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Let µ, ν be Radon measures on R, with µ nonatomic and ν doubling, and write µ = µa +µs for the
Lebesgue decomposition of µ relative to ν. For an interval I ⊂ R, define αµ,ν(I ) :=W1(µI , νI ), the
Wasserstein distance of normalised blow-ups of µ and ν restricted to I . Let Sν be the square function

S2
ν (µ)=

∑
I∈D

α2
µ,ν(I )χI ,

where D is the family of dyadic intervals of side-length at most 1. I prove that Sν(µ) is finite µa almost
everywhere and infinite µs almost everywhere. I also prove a version of the result for a nondyadic variant
of the square function Sν(µ). The results answer the simplest “n = d = 1” case of a problem of J. Azzam,
G. David and T. Toro.

1. Introduction 969
2. Comparison of α-numbers and 1-numbers 974
3. Absolute continuity of tree-adapted measures 980
4. Proof of Theorem 1.8(b) 982
5. The nondyadic square function 984
6. Parts (a) of the main theorems 991
Acknowledgements 995
References 995

1. Introduction

Wasserstein distance and α-numbers. In this paper, µ and ν are nonzero Radon measures on R. The
measure ν is generally assumed to be either dyadically doubling or globally doubling. Dyadically doubling
means that

ν( Î )≤ Cν(I ), I ∈ D, (1.1)

where D is the standard family of dyadic intervals, and Î is the parent of I , that is, the smallest interval in
D strictly containing I . Globally doubling means that ν(B(x, 2r))≤Cν(B(x, r)) for x ∈R and r > 0; in
particular, this implies spt ν=R. The main example for ν is the Lebesgue measure L, and the proofs in this
particular case would differ little from the ones presented below. No a priori homogeneity is assumed of µ.
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Definition 1.2 (Wasserstein distance). I will use the following definition of the (first) Wasserstein distance:
given two Radon measures ν1, ν2 on [0, 1], set

W1(ν1, ν2) := sup
ψ

∣∣∣∣∫ ψ dν1−

∫
ψ dν2

∣∣∣∣,
where the sup is taken over all 1-Lipschitz functions ψ : R→ R which are supported on [0, 1]. Such
functions will be called test functions. A slightly different — and also quite common — definition would
allow the sup to run over all 1-Lipschitz functions ψ : [0, 1] → R. To illustrate the difference, let ν1 = δ0

and ν2 = δ1. Then W1(ν1, ν2)= 0, but the alternative definition, say W̃1, would give W̃1(ν1, ν2)= 1. The
main reason for using W1 instead of W̃1 in this paper is to comply with the definitions in [Azzam et al.
2016; 2017].

As in the paper [Azzam et al. 2016] of J. Azzam, G. David and T. Toro, I make the following definition:

Definition 1.3 (α-numbers). Assume that I ⊂ R is an interval. Define

αµ,ν(I ) :=W1(µI , νI ),

where µI and νI are normalised blow-ups of µ and ν restricted to I. More precisely, let TI be the
increasing affine mapping taking I to [0, 1], and define

µI :=
TI](µ|I )

µ(I )
and νI :=

TI](ν|I )

ν(I )
.

If µ(I )= 0 (or ν(I )= 0), define µI ≡ 0 (or νI ≡ 0).

The quantity defined above is somewhat awkward to work with, as it lacks (see Example 5.2) the
following desirable stability property: if I, J ⊂ R are intervals of comparable length, and I ⊂ J , then
αµ,ν(I ). αµ,ν(J ). Chiefly for this reason, I also need to consider the following “smooth” α-numbers;
the definition below is essentially the same as the one given in [Azzam et al. 2017, Section 5]:

Definition 1.4 (smooth α-numbers). Let ϕ := dist( · ,R\(0, 1)). For an interval I ⊂R, define αs,µ,ν(I ) :=
W1(µϕ,I , νϕ,I ), where

µϕ,I :=
TI](µ|I )

µ(ϕI )
and νϕ,I :=

TI](ν|I )

ν(ϕI )
.

Here TI is the map from Definition 1.3, ϕI = ϕ ◦ TI , and µ(ϕI )=
∫
ϕI dµ. If µ(ϕI )= 0 (or ν(ϕI )= 0),

set µϕ,I ≡ 0 (or νϕ,I ≡ 0).

The only difference between the numbers αµ,ν(I ) and αs,µ,ν(I ) is in the normalisation of the measures
µI , ϕI and µϕ,I , νϕ,I : if I is closed, the measures µI , νI are probability measures on [0, 1], while
µϕ,I ([0, 1])=µ(I )/µ(ϕI ). The numbers αs,µ,ν(I ) enjoy the stability property alluded to above. Moreover,
if either µ or ν is a doubling, one has αs,µ,ν(I ). αµ,ν(I ). These facts are contained in Proposition 5.4
(or see [Azzam et al. 2017, Section 5]).

Remark 1.5. The α-numbers were first introduced by X. Tolsa [2009], where he used them to characterise
the uniform rectifiability of Ahlfors–David regular measures in Rd. Tolsa’s original definition of the
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α-numbers has a different, asymmetric, normalisation compared to either αµ,ν or αs,µ,ν above; see [Tolsa
2009, p. 394].

Main results. Before explaining the results in [Azzam et al. 2016], and their connection to the current
manuscript, I emphasise that that paper treats “n-dimensional” measures in Rd for any 1≤ n ≤ d . For the
current paper, only the case n = d = 1 is relevant. So, to avoid digressing too much, I need to state the
results of [Azzam et al. 2016] in far smaller generality than they deserve.

With this proviso in mind, the main results of [Azzam et al. 2016] imply the following: if µ is a
doubling measure on R, and the numbers αµ,L satisfy a Carleson condition of the form∫

B(x,2r)

∫ 2r

0
αµ,L(B(y, t))

dt dµy
t
≤ Cµ(B(x, r)), (1.6)

then µ, or at least a large part of µ, is absolutely continuous with respect to L, with quantitative upper and
lower bounds on the density. As the authors of [Azzam et al. 2016] point out, the main shortcoming of
their result is that condition (1.6) imposes a hypothesis on the first powers of the numbers αµ,L, whereas
evidence suggests (see in that paper Remark 1.6.1, the discussion after Theorem 1.7, and Example 4.6)
that the correct power should be 2. More support for this belief comes from the following “converse”
result [Tolsa 2015, Lemma 2.2]: if µ is a finite Borel measure on R then∫

∞

0
α̃2
µ,L(x, r)

dr
r
<∞ for L a.e. x ∈ R. (1.7)

In particular, if µ� L, then (1.7) holds for µ almost every x ∈ R. I should again mention that this is
only the easiest n = d = 1 case of Tolsa’s result. Here α̃µ,L is a variant of the α-number (in fact the one
discussed in Remark 1.5).

The purpose of this paper is to address the problem of Azzam, David and Toro in the simplest case
n = d = 1. I show that control for the second powers of the αµ,L-numbers does guarantee absolute
continuity with respect to Lebesgue measure. In fact, the doubling assumption on µ can be dropped, the
Carleson condition (1.6) can be relaxed considerably, and the results remain valid, if L is replaced by any
doubling measure ν. The results below also contain the “converse” statement, analogous to (1.7).

I prove two variants of the main result: one dyadic, and the other nondyadic. Here is the dyadic version:

Theorem 1.8. Let D be the family of dyadic subintervals of [0, 1), and let µ, ν be Borel probability
measures on [0, 1). Assume that µ does not charge the boundaries of intervals in D, and ν is dyadically
doubling. Write µ = µa + µs for the Lebesgue decomposition of µ relative to ν, where µa � ν and
µs ⊥ ν. Finally, let SD,ν(µ) be the square function

S2
D,ν(µ)=

∑
I∈D

α2
µ,ν(I )χI .

Then,

(a) Sν(µ) is finite µa almost surely, and

(b) Sν(µ) is infinite µs almost surely.
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In particular, ∑
I∈D

α2
µ,ν(I )µ(I ) <∞ H⇒ µ� ν.

Heuristically, this corresponds to assuming (1.6) at the scale r = 1, but I could not find a way to reduce
the continuous problem to the dyadic one; on the other hand, a reduction in the other direction does not
appear straightforward either, so perhaps one needs to treat the cases separately. A caveat of the dyadic
set-up is the “nonatomicity” hypothesis on µ. It cannot be dispensed with: for instance, if µ = δx for
any x ∈ [0, 1), which only belongs to the interiors of finitely many dyadic intervals, then SD,L(µ) is
uniformly bounded (for instance SD,L(δ0)≡ 0), but µ⊥ L.

Here is the nondyadic version of the main theorem:

Theorem 1.9. Assume that µ, ν are Radon measures, and ν is globally doubling. Write µ= µa +µs , as
in Theorem 1.8. Let Sν be the square function

S2
ν (µ)(x)=

∫ 1

0
α2

s,µ,ν(B(x, r))
dr
r
, x ∈ R,

defined via the smooth α-numbers αs,µ,ν . Then,

(a) Sν(µ) is finite µa almost surely, and

(b) Sν(µ) is infinite µs almost surely.

Recall that αs,µ,ν(B(x, r)). αµ,ν(B(x, r)) whenever ν is doubling, such as ν =L; see Proposition 5.4.
So, Theorem 1.9 has the following corollary:

Corollary 1.10. Assume that µ, ν are Radon measures, and ν is globally doubling. If∫ 1

0
α2
µ,ν(B(x, t)) dt

t
<∞ (1.11)

for µ almost every x ∈ R, then µ� ν.

The following question remains open:

Question 1. In the setting of Theorem 1.9 and Corollary 1.10, is the square function in (1.11) finite
µa almost everywhere?

The difficulties arise from the nonstability of the numbers αµ,ν . See [Azzam et al. 2017, Section 5],
and in particular Lemma 5.3 of that paper, for related discussion.

Assuming the full Carleson condition (1.6), and that µ is globally doubling, the authors of [Azzam
et al. 2016] prove something more quantitative than µ� L; see in particular Theorem 1.9 of that paper.
The same ought to be true for the second powers of the α-numbers, and indeed the following result can
be easily deduced with the method of the current paper:

Theorem 1.12. Assume that µ, ν are Borel probability measures on [0, 1), both dyadically doubling, and
assume that the Carleson condition∑

I⊂J

α2
µ,ν(I )µ(I )≤ Cµ(J ), J ∈ D, (1.13)
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holds for some C ≥ 1. Then µ belongs to AD
∞
(ν), the dyadic A∞ class relative to ν. Similarly, if µ, ν

are Radon measures on R, both globally doubling, and the Carleson condition (1.6) holds for the second
powers α2

µ,ν(B(y, t)), then µ ∈ A∞(ν).

The a priori doubling assumptions cannot be omitted (that is, they are not implied by the Carleson
condition): Just consider µ = 2χ[0,1/2) dL. It is clear that the Carleson condition (1.13) holds for the
numbers α2

µ,L(I ), but nevertheless µ /∈ AD
∞
(L|[0,1]).

Outline of the paper, and the main steps of the proofs. The main substance of the paper is proving the
dyadic result, Theorem 1.8, and in particular part (b). This work takes up Sections 2-4. The proof of
part (a) is simpler, and closely follows a previous argument of Tolsa — namely the one used to prove (1.7).
The details (both in the dyadic and continuous settings) are given in Section 6. Modifications required to
prove part (b) of the “continuous” Theorem 1.9 are outlined in Section 5.

The proof of Theorem 1.8(b) has three main steps. First, the numbers αµ,ν(I ) are used to control
something analyst-friendlier, namely the dyadic variants

1µ,ν(I )=
∣∣∣∣µ(I−)µ(I )

−
ν(I−)
ν(I )

∣∣∣∣. (1.14)

Here I− stands for the left half of I . This would be simple, if χ[0,1/2) happened to be one of the admissible
test functions ψ in the definition of W1. It is not, however, and in fact there seems to be no direct (and
sufficiently efficient) way to control 1µ,ν(I ) by αµ,ν(I ), or even αµ,ν(3I ). However, it turns out that the
numbers are equivalent at the level of certain Carleson sums over trees; proving this statement is the main
content of Section 2.

The numbers 1µ,ν(I ) are well-known quantities: they are the (absolute values of the) coefficients in
an orthogonal representation of µ in terms of ν-adapted Haar functions, and it is known that they can be
used to characterise A∞. The following theorem is due to S. Buckley [1993]:

Theorem 1.15 [Buckley 1993, Theorem 2.2(iii)]. Let µ, ν be dyadically doubling Borel probability
measures on [0, 1]. Then µ ∈ AD

∞
(ν) if and only if∑

I⊂J

12
µ,ν(I )µ(I )≤ Cµ(J ), J ∈ D. (1.16)

The result in [Buckley 1993] is only stated for ν = L|[0,1], but the proof works in the greater generality.
Note the similarity between the Carleson conditions (1.16) and (1.13): The dyadic part of Theorem 1.12 is,
in fact, nothing but a corollary of Buckley’s result, assuming that one knows how to control the numbers
1µ,ν(I ) by the numbers αµ,ν(I ) at the level of Carleson sums; consequently, the short proof of this half
of Theorem 1.12 can be found in Section 2. The continuous version is discussed briefly in Remark 5.19.

Buckley’s result is not applicable for Theorem 1.8: the measure µ is not dyadically doubling, and
the information available is much weaker than the Carleson condition (1.13). Handling these issues
constitutes the remaining two steps in the proof: all dyadic intervals are split into trees, where µ is
“tree-doubling” (Section 4), and the absolute continuity of µ with respect to ν is studied in each tree
separately (Section 3).
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2. Comparison of α-numbers and 1-numbers

In this section, µ and ν are Borel probability measures on [0, 1), µ does not charge the boundaries of
dyadic intervals, and ν is dyadically doubling inside [0, 1):

ν( Î )≤ Dνν(I ), I ∈ D \ {[0, 1)}.

This implies, in particular, that ν(I ) > 0 for all I ∈ D with I ⊂ [0, 1). The main task of the section is to
bound the numbers 1µ,ν(I ) by the numbers αµ,ν(I ), where 1µ,ν(I ) is the quantity

1µ,ν(I )=
∣∣∣∣µ(I−)µ(I )

−
ν(I−)
ν(I )

∣∣∣∣= ∣∣∣∣∫ χ(0,1/2) dµI −

∫
χ(0,1/2) dνI

∣∣∣∣.
The task would be trivial if χ(0,1/2) were a 1-Lipschitz function vanishing at the boundary of [0, 1]. It is
not: in fact, the difference between 1ν1,ν2(I ) and αν1,ν2(I ) can be rather large for a given interval I .

Example 2.1. If ν1 = δ1/2−1/n and ν2 = δ1/2+1/n , then 1ν1,ν2([0, 1))= 1, but αν1,ν2([0, 1)). 1/n. These
measures do not satisfy the assumptions of the section, so consider also the following example. Let
µ= f dL, where f takes the value 1 everywhere, except in the 2−n-neighbourhood of 1

2 . Let f ≡ 1
2 on

the interval
[1

2 − 2−n, 1
2

]
, and f ≡ 3

2 on the interval
( 1

2 ,
1
2 + 2−n

]
. Then µ is a dyadically 4-doubling

probability measure on [0, 1], 1µ,L([0, 1))∼ 2−n , and αµ,L([0, 1))∼ 2−2n .

Fortunately, “pointwise” estimates between 1µ,ν(I ) and αµ,ν(I ) are not really needed in this paper,
and it turns out that certain sums of these numbers are comparable, up to a manageable error. To state
such results, I need to introduce some terminology. A family C ⊂D of dyadic intervals is called coherent
if the implication

Q, R ∈ C and Q ⊂ P ⊂ R =⇒ P ∈ C

holds for all Q, P, R ∈ D.

Definition 2.2 (trees, leaves, boundary). A tree T ⊂ D is any coherent family of dyadic intervals with a
unique largest interval, Top(T ) ∈ T , and with the property that

card(ch(I )∩ T ) ∈ {0, 2}, I ∈ T .

For the tree T , define the set family Leaves(T ) to consist of the minimal intervals in T , in other words
those I ∈ T with card(ch(I ) ∩ T ) = 0. Abusing notation, I often write Leaves(T ) also for the set⋃
{I : I ∈ Leaves(T )}. Finally, define the boundary of the tree ∂T by

∂T := Top(T ) \Leaves(T ).

Then x ∈ ∂T if and only if x ∈ Top(T ) and all intervals I ∈ D with x ∈ I ⊂ Top(T ) are contained T .

Definition 2.3 ((T , D)-doubling measures). A Borel probability measure µ on [0, 1] is called (T , D)-
doubling if

µ( Î )≤ Dµ(I ), I ∈ T \Top(T ).

Here is the main result of this section:
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Proposition 2.4. Let µ, ν be measures satisfying the assumptions of the section, and let T ⊂ D be a tree.
Moreover, assume that µ is (T , D)-doubling for some constant D ≥ 1. Then∑

I∈T

12
µ,ν(I )µ(I ).Dν ,D

∑
I∈T \Leaves(T )

α2
µ,ν(I )µ(I )+µ(Top(T )).

The “dyadic part” of Theorem 1.12 is an immediate corollary:

Proof of Theorem 1.12, dyadic part. By hypothesis, both measures µ and ν are (D,C)-doubling. Hence,
by the Carleson condition (1.13), and Proposition 2.4 applied to the trees TJ := {I ∈ D : I ⊂ J }, one has∑

I⊂J

12
µ,ν(I )µ(I ).C

∑
I⊂J

α2
µ,ν(I )µ(I )+µ(J ). µ(J ).

This is precisely the condition in Buckley’s result, Theorem 1.15, so µ ∈ AD
∞
(ν). �

I then begin the proof of Proposition 2.4. It would, in fact, suffice to assume that ν is also just
(T , Dν)-doubling, but checking this would result in some unnecessary book-keeping below. The proof is
based on the observation that χ(0,1/2) can be written as a series of Lipschitz functions, each supported on
subintervals of [0, 1]. This motivates the following considerations.

Assume that
9 :=90 :=

∑
j≥0

ψj

is a bounded function such that each ψj : R→ [0,∞) is an L j -Lipschitz function supported on some
interval Ij ∈Dj . Assume moreover that the intervals Ij are nested: [0, 1)⊃ I1 ⊃ I2 ⊃ · · · . Then, as a first
step in proving Proposition 2.4, I claim that∣∣∣∣∫ 9 dµ−

∫
9 dν

∣∣∣∣
≤

N∑
k=0

Lk

2k αµ,ν(Ik)µ(Ik)+

N∑
k=0

(
1

ν(Ik+1)

∫
9k+1 dν

)
1µ,ν(Ik)µ(Ik)+ 2‖9‖∞µ(IN+1) (2.5)

for any N ∈ {0, 1, . . . ,∞}, where
9k :=

∑
j≥k

ψj , m ≥ 0.

For N =∞, the symbol “IN+1” should be interpreted as the intersection of all the intervals Ij . I will first
verify that, for any m ≥ 0,∣∣∣∣ 1
µ(Im)

∫
9m dµ−

1
ν(Im)

∫
9m dν

∣∣∣∣≤ Lm

2m αµ,ν(Im)+

(
1

ν(Im+1)

∫
9m+1 dν

)
1µ,ν(Im)

+
µ(Im+1)

µ(Im)

∣∣∣∣ 1
µ(Im+1)

∫
9m+1 dµ−

1
ν(Im+1)

∫
9m+1 dν

∣∣∣∣, (2.6)

from which it will be easy to derive (2.5). If µ(Im)= 0, the corresponding term should be interpreted as
“0” (recall that ν(Im) is never zero by the doubling assumption). The proof of (2.6) is straightforward.
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First, note that since ψm : R→ R is an Lm-Lipschitz function supported on Im , and |Im | = 2−m, one has∣∣∣∣ 1
µ(Im)

∫
ψm dµ−

1
ν(Im)

∫
ψm dν

∣∣∣∣= ∣∣∣∣∫ ψm ◦ T−1
Im

dµIm −

∫
ψm ◦ T−1

Im
dνIm

∣∣∣∣≤ Lm

2m αµ,ν(Im).

(The mappings TI are familiar from Definition 1.3). This gives rise to the first term in (2.6). What remains
is bounded by∣∣∣∣ 1
µ(Im)

∫
9m+1 dµ−

1
ν(Im)

∫
9m+1 dν

∣∣∣∣≤ µ(Im+1)

µ(Im)

∣∣∣∣ 1
µ(Im+1)

∫
9m+1 dµ−

1
ν(Im+1)

∫
9m+1 dν

∣∣∣∣
+

(
1

ν(Im+1)

∫
9m+1 dν

)∣∣∣∣µ(Im+1)

µ(Im)
−
ν(Im+1)

ν(Im)

∣∣∣∣.
This is (2.6), observing that

1µ,ν(Im)=

∣∣∣∣µ(Im+1)

µ(Im)
−
ν(Im+1)

ν(Im)

∣∣∣∣,
since either Im+1 = (Im)+ or Im+1 = (Im)−, and both possibilities give the same number 1µ,ν(Im).
Finally, (2.5) is obtained by repeated application of (2.6). By induction, one can check that N iterations
of (2.6) (starting from m = 0, and recalling that µ, ν are probability measures on [0, 1)) leads to∣∣∣∣∫ 9 dµ−

∫
9 dν

∣∣∣∣≤ N∑
k=0

Lk

2k αµ,ν(Ik)µ(Ik)+

N∑
k=0

(
1

ν(Ik+1)

∫
9k+1 dν

)
1µ,ν(Ik)µ(Ik)

+µ(IN+1)

∣∣∣∣ 1
µ(IN+1)

∫
9N+1 dµ−

1
ν(IN+1)

∫
9N+1 dν

∣∣∣∣. (2.7)

This gives (2.5) immediately, observing that ‖9N+1‖∞ ≤ ‖9‖∞.
Now, it is time to specify the functions ψj . I first define a hands-on Whitney decomposition for

(
0, 1

2

)
.

Pick a small parameter τ >0, to be specified later, and let U0 :=
[
τ, 1

2−τ
)
. Then, set U−k :=[τ2−k, τ2−k+1)

and Uk :=
1
2 −U−k for k ≥ 1. Let {ψk}k∈Z be a partition of unity subordinate to slightly enlarged versions

of the sets Uk , k ∈ Z. By this, I first mean that each ψk is nonnegative and Lk-Lipschitz with

Lk ≤
C2|k|

τ
. (2.8)

Second, the supports of the functions ψk should satisfy ψ0 ⊂
[1

2τ,
1
2 −

1
2τ
)
,

sptψ−k ⊂
[(1

2τ
)
2−k, 2τ2−k+1)

⊂ (0, 2τ2−k+1) and ψk ⊂
1
2 − (0, 2τ2−k+1)

for k ≥ 1. Third, ∑
k∈Z

ψk = χ(0,1/2).

Let 9− :=
∑

k>0 ψ−k +
1
2ψ0 and 9+ :=

∑
k>0 ψk +

1
2ψ0. Then

1µ,ν([0, 1))≤
∣∣∣∣∫ 9− dµ−

∫
9− dν

∣∣∣∣+ ∣∣∣∣∫ 9+ dµ−
∫
9+ dν

∣∣∣∣. (2.9)
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This is the only place in the paper where the assumption of µ not charging the boundaries of dyadic
intervals is used (however, the estimate (2.9) will eventually be applied to all the measures µI , I ∈ D, so
the full strength of the hypothesis is needed). The function 9− is precisely of the form treated above with
Ij := [0, 2− j ), since clearly sptψ−k⊂ Ik . Applying the inequality (2.5) with any N1 ∈{0, 1, . . . ,∞} yields∣∣∣∣∫ 9− dµ−

∫
9− dν

∣∣∣∣
≤

N1∑
k=0

L−k

2k αµ,ν(Ik)µ(Ik)+

N1∑
k=0

(
1

ν(Ik+1)

∫
9−k+1 dν

)
1µ,ν(Ik)µ(Ik)+ 2µ(IN1+1). (2.10)

Next, observe that each function 9−k+1, k ≥ 0, is bounded by 1 and vanishes outside

∞⋃
j=k+1

sptψ−k ⊂ (0, 2τ2−k).

It follows that
1

ν(Ik+1)

∫
9−k+1 dν ≤

ν((0, 2τ2−k))

ν(Ik+1)
= oDν

(τ ),

where the implicit constants only depend on the dyadic doubling constant Dν of ν. In the sequel, I assume
that τ is so small that oDν

(τ )≤ κ , where κ > 0 is another small constant, which will eventually depend
on the (T , D)-doubling constant D for µ. Recalling also (2.8), the estimate (2.10) then becomes∣∣∣∣∫ 9− dµ−

∫
9− dν

∣∣∣∣≤ C
τ

N1∑
k=0

αµ,ν(Ik)µ(Ik)+ κ

N1∑
k=0

1µ,ν(Ik)µ(Ik)+ 2µ(IN1+1). (2.11)

The last term simply vanishes if N1 =∞, because µ({0})= 0. A heuristic point to observe is that the
left-hand side is roughly 1µ,ν([0, 1]); the right-hand side also contains the same term, but multiplied
by a small constant κ > 0. This gain is “paid for” by the large constant C/τ .

Next, the estimate is replicated for 9+. This time, the inequality (2.5) is applied to the sequence
Ĩ0 = [0, 1), Ĩ1 =

[
0, 1

2

)
, Ĩ2 = ( Ĩ1)+, and in general Ĩk+1 = ( Ĩk)+ for k ≥ 1 (here J+ is the right half of J ).

Then, if τ is small enough, it is again clear that sptψk ⊂ Ĩk . Thus, by inequality (2.5),∣∣∣∣∫ 9+ dµ−
∫
9+ dν

∣∣∣∣
≤

N2∑
k=0

Lk

2k αµ,ν( Ĩk)µ( Ĩk)+

N2∑
k=0

(
1

ν( Ĩk+1)

∫
9+k+1 dν

)
1µ,ν( Ĩk)µ( Ĩk)+ 2µ( ĨN2+1) (2.12)

for any N2 ≥ 0. As before, the term µ( ĨN2) vanishes for N2 =∞
(
because µ

({1
2

})
= 0

)
, and one can

ensure
1

ν( Ĩk+1)

∫
9+k+1 dν ≤ κ
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TailI

I

I−

(I−)2+

TipII5−

Figure 1. An example of TailI (4, 1) and TipI .

by choosing τ = τ(Dν) > 0 small enough. Consequently (recalling (2.9)), (2.11) and (2.12) together
imply

1µ,ν([0, 1))≤ C
τ

∑
I∈Tail

αµ,ν(I )µ(I )+ κ
∑

I∈Tail

1µ,ν(I )µ(I )+ 2µ(IN1+1)+ 2µ( ĨN2+1). (2.13)

Here Tail is the collection of all the intervals I0, . . . , IN1 and Ĩ0, . . . , ĨN2 . The intervals [0, 1) and
[
0, 1

2

)
arise a total of two times from (2.11) and (2.12), but this has no visible impact on the end result, (2.13).
The estimate (2.13) generalises in a simple way to other intervals I ∈D, besides I = [0, 1), but requires an
additional piece of notation. Let I ∈D, and write I0− := I =: I0+. For k ≥ 1, define Ik− := (I(k−1)−)− and
Ik+ := (I(k−1)+)+. Now, for a fixed dyadic interval I ⊂ [0, 1), and N1, N2 ≥ 0, let TailI = TailI (N1, N2)

be the collection of subintervals of I , which includes Ik− for all 0≤ k ≤ N1 and (I−)k+ for all 0≤ k ≤ N2;
see Figure 1. Then, the generalisation of (2.13) reads

1µ,ν(I )µ(I )≤
C
τ

∑
J∈TailI

αµ,ν(J )µ(J )+ κ
∑

J∈TailI

1µ,ν(J )µ(J )+ 2µ(TipI ), (2.14)

where TipI = I(N1+1)− ∪ (I−)(N2+1)+. If N1 <∞ and N2 =∞, for instance, then TipI = I(N1+1)−. The
proof is nothing but an application of (2.13) to the measures µI and νI . For minor technical reasons, I
also wish to allow the choice N1 = 0 and N2 =−1: by definition, this choice means that TailI = {I } and
TipI := I−. It is easy to see that (2.14) remains valid in this case, with “2” replaced by “4” (for I = [0, 1),
this follows by applying (2.11) and (2.12) with the choices N1 = 0= N2).

Now, the table is set to prove Proposition 2.4, which I recall here:

Proposition 2.4. Let µ, ν be measures satisfying the assumptions of the section, and let T ⊂ D be a tree.
Moreover, assume that µ is (T , D)-doubling for some constant D ≥ 1. Then∑

I∈T

12
µ,ν(I )µ(I ).Dν ,D

∑
I∈T \Leaves(T )

α2
µ,ν(I )µ(I )+µ(Top(T )).

Proof. The sum over I ∈ Leaves(T ) is evidently bounded by 4µ(Top(T )), so it suffices to consider

I ∈ T \Leaves(T )=: T −. (2.15)

Let I ∈ T , and define the number N1= N1(I )≥ 0 as the smallest index such that I(N1+1)− ∈Leaves(T ). If
no such index exists, set N1=∞. If I− ∈Leaves(T ), then N1= 0, and I define N2=−1: then TailI := {I },
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and TipI := I−. Otherwise, if I− ∈T −, let N2≥ 0 be the smallest index such that (I−)(N2+1)+ ∈Leaves(T ).
If no such index exists, let N2 =∞. Now TailI ⊂ T − and TipI ⊂ Leaves(T ) are defined as after (2.14).
Start by the following combination of (2.14) and Cauchy–Schwarz:

12
µ,ν(I )µ(I )

2 .
1
τ 2

( ∑
J∈TailI

α2
µ,ν(J )µ(J )

3/2
)( ∑

J∈TailI

µ(J )1/2
)

+ κ2
( ∑

J∈TailI

12
µ,ν(J )µ(J )

3/2
)( ∑

J∈TailI

µ(J )1/2
)
+µ(TipI )

2. (2.16)

The factors
∑

J∈TailI
µ(J )1/2 are under control, thanks to the (T , D)-doubling hypothesis on µ, and

the fact that TailI ⊂ T . Since TailI consists of two “branches” of nested intervals inside I, and the
(T , D)-doubling hypothesis implies that the µ-measures of intervals decay geometrically along these
branches, one arrives at ∑

J∈TailI

µ(J )1/2 .D µ(I )1/2.

Thus, by (2.16),

12
µ,ν(I )µ(I ).D

1
τ 2

∑
J∈TailI

α2
µ,ν(J )

µ(J )3/2

µ(I )1/2
+ κ2

∑
J∈TailI

12
µ,ν(J )

µ(J )3/2

µ(I )1/2
+
µ(TipI )

2

µ(I )
. (2.17)

The constant κ > 0 will have to be chosen so small, eventually, that its product with the implicit constants
above is notably less than 1. From now on, the precise restriction J ∈ TailI can be replaced by the
conditions J ∈ T − and J ⊂ I . With this in mind, observe first that∑

I∈T −

∑
J∈T −
J⊂I

α2
µ,ν(J )

µ(J )3/2

µ(I )1/2
=

∑
J∈T −

α2
µ,ν(J )µ(J )

3/2
∑

I∈T −
I⊃J

1
µ(I )1/2

.D

∑
J∈T −

α2
µ,ν(J )µ(J ).

The final inequality uses, again, the geometric decay of µ-measures of intervals in T . A similar estimate
can be performed for the second term in (2.17). As for the third term,∑

I∈T −

µ(TipI )
2

µ(I )
.
∑

I∈T −

µ(I(N1+1)−)
2
+µ((I−)(N2+1)+)

2

µ(I )

.
∑

J∈Leaves(T )

µ(J )2
∑

I∈T −
I⊃J

1
µ(I )

.D µ(Leaves(T )),

relying once more on the geometric decay of µ in T . Combining all the estimates gives∑
I∈T −

12
µ,ν(I )µ(I ).D

1
τ 2

∑
I∈T −

α2
µ,ν(I )µ(I )+ κ

2
∑

I∈T −
12
µ,ν(I )µ(I )+µ(Leaves(T )). (2.18)

If the left-hand side is a priori finite, the proof of Proposition 2.4 is now completed by choosing κ small
enough, depending on D. If not, consider any finite subtree Tj ⊂ T with Top(Tj )= Top(T ). Then, the
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proof above gives (2.18) with Tj in place of T . Hence∑
I∈T −j

12
µ,ν(I )µ(I ).D

∑
I∈T −j

α2
µ,ν(I )µ(I )+µ(Top(T )),

where the constants do not depend on the choice of Tj . Now the proposition follows by letting Tj ↗ T . �

3. Absolute continuity of tree-adapted measures

Recall the concepts of tree, leaves and boundaries from Definition 2.2, and the notion of (T , D)-doubling
measures from Definition 2.3. In the present section, I assume that T ⊂ D is a tree, and µ, ν are two
finite Borel measures, which satisfy the following two assumptions:

(A) min{µ(Top(T )), ν(Top(T ))}> 0.

(B) µ, ν are (T , D)-doubling for some constant D ≥ 1.

In particular, the assumptions imply

µ(I ) > 0 and ν(I ) > 0, I ∈ T .

For reasons to become apparent soon, I define the (T , µ)-adaptation of ν,

νT := ν|∂T +
∑

I∈Leaves(T )

ν

µ
(I ) ·µ|I ,

where (ν/µ)(I ) := ν(I )/µ(I ). Note that

νT (I )= ν(I ), I ∈ T , (3.1)

because ∂T is disjoint from the leaves, which are also pairwise disjoint. In particular, νT (Top(T )) =
ν(Top(T )). The main result of the section is the following:

Proposition 3.2. Assume (A) and (B), and that∑
I∈T \Leaves(T )

12
µ,ν(I )µ(I ) <∞.

Then µ|Top(T )� νT . In particular µ|∂T � ν.

Remark 3.3. By the definition of νT , it is obvious that µ|Leaves(T ) � νT . So, the main point of
Proposition 3.2 is to show that µ|∂T � (νT )|∂T = ν|∂T .

Since µ(Top(T )) > 0 and ν(Top(T )) > 0, one may assume without loss of generality that

µ(Top(T ))= 1= ν(Top(T )).

The proof of Proposition 3.2 is based on a “product representation” for νT , relative to µ, in the spirit of
[Fefferman et al. 1991, Theorem 3.22] of Fefferman, Kenig and Pipher. Recall that every interval I ∈ D
has exactly two children: I− and I+. Define the µ-adapted Haar functions

hµI := c+I χI+ − c−I χI−, I ∈ T \Leaves(T ),
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where

c+I :=
µ(I )
µ(I+)

and c−I :=
µ(I )
µ(I−)

.

This ensures that
∫

hµI dµ= 0 for I ∈ T \Leaves(T ). Note that µ(I+), µ(I−) > 0, because I+, I− ∈ T .
Now, the plan is to define coefficients aJ ∈ R, for J ∈ T \Leaves(T ), so that the following requirement
is met: ∏

J)I
J∈T

(1+ aJ hµJ )(x)=
ν

µ
(I ), x ∈ I ∈ T . (3.4)

The left-hand side of (3.4) is certainly constant on I , so the equation has some hope; if I =Top(T ), then the
product is empty, and the right-hand side of (3.4) equals 1 by the assumption µ(Top(T ))= ν(Top(T ))= 1.
Now, assume that (3.4) holds for some interval I ∈ T \Leaves(T ). Then I−, I+ ∈ T , so if (3.4) is supposed
to hold for I−, one has

ν

µ
(I−)=

∏
J)I−
J∈T

(1+ aJ hµJ )= (1− c−I aI )
∏
J)I
J∈T

(1+ aJ hµJ )= (1− c−I aI )
ν

µ
(I ), (3.5)

and similarly
ν

µ
(I+)= (1+ c+I aI )

ν

µ
(I ). (3.6)

From (3.5) one solves

aI =
(ν/µ)(I )− (ν/µ)(I−)

(ν/µ)(I )c−I
=
µ(I−)
µ(I )

−
ν(I−)
ν(I )

, (3.7)

and (3.6) gives

aI =
(ν/µ)(I+)− (ν/µ)(I )

(ν/µ)(I )c+I
=
ν(I+)
ν(I )

−
µ(I+)
µ(I )

. (3.8)

Using that µ(I−)/µ(I )= 1−µ(I+)/µ(I ) (and three other similar formulae), it is easy to see that the
numbers on the right-hand sides of (3.7) and (3.8) agree. So, aI can be defined consistently, and (3.4)
holds for I+, I− ∈ T . Moreover, the formulae for aI look quite familiar:

Observation 1. |aI | =1µ,ν(I ) for I ∈ T \Leaves(T ).

Now that the coefficients aI have been successfully defined for I ∈ T \Leaves(T ), let g be the (at the
moment) formal series

g(x) :=
∑

I∈T \Leaves(T )

aI hµI (x).

Since the Haar functions hµI are orthogonal in L2(µ), and satisfy∫
(hµI )

2 dµ≤max{c+I , c−I }
2µ(I )≤ D2µ(I ), I ∈ T \Leaves(T ),

one arrives at

‖g‖2L2(µ)
=

∑
I∈T \Leaves(T )

12
µ,ν(I )‖h I‖

2
L2(µ)
≤ D2

∑
I∈T \Leaves(T )

12
µ,ν(I )µ(I ) <∞,
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by the assumption in Proposition 3.2. This means that the sequence

gN :=
∑

I∈T \Leaves(T )
|I |>2−N

aI hµI

converges in L2(µ). In particular, one can pick a subsequence (gNj )j∈N which converges pointwise
µ almost everywhere (in fact, the entire sequence converges by basic martingale theory, but this is not
needed). Now, recall that the goal was to prove that µ|Top(T )� νT . To this end, one has to verify that

lim inf
I→x

µ

νT
(I ) <∞ (3.9)

at µ almost every x ∈ Top(T ). This is clear for x ∈ Leaves(T ), since the ratios µ(I )/νT (I ), I 3 x , are
eventually constant. So, it suffices to prove (3.9) at µ almost every point x ∈ ∂T . Fix a point x ∈ ∂T with
the properties that sequence (gNj (x))j∈N converges, and also∑

x∈J∈T

a2
J =

∑
x∈J∈T

12
µ,ν(I ) <∞. (3.10)

These properties hold at µ almost every x ∈ ∂T . Let I ∈ D be so small that x ∈ I ∈ T , and note that

log
νT

µ
(I )= log

ν

µ
(I )= log

∏
J)I
J∈T

(1+ aJ hµJ (x))=
∑
J)I
J∈T

log(1+ aJ hµJ (x)).

Now, the plan is to use the estimate log(1+ t)≥ t −Cδt2, which is valid as long as t ≥ δ− 1 for some
δ > 0. Observe that aJ hµJ (x) ∈ {−c−J aJ , c+J aJ }, where

−aJ c−J =
(ν/µ)(J−)
(ν/µ)(J )

− 1≥
1
C
− 1 and aJ c+J =

(ν/µ)(J+)
(ν/µ)(J )

− 1≥
1
C
− 1. (3.11)

Consequently, for x ∈ I ∈ T with |I | = 2−Nj , one has

log
νT

µ
(I )≥

∑
J)I
J∈T

aJ hµJ (x)−C ′
∑
J)I
J∈T

(aJ hµJ (x))
2
≥ gNj (x)−C ′D2

∑
x∈J∈T

a2
J , (3.12)

where C ′ .D 1 only depends on the constant C in (3.11). Since the sequence (gNj (x))j∈N converges and
(3.10) holds, the right-hand side of (3.12) has a uniform lower bound −M(x) >−∞. This implies

lim sup
I→x

νT

µ
(I )≥ exp(−M(x)) > 0,

which gives (3.9) at x . The proof of Proposition 3.2 is complete.

4. Proof of Theorem 1.8(b)

In this section, Theorem 1.8(b) is proved via a simple tree construction, coupled with Propositions 2.4
and 3.2. Recall the statement of Theorem 1.8(b):
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Theorem 4.1. Assume that µ, ν are Borel probability measures on [0, 1), µ does not charge the bound-
aries of dyadic intervals, and ν is dyadically doubling. Write µ=µa+µs for the Lebesgue decomposition
of µ relative to ν, and let SD,ν(µ) be the square function

S2
D,ν(µ)=

∑
I∈D

α2
µ,ν(I )χI .

Then, SD,ν(µ) is infinite µs almost surely.

An equivalent statement is that the restriction of µ to the set

G := {x ∈ [0, 1) : SD,ν(µ)(x) <∞}

is absolutely continuous with respect to ν; this is the formulation proven below. For the rest of the section,
fix the measures µ, ν as in the statement above, and let D be the doubling constant of ν. I record a simple
lemma, which says that the doubling of ν implies the doubling of µ on intervals, where the α-number is
small enough.

Lemma 4.2. There are constants ε > 0 and C ≥ 1, depending only on D, such that the following holds.
For every interval I ∈ D, if αµ,ν(I ) < ε, then

µ(I )≤ C min{µ(I−), µ(I+)}. (4.3)

Proof. Let I−− ⊂ I− and I++ ⊂ I+ be intervals which lie at distance ≥ 1
8 |I | from the boundaries of I−

and I+, respectively, and have length 1
8 |I |. Let ψ− and ψ+ : R→ [0, 1] be (C ′/|I |)-Lipschitz functions

which equal 1 on I−− and I++, respectively, and are supported on I− and I+. Then

µ(I−)
µ(I )

≥
1

µ(I )

∫
ψ− dµ≥

1
ν(I )

∫
ψ− dν−C ′αµ,ν(I )≥

ν(I−−)
ν(I )

−C ′αµ,ν(I ),

and the analogous inequality holds for µ(I+)/µ(I ). The ratio ν(I−−)/ν(I ) is at least 1/D3, so if
αµ,ν(I ) < 1/(2C ′D3)=: ε, then both µ(I−)≥ [1/(2D3)]µ(I ) and µ(I+)≥ [1/(2D3)]µ(I ). This gives
(4.3) with C = 2D3. �

In particular, if T is a tree, and αµ,ν(I ) < ε for all I ∈ T \Leaves(T ), then µ is (T ,C)-doubling. I
will now describe how such trees Tj ⊂ D are constructed, starting with T0. Let [0, 1) = Top(T0), and
assume that some interval I is in T0. If ∑

I⊂J⊂[0,1)

α2
µ,ν(J )≥ ε

2, (4.4)

add I to Leaves(T0). The children I− and I+ become the tops of new trees. If (4.4) fails, add I−
and I+ to T0. The construction of T0 is now complete. If a new top Tj was created in the process of
constructing T0, and µ(Tj ) > 0, construct a new tree Tj with Top(Tj ) = Tj by repeating the algorithm
above, only replacing [0, 1) by Tj in the stopping criterion (4.4). Continue this process until all intervals
in D belong to some tree, or all remaining tops Tj satisfy µ(Tj ) = 0. For all tops Tj with µ(Tj ) = 0,
simply define Tj := {I ∈ D : I ⊂ Tj }, so there is no further stopping inside Tj .
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Remark 4.5. Let T be one of the trees constructed above, with µ(Top(T )) > 0. Then µ is (T ,C)-
doubling by Lemma 4.2, since it is clear that αµ,ν(I ) < ε for all I ∈ T \Leaves(T ). In particular µ(I ) > 0
for all I ∈ T .

The following observation is now rather immediate from the definitions:

Lemma 4.6. Assume that T0, . . . , TN−1 are distinct trees such that x ∈ Leaves(Tj ) for all 0≤ j ≤ N − 1.
Then

S2
D,ν(µ)(x)≥ ε

2 N .

Proof. For 0≤ j ≤ N − 1, let Ij ∈ Leaves(Tj ) with x ∈ Ij . Then

S2
D,ν(µ)(x)≥

N−1∑
j=0

∑
Ij⊂J⊂Top(Tj )

α2
µ,ν(J )≥ ε

2 N ,

as claimed. �

It follows that µ almost every point in G = {x ∈ [0, 1) : Sν(µ)(x) <∞} belongs to Leaves(Tj ) for
only finitely many trees Tj . This is equivalent to saying that µ almost every point in G belongs to ∂T for
some tree T . The converse is also true: if x belongs to ∂T for some tree T , then clearly Sν(µ)(x) <∞.
Consequently

µ|G =
∑

trees T

µ|∂T .

To prove Theorem 4.1, it now suffices to show that µ|∂T � ν for every tree T . This is clear, if
µ(Top(T ))= 0, so I exclude the trivial case to begin with. In the opposite case, note that∑

I∈T \Leaves(T )

α2
µ,ν(I )µ(I )=

∫ ∑
I∈T \Leaves(T )

α2
µ,ν(I )χI (x) dµx ≤ ε2

·µ(Top(T )). (4.7)

It then follows from Proposition 2.4 that∑
I∈T

12
µ,ν(I )µ(I ). µ(Top(T )) <∞,

and the claim µ|∂T � ν is finally a consequence of Proposition 3.2. The proof of Theorem 1.8(b) is
complete.

5. The nondyadic square function

This section contains the proof of Theorem 1.9(b). The argument naturally contains many similarities to
the one given above. The main novelty is that one needs to work with the smooth α-numbers, introduced
in Definition 1.4 (or [Azzam et al. 2016, Section 5]).
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Smooth α-numbers, and their properties. I recall the definition of the smooth α-numbers:

Definition 5.1 (smooth α-numbers). Write ϕ(x) = dist(x,R \ (0, 1)). For an interval I ⊂ R, define
αs,µ,ν(I ) :=W1(µϕ,I , νϕ,I ), where

µϕ,I :=
TI](µ|I )

µ(ϕI )
and νϕ,I :=

TI](ν|I )

ν(ϕI )
.

Here ϕI = ϕ ◦ TI , and µ(ϕI ) =
∫
ϕI dµ. If µ(ϕI ) = 0 set µϕ,I ≡ 0, and if ν(ϕI ) = 0, set νϕ,I ≡ 0.

Unwrapping the definition, if µ(ϕI ), ν(ϕI ) > 0, then

αs,µ,ν(I )= sup
ψ

∣∣∣∣ 1
µ(ϕI )

∫
ψ ◦ TI dµ−

1
ν(ϕI )

∫
ψ ◦ TI dν

∣∣∣∣= sup
ψ

∣∣∣∣µ(ψI )

µ(ϕI )
−
ν(ψI )

ν(ϕI )

∣∣∣∣,
where the sup is taken over test functions ψ .

Recall that the main reason to prefer the smooth α-numbers over the ones from Definition 1.3 is the
following stability property: if I ⊂ J are intervals of comparable length, then αs,µ,ν(I ) . αs,µ,ν(J ),
whenever either µ or ν is doubling. This fact is essentially [Azzam et al. 2017, Lemma 5.2], but I include
a proof in Proposition 5.4 for completeness. Similar stability is not true for the numbers αµ,ν(I ) and
αµ,ν(J ), even for very nice measures µ and ν, as the following example demonstrates:

Example 5.2. Fix n ∈N, and let I n
−
:=
[ 1

2 − 2−n, 1
2

]
and I n

+
:=
( 1

2 ,
1
2 + 2−n

]
. Let µ be the same measure

as in Example 2.1:

µ= χR\(I n
−∪I n

+)
+

1
2χI n

−
+

3
2χI n

+
.

Let ν = L. It is clear that both µ and ν are doubling, with constants independent of n. It is also easy
to check that αµ,ν(I ). 2−2n for any interval I with length |I | ∼ 1 such that I n

−
∪ I n
+
⊂ I (this implies

µ(I )= ν(I )). However, αµ,ν
([

0, 1
2

])
∼ 2−n , because ν[0,1/2) = χ[0,1], while

µ[0,1/2] =

(
1+

2−n

1− 2−n

)
χ[0,1−21−n)+

1
2

(
1+

2−n

1− 2−n

)
χ[1−21−n,1].

So, for instance, it is clear that no inequality of the form αµ,ν
([

0, 1
2

])
. αµ,ν([−1, 1]) can hold.

Without any doubling assumptions, even the smooth α-numbers can behave badly:

Example 5.3. Letµ=δ1/2, and ν=(1−ε)·δ1/2+ε+ε·δ1/4. Then αs,µ,ν([−1,1])∼ε, but αs,µ,ν
([

0, 1
2

])
∼ 1.

Proposition 5.4 (basic properties of the smooth α-numbers). Let µ, ν be two Radon measures on R, and
let I ⊂ R be an interval. Then

αs,µ,ν(I )≤ 2 and αs,µ,ν(I )≤
2αµ,ν(I )
νI (ϕ)

.

Moreover, if ν is doubling with constant D, the following holds: if I ⊂ J ⊂R are intervals with |I | ≥ θ |J |
for some θ > 0, then

αs,µ,ν(I ).D,θ αs,µ,ν(J ). (5.5)
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Proof. For the duration of the proof, fix an interval I ⊂ R with µ(ϕI ), ν(ϕI ) > 0. The cases where
µ(ϕI )=0 or ν(ϕI )=0 always require a little case chase, which I omit. Recall that ϕ=χ[0,1] dist( · , {0, 1}).
Note that any 1-Lipschitz function ψ : R→ R supported on [0, 1] must satisfy |ψ | ≤ ϕ. Consequently
|ψI | ≤ ϕI for any interval I , and so

αs,µ,ν(I )≤ sup
ψ

[
µ(|ψI |)

µ(ϕI )
+
ν(|ψI |)

ν(ϕI )

]
≤ 2.

This proves the first inequality. For the second inequality, one may assume that αµ,ν(I )>0, since otherwise
µ|int I = cν|int I for some constant c > 0, and this also gives αs,µ,ν(I ) = 0. After this observation, it
is easy to reduce to the case µ(ϕI ) > 0 and ν(ϕI ) > 0. Fix a test function ψ . Using that µI (|ψ |) =

µ(|ψI |)/µ(I )≤ µ(ϕI )/µ(I )= µI (ϕ), one obtains∣∣∣∣µ(ψI )

µ(ϕI )
−
ν(ψI )

ν(ϕI )

∣∣∣∣= ∣∣∣∣µI (ψ)

µI (ϕ)
−
νI (ψ)

νI (ϕ)

∣∣∣∣= ∣∣∣∣µI (ψ)νI (ϕ)− νI (ψ)µI (ϕ)

µI (ϕ)νI (ϕ)

∣∣∣∣
≤

µI (|ψ |)

µI (ϕ)νI (ϕ)
|µI (ϕ)− νI (ϕ)| +

µI (ϕ)

µI (ϕ)νI (ϕ)
|µI (ψ)− νI (ψ)| ≤

2αµ,ν(I )
νI (ϕ)

.

To prove the final claim, start with the following estimate for a test function ψ :∣∣∣∣µ(ψI )

µ(ϕI )
−
ν(ψI )

ν(ϕI )

∣∣∣∣≤ ν(ϕJ )

ν(ϕI )

∣∣∣∣µ(ψI )

µ(ϕJ )
−
ν(ψI )

ν(ϕJ )

∣∣∣∣+ µ(|ψI |)

µ(ϕI )

ν(ϕJ )

ν(ϕI )

∣∣∣∣µ(ϕI )

µ(ϕJ )
−
ν(ϕI )

ν(ϕJ )

∣∣∣∣.
Then, recall that µ(|ψI |) ≤ µ(ϕI ). Further, it follows from the doubling of ν that ν(ϕJ ) .D,θ ν(ϕI ).
Finally, notice that ψI = (ψI ◦ T−1

J ) ◦ TJ and ϕI = (ϕI ◦ T−1
J ) ◦ TJ , where both

ψI ◦ T−1
J and ϕI ◦ T−1

J

are (|J |/|I |)-Lipschitz functions supported on TJ (I )⊂ [0, 1]. Consequently,

max
{∣∣∣∣µ(ψI )

µ(ϕJ )
−
ν(ψI )

ν(ϕJ )

∣∣∣∣, ∣∣∣∣µ(ϕI )

µ(ϕJ )
−
ν(ϕI )

ν(ϕJ )

∣∣∣∣}≤ αs,µ,ν(J )
θ

,

and the estimate (5.5) follows. �

Proof of Theorem 1.9(b). In this section, ν is a globally doubling measure with constant D ≥ 1, say. As
in Section 4, it suffices to show that µ|G � ν, where

G := {x : Sν(µ)(x) <∞}.

Write
αs,µ,ν(J )=: α(J ), J ⊂ R.

Assume without loss of generality (or translate both measures µ and ν slightly) that µ(∂ I )= 0 for all
I ∈D. Also without loss of generality, one may assume that sptµ⊂ (0, 1): the reason is that the finiteness
Sν(µ)(x) is equivalent to the finiteness of Sν(µ|U )(x) for all x ∈ U, whenever U ⊂ R is open. So, it
suffices to prove µ|U∩G � ν for any bounded open set U. Whenever I write D in the sequel, I only mean
the family {I ∈ D : I ⊂ [0, 1)}.
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I start with some standard discretisation arguments. For each I ∈ D, associate a somewhat larger
interval BI ⊃ I as follows. First, for x ∈ sptµ and k ∈ N, choose a radius rx,k > 0 such that

α(B(x, rx,k))≤ 2 inf{α(B(x, r)) : 1.1 · 2−k−1
≤ r ≤ 0.9 · 2−k

}. (5.6)

Then

α2(B(x, rx,k))≤

(
1

ln[2 · (0.9/1.1)]

∫ 0.9·2−k

1.1·2−k−1
2α(x, r) dr

r

)2

.
∫ 2−k

2−k−1
α2(x, r) dr

r
.

For I ∈D with |I | = 2−k and I ∩ sptµ 6=∅, let BI be some open interval of the form B(x, rk−10), x ∈ I ,
such that

α(BI )≤ 2 inf{α(B(y, ry,k−10)) : y ∈ I ∩ sptµ}.

The number “−10” simply ensures that I ⊂ BI with dist(I, ∂BI )∼ |I |, and

I ⊂ J =⇒ BI ⊂ BJ for I, J ∈ D.

This implication also uses the slight separation between the scales, provided by the factors “1.1” and
“0.9” in (5.6). For I ∈ D with I ∩ sptµ=∅, define BI := I (although this definition will never be really
used). Now, a tree decomposition of D can be performed as in the previous section, replacing the stopping
condition (4.4) by declaring Leaves(T ) to consist of the maximal intervals I ⊂ Top(T ) with∑

I⊂J⊂Top(T )

α2(BI )≥ ε
2,

where ε = εD > 0 is a suitable small number; in particular, ε > 0 is chosen so small that α(BI ) ≤ ε

implies µ(BI ). µ(I ) (which is possible by a small modification of Lemma 4.2). If now x ∈ Leaves(T )
for infinitely many different trees T , then

∞=

∑
x∈I∈D

α2(BI )≤ 2
∑
k∈N

α2(B(x, rx,k−10)).
∫ 210

0
α2(B(x, r)) dr

r
,

which implies that x /∈ G. Repeating the argument from Section 4, this gives

µ|G ≤
∑

trees T

µ|∂T .

The converse inequality could also be deduced from the stability of the smooth α-numbers (Proposition 5.4),
but it is not needed: the inequality already shows that it suffices to prove

µ|∂T � ν (5.7)

for any given tree T . So, fix a tree T . If ε > 0 was chosen small enough (again depending on D), then µ
is (T ,C)-doubling for some C = CD ≥ 1 in the usual sense:

µ( Î )≤ Cµ(I ), I ∈ T \Top(T ).
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So, if one knew that ∑
I∈T \Leaves(T )

12
µ,ν(I )µ(I ) <∞, (5.8)

then the familiar Proposition 3.2 would imply (5.7), completing the entire proof.
The proof of (5.8) is based on the inequality∑

I∈T

12
µ,ν(I )µ(I ).

∑
I∈T \Leaves(T )

α2(BI )µ(BI )+µ(Top(T )). (5.9)

The right-hand side is finite by the same estimate as in (4.7) (start with µ(BI ). µ(I ), using α(BI )≤ ε

for I ∈ T \Leaves(T )). So, (5.9) implies (5.8). I start the proof of (5.9) by noting that if I ∈ D, then

1µ,ν(I )=
∣∣∣∣ν(I−)ν(I )

−
µ(I−)
µ(I )

∣∣∣∣
≤
ν(ϕBI )

ν(I )

∣∣∣∣ ν(I−)ν(ϕBI )
−
µ(I−)
µ(ϕBI )

∣∣∣∣+ µ(I−)µ(I )
ν(ϕBI )

ν(I )

∣∣∣∣ µ(I )µ(ϕBI )
−

ν(I )
ν(ϕBI )

∣∣∣∣. (5.10)

Noting that ν(ϕBI )/ν(I ).D 1, to prove (5.9), it suffices to control∑
I∈T \Leaves(T )

[∣∣∣∣ ν(I−)ν(ϕBI )
−
µ(I−)
µ(ϕBI )

∣∣∣∣2+ ∣∣∣∣ µ(I )µ(ϕBI )
−

ν(I )
ν(ϕBI )

∣∣∣∣2]µ(I ) (5.11)

by the right-hand side of (5.9). The main task is to find a suitable replacement for the “Tail-Tip” inequality
(2.14), which I replicate here for comparison:

1µ,ν(I )µ(I )≤
C
τ

∑
J∈TailI

αµ,ν(J )µ(J )+ κ
∑

J∈TailI

1µ,ν(J )µ(J )+ 2µ(TipI ). (5.12)

Glancing at (5.11), one sees that an analogue for the inequality above is actually needed for both the terms

1̃BI (I−)=
∣∣∣∣ ν(I−)ν(ϕBI )

−
µ(I−)
µ(ϕBI )

∣∣∣∣ and 1̃BI (I )=
∣∣∣∣ µ(I )µ(ϕBI )

−
ν(I )
ν(ϕBI )

∣∣∣∣.
If I− ∈ Leaves(T ), then the trivial estimate 1̃BI (I−). 1 will suffice, so in the sequel I assume that

I, I− /∈ Leaves(T ). (5.13)

The goal is inequality (5.18) below. Fix BI and J ∈ {I, I−}. Assume for notational convenience that
|BI | = 1, and hence, also |J | ∼ 1. In a familiar manner, start by writing

χJ =
∑
k∈Z

ψk, (5.14)

where ψk is a nonnegative C2|k|-Lipschitz function supported on either J ⊂ BI (for k = 0) or J|k|− (for
negative k) or Jk+ (for positive k). As in the proof of the original Tail-Tip inequality, it suffices to first
estimate ∣∣∣∣ 1

µ(ϕBI )

∫
9+0 dµ−

1
ν(ϕBI )

∫
9+0 dν

∣∣∣∣, (5.15)
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where 9+0 =
∑

k≥1 ψk +
1
2ψ0, and more generally 9+j =

∑
k≥ j ψj for j ≥ 1; eventually one can just

replicate the argument for the function 9−0 =
∑

k≤−1 ψk +
1
2ψ0, and summing the bounds gives control

for 1̃BI (J ). Start with the following estimate, which only uses the triangle inequality, and the fact that
1
2ψ0 is a C-Lipschitz function supported on BI :∣∣∣∣ 1
µ(ϕBI )

∫
9+0 dµ−

1
ν(ϕBI )

∫
9+0 dν

∣∣∣∣≤Cα(BI )+
µ(ϕBJ+

)

µ(ϕBI )

∣∣∣∣ 1
µ(ϕBJ+

)

∫
9+1 dµ−

1
ν(ϕBJ+

)

∫
9+1 dν

∣∣∣∣
+

(
1

ν(ϕBJ+
)

∫
9+1 dν

)∣∣∣∣µ(ϕBJ+
)

µ(ϕBI )
−
ν(ϕBJ+

)

ν(ϕBI )

∣∣∣∣. (5.16)

Here
1

ν(ϕBJ+
)

∫
9+1 dν . 1,

since ν is doubling and 9+1 vanishes outside J+ ⊂ BJ+ , and∣∣∣∣µ(ϕBJ+
)

µ(ϕBI )
−
ν(ϕBJ+

)

ν(ϕBI )

∣∣∣∣≤ |BI |

|BJ+ |
·α(BI ). α(BI ),

since ϕBJ+
= (ϕBJ+

◦ T−1
BI
) ◦ TBI , where ϕBJ+

◦ T−1
BI

is a (|BI |/|BJ+ |)-Lipschitz function supported on
[0, 1]. Consequently,∣∣∣∣ 1
µ(ϕBI )

∫
9+0 dµ−

1
ν(ϕBI )

∫
9+0 dν

∣∣∣∣µ(ϕBI )≤ Cα(BI )µ(ϕBI )

+

∣∣∣∣ 1
µ(ϕBJ+

)

∫
9+1 dµ−

1
ν(ϕBJ+

)

∫
9+1 dν

∣∣∣∣µ(ϕBJ+
).

Here 9+1 vanishes outside J+ ⊂ BJ+ , so the estimate can be iterated. After N ≥ 0 repetitions (the case
N = 0 was seen above), one ends up with∣∣∣∣ 1
µ(ϕBI )

∫
9+0 dµ−

1
ν(ϕBI )

∫
9+0 dν

∣∣∣∣µ(ϕBI )

≤ C
N∑

k=0

α(BJk+)µ(ϕBJk+
)

+µ(ϕBJ(N+1)+
)

∣∣∣∣ 1
µ(ϕB(N+1)+)

∫
9+N+1 dµ−

1
ν(B(N+1)+)

∫
9+N+1 dν

∣∣∣∣, (5.17)

where one needs to interpret J0+ = I (which is different from J in the case J = I−). What is a good
choice for N? Let N1 ≥ 0 be the smallest number such that J(N1+1)+ ∈ Leaves(T ). If there is no such
number, let N1 =∞. In the case N1 =∞, the term in the last line of (5.17) vanishes, since µ(BJN+)

decays rapidly as long as N ∈ T (using the doubling of ν, and the fact that α(BI ) ≤ ε for I ∈ T ). If
N1 <∞, the term in the last line of (5.17) is clearly bounded by ≤ 2µ(BJ(N1+1)+), since 9+N1+1 vanishes
outside J(N1+1)+, which is well inside B(N1+1)+. Observing that also µ(I ). µ(ϕBI ), it follows that∣∣∣∣ 1

µ(ϕBI )

∫
9+0 dµ−

1
ν(ϕBI )

∫
9+0 dν

∣∣∣∣µ(I ). N1∑
k=0

α(BJk+)µ(BJk+)+µ(BJ(N1+1)+).



990 TUOMAS ORPONEN

Finally, by symmetry, the same argument can be carried out for the series 9−0 =
∑

k<0 ψk +
1
2ψ0. If

N2 ≥ 0 is the smallest number such that J(N2+1)− ∈ Leaves(T ), this leads to the following analogue of
the Tail-Tip inequality:

1̃BI (J )µ(I ).
∑

P∈TailJ

α(BP)µ(BP)+µ(TipJ ), J ∈ {I, I−}, I ∈ T \Leaves(T ). (5.18)

Here TailJ is the collection of dyadic intervals TailJ = {JN2−, . . . , J, . . . , JN1+} ⊂ T \Leaves(T ), and
TipJ = BJ(N2+1)− ∪ BJ(N1+1)+ . Finally, in the excluded special case, where J = I− ∈ Leaves(T ) (recall
(5.13)), the same estimate holds if one defines TailJ =∅ and TipJ := J (noting that I ∈T , so µ(I ).µ(J )).

Armed with the Tail-Tip inequality (5.18), the proof of the main estimate (5.9) is a replica of the
argument in the dyadic case, namely the proof of Proposition 2.4. I only sketch the details. For
I ∈ T \Leaves(T ) and J ∈ {I, I−}, start with

1̃2
BI
(J )µ(I ).

∑
P∈TailJ

α2(BP)
µ(BP)

3/2

µ(I )1/2
+
µ(TipJ )

2

µ(I )

≤

∑
P∈T \Leaves(T )

P⊂I

α2(BP)
µ(BP)

3/2

µ(I )1/2
+
µ(TipJ )

2

µ(I )
.

The second inequality is trivial, and the first is proved with the same Cauchy–Schwarz argument as (2.17),
using the fact that

∑
P∈TailJ

µ(BP)
1/2 . µ(I )1/2, which follows from TailJ ⊂ T \ Leaves(T ), and in

particular the geometric decay of the measures µ(BP) for P ∈ T \Leaves(T ). Now, the inequality above
can be summed for I ∈ T \Leaves(T ) precisely as in the proof of (2.18). In particular, one should first
use the estimate

µ(TipJ )≤ µ(BJ(N2+1)−)+µ(BJ(N1+1)+). µ(J(N2+1)−)+µ(J(N1+1)+),

which follows from α(BJN1+
), α(BJN2−

) < ε, if ε is small enough, depending on the doubling constant
of ν. The conclusion is∑

I∈T \Leaves(T )

1̃2
BI
(J )µ(I ).

∑
P∈T \Leaves(T )

α2(BP)µ(BP)+µ(Leaves(T ))

for J ∈ {I, I−}. As observed in and around (5.11), this implies (5.9).

Remark 5.19. In the proof of (5.9), the uniform bound α(BI ) < ε, I ∈ T \Leaves(T ), was only used to
guarantee that µ is sufficiently doubling along, and inside, the balls BI . If such properties are assumed
a priori in some given tree T , then (5.9) continues to hold for T . In particular, if µ is doubling on the
whole real line, and the Carleson condition∫

B(x,2r)

∫ 2r

0
α2
µ,ν(B(y, t))

dt dµy
t
≤ Cµ(B(x, r))

holds, then the dyadic Carleson condition of Theorem 1.12 holds for any dyadic system D (a family of
half-open intervals covering R, where every interval has length of the form 2−k for some k ∈ Z, and
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every interval is the union of two further intervals in the family; the proof of Theorem 1.12 seen in
Section 2 works for any such system). It follows from this that µ ∈ AD

∞
(ν) for every dyadic system D,

and consequently µ ∈ A∞(ν). (To see this, pick a finite collection D1, . . . ,DN of dyadic systems such
that the max of the corresponding dyadic maximal functions MDi

ν ,

MDi
ν f (x)= sup

x∈I∈Di

1
ν(I )

∫
I
| f | dν,

bounds the usual Hardy–Littlewood maximal function Mν , up to a constant depending only on the
doubling of ν. The construction of such systems is well known, and in R as few as two systems do the
trick; for a reference, see for instance Section 5 in [Muscalu et al. 2002]. Then, for every 1≤ i ≤ N , there
exists pi <∞ such that µ ∈ ADi

pi (ν); see [Grafakos 2014, Theorem 9.33(f)]. In particular µ ∈ ADi
p (ν) for

p :=max pi , and hence ‖MDi
ν ‖L p(µ)→L p(µ) <∞ for 1≤ i ≤ N . It follows that ‖Mν‖L p(µ)→L p(µ) <∞,

which is one possible definition for µ ∈ A∞(ν). For much more information, see [Grafakos 2014,
Section 9.11].) This proves the “continuous” part of Theorem 1.12.

6. Parts (a) of the main theorems

Parts (a) of Theorems 1.8 and 1.9 are proved in this section: SD,ν(µ) and Sν(µ) are finite µa almost
everywhere, where µa is the absolutely continuous part of µ relative to ν. The strategy is to prove the
statement first for the dyadic square function SD,ν(µ), but allow D to be a slightly generalised system: a
family D =

⋃
Dk , k ≥ 0, of half-open intervals of length at most 1 such that

(D1) each Dk is a partition of R,

(D2) each interval in Dk has length 2−k, and

(D3) each interval I ∈ Dk has two children in Dk+1, denoted by ch(I ).

The added generality makes no difference in the proof, which closely follows previous arguments of
Tolsa [2009; 2015]. The benefit is that the nondyadic square function Sν(µ) can, eventually, be bounded
by a finite sum of dyadic square functions SD1,ν(µ), . . . ,SDN ,ν(µ), so the nondyadic problem easily
reduces to the dyadic one.

With the strategy in mind, fix a dyadic system D satisfying (D1)–(D3), and let SD,ν(µ) be the associated
square function.

Lemma 6.1. Assume that µ, ν are Radon measures on R, with µ finite, and ν dyadically doubling (relative
to D). Then Sν(µ) is finite µa almost surely.

The proof of Lemma 6.1 is a combination of two arguments of Tolsa: the proofs of [Tolsa 2009,
Theorem 1.1] and [Tolsa 2015, Lemma 2.2]. I start with an analogue of the first:

Lemma 6.2. Assume that µ ∈ L2(ν). Then∑
I∈D
ν(I )>0

α2
µ,ν(I )

µ(I )2

ν(I )
. ‖µ‖2L2(ν)

.
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Proof. It suffices to sum over the intervals I ⊂ D with µ(I ) > 0 and ν(I ) > 0; fix one of these I, and a
1-Lipschitz function ψ : R→ R, supported on [0, 1]. Then, write∣∣∣∣∫ ψ dµI −

∫
ψ dνI

∣∣∣∣= ∣∣∣∣ 1
µ(I )

∫
I
(ψ ◦ TI )g dν−

1
ν(I )

∫
I
(ψ ◦ TI ) dν

∣∣∣∣, (6.3)

where g is the Radon–Nikodym derivative dµ/dν ∈ L2(ν). Express gχI in terms of standard (ν-adapted)
martingale differences:

gχI = 〈g〉νIχI +
∑

J∈D(I )

1νJ g, (6.4)

where D(I ) := {J ∈ D : J ⊂ I }, the sum converges in L2(ν), and

〈g〉νI =
1
ν(I )

∫
g dν =

µ(I )
ν(I )

and 1νJ g =−〈g〉νJχJ +
∑

J ′∈ch(J )

〈g〉νJ ′χJ ′ .

Note that 1νJ g is supported on J and has ν-mean zero. By (6.4),

1
µ(I )

∫
J
(ψ ◦ TI )g dν =

1
ν(I )

∫
I
(ψ ◦ TI ) dν+

∑
J∈D(I )

1
µ(I )

∫
J
(ψ ◦ TI )1

ν
J g dν. (6.5)

Since the first term on the right-hand side of (6.5) cancels out the last term in (6.3), one can continue as
follows:

(6.3)≤
∑

J∈D(I )

1
µ(I )

∣∣∣∣∫
J
(ψ ◦ TI )1

ν
J g dν

∣∣∣∣
=

∑
J∈D(I )

1
µ(I )

∣∣∣∣∫
J
[(ψ ◦ TI )− (ψ ◦ TI (x J ))]1

ν
J g dν

∣∣∣∣.
Above, x J is the midpoint of J , and the zero-mean property of 1νJ g was used. Finally, recalling that ψ is
1-Lipschitz, one obtains

(6.3)≤
∑

J∈D(I )

`(TI (J ))
µ(I )

‖1νJ g‖L1(ν) ≤

∑
J∈D(I )

`(J )ν(J )1/2

µ(I )`(I )
‖1νJ g‖L2(ν).

Taking a sup over admissible functions ψ : R→ R gives

αµ,ν(I )≤
∑

J∈D(I )

`(J )ν(J )1/2

µ(I )`(I )
‖1νJ g‖L2(ν). (6.6)

Now, using (6.6) and Cauchy–Schwarz, we may sum over I ∈D as follows (we suppress the requirement
ν(I ) > 0 from the notation):∑

I∈D

α2
µ,ν(I )

µ(I )2

ν(I )
≤

∑
J∈D

( ∑
J∈D(I )

`(J )ν(J )1/2

`(I )
‖1νJ g‖L2(ν)

)2 1
ν(I )

≤

∑
I∈D

( ∑
J∈D(I )

`(J )
`(I )
‖1νJ g‖2L2(ν)

) ∑
J∈D(I )

`(J )ν(J )
`(I )ν(I )

.
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Clearly, ∑
J∈D(I )

`(J )ν(J )
`(I )ν(I )

. 1,

so ∑
J∈D

αµ,ν(I )2
µ(I )2

ν(I )
.
∑
J∈D

‖1νJ g‖2L2(ν)

∑
I⊃J

`(J )
`(I )

.
∑
J∈D

‖1νJ g‖2L2(ν)
≤ ‖g‖2L2(ν)

,

as claimed. �

Corollary 6.7. If µ ∈ L2(ν), then SD,ν(µ) is finite µ almost everywhere.

Proof. By Lemma 6.2, and the Lebesgue differentiation theorem, the following conditions hold µ almost
everywhere: ∑

x∈I∈D

αµ,ν(I )2
µ(I )
ν(I )

<∞ and there exists lim
I→x

µ(I )
ν(I )

= µ(x) > 0.

Clearly SD,ν(µ)(x) <∞ for such x ∈ [0, 1). �

Now, we can prove Lemma 6.1 by an argument similar to [Tolsa 2015, Lemma 2.2]:

Proof of Lemma 6.1. Perform a Calderón–Zygmund decomposition of µ with respect to ν, at some
level λ≥ 1. More precisely, let B be the family of maximal intervals I ∈ D with µ(I ) > λν(I ), and set
µ= g+ b, where

g = µ|G +
∑
I∈B

µ(I )
ν(I )

ν|I , G := [0, 1) \
⋃
I∈B

I,

and

b =
∑
I∈B

[
µ|I −

µ(I )
ν(I )

ν|I

]
=:

∑
I∈B

bI .

Then ‖g‖L∞(ν) . λ (the implicit constants depend on the doubling of ν), and

ν([0, 1) \G)=
∑
I∈B

ν(I ) <
1
λ

∑
I∈B

µ(I )≤
1
λ
.

Since µa ∈ L1(ν) (recall that µ is a finite measure), it follows that µa([0, 1)\G)→ 0 as λ→∞. Hence,
it suffices to show that

SD,ν(µ)(x) <∞ for µ almost every x ∈ G ∩ sptD µ,

where sptD µ= {x ∈R :µ(I ) > 0 for all x ∈ I ∈D}. Let G ⊂D be the intervals, which are not contained
in any interval in B. Fix x ∈G∩ sptD µ, and note that if x ∈ I ∈D, then I ∈ G. Observe that µ(I )= g(I )
for I ∈ G, and consequently∣∣∣∣∫ ψ dµI −

∫
ψ dνI

∣∣∣∣≤ ∣∣∣∣∫ ψ dµI −

∫
ψ dgI

∣∣∣∣+αg,ν(I )

=
1

µ(I )

∣∣∣∣∫
I
(ψ ◦ TI ) db

∣∣∣∣+αg,ν(I ), I 3 x,
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for any 1-Lipschitz function ψ : R → R supported on [0, 1]. Using the zero-mean property of the
measures bJ , one can estimate further as follows:∣∣∣∣∫ (ψ ◦ TI ) db

∣∣∣∣≤ ∑
J∈B(I )

∣∣∣∣∫ (ψ ◦ TI ) dbJ

∣∣∣∣= ∑
J∈B(I )

∣∣∣∣∫ [(ψ ◦ TI )− (ψ ◦ TI (x J )] dbJ

∣∣∣∣,
where B(I ) := {J ∈ B : J ⊂ I }, and x J is the midpoint of J . Using the fact that ψ is 1-Lipschitz, one has

1
µ(I )

∣∣∣∣∫
I
(ψ ◦ TI ) db

∣∣∣∣≤ 1
µ(I )

∣∣∣∣∫ [(ψ ◦ TI )− (ψ ◦ TI (x J )] dbJ

∣∣∣∣≤ `(TI (J ))
µ(I )

‖bJ‖.
`(J )µ(J )
`(I )µ(I )

,

and finally

S2
D,ν(µ)(x). SD,ν(g)2(x)+

∑
x∈I∈G

( ∑
J∈B(I )

`(J )µ(J )
`(I )µ(I )

)2

=: SD,ν(g)2(x)+ S2(x).

Since SD,ν(g) is finite g almost everywhere by Corollary 6.7, and in particular SD,ν(g)(x) <∞ for
µ almost every x ∈ G, it remains to prove that S(x) <∞ for µ almost every x ∈ R. First, note that∑

J∈B(I )

`(J )µ(J )
`(I )µ(I )

≤
1

µ(I )

∑
J∈B(I )

µ(J )≤ 1,

as the intervals in B(I ) are disjoint. Consequently,∫
S2 dµ≤

∫ ∑
x∈I∈G

∑
J∈B(I )

`(J )µ(J )
`(I )µ(I )

dµ(x)=
∑
I∈G

∑
J∈B(I )

`(J )µ(J )
`(I )

=

∑
J∈B

µ(J )
∑

J⊂I∈G

`(J )
`(I )

.
∑
J∈B

µ(J )≤ ‖µ‖<∞.

It follows that S2(x) < ∞ for µ almost every x ∈ R. This completes the proof of Lemma 6.1, and
Theorem 1.8(a). �

Bounding the nondyadic square function. It remains to prove Theorem 1.9(a). Assume that µ, ν are
Radon measures on R, with ν doubling, and recall that Sν(µ) is the square function

S2
ν (µ)(x)=

∫ 1

0
α2

s,µ,ν(B(x, r))
dr
r
, x ∈ R.

The claim is that Sν(µ) is finite µa almost everywhere; since this is a local problem, one may assume
that µ is a finite measure. Now, as in Remark 5.19 (or see [Muscalu et al. 2002, Section 5]), pick a
finite number of dyadic systems D1, . . . ,DN with the following property: for any interval I ⊂ R, there
exists j ∈ {1, . . . , N }, depending on I, and an interval J ∈ Dj such that I ⊂ Ji and |Ji | ∼ |I |. As a
little technical point, we actually need to restrict Dj to intervals of length at most 1, so also the defining
property above only holds for intervals I ⊂ R of length |I | ≤ r0, say.
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Then, apply Lemma 6.1 to each of the corresponding square functions SDj ,ν(µ) to infer

SD,ν(µ)(x) :=
N∑

j=1

SDj ,ν(µ)(x) <∞

for µa almost every x ∈R (note that ν is dyadically doubling relative to every Dj ). So, it suffices to argue
that SD,ν(µ) dominates Sν(µ). Using the stability of the smooth α-numbers, and the fact that they are
dominated by the regular α-numbers whenever ν is doubling (see Proposition 5.4), one has

α2
s,µ,ν(B(x, r)). α

2
µ,ν(I

j
x,r ), x ∈ R, 0< r < r0,

where j ∈ {1, . . . , N }, and I j
x,r ∈Dj is a dyadic interval of length at most 1, satisfying x ∈ B(x, r)⊂ Ix,r

and |Ix,r | ∼ r . The existence follows from the construction of the systems Dj . It is now clear that
Sν(µ). SD,ν(µ), and the proof of Theorem 1.9(a) is complete.

Remark 6.8. Lemma 5.4 in [Azzam et al. 2017] implies∫ 1/2

1/4
αµ,ν(B(0, t)) dt . αs,µ,ν(B(0, 1)),

whenever ν is doubling, and ν
(
B
(
0, 1

4

))
> 0, µ

(
B
(
0, 1

4

))
> 0. So, at the level of L1-averages over scales,

the smooth and regular α-numbers are comparable. One would need a similar comparison at the level of
L2-averages to answer Question 1.
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