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OPTIMAL MULTILINEAR RESTRICTION ESTIMATES
FOR A CLASS OF HYPERSURFACES WITH CURVATURE

IOAN BEJENARU

Bennett, Carbery and Tao (2006) considered the k-linear restriction estimate in RnC1 and established
the near optimal L2=.k�1/ estimate under transversality assumptions only. In 2017, we showed that the
trilinear restriction estimate improves its range of exponents under some curvature assumptions. In this
paper we establish almost sharp multilinear estimates for a class of hypersurfaces with curvature for
4� k � n. Together with previous results in the literature, this shows that curvature improves the range of
exponents in the multilinear restriction estimate at all levels of lower multilinearity, that is, when k � n.

1. Introduction

For n�1, let U �Rn be an open, bounded and connected neighborhood of the origin and let† WU!RnC1

be a smooth parametrization of an n-dimensional submanifold of RnC1 (hypersurface), which we denote
by S D†.U /. To this parametrization of S we associate the operator E defined by

Ef .x/D
Z

U

eix�†.�/f .�/ d�:

Given k smooth, compact hypersurfaces Si � RnC1, i D 1; : : : ; k, where 1 � k � nC 1, the k-linear
restriction estimate is the inequality kY

iD1

Eifi


Lp.RnC1/

.
kY

iD1

kfikL2.Ui /
: (1-1)

In a more compact format this estimate is abbreviated as

R�.2� � � � � 2! p/:

The fundamental question regarding the above estimate is the value of the optimal p for which it holds
true. Given that the estimate R�.2�� � ��2!1/ is trivial, the optimality is translated into the smallest p

for which the estimate holds true. Bennett, Carbery and Tao [Bennett et al. 2006] clarified the role of
transversality between the surfaces involved and established that, under a transversality condition between
S1; : : : ;Sk , the optimal exponent is p D 2=.k � 1/; the actual result in that paper is near-optimal, and
the optimal problem is currently open. The optimality can be easily revealed by taking the Si to be
transversal hyperplanes, in which case the estimate becomes the classical Loomis–Whitney inequality.
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It is also known, in some cases (precisely when k � 2), or expected, in most of the others, that
curvature assumptions on the surfaces involved improve the range of exponents in (1-1), except for the
case k D nC 1. In [Bejenaru 2017c] we formalized the following conjecture.

Conjecture 1.1. Under appropriate transversality and curvature conditions on the surfaces Si , the
estimate R�.2� � � � � 2! p/ holds true for any p � p.k/D 2.nC 1C k/=.k.nC k � 1//.

The case k D 1 has been understood for a very long time. Without any curvature assumptions, the
optimal exponent is p D1; once the surface has some nonvanishing principal curvatures, the exponent
improves to p D 2.l C 2/= l , where l is the number of nonvanishing principal curvatures. The case of
nonzero Gaussian curvature, corresponding to l D n, is the classical result due to Tomas and Stein; see
[Stein 1993].

The case k D 2 without any curvature assumptions corresponds to the classical L2 bilinear estimate,
where the optimal estimate has been established. Once curvature assumptions are allowed, the best
possible exponent in R�.2 � 2! p/ is p D .nC 3/=.nC 1/ and it was conjectured in [Foschi and
Klainerman 2000]. The problem was intensely studied; see [Bourgain 1995; Wolff 2001; Tao 2001; 2003;
Tao and Vargas 2000a; Lee 2006; Lee and Vargas 2010; Bejenaru 2017b]. The problem is solved in the
regime p > .nC3/=.nC1/ for general hypersurfaces with curvature; the end-point pD .nC3/=.nC1/

is solved only for cones; see [Tao 2001].
The case kD nC1 is fairly well understood. We note that in this case, additional curvature assumptions

have no effect on the optimality of p. It is conjectured that if the hypersurfaces Si �RnC1 are transversal,
then (1-1) holds true for p � p0 D 2=n. If the Si are transversal hyperplanes, (1-1) is the classical
Loomis–Whitney inequality and its proof is elementary. Once the surfaces are allowed to have nonzero
principal curvatures, things become far more complicated and the problem has been the subject of
extensive research; see, e.g., [Bennett et al. 2006; Guth 2010]. Bennett, Carbery and Tao [Bennett et al.
2006] established a near-optimal version of (1-1), which is (1-1) with an additional R� factor when the
estimate is made over balls of radius R in RnC1. The optimal result for (1-1), that is, without the �-loss,
is an open problem. In some cases one can use �-removal techniques to derive the result without the
�-loss for p > 2=n; see [Bourgain and Guth 2011] for the case of surfaces with nonvanishing Gaussian
curvature. The end-point for the multilinear Kakeya version of (1-1) (a slightly weaker statement than
(1-1)) was established by Guth [2010] using tools from algebraic topology.

In the remaining cases, 3 � k � n, the k-linear restriction theory has been addressed in [Bennett
et al. 2006] only under transversality assumptions and the authors established the near-optimal result for
p � 2=.k � 1/. The exponent 2=.k � 1/ is sharp for generic surfaces, but it is not the optimal exponent
once curvature assumptions are brought into the problem; indeed note that p.k/ < 2=.k � 1/.

In [Bejenaru 2017c] we looked at the trilinear estimate (corresponding to k D 3) and proved the
Conjecture 1.1 in the regime p > p.3/ for a particular class of surfaces: the double-conic ones. These
surfaces have the nice property that they have the exact “amount” of curvature to obtain the estimate with
the optimal exponent p.3/, and no more, in the sense that they are “flat” in the unnecessary directions.

In this paper we provide the equivalent result for 4� k � n for .k�1/-conical surfaces. We note that
passing from the case kD 3 to k � 4 requires not only additional technical ideas, but also conceptual ones.
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We describe bellow the class of hypersurfaces for which we prove the Conjecture 1.1. We start with
the definition of a foliation. A .k�1/-dimensional foliation of the (n-dimensional) hypersurface S is a
decomposition of S into a union of connected disjoint sets fS˛g˛2A, called the leaves of the foliation,
with the following property: every point in S has a neighborhood V and a local system of coordinates
x WV �S!Rn such that for each leaf S˛ the coordinates of V \S˛ are �k D constant, : : : , �nD constant.

We now formalize the conditions that we impose on our surfaces. As before, Si , i 2 f1; : : : ; kg, are
hypersurfaces with smooth parametrizations †i W Ui � Rn! RnC1, where each Ui is an open, bounded
and connected neighborhood of the origin (note that different Ui may belong to different hyperplanes
identified with the same Rn). In addition, we assume the following three hypotheses:

(i) (foliation) For each i 2 f1; : : : ; kg, the hypersurface Si admits the foliation

Si D

[
˛

Si;˛;

where, for each ˛, the leaf Si;˛ is a flat submanifold of dimension k � 1.

(ii) (the leaves are completely flat) If SNi .�i / is the shape operator of Si at �i 2 Si with choice of
normal Ni.�i/, we assume that for every v 2 T�i

Si;˛ (the tangent plane at Si;˛ at the point �i 2 Si;˛) the
following holds true:

SNi .�i /v D 0:

(iii) (transversality and curvature) There exists � > 0 such that for any �i 2 Si , i 2 f1; : : : ; kg, for any l 2

f1; : : : ; kg and for any orthonormal basis vkC1; : : : ; vnC1 2 .T�l
Sl;˛/

? � T�l
Sl the following holds true:

vol.N1.�1/; : : : ;Nk.�k/;SNl .�l /vkC1; : : : ;SNl .�l /vnC1/� �: (1-2)

In (1-2) vol is the standard volume form of nC 1 vectors in RnC1; thus the condition quantifies the
linear independence of the vectors N1.�1/; : : : ;Nk.�k/;SNl .�l /vkC1; : : : ;SNl .�l /vnC1.

The condition (ii) says that the Si;˛ are, in some sense, completely flat components of the Si since,
besides being subsets of affine planes of dimension k �1, the normal N.�/ to Si is constant as we vary �
along Si;˛ for fixed ˛.

The first thing to read in condition (iii) is the transversality condition between S1; : : : ;Sk due to
the transversality between any choice on normals. The condition (iii) also says that the submanifolds
transversal to the leaves carry the curvature assumptions, in the sense that their tangent space does not
contain any eigenvectors of the shape operator. In addition, for each i 2 f1; : : : ; kg, we are guaranteed to
have transversality between N1.�1/; : : : ;Nk.�k/ and SNi

.T�i
.Sl;˛/

?/.
In fact (iii) is equivalent to the apparently weaker condition:

(iii0) There exists � > 0 such that for any �i 2 Si , i 2 f1; : : : ; kg, for any l 2 f1; : : : ; kg and for any unit
vector v 2 .T�l

Sl;˛/
? � T�l

Sl the following holds true:

vol.N1.�1/; : : : ;Nk.�k/;SNl .�l /v/� �: (1-3)

Obviously here vol stands for the .kC1/-dimensional volume of the parallelepiped determined by the
vectors N1.�1/; : : : ;Nk.�k/;SNl .�l /v.
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At this point we can state the main result of this paper.

Theorem 1.2. Assume that S1; : : : ;Sk satisfy the conditions (i)–(iii) above. Given any p with

p.k/D
2.nC kC 1/

k.nC k � 1/
< p �1;

the following holds true: kY
iD1

Eifi


Lp.RnC1/

� C.p/

kY
iD1

kfikL2.Ui /
for all fi 2L2.Ui/: (1-4)

To the best of our knowledge this result is the first instance when the k-linear restriction estimate, with
4� k � n, is proved for the almost optimal exponent, that is, p > p.k/. However, very recently Guth
[2016a] formulated a weaker version of Conjecture 1.1, which he proved in the case when the Si are
subsets of the paraboloid, and for the same range of parameters p.k/ < p �1. The formulation of this
weaker version is technical and we skip it here. Guth [2016a] used this weaker version to improve the
range of the linear restriction theory. It is important to note that Guth employed polynomial partition
methods to prove his result. The arguments we use in this paper are very different; see the details below.

The result in Theorem 1.2 and the corresponding one in [Bejenaru 2017c] show that the Conjecture 1.1
holds true at least in some model cases. We hope that this result will lead the way towards a complete
resolution of the conjecture, which, in turn, should have important consequences. The multilinear theory
discussed above has had major impact in other problems. We mention a few such examples: In harmonic
analysis, the bilinear and .nC1/-linear restriction theory were used to improve results in the context
of the Schrödinger maximal function, see [Bourgain 2013; Lee 2003; Tao and Vargas 2000b; Du et al.
2017], the restriction conjecture, see [Tao 2003; Bourgain and Guth 2011; Guth 2016a; 2016b], and the
decoupling conjecture, see [Bourgain and Demeter 2015; Bourgain et al. 2016]. In partial differential
equations, the linear theory inspired the Strichartz estimates, see [Tao 2006], while the bilinear restriction
theory is used in the context of more sophisticated techniques, such as the profile decomposition, see
[Merle and Vega 1998], and concentration compactness methods, see [Kenig and Merle 2006].

Theorem 1.2 reveals the following geometric feature: the optimal k-linear restriction estimate discards
the effect of k � 1 curvatures; indeed, each Si has precisely k � 1 vanishing principal curvatures, and
thus it relies only on nC 1� k principal curvatures being nonzero, although the actual statement has to
be more rigorous. This geometric feature of the problem was conjectured by Bennett, Carbery and Tao
[Bennett et al. 2006].

We continue with an overview of the paper and highlight some of the elements used in the proof of
Theorem 1.2. The reader may look at the paper as split into two parts: Sections 2 through 4 and Sections 6
and 7, with Section 5 marking the transition between the two. In Sections 2 through 4 we adapt to our
current setup the standard arguments that are similar to our previous works in the bilinear and trilinear
setup, see [Bejenaru 2017b; 2017c]: overview of the geometry of the problem, wave packet theory, table
construction and the induction-on-scales argument. All these ideas originate from [Tao 2001].

The second part of the paper, Sections 6 and 7, contains the novel ideas in this paper and they play a
key role in establishing the improved estimate (4-4) in Section 4. We note that the equivalent results (to
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those in Sections 6 and 7 here) in the bilinear and trilinear theory are much simpler, given the structure of
the problem, and can be easily derived inside the body of the main argument. The results in Sections 6
and 7 hold in the context of general hypersurfaces; in particular they do not assume the foliation structure
or curvature properties used in Theorem 1.2. We also think that these results are new in the literature and
may be of independent interest.

The starting ideas originate in the prior work of the author on the multilinear restriction estimate in
[Bejenaru 2017a]. In that paper we proved that the k-linear restriction estimate kY

iD1

Eifi


L2=.k�1/.B.0;r//

� C.�/r �
kY

iD1

kfikL2.Ui /
(1-5)

improves under appropriate localizations of one of the factors fi . These localizations are precisely the
ones carried by the wave packets appearing in the decomposition of one of the factors Eifi , and one needs
to obtain an appropriate estimate for such superpositions of wave packets. This was an easy task in the
case of the trilinear estimate because the estimate is made in L1 and the triangle inequality holds true. The
triangle inequality fails to hold true in the spaces L2=.k�1/ with k � 4; the way to deal with this aspect
is to further refine the techniques developed in [Bejenaru 2017a] and derive good “off-diagonal”-type
estimates, which in turn give the desired estimate with the correct localization gain; see Theorem 6.1. A
further localization to cubes is needed for technical reasons; see Corollary 6.2. This analysis is carried
out in Section 6.

In Section 7 we prove the estimatekE1f1kL2.S.q//

kY
iD2

kEifikL2.q/


l

2=.k�1/
q

� C.�/r
k
2 r �

kY
iD1

kfikL2.Ui /
: (1-6)

Here q are cubes of size r and the l
2=.k�1/
q is taken over such cubes contained in a larger cube of size r2;

S.q/D S C q, where S is a surface with some “good” properties. This estimate has the character of a
k-linear restriction estimate, although it is more complex due to the factor kE1f1kL2.S.q//. If S were a
point (that is, of dimension zero), then the above estimate is similar to the k-linear restriction estimate;
however, the surface we encounter has the maximal dimension that allows (1-6) to hold true. Another
interesting aspect is that the maximal dimension of S saturates the estimate (1-6) in the following sense:
while for k < nC 1 (1-5) improves under appropriate localizations of some fi , (1-6) does not, just as the
.nC1/-linear restriction estimate does not improve under localizations.

We identified (1-6) as the necessary ingredient to closing the improved estimate (4-4) in Section 4. We
note that in the bilinear theory the result used is the one above with k D 1 and that means that the termQk

iD2 kEifikL2.q/ does not appear. In this case the estimate (1-6) corresponds to an energy estimate for
a free wave across hypersurfaces that are transversal to its directions of propagation; this is a classical
tool in PDE. In the trilinear theory the estimate (1-6) is used for k D 2; thus it is an l2-type estimate that
can be dealt with in a direct manner, by using wave packet decompositions for both free waves and some
analysis on their interaction. It is in the quadrilinear (or higher) case that the true character of (1-6) comes
to light. The analysis of the estimate (1-6) is carried out in Section 7.



1120 IOAN BEJENARU

1A. Notation. We start by clarifying the role of various constants that appear in the argument. N is a
large integer that depends only on the dimension. C is a large constant that may change from line to
line, and may depend on N, but not on c and C0 introduced below. C is used in the definition of the
following relations: A . B, meaning A � CB, A� B, meaning A � C�1B, and A � B, meaning
A. B ^B .A. For a given number r � 0, by ADO.r/ we mean that A� r . C0 is a constant that is
independent of any other constant and its role is to reduce the size of cubes in the inductive argument.
We could set C0 D 4 throughout the argument, but we keep it this way so that its role in the argument is
not lost. Finally, c� 1 is a very small variable meant to make expressions� 1 and most estimates will
be stated to hold in a range of c.

We use the standard notation .�1; : : : ; N�i ; : : : ; �l/ WD .�1; : : : ; �i�1; �iC1; : : : ; �l/.
By powers of type R˛C we mean R˛C� for arbitrary � > 0. Practically they should be seen as R˛C�

for arbitrary 0< � . 1. The estimates where such powers occur will obviously depend on �.
By B.x;R/ we denote the ball centered at x with radius R in the underlying space (most of the time

it will be Rn or RnC1).
Let �0 W Rn ! Œ0;C1/ be a Schwartz function, normalized in L1, that is, k�0kL1 D 1, and with

Fourier transform supported in the unit ball. Given some r > 0 we define �r .x/D r�n�0.r
�1x/ and note

that O�r is supported in B.0; r/. We will abuse notation and use the same �0 for functions with the same
properties, but with a different base space, such as �0 W R

nC1! Œ0;C1/.
A disk D � RnC1 has the form

D DD.xD ; tD I rD/D f.x; tD/ 2 RnC1
W jx�xD j � rDg

for some .xD ; tD/ 2 RnC1 and rD > 0. We define the associated smooth cut-off

Q�D.x; t/D

�
1C
jx�xD j

rD

��N

:

A cube Q� RnC1 of size R has the standard definition

QD
˚
.x; t/ 2 RnC1

W k.x�xQ; t � tQ/kl1 �
1
2
R
	
;

where cQ D .xQ; tQ/ is the center of the cube. Given a constant ˛ > 0 we define ˛Q to be the dilation
by ˛ of Q around its center; that is, ˛QD

˚
.x; t/ 2 RnC1 W k.x�xQ; t � tQ/kl1 � ˛ �

1
2
R
	
.

Given a cube q � RnC1 of size r we will use two functions that are highly concentrated in q. One
is built with the help of �0 (as mentioned earlier, we abuse notation here as we should be using the
corresponding �0 W R

nC1! Œ0;C1/ with similar properties):

�q.x/D �0

�
x� c.q/

r

�
:

This localization function has nice properties on the Fourier side. The other localization function is

Q�q.x/D

�
1C

ˇ̌̌̌
x� c.q/

r

ˇ̌̌̌��N

for some large N. This localization has better properties on the physical side.
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We recall the standard estimate for superpositions of functions in Lp for p � 1X
˛

f˛

p

Lp

�

X
˛

kf˛k
p
Lp ; (1-7)

as well as the estimate for sequences

kai � bikl2=.k�1/

i

. kaikl2
i
kbikl2=.k�2/

i

: (1-8)

2. Geometry of the surfaces and consequences

We start this section by simplifying the setup. The surfaces are bounded, and therefore we can always
break them into smaller (and similar) pieces, as we do to accommodate the additional hypotheses described
below.

First note that we can assume each Si to be of graph type: there is a smooth map 'i W Ui � Rn! R

such that S D f†i.�/ D .�; 'i.�// W � 2 Uig. Here the Ui are open and connected with compact
closure. It is less important that the graphs are of type �nC1 D 'i.�1; : : : ; �n/ (we can also have �k D
'i.�1; : : : ; N�k ; : : : ; �nC1/), although we can accommodate this by a rotation of coordinates. Then each
flat leaf Si;˛ corresponds to a flat leaf Ui;˛, in the sense that †i.Ui;˛/ D Si;˛; this is indeed the case
since projections onto hyperplanes along a vector transversal to Si take .k�1/-dimensional affine planes
to .k�1/-dimensional affine planes.

We can find a system of coordinates xi W R
n! Rn that parametrizes each leaf Ui;˛ into a new flat

leaf zUi;˛ characterized by �k D constant, : : : , �n D constant. Finally, we assume that each Ui has small
enough diameter.

Next, we derive a key geometric consequence of our setup. Given a surface Si we define Ni WD

fNi.�i/ W �i 2 Sig to be the set of normals at Si . By dspanNi we denote the following subset of the
classical span of Ni :

dspanNi WD f˛N˛CˇNˇ WN˛;Nˇ 2Ni ; ˛; ˇ 2 Rg:

Note that dspanNi is the set of linear combinations of two vectors in Ni ; it is not a linear subspace.
Given a set of indexes I � f1; 2; : : : ; kg we also define

dNI WD f˛N˛CˇNˇ WN˛ 2Ni ; Nˇ 2Nj ; i; j 2 I; i ¤ j ; ˛; ˇ 2 Rg:

With this notation in place, we claim the following result.

Lemma 2.1. Assume Si , i D 1; : : : ; k, satisfy the conditions (i)–(iii). Let I D f3; : : : ; kg. Then for any
N 2 dspanN1, N2 2N2 and zN 2 dNI , the following holds true:

vol.N;N2; zN /& jN j � jN2j � j
zN j: (2-1)

The above statement is symmetric as we can switch the particular role each Si , i D 1; : : : ; k, plays in
the above estimate.
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Proof. The proof is similar to the one provided in [Bejenaru 2017c]. We write N D ˛N˛ C ˇNˇ for
some N˛ ¤Nˇ and consider  W Œ0; t0�! S1, a smooth curve with the property that N1. .0//DN˛ and
N1. .t0//DNˇ . We also assume that j 0.t/j D 1 on Œ0; t0� and that 0� t0� 1; this is possible because
we assumed U1 to be of small diameter. In addition, if ˛0 is such that  .0/ 2 S1;˛0

, we can assume that
 0.0/ 2 .T.0/S1;˛0

/?. Then we have

N1. .t0//DN1. .0//C

Z t0

0

SN1. .s//
0.s/ ds

DN1. .0//C t0SN1. .0//
0.0/CO.t2

0 /:

We then continue with

N D ˛N1. .0//Cˇ
�
N1. .0//C t0SN1. .0//

0.0/CO.t2
0 /
�

D .˛Cˇ/N1. .0//Cˇt0SN1. .0//
0.0/CˇO.t2

0 /:

The two vectors N1. .0// and SN1. .0//
0.0/ are transversal; thus jN j � j˛CˇjC t0jˇjjSN1. .0//

0.0/j

(here we use that t0� 1), and also

vol.N;N2; zN /� vol
�
.˛Cˇ/N1. .0//Cˇt0SN1. .0//

0.0/;N2; zN
�

& j.˛Cˇ/N1. .0//Cˇt0SN1. .0//
0.0/j � j zN j � jN j � j zN j;

where we have used the following consequence of (1-2):

vol
�
N1. .0//;SN1. .0//v;N2; zN

�
& j zN j;

which holds true for any unit vector v 2 .T.0/S1;˛0
/? � T.0/S1 and any vector zN 2 dNI . �

Using an argument similar to that above, one can easily establish the dispersive estimate

jNi.�1/�Ni.�2/j � d.Si;˛1
;Si;˛2

/; (2-2)

where Si;˛1
;Si;˛2

are the leaves to which �1; �2 belong, respectively. Here the distance between Si;˛1

and Si;˛2
can be defined either by using geodesics inside the hypersurface Si (using the induced metric

from the ambient space RnC1) or, equivalently, by using the classical distance between sets in RnC1.

3. Free waves, wave packets and tables on cubes

In this section we collect some of the preparatory ingredients that are needed in the proof of our main
result. The setup described here originated in the work of Tao [2001] on the bilinear restriction estimate.
All of the results here have been discussed in our previous works; see [Bejenaru 2017b; 2017c]. We do
not repeat some of the proofs as they are similar to those found in these three mentioned papers.

3A. Rephrasing the problem in terms of free waves. We reformulate our problem in terms of free waves,
this being motivated by the use of wave packets in the proof of Theorem 1.2. Once the wave packet
decomposition is made and its properties are clear, the formalization of the problem as an evolution
equation can be forgotten.
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Assume we are given a surface S with a graph-type parametrization �nC1D'.�/, where �D .�1; : : : ; �n/.
We rename the variable �nC1 by � ; thus the equation of S becomes � D '.�/. We parametrize the physical
space by .x; t/ 2 Rn �R. We make the choice that � is the Fourier variable corresponding to t , while �
is the Fourier variable corresponding to x. In what follows we use the convention that Of denotes the
Fourier transform of f with respect to the x-variable.

We define the free wave � D Ef as

�.x; t/D Ef .x; t/D
Z

Rn

ei.x��Ct'.�//f .�/ d�:

Note that �.0/ D Lf and O�.�; t/ D eit'.�/ O�.�; 0/. We define the mass of a free wave by M.�.t// WD

k�.t/k2
L2 and note that it is time-independent:

M.�.t// WD k�.t/k2
L2 D k

O�.t/k2
L2 D k

O�.0/k2
L2 D k�.0/k

2
L2 DM.�.0//:

The proof of (1-4) relies on estimating
Qk

iD1 Eifi on cubes on the physical side and seeing how this
behaves as the size of the cubes goes to infinity by using an inductive-type argument with respect to the
size of the cubes. Before we formalize this strategy, we note that at every stage of the inductive argument
we relocalize functions both on the physical and frequency spaces, and, as a consequence, we need to
quantify the new support on the frequency side. This will be done by using the margin of a function.

We assume we are given a reference set V inside which we want to keep all functions supported. If f
is supported in U � V we define the margin of f relative to V by

margin.f / WD dist.supp.f /;V c/:

In terms of free waves � D Ef , the margin is defined by

margin.�.t// WD dist.supp�. O�.t//;V
c/D dist.supp.f /;V c/;

where we have used that the Fourier support of O�.t/ is time-independent and that O�.0/D f . In other
words, the margin of a free wave is time-independent.

In practice, we work with k different types of free waves, �i D Eifi , i D 1; : : : ; k. They are assumed to
be graphs with different phase functions 'i and with potentially different ambient domains, that is, the Ui

are subsets of different subspaces isomorphic to Rn (for instance the Ui can be subsets of the hyperplanes
�i D 0). The above construction changes only by choosing � to be the coordinate in the direction normal
to the ambient hyperplane to which Ui belongs, while � are the coordinates in the ambient hyperplane.
Obviously, the margin of each �i is then defined with respect to some Vi in the same ambient hyperplane.
When choosing the reference sets Vi we need to impose that the conditions (i)–(iii) hold true on †i.Vi/

as well.
Next, we prepare the elements that are needed for the induction-on-scale argument. Given that the

estimate is trivial for p D1, it suffices to focus on the result above in the cases p.k/ < p � 2=.k � 1/

and this is what we will do. Note that the exponent 2=.k � 1/ is precisely the one for which the k-linear
restriction theory is expected to hold true without any curvature assumptions.
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Definition 3.1. Let p.k/� p � 2=.k � 1/. Given R� C0 we define Ap.R/ to be the best constant for
which the estimate  kY

iD1

�i


Lp.QR/

�Ap.R/

kY
iD1

M.�i/
1
2 (3-1)

holds true for all cubes QR of size R and �i D Eifi obeying the margin requirement

margini.�i/�M �R�
1
4 ; i D 1; : : : ; k: (3-2)

The goal is to obtain a uniform estimate on Ap.R/ with respect to R. In the absence of the margin
requirement above, Ap.R/ would be an increasing function. However, since the argument needs to
tolerate the margin relaxation, we also define

NAp.R/ WD sup
1�r�R

Ap.r/

and the new NAp.R/ is obviously increasing with respect to R.
Then (1-4), and, as a consequence, the main result of this paper, Theorem 1.2, follow from the next

result.

Proposition 3.2. Assume 0 < � < 1. If R� 22C0 and R�.1=4/C� c� 1, there exists C.�/ such that
the following holds true:

Ap.R/� .1C cC /
�
.1C cC /p

�
NAp

�
1
2
R
��p
C .C.�/c�C R

nCkC1
2

. 1
p
�k

2
�

nCk�1
nCkC1

/C�/p
� 1

p
: (3-3)

Deriving (1-4) from (3-3) is standard; see the corresponding argument in the trilinear case in [Bejenaru
2017c]. Thus we reduce the proof of Theorem 1.2 to proving (3-3).

3B. Tables on cubes. Let Q� RnC1 be a cube of radius R. Given j 2N we split Q into 2.nC1/j cubes
of size 2�j R and denote this family by Qj .Q/; thus we have QD

S
q2Qj .Q/ q. If j 2N and 0� c� 1,

we define the .c; j /-interior I c;j .Q/ of Q by

I c;j .Q/ WD
[

q2Qj .Q/

.1� c/q: (3-4)

Given j 2 N we define a table ˆ on Q to be a vector ˆD .ˆ.q//q2Qj .Q/ and define its mass by

M.ˆ/D
X

q2Qj .Q/

M.ˆ.q//:

We define the margin of a table as the minimum margin of its components:

margin.ˆ/D min
q2Qj .Q/

margin.ˆ.q//:

We recall from [Bejenaru 2017c] the following result, which originated in [Tao 2001]:
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Lemma 3.3. Assume 0 < p <1, R� 1, 0 < c� 1 and f is smooth. Given a cube QR � RnC1 of
size R, there exists a cube Q of size 2R contained in 4QR such that

kf kLp.QR/ � .1C cC /kf kLp.I c;j .Q//: (3-5)

3C. Wave packets. In this section we formalize the wave packet construction for .k�1/-conical surfaces.
We assume that S is of .k�1/-conic type and has the graph-type parametrization † W U ! S , where
†.�/D .�; '.�//, with foliations U D

S
˛ U˛, S D

S
˛ S˛, †.U˛/D S˛.

For the foliation U D
S
˛ U˛ , we choose a system of coordinates x WU ! zU such that for each leaf U˛

the coordinates of U˛ are �k D constant, : : : , �nD constant. Let zU 0D �. zU /, where � WRn!Rn�kC1 is
the projection �.�1; : : : ; �n/D .�k ; : : : ; �n/. Let zL be a maximal r�1-separated subset of zU 0 � Rn�kC1.
For each Q� 2 zL, we have x�1. � ; Q�/ is a leaf; that is, x�1. � ; Q�/D U˛ for some ˛. In each such leaf we
pick �T and define L to be the set obtained this way. It is not important which �T 2 x�1. � ; Q�/ is chosen,
since from condition (ii) it follows that, for � 2 U˛, the normal N.†.�// to S is constant as � varies
inside the leaf U˛ . We denote by U.�T / the leaf U˛ to which �T belongs and by S.�T /D†.U.�T //, the
corresponding leaf on S . We note that d.U.�T1

/;U.�T2
//� d. Q�1; Q�2/, which combined with (2-2) gives

jN.†.�T1
//�N.†.�T2

//j � d.U.�T1
/;U.�T2

//� d. Q�1; Q�2/: (3-6)

Let L be the lattice LD c�2rZn. With xT 2L, �T 2 L, we define the tube

T D T .xT ; �T / WD f.x; t/ 2 Rn
�R W jx�xT C tr'.�T /j � c�2rg

and denote by T the set of such tubes. One notices that T is the c�2r neighborhood of the line passing
through .xT ; 0/ in the direction N.†.�T //.

Associated to a tube T 2 T , we define the cut-off Q�T on RnC1 by

Q�T .x; t/D Q�D.xT�tr'.�T /;t Ic�2r/.x/:

We are ready to state the main result of this section.

Lemma 3.4. Let Q be a cube of radius R� 1, let c be such that R�.1=4/C � c . 1 and let J 2 N

be such that r D 2�J R � R1=2. Let � D Ef be a free wave with margin.�/ > 0. For each T 2 T
there is a free wave �T that is localized in a neighborhood of size CR�1=2 of the leaf S.�T / and obeys
margin.�T /�margin.f /�CR�1=2. The map f ! �T is linear and

� D
X
T2T

�T : (3-7)

If dist.T;Q/� 4R then

k�T kL1.Q/ . c�C dist.T;Q/�N M.�/
1
2 : (3-8)

The estimates X
T

sup
q2QJ .Q/

Q�T .xq; tq/
�N
k�T k

2
L2.q/

. c�C rM.�/ (3-9)
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and X
q0

M

�X
T

mq0;T �T

�
� .1C cC /M.�/; (3-10)

hold true provided that the coefficients mq0;T � 0 satisfyX
q0

mq0;T D 1 for all T 2 T : (3-11)

This type of wave packet decomposition was introduced in [Tao 2001] in the context of a bilinear
restriction estimate for conical hypersurfaces (1-conical in our language). The strength of this result
lies in the use of the small parameter c and the tight mass estimate (3-10). In the case c � 1, the above
decomposition is the standard wave packet decomposition.

In the case of double-conical surfaces the analogous result was proved in [Bejenaru 2017c]. The
argument for Lemma 3.4 is entirely similar to the results just mentioned and we will not duplicate it here.

In the case c � 1, we will use the following variation of (3-9). Fix N 2 N; then for each tube T 2 T ,
there are coefficients cN;T such that

sup
q2QJ .Q/

Q�T .xq; tq/
�N

2 k�T kL2.q/ . r
1
2 � cN .T /: (3-12)

with the property that X
T2T

cN .T /
2 .M.�/: (3-13)

4. Table construction and the induction argument

This section contains the main argument for the proof of Theorem 1.2. In Proposition 4.1 we construct
tables on cubes, which is a way of reorganizing the information on one term, say �1, at smaller scales
based on information from one of the other interacting terms, �i ; i D 2; : : : ; k. This type of argument is
inspired by the work on the conic surfaces of Tao [2001]. Based on this table construction, we will prove
the inductive bound claimed in Proposition 3.2.

Proposition 4.1. Let Q be a cube of size R� 22C0 . Assume �i D Eifi , i D 1; : : : ; k, have positive
margin. Then there is a table ˆ1 Dˆc.�1; �2;Q/ with depth C0 such that the following properties hold
true:

�1 D

X
q2QC0

.Q/

ˆ
.q/
1
; (4-1)

margin.ˆ/�margin.�/�CR�
1
2 ; (4-2)

M.ˆ/� .1C cC /M.�/; (4-3)

and for any q0; q00 2QC0
.Q/, q0 ¤ q00,ˆ.q0/1

kY
iD2

�i


L2=.k�1/..1�c/q00/

. c�C R�
n�kC1

4

kY
iD1

M
1
2 .�i/: (4-4)
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Remark 1. The above result is stated for scalars �1; : : : ; �k , but it holds for vector versions as well.
Most important is that we can construct ˆ1 Dˆc.�1; ˆ2;Q/, where ˆ2 is a vector-free wave and all its
scalar components satisfy similar properties to the �2 above.

Remark 2. We note that ˆ1 D ˆc.�1; �2;Q/ means that the table ˆ1 is constructed from �1, which
is natural in light of (4-1), and �2. But it does not depend on �3; : : : ; �k . Obviously, we could have
constructed it from �1 and �3 (or any other �k), ending with a different object.

In the proof below we use the results in Sections 6 and 7 in a crucial way. The reason we provide those
results in later sections is that, at first reading, it is instructive to get the main points and the motivation
for the results in Sections 6 and 7 before the argument becomes too technical.

Proof. There are several scales involved in this argument. The large scale is the size R of the cube Q.
The coarse scale is 2�C0R�R1=2, where this is the size of the smaller cubes in QC0

.Q/ and the subject
of the claims in the proposition. Then there is the fine scale r D 2�j R chosen such that r �R1=2. Notice
that r is the proper scale for wave packets corresponding to time scales R and also that their scale is
c�2r � 2�C0R, the last one being the scale of cubes in QC0

.Q/.
We use Lemma 3.4 with J D j to construct the wave packet decomposition for �1:

�1 D

X
T12T1

�1;T1
:

For any q0 2QC0
.Q/ and T1 2 T1 we define

mq0;T1
WD k Q�T1

�2k
2
L2.q0/

;

mT1
WD

X
q02QC0

.Q/

mq0;T1
:

Based on this we define
ˆ
.q0/
1
WD

X
T1

mq0;T1

mT1

�1;T1
: (4-5)

By combining the definitions above with the decomposition property (3-7), we obtain

�1 D

X
q02QC0

.Q/

ˆ
.q0/
1

;

thus justifying (4-1).
The margin estimate (4-2) follows from the margin estimate on tubes provided by Lemma 3.4. The

coefficients mq0;T1
satisfy (3-11); thus the estimate (4-3) follows from (3-10).

All that is left to prove is (4-4), which is equivalent to� X
q2Qj .Q/

d.q;q0/&cR

ˆ.q0/
1

kY
iD2

�i

 2
k�1

L2=.k�1/.q/

�k�1
2

. c�C r�
n�kC1

2

kY
iD1

M.�i/: (4-6)

Note that the cubes q are selected at the finer scale dictated by the size of cubes in Qj .Q/. In the
definition of ˆ.q0/

1
, see (4-5), we have the full family T1. In the above estimate, we estimate the output
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inside q; thus, in light of (3-8), the terms �T1
with T1\ q ¤∅ are the ones that really matter. Indeed, if

we split ˆ.q0/
1

as

ˆ
.q0/
1
WD

X
T1\q¤∅

mq0;T1

mT1

�1;T1
C

X
k2N

X
d.T1;q/�2kc�2r

mq0;T1

mT1

�1;T1
;

we can use (1-7) to reduce the problem to estimating each term in the first sum above. Indeed, in light of
(3-9), the contributions of terms from the second sum come with additional decay 2�kN, which, for N

large enough, can be easily estimated. Thus it suffices to prove the estimate (4-6) with ˆ.q0/
1

replaced by
the first sum above.

For fixed q, it is a straightforward exercise to check that the Setup in Section 6 is satisfied: Simply let
J D fT1 2 T1 W T1\ q ¤∅g and let �T1

D E1;T1
f1;T1

. Thus we can invoke (6-4) to obtain� X
T1\q¤∅

mq0;T1

mT1

�T1

� kY
iD2

�i


L2=.k�1/.q/

.C.�/r�
nC1

2 r �
X

T1\q¤∅

mq0;T1

mT1

k Q�q�1;T1
kL2

kY
iD2

k Q�q�ikL2 :

Since mq0;T1
�mT1

,

mq0;T1

mT1

�
m

1=2
q0;T1

m
1=2
T1

I

from this we obtainX
T1\q¤∅

mq0;T1

mT1

k�1;T1
Q�qkL2 .

� X
T1\q¤∅

k�1;T1
Q�qk

2
L2

mT1
Q�T1
.xq; tq/

�1
2
� X

T1\q¤∅

mq0;T Q�T1
.xq; tq/

�1
2

:

Next we claim the estimate X
T12T1

mq0;T1
Q�T1
.xq; tq/. k Q�S.q/�2k

2
L2 : (4-7)

Using the definition of mq0;T1
we identify the function

Q�S.q/ D

� X
T12T1

Q�.xq; tq/ Q�T1

�
�q0

which makes (4-7) hold true. Here the surface S.q/ is the translation by c.q/ of the neighborhood of
size r of the cone of normals at S1, which we denote by CN 1 WD f˛N1.�/ W � 2S1; ˛ 2Rg. It is important
to note that we do not consider the whole cone but only the part with cR� ˛ .R. Note that Q�S.q/ has
the following decay property:

Q�S.q/.x; t/. c�4

�
1C

d..x; t/;S.q//

c�2r

��N

:

This is a consequence of the fact that the tubes T1 passing thorough q separate inside q0 and of the
separation between q and q0, which is quantified by d.q; q0/ & cR. Quantitatively speaking, given a
point in q0 close to S.q/, there are . c�4 tubes T1 passing through the point and q; this follows from the
dispersion estimate (3-6) and the geometry of the family of tubes T1.
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We define

A.q/D

� X
T1\q¤∅

k�1;T1
Q�qk

2
L2

mT1
Q�T1
.xq; tq/

�1
2

; B.q/D k Q�q�2kL2 ;

C.q/D k Q�S.q/�2k; D.q/D

kY
iD3

k Q�q�ikL2 :

To conclude the proof of (4-6), it suffices to show� X
q2Qj .Q/

d.q;q0/&cR

A.q/
2

k�1 B.q/
2

k�1 C.q/
2

k�1 D.q/
2

k�1

�k�1
2

. r
k
2 r �

kY
iD1

M.�i/
1
2 :

This will be a consequence of the two inequalities� X
q2Qj .Q/

d.q;q0/&cR

A.q/2B.q/2
�1

2

. r
1
2 M.�1/

1
2 ; (4-8)

� X
q2Qj .Q/

d.q;q0/&cR

C.q/
2

k�2 D.q/
2

k�2

�k�2
2

. r
k�1

2 r �
kY

iD2

M.�i/
1
2 : (4-9)

The proof of (4-8) is similar to the one we used in the bilinear and trilinear theory; see [Bejenaru 2017b;
2017c]. By rearranging the sum, it suffices to showX

T1

X
q\T1¤∅

k�1;T1
Q�qk

2
L2k�2 Q�qk

2
L2

mT1
Q�T1
.xq; tq/

. rM.�1/:

The inner sum is estimated as X
q\T1¤∅

k�2 Q�qk
2
L2

mT1
Q�T1
.xq; tq/

.
k�2 Q�T1

k2
L2

mT1

. 1;

and the outer one is estimated byX
T1

sup
q
k�1;T1

Q�qk
2
L2 . r

X
T1

M.�1;T1
/. rM.�1/;

which is obvious given the size of q in the x1-direction is � r and the mass of �1;T1
is constant across

slices in space with x1 D constant.
In proving (4-9), we can take advantage of the fast decay of Q�q away from q and of Q�S.q/ away

from S.q/, and at the cost of picking factors of type c�C, it suffices to showk�2kL2.S.q//

kY
iD3

k�ikL2.q/


l

2=.k�2/
q

. r
k�1

2 r �
kY

iD2

M.�i/: (4-10)
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The l
2=.k�2/
q norm is computed over the set of q 2Qj .Q/, the set of cubes of size r contained in the larger

cube of size r2. This estimate is the subject of Theorem 7.1 in Section 7. The statement of Theorem 7.1
requires S to have certain properties in relation to the other surfaces S2; : : : ;Sk ; see (P1), (P2) at the
beginning of Section 7. The fact that S satisfies these properties follows from Lemma 2.1. �

Proof of Proposition 3.2. This is entirely similar to the argument used in [Bejenaru 2017b; 2017c], see
the corresponding proofs there. �

We have finished the proof of our main result Theorem 1.2. Obviously we owe a justification for some
estimates used in the body of the proof of Proposition 4.1 and this what will be covered in the next two
sections of the paper.

5. The second part: the multilinear estimate revised

We have arrived at the middle point in this article. In the first half, Sections 1 through 4 we proved the
main result, Theorem 1.2. In the second part, and Sections 6 and 7, we provide some of the supporting
details used in the proof of Theorem 1.2. However we think that these are not just technical results, and
they may be of independent interest.

We point out a major difference between the hypotheses used in the two parts. For Theorem 1.2 we
assume the particular foliation structure and curvature condition described by conditions (i)–(iii). In the
second part, Sections 6 and 7, we provide results in a general setup which we describe below.

We are given k smooth hypersurfaces Si D†i.Ui/ with smooth parametrizations †i . These should be
seen as new surfaces, different than the ones for which Theorem 1.2 states a result. The most important
difference is that the Si , i D 1; : : : ; k, used here are generic; in other words they are not assumed to have
a foliation structure, nor curvature properties as the surfaces in our main result, Theorem 1.2.

We assume the transversality condition: there exists � > 0 such that

vol.N1.�1/; : : : ;Nk.�k//� � (5-1)

for all choices �i 2†i.Ui/. Here by vol.N1.�1/; : : : ;Nk.�k// we mean the volume of the k-dimensional
parallelepiped spanned by the vectors N1.�1/; : : : ;Nk.�k/.

Each of these (parametrizations of) hypersurfaces generates the corresponding Ei operator

Eif .x/D

Z
Ui

eix�†i .�/f .�/ d�:

6. The multilinear estimate: localization and superposition

In this section we provide the proof of a localized version of the multilinear estimate. The motivation
comes from the argument in the previous section. The proofs build on the ideas introduced in [Bejenaru
2017a] and later refined in [Bejenaru 2017b].
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We work under the setup described in Section 5. Given unit vectors NkC1; : : : ;NnC1, we introduce
the following transversality condition: there exists � > 0 such that

j det.N1.�1/; : : : ;Nk.�k/;NkC1; : : : ;NnC1/j � � (6-1)

for all choices �i 2†i.Ui/.
Assume†1.suppf1/�B.H1; �/, where B.H1; �/ is the neighborhood of size � of the k-dimensional

affine subspace H1. Assume that jN1.�1/ � �H1
N1.�1/j . � for all �1 2 †1.suppf1/, where �H1

W

RnC1!H1 is the projection onto H1. In addition assume that if Ni , i D kC 1; : : : ; nC 1, is a basis of
the normal space H?

1
to H1, then N1.�1/; : : : ;Nk.�k/;NkC1; : : : ;NnC1 are transversal in the sense of

(6-1). Under these hypotheses we proved in [Bejenaru 2017b, Theorem 1.3] that kY
iD1

Eifi


L2=.k�1/.B.0;r//

� C.�/�
n�kC1

2 r �
kY

iD1

kfikL2.Ui /
: (6-2)

The multilinear estimate (6-2) is a statement about the product of some functions in L2=.k�1/. It
is very natural to ask how this estimate behaves with respect to superpositions of one factor, that is,
replacing f1 by

P
˛ f1;˛. If 2=.k � 1/� 1, then the triangle inequality holds true in L2=.k�1/ and the

answer is simple: in a sublinear fashion. If 2=.k � 1/ < 1, the triangle inequality fails in L2=.k�1/ and
the sublinearity cannot be argued in the same way. However,E1

�X
˛

f1;˛

� kY
iD2

Eifi


L2=.k�1/.B.0;R//

� C.�/R�

X
˛

f1;˛


L2

kY
iD2

kfikL2.Ui /

� C.�/R�
X
˛

kf1;˛kL2

kY
iD2

kfikL2.Ui /

and this indicates again sublinear behavior with respect to superpositions of one input. In the above the
set of indexes ˛ is taken to be of finite cardinality (to avoid unnecessary distractions) and the key point is
that the estimate is independent of the cardinality of this set.

The main question is whether the sublinearity aspect of the estimate holds true for the refinement (6-2)
of the multilinear estimate. An a posteriori argument as above fails to give the optimal result when each
term f1;˛ has good localization properties, but

P
˛f1;˛ does not have such localization properties.

Setup. We are given J, a finite set, and open, bounded and connected sets U1;˛ � H1;˛ for all ˛ 2 J,
where H1;˛ are affine hyperplanes. For each ˛ 2 J we assume the following: there are k-dimensional
hyperplanes H0

1;˛
with the property that S1;˛ D †1;˛.U1;˛/ � B.H0

1;˛
; �/, where B.H0

1;˛
; �/ is the

neighborhood of size � of H0
1;˛

. The following property holds: jN1.�1/� �H0
1;˛

N1.�1/j . � for all
�1 2 S1;˛, where �H0

1;˛
W RnC1 ! H0

1;˛
is the projection onto H0

1;˛
. Let zH1;˛ D H1;˛ \H0

1;˛
be the

.k�1/-dimensional affine subspace zH1;˛ �H1;˛; we also assume that U1;˛ � B. zH1;˛; �/.
We assume that S1;˛ � S1 D †1.U1/ for all ˛ 2 J, and S1 satisfies the following global property:

there is an orthonormal set of vectors Ni , i D k; : : : ; nC 1, such that (6-1) is satisfied.
For each ˛ 2 J, we assume that if Ni , i D kC1; : : : ; nC1, is a basis of the normal space zH?1;˛ �H1;˛ ,

then N1.�1/; : : : ;Nk.�k/;NkC1; : : : ;NnC1 are transversal in the sense of (6-1).
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For each ˛ 2 J we define

E1;˛f .x/D

Z
U1;˛

eix�†1;˛.�/f .�/ d�:

Without restricting the generality of the problem, we can assume that S1;˛ are of graph type; that is,
†1;˛.�

˛/D .�˛; '1;˛.�
˛//, where �˛ is the coordinate in H1;˛ . In addition, for each ˛, we pick and fix

some �1;˛ 2 U1;˛.
The next result states how the multilinear estimate behaves with respect to superposition of localized

functions.

Theorem 6.1. We assume the Setup above. Let �;R> 0 be such that R���1. Then for any � > 0, there
is C.�/ such that the following holds true:�X

˛

E1;˛f1;˛

� kY
iD2

Eifi


L2=.k�1/.B.0;R//

� C.�/�
nC1�k

2 R�

�X
˛

kf1;˛kL2.U1;˛/

� kY
iD2

kfikL2.Ui /
:

(6-3)

In Section 4 we used the following consequence of the above theorem.

Corollary 6.2. We assume the Setup above. Assume that �� r�1 and q is a cube of size� r . Then for
any � > 0, there is C.�/ such that the following holds true:�X

˛

E1;˛f1;˛

� kY
iD2

Eifi


L2=.k�1/.q/

� C.�/r�
nC1

2 r �
�X
˛

k Q�qE1;˛f1;˛kL2

� kY
iD2

k Q�qEifikL2 : (6-4)

We note that the apparent gain of a factor of r�k=2 in this corollary over the result in Theorem 6.1 has
to do with replacing kfikL2.Ui /

by k Q�qEifikL2 .
The result of the corollary is not an immediate consequence of Theorem 6.1; but it follows easily from

the arguments used in the proof of Theorem 6.1.
The plan is the following: we introduce some notation specific to this section and then we proceed

with the proof of the above two results.

6A. Notation. Assume H1 �RnC1 is a hyperplane passing through the origin. Let N1 be its normal and
let �N1

W RnC1!H1 be the associated projection along the normal N1. We denote by F1 WH1!H1

the Fourier transform and by F�1
1

the inverse Fourier transform. We denote the variables in RnC1 by
x D .x1;x

0/, where x1 is the coordinate along N1 and x0 is the coordinate along H1. We denote by � 0

the Fourier variable corresponding to x0. For f W U1 �H1! C, f 2L2.U1/, the operator E1 takes the
form

E1f .x/D

Z
U1

ei.x0�0Cx1'1.�
0//f .� 0/ d� 0: (6-5)

We define the differential operator r'1.D
0= i/ to be the operator with symbol r'1.�

0/. The following
commutator estimate holds true:�

x0�x00�x1r'1

�
D0

i

��N

E1f D E1.F1..x
0
�x00/

NF�1
1 f // for all N 2 N: (6-6)
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This is a direct computation using (6-5) and it suffices to check it for N D 1. The role of (6-6) will be to
quantify localization properties of F�1

1
f on hyperplanes with x1 D constant.

We take Hi , i D 1; : : : ; k, to be reference hyperplanes that are used in defining Eifi , i D 1; : : : ; k.
Their normals are denoted by Ni , i D 1; : : : ; k, respectively. Note that since S1;˛ � S1 for all ˛ 2 J, it
follows that N1 is transversal to all H1;˛. We then pick unit vectors NkC1; : : : ;NnC1 such that (6-1) is
satisfied.

We construct L WD fz1N1C� � �CznC1NnC1 W .z1; : : : ; znC1/2ZnC1g to be the oblique lattice in RnC1

generated by the unit vectors N1; : : : ;NnC1. In each Hi , i D 2; : : : ; k, we construct the induced lattice
L.Hi/D �Ni

.L/; this is a lattice since the projection is taken along a direction of the original lattice L.
Given r > 0 we define C.r/ to be the set of parallelepipeds of size r in RnC1 relative to the lattice L; a

parallelepiped in C.r/ has the form

q.j / WD
�
r
�
j1�

1
2

�
; r
�
j1C

1
2

��
� � � � �

�
r
�
jnC1�

1
2

�
; r
�
jnC1C

1
2

��
;

where j D .j1; : : : ; jnC1/2ZnC1. For such a parallelepiped we define c.q/D rj D .rj1; : : : ; rjnC1/2 rL
to be its center. For each i D 2; : : : ; k, we let CHi.r/D �Ni

C.r/ be the set of parallelepipeds of size r in
the hyperplane Hi . Given two parallelepipeds q; q0 2 C.r/ or CHi.r/ we define d.q; q0/ to be the distance
between them when considered as subsets of the underlying space, which we take to be RnC1 or Hi .

For each i 2 f2; : : : ; kg, r > 0, we define the linear operator Ti WHi!Hi to be the operator that takes
L.Hi/ to the standard lattice Zn in Hi . Then for each q 2 CHi.r/, define �q WHi! R by

�q.x/D �0

�
Ti

�
x� c.q/

r

��
:

Notice that Fi�q has Fourier support in the ball of radius . r�1. By the Poisson summation formula and
properties of �0, X

q2CHi .r/

�q D 1: (6-7)

Using the properties of �q , a direct exercise shows that for each N 2 N, the following holds true:

X
q2CHi .r/

�x� c.q/

r

�N

�qg

2

L2

.N kgk
2
L2 (6-8)

for any g 2L2.Hi/. Here, the variable x is the argument of g and belongs to Hi .
Next we turn our attention to similar objects corresponding to the more complex family indexed by

˛ 2 J. Given zH1;˛ �H1;˛ a subspace of dimension k � 1, we let Q�˛ WH1;˛! zH1;˛ be the orthogonal
projection onto zH1;˛. We denote by . zH1;˛/

? the normal subspace to zH1;˛ in H1;˛.
We let �N1;˛

WRnC1!H1;˛ be the projection onto H1;˛ and Q�1;˛ WD Q�˛ ı�N1;˛
WRnC1! zH1;˛ be the

projection onto zH1;˛ . We define the lattices L.H1;˛/D Zn inside H1;˛ and L. zH1;˛/D Zk�1 inside zH1;˛

with respect to orthonormal basis in each case. They are constructed such that Q�˛.L.H1;˛//D L. zH1;˛/;
this holds true if the orthonormal basis in zH1;˛ is a subset of the orthonormal basis in H1;˛.
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Inside the subspace H1;˛ we construct C1;˛.r/ to be the set of cubes of size r centered at points from the
lattice rL.H1;˛/ and sides parallel to the directions of the lattice. Inside the subspace zH1;˛ we construct
zC1;˛.r/ be the set of cubes of size r centered at points from the lattice rL. zH1;˛/ with sides parallel to the
directions of the lattice. Therefore zC1;˛.r/D Q�

˛C1;˛.r/. Then we define S1;˛.r/ to be the set of infinite
cubical strips sD q � . zH1;˛/

? �H1;˛, where q 2 zC1;˛.r/. We denote by c.s/ WD c.q/� rL. zH1;˛/ the
center of the strip. We note that given q1; q2 2 C1;˛.r/, they belong to the same cubical strip in S1;˛.r/

if and only if Q�˛q1 D Q�˛q2. For q 2 C1;˛.r/, we let s. Q�˛q/ be the infinite cubical strip it belongs to as a
subset in S1;˛.r/. Given a strip s 2S1;˛.r/ we define �s WH1;˛! R

�s.x/D �0

�
Q�1;˛.x/� c.s/

r

�
;

where, by abusing notation, �0 W R
k�1! R is entirely similar to the �0 introduced in Section 6A, except

that it acts on Rk�1 instead of Rn. A key property of �s is that it is constant in directions from the
subspace . zH1;˛/

?.
One unpleasant feature of the above construction is that the lattice L does not project exactly into

the lattices L. zH1;˛/ via Q�1;˛; similarly C˛.r/ does not project well into zC1;˛.r/ via Q�1;˛. This is an
inherent feature of the fact that there are too many subspaces zH1;˛ . As a consequence, given q 2 C.r/, it
is not necessarily true that Q�1;˛.q/ 2 zC1;˛.r/; however Q�1;˛.q/ intersects a finite number of q0 2 zC1;˛.r/.
Abusing notation, we define

s˛. Q�1;˛.q//D
[

q02zC1;˛.r/

q0\Q�1:˛.q/¤∅

s˛.q0/;

the strip generated by the projection of q onto zH1;˛.
Recalling that L WD fz1N1C � � �C znC1NnC1 W .z1; : : : ; znC1/ 2 ZnC1g, we denote the coordinates of

a point in the lattice by .z1; : : : ; znC1/ and define

kgkl1z1;zkC1;:::;znC1
l2
z2;:::;zk

.L/ D supz1;zkC1;:::;znC1
kg.z1; � ; zkC1; : : : ; znC1/kl2

z2;:::;zk

;

where � stands for the variables z2; : : : ; zk with respect to which l2 is computed.
With this notation in place we have the following result:

Lemma 6.3. Assume g1 2 l1z1;zkC1;:::;znC1
l2
z2;:::;zk

.L/ and gi 2 l2.L.Hi//, i D 2; : : : ; k. Then the
following holds true:g1.z/

kY
iD2

gi.�Ni
.z//


l2=.k�1/.L/

. kg1kl1z1;zkC1;:::;znC1
l2
z2;:::;zk

.L/

kY
iD2

kgikl2.L.Hi //
: (6-9)

Proof. The function gi ı �Ni
is independent of the zi-variable; therefore it holds true that gi ı �Ni

2

l2
z1;zkC1;:::;znC1

l2
z2;:::;zi�1

l1zi
l2
ziC1;:::;zk

and

kgi ı�Ni
kl2

z1;zkC1;:::;znC1
l2
z2;:::;zi�1

l1zi
l2
ziC1;:::;zk

� kgikl2.L.Hi //
;
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where then norms l2
z1;zkC1;:::;znC1

l2
z2;:::;zi�1

l1zi
l2
ziC1;:::;zk

are defined in the standard fashion. Then the
result is a direct consequence of the Hölder inequality in its discrete version. �

6B. Proofs of the main results.

Proof of Theorem 6.1. The argument is based on an induction on scales. Given a 0< ı� 1, we break the
surfaces into smaller pieces of diameter . ı. A result on the smaller scales is converted to a result at the
original scale at the cost of a large power of ı�1, which is absorbed into C.�/. Thus, the focus will be on
providing a result in the context of surfaces with diameter less than ı.

We run an induction with respect to the size of the cube where estimates are made. We show that
passing from an estimate on cubes of size R to an estimate on cubes of size ı�1R can be done by
accumulating constants that are independent of ı and R. In implementing this approach, we use a
phase-space approach that alters the support of f1;˛; f2; : : : ; fk by a factor � R�1=2 where R � ı�2.
This is fine with f2; : : : ; fk but not with f1;˛ , ˛ 2 J, given that their support in some directions is �� ı.
This will require extra care.

We work under the hypothesis that Ui � Bi.0I ı/, i D 2; : : : ; k, where Bi.0I ı/ is the ball in the
hyperplane Hi . For a function fi WHi! C, its margin is defined as

margini.fi/ WD dist.supp.f /;Bi.0I 2ı/
c/; i D 2; : : : ; k; (6-10)

where supp is the support of fi .
We work under the hypothesis that U1;˛ � B0.0I ı/ � B00.0I�/, where B0.0I ı/ is the ball in the

hyperplane zH1;˛ centered at the origin and of diameter ı and B0.0I�/ is the ball in the hyperplane
. zH1;˛/

? centered at the origin and of diameter �. Accordingly, we split the coordinates in H1;˛ as
�˛ D .� 0; ˛; � 00; ˛/, where � 0; ˛ is the coordinate in zH1;˛ and � 00; ˛ is the coordinate in . zH1;˛/

?. Given a
function f WH1;˛! R, its margin is defined by

margin1;˛.f / WD inf
� 00;˛

dist
�
supp� 0;˛ .f . � ; �

00; ˛//;B0.0I 2ı/c
�
; (6-11)

where supp� 0;˛ is the support of f in the � 0; ˛-variable. On the physical side we denote by x 0; ˛;x 00; ˛ the
dual variables to � 0; ˛; � 00; ˛, respectively. We complete the system of coordinates to .�˛

1
; � 0; ˛; � 00; ˛/ and

.x˛
1
;x 0;˛;x 00; ˛/, where �˛

1
is the coordinate in the direction of N1;˛, the normal to H1;˛, and x˛

1
is the

dual coordinate.
Our induction aims at quantifying the behavior of A.R/ defined below.

Definition 6.4. Given R� ı�2 we define A.R/ to be the best constant for which the estimate�X
˛

jE1;˛f1;˛j

� kY
iD2

Eifi


L2=.k�1/.Q/

�A.R/

kY
iD1

kfikL2 (6-12)

holds true for all parallelepipeds Q 2 C.R/, with fi obeying the margin requirement

margini.fi/� ı�R�
1
2 ; i D 2; : : : ; k; margin1;˛.f1;˛/� ı�R�

1
2 for all ˛ 2 J; (6-13)

and f1;˛ is supported in B. zH1;˛I�/�H1;˛ for all ˛ 2 J.
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Note that in (6-12) we use absolute values. This indicates that we do not use any cancellation properties
between the components E1;˛f1;˛ . However, using the stronger statement with the absolute values plays
a crucial role in carrying out the induction argument.

We start with the parallelepiped Q of size ı�1R centered at the origin. To keep notation compact we
define

H D

kY
iD2

Eifi ; G D

kY
iD2

kfikL2 :

For each q 2 C.R/\Q, the induction hypothesis is�X
˛

jE1;˛f1;˛j

�
�H


L2=.k�1/.q/

�A.R/

�X
˛

kf1;˛kL2.U1;˛/

�
G: (6-14)

We claim the following strengthening of (6-14):�X
˛

jE1;˛f1;˛j

�
�H


L2=.k�1/.q/

.N A.R/

kY
iD2

� X
q02CHi .R/

�
d.�Ni

q; q0/

R

��.2N�n2/�x� c.q0/

R

�N

�q0F�1
i fi

2

L2

�1
2

�

X
˛

� X
s˛2S1;˛.R/

�
d. Q�1;˛.q/; s

˛/

R

��.2N�2k/�x 0; ˛ � c.s˛/

R

�N

�s˛F�1
1;˛f1;˛

2

L2

�1
2

: (6-15)

Similar improvements were provided in [Bejenaru 2017a]; in particular the improvement for the terms fi ,
i D 2; : : : ; k, was established, as claimed above (it can also be derived along similar, but simpler, lines
as those in the arguments we provide below for the f1;˛ terms). The improvement for f1;˛ was also
provided in that paper in the case when there is only one function f1;˛, that is, J contains one element
only. Here we provide an argument for general finite sets J and note that the cardinality of J does not
impact A.R/.

Therefore, in justifying (6-15) we focus on the improvement for the f1;˛ terms only. Given q2C.R/\Q

and d 2 N, let

A˛.q; d/D

�
s 2S1;˛.r/ W

�
d. Q�1;˛.q/; s/

R

�
� d

�
:

We can modify the sets such that each strip s belongs to only one A˛.q; d/.
From (6-6) we obtain the identityX

˛

X
s˛2A˛.q;d/

ˇ̌̌̌�
x 0; ˛ � c.s˛/�x˛1r�0˛'1

�
D˛

i

��
E1;˛F1;˛�s˛F�1

1;˛f1;˛

ˇ̌̌̌
D

X
˛

X
s˛2A˛.q;d/

jE˛1 F1;˛.x
0; ˛
� c.s˛//�s˛F�1

1;˛f1;˛j; (6-16)
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where the differential operator r�0˛'1.D
˛= i/ has symbol r�0˛'1.�

˛/. We have the following sequence
of estimates:X
˛

X
s˛2A˛.q;d/

j.x 0; ˛ � c.s˛/�x˛1r�0˛'1.�1;˛//E1;˛F1;˛�s˛F�1
1;˛f1;˛j �H


L2=.k�1/.q/

�

X
˛

X
s˛2A˛.q;d/

j.x 0; ˛ � c.s˛/�x˛1r�0˛'1.�
˛//E1;˛F1;˛�s˛F�1

1;˛f1;˛j �H


L2=.k�1/.q/

C
x˛1 .r�0˛'1.�1;˛/�r�0˛'1.�

˛//E1;˛F1;˛�s˛F�1
1;˛f1;˛ �H


L2=.k�1/.q/

:

We invoke (6-16) and continue with

D

X
˛

X
s˛2A˛.q;d/

jE1;˛F1;˛.x
0; ˛
� c.s˛//�s˛F�1

1;˛f1;˛j �H


L2=.k�1/.q/

C

X
˛

X
s˛2A˛.q;d/

x˛1 E1;˛F1;˛.r�0˛'1.�1;˛/�r�0˛'1.�
˛//�s˛F�1

1;˛f1;˛/


L2=.k�1/

:

We apply the induction hypothesis, and use that inside Q we have jx˛
1
j. ı�1R for all ˛ 2 J, to further

continue with

�A.R/

�X
˛

X
s˛2A˛.q;d/

k.x 0; ˛ � c.s˛//�s˛F�1
1;˛f1;˛kL2

�
G

CA.R/ı�1R

�X
˛

X
s˛2A˛.q;d/

k.r�0˛'1.�1;˛/�r�0˛'1.�
˛//�s˛F�1

1;˛f1;˛kL2

�
G

.A.R/

�X
˛

X
s˛2A˛.q;d/

k.x 0; ˛ � c.s˛//�s˛F�1
1;˛f1;˛kL2 CRk�s˛F�1

1;˛f1;˛kL2

�
G

.RA.R/

�X
˛

X
s˛2A˛.q;d/

�x 0; ˛ � c.s˛/

R

�
�s˛F�1

1;˛f1;˛


L2

�
G:

Note that it is in the above use of the induction estimate for E1;˛F1;˛.x
0; ˛ � c.s˛//�s˛F�1

1;˛
f1;˛ that we

need to tolerate the relaxed support of f1;˛ . The margin of f1;˛ is� ı�.ı�1R/�1=2D ı�ı1=2R�1=2 and
it is affected by the convolution F1;˛..x

0; ˛ � c.s˛//�s˛ / by a factor of at most CR�1, which is smaller
than 1

2
ı1=2R�1=2 provided that ı is small relative to C�1. Hence the new margin is � ı� 1

2
ı1=2R�1=2 �

ı�R�1=2, which is the required margin for using the induction hypothesis on cubes of size R.
We claim that for any s˛ 2A˛.q; d/�x 0; ˛ � c.s˛/�x˛

1
r� 0;˛'1.�1;˛/

R

�
L1.q/

�

�
d. Q�1;˛.q/; s

˛/

R

�
� d

uniformly in ˛. This statement is invariant to rotations of coordinates, therefore we can assume that
r�˛'1.�1;˛/ D 0 and moreover that x 0; ˛ D .x2; : : : ;xk/ and x 00; ˛ D .xkC1; : : : ;xnC1/. This way,
Q�1;˛.x/D .0;x2; : : : ;xk ; 0; : : : ; 0/ and the statement is obvious.
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From the above we obtain that, for d large,

dR
X
˛

X
s˛2A˛.q;d/

jE1;˛F1;˛�s˛F�1
1;˛f1;˛j

.
X
˛

X
s˛2A˛.q;d/

j.x 0; ˛ � c.s˛/�x˛1r�0˛'1.�1;˛//E1;˛F1;˛�s˛F�1
1;˛f1;˛j:

Combining all the above estimates gives

dR

X
˛

X
s˛2A˛.q;d/

jE1;˛F1;˛�s˛F�1
1;˛f1;˛j �H


L2=.k�1/.q/

.
X
˛

X
s˛2A˛.q;d/

j..x 0; ˛/� c.s˛/�x˛1r� 0;˛'1.�1;˛//E1;˛F1;˛�s˛F�1
1;˛f1;˛j �H


L2=.k�1/.q/

.RA.R/

�X
˛

X
s˛2A˛.q;d/

�x 0; ˛ � c.s˛/

R

�
�s˛F�1

1;˛f1;˛


L2

�
G:

From this we conclude with (after more iterations of the same argument)X
˛

X
s˛2A˛.q;d/

jE1;˛F1;˛�s˛F�1
1;˛f1;˛j �H


L2=.k�1/.q/

. d�N A.R/
X
˛

X
s˛2A˛.q;d/

�x 0; ˛ � c.s˛/

R

�N

�s˛F�1
1;˛f1;˛


L2

�G:

Note, that while the argument above assumed d is large, this last inequality holds for all d , since it is
trivial for d small. The summation over d is done in the usual manner:X
˛

jE1;˛f1;˛jH

 2
k�1

L2=.k�1/.q/

D

X
d

X
˛

X
s˛2A˛.q;d/

jE1;˛F1�s˛F�1
1 f1;˛jH

 2
k�1

L2=.k�1/.q/

.
X

d

X
˛

X
s˛2A˛.q;d/

jE1;˛F1;˛�s˛F�1
1;˛f1;˛jH

 2
k�1

L2=.k�1/.q/

. .A.R//
2

k�1

X
d

d�N � 2
k�1

�X
˛

X
s˛2A˛.q;d/

�x 0; ˛ � c.s˛/

R

�N

�s˛F�1
1 f1;˛


L2

� 2
k�1

G
2

k�1 :

Using (1-8) together with the straightforward estimate

kd�
k
2 k

l
2=.k�1/
N

. 1;
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and we can continue the sequence of inequalities we started aboveX
˛

jE1;˛f1;˛jH

 2
k�1

L2=.k�1/.q/

. .A.R//
2

k�1

d�.N�
k
2
/
X
˛

X
s˛2A˛.q;d/

�x 0; ˛ � c.s˛/

R

�N

�s˛F�1
1 f1;˛


L2

 2
k�1

l2
d

G
2

k�1

. .A.R//
2

k�1

�X
˛

d�.N�
k
2
/

X
s˛2A˛.q;d/

�x 0; ˛ � c.s˛/

R

�N

�s˛F�1
1 f1;˛


L2


l2
d

� 2
k�1

G
2

k�1

. .A.R//
2

k�1

�X
˛

�X
s˛

�
d. Q�1;˛.q/; s

˛/

R

��.2N�2k/�x 0; ˛ � c.s˛/

R

�N

�s˛F�1
1 f1;˛

2

L2

�1
2
� 2

k�1

G
2

k�1 :

In passing to the last line we used that the cardinality of A˛.q; d/ is � hdik�1 in order to bound the
l1
s˛2A˛.q;d/

-norm of the summand by the l2
s˛2A˛.q;d/

of the same quantity.
We are done with the justification of (6-15) and continue with the final step in the induction on scales.

We define the functions gi W L.Hi/! R for i D 2; : : : ; k by

gi.j /D

� X
q02CHi .R/

�
d.q.j /; q0/

R

��.2N�n2/�x0� c.q0/

R

�N

�q0F�1
i fi

2

L2

�1
2

for j 2 L.Hi/, and g1 W L! R by

g1.j /D
X
˛

�X
s˛

�
d. Q�1;˛.q.j //; s

˛/

R

��.2N�2k/�x 0; ˛ � c.s˛/

R

�N

�s˛F�1
1 f1;˛

2

L2

�1
2

for j 2 L. Using (6-8), it is obvious that, provided N is large enough (in terms of n only), the following
holds true:

kgikl2.L.Hi /
. kfikL2 ; i D 2; : : : ; k:

We also claim that

kg1kl1z1;zkC1;:::;znC1
l2
z2;:::;zk

.L/ .
X
˛

kf1;˛kL2 : (6-17)

This is a consequence of the following geometrical observation: Say j D
PnC1

iD1 ziNi , where zi 2 Z.
We fix z1; zkC1; : : : ; znC1 and note that as we vary z2; : : : ; zk , the Q�1;˛.q.j // are almost disjoint and,
most importantly, the strips they generate, s˛. Q�1;˛q.j //�S1;˛.R/, are almost disjoint for each ˛ 2 J

(given a point in H1;˛ there are finitely many j such that the point belongs to s˛. Q�1;˛q.j //). This is
due to the fact that the projections Q�1;˛ onto the affine subspace zH1;˛ are taken along directions that
are transversal to N2; : : : ;Nk and the infinite sides of the strips are in directions that are transversal to
N2; : : : ;Nk . Using this geometric observation, (6-17) follows from the equivalent of (6-8) for strips.
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Then we apply (6-9) to conclude with�X
˛

jE1;˛f1;˛j

�
�H


L2=.k�1/.Q/

.A.R/

kY
iD1

kfikL2 :

Thus we obtain
A.ı�1R/� CA.R/

for a constant C that is independent of ı and R. Iterating this gives A.ı�N r/ � C N A.r/. Therefore
maxr2Œ0;ı�2�A.ı

�N r/ � C N maxr2Œ0;ı�2�A.r/ D C N C.ı/�.nC1�k/=2 is obtained from the uniform
pointwise bound�X

˛

jE1;˛f1;˛j

� kY
iD2

Eifi


L1
.
X
˛

jE1;˛f1;˛j


L1

kY
iD2

kEifikL1

. �
nC1�k

2

�X
˛

kf1;˛kL2

� kY
iD2

kfikL2 ; (6-18)

which is integrated over arbitrary cubes of size � ı�2. Note that we have used the support properties of
f1;˛ to obtain the improved bound.

For R 2 Œı�N ; ı�N�1�, the above implies

A.R/� C N C.ı/�
nC1�k

2 �R�C.ı/�
nC1�k

2

provided that C N � ı�N�. Therefore choosing ı D C�1=� leads to the desired result. �

Proof of Corollary 6.2. In each Hi , i D 1; : : : ; k, yi 2 R, we define Hi C yiNi to be the translation
of Hi by yiNi . Also CHi.r/CyiNi is the corresponding translation of CHi.r/ by yiNi .

Given any vector y 2 RnC1 with jyi � ci.q/j � r , i D 1; : : : ; k, and yi D ci.q/, kC 1 � i � nC 1,
we claim�X

˛

jE1;˛f1;˛j

�
�H


L2=.k�1/.q/

.N C.�/r ��
n�kC1

2

kY
iD2

� X
q02CHi .r/Cyi Ni

�
d.�Ni

q;q0/

r

��.2N�n2/�x�c.q0/

r

�N

�q0F�1
i fi

2

L2.HiCyi Ni /

�1
2

�

X
˛

� X
q02C1;˛.r/Cy1N1

�
d. Q�1;˛.q/;q

0/

r

��.2N�2k/�x˛�c.q0/

r

�N

�q0F�1
1;˛f1;˛

2

L2.H1;˛Cy1N1/

�1
2

:

It suffices to prove this estimate for y D 0, in which case it is very similar to (6-15). Except that, for the
f1;˛ terms we do not use strips, but cubes. This should be a reason for concern, as the use of strips was
necessary to keep the localization of the f1;˛ at scale � intact throughout the induction process. However,
given that �� r�1, the multiplication with �q0 alters the localization by a factor of r�1 � �. A similar
argument to the one used in the proof of (6-15) gives the above estimate.
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Next we average the above estimate over the values of .y1; : : : ;yk/ satisfying jyi�ci.q/j � r (keeping
yi D ci.q/, i � kC 1) to obtain kY

iD1

Eifi


L1.q/

.C.�/r �.r�1/
n�kC1

2 r�
k
2

�

kY
iD1

�Z
jyi j�r

X
q02CHi .r/Cyi Ni

�
d.�Ni

q;q0/

r

��N �x�c.q0/

r

�N

�q0Eifi

2

L2.HiCyi Ni /

�1
2

.C.�/r �r�
nC1

2

kY
iD1

k Q�qEifikL2 ;

which finishes the proof. �

7. A new multilinear estimate

In this section we address (4-10), the last supporting detail in the proof of Proposition 4.1. As described in
Section 5, we are given k smooth hypersurfaces Si D†i.Ui/ with smooth parametrizations †i obeying
(5-1). These hypersurfaces can be thought of as living in the frequency space and generate the operators Ei .
In addition we are given another smooth surface S of dimension n� kC 1, which should be thought of
as living in the physical space, with the following properties:

(P1) S is uniformly transversal to N1.�1/; : : : ;Nk.�k/ for all choices �i 2 Si . There exists � > 0 such
that, for any �i 2 Si , i D 1; : : : ; k, for any y 2 S and for any orthonormal basis vkC1; : : : ; vnC1 of TyS ,
the following holds true:

vol.N1.�1/; : : : ;Nk.�k/; vkC1; : : : ; vnC1/� �:

(P2) There exists � > 0 such that for any P1;P2 2 S , for any �1 2 S1, for any �i 2 Si , �j 2 Sj ,
2� i < j � k and for any ˛i ; j̨ 2 R, the following holds true:

vol.
���!
P1P2;N1.�1/;

�!v /� �j
���!
P1P2j � j

�!v j; (7-1)

where �!v D ˛iNi.�i/� j̨ Nj .�j /.

As already mentioned in Section 5, in this section we make no curvature assumptions on Si . However,
we note that property (P2) follows from curvature properties similar to those used in Theorem 1.2; in
other words the curvature properties have been encoded in the structure of S .

Given r > 0, we recall that C.r/ is the set of unit cubes in RnC1 with centers in the lattice rZnC1. With
S as above and for each q 2 C.r/, we define

S.q/D qCS \B.0; r2/:

Here S \B.0; r2/ should be understood as follows: we cut the surface S at scale � r2, and whether this
is performed in a ball or cube, centered at the origin or somewhere else, is unimportant. The reason for
doing this comes from the use of wave packets and their scales.
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More generally, given a subset A� C.r/, we define

S.A/D
[
q2A

S.q/:

The main result of this section is the following theorem.

Theorem 7.1. Assume that Si , i D 1; : : : ; k, and S are as above. Then for any � > 0, there is C.�/ such
that the following holds true:� X

q2C.r/\B.0;r2/

�
kE1f1kL2.S.q//

kY
iD2

kEifikL2.q/

� 2
k�1

�k�1
2

� C.�/r
k
2 r �

kY
iD1

kfikL2.Ui /
: (7-2)

The above result has a multilinear flavor to it. The factor rk=2 has to appear because we consider
the mass of Eifi in neighborhoods of size r of hypersurfaces across which we would have good energy
estimates; see the proof of the theorem for details. Otherwise (7-2) is similar to a multilinear restriction
estimate, see (6-2) (with �D 1), except that now, one of the objects E1f1 is measured in a more complex
fashion.

The complexity of this estimate does not stem from the fact that we collect energy from various spatial
regions; indeed if vi are arbitrary vectors, then an estimate of the type kY

iD1

kEifikL2.qCvi /


l

2=.k�1/
q

. r
k
2 r �

kY
iD1

kfikL2.Ui /

is similar to the one with vi D 0, which in turn is similar to (6-2) (with �D 1).
The complexity has to do with the factor kkE1f1kL2.Ui /

kL2.qCv1/
being replaced with kE1f1kL2.qCS/,

that is, with collecting the energy of E1f1 not only across a cube qC v1, but across a thickened surface
qCS . It is the dimensionality of the surface S being n�kC1 versus that of v1 being 0 that changes the
character of the estimate. Another feature to point out is the following: the classical multilinear estimate
improves under certain localization properties of the support of the interacting functions (see the �-factor
in (6-2)); (7-2) does not improve under such localizations.

In [Bejenaru 2017b] we provided an energy estimate of the type

kE1f1kL2. zSCq/
. r

1
2 kf1kL2.U1/

; (7-3)

where zS is a hypersurface (i.e., of codimension 1) that is transversal to the propagation directions of
E1f1, that is, to any N1.�1/ with �1 2 S1.

The starting point of the arguments in this section is a refinement of (7-3) in terms of wave packets.
We use the result of Lemma 3.4 with c D 1 and RD 4r2 to obtain the wave packet decomposition

E1f1 D

X
T12T1

�T1
:

We also recall the definition of cN .T1/ from (3-12) and their property (3-13).
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Lemma 7.2. There exists N 2N such that for any q 2 C.r/ centered inside B.0; r2/, the following holds
true:

kE1f1kL2.S.q// . r
1
2

� X
T12T1

�
d.T1;S.q//

r

��N

c2N .T1/
2

�1
2

: (7-4)

Proof. For every q 2 C.r/ whose center lies inside B.0; r2/, it is obvious that S.q/ � B.0; 4r2/. We
write

kE1f1k
2
L2.S.q//

.
X

q0\S.q/¤∅

kE1f1k
2
L2.q0/

.
X

q0\S.q/¤∅

X
T12T1

k�T1
k

2
L2.q0/

D

X
T12T1

X
q0\S.q/¤∅

k�T1
k

2
L2.q0/

.
X

T12T1

X
q0\S.q/¤∅

Q�T1
.xq0 ; tq0/

N
Q�T1
.xq0 ; tq0/

�N
k�T1
k

2
L2.q0/

.
X

T12T1

�
d.T1;S.q//

r

��N

rc2N .T1/
2:

In justifying the last line we used the following two estimates: the obvious estimate

suppq0\S.q/¤∅ Q�T1
.xq0 ; tq0/

N .
�
d.T1;S.q//

r

��N

;

as well as X
q0\S.q/¤∅

Q�T1
.xq0 ; tq0/

�N
k�T1
k

2
L2.q0/

. rc2N .T1/
2: (7-5)

We justify (7-5) as follows: From (3-12) we obtain

suppq0 Q�T .xq0 ; tq0/
�2N
k�T1
k

2
L2.q0/

. rc2N .T1/
2:

Then (7-5) follows from X
q0\S.q/¤∅

Q�T1
.xq0 ; tq0/

N . 1:

But, choosing N large enough, this is a direct consequence of the transversality between T1 and S.q/. �

Proof of Theorem 7.1. As we already explained in the proof of Theorem 6.1, it suffices to establish the
result under the following assumption: given some 0< ı� 1, the diameter of Ui is � ı.

The setup is also similar to the one in Section 6. We pick �0
i 2 †i , let Ni D Ni.�

0
i / be the normal

to †i and let Hi be the transversal hyperplane passing through the origin with normal Ni.�
0
i /. Using a

smooth change of coordinates, we can assume that Ui �Hi and that

Eifi D

Z
Ui

ei.x0�0Cxi'i .�
0//fi.�

0/ d� 0; (7-6)

where x D .xi ;x
0/, xi is the coordinate in the direction of Ni and x0 are the coordinates in the directions

from Hi . Since the diameter of Ui is . ı, it follows that jr'i.x/�r'i.y/j. ı for any x;y 2Ui . Using
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the normals Ni we construct all entities described in Section 6A as well as the margin of a function
f WHi! C as defined in (6-10).

We complete the system of vectors by choosing NkC1; : : : ;NnC1 such that (6-1) is satisfied. We then
construct the lattice L WD fz1N1C� � �CznC1NnC1 W .z1; : : : ; znC1/ 2 ZnC1g and for a given r > 0 we let
C.r/ be the set of parallelepipeds of size r in RnC1 relative to the lattice L. The lattice L and the set of
parallelepipeds C.r/ obtained this way are “oblique”. Thus this set is different than the one claimed in (7-2),
which is built on the standard orthonormal basis. However, passing from results in terms of an oblique lat-
tice to the ones in the standard basis is easy: it can be done by changing coordinates, or by direct estimates.

Our induction aims at quantifying the behavior of A.R/ defined below.

Definition 7.3. Given r �R. r2 we define A.R/ to be the best constant for which the estimate� X
q2C.r/\Q

�
kE1f1kL2.S.q//

kY
iD2

kEifikL2.q/

� 2
k�1

�k�1
2

�A.R/r
k
2

� X
T12T1

�
d.T1;S.Q//

R

��N

c2N .T1/
2

�1
2

kY
iD2

kfikL2.Ui /
(7-7)

holds true for all parallelepipeds Q 2 C.R/, and all fi 2 L2.Ui/, i D 2; : : : ; k, obeying the margin
requirement

margini.fi/� ı�R�
1
2 : (7-8)

Note that in the above definition f1 2L2.U1/ is a fixed element, unlike f2; : : : ; fk , which can vary.
The above estimate holds true for RD r with A.r/� 1; indeed, it follows from (7-4) and the obvious

estimate
kEifikL2.q/ . r

1
2 kfikL2.Ui /

:

Note also that we limit the range of the argument to R . r2. This is important so as to be able to use
the wave packet described above.

Next, we proceed with the induction step. We provide an estimate inside any cube Q 2 C.ı�1R/ based
on prior information on estimates inside cubes Q 2 C.R/\Q. Without restricting the generality of the
argument, we assume that Q is centered at the origin and recall that each Q 2 C.R/\Q has its center
in L. When such a Q is projected using �Ni

onto Hi one obtains �Ni
Q 2 CHi . We let Q0 be the cube

in C.R/ centered at the origin.
We strengthen the induction hypothesis (7-7) to� X

q2C.r/\Q

�
kE1f1kL2.S.q//

kY
iD2

kEifikL2.q/

� 2
k�1

�k�1
2

.A.R/

� X
T12T1

�
d.T1;S.Q//

R

��N

c2N .T1/
2

�1
2

�

kY
iD2

� X
Q02CHi .R/

�
d.�Ni

Q;Q0/

R

��.N�2n2/�x� c.Q0/

R

�N

�Q0F�1
i fi

2

L2

�1
2

: (7-9)
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The improvement for the terms Eifi with i � 2 is standard by now, see (6-15) and the references to
[Bejenaru 2017a]. Using (7-9) we conclude the argument using the discrete Loomis–Whitney inequality
in (6-9). For i D 2; : : : ; n, we define the functions gi W L.Hi/! R by

gi.j /D

� X
Q02CHi .R/

�
d.Q.j /;Q0/

R

��.N�2n2/�x0� c.Q0/

R

�N

�q0F�1
i fi

2

L2

�1
2

; j 2 L.Hi/;

where we recall that Q.j / 2 CHi.R/ is the cube centered at Rj .
From (6-8), it is easy to see that for N large enough (depending only on n), gi 2 l2.Zn/, i D 2; : : : ; k,

with
kgikl2.L.Hi //

. kfikL2 :

For i D 1 and j 2 L, we recall that Q.j /DQ0CRj 2 C.R/ is the cube centered at Rj , and define

g1.j /D

� X
T12T1

�
d.T1;S.Q.j ///

R

��N

c2N .T1/
2

�1
2

:

We claim that g1 2 l1j1;jkC1;:::;jnC1
l2
j2;:::;jk

.D/, where D D fj 2 L W kj kl1 � ı�1g is the domain of
interest, together with the estimate

kg1kl1
j1;jkC1;:::;jnC1

l2
j2;:::;jk

.D/ .
� X

T12T1

�
d.T1;S.Q//

ı�1R

��N

c2N .T1/
2

�1
2

: (7-10)

We assume for a moment (7-10) to be true. Using (7-9), we invoke (6-9) and the above estimates on gi

to obtain� X
q2C.r/\Q

�
kE1f1kL2.S.q//

kY
iD2

kEifikL2.q/

� 2
k�1

�k�1
2

D

� X
Q2C.R/\Q

X
q2C.r/\Q

�
kE1f1kL2.S.q//

kY
iD2

kEifikL2.q/

� 2
k�1

�k�1
2

.A.R/r
k
2

� X
T12T1

�
d.T1;S.Q//

R

��N

c2N .T1/
2

�1
2

kY
iD2

kfikL2.Ui /
:

Thus we establish that
A.ı�1R/.A.R/:

This implies (7-2) in a standard fashion, see for instance [Bejenaru 2017a], and concludes our proof.
We owe an argument for the claim (7-10). We fix j1; jkC1; : : : ; jnC1 with

maxfjj1j; jjkC1j; : : : ; jjnC1jg � ı
�1:

Then (7-10) is a consequence of the following estimate:X
j2;:::;jk

jjl j�ı
�1

X
T12T1

�
d.T1;S.Q.j ///

R

��N

c2N .T1/
2 .

X
T12T1

�
d.T1;S.ı

�1Q0//

ı�1R

��N

c2N .T1/
2;
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which in turn follows fromX
j2;:::;jk

jjl j�ı
�1

�
d.T1;S.Q.j ///

R

��N

.
�
d.T1;S.ı

�1Q0//

ı�1R

��N

: (7-11)

The estimate (7-11) is easily derived from the following claim: given any d 2N, there are . dk�1 values
of j 2D such that d.T1;S.Q.j ///� dR.

Thus, the last thing we need to do is to establish the claim above. Let j1; j2 2 D be such that
d.T1;S.Q.j1///; d.T1;S.Q.j2///� dR. Let L1 be the center line of T1; it has direction N1DN1.�1/

for some �12S1. Using the fact that R� r , we conclude that there are points P1;P22T1, zP12S.Q.j1//,
zP2 2 S.Q.j2// with the following properties:

� P1;P2 2L1.

� zP1 2 S CRj1, zP2 2 S CRj2.

� d.P1; zP1/; d.P2; zP2/. dR.

From the vector identity
���!
zP1
zP2 D

���!
zP1P1C

���!
P1P2C

���!

P2
zP2

and the above properties, we obtain

j

���!
zP1
zP2 �

���!
P1P2j. dR:

On the other hand, zP1 DQ1CRj1, zP2 DQ2CRj2 for some Q1;Q2 2 S , and therefore
���!
zP1
zP2 �

���!
P1P2 D

����!
Q1Q2CR.j1� j2/C˛N1

for some ˛ 2 R. Now we bring in the transversality considerations, see (7-1), to conclude that

dR& j����!Q1Q2CR.j1� j2/C˛N1j&Rjj1� j2jI

here we use the structure of the lattice L to infer that j1 � j2 D ˛iNi.�i/� j̨ Nj .�j / for some i; j 2

f2; : : : ; kg and some ˛i ; j̨ 2 R.
Thus d & jj1� j2j, and, as a consequence, there are about dk�1 values of j with the property that

d.T1;S.Q.j ///� dR. �
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