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ROKHLIN DIMENSION: ABSORPTION OF MODEL ACTIONS
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We establish a connection between Rokhlin dimension and the absorption of certain model actions on
strongly self-absorbing C∗-algebras. Namely, as to be made precise in the paper, let G be a well-behaved
locally compact group. If D is a strongly self-absorbing C∗-algebra and α : G y A is an action on a
separable, D-absorbing C∗-algebra that has finite Rokhlin dimension with commuting towers, then α
tensorially absorbs every semi-strongly self-absorbing G-action on D. In particular, this is the case when
α satisfies any version of what is called the Rokhlin property, such as for G = R or G = Zk. This contains
several existing results of similar nature as special cases. We will in fact prove a more general version
of this theorem, which is intended for use in subsequent work. We will then discuss some nontrivial
applications. Most notably it is shown that for any k ≥ 1 and on any strongly self-absorbing Kirchberg
algebra, there exists a unique Rk-action having finite Rokhlin dimension with commuting towers up to
(very strong) cocycle conjugacy.
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Introduction

The present work is a continuation of the author’s quest to study fine structure and classification of
certain C∗-dynamics by employing ideas related to tensorial absorption. In previous work, the theory
of (semi-)strongly self-absorbing actions on C∗-algebras [Szabó 2017b; 2018b; 2018c] was developed,
closely following the important results established in the classical theory of strongly self-absorbing
C∗-algebras by Toms and Winter [2007] and others [Kirchberg 2006; Dadarlat and Winter 2009]. Strongly
self-absorbing C∗-algebras have historically emerged by example [Jiang and Su 1999], and now play
a central role in the structure theory of simple nuclear C∗-algebras; see for example [Kirchberg and
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Phillips 2000; Rørdam 2004; Elliott and Toms 2008; Winter and Zacharias 2010; Winter 2010; 2012;
2014; Matui and Sato 2012b; 2014a; Bosa et al. 2015; Castillejos et al. 2018]. Roughly speaking, a
tensorial factorization of the form A ∼= A⊗D — for a given C∗-algebra A and a strongly self-absorbing
C∗-algebra D — provides sufficient space to perform nontrivial manipulations on elements inside A,
which often gives rise to structural properties of particular interest for classification. The underlying
motivation behind [Szabó 2017b; 2018b; 2018c] is the idea that this kind of phenomenon should persist at
the level of C∗-dynamics if one is interested in classification of group actions up to cocycle conjugacy; in
fact some much earlier work [Kishimoto 2001; 2002; Izumi and Matui 2010; 2012; Goldstein and Izumi
2011; Matui and Sato 2012a; 2014b] has (sometimes implicitly) used this idea to reasonable success.
It was further demonstrated in [Szabó 2017b; 2018a] how this approach can indeed give rise to new
insights about classification or rigidity of group actions on certain C∗-algebras, in particular strongly
self-absorbing ones.

Starting from Connes’ groundbreaking work [1975; 1976; 1977] on injective factors, which involved
classification of single automorphisms, the Rokhlin property in its various forms became a key tool to
classify actions of amenable groups on von Neumann algebras [Jones 1980; Ocneanu 1985; Sutherland
and Takesaki 1989; Kawahigashi et al. 1992; Katayama et al. 1998; Masuda 2007]. It did not take long for
these ideas to reach the realm of C∗-algebras. Initially appearing in [Herman and Jones 1982] and [Herman
and Ocneanu 1984], the Rokhlin property for single automorphisms and its applications for classification
were perfected in works of Kishimoto and various collaborators [Kishimoto 1995; 1996b; 1998a; 1998b;
Bratteli et al. 1993; 1995; Evans and Kishimoto 1997; Elliott et al. 1998; Bratteli and Kishimoto 2000;
Nakamura 2000]. Further work pushed these techniques to actions of infinite higher-rank groups as well
[Nakamura 1999; Katsura and Matui 2008; Matui 2008; 2010; 2011; Izumi and Matui 2010; 2012; 2018].
The case of finite groups was treated in [Izumi 2004a; 2004b], where it was shown that such actions with
the Rokhlin property have a particularly rigid theory; see also [Santiago 2015; Gardella and Santiago
2016; Gardella 2014a; 2014b; 2017; Barlak and Szabó 2016; Barlak et al. 2017]. In contrast to von
Neumann algebras, however, the Rokhlin property for actions on C∗-algebras has too many obstructions
in general, ranging from obvious ones like lack of projections to more subtle ones of K -theoretic nature.

Rokhlin dimension is a notion of dimension for actions of certain groups on C∗-algebras and was
first introduced by Hirshberg, Winter and Zacharias [Hirshberg et al. 2015]. Several natural variants
of Rokhlin dimension have been introduced, and all of them have in common that they generalize (to
some degree) the Rokhlin property for actions of either finite groups or the integers. The theory has been
extended and applied in many following works, such as [Szabó 2015; Hirshberg and Phillips 2015; Szabó
et al. 2017; Gardella 2017; Hirshberg et al. 2017; Liao 2016; 2017; Brown et al. 2018; Gardella et al.
2017]. In short, the advantage of working with Rokhlin dimension is that it is both more prevalent and
more flexible than the Rokhlin property, but is yet often strong enough to deduce interesting structural
properties of the crossed product, such as finite nuclear dimension [Winter and Zacharias 2010].

A somewhat stronger version of Rokhlin dimension, namely with commuting towers, has been con-
sidered from the very beginning as a variant that was also compatible with respect to the absorption of
strongly self-absorbing C∗-algebras. Although the assumption of commuting towers initially only looked
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like a minor technical assumption, it was eventually discovered that it can make a major difference in
some cases, such as for actions of finite groups [Hirshberg and Phillips 2015].

The purpose of this paper is to showcase a decisive connection between finite Rokhlin dimension
with commuting towers and the absorption of semi-strongly self-absorbing model actions. The following
describes a variant of the main result; see Theorem 4.4:

Theorem A. Let G be a second-countable, locally compact group and N ⊂G a closed, normal subgroup.
Suppose that the quotient G/N contains a discrete, normal, cocompact subgroup that is residually finite
and has a box space with finite asymptotic dimension. Let A be a separable C∗-algebra with an action
α : G y A. Let γ : G yD be a semi-strongly self-absorbing action that is unitarily regular. Suppose that
α|N is γ |N -absorbing. If the Rokhlin dimension of α with commuting towers relative to N is finite, then it
follows that α is γ -absorbing.

Since many assumptions in this theorem are fairly technical at first glance, it may be helpful for the
reader to keep in mind some special cases. For example, the above assumptions on the pair N ⊂ G are
satisfied when the quotient G/N above is isomorphic to either R or Z. In this case, the theorem states that
as long as the action α satisfies a suitable Rokhlin-type criterion relative to N, tensorial absorption of the
G-action γ can be detected by restricting to the N -actions, even though this restriction procedure (a priori)
comes with great loss of dynamical information. This is most apparent when the normal subgroup N is
trivial, which is yet another important special case; see Corollary 5.1:

Corollary B. Let G be a second-countable, locally compact group. Suppose that G contains a discrete,
normal, cocompact subgroup that is residually finite and has a box space with finite asymptotic dimension.
Let A be a separable C∗-algebra with an action α : G y A. Suppose that D is a strongly self-absorbing
C∗-algebra with A∼= A⊗D. If the Rokhlin dimension of α with commuting towers is finite, then it follows
that α is γ -absorbing for every semi-strongly self-absorbing action γ : G y D.

Here it may be useful to keep in mind that any version of what is called the Rokhlin property for G =R

or G = Zk will automatically imply finite Rokhlin dimension with commuting towers, and is therefore
covered by Corollary B. This is in turn a generalization of [Hirshberg and Winter 2007, Theorem 1.1;
Hirshberg et al. 2015, Theorems 5.8, 5.9; 2017, Theorem 5.3; Szabó et al. 2017, Theorem 9.6; Gardella
and Lupini 2018, Theorem 4.50(2)]. We will in fact only apply the corollary within this paper, with a
particular focus on the special case where the action is assumed to have the Rokhlin property. Some
immediate applications of Corollary B will be discussed in Section 5. The main nontrivial application is
pursued in Section 6, which is as follows; see Theorem 6.7 and Corollary 6.11:

Theorem C. Let D be a strongly self-absorbing Kirchberg algebra. Then up to (very strong) cocycle
conjugacy, there is a unique action γ : Rk y D that has finite Rokhlin dimension with commuting towers.

We note that a strongly self-absorbing C∗-algebra is a Kirchberg algebra precisely when it is traceless.
Kirchberg algebras are (by convention) the separable, simple, nuclear, purely infinite C∗-algebras, whose
celebrated classification is due to [Kirchberg and Phillips 2000; Phillips 2000; Kirchberg 2003] and which
constitutes a prominent special case of the Elliott classification program. We note that all other strongly
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self-absorbing C∗-algebras are conjectured to be quasidiagonal — see [Tikuisis et al. 2017, Corollary 6.7] —
and so any Rokhlin flows on them would induce Rokhlin flows on the universal UHF algebra, which
do not exist; see [Kishimoto 1996a, page 600; 1998a, page 289; Hirshberg et al. 2017, Section 2]. In
particular, the underlying problem above is only interesting to consider in the purely infinite case.

Although the theorem above is not too far off from being a very special case of [Szabó 2017a] for
ordinary flows, this result is entirely new for k≥ 2, and is in fact the first classification result for Rk-actions
on C∗-algebras up to cocycle conjugacy.

The proof goes via induction in the number k of flows generating the action. In order to achieve a
major part of the induction step, the corollary above is used in order to see that any two Rk-actions
as in the statement absorb each other tensorially. However, in order for this to make sense, it has to
be at least established beforehand (as part of the induction step) that any such action has equivariantly
approximately inner flip. This is achieved via a relative Kishimoto-type approximate cohomology-
vanishing argument inspired by [Kishimoto 2002, Section 3], which combines arguments related to
the Rokhlin property for Rk-actions with arguments related to the structure theory of semi-strongly
self-absorbing actions.

At this moment it seems unclear whether or not to expect a similarly rigid situation for Rokhlin
Rk-actions on general Kirchberg algebras, as is the case for k = 1 [Szabó 2017a]. In general, in order to
implement a more general classification of this sort, it would require a technique for both constructing
and manipulating cocycles for Rk-actions (where k ≥ 2) with the help of the Rokhlin property, which may
potentially be much more complicated than for k = 1. In essence, our approach based on ideas related to
strong self-absorption works because the main result allows one to bypass the need to bother with general
cocycles for all of Rk, but instead requires one only to consider individual copies of R inside Rk at a time
(represented by the flows generating the Rk-action), enabling an induction process.

In forthcoming work, the full force of the aforementioned main result of this paper (Theorem 4.4) will
form the basis of further uniqueness results regarding actions of certain discrete amenable groups on
strongly self-absorbing C∗-algebras.

1. Preliminaries

Notation 1.1. Unless specified otherwise, we will stick to the following notational conventions:

• G denotes a locally compact Hausdorff group.

• A and B denote C∗-algebras.

• The symbols α, β, γ are used to denote point-norm continuous actions on C∗-algebras. Since
continuity is always assumed in this context, we will simply refer to them as actions.

• If α : G y A is an action, then Aα denotes the fixed-point algebra of A.

• If F is a finite subset inside some set M, we often write F ⊂⊂ M.

• If (X, d) is some metric space with elements a, b ∈ X , then we write a =ε b as a shorthand for
d(a, b)≤ ε.
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We first recall some needed definitions and notation.

Definition 1.2 (cf. [Packer and Raeburn 1989, Definition 3.2] and [Szabó 2018b; 2017b, Section 1]). Let
α : G y A be an action. Consider a strictly continuous map w : G→ U(M(A)):

(i) w is called an α-1-cocycle if one has wgαg(wh) = wgh for all g, h ∈ G. In this case, the map
αw :G→Aut(A) given by αwg =Ad(wg)◦αg is again an action, and is called a cocycle perturbation of α.
Two G-actions on A are called exterior equivalent if one of them is a cocycle perturbation of the other.

(ii) Assume that w is an α-1-cocycle. It is called an approximate coboundary if there exists a sequence
of unitaries xn ∈ U(M(A)) such that xnαg(x∗n )

str
−→wg for all g ∈ G and uniformly on compact sets. Two

G-actions on A are called strongly exterior equivalent if one of them is a cocycle perturbation of the other
via an approximate coboundary.

(iii) Assume w is an α-1-cocycle. It is called an asymptotic coboundary if there exists a strictly continuous
map x : [0,∞)→ U(M(A)) with x0 = 1 and such that xtαg(x∗t )

str
−→wg for all g ∈ G and uniformly on

compact sets. Two G-actions on A are called very strongly exterior equivalent if one of them is a cocycle
perturbation of the other via an asymptotic coboundary.

(iv) Let β : G y B be another action. The actions α and β are called cocycle conjugate, written α 'cc β

if there exists an isomorphism ψ : A→ B such that ψ−1
◦β ◦ψ and α are exterior equivalent. If ψ can

be chosen such that ψ−1
◦β ◦ψ and α are strongly exterior equivalent, then α and β are called strongly

cocycle conjugate, written α 'scc β. If ψ can be chosen such that ψ−1
◦β ◦ψ and α are very strongly

exterior equivalent, then α and β are called very strongly cocycle conjugate, written α 'vscc β.

Note that for a cocycle w, the cocycle identity applied to g = h = e yields we =w
2
e , and hence we = 1.

This is implicitly used in many calculations without further mention.

Definition 1.3 (cf. [Kirchberg 2006, Definition 1.1] and [Szabó 2018b, Section 1]). Let A be a C∗-algebra
and let α : G y A be an action of a locally compact group:

(i) The sequence algebra of A is given as

A∞ = `∞(N, A)/
{
(xn)n

∣∣ lim
n→∞
‖xn‖ = 0

}
.

There is a standard embedding of A into A∞ by sending an element to its constant sequence. We shall
always identify A ⊂ A∞ this way, unless specified otherwise.

(ii) Pointwise application of α on representing sequences defines a (not necessarily continuous) G-
action α∞ on A∞. Let

A∞,α = {x ∈ A∞ | [g 7→ α∞,g(x)] is continuous}

be the continuous part of A∞ with respect to α.

(iii) For some C∗-subalgebra B ⊂ A∞, the (corrected) relative central sequence algebra is defined as

F(B, A∞)= (A∞ ∩ B ′)/Ann(B, A∞).
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(iv) If B ⊂ A∞ is α∞-invariant, then the G-action α∞ on A∞ induces a (not necessarily continuous)
G-action α̃∞ on F(B, A∞). Let

Fα(B, A∞)= {y ∈ Fα(B, A∞) | [g 7→ α̃∞,g(y)] is continuous}

be the continuous part of F(B, A∞) with respect to α.

(v) When B = A, we write F(A, A∞)= F∞(A) and Fα(A, A∞)= F∞,α(A).

Definition 1.4 [Barlak and Szabó 2016, Definition 3.3]. Let G be a second-countable, locally com-
pact group, and let α : G y A and β : G y B be actions on separable C∗-algebras. An equivari-
ant ∗-homomorphism ϕ : (A, α)→ (B, β) is called (equivariantly) sequentially split if there exists a
∗-homomorphism ψ : (B, β)→ (A∞,α, α∞) such that ψ(ϕ(a))= a for all a ∈ A.

Definition 1.5. Let G be a second-countable, locally compact group, and let α : G y A and β :
G y B be actions on unital C∗-algebras. Let ϕ1, ϕ2 : (A, α)→ (B, β) be two unital and equivariant
∗-homomorphisms. We say that ϕ1 and ϕ2 are approximately G-unitarily equivalent if the following
holds. For every F ⊂⊂ A, ε > 0, and compact set K ⊆ G, there exists a unitary v ∈ U(B) such that

max
a∈F
‖ϕ2(a)− vϕ1(a)v∗‖ ≤ ε, max

g∈K
‖v−βg(v)‖ ≤ ε.

Definition 1.6 [Szabó 2018b, Definitions 3.1, 4.1]. Let D be a separable, unital C∗-algebra and G a
second-countable, locally compact group. Let γ : G y D be an action. We say that:

(i) γ is a strongly self-absorbing action if the equivariant first-factor embedding

idD⊗ 1D : (D, γ )→ (D⊗D, γ ⊗ γ )

is approximately G-unitarily equivalent to an isomorphism.

(ii) γ is semi-strongly self-absorbing if it is strongly cocycle conjugate to a strongly self-absorbing action.

Definition 1.7 [Szabó 2018c, Definition 2.17]. Let G be a second-countable, locally compact group. An
action α : G y A on a unital C∗-algebra is called unitarily regular if for every ε > 0 and compact set
K ⊆ G, there exists δ > 0 such that for every pair of unitaries

u, v ∈ U(A) with max
g∈K

max{‖αg(u)− u‖, ‖αg(v)− v‖} ≤ δ,

there exists a continuous path of unitaries w : [0, 1] → U(A) satisfying

w(0)= 1, w(1)= uvu∗v∗, max
0≤t≤1

max
g∈K
‖αg(w(t))−w(t)‖ ≤ ε.

Let us recall some of the main results from [Szabó 2017b; 2018b; 2018c], which we will use throughout.
We will also use the perspective given in [Barlak and Szabó 2016, Section 4].

Theorem 1.8 (cf. [Szabó 2018b, Theorems 3.7, 4.7]). Let G be a second-countable, locally compact
group. Let A be a separable C∗-algebra and α :G y A an action. Let D be a separable, unital C∗-algebra
and γ : G y D a semi-strongly self-absorbing action. The following are equivalent:
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(i) α and α⊗ γ are strongly cocycle conjugate.

(ii) α and α⊗ γ are cocycle conjugate.

(iii) There exists a unital, equivariant ∗-homomorphism from (D, γ ) to (F∞,α(A), α̃∞).

(iv) The equivariant first-factor embedding idA⊗ 1 : (A, α)→ (A⊗D, α⊗ γ ) is sequentially split.

If γ is moreover unitarily regular, then these statements are equivalent to

(v) α and α⊗ γ are very strongly cocycle conjugate.

Remark. For the rest of this paper, an action α satisfying condition (i) from above is called γ -absorbing
or γ -stable. In the particular case that γ is the trivial G-action on a strongly self-absorbing C∗-algebra D,
we will say that α is equivariantly D-stable.

Remark 1.9. Unitary regularity for an action is a fairly mild technical assumption. It can be seen as the
equivariant analog of the C∗-algebraic property that the commutator subgroup inside the unitary group
lies in the connected component of the unit. Unitary regularity holds automatically under equivariant
Z-stability, but also in other cases; see [Szabó 2018c, Proposition 2.19 and Example 6.4].

Theorem 1.10 [Szabó 2018c, Theorem 5.9]. A semi-strongly self-absorbing action γ :G yD is unitarily
regular if and only if the class of all separable γ -absorbing G-C∗-dynamical systems is closed under
equivariant extensions.

We will extensively use the following without much mention:

Proposition 1.11 [Brown 2000]. Let G be a second-countable, locally compact group. Let A be a
C∗-algebra and α : G y A an action. Let x ∈ A∞,α and (xn)n ∈ `

∞(N, A) be a bounded sequence
representing x. Then (xn)n is a continuous element with respect to the componentwise action of α on
`∞(N, A).

2. Box spaces and partitions of unity over groups

Definition 2.1. Let G be a second-countable, locally compact group. A residually compact approximation
of G is a decreasing sequence Hn+1 ⊆ Hn ⊆ G of normal, discrete, cocompact subgroups in G with⋂

n∈N Hn = {1}. If G is a discrete group, then the subgroups Hn will have finite index, in which case we
call the sequence (Hn)n a residually finite approximation.

Remark 2.2. In the above setting, the sequence (Hn)n is automatically a residually finite approximation
of the discrete group H1.

Recall the definition of a box space; see [Roe 2003, Definition 10.24; Khukhro 2012].

Definition 2.3. Let 0 be a countable discrete group and S = (Hn)n a residually finite approximation of 0.
Let d be a proper, right-invariant metric on 0. For every n ∈ N, denote by πn : 0→ 0/Hn the quotient
map and by πn∗(d) the push-forward metric on 0/Hn that is induced by d . The box space of 0 along S,
denoted by �S0, is the coarse disjoint union of the sequence of finite metric spaces (0/Hn, πn∗(d)).

The main purpose of this section will be to prove the following technical lemma:
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Lemma 2.4. Let G be a second-countable, locally compact group and S = (Hn)n a residually compact
approximation of G. Assume that the box space �S H1 has finite asymptotic dimension d. Then for
every ε > 0 and compact set K ⊂ G, there exists n ∈ N and continuous, compactly supported functions
µ(0), . . . , µ(d) : G→ [0, 1] satisfying:

(a) For every l = 0, . . . , d and h ∈ Hn \ {1}, we have

supp(µ(l))∩ supp(µ(l)) · h =∅.
(b) For every g ∈ G, we have

d∑
l=0

∑
h∈Hn

µ(l)(gh)= 1.

(c) For every l = 0, . . . , d and g ∈ K, we have

‖µ(l)(g · _ )−µ(l)‖∞ ≤ ε.

Remark 2.5. In the case that G = 0 is a discrete group and S is a residually finite approximation, this is
precisely [Szabó et al. 2017, Lemma 2.13]. In order to prove Lemma 2.4, we shall convince ourselves
that the desired functions can be constructed from finitely supported functions with similar properties on
the cocompact subgroup H1. For this, we first have to observe a slightly improved version of [Szabó et al.
2017, Lemma 2.13] in the discrete case.

Lemma 2.6. Let 0 be a countable discrete group and S = (Hn)n a residually finite approximation of 0.
Assume that the box space �S0 has finite asymptotic dimension d. Then for every ε > 0 and finite set
F ⊂⊂ 0, there exists n ∈ N and finitely supported functions ν(0), . . . , ν(d) : 0→ [0, 1] satisfying:

(a) For every l = 0, . . . , d and h ∈ Hn \ {1}, we have

g1hg−1
2 /∈ F for all g1, g2 ∈ supp(ν(l)).

(b) For every g ∈ 0, we have
d∑

l=0

∑
h∈Hn

ν(l)(gh)= 1.

(c) For every l = 0, . . . , d and g ∈ F, we have

‖ν(l)(g · _ )− ν(l)‖∞ ≤ ε.

Proof. Let ε > 0 and F ⊂ G be given. We apply [Szabó et al. 2017, Lemma 2.13] and choose some n
and finitely supported functions θ (0), . . . , θ (d) : 0→ [0, 1] satisfying

supp(θ (l))∩ supp(θ (l)) · hn =∅ for all hn ∈ Hn \ {1}, (2-1)

as well as properties (b) and (c). Combining property (2-1) and (c), we see that if g1, g2 ∈ supp(θ (l)) and
h ∈ Hn \ {1} are such that g1hg−1

2 = g1(g2h−1) ∈ F, then we get

|θ (l)(g1)| = |θ
(l)(g1hg−1

2 · g2h−1)|
(c)
≤ ε+ |θ (l)(g2h−1)|

(2-1)
= ε. (2-2)
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Let us define new functions κ(l) : 0→ [0, 1] via

κ(l)(g)= (θ (l)(g)− ε)+. (2-3)

These new functions clearly still satisfy property (c). For any g1, g2 ∈ supp(κ(l)), we evidently have
g1, g2 ∈ supp(θ (l)), so assuming g1hg−1

2 ∈ F for some h ∈ Hn \ {1} would imply κ(l)(g1) = 0 by (2-2)
and (2-3), a contradiction. In particular we obtain property (a) for these functions.

Lastly, note that property (a) implies that any sum as in (b) can have at most d + 1 nonvanishing
summands, and thus we may estimate for all g ∈ 0 that

1=
d∑

l=0

∑
h∈Hn

θ (l)(gh)≥
d∑

l=0

∑
h∈Hn

κ(l)(gh)≥
( d∑

l=0

∑
h∈Hn

θ (l)(gh)
)
− (d + 1)ε = 1− (d + 1)ε.

So let us yet again define new functions ν(l) : 0→ [0, 1] via

ν(l)(g)=
( d∑

l=0

∑
h∈Hn

κ(l)(gh)
)−1

κ(l)(g).

By our previous calculation, we have

κ(l) ≤ ν(l) ≤
1

1− (d + 1)ε
κ(l).

For these functions, property (a) will still hold, while property (b) holds by construction. Moreover
property (c) holds with regard to the tolerance

ηε := ε+
2(d + 1)ε

1− (d + 1)ε

in place of ε. Since ηε→ 0 as ε→ 0, this means that the functions ν(l) will have the desired property
after rescaling ε. This shows our claim. �

Lemma 2.7. Let G be a locally compact group and H ⊂ G a closed and cocompact subgroup. Let µ be
a left-invariant Haar measure on H :

(i) There exists a compactly supported continuous function C : G→ [0,∞) satisfying the equation∫
H

C(gh) dµ(h)= 1 for all g ∈ G.

(ii) Assume furthermore that G is amenable. Let ε > 0 and let K ⊂ G be a compact subset. Then there
exists a function C as above with the additional property that

‖C(g · _ )−C‖∞ ≤ ε

for all g ∈ K .

Proof. (i): As H is a cocompact subgroup, there exists some compact set K H ⊂ G such that G = K H · H.
By Urysohn–Tietze, we may choose a compactly supported continuous function c : G → [0, 1] with
c|K H = 1. Define the compact set Kc ⊂ H via

Kc = (K−1
H · supp(c))∩ H.
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Then for every g ∈ G, there is some h0 ∈ H with gh0 ∈ K H . We have

supp(c(gh0 · _ ))∩ H = ((gh0)
−1
· supp(c))∩ H ⊂ Kc.

Thus, we get that

0<
∫

H
c(gh) dµ(h)=

∫
H

c(gh0h) dµ(h)≤ µ(Kc) <∞.

Note that by the properties of the Haar measure, the assignment

I : G→ (0,∞), g 7→
∫

H
c(gh) dµ(h),

is H -periodic. Then the above computation shows that this assignment yields a well-defined, continuous
function on G, which by H -periodicity and cocompactness of H can be viewed as a continuous function
on the compact space G/H. Thus the image of this function is compact. In particular, its (pointwise)
multiplicative inverse is also bounded and continuous. Let us define

C : G→ [0,∞), g 7→ I(g)−1c(g).

Then this again yields a continuous function on G with compact support, but with the property that∫
H

C(gh) dµ(h)= 1 for all g ∈ G. (2-4)

(ii): Let us now additionally assume that G is amenable. Let ε > 0 and K ⊂G be given as in the statement.
Let ρG denote a right-invariant Haar measure on G. It follows from [Emerson and Greenleaf 1967] that
we may find some compact set J ⊂ G with ρG(J ) > 0 such that ρG(J1(J · K )) ≤ ε/‖C‖∞ · ρG(J ).
Define C ′ : G→ [0,∞) via

C ′(g)=
1

ρG(J )
·

∫
J

C(xg) dρG(x).

Clearly C ′ is yet another continuous function with compact support contained in J−1
· supp(C). Given

any element g ∈ G, we compute∫
H

C ′(gh) dµ(h)=
∫

H

1
ρG(J )

(∫
J

C(xgh) dρG(x)
)

dµ(h)

=
1

ρG(J )

∫
J

(∫
H

C(xgh) dµ(h)
)

dρG(x)

(2-4)
=

1
ρG(J )

∫
J

1 dρG(x)= 1.

Furthermore, we have for any gK ∈ K and g ∈ G that

|C ′(gK g)−C ′(g)| =
1

ρG(J )
·

∣∣∣∣∫
J

C(xgK g) dρG(x)−
∫

J
C(xg) dρG(x)

∣∣∣∣
≤

1
ρG(J )

· ‖C‖∞ · ρG(J1JgK )

≤ ε.

This shows the last part of the claim. �



ROKHLIN DIMENSION: ABSORPTION OF MODEL ACTIONS 1367

Proof of Lemma 2.4. We first remark that since the box space �S H1 has finite asymptotic dimension, it
also has property A, and therefore H1 is amenable; see [Nowak and Yu 2012, Theorems 4.3.6 and 4.4.6;
Roe 2003, Proposition 11.39]. As H1 is a discrete cocompact normal subgroup in G, we also see that G
is amenable.

Let ε > 0 and K ⊂ G be given. Then there exists a function C : G→ [0,∞) as in Lemma 2.7 for H1

in place of H, with the property that

‖C(g · _ )−C‖∞ ≤ ε for all g ∈ K . (2-5)

Let us denote the support of C by S = supp(C). As H1 is discrete in G and S is compact, there exists a
finite set F ⊂ H1 with

h1 ∈ F whenever h1 ∈ H and S ∩ Sh1 6=∅. (2-6)

Applying Lemma 2.6, there exists some n and finitely supported functions ν(0), . . . , ν(d) : H1→ [0, 1]
satisfying the following properties:1

h1hnh−1
2 /∈ F for all h1, h2 ∈ supp(ν(l)) and hn ∈ Hn \ {1}, (2-7)

1=
d∑

l=0

∑
hn∈Hn

ν(l)(h1hn) for all h1 ∈ H1. (2-8)

We define µ(l) : G→ [0,∞) for l = 0, . . . , d via

µ(l)(g)=
∑

h1∈H1

C(gh−1
1 )ν(l)(h1).

Since ν(l) is finitely supported on H1, we see that µ(l) is a finite sum of continuous functions with compact
support, and hence µ(l) ∈ Cc(G).

We claim that these functions have the desired properties. Let us verify (a), which is equivalent to the
statement that

µ(l)(g) ·µ(l)(gh−1
n )= 0 for all g ∈ G and hn ∈ Hn \ {1}.

Fix an element hn ∈ Hn \ {1} for the moment. We compute

µ(l)(g) ·µ(l)(gh−1
n )=

∑
h1,h2∈H1

C(gh−1
1 )C(gh−1

n h−1
2 )ν(l)(h1)ν

(l)(h2)

=

∑
h1,h2∈H1

C(gh−1
1 )C(gh−1

2 )ν(l)(h1)ν
(l)(h2h−1

n ).

We claim that each individual summand is zero. Indeed, suppose h1, h2 ∈ H1 are such that

ν(l)(h1)ν
(l)(h2h−1

n ) > 0.

1Note that we will reserve the notation h1, h2 for elements in H1, whereas hn will denote an element in the smaller subgroup
Hn for n > 2.
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Then h1 ∈ supp(ν(l)) and h2 ∈ supp(ν(l)) · hn , which implies h1h−1
2 /∈ F by (2-7). By our choice of F, we

obtain

supp(C( _ · h−1
1 ))∩ supp(C( _ · h−1

2 ))⊆ Sh1 ∩ Sh2 = (Sh1h−1
2 ∩ S) · h2

(2-6)
= ∅,

and in particular C(gh−1
1 )C(gh−1

2 )= 0. This finishes the proof that each summand of the above sum is
zero and shows property (a).

Let us now show property (b). We calculate for every g ∈ G that

d∑
l=0

∑
hn∈Hn

µ(l)(ghn)=

d∑
l=0

∑
hn∈Hn

∑
h1∈H1

C(ghnh−1
1 )ν(l)(h1)

=

d∑
l=0

∑
hn∈Hn

∑
h1∈H1

C(gh−1
1 )ν(l)(h1hn)

=

∑
h1∈H1

C(gh−1
1 )

( d∑
l=0

∑
hn∈Hn

ν(l)(h1hn)

)
(2-8)
=

∑
h1∈H1

C(gh1)

Lem. 2.7
= 1.

Let us now turn to (c). Given any g ∈ G and gK ∈ K, we compute

|µ(l)(gK g)−µ(l)(g)| =
∣∣∣∣ ∑
h1∈H1

(C(gK gh−1
1 )−C(gh−1

1 ))ν(l)(h1)

∣∣∣∣
(2-8)
≤ sup

h1∈H1

|C(gK gh−1
1 )−C(gh−1

1 )|

≤ ‖C(gK · _ )−C‖∞
(2-6)
≤ ε.

As g ∈ G was arbitrary, this finishes the proof. �

Remark. Let G be a locally compact group and H ⊂ G a closed, cocompact subgroup. For any C∗-
algebra A, we may naturally view C(G/H, A) as a C∗-subalgebra of (right-)H -periodic functions inside
Cb(G, A) by assigning a function f to the function f ′ given by f ′(g)= f (gH).

In what follows, we will briefly establish a technical result that allows one to perturb approximately
H -periodic functions in Cb(G, A) to exactly H -periodic functions in a systematic way.

Lemma 2.8. Let G be a locally compact group and H ⊂ G a closed, cocompact subgroup. Let A be a
C∗-algebra. Then there exists a conditional expectation E : Cb(G, A)→ C(G/H, A) with the following
property.

For every ε > 0 and compact set K ⊂ G, there exists δ > 0 and a compact set J ⊂ H such that the
following holds:
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If f ∈ Cb(G, A) satisfies
max
g∈K

max
h∈J
‖ f (g)− f (gh)‖ ≤ δ,

then
‖ f − E( f )‖∞,K ≤ ε.

Proof. Let µ be a left-invariant Haar measure on H. Let C ∈ Cc(G) be a function as in Lemma 2.7. Then
we define

E : Cb(G, A)→ C(G/H, A), E( f )(gH)=
∫

H
C(gh) f (gh) dµ(h).

Since C is compactly supported and the Haar measure µ is left-invariant, it is clear that E is well-defined
and indeed a conditional expectation. Let ε > 0 and K ⊂ G be given. Let S be the compact support of C .
Then the set J := (K−1S)∩ H is compact in H with the property that

g ∈ K and gh ∈ S =⇒ h ∈ J (2-9)
for all h ∈ H. Set

δ =
ε

1+µ(J ) · ‖C‖∞
.

For every f ∈ Cb(G, A) with
max
g∈K

max
h∈J
‖ f (g)− f (gh)‖ ≤ δ,

it follows for every g ∈ K that

‖ f (g)− E( f )(gH)‖ =
∥∥∥∥(∫

H
C(gh) dµ(h)

)
f (g)−

∫
H

C(gh) f (gh) dµ(h)
∥∥∥∥

(2-9)
=

∥∥∥∥∫
J

C(gh)( f (g)− f (gh)) dµ(h)
∥∥∥∥

≤ µ(J ) · ‖C‖∞ · δ ≤ ε.

This shows our claim. �

Corollary 2.9. Let G be a locally compact group and H ⊂ G a closed, cocompact subgroup. Let A and
B be two C∗-algebras. Then for every ε > 0, F ⊂⊂ B and compact set K ⊂ G, there exists δ > 0 and a
compact set J ⊂ H such that the following holds:

If 2 : B→ Cb(G, A) is a c.p.c. map with

max
g∈K

max
h∈J
‖2(b)(g)−2(b)(gh)‖ ≤ δ for all b ∈ F,

then there exists a c.p.c. map 9 : B→ C(G/H, A) with

max
g∈K
‖9(b)(gH)−2(b)(g)‖ ≤ ε for all b ∈ F.

Proof. Let E : Cb(G, A)→ C(G/H, A) be a conditional expectation as in Lemma 2.8. Given a triple
(ε, F, K ), choose δ > 0 and J ⊂ H so that the property in Lemma 2.8 holds for all f ∈ Cb(G, A) with
respect to the pair (ε, K ). Then we can directly conclude that if 2 is a map as in the statement, then
9 = E ◦2 has the desired property. �



1370 GÁBOR SZABÓ

3. Systems generated by order-zero maps with commuting ranges

The following notation and observations are [Hirshberg et al. 2017, Lemma 6.6] and originate in [Hirshberg
et al. 2015, Section 5].

Notation 3.1. Let D1, . . . , Dn be finitely many unital C∗-algebras. For t ∈ [0, 1] and j = 1, . . . , n, we
define

D(t)
j :=

{
D j , t > 0,
C · 1D j , t = 0.

Given moreover a tuple Et = (t1, . . . , tn) ∈ [0, 1]n, let us define

D(Et )
:= D(t1)

1 ⊗max D(t2)
2 ⊗max · · · ⊗max D(tn)

n .

Consider the simplex
1(n) := {Et ∈ [0, 1]n | t1+ · · ·+ tn = 1}

and set
E(D1, . . . , Dn) := { f ∈ C(1(n), D1⊗max · · · ⊗max Dn)| f (Et ) ∈ D(Et )

}.

In the case that D j = D are all the same C∗-algebra, we will write

E(D1, . . . , Dn)=: E(D, n)

instead. For every j = 1, . . . , n, we will consider the canonical c.p.c. order-zero map

η j : D j → E(D1, . . . , Dn)

given by
η j (d j )(Et )= t j · (1D1 ⊗ · · ·⊗ 1D j−1 ⊗ d j ⊗ 1D j+1 ⊗ · · ·⊗ 1Dn ).

One easily checks that the ranges of the maps η j generate E(D1, . . . , Dn) as a C∗-algebra.

Proposition 3.2. Let D1, . . . , Dn be unital C∗-algebras. Then the C∗-algebra E(D1, . . . , Dn), together
with the c.p.c. order-zero maps η j : D j → E(D1, . . . , Dn), satisfies the following universal property:

If B is any unital C∗-algebra and ψ j : D j → B for j = 1, . . . , n are c.p.c. order-zero maps with
pairwise commuting ranges and

ψ1(1D1)+ · · ·+ψn(1Dn )= 1B,

then there exists a unique unital ∗-homomorphism 9 : E(D1, . . . , Dn)→ B such that 9 ◦ η j = ψ j for all
j = 1, . . . , n.

Notation 3.3. Let G be a second-countable, locally compact group. Let D1, . . . , Dn be unital C∗-algebras
with continuous actions α( j)

:G y D j for j=1, . . . , n. Then the G-action on C(1(n), D1⊗max· · ·⊗max Dn)

defined fibrewise by α(1)⊗max · · · ⊗max α
(n) restricts to a well-defined action

E(α(1), . . . , α(n)) : G y E(D1, . . . , Dn).

We will again write E(α, n) := E(α(1), . . . , α(n)) in the special case that all (D j , α
( j))= (D, α) are the

same C∗-dynamical system.



ROKHLIN DIMENSION: ABSORPTION OF MODEL ACTIONS 1371

Remark 3.4. By the universal property in Proposition 3.2, the G-action E(α(1), . . . , α(n)) defined in
Notation 3.3 is uniquely determined by the identity E(α(1), . . . , α(n))g ◦η j = η j ◦α

( j)
g for all j = 1, . . . , n

and g ∈ G.
This immediately allows us obtain the following equivariant version of Proposition 3.2 as a consequence:
Let B be any unital C∗-algebra with an action β : G y B. If ψ j : (D j , α

( j))→ (B, β) are equivariant
c.p.c. order-zero maps with pairwise commuting ranges and ψ1(1D1)+ · · ·+ψn(1Dn )= 1B , then there
exists a unique unital equivariant ∗-homomorphism

9 : (E(D1, . . . , Dn), E(α(1), . . . , α(n)))→ (B, β)

satisfying 9 ◦ η j = ψ j for all j = 1, . . . , n.

Remark 3.5. Let us now also convince ourselves of a different natural way to view the C∗-algebras from
Notation 3.1.

For this, let us first consider the case n = 2, so we have two unital C∗-algebras D1 and D2. Notice that
[0, 1] is naturally homeomorphic to the simplex 1(2) = {(t1, t2) ∈ [0, 1]2 | t1+ t2 = 1} via the assignment
t 7→ (t, t − 1). In this way we may see that there is a natural isomorphism

E(D1, D2)
def
= { f ∈ C(1(2), D1⊗max D2) | f (0, 1) ∈ D1⊗ 1, f (1, 0) ∈ 1⊗ D2}

∼= { f ∈ C([0, 1], D1⊗max D2) | f (0) ∈ D1⊗ 1, f (1) ∈ 1⊗ D2}

=: D1 ? D2.

In particular, we see that the notation E(D1, D2) is consistent with [Szabó 2018c, Definition 5.1]. As
pointed out in Remark 5.2 of the same paper, the assignment (D1, D2) 7→ E(D1, D2) on pairs of unital
C∗-algebras therefore generalizes the join construction for pairs of compact spaces, which gives rise to
the notation D1 ? D2.

Let now n ≥ 2 and let D1, . . . , Dn+1 be unital C∗-algebras. The simplex 1(n+1) is homeomorphic to
[0, 1]×1(n) via the assignment

(t1, Et ) 7→
{
(1, Et ), t1 = 0,
(1− t1, Et/(1− t1)), t1 6= 0

for (Et, tn+1) ∈1
(n+1). Keeping this in mind, we see that there is a natural map

8 : D1 ? E(D2, . . . , Dn+1)→ E(D1, . . . , Dn+1)

given by2

8( f )(t1, Et )=
{

f (1)(Et ), t1 = 0,
f (1− t1)(Et/(1− t1)), t1 6= 0

for (t1, Et ) ∈ 1(n+1). It is a simple exercise to see that this is a well-defined isomorphism. This shows
that it makes sense to view the C∗-algebra E(D1, . . . , Dn) as the n-fold join D1 ? · · · ? Dn . We can also

2The reader should keep in mind that an element f in the domain is a continuous function on [0, 1] whose values are in turn
(certain) continuous functions from 1(n) to the tensor product D1⊗max · · · ⊗max Dn+1.



1372 GÁBOR SZABÓ

observe that this isomorphism is natural in each C∗-algebra, and therefore becomes equivariant as soon as
we equip each C∗-algebra D j with an action α( j) of some group G.

Henceforth, we will in particular write

D?n
:= E(D, n) and α?n := E(α, n)

for a unital C∗-algebra D and some group action α : G y D.

Remark 3.6. By the definition of the join of two C∗-algebras D1 and D2, there is a natural short exact
sequence

0−→ C0(0, 1)⊗ D1⊗max D2 −→ D1 ? D2 −→ D1⊕ D2 −→ 0.

Given some n ≥ 1 and a unital C∗-algebra D, we have D?n+1 ∼= D ? (D?n), and therefore a special case
of the above yields the short exact sequence

0−→ C0(0, 1)⊗ D⊗max D?n
−→ D?n+1

−→ D⊕ D?n
−→ 0.

Again by naturality, we note that this short exact sequence is automatically equivariant if we additionally
equip D with a group action.

We now come to the main observation about C∗-dynamical systems arising in this fashion, which will
be crucial in proving our main result:

Lemma 3.7. Let G be a second-countable, locally compact group. Let A be a separable, unital
C∗-algebra with an action α : G y A. Suppose that γ : G y D is a semi-strongly self-absorbing
and unitarily regular action. If α is γ -absorbing, then so is the action α?n : G y A?n for all n ≥ 2.

Proof. This follows directly from Remark 3.6 and Theorem 1.10 by induction. �

Remark 3.8. It ought to be mentioned that Lemma 3.7 does not depend in any way on the fact that one
considers the n-fold join over the same C∗-algebra and the same action. The analogous statement is valid
for more general joins of the form

α(1) ? · · · ? α(n) : G y A1 ? · · · ? An

by virtually the same argument.
In fact, by putting in a bit more work, one could likely prove an equivariant version of [Hirshberg

et al. 2007, Theorem 4.6] for C0(X)-G-C∗-algebras with dim(X) < ∞ whose fibres absorb a given
semi-strongly self-absorbing and unitarily regular action. This would contain Lemma 3.7 as a special case
since the G-C∗-algebra A1 ? · · · ? An is in fact a C(1(n))-G-C∗-algebra with each fibre being isomorphic
to some finite tensor product of the A j . We will never need this level of generality within this paper,
however.

4. Rokhlin dimension with commuting towers

The following notion generalizes analogous definitions made in [Hirshberg et al. 2015; 2017; Szabó et al.
2017; Gardella 2017].
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Definition 4.1 (cf. [Hirshberg et al. 2017, Definition 4.1]). Let G be a second-countable, locally compact
group. Let α : G y A be an action on a separable C∗-algebra:

(i) Let H ⊂ G be a closed, cocompact subgroup. The Rokhlin dimension of α with commuting towers
relative to H, denoted by dimc

Rok(α, H), is the smallest natural number d such that there exist equivariant
c.p.c. order-zero maps

ϕ(0), . . . , ϕ(d) : (C(G/H),G-shift)→ (F∞,α(A), α̃∞)

with pairwise commuting ranges such that 1= ϕ(0)(1)+ · · ·+ϕ(d)(1).

(ii) If S = (Gk)k denotes a decreasing sequence of closed, cocompact subgroups, then we define the
Rokhlin dimension of α with commuting towers relative to S via

dimc
Rok(α,S)= sup

k∈N

dimc
Rok(α,Gk).

(iii) Let N ⊂ G be any closed, normal subgroup. The Rokhlin dimension of α with commuting towers
relative to N is defined as

dimc
Rok(α, N ) := sup{dimc

Rok(α, H) | H ⊆ G closed, cocompact,N ⊆ H}.

(iv) Lastly, the Rokhlin dimension of α with commuting towers is defined as

dimc
Rok(α) := dimc

Rok(α, {1})

= sup{dimc
Rok(α, H) | H ⊆ G closed, cocompact}.

We note that, even though the second half of Definition 4.1 always makes sense, these concepts are not
expected to be of any practical use when G (or G/N ) is not assumed to have enough closed cocompact
subgroups, or to admit at least some residually compact approximation.

Notation 4.2. Let G be a second-countable, locally compact group. Given a decreasing sequence
S = (Gk)k of closed, cocompact subgroups, we will define

G/S = lim
←−

G/Gk .

This is a metrizable, compact space,3 which carries a natural continuous G-action induced by the left
G-shift on each building block G/Gk ; in particular we will call the resulting action also just the G-shift
and denote it by

σS
: G y G/S.

In the sequel, we will adopt the perspective of the associated G-C∗-dynamical system, which is given as
the equivariant inductive limit

C(G/S)= lim
−→

C(G/Gk).

3This construction generalizes the profinite completion of a discrete residually finite group along a chosen separating sequence
of normal subgroups of finite index.
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We will moreover consider C(G/S)?n for n ≥ 2. With some abuse of terminology, we will use the term
“G-shift” also to refer to the canonical action on this C∗-algebra (or the underlying space) that is induced
by the n-fold tensor products of the G-shift on each fibre.

Lemma 4.3. Let G be a second-countable, locally compact group. Let α : G y A be an action on a
separable C∗-algebra. Let S = (Gk)k be a decreasing sequence of closed, cocompact subgroups. Let
d ≥ 0 be some natural number. Then the following are equivalent:

(i) dimc
Rok(α,S)≤ d.

(ii) There exist equivariant c.p.c. order-zero maps

ϕ(0), . . . , ϕ(d) : (C(G/S),G-shift)→ (F∞,α(A), α̃∞)

with pairwise commuting ranges such that 1= ϕ(0)(1)+ · · ·+ϕ(d)(1).

(iii) There exists a unital G-equivariant ∗-homomorphism

(C(G/S)?(d+1),G-shift)→ (F∞,α(A), α̃∞).

(iv) The first-factor embedding

idA⊗ 1 : (A, α)→ (A⊗ C(G/S)?(d+1), α⊗ (G-shift))

is G-equivariantly sequentially split.

Proof. The equivalence (i)⇔(ii) follows from a standard reindexing trick such as Kirchberg’s ε-test [2006,
Lemma A.1], using the equivariant inductive limit structure of C(G/S) as pointed out in Notation 4.2.
We will leave the details to the reader.

The equivalence (ii)⇔(iii) is a direct consequence of Proposition 3.2 and Remark 3.5, and the equiva-
lence (iii)⇔(iv) is a direct consequence of [Barlak and Szabó 2016, Lemma 4.2]. �

The purpose of this section is to prove the following theorem, which can be regarded as the main result
of the paper. Some of its nontrivial applications will be discussed in the subsequent sections. See in
particular Corollary 5.1 for a possibly more accessible special case of this theorem.

Theorem 4.4. Let G be a second-countable, locally compact group and N ⊂G a closed, normal subgroup.
Denote by πN : G → G/N the quotient map. Let S1 = (Hk)k be a residually compact approximation
of G/N, and set Gk = π

−1
N (Hk) for all k ∈ N and S0 = (Gk)k . Let A be a separable C∗-algebra and

D a strongly self-absorbing C∗-algebra. Let α : G y A be an action and γ : G y D a semi-strongly
self-absorbing, unitarily regular action. Suppose that for the restrictions to the N-actions, we have
α|N 'cc (α⊗ γ )|N . If

asdim(�S1 H1) <∞ and dimc
Rok(α,S0) <∞,

then α 'cc α⊗ γ .

We note that Theorem A is a direct consequence of this result. The hypothesis that G/N has some
discrete, normal, residually finite, cocompact subgroup admitting a box space with finite asymptotic
dimension means that there is choice for S1 as required by the above statement. The hypothesis
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that α has finite Rokhlin dimension with commuting towers means that the value dimc
Rok(α,S0) has

a finite uniform upper bound, for any possible choice of S1. Hence the statement of Theorem A
follows.

The proof of Theorem 4.4 will occupy the rest of this section. The first and most difficult step is to
convince ourselves of a very special case of Theorem 4.4, which involves the technical preparation below
and from Section 2.

For convenience, we isolate the following lemma, which is a consequence of Proposition 1.11, the
Winter–Zacharias structure theorem for order-zero maps, along with the Choi–Effros lifting theorem
[1976]; see also [Winter and Zacharias 2009, Section 3].

Lemma 4.5. Let G be a second-countable, locally compact group. Let A be a separable C∗-algebra
and B a separable, unital and nuclear C∗-algebra. Let α : G y A and β : G y B be two actions.
Let κ : (B, β)→ (A∞,α, α∞) be an equivariant c.p.c. order-zero map. Then κ can be represented by a
sequence of c.p.c. maps κn : B→ A satisfying

(a) ‖κn(xy)κ(1)− κn(x)κn(y)‖→ 0,

(b) maxg∈K ‖(κn ◦ γg)(x)− (αg ◦ κn)(x)‖→ 0,

for all x, y ∈ B and compact subsets K ⊂ G.

The proof of the following is based on a standard reindexing trick. In the short proof below, precise
references are provided for completeness, although we note that this might not be the most elegant or
direct way to show these statements.

Lemma 4.6. Let G be a second-countable, locally compact group. Suppose that α : G y A, β : G y B,
and γ : G y D are actions on separable C∗-algebras. Assume furthermore that D is unital, that γ is
semi-strongly self-absorbing, and that β 'cc β⊗ γ :

(i) Suppose that there exists an equivariant ∗-homomorphism (A, α)→ (B, β) that is G-equivariantly
sequentially split. Then α 'cc α⊗ γ .

(ii) Suppose that B is unital and that there exists an equivariant and unital ∗-homomorphism from (B, β)
to (F∞,α, α̃∞). Then α 'cc α⊗ γ .

Proof. (i): By Theorem 1.8, the statement β 'cc β ⊗ γ is equivalent to the equivariant first-factor
embedding

idB ⊗ 1 : (B, β)→ (B⊗D, β⊗ γ )

being sequentially split. Let ϕ : (A, α)→ (B, β) be sequentially split. By [Barlak and Szabó 2016,
Proposition 3.7], the composition ϕ⊗ 1D = (idB ⊗ 1D) ◦ϕ is also sequentially split. However, we also
have

ϕ⊗ 1D = (ϕ⊗ idD) ◦ (idA⊗ 1D),

which implies that idA⊗ 1D is also sequentially split. This implies the claim that α 'cc α⊗ γ .
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(ii): By [Barlak and Szabó 2016, Lemma 4.2], it follows that the embedding

idA⊗ 1B : (A, α)→ (A⊗max B, α⊗β)

is sequentially split. Since we assumed that β is γ -absorbing, so is α⊗β, and so the claim arises as a
special case of (i). �

The following is a special case of Theorem 4.4, as the process of tensorially stabilizing any action
α :G y A with (C(G/S), σS) causes the Rokhlin dimension relative to S to collapse to zero by definition.
This explains why the statement below makes no explicit reference to Rokhlin dimension. Its proof is by
far the most technical part of this paper:

Lemma 4.7. Let G be a second-countable, locally compact group and N ⊂ G a closed, normal subgroup.
Denote by πN : G → G/N the quotient map. Let S1 = (Hk)k be a residually compact approximation
of G/N, and set Gk = π

−1
N (Hk) for all k ∈ N and S0 = (Gk)k . Let A be a separable C∗-algebra and

D a strongly self-absorbing C∗-algebra. Let α : G y A be an action and γ : G y D a semi-strongly
self-absorbing, unitarily regular action. Suppose that for the restrictions to the N-actions, we have
α|N 'cc (α⊗ γ )|N . If asdim(�S1 H1) <∞, then the G-action

σS0 ⊗α : G y C(G/S0)⊗ A

is γ -absorbing.

Proof. Set d := asdim(�S1 H1). Let

κ̃ : (D, γ |N )→ (F∞,α|N (A), α̃∞|N )

be an N -equivariant, unital ∗-homomorphism. Using [Szabó 2018c, Example 4.4 and Proposition 4.5],
we may choose an equivariant c.p.c. order-zero map

κ : (D, γ |N )→ (A∞,α|N ∩ A′, α∞|N )
that lifts κ̃ .

Consider a sequence of c.p.c. maps κn : B→ A lifting κ as in Lemma 4.5. Let us choose finitely many
subsequences κ(l)n : B→ A of the maps κn for l = 0, . . . , d so that, using Lemma 4.5, each sequence κ(l)n

has the following properties for all a ∈ A, b, b1, b2 ∈ D and compact sets L ⊆ N :

‖[κ(l)n (b), a]‖→ 0, (4-1)

‖κ(l)n (b1b2)κ
(l)
n (1)− κ

(l)
n (b1)κ

(l)
n (b2)‖→ 0, (4-2)

‖(κ(l)n (1)− 1) · a‖→ 0, (4-3)

max
r∈L
‖(κ(l)n ◦ γr )(b)− (αr ◦ κ

(l)
n )(b)‖→ 0, (4-4)

and additionally one has for every compact set K ⊆ G that

max
g∈K
‖[κ(l1)

n (b1), (αg ◦ κ
(l2)
n )(b2)]‖→ 0 for all l1 6= l2. (4-5)

Let now ε > 0 be a fixed parameter and 1G ∈ K ⊆ G a fixed compact set. Apply Lemma 2.4 and find
k and compactly supported functions µ(0), . . . , µ(d) ∈ Cc(G/N ), so that for every l = 0, . . . , d we have
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supp(µ(l))∩ supp(µ(l)) · h =∅ for all h ∈ Hk \ {1}, (4-6)
d∑

l=0

∑
h∈Hk

µ(l)(πN (g)h)= 1 for all g ∈ G, (4-7)

‖µ(l)(πN (g) · _ )−µ(l)‖∞ ≤ ε for all g ∈ K ∪ K−1. (4-8)

The group Hk is discrete, so we may choose a cross-section σ : Hk → Gk = π
−1
N (Hk) ⊆ G. For each

l = 0, . . . , d , consider the sequence of c.p.c. maps

2(l)n : D→ Cb(G, A)
given by

2(l)n (b)(g)=
∑
h∈Hk

µ(l)(πN (g)h) · (αgσ(h) ◦ κ
(l)
n ◦ γ

−1
gσ(h))(b). (4-9)

This sum is well-defined because the compact support of the function µ(l) on G/N meets a set of the
form πN (g) · Hk at most once according to (4-6).

We wish to show that given an element b ∈D, the functions 2(l)n (b) are approximately Gk-periodic on
large compact sets. This is so that we may apply Corollary 2.9 in order to approximate the maps 2(l)n by
other maps going into C(G/Gk, A).

Let K Hk ⊆ Gk and KG ⊆ G be two compact sets. As Hk is discrete, we observe two facts. First, there
exists a compact set KN ⊆ N and a finite set 1 ∈ Fk ⊂⊂ Hk with

K Hk ⊂ σ(Fk) · KN . (4-10)

Second, by possibly enlarging Fk if necessary, we may assume by (4-6) that also

µ(l)(πN (g)h) > 0 implies h ∈ Fk for all g ∈ KG . (4-11)
Define also

K ′N =
⋃

h0,h∈Fk

σ(h0) · KN · σ(h−1
0 h)σ (h)−1

⊆ N , (4-12)

K ′′N =
⋃

h∈Fk

σ(h)−1
· K ′N · σ(h)⊆ N . (4-13)

As N is a normal subgroup and σ is a cross-section for the quotient map πN , it follows that these are
compact subsets in N.

We compute for all l = 0, . . . , d , b∈D, g ∈ KG , h0 ∈ Fk and r ∈ K ′N that

‖(αgσ(h0) ◦ κ
(l)
n ◦ γ

−1
gσ(h0)

)(b)− (αgrσ(h0) ◦ κ
(l)
n ◦ γ

−1
grσ(h0)

)(b)‖

= ‖(ασ(h0) ◦ κ
(l)
n ◦ γ

−1
σ(h0)

)(γ−1
g (b))− (αrσ(h0) ◦ κ

(l)
n ◦ γ

−1
rσ(h0)

)(γ−1
g (b))‖

= ‖(ασ(h0) ◦ κ
(l)
n ◦ γ

−1
σ(h0)

)(γ−1
g (b))− (ασ(h0) ◦ασ(h0)−1rσ(h0) ◦ κ

(l)
n ◦ γ

−1
σ(h0)−1rσ(h0)

◦ γ−1
σ(h0)

)(γ−1
g (b))‖

(4-13)
≤ max

g∈KG
max
s∈K ′′N
‖(αs ◦ κ

(l)
n ◦ γ

−1
s )(γ−1

gσ(h0)
(b))− κ(l)n (γ

−1
gσ(h0)

(b))‖

(4-4)
−→ 0 (uniformly on KG, K ′N ).
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It thus follows for all l = 0, . . . , d, b∈D, g ∈ KG , h0 ∈ Fk and r ∈ KN that

‖2(l)n (b)(g)−2
(l)
n (b)(gσ(h0)r)‖

(4-9),
(4-11)
=

∥∥∥∥∑
h1∈Fk

µ(l)(πN (g)h1) · (αgσ(h1) ◦ κ
(l)
n ◦ γ

−1
gσ(h1)

)(b)

−

∑
h2∈h−1

0 Fk

µ(l)(πN (g)h0h2) · (αgσ(h0)rσ(h2) ◦ κ
(l)
n ◦ γ

−1
gσ(h0)rσ(h2)

)(b)
∥∥∥∥

=

∥∥∥∥∑
h1∈Fk

µ(l)(πN (g)h1) · (αgσ(h1) ◦ κ
(l)
n ◦ γ

−1
gσ(h1)

)(b)

−

∑
h2∈Fk

µ(l)(πN (g)h2) · (αgσ(h0)rσ(h−1
0 h2)
◦ κ(l)n ◦ γ

−1
gσ(h0)rσ(h−1

0 h2)
)(b)

∥∥∥∥
(4-6)
= max

h∈Fk
‖(αgσ(h) ◦ κ

(l)
n ◦ γ

−1
gσ(h))(b)− (αgσ(h0)rσ(h−1

0 h) ◦ κ
(l)
n ◦ γgσ(h0)rσ(h−1

0 h))(b)‖

= max
h∈Fk
‖(αgσ(h) ◦ κ

(l)
n ◦ γ

−1
gσ(h))(b)− (αgσ(h0)rσ(h−1

0 h)σ (h)−1σ(h) ◦ κ
(l)
n ◦ γ

−1
gσ(h0)rσ(h−1

0 h)σ (h)−1σ(h)
)(b)‖

(4-12)
= max

h∈Fk
max
s∈K ′N
‖(αgσ(h) ◦ κ

(l)
n ◦ γ

−1
gσ(h))(b)− (αgsσ(h) ◦ κ

(l)
n ◦ γ

−1
gsσ(h))(b)‖

−→ 0 (uniformly on KG, KN ).

Here we have used (4-6) in the third equality in the sense that µ(l)(πN (g)h) is nonzero for a unique
element h ∈ Fk . By (4-10) we get for all b ∈ D that

max
g∈KG

max
t∈K Hk

‖2(l)n (b)(g)−2
(l)
n (b)(gt)‖

(4-10)
≤ max

g∈KG
max
h0∈Fk

max
r∈KN
‖2(l)n (b)(g)−2

(l)
n (b)(gσ(h0)r)‖ −→ 0.

Since KG ⊆ G and K Hk ⊆ Gk were arbitrary compact sets, we are in the position to apply Corollary 2.9.
As D is separable, it follows for every l = 0, . . . , d that there exists a sequence of c.p.c. maps

9(l)
n : B→ C(G/Gk, A)

so that for every compact set KG ⊆ G and b ∈ D, we have

max
g∈KG
‖9(l)

n (b)(gGk)−2
(l)
n (b)(g)‖→ 0. (4-14)

We now wish to show that these c.p.c. maps are approximately equivariant with regard to γ and
σGk ⊗α, where σGk is the G-action on C(G/Gk) induced by the left-translation of G on G/Gk .

Let us fix a compact set KG ⊆ G as above. Without loss of generality, let us assume that it is large
enough so that the quotient map G→ G/Gk is still surjective when restricted to KG . Given b ∈ D, set

ρn(b)= max
l=0,...,d

max
g∈K−1 KG

‖9(l)
n (b)(gGk)−2

(l)
n (b)(g)‖. (4-15)

Note that by an elementary compactness argument, it follows from (4-14) that for every compact set
J ⊂ D, we have

max
b∈J

ρn(b)→ 0. (4-16)
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Let t ∈ K, g ∈ KG and b ∈ D with ‖b‖ ≤ 1. Then

(σ
Gk
t ⊗αt)((9

(l)
n )(b))(gGk)= αt(9

(l)
n (b)(t

−1gGk))

(4-15)
=ρn(b) αt(2

(l)
n (b)(t

−1gGk))

(4-9)
=

∑
h∈Hk

µ(l)(πN (t−1g)h) · (αgσ(h) ◦ κ
(l)
n ◦ γ

−1
t−1gσ(h))(b)

(4-6),(4-8)
=ε

∑
h∈Hk

µ(l)(πN (g)h) · (αgσ(h) ◦ κ
(l)
n ◦ γ

−1
t−1gσ(h))(b)

(4-15),(4-9)
=ρn(γt (b)) 9

(l)
n (γt(b))(gGk).

Note that as KG contains a representative for every Gk-orbit in G, these approximations carry over to the
‖ · ‖∞-norm of the involved functions. Using (4-16), we obtain for all b ∈ D with ‖b‖ ≤ 1 that

lim sup
n→∞

max
t∈K
‖(σ

Gk
t ⊗αt)(9

(l)
n )(b)− (9

(l)
n ◦ γt)(b)‖ ≤ ε. (4-17)

Next, we wish to show that for l1 6= l2, the c.p.c. maps 9(l1)
n and 9(l2)

n have approximately commuting
ranges as n→∞. Let g1, g2 ∈ KG and b ∈ D with ‖b‖ ≤ 1 be given. Then we compute

‖[9(l1)
n (b)(g1Gk),9

(l2)
n (b)(g2Gk)]‖

(4-15)
=4ρn(b) ‖[2

(l1)
n (b)(g1),2

(l2)
n (b)(g2)]‖

(4-6),(4-9),
(4-11)
≤ max

h1,h2∈Fk
‖[(αg1σ(h1) ◦ κ

(l1)
n ◦ γ

−1
g1σ(h1)

)(b), (αg2σ(h2) ◦ κ
(l2)
n ◦ γ

−1
g2σ(h2)

)(b)]‖

= max
h1,h2∈Fk

‖[(κ(l1)
n ◦ γ

−1
g1σ(h1)

)(b), (ασ(h1)−1g−1
1 g2σ(h2)

◦ κ(l2)
n ◦ γ

−1
g2σ(h2)

)(b)]‖

In particular, we obtain for every contraction b ∈ D that

max
g1,g2∈KG

‖[9(l1)
n (b)(g1Gk),9

(l2)
n (b)(g2Gk)]‖

≤ max
g1,g2∈KG

max
h1,h2∈Fk

‖[(κ(l1)
n ◦ γ

−1
g1σ(h1)

)(b), (ασ(h1)−1g−1
1 g2σ(h2)

◦ κ(l2)
n ◦ γ

−1
g2σ(h2)

)(b)]‖+ 4ρn(b)

(4-16),(4-5)
−→ 0. (4-18)

Here we have used that the convergence in (4-5) automatically holds uniformly when quantifying over
b1, b2 belonging to some compact subset in D, in this case

b1, b2 ∈ {γ
−1
g (b) | g ∈ KG · σ(Fk)}.

In exactly the same fashion, one also computes

‖[9(l)
n (b), a]‖ −→ 0 (4-19)

for all l = 0, . . . , d, b ∈ D, and a ∈ A, by using (4-1) in place of (4-5).
Next, we wish to show that for each l = 0, . . . , d, the c.p.c. maps 9(l)

n behave approximately like
order-zero maps. Let g ∈ KG . Choose the unique element h0 ∈ Fk with µ(l)(πN (g)h0) > 0. Then it
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follows for every b1, b2 ∈ D that

2(l)n (b1)(g) ·2(l)n (b2)(g)= µ(l)(πN (g)h0)
2
· (αgσ(h0) ◦ κ

(l)
n ◦ γ

−1
gσ(h0)

)(b1) · (αgσ(h0) ◦ κ
(l)
n ◦ γ

−1
gσ(h0)

)(b2)

= µ(l)(πN (g)h0)
2
·αgσ(h0)

(
(κ(l)n ◦ γ

−1
gσ(h0)

)(b1) · (κ
(l)
n ◦ γ

−1
gσ(h0)

)(b1)
)
.

It follows from this calculation that

‖2(l)n (b1) ·2
(l)
n (b2)−2

(l)
n (b1b2) ·2

(l)
n (1)‖∞,KG

≤ max
s∈KGk ·σ(Fk)

‖(κ(l)n ◦ γ
−1
s )(b1) · (κ

(l)
n ◦ γ

−1
s )(b1)− (κ

(l)
n ◦ γ

−1
s )(b1b2) · (κ

(l)
n ◦ γ

−1
s )(1)‖

(4-7),(4-8)
−→ 0.

As KG contains a representative of every Gk-orbit in G, it follows from (4-14) that

‖9(l)
n (b1) ·9

(l)
n (b2)−9

(l)
n (b1b2) ·9

(l)
n (1)‖ −→ 0 (4-20)

for every b1, b2 ∈ D.
Next, we wish to show that the completely positive sum

∑d
l=09

(l)
n behaves approximately like a u.c.p.

map upon multiplication with an element of 1⊗ A as n→∞. Let g ∈ KG . We have

2(l)n (1)(g)
(4-9),
(4-10)
=

∑
h∈Fk

µ(l)(πN (g)h) · (αgσ(h) ◦ κ
(l)
n ◦ γ

−1
gσ(h))(1)

=

∑
h∈Fk

µ(l)(πN (g)h) · (αgσ(h) ◦ κ
(l)
n )(1).

It follows for all a ∈ A that

max
g∈KG

∥∥∥∥(1−
d∑

l=0

2(l)n (1)(g)
)
· a
∥∥∥∥

≤ max
g∈KG

(d+1)·max
l

max
h∈Fk
‖(ασ(h)◦κ

(l)
n )(1)−κ

(l)
n (1)‖+

∥∥∥∥(1−
d∑

l=0

∑
h∈Fk

µ(l)(πN (g)h)·(αg◦κ
(l)
n )(1)

)
·a
∥∥∥∥

(4-7)
= max

g∈KG
(d+1)·max

l
max
h∈Fk
‖(ασ(h)◦κ

(l)
n )(1)−κ

(l)
n (1)‖+

∥∥∥∥( d∑
l=0

∑
h∈Fk

µ(l)(πN (g)h)·(1−(αg◦κ
(l)
n )(1))

)
·a
∥∥∥∥

(4-6)
≤ max

g∈KG

(
(d + 1) ·max

l
max
h∈Fk
‖(ασ(h) ◦ κ

(l)
n )(1)− κ

(l)
n (1)‖+ (d + 1) ·max

l
‖(1− κ(l)n (1)) ·α

−1
g (a)‖

)
(4-3),(4-4)
−→ 0.

Since KG contains every Gk-orbit in G, it follows from (4-14) that∥∥∥∥(1−
d∑

l=0

9(l)
n (1)

)
· (1⊗ a)

∥∥∥∥→ 0 for all a ∈ A. (4-21)
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Let us now summarize everything we have obtained so far. The c.p.c. maps 9(l)
n : D→ C(G/Gk, A),

for l = 0, . . . , d and n ∈ N satisfy the following properties for all b, b1, b2 ∈ D and a ∈ A:

‖[9(l)
n (b), 1⊗ a]‖ −→ 0, (4-22)

lim sup
n→∞

max
t∈K
‖((σGk ⊗α)t ◦9

(l)
n )(b)− (9

(l)
n ◦ γt)(b)‖ ≤ ε, (4-23)

‖[9(l1)
n (b),9(l2)

n (b)]‖ −→ 0 for all l1 6= l2, (4-24)

‖9(l)
n (b1) ·9

(l)
n (b2)−9

(l)
n (b1b2) ·9

(l)
n (1)‖ −→ 0, (4-25)∥∥∥∥(1−

d∑
l=0

9(l)
n (1)

)
· 1⊗ a

∥∥∥∥−→ 0. (4-26)

Note that k, and thus the codomain of 9(l)
n , had to be chosen depending on ε and K ⊆ G. However, we

have canonical (equivariant) inclusions C(G/Gk, A)⊆ C(G/S0, A), which we may compose our maps
with. It is then clear that the same properties as in (4-22) up to (4-26) hold, where we replace the action
σGk : G y C(G/Gk) by σS0 : G y C(G/S0).

Since A and D are separable and G is second-countable, we can let the tolerance ε go to zero, let the
set K ⊆ G get larger and apply a diagonal sequence argument. Putting the appropriate choices of c.p.c.
maps into a single sequence, we can thus obtain c.p.c. maps

ψ (l) : B→ (C(G/S0)⊗ A)∞, l = 0, . . . , d,

that satisfy the following properties for all g ∈ G, a ∈ A, and b, b1, b2 ∈ D:

[ψ (l)(b), 1⊗ a] = 0, (4-27)

(σS0 ⊗α)g ◦ψ
(l)
= ψ (l) ◦ γg, (4-28)

[ψ (l1)(b), ψ (l2)(b)] = 0 for all l1 6= l2, (4-29)

ψ (l)(b1) ·ψ
(l)(b2)= ψ

(l)(b1b2) ·ψ
(l)(1), (4-30)(

1−
d∑

l=0

ψ (l)(1)
)
· 1⊗ a = 0. (4-31)

Since γ : G y D is point-norm continuous, (4-28) implies that the image of each map ψ (l) is in the
continuous part (C(G/S0)⊗ A)∞,σS0⊗α . In fact it is in the relative commutant of 1⊗ A by (4-27), but then
also automatically in the relative commutant of all of C(G/S0)⊗ A. This allows us to define equivariant
maps

ζ (l) : D→ F∞,σS0⊗α(C(G/S0)⊗ A), ζ (l)(b)= ψ (l)(b)+Ann(C(G/S0)⊗ A)

for all l = 0, . . . , d. Then (4-29) implies that these maps have commuting ranges, (4-30) implies that
they are c.p.c. order-zero, and finally (4-31) implies the equation

∑d
l=0ζ

(l)(1)= 1.
By virtue of Proposition 3.2 and Remark 3.5, this gives rise to a unital equivariant ∗-homomorphism

(D?(d+1), γ ?(d+1))→
(
F∞,σS0⊗α(C(G/S0)⊗ A), (σ̃S0 ⊗α)∞

)
.
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As γ is unitarily regular, it follows from Lemma 3.7 that γ ?(d+1) is a γ -absorbing action. Applying
Lemma 4.6 yields that σS0 ⊗α is γ -absorbing, which finishes the proof. �

Now we are in a position to prove Theorem 4.4:

Proof of Theorem 4.4. Let α : G y A and γ : G y D be the two actions as in the assumption. Let also
N ⊂ G, Hk ⊂ G/N, and Gk ⊂ G be subgroups as specified in the statement, and denote by S1 = (Hk)k a
sequence of subgroups in G/N, and by S0 = (Gk)k a sequence of subgroups in G.

Suppose asdim(�S1 H1) <∞ and s := dimc
Rok(α,S0) <∞. Using the latter, Lemma 4.3(iv) implies

that the equivariant embedding

idA⊗ 1 : (A, α)→ (A⊗ C(G/S0)
?(s+1), α⊗ (G-shift))

is G-equivariantly sequentially split. By Lemma 4.6, in order to show that α is γ -absorbing, it suffices to
show that the G-C∗-algebra A⊗ C(G/S0)

?(s+1) is γ -absorbing. We will show this via induction on s.
For s = 0, the claim is precisely Lemma 4.7, and in particular it holds because we assumed that

asdim(�S1 H1) <∞.
Given s ≥ 1, assume that the claim holds for s− 1. It follows by Remark 3.6 that there is an extension

of G-C∗-algebras of the form

0−→ J (s) −→ A⊗ C(G/S0)
?(s+1)

−→ Q(s)
−→ 0,

where
J (s) = A⊗ C0(0, 1)⊗ C(G/S0)⊗ C(G/S0)

?s,

Q(s)
= A⊗ (C(G/S0)⊕ C(G/S0)

?s).

By the induction hypothesis, both the kernel and the quotient of this extension are γ -absorbing G-C∗-
algebras, and therefore so is the middle by Theorem 1.10. This finishes the induction step and the proof. �

Remark 4.8. We remark that the statement of the main result holds verbatim for cocycle actions instead
of genuine actions. Note that the concept of Rokhlin dimension makes sense for cocycle actions with
the same definition, since there is still a natural genuine action induced on the central sequence algebra.
If (α,w) : G y A is a cocycle action on a separable C∗-algebra, then (α⊗ idK, w⊗ 1) : G y A⊗K
is cocycle conjugate to a genuine action by the Packer–Raeburn stabilization trick [1989]. Since both
Rokhlin dimension and absorption of a semi-strongly self-absorbing action are invariants under stable
(cocycle) conjugacy, the statement of Theorem 4.4 follows for cocycle actions.

5. Some applications

Let us now discuss some immediate applications of the main result. First we wish to point out that the
following result arises as a special case.

Corollary 5.1. Let G be a second-countable, locally compact group. Let S = (Hn)n be a residually
compact approximation consisting of normal subgroups of G with

asdim(�S H1) <∞.
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Let A be a separable C∗-algebra and D a strongly self-absorbing C∗-algebra with A ∼= A ⊗ D. Let
α : G y A be an action with

dimc
Rok(α,S) <∞.

Then α 'vscc α⊗ γ for all semi-strongly self-absorbing actions γ : G y D.

Proof. Let γ : G y D be a semi-strongly self-absorbing action. Since D ∼= D⊗Z by [Winter 2011], we
may replace γ with γ ⊗ idZ for the purpose of showing the claim, as γ ⊗ idZ is again semi-strongly self-
absorbing and every (γ ⊗ idZ)-absorbing action is γ -absorbing. So let us simply assume γ 'cc γ ⊗ idZ .
By Remark 1.9, we may thus assume that γ is unitarily regular. The claim then follows directly from
Theorem 4.4 applied to the case N = {1}. Note that one automatically has absorption with respect to very
strong cocycle conjugacy by virtue of Theorem 1.8(v). �

Note that the results below in part refer to Rokhlin dimension without commuting towers, as defined in
[Szabó et al. 2017, Section 5]. For the Rokhlin dimension-zero case, the commuting tower assumption is
vacuous.

Example 5.2. Let Q denote the universal UHF algebra. Let 0 be a countable, discrete group and H ⊂ 0
a normal subgroup with finite index. There exists a strongly self-absorbing action γ : G y Q with
dimRok(γ, H)= 0.

Proof. Such an action is constructed as part of [Szabó et al. 2017, Remark 10.8]. Namely, consider the
left-regular representation λG/H

: G/H → U(M|G:H |), consider the quotient map πH : G→ G/H, and
define

γg = idQ⊗
⊗

N

Ad(λG/H (πH (g)))

as an action on Q∼=Q⊗M⊗∞
[G:H ]. As the diagonal embedding C(G/H)⊂ M[G:H ] is equivariant, it follows

that dimRok(γ, H)= 0. By [Szabó 2018c, Proposition 6.3], such an action is strongly self-absorbing. �

This in turn has the following consequence regarding the dimension-reducing effect of strongly
self-absorbing C∗-algebras.

Corollary 5.3. Let 0 be a countable, discrete, residually finite group that has some box space with finite
asymptotic dimension. Let α : 0y A be an action on a separable C∗-algebra with dimc

Rok(α) <∞:

(1) If A ∼= A⊗Q, then dimRok(α)= 0.

(2) If A ∼= A⊗Z , then dimRok(α)≤ 1.

Proof. (1): This follows directly from Example 5.2 and Corollary 5.1.

(2): We have α 'cc α ⊗ idZ , and there exist two c.p.c. order-zero maps ψ0, ψ1 : Q→ Z∞ ∩Z ′ with
ψ0(1)+ψ1(1) = 1; see [Matui and Sato 2014a, Section 5; Sato et al. 2015, Section 6]. Consider two
sequences ψ0,n, ψ1,n :Q→ Z of c.p.c. maps lifting ψ0 and ψ1.

By (1), α⊗ idQ has Rokhlin dimension zero. Given any subgroup H ⊂ 0 with finite index, we can
find c.p.c. order-zero maps C(0/H)→ A⊗Q which are approximately equivariant, have approximately
central image, and are such that the image of the unit acts approximately like a unit on finite sets. Once
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we compose such maps with idA⊗ψi,n for i = 0, 1 and large enough n, we may obtain two c.p.c. maps
κ0, κ1 : C(0/H)→ A⊗Z , which are approximately equivariant, have approximately central image, and
so that the element κ0(1)+ κ1(1) approximately acts like a unit on a given finite set in A⊗Z. But this
is what is required by dimRok(α)= dimRok(α⊗ idZ)≤ 1; we leave the finer details to the reader as the
proof is quite standard. �

Remark 5.4. The reason why the proof of Corollary 5.3(2) does not yield dimc
Rok(α)≤ 1 is due to the

fact that the two order-zero maps ψ0, ψ1 : Q→ Z∞ can never have commuting ranges. Indeed, this
would imply the existence of a unital ∗-homomorphism Q→ Z∞ via Lemma 3.7, so it is impossible.
More concretely, [Hirshberg and Phillips 2017, Example 3.32] exhibits an example of a Z2-action α on a
Kirchberg algebra with dimRok(α)= 1 and dimc

Rok(α)= 2.

Corollary 5.5. Let 0 be a discrete, finitely generated, virtually nilpotent group. Let X be a compact
metrizable space with finite covering dimension, and α : 0y X a free action by homeomorphisms. Then
one has

dimRok(α⊗ idQ : 0y C(X)⊗Q)= 0

and
dimRok(α⊗ idZ : 0y C(X)⊗Z)≤ 1.

Proof. By [Szabó et al. 2017, Corollary 7.5], the action α : 0y C(X) has finite Rokhlin dimension.4

Since the underlying C∗-algebra is abelian, the claim follows from Corollary 5.3. �

6. Multiflows on strongly self-absorbing Kirchberg algebras

In this section, we shall study actions of Rk on certain C∗-algebras satisfying an obvious notion of the
Rokhlin property.

Notation 6.1. For k ≥ 2, we will refer to a continuous action of Rk on a C∗-algebra as a multiflow. Let
(e j )1≤ j≤k be the standard basis of Rk. Given α :Rk y A, we will define the generating flows α( j)

:Ry A,
given by α( j)

t = αte j , for j = 1, . . . , k. We then have

α
( j)
t j
◦α

(i)
ti = α

(i)
ti ◦α

( j)
t j

for all i, j = 1, . . . , k and all ti , t j ∈ R.

We will also denote by α(−j ) : Rk−1 y A the action generated by the flows (α(i))i 6= j . We remark that α( j)

reduces naturally to a flow on the fixed point algebra Aα
(−j )

.

Definition 6.2. Let A be a separable C∗-algebra and α :Rk y A an action. We say that α has the Rokhlin
property if dimRok(α, pZk)= 0 for all p > 0.

Remark 6.3. An obvious question regarding Definition 6.2 is whether this is the same as dimRok(α)= 0
when k ≥ 2, especially because this appears to be (a priori) much more difficult to check. Nevertheless,
this turns out to be case. Instead of giving a detailed proof here, let us just roughly sketch the basic idea.

4Strictly speaking, only the nilpotent case is proved there. The virtually nilpotent case follows from independent work of
Bartels [2017, Section 1].
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The condition dimRok(α)= 0 in the sense of Definition 4.1 amounts to checking dimRok(α, H)= 0 for
every closed cocompact subgroup H ⊂ Rk, or in other words finding approximately equivariant unital
embeddings from C(Rk/H) into the central sequence algebra of A. This only gets easier when we make
H smaller, so we may assume without loss of generality that H is discrete. Since H is a free abelian
group and is cocompact in Rk, it has a Z-basis e1, . . . , ek ∈ H. We may approximate these elements
by f1, . . . , fk ∈ Qk, which are linearly independent over Q and span another subgroup H ′. By using
for example Lemma 2.8 we can then obtain approximately multiplicative and equivariant u.c.p. maps
C(Rk/H)→ C(Rk/H ′). By the properties of central sequence algebras, we may thus assume without loss
of generality that in fact H ⊆Qk. Now the same argument as in [Szabó et al. 2017, Example 3.19] allows
one to see that H contains a finite-index subgroup of the form nZk for some n ∈N. In summary, we obtain
dimRok(α, H)= 0 for arbitrary H when we assume the Rokhlin property in the sense of Definition 6.2.

Remark 6.4. In the case of flows, i.e., the case k = 1 above, Definition 6.2 coincides with the notion of
the Rokhlin property from [Kishimoto 1996a]. Let us for now denote by σ T

: R y C(R/T Z) the action
induced by the R-shift.

Proposition 6.5. Let A be a separable C∗-algebra and α :Rk y A an action. The following are equivalent:

(i) α has the Rokhlin property.

(ii) For every j = 1, . . . , k and every p > 0, there exists a unitary

u ∈ F∞,α(A)α̃
(−j )
∞ such that α̃

( j)
∞,t(u)= ei pt u, t ∈ R.

(iii) For every j = 1, . . . , k and every T > 0, there exists an equivariant and unital ∗-homomorphism

(C(R/T Z), σ T )−→ (F∞,α(A)α̃
(−j )
∞ , α̃( j)

∞
).

Proof. (i)⇔(iii): Let T > 0. One has a canonical equivariant isomorphism

(C(Rk/T Zk),Rk-shift)∼= (C(R/T Z)⊗k, σ T,1
⊗ · · ·⊗ σ T,k),

where σ T, j is the Rk-action on C(R/T Z) where only the j -th component acts by the R-shift. By definition,
α having the Rokhlin property means that for every T > 0 the dynamical system on the left embeds into
(F∞,α(A), α̃∞). So in particular, when (i) holds, one also obtains an embedding of (C(R/T Z), σ T, j ) for
every j = 1, . . . , k, which implies (iii). Conversely, when (iii) holds, for all T > 0 one has an embedding of
(C(R/T Z), σ T, j ) into (F∞,α(A), α̃∞) for all j = 1, . . . , k. By applying a standard reindexing argument
in the central sequence algebra, one may assume that these embeddings have pairwise commuting ranges
for all j = 1, . . . , k. Therefore one obtains an embedding of the C∗-dynamical system given by the
tensor product of all (C(R/T Z), σ T, j ), which we have seen to be the same as the dynamical system
(C(Rk/T Zk),Rk-shift). In particular this implies (i).

(ii)⇔(iii): This follows directly from functional calculus. A unitary u as in (ii) gives rise to a unital
equivariant ∗-homomorphism

ϕu :
(
C
(
R/ 2π

p Z
)
, σ

2π
p
)
−→ (F∞,α(A)α̃

(−j )
∞ , α̃( j)

∞
), ϕu( f )= f (u).
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Conversely, whenever ϕ is an arbitrary homomorphism between these two dynamical systems, u =
ϕ
([

t + 2π
p Z 7→ ei pt

])
yields a unitary as required by (ii). �

Remark 6.6. We note that for G = Rk, the sequence Hn = (n!) · Zk yields a residually compact ap-
proximation in the sense of Definition 2.1. Now it is well known that �(Hn)n Zk has finite asymptotic
dimension k; see either [Szabó et al. 2017, Sections 2–3] or better yet [Delabie and Tointon 2018]. In
particular, Corollary 5.1 is applicable to Rk-actions that have finite Rokhlin dimension with commuting
towers, and more specifically it is applicable to Rk-actions with the Rokhlin property.

The following is the main result of this section.

Theorem 6.7. Let D be a strongly self-absorbing Kirchberg algebra. Let k ≥ 1 be a given natural number.
Then all continuous Rk-actions on D with the Rokhlin property are semi-strongly self-absorbing and are
mutually (very strongly) cocycle conjugate.

The approach for proving this result, at least in the way presented here, uses the theory of semi-strongly
self-absorbing actions in a crucial way. In such dynamical systems, one has a very strong control over
certain (approximately central) unitary paths, which, together with the Rokhlin property, allows one to
obtain a relative cohomology-vanishing-type statement. This will be used to deduce inductively that the
actions in the statement of Theorem 6.7 have approximately Rk-inner flip. The desired uniqueness for
such actions is then achieved by combining this fact with Corollary 5.1, which is a special case of our
main result, in a suitable way.

Example 6.8 (see [Bratteli et al. 2007]). Denote by s1, s2, . . . the generators of the Cuntz algebra O∞.
Define a quasifree flow γ 0

: R yO∞ via

γ 0
t (s1)= e2π i t s1, γ 0

t (s2)= e−2π i
√

2t s2, and γ 0
t (s j )= s j for j ≥ 3.

Then γ 0 has the Rokhlin property by [Bratteli et al. 2007, Theorem 1.1].
In particular, given k ≥ 1 and any strongly self-absorbing Kirchberg algebra D, the action

idD⊗ (γ
0
× · · ·× γ 0︸ ︷︷ ︸

k times

) : Rk y D⊗O⊗k
∞
∼= D

is a (k-)multiflow with the Rokhlin property on D, and is in fact (very strongly) cocycle conjugate to
every other one by Theorem 6.7.

Let us now implement the strategy outlined above step by step. We begin with the aforementioned
cohomology-vanishing-type statement, which involves minimal assumptions about the underlying C∗-
algebras but otherwise very strong assumptions about the existence of certain unitary paths, which will
naturally appear in our intended setup later.

Lemma 6.9. Let A be a separable unital C∗-algebra. Let k ≥ 1 and let α :Rk y A be a continuous action
with the Rokhlin property, and fix some j ∈ {1, . . . , k}.

For every ε > 0, L > 0 and F ⊂⊂ A, there exists a T > 0 and G ⊂⊂ A with the following property:
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If {wt }t∈R ⊂ U(A) is any α( j)-1-cocycle satisfying

max
a∈F

max
0≤t≤T

‖[wt , a]‖ ≤ ε,

max
0≤t≤T

max
Er∈[0,1]k−1

‖wt −α
(−j )
Er (wt)‖ ≤ ε,

and moreover there exists some continuous path of unitaries u : [0, 1] → U(A) with

u(0)= 1, u(1)= w−T , `(u)≤ L ,

max
0≤t≤1

max
Er∈[0,1]k−1

‖u(t)−α(−j )
Er (u(t))‖ ≤ ε,

max
0≤t≤1

max
a∈G
‖[u(t), a]‖ ≤ ε,

then there exists a unitary v ∈ U(A) satisfying

max
0≤t≤1

‖wt − vα
( j)
t (v∗)‖ ≤ 3ε,

max
a∈F
‖[v, a]‖ ≤ 3ε,

max
Er∈[0,1]k−1

‖v−α
(−j )
Er (v)‖ ≤ 3ε.

Proof. Let T > 0 and note that we have fixed j ∈ {1, . . . , k} by assumption. By some abuse of notation, let
us view σ T as the Rk-action on C(R/T Z) such that the j -th coordinate acts as the R-shift and all the other
components act trivially. In this way, any ∗-homomorphism as in Proposition 6.5(iii) can be viewed as an
Rk-equivariant ∗-homomorphism from C(R/T Z) to F∞,α(A). In particular, denote such a homomorphism
by θ . We can then obtain a commutative diagram of Rk-equivariant ∗-homomorphisms via

(A, α) //

d 7→1⊗d
''

(A∞,α, α∞)

(C(R/T Z)⊗ A, σ T
⊗α)

f⊗d 7→θ( f )·d

66

(6-1)

We will keep this in mind for later.
Now let ε > 0, L > 0 and F ⊂⊂ A be as in the statement. Without loss of generality, we assume that F

consists of contractions. We choose T > L/ε and G ⊂⊂ A to be any finite set of contractions containing F
that is ε/2-dense in the compact subset

{α
( j)
−s (a) | a ∈ F, 0≤ s ≤ T }. (6-2)

We claim that these do the trick. We note that the rest of the proof below is almost identical to the proofs
of [Kishimoto 1996a, Theorem 2.1; Szabó 2017a, Lemma 3.4], respectively, except for some obvious
modifications.

Assume that {wt }t∈R ⊂ U(A) is an α( j)-1-cocycle satisfying

max
a∈F

max
0≤t≤T

‖[wt , a]‖ ≤ ε, (6-3)

max
0≤t≤T

max
Er∈[0,1]k−1

‖wt −α
(−j )
Er (wt)‖ ≤ ε, (6-4)
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and moreover that there exists some continuous path of unitaries u : [0, 1] → U(A) with

u(0)= 1, u(1)= w−T , `(u)≤ L , (6-5)

max
0≤t≤1

max
Er∈[0,1]k−1

‖u(t)−α(−j )
Er (u(t))‖ ≤ ε, (6-6)

max
0≤t≤1

max
a∈G
‖[u(t), a]‖ ≤ ε. (6-7)

As `(u)≤ L , we may assume that u is L-Lipschitz by passing to the arc-length parametrization if necessary.
We denote by κ : [0, T ] → U(A) the path given by κs = u(s/T ), which is then Lipschitz with respect to
the constant L/T ≤ ε. Let us define a continuous path of unitaries v : [0, T ]→ U(A) via vs =wsα

( j)
s (κs).

Then by (6-5) it follows that v(0)= v(T )= 1. In particular, we may view v as a unitary in C(R/T Z)⊗ A.
We have

max
a∈F
‖[v, 1⊗ a]‖ = max

a∈F
max

0≤s≤T
‖[wsα

( j)
s (κs), a]‖

≤ max
a∈F

max
0≤s≤T

‖[ws, a]‖+ ‖[κs, α
( j)
−s (a)]‖

(6-3)
≤ ε+max

a∈F
max

0≤s≤T
‖[κs, α

( j)
−s (a)]‖

(6-2)
≤ 3ε/2+max

b∈G
‖[κs, b]‖

(6-7)
≤ 5ε/2.

Moreover, we have

max
Er∈[0,1]k−1

‖v− (σ T
⊗α)

(−j )
Er (v)‖ = max

Er∈[0,1]k−1
‖v− (id⊗α)(−j )

Er (v)‖

= max
Er∈[0,1]k−1

max
0≤s≤T

‖vs −α
(−j )
Er (vs)‖

= max
Er∈[0,1]k−1

max
0≤s≤T

‖wsα
( j)
s (κs)−α

(−j )
Er (wsα

( j)
s (κs))‖

= max
Er∈[0,1]k−1

max
0≤s≤T

‖wsα
( j)
s (κs)−α

(−j )
Er (ws) ·α

( j)
s (α

(−j )
Er (κs))‖

≤ max
Er∈[0,1]k−1

max
0≤s≤T

‖ws −α
(−j )
Er (ws)‖+‖κs −α

(−j )
Er (κs)‖

(6-4),(6-6)
≤ 2ε.

Lastly, let us fix t ∈ [0, 1] and s ∈ [0, T ]. If s ≥ t , then we compute

(v(σ T
⊗α)

( j)
t (v∗))(s)= wsα

( j)
s (κs) ·α

( j)
t (α

( j)
s−t(κ

∗

s−t)w
∗

s−t)

= ws ·α
( j)
s (κsκ

∗

s−t)α
( j)
t (w∗s−t)

(6-5)
=ε wsα

( j)
t (w∗s−t)= wt .
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On the other hand, if s ≤ t , then in particular s ≤ 1 and T − 1≤ T + s− t ≤ T , and we compute

(v(σ T
⊗α)

( j)
t (v∗))(s)= wsα

( j)
s (κs) ·α

( j)
t (α

( j)
T+s−t(κ

∗

T+s−t)w
∗

T+s−t)

= wsα
( j)
s (κs) ·α

( j)
T+s(κ

∗

T+s−t)α
( j)
t (w∗T+s−t)

(6-5)
=2ε ws · 1 ·α

( j)
T+s(w

∗

−T )α
( j)
t (w∗T+s−t)

= wsα
( j)
s (wT )α

( j)
t (w∗T+s−t)

= wT+sα
( j)
t (w∗T+s−t)w

∗

t ·wt = wt .

Let us summarize what we have accomplished so far. Starting from the existence of the α( j)-1-cocycle
{wt }t∈R and the unitary path u with the prescribed properties, we have found a unitary v∈U(C(R/T Z)⊗A)
satisfying

max
a∈F
‖[v, 1⊗ a]‖ ≤ 5ε/2, (6-8)

max
Er∈[0,1]k−1

‖v− (σ T
⊗α)

(−j )
Er (v)‖ ≤ 2ε, (6-9)

max
0≤t≤1

‖wt − v(σ
T
⊗α)

( j)
t (v∗)‖ ≤ 2ε. (6-10)

By using the commutative diagram (6-1), we may send v into the sequence algebra of A, represent the
resulting unitary by a sequence of unitaries in A, and then select a member of this sequence so that it will
satisfy the properties in the claim with respect to the parameter 3ε. �

Now record the following useful technical result about semi-strongly self-absorbing actions, which
arises as a special case of [Szabó 2018c, Lemma 3.12]:

Lemma 6.10. Let G be a second-countable, locally compact group. Let D be a separable, unital C∗-
algebra and γ : G y D a semi-strongly self-absorbing action. For every ε > 0, F ⊂⊂ D and compact set
K ⊂ G, there exist δ > 0 and G ⊂⊂ D with the following property:

Suppose that u : [0, 1] → U(D) is a unitary path satisfying

u(0)= 1, max
0≤t≤1

max
g∈K
‖u(t)− γg(u(t))‖ ≤ δ,

and
max
a∈G
‖[u(1), a]‖ ≤ δ.

Then there exists a unitary path w : [0, 1] → U(D) satisfying

w(0)= 1, w(1)= u(1),

max
g∈K
‖w(t)− γg(w(t))‖ ≤ ε,

max
0≤t≤1

max
a∈F
‖[w(t), a]‖ ≤ ε.

Moreover, we may choose w in such a way that

‖w(t1)−w(t2)‖ ≤ ‖u(t1)− u(t2)‖ for all 0≤ t1, t2 ≤ 1.
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We are now ready to prove the main result of this section:

Proof of Theorem 6.7. We will prove this via induction in k. For this purpose, we will include the case
k = 0, where the claim is true for trivial reasons.

Now let k ≥ 1 and assume that the claim is true for actions of Rk−1. We will then show that the claim
is also true for actions of Rk.

Step 1: Let α : Rk y D be an action with the Rokhlin property. In a similar fashion as in [Kishimoto
2002, Proposition 3.5], we shall show that α has approximately Rk-inner flip.

Set B = D⊗D and β = α⊗α. Denote by 6 the flip automorphism on B, which is equivariant with
regard to β. Note that β is still a Rk-action on a strongly self-absorbing Kirchberg algebra with the
Rokhlin property. The Rk−1-action α(−k ) is semi-strongly self-absorbing by the induction hypothesis.
Applying [Szabó 2018c, Proposition 3.6], we find a sequence of unitaries yn, zn ∈ U(B) satisfying

max
Er∈[0,1]k−1

‖yn −β
(−k )
Er (yn)‖+‖zn −β

(−k )
Er (zn)‖

n→∞
−−−→ 0 (6-11)

and
6(b)= lim

n→∞
Ad(ynzn y∗n z∗n)(b), b ∈ B. (6-12)

Let us set Y = [(yn)n] and Z = [(zn)n] with Y, Z ∈ Bβ
(−k )
∞

∞,β(−k ) . Moreover set X = Y ZY ∗Z∗. Note that
since D is a Kirchberg algebra, Corollary 5.1 implies that β is equivariantly O∞-absorbing. By [Szabó
2018c, Proposition 2.19(iii)], the unitary X is thus homotopic to the unit inside Bβ

(−k )
∞

∞,β(−k ) . Write X =
exp(i H1) · · · exp(i Hr ) for certain self-adjoint elements H1, . . . , Hr ∈ Bβ

(−k )
∞

∞,β(−k ) . Set L ′=‖H1‖+· · ·+‖Hr‖.
For l = 1, . . . , r , represent Hl via a sequence of self-adjoint elements hl,n ∈ B with ‖hl,n‖ ≤ ‖Hl‖. We
define a sequence of continuous paths xn : [0, 1] → U(B) via

xn(t)= exp(i th1,n) · · · exp(i thr,n).

Then each of these paths is L ′-Lipschitz. By slight abuse of notation we write X : [0, 1]→ U(Bβ
(−k )
∞

∞,β(−k )) for
X (t)= [(xn(t))n], which is then continuous and satisfies X (0)= 1 and X (1)= X . Also define xn = xn(1)
for all n.

Since we have 6(b) = XbX∗ for all b ∈ B and β and 6 ◦ β(k)t = β
(k)
t ◦ 6, one has 6(b) =

β
(k)
∞,t(X)bβ

(k)
∞,t(X∗) for all t ∈ R. It follows that for all t ∈ R, one has that the element Xβ(k)∞,t(X∗)

commutes with all elements in B ⊂ B∞.
Let us for the moment fix some number T >0. Define uT

n : [0, 1]→U(B) via uT
n (t)= xn(t)β

(k)
−T (xn(t)∗).

Then uT
n is a unitary path starting at the unit and with Lipschitz constant L ≤ 2L ′. We have

max
0≤t≤1

max
Er∈[0,1]k−1

‖uT
n (t)−β

(−k )
Er (uT

n (t))‖
n→∞
−−−→ 0

as β(k)
−T ◦β

(−k )
Er = β

(−k )
Er ◦β

(k)
−T and the elements xn(t) are approximately β(−k )-invariant by construction, and

‖[uT
n (1), b]‖ = ‖[xnβ

(k)
−T (x

∗

n ), b]‖ n→∞
−−−→ 0 for all b ∈ B.

Due to Lemma 6.10, we may replace the unitary paths uT
n by ones which become approximately central

along the entire path and retain all the other properties. In other words, by changing the path un on (0, 1),
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we may in fact assume

max
0≤t≤1

‖[uT
n (t), b]‖ n→∞

−−−→ 0 for all b ∈ B.

Let us consider the sequence of β(k)-1-cocycles {w(n)t }t∈R given by w(n)t = xnβ
(k)
t (x∗n ). Then by what we

have observed before, we have

max
0≤t≤T

‖[w
(n)
t , b]‖ n→∞

−−−→ 0, b ∈ B,

as well as

max
0≤t≤T

max
Er∈[0,1]k−1

‖w
(n)
t −β

(−k )
Er (w

(n)
t )‖ ≤ 2 · max

Er∈[0,1]k−1
‖xn −β

(−k )
Er (xn)‖

n→∞
−−−→ 0.

This puts us into the position to apply Lemma 6.9. Given some small tolerance ε > 0 and F ⊂⊂ D, we
can choose T > 0 and G ⊂⊂ D with respect to the constant L = 2L ′ and with (B, β) in place of (A, α).
Without loss of generality, we choose F in such a way that

6(F)= F . (6-13)

Then the cocycles {w(n)t }t∈R and the unitary paths uT
n (in place of {wt }t∈R and u in Lemma 6.9) will

eventually satisfy the assumptions in Lemma 6.9 for large enough n. By the conclusion of the statement,
one finds a unitary vn ∈ U(B) such that

max
0≤t≤1

‖w
(n)
t − vnβ

(k)
t (v∗n)‖ = max

0≤t≤1
‖xnβ

(k)
t (xn)

∗
− vnβ

(k)
t (v∗n)‖ ≤ 3ε, (6-14)

max
b∈F
‖[vn, b]‖ ≤ 3ε, (6-15)

max
Er∈[0,1]k−1

‖vn −α
(−k )
Er (vn)‖ ≤ 3ε. (6-16)

We set Un = v
∗
n xn , which is yet another sequence of unitaries in B. Note that (6-14) translates to

max
0≤t≤1

‖Un −β
(k)
t (Un)‖ ≤ 3ε.

Together with (6-16) and X ∈ Bβ
(−k )
∞

∞,β(−k ) this yields

max
Er∈[0,1]k

‖Un −βEr (Un)‖ ≤ 7ε

for large enough n. Finally, if we combine (6-12), (6-13) and (6-15), we obtain

max
b∈F
‖6(b)−UnbU∗n‖ ≤ 4ε

for sufficiently large n. Since ε > 0 was an arbitrary parameter and F ⊂⊂ B was arbitrary as well, we see
that the flip automorphism 6 on B is indeed approximately Rk-inner.

Step 2: Let α : Rk y D be an action with the Rokhlin property. Due to the first step, α has approxi-
mately Rk-inner flip. By [Szabó 2018b, Proposition 3.3], it follows that the infinite tensor power action



1392 GÁBOR SZABÓ

α⊗∞ : Rk y D⊗∞ is strongly self-absorbing. In view of Remark 6.6, we may apply Corollary 5.1 to α
and α⊗∞ in place of γ , and see that

α 'scc α⊗α
⊗∞ ∼= α

⊗∞,

which implies that α is semi-strongly self-absorbing.

Step 3: For i = 0, 1, let α(i) : Rk y D be two actions with the Rokhlin property. By the previous step,
they are semi-strongly self-absorbing. If we apply Corollary 5.1 to α(0) in place of α and α(1) in place
of γ , then it follows that α(0) 'vscc α

(0)
⊗α(1). If we exchange the roles of α(0) and α(1) and repeat this

argument, we conclude α(0) 'vscc α
(1).

This finishes the induction step and the proof. �

We observe the following consequence as a combination of all of our main results for Rk-actions; this
is new even for ordinary flows.

Corollary 6.11. Let A be a separable C∗-algebra with A ∼= A⊗O∞. Suppose that α : Rk y A is a
multiflow. The following are equivalent:

(i) α has the Rokhlin property.

(ii) α has finite Rokhlin dimension with commuting towers.

(iii) α 'vscc α⊗ γ for any multiflow γ : Rk yO∞ with the Rokhlin property.

(iv) α 'vscc α⊗ γ for every multiflow γ : Rk yO∞ with the Rokhlin property.

Proof. This follows directly from Theorem 6.7 and Corollary 5.1. �

Once we combine Corollary 6.11 and Theorem 6.7, we obtain Theorem C as a direct consequence.
The following remains open:

Question 6.12. Let α : Rk y A be a multiflow on a Kirchberg algebra. Suppose that for every Er ∈ Rk the
flow on A given by t 7→ αtEr has the Rokhlin property. Does it follow that α has the Rokhlin property?
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