Vol. 12, No. 4, 2019

Download this article
Download this article For screen
For printing
Recent Issues

Volume 14
Issue 6, 1671–1976
Issue 5, 1333–1669
Issue 4, 985–1332
Issue 3, 667–984
Issue 2, 323–666
Issue 1, 1–322

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Subscriptions
 
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
 
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
Author Index
To Appear
 
Other MSP Journals
This article is available for purchase or by subscription. See below.
Global well-posedness and scattering for the radial, defocusing, cubic wave equation with initial data in a critical Besov space

Benjamin Dodson

Vol. 12 (2019), No. 4, 1023–1048
DOI: 10.2140/apde.2019.12.1023
Abstract

We prove that the cubic wave equation is globally well-posed and scattering for radial initial data lying in B1,12 × B1,11. This space of functions is a scale-invariant subspace of 12 ×12.

PDF Access Denied

However, your active subscription may be available on Project Euclid at
https://projecteuclid.org/apde

We have not been able to recognize your IP address 3.236.13.53 as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

Keywords
defocusing, nonlinear wave equation, scattering, global well-posedness
Mathematical Subject Classification 2010
Primary: 35L05, 35B40
Milestones
Received: 10 July 2017
Revised: 2 April 2018
Accepted: 5 July 2018
Published: 20 October 2018
Authors
Benjamin Dodson
Department of Mathematics
Johns Hopkins University
Baltimore, MD
United States