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GLOBAL WELL-POSEDNESS AND SCATTERING
FOR THE RADIAL, DEFOCUSING, CUBIC WAVE EQUATION
WITH INITIAL DATA IN A CRITICAL BESOV SPACE

BENJAMIN DODSON

We prove that the cubic wave equation is globally well-posed and scattering for radial initial data lying in
Bil X Bll’l. This space of functions is a scale-invariant subspace of H'Y2x H=1/2,

1. Introduction

The three-dimensional cubic nonlinear wave equation,
utt—Au:—u3=F(u), u(0,x) =ug, u:0,x)=uj, x e R3, (1-1)

has been a topic of recent interest in the study of dispersive partial differential equations. This is due to
the fact that the Hamiltonian for (1-1),

Eu(t) = %/|Vu(t,x)|2dx+%/ut(t,x)2 dx+%/u(t,x)4 dx = E@(0).  (1-2)

does not control the critical Sobolev norm.
A solution to (1-1) obeys the scaling symmetry that if u (¢, x) solves (1-1), then for any A > 0

Au(At, Ax) (1-3)
also solves (1-1) with initial data (Aug(Ax), A%u1(Ax)). It is a general rule that, for any dimension d > 1,

luoll ga—2/2@ ey = 1AuoAX) | ga-2/2gay. U1l ga—s2ga = ||)Lzu1(Ax)||H(d_4)/2(Rd). (1-4)

Thus in three dimensions (1-1) is called H '/2-critical.

Local well-posedness theory for (1-1) in L2-based Sobolev spaces is completely determined by the
critical s, = %

Negatively, using the arguments found in [Christ et al. 2003; Lindblad and Sogge 1995], one can show
that the initial value problem (1-1) fails to be even locally well-posed for data lying in spaces less regular
than H1/2 x H~1/2 that is, any space HSx HS1, s < %

Positively:

Lemma 1.1. Equation (1-1) is locally well-posed in H® x H™! for any s > %
Proof. See [Lindblad and Sogge 1995]. O

MSC2010: 35L05, 35B40.
Keywords: defocusing, nonlinear wave equation, scattering, global well-posedness.

1023


http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2019.12-4
http://dx.doi.org/10.2140/apde.2019.12.1023
http://msp.org

1024 BENJAMIN DODSON

Local well-posedness is defined in the usual way.

Definition (locally well-posed). The initial value problem (1-1) is said to be locally well-posed if there
exists an open interval / C R containing 0 such that:

(1) A unique solution u € L H¥(I xR*) N L} LI xR3), u; € L H* (I x R?) exists.

(2) u is continuous in time, u € C(I; H*(R?)), u; € C(I; HS"1(R3)).

(3) u depends continuously on the initial data. That is, for any compact J C 1, if |[ug — ugl| ;75 < € and
lur —uill gs—1 < € for some € < eg(J) > 0 sufficiently small, then

* * *
”u _MHL;‘VX(JX[R@)—F ”u _u”L?OHs(JX[}p)"i‘ ”ut _ut”L?OHs—l(JX[}p) 55(6)7 (1-5)
where u is the unique solution with initial data (ug,u1) and u™ is the solution with initial data

(ug,u7) and §(¢) is a continuous function of € with §(0) = 0.

The defocusing, energy-critical nonlinear wave equation, obtained from (1-1) either by changing —u3

to —u> or by changing from three dimensions to four has now been completely worked out. For initial
data in the energy class (which occurs for ug € H' and urel?a priori bounds on scattering norms
and concentration compactness properties of solutions have been established in [Struwe 1988; Grillakis
1990; Ginibre et al. 1992; Shatah and Struwe 1993; Bahouri and Shatah 1998; Bahouri and Gérard 1999;
Nakanishi 1999; Tao 2006b].

Remark. The focusing case (obtained by changing the sign of the nonlinearity) is considerably more
complicated. Focusing problems are not addressed at all in this paper, and so the interested reader is
referred to [Kenig 2015].

For the radial version of (1-1) in three dimensions,
utt_urr_%ur‘i‘ug’:utt_%arr(ru)+u3=0» u(0,r) =uo(r), us0,r)=uy(r), (1-6)
the lack of control of the H/2 x H~1/2 norm is the only obstacle to proving global well-posedness and

scattering for (1-6). Indeed:

Theorem 1.2. Suppose ug € H'Y/2(R?) and u; € H~Y2(R3) are radial functions, and u solves (1-1) on

a maximal interval 0 € I C R with
Su? ”u(t)”Hl/Z(RB) + ||ut(l)||H—1/2(R3) < 00. (1-7)
te

Then I = R and the solution u scatters both forward and backward in time.

Proof. See [Dodson and Lawrie 2015]. O
Scattering is also defined in the usual way.

Definition (scattering). A solution to (1-1) is said to scatter forward in time if there exist some u{f e H/?,

u;r € H~1/2 gych that

t1—1>rrolo llu(2) — S(t)(u(—;_’ ur)|lH1/2(R3) + [lue (1) — 3;5(1)(148_, ui'_)”H—l/Z(R?i) =0, (1-8)
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where u(¢t) = S(¢)(uo, u1) is the solution to the linear wave equation
u”‘—Au=O, M(Oax)=u0, ut(()?x):Ml' (1_9)
A solution to (1-1) is said to scatter backward in time if there exist u, € HY?2 uy € H~1/2 guch that
i () = S g uD oy + N0 = 8O g D) g1/, = 0. (1-10)
A solution which scatters both forward and backward in time is called scattering.

In this paper, (1-1) is proved to be globally well-posed and scattering for initial data lying in a critical
space. The proof of global well-posedness is fairly general, and could be applied to a broad range of
nonlinearities. The proof of scattering utilizes hyperbolic coordinates and relies on the fact that the cubic
exponent 3 = (d + 3)/(d — 1) is the conformal exponent in three dimensions.

Hyperbolic coordinates were utilized by Tataru [2001] to prove weighted Strichartz estimates that
extended previous results of [Georgiev et al. 1997]. Miao et al. [2018] recently proved a result similar to
Theorem 1.4 for the five-dimensional problem, also for the conformal exponent. The conformal exponent
is H'/2-critical, and it is straightforward to prove that the energy of a solution to (1-1) in hyperbolic
coordinates scales like the H/2 x H~1/2 norm.

Recently, Shen [2017], also working in hyperbolic coordinates, was able to prove a scattering result
for data lying in a weighted energy space. Later, Dodson [2016] combined the result of Shen [2017] with
the I-method, proving:

Theorem 1.3. Suppose there exists a positive constant € > 0 such that
||U0||p'11/2+e(R3) + |||x|2€u0||H1/2+e(R3) <A <o0, (1-11)
[[u1 ||[-'1*l/2+e(R3) + || |x|26u1 ||I-‘I*1/2+€(R3) <A <oo. (1-12)

Then (1-1) has a global solution and there exists some C(A, €) < 0o such that

/ /(u(Z,X))4 dxdt <C(A,e), (1-13)
R

which proves that u scatters both forward and backward in time.
Remark. A straightforward application of the Strichartz estimates of [Ginibre and Velo 1995; Strichartz
1977] shows that
lllzs  @xray <00 (1-14)
is equivalent to scattering.
Note that conditions (1-11) and (1-12) fall just short of lying in the critical Sobolev space H'/2x H~1/2,

and are not quite invariant under the scaling (1-3). In this paper we will study the radial, nonlinear wave
equation in three dimensions,

Upr —Upp — %u, +u?=0, wo€Bi;. ui1€B],. (1-15)
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The Besov spaces B;’ , will be defined in the next section. By the Sobolev embedding theorem, this space
is a subspace of H'/2 x H~'/2 and the norm is invariant under (1-3).

We believe that this is the first result in which large-data scattering was proved for initial data in a
scale-invariant space for which the norm was not controlled by a conserved quantity.

Theorem 1.4. The initial value problem (1-1) is globally well-posed and scattering for ugy € Blz’1 (RY),
radial, and uy € B}’I(R3), radial. Moreover,

s sy = Clluolzz utlly ) (1-16)

The proof of this theorem utilizes the fact that the free solution with such initial data is only singular at
the origin in space and time, # = 0 and x = 0. Thus, using a Gronwall-type inequality, the local solution to
(1-1) can be extended to a global solution that is the sum of a solution to the free wave equation combined
with a finite energy term. A Morawetz estimate in hyperbolic coordinates then proves scattering.

The proof of Theorem 1.4 will occupy the remainder of this paper. In Section 2 we will begin by
defining the Besov spaces and recalling basic Strichartz estimates. Then in Section 3 the local theory
of (1-1) will be discussed. Global well-posedness will then be proved in Section 4. In Section 5 we
will switch to hyperbolic coordinates to prove scattering. Finally in Section 6 we will use a profile
decomposition to show that the bounds obtained for any u¢ € Blz,l, up € Bll’1 depend only on size.

2. Besov spaces and linear estimates

We now present some harmonic analysis estimates that will be used in this paper. None of these results
are new.

Theorem 2.1 (Hardy—Littlewood—Sobolev inequality). Forany 0 <s < 1, if
1_1 +s5—1,
q P

then

1
W*F(Z)

Ss | FllLay- (2-1)
LI(R)

Definition (Littlewood—Paley decomposition). Let ¢ € Cg° (R3) be a radial, decreasing function supported
on |x| <2 and ¢(x) =1 for |x| < 1. Then for any j € Z let P; be the Fourier multiplier

Pif=F Y@@ 78— ) f(5)), (2-2)

where
£(&) = @n)y4/2 / ¢V £(x) dx, (2-3)
Flg = @n) 2 / F*Eg () dE. (2-4)

Then for any Schwartz function f,

f=)Pif (2-5)

Jjez



GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE RADIAL, DEFOCUSING, CUBIC WAVE EQUATION 1027

Let K (x) be the kernel of the Littlewood—Paley multiplier P;. By direct computation using stationary
phase estimates, for any N,

2/d
K;(x)| < —_—. 2-6
| ]( )|'\»d,N (1+2]|X|)N ( )
This implies K; has an L' norm that is uniformly bounded in j, so for any 1 < p < oo,
1Pj fllLr@ay Sa If L ga)- (2-7)
A direct computation also gives Bernstein’s inequality
I1Pj £ llLr@ay Sa 277NV fllLogay- (2-8)
along with the Sobolev embedding estimate, for 1 < p < g < o0,
id(L—1
1P £y Sa 2257 £ Lo gy, 2-9)
The Littlewood—Paley decomposition is foundational to the definition of Besov spaces.
Definition (Besov spaces). Suppose 1 < p <00, 1 <r <00, and s > 0. Then
' 1/r
I/ s, @y = (Z 2’”||ijllzp(Rd)) : (2-10)

JEZ
The Besov space B} p 1s then the completion of the Schwartz space under this norm. B} p 1s a Banach
space under this topology.

Remark. Observe that for any s € R we have B , (RY) = HS(RY).
The Besov spaces are well-behaved with respect to multiplying by smooth cutoff functions.

Lemma 2.2. Suppose y(x) € Cg° (R3). Then
Gl 5172y % Tl g2y @-11)
”X(X)MHBI_’;/Z(W) S ”M”Bl_’;/z(R?’)' (2_12)

Also if y(x) =1on|x| <1 thenif ug € Blz’1 and uy € Bll’l, we have

) RS RS
RIEHOO“ (l - X(E))uo B|Z(®3) " ” (1 - X(ﬁ))ul B Y2 (®3) - @19
Proof. Split P;(x f) as
Pi(f) = x(B; /) + [P, x1f. (2-14)
By Holder’s inequality,
D 220 5Py iz D272 P f D e (2-15)
J J

so it only remains to compute

> 221y, A S e (2-16)
J
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By (2-6) and the fundamental theorem of calculus,

/ K (=) SO0 - @) f £ / 1K (x— )| 1x— 311 Pe SO .
k

and therefore by Bernstein’s inequality and (2-6),

2712\ P; (xP <Y 272N 2 K2 P 112 S 2K 2 P fll e S .
D 2P2IP P20 N2 s ) 272 Y 27 RISl S 3 2PN g SIS 12

Jj=0 Jj=0 k=0 k
Also by Bernstein’s inequality, the Sobolev embedding theorem, and Hoélder’s inequality,
> 2P (P e S IVGHP=o )2 S 1f 11172
j=z0 ’
Next, by Holder’s inequality in space,
IP<o(x(P<ofDg1r2 S I1P<of llLe < 1 f o

Finally,

P P <N 27k/2p iy < .
| P<o(x( zof))llBllgzzN];) [ kfIIHl/zwllfIIB;g

Combining (2-18)—(2-21), we have proved
12/ g2 < 1F gtz ey
Also observe that (2-18)—(2-21) imply
12/ g1z S 1F 172
and therefore by duality
- < —1/2.
1781532 5 gl 5172

To prove (2-13) observe that Bl1 ,/22 X Bl_, ;/ 2 is invariant under the scaling (1-3); that is,

1 a 1 -
(L0 W (G 092
= RI(1 = x()uo(R) 172 + R?|(1— XCDur(Rx) [ g-1/2.

The dominated convergence theorem, (2-19), and (2-20) imply

Jim RJI(1= 1)) Peo(uo(Rx) | 51/ + R (1 = () Peo(at1 (Rx) | 172 = 0.

Meanwhile, (2-18), (2-21), and the dominated convergence theorem imply

Jim RJ[(1= 4 (0) P2o(to(R)) 172 + R[(1 = £ () Po (1 (Rx)) [ p1/2

= Jim R 272 (1=x(0)) P (uo(Rx))2+R? Y 52772 [(1=x(x)) P (1 (Rx)) | 2 =0,
Jj=0 Jj=0

completing the proof.

(2-17)

(2-18)

(2-19)

(2-20)

(2-21)

(2-22)

(2-23)

(2-24)

(2-25)

(2-26)

(2-27)
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Theorem 2.3 (radial Sobolev embedding theorem). For any j,

1127 ooy < 127 S gz, (2:28)

Proof. Since f is radial, assume without loss of generality x = (0, 0, |x|). Writing £ in polar coordinates,
§=(rcospcosf,rsingpcosf,rsinf), x-& = |x|rsinf, so by the Fourier inversion formula,

oo /2 .
f(x)= (271)_1/2/ f(r)rzf e!XIrsin® o5 0 do dr. (2-29)
0

—m/2

Then by a change of variables,

fx)= (27r)—1/2/0oo r2f(r) /_11 e!¥Ir du dr

1 BN . .
= (27r)_1/2,—/ Fryr[e'™ I —e=ixlr gy, (2-30)
ilx| Jo
Replacing f by P; f,
o0
i|x|P; f(x) = (27‘[)_1/2/ P f (r)r[e!¥Ir — =i gy, (2-31)
0
By Plancherel’s theorem,
o0
IR~ 1By s 2-32)
so by Holder’s inequality and the support of P;,
Q3D S NP f 117253y (2-33)
completing the proof. O

Now observe that the solution to the free wave equation
U —Au =0, u(0,x) = f(x), u(0,x)=g(x), (2-34)

is given by the Fourier multiplier

e, x) = 7 eostrle £6) + LV 20) = SO o). (235)
Then the solution to
Uy —Au = F, u(0,x) = f(x), us0,x)=g(x), (2-36)
is given by
S()(f.2) +/Ot S(t —7)(0, F) dx. (2-37)

Remark. Sometimes, if v = S(¢)(f, g) it is convenient to write

(1), 0:u(r)) = S@)(/. &) (2-38)
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By standard stationary phase calculations:

Theorem 2.4 (dispersive estimate).

1
[SO(S )l Looms) < ?[||V2f”L1(R3) +1IVElLr @) (2-39)

This has been proved in many textbooks. See for example [Evans 2010].
The dispersive estimates can be used to prove Strichartz estimates.

Theorem 2.5. Let I C R, tg € I, be an interval and let u solve the linear wave equation
Uy —Au=F, u(to) =uo, us(to) =uy. (2-40)
Then we have the estimates
||u||LfL§IC(IXR3) + ||u||L§>°HS(I><R3) + [lu; ||L§>°HS—1(1><R3)
Sp,q,s,ﬁ,c] ”uO”HS(R3) + ||u1 “Hs—l (R3) + ||F||Ltﬁ/Lz/(1XR3)’ (2-41)
whenever s >0, 2<p,p <00, 2<¢q,q < o0, and
1
p
Proof. See for example [Tao 2006a]. ]

+

=

A

N —

(2-42)

Q=
1=
| —
Q| =

Remark. This theorem can easily be combined with the Christ—Kiselev lemma, see [Smith and Sogge
2000], and the fact that |V| commutes with the operator (d;; — A) to prove many additional estimates.

Lemma 2.6 (perturbation lemma). Ler I C R be a time interval. Let tg € I, (ug,uy) € HY? x H~1/2
and M, A, A’ be positive constants. Let i solve the equation

0y —ANu=F@u)=e (2-43)
on I x R3, and also suppose sup,¢; || (#i(2), () gr/2sgg—12 < A4, ”ﬂ”L;"x(Ixﬂ@) <M,

(o —i(to), w1 — 36 (10) | gr1/2y fr—1/2 < A, (2-44)
and

||€||L;1/X3(IxR3) + 1St —10)(uo — i (t0), w1 = 1 (t0)) I L4 (7xm3) <€ (2-45)

Then there exists eg(M, A, A") such that if 0 < € < €g then there exists a solution to (1-1) on I with
(u(to), ru(ty)) = (ug,uy), ”“”L‘}X(Ix[Ra3) <C(M,A, A, andforallt €I,

1Gu(2), Bru(2)) — Gi(e), 0T ()| g1/25 fr—1/2 < C(A, A", M) (A" +€). (2-46)

Proof. The method of proof is by now fairly well known. See for example Lemma 2.20 of [Kenig and
Merle 2008]. U
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3. Local theory

By the dominated convergence theorem, for any ug € 312 1> U1 € Bl1 1> and & > 0 there exists some
Jo(8) < oo such that

> 2 Piuollpiwsy + Y 27 I1PjurllLigey < 6. (3-1)

J=Jjo J=Jo
Then by the rescaling (1-3) with A = 2770 if ug 1 (x) = Aug(Ax) and u; 5 (x) = A2up(Ax),

22 1Pjuoallpi @y + D27 IPjurallL gy < 6. (3-2)
Jj=0 Jj=0

To simplify notation let ug and u; refer to the ug  and u; , such that (3-2) holds.

Lemma 3.1. Fix €y > 0 small. There exists some (¢, ||u0||Blz . llu1 ”Bll l) > 0 such that if (3-2) holds
then ' A

”u”L?,x([_898]XR3) <€, (3-3)

||u||L§’°Bll/22([—8,8]XR3) < ||u0||312’1(R3) + ””1“311’1([@3)- (3-4)

Proof. Assume that (3-2) holds for some § < €. By the Sobolev embedding theorem and the definition
of Besov spaces (see page 1027),

1S (@) (P<otto, P<ou1)ll s @ms) < Iuollp2 @3y + lu1llpr | @) (3-5)
while by Theorem 2.5, (3-1), and (3-2),
IS@)(Pzouo, P>ou1) 14 @xw3) <0 (3-6)
Taking § > 0 sufficiently small, (3-5) and (3-6) imply
1S (#)(uo, ”1)||L‘,"x([—8,5]x[|;g3) < €o. (3-7)
Then by the contraction mapping principle and Theorem 2.5,
”””L;‘.X([—&S]xm) < [1S@) (uo, ”1)||L‘,‘.X([—8,8]xR3) + ”u”I?:;‘_x([—(S,S]XI]@)’ (3-8)
which when €g > 0 is sufficiently small implies
“u”L?,x([—b’,S]xR% < €o. (3-9)
Next observe that by Theorem 2.5 we also have

VI ull s 373 s sy + VI 4000 1873 18 (g 1ms) < €0 (3-10)
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and

IPju ”L;"x([—S,S]xW)‘i‘ | Pju ||L§’°H1/2([—8,8]><R3)
< 1Pjuo ||H1/2(R3)+ | Pjur ||H—1/2(R3)

—Jj/2 . ) )
+2 Z Z I12j, ||L§/3L§([—3,5]><R3) 1Pju ||L§/3L§([—5,8]><R3) I1Pj3u ”L;‘,x([—w]xw)
J1Sj2<j=5 j=3<j3<j+3

2% 3T Pl s ey Pt s s | Pistll 183 s gpemny Go1D

J—=5=5j1<j25J3

Then by (3-9) and (3-10),

> IPjullLs (—s.51xm3) T 1 Bl Loo gz s 51w

J
<D P uol oy + P ULl fr-1/2sy + €6 ) IPullLs (s pixmy (3-12)
J J
which also implies
||u||L?°Bll/22([—8,8]xR3) < ”uOHBlZ’l([I@) + “ul ||B11.1(R3)’ (3-13)
completing the proof. O

Next suppose y(x) is a smooth function that is supported on |x| < 1 and is equal to 1 on |x| < % By
Lemma 2.2 there exists some R(ug, U1, €) such that

|6 S ()

Remark. Notice that R depends on ug and u1, not just their size. This dependence will be removed
upon making a profile decomposition.

_l’_
H1/2(R3)

<e. (3-14)
H-1/2(R3)

Again applying the scaling symmetry (1-3), this time with A = 2R, setting
upA(x) = Aup(Ax), upp(x)= Azul()tx), (3-15)

and letting u; denote the solution to (1-1) with initial data (v x,u; ;) yields

||P>2RM0,)L||H1/2(R3) + ||P>2Ru1,)k||H—1/2(R3) <€, (3-16)
(1= 2002 17205, + 10 = XXV A 1723y = €. (3-17)
luallzs (-2, 8 ]xr3) < €0, (3-18)

and finally

12l 172 ey S 0l g2 sy + 131 | o) (3-19)

([-%- %
The next step is to show that this local solution has a singularity that is isolated in a suitable sense. We
will once again abuse notation and use u in place of u in (3-18).

Observe that the dispersive estimates imply that the linear wave equation u;; — Au = 0 with initial
data (19, u1) lies in L°° when ¢ > 0. Indeed, by (2-39),
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1 . .
IS o un) e < > 2% [ Pjuollies) +27 [ Pjurllzi @)
J

1
< ;[””0”312’1([@3) + llus ||311.1(R3)]- (3-20)
Interpolating (3-20) with Bernstein’s inequality, for any j,
2—il6 0 )
IS@Pjuo. Pjun)liLomy S 575712 TN PjuollLr @y + 27 1 PjurllLr syl (3-21)

while by the Sobolev embedding theorem H'(R?) — LO(R3),
1S(6) Pj (o, un) |l o3y < 29721227 | Pjuoll L1 @y + 27 | Pyur [l L1 o)- (3-22)
Thus by direct computation

fugtl/zllS(t)(uo, “1)||L6(R3) + [1S() (uo, ul)lngLg(Rst) < ||”0||3121(R3) + [|us ”Bll L®3) (3-23)
1§ : :

Lemma 3.2. If § > 0 is given by the local result in Lemma 3.1 for some €9 > 0, then

sup 12 u| g6 g3y + lullz2pe (- 2., 2. ]xwe) < luollp2 @3y + Iutllpy @3- (3-24)

8 Fi 2R°2R
“3R<I<3R

Proof. By the dispersive estimates (Theorem 2.4), the Hardy-Littlewood—Sobolev inequality, and interpo-
lation

'/t S(t—1v)F(u(r))dr
0

L218([0, i ]x#)
SNVIVEFGOI 675 [0, g ]ww)

< 1/2.,12/3 4/3
SV e 12 o, ) LS (o ) #2228 (o, 2] )

S el 222 ([0, 2] xm3)" (3-25)

Combining (3-25) with (3-23) proves

lellz226 (o, 2 ]xr3) = Iuollp2 @3y + lutllp | @3- (3-26)

Next let ¢ > 0 be a small constant to be determined later. Again by Theorem 2.4, the Hardy-Littlewood—
Sobolev inequality, and interpolation,

sup 112

tef0,55]

(1—o)t
/ Sit—1)F(u(r))dr
0

L6(R3)
1 1/3

< m|||v| FW)”L?{E([O,%]xW)
1

< 1/2.,12/3 4/3

SRV 1V u”L,°°L,2C([O,ﬁ]XR3)”u”L‘,‘,X([O,ﬁ]XD@)”u”L%Li([O,%]XU@)
4/3

o
< o172 (||u0||312!1(R3) + ||lug ||Bll,1(R3))' (3-27)
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Also for any ¢ € [0,8/(2R)], by Theorem 2.4,

t1/2

/t St—t)F(u(r))dr
(1—c)t

L6(R3)

5/3 2/3
<(Csup P Olloen) IV o 0 o )

O,L
re0, %] 23 1 -
X”M“LOOL?C([O SexR3) (1—ey ( t—r)2/3t1/3
<P sup ) o). (3-28)
tef0,55%]

Therefore, choosing ¢ > 0 small and €p(c) > 0 small,

1/2
”u”L%Lg([O,%]x[R@) + OiltlESt / lu(@)liLe < ||u0||312’1(R3) + [lus ||Bll,1(R3)' (3-29)
Then by time reversal symmetry the proof of Lemma 3.2 is complete. O

Next, we show that a local solution may be written as a sum of a term with bounded energy and a term
with good dispersive properties. To simplify notation let §; = §/(2R). By energy inequalities, Strichartz
estimates (Theorem 2.5), and Lemma 3.2,

Next, by the radial Sobolev embedding theorem (Theorem 2.3) and (3-13), if y € C° (R3) is supported
on x| <1, x(x) =1on |x| < 5, then

81
/1;1 Sit—1t)F(u(r))drt

10

) < lu ||
H1xL2(R3)

(3-30)

<
L3S ([35.,8:]xm3) ~ 1/2'

H( (lox))F(”) L1 22 ([0, <) <5 (I_X (%))“ < (o 1y 124 (0.3 1w
< 5;% (3-31)
Now for t > §; let
v(t)=S@t)y ( )(uo,ul)Jr/j1 S(t—r))((l(? )F(u(r))dt (3-32)
Combining Lemma 2.2 with
IPs XAF GOy 128y 81ypsy S277 8T NF @y a2y iy, 3-33)

Lemma 3.2,

g Flu Sl 3 sy 3-34
(G )rw| S (30
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(3-10)—(3-13), the sharp Huygens principle, which implies v is supported on {(x, t):||x|—t] < %81},

and the radial Sobolev embedding theorem (Theorem 2.3), we have

1
() ooy < Tlloll g2 @y + It g1 syl
This implies good properties of S(z —&1)(v(81), v£(61)).
Lemma 3.3. Let w(81) + v(81) = u(81) and let

w(s1) = S(so(l —x(%))(uo,ul)

% 81
+/ 5(51—I)(l—)((lo—x))F(u(t))a'T4—/:S S —1)F(u(r))dr.
0

81 oL

10

Then
-1
WD g1y g2y < 61

Proof. By (3-31) and (3-32) it only remains to compute
10x 10x
IL—xl — ) )u©o +{1=xl — ) )u:
81 H1®R3) 81

o
1
|u1<o,r>|s/ 0,210, 5)] ds 5 .
r

L2(R3).

First,

SO

o0 o0 1
/ |u1(r,0)|2r2dr§/ lui(r,0)|dr < —.
1 ) 5

Next, for any j, Bernstein’s inequality implies || Pjuql|/ro < 237 | Piuollz1, so

27/ 2
r .
| ool dr 2 Prolliges,

while by Bernstein’s inequality

00 .2 )
|-, S lon o)l dr 5 227 Pyl oy

—J

(3-35)

(3-36)

(3-37)

(3-38)

(3-39)

(3-40)

(3-41)

(3-42)

Thus [|(1/7)9ruoll L1 g3) S lluoll g2 | (gs)» and since ug is radially symmetric Auo = (3, + (2/r)9,)uo,

s0 [|9rruoll 13y < ||u0||Blz (@) By the fundamental theorem of calculus,

o0 1
|ur<r)|s/ urr()]ds £ .
r
Therefore,

o0 o0 1
/ |ur(r)|2r2drs/ () dr < .
81 81 81

10 10

(3-43)

(3-44)
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fow(ur(r))zﬁdr < /Ooo(/roo ey (5) ds)rdr < /Ooo tyr (5)]s? ds < 0.

completing the proof.

and

4. Proof of global well-posedness

In this section we extend local well-posedness to global well-posedness, proving:

Theorem 4.1. Equation (1-1) is globally well-posed, and for any compact interval J C R,

(3-45)

|

(4-1)

Proof. By time reversal symmetry, to prove this it suffices to show that the local well-posedness result of

Lemma 3.1 can be extended to all times ¢ > §;. Throughout the proof the implicit constant depends on §;

and [luof g2 +llu1llp -
For ¢t > 87 let

u) =w)+v(),
where v(¢) is given by (3-32) and w solves
Wi — Aw = —u3.
By Strichartz estimates, (2-11), and (3-9),

||v||L;‘gx([81,oo)><R3) < ”7/‘0”312’l + ”7/‘1“311’1-

Thus to prove (4-1) it suffices to prove that w € L% for all ¢ € [§1, o0).
Copying (1-2) let E(w(t)) be the energy of w,

E(w(r)) = %/|Vw(t,x)|2dx+%/(w,(l,x))zdx—i—%/(w(t,x))4dx.

By (3-19), (3-37), and the Sobolev embedding theorem, w € L3N LS, so

E(w(Sy)) < 1.
Next,

%E(w(t)) = /((w(t,X))3—(u(l,X))3)wr(l,X) dx
= —/ w; (t, x)[(v(2, x))> + 3v(t, x)?w(t, x) + 3v(t, x)w(t, x)*] dx.
It suffices to show that (3-35) and (4-4) give good bounds on the growth of E(w(¢)). Indeed,

/ we (£, x) (w(t, x))?0(1, x) dx < [J0(0) | Loo @) IWO1F 4 g3y 1w (D L2 g3) < %E(w(t)),

(4-2)

(4-3)

(4-4)

(4-5)

(4-6)

(4-7)

(4-8)
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and
/ wy (£, ) (0(t, )% dx 5 wi (Ol 2 10Ol oo @ 10O 24

1
< CE@O) )4 sy (4-9)
Finally

/Wz(t,X)U(l,x)zw(l,x) dx < [we @) L2 w3y lw @Ol La@3y VO L4 @3y VO] Loom3)

1
< TE@@) @)l w)- (4-10)
so by interpolation
d 1 1 4
EE(w(t))i ;E(w(l))-}—;||v(t)||L4(R3). (4-11)

Then by Gronwall’s inequality and time reversal symmetry there exist constants Cy (||ug|| B2, luillg 1 51)
and C2(||“0||B12 g ||u1||Bll 1,81) such that ' '

E(w(1)) < Ci(1+ 1)) (4-12)

This combined with (4-2) implies that u is global. O

5. Hyperbolic coordinates

Having shown that the solution to (1-1) is globally well-posed, the next step is to show that the solution
scatters. It is possible to prove this by utilizing hyperbolic coordinates and the fact that by Theorem 4.1,
u(t, x) is well-defined for all (¢, x) € RT3,

Theorem 5.1. The global solution given in Theorem 4.1 scatters both forward and backward in time.

Proof. By time reversal symmetry and (1-14), it suffices to show that

(e oyl e
/ / u(t,r)*r?drdt < . (5-1)
o Jo

To begin setting up hyperbolic coordinates, translate ¢ = 0 in time to o = 1 — §;. Let u refer to the
time-translated solution in Theorem 4.1,

it r) = ult — (1—8,),7). (5-2)

Once again, we make an abuse of notation and let u refer to . Inequality (4-1) implies that after time
translation

1 poo
/ / u(t,r)*r?drdt < co. (5-3)
0Jo

Next, by small-data arguments, see for example [Lindblad and Sogge 1995], the solution to (1-1) with
initial data given by (3-14), has finite L?’ . horm. Finite propagation speed and (3-14) imply

o
/ / u(t, r)4r2 drdt < e. (5-4)
1 Jr>3+t
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Therefore, it only remains to prove

o0
/ / u(t,r)*r?drdt < . (5-5)
1 Jr<l+s
Such x and ¢ fall within the domain, which may be described by hyperbolic coordinates. Let
e® sinhs
w(t,s) = w(e® coshs, e’ sinhs), (5-6)
s
T o1 h
U(t,s) = ¢ S v(e® coshs, e® sinhs), (5-7)
s
T o1 h
i(z,s) = ¢ o Su(e’ coshs, e sinhs). (5-8)
s

Now by a change of variables

00 OO 2 00 00 L4T (¢inh s)4 4
/ / i(t, s)4s? .S dsdrt :/ / ¢ (sinhs) ‘s u(e® coshs, e’ sinhs)* dsdt
o Jo sinh s o Jo s4 (sinh )2

_ /f w(t,r)*r? drdt. (5-9)
12—r2>1

The analogous estimate also holds for v and w. Since (4-1) implies

2
/ / u(t,r)*r2drdt < oo, (5-10)
1
proving (5-5) is equivalent to proving
00 0O s 2
/ / a(z,s)“(,—) s?>dsdt < co. (5-11)
o Jo sinh s
Also, since v is a solution to the linear wave equation with data in H'Y2x H=1/2 it suffices to prove
00 o0 s 2
/ / w(t, s)4(.—) s?dsdt < oo. (5-12)
o Jo sinh s
Direct computation and (4-3) imply that w solves
2
arrw_assw_gasﬁ):_( .s ) 123. (5'13)
s sinh s
Moreover, w has bounded hyperbolic energy
1 [ 2.2 1 [ 2.2 1 s V. 4.2
= ws(t,s)°s“ds + = We(t,s)°s“ds+ — , w(r,s) s“ds. (5-14)
2 Jo 2 Jo 4 Jo \sinhs
Indeed:

Lemma 5.2. There exists some 0 < v < 81 such that

E((7)) < o0. (5-15)
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Proof. To prove (5-15) it suffices to show

1o
—/ E((r))dt < oo.
1 Jo

By the hyperbolic Pythagorean theorem,

c cosh?(s) — sinh?(s) . et

e®(cosh(s) —sinh(s)) = e cosh(s) +sinh(s)  cosh(s) + sinh(s)’

Therefore, for any fixed t > 0,

lim e®(cosh(s) — sinh(s)) = 0.
s 100
Combining (3-32) with the fact that 7o = 0 was translated to tg = 1 — 61, for any ¢ > 1,

10x

81
v() =St -1 +81)X(?)(uo,u1) +/0 Sit—1+6; —T))((l(;)—lx)F(u(‘L’))d‘[.

Therefore, by finite propagation speed there exists some sg such that, for any 0 < t < §1,

o0 o0 o0 o0
/ szlbs(t,s)zds+/ szﬁ)f(r,s)ds:/ szﬁs(r,s)zds—i-/ s21i¢(t,s) ds.
S

0 S0 50 S0

Now, if u is a radial solution to (1-1), then by (5-8),

sti(t,s) = e*(sinh s)u(e® coshs, e’ sinhs)

= %(f«’rﬂ — (1 =8))up(e™* —(1-61)) + %(1 —81—e" Nug(1—-81—e™™?)
1 eTtS—(1-81) 1 e% coshs petts—¢

—{——[ ul(r)rdr—i——[ rud(t,r)drdt.
2 Jer—s4(1-8)) 2 Ji-s, —eT—S+¢

Now by direct computation,
~ es s es N / s
Or4s(sU(T,8))|r=0 = ?Mo(e —(1—51))4'?(@ —(1=81))up(e”—(1-61))

es es coshs
—I—E(es—(l—c?l))ul (es—(1—81))+? / (S —u(t,e’—t) dt,
1-6,

and

r—s (s1(z.5))|z=0

— e

= (1804 (=8 (151~ )

e eS e® coshs
+7((1—81)—e_s)u1((1—81)—e_s)+7/ (t—e u(t,t—e %) dt.
1-6;

(5-16)

(5-17)

(5-18)

(5-19)

(5-20)

(5-21)

(5-22)

(5-23)
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First, making a change of variables and using (3-39)—(3-45),

/ e>ug(e’ —(1—681))%ds < / uo(r)?rdr < oo, (5-24)

) 0

/ e (€5 — (1—81)%up(e’ — (1 —681))%ds s[ 0,uo(r))?r3dr < oo, (5-25)
S0 0

/ e (e’ —(1—681)%ui(e* —(1—681))%ds < / r3ui(r)?dr < co. (5-26)
S0 0

Also, by (3-39)—(3-45), the fact that e* (cosh s —sinh §) < % when s > 59 and 0 <t < 8y, |ru(t,r)| <1
for t —r < 7, (5-3), and (5-4), we have

00 coshs 2 0o pcoshs
/ e%(/ (es_z)u3(z,e5—z)dz) dsgf / e¥ (e —1)*u(t,e* —1)dt ds
KY 1 so J1

0 —81 _81

oo pcosh(s)
< / [ eBut(r,e* —1)dt ds < oo. (5-27)
so J1

-8
Additionally,
o0 o0
/ e Pug((1—=681)—e%)%ds < / e 2 ds < oo, (5-28)
S0 S0
o0 [e.e]
/ e 25 ((1=81) —e )2 (up((1=81) —e™5))? ds < / e 25 ds < oo, (5-29)
S N
oo o
/ e ((1=681)—e ) u1((1—81)—e*)%ds < / e 2 ds < oo. (5-30)
S0 S0
Also by the fact that |u (¢, r)|r is uniformly bounded for t —r < %,
00 e® coshs 2 00
/ e 2s (/ (t—e @, t—e™) dt) ds < f e 2 ds < o0. (5-31)
S0 1—61 S0

In fact the above computations could be made for any 0 < t < §; with some uniform sg. Now then,
integrating by parts,

o0 o
f ds (s (T, )2 ds = / 52 (1, 8)% ds — soW(z, 50)>. (5-32)
S0 S

0

Remark. It is straightforward to verify that by (5-18),

lim s|w(t,s)> =0, (5-33)
s /100
so (5-32) is well-defined. Therefore,
o0 [e.¢]
~ 2.2 ~ 2.2
sup / We(s,T)°s ds—i—/ W (s, )75 ds < 0. (5-34)
0<t<681 Ys0 S0



GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE RADIAL, DEFOCUSING, CUBIC WAVE EQUATION 1041
So by (5-16) it suffices to show that

81 pSo 81 pso
/ / s2Ws(z, 5)% ds dt+/ / s2(z,5)dsdt < 0o. (5-35)
o Jo o Jo

This fact is an immediate consequence of (5-6), Theorem 4.1, and the fact that e” sinh s and e® cosh s are
uniformly bounded when s < sg and t < §;. Thus, for some 0 < 79 < 47,

o0 o0
/ s2wg (19, 5)% ds —i—/ s2¢ (0, 5) ds < 0. (5-36)
0 0
An application of the Sobolev embedding theorem H' < L° combined with the fact that s/sinhs €
L' N L>®(s% ds) completes the proof of Lemma 5.2. |
Next we compute
2
4 gy = / b [i — 03[ —— ) 52 ds. (5-37)
dt sinh s

Because v(t, ) is supported on t —r = 14+ O(81), (5-17) implies 1/sinhs < e~ " on the support of ¥(, §).
Therefore, the radial Sobolev embedding theorem implies ||sv(z, )| Lo < 00, SO

12 (0)]l 12 ﬁ(r,s)z(.s ) ﬁ(r,s)(.s ) <e T E((r) /> 6(r,s)2(#) . (5-38)
sinhs /|72 sinhs /|| 7 oo sinhs /|| 72
Meanwhile,
1) .2 ﬁ(r,s)(.s ) Hw(nsﬁ(.s ) < e TE()). (5:39)
sinhs / || ;oo sinhs /|| 72
and
~ y s . s 1/2 } s 1/2
e (@l U(T’S)(%) 1,00 Hw(f’s)(sinhs) L4 U(T’S)(sinhs) L4
1/2
< et E(W(r)Y 6(r,s)( .S ) (5-40)
sinh s L4

Now by this, ||v]] L4 <00, (5-9), and Gronwall’s inequality, we know E (1 (7)) is uniformly bounded
on R. ’
Next we prove the Morawetz estimate.

2
Theorem 5.3. // B(s, r)“(#) s2dsdr < co. (5-41)
sinh s
Proof. We have
M(z) = / u~)t(|x—|-V ) dx. (5-42)
X

Then

h 2
4 Moy = / SOV ) w42 ds + /f L (Vi) @® - )s? ds d. (5-43)
dt sinhs /) \ sinhs |x]
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As in the bounded energy computations,

IVl 62(.“‘ ) ﬁ(.s ) < e Ew(n)!/? 52(#) L (544
sinhs / || 72 sinhs / |7 sinhs / || 12
S S
V|2 || Nk <eTEW), 5-45
IVl v(sinhs) Loo v (sinhs) sze (@) ( )
and
1/2 1/2
s s S
VU oo ||V D o
IVl v(sinhs) Loon(sinhs) L4 v(sinhs) L4
1/2
<eTE®w)3* v(i) (5-46)
sinh § 14

Therefore, by the fundamental theorem of calculus, the fact that the energy is uniformly bounded, and

(5-43),
00 00 s 2
/ / w(s, r)4 (—) s2dsdt < oo, (5-47)
o Jo sinh s

completing the proof of Theorem 5.3. O

Since (coshs/sinhs) > 1, Theorem 5.3 directly implies (5-12), which completes the proof of
Theorem 5.1. U

Remark. Notice that Theorem 5.1 implies

o0 o0
/ / u(t,r)4r2 dr dth(||uo||Blzl,||u1||3111,81)<oo. (5-48)
O O . .

Thus Theorem 5.1 is not equivalent to Theorem 1.4. This §; > 0 depends on the support of up and
u1 in space (3-14) and in frequency (3-2). To remove this requirement, it is necessary make a profile
decomposition, the subject of the final section of this paper.

6. Profile decomposition

Now, to prove Theorem 1.4 from Theorem 5.1, it only remains to show that if (ug, u) is a bounded
sequence in 312,1 X Bll’1 and u” (¢) is the corresponding solution to (1-1) with initial data (ug, u”), then

™ Ol (@xed) (6-1)

is uniformly bounded. This may be accomplished by proving that (ug, u’f) must converge to a maximizer
in Blz’1 x B 11’1. An argument of this type was used in [Gérard 1998] to prove the existence of a maximizer
of the Sobolev embedding, and for many other maximizer problems. See [Bahouri and Gérard 1999] for
an early application of the profile decomposition to the nonlinear wave equation.

The intuition behind this argument may be summarized as follows. The uncertainty principle implies
that when most of Bf ; x B]  lies below frequency 1, R 1, where R is defined in (3-14). On the other
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hand, if R > 1 and (ug, u;) is a radial function supported on the annulus R < r < 2R, then the H1/2
norm on balls of radius ¢ R for some ¢ > 0 small would actually be fairly small.

Combining the small-data arguments of [Lindblad and Sogge 1995] with finite propagation speed, one
can show

”u”L?’x([—cR,cR]xHW) <L (6-2)

This provides substantial improvement over the frequency scale arguments used in the proof of
Lemma 3.1.

Theorem 6.1 (profile decomposition). Suppose that there is a uniformly bounded, radially symmetric

sequence
||”g||H1/2(R3) + ||ur1’ ”H—1/2(R3) < (Cp < o0. (6-3)
Then there exists a subsequence, also denoted by (ug, u’l) C HY2 x H=Y2 such that forany N < 00
SOy uf) = TISO(@g. 1) + SORG,. R (6-4)
j=1
with
lim_Timsup || S(t)(RY. RY 24 sy = O- (6-5)

N—>oo p—oo
F,{ = ()L,J;, l‘,{) belongs to the group (0, 00) x R, which acts by
T F(t,x) =M FQL(t —t]), A x). (6-6)

The F,{ are pairwise orthogonal;, that is, for every j # k,

YA . .
lim_ )TZ + A—’j + ADHV20RN 2 k| = o0, (6-7)
n n
Furthermore, for every N > 1,
N
10 w110, o1 = D 1@3- 824112 -1+ I RG s RY 1/, sy -1/2 +0n (D). (6-8)
J=1

Proof. Ramos [2012] proved this result for data which need not be radially symmetric. Such a result is
substantially more difficult since it requires accounting for Lorentz transformations and translation in
space.

Now take a uniformly bounded sequence

”743”312.1@%3) + ”u’fngll,l(up) <Co<o0 (6-9)
such that if u” (¢) is the solution of (1-1) with initial data (ug, uY), then

[l (I)HL;"X(RX[}@) /! SuP{”u”L;{X(RXm) : ||u0||312’](R3) + [Juq ||B11’1(R3) < Co}. (6-10)
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By the Sobolev embedding theorem,
||u8||1-'11/2(R3) + ||u111||[-'1—1/2([R3) < ””8”312 | (®3) + ||u111||311 L(®3) < (o < 00, (6-11)

which by Theorem 6.1 gives a profile decomposition

S(0)(ug. u )—ZS(l—t’) (A5 Q). Of)?¢] (M) + S(O)(RY. RY,). (6-12)

j=1

In the course of proving Theorem 6.1, Ramos [2012] proved

S(W)(AJ "(xxf) ()Ll)2 (x)) %00 1

weakly in H1/2(R3), and

8,S(z+/\ftf (1 ”(i) 1 u’l’(i))
Al An/) (A2 A =0

weakly in H~Y2(R3). The fact that (ug, u’t) is uniformly bounded in Bil X Bll,1 prevents t,{ from

— ¢ (x) (6-14)

going off to —oo or +o00.
Lemma 6.2. For each j, t,{ is uniformly bounded.
Proof. The proof of this fact utilizes dispersive estimates and Lemma 4.1 from [Ramos 2012]:
Lemma 6.3. (ug, ul) — (po, $1) (6-15)
weakly in HY/2(R3) x H~Y2(R3) is equivalent to

S(@)(ug, uy) = S) (o, $1) (6-16)
weakly in Lix (R x R3).

Now observe that for any j,

S(t-l—)\JtJ)(A—uO( ), By 1) ul(x)) —\S(t)(qb0 ¢1) (6-17)

n
weakly in L?, .
Now, by the dispersive estimates (Theorem 2.4), for any [ € Z,

HP;S(I—}-)LJZ/)(—MO() 1 ——uj(x ))
A (An)?

n

Loo(R3)

#(5G7)

(6-18)

|t + Aty | L'(R?) A2\ v ws)
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Meanwhile, by Bernstein’s inequality and the Sobolev embedding theorem

st (e, i)

n L2(R3)
1 1
<2- ”2[221 P,( "(i)) 2! P,( _—y (i)) } (6-19)
A\ @) ()2 A/ e
Then by interpolation, for any / € Z,
PIS(t—i-/VtJ)( b)), u"(x)) _
H Al o (A )2 ! L (lt+251|>C271}xR3)
1 1 1
S i [221 P, (—uo( a )) 2! P,( — (i)) } (6-20)
C Al A L3 (A)2 Ah )L w3y
Thus if lim sup,,_, )L{; |t,{| = 00, then
S(t+Alt) (—uo( ), ul(x)) -0 (6-21)
An (Ah)2
weakly in L} (R x R?). Therefore, (@L.$]) = (0,0), completing the proof of Lemma 6.3. O

Thus A7t | is uniformly bounded, so after passing to a subsequence, A;#; converges to some 7§ € R.
Therefore,

SQat) @y 1) — S(t3) (g 47) (6-22)
strongly in H'/2(R3) x H~1/2(R3). Absorbing the error into (R0 n f{n) and taking

(@3.67) = S(t3) (0. $1). (6-23)
assume #;, = 0. Therefore,
N
i) = (Mo (Ahx). A)2¢] (Ax)) + (RY,. RY (6-24)
j=1
and
)t” AL
nll)n;o )L_” + )L_” = 00. (6-25)
But then
”“8”312’1@@3) + ||u7||311.1(R3) <Co<o0 (6-26)

combined with Lemma 6.3, (6-24), and (6-25) implies that for any j
163152 &5y + 197 152 a5y = Co. (6-27)
Possibly reordering j, (6-8) implies that there exists No(e, Cp) such that if j > Ny(e),

||(¢({,¢{)||H1/2XH—1/2 <e. (6-28)
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Now for each j let v/ (¢, x) be the solution of (1-1) with initial data (q’)({ , qb{ ). By the small-data arguments
of [Lindblad and Sogge 1995], when j > Ny (¢),

||Uj ”L?,x(RXW) N “‘% ||H1/2(R3) + ||¢{ ||I-'I—1/2(R3)‘ (6-29)
Meanwhile, by Theorem 5.1 combined with (6-27), when j < Ny(¢),
107113 @xray Sico 1 (6-30)

Also by (6-25), for any j # k, the Lebesgue dominated convergence theorem implies

lim f|uvi(x,f;z,x,f;x)|2 AR (ke Ak x) 2 dx dt = 0. (6-31)
n—>oo
Therefore,
lim_ > Ml QA x) (6-32)

1<j<N L7 (RxR3)

is uniformly bounded, independent of N. Also,

N N
F(Z Avl (At A,{x)) = FQ (M A)x)
j=1 J=1

= > 0(Mv At xR ke Ak ?), (6-33)
1<j#k<N
50 by (6-30), (6-31), and (6-32),

N N
lim_ HF(Z Advl (At Agx)) =Y F v/ (M. 24x) " =0. (6-34)
j=1 j=1 L;7 (RxR3)
Therefore, by Lemma 2.6, the solution u’y, (¢, x) to (1-1) with initial data
N . . . . . .
D (M4 (A4x). 04> d{ (A x)) (6-35)
=1
has
i [y (D23 @xes) (6-36)
bounded uniformly in N. By another application of Lemma 2.6 combined with
Jim_limsup (IS0 (R R 2 xiy = 0 (6-37)
if u”(t) is the solution to (1-1) with initial data (ug, u’) satisfying (6-3), then
™ Ol (@xed) (6-38)

is uniformly bounded. This proves Theorem 1.4. O
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