Vol. 12, No. 4, 2019

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18, 1 issue

Volume 17, 10 issues

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1948-206X (online)
ISSN 2157-5045 (print)
 
Author index
To appear
 
Other MSP journals
Absolute continuity and $\alpha$-numbers on the real line

Tuomas Orponen

Vol. 12 (2019), No. 4, 969–996
DOI: 10.2140/apde.2019.12.969
Abstract

Let μ, ν be Radon measures on , with μ nonatomic and ν doubling, and write μ = μa + μs for the Lebesgue decomposition of μ relative to ν. For an interval I , define αμ,ν(I) := W1(μI,νI), the Wasserstein distance of normalised blow-ups of μ and ν restricted to I. Let Sν be the square function

Sν2(μ) = IDαμ,ν2(I)χ I,

where D is the family of dyadic intervals of side-length at most 1. I prove that Sν(μ) is finite μa almost everywhere and infinite μs almost everywhere. I also prove a version of the result for a nondyadic variant of the square function Sν(μ). The results answer the simplest “n = d = 1” case of a problem of J. Azzam, G. David and T. Toro.

Keywords
Wasserstein distance, $\alpha$-numbers, doubling measures
Mathematical Subject Classification 2010
Primary: 42A99
Milestones
Received: 15 March 2017
Revised: 12 June 2018
Accepted: 14 July 2018
Published: 20 October 2018
Authors
Tuomas Orponen
Department of Mathematics and Statistics
University of Helsinki
Helsinki
Finland