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Let G be a free (unitary or orthogonal) quantum group. We prove that for any nonamenable subfactor
N ⊂ L∞(G) which is an image of a faithful normal conditional expectation, and for any σ -finite factor B,
the tensor product N ⊗ B has no Cartan subalgebras. This generalizes our previous work that provides the
same result when B is finite. In the proof, we establish Ozawa–Popa and Popa–Vaes’s weakly compact
action on the continuous core of L∞(G)⊗ B as the one relative to B, by using an operator-valued weight
to B and the central weak amenability of Ĝ.

1. Introduction

Let M be a von Neumann algebra. A Cartan subalgebra A ⊂ M is an abelian von Neumann subalgebra
which is an image of a faithful normal conditional expectation such that (i) A is maximal abelian and
(ii) the normalizer NM(A) generates M as a von Neumann algebra [Feldman and Moore 1977]. Here
NM(A) is given by {u ∈ U(M) | u Au∗ = A}.

The group measure space construction of Murray and von Neumann gives a typical example of a
Cartan subalgebra. Indeed, the canonical subalgebra L∞(X, µ)⊂ L∞(X, µ)o0 is Cartan whenever the
given action 0y (X, µ) is free. More generally, one can associate any (not necessarily free) group action
with a Cartan subalgebra by its orbit equivalence relation. Conversely when M has separable predual, any
Cartan subalgebra A ⊂ M is realized by an orbit equivalence relation (with a cocycle), and hence by a
group action. Thus the notion of Cartan subalgebras is closely related to group actions. In particular if M
has no Cartan subalgebras, then it cannot be constructed by any group actions. It was an open problem to
find such a von Neumann algebra.

The first result in this direction was given by Connes [1975]. He constructed a II1 factor which is
not isomorphic to its opposite algebra, so it is particularly not isomorphic to any group action (without
cocycle) von Neumann algebra. Voiculescu [1996] then provided a complete solution to this problem, by
proving free group factors LFn (n ≥ 2) have no Cartan subalgebras. He used his celebrated free entropy
technique, and it was later developed to give other examples [Shlyakhtenko 2000; Jung 2007].

After these pioneering works, Ozawa and Popa [2010] introduced a completely new framework to study
this subject. Among other things, they proved that free group factors are strongly solid, that is, for any
diffuse amenable subalgebra A ⊂ LFn , the von Neumann algebra generated by the normalizer NLFn (A)
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remains amenable. Since LFn itself is nonamenable, this immediately yields that LFn has no Cartan
subalgebras. Note that strong solidity is stable under taking subalgebras and hence any nonamenable
subfactor of LFn also has no Cartan subalgebras.

The proof of Ozawa and Popa consist of two independent steps. First, by using weak amenability
of Fn , they observed that the normalizer group acts weakly compactly on a given amenable subalgebra.
Second, combining this weakly compact action with Popa’s deformation and intertwining techniques
[Popa 2006a; 2006b], they constructed a state which is central with respect to the normalizer group.
Thus they obtained that the normalizer group generates an amenable von Neumann algebra. Since these
techniques are applied to any finite crossed product B oFn with the W∗CMAP (weak∗ completely metric
approximation property, see Section 2D), they also proved that for any finite factor B with the W∗CMAP,
the tensor product LFn ⊗ B has no Cartan subalgebras.

To remove the W∗CMAP assumption on BoFn , Popa and Vaes [2014a] introduced a notion of relative
weakly compact action. This is an appropriate “relativization” of the first step above in the view of the
relative tensor product L2(B o Fn)⊗B L2(B o Fn). In particular this only requires the weak amenability
of Fn . Thus by modifying the proof in the second step above, they obtained, among other things, the
tensor product LFn ⊗ B has no Cartan subalgebras for any finite factor B.

The aim of the present paper is to develop these techniques to study type III von Neumann algebras.
More specifically we replace the free group factor LFn with the free quantum group factor, which is a
type III factor in most cases. We have already studied this [Isono 2015a; 2015b] when B is finite. In the
general case however, namely, when B is a type III factor, we could not provide a satisfactory answer to
this problem, and this will be discussed in this article.

We note that the first solution to the Cartan subalgebra problem for type III factors in our framework
was obtained by Houdayer and Ricard [2011]. They followed the proof of [Ozawa and Popa 2010]
by exploiting techniques in [Chifan and Houdayer 2010], that is, the use of Popa’s deformation and
intertwining techniques together with the continuous core decomposition. While Houdayer and Ricard
followed the idea of [Ozawa and Popa 2010], our approach in [Isono 2015a; 2015b] was based on
[Popa and Vaes 2014b]. In particular, in the second step above, we made use of Ozawa’s condition
(AO) [2004] (or biexactness, see Section 2C) at the level of the continuous core. In this article, we
stand again on the use of biexactness, and we will further develop techniques of [Isono 2015b]. See
[Boutonnet et al. 2014] for other examples of type III factors with no Cartan subalgebras, and [Chifan and
Sinclair 2013; Chifan et al. 2013] for other works on Cartan subalgebras of biexact group von Neumann
algebras.

The following theorem is the main observation of this article. This should be regarded as a generalization
of [Isono 2015b, Theorem B], and this allows us to obtain a satisfactory answer to the Cartan problem in
the type III setting. See Section 2 for items in this theorem.

Theorem A. Let G be a compact quantum group with the Haar state h, and B a type III1 factor with a
faithful normal state ϕB . Put M := L∞(G)⊗ B and ϕ := h⊗ϕB . Let CϕB (B) and Cϕ(M) be continuous
cores of B and M with respect to ϕB and ϕ, and regard CϕB (B) as a subset of Cϕ(M). Let Tr be a
semifinite trace on Cϕ(M) with Tr |CϕB (B) semifinite, and p ∈ Cϕ(M) a projection with Tr(p) <∞.
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Assume that Ĝ is biexact and centrally weakly amenable with Cowling–Haagerup constant 1. Then for
any amenable von Neumann subalgebra A ⊂ pCϕ(M)p, we have either one of the following conditions:

(i) We have A �Cϕ(M) CϕB (B).

(ii) The von Neumann algebra NpCϕ(M)p(A)
′′ is amenable relative to CϕB (B).

As a consequence of the main theorem, we obtain the following corollary. This is the desired one since
our main example, free quantum groups, satisfies the assumptions in this corollary. See [Isono 2015b, Theo-
rem C] for other examples of quantum groups satisfying these assumptions. Below we say that an inclusion
of von Neumann algebras A ⊂ M is with expectation if there is a faithful normal conditional expectation.

Corollary B. Let G be a compact quantum group as in Theorem A. Then for any nonamenable subfactor
N ⊂ L∞(G) with expectation and any σ -finite factor B, the tensor product N ⊗ B has no Cartan
subalgebras.

For the proof of Theorem A, we will establish a weakly compact action on the continuous core of
L∞(G)⊗ B as the one relative to B. The central weak amenability of Ĝ is used to find approximation
maps on the continuous core which are relative to B oR. Then combined with the amenability of R, we
construct appropriate approximation maps on the core relative to B. In this process, since B is not with
expectation in the core, we use operator-valued weights instead. This is our strategy for the first step.

For the second step, although we go along a very similar line to [Isono 2015b], we need a rather
different (and general) approach to the proof. We note that this is why we assume only biexactness of Ĝ,
and do not need the notion of condition (AOC)+ as in [Isono 2015a; 2015b].

This paper is organized as follows. In Section 2, we recall fundamental facts for our paper, such as
Tomita–Takesaki theory, free quantum groups, biexactness, weak amenability, and Popa’s intertwining
techniques.

In Section 3, we study a generalization of the relative weakly compact action on the continuous core
by constructing appropriate approximation maps on the core. The main tools for this construction are:
operator-valued weights; central weak amenability; and weak containment, together with the amenability
of R. This is the most technical part of this paper.

In Section 4, we prove the main theorem. We follow the proof of [Popa and Vaes 2014b; Isono 2015b],
using the weakly compact action given in Section 3.

2. Preliminaries

2A. Tomita–Takesaki theory and operator-valued weights. We first recall some notions in Tomita–
Takesaki theory. We refer the reader to [Takesaki 1979] for this theory, and to [Haagerup 1979a;
1979b] and [Takesaki 1979, Chapter IX, §4] for operator-valued weights.

Let M be a von Neumann algebra and ϕ a faithful normal semifinite weight on M. Put nϕ := {x ∈ M |
ϕ(x∗x) <∞} and denote by 3ϕ : nϕ → L2(M, ϕ) the canonical embedding. We denote the modular
operator, modular conjugation, and modular action for M ⊂B(L2(M, ϕ)) by 1ϕ , Jϕ and σ ϕ respectively.
The Hilbert space L2(M, ϕ) with Jϕ and with its positive cone Pϕ is called the standard representation
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for M [Takesaki 1979, Chapter IX, §1] and does not depend on the choice of ϕ. Any state on M is
represented by a vector state, from which the vector is uniquely chosen from Pϕ . Any element α ∈Aut(M)
is written as α=Ad u by a unique u ∈B(L2(M, ϕ)) which preserves the standard representation structure.
The crossed product Moσ ϕ R by the modular action is called the continuous core [loc. cit., Chapter XII, §1]
and is written as Cϕ(M), which is equipped with the dual weight ϕ̂ and the canonical trace Trϕ := ϕ̂(h−1

ϕ · ),
where hϕ is a self-adjoint positive closed operator affiliated with LR. For any other faithful normal
semifinite weight ψ , there is a family of unitaries ([Dϕ, Dψ]t)t∈R in M called the Connes cocycle
[loc. cit., Definition VIII.3.4]. This gives a cocycle conjugate for modular actions of ϕ and ψ , and hence
there is a ∗-isomorphism

5ψ,ϕ : Cϕ(M)→ Cψ(M), 5ψ,ϕ(x)= x (x ∈ M), 5ψ,ϕ(λ
ϕ
t )= [Dψ, Dϕ]∗t λ

ψ
t (t ∈ R).

It holds that 5ψ,ϕ ◦5ϕ,ω =5ψ,ω for any other ω on M, and 5ψ◦EM ,ϕ◦EM |Cϕ(M) =5ψ,ϕ for any M ⊂ N
with expectation EM . It preserves traces Trψ ◦5ψ,ϕ = Trϕ [loc. cit., Theorem XII.6.10(iv)]. So the pair
(Cϕ(M),Trϕ) does not depend on the choice of ϕ, and we call Trϕ the canonical trace. A von Neumann
algebra is said to be a type III1 factor if its continuous core is a II∞ factor.

Let B ⊂ M be any inclusion of von Neumann algebras. We denote by M̂+ the extended positive cone
of M. For any operator-valued weight T : M̂+→ B̂+, we use the notation

nT := {x ∈ M | ‖T (x∗x)‖∞ <+∞},

mT := (nT )
∗nT =

{∑n
i=1 x∗i yi

∣∣ n ≥ 1, xi , yi ∈ nT for all 1≤ i ≤ n
}
.

Then T has a unique extension T :mT → B as a B-bimodule linear map. In this paper, all the operator-
valued weights that we consider are assumed to be faithful, normal and semifinite. Note that since the
operator-valued weight is nothing but a weight when B = C, we may also extend a faithful normal
semifinite weight ϕ on mϕ .

For any inclusion B ⊂ M of von Neumann algebras with faithful normal weights ϕB and ϕM on B
and M respectively, the modular actions of them satisfy σ ϕM |B = σ

ϕB if and only if there is an operator-
valued weight EB from M to B which satisfies ϕB ◦ EB = ϕM , and EB is determined uniquely by this
equality [loc. cit., Theorem IX.4.18]. We call EB the operator-valued weight from (M, ϕM) to (B, ϕB).
In this case, the cores satisfy the inclusion CϕB (B) ⊂ CϕM (M) since σ ϕM |B = σ

ϕB. When ϕM |B = ϕB ,
EB is a faithful normal conditional expectation [loc. cit., Theorem IX.4.2].

Let M be a von Neumann algebra and ϕ a faithful normal semifinite weight on M. Put L2(M) :=
L2(M, ϕ) and let α be an action of R on M. In this article, as a representation of M oα R, we use that for
any ξ ∈ L2(R)⊗ L2(M)' L2(R,M) and s, t ∈ R,

M 3 x 7→ πα(x), (πα(x)ξ)(s) := α−s(x)ξ(s),

LR 3 λt 7→ 1M ⊗ λt , ((1⊗ λt)ξ)(s) := ξ(s− t).

Let Cc(R,M) be the set of all ∗-strongly continuous functions from R to M with compact supports. Then
there is an embedding

π̂α : Cc(R,M) 3 f 7→
∫

R

(1⊗ λt)πα( f (t)) dt ∈ M oα R,
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where the integral here should be understood as the map T ∈ B(L2(R)⊗ L2(M)) given by

〈T ξ, η〉 =
∫

R

〈(1⊗ λt)πα( f (t))ξ, η〉 dt

for all ξ, η ∈ L2(R)⊗ L2(M). We note that by

( f ∗ g)(t) :=
∫

R

αs( f (t + s))g(−s) ds and f ](t) := α−1
t ( f (−t)∗) for f, g ∈ Cc(R,M) and t ∈ R,

Cc(R,M) is a ∗-algebra, so that π̂α is a ∗-homomorphism. For f ∈ Cc(R,M) and x ∈ M, we define
( f · x)(t) := f (t)x for t ∈ G. Let Cc(R,M)nϕ ⊂ Cc(R,M) be the set of linear spans of f · x for
f ∈ Cc(R,M) and x ∈ nϕ . With this notation, the dual weight satisfies

ϕ̂(π̂α(g)∗π̂α( f ))= ϕ((g] ∗ f )(0))=
∫

R

ϕ(g(t)∗ f (t)) dt for any f, g ∈ Cc(R,M)nϕ

[Takesaki 1979, Theorem X.1.17]. The modular objects of ϕ̂ are given by

σ
ϕ̂
t |M = σ

ϕ
t and σ

ϕ̂
t (λs)= λs[D(ϕ ◦αs), Dϕ]t for s, t ∈ R,

(Jϕ̂ξ)(t)= u∗(t)Jϕξ(−t) for t ∈ R and ξ ∈ L2(R, L2(M)),

where u(t) is the unitary such that αt = Ad u(t), which preserves the standard structure of L2(M, ϕ).
In particular σ ϕ̂ globally preserves M and so there is a canonical operator-valued weight EM from
(M oα R, ϕ̂) to (M, ϕ). By the equality ϕ ◦ EM = ϕ̂, it holds that for any f, g ∈ Cc(R,M),

EM(π̂α(g)∗π̂α( f ))= (g] ∗ f )(0)=
∫

R

g(t)∗ f (t) dt.

Here we prove a few lemmas.

Lemma 2.1. Let (N , ϕN ) and (B, ϕB) be von Neumann algebras with faithful normal semifinite weights
with ϕN (1)= 1. Let αB be an action of R on B, and put M := N⊗ B, ϕ := ϕN ⊗ϕB , α := σ ϕN ⊗αB. Let
EM , EB , EBoR be the canonical operator-valued weights from (M oαR, ϕ̂) to (M, ϕ), from (M oαR, ϕ̂)

to (B, ϕB), and from (M oα R, ϕ̂) to (B oαB R, ϕ̂B) respectively. Then we have EBoR ◦ EM = EB .

Proof. Let PN be the one-dimensional projection from L2(N , ϕN ) onto C3ϕN (1N ) and observe that the
compression map by PN ⊗ 1B ⊗ 1L2(R) on N ⊗ B ⊗B(L2(R)) gives a normal conditional expectation
E : M oα R→ B oαB R satisfying E((x ⊗ b)λt)= ϕN (x)bλt for x ∈ N, b ∈ B, and t ∈ R. It is faithful
on M oα R since it is faithful on N ⊗ B ⊗ B(L2(R)). A simple computation shows that E = EBoR

and EBoR((x ⊗ b)λt) = ϕN (x)bλt for x ∈ N, b ∈ B, and t ∈ R. In particular EBoR|M is the canonical
conditional expectation E M

B from (M, ϕ) to (B, ϕB). Then by definition, ϕB ◦ E M
B ◦ EM = ϕ ◦ EM = ϕ̂,

and hence E M
B ◦ EM = EB . Since E M

B ◦ EM = EBoR ◦ EM , we obtain the conclusion. �

We next recall the following well-known fact. We include a proof for the reader’s convenience.

Lemma 2.2. Let M be a type III1 factor and N a von Neumann algebra. Then the center of the continuous
core of M ⊗ N coincides with the center of N.
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Proof. Since M is a type III1 factor, there is a faithful normal semifinite weight ϕM on M such that
(MϕM )

′
∩M = C [Takesaki 1979, Theorem XII.1.7], where MϕM is the fixed point algebra of the modular

action of ϕM . Let ϕN be a faithful normal semifinite weight on N and put ϕ := ϕM ⊗ϕN . Observe that
the center of Cϕ(M ⊗ N ) is contained in

(MϕM ⊗C1L2(N )⊗L2(R))
′
∩M ⊗ N ⊗B(L2(R))= C1L2(M,ϕM )⊗ N ⊗B(L2(R)).

On the other hand, since Z(Cϕ(M ⊗ N )) commutes with LR, it is contained in (M ⊗ N )ϕ ⊗ LR; see,
e.g., [Houdayer and Ricard 2011, Proposition 2.4]. Hence

Z(Cϕ(M ⊗ N ))⊂ C⊗ N ⊗B(L2(R))∩ (M ⊗ N )ϕ ⊗ LR= C⊗ NϕN ⊗ LR.

Finally since Z(Cϕ(M ⊗ N )) commutes with M, and NϕN commutes with M and LR, (up to exchanging
positions of M and N ) we have

Z(Cϕ(N ⊗M))⊂ M ′ ∩ NϕN ⊗C⊗ LR= NϕN ⊗ (M
′
∩C⊗ LR)= NϕN ⊗C1,

where we used M ′ ∩ C ⊗ LR ⊂ Z(CϕM (M)) = C. Since N ′ ∩ NϕN = Z(N ), we conclude that
Z(Cϕ(M⊗N ))=Z(N ). Since all continuous cores are isomorphic with each other, preserving the position
of M ⊗ N, for any other faithful normal semifinite weight ψ , we obtain Z(Cψ(M ⊗ N ))= Z(N ). �

2B. Relative tensor products, basic constructions and weak containments. Let M and N be von Neu-
mann algebras and H a Hilbert space. Throughout this paper, we denote opposite objects with a circle
superscript (e.g., N ◦ := N op, x◦ := xop

∈ N ◦, (xy)◦= y◦x◦ for x, y∈ N ). We say that H is a left M-module
(resp. a right N-module) if there is a normal unital injective ∗-homomorphism πH : M→ B(H) (resp.
θH : N ◦→ B(H)). We say H is an M-N-bimodule if H is a left M-module and a right N -module with
commuting ranges. The standard bimodule of M is a standard representation L2(M) as an M-bimodule,
where the right action is given by M◦ 3 x◦ 7→ J x∗ J ∈ M ′ ⊂ B(L2(M)).

Let N be a von Neumann algebra, ϕ a faithful normal semifinite weight, and H = HN a right N -module
with the right action θ . A vector ξ ∈ H is said to be left ϕ-bounded if there is a constant C > 0 such
that ‖θ(x◦)ξ‖ ≤ C‖Jϕ3ϕ(x∗)‖ for all x ∈ n∗ϕ . We denote by D(H, ϕ) all left ϕ-bounded vectors in H.
It is known that the subspace D(H, ϕ) ⊂ H is always dense [Takesaki 1979, Lemma IX.3.3(iii)]. For
ξ ∈ D(H, ϕ), define a bounded operator

Lξ : L2(N , ϕ)→ H ; Lξ Jϕ3ϕ(a∗)= θ(a◦)ξ.

It is easy to verify that

θ(x◦)Lξ = Lξ Jϕx∗ Jϕ (x ∈ N ),

Lξ L∗η ∈ θ(N
◦)′ and L∗ηLξ ∈ (JϕN Jϕ)′ = N (ξ, η ∈ D(H, ϕ)),

x Lξ y = L xθ(σ ϕi/2(y)
◦)ξ (x ∈ θ(N ◦)′, y ∈ Na),

where Na⊂N is the subalgebra consisting of all analytic elements with respect to (σ ϕt ) (see [Takesaki 1979,
Lemma IX.3.3(v)] for the third statement). For a left N -module K = N K, the relative tensor product H⊗N

K is defined as the Hilbert space obtained by separation and compression of D(H, ϕ)⊗alg K with an inner
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product 〈ξ1⊗N η1, ξ2⊗N η2〉 := 〈L∗ξ2
Lξ1η1, η2〉K . When H = M HN is an M-N -bimodule and K = N K A

is an N -A-bimodule for von Neumann algebras M and A, the Hilbert space H⊗N K is an M-A-bimodule
given by π(x)θ(a◦)(ξ ⊗N η) := (πH (x)ξ)⊗B (θK (a◦)η) for x ∈ M, a ∈ A, ξ ∈ D(H, ϕ) and η ∈ K.

Since all standard representations L2(M) of M are isomorphic as M-bimodules, when we consider
H = K = L2(M) and N ⊂ M, the Hilbert space L2(M)⊗N L2(M) is determined canonically, and does
not depend on the choice of a faithful normal semifinite weight ϕ on M with L2(M)= L2(M, ϕ).

Let B ⊂ M be an inclusion of von Neumann algebras and ϕ a faithful normal semifinite weight on M.
The basic construction of the inclusion B ⊂ M is defined by

〈M, B〉 := (JϕB Jϕ)′ ∩B(L2(M, ϕ)).

Since all standard representations are canonically isomorphic, the basic construction does not depend on
the choice of ϕ. Assume that the inclusion B ⊂ M is with an operator-valued weight EB . Fix a faithful
normal semifinite weight ϕB on B and put ϕ := ϕB ◦ EB . Here we observe that any x ∈ nEB ∩ nϕ is
left ϕ-bounded and L3ϕ(x)3ϕB (a) = 3ϕ(xa) for a ∈ nϕB . Indeed, for any analytic a ∈ nϕB ∩ n

∗
ϕB

, we
have JϕB3ϕB (a

∗) = 1
1/2
ϕB 3ϕB (a) = 3ϕB (σ

ϕB
−i/2(a)), see, e.g., the equation just before [Takesaki 1979,

Lemma VIII.2.4], and hence by Lemma V.III.3.18(ii) of the same work,

L3ϕ(x)3ϕB (σ
ϕB
−i/2(a))= L3ϕ(x) JϕB3ϕB (a

∗)= Jϕa∗ Jϕ3ϕ(x)=3ϕ(xσ
ϕ

−i/2(a)).

Since σ ϕB
−i/2(a)= σ

ϕ

−i/2(a) (because σ ϕt |B = σ
ϕB
t for t ∈ R, and the analytic extension is unique if exists),

this means that L3ϕ(x)3ϕB (b)=3ϕ(xb) for any analytic b ∈ nϕB ∩ n
∗
ϕB

. At the same time, we can define
a bounded operator L x :3ϕB (a) 7→3ϕ(xa) for a ∈ nϕB (use x ∈ nEB ). So the map L3ϕ(x) has a bounded
extension on L2(B, ϕB) and coincides with L x , as desired. Now it is easy to verify that

L∗3ϕ(y)L3ϕ(x) = EB(y∗x) ∈ (JϕB Jϕ)′ = B ⊂ B(L2(B, ϕB)) (x, y ∈ nEB ∩ nϕ).

We will use this formula for calculations in the proposition below and in Section 3.
Here we observe that a relative tensor product has a useful identification. We will use this proposition

in Sections 3 and 4.

Proposition 2.3. Let N and B be von Neumann algebras, and αN and αB actions of R on N and B
respectively. Put M := N ⊗ B and α := αN

⊗αB, and define H := L2(M oα R)⊗B L2(M oα R) as an
M oα R-bimodule with left and right actions πH and θH .

Then there is a
U : H → L2(R) ⊗ L2(N ) ⊗ L2(B) ⊗ L2(N ) ⊗ L2(R) such that, putting π̃H := Ad U ◦ πH and

θ̃H := Ad U ◦ θH ,

• π̃H (M oα R)⊂ B(L2(R)⊗ L2(N )⊗ L2(B))⊗C1N ⊗C1L2(R),

π̃H (λt)= λt ⊗ 1N ⊗ 1B and π̃H (x)= πα(x) (t ∈ R, x ∈ N ⊗ B = M);

• θ̃H ((M oα R)◦)⊂ C1L2(R)⊗C1N ⊗B(L2(B)⊗ L2(N )⊗ L2(R))

θ̃H (λ
◦

t )= 1B ⊗ 1N ⊗ ρt and θ̃H (y◦)= θα(y◦) (t ∈ R, y ∈ B⊗ N ' M),

where (θα(y◦)ξ)(s) := αs(y)◦ξ(s) for ξ ∈ L2(R, L2(B)⊗ L2(N )) and s ∈ R.
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Proof. We fix a faithful normal semifinite weight ϕB on B and put ϕ := ϕN ⊗ϕB . Denote by ϕ̂ the dual
weight of ϕ and then the standard representation of M oα R is given by

L2(M oα R, ϕ̂)= L2(N , ϕN )⊗ L2(B, ϕB)⊗ L2(R)' L2(R, L2(N , ϕN )⊗ L2(B, ϕB)).

For simplicity we put L2(N ) := L2(N , ϕN ) and L2(B) := L2(B, ϕB). Let EB be the canonical operator-
valued weight from M̃ to B given by ϕ̂ = ϕB ◦ EB . Then for E M

B := ϕN ⊗ idB on M and for the canonical
operator-valued weight EM from (M oR, ϕ̂) to (M, ϕ), we have ϕ̂ = ϕ ◦ EM = ϕB ◦ E M

B ◦ EM , and hence
EB = E M

B ◦ EM by the uniqueness condition. Observe then for any f, g ∈ Cc(R,M),

EB(π̂α(g)∗π̂α( f ))=
∫

R

E M
B (g(t)

∗ f (t)) dt.

Define a well-defined linear map

V :3ϕ(nϕN ⊗alg nϕB )⊗alg Jϕ3ϕ(nϕB ⊗alg nϕN )→ L2(N )⊗ L2(B)⊗ L2(N )

by V (3ϕ(x ⊗ a)⊗ Jϕ3ϕ(b⊗ y)) :=3ϕN (x)⊗ a JϕB3ϕB (b)⊗ JϕN3ϕN (y). We then define a linear map

U : L2(R, L2(N )⊗ L2(B))⊗B L2(R, L2(B)⊗ L2(N ))→ L2(R×R, L2(N )⊗ L2(B)⊗ L2(N ))

by (U ( f ⊗B Jϕ̂g))(t, s) := V (3ϕ( f (t))⊗ Jϕ3ϕ(g(−s))) for f ∈ Cc(R, N ⊗alg B)(nϕN ⊗alg nϕB ) and
g ∈Cc(R, B⊗alg N )(nϕB⊗algnϕN ). (Note that we are identifying3ϕ̂(π̂α( f )) and3ϕ̂(π̂α(g)) as f and g.)
We have to show that it is a well-defined unitary map. For fi ∈ Cc(R, N ⊗alg B)(nϕN ⊗alg nϕB ) and gi ∈

Cc(R, B⊗alg N )(nϕB⊗algnϕN ), straightforward but rather complicated computations yield, on the one hand,∥∥∥∥∑
i

fi ⊗B Jϕ̂gi

∥∥∥∥2

2
=

∑
i, j

∫
R

∫
R

〈Fj,i Jϕ3ϕ(gi (−s)), Jϕ3ϕ(gj (−s))〉 ds dt,

where Fj,i := E M
B ( f j (t)∗ fi (t)), and on the other hand,∥∥∥∥U

∑
i

( fi⊗B Jϕ̂gi )

∥∥∥∥2

2
=

∑
i, j

∫
R×R

〈
V
(
3ϕ( fi (t))⊗Jϕ3ϕ(gi (−s))

)
, V
(
3ϕ( f j (t))⊗Jϕ3ϕ(gi (−s))

)〉
dt ds.

Hence if we show

〈V (3ϕ(x)⊗ Jϕ3ϕ(a)), V (3ϕ(y)⊗ Jϕ3ϕ(b))〉 = 〈E M
B (y

∗x)Jϕ3ϕ(a), Jϕ3ϕ(b)〉

for any x, y ∈ nϕN ⊗alg nϕB and a, b ∈ nϕB ⊗alg nϕN , then U is a well-defined unitary map. However this
equation follows easily if we use elementary elements.

Finally L2(R×R, L2(N )⊗ L2(B)⊗ L2(N )) is canonically isomorphic to L2(R)⊗ L2(N )⊗ L2(B)⊗
L2(N )⊗L2(R), where the first (resp. the second) variable in R×R corresponds to LR of the left one (resp.
the right one) in the Hilbert space. It is then easy to see that π̃H and θ̃H satisfy the desired condition. �

Let M and N be von Neumann algebras, and let H and K be M-N -bimodules. We denote by πH and
θH (resp. πK and θK ) left and right actions on H (resp. K ). We say that K is weakly contained in H ,
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denoted by K ≺ H, if for any ε > 0, finite subsets E ⊂ M and F ⊂ N, and any vector ξ ∈ K, there are
vectors (ηi )

n
i=1 ⊂ H such that∣∣∣∣ n∑

i=1

〈πH (x)θH (y◦)ηi , ηi 〉H −〈πK (x)θK (y◦)ξ, ξ〉K

∣∣∣∣< ε (x ∈ E, y ∈ F).

This is equivalent to saying that the algebraic ∗-homomorphism given by πH (x)θH (y◦) 7→ πK (x)θK (y◦)
for x ∈ M and y ∈ N is bounded on ∗-alg{πH (M), θH (N ◦)}. We denote by νK ,H the associated
∗-homomorphism for K ≺ H.

Let M and N be σ -finite von Neumann algebras and let X be a self-dual M-N -correspondence (i.e.,
a Hilbert N -module with a normal left M-action, see [Paschke 1973, Section 3] for self-duality and
normality). Then the interior tensor product, see, e.g., [Lance 1995, Section 4], H(X) := X ⊗N L2(N )
is an M-N -bimodule. Conversely if H is an M-N -bimodule, then one can define a self-dual M-N -
correspondence (i.e., a W∗-Hilbert N -module with a left M-action)

X (H) := {T : L2(N )→ H | bounded, N ◦-module linear map}.

They in fact give a one-to-one correspondence between M-N -bimodules and self-dual M-N -correspon-
dences, up to unitary equivalence; see [Baillet et al. 1988, Theorem 2.2] and [Rieffel 1974, Proposi-
tion 6.10]. By [Anantharaman-Delaroche 1990, §1.12, Proposition], K ≺ H if and only if X (K )≺ X (H)
in the following sense: for any σ -weak neighborhood V of 0 ∈ N, finite subsets E ⊂ M and F ⊂ N, and
any ξ ∈ X (K ), there are vectors (ηi )

n
i=1 ⊂ X (H) such that

n∑
i=1

〈ηi , xηi y〉X (H)−〈ξ, xξ y〉X (K ) ∈ V (x ∈ E, y ∈ F).

Suppose that M = N, L2(M) = K, and M = X (K ). Then if L2(M) ≺ H, putting ξ := 1M , for any
finite subset E ⊂ M and for any σ -weak neighborhood V of 0 ∈ N, there are vectors (ηi )

n
i=1 ⊂ X (H)

such that
n∑

i=1

〈ηi , xηi 〉X (H)− x ∈ V (x ∈ E).

So putting ψ(E,V)(x) :=
∑n

i=1〈ηi , xηi 〉X (H) for x ∈ M, we find a net (ψi )i such that each ψi is given by
a sum of compression maps by vectors in X (H) and such that it converges to idM in the point σ -weak
topology. In this case, up to replacing ηi , we may assume that each ψi is a contraction [Anantharaman-
Delaroche and Havet 1990, Lemma 2.2]. Then it is known that the existence of such a net is equivalent to
L2(M)≺ H as follows, although we do not need this equivalence. See Proposition 2.4 of the same work
for a more general statement.

Proposition 2.4. Let M be a σ -finite von Neumann algebra and H an M-bimodule. Then L2(M)≺ H as
M-bimodules if and only if there is a net (ψi )i of normal contractive completely positive (c.c.p.) maps
on M, which converges to idM point σ -weakly, such that each ψi is a finite sum of 〈η, · η〉X (H) for some
η ∈ X (H).

We recall the following well-known fact. This will be used in Section 3.
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Lemma 2.5. Let B ⊂ M be an inclusion of σ -finite von Neumann algebras with an operator-valued
weight EB . Then the vector space nEB is a pre-Hilbert B-module with the inner product 〈x, y〉 := EB(x∗y)
for x, y ∈ nEB , and its self-dual completion n̄EB is an M-B-correspondence.

Let X be the self-dual completion of the interior tensor product n̄EB ⊗B M. Then as an M-M-
correspondence, X is the unique one corresponding to the M-bimodule L2(M)⊗B L2(M), using the
one-to-one correspondence above.

Proof. It is easy to see that the B-valued inner product on nEB in the statement is well-defined, so that
nEB is a pre-Hilbert B-module with a left M-action. Since the left M-action is faithful on nEB , so is on
the self-dual completion; see, e.g., [Paschke 1973, Corollary 3.7]. This left M-action is normal, since the
functional M 3 x 7→ ω(〈ξ, xη〉) is normal for all ω ∈ M∗ and ξ, η ∈ nEB , and hence for all ξ, η ∈ n̄EB by
[Paschke 1976, Lemma 2.3]. Thus n̄EB is an M-B-correspondence.

Let X be as in the statement. Then as in the first paragraph, it is easy to see that it is really an M-M-
correspondence (i.e., the left M-action is well-defined, injective, and normal). Let us fix faithful normal
states ϕB and ϕ on B and M respectively. Then the interior tensor product X⊗M L2(M, ϕ) is canonically
identified as L2(M, ϕB ◦ EM)⊗B L2(M, ϕ), so that X is identified as X (L2(M)⊗B L2(M)). �

2C. Free quantum groups and biexactness. For compact quantum groups, we refer the reader to
[Woronowicz 1998; Maes and Van Daele 1998].

Let G be a compact quantum group. In this paper, we use the following notation, which will only
be used in Section 4. We denote the Haar state by h, the set of equivalence classes of all irreducible
unitary corepresentations by Irred(G), and right and left regular representations by ρ and λ respectively.
We regard Cred(G) := ρ(C(G)) as our main object and we frequently omit ρ when we see the dense
Hopf ∗-algebra. The GNS representation of h is written as L2(G) and it has a decomposition L2(G)=∑

x∈Irred(G) ⊕ (Hx ⊗ Hx̄). Along the decomposition, the modular operator of h is of the form 1i t
h =∑

x∈Irred(G)⊕ (Q
i t
x ⊗ Q−i t

x̄ ) for some positive matrices Qx .
Let F be a matrix in GL(n,C). The free unitary quantum group (resp. free orthogonal quantum group)

for F [Wang 1995; Van Daele and Wang 1996] is the C∗-algebra C(Au(F)) (resp. C(Ao(F))) defined
as the universal unital C∗-algebra generated by all the entries of a unitary n by n matrix u = (ui, j )i, j

satisfying that F(u∗i, j )i, j F−1 is a unitary (resp. F(u∗i, j )i, j F−1
= u). We simply say that G is a free

quantum group if G is a free unitary or orthogonal quantum group.
Here we recall the notion of biexactness introduced in [Isono 2015b, Definition 3.1], based on the

group case [Brown and Ozawa 2008, Lemma 15.1.2].

Definition 2.6. Let G be a compact quantum group. We say that the dual Ĝ is biexact if it satisfies
following conditions:

(i) Ĝ is exact (i.e., Cred(G) is exact).

(ii) There exists a unital completely positive (u.c.p.) map 2 : Cred(G)⊗min Cred(G)
◦
→ B(L2(G)) such

that

2(a⊗ b◦)− ab◦ ∈ K(L2(G)) for any a, b ∈ Cred(G).
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Biexactness of free quantum groups was proved in [Vergnioux 2005; Vaes and Vergnioux 2007; Vaes
and Vander Vennet 2010]. See [Isono 2015b, Theorem C] for other examples of biexact quantum groups.

Theorem 2.7. Let G be a free quantum group (more generally, a compact quantum group in [Isono 2015b,
Theorem C]). Then the dual Ĝ is biexact.

2D. Central weak amenability and the W∗CMAP. Let G be a compact quantum group. Denote the
dense Hopf ∗-algebra by C (G). To any element a ∈ `∞(Ĝ) we can associate a linear map ma on C (G),
given by (ma ⊗ ι)(ux)= (1⊗ apx)ux for any x ∈ Irred(G), where px ∈ c0(Ĝ) is the canonical projection
onto the x-component. We say Ĝ is weakly amenable (with Cowling–Haagerup constant 1) if there exists
a net (ai )i of elements of `∞(Ĝ) such that:

• Each ai has finite support; namely, ai px = 0 except for finitely many x ∈ Irred(G).

• (ai )i converges to 1 pointwise; namely, ai px converges to px in B(Hx) for any x ∈ Irred(G).

• Each mai is extended on L∞(G) as a completely contractive (say c.c.) map.

Note that, since ai is finitely supported, each mai is actually a map from L∞(G) to C (G). We say Ĝ

is centrally weakly amenable if each ai px above is taken as a scalar matrix for all i and x ∈ Irred(G).
In this case, the associated multiplier mai commutes with the modular action of the Haar state. This
commutativity is important to us since such multipliers can be extended naturally on the continuous
core with respect to the Haar state. Indeed, the maps mai ⊗ idL2(R) on L∞(G)⊗B(L2(R)) restrict to
approximation maps on the core. With this phenomenon in mind, we introduce the following terminology.

Definition 2.8. Let M be a von Neumann algebra and ϕ a fixed faithful normal state on M. We say that
M has the weak∗ completely metric approximation property with respect to ϕ (or ϕ-W∗CMAP, in short) if
there exists a net (ψi )i of normal c.c. maps on M such that:

• Each ψi commutes with σ ϕ; that is, ψi ◦ σ
ϕ
t = σ

ϕ
t ◦ψi for all i and t ∈ R.

• Each ψi is a finite sum of ϕ(b∗ · a)z for some a, b, z ∈ M .

• ψi converges to idM in the point σ -weak topology.

It is easy to see that the central weak amenability of Ĝ implies the W∗CMAP with respect to the Haar
state.

Weak amenability of the free quantum group was first obtained in [Freslon 2013], using the Haagerup
property [Brannan 2012]. This is for the Kac type and hence is equivalent to the central weak amenability.
The general case was solved later in [De Commer et al. 2014] and its proof in fact shows the central weak
amenability as follows.

Theorem 2.9. Let G be a free quantum group (more generally a quantum group in [Isono 2015b,
Theorem C]). Then the dual Ĝ is centrally weakly amenable.

In particular there is a net (ψi )i of normal c.c. maps on L∞(G), possessing the W∗CMAP with respect
to the Haar state, such that ψi (L∞(G))⊂ C (G) for all i .
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2E. Popa’s intertwining techniques. Popa [2006a; 2006b] introduced a powerful tool called intertwining
techniques. This is one of the main ingredients in the recent development of the von Neumann algebra
theory. Here we introduce the one defined and studied in [Houdayer and Isono 2017, Definition 4.1
and Theorem 4.3] which treats general von Neumann algebras.

Definition 2.10. Let M be any σ -finite von Neumann algebra, 1A and 1B any nonzero projections in M,
A ⊂ 1A M1A and B ⊂ 1B M1B any von Neumann subalgebras with expectation. We say that A embeds
with expectation into B inside M and write A�M B if there exist projections e ∈ A and f ∈ B, a nonzero
partial isometry v ∈ eM f and a unital normal ∗-homomorphism θ : eAe→ f B f such that the inclusion
θ(eAe)⊂ f B f is with expectation and av = vθ(a) for all a ∈ eAe.

Theorem 2.11. Keep the same notation as in Definition 2.10 and assume that A is finite. Then the
following conditions are equivalent:

(1) We have A �M B.

(2) There exists no net (wi )i∈I of unitaries in U(A) such that EB(b∗wi a)→ 0 in the σ -∗-strong topology
for all a, b ∈ 1A M1B , where EB is a fixed faithful normal conditional expectation from 1B M1B

onto B.

For the proof of Corollary B, we prove a lemma. In the proof below, we make use of the ultraproduct
von Neumann algebras [Ocneanu 1985]. We will actually use a more general one used in [Houdayer and
Isono 2017], which treats a general directed set instead of N. Recall from Section 2 of that paper that
for any σ -finite von Neumann algebra M and any free ultrafilter U on a directed set I, we may define
the ultraproduct von Neumann algebra MU, using `∞(I )⊗ M. In the proof below, we only need the
following elementary properties: with the standard notation (xi )U ∈ MU for (xi )i∈I :

• M ⊂ MU is with expectation by EU ((xi )U ) := limi→U xi .

• For any σ -finite von Neumann algebras A ⊂ M with expectation E A, AU
⊂ MU is with expectation

defined by E AU ((xi )U ) := (E A(xi ))U .

• If the subalgebra A is finite, then any norm bounded net (ai )i∈I determines an element (ai )U in MU.

Lemma 2.12. Let (B, ϕB) and (N , ϕN ) be von Neumann algebras with faithful normal states. Put
M := B ⊗ N, ϕ := ϕB ⊗ ϕN , EB = idB ⊗ ϕN and EN = ϕB ⊗ idN . Let p ∈ M be a projection
and A ⊂ pMp a von Neumann subalgebra with expectation. Fix a := (ai )i∈I ∈ `

∞(I )⊗ A and a free
ultrafilter U on I such that (ai )U ∈ AU. Then EBU (y∗ax)=0 for all x, y ∈M if and only if EN ◦EU (c∗ab)
for all b, c ∈ BU.

In particular, if A is finite, then A�M B if and only if A�B⊗N0
B for any N0⊂ N with expectation EN0

such that ϕN ◦ EN0 = ϕN , p ∈ B⊗ N0 and A ⊂ p(B⊗ N0)p.

Proof. Observe first that EBU (y∗ax)= 0 for all x, y ∈ M if and only if EBU ((1⊗ y∗)a(1⊗ x))= 0 for
all x, y ∈ N, which is equivalent to〈

EBU ((1⊗ y∗)a(1⊗ x))3ϕUB (b),3ϕUB (c)
〉
ϕUB
= 0
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for all x, y ∈ N and b, c ∈ BU. Writing b = (bi )U and c = (ci )U , we calculate that〈
EBU ((1⊗ y∗)a(1⊗ x))3ϕUB (b),3ϕUB (c)

〉
ϕUB
= lim

i→U

〈
EB((1⊗ y∗)ai (1⊗ x))3ϕB (bi ),3ϕB (ci )

〉
ϕB

= lim
i→U

ϕB
(
c∗i EB((1⊗ y∗)ai (1⊗ x))bi

)
= lim

i→U
ϕB ◦ EB((c∗i ⊗ y∗)ai (bi ⊗ x))

= lim
i→U

ϕN ◦ EN ((c∗i ⊗ y∗)ai (bi ⊗ x))

= lim
i→U

ϕN
(
y∗EN ((c∗i ⊗ 1)ai (bi ⊗ 1))x

)
= ϕN

(
y∗EN ( lim

i→U
((c∗i ⊗ 1)ai (bi ⊗ 1)))x

)
= ϕN

(
y∗EN ◦ EU ((c∗⊗ 1)a(b⊗ 1))x

)
.

Then since functionals of the form ϕN (y∗ · x) for x, y ∈ N are norm dense in N∗, the final term above is
zero for all x, y ∈ N if and only if EN ◦ EU ((c∗⊗ 1)a(b⊗ 1))= 0. Thus we proved that EBU (y∗ax)= 0
for all x, y ∈ M if and only if EN ◦ EU ((c∗⊗ 1)a(b⊗ 1))= 0 for all b, c ∈ BU.

For the second half of the statement, suppose that A is finite and A 6�B⊗N0
B. We will show A 6�M B.

Since A is finite, there is a net (ui )i∈I ⊂ U(A) for a directed set I such that EB(y∗ui x)→ 0 strongly
as i →∞ for all x, y ∈ B ⊗ N0. Fix any cofinal ultrafilter U on I. Since A is finite, u := (ui )U ∈ AU

and hence EBU (y∗ux) = 0 for all x, y ∈ B ⊗ N0. By the first half of the statement, this is equivalent
to EN0 ◦ EU (c∗ub) = 0 for all b, c ∈ BU. Then since EU (c∗ub) is contained in B ⊗ N0 and since
EN |B⊗N0

= (ϕB ⊗ idN )|B⊗N0
= EN0 , we have EN ◦ EU (c∗ub) = 0 for all b, c ∈ BU, which is in turn

equivalent to EBU (y∗ux)= 0 for x, y ∈M by the first half of the statement. Since this holds for arbitrary U
on I, we conclude that EB(y∗ui x)→ 0 ∗-strongly as i →∞ for all x, y ∈ M. Thus we proved that
A 6�B⊗N0

B implies A 6�M B. �

3. Weakly compact actions

In this section, we define and study weakly compact actions on continuous cores. The main observation
is Theorem 3.10, and the key item for the proof is Lemma 3.3.

3A. Relative amenability and approximation maps. In this subsection, we recall relative amenability
for general von Neumann algebras introduced in [Isono 2017], which generalizes [Ozawa and Popa 2010;
Popa and Vaes 2014a].

Definition 3.1. Let B ⊂M be von Neumann algebras, p ∈M a projection and A⊂ pMp a von Neumann
subalgebra with expectation E A. We say that the pair (A, E A) is injective relative to B in M , and write
(A, E A)lM B, if there exists a conditional expectation from p〈M, B〉p onto A which restricts to E A

on pMp.

Using amenability of R and the notion of relative amenability, we prove a lemma for approximation
maps on the continuous core. For this we fix the following notation.
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Let (M, ϕ) be a von Neumann algebra with a faithful normal semifinite weight, and M̃ := M oR the
continuous core of M with the modular action σ ϕ. We denote by ϕ̂ the dual weight of ϕ, and by EM the
canonical operator-valued weight from M̃ to M given by ϕ̂ = ϕ ◦ EM . We denote by M oalg G all the
linear spans of xλt for x ∈ M and t ∈ G, which is a ∗-strongly dense subalgebra in M̃.

Lemma 3.2. In this setting, we have

M̃ L2(M̃)M̃ ≺ M̃ L2(M̃)⊗M L2(M̃)M̃ .

Proof. Recall first that

M oR= (M◦⊗ 1)′ ∩ {1i t
ϕ ⊗ ρt | t ∈ R}′, 〈M oR,M〉 = (M◦⊗ 1)′,

where ρ is the right regular representation. Since R is amenable, there are positive functionals ( fn)n ⊂

L1(R) with ‖ fn‖1 = 1 satisfying λg fn − fn→ 0 weakly for all g ∈ R. For each n, define a positive map

Fn : B(L2(M)⊗ L2(R))→ B(L2(M)⊗ L2(R))

by

Fn(T ) :=
∫

R

(1i t
ϕ ⊗ ρt) T (1i t

ϕ ⊗ ρt)
∗ fn(t) · dt.

Since ‖Fn‖ = 1, we can take a cluster point of (Fn)n , which we write as F. Then it satisfies

(1i t
ϕ ⊗ ρt)F(T )(1i t

ϕ ⊗ ρt)
∗
= F(T )

for all t ∈ R and hence F is a conditional expectation onto {1i t
ϕ ⊗ ρt | t ∈ R}′. It is easy to see that

F(T )∈ (M◦⊗1)′ for any T ∈ (M◦⊗1)′. Hence F restricts to a conditional expectation from 〈MoR,M〉
onto M o R. We obtain (M o R, id)lMoR M. Finally since M o R is semifinite, using [Isono 2017,
Theorem A.5], we get the conclusion. �

Lemma 3.3. In this setting, there is a net (ωj )j of c.c.p. maps on M̃ such that ωj → idM̃ point σ -weakly
and each ωj is a finite sum of λ∗q EM(z∗ · y)λp for some y, z ∈ nEM and p, q ∈ R.

Proof. By Lemma 3.2 and Proposition 2.4, there is a net (ωj )j of c.c.p. maps on M̃ such that ωj → idM̃

point σ -weakly and each ωj is a finite sum of 〈η, · η〉X (L2(M̃)⊗M L2(M̃)) for some η∈ X (L2(M̃)⊗M L2(M̃)).
We first replace each η in ωj with some “algebraic” element in X (L2(M̃)⊗M L2(M̃)).

By Lemma 2.5, the self dual completion X of n̄EM ⊗alg M̃ is identified as the one correspond-
ing to L2(M̃) ⊗M L2(M̃). We denote by X0 the image of n̄EM ⊗alg M̃ in X . By [Paschke 1976,
Lemma 2.3], X0 ⊂ X is dense in the s-topology; that is, for any η ∈ X there is a net (ηi )i ⊂ X0

such that 〈η− ηi , η− ηi 〉X → 0 in the σ -weak topology in M̃. In our case, since nEB ⊂ n̄EB is dense in
the s-topology and since M oalg G ⊂ M̃ is ∗-strongly dense, the image of nEM ⊗alg (M oalg G) in X is
dense in the s-topology. Hence we may replace each vector η ∈ X , appearing in ωj above, with the one
represented by elements in nEM ⊗alg (M oalg G).

Thus, we may assume that each ωj is a finite sum of λ∗q EM(z∗ · y)λp for some y, z ∈ nEM and p, q ∈R.
However the completely bounded (c.b.) norms of the resulting net (ωj )j are no longer uniformly bounded.
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So we have to again replace (ωj )j with c.c.p. maps. For this, we assume that, up to convex combinations,
the convergence ωj → idM̃ is in the point strong topology.

Recall from (the first half of) the proof of [Anantharaman-Delaroche 1990, Lemma 2.2] that if we put
ϕi (x) := cjωj (x)cj for x ∈ M̃, where cj := 2(1+ωj (1))−1, then the net (ϕi )i satisfies that each ϕi is c.c.p.
and that ϕi → idM̃ in the point strong topology. We will replace cj with elements in M oalg G. For this,
fix j and observe that, since 1+ωj (1) is in Moalg G, each cj is actually contained in C∗{Moalg G}, which
is the norm closure of M oalg G. So there is a sequence (an)n in M oalg G such that ‖an‖∞ ≤ ‖c

1/2
j ‖∞

and ‖an − c1/2
j ‖∞→ 0. Put bn := a∗nan ∈ M oalg G and observe that it satisfies ‖bn‖∞ ≤ ‖cj‖∞ and

‖bn − cj‖∞→ 0. It then holds that for any x ∈ M̃,

‖cjωj (x)cj − bnωj (x)bn‖∞ ≤ 2‖cj‖∞ ‖ωj‖cb ‖x‖∞ ‖cj − bn‖∞→ 0 as n→∞.

Now fix any ε > 0 and finite subset F ⊂ (M̃)1 such that 1 ∈ F , and choose bn such that

‖cjωj (x)cj − bnωj (x)bn‖∞ < ε

for all x ∈ F . Then since 1 ∈ F, we have

‖bnωj ( · )bn‖cb = ‖bnωj (1)bn‖∞ < ‖cjωj (1)cj‖∞+ ε ≤ 1+ ε.

So (1+ ε)−1bnωj ( · )bn is a c.c.p. map which is still close to cjωj ( · )cj on F. Thus we proved that for
any j there is a net of c.c.p. maps converging to cjωj ( · )cj in the point norm topology such that each
map is a finite sum of λ∗q EM(z∗ · y)λp for some y, z ∈ nEM and p, q ∈ G. Using this observation, since
cjωj ( · )cj → idM̃ as j→∞ in the point strong topology, it is easy to construct a desired net. �

3B. Definition of weakly compact actions. We introduce the following notion, which is an appropriate
generalization of [Ozawa and Popa 2010, Definition 3.1] in our setting; see also [Popa and Vaes 2014a,
Theorem 5.1]. Indeed, in the definition below, if we take M= M ⊗M◦, this coincides with the original
definition of weakly compact actions.

Definition 3.4. Let M be a semifinite von Neumann algebra with trace Tr, and let M be a von Neumann
algebra which contains M and M◦ as von Neumann subalgebras, which we denote by π(M) and θ(M◦),
such that [π(M), θ(M◦)] = 0.

Let p ∈M be a projection with Tr(p)= 1, A⊂ pMp be a von Neumann subalgebra, and G≤NpMp(A)
a subgroup. We say that the adjoint action of G on A is weakly compact for (M,Tr, π, θ,M) if there is a
net (ξi )i of unit vectors in the positive cone of L2(M) such that

(i) 〈π(x)ξi , ξi 〉L2(M)→ Tr(pxp) for any x ∈ M ;

(ii) ‖π(a)θ(ā)ξi − ξi‖L2(M)→ 0 for any a ∈ U(A);

(iii) ‖π(u)θ(ū)JMπ(u)θ(ū)JMξi − ξi‖L2(M)→ 0 for any u ∈ G.

Here ā means (a◦)∗ and JM is the modular conjugation for L2(M).
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Remark 3.5. In this definition, since JMξi = ξi for all i , condition (ii) for a ∈U(A) implies condition (iii)
for a ∈ U(A). Hence up to replacing G with the group generated by U(A) and G, we may always assume
that G contains U(A).

Below we record a characterization for weakly compact actions.

Proposition 3.6. Keep the notation in Definition 3.4. The following conditions are equivalent:

(1) The group G acts on A as a weakly compact action for (M,Tr, π, θ,M).

(2) There exists a net (ωi )i of normal states on M such that

(i) ωi (π(x))→ Tr(pxp) for any x ∈ pMp;
(ii) ωi (π(a)θ(ā))→ 1 for any a ∈ U(A);

(iii) ‖ωi ◦Ad(π(u)θ(ū))−ωi‖→ 0 for any u ∈ G.

(3) There is a G-central state ω on M such that for any x ∈ M and a ∈ U(A)

ω(x)= Tr(pxp) and ω(π(a)θ(ā))= 1.

(4) There is a state � on B(L2(M)) such that for any x ∈ M, a ∈ U(A) and u ∈ G,

�(x)= Tr(pxp), �(π(a)θ(ā))= 1, and �((π(u)θ(ū)JMπ(u)θ(ū)JM)= 1.

Proof. This theorem follows from well-known arguments; see, e.g., the proof of [Ozawa and Popa 2010,
Theorem 2.1]. So we give a sketch of proofs.

If (1) holds, then put � := Limi 〈 · ξi , ξi 〉L2(M) and obtain (4). If (4) holds, then the restriction of �
on M gives (3). If (3) holds, then we can approximate ω by a net of normal states (ωi )i ⊂M∗ weakly.
Then by the Hahn–Banach separation theorem, up to convex combinations, we may assume that the
convergence is in the norm and obtain (2). Finally if (2) holds, then for each i one can find a unique
ξi ∈ L2(M) which is in the positive cone such that ωi =〈 · ξi , ξi 〉L2(M). By the Powers–Størmer inequality
[Takesaki 1979, Theorem IX.1.2(iv)], we obtain

‖π(u)θ(ū)JMπ(u)θ(ū)JMξi − ξi‖
2
≤ ‖ωi ◦Ad(π(u∗)θ(u◦))−ωi‖→ 0

for any u ∈ G and hence (1) holds. �

3C. W∗CMAP with respect to a state produces approximation maps on continuous cores. We con-
struct a family of approximation maps on continuous cores by assuming the W∗CMAP with respect to a
state.

For this, we fix the following setting. Let N and B be von Neumann algebras and ϕN and ϕB faithful
normal states on N and B respectively. Put

M := N ⊗ B, ϕ := ϕN ⊗ϕB, EN := idN ⊗ϕB, EB := ϕN ⊗ idB,

and we regard B̃ := B oσ ϕB R and Ñ := N oσ ϕN R as subalgebras of M̃ := M oσ ϕ R. We denote by EM

the canonical operator-valued weight from M̃ to M given by ϕ̂ = ϕ ◦ EM , where ϕ̂ is the dual weight on
M̃. We also denote by EB the canonical operator-valued weight from M̃ to B given by ϕ̂ = ϕB ◦ EB .
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Lemma 3.7. Let ω : M̃→ M̃ and ψ : N → N be c.b. maps given by

ω := λ∗q EM(z∗ · y)λp and ψ :=

n∑
i=1

ϕN (z∗i · yi )ci

for some p, q ∈R, y, z ∈ nEM and ci , yi , zi ∈ N. Suppose ψ ◦σ ϕN
t = σ

ϕN
t ◦ψ for all t ∈R, so that the map

ψ̃ := ψ ⊗ idB ⊗ idL2(R) on M ⊗B(L2(R)) induces the map M̃→ M̃ given by ψ̃(xλt)= (ψ ⊗ idB)(x)λt

for x ∈ M and t ∈ R. Then the composition ψ̃ ◦ω is given by

ψ̃ ◦ω(x)=
n∑

i=1

λ∗q EB
(
σ ϕN

q (z∗i )z
∗xyσ ϕN

p (yi )
)
λpci , x ∈ M̃ .

Proof. Recall from the proof of Lemma 2.1 that the canonical conditional expectation from (M̃, ϕ̂) to
(B̃, ϕ̂B) is given by EBoR((x⊗b)λt)=ϕN (x)bλt for x ∈ N, b∈ B and t ∈R. For x ∈ M̃, we calculate that

ψ̃ ◦ω(x)= ψ̃(λ∗q EM(z∗xy)λp)

=

n∑
i=1

(ϕN (z∗i · yi )⊗ idB ⊗ idL2(R))(λ
∗

q EM(z∗xy)λp)ci

=

n∑
i=1

EBoR(z∗i λ
∗

q EM(z∗xy)λp yi )ci

=

n∑
i=1

λ∗q EBoR ◦ EM(σ
ϕN
q (z∗i )z

∗xyσ ϕN
p (yi ))λpci .

Since EBoR ◦ EM = EB by Lemma 2.1, we obtain the conclusion. �

Lemma 3.8. Suppose that N has the ϕN -W∗CMAP. Then there exists a net (ϕλ)λ of c.c. maps on M̃ such
that ϕλ→ idM̃ point σ -weakly and such that each ϕλ is a finite sum of d∗EB(z∗ · y)c for some c, d ∈ M̃
and y, z ∈ nEB .

Proof. Fix a net (ψi )i of normal c.c. maps on N as in Definition 2.8 and put (ψ̃i )i as in the statement of
the previous lemma. Let (ωj )j be a net of c.c.p. maps on M̃ given by Lemma 3.3. Then by Lemma 3.7
the composition ψ̃i ◦ ωj is a finite sum of d∗EB(z∗ · y)c for some c, d ∈ M̃ and y, z ∈ nEB . Since
limi (limj ψ̃i ◦ωj )= idM̃ in the point σ -weak topology, it is easy to show that for any finite subset F ⊂ M̃
and any σ -weak neighborhood V of 0, there are i and j such that ψ̃i ◦ωj (x)− x ∈ V for all x ∈ F. So
putting this ψ̃i ◦ωj as ϕ(F,V), one can construct a desired net (ϕλ)λ := (ϕ(F,V))(F,V). �

3D. Relative weakly compact actions on continuous cores. We keep the notation from the previous
subsection, such as M = N ⊗ B and ϕ = ϕN ⊗ϕB . Let Tr be an arbitrary semifinite trace on M̃, p ∈ M̃
a projection with Tr(p) = 1, and A ⊂ pM̃ p a von Neumann subalgebra with expectation E A. In this
subsection, we prove that under some assumptions on A and M, the normalizer of A in pMp acts on A
as a weakly compact action with an appropriate representation.

Since our proof is a generalization of the one of [Popa and Vaes 2014a, Theorem 5.1], we make use of
the following notation, which is similar to notation used in that theorem:
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H := L2(M̃, ϕ̂)⊗B L2(M̃,Tr), with left, right actions πH , θH ,

MH :=W∗{πH (M̃), θH (M̃◦)} ⊂ B(H),

H := (θH (p)H)⊗A pL2(M̃,Tr),

πH : M̃ 3 x 7→ (x ⊗B p◦)⊗A p ∈ B(H),

θH : M̃◦ 3 y◦ 7→ (1⊗B p◦)⊗A y◦ ∈ B(H),

M :=W∗{πH(M̃), θH(M̃◦)} ⊂ B(H).

As we observed in Proposition 3.6, we actually use the weakly compact action with the standard
representation of M. So we first observe that M admits a useful identification as a crossed product, and
so its standard representation is taken as a simple form.

Lemma 3.9. Let X ⊂M be the von Neumann subalgebra generated by πH(B) and θH(M̃◦), and let
X ⊂ B(L2(X)) be a standard representation, so that B and M̃◦ acts on L2(X). Then M is isomorphic to
the crossed product von Neumann algebra Rn (N ⊗ X) by the diagonal action σ ϕN ⊗αX, where αX is
given by αX

t (πH(b)θH(y
◦))= πH(σ

ϕB
t (b))θH(y◦) for t ∈ R, b ∈ B, and y ∈ M̃.

In particular the standard representation of M is given by L2(R)⊗ L2(N )⊗ L2(X) with the following
representation: for any ξ ∈ L2(R)⊗ L2(N )⊗ L2(X)= L2(R, L2(N )⊗ L2(X)) and s ∈ R,

LR 3 λt 7→ λt ⊗ 1N ⊗ 1X , ((λt ⊗ 1N ⊗ 1X )ξ)(s) := ξ(s− t),

N 3 x 7→ π
σ ϕ

N (x)⊗ 1X , ((π
σ ϕ

N (x)⊗ 1X )ξ)(s) := (σ
ϕN
−s (x)⊗ 1X )ξ(s),

B 3 b 7→ π
σ ϕ

B (b)13, ((π
σ ϕ

B (b)13)ξ)(s) := (1N ⊗ σ
ϕB
−s (b))ξ(s),

M̃◦ 3 y◦ 7→ 1L2(R)⊗ 1N ⊗ y◦, ((1R⊗ 1N ⊗ y◦)ξ)(s) := (1N ⊗ y◦)ξ(s).

Proof. By Proposition 2.3, H is isomorphic to L2(R)⊗ L2(N )⊗ L2(B)⊗ L2(N )⊗ L2(R). Since the
right M̃-action acts only on the right three Hilbert spaces, the Hilbert space H= H ⊗A pL2(M̃,Tr) is
identified as L2(R)⊗ L2(N )⊗ K, where

K := θH (p◦)(L2(B)⊗ L2(N )⊗ L2(R))⊗A pL2(M̃,Tr).

Note that M̃◦ acts on K by θH, and B acts on L2(R)⊗ K by πH, so that X acts on L2(R)⊗ K. More
precisely we have X ⊂ L∞(R)⊗C1N ⊗B(K ).

Let W be a unitary on L2(R)⊗L2(N ) given by (W ξ)(t) :=1i t
ϕN
ξ(t) for t ∈R and ξ ∈ L2(R)⊗L2(N )=

L2(R, L2(N )). It satisfies that for any f ∈ L∞(R), t ∈ R, and x ∈ N,

Wπσ ϕN (x)W ∗ = 1L2(R)⊗ x, W (λt ⊗ 1N )W ∗ = λt ⊗1
i t
ϕN
, and W ( f ⊗ 1N )W ∗ = f ⊗ 1N .

Let next V be a unitary on L2(R)⊗ L2(R) defined similarly to W exchanging 1i t
ϕN

with λt , so that it
satisfies for t ∈ R and f ∈ L∞(R),

V (1⊗ λt)V ∗ = λt ⊗ λt and V (1⊗ f )V ∗ = 1⊗ f.
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Define then a unitary on L2(R)⊗H by U := (V ⊗ 1N ⊗ 1K )(1L2(R) ⊗W ⊗ 1K ). One can show that
Ad U = id on C1L2(R)⊗ X ⊂ C1L2(R)⊗ L∞(R)⊗C1N ⊗B(K ), and

Ad U (1L2(R)⊗ λt ⊗ 1N ⊗ 1K )= (λt ⊗ λt ⊗1
i t
ϕN
⊗ 1K ) for t ∈ R,

Ad U (1L2(R)⊗πσ ϕN (x)⊗ 1K )= (1L2(R)⊗ 1L2(R)⊗ x ⊗ 1K ) for x ∈ N.

Then Ad U (M) is identified as the crossed product von Neumann algebra R n (N ⊗ X) given by the
R-action σ ϕN ⊗αX, where αX is given by Ad(λt ⊗ 1N ⊗ 1K ) using X ⊂ L∞(R)⊗C1N ⊗B(K ), which
is exactly the action given in the statement. Finally one can choose the standard representation of
Rn (N ⊗ X) as in the statement and we can end the proof. �

Now we prove the main observation of this section. This is a generalization of [Ozawa and Popa
2010, Theorem 3.5] and [Popa and Vaes 2014a, Theorem 5.1]. Since we already obtained approximation
maps for M̃ in Lemma 3.8, which are “relative to B”, almost the same arguments as the above-cited
theorems work. However, since our approximation maps are not defined directly on MH , we need a
stronger assumption on the subalgebra A; namely, we need amenability, instead of relative amenability.
See Step 1 in the proof below and observe that we really need amenability for a subalgebra Q ⊂ pMp.

Theorem 3.10. Keep the setting above and suppose the following conditions:

• The algebra B is a type III1 factor.

• The algebra A is amenable.

• The algebra N has the ϕN -W∗CMAP.

Then NpM̃ p(A) acts on A as a weakly compact action for (M̃,Tr, πH, θH,M).

Proof. The proof consists of several steps. For any von Neumann subalgebra Q ⊂ pM̃ p, we denote by
CH,Q (resp. MH,Q) the C∗-algebra (resp. the von Neumann algebra) generated by πH (pM̃ p)θH (Q◦).

Step 1. Using the ϕN -W∗CMAP of N, we construct a net of normal functionals on MH which are
contractive on MH,Q for any amenable Q.

In this step, we show that there is a net (µi )i of normal functional on MH such that

• µi (πH (a)θH (b◦))= Tr(pϕi (a)pbp) for all a, b ∈ M̃,

• we have ‖µi |MH,Q‖ ≤ 1 for any amenable von Neumann subalgebra Q ⊂ pM̃ p.

By Lemma 3.8, there exists a net (ϕi )i of c.c. maps on M̃ such that ϕi → idM̃ point σ -weakly and that
each ϕi is a finite sum of d∗EB(z∗ · y)c for c, d ∈ M̃ and y, z ∈ nEB . Observe that for any functional
d∗EB(z∗ ·y)c for some c, d ∈ M̃ and y, z ∈nEB , one can define an associated normal functional on MH by

MH 3 T 7→
〈
T (3ϕ̂(y)⊗B 3Tr(cp)),3ϕ̂(z)⊗B 3Tr(dp)

〉
H .

In this way, since ϕi is a finite sum of such maps, one can associate each ϕi with a normal functional on MH ,
which we denote byµi . Then by the formula L∗3ϕ̂(z)aL3ϕ̂(y)= EB(z∗ay) for x, y∈nEB∩nϕ and a∈ M̃, it is
easy to verify that µi (πH (a)θH (b◦))=Tr(pϕi (a)pbp) for a, b∈ M̃. We need to show that ‖µi |MH,Q‖≤ 1
for any amenable Q ⊂ pM̃ p. For this, since µi is normal, we have only to show that ‖µi |CH,Q‖ ≤ 1.
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By Lemma 3.11 below, since B is a type III1 factor, the ∗-algebra generated by πH (M̃) and θH (M̃◦) is
isomorphic to M̃⊗alg M̃◦. So for any amenable Q⊂ pM̃ p, the C∗-algebra generated by πH (M̃)θH (Q◦) is
isomorphic to M̃⊗min Q◦. Hence one can define c.c. maps ϕi⊗idQ◦ on CH,Q . Since Q is amenable, one has

M̃ L2(M̃ p)Q ≺ M̃(θH (p◦)H)Q .

Finally if we denote by ν the associated ∗-homomorphism with this weak containment, then the functional
T 7→ 〈ν◦(ϕi⊗idQ◦)(T )3Tr(p),3Tr(p)〉Tr coincides with µi on CH,Q , and hence we obtain ‖µi |CH,Q‖≤ 1.
Thus we obtained a desired net (µi )i .

Step 2. Using the amenability of A, the absolute values of normal functionals (µi )i constructed in Step 1
satisfy desired properties on MH,A.

Before this step, recall from the first part of the proof of [Ozawa and Popa 2010, Theorem 3.5] that for
any C∗-algebra C , any state ω on C and any partial isometry u ∈ C with p := uu∗ and q := u∗u, one has

max
{
‖ω( · u∗)−ω( · q)‖2, ‖ω(u · u∗)−ω(q · q)‖2

}
≤ 4(ω(p)+ω(q)−ω(u)−ω(u∗)).

Let (µi )i be a net constructed in Step 1. For notational simplicity, for any amenable von Neumann
subalgebra Q ⊂ pM̃ p we denote by µQ

i the restriction of µi on MH,Q .

Claim. For any amenable Q, one has

‖µ
Q
i ‖→ 1 and ‖µ

Q
i − |µ

Q
i |‖→ 0,

where |µQ
i | is the absolute value of µQ

i .

Proof of Claim. By Step 1, we know ‖µQ
i ‖ ≤ 1 and hence ‖µQ

i ‖ → 1, since µi (πH (p)θH (p◦))→ 1.
Let µQ

i = |µ
Q
i |( · ui ) be the polar decomposition with a partial isometry ui ∈MH,Q . For pi := ui u∗i and

qi := u∗i ui , it holds that

|µ
Q
i | = µ

Q
i ( · u

∗

i ), |µ
Q
i | = |µ

Q
i |(qi · qi ), and µ

Q
i = µ

Q
i ( · pi )= µ

Q
i (qi · ).

The final equation says that µQ
i (pi )= µ

Q
i (1Q)→ 1. Then by the inequality at the beginning of this step,

we have
‖µ

Q
i − |µ

Q
i |‖

2
= ‖|µ

Q
i |( · u

∗

i )− |µ
Q
i |( · qi )‖

2

≤ 4
(
|µ

Q
i |(pi )+ |µ

Q
i |(qi )− |µ

Q
i |(ui )− |µ

Q
i |(u

∗

i )
)

≤ 4
(
‖µ

Q
i ‖+‖µ

Q
i ‖− 2 Re(µQ

i (pi ))
)
→ 0. �

Put ωi := |µ
A
i |/‖µ

A
i ‖. In this step, we show that (ωi )i satisfies the following conditions:

(1) ωi (πH (x)θH (p◦))→ Tr(pxp) for all x ∈ pM̃ p.

(2) ωi (πH (a)θH (ā))→ 1 for all a ∈ U(A).

(3) ‖ωi ◦Ad(πH (u)θH (ū))−ωi‖M∗

H,A
→ 0 for all u ∈NpM̃ p(A).
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Since ‖µA
i ‖→ 1 and ‖µA

i −|µ
A
i |‖→ 0, to verify these three conditions, we have only to show that (µi )i

satisfies the same conditions. Then by construction, it is easy to verify (i) and (ii). So we will check only
the final condition.

Fix u ∈ NpM̃ p(A) and recall that the von Neumann algebra Au generated by A and u is amenable
[Ozawa and Popa 2010, Lemma 3.4]. Hence by Step 1, ‖|µAu

i | −µ
Au

i ‖M∗

H,Au → 0. Combined with the
inequality at the beginning of this step, putting U := πH (u)θH (ū), we have

lim
i
‖µA

i ◦Ad U −µA
i ‖

2
M∗

H,A
≤ lim

i
‖µAu

i ◦Ad U −µAu

i ‖
2
M∗

H,Au

= lim
i
‖|µAu

i | ◦Ad U − |µAu

i |‖
2
M∗

H,Au

≤ lim
i

4(2− 2 Re(|µAu

i |(U )))

= lim
i

4(2− 2 Re(µAu

i (U )))= 0.

Thus we proved that the net (ωi )i of normal states on MH satisfies conditions (i), (ii) and (iii) above.

Step 3. Using a normal u.c.p. map from M to MH,A, we obtain desired functionals on M.

In this step, we first construct a normal u.c.p. map E :M→MH,A satisfying

E(πH(a)θH(b◦))= πH (pap)θH (E A(pbp)◦) for any a, b ∈ M̃,

where E A is the unique Tr-preserving conditional expectation from pM̃ p onto A.
For this, observe first that for any right A-module K with the right action θK , there is an isometry

VK : K → K ⊗A pL2(M̃,Tr) given by V ξ = ξ ⊗A3Tr(p) for any left Tr-bounded vector ξ ∈ K. Indeed,
using the fact 3Tr(p)= JTr3Tr(p), one has

‖V ξ‖ = ‖ξ ⊗A 3Tr(p)‖ = ‖Lξ3Tr(p)‖2,Tr = ‖Lξ3Tr(p)‖2,Tr = ‖θK (p◦)ξ‖K = ‖ξ‖K .

Hence, since πH (p)θH (p◦)H is a right A-module, one can define an isometry

V : πH (p)θH (p◦)H → πH(p)θH(p◦)H⊂H, V ξ := ξ ⊗A 3Tr(p).

It is then easy to verify that

V ∗πH(a)θH(b◦)V = πH (pap)θH (E A(pbp)◦) for any a, b ∈ M̃ .

Thus we obtain a normal u.c.p. map E :M→MH,A by E(T ) := V ∗T V.
Let now (ωi )i be the net of normal states on MH,A constructed in Step 2. By conditions (i) and (ii)

on (ωi )i , it is easy to see that normal states γi := ωi ◦ E on M satisfy

(i) ′ γi (πH(x))→ τ(pxp) for all x ∈ M̃ ;

(ii) ′ γi (πH(a)θH(ā))→ 1 for all a ∈ U(A).

Finally since E A satisfies E A ◦Ad u = Ad u ◦ E A for any u ∈NpM̃ p(A), one has

γi ◦Ad(πH(u)θH(ū))= ωi ◦Ad(πH(u)θH(ū)) ◦ E
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on πH(M̃)θH(M̃), and hence on M by normality. So condition (iii) on (ωi )i shows

(iii) ′ ‖γi ◦Ad(πH(u)θH(ū))− γi‖→ 0 for all u ∈NpM̃ p(A).

Thus the net (γi )i on M satisfies conditions (i)′, (ii)′ and (iii)′. By Proposition 3.6(2), we conclude
that NpM̃ p(A) acts on A weakly compactly for (M̃,Tr, πH, θH,M). �

We prove a lemma used in the proof above.

Lemma 3.11. Assume that B is a type III1 factor. Then the ∗-algebra generated by πH (M̃) and θH (M̃◦)
is isomorphic to M̃ ⊗alg M̃◦.

Proof. Let ν : M̃ ⊗alg M̃◦ → ∗-alg{πH (M̃), θH (M̃◦)} be a ∗-homomorphism given by ν(x ⊗ y◦) =
πH (x)θH (y◦) for x, y ∈ M̃. We will show that ν is injective.

Assume that ν
(∑n

i=1xi ⊗ y◦i
)
=
∑n

i=1πH (xi )θH (y◦i )= 0 for some xi , yi ∈ M̃. We may assume yi 6= 0
for all i . Put

X :=


πH (x1) πH (x2) · · · πH (xn)

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 and Y :=


θH (y◦1) 0 · · · 0
θH (y◦2) 0 · · · 0
...

...
. . .

...

θH (y◦n) 0 · · · 0


and observe XY = 0. We regard them as elements in B(H)⊗Mn . Let p be the left support projection
of Y which is contained in θH (M̃◦) ⊗Mn and satisfies X p = 0. Since Xupu∗ = 0 for any unitary
u ∈ B(H)⊗Mn which commutes with X , and since θH (M̃◦)⊗Cn commutes with X (where Cn

⊂Mn is
the diagonal embedding), we have Xz = 0 for z := sup{upu∗ | u ∈ U(θH (M̃◦)⊗Cn)}. Observe that z is
contained in

(θH (M̃◦)⊗Mn)∩ (θH (M̃◦)⊗Cn)′ = θH (Z(M̃)◦)⊗Cn

and hence we can write z = (zi )
n
i=1 for some zi ∈ θH (Z(M̃)◦). Then the condition Xz = 0 is equivalent

to πH (xi )zi = 0 for all i . Observe also that zi 6= 0 for all i . Indeed, since z ≥ p and pY = Y, we have
zY = Y and hence ziθH (y◦i )= θH (y◦i ). This implies zi 6= 0 since we assume yi 6= 0 for all i .

Now we claim that πH (xi )zi = 0 is equivalent to xi = 0 or zi = 0. Once we prove the claim, since
zi 6= 0, we have xi = 0 and so

∑n
i=1xi ⊗ y◦i = 0, which gives the injectivity of ν.

By Lemma 2.2, the center of M̃ coincides with Z(N ). Then by Proposition 2.3, we identify H =
L2(R)⊗ L2(N )⊗ L2(B, ψB)⊗ L2(N )⊗ L2(R) on which we have

πH (M̃)⊂ B(L2(R)⊗ L2(N )⊗ L2(B, ψB))⊗C1L2(N )⊗L2(R),

θH (M̃◦)⊂ C1L2(R)⊗L2(N )⊗B(L2(B, ψB)⊗ L2(N )⊗ L2(R)).

In particular θH (Z(M̃)◦)= θH (Z(N ))⊂C1L2(R)⊗L2(N )⊗L2(B,ψB)⊗B(L2(N )⊗L2(R)), and hence the C∗-
algebra generated by πH (M̃) and θH (Z(M̃)◦) is isomorphic to M̃⊗minZ(M̃)◦. Thus since zi ∈θH (Z(M̃)◦),
the condition πH (xi )zi = 0 is equivalent to xi = 0 or zi = 0. �
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4. Proof of Theorem A

To prove Theorem A we follow the proof of [Isono 2015b, Theorem B], which originally comes from the
one of [Popa and Vaes 2014b, Theorem 1.4].

4A. Some general lemmas. Let G be a compact quantum group with the Haar state h and put N0 :=

Cred(G) ⊂ L∞(G) =: N and ϕN := h. Let (X, ϕX ) be a von Neumann algebra with a faithful normal
semifinite weight. Let αX be an action of R on X and put α := σ ϕN ⊗αX and M := (N ⊗ X)oα R.

In this setting, we prove two general lemmas. We use the following general fact for quantum groups.

• For any x ∈ Irred(G), there is an orthonormal basis {ux
i, j }i, j ⊂ Cred(G) of Hx with λx

i, j > 0 such that
σ h

t (u
x
i, j )= λ

x
i, j u

x
i, j for all t ∈ R.

Recall that all the linear spans of such a basis, which is usually called a dense Hopf ∗-algebra, make a
norm-dense ∗-subalgebra of Cred(G). We note that each matrix (ux

i, j )i, j may not be a unitary, since we
assume {ux

i, j }i, j is orthonormal (i.e., they are normalized).

Convention. Throughout this section, we fix such a basis {ux
i, j }

x
i, j . For notation simplicity, we identify

any subset E ⊂ Irred(G) (possibly E = Irred(G)) with the set {ux
i, j | x ∈ E, i, j}.

Note that this identification will not cause any confusion, since in proofs of this section we only use
the property that E ⊂ Irred(G) is a finite set.

Here we record an elementary lemma.

Lemma 4.1. For any a ∈ N0, the element πσ ϕN (a) ∈ N oσ ϕN R ⊂ B(L2(N )⊗ L2(R)) is contained in
N0⊗min Cb(R), where Cb(R) is the set of all norm continuous bounded functions on R.

Proof. We may assume that a is an eigenvector; namely, σ ϕN
t (a) = λi t a for some λ > 0. Then since

(πσ ϕN (a)ξ)(t)= σ ϕN
−t (a)ξ(t)= λ

−i t aξ(t) for t ∈ R, one has πσ ϕN (a)= a⊗ f , where f ∈ Cb(R) is given
by f (t) := λ−i t. Hence we get the conclusion. �

We fix a faithful normal semifinite weight ϕX on X and put ψ :=ϕN⊗ϕX with its dual weight ψ̂. Recall
that the compression map PN⊗1X⊗1L2(R), where PN is the one-dimensional projection from L2(N ) onto
C3ϕN (1N ), is a conditional expectation EXoR :M→ X oR, which satisfies ψ̂ = ϕ̂X ◦ EXoR (this was
shown in the first half of the proof of Lemma 2.1). For any a ∈M and f ∈ Cc(R,M)nψ , we denote by
a f an element in Cc(R,M)nψ given by t 7→ α−t(a) f (t). Observe that 3ψ̂(π̂α(a f ))= πα(a)3ψ̂(π̂α( f )).
A simple computation shows that for any a, b ∈ N and f, g ∈ Cc(R, X)nϕX ,

〈a f, bg〉ψ̂ = 〈a, b〉ϕN 〈 f, g〉ϕ̂X .

Observe that all the linear spans of u f for u ∈ Irred(G) and f ∈ Cc(R, X)nϕX are dense in L2(N )⊗
L2(X)⊗ L2(R). So if { fλ}λ ⊂ Cc(R, X)nϕX is an orthonormal basis in L2(X)⊗ L2(R), then the set
{u fλ}u,λ is an orthonormal basis of L2(N )⊗ L2(X)⊗ L2(R). Along this basis, any a ∈ nψ̂ can be
decomposed in L2(N )⊗ L2(X)⊗ L2(R) as, for some αu,λ ∈ C,

3ψ̂(a)=
∑
u,λ

αu,λu fλ =
∑
u,λ

αu,λπϕN (u)3ψ̂(π̂α( fλ))=
∑

u

πσ ϕN (u)au,
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where au =
∑

λ αu,λ fλ ∈ L2(R, X). If we apply (PN ⊗ 1X ⊗ 1L2(R))πσ ϕN (v∗) for some v ∈ Irred(G) to
this decomposition, then on the one hand

(PN ⊗ 1X ⊗ 1L2(R))πσ ϕN (v
∗)3ψ̂(a)= (PN ⊗ 1X ⊗ 1L2(R))3ψ̂(v

∗a)=3ψ̂(EXoR(v
∗a))

and on the other hand

(PN ⊗ 1X ⊗ 1L2(R))πσ ϕN (v
∗)
∑

u

πσ ϕN (u)au =
∑

u

ϕN (v
∗u)au = ϕN (v

∗v)av = av.

Hence we have av =3ψ̂(EXoR(v
∗a)) for all v ∈ Irred(G). Thus we observe that any element a ∈ nψ̂ has

the Fourier expansion in the sense that

3ψ̂(a)=
∑

u

πσ ϕN (u)au =
∑

u

3ψ̂(uEXoR(u∗a)), where au =3ψ̂(EXoR(u∗a)).

Using this property, we can prove the following lemma. We omit the proof, since it is straightforward.

Lemma 4.2. Let M0 ⊂M be the C∗-subalgebra generated by N0 and X oR. Then one has

M0 = spannorm
{ax | a ∈ N0, x ∈ X oR}

= spannorm
{xa | a ∈ N0, x ∈ X oR}.

4B. Proof of Theorem A. Let G be a compact quantum group with the Haar state h and put N0 :=

Cred(G)⊂ L∞(G)=: N and ϕN := h. Let (B, ϕB) be a von Neumann algebra with a faithful normal state.
We keep the notation from Sections 3C and 3D, such as M, ϕ, B̃, M̃, Tr, p, A, H, πH, θH, M, except for the
Hilbert space H (which is used just below in a different manner). Assume that Tr |B̃ is semifinite. Recall
that by Lemma 3.9, M=Rn(N⊗X) with the standard representation L2(M)= L2(R)⊗L2(N )⊗L2(X).
Set π := πH and θ := θH for simplicity, and we sometimes omit π and θ by regarding M̃, M̃◦ as subsets
of M. Using Proposition 2.3, we put

H := L2(M)⊗X L2(M)= L2
`(R)⊗ L2

`(N )⊗ L2(X)⊗ L2
r (N )⊗ L2

r (R),

K := L2(M)⊗(N⊗X) L2(M)= L2
`(R)⊗ L2(N )⊗ L2(X)⊗ L2

r (R),

and we denote by πH , ρH , πK and ρK corresponding left and right actions of M. Here we are using
symbols ` and r for L2(R) and L2(N ), so that πH and πK act on L2

`(R)⊗ L2
`(N )⊗ L2(X) and L2

`(R)⊗

L2
`(N )⊗L2(X) respectively, and θH and θK act on L2(X)⊗L2

r (N )⊗L2
r (R) and L2(N )⊗L2(X)⊗L2

r (R)

respectively. We denote by νK ,H the corresponding ∗-homomorphism as M-bimodules, which is not
bounded in general.

In this setting, we prove two lemmas. The first one uses biexactness of quantum groups, which
corresponds to [Isono 2015a, Lemma 4.1.3], while the second one uses Popa’s intertwining techniques,
which corresponds to [Isono 2015a, Lemma 4.1.2; 2015b, Lemma 4.4]. See also [Popa and Vaes 2014b,
Sections 3.2 and 3.5] for the origins of them.

Lemma 4.3. Assume that Ĝ is biexact with a u.c.p. map 2 as in the definition of biexactness. Let M0 be
the C∗-algebra generated by N0 and Rn X. Then 2 can be extended to a u.c.p. map

2̃ : C∗{πH (M0), θH (M0)} → B(K )
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which satisfies, using the flip 612 : K ' L2(N )⊗ L2
`(R)⊗ L2(X)⊗ L2

r (R),

612
(
2̃(πH (xa)θH (b◦y◦))−πK (xa)θK (b◦y◦)

)
612 ∈ K(L2(N ))⊗min B(L2

`(R)⊗ L2(X)⊗ L2
r (R))

for any a, b ∈ N0 and x, y ∈ Rn X.

Proof. By applying flip maps, we identify

H = L2
`(N )⊗ L2

r (N )⊗ L2
`(R)⊗ L2(X)⊗ L2

r (R),

K = L2(N )⊗ L2
`(R)⊗ L2(X)⊗ L2

r (R).

We define a u.c.p. map 2̃ by

2̃ :=2⊗ idL2
`(R)
⊗ idL2(X)⊗ idL2

r (R)
: N0⊗min N ◦0 ⊗min B(L2

`(R)⊗ L2(X)⊗ L2
r (R))→ B(K ).

Observe that by Lemma 4.1, πH (M0) and ρH (M0) are contained in

N0⊗min N ◦0 ⊗min B(L2
`(R)⊗ L2(X)⊗ L2

r (R)).

Recall that for a, b ∈ N, πH (a) and θH (b◦) are given by πσ ϕN (a) on L2
`(R)⊗ L2

`(N ) and θσ ϕN (b◦) on
L2

r (N )⊗ L2
r (R). So if a and b are eigenvectors, they are of the form πH (a)= f ⊗a and θH (b◦)= b◦⊗g

for some f, g ∈ Cb(R) by Lemma 4.1. It then holds that for any x, y ∈ Rn X ,

2̃(πH (xa)θH (b◦y◦))−πK (xa)θK (b◦y◦)

= 2̃(πH (x)πH (a)θH (b◦)θH (y◦))−πK (x)πK (a)θK (b◦)θK (y◦)

= 2̃
(
πH (x)(a⊗ b◦⊗ f ⊗ 1L2(X)⊗ g)θH (y◦)

)
−πK (x)(ab◦⊗ f ⊗ 1L2(X)⊗ g)θK (y◦)

= πK (x)
(
(2(a⊗ b◦)− ab◦)⊗ f ⊗ 1L2(X)⊗ g

)
θK (y◦).

Since 2(a ⊗ b◦)− ab◦ ∈ K(L2(N )) and πK (x), θK (y◦) ∈ C1N ⊗min B(L2
`(R)⊗ L2(X)⊗ L2

r (R)), the
last term above is contained in K(L2(N ))⊗min B(L2

`(R)⊗ L2(X)⊗ L2
r (R))). Then by Lemma 4.2, we

obtain the conclusion. �

Lemma 4.4. Let � be a state on B(K ) satisfying for any x ∈ M̃ and a ∈ U(A),

�(πK (π(x)))= Tr(pxp) and �(πK (π(a)θ(ā)))= 1.

If A 6�M̃ B̃, then using the flip 612 : K ' L2(N )⊗ L2
`(R)⊗ L2(X)⊗ L2

r (R), it holds that

� ◦Ad(612)
(
K(L2(N ))⊗min B(L2

`(R)⊗ L2(X)⊗ L2
r (R))

)
= 0.

Proof. Since � is a state, by the Cauchy–Schwarz inequality, we have only to show that

� ◦Ad(612)(K(L2(N ))⊗min C1L2
`(R)⊗L2(X)⊗L2

r (R)
)= 0.

In this setting we can follow the proof of [Isono 2015b, Lemma 4.4]. Indeed suppose by contradiction
that there exist δ > 0 and a finite subset F ⊂ Irred(G) such that

�(1L2
`(R)
⊗ PF ⊗ 1L2(X)⊗L2

r (R)
) > δ,
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where PF is the orthogonal projection onto
∑

x∈F Hx ⊗ Hx̄ . Then the argument in [loc. cit., Lemma 4.4]
works by replacing ‖ · ‖ with �. Hence we omit the proof. �

Now we are in position to prove the main theorem. We actually prove the following more general
theorem. Theorem A then follows immediately with Theorem 3.10.

Theorem 4.5. Let A ⊂ pM̃ p be a von Neumann subalgebra and G ≤NpM̃ p(A) a subgroup. Assume the
following three conditions:

(A) The group G acts on A by conjugation as a weakly compact action for (M̃, π, θ,M).

(B) The quantum group Ĝ is biexact and centrally weakly amenable.

(C) We have A 6�M̃ B̃.

Then there is a (U(A)∪ G)-central state on p〈M̃, B̃〉p which coincides with Tr on pM̃ p. In particular
the von Neumann algebra generated by A and G is amenable relative to B̃.

Proof. By Remark 3.5, we may assume U(A)⊂ G. Recall from Lemma 3.2 that as M-bimodules,

L2(M)≺ L2(M)⊗(N⊗X) L2(M)= K ,

and we denote by ν the associated ∗-homomorphism. Let (ξi )i ⊂ L2(M) be a net for the given weakly
compact action of G and put a state �(X) := Limi 〈ν(X)ξi , ξi 〉L2(M) on C∗{πK (M), θK (M◦)}. Observe
that it satisfies

(i) ′ �(πK (π(x)))= Tr(pxp) for any x ∈ M̃ ;

(ii) ′ �(πK (π(a)θ(ā)))= 1 for any a ∈ U(A);

(iii) ′ �(πK (π(u)θ(ū))θK (π(u∗)◦θ(u◦)◦))= 1 for any u ∈ G.

Note that since JMξi = ξi , we also have �(θK (π(x)◦))= Tr(pxp) for any x ∈ M̃. Denote by νK ,H

the (not necessarily bounded) ∗-homomorphism for M-bimodules H and K. Here we claim that, using
the biexactness of Ĝ, the functional �̃ :=� ◦ νK ,H satisfies the following boundedness condition.

Claim. The functional �̃ is bounded on C∗{πH (M0), θH (M◦

0)}.

Proof of Claim. We first extend � on B(K ) by the Hahn–Banach theorem. Then by Lemma 4.4, using
assumption (C) and conditions (i)′ and (ii)′, one has

� ◦Ad(612)
(
K(L2(N ))⊗min B(L2

`(R)⊗ L2(X)⊗ L2
r (R))

)
= 0.

Let 2 be a u.c.p. map for biexactness of Ĝ and denote by 2̃ the extension given in Lemma 4.3. Define a
state on C∗{πH (M0), θH (M◦

0)} by �̂ :=� ◦ 2̃. Then conclusions of Lemmas 4.3 and 4.4 show that for
any a, b ∈ N0 and x, y ∈ Rn X ,

�̂(πH (xa)θH (b◦y◦))=� ◦ 2̃(πH (xa)θH (b◦y◦))=�(πK (xa)θK (b◦y◦)).

This means that the functional �̃ coincides with �̂ on ∗-alg{πH (M0), θH (M◦

0)}, and hence it is a state
on C∗{πH (M0), θH (M◦

0)} since so is �̂. �
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We next show that the above boundedness extends partially, using the central weak amenability and a
normality of �̃. This is the second use of the weak amenability. Recall that M is generated by a copy of
M̃ and M̃◦. We put M̃0 ⊂M0 as the C∗-subalgebra generated by B̃ and N0, and note that Lemma 4.2 is
applied to M̃0.

Claim. The functional �̃ is bounded on

C∗{πH (M̃), πH (M̃◦), θH (M̃◦), θH (M̃)} =: A,

where θH (M̃) should be understood as θH ((M̃◦)◦).

Proof of Claim. Let (ψi )i be a net of finite-rank normal c.c. maps on N as in Theorem 2.9. Up to
convex combinations, we may assume ψi → idN in the point ∗-strong topology. For each i we put
ψ◦i := JNψi (JN · JN )JN as a normal c.c. map on N ◦. For each i , since ψi commutes with the modular
action, one can define a normal c.c. map on A by

9i := idL2
`(R)
⊗ψi ⊗ idL2(X)⊗ψ

◦

i ⊗ idL2
r (R)

.

Observe that the restriction of 9i on πH (M̃) defines a normal c.c. map ψ̃i : M̃→ M̃0 (use Lemma 4.2).
The same holds for θH (M̃◦) and define ψ̃◦i similarly. Then with the formula ‖πH (z)‖2,�̃ = ‖zp‖2,Tr =

‖θH (z̄)‖2,�̃ for z ∈ M̃ and by the Cauchy–Schwarz inequality, it holds that for any a, b, x, y ∈ M̃∣∣�̃ ◦9i (πH (ax◦)θH (b◦y))− �̃(πH (ax◦)θH (b◦y))
∣∣

=
∣∣�̃(πH (ψ̃i (a)x◦)θH (ψ̃

◦

i (b
◦)y))− �̃(πH (ax◦)θH (b◦y))

∣∣
≤ ‖ψ̃i (a)∗− a∗‖2,Tr‖x‖∞ ‖b‖∞ ‖y‖∞+‖ψ̃i (b)∗− b∗‖2,Tr ‖a‖∞ ‖x‖∞ ‖y‖∞

→ 0 as i→∞.

Hence �̃ ◦ 9i converges pointwisely to �̃ on the norm-dense ∗-subalgebra A0 ⊂ A generated by
πH (M̃), πH (M̃◦), θH (M̃◦), and θH (M̃). Observe that ‖�̃ ◦ 9i |A‖ ≤ 1 for all i , since the range of
9i is contained in C∗{πH (M0), θH (M◦

0)} and �̃ is bounded by 1 on this C∗-algebra by the previous
claim. So we conclude ‖�̃|A‖ ≤ 1, as desired. �

Observe that �̃ is a state, since it is positive on A0 by construction, and �̃(1)= 1. By the Hahn–Banach
theorem, we extend �̃ from A to B(H) and we still denote it by �̃. By construction, it satisfies that for
all x ∈ M̃ and u ∈ G,

�̃(πH (x))= Tr(pxp) and �̃
(
πH (π(u)θ(ū))θH (π(u∗)◦θ(u◦)◦)

)
= 1.

Putting U (u) :=πH (π(u)θ(ū))θH (π(u∗)◦θ(u◦)◦), the second condition implies �̃(Y )= �̃(U (u)YU (u)∗)
for any u∈G and Y ∈B(H). Recall that since H= L2(M)⊗X L2(M), regarding L2(M) as an 〈M,RnX〉-
X -bimodule, the basic construction 〈M,Rn X〉 acts on H on the left, which we again denote by πH ,
and its image commutes with θH (M◦). So if Y ∈ 〈M,Rn X〉 ∩ θ(M̃◦)′, then

�̃(πH (Y ))= �̃(U (u)πH (Y )U (u)∗)= �̃(πH (π(u))πH (Y )πH (π(u))∗)
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for any u∈G. So the state �̃◦πH is a G-central state on 〈M,RnX〉∩θ(M̃◦)′. Finally since M̃ L2(RnX)⊂
L2(M) is dense, the von Neumann subalgebra in 〈M,Rn X〉 ∩ θ(M̃◦)′ generated by M̃ and eRnX :=

1L2(R)⊗ PN ⊗ 1X , where PN is the 1-dimensional projection onto C3ϕN (1N ), is canonically identified
as 〈M̃, B̃〉 (by the fact that eRnX a eRnX = E B̃(a)eRnX for a ∈ M̃). Thus the restriction of �̃ ◦ πH on
〈M̃, B̃〉 is a G-central state which coincides with Tr on pM̃ p. Using the normality on pM̃ p and by the
Cauchy–Schwarz inequality, we obtain that G′′ is amenable relative to B̃ in M̃. �

4C. Proof of Corollary B.

Proof of Corollary B. Put M := N ⊗ B ⊃ N0⊗ B =: M0 and suppose that A⊂ M0 is a Cartan subalgebra.
We will deduce a contradiction. For this, let R∞ be the AFD III1 factor and A0⊂ R∞ a Cartan subalgebra.
Up to exchanging B and A with B⊗ R∞ and A⊗ A0 respectively, we assume that B is a type III1 factor
(see, e.g., Lemma 2.2).

Let ψN0 and τA be faithful normal states on N0 and A respectively, and EN0 and E A faithful normal
conditional expectations from N to N0 and from M0 to A respectively. Put

ψA := τA ◦ E A, ψN := ψN0 ◦ EN0, ψ := ψN ⊗ϕB, ϕ := h⊗ϕB

and EM0 := EN0 ⊗ idB . Then since all continuous cores are isomorphic, we have 5ψA◦EM0 ,ψ
: Cψ(M)→

CψA◦EM0
(M), which restricts to5ψA,ψN0⊗ϕB :CψN0⊗ϕB (M0)→CψA(M0). Recall that A⊗LR⊂CψA(M0)

is a Cartan subalgebra, see, e.g., [Houdayer and Ricard 2011, Proposition 2.6], and hence so is the image

Ã :=5ϕ,ψA◦EN0
(A⊗ LR)⊂5ϕ,ψA◦EN0

(CψA(M0))=:N.

Claim. There is a conditional expectation E : 〈Cϕ(M),CϕB (B)〉 → N which is faithful and normal
on Cϕ(M).

Proof. We first show A 6�M B. Indeed, if A �M B, then we have A �M0 B by Lemma 2.12. So by
[Houdayer and Isono 2017, Lemma 4.9], one has N0= B ′∩M0�M0 A′∩M0= A, which is a contradiction.
Hence we have A 6�M B.

We apply [Boutonnet et al. 2014, Proposition 2.10] (this holds if A is finite by exactly the same proof)
and get Ã 6�Cϕ(M) CϕB (B). Fix any projection p ∈ Ã with Tr(p) <∞, where Tr is the canonical trace
on the core, and observe p Ã p 6�Cϕ(M) CϕB (B) by definition. We apply Theorem A to p Ã p and get that
NpCϕ(M)p(p Ã p)′′ is amenable relative to CϕB (B). Observe that NpCϕ(M)p(p Ã p)′′ = p(NCϕ(M)( Ã)

′′)p;
see, e.g., [Houdayer and Ricard 2011, Proposition 2.7]. Combined with [Isono 2017, Remark 3.3], there is a
conditional expectation E p : p〈Cϕ(M),CϕB (B)〉p→ pN p which restricts to the Tr-preserving expectation
on pCϕ(M)p. Taking a net (pi )i of Tr-finite projections converging to 1 weakly, one can construct a
desired conditional expectation by E(x) := σ -weak Limi E pi (pi xpi ) for x ∈ 〈Cϕ(M),CϕB (B)〉. �

We apply [Isono 2017, Theorem 3.2] to the conclusion of the claim and get that M0 is amenable relative
to B in M. Hence there is a conditional expectation F : 〈M, B〉 → M0 which is faithful and normal
on M. Using the identification 〈M, B〉 =B(L2(M))⊗ B, we can construct a conditional expectation from
B(L2(M)) onto N0, which means N0 is injective. This is a contradiction. �
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