Vol. 12, No. 5, 2019

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 5, 1501–1870
Issue 4, 1127–1500
Issue 3, 757–1126
Issue 2, 379–756
Issue 1, 1–377

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
Submission guidelines
Submission form
Editorial board
Editors' interests
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
Author index
To appear
Other MSP journals
This article is available for purchase or by subscription. See below.
Unstable normalized standing waves for the space periodic NLS

Nils Ackermann and Tobias Weth

Vol. 12 (2019), No. 5, 1177–1213

For the stationary nonlinear Schrödinger equation Δu + V (x)u f(u) = λu with periodic potential V we study the existence and stability properties of multibump solutions with prescribed L2-norm. To this end we introduce a new nondegeneracy condition and develop new superposition techniques which allow us to match the L2-constraint. In this way we obtain the existence of infinitely many geometrically distinct solutions to the stationary problem. We then calculate the Morse index of these solutions with respect to the restriction of the underlying energy functional to the associated L2-sphere, and we show their orbital instability with respect to the Schrödinger flow. Our results apply in both, the mass-subcritical and the mass-supercritical regime.

PDF Access Denied

We have not been able to recognize your IP address as that of a subscriber to this journal.
Online access to the content of recent issues is by subscription, or purchase of single articles.

Please contact your institution's librarian suggesting a subscription, for example by using our journal-recom­mendation form. Or, visit our subscription page for instructions on purchasing a subscription.

You may also contact us at contact@msp.org
or by using our contact form.

Or, you may purchase this single article for USD 40.00:

nonlinear Schrödinger equation, periodic potential, standing wave solution, orbitally unstable solution, multibump construction, prescribed norm
Mathematical Subject Classification 2010
Primary: 35J91, 35Q55
Secondary: 35J20
Received: 11 July 2017
Revised: 6 April 2018
Accepted: 12 August 2018
Published: 15 December 2018
Nils Ackermann
Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad de México
Tobias Weth
Institut für Mathematik
Frankfurt am Main