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NONEXISTENCE OF WENTE’S L∞ ESTIMATE
FOR THE NEUMANN PROBLEM

JONAS HIRSCH

We provide a counterexample of Wente’s inequality in the context of Neumann boundary conditions. We
will also show that Wente’s estimate fails for general boundary conditions of Robin type.

1. Introduction

Wente’s L∞ estimate is a fundamental example of a “gain” of regularity due to the special structure of
Jacobian determinants. It concerns the Dirichlet problem{

−1u = f in D,
u = 0 on ∂D

(1-1)

for the specific choice of f = det(∇V ) with V ∈ H 1(D,R2). Wente’s theorem states:

Theorem 1.1. Let �⊂ R2 be the disc and f ∈H1(D). Then if u is the unique solution in W 1,1
0 (�,R) to

(1-1), we have the estimate

‖u‖L∞(D)+‖∇u‖L2(D) ≤ C‖∇V ‖2L2(D).

The proof can be found in the original article [Wente 1971]. Later on it was proved that Wente’s
inequality holds true under the slightly weaker assumption that f ∈H1(D), where H1(D) is the local
Hardy space; see [Semmes 1994, Definition 1.90]. Proofs can be found for instance in [Hélein 2002;
Topping 1997]. This estimate found many applications; an incomplete list includes [Rivière 2008; Colding
and Minicozzi 2008; Lamm and Lin 2013].

It is natural to ask whether a similar estimate holds true for the Neumann problem
−1u = f in D,

∂u
∂ν
=

1
2π

∫
D

f on ∂D,
(1-2)

again for the specific choice of f = det(∇V ) with V ∈ H 1(D,R2).
The aim of this note is to show that Wente’s L∞ estimate fails for the Neumann problem.
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Theorem 1.2. There exists a sequence Vn = (an, bn) ∈ C∞(D,R2), ‖∇Vn‖L2,1(D) ≤ C ,
∫

det(∇Vn)= 0
for all n with the property that if un ∈W 1,1(D) are the solutions to (1-2) with fn = det(∇Vn) one has∥∥∥∥un − /

∫
D

un

∥∥∥∥
L∞(D)

, ‖∇un‖L2(D)→+∞ as n→∞.

Additionally we can extend the above example to more general boundary conditions. Namely we have
the following:

Theorem 1.3. Let E ⊂ ∂D be a nonempty union of open intervals, with 0<H1(E) < 2π and α, β, γ ∈R

given, with α > 0, γ ≥ 0. There exists a sequence Vn = (an, bn) ∈ C∞(D,R2), with ‖∇Vn‖L2,1(D) < C ,
with the property that if un ∈W 1,1(D) is the solution to

−1un = det(∇Vn) in D,

α
∂un

∂ν
+β

∂un

∂τ
+ γ un = 0 on E,

u = 0 on ∂D \ E,

(1-3)

one has
‖∇un‖L2(D)→∞ as n→∞.

The paper is organized as follows. In Section 3 we collect some known results and a priori estimates.
In Section 4 we give the proof of Theorem 1.2 and in Section 5 its extension to mixed Robin boundary
conditions.

While finishing this paper the author became aware that a similar example has been found independently
by Francesca Da Lio and Francesco Palmurella [2017].

2. Some remarks on the conformal invariance of the problem

Let m :U→ D be a smooth conformal map from a domain U with Lipschitz continuous boundary to the
disc (i.e., up to conjugation m corresponds to holomorphic map on U ). If u is a solution of the Dirichlet
problem (1-1) then u ◦m is a solution of{

−1(u ◦m)=
( 1

2 |∇m|2
)

f ◦m in U,
u ◦m = 0 on ∂U.

In particular in the case f = det(∇V ) we have
( 1

2 |∇m|2
)

f ◦m = det(∇(V ◦m)). Additionally one notes
that Wente’s estimate in Theorem 1.1 is as well conformally invariant since for any function w one has

‖w ◦m‖L∞(U ) = ‖w‖L∞(D), ‖∇(w ◦m)‖L2(U ) = ‖∇w‖L2(D).

In the case of the Neumann problem one has to be a bit more careful. If u is a solution to (1-2) then u ◦m
solves 

−1(u ◦m)=
( 1

2 |∇m|2
)

f ◦m in U,

∂(u ◦m)
∂ν

=
( 1

2 |∇m|2
)1/2 1

2π

∫
D

f on ∂U.
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Although we have
1

2π

∫
D

f =
1

2π

∫
U

( 1
2 |∇m|2

)
f ◦m,

the problem is only conformally “invariant” if
∫

D f = 0 since |∇m| = 1 on ∂U implies that m is a rigid
motion. Furthermore one should note that even in the case

∫
f = 0, in general one has

/

∫
U

u ◦m 6= /

∫
D

u.

Nonetheless we can forget about the additional condition
∫

D det(∇Vn)= 0 in the proofs of Theorems 1.2
and 1.3 by the following procedure. Consider a sequence Vn as stated, but not necessarily satisfying
αn :=

∫
det(∇Vn)= 0, that is compactly supported in some ball Br0(p) for some 0< r0 <

1
4 and p ∈ ∂D.

Let us fix two smooth functions â, b̂ supported in B2r0(p) \ Br0(p) satisfying∫
D

dâ ∧ db̂ = 1.

For instance take â = ϕ1(z) and b̂ = ϕ2(z)θ , where ϕi are two bump functions such that spt(ϕ1) ⊂

{ϕ2 = 1}, ∫
D

dâ ∧ db̂ =
∫
∂D

â∇θ b̂ =
∫
∂D
ϕ1 = 1.

Let û be the smooth unique solution to (1-2) with /

∫
D û = 1, f = det(∇ V̂ ) and V̂ = (â, b̂). Since

|αn| ≤
1
2‖∇Vn‖

2
L2(D) and spt(Vn)∩ spt(V̂ )=∅ for all n we can pass to ũn = un −αn û, which solves the

Neumann problem (1-2) with right-hand side

det(∇Vn −α∇ V̂ )= det(∇Vn)−α det(∇ V̂ ).

Since
∫

D det(∇Vn −α∇ V̂ )= 0 we have ∂ ũn/∂ν = 0 on ∂D. By the uniform boundedness of αn we still
have ∥∥∥∥ũn − /

∫
D

ũn

∥∥∥∥
L∞(D)

, ‖∇ũn‖L2(D)→+∞ as n→∞

and we obtain the full strength of the theorems.

3. Some known results

Classical solutions to (1-1) and (1-2) have to be understood in the distributional sense.

Definition 3.1. A function u is called a solution of the Dirichlet problem if u ∈W 1,1
0 (D,R) and∫

D
∇u · ∇ψ − fψ = 0 for all ψ ∈ C1

0(D). (3-1)

A function u is called a solution of the Neumann problem if u ∈W 1,1(D,R) and

1
2π

∫
D

f
∫
∂D
ψ =

∫
D
∇u · ∇ψ − fψ for ψ ∈ C∞0 (R

2) for all ψ ∈ C1(D). (3-2)
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The Green’s functions for both problems are explicit. For the Dirichlet problem it is

G D(x, y)= 1
2π

ln(|x − y|)− 1
2π

ln(|y||x − y∗|), with y∗ =
y
|y|2

, (3-3)

and for Neumann problem it is

G N (x, y)= 1
2π

ln(|x − y|)+ 1
2π

ln(|y||x − y∗|)− 1
4 |x |

2
−

1
4 |y|

2. (3-4)

Using G N one has the representation formula

u(y)−
∫

D
u =−

∫
∂D

G N (x, y)
∂u
∂ν
+

∫
D

G(x, y)1u for u ∈ C2(D).

In terms of existence and uniqueness one has:

Lemma 3.2. For every f ∈ L1(D) there exists a solution u D/uN to the Dirichlet/ Neumann problem in
the sense of Definition 3.1. Furthermore the solutions belong to W 1,p(D,R) for every p < 2, are unique
(up to constant in the Neumann problem) and satisfy the estimate

‖Du‖L p(D) ≤ C p‖ f ‖L1(D). (3-5)

Proof. There are several proofs in the literature treating the case of uniqueness and a priori estimates;
see for instance [Littman et al. 1963; Ancona 2009, Appendix A]. In our case existence and the a priori
estimate (3-5) can be obtained by using the Green’s functions G D, G N . Uniqueness for the Dirichlet
problem can be obtained by antisymmetric reflection: Let u be a distributional solution of (3-1) with
f = 0. One checks that

û(x) :=
{

u(x) for x ∈ D,
−u(x∗) for x /∈ D with x∗ = x/|x |2

solves ∫
R2
∇û · ∇ψ =

∫
D
∇u · ∇(ψ(x)−ψ(x∗)) for all ψ ∈ C1

c (R
2).

But since ψ(x)−ψ(x∗) ∈ C0,1
0 (D) we deduce that û is harmonic and therefore smooth in R2. Now the

maximum principle applies since u takes the boundary values in the strong sense.
Similarly we deduce the uniqueness in the Neumann problem using the symmetric reflection: Let v be

a distributional solution of (3-2) with f = 0. As before one checks that

v̂(x) :=
{
v(x) for x ∈ D,
v(x∗) for x /∈ D

solves ∫
R2
∇v̂ · ∇ψ =

∫
D
∇v · ∇(ψ(x)+ψ(x∗)) for all ψ ∈ C1

c (R
2).

But since ψ(x)+ψ(x∗) ∈ C0,1(D) we deduce that v̂ is harmonic and therefore smooth in R2. Now the
maximum principle implies that v = constant. �
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4. Proof of Theorem 1.2

In the following we will always identify R2 with the complex plane C, i.e., i = e2.

Proof of Theorem 1.2. The main step of the proof consists in the following claim: For every r0 > 0 there
exists a sequence (an, bn) ∈ C∞(D,R2) with the properties that

spt(an)∪ spt(bn)⊂ Br0(−e2), (4-1a)

an, bn ⇀ 0 in H 1(D), (4-1b)

‖an‖L∞(D)+‖∇an‖L2,1(D), ‖bn‖L∞(D)+‖∇bn‖L2,1(D) ≤ C, (4-1c)

‖dan ∧ dbn‖H−1(D)→∞ as n→∞. (4-2)

Given such a sequence we can conclude the theorem. Let un be the unique solution to the Dirichlet
problem (1-1) with right-hand side fn = dan ∧ dbn and hn be the unique harmonic function satisfying

∂hn

∂ν
=
∂un

∂ν
−

1
2π

∫
∂D

∂un

∂ν
on ∂D.

Such a harmonic function exists since∫
∂D

(
∂un

∂ν
−

1
2π

∫
∂D

∂un

∂ν

)
= 0.

It is straightforward to check that
vn := un − hn

is the unique solution to the Neumann problem (1-2). Observe that vn is a Cauchy sequence in W 1,p(D)
for all p < 2 converging to v ∈ W 1,p(D), the unique solution of (1-2) with f = da ∧ db. By Wente’s
theorem we have

‖∇vn‖L2(D) ≥ ‖∇hn‖L2(D)−‖∇un‖L2(D) ≥ ‖∇hn‖L2(D)−C‖∇an‖L2(D) ‖∇bn‖L2(D).

The theorem follows by showing that

‖∇hn‖L2(D)→∞. (4-3)

To do so we will use the Dirichlet-to-Neumann map in the following formulation: Let

X0 :=
{
h ∈ H 1(D) :1h = 0 in D and /

∫
D h = 0

}
,

Y0 :=
{
u ∈ H 1(D) : /

∫
D u = 0

}
.

Endowed with the L2 inner product 〈u, v〉=
∫

D ∇u ·∇v, we obtain Hilbert spaces satisfying X0⊂Y0. If we
set Z∗0 :={l ∈Y ∗0 : l(ψ)=0 for all ψ ∈H 1

0 (D)∩Y0} then classical results concerning Dirichlet-to-Neumann
operators imply that the operator

A : X0→ Z∗0 , with Ah :=
∂h
∂ν
,

is continuous and onto; i.e., it has a continuous inverse A−1.
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Next we identify
∂un

∂ν
−

1
2π

∫
∂D

∂un

∂ν

with a linear functional ln ∈ Y ∗0 ; i.e.,

ln(ψ) :=

∫
∂D

(
∂un

∂ν
−

1
2π

∫
∂D

∂un

∂ν

)
ψ.

We will show that they are elements of Z∗0 with the property that ‖ln‖H−1(D) → +∞. The normal
derivative of a solution u ∈W 1,1(D) to the Dirichlet problem (1-1), with f ∈ L1(D), is given in the sense
of distributions by ∫

∂D

∂u
∂ν
ψ :=

∫
D
∇u · ∇ψ − fψ for ψ ∈ C1(D). (4-4)

The distribution is supported on ∂D since given ψ1, ψ2 ∈ C∞(D) with ψ1 = ψ2 on ∂D we have
ϕ = ψ1−ψ2 ∈ C1

0(D) with ϕ = 0 on ∂D and so by (3-1) we have∫
∂D

∂u
∂ν
ϕ =

∫
D
∇u · ∇ϕ− f ϕ = 0.

By density of C∞c (D) in H 1
0 (D) we conclude ln(ψ)= 0 for all ψ ∈ H 1

0 (D). Furthermore it is straightfor-
ward to check that ln vanishes on the constant functions and hence ln is a well-defined element of Y ∗0 ,
since ln(ψ)= ln(ψ− /

∫
ψ). Thus we conclude that ln ∈ Z∗0 for all n. The first part of (4-4) and the second

part in the definition of ln are uniformly bounded by Wente’s theorem (Theorem 1.1) because∫
D
∇un · ∇ψ ≤ ‖∇un‖L2(D) ‖∇ψ‖L2(D)∣∣∣∣ 1

2π

∫
∂D

∂un

∂ν

∣∣∣∣= ∣∣∣∣ 1
2π

∫
D

fn

∣∣∣∣≤ 1
2π
‖∇an‖L2(D) ‖∇bn‖L2(D).

Hence ‖ln‖H−1(D)→∞ by (4-2). Since hn = A−1(ln) and A−1 is continuous, we conclude (4-3).
It remains to construct the sequence (an, bn) with the properties (4-1)–(4-2). Performing a translation

we can consider the translated disc D′ := D + i ; i.e., D′ ⊂ H := C ∩ {y ≥ 0} = {reiθ
: 0 < θ < π}.

Furthermore one readily checks that if <(h) and =(h) are the real and imaginary parts of a holomorphic
function h then we have pointwise

d<(h)∧ d=(h)= |h′(z)|2dx ∧ dy and |d<(h)|2 = |d=(h)|2 = |h′(z)|2. (4-5)

We will construct our contradicting sequence (an, bn) as the real and imaginary parts of a sequence of
holomorphic functions hn on H multiplied by a truncation function ϕ.

Indeed consider the family of Möbius transformations of the complex plane C

mε(z) :=
z− iε
z+ iε

.
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We observe that mε maps the upper half-space H onto the disc D for every ε > 0. Furthermore one
readily calculates

m′ε(z)=
2iε

(z+ iε)2
, m−1

ε (z)= iε
z+ 1
1− z

. (4-6)

We note that for every δ>0 one has m′ε(z)→0 and mε(z)→1 uniformly on C\Dδ for ε→0. Furthermore
m−1
ε (z)→ 0 uniformly on C \ Dδ(1). Thus we can conclude that lε := |m′ε(z)|

2 dx ∧ dy→ πδ0 in the
sense of distributions; i.e., given ψ ∈ C0

c (C) arbitrary one has∫
H
ψ(z)|m′ε(z)|

2 dx ∧ dy =
∫

D
ψ ◦m−1

ε (z) dx ∧ dy→ ψ(0)π.

Furthermore we conclude that if ϕ is any cutoff function with ϕ = 1 in a neighborhood of 0 we still have
lεbϕ→ πδ0. Since πδ0 /∈ H−1(H) we conclude that ‖lεbϕ‖H−1(D)→∞ as ε→ 0. Fixing a sequence
εn→ 0, we have

an := ϕ<(mεn − 1) and bn := ϕ =(mεn − 1)

satisfy an, bn ∈C∞(H) and an, bn→ 0 uniformly in C1 on H \Dδ for any δ > 0. Hence for an appropriate
choice of ϕ the first two parts of (4-1) follow.

We calculate

dan ∧ dbn = lεbϕ2
+ϕdϕ ∧

(
<(mεn )d=(mεn )−=(mεn )d<(mεn )

)
= lεbϕ2

+ϕdϕ ∧wε .

Since we have spt(dϕ) ⊂ C \ Dδ for some δ > 0 and |wε | → 0 uniformly on C \ Dδ we conclude that
‖ϕdϕ ∧wε‖H−1 → 0 as n→∞. Hence dan ∧ dbn → πδ0 in the sense of distributions and therefore
‖dan ∧ dbn‖H−1(H)→∞ as n→∞; i.e., (4-2) holds.

It remains to show that |dan|, |dbn| are uniformly bounded in L2,1. By (4-6) we have

{z ∈ H : |m′ε(z)| ≥ t} = Br(t)(−iε)∩ H, with
2ε

r(t)2
= t

and |m′ε |(z)≤ 2/ε for all z ∈ H . Hence we may estimate

µ(t) := |{z ∈ H : |m′ε(z)| ≥ t}| ≤ πr(t)2 =
2ε
t
π.

Recall that the L2,1 norm can be written as

‖ f ‖L2,1(H) = 2
∫
∞

0
µ f (t)1/2 dt.

Here µ f (t)= |{z ∈ H : | f (z)|> t}| is the distribution function; see [Grafakos 2014, Proposition 1.4.9].
Using the estimates above we obtain

‖|m′ε |‖L2,1(H) ≤ 2
√

2πε
∫ 2/ε

0

1
√

t
dt ≤ 8

√
π,

which is uniformly bounded in ε, proving the last part of (4-1). �
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Remark 4.1. Observe that if the solution to the Neumann problem is not in H 1(D) then it can neither be
in L∞ nor in W 2,1(D). Indeed u ∈W 2,1(D) would imply u ∈ L∞ since W 2,1(D) embeds in L∞ in two
dimensions; see for instance Theorem 3.3.10 combined with Theorem 3.3.4 in [Hélein 2002]. If u were
in L∞(D) then we could take uε ∈ C∞(D) with uε→ u in W 1,1(D) and uniformly bounded in L∞(D).
Testing (3-2) with uε would give∫

D
∇u · ∇uε =

∫
D

f uε +
1

2π

∫
D

f
∫
∂D

uε ≤ 2‖ f ‖L1 ‖uε‖L∞ .

The right-hand side is bounded independent of ε so we conclude that u ∈ H 1(D), a contradiction.

By using more or less an abstract functional analytic argument we are able to obtain the following
corollary. Its proof is presented in the Appendix.

Corollary 4.2. There exists a, b ∈ H 1(D) with the additional properties a, b ∈ L∞(D) and da, db ∈
L2,1(D) such that if u ∈W 1,1(D) denotes the solution to the Neumann problem (1-2) with f = da ∧ db
then u /∈ H 1(D).

5. More general boundary conditions

Our construction of the counterexample relies mainly on the continuity of the Dirichlet-to-Neumann
map D0. The extension to more general boundary conditions of Robin type follows by finding a
replacement of the Dirichlet-to-Neumann map. The replacement is constructed as follows:

X := {h ∈ H 1(D) :1h = 0 in D and h = 0 on ∂D \ E},

Y := {u ∈ H 1(D) : u = 0 on ∂D \ E}.

Since by assumption H1(∂D \ E) > 0 we can endow X, Y with the norm ‖u‖ = ‖∇u‖L2(D). Finally we
define the closed subset Z∗ ⊂ Y ∗ by

Z∗ := {l ∈ Y ∗ : l(u)= 0 for all u ∈ H 1
0 (D)}.

Obviously one has the inclusion X ⊂ Y and Z∗ ⊂ Y ∗.

Lemma 5.1. The operator B : X→ Z∗ defined by

〈Bh, ψ〉 =
∫
∂D

(
α
∂h
∂ν
+β

∂h
∂τ
+ γ h

)
ψ := α

∫
D
∇h · ∇ψ +β

∫
∂D

∂h
∂τ
ψ + γ

∫
∂D

hψ

is continuous and onto, with continuous inverse B−1
: Z∗→ X.

Proof. Instead of B itself we consider the family of operators Bs : X→ Z∗ for s ∈ [0, 1]. Bs is defined as
B with sβ, sγ replacing β, γ . Since h is harmonic in D we have 〈Bsh, ψ〉 = 0 for all ψ ∈ H 1

0 (D) by
density of C∞c (D) in H 1

0 (D). Furthermore we have the estimate

〈Bsh, ψ〉 ≤ α‖∇h‖L2(D)+ |sβ|
∥∥∥∥∂h
∂τ

∥∥∥∥
H−1/2∂D

‖ψ‖H1/2∂D + sγ ‖h‖L2(∂D) ‖ψ‖L2(∂D)

≤ (α+C |β| +Cγ )‖∇h‖L2(D) ‖∇ψ‖L2(D).
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In the last line we used that for harmonic functions we have∥∥∥∥∂h
∂τ

∥∥∥∥
H−1/2(∂D)

=

∥∥∥∥∂h
∂ν

∥∥∥∥
H−1/2(∂D)

= ‖∇h‖L2(D)

and the trace theorem for Sobolev functions.
This shows that Bs is a family of uniformly bounded operators taking values in Z∗. Since X ⊂ Y we

have the lower bound

〈Bsh, h〉 = α
∫

D
∇h · ∇h+ sβ 1

2

∫
∂D

∂h2

∂τ
+ sγ

∫
∂D

h2

= α

∫
D
∇h · ∇h+ sγ

∫
∂D

h2
≥ α‖∇h‖2L2(D).

Finally since Bs = (1− s)B0+ s B, the method of continuity, see, e.g., [Gilbarg and Trudinger 1998, Theo-
rem 5.2], applies and B = B1 is onto if and only if B0 is onto. By construction we have B0h = α(∂h/∂ν),
the classical normal derivative on E , which is known to be onto by the Dirichlet-to-Neumann map. �

Now we are able to complete the proof of the theorem.

Proof of Theorem 1.3. The construction is now essentially the same as in the proof of Theorem 1.2.
After a rotation we may assume that −i = −e2 ∈ E . Fix r0 > 0 such that ∂D ∩ Br0(−i) ⊂ E . Let
an, bn, un ∈ C∞(D) be the sequences constructed in the proof of Theorem 1.2. By the choice of r0 > 0
we have ensured that

spt(an)∪ spt(bn)⊂ Br0(−i).

Observe that
ln := α

∂un

∂ν
+β

∂un

∂τ
+ γ un ∈ Z∗

because
〈Bun, ψ〉 = α

∫
∂D

∂un

∂ν
ψ = α

∫
D
∇un · ∇ψ −α

∫
D

dan ∧ dbnψ

and the discussion below (4-4) applies. Furthermore we have

‖ln‖Z∗ ≥ α‖dan ∧ dbn‖H−1(D)−α‖∇un‖L2(D).

By Wente’s theorem (Theorem 1.1), ‖∇un‖L2(D) is uniformly bounded and so the application of Lemma 5.1
gives for hn := B−1(ln) that

‖∇hn‖L2(D)→∞ as n→∞.

We conclude by observing that vn :=un−hn satisfies the boundary value problem (1-3) because un=hn=0
on ∂D \ E and −1vn =−1un = dan ∧ dbn in D,

α
∂vn

∂ν
+β

∂vn

∂τ
+ γ vn = ln − B(hn)= 0 on E .

The blow-up of the H 1 norm now follows since

‖∇vn‖L2(D) ≥ ‖∇hn‖L2(D)−‖∇un‖L2(D)→∞. �
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As before we obtain as a consequence of Theorem 1.3 the following:

Corollary 5.2. There exists a, b ∈ H 1(D) with the additional properties a, b ∈ L∞(D) and da, db ∈
L2,1(D) such that if u ∈ W 1,1(D) denotes the solution to the problem (1-3) with f = da ∧ db then
u /∈ H 1(D).

Its combined proof with Corollary 4.2 can be found in the Appendix.

Appendix: Abstract functional analytic argument

Now we want to present the abstract functional analytic argument that leads to Corollaries 4.2 and 5.2.
We will first proof an “easier” version where every embedding of the involved spaces is linear. Thereafter
we show how the same idea translates to our setting.

Lemma A.1. Consider Banach spaces E1 ⊂ E2 and F1 ⊂ F2 such that the inclusion ⊂ corresponds to a
continuous embedding. Let A : E2→ F2 be a continuous linear operator. Suppose that F1 is a Hilbert
space and there is a sequence {xn}n∈N with the properties that

(a) Axn ∈ F1 and ‖xn‖E1 ≤ 1 for all n ∈ N;

(b) lim supn→∞‖Axn‖F1 =∞;

(c) f ∈ F1 7→ 〈Axn, f 〉 extends to a linear functional ln on F2 for each n.

Then there exists x ∈ E1 such that Ax ∈ F2\F1 in the sense that there is a sequence ln ∈ F∗2 with ‖ln‖F∗1 ≤ 1
but

ln(Ax)→∞.

Proof. Passing to a subsequence we may assume that the lim sup in (b) is actually a limit.
In a first step we show by induction that there exists {y1, . . . , yn} ∈ E1 with the properties

(i) ‖yi‖E1 ≤ 1 for all i ;

(ii) 〈Ayi , Ay j 〉 = 0 if i 6= j ;

(iii) ‖Ayi‖F1 ≥ 22i for all i .

By (b) there exists m1 ∈ N such that ‖Axm1‖ ≥ 4. Hence we may set y1 := xm1 .
Now suppose {y1, . . . , yn} have been chosen. We define the linear continuous operator Pn : F1→ F1 by

Pn :=

n∑
i=1

Ayi ⊗ Ayi

‖Ayi‖
2 .

It is obvious that Pn = P t
n and (ii) implies that P2

n = Pn; i.e., Pn is the orthogonal projection onto the
finite-dimensional space Vn := span{Ay1, . . . , Ayn}. Hence (Pn A) : E1 → Vn is a continuous linear
operator onto a finite-dimensional vector space. Let (Pn A)−1

: Vn→ span{y1, . . . , yn} denote the inverse
of the operator (Pn A) restricted to the finite-dimensional space span{y1, . . . , yn}. We may define now
the operator

Qn : E1→ E1, Qn := (Pn A)−1
◦ (Pn A).
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We note that Qn is continuous and Q2
n = Qn; hence Qn is a projection operator. As a direct consequence

we have as well that (I − Qn) is a continuous projection operator; here I denotes the identity map on E2.
By construction we have

Pn A (I − Qn)= 0. (A-1)

The range of Qn is finite and (AQn) is a continuous operator and therefore

lim sup
m→∞

‖(AQn)xm‖F1 <∞.

Hence we have

lim
m→∞
‖A(I − Qn)xm‖F1 ≥ lim

m→∞
‖Axm‖F1 − lim sup

m→∞
‖(AQn)xm‖F1 =∞.

Thus there exists mn+1 ∈ N such that

‖A(I − Qn)xmn+1‖F1 > 22(n+1)
‖I − Qn‖.

We define yn+1 = (I − Qn)xmn+1/‖I − Qn‖. Clearly we have ‖yn+1‖E1 ≤ 1 and (iii) holds by the choice
of mn+1. Finally (ii) follows using that Pn is a orthogonal projection, that Qn is a projection and (A-1):

〈Ayi , Ayn+1〉 = 〈Pn Ayi , A(I − Qn)yn+1〉 = 〈Pn Ayi , (Pn A(I − Qn))yn+1〉 = 0.

Having the sequence {yi }i∈N at our disposal we obtain x as follows: For each n we define the elements
zn ∈ E1 and fn ∈ F1 by

zn :=

n∑
i=1

2−i yi and fn :=

n∑
i=1

2−i Ayi

‖Ayi‖F1

.

Since E1, F1 are Banach spaces we have that their limits exist: z = limn→∞ zn =
∑
∞

i=12−i yi ∈ E1 and

f = lim
n→∞

fn =

∞∑
i=1

2−i Ayi

‖Ayi‖F1

.

Assumption (c) implies that for each i ∈ N the map

f ∈ F1 7→

〈
Ayi

‖Ayi‖F1

, f
〉

extends to a continuous linear functional li ∈ F∗1 . Therefore the continuous linear functional Ln :=∑n
i=1 2−i li has the desired properties using (i)–(iii) since

Ln(Az)= lim
m→∞

Ln(Azm)= lim
m→∞
〈 fn, Azm〉

= lim
m→∞

n∑
i=1

m∑
j=1

2−i− j
〈

Ayi

‖Ayi‖F1

, Ay j

〉
=

n∑
i=1

2−2i
‖Ayi‖F1 ≥ n. �

Observe that we could directly apply the above result with the following choice of spaces: let E1 =

H1
loc(D) be the local Hardy space of the disk, E2 = L1(D), F1 =

{
f ∈ H 1(D) : /

∫
D f = 0

}
and F2 =

W 1,1(D). But this would not give single elements a, b ∈ H 1(D) as stated in the Corollaries 4.2 and 5.2.
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Proof of Corollaries 4.2 and 5.2. We introduce the space

X :=
{
h ∈ H 1(D) : /

∫
D h = 0 and dh ∈ L2,1(D)

}
.

It becomes a complete Banach space with respect to the norm ‖h‖X :=‖dh‖L2,1 . Furthermore as suggested
before we set E2 := L1(D), F1 := H 1(D), F2 = W 1,1(D). Observe that we have a “bilinear” linear
embedding of X × X ↪→ E2 by (h, k) 7→ dh ∧ dk with ‖dh ∧ dk‖L1 ≤ ‖dh‖L2,1‖dk‖L2,1 .

The construction of (a, b) out of the contradicting sequence is the same in the case of a Neumann
or Robin-type boundary condition. Hence we will give a simultaneous proof for both. We denote by
A : L1(D)→W 1,1(D) the solution operator to problem (1-2) or problem (1-3). Recall that by classical
elliptic theory there is a constant CA > 0 such that ‖Ax‖H1 ≤ CA‖x‖L2 .

Let (an, bn)∈C∞(D,R2) be the corresponding contradicting sequence of Theorem 1.2 or Theorem 1.3.
Without loss of generality we may assume that /

∫
an = 0= /

∫
bn for all n; hence an, bn ∈ X . From now

on we do not have to distinguish the cases anymore.
We will now proceed approximately as in Lemma A.1. By induction we show the existence of a

sequence {y1, y2, . . . , yn} ∈ L1(D)∩C∞(D) with the properties

(i) ‖yi‖L1 ≤ 1 for all i ;

(ii) 〈Ayi , Ay j 〉 = 0 if i 6= j ;

(iii) ‖Ayi‖F1 ≥ 23i for all i .

Simultaneously we will construct a sequence of tuples (hi , ki )∈ X ∩C∞(D)× X ∩C∞(D), i = 1, . . . , n,
such that

(1) ‖hi‖L∞ +‖dhi‖L2,1 +‖ki‖L∞ +‖dki‖L2,1 ≤ 1;

(2) dhi ∧ dki = yi + Ri with ‖Ri‖L2 ≤ 1;

(3) ‖dhi‖L2 +‖dki‖L2 ≤
(
1+

∑
j<i‖dh j‖L∞ +‖dk j‖L∞

)−1.

We start the induction by choosing (a1, b1) in the contradicting sequence such that ‖A(da1∧db1)‖> 22.
We set y1 = da1 ∧ db1 and (h1, k1)= (a1, b1). All properties are clearly satisfied (R1 = 0).

Now suppose that we have chosen yi , (hi , ki ) for i = 1, . . . , n. We want to construct yn+1 and the
tuple (hn+1, kn+1). As in the previous lemma we define the projection operators

Pn :=

n∑
i=1

Ayi ⊗ Ayi

‖Ayi‖
2 , Qn := (Pn A)−1(Pn A).

Here (Pn A)−1 denotes as before the inverse of (Pn A) if restricted to the space span{y1, . . . , yn}. Hence for
all x ∈ L1(D) we have Qnx =

∑n
i=1 αi yi and the existence of a constant Cn > 0 such that

∑n
i=1|αi | ≤Cn

for all x ∈ L1(D) with ‖x‖L1 ≤ 1. Furthermore due to the properties of the contradicting sequence, there
exists m ∈ N such that

‖A(I − Qn)dam ∧ dbm‖H1 ≥ 23(n+1)C2
n

(
n+ 3+

∑
j≤n

‖dh j‖L∞ +‖dk j‖L∞

)2

.
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Let Qndam ∧ dbm =
∑n

i=1 αi yi , and define the elements

ỹn+1 := (I − Qn)dam ∧ dbm, h̃n+1 := am −

n∑
i=1

αi hi , k̃n+1 := bm +

n∑
i=1

ki .

We calculate

dh̃n+1∧dk̃n+1= dam∧dbm−

n∑
i=1

(αi dhi∧dki )

+d
(
−

n∑
i=1

αi hi

)
∧dbm︸ ︷︷ ︸

(I )

+dam∧d
( n∑

i=1

ki

)
︸ ︷︷ ︸

(II )

−

∑
i< j

(αi dhi∧dk j+α j dh j∧dki )︸ ︷︷ ︸
(III )

(2)
= dam∧dbm−

n∑
i=1

αi yi−

n∑
i=1

αi Ri+(I )+(II )+(III ).

We estimate the size of the remainder terms in L2(D): Due to (2), we have
∥∥∑n

i=1 αi Ri
∥∥

L2 ≤ Cn . The
terms (I ), (II ) are similarly estimated by∥∥∥∥d

(
−

n∑
i=1

αi hi

)
∧ dbm

∥∥∥∥
L2
≤

( n∑
i=1

|αi |‖dhi‖L∞

)
‖dbm‖L2,

∥∥∥∥dam ∧ d
( n∑

i=1

ki

)∥∥∥∥
L2
≤

( n∑
i=1

‖dki‖L∞

)
‖dam‖L2 .

Adding both we obtain ‖(I )‖L2 +‖(II )‖L2 ≤ Cn
(
1+

∑
j≤n‖dh j‖L∞ +‖dk j‖L∞

)
. The last term can be

estimated using only property (3) by

‖(III )‖L2 ≤

n∑
i=1

|αi |‖dhi‖L2

(∑
j<i

‖dk j‖L∞

)
+‖dki‖L2

(∑
j<i

|α j |‖dh j‖L∞

)

≤

( n∑
i=1

|αi |

)
+ sup

j≤n
|α j |n ≤ (n+ 1)Cn.

Hence we found that ‖R̃n+1‖L2 ≤Cn
(
n+3+

∑
j≤n‖dh j‖L∞+‖dk j‖L∞

)
, where R̃n+1=−

∑n
i=1 αi Ri+

(I )+ (II )+ (III ) and

dh̃n+1 ∧ dk̃n+1 = (I − Qn)dam ∧ dbm + R̃n+1 = ỹn+1+ R̃n+1.

The desired functions are now simply

yn+1 =
ỹn+1

λn
, hn+1 =

h̃n+1

λn
, kn+1 =

k̃n+1

λn
, with λn = Cn

(
n+ 3+

∑
j≤n

‖dh j‖L∞ +‖dk j‖L∞

)
.

Having established the existence of the sequences yi , hi , ki with the claimed properties we construct
a, b ∈ X and a sequence fn ∈ H 1(D)= F1 very much as in the proof of Lemma A.1: Due to (1) and the
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fact that X is a complete Banach space we can define elements

a :=
∞∑

i=1

2−i hi , b :=
∞∑

i=1

2−i ki .

Furthermore for each n ∈ N let

fn :=

n∑
i=1

2−i Ayi

‖Ayi‖H1
.

Observe that fn is a finite sum of C1-functions; hence it is C1 and can therefore be considered as an
element of (L1)∗ = L∞. It remains to check that limn→∞

∫
D fn A(da ∧ db)=+∞. We have

A(da ∧ db)= lim
m→∞

m∑
i=1

2−2i A(dhi ∧ dki )+

m∑
i< j

2−i− j A(dhi ∧ dk j + dh j ∧ dki ).

Using (2) we estimate〈
Ayk

‖Ayk‖H1
, A(dhi ∧ dki )

〉
=

〈
Ayk

‖Ayk‖H1
, Ayi + ARi

〉
≥ δki‖Ayi‖H1 −CA‖Ri‖L2 ≥ δki‖Ayi‖H1 −CA.

Hence
m∑

i=1

2−2i
〈

Ayk

‖Ayk‖H1
, A(dhi ∧ dki )

〉
≥ 2−2k

‖Ayk‖H1 − lim
m→∞

m∑
i=1

2−2i CA ≥ 2k
−CA.

Using (3) we get
m∑

i< j

2−i− j
‖A(dhi ∧ dk j + dh j ∧ dki )‖H1 ≤ CA

m∑
i< j

2−i− j (‖dhi‖L2 ‖dk j‖L∞ +‖dh j‖L∞ ‖dki‖L2)

≤ CA

m∑
i=1

2−i 2≤ 2CA.

Finally combining both we obtain〈
Ayk

‖Ayk‖H1
, A(da ∧ db)

〉
≥ 2k
− 3CA.

This completes the estimate since∫
D

fn A(da ∧ db)=
n∑

k=1

2−k
〈

Ayk

‖Ayk‖H1
, A(da ∧ db)

〉
≥ n− 3CA. �
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