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GLOBAL WELL-POSEDNESS
FOR THE TWO-DIMENSIONAL MUSKAT PROBLEM
WITH SLOPE LESS THAN 1

STEPHEN CAMERON

We prove the existence of global, smooth solutions to the two-dimensional Muskat problem in the stable
regime whenever the product of the maximal and minimal slope is less than 1. The curvature of these
solutions decays to 0 as ¢ goes to infinity, and they are unique when the initial data is C'. We do
this by getting a priori estimates using a nonlinear maximum principle first introduced in a paper by
Kiselev, Nazarov, and Volberg (2007), where the authors proved global well-posedness for the surface
quasigeostraphic equation.

1. Introduction

The Muskat problem was originally introduced in [Muskat 1934] in order to model the interface between
water and oil in tar sands. In general, it describes the interface between two incompressible, immiscible
fluids of different constant densities in a porous media. The fluids evolve according to Darcy’s law, giving
an evolution of the interface (see [Cérdoba and Gancedo 2007] for derivation of equations), and the
problem in two dimensions is analogous to the two-phase Hele-Shaw cell (see [Saffman and Taylor 1958]).
In the case that the two fluids are of equal viscosity and the interface is given by the graph y = f (¢, x)
with the denser fluid on bottom (i.e., the stable regime), the function f satisfies

(fxt, y) = [, x)(y —x)

f’(”x)zR . y) — fE 02+ G—x2

(1-1)

after the appropriate renormalization. By making a change of variables, see the proof of Lemma 5.1 of
[Cérdoba and Gancedo 2009], we get the equivalent system

f(ta y) _f(ta-x) _(y_'x)fx(tv-x)
t\ty = d ) 1-2
Jilt, x) FO)—FE +o—x2 P (1-2)

which will be more useful for our purposes. Since the function f is Lipschitz, the above integral can be
viewed as a nonlinear perturbation of the half Laplacian. In fact, it is easy to see that linearizing around a
flat solution gives

filt, ) = —c(=8)"2 f (1, 2), (1-3)
demonstrating the natural parabolicity of the problem.
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The Muskat problem is known to be locally well-posed in H* for k > 3 with solutions satisfying L>®
and L? maximum principles, but neither imply any gain of derivatives; see [Cérdoba and Gancedo 2009;
Constantin et al. 2013].

Under the assumption || f6|| L < 1, there have been a number of positive results. In [Constantin et al.
2013] the authors proved an L*> maximal principle for the slope f, along with the existence of global
weak Lipschitz solutions using a regularized system. Recently, [Gancedo 2017] improved the L? energy
estimate of [Constantin et al. 2013] (which holds for any solution) to one analogous with the energy
estimate from the linear equation under this assumption on the slope. When the initial data fj is in
H2(R) with || foll1 = |||€] f0($)|| Ll less than some explicit constant ~ % (which implies slope less than 1),
[Constantin et al. 2016] proved that a unique global strong solution exists. In this case [Patel and Strain
2017] proved optimal decay estimates on the norms || f (¢, - )|s = |||§]° f (t, &) Lh matching the estimates
for the linear equation.

Recently, [Deng et al. 2017] was also able to prove the existence of global weak solutions for arbitrarily
large monotonic initial data. They did this using the regularized system from [Constantin et al. 2013] to
prove that both f and f; still obey the maximum principle under this monotonicity assumption.

Because solutions to (1-2) have the natural scaling (1/r) f(rt, rx), we see that L® or sign bounds on
the slope f, are scale-invariant properties. We fit these two types of assumptions into the same framework
by showing that the critical quantity is in fact the product of the maximal and minimal slopes,

B(fe) = (sup fo(x))(sup — fo(»)- (1-4)
x y
As we shall see in Section 3, the derivative f, obeys the equation

(f)e(t, %) = frx (1, x)fmdk+R/8th(t’x)K(t’x’h)dh’ (1-5)

where &, f (¢, x) := f(t,x +h) — f(¢, x) and the kernel K is uniformly elliptic of order 1 whenever
B(fy) < 1. Thus we naturally get regularizing effects from the equation whenever the initial data satisfies
this bound. It’s clear that || fé lLe < 1 implies B( f(;) < 1, and for bounded monotonic data we get
B(fy) = 0 since either sup fj = 0 or inf fj = 0. Thus this B(fj) < 1 provides a natural interpolation
between these two types of assumptions.

In contrast to the positive results, [Castro et al. 2012] showed that there is an open subset of initial
data in H* such that the Rayleigh—Taylor condition breaks down in finite time. That is,

lim || fi (7, )|l =00
t—>1ty—

for some time #(, after which the interface between the fluids can no longer be described by a graph.

The authors of [Constantin et al. 2017] made great progress towards proving global regularity. They
proved that if the initial data f, € H¥, then the solution f will exist and remain in H* so long as the slope
fx (¢, -) remains bounded and uniformly continuous. Thus the natural next step is to prove the generation
of a modulus of continuity for f.
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Theorem 1.1. Ler fy € W°(R) with
B(fo) == (sgp fo(0) (sgp —fom) < 1. (1-6)
Then there exists a classical solution
f € C([0, 00) x R) N C¥ ((000) x R) N LES.((0, 00); C11) (1-7)

to (1-2) with f, satisfying both the maximum principle and

lx —yl
t

fx(t,X)—fx(t,Y)§p< ) >0, x#yeR, (1-8)

for some Lipschitz modulus of continuity p depending solely on B(fy), || fyllL=. In the case that fy €
CU<(R) for some € > 0, the solution f is unique with f € L ([0, co); C1€).

The uniqueness statement follows essentially from the uniqueness theorem of [Constantin et al. 2017].
We note in the Appendix the few small changes needed to their proof in order to apply it here.

The most vital part of Theorem 1.1 is the spontaneous generation of the modulus p (- /¢), as everything
else will follow from that. The spontaneous generation/propagation of a general modulus of continuity
has old roots as classical Holder estimates, but it’s only recently that the idea to tailor-make moduli for
specific equations emerged. The technique first appeared in [Kiselev et al. 2007], where the authors used
it to prove global well-posedness for the surface quasigeostraphic equation. It has had great success at
proving regularity for a number of active scalar equations, that is, equations of the form

O+ wm-V)0+ L0 =0, (1-9)

where u is a flow depending on 6 and £ is some diffusive operator. See [Kiselev 2010; Dabkowski et al.
2014] for a good overview of results using this method.

To date, these tailor-made moduli have only been applied to cases where all the nonlinearity is in the
flow velocity u, and the diffusive term L is rather nice (typically (—A)% or at least a Fourier multiplier).
We will be applying this method to f,, which solves the active scalar equation (1-5). Note that in this
equation, the kernel K defined in (3-4) is a highly nonlinear function of f, f.. Thus this is the first time
the method has been applied in a fully nonlinear equation.

We prove Theorem 1.1 by deriving a priori estimates for smooth solutions to (1-2) with initial data
fo € C(R) depending primarily on B(f;), |l fyllz~. We prove enough estimates that by approximating
in Wlf)’coo with smooth compactly supported initial data, we get solutions f¢ which will converge along
subsequences in Clloc to a solution f solving (1-2) for arbitrary initial data fy € W (R) with B( fo) <1

The rest of the paper is organized as follows. We begin by repeating the breakthrough argument of
[Kiselev et al. 2007] in Section 2. In Section 3, we differentiate (1-2) to derive the equation for f,,
showing that it satisfies the maximum principle when B(f;) < 1. In Section 4, we state how a modulus of
continuity w interacts with the equation in our main technical lemma. In Sections 5 and 6 we then derive
the bounds on the drift and diffusion terms necessary to prove that lemma. In Section 7, we apply our
main technical lemma to a specific modulus of continuity, and finally in Section 8§ we complete the proof
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of (1-8) by choosing the correct modulus p. In Section 9, we then use (1-8) to prove a few estimates on
regularity in time, guaranteeing enough compactness to prove that there are classical solutions for rough
initial data. Finally in the Appendix, we give a quick outline for how to modify the uniqueness proof of
[Constantin et al. 2017] to work for initial data fy € C L€(R) with B( fé) < 1.

2. Breakthrough scenario

Assume that fy € C°(R), with B(fj) < 1, so that there exists a solution f € C'((0, Ty); H) for
k arbitrarily large and some 7y > 0 by [Cordoba and Gancedo 2009]. Note that under the assump-
tion that B(f;) < 1, we will show that the maximum principle holds (see Proposition 3.1) and hence
Il fxllLoe o, 72y xr) =< |l f(;|| oo 18 uniformly bounded. Fix a Lipschitz modulus p which we will define later.
For sufficiently small times, f, (¢, -) will have modulus p( - /¢) since it is smooth and bounded. It then
follows by the main theorem of [Constantin et al. 2017] that as long as f, (¢, - ) continues to have modulus
p(-/t), the solution f will exist with T > ¢.

So, we proceed as in the proof for the quasigeostraphic equation in [Kiselev et al. 2007]. Suppose that
fx (2, -) satisfies (1-8) for all t < T. Then by continuity,

lx — vl
T

fx(T,X)—fx(T,y)S,O( ) forall x #y e R. (2-1)

We first prove that if we have the strict inequality fy (T, x) — f (T, y) < p(|x — y|/T), then f. (¢, -) will
have modulus p(-/t) fort < T +e.

Lemma 2.1. Let f € C([0, Ty); Cg([R)) and T € (0, Ty). Suppose that f(T, -) satisfies

lx — ¥
T

(T, x) = fi(T, y) < p( ) Jorallx #y eR, (2-2)

for some Lipschitz modulus of continuity p with p”(0) = —oo. Then

[x — ¥
T+¢€

fx(T+e,x)—fx(T+e,y)<p( > forallx #y eR, (2-3)

for all € > 0 sufficiently small.
Proof. To begin, note that for any compact subset K C R?\ {(x, x) : x € R},
lx —yl

fx(T,X)—fx(T»)’)<,0( ) forall (x,y) e K

lx—y
T+e€

= fx(T+e,x)—fx(T+6,y)<p< ) for all (x,y) e K, (2-4)

for € > 0 sufficiently small by uniform continuity. So, we only need to focus on pairs (x, y) that are
either close to the diagonal, or that are large.

To handle (x, y) near the diagonal, we start by noting that f(7,-) € C 3(R) and p”(0) = —oo. Thus
for every x we get

Tl < 22, 2-5)
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Since f € C([0, T4); CS(R)), we have fix(T,x) — 0 as x — o0o. Thus we can take the point where
max, | fxx (T, x)| is achieved to get
0" (0)

1 fox (T )llLoe < == (2-6)

By the continuity of fy,, we thus have || fyx (T +¢€, )|l < p'(0)/(T + €) for € > 0 sufficiently small.
Hence,

lx — yl
fx(T+6,X)—fx(T+€,y)<p( . =yl <3, (2-7)
T +e¢
for €, § sufficiently small.
Now let Ry, R, > 0 be such that
P (R /(T +€)) > oscr fr(T +¢,-) (2-8)
and that |x| > R, implies
1 é
Ifx(T+6,X)|<§p(T+6) (2-9)

for € > O sufficiently small. Taking R = R; + Ry, it’s easy to check that |x| > R implies

lx — vl
T +e€

| fx(T +¢€,x)— fr(T+e€,y)| < p( ) for all y # x. (2-10)

Finally, taking
K={(x,y)eR:|x—y|>8, x,y€Bg},

we’re done. O

Thus by Lemma 2.1, if f, was to lose its modulus after time 7, we must have that there exist x #y € R
with

fx<T,x>—fx(T,y>=p<'x;y'). (2-11)

We will show for a smooth solution f of (1-2) and the correct choice of p that in this case

d d |x — yl
E(fxa,x)—fx(r,y)n,ﬂ<d7(p( : ))

contradicting the fact that f, had modulus p(- /t) for time t < 7.

, (2-12)
t=T

Thus we just need to prove (2-12) to complete the proof of the generation of modulus of continuity
(1-8) of Theorem 1.1.

3. Equation for f,

To begin proving (2-12), we need to examine the equation that f, solves. Since everything we will be
doing is for some fixed time 7" > 0, we will suppress the time variable from now on. Differentiating (1-2),
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we see that f, solves

x—y
X = Jxx d
() = 1 (X)Rf Fo—for+o—02?

2 — () + (v —
+ [0 =10 = =0 i) (F0) = FN )+ & ~)
) ((fG) = F@P2+ (5 —x)?)
To simplify notation, we reparametrize (3-1) by taking y = x + &, and letting
S f(x) 1= flx+h)— fx),
we get
2080 f(x) fx(x) +h) Jh

—h
(fx)l(-x) = fxx(X)[R[Wdh"‘!\((shf(x)_hfx(x)) (5hf(X)2+h2)2

Note that
[ fexyds  forh >0,

Snf(x) = hfi(x) = .
_fh (szx(x)ds forh < 0.

With that in mind, define

sty_ﬂ&fﬁlﬁ@)+ﬂ
U (G f(x) 4 52)?
and
“k(x,s)ds, h >0,
K h) = fhh (x,s)ds >
[t —k(x,s)ds, h<O.

Then integrating (3-2) by parts, we have that f, solves the equation

—h
Fr) = fux () R/ e R[ 51 f+ (K (x, ) dh.

As
-—6(1}):S Fe(X)ds f(x) < Hj}Him’
s s s
we see that
20 =B(fr) 1 2L+ [ fellF )
T Tl T o = ek s) < = 57,
and hence
1—=B(fx) 1 L4 11 fell? o
mﬁ <K(x,h) < —p

dy.

(3-1)

(3-2)

(3-3)

(3-4)

(3-5)

(3-6)

(3-7)

Thus in the case that 8(f;) < 1, we then have that the kernel K is a nonnegative, from which we get

immediately:
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Proposition 3.1 (maximum principle). Let f, be a sufficiently smooth solution to (3-5) with B(f}) < 1.
Then for any 0 < s < t, we have

ilylf Je(s,y) =< il;f Je(t,y) = sup fi(t, y) < sup fi(s, y). (3-8)
y y

In particular, since B(f;j) < 1, the maximum principle tells us that

B(f) <Bfo) <1, Nfillee < |l follLe < oo. (3-9)
Thus we get
A A
O<ﬁ§K(x,h)§ﬁ, (3-10)
where
1_ /
P s (3-11)

AR

Thus K is comparable to the kernel for (—A)!'/2, so f, solves the uniformly elliptic equation (3-5). Note
that the sole reason we require B(f;) < 1 is to ensure this ellipticity of K.

4. Moduli estimates

Our goal is to show that if £, (T, - ) has modulus p( - /T) and equality is achieved at two points (2-11), then
(2-12) must hold, contradicting the assumptions of the breakthrough argument (see Section 2). To that end,
we first need to understand how a modulus of continuity interacts with the equation for f, (3-5). Hence:

Lemma 4.1. Let f : [0,00) x R — R be a bounded smooth solution to (1-2) with ,B(fé) < 1, and
w : [0, 00) — [0, 00) be some fixed modulus of continuity. Assume that at some fixed time T

8 fx(T, x) = w(|h]),

4-1)
So(T,§/2) — [ (T, =§/2) = w(§)
for all h € R and for some & > 0. Then
L (11,6 = felt,~E/D)],
wa’(g)(/ ") un+ §/Mdh+ln(M—|—1)a)(§)>
+Aw (5)/ dh+2(A — )»)/ @6 s})l;w(sm
+2Af5hw(§)-;23—hw(§) dh+2)»/w(h+§) —hcg(h)—w(é“) dh (42)

0 §
forany M > 1, where A depends only on ||f6||L°° and X, A are as in (3-11).
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This is the main technical lemma that we need. Since solutions to (1-2) are closed under translation
and sign change, it suffices to consider the above situation for our proof of (2-12).

Note that (4-2) holds for any value of the parameter M > 1. Later in Lemma 6.1, we will essentially
use two different values of M depending on the size of &£. In the small £ regime we can simply take
M =1, but in the large £ regime we will need to take M to be a sufficiently large constant depending
only on initial data (but not on the exact size of &) in order to control the size of the error term

T wh
w(g)/ %dk.
Mg

The proof for Lemma 4.1 is essentially a nondivergence form argument; our function f; is touched
from above at £ /2 by our modulus w, and it is touched from below at —&/2 by —w. Specifically,

8 fx(§/2) < épw(§) forall h > —¢,
8nfx(=§/2) = —6_pw(§) forallh <§.

From (4-3), we want to derive as much information as we can and bound %( fr(E/2) — fr(—=£&/2)). To
that end, by dividing (4-3) through by 4 and taking the limit as 7 — 0, we then get

Jax(§/2) = fax (—§/2) = 60/(5) (4-4)

Hence by our equation for f, (3-5), we have

d
27 (xE/D) = fx(=§/2))

(4-3)

) —h —h
=@ R/ (ahf<5/2)2+h2 B ahf<—5/2)2+h2) ah

+/ Snfx(E/2)K /2, h) —bn fx(=§/2)K(=§/2, h) dh

R

Mg
, —h —h , o
=w(§)R[(5hf(s/2)2+h2—5hf(_$/2)2+h2)dh+w@)A{g(hK(é/z,h) hK (=§/2, b)) dh
Mg
+ / (On f2(5/2) —ha (E))K (§/2, h) — (81 fx (=& /2) —ha(£))K (—£/2, h) dh

—MEk

+ / Snfx(§/2)K (§/2, h) =y fx(—§/2)K (=& /2, h) dh (4-5)

|h|>M§
for any M > 1. The first two terms of the far right-hand side of (4-5) act as a drift, giving rise to the first
two error terms of (4-2). The latter two terms of (4-5) act as a diffusion, giving rise to both the helpful

(negative) terms in (4-2), as well as additional error terms (the middle terms of (4-2)) arising from the
difference in the kernels, |K (§/2, h) — K(—£&/2, h)|.
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5. Bounds on drift terms
We begin proving Lemma 4.1 by bounding the drift terms of (4-5), starting with:

Lemma 5.1. Under the assumptions of Lemma 4.1,

, —h —h , w((h) w((h)
‘”@)‘R[ahf@/zﬂwz_ahf<—5/2)2+h2 dh‘f““’@)(/ dh+ 5/_‘”’) G-D

Proof. We want to bound (5-1) by symmetrizing the kernels for |#] < £ and then using the continuity in
the first variable for |2| > &. To that end,

o (st s
@ J S f €242 8 f (<5 /2742

&
<w'(6) / h‘ O f /280 f /27 8 f (/2781 f (/2
= (811f(€/2)2+h2)(87hf(€/2)2+h2) (5hf(—$/2)2+h2)(57hf(—$/2)2+h2)

+w(§)/ I |‘ Snf(§/2)° =8 f(=€/2)°
(O f (E/2)?+h?) (81 f (—&/2)*+h?)

|h|>£§

(5-2)

We bound the first integral using
18 f ()| S 1Al

(5-3)

18nf (xX) +d-nf ()] = ‘/fx(x +5) = fi(x +s—h)ds| <w(h)h.
0

Thus we get, for 0 < h < &,

Snf (x)* = 8_nf(x)? < @)
Gnf ) +hD) G- f ()2 +hD [ h*

& 2 2 :
/h‘ Snf(E/2)% =8 4 f(£/2) dh‘ </Mdh. (5-5)
Onf

(5-4)

and hence

E/2D* +h)(-nf(E/D*+ 1)

For |h| = &, we bound |8, f(§/2) + 6n f (—§/2)| < || and

|81/ (£/2) =81 f (—€/2)| = /fx(§/2+8) — fx(=§/2+5)ds

< &w(|hl), (5-6)

=| [ nh—gr2+5 - fi-g/2 45 as
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in order to get

| |‘ Snf(§/2)> = 8nf(=§/2)?
On f(E/2)* + 1) (3n f(—£/2) +h2)

|h|>&

g/wM) . (5-7)

Putting (5-5) and (5-7) together, we thus have

/ —h —h ’
© (S)R[ (6hf<s/2>2 TR S f(E/22 +h2) dh e @)(f ah +5f h)’ -5)

completing the proof. O

That leaves us with the second drift term of (4-5):

Lemma 5.2. Under the assumptions of Lemma 4.1, for any M > 1

Mé
a)’(“;‘)‘ / hK(S/Z,h)—hK(—S/Zh)dh‘ (-f)(v/ﬁdh%f/ dh—l—ln(M—H)a)(é)) (5-9)

Proof. To begin, we note

M
a)/(s)‘ f hK(§/2,h) —hK(—£&/2, h)dh‘

Sw/(f)/h|K(§/2,h)—K(§/2, —h) — K(=§/2,h) + K(=£/2, —=h)| dh. (5-10)

Recall the definition of K, (3-4),

k(x,8)ds, h >0,
Koy — fhh (x, 5)ds, h > k(x,5) = 2BLOLD +9)
f_oo —k(x,s)ds, h <0, Os f(x)*+52)

So, to control (5-10) we first need to bound |k(x, s)+k(x, —s)|forO<s <&, and |k(§/2, s)—k(—=&/2, )]
for |s| > &. For the first, using the bounds (5-3) we see that
lk(x,s)+k(x, —s)|
_ ‘2(5sf(X)fx(X) +5) n 2085 f(x) fx(x) =)
G f(0)?2+52)? (s f(x)>+52)?
2185 f (x) + 85 f ()] fx (x)] (85 f (X)) +52)2 — (5_y f (X)? +57)?
R TS o) e A N TP W TR TP R

(5-11)

06 | |8 f@—8 . f)F 42526 f () —
~os3 s8
< @) (5-12)

~ 3

N
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For the second, using (5-3), (5-6), and (4-1) we get
205 f(E/2) fx (/2D +5) 208 f(=§/D fx(=§/2) +5)
(85 f(£/2)> 4 5%)? (85 f(—£/2)> +52)?

|5 F(&/2) [x(§/2) — 85 f(—§/2) fx(=§/2)]|
(85 f(—=£/2)> +52)?
+ 2185 £ (§/2) fx(§/2) + 5]

k(§/2,5) —k(=§/2,5)| =

(85 [(E/2)* + 517 — (8, f(—§/2)> + 52)?
(85 f(E/2)2 4+ 5228, f(—E/2) + 52)?
< 185/ (6/2) =8 f(— %'/2)||fx(é/2)| 185 f (=& /D11 fx(/2) — [ (=& /2)]
~ e e

s 85 f(§/2)" =85 f(=§/2)* + 55, f(§/2)° —

s8
< 5el) | 0f) (5-13)
A S
So using (5-12) and (5-13), we can first bound
£
/h|K(§/2, h)y— K(&/2, —h) — K(—£/2,h) + K(—£/2, —h)| dh
0 £ & o0
§/h/w(s)d dh+/h/§w(s)+£d dh
0 h 0 &
s w(s) Ew(s) ézw(é)
5/ /hdhd +/ —— ds
S N
0
/ ©®) f ds +w (). (5-14)
0 £
For the rest of (5-10), we use (5-13) again to also bound
/ ]| K (& /2, h) — K (—£ /2, h)|dh</ / @) gw(s) ds dh
ME>|h|>& h
f dh+& / o),
(5-15)

completing the proof. O
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6. Bounds on diffusive terms

Now we move on to proving an upper bound for the diffusive terms of (4-5). We can rewrite them as

f On fx(§/2) —ha (E) K (§/2, 1) — (85 [+ (—§/2) — he (€)) K (=& /2, h) dh

—MEg

|h|>ME

_ / (On o (E/2) — he ENK (/2. 1) — (5nfo(—£/2) — heo (€))K (—£/2. h) dh
—ME&
+ / (84 f (£/2) — 81 fu (—& /21K (£/2, h) d
[h|>Mé
+ / 51 fo(—E/DIK (E/2, h) — K (~£/2. )] dh.

|h|>ME&
We begin by bounding the last term, which is an error term.

Lemma 6.1. Under the assumptions of Lemma 4.1,

w(h)

' / Snfx(=€/DK(/2,h) — K(=§/2, h)]‘dh< (S)/—thr (S)S/—dh-

|h|>M§

Proof. Using the fact that f, has modulus w and the bounds (5-13), it follows that

Sn fx(=§/2)[K(5/2, h) — K(=§/2, h)]dh

|h|>Mé 00

g/w(h)/@+$dsdh
h

Mé

Sw(é)/ w}gl) dh+/a)(h)/ Sw(§)+§z;’(é)(s—§) ds dh

Mé

h
(5)/—dh+ o f & a (5)&/&%

Mé

h
(S)s/“’( L an,

completing the proof.

For the other two terms in (6-1), we bound them in two stages.

+ / 51 o (6 /2K (E/2, ) — 83 fo(—E /2K (—&/2, h) dh

(6-1)

(6-2)

(6-3)
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Lemma 6.2. Under the assumptions of Lemma 4.1,
Mg

/ On fx(§/2) —ha (E)) K (§/2, 1) — (85 [ (—£/2) — ho (€)) K (=& /2, h) dh

—MEg

+ /[%ﬂ@@—%ﬁ&ﬂbmﬁﬂﬁwh

|h|>M§

M§
SA/Shfx(éﬂ) ;lfhfx(—éﬂ) dh+2(A—/\)/ (w(h—éi)lz—w(é)h dh
§

R
F o (®) / LK /2. h) — K (—&/2. m)]| dh.  (6-4)
E<|h|<Mé

Proof. We can bound the second term of (6-4) rather easily. Since
nfr(§/2) = fr(=§/2) = (fx(h+&/2) — fi(h—&/2)) —w(§) <0, (6-5)

by the uniform ellipticity of K,

Onfe(§/2) = 0nfx(=§/2)

- (6-6)

f [8n f2(§/2) = b1 fx (=E /21K (§/2, h) dh < A f

|h|>Mé& |h|>Mé

To bound the first term, we first define

G(&, h) = (Bnfx(§/2) —ha (E)K (5/2, h) — (5 fr (=& /2) — ha! (£)) K (—£/2, h). (6-7)
Note that since w is concave and touches f, from above, see (4-3), it follows that

S fx(6/2) — &' (E)h < $r0(§) — @' (§)h <0, h=—§,

(6-8)
Snfr(=§/2) =/ (E)h > —6_pw(§) —ho'(§) 20, h<§.
Thus for |k| < &, by the uniform ellipticity of K we have the bound
G(g,h)§A3th(é/2)_8th(_é/2). (6-9)

h2
That just leaves us with the case £ < |h| < ME& to analyze. Note that we can write G in two distinct
ways:
G(&, h)=(8nfe(5/2)=8nfr (—E/2)K(E/2, h)+(Bn fr (—E/2)—ha(§))(K(§/2,h)—K(=£/2, h))
= (8fx (§/2)=8n fr (—£/2)) K(—E/2, )+ (81 fr (§/2) —ha'(§)) (K (§/2, h)—K(=£/2, h)). (6-10)

By (6-8), 85 2 (€/2) — he/(§) < O for all h > &. Thus if K (£/2, h) — K (—&/2, h) > 0, then

S fx(§/2) =0 f (=6/2)

GE. h) <A -

if K(£/2,h) — K(—£/2,h) > 0. (6-11)
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On the other hand, since
nfx(=§/2)=6én-—sf(E/D)tw(@) = —wh—§)+w(§) (6-12)

for h > &, we see that

8n fx(§/2) — dn fx(=§/2)

G, h) =2 + On fx(=§/2) —ha (E))(K (£/2, h) — K (=§/2, h))

h2
- A(Shfx(S/Z) ;fhfx(—é/Z) H (A=) (w(h— 522— w(§))+

+ho'(§)|K (¢/2,h) — K(=§/2,h)| if K(£/2,h) — K(=£/2,h) <0. (6-13)

Putting these two together, we get

On fx(§/2)—=6n fx(=§/2) (wh—&)—w(§))
% +(A—21) e +

+he (§)|K(E/2,h)—K (—§/2,h)]  (6-14)

G h) =2

for h > £. A similar argument can be made in the case that h < —£.
Putting this all together,

Mé

f G hydh+ f (81 £+ (5/2) — 81 i (—&/2)IK (6 /2. h) dh
_Me |h|>Mé&
ME
Skfahfx@/z)—ghfx(—s/z) dhaan [ @O —0@)
J h { h
+ (@) / IRK (/2. h) — K(—&/2. )| dh.  (6-15)
E<lh|<ME
completing the proof. O

It’s clear that we can bound fS<|h|<M§|h[K(S/2’ h)—K(-&/2, h)]‘ dh as in (5-15). Thus the only
thing remaining to prove (4-2) is:

Lemma 6.3. Under the assumptions of Lemma 4.1,

A/Shfx($/2)—5hfx(—$/2) dh

h2

R & 00
521/5}’0)(5):25hw(g)dh+2k/w($+h) —hcg(h)—w(é) dh. (6-16)

0 £

Proof. To see this, note that formally we should have
8n fx(§/2) — dn fx(=§/2) / ( 1 1 ) w(§)

dh = v — — dy. 6-17
R/ 7 TR
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Thus in order to get an upper bound on (6-17), we should be taking an upper bound on f,(y) when y > 0
and a lower bound when y < 0. Note by (4-3) that

) = £/ +o(y+§/2) —w(®) = fi(=§/2) + oy +§/2), y>—=§/2,
o) = fi(=§/2) —o(=y+§/D) +wE) = fi(§/2) —o(-y+§/2), y<§/2

In particular, using the upper bounds on 8, f, (& /2) for h > 0 and the lower bounds for &, f, (££/2) for
h < 0 gives the result. To rigorously justify this though, we will bound

(6-18)

fahfx@/z)—ahfx(—s/z) "
h2
from above. Taking € — 0, we’ll get
o) & o0
/3hfx(§/2) ;ghfx(—S/Z) a,hS/311w(§):25—hw(§)dh+/w(§ +h) —hc;(h)—w(é) dh. (6-19)
0 0 §

The bound for [ i) o Tollows from identical arguments.
So, fix some € < £. By splitting the integral into a several pieces and reparametrizing, we get

/ S /D =L (—E/)
h2
A A fw@)
eV gy I gy d
(y—&/22" y+&/227 2 @
€+£/2 e—£/2 €
r I 1 To© . AW
w xy
= ¢ — dy — dy — — " dy. 6-20
/“”((y—smz (y+s/2>2) Y /yz Y /<y+5/2)2 y- (6:20)
+8/2 e &/

In the first integral of the third line, since y > £/2 we have (y — &/2)~2 > (y +£/2)72. So applying the
upper bound in (6-18) gives an upper bound on the integral,

h 1 1
x - d
/ f(y)(@—s/z)2 <y+s/2>2) Y

e+E/2
X 2 2) - - d
< [ errroosim oo (G ) @
€+£/2
_ / [E/D Hol+E/D) —0®) / fEDToG+ED 0@ (o)
(y —£/2)? (y+§/2)?

e+£/2 €+§/2
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By reparametrizing back, we get

/ [/ Fo(y+§/2)—w(©) dy—f f:E/D+oG+E/2)—0@) | _/ %f)dy

(y—£§/2)? (y+£/2)?
e+3£/2 e+&/2 €+§
:/w(é+h)—;(h)—w(f) dh. (6-22)

+&
Hence combining (6-20), (6-21), and (6-22) gives us ‘

/éhfx(E/Z) Sn fu(= 5/2)
h2

€

00 e+ +&
< f w($+h)—w(h)—w(€)dh+/ fx($/2)+w($+h) 60(5) _/ w(§) /fx(hh—2€/2) Jh

5 —> dh—
e+& €
[ wE+h—oh)—o(E) B0+ [/~ fr(h=§/2)=0@©)
_ f o dh+ / — (6-23)
e+& €
Now for h < &, we have f,(§/2) — fr(h—&/2) < w(& — h), and thus
& £
f Shw(§) + fx(§/2) ;,ZfX(h —§/2) —w() dh < / S (&) 4};23—}160(5) dh (6-24)

€ €

Taking the limit as € — 0, we then get

h? h? h?
0 0 §

%) 3 o)
fShfx(S/Z)—(Shfx(—S/Z) dh</3hw($)+3hw(§) dh+/w(€+h)—w(h)—w(§) Jh

7. Modulus inequality

Combining all the estimates from the previous two sections, we get a proof of Lemma 4.1. Thus under
the assumptions (4-1), we have

d N0 w(h)
/)= Fu(=£/2) < A (5)( f dh-+t f & dh+1n <M+1>w<s>)

(w(h §-w@):
h2

§

oo
8 8 h —w(h)—
+2A/ hw(§)+8_pw(§) dh+2k/w( +&)—wh)—w(§)
h? h?
0 §
for any M > 1, where A is a constant depending only on || fill 2.

dh  (7-1)
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In [Kiselev et al. 2007], the authors showed that the modulus

w(E) =& —&2, 0<£<$,
, y (7-2)
= >4
O =t gy

satisfies

Aw/(s)(/ w(h) dh+ g/w(h) ) /Shw(é):j_hw(é) dh

" +/\fw(h+é)—w(h)—w(é)

e dh <0 (7-3)
§
for all £ € R so long as &, y are sufficiently small.
With that in mind, we will show:
Lemma 7.1. Under the assumptions of Lemma 4.1 for the modulus w defined in (7-2),
d
E(fx(%'/Z) — fr(=£/2)) < =/ (®)w (&), (7-4)

as long as 8, y are taken sufficiently small depending on B(f), || f§llL.

Proof. By Lemma 4.1 and (7-3) which was proven in [Kiselev et al. 2007], it suffices to show

Aw (5)1n(M+1)w(§)—|—Aa)(§)/ ﬂdh
M§
Mg &
pany [ 0@y, @ e®

0

+/\]ow(h+5)—w(h)—w(€)

e dh < —o'(E)w (&) (7-5)
3
for the correct choices of M, and §, y sufficiently small.
We proceed very similarly to [Kiselev et al. 2007]. To begin, for £ < § we take M = 1. Then we just

need to show that

w(h) /5hw(5§)+3—hw(%‘) dh

A0 o () + Aw (S)f 2

0

<—o'@wE). (7-6)

+A/w(h+g)_w(h)_w(g)dh
h2
3
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In this regime, note that we have the bounds

8

f dh < log(5/£).

§
00

o0
w(h) w(3) / 1 i
A T dh<1+Y <2 if we take y < 48,
/ h2 5 7] W@astiogtn/e) * s twelakey < (7-7)

8

o'(€) <1, w$)<§,

£
/ wE+h)+olE-h)-2w@E)
h2

dh <& (§) = —3£671/2

0

Putting this all together, we get

h
(A+ D' (E) + Aw(é)/ L dh

3 00
wa<s+h>+w§lsz—h>—2w<s> th/w(Hh) —;(h)—w(&) i

0 3
<&((A+ 13 +1og(8/8)) — 31717 <0, (7-8)

assuming that § is sufficiently small.
Now assume that £ > §. Then what we need to show is

A0/ (&) In(M+1)0 (&) +Aw (E) f dh+2(A—) / @h-8)-0E);

h2

dh < =o' (&)o (). (7-9)

+A/ 5hw(5)4;_hw(é‘) dh+xf w(h+5)—}clu2(h)—w(€)
0 §

We first bound our new error terms. Using the definition of w and integrating by parts, we see that

2(A — ,\)f‘”(h 5 =06 1h <o k)/wdh<2(A ,\)f

dh
n2 h*(4+ log(h/(S))

_2A gy _ho®) _ho@
B 3 T4 F T4 8
assuming y < (A/(8(A — A)))w(§).
In order to bound our other new error term, we will be taking M sufficiently large and then y sufficiently
small depending on M, §. Noting that w(§) < 2|| fillz~, we can bound our other new error term by

(7-10)
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integrating by parts,

o 240 £l 1 (M r
Aa)(f)/ w}fz) dh = ”]{40”L w(é__ S) +2A||f6||L°° / h2(4—|—l)(/>g(h/8)) dh
Mg

_2AI Sl o(ME) | 2A0 Sl y

- M £ M 3
A wME) o)

< —

~16 ¢ 8 &

assuming that

’

_ 241 Sl
- A

and then y is sufficiently small so that

WV < %a)(S) < %w(é)-

1015

(7-11)

Note that this is where we set a value for M, and that y is taken sufficiently small depending on M. Now
that the value for M is fixed, we can also control the value w (M) by taking y sufficiently small that

Mé

w(Ms>=w(s)+/ 4
&

mdh <w@E)+yIn(M) <o)+ o)

<2w(é).

Hence,

w(h) roME) ro@)  rw(§)
A(f‘;“)/ _E £ +§%_ SZ“;‘

Using the same integration-by-parts tricks, we can also show

o0
)‘f wh+8§) —wh) —w@) dh < _3,06)
h? 4 &
£
for y sufficiently small.
So combining these, we get

w(h— E)—w(é‘)
h2

Aw (5)/ dh+2(A — A)/

+A/“’(’1+5)“"(’”“‘)@dhg_ﬁ@.
2 4 £

§

(7-12)

(7-13)

(7-14)

(7-15)
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Since o' (§)w (&) < yw(§) /&, we finally get

(Aln(M+ 1)+ Do’ E)w(E) — %% < %((A In(M+1)+ 1y — %) <0, (7-16)

if y is taken sufficiently small. 0

8. Our choice for the modulus p

We’ve now shown that for the modulus defined in (7-2) if the assumptions (4-1) hold then

L (1,612 = £, /D),y < 0/ ©)0®). 8-1)

We claim that in fact (8-1) will hold for any rescaling w, (h) = w(rh) as well. To see this, fix some r > 0,
and suppose that f(¢, x) satisfies the conditions of Lemma 4.1 for o, at time 7" and distance &. Take
f(t,x)y=rf(t/r,x/r), whichis also a solution of (1-2). Then f; is a solution of (3-5) with B(f)) = B(f}),
| fé e = Il fll L, and satisfying the conditions of Lemma 4.1 for w at time » T and distance r£. Hence
by Lemma 7.1

L (fe,6/2) = ft, /D)y = r (et 78/2) = ot /D),
< & rEY0 (rE) = —a (€, (6). (8-2)

So, (8-1) will hold for any rescaling w,. Also note that for f, (T, &/2) — f(T, —£/2) = w(&) to hold,
we must necessarily have w(§) < 2| £, (T, - )|z~ < 2|| fllL~. Thus taking

h o' Qlfgll)

O e B @B 2Rl &
we see that N
w(h) = c (8-4)
for all relevant /. Define
p(h) :=w(Ch) (8-5)
so that
p(h) > h (8-6)

for all i € [0, p~' Il fgll2o2)]-
Now, suppose that at time 7, f satisfies the assumptions (4-1) for p(-/T). Then since p(-/T) is a
rescaling of w, we have

d d
7 KT8/ = fu(T, —§/2)) < —d—hp(h/T)\h:Ep(é/T)

1, & d
=P E/TpE/T) < =50 E/T) = . pE/D] _p. BT

Thus we’ve constructed a modulus p which satisfies (2-12), completing the proof of the generation of a
Lipschitz modulus of continuity (1-8) in our main theorem.
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9. Regularity in time

With the construction of the modulus p, we get universal Lipschitz bounds in space for f, (¢, - ). By the
structure of (1-2), we also get regularity in space for f;.

Proposition 9.1. Let f: (0, T) x R — R be a classical solution to (1-2) with || f (¢, - ) ||w1. bounded and
| fex (@, Lo S 1/t Then fi(t, -) is log-Lipschitz in space with

| fo(, )| < max{—log(r), 1},
I 1 9-1)
[fo(t, x) = fit, )] S —log(x — y])|x —y|(1 + ;), 0<lx—yl <1

Proof. For t < 1, we have

Ifi(t, x)| = V Snf(t, x) —hfi(t, x) dh‘
R

Snf(t, x)>+h?

3 ‘76hf<r,x>+ahf<r,x> dh’ ‘ [ G f (€)= hfelt, )G/ (1, ) =84 f (1, 2)%)
= + dh
YIRS O f (1, XY+ ) O f 1, X +1)

t 1 [e's)
</1dh+/1dh+/1+ldh
~J ot h h?  h3
0 t 1

< —log(t)+1. (9-2)

For t > 1, we can similarly show | f; (¢, x)| < 1, proving the first bound.
For regularity in space, we see that

ﬁ(t7x)_fl(tvy)
:/5hf(t’x)_hfx(tvx) Snf(t, y)—hfx(t,y)

Snf(t, x)2+h? Snf(t, y)2+h?

:/ Snf (6, X)=hfi(t, x)=Bn f (1, y)—hfe(t, y))+(5hf(t,X)—hfx(t,x))(Shf(t,X)2—5hf(t,y)z)

J Snf(t, y)>+h? O f (@, x)>+h?) (8 f (¢, y)2+h?) ah
WAL
|hl<|x—y]| lx—y|<|h|<1 |h|>1

For |h| < |x — y|, we can bound much as before to get

lx—yl

1 x—yl
‘ / ‘gf;dh_ —. (9-4)

|hl<lx—yl| 0
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For midsize |x — y| < |k| < 1, we have
h

[80.f (1. ) = hfie(t, ) = Bn f (2, 3) =t y)| = /8sfx<r,x>—8sfx(t, v ds‘ il
0 (9-5)
|80 f (1) =8 f (1 9| = /.fx(t,x+s)—fx(t,y+s)ds'gw‘
Thus | 0
‘ / ‘glxt;yl / %dh:—ln(lx—tyl)lx—yy o6

lx—yl<lhl<1 lx—yl
Finally, we use L bounds on f to get

<‘f 8hf(t,x)—8hf(t,y)+(Shf(t,X)—hfx(t,x))(Shf(t,X)z—Shf(t,y)z)
- Snf(t, y)?+h? Sn f(t, x)>+h2) (8 f (1, y)*> +1h?)

dh‘

|h|>1 |h|>1

5 f (0, y)2+h2 dh‘
1 1

f—3 <1+;>|x—y|. 9-7)

1

1
| /e, x) = fi(t, I S —In(lx — yDx —yl(l +;), (9-8)

+ 1 fx (@, %) — fr(, y)l‘ /

OO1 1
§|X—y|/ﬁ+
1

Putting this all together, we thus have

completing the proof. U

Recall that in Section 2, we assumed that our initial data fy was in C2°(R) so that, by the local
existence results of [Cérdoba and Gancedo 2009], there was a unique solution f € C 10, T); HY) for
k arbitrarily large and some 7 > 0. We were then able to prove the existence of the modulus p as in
Theorem 1.1 depending only on B(f), Il f3llz~, and hence with the solution f existing for all time by
the main theorem of [Constantin et al. 2017]. For an arbitrary fy € W1(R) with B( fé) < 1, the same
result holds true by compactness. Let n € C2°(R) be a smooth mollifier and ¢ € C2°(R) be a smooth
cutoff function. For fy € W (R) with B(f)) < 1, take £, (x) := (fo*ne) (X)$(ex). Then £ — foin

IOC , with ,B(f(e)’) — B(f) and ||f0(€)||W1,oo(R) — || follwi.eowy as € — 0. Thus for € sufficiently small,
B( fo(e) ) < 1 and the results of the previous section hold for the solution to the mollified problem f (.
The L°° bound on f,(é) proven above along with the maximum principle for fx(é) is enough to ensure that
there a subsequence f (€x) converging in Cioc ([0, 00) X R) to a Lipschitz (weak) solution f to the original
problem. In order to get a classical C! solution, we need regularity estimates for f (E), ft(é) in both time
and space. The modulus p and Proposition 9.1 give the regularity in space that we need for fy, f;. All
that leaves is to prove regularity in time.
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Proposition 9.2. Let f be a sufficiently smooth solution to (1-2) with B(f;) < 1. Then f,, f; €
((0, 0) x R) with

loc
I fellce (@i fillce @iy < CBUD NS oo sa.30 2w my) max{t™, 1}, (9-9)

where Q, (s, y) = (s —r, s] X B.(y), and a > 0 depends only on ,B(f(;), ”f(;”LOO-

Proof. We have that f, solves
—h
De(t, x) = frx(t, ———dh Snfe(t, x)K(t,x,h)dh, 9-10
(Foi(t. ) f(x)/Shf(t,x)2+h2 + [ B oK 9-10)
R R

where A/h? < K (t, x, h) < A/h? is uniformly elliptic with ellipticity constants A, A depending on ( 10
| fgll . Rewriting this, we have that f, satisfies

(f)e — / 8 [ (2, x)(K(t, x,h)+K(t, x, —h)) i
R

2

= fult " i+ [ 8 futt, o KL= KOx DN oy
—fxx(,x)/m +f hfx(»x)( > ) . (9-11)
R R

Let F(t, x) denote the right-hand side of (9-11). Then F(z, x) is locally bounded with |F (¢, x)|
controlled by || f (¢, - )|l w2. Then since (K (¢, x, h) + K (¢, x, —h))/2 is a symmetric uniformly elliptic
kernel, it follows that we have local C* bounds for @ < ¢ for some g depending on ellipticity constants;
see [Silvestre 2011].

So, all we have to do is give bounds on F (¢, x) depending only on || f (¢, - )| 2. Similar to the proof

of Lemma 5.1,

00 1 00
—h Snf(t,x)* =84 f(t,x)* / /1
———dh= | h dh< | 1dh —dh <1, (9-12
f(Shf(t,X)erh2 G ft, )* +hH) @S- f(t,x)2+h?) ™ Tt O-12
R 0 0 1
Also similar to the proof of Lemma 5.2, specifically (5-12), we have
|K(t,x,h)— K(t, h| < . (9-13)
— min B
' * h
o)
1 00
K(t,x,h)—K(t,x, —h 1
’/(Shfx(t,x)< UL . @ x )>dh‘§f1dh+/ﬁ dh <1. (9-14)
R 0 1

Thus since we’ve bounded the right-hand side of (9-11) depending only on || f (¢, - )| w2, we have
our local C* bounds for f, for all @ sufficiently small. A C* bound that is uniform in x for f, then gives
alog C“ estimate for f;, similar to the proof for regularity in space in Proposition 9.1. Thus we have C*
estimates for both f, f;. Il
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Appendix: Uniqueness

We now prove that if our initial data f; is in C"¢(R) with B( fy) < 1, then the solution f given by
Theorem 1.1 is unique with f € L*°([0, c0); C 1.€). As mentioned before, this essentially follows from
the uniqueness theorem given in [Constantin et al. 2017], which under our assumptions simplifies to:

Theorem A.1 [Constantin et al. 2017]. Let f € L>®([0, T]; W) be a classical, C" solution to (1-2)
with initial data (0, x) = fo(x). Assume that lim f(t,x) = 0, and that there is some modulus of
X—>00

continuity p such that

fe(t,x) = fx@,y) =p(x—y) forall0<t<T, x#yeR. (A-1)
Then the solution f is unique.

The authors of [Constantin et al. 2017] note that the uniform continuity assumption should be the
only real assumption; the decay is assumed for convenience in their proof. So, we start by proving
that if fy € C'¢(R), then the solution f is in L>([0, co); C'€). To begin, suppose that fy € C"(R).
Then necessarily f; has modulus p(-/8) for some § > O sufficiently small. The same proof for the
instantaneous generation of the modulus p will give that f, (¢, - ) has modulus p(- /¢ +§). Hence f, (¢, )
has modulus p (- /§) for all ¢t > 0.

If fy € C1¢(R), we can make the same essential argument by changing the definitions of p, w. You
can repeat the arguments of Sections 7 and 8 for the modulus

0 (§) =€, 0<§=<s,

0 @)= £28 (A2
§(4+1og(§/9))

All the error terms for & < § are of order £2¢~!, while the diffusion term is of order £~ so there are no
problems as long as § is sufficiently small. The argument for £ > § is identical to the original. Taking
p© to be some suitable rescaling of (€, we then have that if f has modulus (- /8), then fc(t,-)
will have modulus p© (- /1 + ).

Thus if fo € C'¢(R), then the solution f given by Theorem 1.1 will satisfy the main uniform continuity
assumption of Theorem A.1. Our solution f will not decay as x — oo, but that assumption isn’t truly
necessary.

Let f1, f> be two uniformly continuous, classical solutions to (1-2) with the same initial data, and let
M) = || fi(¢t, -) — fa(t, - )| L. With the decay assumption, the authors of [Constantin et al. 2017] are
able to assume that for almost every ¢, there is a point x(¢) € R such that

M@ = 1fie,x0) = HexO), M@ = (17— pl) @ x@). (A-3)

They then bound %|f1 (t, x(t)) — f>(t, x(1))| using equation (1-2), 5, and W!° bounds.
Without the decay assumption, we instead use that

L M@ = sup] L1110 = a0l it 0) = fo(d, 0] = M) — 8}, (A-4)
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where § > 0 is arbitrary. When we go to bound %l fi(t, x) — fa(t, x)|, we then get new error terms which
can be bounded by

C(p. max 1fi (& I lwroe, M) (S + | f1.x (2, x) = fox(t, X)) (A-5)
Since f; . (t, x) is bounded and has modulus p, it then follows that

| frx(t, x) = fox (2, x)| = 05(1). (A-6)

Thus by taking § sufficiently small depending on o, max; || f; (¢, - )|l w1, M(t), we can guarantee that the
new error terms S M (¢). Then the original proof of [Constantin et al. 2017] goes through.
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