In the computation below we take care to separate all the leading-order terms. Toward that end we define
again the notion of error term. Unlike in the case n = 1, here we also include lower-order quadratic terms
into the error. As before, we describe the error bounds in terms of the parameters A, B and

Nn = ‖(W (n), R(n))‖L2×Ḣ1/2 . (4-23)

The acceptable errors in the W (n)-equation are denoted by err(L2) and are of two types, err(L2)[2] and
err(L2). The lower-order quadratic holomorphic terms are placed in err(L2)[2], which is defined to be
a linear combination of expressions of the form

P[W ( j)R(n+1− j)
], P[W ( j)R(n+1− j)

], P[W ( j)R(n+1− j)
], 2≤ j ≤ n− 1,

as well as terms involving the vorticity c, namely

c P[W ( j)W (n− j)
], c P[W ( j)W (n− j)

], 1≤ j ≤ n− 1,

c P[R( j)R(n+1− j)
], c P[R( j)R(n+1− j)

], 2≤ j ≤ n− 1.

By interpolation and Hölder’s inequality, terms G in err(L2)[2] satisfy the bound

‖G‖L2 . B Nn.

By err(L2)[3] we denote terms G which satisfy the same estimates as err(L2) in the case n = 1, but
with N1 replaced by Nn .

The acceptable errors in the R(n)-equation are denoted by err(Ḣ 1/2) and are also of two types,
err(Ḣ 1/2)[2] and err(Ḣ 1/2)[3]. The first, err(Ḣ 1/2)[2], consists of holomorphic quadratic lower-order
terms of the form

P[R( j)R(n+1− j)
], P[R( j)R(n+1− j)

], 2≤ j ≤ n− 1,

P[W ( j)W (n+1− j)
], P[W ( j)W (n− j)

], 1≤ j ≤ n− 1,

as well as the c-terms

c P[W ( j)R(n− j)
], c P[W ( j)R(n− j)

], c P[W ( j)R(n− j)
], 1≤ j ≤ n− 1.

By interpolation and Hölder’s inequality, terms K in err(Ḣ 1/2)[2] satisfy the bound

‖K‖Ḣ1/2 . B Nn, ‖K‖L2 . ANn.
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By err(Ḣ 1/2)[3] we denote terms K which satisfy the same estimates as err(Ḣ 1/2) in the case n = 1, but
with N1 replaced by Nn .

We now proceed to differentiate n times the equation (1-19). Our task is simplified due to [HIT16],
where this analysis has already been carried out for the terms without c. Hence, we only concentrate here
on the c-terms.

In addition, we remark that, as all terms in the W (n)-equation have the same homogeneity, whenever all
the Sobolev exponents are within the lower-order range, we are guaranteed to get the correct L2 estimate
after interpolation and Hölder’s inequality. The same applies to all cubic terms with at most n derivatives
on any single factor. The same observation applies to all the lower-order terms in the R(n)-equation, as
well as to all cubic terms containing R(n). However, the terms containing W (n) are unbounded and belong
to the principal part of the R(n)-equation. Because of these considerations, the computation below is
largely of an algebraic nature.

We begin with the W -equation. For the b1-term we have

∂n(b1Wα)= b1W (n)
α + nb1,αW (n)

+ b(n)1 Wα + err(L2)

= b1W (n)
α + n(W −W)W (n)

+ err(L2).

Here at the last step we use the simple observation that the linear part of the expression b(n)1 Wα contributes
only lower-order terms, and the rest contributes cubic terms, which can be estimated either directly or
using Coifman–Meyer bounds.

Next we consider

∂n((1+W)M1)= (1+W)∂n+1(P[W Y ] − P[W Y ])+ err(L2)

=W (n)W + (n+ 1)W W (n)
+ P[W W (n+1)

] + err(L2).

Here all cubic terms involving W (n+1) can be directly bounded using Coifman–Meyer estimates. Finally,
for the last c-term in the W (n)-equation we have

∂n(W(W −W))= 2W (n)W −W (n)W −W W (n)
+ err(L2).

Next we turn our attention to the c-terms in the R(n)-equation, We begin with

∂n−1(b1 Rα)= b1 R(n)α + nb1,αR(n)+ b(n)Rα + err(Ḣ 1/2)

= b1 R(n)α + n(W −W)R(n)+ err(Ḣ 1/2),

where again the quadratic terms in b(n)Rα are lower-order, and the cubic terms with W (n) are bounded as
error terms via Coifman–Meyer estimates.

For the next term in the R-equation we write

∂n W(R+ R)
1+W

=W(R(n)+ R(n))+
W (n)(R+ R)

1+W
+ err(Ḣ 1/2),
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where the cubic R(n)-terms are estimated directly as error terms. Finally, we need to consider

∂n N
1+W

= ∂n
(

P[W Rα −W R] + P[W Rα −W R]
1+W

)
=−

N W (n)

(1+W)2
+ P[W R(n)α + nW R(n)−W (n)R−W R(n)] + err(Ḣ 1/2).

Combining the above computations for the c-terms in (1-19) with the prior computations for the
non-c-terms in [HIT16] we obtain the differentiated system

W (n)
t + bW (n)

α +
((1+W)R(n))α

1+W
+

Rα
1+W

W (n)
= Gn + err(L2),

R(n)t + bR(n)α + icR(n)− i
(
(g+ a)W (n)

(1+W)2

)
= K n + err(Ḣ 1/2),

where

Gn = Gn − i c
2

Gn,1, K n = Kn − i c
2

Kn,1.

From [HIT16] we have

Gn =−n
Rα

1+W
W (n−1)

− (n− 1)
Rα

1+W
W (n−1)

+ P[RW (n−1)
α −W R(n−1)

α ]

+ R(n−1)(nWα − (n− 1)Wα)+ n(RαW (n−1)
−WαR(n−1)),

Kn =−n
(

Rα
1+W

+
Rα

1+W

)
R(n−1)

− (P[R R(n−1)
α ] − n RαR(n−1)),

and from the above computations,{
Gn,1 = (n+ 2)[W W (n)

− (W −W)W (n)
] + P[W W (n+1)

],

Kn,1 =−(n+ 1)[(W −W)R(n)+W R(n)] + P[RW (n)
−W R(n)α ].

To bring this equation to a form closer to the linearized equation we follow the lead of [HIT16] and
perform several algebraic holomorphic substitutions for the R(n)-variable, beginning with

R = (1+W)R(n),

and followed by

R̃ = R− RαW (n−1)
+ (2n+ 1)WαR(n−1).

Finally, we conclude with the exponential conjugation by enφ where we use the same φ as before, namely
φ =−2< log(1+W), in order to eliminate the unbounded terms on the right. At the end we obtain an
equation for (w := enφW (n−1), r := enφ R̃) where the leading part is exactly as in the linearized equation.
We do not repeat this computation, as it primarily affects the part of the equation without c, which is fully
described in [HIT16]. All the additional c-contributions are either cubic and bounded or quadratic and
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lower-order, so they are placed in the error. The outcome is the equation
wt + bwα +

rα

1+W
+

Rα
1+W

w= P[RW (n)
α −W R(n)α ] + (n+ 1)(Rαw̄−Wα r̄)− i c

2
Gn,1+ err(L2),

rt + brα + icr− i
(
(g+ a)w

1+W

)
=−P[R R(n)α ] − (n+ 1)Rα r̄− i c

2
Kn,1+ err(Ḣ 1/2).

As (w, r) are no longer holomorphic, we project and work with the projected variables (w, r)= (Pw, Pr).
After some additional commutator estimates, which are identical to those in the n = 1 case, we finally
obtain

wt+Mbwα+ P
[

rα
1+W

]
+ P

[
Rαw

1+W

]
= P[Rw̄α−W r̄α]+(n+1)P[Rαw̄−Wαr̄ ]

−i c
2

PGn,1+err(L2),

rt+Mbrα+ icr− i P
[
(g+a)w

1+W

]
=−P[Rr̄α]−(n+1)P[Rαr̄ ]− i c

2
P Kn,1+err(Ḣ 1/2).

(4-24)

This is our main system for the (slightly modified) differentiated variables (W (n), R(n)). In order to use it
we again need to relate (w, r) to (W (n), R(n)), and also to estimate the terms in Gn,1 and Kn,1. This is
done in the following.

Lemma 4.5. (a) The energy of (w, r) above is equivalent to that of (W (n), R(n)),

‖(w, r)‖L2×Ḣ1/2 ≈A ‖(W (n), R(n))‖L2×Ḣ1/2 = Nn, (4-25)

and the difference is estimated by

‖(w, r)− (W (n), R(n))‖L2×Ḣ1/2 .A ANn. (4-26)

(b) The error terms on the right in (4-18) are bounded,

‖(P[Rw̄α −W r̄α], P[Rr̄α])‖L2×Ḣ1/2 .A B Nn, ‖P[Rr̄α]‖L2 . ANn, (4-27)

‖(P[Rαw̄−Wαr̄ ], P[Rαr̄ ])‖L2×Ḣ1/2 .A B Nn, ‖P[Rαr̄ ]‖L2 .A ANn, (4-28)

and

‖(PG1,n, P K1,n)‖L2×Ḣ1/2 .A A, ‖P K1,n‖L2 .A A−1/2 Nn. (4-29)

Proof. Part (a) and the first two bounds in part (b) are from [HIT16], while the last bound in part (b)
follows either directly, for some terms, or by Coifman–Meyer estimates, for the rest. �

Given the above Lemma 4.4, the n ≥ 2 case of the result in Proposition 4.1 is a direct consequence of
our quadratic estimates for the linearized equation in Proposition 3.1.

Comparing the linear (w, r)-equation obtained above for the case n ≥ 2 to the corresponding equation
previously obtained for the case n = 1, we note that here we have two extra terms, namely the ones
estimated in (4-28). On one hand this is good, because the bound (4-28) is no longer true if n = 1. But
on the other hand, it means that we will no longer be able to use directly the cubic energy E (3)lin (w, r)
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introduced in the context of the linearized equation as the full high-frequency part of our cubic energy.
To account for these extra terms, we will add a further correction to the energy E (3)lin (w, r), and define

En,(3)
high (w, r) :=

∫
(1+ a)|w|2+=(r̄rα)+ 2n=(Rαw̄r̄)+ 2(=[Rwrα] −<[W αw

2
]) dα. (4-30)

Then we will prove a counterpart to the small-data (nearly) cubic energy estimates in Proposition 4.2.
Precisely, we claim that the evolution of this energy is governed by the following.

Lemma 4.6. Let (w, r) be defined as above. Then:

(a) Assuming that A� 1, we have

En,(3)
high (w, r)≈ E0(w, r)≈ Nn. (4-31)

(b) The solutions (w, r) of (4-24) satisfy

d
dt

En,(3)
high (w, r)= 2

∫
−<

(
w̄ ·
(

i c
2

Gn,1− err(L2)[2]
))
+=

(
r̄α ·

(
i c

2
Kn,1− err(Ḣ 1/2)[2]

))
dα

+

∫
c2

2
=R|w|2 dα+ OA(AB Nn). (4-32)

Further, the same relation holds if (w̄, r̄) on the right are replaced by (W (n), R(n)).

We note that in the proof of this lemma we crucially use the fact that (w, r) are the ones associated to
the differentiated equation, and not arbitrary functions in the energy space. This is also the reason why
this lemma is presented here, rather than in Section 3.

Proof. Part (a) was already proved in [HIT16], so we proceed to part (b). Here, we begin with the cubic
linearized energy, E (3)lin . According to the bound (3-18) in Proposition 3.4, we have

d
dt

E (3)lin (w, r)=
∫

2<
((

n P[Rαw̄−Wαr̄ ] − i c
2

Gn,1+ P err(L2)
)
· (w̄− P[Rrα] − P[W αw])

)
− 2=

((
−n P[Rαr̄ ] − i c

2
Kn,1+ P err(Ḣ 1/2)

)
· (r̄α + P[Rw]α)

)
dα

+ OA(AB‖(w, r)‖2L2×Ḣ1/2).

By the Coifman–Meyer-type estimates in Lemma A.1 the following bound holds:

‖P[Rrα]‖L2 +‖P[W αw]‖L2 +‖P[Rw]‖Ḣ1/2 . A‖(w, r)‖L2×Ḣ1/2 . (4-33)

Combining this with (4-21) and with the bounds for Gn,1, Kn,1 and the error terms we get

d
dt

E (3)lin (w, r)≤
∫

2<
((

n P[Rαw̄−Wαr̄ ] − i c
2

Gn,1+ P err(L2)[2]
)
· w̄
)

− 2=
((
−n P[Rαr̄ ] − i c

2
Kn,1+ P err(Ḣ 1/2)[2]

)
· r̄α
)

dα

+ OA(AB)‖(w, r)‖2L2×Ḣ1/2,

where the output from all error terms which are cubic-and-higher is all included in the last term on the
right-hand side.
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It remains to consider the contribution of the extra term in En,(3)
high and show that

d
dt

∫
=(Rαw̄r̄) dα =

∫
<((Rαw̄−Wαr̄)w̄)+=(Rαr̄ r̄α) dα+ OA(AB)‖(w, r)‖2L2×Ḣ1/2 . (4-34)

Denote by Gn and Kn , respectively, the two right-hand sides in (4-24). By the definition of error terms
and by (4-21)–(4-22) they satisfy the bounds

‖(Gn, Kn)‖L2×Ḣ1/2 .A B Nn, ‖Kn‖L2 .A ANn.

Then their contribution in the above time derivative is estimated as∣∣∣∣∫ =(Rα PGnr̄ + Rαw̄P K n) dα
∣∣∣∣= ∣∣∣∣∫ =(Rα P Fnr̄ + P[Rαw̄]P K n) dα

∣∣∣∣.A AB Nn

by using Hölder’s inequality for the first term and the Coifman–Meyer commutator estimate in Lemma A.1
for the second.

We now consider the contributions due to the terms on the left of (4-24). These were already estimated
in [HIT16] when c = 0, so we only need to estimate the c-terms, i.e., the contributions of b1 and a1.

The contributions of the b1-terms are collected together in the real part of the expression

I = c
2

∫
∂α(b1 Rα)w̄r̄ + Rα P(b1w̄α)r̄ + Rαw̄P(b1r̄α) dα

=
c
2

∫
Rα
(
[b1, P](w̄α)r̄ + w̄[b1, P](r̄α)

)
dα.

Since ‖b1,α‖BMO . A, we can bound this using Lemma A.1, and then use Hölder’s inequality for all
terms.

The contribution of a1 is
c
2
<

∫
Rαw̄P

[
a1w̄

1+W

]
dα,

for which it suffices to use the pointwise bound for a1 in Proposition A.4 and the classical Coifman–Meyer
bound.

Finally, we consider the remaining contribution of the c-terms in the time derivative of Rα , for which
we use the equations (1-19)

c
2
<

∫
w̄r̄∂α

RW + RW + N
1+W

dα.

But this is a quartic expression for which we only need Sobolev embeddings and interpolation. �

4D. Cubic small-data energy estimates: n ≥ 1. In this section we construct an n-th order energy func-
tional En,(3) with cubic estimates, for n ≥ 1. While in essence the argument does not depend on n, there
are nevertheless a few small differences between the cases n = 1 and n ≥ 2. These differences will be
pointed out at the appropriate places.

One ingredient in the construction of En,(3) is the high-frequency (nearly) cubic energy En,(3)
high in

Lemma 4.6 (n ≥ 2), and E (3)lin in Proposition 3.4 (n = 1). However, this does not suffice, as the right-hand
side of the energy relation (4-32) still contains lower-order cubic terms. To remedy this, here we use
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normal forms in order to add a lower-order correction to En,(3)
high , which removes the above-mentioned

cubic terms. For this we follow the method introduced in [HIT16], though the computations here are
significantly more involved.

We first provide an outline of the argument, and then return to each step in detail. The three main steps
are as follows:

(1) Construct the normal-form energy. The normal-form variables W̃, Q̃ solve a system of the form{
W̃t + Q̃α = cubic and higher,
Q̃t − i W̃ = cubic and higher.

(4-35)

Thus, the associated linear energies satisfy

d
dt

E0(W̃ (n+1), Q̃(n+1))= quartic and higher.

Here the quartic part of the left-hand side is highly unbounded, and it is not uniquely determined, as one
can add arbitrary cubic terms to the normal form. Fortunately, it is also irrelevant for the above relation.

Thus, we eliminate it, and we define the normal-form energy as

En
NF = (quadratic + cubic)[E0(W̃ (n+1), Q̃(n+1))].

Here, we carefully choose the quadratic and cubic terms in the expansion of E0(W̃ (n), Q̃(n)) in terms of
the diagonal variables (W, R), rather than (W, Q).

The expression En
NF has only quadratic and cubic terms in (W, R), and still satisfies

d
dt

En
NF = unbounded quartic and higher.

Its disadvantage, due to the fact that our problem is quasilinear, is that the terms on the right are highly
unbounded.

(2) Construct the quasilinear modified energy. Here we construct the quasilinear modified energy En,(3)

using the normal-form energy En
NF and the high frequency modified energy En,(3)

high (w, r). The first one
has quartic estimates, which are unbounded. The second one has good (quartic) high-frequency estimates,
but with cubic lower-order errors,

d
dt

En,(3)
high (w, r)= bounded quartic and higher+ lower-order cubic.

We seek to combine the two into a quasilinear modified energy En,(3) which satisfies

d
dt

En,(3)
= bounded quartic and higher.

To achieve this, it is natural to separate En
NF into a leading part and a lower-order part,

En
NF = En

NF,high+ En
NF,low,

so that the leading part coincides with the high-frequency energy up to quartic terms,

En,(3)
high = En

NF,high+ quartic and higher,
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and then define
En,(3)

= En,(3)
high + En

NF,low.

This was the argument in [HIT16]; here it is slightly more complicated, as additional terms in En
NF,low

need to be treated as leading-order, and thus corrected in a quasilinear fashion.

(3) Show that En,(3) is a good quasilinear cubic energy. That is, prove that the bound (4-2) holds. Here,
by construction, we know that

d
dt

En,(3)
= quartic and higher;

therefore we can write

d
dt

En,(3)
= quartic and higher

( d
dt

En,(3)
high (w, r)

)
+ quartic and higher

( d
dt

En
NF,low

)
.

The favorable bound for the first part is already a direct consequence of Lemma 4.6, so it remains to use
the equations in order to bound the second term. But this is technically simple, and the argument is more
a matter of bookkeeping.

Now we proceed to implement the above strategy.

Step 1. The first step described above is implemented in the following proposition:

Proposition 4.7. There exists a modified normal-form energy En
NF = En

NF(W, R) with the following
properties:

(A) En
NF has the form

En
NF = En

NF,high+ En,c
NF,high+ En

NF,low,

where the three components are defined as follows:

En
NF,high =

∫
(1− 4(n+ 1)<W)(g|W (n)

|
2
+=[R(n+1)R(n)]) dα,

+ 2
∫
=[RW (n)R(n+1)

] − g<[W(W (n))2] + (n+ 1)=[RαW (n)R(n)] dα

+

∫
c<R|W (n)

|
2
+ 2=(W R(n+1)R(n)) dα, (4-36)

where the last term in the second integral is dropped if n = 1, and

En,c
NF,high =−

∫ [
c(2n+ 3)<R+ c2(2n+ 5

2

)
=W

]
(|W (n)

|
2
− i R(n+1)R(n)) dα. (4-37)

Finally, En
NF,low is a trilinear integral form of order 2n, with the following restrictions:

(i) The leading order for the terms without c is at most 2n− 1.

(ii) The leading order for the terms with c is at most 2n− 1
2 .

(iii) The highest power of c is 4.

(iv) At most one factor of the form c2W or cR is present.
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(B) The energy functional En
NF is cubically accurate,

3≤3 d
dt

En
NF = 0. (4-38)

(C) Its components satisfy the following estimates:

En
NF,high = [1+ O(A)]E0(W (n), R(n)),

En,c
NF,high = O(A)E0(W (n), R(n)),

En
NF,low = O(A)(E0(W (n), R(n))+ c4E0(W (n−1), R(n−1))).

(4-39)

Proof. Here we use the algebraic expression for the normal-form transformation, which is given below.
We call lower-order terms any terms that can be included in En

NF,low. Up to quartic terms we seek to have,
at least formally, the relation

En
NF = ‖(W̃

(n+1), Q̃(n+1))‖2L2×Ḣ1/2 + quartic

= E0(W (n+1), Q(n+1))− 2<
∫

W (n+1)∂n+1W [2]− i Q(n+1)∂n+1 Q[2] dα+ quartic. (4-40)

In the first term we introduce the diagonal variable R by using Qα = R(1+W), which allows us to write
it as

Imain = E0(W (n), R(n))+ 2=
∫

R(n+1)∂n(RW) dα+ quartic.

Differentiating we obtain its principal part, containing all terms with leading order above 2n− 1:

Imain,high = E0(W (n), R(n))+ 2=
∫

W R(n+1)R(n)+ R R(n+1)W (n)
− (n+ 2)RαR(n)W (n) dα.

Here the last term on the right no longer appears if n = 1, which accounts for the similar modification in
the proposition.

In the integral in (4-40), on the other hand, we have two concerns. First, we want to eliminate its
unbounded part of low frequency, i.e., all terms with inverse derivatives of W, as well as all terms with
undifferentiated Q; we remark that once this is done, the switch to diagonal variables is achieved simply
by replacing Qα with R. Secondly, we want to keep track of its highest-order terms, i.e., those terms
which are at least energy strength (i.e., W (n)W (n), or R(n+1)R(n), and also R(n)W (n) for terms without c).
First we recall the expression for the normal form, see (2-8):

W [2] =−(W +W )Wα −
c

2g
[(Q+ Q)Wα + (W +W )Qα]

+ i
c2

2g

[
(∂−1W − ∂−1W )Wα +W 2

+
1
2 |W |

2]
−

c2

4g2 (Q+ Q)Qα

+ i
c3

4g2 [(Q+ Q)W + (∂−1W − ∂−1W )Qα] +
c4

4g2 (∂
−1W − ∂−1W )W,

Q[2] =−(W +W )Qα −
c

2g
(Q+ Q)Qα + i c

4
(W 2
+ 2|W |2)

+ i
c2

2g

[
(∂−1W − ∂−1W )Qα +

1
2(Q+ Q)W

]
+

c3

4g
(∂−1W − ∂−1W )W.
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Next, we successively consider the terms in the integral in (4-40) organized by the power of c.

Terms with c0. These are

I0 = 2<
∫
−W (n)∂n+1

[(W +W )Wα] + i Q(n+2)∂n+1
[(W +W )Qα] dα.

Here there are no low-frequency issues. Its high-frequency part, on the other hand, has the form

I0,high = 2<
∫
−(2n+ 2)<W(|W (n)

|
2
− i Q(n+2)Q(n+1))

+ i QαQ(n+2)(W (n+1)
+W (n+1))− (n+ 2)QαQ(n+1)W (n) dα.

Terms with c. These are

I1 = c<
∫
−W (n)∂n+1(W(Q+ Q)+ Qα(W +W ))

+ Q(n+2)∂n+1( 1
2 W 2
+ |W |2

)
+

i
g

Q(n+2)∂n+1(Q Qα + Q Qα) dα.

We first verify that the terms with undifferentiated Q disappear when integrating by parts. These are

c<
∫
−2<QW (n)W (n+1) dα = c

∫
<Qα|W (n)

|
2 dα,

c
g
<

∫
i<Q Q(n+2)Q(n+2) dα = 0.

Secondly, we compute the high-frequency component. Taking into account the above integration by parts,
this is

I1,high = c
∫
−(2n+ 2)|W (n)

|
2
<Qα +

i
g
(2n+ 3)<QαQ(n+2)Q(n+1) dα.

Terms with c2. These are

I2 = c2
<

∫
i W (n)∂n+1(W(∂−1W − ∂−1W )+W 2

+
1
2 |W |

2)
−

1
2g

W (n)∂n+1(Q Qα + Q Qα)

+
1
g

Q(n+2)∂n+1(Qα(∂
−1W − ∂−1W ))+

1
2g

Q(n+2)∂n+1(W Q+W Q) dα.

For the low-frequency analysis we compute

c2
<

∫
−i W (n)W (n+1)(∂−1W − ∂−1W ) dα =−c2

∫
|W (n)

|
2
=W dα,

while the remaining ∂−1W -terms and the Q-terms directly cancel.
Now we look at the high-frequency part. This is

I2,high = c2
∫
−
(
2n+ 5

2

)
=W (|W (n)

|
2
− i Q(n+2)Q(n+1))− (2n+ 4)(Qα + Qα)W (n)Q(n+1) dα.

Terms with c3. These are

I3 =−
c3

2g
=

∫
W (n)∂n+1

[W (Q+ Q)+ (∂−1W − ∂−1W )Qα] − Q(n+2)∂n+1
[(∂−1W − ∂−1W )W ] dα.
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For the low-frequency analysis we compute

<

∫
i W (n)(∂−1W − ∂−1W )Q(n+2)

− i Q(n+2)(∂−1W − ∂−1W )W (n) dα = 0,

<

∫
i W (n)W (n)(Q+ Q) dα = 0,

while for the high-frequency analysis, taking the above into account, we are left with

I3,high =
c3

2g

∫
i(2n+ 4)(W −W )W (n)Q(n+1) dα.

Terms with c4. This is

I4 =
c4

2g2<

∫
W (n)∂(n+1)

[(∂−1W − ∂−1W )W ] dα,

which exhibits cancellation at low frequency and has no high-frequency component.

The normal-form energy En
NF is obtained by replacing Qα with R in the all the above terms, after

eliminating the Q and ∂−1W. The expressions of En
NF,high and En,c

NF,high are simply obtained by adding up
all the high-frequency contributions above.

Since En
NF is obtained from the normal form, the relation (4-38) immediately follows. We note that

establishing this property is a purely algebraic computation, which does not require the direct use of the
normal form (which is unbounded).

Step 2. We begin with the quasilinear energy En,(3)
high (w, r), which was defined in (4-30) if n ≥ 2, and is set

to be equal to E (3)lin (w, r) if n = 1. We first compare it with the cubic energy En
NF,high. Precisely, we have

3≤3 E (3)lin (w, r)=3
≤3 En

NF,high, n = 1, (4-41)

3≤3 En,(3)
high (w, r)=3

≤3 En
NF,high, n ≥ 2. (4-42)

This computation was already done in [HIT16] and is not repeated here. The only difference is in the
c-term in En

NF,high, which arises due to the a1 in E (3)lin (w, r) and En,(3)
high (w, r).

Next, we consider the term En,c
NF,high. This contains the leading-order energy density, so we have to

treat it in a quasilinear manner. Precisely, we replace it by

En,(3)
high,c(w, r)=−

∫ [
c(2n+ 3)<R+ c2(2n+ 5

2

)
=W

]
((g+ a)|w|2− i r̄αr) dα,

which admits a straightforward bound

|En,(3)
high,c(w, r)|. cA−1/2 Nn + c2 A−1 Nn. (4-43)

Now we are in a position to define our quasilinear modified cubic energy

En,(3)(W, R)= En,(3)
high (w, r)+ En,(3)

high,c(w, r)+ En
NF,low(W, R). (4-44)
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By construction this satisfies

3<3 En,(3)(W, R)=3<3 En
NF(W, R). (4-45)

Step 3. Now we proceed to prove Proposition 4.2. The norm equivalence is already known from (4-31)
and (4-39), so we still need the energy estimate. For this we use (4-45) and (4-38) to see that the cubic
terms vanish,

3≤3 d
dt

En,(3)
=3≤3 d

dt
En

NF = 0.

Hence, it remains to look at the quartic-and-higher terms. For this we can split the terms,

3≥4 d
dt

En,(3)
=3≥4 d

dt
En,(3)(w, r)+3≥4 d

dt
En,(3)

high,c(w, r)+3
≥4 d

dt
En

NF,low.

The bound for the first term on the right is a direct consequence of Proposition 3.1 for n = 1, and
Lemma 4.6 for n ≥ 2. From here on, the cases n = 1 and n ≥ 2 are identical.

For the middle term 3≥4 d
dt En,(3)

high,c(w, r) we will use Lemma 3.2, with either f = W or f = R, and
(w, r) as in this section. We claim that this yields∣∣∣ d

dt
En,(3)

high,c(w, r)
∣∣∣.A B Nn,

which by homogeneity considerations yields∣∣∣3≥4 d
dt

En,(3)
high,c(w, r)

∣∣∣.A AB Nn,

as desired.

(a) If f =W then the bounds

‖ f ‖L∞ .A A−1, ‖D1/2 f ‖L∞ . A−1/2

allow us to estimate the difference I in the Lemma 3.2. The remaining terms

c2
∫
3≥2(∂t + b∂α)W ((g+ a)|w|2− i r̄αr) dα and c2

∫
f ((g+ a)w̄F − i r̄αG) dα

are c-times forms which are at least quartic, with order 2n+ 1
2 and leading order 2n (this is because we

have exactly one R-factor). Hence we can bound them using Hölder’s inequality and interpolation by
cAANn .

(b) If f = R then the bounds

‖ f ‖L∞ .A A−1/2, ‖D1/2 f ‖L∞ . A

allow us to estimate the difference D in the lemma. The remaining terms are exactly as above, still
bounded by cAANn .

Finally, for the lower-order terms 3≥4 d
dt En

NF,low it suffices to have the following property:

Lemma 4.8. For any term I in En
NF,low we have∣∣∣3≥4 d

dt
I
∣∣∣. AB(Nn + c4 Nn−1). (4-46)
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Proof. The terms without c in this computation were already estimated in [HIT16], so we need to consider
only c-terms. A simple order analysis for these terms leads to the following properties:

(a) Their order is 2n+ 1
2 .

(b) Their leading order is at most 2n.

(c) The highest power of c is 4.

Here part (b) is a obtained by using the relation (4-7) to compute time derivatives. This guarantees that
the leading order does not increase by a full unit.

We also take a closer look at the c2W - and cR-factors that can arise. In the trilinear form En
NF,low they

can arise just once, so the question is what happens if we differentiate with respect to time. If W and R
are differentiated in time then at most we obtain another W -factor, respectively an R- or cW -factor, so
this pattern is preserved. If instead we differentiate a higher-order W (k)- or R(k)-factor using the equations
(1-19), we can further produce undifferentiated W - and R-factors, as follows:

(i) Arising from cM1 and its derivatives. There cW will appear in combinations of the form P[W Y (k)] and
its conjugate. However, the frequency localization enforced by P guarantees that W is the higher-frequency
factor, which, for estimates, ensures that we can freely move derivatives from Y to W.

(ii) Arising from derivatives of cN, where, for the same reasons as above, we can disregard the W -factors,
but we can still produce a cR-factor.

(iii) Arising from b1 and its derivatives. In the case of derivatives of b1 the discussion concerning
W -factors is again identical to case (i), so we can neglect those. Hence the only potential W -factor can
arise from undifferentiated b1. However, these are avoided due to the use of (4-7), where the transport is
fully included in the time differentiation and the undifferentiated advection coefficient b never appears.

To summarize the above discussion, in the time derivative of En
NF,low we can have at most one c2W -

factor and at most two c2W, cR-factors. A further simplification arises from the constraint (b) above.
Precisely, there we can integrate by parts to rebalance derivatives in such a way that either

(a) both leading order terms have order at most n, or

(b) we have exactly the product R(n+1)R(n) as part of our multilinear expression.

In case (a), our estimates follow directly by Hölder’s inequality and interpolation. In case (b), the
remaining factors must have order zero, except for one which has order 1

2 . There we consider two
scenarios.

(b1) If the factors R(n+1) and R(n) are not frequency balanced, then another factor has the highest
frequency and we can rebalance derivatives and use again Hölder’s inequality and interpolation.

(b2) If the factors R(n+1) and R(n) are frequency balanced, then all we need is to bound the remaining
factors in L∞. The only factor of order 1

2 which we do not control in L∞ is Rα, so Hölder’s inequality
and interpolation work unless our multilinear expression exactly contains

R(n+1)R(n)Rα,
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and possibly other zero-order factors. Backtracking, the only way to produce such a term is by differen-
tiating a cubic expression which has a leading order exactly 2n− 1

2 as well as an Rα-factor. Then this
expression must be exactly

W (n)R(n)Rα,

which cannot contain any c-factors so it is not within our purview here. �

Thus we have completed the proof of Proposition 4.7. �

5. Proofs of the main theorems

The results in Theorems 1 and 2 are a consequence of the estimates for the linearized equation in Section 3,
and of the energy estimates for the higher Sobolev norms of the solutions in Section 4. The arguments
here closely match their counterparts in our previous gravity waves paper [HIT16]. Because of this, we
only provide an outline here, and refer the reader to [HIT16] for more details.

Outline of proof of Theorem 1. The steps of the proof are as follows:

Step 1: Existence of regular solutions. A standard approach here is to obtain solutions as limits of
solutions to frequency truncated equations. As always, this truncation needs to happen in a symmetric
way, so that uniform energy estimates survive. In addition, a specific difficulty we encounter in water
wave evolutions is the fact that the evolution we are trying to truncate is degenerate hyperbolic, a condition
which might not survive in a naive direct truncation procedure. In [HIT16] we bypass this difficulty by
solving directly the differentiated system for the diagonal variables (W, R). In our case this is not entirely
possible, as the system for (W, R) is not fully self-contained. Precisely, it contains W as a part of b.
Fortunately, this does not cause extra difficulties, as we can make the frequency truncation consistent with
differentiation in the W -equation, and thus be able to freely use W in the (W, R)-system. We note that
formally W also appears undifferentiated in M1 and N, but the commutator structure of those expressions
implies that they actually can be rewritten (and estimated) in terms of W instead.

Precisely, our main truncated system for (W, R) has the form
Wt + P<nbn P<n Wα + P<n

(1+ P<n W)P<n Rα
1+ P<n W

= P<nG(W<n, R<n),

Rt + P<nbn P<n Rα + ic P<n R− i P<n
g P<n W − an

1+ P<n W
= P<n K (W<n, R<n),

(5-1)

where G and K represent the right-hand-side terms in (1-19), and

bn = b(W<n, R<n), an = a(R<n).

Here n is a dyadic-frequency parameter, and the multiplier P<n selects the frequencies less than 2n. The
expression for Wt in the first equation above retains the structure from the original equations, i.e., it is
an exact derivative. Thus we can recover the undifferentiated variable W in a way consistent with the
W -equation above, simply by integrating in time the relation

Wt + P<n[Fn(1+ P<n W)] + i c
2

P<nW = 0.
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The above set of equations is consistent, and for each dyadic frequency scale n it generates an ODE in
the space Hk , k ≥ 2 for (W, R), with the additional property that W in L2. A priori, the lifespan for this
system depends on n. However, the same type of estimates used for the linearized system yield uniform
bounds and a uniform lifespan depending only on the Sobolev norm of the data, and not on n. Then the
regular solutions are obtained as weak limits of these approximate solutions as n→∞.

Step 2: Uniqueness of regular solutions ((W, R) ∈ Ḣ2). This is achieved in a more standard fashion.
Given two solutions (W1, Q1) and (W2, Q2) we subtract the equations and do energy estimates for the
difference (W1−W2, R1− R2) in Ḣ0, as well as simpler integrated bounds for W1−W2 in L2. Then
close the argument and prove uniqueness via Gronwall’s inequality.

Step 3: Ḣ1-bounds for (W, R). Here we use the uniform bounds for the Ḣ2-norm of (W, R) which
depend only on the Ḣ1-norm of (W, R) (via the control parameters A and B), as in Proposition 4.1, to
conclude that the regular solutions can be continued up to a time which depends only on the Ḣ1-norm of
the data.

Step 4: Construction of rough solutions, (W, R) ∈ Ḣ1. We regularize the data, (W<k(0), Q<k(0)), by
truncating at frequencies < 2k. The corresponding solutions will be regular, with a uniform lifespan bound.
Thinking of k as a continuous parameter, we associate the k-derivative of the solutions (W<k, Q<k) to
solutions for the linearized equation around (W<k, Q<k). Using both the energy bounds for the solutions
(W<k, R<k) in Ḣ0 and Ḣ1, and the Ḣ0-bounds for the linearized equation, we show that these solutions
inherit not only uniform bounds in Ḣ1, but also uniform frequency envelope bounds in terms of the initial
data frequency envelope. This suffices in order to prove strong convergence of (W<k, R<k) in Ḣ1, and of
(W<k, Q<k) in Ḣ0.

Step 5: Weak Lipschitz dependence for rough solutions. Here we show that for rough solutions, i.e.,
(W, Q) ∈ Ḣ0 and (W, R) ∈ Ḣ1, we have Lipschitz dependence on the initial data in the Ḣ0 topology for
both (W, Q) ∈ Ḣ0 and (W, R). This is a direct consequence of the Ḣ0-bounds for the linearized equation.

Step 6: Continuous dependence on the data for rough solutions. This is a standard consequence of the
frequency envelope bounds in Step 4 and the weak Lipschitz bounds in Step 5.

Step 7: Continuation of solutions. Here we show that the solutions extend with uniform bounds for as
long as our control norms A, B remain bounded. This is a consequence of the above local well-posedness
in Ḣ1 and the energy estimates in Proposition 4.1. �

Outline of proof of Theorem 2. This is an easy consequence of the Ḣ1 well-posedness and the Ḣ1 uniform
bounds in Proposition 4.2, as the control norms A and B can be estimated in terms if the Ḣ1-norm of
(W, R) and the Ḣ0-norm of (W, Q). �

Appendix A: Water-waves-related estimates

In this section we gather a number of bilinear and multilinear estimates which are used throughout the
paper. Some are from [HIT16] and are just recalled here. The rest are connected to the new structure
induced by the vorticity. We begin with some commutator bounds from [HIT16].
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Lemma A.1. The following commutator estimates hold:

‖|D|s[P, R]|D|σw‖L2 . ‖|D|σ+s R‖BMO ‖w‖L2, σ ≥ 0, s ≥ 0, (A-1)

‖|D|s[P, R]|D|σw‖L2 . ‖|D|σ+s R‖L2 ‖w‖BMO, σ > 0, s ≥ 0. (A-2)

We remark that later this is applied to functions which are holomorphic/antiholomorphic, but that no
such assumption is made above. Next, we have several bilinear estimates:

Lemma A.2. The functions N and M1 satisfy the pointwise bounds

‖N‖L∞ .A AA−1/2, ‖M1‖L∞ .A A2, (A-3)

as well as the Sobolev bounds

‖N‖Ḣn+1/2 .A ANn, ‖M1‖Ḣn .A ANn.

Proof. We begin with the bounds for N, where N was defined in (1-13) as

N = P[W Rα −W R] + P[W Rα −W R].

For the pointwise bound we claim that

‖N‖L∞ . ‖W‖B3/4,∞
2
‖R‖B1/4,∞

2
. (A-4)

This suffices since each of the right-hand-side factors is bounded by
√

AA−1/2 by interpolation. To
achieve this we observe that we can alternatively write N in the form

N = P[W Rα −W R] + P[W Rα −W R] = ∂α(P[W R] + P[W R])− (W R+W R).

We apply a bilinear Littlewood–Paley decomposition and use the first expression above for the high-low
interactions, and the second for the high-high interactions, to write N = N1+ N2, where

N1 =
∑

k

[W k R<k,α −W<k,αRk] + [Wk R<k,α −W<k,αRk],

N2 =
∑

k

∂α(P[W k Rk] + P[Wk Rk])− (W k,αRk +Wk,αRk).

We estimate the terms in N1 separately; we show the argument for the first term:∥∥∥∥∑
k

W k R<k,α

∥∥∥∥
L∞
.
∑
j≤k

2(3/4)( j−k)
‖W j‖L∞ ‖Rk‖L∞ . ‖W‖B3/4,∞

2
‖R‖B1/4,∞

2
.

For the first term in N2 we note that the multiplier ∂α P<k+4 P has an O(2k) L∞-bound. Hence, we can
estimate

‖N2‖L∞ .
∑

k

2k
‖Wk‖L∞ ‖Rk‖L∞ . ‖W‖B3/4,∞

2
‖R‖B1/4,∞

2
.
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For simplicity, we only prove the Ḣ 1/2-bound for N. The rest can be done in a very similar way. To
obtain the bound we apply a Coifman–Meyer-type commutator estimate:

‖N‖Ḣ1/2 . ‖|D|1/2[P,W ]Rα‖L2 +‖|D|1/2[P, R]W‖L2 +‖|D|1/2[P,W ]Rα‖L2 +‖|D|1/2[P,W ]R‖L2 .

Each commutator can be bounded by . AN0. For pointwise and Sobolev bounds of M1 we refer to
Lemma 2.8 (see the Appendix in [HIT16]); the exact same approach applies in the current case. �

Essential in the article are the bounds for a, which we established in [HIT16]:

Proposition A.3. Assume that R ∈ Ḣ 1/2
∩ Ḣ 3/2. Then the real frequency-shift a is nonnegative and

satisfies the BMO bound
‖a‖BMO . ‖R‖2BMO1/2, (A-5)

and the uniform bound
‖a‖L∞ . ‖R‖2Ḃ1/2

∞,2
. (A-6)

Moreover,

‖|D|1/2a‖BMO . ‖Rα‖BMO ‖|D|1/2 R‖L∞, ‖a‖B1/2,∞
2
. ‖Rα‖B1/2,∞

2
‖|D|1/2 R‖L∞, (A-7)

‖(∂t + b∂α)a‖L∞ . AB, (A-8)

‖a‖Ḣ s . ‖R‖Ḣ s+1/2 ‖R‖BMO1/2, s > 0. (A-9)

Here we need to supplement this with bounds for a1. One notable difference between the two is that
a1 has a linear component, whereas a is purely quadratic. For various estimates we need to separate the
two components of a1:

Proposition A.4. Assume that R ∈ Ḣ 1/2
∩ Ḣ 3/2

∩ L∞. Then

‖a1‖L∞ .A A−1/2(1+ A).

Moreover, the following estimate holds:

‖(∂t + b∂α)a1+ 2g=W − 2c=R‖L∞ . AB+ cA2.

Proof. We first recall the expression for a1:

a1 = R+ R− N .

Using the equation for R, we only need to prove the pointwise bound for (∂t + b∂α)N. We begin with the
following computation:

(∂t + b∂α)a1+ 2g=W − 2c=R =−2a=Y − c=
RW + RW + N

1+W
− (∂t + b∂α)N .

Based on the previously established pointwise bounds for a and N we can estimate all but the last term.
This is considerably more delicate. However, as seen in the proof of Lemma A.2, the expression for N
exhibits exactly the same cancellation structure for “high× high→ low” interactions as we have in the
bilinear expression for a. Hence, the argument in the proof of (A-8) in [HIT16] immediately adapts here. �
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Appendix B: Holomorphic coordinates

Our goal here is to introduce the holomorphic coordinates and the holomorphic set of variables (W, Q)
describing the free surface, respectively the holomorphic velocity potential restricted to the free surface,
and to derive the evolution equations for (W, Q).

We proceed as in [Hunter, Ifrim and Tataru 2016; Ifrim and Tataru 2017]. Let H be the lower half-space,
with complex coordinates denoted by α+ iβ. Let F : H→�(t) to be the conformal transformation that
maps the α-axis into 0(t), which is unique up to α-translations. The x- and y-coordinates are given by

x = x(α, β, t), y = y(α, β, t),

and satisfy the Cauchy–Riemann equations

xα = yβ, xβ =−yα.

We fix the conformal map by assuming that

x(α, β, t)+ iy(α, β, t)−α+ iβ→ 0, α, β→∞.

To switch between the two sets of coordinates we will use

∂α = xα∂x + yα∂y, ∂β = xβ∂x + yβ∂y,

∂x =
1
j
(xα∂α + xβ∂β), ∂y =

1
j
(yα∂α + yβ∂β),

where

j = xα yβ − xβ yα = x2
α + x2

β = y2
α + y2

β .

We also need a similar relation for the time derivative. Assume we have

H
F
−→�(t) f

−→C

for an arbitrary function f . Let

g(α, β, t)= f (x(α, β, t), y(α, β, t), t).

Then

gt = ft + xt fx + fy yt .

So
ft = gt − xt fx − fy yt

= gt − xt
1
j
(xαgα + xβgβ)− yt

1
j
(yαgα + yβgβ)

= gt −
1
j
(xt xα + yt yα)gα −

1
j
(xt xβ + yt yβ)gβ . (B-1)

Define ψ to be the (harmonic) composition of F to the velocity potential ϕ,

ψ = ϕ ◦F : H→ R, ψ(α, β, t)= ϕ(x(α, β, t), y(α, β, t), t).
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The velocity components (u, v) can now be expressed in terms of the velocity potential ψ by

u = 1
j
(xαψα + xβψβ)+ cy, v =

1
j
(yαψα + yβψβ). (B-2)

It follows that
u2
+ v2
= ϕ2

x +ϕ
2
y =

1
j
(ψ2

α +ψβ2).

Boundary values. Setting β = 0 gives the boundary values of the holomorphic functions defined in the
lower half-plane. In particular, we introduce the notation

x(α, 0, t)=: X (α, t), y(α, 0, t)=: Y (α, t),

so that α→ X + iY parametrizes 0(t). The function (x −α)+ i(y−β) is holomorphic in H and decays
at infinity, which implies that on the boundary we have{

Y = H(X −α),
X = α+ HY.

Also set
z(α, β, t)= x(α, β, t)+ iy(α, β, t), Z(α, t)= z(α, 0, t).

Then our “holomorphic” variable W, which describes the surface 0(t), will be

W = Z −α.

As z is holomorphic in H, so is 1/zα−1; further, it decays at infinity. Its boundary values on the real axis
are given by

1
Zα − 1

=

(
Xα
J
− 1

)
− i

Yα
J
,

which leads to the relations 
Xα
J
− 1=−H

[
Yα
J

]
,

Yα
J
= H

[
Xα
J
− 1

]
.

(B-3)

We also introduce the notation 9(α, t) := ψ(α, β, t) for the real velocity potential restricted to 0(t)
and expressed in holomorphic coordinates, and at the same time define 2(α, t) by{

9 = H2,
2=−H9.

Up to a constant, this is the trace of the stream function θ on the free boundary. Since ψ is harmonic in
the lower half-plane, we have

ψβ |β=0− H9α =−2α.

Our holomorphic velocity potential will be the function

Q =9 + i2.

Further we need to focus on the two boundary conditions: kinematic and dynamic.
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The kinematic boundary condition. The kinematic boundary condition states that the normal component
of the velocity of the boundary is equal to the normal component of the fluid velocity, meaning that

(X t , Yt) · (−Yα, Xα)= (u, v) · (−Yα, Xα),

where (−Yα, Xα) is a normal to 0(t). Expanding the expression above and using (B-2) we can re-express
the kinematic boundary condition in holomorphic coordinates:

XαYt − YαX t = H9α − cY Yα =−2α − cY Yα. (B-4)

The goal now is to obtain a second equations for X t and Yt , and then solve for an explicit form of those
boundary values. Divide (B-4) by J,(

Xα
J
− 1
)

Yt −
Yα
J

X t + Yt =−
2α

J
− c

Y Yα
J
,

and use (B-3) to obtain

−H
[

Yα
J

]
Yt −

Yα
J

H [Yt ] + Yt =−
2α

J
− c

Y Yα
J
,

which further simplifies to

Yα
J

Yt − H
[

Yα
J

]
H [Yt ] + X t =−H

[
2α

J

]
− cH

[
Y Yα

J

]
.

Thus, a second equation for (X t , Yt) is

XαX t + YαYt =−J H
[
2α

J

]
− cJ H

[
Y Yα

J

]
. (B-5)

From (B-4) and (B-5) we have
X t =−H

[
2α

J

]
Xα − cH

[
Y Yα

J

]
Xα +

2α

J
Yα + c

Y Yα
J

Yα,

Yt =−H
[
2α

J

]
Yα − cH

[
Y Yα

J

]
Yα −

2α

J
Xα − c

Y Yα
J

Xα.
(B-6)

The dynamic boundary condition. We have already determined the spatial form of the dynamic boundary
condition in (1-4). From (B-1) and the kinematic boundary conditions (B-4)–(B-5) it follows that, on the
boundary, ϕt is given as

ϕt |β=0 =9t −
1
J
(XαX t + YαYt)9α +

1
J
(XαYt − YαX t)2α.

Substituting X t and Yt from (B-6) yields

ϕt |β=0 =9t + H
[
2α

J

]
9α + cH

[
Y Yα

J

]
9α −

1
J
22
α −

1
J

cY Yα2α. (B-7)
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We express all the terms on the right in (1-4) in terms of the traces on the boundary of the corresponding
functions. Doing so, after some simplifications we arrive at the following equation:

9t + H
[
2α

J

]
9α −

22
α

J
+

1
2J
(92

α +2
2
α)+ gY + cH

[
Y Yα

J

]
9α − c2+ c

Y
J

Xα9α = 0. (B-8)

The real form of the equations. The equations (B-6) and (B-8) provide us with a system describing the
evolution of the free boundary and the velocity potential restricted to the free boundary, as follows:

Yt =−H
[
2α

J

]
Yα − cH

[
Y Yα

J

]
Yα −

2α

J
Xα − c

Y Yα
J

Xα,

9t =−H
[
2α

J

]
9α +

22
α

J
−

1
2J
(92

α +2
2
α)− gY − cH

[
Y Yα

J

]
9α + c2− c

Y
J

Xα9α.

Here X and 2 are dependent variables.
The Hamiltonian associated to the system is

E(Y, 9)= 1
2

∫ {
9|∂α|9 + gY 2 Xα + c9αY 2

+
1
3

c2Y 3 Xα
}

dα,

where |∂α| = H∂α. Thus
δE
δY
= gY Xα + g 1

2 |∂α|(Y
2)+ c9αY + 1

2 c2Y 2 Xα + 1
6 c2
|∂α|(Y 3),

δE
δ9
= |∂α|9 − cY Yα.

We can write the above equations for (Y, 9) in a skew-symmetric form(
Y
9

)
t
=

(
0 A
−A∗ B

)(
δE/δY
δE/δ9

)
, (B-9)

where

A=
Xα
J
+ YαH 1

J
, B =9αH 1

J
+

1
J

H9α − c∂−1
α ,

A∗ =
Xα
J
−

1
J

HYα, B∗ =−B.

This form immediately implies that E is conserved along the flow. There are several Hamiltonian
symmetries, which correspond to conservation laws of the system in accordance with Noether’s principle.
The horizontal translation invariance

Y (α, t)→ Y (α+ a, t), 9(α, t)→9(α+ a, t)

is generated by the functional P which we will derive below. This functional corresponds to total
horizontal momentum, and it is given by the system(

Y
9

)
α

=

(
0 A
−A∗ B

)(
δP/δY
δP/δ9

)
, (B-10)
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where

P(Y, 9)=
∫ {

9Yα −
c
2

Y 2 Xα
}

dα.

The variational derivatives of P are

δP/δY =−9α − cY Xα −
c
2
|∂α|(Y 2),

δP/δ9 = Yα.

Thus, our conserved energies are

E(Y, 9)= 1
2

∫ {
9|∂α|9 + gY 2 Xα + c9αY 2

+
c2

3
Y 3 Xα

}
dα,

P(Y, 9)=
∫ {

9Yα −
c
2

Y 2 Xα
}

dα,
(B-11)

where |∂α| = H∂α.

The complex form of the equations. Recall that our holomorphic variables are

Z = X + iY, Q =9 + i2.

We also introduce the notation

F = H
[
2α

J

]
+ i

2α

J
= P

[
Qα − Qα

J

]
, J = |Zα|2, (B-12)

noting that F is also the boundary value of a function which is holomorphic in the lower half-plane.
Using these notations, a straightforward computation allows us to re-express the kinematic boundary

conditions (B-6) in a single equation for the motion of the boundary

Z t + F Zα + 2ic P
[

Y Yα
J

]
Zα = 0,

which is equivalent to

Z t + F Zα − i c
4

P
[
∂α(Z − Z)2

J

]
Zα = 0. (B-13)

Next we rewrite the dynamic boundary condition. For this we apply the operator 2P = I − i H in the
equation (B-8). We do not repeat the computations in [HIT16] for the case c = 0. Instead, we use them
directly to obtain, from (B-8), the equation

Qt − ig(Z −α)+ F Qα + icQ+ P
[
|Qα|

2

J

]
+ cK = 0, (B-14)

where

K = (I − i H)
[

H
[

Y Yα
J

]
9α +

Y
J

Xα9α

]
.
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To simplify K we use the relation H( f g− H f Hg)= f Hg+ H f g to rewrite it as

K = H
[

Y Yα
J

]
9α − i H

[
Y Yα

J
2α

]
+ i

Y Yα
J
9α + i H

[
Y Yα

J

]
2α + (I − i H)

[
Y
J

Xα9α

]
= i(I − i H)

[
Y Yα

J

]
Qα + (I − i H)

[
Y
J
(Xα9α + Yα2α)

]
= P

[
Y

Zα
−

Y
Zα

]
Qα + P

[
Y Qα

Zα
+

Y Qα

Zα

]
.

Further, we write Y =−i((Z −α)− (Z −α)), eliminate the projected antiholomorphic terms and remove
the projection in front of holomorphic terms to obtain

K =− i
2

P
[

Z −α

Zα
+

Z −α
Zα

]
Qα −

i
2

P
[
(Z −α)Qα

Zα
−
(Z −α)Qα

Zα

]
. (B-15)

Thus our set of holomorphic equations consists of (B-13) and (B-14)–(B-15).
For the last step we use the relation Z =W +α to replace Z by W. For the last expression in (B-13)

we have

P
[
∂α(Z − Z)2

J

]
= 2P

[
Z −α

Zα
−

Z −α
Zα
+

Z −α
Zα

]
= 2P

[
W

1+W α

−
W

1+Wα

+
W

1+Wα

]
= 2F1−

2W
1+Wα

,

where

F1 = P
[

W

1+W α

+
W

1+Wα

]
.

For K on the other hand we have

K =− i
2

F1 Qα −
i
2

P
[

W Qα

1+W α

−
W Qα

1+Wα

]
.

Hence, setting
F = F − i c

2
F1,

our equations become
Wt + F(Wα + 1)+ i c

2
W = 0,

Qt + F Qα + icQ− igW + P
[
|Qα|

2

J

]
+ i c

2

{
P
[

W Qα

1+W α

]
− P

[
W Qα

1+Wα

]}
= 0.

(B-16)

We can also re-express the Hamiltonian and horizontal momentum in terms of the holomorphic variables
(W, Q). This gives

E(W, Q)=<
∫

g|W |2(1+Wα)− i Q Qα + cQα(=W )2−
c3

2i
|W |2W (1+Wα) dα. (B-17)
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A second conserved quantity is the horizontal momentum,

P =
∫ {1

i
(QWα − QW α)− c|W |2+ c

2
(W 2W α +W 2Wα)

}
dα. (B-18)
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