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ON THE LUZIN N-PROPERTY AND
THE UNCERTAINTY PRINCIPLE FOR SOBOLEV MAPPINGS

ADELE FERONE, MIKHAIL V. KOROBKOV AND ALBA ROVIELLO

We say that a mapping v WRn!Rd satisfies the .�; �/-N-property if H� .v.E//D0whenever H� .E/D0,
where H� means the Hausdorff measure. We prove that every mapping v of Sobolev class W k

p .R
n;Rd /

with kp > n satisfies the .�; �/-N-property for every 0 < � ¤ �� WD n� .k� 1/p with

� D �.�/ WD

(
� if � > ��;

p�=.kp�nC �/ if 0 < � < ��:

We prove also that for k > 1 and for the critical value � D �� the corresponding .�; �/-N-property fails
in general. Nevertheless, this .�; �/-N-property holds for � D �� if we assume in addition that the highest
derivatives rkv belong to the Lorentz space Lp;1.Rn/ instead of Lp .

We extend these results to the case of fractional Sobolev spaces as well. Also, we establish some
Fubini-type theorems for N-Nproperties and discuss their applications to the Morse–Sard theorem and its
recent extensions.

1. Introduction

The classical Luzin N-property means that for a mapping f WRn!Rn one has measf .E/D 0 whenever
measE D 0. (Here measE is the usual n-dimensional Lebesgue measure.)

This property plays a crucial role in classical real analysis and differentiation theory [Saks 1937]. It is
very useful also in elasticity theory and in geometrical analysis, especially in the theory of quasiconformal
mappings and, more generally, in the theory of mappings with bounded distortions, i.e., mappings
f W � � Rn ! Rn of Sobolev class W 1

n .R
n/ such that kf 0.x/kn � K detf 0.x/ almost everywhere

with some constant K 2 Œ1;C1/. The notion of mappings with bounded distortion was introduced by
Yu. G. Reshetnyak; see, e.g., his classical books [Reshetnyak 1989; 1994; Goldshtein and Reshetnyak
1990]. He proved that they satisfy the N-property and this was very helpful in his subsequent proofs of
other basic topological properties of such mappings (openness, discreteness and etc.). Further this MBD
theory was successfully developed by many mathematicians in both analytical and geometrical directions,
and many interesting and deep results were obtained; see the monographs [Rickman 1993; Iwaniec and
Martin 2001], for example.

The notion of mappings with bounded distortion leads to the theory of more general mappings with
finite distortion (i.e., when K in the definition above depends on x and is not assumed to be uniformly
bounded; see, e.g., the pioneering paper [Vodop’yanov and Goldshtein 1976], where the monotonicity,
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continuity and N-property of such mappings from the class W 1
n were established). This theory has been

intensively developed in the last decades (see, e.g., the book [Hencl and Koskela 2014] for an overview),
and studying the N-property constitutes one of the most important directions [Kauhanen et al. 2001;
D’Onofrio et al. 2016].

Note that the belonging of a mapping to the Sobolev class W 1
n .R

n;Rn/ is crucial for N-properties.
Indeed, every mapping of class W 1

p .R
n;Rn/ with p > n is continuous and supports the N-property (it is

a simple consequence of the Morrey inequality). But even if a mapping f 2W 1
n .R

n;Rn/ is continuous
(which is not guaranteed in general), it may not have the N-property. On the other hand, the N-property
holds for functions of the classW 1

n .R
n;Rn/ under some additional assumptions on its topological features,

namely, for homeomorphic and open mappings [Reshetnyak 1987] (see also [Roskovec 2018]) and for
quasimonotone1 mappings [Vodop’yanov and Goldshtein 1976; Malý and Martio 1995].

The results above are very delicate and sharp: indeed, for any p < n there are homeomorphisms
f 2W 1

p .R
n;Rn/ without the N-property. This phenomenon was discovered by S. P. Ponomarev [1971].

In recent years his construction has been very refined and an example was constructed of a Sobolev
homeomorphism with zero Jacobian a.e. which belongs simultaneously to all the classes W 1

p .R
n;Rn/

with p < n [Hencl 2011; Černý 2011] — of course, this “strange” homeomorphism certainly fails to have
the N-property.2

In the positive direction, it was proved in [Kauhanen et al. 1999], see also [Romanov 2008], that every
mapping of the Sobolev–Lorentz class W 1

n;1.R
n;Rn/ (i.e., its distributional derivatives belong to the

Lorentz space Ln;1; see Section 2 for the exact definitions) satisfies the N-property. Note that this space
W 1
n;1.R

n;Rn/ is limiting in a natural sense between classes W 1
n and W 1

p with p > n.
Another direction is to study theN-properties with respect to Hausdorff (instead of Lebesgue) measures.

One of the most elegant results was achieved for the class of plane quasiconformal mappings.
The famous area distortion theorem of K. Astala [1994] implies the following dimension distortion

result: if f W C! C is a K-quasiconformal mapping (i.e., it is a plane homeomorphic mapping with
K-bounded distortion) and E is a compact set of Hausdorff dimension t 2 .0; 2/, then the image f .E/
has Hausdorff dimension at most t 0 D 2Kt=.2C .K � 1/t/. This estimate is sharp; however, it leaves
open the endpoint case: does Ht .E/ D 0 imply Ht 0.f .E// D 0? The remarkable paper [Lacey et al.
2010] gives an affirmative answer to Astala’s conjecture (see also [Astala et al. 2013], where the further
implication H t .E/ <1)Ht 0.f .E// <1 was considered).

Let us go to results which are closer to the present paper. It is more natural to discuss the topic in
the scale of fractional Sobolev spaces, i.e., for .Bessel/-potential space L ˛

p with ˛ > 0. Recall that a
function v W Rn ! Rd belongs to the space L ˛

p if it is a convolution of the Bessel kernel K˛ with a

1Some of these results were generalised for the more delicate case of Carnot groups and manifolds; see, e.g., [Vodop’yanov
2003].

2Moreover, even the examples of bi-Sobolev homeomorphisms of class W 1
p .R

n;Rn/, p < n� 1, with zero Jacobian a.e.
were constructed recently; see, e.g., [D’Onofrio et al. 2014; Černý 2015]. Such homeomorphisms are impossible in the
Sobolev class W 1

n�1.R
n;Rn/. Furthermore, Hencl and Vejnar [2016] constructed an example of a Sobolev homeomorphism

f 2W 1
1 ..0; 1/

n;Rn/ such that the Jacobian detf 0.x/ changes its sign on sets of positive measure.
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function g 2 Lp.Rn/, where yK˛.�/D .1C 4�2�2/�˛=2. It is well known that

L ˛
p .R

n/DW ˛
p .R

n/ if ˛ 2 N and 1 < p <1:

Recently H. Hencl and P. Honzík proved, in particular, the following assertion:

Theorem 1.1 [Hencl and Honzík 2015]. Let n; d 2 N, ˛ > 0, p > 1, ˛p > n, and 0 < � � n. Suppose
that a mapping f WRn!Rd belongs to the (fractional) Sobolev class L ˛

p . Then for any set E �Rn with
Hausdorff dimension dimH E � � the inequality dimH f .E/� �.�/ holds, where

�.�/ WD

�
� if � � �� WD n� .˛� 1/p;
p�=.˛p�nC �/ if 0 < � < ��:

(1-1)

But as above (see the discussion around the Astala theorem), this result raises a natural question. What
happens in the limiting case, i.e., is it true that H� .E/D 0 implies H�.�/.f .E//D 0? Of course, such
an N-property is much more precise and stronger than the assertion of Theorem 1.1.

Six years ago G. Alberti [2012] announced the validity of the following result, obtained in collaboration
with M. Csörnyei, E. D’Aniello and B. Kirchheim.

Theorem 1.2. Let k; n; d 2 N, p > 1, kp > n, and 0 < � � n. Suppose that a mapping f W Rn! Rd

belongs to the Sobolev class W k
p and � ¤ �� D n� .k� 1/p. Then f has the .�; �/-N-property, where

the value � D �.�/ is defined in (1-1).

Here for convenience we use the following notation: a mapping f W Rn! Rd is said to satisfy the
.�; �/-N-property if H� .f .E//D 0 whenever H� .E/D 0, E � Rn.

We remark that in [Alberti 2012] the limiting case � D �� > 0 is left as an open question. Further, as
far as we know, proofs of the results announced have not been published (it was written in [Alberti 2012]
that the work was still “in progress”).

In the present paper we extend the assertion above to the case of fractional Sobolev spaces and also we
cover the critical case � D �� as well.

Theorem 1.3. Let ˛ > 0, 1 < p <1, ˛p > n, and v 2L ˛
p .R

n;Rd /. Suppose that 0 < � � n. Then the
following assertions hold:

(i) If � ¤ �� D n� .˛ � 1/p, then v has the .�; �/-N-property, where the value � D �.�/ is defined
in (1-1).

(ii) If ˛ > 1 and � D �� > 0, then �.�/D �� and the mapping v in general has no .��; ��/-N-property;
i.e., it could be that H��.v.E// > 0 for some E � Rn with H��.E/D 0.

Remark 1.4. We stress that there is no “competition” with Alberti, Csörnyei, D’Aniello and Kirchheim
concerning Theorems 1.2–1.3. When we published our first paper on the topic [Bourgain et al. 2013],
those authors contacted us and it was agreed that mutual citations would be provided (and indeed appeared
in [Alberti 2012; Bourgain et al. 2013]). Similarly, when the present paper was finished, we contacted
one of those authors. They told us that after [Alberti 2012] they had some further progress, especially for
� D ��. We came to an agreement that each research group could publish their results with independent
proofs, respecting each other’s activity in the subject.
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Remark 1.5. If ˛ D 1 and p > n, then �� D n and L ˛
p .R

n;Rd / D W 1
p .R

n;Rd /, and the validity of
the .�; �/-N-property for all � 2 .0; n� and for all mappings of these spaces is a simple corollary of the
classical Morrey inequality [Malý and Martio 1995].

Theorem 1.3 omits the limiting cases ˛p D n and � D ��. It is possible to cover these cases as
well using the Lorentz norms. Namely, denote by L ˛

p;1.R
n;Rd / the space of functions which can be

represented as a convolution of the Bessel potential K˛ with a function g from the Lorentz space Lp;1
(see the definition of these spaces in Section 2); that is,

kvkL ˛
p;1
WD kgkLp;1 :

Theorem 1.6. Let ˛ > 0, 1 < p <1, ˛p � n, and 0 < � � n. Suppose that v 2 L ˛
p;1.R

n;Rd /. Then
v is a continuous function satisfying the .�; �/-N-property, where again the value � D �.�/ is defined
in (1-1) (i.e., the limiting case � D �� is included).

Remark 1.7. In the case ˛ D k 2 N, kp D n, p � 1, we have �� D p and the validity of the .�; �/-
N-property for mappings of the corresponding Sobolev–Lorentz space W k

p;1.R
n;Rd / was proved in

[Bourgain et al. 2015; Korobkov and Kristensen 2018].

1A. The counterexample for the limiting case � D �* in Theorem 1.3(ii). Suppose again that

n > .˛� 1/p > n�p:

Let us demonstrate that the positive assertion in Theorem 1.3(i) is very sharp: it fails in general for the
limiting case

� D �� D n� .˛� 1/p:

Take
nD 4; ˛ D 2; p D 3:

Then by definition
�� D 1:

So we have to construct a function from the Sobolev space L 2
3 .R

4/DW 2
3 .R

4/ which does not have the
N-property with respect to H1-measure. Consider the restrictions (traces) of functions fromW 4

3 .R
4/ to the

real line. It is well known that the space of these traces coincides exactly with the Besov spaceB13;3.R/; see,
e.g., [Jonsson and Wallin 1984, Chapter 1, Theorem 4 on p. 20]. Consider the function of one real variable

f� .x/D e
�x2

1X
mD1

5�mm�� cos.5mx/;

where
1
3
< � < 1

2
:

It is known that f� 2 B13;3.R/ under the assumptions above; see, e.g., §6.8 in Chapter V of [Stein 1970].
Nevertheless, the following result holds.

Theorem 1.8. The function f� W R! R from above does not have the .1;1/-N-property (with respect to
H1-measure).
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This result is a direct consequence of the following two classical facts:

Theorem 1.9 [Saks 1937, Chapter IX, Theorem 7.7]. If a continuous function f W R ! R has the
N-property, then it is differentiable on a set of positive measure.

Theorem 1.10 [Zygmund 1959, Chapter V, §6, p. 206]. The continuous function

f .x/D

1X
mD1

b�m"m cos.bmx/;

with b > 1 and "m! 0,
P1
mD1 "

2
m D1, is not differentiable almost everywhere.

Note that the functions f� , f from Theorems 1.8 and 1.10 are the typical examples of so-called
lacunary Fourier series.

From Theorem 1.8 it follows that there exists a function v 2W 2
3 .R

4/ whose restriction to the real line
coincides with f� ; i.e., v does not have the .1;1/-N-property. The construction of the counterexample is
finished.

1B. Fubini-type theorems for N-properties. The N-properties formulated above have an important
application in the recent extension of the Morse–Sard theorem to Sobolev spaces (see [Ferone et al. 2017]
and also Section 1C below). Here we need the following notion.

For a pair numbers �; � > 0 we will say that a continuous function v W Rn! Rd satisfies the .�; �/-
N�-property if for every q 2 Œ0; �� and for any set E � Rn with H � .E/D 0 we have

H�.1�
q
�
/.E \ v�1.y//D 0 for Hq-a.a. y 2 Rd : (1-2)

This implies, in particular, the usual .�; �/-N-property

H� .v.E//D 0 whenever H� .E/D 0:

(Indeed, it is sufficient to take q D � in (1-2).) In other words, the .�; �/-N�-property is stronger than
the usual .�; �/ one.

The N�-property can be considered as a Fubini-type theorem for the usual N-property. Now we can
strengthen our previous results in the following way.

Theorem 1.11. Let ˛ > 0, 1 < p <1, ˛p > n, and v 2L ˛
p .R

n;Rd /. Suppose that 0 < � � n. Then:

(i) If � ¤ �� D n� .˛� 1/p, then v has the .�; �/-N�-property, where the value � D �.�/ is defined
in (1-1).

(ii) If ˛ > 1 and � D ��, then �.�/D �� and the mapping v in general has no .��; ��/-N-property; i.e.,
it could be that H��.v.E// > 0 for some E � Rn with H��.E/D 0.

Remark 1.12. If ˛ D 1 and p > n, then �� D n and L ˛
p .R

n;Rd / D W 1
p .R

n;Rd /, and the validity of
the .�; �/-N�-property for all � 2 .0; n� and for all mappings of these spaces is a simple corollary of the
classical Morrey inequality and Theorem 4.1 below.

Of course, Theorem 1.11 omits the limiting cases ˛p D n and � D ��. Again, it is possible to cover
these cases as well using the Lorentz norms.
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Theorem 1.13. Let ˛ > 0, 1 < p <1, ˛p � n, and 0 < � � n. Suppose that v 2L ˛
p;1.R

n;Rd /. Then
v is a continuous function satisfying the .�; �/-N�-property, where again the value � D �.�/ is defined
in (1-1).

Remark 1.14. In the case ˛ D k 2 N, kp D n, p � 1, we have �� D p and the validity of the .�; �/-
N�-property for mappings of the corresponding Sobolev–Lorentz space W k

p;1.R
n;Rd / was proved in

[Bourgain et al. 2015; Hajłasz et al. 2017].

1C. Application to the Morse–Sard and Dubovitskiı̆–Federer theorems. The classical Morse–Sard the-
orem claims that for a mapping vWRn!Rm of class Ck the measure of the set of critical values v.Zv;m/
is zero under the condition k > max.n �m; 0/. Here the critical set, or m-critical set, is defined as
Zv;mDfx 2Rn W rankrv.x/<mg. Further Dubovitskiı̆ [1957; 1967] and Federer [1969, Theorem 3.4.3]
independently found some elegant extensions of this theorem to the case of other (e.g., lower) smoothness
assumptions. They also established the sharpness of their results within the Ck category.

Recently the following bridge theorem, which includes all the results above as particular cases, was
found.

We say that a mapping v WRn!Rd belongs to the class C k;˛ for some integer positive k and 0<˛� 1
if there exists a constant L� 0 such that

jr
kv.x/�rkv.y/j � Ljx�yj˛ for all x; y 2 Rn:

To simplify the notation, let us make the following agreement: for ˛ D 0 we identify C k;˛ with usual
spaces of C k-smooth mappings. The following theorem was obtained in [Ferone et al. 2017].

Theorem 1.15. Let m 2 f1; : : : ; ng, k � 1, d � m, 0 � ˛ � 1, and v 2 C k;˛.Rn;Rd /. Then for any
q 2 .m� 1;1/ the equality

H�q .Zv;m\ v�1.y//D 0 for Hq-a.a. y 2 Rd

holds, where

�q D n�mC 1� .kC˛/.q�mC 1/;

and Zv;m denotes the set of m-critical points of v, that is, Zv;m D fx 2 Rn W rankrv.x/�m� 1g.

Here and in the following we interpret Hˇ as the counting measure when ˇ � 0. Let us note that for
the classical C k-case, i.e., when ˛ D 0, the behaviour of the function �q is very natural:

�q D 0 for q D qı Dm� 1C .n�mC 1/=k (Dubovitskiı̆–Federer theorem, 1967);

�q < 0 for q > qı (Dubovitskiı̆–Federer theorem, 1967);

�q D n�m� kC 1 for q Dm (Dubovitskiı̆ theorem, 1957);

�q D n�mC 1 for q Dm� 1:

The last value cannot be improved in view of the trivial example of a linear mapping LWRn! Rd of
rank m� 1.
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Thus, Theorem 1.15 contains all the previous theorems (Morse–Sard, Dubovitskiı̆–Federer, and even
the Bates theorem [1993] for C k;1-Lipschitz functions) as particular cases.

Intuitively, the sense of this bridge theorem is very close to Heisenberg’s uncertainty principle in
theoretical physics: the more precise the information we receive on the measure of the image of the
critical set, the less precisely the preimages are described, and vice versa.

The following analog of the bridge theorem, Theorem 1.15, was obtained for the Sobolev and fractional
Sobolev cases (items (i)–(ii) and items (iii)–(iv), respectively).

Theorem 1.16 [Hajłasz et al. 2017; Ferone et al. 2017]. Let m 2 f1; : : : ; ng, k � 1, d �m, 0� ˛ < 1,
p � 1 and let v W Rn! Rd be a mapping for which one of the following cases holds:

(i) ˛ D 0, kp > n, and v 2W k
p .R

n;Rd /.

(ii) ˛ D 0, kp D n, and v 2W k
p;1.R

n;Rd /.

(iii) 0 < ˛ < 1, p > 1, .kC˛/p > n, and v 2L kC˛
p .Rn;Rd /.

(iv) 0 < ˛ < 1, p > 1, .kC˛/p D n, and v 2L kC˛
p;1 .Rn;Rd /.

Then for any q 2 .m� 1;1/ the equality

H�q .Zv;m\ v�1.y//D 0 for Hq-a.a. y 2 Rd

holds, where again
�q D n�mC 1� .kC˛/.q�mC 1/;

and Zv;m denotes the set of m-critical points of v, that is, Zv;m D fx 2 Rn nAv W rankrv.x/�m� 1g.

Here Av means the set of nondifferentiability points for v. Recall, that by approximation results
[Swanson 2002; Korobkov and Kristensen 2018] under the conditions of Theorem 1.16 the equalities

H� .Av/D 0 for all � > �� WD n� .kC˛� 1/p in cases (i), (iii);

H��.Av/DHp.Av/D 0 �� WD n� .kC˛� 1/p D p in cases (ii), (iv)
are valid (in particular, Av D∅ if .kC˛�1/p > n). Our purpose is to prove that the impact of the “bad”
set Av is negligible in the bridge Dubovitskiı̆–Federer theorem (Theorem 1.16), i.e., that the following
statement holds:

Theorem 1.17. Let the conditions of Theorem 1.16 be fulfilled for a function v W Rn! Rd. Then

H�q .Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd

for any q > m� 1.

Remark 1.18. Since �q � 0 for q � qı D m� 1C n�mC1
kC˛

, the assertions of Theorems 1.16–1.17 are
equivalent to the equality 0DHqŒv.Av [Zv;m/� for q � qı, so it is sufficient to check the assertions of
Theorems 1.16–1.17 for q 2 .m� 1; qı� only.

Finally, let us comment briefly that the merge ideas for the proofs are from our previous papers
[Bourgain et al. 2015; Korobkov and Kristensen 2014; 2018; Hajłasz et al. 2017]. In particular, the papers
[Bourgain et al. 2013; 2015] by one of the authors with J. Bourgain and J. Kristensen contain many of
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the key ideas that allow us to consider nondifferentiable Sobolev mappings. For the implementation of
these ideas one relies on estimates for the Hardy–Littlewood maximal function in terms of Choquet-type
integrals with respect to Hausdorff capacity. In order to take full advantage of the Lorentz context we
exploit the recent estimates from [Korobkov and Kristensen 2018] (recalled in Theorem 2.11 below);
see also [Adams 1988] for the case p D 1.

2. Preliminaries

By an n-dimensional interval we mean a closed cube in Rn with sides parallel to the coordinate axes. If
Q is an n-dimensional cubic interval then we write `.Q/ for its side-length.

For a subset S of Rn we write L n.S/ for its outer Lebesgue measure (sometimes we use the sym-
bol measS for the same object). The m-dimensional Hausdorff measure is denoted by Hm and the
m-dimensional Hausdorff content by Hm1. Recall that for any subset S of Rn we have by definition

Hm.S/D lim
t&0

Hmt .S/D sup
t>0

Hmt .S/;

where for each 0 < t �1,

Hmt .S/D inf
� 1X
iD1

.diamSi /
m
W diamSi � t; S �

1[
iD1

Si

�
:

It is well known that Hn.S/DHn1.S/�L n.S/ for sets S � Rn (“�” means, here and in the following,
that these values have upper and lower bounds with positive constants independent of the set S ).

By Lp.Rn/, 1 � p �1, we will denote the usual Lebesgue space equipped with the norm k � kLp .
The notation kf kLp.E/ means k1E �f kLp , where 1E is the indicator function of E.

Working with locally integrable functions, we always assume that the precise representatives are chosen.
If w 2 L1;loc.�/, then the precise representative w� is defined for all x 2� by

w�.x/D

�
limr&0 �

R
B.x;r/w.z/ dz if the limit exists and is finite,

0 otherwise;

where the dashed integral as usual denotes the integral mean,

�

Z
B.x;r/

w.z/ dz D
1

L n.B.x; r//

Z
B.x;r/

w.z/ dz;

and B.x; r/ D fy W jy � xj < rg is the open ball of radius r centred at x. Henceforth we omit special
notation for the precise representative, writing simply w� D w.

For 0� ˇ < n, the fractional maximal function of w of order ˇ is given by

Mˇw.x/D sup
r>0

rˇ �

Z
B.x;r/

jw.z/j dz: (2-1)

When ˇ D 0, M0 reduces to the usual Hardy-Littlewood maximal operator M.

The Sobolev space Wk
p.R

n;Rd / is as usual defined as consisting of those Rd -valued functions f 2
Lp.Rn/ whose distributional partial derivatives of orders l � k belong to Lp.Rn/; for detailed definitions
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and differentiability properties of such functions, see, e.g., [Evans and Gariepy 1992; Mazya 1985; Ziemer
1989; Dorronsoro 1989]. Denote by rkf the vector-valued function consisting of all k-th order partial
derivatives of f arranged in some fixed order. However, for the case of first order derivatives k D 1 we
shall often think of rf .x/ as the Jacobi matrix of f at x, that is, the d �n matrix whose r-th row is the
vector of partial derivatives of the r-th coordinate function.

We use the norm
kf kWk

p
D kf kLp Ckrf kLp C � � �C kr

kf kLp ;

and unless otherwise specified all norms on the spaces Rs (s 2 N) will be the usual euclidean norms.
If k < n, then it is well known that functions from Sobolev spaces Wk

p.R
n/ are continuous for p >n=k

and can be discontinuous for p � pı D n=k [Mazya 1985; Ziemer 1989]. The Sobolev–Lorentz space
Wk
pı;1

.Rn/�Wk
pı
.Rn/ is a refinement of the corresponding Sobolev space. Among other things, functions

that are locally in Wk
pı;1

on Rn are in particular continuous.
Here we only mentioned the Lorentz space Lp;1, and in this case one may rewrite the norm as follows

[Malý 2003, Proposition 3.6]:

kf kLp;1 D

Z C1
0

ŒL n.fx 2 Rn W jf .x/j> tg/�
1
p dt:

As for Lebesgue norm we set kf kLp;1.E/ WD k1E �f kLp;1 . Of course, we have the inequality

kf kLp � kf kLp;1 : (2-2)

Moreover, recall that by properties of Lorentz spaces, the standard estimate

kMf kLp;q � Ckf kLp;q (2-3)

holds for 1 < p <1 [Malý 2003, Theorem 4.4].
Denote by Wk

p;1.R
n/ the space of all functions v 2 Wk

p.R
n/ such that in addition the Lorentz

norm krkvkLp;1 is finite.

2A. On potential spaces L ˛
p . In this paper we deal with the .Bessel/ potential spaces L ˛

p with ˛ > 0.
Recall that a function v WRn!Rd belongs to the space L ˛

p if it is a convolution of the Bessel kernel K˛
with a function g 2 Lp.Rn/:

v D G˛.g/ WDK˛ �g;

where yK˛.�/D .1C 4�2�2/�˛=2. In particular,

kvkL ˛
p
WD kgkLp :

It is well known that
L ˛
p .R

n/DW ˛
p .R

n/ if ˛ 2 N and 1 < p <1; (2-4)

and we use the agreement that L ˛
p .R

n/D Lp.R
n/ when ˛ D 0. Moreover, the following well-known

result holds:
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Theorem 2.1 [Stein 1970, Lemma 3, p. 136]. Let ˛ � 1 and 1 < p <1. Then v 2L ˛
p .R

n/ if and only if
v 2L ˛�1

p .Rn/ and @v=@xj 2L ˛�1
p .Rn/ for every j D 1; : : : ; n.

The following technical bounds will be used on several occasions (for convenience, we prove them in
the Appendix).

Lemma 2.2. Let ˛ > 1, nCp > ˛p > n, and p > 1. Suppose that v 2L ˛
p .R

n/; i.e., vD G˛.g/ for some
g 2 Lp.R

n/. Then for every n-dimensional cubic interval Q � Rn with r D `.Q/� 1 the estimate

diam v.Q/� C

�
kMgkLp.Q/r

˛� n
p C

1

rn�1

Z
Q

I˛�1jgj.y/ dy
�

(2-5)

holds, where the constant C depends on n; p; d; ˛ only, and

Iˇf .x/ WD

Z
Rn

f .y/

jy � xjn�ˇ
dy

is the Riesz potential of order ˇ.

Sometimes it is not convenient to work with the Riesz potential, and we need also the following variant
of the estimates above.

Lemma 2.3. Let ˛ > 0, nC p > ˛p > n, and p > 1. Suppose that v 2 L ˛
p .R

n/; i.e., v D G˛.g/ for
some g 2 Lp.Rn/. Fix arbitrary � > 0 such that ˛C � � 1. Then for every n-dimensional cubic interval
Q � Rn with r D `.Q/� 1 the estimate

diam v.Q/� C

�
kMgkLp.Q/r

˛� n
p C

1

rnC��1

Z
Q

M˛�1C�g.y/ dy
�

(2-6)

holds, where the constant C depends on n; p; d; ˛; � only.

For reader’s convenience, we prove Lemmas 2.2–2.3 in the Appendix.

2B. On Lorentz potential spaces L ˛
p;1

. To cover some other limiting cases, denote by L ˛
p;1.R

n;Rd / the
space of functions which can be represented as a convolution of the Bessel potential K˛ with a function g
from the Lorentz space Lp;1; that is,

kvkL ˛
p;1
WD kgkLp;1 :

Because of inequality (2-2), we have the evident inclusion

L ˛
p;1.R

n/�L ˛
p .R

n/:

Since these spaces are not so common, let us discuss briefly some of their properties. We need some
technical facts concerning the Lorentz spaces.

Lemma 2.4 [Rakotondratsimba 1998]. Let 1 < p <1. Then for any j D 1; : : : ; n the Riesz transform
Rj is continuous from Lp;1.R

n/ to Lp;1.Rn/.

Lemma 2.5 [Schep 1995]. Let 1 < p <1 and � be a finite Borel measure on Rn. Then the convolution
transform f 7! f �� is continuous in the space Lp;1.Rn/ and in L ˛

p .R
n/ for all ˛ > 0.
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Using these facts and repeating almost word for word the arguments from [Stein 1970, §3.3–3.4], one
can obtain the following very natural results.

Theorem 2.6 (cf. [Stein 1970, Lemma 3, p. 136]). Let ˛ � 1 and 1 < p <1. Then f 2L ˛
p;1.R

n/ if and
only if f 2L ˛�1

p;1 .Rn/ and @f=@xj 2L ˛�1
p;1 .Rn/ for every j D 1; : : : ; n.

Corollary 2.7. Let k 2 N and 1 < p <1. Then L k
p;1.R

n/DW k
p;1.R

n/, where W k
p;1.R

n/ is the space of
functions such that all its distributional partial derivatives of order � k belong to Lp;1.Rn/.

Note that the space W k
p;1.R

n/ admits an even simpler (but equivalent) description: it consists of
functions f from the usual Sobolev space W k

p .R
n/ satisfying the additional condition rkf 2 Lp;1.Rn/

(i.e., this condition is on the highest derivatives only); see, e.g., [Malý 2003].
As before, we need some standard estimates.

Lemma 2.8. Let ˛ > 0, nCp � ˛p � n, and p > 1. Suppose that v 2 L ˛
p;1.R

n/; i.e., v D G˛.g/ for
some g 2Lp;1.Rn/. Then the function v is continuous and for every n-dimensional cubic intervalQ�Rn

with r D `.Q/� 1 the estimate

diam v.Q/� C

�
kMgkLp;1.Q/r

˛� n
p C

1

rnC��1

Z
Q

M˛�1C�g.y/ dy
�

(2-7)

holds for arbitrary (fixed) parameter � > 0 such that ˛C � � 1 (here the constant C again depends on
n; p; d; ˛; � only). Furthermore, if ˛ > 1, then

diam v.Q/� C

�
kMgkLp;1.Q/r

˛� n
p C

1

rn�1

Z
Q

I˛�1jgj.y/ dy
�
: (2-8)

For the reader’s convenience, we prove Lemma 2.8 in the Appendix.

2C. On Choquet-type integrals. Let M ˇ be the space of all nonnegative Borel measures � on Rn such
that

kj�kjˇ D sup
I�Rn

`.I /�ˇ�.I / <1;

where the supremum is taken over all n-dimensional cubic intervals I � Rn and `.I / denotes the side
length of I.

Recall the following classical theorem proved by D. R. Adams.

Theorem 2.9 (see [Mazya 1985, §1.4.1] or [Adams 1973]). Let ˛ > 0, n�˛p > 0, s > p > 1 and � be
a positive Borel measure on Rn. Then for any g 2 Lp.Rn/ the estimateZ

jI˛gj
s d�� Ckj�kjˇ � kgk

s
Lp

(2-9)

holds with ˇ D s
p
.n�˛p/, where C depends on n, p, s, ˛ only.

The estimate (2-9) fails for the limiting case s D p. Namely, there exist functions g 2 Lp.Rn/ such
that jI˛gj.x/DC1 on some set of positive .n�˛p/-Hausdorff measure. Nevertheless, there are two
ways to cover this limiting case s D p. The first way is to use the maximal function M˛ instead of the
Riesz potential on the left-hand side of (2-9).
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Theorem 2.10 [Adams 1998, Theorem 7, p. 28]. Let ˛ > 0, n�˛p > 0, s � p > 1 and � be a positive
Borel measure on Rn. Then for any g 2 Lp.Rn/ the estimateZ

jM˛gj
s d�� Ckj�kjˇ � kgk

s
Lp

(2-10)

holds with ˇ D .s=p/.n�˛p/, where C depends on n, p, s, ˛ only.

The second way is to use the Lorentz norm instead of the Lebesgue norm on the right-hand side
of (2-9):

Theorem 2.11 [Korobkov and Kristensen 2018, Theorem 0.2]. Let ˛ >0, n�˛p >0, and � be a positive
Borel measure on Rn. Then for any g 2 Lp.Rn/ the estimateZ

jI˛gj
p d�� Ckj�kjˇ � kgk

p
Lp;1

holds with ˇ D n�˛p, where C depends on n, p, ˛ only.

2D. On Fubini-type theorems forN-properties. Recall that by the usual Fubini theorem if a set E �R2

has zero plane measure, then for H1-almost all straight lines L parallel to the coordinate axes we have
H1.L\E/D 0. The next result can be considered as a Fubini-type theorem for the N-property.

Theorem 2.12 [Hajłasz et al. 2017, Theorem 5.3]. Let �� 0, q > 0, and v W Rn! Rd be a continuous
function. For a set E � Rn define the set function

ˆ.E/D inf
E�

S
j Dj

X
j

.diamDj /
� Œdiam v.Dj /�

q;

where the infimum is taken over all countable families of compact sets fDj gj2N such that E �
S
j Dj .

Then ˆ. � / is countably subadditive and we have the implication

ˆ.E/D 0 D)
�
H�.E \ v�1.y//D 0 for Hq-a.a. y 2 Rd

�
:

2E. On local properties of considered potential spaces. Let B be some family of continuous functions
defined on Rn. For a set �� Rn define the space Bloc.�/ in the following standard way:

Bloc.�/

WD ff W�! R W for any compact set E ��; there exists g 2 B such that f .x/D g.x/ for all x 2Eg:

For simplicity put Bloc D Bloc.R
n/.

It is easy to see that for ˛ > 0 and q > s > p > 1 with ˛p � n the following inclusions hold:

L ˛
q;loc �L ˛

s;loc �L ˛
p;1;loc:

Since the N-properties have a local nature, this means that if we prove some N - (or N�-) property for L ˛
p ,

then the same N-property will be valid for the spaces L ˛
p;1 and L ˛

q for all q > p. Similarly, if we prove
some N - (or N�-) property for L ˛

p;1, then the same N-property will be valid for the spaces L ˛
q with

q > p, etc.
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3. Proofs of the N-properties (Theorems 1.3, 1.6)

In this section we will prove Theorems 1.3 and 1.6. For each theorem, we will consider different cases.
The most interesting case is when ˛p < nCp, which implies that �� > 0: in such a situation we will
consider the supercritical case � > �� > 0 and the subcritical case 0 < � < �� (see, respectively, Sections
3A and 3B below). The case ˛p � nCp is contained in Section 3C.

In the proofs we will consider a particular family of intervals to cover a given set, whose properties
are more suitable for our aims. Below a dyadic interval means a closed cube in Rn of the form
Œk1=2

l ; .k1C 1/=2
l �� � � � � Œkn=2

l ; .knC 1/=2
l �, where ki ; l are integers. Define

ƒs.E/D inf
� 1X
iD1

`.Qi /
s
WE �

1[
iD1

Qi ; Qi dyadic
�
:

It is well known that ƒs.E/�Hs.E/ for all subset E �Rn; in particular, ƒs and Hs have the same null
sets.

Let fQj gj2N be a family of n-dimensional dyadic intervals. For a given parameter � > 0 we say that
the family fQj g is regular if

P
`.Qj /

� <1 and for any n-dimensional dyadic interval Q the estimate

`.Q/� �
X

j WQj�Q

`.Qj /
� (3-1)

holds. Since dyadic intervals are either nonoverlapping or contained in one another, (3-1) implies that
any regular family fQj g must in particular consist of nonoverlapping intervals. Moreover, the following
result holds.

Lemma 3.1 [Bourgain et al. 2015, Lemma 2.3]. Let fJig be a family of n-dimensional dyadic intervals
with

P
i `.Ji /

� <1. Then there exists a regular family fQj g of n-dimensional dyadic intervals such thatS
i Ji �

S
j Qj and X

j

`.Qj /
�
�

X
i

`.Ji /
� :

3A. Proof of Theorem 1.3: the supercritical case � > �* > 0. Fix the parameters n 2N, ˛ > 0, p > 1
such that

˛p > n; �� D n� .˛� 1/p > 0; (3-2)

and take
� 2 .��; n�: (3-3)

Fix also a mapping v 2L ˛
p .R

n;Rd /. If ˛D 1, then v 2W 1
p .R

n/ with p > n and � D n, and the result is
well known. So we restrict our attention to the nontrivial case ˛ > 1, � < n.

Now let fQigi2N be a regular family of n-dimensional dyadic intervals. Consider the corresponding
measure � defined as Z

f d� WD
X
i

1

`.Qi /n��

Z
Qi

f .y/ dy: (3-4)
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As usual, for a measurable set E � Rn put �.E/D
R
1E d�, where 1E is an indicator function of E.

Lemma 3.2 [Korobkov and Kristensen 2014, Lemma 2.4]. For any regular family fQigi2N of n-
dimensional dyadic intervals the corresponding measure � defined by (3-4) satisfies

�.Q/� `.Q/�

for any dyadic cube Q � Rn.

From this fact and from the Adams Theorem 2.9, we immediately obtain:

Lemma 3.3. Let g 2 Lp.Rn/. Then for any regular family fQig of n-dimensional dyadic intervals the
estimate X

i

1

`.Qi /n��

Z
Qi

.I˛�1jgj/
s dy � CkgksLp (3-5)

holds, where s WD .�=��/p > p and C does not depend on g.

Now we are ready to formulate the key step of the proof.

Lemma 3.4. Under the assumptions above, for each " > 0 there exists ı D ı."; v/ > 0 such that for any
regular family fQig of n-dimensional dyadic intervals ifX

i

`.Qi /
� < ı;

then X
i

Œdiam v.Qi /�
� < ":

Proof. Since v 2L ˛
p .R

n;Rd /, by the definition of this space, it is easy to see that for any Q" > 0 there
exists a representation

v D v1C v2;

where vi 2L ˛
p .R

n;Rd /, v1 2 C1.Rn/,

krv1kL1.Rn/ <1;

and
v2 D G˛.g/ with kgkLp < Q": (3-6)

This means, in particular, that
jrv1.x/j<K for all x 2 Rn; (3-7)

for some K DK.Q"; v/ 2 R. Take any regular family fQig of n-dimensional dyadic intervals such thatX
i

`.Qi /
� < ı (3-8)

(the exact value of ı will be specified below). Put ri D `.Qi /. Then by Lemma 2.2X
i

Œdiam v.Qi /�
�
� C.S1CS2CS3/;
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where

S1 D
X
i

Œdiam v1.Qi /�
�

(3-7)�(3-8)
� n�=2K�ı;

S2 D
X
i

kMgk�Lp.Qi /r
�.˛� n

p
/

i ;

S3 D
X
i

�
1

rn�1i

Z
Qi

I˛�1jgj.y/ dy
��
:

Let us estimate S2. Since ˛� n
p
< 1 by (3-2), we can apply the Hölder inequality to obtain

S2 �

�X
i

kMgk
� p
n�p.˛�1/

Lp.Qi /

�n
p
�˛C1

�

�X
i

r�i

�̨ � n
p (3-8)
�

�X
i

kMgk
� p
n�p.˛�1/

Lp.Qi /

�n
p
�˛C1

� ı˛�
n
p

(3-2)
D

�X
i

kMgk
p �
��

Lp.Qi /

���
p

� ı˛�
n
p

(3-3)
� kMgk�Lp.[iQi / � ı

˛� n
p

(3-6)
� C Q"� � ı˛�

n
p I

here C is the constant from the the Hardy–Littlewood maximal inequality. Similarly, taking s D .�=��/p
and applying twice the Hölder inequality in S3 (the first time for the integrals, and the second time for
sums), we obtain

S3 �
X
i

�Z
Qi

.I˛�1jgj/
s dy

���
p

� r
n.�� ��

p
/

i � r
.1�n/�
i D

X
i

�
1

rn��i

Z
Qi

.I˛�1jgj/
s dy

���
p

� r
.1� ��

p
/�

i

Hölder
�

�X
i

1

rn��i

Z
Qi

.I˛�1jgj/
s dy

���
p

�

�X
i

r�i

�1� ��
p (3-5); (3-6); (3-8)

� C Q"� � ı1�
��
p :

So taking ı sufficiently small so that K�ı < 1
2
" is small, we have S1C S2C S3 < " as required, and

Lemma 3.4 is proved. �

Finally, if E is a set such that H� .E/ D 0, then also ƒ� .E/ D 0, and this lemma together with
Lemma 3.1 implies the validity of the assertion Theorem 1.3(i) for the supercritical case � > �� > 0.

3B. Proof of Theorem 1.3: the subcritical case 0 < � < �*. Now fix the parameters n 2 N, ˛ > 0,
p > 1 such that

˛p > n; �� D n� .˛� 1/p > 0; (3-9)

and take
� 2 .0; ��/; � D

p�

˛p�nC �
:

Evidently, by this definition
� > �: (3-10)

Fix also a mapping v 2L ˛
p .R

n;Rd /. Take an additional parameter � such that

.˛� 1C �/ > 0 and n� .˛� 1C �/p > 0:
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From Lemma 3.2 and the Adams theorem 2.10, taking s D p, we immediately obtain:

Lemma 3.5. Let g 2 Lp.Rn/. Then for any � -regular family fQig of n-dimensional dyadic intervals the
estimate X

i

1

`.Qi /n���

Z
Qi

.M˛�1C� jgj/
p dy � CkgkpLp (3-11)

holds, where �� D n� .˛� 1C �/p and C does not depend on g.

As in the previous case, the proof of Theorem 1.3 in the case 0 < � < �� will be complete once we
establish the following result.

Lemma 3.6. Under above assumptions, for each " > 0 there exists ı D ı."; v/ > 0 such that for any
regular family fQig of n-dimensional dyadic intervals ifX

i

`.Qi /
� < ı;

then X
i

Œdiam v.Qi /�
� < ":

Proof. Again, since v 2 L ˛
p .R

n;Rd /, by the definition of this space, for any Q" > 0 there exists a
representation

v D v1C v2;

where vi 2L ˛
p .R

n;Rd /, v1 2 C1.Rn/,

krv1kL1.Rn/ <1;

and

v2 D G˛.g/ with kgkLp < Q": (3-12)

This means, in particular, that

jrv1.x/j<K for all x 2 Rn; (3-13)

for some K DK.Q"; v/ 2 R. Take any regular family fQig of n-dimensional dyadic intervals such thatX
i

`.Qi /
� < ı < 1 (3-14)

(the exact value of ı will be specified below). Put ri D `.Qi /. Then by Lemma 2.3X
i

Œdiam v.Qi /�
�
� C.S1CS2CS3/;
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where

S1 D
X
i

Œdiam v1.Qi /�
�

(3-10);(3-13)�(3-14)
� CK�ı;

S2 D
X
i

kMgk�Lp.Qi /r
�.˛� n

p
/

i ;

S3 D
X
i

�
1

rn�1C�i

Z
Qi

M˛�1C�g.y/ dy
��
:

Let us estimate S2. Since by assumptions (3-9) the inequality � < p holds and

p� �

p
D

˛p�n

˛p�nC �
; �

p

p� �
D

�

˛� .n=p/
(3-15)

we can apply the Hölder inequality to obtain

S2 �

�X
i

kMgk
p

Lp.Qi /

��
p

�

�X
i

r
�.˛� n

p
/ p
p��

i

�p��
p

D .kMgk
p

Lp.
S
iQi /

/
�
p �

�X
i

r�i

�p��
p (3-14); (3-12)

� C Q"�ı1�
�
p :

Similarly, applying twice the Hölder inequality in S3 (the first time for the integrals, and the second time
for sums), we obtain

S3�
X
i

�Z
Qi

.M˛�1C�g/
p dy

��
p

�r
np�1
p
�

i �r
.1�n��/�
i D

X
i

�
1

r
n���
i

Z
Qi

.M˛�1C� jgj/
p dy

��
p

�r
.˛� n

p
/�

i

Hölder
�

�X
i

1

r
n���
i

Z
Qi

.M˛�1C� jgj/
p dy

��
p

�

�X
i

r
.˛� n

p
/� p
p��

i

�1��
p

(3-15)
D

�X
i

1

r
n���
i

Z
Qi

.M˛�1C� jgj/
p dy

��
p

�

�X
i

r�i

�1��
p (3-11); (3-12); (3-14)

� C Q"��ı1�
�
p :

So taking ı sufficiently small so that K�ı < 1
2
" is small, we have S1CS2CS3 < " as required, and the

lemma is proved. �

Finally, we conclude exactly as in the previous case.

3C. Proof of Theorem 1.3: the supercritical case �* � 0 < �. Consider now the case ˛p > n and
�� D n � .˛ � 1/p � 0. If .˛ � 1/p > n, then every function v 2 L ˛

p .R
n;Rd / is locally Lipschitz

(even C 1) and the result is trivial. Suppose now .˛� 1/p D n. Under these assumptions, let � > 0 and
v 2L ˛

p .R
n;Rd /. Take a number 1 < Qp < p such that ˛ Qp > n and � > ��� D n� .˛� 1/ Qp > 0. Then we

have v 2L ˛
Qp;loc.R

n;Rd / (see Section 2E). Therefore, by the previous case � > Q�� > 0, the mapping v
has the .�; �/-N-property. �
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3D. Proof of Theorem 1.6. The proof of Theorem 1.6 is very similar to that of Theorem 1.3: the main
differences concern the limiting cases ˛p D n or � D ��.

Case I: ˛p > n and � ¤ ��. The required assertion follows immediately from Theorem 1.3 and from the
inclusion L ˛

p;1.R
n/�L ˛

p .R
n/ (this inclusion follows from the definitions of these space and from the

relation Lp;1.Rn/� Lp.Rn/).

Case II: ˛pD n and � > ��>0. The required assertion can be proved by repeating almost word for word
the same arguments as in the supercritical case in Theorem 1.3 with the following evident modifications:
now one has to apply the estimate (2-8) (which covers the case ˛pD n) instead of previous estimate (2-5),
and, in addition, one needs the following analog of the additivity property for the Lorentz norms:X

i

kf k
p

Lp;1.Qi /
� kf k

p

Lp;1.
S
iQi /

for any family of disjoint cubes [Malý 2003, Lemma 3.10].

Case III: ˛p � n and � D ��. The required assertion can be proved by repeating almost word for word
the same arguments as in the supercritical case in Theorem 1.3 with the following evident modifications:
now � D �� (this simplifies the calculations a little bit) and one has to apply Theorem 2.11 (which covers
the case s D p) and the estimate (2-8) instead of Theorem 2.9 (where s > p) and the inequality (2-5),
respectively.

Case IV: ˛p D n and 0 < � < ��. By a direct calculation, we get �.�/� p for any � 2 .0; ���, and the
result follows from the above-considered critical case � D ��.

Thus Theorems 1.3 and 1.6 are proved completely.

Remark 3.7. Really, we have proved that under the assumptions of Theorems 1.3 and 1.6, for every fixed
function v W Rn ! Rd from the considered potential spaces and for the corresponding pair .�; �/ the
following assertion holds: for any " > 0 there exists ı > 0 such that for every �-regular family of cubes
Qi � Rn if

P
i `.Qi /

� < ı, then
P
i Œdiam v.Qi /�

� < ".

4. Proof of “Fubini-type” N*-properties

Here we have to prove Theorems 1.11 and 1.13. We need the following general fact.

Theorem 4.1. Let � 2 .0; n�, � > 0, and let v W Rn! Rd be a continuous function. Suppose that for any
E � Rn with H� .E/D 0 and for every " > 0 there exists a family of compact sets fDigi2N such that

E �
[
i

Di and
X
i

ŒdiamDi �
� < " and

X
i

Œdiam v.Di /�
� < ": (4-1)

Then v has the .�; �/-N�-property; i.e., for every q 2 Œ0; �� and for any set E � Rn with H � .E/D 0 we
have

H�.1�
q
�
/.E \ v�1.y//D 0 for Hq-a.a. y 2 Rd : (4-2)
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Proof. Let the assumptions of the theorem be fulfilled. Fix q 2 Œ0; ��. If qD 0 or qD � , then the required
assertion (4-2) follows trivially from these assumptions. Suppose now that

0 < q < �:

Fix an arbitrary " > 0 and take the corresponding sequence of compact sets Di satisfying (4-1). Put
�D �

�
1� q

�

�
< � . Then

X
i

.diamDi /
�Œdiam v.Di /�

q
Hölder
�

�X
i

ŒdiamDi �
� �
��q

�1� q
�

�

�X
i

Œdiam v.Di /�
�

�q
�

D

�X
i

ŒdiamDi �
�

�1� q
�
�X

i

Œdiam v.Di /�
�

�q
� (4-1)
< ":

Since " > 0 was arbitrary, now the required assertion follows immediately from Theorem 2.12. �

The theorem just proved and Remark 3.7 clearly imply the assertions of Theorems 1.11 and 1.13.

4A. Proof of Theorem 1.17. Fix a mapping v W Rn! Rd for which the assumptions of Theorem 1.16
are fulfilled. We have to prove that

H�q .Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd ; (4-3)

for any q > m� 1, where �q D n�mC 1� .kC˛/.q�mC 1/ and Av is the set of nondifferentiability
points of v. Recall that, by approximation results [Swanson 2002; Korobkov and Kristensen 2018], under
the conditions of Theorem 1.16 the equalities

H� .Av/D 0 for all � > �� WD n� .kC˛� 1/p in cases (i), (iii); (4-4)

H��.Av/DHp.Av/D 0 �� WD n� .kC˛� 1/p D p in cases (ii), (iv) (4-5)

are valid.
Because of Remark 1.18 we can assume without loss of generality that q 2 .m� 1; qı�. Then for all

cases (i)–(iv) we have�
n

kC˛
� p

�
D)

�
q�mC 1� qı�mC 1D

n�mC 1

kC˛
� p

�
D) �q D n�mC 1� .kC˛/.q�mC 1/

D n� .kC˛� 1/.q�mC 1/� q � n� .kC˛� 1/p� q D ��� q:

In other words,

�q � ��� q; (4-6)

where the equality holds if and only if

k D 1; ˛ D 0; �q D n� q D ��� q (4-7)
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or
mD 1; .kC˛/p D n; q D p D ��; �q D 0: (4-8)

Below for convenience we consider the cases (i)–(iv) of Theorem 1.16 separately.

Case I: ˛ D 0, kp > n, p � 1, v 2W k
p .R

n;Rd /. This case splits into the following three subcases.

Case Ia: k D 1, p > n, �� D n, �q D n� q. Then the required assertion (4-3) follows immediately
from the equality Hn.Av/D 0 and from Remark 1.12.

Case Ib: �� < 0 or �� D 0, k D nC 1, p D 1. Then the set Av is empty (since functions of the space
W k
p .R

n;Rd / are C 1-smooth), and there is nothing to prove.

Case Ic: �� � 0, p > 1, k > 1, kp > n. Then by (4-4) we have

for all � > ��; H� .Av/D 0: (4-9)

Further, by Theorem 1.11 the function v has the .�; �/-N�-property for every � > ��. This implies, in
particular, by virtue of (4-9), that for every � > �� and for every q 2 Œ0; �� the equality

H��q.Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd (4-10)

holds. Fix q 2 .m�1; qı� and take � D qC�q . Since by construction �q � 0, we have � � q. Moreover,
by (4-6)–(4-8) we have � > ��. The last two inequalities together with (4-10) imply

H�q .Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd :

So the required assertion is proved for this case.

Case II: ˛ D 0, kp D n, p � 1, v 2W k
p;1.R

n;Rd /. In this case by definition

�� WD n� .k� 1/p D p;

and, by (4-5) we have
Hp.Av/D 0: (4-11)

Further, by [Hajłasz et al. 2017, Theorem 2.3] the function v has the .�; �/-N�-property for every � � p.
This implies, in particular, by virtue of (4-11), that for every � � p and for every q 2 Œ0; �� the equality

H��q.Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd (4-12)

holds. Fix q 2 .m�1; qı� and take � D qC�q . Since by construction �q � 0, we have � � q. Moreover,
by (4-6)–(4-8) we have � � �� D p. The last two inequalities together with (4-12) imply

H�q .Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd :

So the required assertion is proved for this case.

Case III: 0 < ˛ < 1, .kC ˛/p > n, p > 1, v 2 L kC˛
p .Rn;Rd /. If �� D n� .kC ˛ � 1/p < 0, then

Av D∅ and there is nothing to prove. Suppose now that �� � 0. We obtain from Theorem 1.11 that v has
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the .�; �/-N�-property for every � > �� WD n� .˛� 1/p. This implies, in particular, by virtue of (4-4),
that for every � > �� and for every q 2 Œ0; �� the equality

H��q.Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd (4-13)

holds. Fix q 2 .m�1; qı� and take � D qC�q . Since by construction �q � 0, we have � � q. Moreover,
by (4-6)–(4-8) we have � > ��. The last two inequalities together with (4-13) imply

H�q .Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd :

So the required assertion is proved for this case.

Case IV: 0 < ˛ < 1, .kC˛/p D n, p > 1, v 2L kC˛
p;1 .Rn;Rd /. In this case by definition

�� WD n� .k� 1/p D p;

and, by (4-5) we have

Hp.Av/D 0: (4-14)

Further, by Theorem 1.13 the function v has the .�; �/-N�-property for every � � p. This implies, in
particular, by virtue of (4-14), that for every � � p and for every q 2 Œ0; �� the equality

H��q.Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd (4-15)

holds. Fix q 2 .m�1; qı� and take � D qC�q . Since by construction �q � 0, we have � � q. Moreover,
by (4-6)–(4-8) we have � � �� D p. The last two inequalities together with (4-15) imply

H�q .Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd :

So the required assertion is proved for this case, which is the last one.

Thus Theorem 1.17 is proved completely. �

Appendix

We prove the technical estimates of Lemmas 2.2, 2.3 and 2.8. Fix a cube Q � Rn of size r D `.Q/� 1.
Recall that by 2Q we denote the double cube with the same centre as Q of size `.2Q/D 2`.Q/. We
need some general elementary estimates.

Lemma A.1. For any measurable function g W Rn! RC and for every x 2Q the inequalityZ
2Q

g.y/

jx�yjn�˛
dy � C

Z
Q

Mg.y/

jx�yjn�˛
dy (A-1)

holds.

Here C denotes some universal constant that does not depend on g;Q, etc.
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Proof. Fix x 2Q. Define r0 D 7
2

p
nr . In particular, 2Q � B

�
x; 1
2
r0
�
.

Now put rj D 2�j r0 and Bj D B.x; rj / nB.x; rjC1/, j 2 N. Clearly,

2QD
S
j2N

.2Q\Bj / (A-2)

and
meas.Q\Bj /� Crnj for all j 2 N (A-3)

(here and henceforth we denote by C general constants depending on the parameters n; p; d; ˛ only).
Since jx � yj � rj for y 2 Bj , by the definition of the maximal function, it is easy to see that the

estimate Z
2Q\Bj

g.y/

jx�yjn�˛
dy � Cr˛j Mg.z/ for all z 2Q\Bj

holds for all j 2 N. Integrating this inequality with respect to z 2Q\Bj and using (A-3), we haveZ
2Q\Bj

g.y/

jx�yjn�˛
dy � Cr˛�nj

Z
Q\Bj

Mg.z/ dz: (A-4)

Since jx� zj � rj for z 2Q\Bj , the last inequality impliesZ
2Q\Bj

g.y/

jx�yjn�˛
dy � C

Z
Q\Bj

Mg.y/

jx�yjn�˛
dy: (A-5)

Then summing these inequalities for all j 2 N and taking into account (A-2), we obtain the required
estimate (A-1). �

Henceforth, fix p > 1, ˛ > 0 with n C p � ˛p � n (in particular, ˛ < n C 1), and a function
v.x/D G˛.x/D

R
Rn
g.y/K˛.x�y/ dy with some g 2 Lp.R

n/.
Split our function v into a sum

v D v1C v2; (A-6)

where
v1 WD

Z
Rn
g1.y/K˛.x�y/ dy; v2 WD

Z
Rn
g2.y/K˛.x�y/ dy;

and
g1 WD g � 12Q; g2 WD g � 1Rnn2Q:

Lemma A.2. If nCp > ˛p > n, we have

diam v1.Q/� C kMgkLp.Q/ r
˛� n

p : (A-7)

Proof. If 0 < ˛ < n, then K˛.x/ < c˛ jxj˛�n (see [Adams and Hedberg 1996, page 10], for example),
and from Lemma A.1 we have

jv1.x/j � C

Z
Q

Mg.y/

jx�yjn�˛
dy for all x 2Q;

so the required estimate (A-7) follows immediately from the Hölder inequality.
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If n� ˛ < nC 1, then ˇ̌
rK˛.x/

ˇ̌
� C jxj˛�n�1

(see [Adams and Hedberg 1996, page 13], for example), and by Lemma A.1 we have

jrv1.x/j � C

Z
Q

Mg.y/

jx�yjn�˛C1
dy for all x 2Q: (A-8)

Then by the Hardy–Littlewood–Sobolev inequality for Riesz potentials we have

krv1kLq.Q/ � C kMgkLp.Q/;

where
1

q
D
1

p
�
˛� 1

n
:

It is easy to see that q > n, then by the Morrey inequality

diam v1.Q/� C krv1kLq.Q/ r
1�n

q � C1 kMgkLp.Q/r
˛� n

p

as required. �

We need a modification of lemma above to the case of Lorentz spaces.

Lemma A.3. If nCp � ˛p � n, we have

diam v1.Q/� C kMgkLp;1.Q/ r
˛� n

p :

Proof. We have to repeat the previous arguments using the following facts for Lorentz norms: the general-
ized Hölder inequalityZ

Q

f .y/

jy � xjn�˛
dy � kf kLp;1 �

 1Q

j � �xjn�˛


L p
p�1

;1

D C kf kLp;1r
˛� n

p

for n > ˛ � n
p

[Malý 2003, Theorem 3.7], and the generalized Hardy–Littlewood–Sobolev inequality for
Riesz potentials

kIˇf kLq;1.Q/ � C kf kLp;1.Q/ with
1

q
D
1

p
�
ˇ

n

if ˇp � n [Bennett and Sharpley 1988, Theorem IV.4.18], and the generalized Morrey inequality

diam v1.Q/� C krv1kLq;1.Q/ r
1�n

q

for q � n (see, e.g., [Korobkov and Kristensen 2014, Lemma 1.3] ). �

Now we have to estimate the term v2.

Lemma A.4. For an arbitrary positive parameter � � 1�˛ the inequality

diam
�
v2.Q/

�
� C r1���n

Z
Q

M˛C��1g.y/ dy (A-9)

holds, where we recall that r D `.Q/.
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Proof. Without loss of generality suppose that Q is centred at the origin. Since

C1jyj � jy � xj � C2jyj for all x 2Q; for all y 2 Rn n 2Q; (A-10)

and K 0˛.�/� C�
˛�1�n for 0 < ˛ < nC 1, it is easy to deduce that

diam v2.Q/� sup
x1;x22Q

Z
Rnn2Q

jg.y/jŒK˛.x1�y/�K˛.x2�y/� dy

� C r

Z
Rnn2Q

jg.y/j

jyjn�˛C1
dy: (A-11)

Fix � > 0 such that
˛C � � 1� 0: (A-12)

Put r0 D 1
2
r , rj D 2j r0, and consider a sequence of sets Bj D B.0; rjC1/ nB.0; rj /. By construction,

Rn n 2Q �
S
j2N

Bj (A-13)

and Z
Bj

jg2.y/j

jyjn�˛C1
dy � Cr��j r˛C��1j

�

Z
Bj

jg2.y/j dy � Cr��j M˛C��1g2.0/; (A-14)

where we recall that g2 WDg �1Rnn2Q. Therefore, by summing over j and using (A-13) and the elementary
formula for geometric progressions, we obtainZ

Rnn2Q

jg2.y/j

jyjn�˛C1
dy � CM˛C��1g2.0/

1X
jD1

r��j � Cr��M˛C��1g2.0/; (A-15)

It is easy to check (using the assumption that g2 � 0 on 2Q) that M˛C��1g2.0/� CM˛C��1g2.z/ for
every z 2Q. Therefore,

M˛C��1g2.0/� C �

Z
Q

M˛C��1g2.z/ dzI (A-16)

thus Z
Rnn2Q

jg2.y/j

jyjn�˛C1
dy � Cr���n

Z
Q

M˛C��1g2.z/ dz: (A-17)

Finally we obtain from (A-11) that

diamŒv.Q/�� Cr1���n
Z
Q

M˛C��1g2.z/ dz (A-18)

as required. �

The next result is established using the same arguments, with some evident simplifications.

Lemma A.5. If , in addition to the assumptions above, we have ˛ > 1, then the estimate

diam v2.Q/� C r
1�n

Z
Q

I˛�1jgj.y/ dy (A-19)

holds, where we recall that I˛�1jgj is the corresponding Riesz potential of the function jgj.
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Lemmas A.2–A.5 clearly imply the assertions of Lemmas 2.2, 2.3 and 2.8.
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