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SPARSE BOUNDS FOR THE DISCRETE CUBIC HILBERT TRANSFORM

AMALIA CULIUC, ROBERT KESLER AND MICHAEL T. LACEY

Consider the discrete cubic Hilbert transform defined on finitely supported functions f on Z by

H3 f (n)=
∑
m 6=0

f (n−m3)

m
.

We prove that there exists r < 2 and universal constant C such that for all finitely supported f, g on Z

there exists an (r, r)-sparse form 3r,r for which

|〈H3 f, g〉| ≤ C3r,r ( f, g).

This is the first result of this type concerning discrete harmonic analytic operators. It immediately implies
some weighted inequalities, which are also new in this setting.

1. Introduction

The purpose of this paper is to initiate a theory of sparse domination for discrete operators in harmonic
analysis. We do so in the simplest nontrivial case; it will be clear that there is a much richer theory to be
uncovered.

Our main result concerns the discrete cubic Hilbert transform, defined for finitely supported functions f
on Z by

H3 f (x)=
∑
n 6=0

f (x − n3)

n
.

It is known [Stein and Wainger 1990; Ionescu and Wainger 2006] that this operator extends to a bounded
linear operator on `p(Z) to `p(Z) for all 1 < p <∞. We prove a sparse bound, which in turn proves
certain weighted inequalities. Both results are entirely new.

By an interval we mean a set I = Z∩ [a, b] for a < b ∈ R. For 1≤ r <∞, set

〈 f 〉I,r :=
[

1
|I |

∑
x∈I

| f (x)|r
]1/r

.

We say a collection of intervals S is sparse if there are subsets ES ⊂ S⊂Z with (a) |ES|>
1
4 |S|, uniformly

in S ∈ S, and (b) the sets {ES : S ∈ S} are pairwise disjoint. For sparse collections S, consider sparse
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bisublinear forms
3S,r,s( f, g) :=

∑
S∈S

|S|〈 f 〉S,r 〈g〉S,s .

Frequently we will suppress the collection S, and if r = s = 1, we will suppress this dependence as well.
The main result of this paper is the following theorem.

Theorem 1.1. There is a choice of 1 < r < 2 and constant C > 0 so that for all f, g that are finitely
supported on Z there is a sparse collection of intervals S so that

|〈H3 f, g〉| ≤ C3S,r,r ( f, g).

The beauty of sparse operators is that they are both positive and highly localized operators. In particular,
many of their mapping properties can be precisely analyzed. As an immediate corollary [Bernicot et al.
2016, §6] we obtain weighted inequalities, holding in an appropriate intersection of Muckenhoupt and
reverse Hölder weight classes.

Corollary 1.2. There exists 1< r < 2 so that for all weights w−1, w ∈ A2 ∩ RHr we have

‖H3 : `
2(w) 7→ `2(w)‖. 1.

For instance, one can take

w(x)= [1+ |x |]a for − 1
2 < a < 1

2 .

The concept of a sparse bound originated in [Lerner 2013; Conde-Alonso and Rey 2016; Lacey 2017],
so it is new, in absolute terms, as well as this area. On the other hand, the study of norm inequalities for
discrete arithmetic operators has been under active investigation for over 30 years. However, no weighted
inequalities have ever been proved in this setting.

The subject of discrete norm inequalities of this type began with the breakthrough work of Bourgain
[1988a; 1988b] on arithmetic ergodic theorems. He proved, for instance, the following theorem.

Theorem 1A. Let P be a polynomial on Z which takes integer values. Then the maximal function MP

below maps `p(Z) to `p(Z) for all 1< p <∞:

MP f (x)= sup
N

1
N

N∑
n=1

| f (x − p(n))|.

Subsequently, attention turned to a broader understanding of Bourgain’s work, including its implications
for singular integrals and Radon transforms [Ionescu et al. 2007; Stein and Wainger 1990]. The fine
analysis needed to obtain results in all `p spaces was developed by Ionescu and Wainger [2006]. This
theme is ongoing, with recent contributions in [Mirek et al. 2015; 2017; 2018], while other variants of
these questions can be found in [Krause and Lacey 2017; Pierce 2010].

Initiated by Lerner [2013] as a remarkably simple proof of the so-called A2 theorem, the study of
sparse bounds for operators has recently been an active topic. The norm control provided in [Lerner 2013]
was improved to a pointwise control for Calderón–Zygmund operators in [Lacey 2017; Conde-Alonso
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and Rey 2016]. The paper [Culiuc et al. 2016] proved sparse bounds for the bilinear Hilbert transform,
in the language of sparse forms, pointing to the applicability of sparse bounds outside the classical
Calderón–Zygmund setting. That point of view is crucial for this paper.

Two papers [Lacey and Spencer 2017; Krause and Lacey 2018] have proved sparse bounds for random
discrete operators, a much easier setting than the current one. A core technique of these papers reappears
in Section 4. Sparse bounds continue to be explored in a variety of settings [Benea et al. 2017; Bernicot
et al. 2016; Karagulyan 2016; Lacey and Mena Arias 2017; Hytönen et al. 2017].

We recall some aspects of known techniques in sparse bounds in Section 2. These arguments and results
are formalized in a new notation, which makes the remaining quantitative proof more understandable.
In particular, we define a “sparse norm” and formalize some of its properties. Our main theorem above
is a sparse bound for a Fourier multiplier. In Section 3, we describe a decomposition of this Fourier
multiplier, which has a familiar form within the discrete harmonic analysis literature. The multiplier is
decomposed into “minor” and “major” arc components, which require dramatically different methods to
control. Concerning the minor arcs, there is one novel aspect of the decomposition, a derivative condition
which has a precursor in [Krause and Lacey 2017]. Using this additional feature, the minor arcs are
controlled in Section 4 through a variant of an argument in [Lacey and Spencer 2017]. The major arcs
are the heart of the matter, and are addressed in Section 5.

An expert in the subject of discrete harmonic analysis will recognize that there are many possible
extensions of the main result of this paper. We have chosen to present the main techniques in the simplest
nontrivial example. Many variants and extensions to our main theorem hold, but all the ones we are aware
of are more complicated than this one.

2. Generalities

We collect some additional notation, beginning with the one term that is not standard, namely the sparse
operators. Given an operator T acting on finitely supported functions on Z, and index 1≤ r, s <∞, we
set

‖T : Sparse(r, s)‖ (2.1)

to be the infimum over constants C > 0 so that for all finitely supported functions f, g on Z,

|〈T f, g〉| ≤ C sup3r,s( f, g),

where the supremum is over all sparse forms. In particular, the “sparse norm” in (2.1) satisfies a triangle
inequality: ∥∥∥∥∑

j

Tj : Sparse(r, s)
∥∥∥∥≤∑

j

‖Tj : Sparse(r, s)‖.

We collect some quantitative estimates for different operators; hence the notation. As the notation indicates,
it suffices to exhibit a single sparse bound for 〈T f, g〉.
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It is known that the Hardy–Littlewood maximal function

MHL f = sup
N

1
2N + 1

N∑
j=−N

| f (x − j)|

satisfies a sparse bound. This is even a classical result.

Theorem 2B. We have
‖MHL : Sparse(1, 1)‖. 1.

The following is a deep fact about sparse bounds that is at the core of our main theorem.

Theorem 2C [Conde-Alonso and Rey 2016; Lacey 2017]. Let TK be the convolution with any Calderón–
Zygmund kernel. For a Hilbert space H, and viewing TK as acting on H-valued functions, we have the
sparse bound

‖TK : Sparse(1, 1)‖<∞.

We make the natural extension of the definition of the sparse form to vector-valued functions, namely
〈 f 〉I = |I |−1∑

x∈I‖ f ‖H.

Recall that K is a Calderón–Zygmund kernel on R if K : R \ {0} → C satisfies

sup
x∈R\{0}

|x K (x)| +
∣∣∣x2 d

dx
K (x)

∣∣∣<∞, (2.2)

and TK acts boundedly from L2 to L2. The kernels that we will encounter are small perturbations of 1/x .
Restricting a Calderón–Zygmund kernel to the integers, we have a kernel which satisfies Theorem 2C.

In a different direction, we will accumulate a range of sparse operator bounds at different points of our
argument. Yet there is, in a sense, a unique maximal sparse operator, once a pair of functions f, g are
specified. Thus we need not specify the exact sparse form which proves our main theorem.

Lemma 2.3 [Lacey and Mena Arias 2017, Lemma 4.7]. Given finitely supported functions f, g and
choices of 1 ≤ r, s <∞, there is a sparse form 3∗r,s , and constant C > 0 so that for any other sparse
form 3r,s we have

3r,s( f, g)≤ C3∗r,s( f, g).

A couple of elementary estimates, which we will appeal to, are in this next proposition. The use of
these inequalities in the sparse-bound setting appeared in [Lacey and Spencer 2017].

Proposition 2.4. Let TK f (x) =
∑

n K (n) f (x − n) be convolution with kernel K . Assuming that K is
finitely supported on interval [−N , N ] we have the inequalities

‖TK : Sparse(r, s)‖. N 1/r+1/s−1
‖TK : `

r
7→ `s′

‖, 1≤ r, s <∞. (2.5)

The two instances of the above inequality we will use are (r, s)= (1, 1), (2, 2). In the latter case, one
should observe that the power of N above is zero.
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Proof. Let I be a partition of Z into intervals of length 2N . Assume that if I, I ′ ∈ I with dist(I, I ′)≤ 1,
then either f 1I or f 1I ′ are identically zero. Then,

|〈TK f, g〉| ≤
∑
I∈I

〈 f 1I , T ∗K (g13I )〉

≤ ‖TK : `
r
7→ `s′

‖

∑
I∈I

‖ f 13I‖r ‖g13I‖s

. N 1/r+1/s−1
‖TK : `

r
7→ `s′

‖

∑
I∈I

|3I | · 〈 f 〉3I,r 〈g〉3I,s . �

The definition of sparse collections has a useful variant. Let 0 < η ≤ 1
4 . We say a collection of

intervals S is η-sparse if there are subsets ES ⊂ S ⊂ Z with (a) |ES| > η|S|, uniformly in S ∈ S, and
(b) the sets {ES : S ∈ S} are pairwise disjoint.

Lemma 2.6. For each f, g there is a 1
2 -sparse form 3 so that for all η-sparse forms 3η, we have

3η( f, g). η−13( f, g), 0< η < 1
4 .

Proof. Let Sη be the sparse collection of intervals associated to 3η. Using shifted dyadic grids [Hytönen
et al. 2013, Lemma 2.5], we can, without loss of generality, assume that Sη consists of dyadic intervals.
It follows that we have the uniform Carleson measure estimate∑

J∈S:J⊂I

|J |. η−1
|I |, I ∈ Sη.

Then, for an integer J . η−1, we can decompose Sη into subcollections Sj , for 1≤ j ≤ J , so that each
collection Sj is 1

2 -sparse.
Now, with f, g fixed, by Lemma 2.3, there is a single sparse operator 3 so that uniformly in 1≤ j ≤ J

we have

3Sj ( f, g).3( f, g). �

A variant of the sparse operator will appear, one with a “long tails” average. Define

{ f }S =
1
|S|

∑
x

| f (x)|
(1+ dist(x, S)/|S|)3

. (2.7)

Lemma 2.8. For all finitely supported f, g, there is a sparse operator 3 so that for any sparse collec-
tion S0 there holds ∑

S∈S0

|S|{ f }S{g}S .3( f, g).

Proof. For integers t > 0 let St = {2t S : S ∈ S}. Assuming that S0 is 1
2 -sparse, it follows that St is

2−t−1-sparse, for t > 0. Appealing to the power decay in (2.7),∑
S∈S0

|S|{ f }S{g}S .
∞∑

t=0

2−2t3St ( f, g).
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But by Lemma 2.6, there is a fixed 1
2 -sparse form 3( f, g) so that

3St ( f, g). 2t3( f, g), t > 0. �

Throughout, e(x) := e2π i x, and ε > 0 is a fixed small absolute constant. For a function f ∈ `2(Z), the
(inverse) Fourier transform of f is defined as

F f (β) :=
∑
n∈Z

f (n)e(−βn),

F−1g(n)=
∫

T

g(β)e(βn) dβ.

We will define operators as Fourier multipliers. Namely, given a function M : T 7→ C, we define the
associated linear operator by

F[8M f ](β)= M(β)F f (β). (2.9)

The notation F−1 M = M̌ will be convenient. As above, for kernel K , the operator TK will denote
convolution with respect to K . Thus, 8M = TM̌ .

3. The main decomposition

We prove the main result by decomposition of the Fourier multiplier

M(β) :=
∑
m 6=0

e(−βm3)

m
. (3.1)

In this section, we detail the decomposition, which is done in the standard way, with one new point
needed.

The kernel. Let {ψj }j≥0 be a dyadic resolution of 1/t , where ψj (x) = 2− jψ(2− j x) is a smooth odd
function satisfying |ψ(x)| ≤ 1[1/4,1](|x |). In particular∑

k≥0

ψk(t)=
1
t
, |t | ≥ 1. (3.2)

The major arcs. The rationals in the torus are the union over s ∈ N of the collections Rs given by

Rs := {B/Q ∈ T : (B, Q)= 1, 2s−1
≤ Q < 2s

}. (3.3)

Namely the denominator of the rationals is held approximately fixed. For all rationals B/Q ∈Rs , define
the j-th major box at B/Q to be

Mj (B/Q) := {β ∈ T : |β − B/Q| ≤ 2(ε−3) j
}, s ≤ ε j.

Collect the major arcs, defining

Mj :=
⋃

(B,Q)=1:Q≤26 jε

Mj (B/Q). (3.4)
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Note in particular that for a sufficiently small ε, in the union above no two distinct major arcs Mj (B/Q)
intersect. That is, if B1/Q1 6= B2/Q2, suppose that β ∈Mj (B1/Q1)∪Mj (B2/Q2). Then

2−6 jε
≤ |B1/Q1− B2/Q2| ≤ |B1/Q1−β| + |B2/Q2−β| ≤ 2(ε−3) j+1,

which is a contradiction for ε < 2
7 .

Multipliers. We use the notation below for the decomposition of the multiplier:

Mj (β) :=
∑
m∈Z

e(−βm3)ψj (m), (3.5)

Hj (y) :=
∫

R

e(−yt3)ψj (t) dt (continuous analog of Mj ), (3.6)

S(B/Q) :=
1
Q

Q−1∑
r=0

e(−B/Q · r3) (Gauss sum),

L j,s(β) :=
∑

B/Q∈Rs

S(B/Q)Hj (β − B/Q)χs(β − B/Q), (3.7)

where χ is a smooth even bump function with 1[−1/10,1/10] ≤ χ ≤ 1[−1/5,1/5] and χs(t)= χ(10s t),

L j (β) :=
∑
s≤ jε

L j,s(β), j ≥ 1, (3.8)

Ls(β) :=
∑
j≥s/ε

L j,s(β), s ≥ 1, (3.9)

L(β) :=
∞∑

s=1

Ls(β)=

∞∑
j=1

L j (β),

E j (β) := Mj (β)− L j (β), j ≥ 1, (3.10)

E(β) :=
∞∑

j=1

E j (β). (3.11)

Therefore, by construction, M(β)= L(β)+ E(β) for all β ∈ T. Our motivation for introducing the above
decomposition is that the discrete multiplier Mj is well-approximated by its continuous analog L j on the
major arcs in Mj . And off of the major arcs, the multiplier is otherwise small.

Theorem 1.1 is proved by showing that there exist 1< r < 2 and κ > 0 such that

‖8E j : Sparse(r, r)‖. 2−κ j , j ≥ 1, (3.12)

‖8Ls : Sparse(r, r)‖. 2−κs, s ≥ 1. (3.13)

Indeed, from the above inequalities, it follows that

‖8L : Sparse(r, r)‖ ≤
∞∑

s=1

‖8Ls : Sparse(r, r)‖.
∞∑

s=1

2−κs . 1,
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‖8E : Sparse(r, r)‖ ≤
∞∑

j=1

‖8E j : Sparse(r, r)‖.
∞∑

j=1

2−κ j . 1.

Therefore, our main theorem follows from

‖8M : Sparse(r, r)‖ ≤ ‖8L : Sparse(r, r)‖+‖8E : Sparse(r, r)‖. 1.

We prove the “minor arcs” estimate (3.12) in Section 4 and the “major arcs” estimate (3.13) in Section 5.

The next theorem gives quantitative estimates for the Gauss sums (3.15) and the multipliers E j defined
in (3.10) that are essential to our proof of Theorem 1.1.

Theorem 3.14. For absolute choices of ε > 0,

|S(B/Q)|. 2−εs, B/Q ∈Rs, s ≥ 1, (3.15)

‖E j (β)‖∞ . 2−ε j , j ≥ 1, (3.16)∥∥∥∥ d2

dβ2 E j (β)

∥∥∥∥
∞

. 27 j , j ≥ 1. (3.17)

The first two are well-known estimates. The estimate (3.15) is the Gauss sum bound, see [Hua 1982],
while the estimate (3.16) is gotten by combining Lemmas 3.21 and 3.18. The only unfamiliar estimate is
the derivative bound (3.17), but our claim is very weak and follows from elementary considerations.

The details of a proof of Theorem 3.14 are represented in the literature [Stein and Wainger 1990;
Krause and Lacey 2017]. We indicate the details. A central lemma is this approximation of Mj defined in
(3.5), in terms of L j defined in (3.8).

Lemma 3.18. For 1≤ s ≤ ε j , B/Q ∈Rs , we have the approximation

Mj (β)= L j (β)+ O(2(2ε−1) j ), β ∈Mj (B/Q).

Proof. We closely follow the argument in [Krause and Lacey 2017]. There are two estimates to prove:

|Mj (β)− S(B/Q)Hj (β − B/Q)|. 2(2ε−1) j , (3.19)

|L j (β)− S(B/Q)Hj (β − B/Q)|. 2(2ε−1) j , (3.20)

both estimates holding uniformly over β ∈Mj (B/Q), and B/Q ∈Rs .
For the second estimate (3.20), it follows from the definitions of L j and L j,s in (3.7), as well as the

disjointess of the major arcs, that

|L j (β)− S(B/Q)Hj (β − B/Q)| = |L j,s(β)− S(B/Q)Hj (β − B/Q)|

≤ |S(B/Q)Hj (β − B/Q)|(1Mj (B/Q)−χ(10s(β − B/Q)))

. sup
|β|>(1/2)10s−1

|Hj (β)|. 10−s .

The last bound is a standard van der Corput estimate.
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We turn to (3.19). Write β = B/Q+ η, where |η| ≤ 2(ε−3) j. For all positive m in the support of ψj ,
decompose these integers into their residue classes mod Q, i.e., m = pQ+ r , where 0 ≤ r < Q ≤ 2 jε

and the p-values are integers in [c, d], with c= d/8' 2 j/Q to cover the support of ψj . The argument of
the exponential in (3.1) is, modulo 1, given by

β(pQ+ r)3 = (B/Q+ η)(pQ+ r)3 ≡ r3 B/Q+ (pQ)3η+ O(2 j (2ε−1)).

Then the sum over all positive integers m in the support of ψj can be written as

∑
p∈[c,d]

Q−1∑
r=0

[e(−r3 B/Q− (pQ)3η)+ O(2(2ε−1) j )]ψj (pQ+ r)

=

Q−1∑
r=0

e(−r3
· B/Q)×

∑
p∈[c,d]

e(−η(pQ)3)ψj (pQ)+ O(2(2ε−1) j )

= S(B, Q)× Q
∑

p∈[c,d]

e(−η(pQ)3)ψj (pQ)+ O(2(2ε−1) j ).

For fixed p ∈ [c, d] and 0≤ t ≤ Q, we have

|e(−η(pQ)3)ψj (pQ)− e(−η(pQ+ t)3)ψj (pQ+ t)|

. |e(−η(pQ)3)− e(−η(pQ+ t)3)|2− j
+ |ψj (pQ)−ψj (pQ+ t)|

. 2(2ε−2) j .

Therefore,

Q
∑

p∈[c,d]

e(−η(pQ)3)ψj (pQ)=
∫
∞

0
e(−ηt3)ψj (t) dt + O(2(2ε−1) j ).

The analogous computation for negative values of m yields∑
m<0

e(−βm3)ψj (m)= S(B, Q)×
∫ 0

−∞

e(−ηt3)ψj (t) dt + O(2(2ε−1) j ),

and combining the two estimates with the notation in (3.11) leads to the desired conclusion. �

We also need control of Mj and L j , defined in (3.8) on the minor arcs, which are the open components
of the complement of Mj defined in (3.4).

Lemma 3.21. There is a δ = δ(ε) so that uniformly in j ≥ 1,

|Mj (β)| + |L j (β)|. 2−δ j , β 6∈Mj .

This estimate is essentially present in [Krause and Lacey 2017]. The bound |Mj (β)|. 2−δ j for β 6∈Mj

can be seen from [Bourgain 1989, Lemma 5.4], and is a consequence of a fundamental estimate of Weyl
[Iwaniec and Kowalski 2004, Theorem 8.1]. The corresponding bound on L j is an easy consequence of
the van der Corput estimate |Hj (y)|. 2− j

|y|−1/3.
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4. Minor arcs

Recalling the sparse-form notation (2.1) and the Fourier multiplier notation (2.9), we now proceed to the
proof of the bound in (3.12).

Lemma 4.1. There exists κ > 0 and 1< r < 2 such that

‖8E j : Sparse(r, r)‖. 2−κ j , j ≥ 1.

Proof. We only need the L∞ bound on E j given in (3.16), and the derivative condition (3.17). In particular,
these two conditions imply

|F−1 E j (m)|.min
{

2−ε j ,
27 j

1+m2

}
. (4.2)

Write F−1 E j = Ě j,0 + Ě j,1, where Ě j,0(m) = [F−1 E j (m)]1[−210 j ,210 j ](m). It follows immediately
from (4.2) that

‖TĚ j,1
: `2
7→ `2

‖. ‖Ě j,1‖1 . 2−3 j .

(Recall that TK denotes convolution with respect to kernel K .) But, it follows that TK f . MHL f , where
the latter is the maximal function. And so by Theorem 2B, we have

‖TĚ j,1
: Sparse(1, 1)‖. 2−3 j .

It remains to provide a sparse bound for TĚ j,0
(which is the interesting case). We are in a position to

use (2.5), with N ' 210 j. We have for 1< r < 2

‖TĚ j,0
: Sparse(r, r)‖. 210 j (2/r−1)

‖TĚ j,0
: `r
7→ `r ′

‖. (4.3)

Notice that 2/r − 1 can be made arbitrarily small. We need to estimate the operator norm above. But, we
have the two estimates

‖TĚ j,0
: `s
7→ `s′

‖. 2−ε j , s = 1, 2.

The case of s = 1 follows from (4.2), and the case of s = 2 from Plancherel and (3.16). We therefore
see that we have a uniformly small estimate on the norm of TĚ j,0

from `r
7→ `r ′ for 1 < r < 2. For

0< 2− r � ε, we have the desired bound in (4.3). �

5. Major arcs

The following estimate is the core of the main result, Theorem 1.1. Recalling the definition of Ls in (3.9),
the notation for Fourier multipliers (2.9) and the sparse norm notation (2.1), we have this, which verifies
the bound in (3.13):

Lemma 5.1. There exist κ > 0 and 1< r < 2 such that

‖8Ls : Sparse(r, r)‖. 2−κs, s ≥ 1.

Combining the “major arcs” estimate in Lemma 5.1 with the “minor arcs” estimate in Lemma 4.1, the
proof of Theorem 1.1 is complete.



SPARSE BOUNDS FOR THE DISCRETE CUBIC HILBERT TRANSFORM 1269

The remainder of this section is taken up with the proof of the lemma. The central facts are (1) the Gauss
sum bound (3.15); (2) the sparse bound for Hilbert-space-valued singular integrals Theorem 2C, which
is applied to Fourier projections of f and g onto the major arcs; (3) an argument to pass from a sparse
operator applied to the aforementioned Fourier projections to a sparse bound in terms of just f and g.

Step 1. We define our Hilbert-space-valued functions, where the Hilbert space will be the finite-
dimensional space `2(Rs). Recall that the rationals Rs are defined in (3.3), and the functions χs are
defined in (3.7). Given f ∈ `2, set

fs = { fs,B/Q : B/Q ∈Rs} := {χs−1 ∗ (Mod−B/Q f ) : B/Q ∈Rs}. (5.2)

Above, Modλ f (x)= e(λx) f (x) is modulation by λ. The intervals

{[B/Q− 10−s, B/Q+ 10−s
] : B/Q ∈Rs} (5.3)

are pairwise disjoint, so that by Bessel’s theorem, we have

‖ fs‖`2(`2(Rs)) = ‖{ fs,B/Q : B/Q ∈Rs}‖`2(`2(Rs)) ≤ ‖ f ‖2.

Step 2. The inner product we are interested in can be viewed as one acting on `2(Rs) functions. Observe
that the Fourier multiplier associated to Ls enjoys the equalities below. Beginning from (3.9) and (3.7),

〈8Ls f, g〉 =
∑

B/Q∈Rs

∑
j≥s/ε

S(B, Q) · 〈Hj (β − B/Q)χs(β − B/Q)F f (β),Fg(β)〉

=

∑
B/Q∈Rs

∑
j≥s/ε

S(B, Q) · 〈Hj (β)χs(β) f (β + B/Q),Fg(β + B/Q)〉

=

∑
B/Q∈Rs

∑
j≥s/ε

S(B, Q) · 〈Hj (β)χs(β)F fs,B/Q(β),Fgs,B/Q(β)〉.

Crucially, above we have removed some modulation factors to get a fixed multiplier acting on a Hilbert-
space-valued function. Continuing the equalities, we have

=

∑
B/Q∈Rs

S(B, Q)〈8H s fs,B/Q, gs,B/Q〉, where H s
=

∑
j≥s/ε

Hj . (5.4)

We address the Gauss sums S(B, Q) above. Recalling (3.15) and setting f ′s = {λB/Q fs,B/Q} for
appropriate choice of |λB/Q | = 1, we have

|〈8Ls fs, gs〉|. 2−εs〈8H s f ′s , gs〉. (5.5)

Above we have gained a geometric decay in s.

On the right-hand side of (5.5), we have an operator acting on Hilbert-space-valued functions. Noting
that ‖ f ′s‖`2(Rs) = ‖ fs‖`2(Rs) pointwise, we are free to replace f ′s in (5.5) by simply fs , as defined in (5.2).
The remaining estimate to prove is that there is a choice of 1< r < 2 and sparse operator 3r,r so that

|〈8H s fs, gs〉|. 2(ε/4)s3r,r ( f, g). (5.6)



1270 AMALIA CULIUC, ROBERT KESLER AND MICHAEL T. LACEY

Note in particular that we will allow small geometric growth in this estimate, which will be absorbed into
the geometric decay in (5.5).

Step 3. The principal step is the application of the sparse bound in Theorem 2C. From the definitions in
(3.6) and (5.4), we have

H s(β)=
∑

j≥s/ε

Hj (β)=
∑

j≥s/ε

∫
e(−βt3)ψj (t) dt.

By the choice of ψ in (3.2), it follows that the integrand on the right equals e(−βt3)dt/t for t > 2s/ε+1.
And, in particular,

H s(β)=
1
3

∑
j≥s/ε

∫
e(−βs)

ψj (s1/3)

s2/3 ds.

But ψ is odd; hence so is ψj (s1/3)/s2/3. It follows that Ȟ s is a Calderón–Zygmund kernel; that is, it
meets the conditions in (2.2). Thus, the operator we are considering is convolution with respect to Ȟ s,
namely 8H s = TȞ s .

Therefore, from Theorem 2C, we have the following inequality for the expression in (5.4):

|〈TȞ s fs, gs〉|.31,1( fs, gs). (5.7)

There is one additional fact: all the intervals used in the definition of the sparse form in (5.7) above have
length at least 23(s/ε−2). This is a simple consequence of Ȟ s(x)1[−23(s/ε−2),23(s/ε−2)] ≡ 0.

Step 4. We should emphasize that (5.7) has a small abuse of notation: The sparse form is computed
on the vector-valued functions fs and gs . That is, the implied averages have to be made relative to the
`2(Rs)-norm. The last step is to remove the norm. Namely, we show that there is a choice of 1< r < 2
and sparse form 3r,r so that

31,1( fs, gs). 2(ε/4)s3r,r ( f, g). (5.8)

Combining this estimate with (5.7) proves (5.6), completing the proof.

The proof of (5.8) is reasonably routine. It will be crucial that we have the estimate ]Rs . 22s. Let S
be the sparse collection of intervals associated with the sparse form 31,1( fs, gs). As noted, we are free to
assume that for all S ∈ S, we have |S| ≥ 10s/4ε. Recall the definition of fs in (5.2). Write fs = f S,0

s + f S,1
s ,

where

f S,0
s := {χs−1 ∗ (Mod−B/Q( f 12S)) : B/Q ∈Rs}.

Above, we have localized the support of f to the interval 2S. The same decomposition is used on the
functions g and gs . By subadditivity, we have

31,1( fs, gs)≤31,1( f S,0
s , gS,0

s ) (5.9)

+31,1( f S,1
s , gS,0

s )+31,1( f S,0
s , gS,1

s ) (5.10)

+31,1( f S,1
s , gS,1

s ). (5.11)
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The crux of the matter is this estimate: For each interval S ∈ S, we have

〈 f S,0
s 〉S . 2s(2−r)/r

〈 f 〉2S,r , 1< r < 2. (5.12)

And, the fraction (2− r)/r in the exponent can be made arbitrarily small by taking 0< 2− r very small.
Indeed, using the disjointness of the intervals in (5.3), and Plancherel, we have

〈 f S,0
s 〉S,2 . 〈 f 〉2S,2. (5.13)

Second, it is trivial that
〈χs−1 ∗ (Mod−B/Q f 12S)〉S . 〈 f 〉2S

and by simply summing over the bounded number of choices of B/Q ∈Rs , we have

〈 f S,0
s 〉S . 22s

〈 f 〉2S.

Interpolating between this and (5.13) proves (5.12). With that inequality in hand, we have, for 0< 2− r
sufficiently small, ∑

S∈S

|S|〈 f S,0
s 〉S〈g

S,0
s 〉S . 2s(ε/4)

∑
S∈S

|S|〈 f 〉2S,r 〈g〉2S,r .

If the family S is 1
2 -sparse, then the family {2S : S ∈ S} is 1

4 -sparse, so we have our desired bound for the
term on the right in (5.9).

There are three more terms, in (5.10) and (5.11), which are all much smaller. Recall the notation { f }
of (2.7). Since χ , as chosen in (3.7), is smooth, and the length of S ∈ S is much larger than 10s, we have

〈χs−1 ∗ (Mod−B/Q f 1R\2S)〉S . 2−100s
{ f }S, B/Q ∈Rs .

Summing this estimate over all 22s choices B/Q ∈Rs , we see that each of the three terms in (5.10) and
(5.11) are at most

2−s
∑
S∈S

|S|{ f }S{g}S.

It remains to bound this last bilinear form, which is the task taken up in Lemma 2.8. This completes the
argument for (5.8).
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