
ANALYSIS & PDE

msp

Volume 12 No. 5 2019

TUOMAS ORPONEN

ON THE DIMENSION AND SMOOTHNESS OF RADIAL
PROJECTIONS





ANALYSIS AND PDE
Vol. 12, No. 5, 2019

dx.doi.org/10.2140/apde.2019.12.1273 msp

ON THE DIMENSION AND SMOOTHNESS OF RADIAL PROJECTIONS

TUOMAS ORPONEN

This paper contains two results on the dimension and smoothness of radial projections of sets and measures
in Euclidean spaces.

To introduce the first one, assume that E, K ⊂ R2 are nonempty Borel sets with dimH K > 0. Does
the radial projection of K to some point in E have positive dimension? Not necessarily: E can be
zero-dimensional, or E and K can lie on a common line. I prove that these are the only obstructions: if
dimH E > 0, and E does not lie on a line, then there exists a point in x ∈ E such that the radial projection
πx (K ) has Hausdorff dimension at least (dimH K )/2. Applying the result with E = K gives the following
corollary: if K ⊂ R2 is a Borel set which does not lie on a line, then the set of directions spanned by K
has Hausdorff dimension at least (dimH K )/2.

For the second result, let d ≥ 2 and d − 1< s < d . Let µ be a compactly supported Radon measure in
Rd with finite s-energy. I prove that the radial projections of µ are absolutely continuous with respect to
Hd−1 for every centre in Rd

\ sptµ, outside an exceptional set of dimension at most 2(d − 1)− s. In fact,
for x outside an exceptional set as above, the proof shows that πx]µ ∈ L p(Sd−1) for some p > 1. The
dimension bound on the exceptional set is sharp.

1. Introduction

This paper studies visibility and radial projections. Given x ∈Rd, define the radial projection πx : Rd
\{x}→

Sd−1 by

πx(y)=
y− x
|y− x |

.

A Borel set K ⊂ R2 will be called

• invisible from x if Hd−1(πx(K \ {x}))= 0, and

• totally invisible from x if dimH πx(K \ {x})= 0.

Above, dimH stands for Hausdorff dimension and Hs stands for s-dimensional Hausdorff measure. I will
only consider Hausdorff dimension in this paper, as many of the results below would be much easier for
box dimension. The study of (in-)visibility has a long tradition in geometric measure theory. For many
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more results and questions than I can introduce here, see Section 6 of [Mattila 2004]. The basic question
is the following: given a Borel set K ⊂ Rd, how large can the sets

Inv(K )= {x ∈ Rd
: K is invisible from x},

InvT (K ) := {x ∈ Rd
: K is totally invisible from x}

be? Clearly InvT (K ) ⊂ Inv(K ), and one generally expects InvT (K ) to be significantly smaller than
Inv(K ). The existing results fall roughly into the following three categories:

(1) What happens if dimH K > d − 1?

(2) What happens if dimH K ≤ d − 1?

(3) What happens if 0<Hd−1(K ) <∞?

Cases (1) and (3) are the most classical, having already been studied (for d = 2) in [Marstrand 1954].
Given s > 1, Marstrand proved that any Borel set K ⊂ R2 with 0 < Hs(K ) < 1 is visible (that is, not
invisible) from Lebesgue almost every point x ∈R2, and also from Hs-almost every point x ∈ K. Unifying
Marstrand’s results, and their generalisations to Rd, the following sharp bound was recently established
by Mattila and the author in [Mattila and Orponen 2016; Orponen 2018]:

dimH Inv(K )≤ 2(d − 1)− dimH K (1.1)

for all Borel sets K ⊂ Rd with d − 1< dimH K ≤ d . This paper contains a variant of the bound (1.1) for
measures; see Section 1B.

The visibility of sets K in Case (3) depends on their rectifiability. I will restrict the discussion to the
case d = 2 for now. It is easy to show that 1-rectifiable sets which are not H1-almost surely covered by
a single line are visible from all points in R2, with possibly one exception; see [Orponen and Sahlsten
2011]. On the other hand, if K ⊂ R2 is purely 1-unrectifiable, then the sharp bound

dimH[R
2
\ Inv(K )] = dimH{x ∈ R2

: K is visible from x} ≤ 1

was obtained by Marstrand, building on Besicovitch’s projection theorem. For generalisations, improve-
ments and constructions related to the bound above, see [Mattila 1981, Theorem 5.1; Csörnyei 2000;
2001]. Marstrand raised the question — which remains open to the best of my knowledge — whether it is
possible that H1(R2

\ Inv(K )) > 0: in particular, can a purely 1-unrectifiable set be visible from a positive
fraction of its own points? For purely 1-unrectifiable self-similar sets K ⊂ R2 one has Inv(K )= R2, as
shown by Simon and Solomyak [2006/07].

1A. The first main result. Case (2) has received less attention. To simplify the discussion, assume that
dimH K = 1 and H1(K )= 0, so that Inv(K )=R2, and the relevant question becomes the size of InvT (K ).
The radial projections πp fit the influential generalised projections framework of [Peres and Schlag 2000].
If K ⊂ R2 is a Borel set with arbitrary dimension s ∈ [0, 2], then it follows from Theorem 7.3 of that
paper that

dimH InvT (K )≤ 2− s. (1.2)
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Figure 1. What is the next step in the construction of E?

When s > 1, the bound (1.2) is a weaker version of (1.1), but the benefit of (1.2) is that it holds without
any restrictions on s. In particular, if s = 1, one obtains

dimH InvT (K )≤ 1. (1.3)

This bound is sharp for a trivial reason: consider the case, where K lies on a single line `⊂ R2. Then,
InvT (K )= `. The starting point for this paper was the question: are there essentially different examples
manifesting the sharpness of (1.3)? The answer turns out to be negative in a very strong sense. Here are
the first main results of the paper:

Theorem 1.4 (weak version). Assume that K ⊂ R2 is a Borel set with dimH K > 0. Then, at least one of
the following holds:

• dimH InvT (K )= 0.

• InvT (K ) is contained on a line.

In fact, more is true. For K ⊂ R2, define

Inv1/2(K ) :=
{

x ∈ R2
: dimH πx(K \ {x}) < 1

2 dimH K
}
.

Then, if dimH K > 0, one evidently has InvT (K )⊂ Inv1/2(K )⊂ Inv(K ).

Theorem 1.5 (strong version). Theorem 1.4 holds with InvT (K ) replaced by Inv1/2(K ). That is, if
E ⊂ R2 is a Borel set with dimH E > 0, not contained on a line, then there exists x ∈ E such that
dimH πx(K \ {x})≥ (dimH K )/2.

Remark 1.6. A closely related result is Theorem 1.6 in [Bond, Łaba and Zahl 2016]; with some imagina-
tion, part (a) of that theorem can be viewed as a “single scale” variant of Theorem 1.5, although at this
scale, their Theorem 1.6(a) contains more information than Theorem 1.5. As far as I can tell, proving the
Hausdorff dimension statement in this context presents a substantial extra challenge, so Theorem 1.5 is
not easily implied by the results in [Bond, Łaba and Zahl 2016].

Example 1.7. Figure 1 depicts the main challenge in the proofs of Theorems 1.4 and 1.5. The set E has
dimH E>0, and consists of something inside a narrow tube T, plus a point x /∈T. Then, Theorem 1.4 states
that E 6⊂ InvT (K ) for any compact set K ⊂ R2 with dimH K > 0. So, in order to find a counterexample
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to Theorem 1.5, all one needs to do is find K by a standard “Venetian blind” construction in such a way
that dimH K > 0 and dimH πy(K )= 0 for all y ∈ E . The first steps are obvious: to begin with, require
that K ⊂ T ∗ for another narrow tube parallel to T ; see Figure 1. Then πy(K ) is small for all y ∈ T. To
handle the special point x ∈ E , split the contents of T ∗ into a finite collection of new narrow tubes in
such a way that πx(K ) is small. In this manner, πy(K ) can be made arbitrarily small for all y ∈ E (in the
sense of ε-dimensional Hausdorff content, for instance, for any prescribed ε > 0). It is quite instructive to
think why the construction cannot be completed: why cannot the Venetian blinds be iterated further (for
both E and K ) so that, at the limit, dimH πy(K )= 0 for all x ∈ E?

Theorem 1.5 has the following immediate consequence:

Corollary 1.8 (corollary to Theorem 1.5). Assume that K ⊂ R2 is a Borel set not contained on a line.
Then the set of unit vectors spanned by K, namely

S(K ) :=
{

x − y
|x − y|

∈ S1
: x, y ∈ K and x 6= y

}
,

satisfies dimH S(K )≥ (dimH K )/2.

Proof. If dimH K = 0, there is nothing to prove. Otherwise, Theorem 1.5 implies that K 6⊂ Inv1/2(K ),
whence dimH S(K )≥ dimH πx(K \ {x})≥ (dimH K )/2 for some x ∈ K. �

Corollary 1.8 is probably not sharp, and the following conjecture seems plausible:

Conjecture 1.9. Assume that K ⊂ R2 is a Borel set not contained on a line. Then dimH S(K ) =
min{dimH K , 1}.

This follows from Marstrand’s result, discussed in Case (1) above, when dimH K > 1. For dimH K ≤ 1,
Conjecture 1.9 is closely connected with continuous sum-product problems, which means that significant
improvements over Corollary 1.8 will, most likely, require new technology. It would, however, be
interesting to know if an ε-improvement over Corollary 1.8 is possible, combining the proof below with
ideas from [Katz and Tao 2001], and using the discretised sum-product theorem of [Bourgain 2003].

I have the referee to thank for pointing out that a natural discrete variant of Conjecture 1.9 has been
solved by P. Ungar [1982]: a set of n ≥ 3 points in the plane, not all on a single line, determine at least
n− 1 distinct directions.

1B. The second main result. The second main result is a version of the estimate (1.1) for measures. Fix
d ≥ 2, and denote the space of compactly supported Radon measures on Rd by M(Rd). For µ ∈M(Rd),
write

S(µ) := {x ∈ Rd
\ sptµ : πx]µ is not absolutely continuous with respect to Hd−1

|Sd−1}.

Note that whenever x ∈ Rd
\ sptµ, the projection πx is continuous on sptµ, and πx]µ is well-defined.

One can check that the family of projections {πx}x∈Rd\sptµ fits in the generalised projections framework
of [Peres and Schlag 2000], and indeed Theorem 7.3 in that paper yields

dimH S(µ)≤ 2d − 1− s, (1.10)
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whenever d − 1< s < d and µ ∈M(Rd) has finite s-energy (see (1.12) for a definition). Combining this
bound with standard arguments shows that if K ⊂ Rd is a Borel set with d − 1< dimH K ≤ d , then

dimH Inv(K )= dimH{x ∈ Rd
:Hd−1(πx(K ))= 0} ≤ 2d − 1− dimH K .

This is weaker than the sharp bound (1.1), so it is natural to ask whether the bound (1.10) for measures
could be lowered to match (1.1). The answer is affirmative:

Theorem 1.11. If µ ∈M(Rd) and

Is(µ) :=

∫∫
dµ(x) dµ(y)
|x − y|s

<∞ (1.12)

for some s > d − 1, then dimH S(µ)≤ 2(d − 1)− s.

The bound is sharp, essentially because (1.1) is, and Theorem 1.11 implies (1.1). More precisely,
following [Orponen 2018, Section 2.2], there exist compact sets K ⊂ Rd of any dimension dimH K ∈
(d − 1, d) such that

dimH[Inv(K ) \ K ] = 2(d − 1)− dim K .

Then, the sharpness of Theorem 1.11 follows by considering Frostman measures supported on K, and
noting that S(µ)⊃ Inv(K ) \ K whenever µ ∈M(Rd) and sptµ⊂ K.

An open question is the validity of Theorem 1.11 for s = d − 1. If Id−1(µ) <∞, Theorem 7.3 in
[Peres and Schlag 2000] implies that Ld(S(µ))= 0, but I do not even know if dimH S(µ) < d.

Theorem 1.11 does not immediately follow from the proof of (1.1) in [Mattila and Orponen 2016;
Orponen 2018], as the argument in those papers was somewhat indirect. Having said that, many observa-
tions from the previous papers still play a role in the new proof. Theorem 1.11 will be deduced from the
next statement concerning L p-densities:

Theorem 1.13. Let µ ∈M(Rd) be as in Theorem 1.5. For p ∈ (1, 2), write

Sp(µ) := {x ∈ Rd
\ sptµ : πx]µ /∈ L p(Sd−1)}.

Then dimH Sp(µ)≤ 2(d − 1)− s+ δ(p), where δ(p) > 0, and δ(p)→ 0 as p↘ 1.

Note that the claim is vacuous for “large” values of p. The dependence of δ(p) > 0 on p is effective
and not very hard to track; see (3.5).

Remark 1.14. Theorem 1.13 can be viewed as an extension of Falconer’s exceptional set estimate [1982].
I only discuss the planar case. Falconer proved that if Is(µ) <∞ for some 1< s < 2, then the orthogonal
projections of µ to all 1-dimensional subspaces are in L2, outside an exceptional set of dimension at
most 2− s. Now, orthogonal projections can be viewed as radial projections from points on the line at
infinity. Alternatively, if the reader prefers a more rigorous statement, Falconer’s proof shows that if
`⊂ R2 is any fixed line outside the support of µ, then all the radial projections of µ to points on ` are
in L2, outside an exceptional set of dimension at most 2− s. In comparison, Theorem 1.13 states that the
radial projections of µ to points in R2

\ sptµ are in L p for some p > 1, outside an exceptional set of
dimension at most 2− s. So, the size of the exceptional set remains the same even if the “fixed line `” is
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removed from the statement. The price to pay is that the projections only belong to some L p with p > 1
(possibly) smaller than 2. I do not know if the reduction in p is necessary, or an artefact of the proof.

2. Proof of Theorem 1.5

If `⊂ R2 is a line, I denote by T (`, δ) the open (infinite) tube of width 2δ, with ` “running through the
middle”, that is, dist(`,R2

\T (`, δ))= δ. The notation B(x, r) stands for a closed ball with centre x ∈R2

and radius r > 0. The notation A . B means that there is an absolute constant C ≥ 1 such that A ≤ C B.

Lemma 2.1. Assume that µ is a Borel probability measure on B(0, 1)⊂ R2, and µ(`)= 0 for all lines
`⊂ R2. Then, for any ε > 0, there exists δ > 0 such that µ(T (`, δ))≤ ε for all lines `⊂ R2.

Proof. Assume not, so there exists ε > 0, a sequence of positive numbers δ1>δ2> · · ·> 0 with δi↘ 0 and
a sequence of lines {`i }i∈N ⊂ R2 with µ(T (`i , δi ))≥ ε. Since sptµ⊂ B(0, 1), one has `i ∩ B(0, 1) 6=∅
for all i ∈ N. Consequently, there exists a subsequence (i j )j∈N and a line `⊂ R2 such that `j → ` in the
Hausdorff metric. Then, for any given δ > 0, there exists j ∈ N such that

B(0, 1)∩ T (`i j , δi j )⊂ T (`, δ),

so that µ(T (`, δ))≥ ε. It follows that µ(`)≥ ε, a contradiction. �

The next lemma contains all the information needed to prove Theorem 1.5. I state two versions: the
first one is slightly easier to read and apply, while the second one is slightly more detailed.

Lemma 2.2. Assume that µ, ν are Borel probability measures with compact supports K , E ⊂ B(0, 1),
respectively. Assume that both measures µ and ν satisfy a Frostman condition with exponents κµ, κν ∈
(0, 2], respectively:

µ(B(x, r))≤ Cµrκµ and ν(B(x, r))≤ Cνrκν (2.3)

for all balls B(x, r)⊂ R2 and for some constants Cµ,Cν ≥ 1. Assume further that µ(`)= 0 for all lines
`⊂ R2. Fix also

0< τ < 1
2κµ and ε > 0,

and write δk := 2−(1+ε)
k
.

Then, there exists a compact subset K ′ ⊂ K with

µ(K ′)≥ 1
2 ,

a number η= η(ε, κµ, κν, τ ) > 0, an index k0 = k0(ε, µ, κν, τ ) ∈N, and a point x ∈ E with the following
property. If k > k0, and T (`1, δk), . . . , T (`N , δk) is a family of δk-tubes of cardinality N ≤ δ−τk , each
containing x , then

µ

(
K ′ ∩

N⋃
j=1

T (`j , δk)

)
≤ δ

η

k . (2.4)

Roughly speaking, the conclusion (2.4) means that K ′ has a radial projection of dimension ≥ τ relative
to the viewpoint x ∈ E , since only a tiny fraction of K ′ can be covered by ≤ δ−τk tubes of width 2δk

containing x .
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The set K ′ ⊂ K and the point x ∈ E will be found by induction on the scales δk . To set the scene for
the induction, it is convenient to state a more detailed version of the lemma:

Lemma 2.5. Assume that µ, ν are Borel probability measures with compact supports K , E ⊂ B(0, 1),
respectively. Assume that both measures µ and ν satisfy a Frostman condition with exponents κµ, κν ∈
(0, 2], respectively:

µ(B(x, r))≤ Cµrκµ and ν(B(x, r))≤ Cνrκν

for all balls B(x, r)⊂ R2 and for some constants Cµ,Cν ≥ 1. Assume further that µ(`)= 0 for all lines
`⊂ R2. Fix also

0< τ < 1
2κµ and ε > 0,

and write δk := 2−(1+ε)
k
.

Then, there exist numbers β = β(κµ, κν, τ ) > 0, η = η(ε, κµ, κν, τ ) > 0, and an index k0 =

k0(ε, µ, κν, τ ) ∈ N with the following properties. For all k ≥ k0, there exist

(a) compact sets K ⊃ Kk0 ⊃ Kk0+1 · · · with

µ(Kk)≥ 1−
∑

k0≤ j<k

( 1
4

) j−k0+1
≥

1
2 , (2.6)

(b) compact sets E ⊃ Ek0 ⊃ Ek0+1 · · · with ν(Ek)≥ δ
β

k

with the following property: if k > k0, x ∈ Ek , and T (`1, δk), . . . , T (`N , δk) is a family of tubes of
cardinality N ≤ δ−τk , each containing x , then

µ

(
Kk ∩

N⋃
j=1

T (`j , δk)

)
≤ δ

η

k . (2.7)

Remark 2.8. The index k0 can be chosen as large as desired; this will be clear from the proof below. It
will also be used on many occasions, without separate remark, that δk can be assumed very small for all
k ≥ k0. I also record that Lemma 2.2 follows from Lemma 2.5: simply take K ′ to be the intersection of
all the sets K j , j ≥ k0, and let x ∈ E be any point in the intersection of all the sets E j , j ≥ k0.

Proof. As stated above, the proof is by induction, starting at the largest scale k0, which will be presently
defined. Fix η = η(ε, κµ, κν, τ ) > 0 and

0 = 0(ε, κµ, κν, τ ) ∈ N. (2.9)

The number 0 will be specified at the very end of the proof, right before (2.34), and there will be several
requirements for the number η; see (2.24), (2.30), and (2.33). Applying Lemma 2.1, first pick an index
k1 = k1(ε, µ, κν, τ ) ∈ N such that µ(T (`, δk1))≤

( 1
4

)0+1 for all tubes T (`, δk1)⊂ R2, and

δ
η

k−0 ≤
(1

4

)k−0+1
, k ≥ k1. (2.10)
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Set k0 := k1+0. Then, the following holds for all k ∈ {k0, . . . , k0+0}. For any subset K ′ ⊂ K, and any
tube T (`, δk−0)⊂ R2, one has

µ(K ′ ∩ T (`, δk−0))≤ µ(T (`, δk1))≤
( 1

4

)0+1
≤
( 1

4

)k−k0+1
. (2.11)

Define
Kk := K and Ek := E, k1 ≤ k ≤ k0.

(The definitions of Ek, Kk for k1 ≤ k < k0 are only given for notational convenience.)
I start by giving an outline of how the induction will proceed. Assume that, for a certain k ≥ k0, the

sets Kk and Ek have been constructed such that:

(i) The condition (2.11) is satisfied with K ′ = Kk , and for all tubes T (`, δk−0) with T (`, δk−0) ∩

Ek−0 6=∅.

(ii) Kk and Ek satisfy the measure lower bounds (a) and (b) from the statement of the lemma.

Under the conditions (i)–(ii), I claim that it is possible to find subsets Kk+1⊂ Kk and Ek+1⊂ Ek satisfying
(ii) at level k+ 1, and also the nonconcentration condition (2.7) at level k+ 1. This is why (2.7) is only
claimed to hold for k > k0, and no one is indeed claiming that it holds for the sets Kk0 and Ek0 . These
sets satisfy (i), however, which should be viewed as a weaker substitute for (2.7) at level k, which is just
strong enough to guarantee (2.7) at level k+1. There is one obvious question at this point: if (i) at level k
gives (2.7) at level k+ 1, then where does one get (i) back at level k+ 1?

If k+ 1 ∈ {k0, . . . , k0+0}, the condition (i) is simply guaranteed by the choice of k0 (one does not
even need to assume that T (`, δk−0)∩ Ek−0 6=∅). For k+ 1> k0+0, this is no longer true. However,
for k+ 1> 0+ k0, one has k+ 1−0 > k0, and thus Kk+1−0 and Ek+1−0 have already been constructed
to satisfy (2.7). In particular, if Ek+1−0 ∩ T (`, δk+1−0) 6=∅, then

µ(Kk+1 ∩ T (`, δk+1−0))≤ µ(Kk+1−0 ∩ T (`, δk+1−0))≤ δ
η

k+1−0 ≤
( 1

4

)(k+1)−k0+1 (2.12)

by (2.7) and (2.10). This means that (i) is satisfied at level k+ 1, and the induction may proceed.
So, it remains to prove that (i)–(ii) at level k imply (ii) and (2.7) at level k+ 1. To avoid clutter, I write

δ := δk+1.

Assume that the sets Kk, Ek have been constructed for some k ≥ k0 satisfying (i)–(ii). The main task is to
understand the structure of the set of points x ∈ Ek for which (2.7) fails. To this end, we define the set
Badk⊂ Ek as follows: x ∈Badk if and only if x ∈ Ek , and there exist N ≤δ−τ tubes T (`1, δ), . . . , T (`N , δ),
each containing x , such that

µ

(
Kk ∩

N⋃
j=1

T (`j , δ)

)
> δη. (2.13)

Note that if Badk = ∅, then one can simply define Ek+1 := Ek and Kk+1 := Kk , and (ii) and (2.7) (at
level k+ 1) are clearly satisfied.

Instead of analysing Badk directly, it is useful to split it up into “directed” pieces, and digest the pieces
individually. To make this precise, let S be the “space of directions”; for concreteness, I identify S with
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B ′d(X j ) x j
direction d

Figure 2. The set Badd
k .

the upper half of the unit circle. Then, if T = T (`, δ) ⊂ R2 is a tube, I denote by dir(T ) the unique
vector e ∈ S such that `‖e.

Recall the small parameter η > 0, and partition S into D = δ−η arcs J1, . . . , JD of length ∼ δη.1 For
d ∈ {1, . . . , D} fixed (“d” for “direction”), consider the set Badd

k : it consists of those points x ∈ Ek such
that there exist N ≤ δ−τ tubes T (`1, δ), . . . , T (`N , δ), each containing x , with dir(T (`i , δ)) ∈ Jd , and
satisfying

µ

(
Kk ∩

N⋃
j=1

T (`j , δ)

)
> δ2η.

Since the direction of every possible tube in R2 belongs to one of the arcs Ji , and there are only D = δ−η

arcs in total, one has

Badk ⊂

D⋃
d=1

Badd
k . (2.14)

The next task is to understand the structure of Badd
k for a fixed direction d ∈ {1, . . . , D}. I claim

that Badd
k looks like a garden of flowers, with all the petals pointing in direction Jd ; see Figure 2 for

a rough idea. To make the statement more precise, I introduce an additional piece of notation. Fix
X ⊂ Kk , and let Bd(X) consist of those points x ∈ Ek such that X can be covered by N ≤ δ−τ tubes
T (`1, δ), . . . , T (`N , δ), with directions dir(T (`i , δ)) ∈ Jd , and each containing x . Then, note that

Badd
k = {x ∈ Ek : there exists X ⊂ Kk with µ(X) > δ2η and x ∈ Bd(X)}. (2.15)

The sets Bd(X) also have the trivial but useful property that

X ⊂ X ′ ⊂ Kk =⇒ Bd(X ′)⊂ Bd(X).

There are two steps in establishing the “garden” structure of Badd
k : first, one needs to find the “flowers”,

and second, one needs to check that the sets obtained actually look like flowers in a nontrivial sense. I

1Here, it might be better style to pick another letter, say α > 0, in place of η, since the two parameters play slightly different
roles in the proof. Eventually, however, one would end up considering min{η, α}, and it seems a bit cleaner to let η > 0 be a
“jack of all trades” from the start.
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start with the former task. Assuming that Badd
k 6=∅, pick any point x1 ∈ Badd

k and an associated subset
X1 ⊂ Kk with

µ(X1) > δ
2η and x1 ∈ Bd(X1).

Then, assume that x1, . . . , xm ∈ Badd
k and X1, . . . , Xm have already been chosen with the properties

above, and further satisfying

µ(X i ∩ X j )≤
1
2δ

4η, 1≤ i < j ≤ m. (2.16)

Then, see if there still exists a subset Xm+1 ⊂ Kk with the following three properties: µ(Xm+1) > δ
2η,

Bd(Xm+1) 6=∅, and µ(Xm+1 ∩ X i ) ≤ δ
4η/2 for all 1 ≤ i ≤ m. If such a set no longer exists, stop; if it

does, pick xm+1 ∈ Bd(Xm+1), and add Xm+1 to the list.
It follows from the “competing” conditions µ(X i ) > δ2η, and (2.16), that the algorithm needs to

terminate in at most

M ≤ 2δ−4η (2.17)

steps. Indeed, assume that the sets X1, . . . , X M have already been constructed, and consider the following
chain of inequalities:

1
M
+

1
M(M − 1)

∑
i1 6=i2

µ(X i1 ∩ X i2)≥
1

M2

M∑
i1,i2=1

µ(X i1 ∩ X i2)

=
1

M2

∫ M∑
i1,i2=1

1X i1∩X i2
(x) dµ(x)

=
1

M2

∫
[card{1≤ i ≤ M : x ∈ X i }]

2 dµ(x)

≥
1

M2

(∫
card{1≤ i ≤ M : x ∈ X i } dµ(x)

)2

=
1

M2

( M∑
i=1

µ(X i )

)2

> δ4η.

Thus, if M > 2δ−4η, there exists a pair X i1, X i2 with i1 6= i2 such that µ(X i1 ∩ X i2) > δ
4η/2, and the

algorithm has already terminated earlier. This proves (2.17).
With the sets X1, . . . , X M now defined, write

B ′d(X j ) :=
{

x ∈ Ek : there exists X ′ ⊂ X j with µ(X ′) > 1
2δ

4η and p ∈ Bd(X ′)
}
.

I claim that

Badd
k ⊂

M⋃
j=1

B ′d(X j ). (2.18)
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y Tx

T ∗x

Figure 3. Covering X j ∩ Tx by tubes centred at points outside T ∗x .

Indeed, if x ∈ Badd
k , then x ∈ Bd(X) for some X ⊂ Kk with µ(X) > δ2η by (2.15). It follows that

µ(X ∩ X j ) >
1
2δ

4η (2.19)

for one of the sets X j , 1≤ j ≤ M, because either X ∈ {X1, . . . , X M} and (2.19) is clear (all the sets X j

even satisfy µ(X j ) > δ2η), or else (2.19) must hold by virtue of X not having been added to the list
X1, . . . , X M in the algorithm. But (2.19) implies that x ∈ B ′d(X j ), since X ′ = X ∩ X j ⊂ X j satisfies
µ(X ′) > δ4η/2 and x ∈ Bd(X)⊂ Bd(X ′).

According to (2.17) and (2.18) the set Badd
k can be covered by M ≤ 2δ−4η sets of the form B ′d(X j );

see Figure 2. These sets are the “flowers”, and their structure is explored in the next lemma:

Lemma 2.20. The following holds if δ = δk+1 and η > 0 are small enough (the latter depending on κµ, τ
here). For 1≤ d ≤ D and 1≤ j ≤ M fixed, the set B ′d(X j ) can be covered by ≤ 4δ−8η tubes of the form
T = T (`, δρ), where dir(T ) ∈ Jd and ρ = ρ(κµ, τ ) > 0. The tubes can be chosen to contain the point
x j ∈ Bd(X j ).

Proof. Fix 1 ≤ j ≤ M and x ∈ B ′d(X j ). Recall the point x j ∈ Bd(X j ) from the definition of X j . By
definition of x ∈ B ′d(X j ), there exists a set X ′ ⊂ X j with µ(X ′) > δ4η/2 and x ∈ Bd(X ′). Unwrapping the
definitions further, there exist N ≤ δ−τ tubes T (`1, δ), . . . , T (`N , δ), the union of which covers X ′, and
each satisfies dir(T (`i , δ)) ∈ Jd and x ∈ T (`i , δ). In particular, one of these tubes, say Tx = T (`i , δ), has

µ(X j ∩ Tx)≥ µ(X ′ ∩ Tx)≥ µ(X ′) · δτ ≥ 1
2δ

4η+τ
≥

1
4δ

8η+τ . (2.21)

(The final inequality is just a triviality at this point, but is useful for technical purposes later.) Here comes
perhaps the most basic geometric observation in the proof: if the measure lower bound (2.21) holds for
some δ-tube T — this time Tx — and a sufficiently small η > 0 (crucially so small that 8η+ τ < κµ/2),
then the whole set Bd(X j ) is actually contained in a neighbourhood of T, called T ∗, because X j ∩ T is so
difficult to cover by δ-tubes centred at points outside T ∗; see Figure 3. In particular, in the present case,

x j ∈ Bd(X j )⊂ T (`i , δ
4ρ)=: T ∗x (2.22)



1284 TUOMAS ORPONEN

for a suitable constant ρ=ρ(κµ, τ )> 0, specified in (2.24). To see this formally, pick y ∈ B(0, 1)\T ∗x , and
argue as follows to show that y /∈ Bd(X j ). First, any δ-tube T containing y and intersecting Tx ∩ B(0, 1)
makes an angle & δ4ρ with Tx . It follows that

diam(T ∩ Tx ∩ B(0, 1)). δ1−4ρ,

and consequently µ(T ∩ Tx ∩ B(0, 1)). Cµδκµ(1−4ρ). So, in order to cover X j ∩ Tx (let alone the whole
set X j ) it takes by (2.21)

&
µ(X j ∩ Tx)

Cµδκµ(1−4ρ) ≥
δ8η+τ−κµ(1−4ρ)

4Cµ
≥
δ8η−κµ/2+8ρ

4Cµ
(2.23)

tubes T containing y. But if

0< 8η <
κµ/2− τ

2
and 8ρ =

κµ/2− τ
2

, (2.24)

then the number on the right-hand side of (2.23) is far larger than δ−τ, which means that y /∈ Bd(X j ), and
proves (2.22).

Recall the statement of Lemma 2.20, and compare it with the previous accomplishment: (2.22) states
that if x ∈ B ′d(X j ), then x lies in a certain tube of width δ4ρ (namely Tx ), which has direction in Jd , and
also contains x j . This sounds a bit like the statement of the lemma, but there is a problem: in principle,
every point x ∈ B ′(X j ) could give rise to a different tube Tx . So, it essentially remains to show that all
these δ4ρ-tubes Tx can be covered by a small number of tubes of width δρ. To begin with, note that the
ball Bj := B(x j , δ

2ρ) can be covered by a single tube of width δρ, in any direction desired. So, to prove
the lemma, it remains to cover B ′d(X j ) \ Bj .

Note that if x, y satisfy |x − y| ≥ δ2ρ, then the direction of any δ4ρ-tube containing both x, y lies in
a fixed arc J (x, y) ⊂ S of length |J (x, y)| . δ4ρ/δ2ρ

= δ2ρ. As a corollary, the union of all δ4ρ-tubes
containing x, y, intersected with B(0, 1), is contained in a single tube of width ∼ δ2ρ. In particular, this
union (still intersected with B(0, 1)) is contained in a single δρ-tube, assuming that δ > 0 is small; this
tube can be chosen to be a δρ-tube around an arbitrary δ4ρ-tube containing both x and y.

The tube-cover of B ′d(X j ) \ Bj can now be constructed by adding one tube at a time. First, assume
that there is a point y1 ∈ B ′d(X j ) \ Bj left to be covered, and find a tube T (`1, δ

4ρ) containing both y1

and x j , with direction in Jd ; existence follows from (2.22). Add the tube T (`1, δ
ρ) to the tube-cover

of B ′d(X j ) \ Bj , and recall from the previous paragraph that T (`1, δ
ρ) now contains T ∩ B(0, 1) for

any δ4ρ-tube T ⊃ {y1, x j } (of which T = T (`1, δ
4ρ) is just one example). Finally, by the definition of

y1 ∈ B ′d(X j ), associate to y1 a subset X ′1 ⊂ X j with

µ(X ′1) >
1
2δ

4η and y1 ∈ Bd(X ′1). (2.25)

Assume that the points y1, . . . , yH ∈ B ′d(X j )\Bj , along with the associated tubes {yi , x j }⊂T (`i , δ
4ρ)⊂

T (`i , δ
ρ), and subsets X ′i ⊂ X j , as in (2.25), have already been constructed. Assume inductively that

µ(X ′i1
∩ X ′i2

)≤ 1
4δ

8η, 1≤ i1 < i2 ≤ H. (2.26)
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To proceed, pick any point yH+1∈ B ′d(X j )\Bj , and associate to yH+1 a subset X ′H+1⊂ X j withµ(X ′H+1)>

δ4ρ/2 and yH+1∈ Bd(X ′H+1). Then, test whether (2.26) still holds, that is, whetherµ(X ′H+1∩X ′i )≤δ
8η
k+1/4

for all 1 ≤ i ≤ H. If such a point yH+1 can be chosen, run the argument from the previous paragraph,
first locating a tube T (`H+1, δ

4ρ) containing both yH+1 and pj , with direction in Jd , and finally adding
T (`H+1, δ

ρ) to the tube-cover under construction.
The “competing” conditions µ(X ′i ) > δ

4η/2 and (2.26) guarantee that the algorithm terminates in

H ≤ 4δ−8η

steps. The argument is precisely the same as that used to prove (2.17), so I omit it. Once the algorithm
has terminated, I claim that all points of B ′d(X j ) \ Bj are covered by the tubes T (`i , δ

ρ), with 1≤ i ≤ H.
To see this, pick y ∈ B ′d(X j ) \ Bj , and a subset X ′ ⊂ X j with µ(X ′) > δ4η/2, and y ∈ Bd(X ′). Since the
algorithm has already terminated, it must be the case that

µ(X ′ ∩ X ′i ) >
1
4δ

8η

for some index 1≤ i ≤ H. Since X ′′ := X ′ ∩ X ′i ⊂ X ′ and consequently y ∈ Bd(X ′′), one can find a tube
Ty = T (`y, δ) 3 y, with dir(Ty) ∈ Jd , satisfying

µ(X ′i ∩ Ty)≥ µ(X ′′ ∩ Ty)≥ µ(X ′′) · δτ > 1
4δ

8η+τ .

This lower bound is precisely the same as in (2.21). Hence, it follows from the same argument which
gave (2.22) that

yi ∈ Bd(X ′i )⊂ T (`y, δ
4ρ).

Since X ′i ⊂ X j , we also have x j ∈ Bd(X j )⊂ Bd(X ′i )⊂ T (`q , δ
4ρ). So,

{y, yi , x j } ⊂ B(0, 1)∩ T (`y, δ
4ρ). (2.27)

In particular, T (`y, δ
4ρ) is a δ4ρ-tube containing both yi , x j , and hence

B(0, 1)∩ T (`y, δ
4ρ)⊂ T (`i , δ

ρ).

Combined with (2.27), this yields y ∈ T (`i , δ
ρ), as claimed. This concludes the proof of Lemma 2.20. �

Combining (2.17)–(2.18) with Lemma 2.20, the structural description of Badd
k is now complete: Badk

d
is covered by

≤ M · 4δ−8η
≤ 8δ−12η (2.28)

tubes of width δρ, with directions in Jd . For nonadjacent d1, d2 ∈ {1, . . . , D} (the ordering of indices
corresponds to the ordering of the arcs Jd ⊂ S), the covering tubes are then fairly transversal. This is can
be used to infer that most points in Ek do not lie in many different sets Badd

k . Indeed, consider the set
BadBadk of those points in R2 which lie in (at least) two sets Badd1

k and Badd2
k with |d2− d1| > 1. By

Lemma 2.20, such points lie in the intersection of some pair of tubes T1 = T (`1, δ
ρ) and T2 = T (`2, δ

ρ)

with dir(Ti ) ∈ Jdi . The angle between these tubes is & δη, whence

diam(T1 ∩ T2). δ
ρ−η,
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and consequently

ν(T1 ∩ T2). Cνδκν(ρ−η) ≤ Cνδκνρ−2η. (2.29)

For d ∈ {1, . . . , D} fixed, there correspond . δ−12η tubes in total, as pointed out in (2.28). So, the number
of pairs T1, T2, as above, is bounded by

. D2
· δ−24η

≤ δ−26η.

Consequently, by (2.29),

ν(BadBadk). Cνδ−28η+κνρ .

This upper bound is far smaller than δβk /2≤ ν(Ek)/2, taking 0<max{β, 28η}< κνρ/2, so that

0< β < κνρ− 28η. (2.30)

For such choices of β, η, the next task is then to choose Ek+1 ⊂ Ek such that ν(Ek+1)≥ δ
β

k+1. Start by
writing Gk := Ek \BadBadk , so that

ν(Gk)≥
1
2ν(Ek)≥

1
2δ
β

k

by the choice of β. Now, either

ν(Gk ∩Badk)≥
1
2ν(Gk) or ν(Gk ∩Badk) <

1
2ν(Gk). (2.31)

The latter case is quick and easy: set Ek+1 :=Gk \Badk and Kk+1 := Kk . Then ν(Ek+1)≥ ν(Ek)/4≥ δ
β

k+1
(assuming that k ≥ k0 is large enough). Moreover, the set Ek+1 no longer contains any points in Badk , so
(2.7) is satisfied at level k+ 1 by the very definition of Badk ; see (2.13).

So, it remains to treat the first case in (2.31). Start by recalling from (2.14) that Badk is covered by the
sets Badd

k , 1≤ d ≤ D, so

ν(Gk ∩Badd
k )≥

ν(Gk)

2D
≥

1
4δ
ηδ
β

k =
1
4δ
η+β/(1+ε)

for some fixed d ∈ {1, . . . , D}. Then, recall from (2.28) that Badd
k can be covered by ≤ 8δ−12η tubes of

the form T (`, δρ) with directions in Jd . It follows that there exists a fixed tube T0 = T (`0, δ
ρ) such that

dir(T0) ∈ Jd and ν(Gk ∩ T0 ∩Badd
k )≥

1
32δ

13η+β/(1+ε). (2.32)

So, to ensure ν(Gk ∩ T0 ∩Badd
k )≥ δ

β, choose η > 0 so small that

13η+
β

1+ ε
< β. (2.33)

To convince the reader that there is no circular reasoning at play, I gather here all the requirements for β
and η (harvested from (2.24), (2.30), and (2.33)):

0< β <
κνρ

2
and 0< η <min

{
κµ/2− τ

2
,
κνρ

56
,

εβ

13(1+ ε)

}
.
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With such choices of β, η, recalling (2.32), and assuming that δ is small enough, the set

Ek+1 := Gk ∩ T0 ∩Badd
k

satisfies ν(Ek+1)≥ δ
β, which is statement (b) from the lemma. It remains to define Kk+1. To this end,

recall that T0 is a tube around the line `0 ⊂ R2. Define

Kk+1 := Kk \ T (`0, δ
η/2).

Then, assuming that η/2 has the form η/2= (1+ ε)−0−1 for an integer 0 = 0(ε, κµ, κν, τ ) ∈ N (this is
finally the integer from (2.9)), one has

δη/2 = δk−0. (2.34)

Since T (`0, δk−0)∩ Ek−0 6=∅, it follows from the induction hypothesis (i) that

µ(Kk ∩ T (`0, δk−0))≤
( 1

4

)k−k0+1
.

Consequently,

µ(Kk+1)≥ µ(Kk)−
( 1

4

)k−k0+1
≥ 1−

∑
k0≤ j<k+1

( 1
4

) j−k0+1
,

which is the desired lower bound from (a) of the statement of the lemma. So, it remains to verify the
nonconcentration condition (2.7) for Ek+1 and Kk+1. To this end, pick x ∈ Ek+1. First, observe that every
tube T = T (`, δ) which contains x and has nonempty intersection with Kk+1⊂ B(0, 1)\T (`, δη/2) forms
an angle & δη/2 with T0. In particular, this angle is far larger than δη. Since dir(T0) ∈ Jd by (2.32), this
implies that dir(T ) ∈ Jd ′ for some |d ′− d|> 1.

Now, if the nonconcentration condition (2.7) still fails for x ∈ Ek+1, there would exist N ≤ δ−τ tubes
T (`1, δ), . . . , T (`N , δ), each containing x , and with

µ

(
Kk+1 ∩

N⋃
i=1

T (`i , δ)

)
> δη.

By the pigeonhole principle, it follows that the tubes T (`i , δ) with dir(Ti ) ∈ Jd ′ for some fixed arc Jd ′

cover a set X ⊂ Kk+1 ⊂ Kk of measure µ(X) > δ2η. This means precisely that x ∈ Badd ′
k , and by the

observation in the previous paragraph, |d − d ′|> 1. But x ∈ Ek+1 ⊂ Badd
k by definition, so this would

imply that x ∈ BadBadk , contradicting the fact that x ∈ Ek+1 ⊂ Gk . This completes the proof of (2.7),
and the lemma. �

The proof of Theorem 1.5 is now quite standard:

Proof of Theorem 1.5. Write s := dimH K, and assume that s > 0 and dimH E > 0. Make a counter-
assumption: E is not contained on a line, but dimH πx(K ) < s/2 for all x ∈ E . Then, find t < s/2,
and a positive-dimensional subset Ẽ ⊂ E not contained on any single line, with dimH πx(K )≤ t for all
x ∈ Ẽ (if your first attempt at Ẽ lies on some line `, simply add a point x0 ∈ E \ ` to Ẽ , and replace t by
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max{t, dimH πx0(K )}< s/2). So, now Ẽ satisfies the same hypotheses as E , but with “< s/2” replaced
by “≤ t < s/2”. Thus, without loss of generality, one may assume that

dimH πx(K )≤ t < 1
2 s, x ∈ E . (2.35)

Using Frostman’s lemma, pick probability measures µ, ν, with sptµ⊂ K and spt ν ⊂ E , satisfying
the growth bounds (2.3) with exponents 0< κµ < s and κν > 0. Pick, moreover, κµ so close to s that

1
2κµ > t. (2.36)

Observe that µ(`) = 0 for all lines ` ⊂ R2. Indeed, if µ(`) > 0 for some line ` ⊂ R2, then there exists
x ∈ E \ ` by assumption, and

dimH πx(K )≥ dimH πx(sptµ∩ `)≥ κµ > t,

violating (2.35) at once. Finally, by restricting the measures µ and ν slightly, one may assume that they
have disjoint supports.

In preparation for using Lemma 2.2, fix ε > 0, 0< τ < κµ/2 in such a way that

τ

(1+ ε)2
> t. (2.37)

This is possible by (2.36). Then, apply Lemma 2.2 to find the set K ′ ⊂ sptµ⊂ K with

µ(K ′)≥ 1
2 ,

the parameters η > 0 and k0 ∈ N, and the point x ∈ E satisfying (2.4). I claim that

dimH πx(K ′)≥
τ

(1+ ε)2
, (2.38)

which violates (2.35) by (2.37). If not, cover πx(K ) efficiently by arcs J1, J2, . . . of lengths restricted to
the values δk = 2−(1+ε)

k
, with k ≥ k0. More precisely: assuming that (2.38) fails, start with an arbitrary

efficient cover J̃1, J̃2, . . . by arcs of length | J̃i | ≤ δk0 , satisfying∑
j≥1

| J̃j |
τ/(1+ε)2

≤ 1.

Then, replace each J̃j by the shortest concentric arc Jj ⊃ J̃j , whose length is of the form δk . Note that
`(Jj )≤ `( J̃j )

1/(1+ε), so that ∑
j≥1

|Jj |
τ/(1+ε)

≤

∑
j≥1

| J̃j |
τ/(1+ε)2

≤ 1.

The arcs J1, J2, . . . now cover πx(K ′), and there are ≤ δ−τ/(1+ε)k arcs of any fixed length δk . Since x /∈ K ′,
for every k ≥ k0 there exists a collection of tubes Tk of the form T (`, δk) 3 x , such that |Tk |. δ

−τ/(1+ε)
k

(the implicit constant depends on dist(x, K ′)), and

K ′ ⊂
⋃
k≥k0

⋃
T∈Tk

T .
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In particular |Tk | ≤ δ
−τ
k , assuming that δk is small enough for all k ≥ k0. Recall that µ(K ′)≥ 1

2 . Hence, by
the pigeonhole principle, one can find k ∈N such that the following holds: there is a subset K ′k ⊂ K ′ with
µ(K ′k) ≥ 1/(100k2) such that K ′k is covered by the tubes in Tk . But 1/(100k2) is far larger than δηk , so
this is explicitly ruled out by nonconcentration estimate (2.4). This contradiction completes the proof. �

3. Proof of Theorem 1.11

This section contains the proof of Theorem 1.13, which evidently implies Theorem 1.11. Fix µ ∈M(Rd)

and x ∈Rd
\sptµ. For a suitable constant cd > 0 to be determined shortly, consider the weighted measure

µx := cdkx dµ,

where kx := |x − y|1−d is the (d−1)-dimensional Riesz kernel, translated by x . A main ingredient in the
proof of Theorem 1.13 is the following identity:

Lemma 3.1. Let µ ∈ C0(R
d) (that is, µ is a continuous function with compact support) and ν ∈M(Rd).

Assume that sptµ∩ spt ν =∅. Then, for p ∈ (0,∞),∫
‖πx]µx‖

p
L p(Sd−1)

dν(x)=
∫

Sd−1
‖πe]µ‖

p
L p(πe]ν)

dHd−1(e).

Here, and for the rest of the paper, πe stands for the orthogonal projection onto e⊥ ∈ G(d, d − 1).

Proof. Start by assuming that also ν ∈ C0(R
d). Fix x ∈ Rd. The first aim is to find an explicit expression

for the density πxµx on Sd−1, so fix f ∈ C(Sd−1) and compute as follows, using the definition of the
measure µx , integration in polar coordinates, and choosing the constant cd > 0 appropriately:∫

f (e) d[πx]µx ](e)=
∫

f (πx(y)) dµx(y)= cd

∫
f (πx(y))
|x − y|d−1 dµ(y)

=

∫
Sd−1

f (e)
∫

R

µ(x + re) dr dHd−1(e)

=

∫
Sd−1

f (e) ·πe]µ(πe(x)) dHd−1(e).

Since the equation above holds for all f ∈ C(Sd−1), one infers that

πx]µx = [e 7→ πe]µ(πe(x))] dHd−1
|Sd−1 . (3.2)

Now, one may prove the lemma by a straightforward computation, starting with∫
‖πx]µx‖

p
L p(Sd−1)

dν(x)=
∫∫

Sd−1
[πx]µx(e)]p dHd−1(e) dν(x)

=

∫
Sd−1

∫
e⊥

∫
π−1

e {w}

[πe]µ(πe(x))]pν(x) dH1(x) dHd−1(w) dHd−1(e).
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Note that if x ∈ π−1
e {w}, then πe(x)= w, so the expression [· · · ]p above is independent of x . Hence,∫

‖πx]µx‖
p
L p(Sd−1)

dν(x)=
∫

Sd−1

∫
e⊥
[πe]µ(w)]

p
(∫

π−1
e {w}

ν(x) dH1(x)
)

dHd−1(w) dH1(e)

=

∫
Sd−1

∫
e⊥
[πe]µ(w)]

pπe]ν(w) dHd−1(w) dHd−1(e)

=

∫
Sd−1
‖πe]µ‖

p
L p(πe]ν)

dHd−1(e),

as claimed.
Finally, if ν ∈M(Rd) is arbitrary, not necessarily smooth, note that

x 7→ ‖πx]µx‖
p
L p(Sd−1)

is continuous, assuming that µ ∈ C0(R
d), as we do (to check the details, it is helpful to infer from (3.2)

that πxµx ∈ L∞(Sd−1) uniformly in x , since the projections πe]µ clearly have bounded density, uniformly
in e ∈ Sd−1). Thus, if (ψn)n∈N is a standard approximate identity on Rd, one has∫

‖πx]µx‖
p
L p(Sd−1)

dν(x)= lim
n→∞

∫
Sd−1
‖πe]µ‖

p
L p(πe]νn)

dHd−1(e), (3.3)

with νn = ν ∗ψn . Since πe]νn converges weakly to πe]ν for any fixed e ∈ Sd−1, and πe]µ ∈ C0(e⊥), it is
easy to see that the right-hand side of (3.3) equals∫

Sd−1
‖πe]µ‖

p
L p(πe]ν)

dHd−1(e). �

Here is one more (classical) tool required in the proof of Theorem 1.13:

Lemma 3.4. Let 0<σ < d/2, and let µ∈M(Rd) be a measure with sptµ⊂ B(0, 1) and Id−2σ (µ)<∞.
Then

‖ f ‖L1(µ) .d,σ
√

Id−2σ (µ)‖ f ‖Hσ (Rd )

for all continuous functions f ∈ Hσ (Rd), where

‖ f ‖Hσ (Rd ) :=

(∫
| f̂ (ξ)|2 |ξ |2σ dξ

)1/2

.

Proof. See Theorem 17.3 in [Mattila 2015]. Since f is assumed continuous here, | f | is pointwise bounded
by the maximal function M̃ f appearing in [Mattila 2015, Theorem 17.3]. �

Proof of Theorem 1.13. Fix 2(d − 1)− s < t < d − 1. It suffices to prove that if ν ∈M(Rd) is a fixed
measure with It(ν) <∞, and sptµ∩ spt ν =∅, then

πx]µx ∈ L p(Sd−1) for ν a.e. x ∈ Rd ,

whenever

1< p ≤min
{

2−
t

(d − 1)
,

t
2(d − 1)− s

}
. (3.5)
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I will treat the numbers d, p, s, t as “fixed” from now on, and in particular the implicit constants in the
. notation may depend on d, p, s, t . Note that the right-hand side of (3.5) lies in (1, 2), so this is a
nontrivial range of p’s. Fix p as in (3.5). The plan is to show that∫

‖πx]µx‖
p
L p(Sd−1)

dν(x). It(ν)
1/2p Is(µ)

1/2 <∞. (3.6)

This will be done via Lemma 3.1, but one first needs to reduce to the case µ ∈ C0(R
d). Let (ψn)n∈N be a

standard approximate identity on Rd, and write µn = µ ∗ψn . Then πx](µn)x converges weakly to πx]µx

for any fixed x ∈ spt ν ⊂ Rd
\ sptµ:∫

f (e) d[πx]µx(e)] = lim
n→∞

∫
f (e) dπx](µn)x(e), f ∈ C(Sd−1).

It follows that

‖πx]µx‖
p
L p(Sd−1)

≤ lim inf
n→∞

‖πx](µn)x‖
p
L p(Sd−1)

, x ∈ spt ν,

and consequently ∫
‖πx]µx‖

p
L p(Sd−1)

dν(x)≤ lim inf
n→∞

∫
‖πx](µn)x‖

p
L p(Sd−1)

dν(x)

by Fatou’s lemma. Now, it remains to find a uniform upper bound for the terms on the right-hand side;
the only information about µn , which we will use, is that Is(µn). Is(µ). With this in mind, I simplify
notation by defining µn :=µ. For the remainder of the proof, one should keep in mind that πe]µ∈C∞0 (e

⊥)

for e ∈ Sd−1, so the integral of πe]µ with respect to various Radon measures on e⊥ is well-defined, and
the Fourier transform of πe]µ on e⊥ (identified with Rd−1) is a rapidly decreasing function.

We start by appealing to Lemma 3.1:∫
‖πx]µx‖

p
L p(Sd−1)

dν(x)=
∫

Sd−1
‖πe]µ‖

p
L p(πe]ν)

dHd−1(e). (3.7)

The next task is to estimate the L p(πe]ν)-norms of πe]µ individually, for e ∈ Sd−1 fixed. I start by
recording the standard fact, see for example the proof of Theorem 9.3 in [Mattila 1995], that It(πe]ν)<∞

for Hd−1-almost every e ∈ Sd−1; I will only consider those e ∈ Sd−1 satisfying this condition. Recall that
1< p ≤ t/[2(d − 1)− s]. Fix f ∈ Lq(πe]ν), with q = p′ and ‖ f ‖Lq (πe]ν) = 1, and note that

I2(d−1)−s( f dπe]ν)=

∫∫
f (x) f (y) dπe]ν(x) dπe]ν(y)

|x − y|2(d−1)−s . It(πe]ν)
1/p

by Hölder’s inequality. It now follows from Lemma 3.4 (applied in e⊥ ∼= Rd−1 with σ = [s− (d − 1)]/2)
that ∫

πe]µ · f dπe]ν .
√

I2(d−1)−s( f dπe]ν)‖πe]µ‖H [s−(d−1)]/2

. (It(πe]ν))
1/2p

(∫
e⊥
|π̂e]µ(ξ)|

2
|ξ |s−(d−1) dξ

)1/2

.
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Since the function f ∈ Lq(πe]ν) with ‖ f ‖Lq (πe]ν) = 1 was arbitrary, one may infer by duality that

‖πe]µ‖L p(πe]ν) . (It(πe]ν))
1/2p

(∫
e⊥
|π̂e]µ(ξ)|

2
|ξ |s−(d−1) dξ

)1/2

.

Now it is time to estimate (3.7). This uses duality once more, so fix f ∈ Lq(Sd−1) with ‖ f ‖Lq (Sd−1) = 1.
Then, write∫

Sd−1
‖πe]µ‖L p(πe]ν) · f (e) dHd−1(e)

.
∫

Sd−1
(It(πe]ν))

1/2p
(∫

e⊥
|π̂e]µ(ξ)|

2
|ξ |s−(d−1) dξ

)1/2

· f (e) dHd−1(e)

.

(∫
Sd−1

It(πe]ν)
1/p
· f (e)2 dHd−1(e)

)1/2(∫
Sd−1

∫
e⊥
|π̂e]µ(ξ)|

2
|ξ |s−(d−1) dξ dHd−1(e)

)1/2

.

The second factor is bounded by . Is(µ)
1/2 <∞, using (generalised) integration in polar coordinates;

see for instance (2.6) in [Mattila and Orponen 2016]. To tackle the first factor, say “I ”, write f 2
= f · f

and use Hölder’s inequality again:

I .
(∫

Sd−1
It(πe]ν) · f (e)p dHd−1(e)

)1/2p

· ‖ f ‖1/2Lq (Sd−1)
.

The second factor equals 1. To see that the first factor is also bounded, note that if B(e, r)⊂ Sd−1 is a
ball, then ∫

B(e,r)
f p dHd−1

≤ (Hd−1(B(e, r)))2−p
·

(∫
Sd−1

f q dHd−1
)p−1

. r (d−1)(2−p).

Thus, σ = f p dHd−1 is a Frostman measure on Sd−1 with exponent (d − 1)(2− p). Now, it is well
known (and first observed by Kaufman [1968]) that∫

Sd−1
It(πe]ν) dσ(e)=

∫∫∫
Sd−1

dσ(e)
|πe(x)−πe(y)|t

dν(x) dν(y). It(ν),

as long as t < (d − 1)(2− p), which is implied by (3.5). Hence I . It(ν)
1/2p, and finally∫

Sd−1
‖πe]µ‖L p(πe]ν) · f (e) dHd−1(e). It(ν)

1/2p Is(µ)
1/2

for all f ∈ Lq(Sd−1) with ‖ f ‖Lq (Sd−1) = 1. By duality, it follows that

(3.7). It(ν)
1/2p Is(µ)

1/2 <∞.

This proves (3.6), using (3.7). The proof of Theorem 1.13 is complete. �
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