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ON THE LUZIN N-PROPERTY AND
THE UNCERTAINTY PRINCIPLE FOR SOBOLEV MAPPINGS

ADELE FERONE, MIKHAIL V. KOROBKOV AND ALBA ROVIELLO

We say that a mapping v WRn!Rd satisfies the .�; �/-N-property if H� .v.E//D0whenever H� .E/D0,
where H� means the Hausdorff measure. We prove that every mapping v of Sobolev class W k

p .R
n;Rd /

with kp > n satisfies the .�; �/-N-property for every 0 < � ¤ �� WD n� .k� 1/p with

� D �.�/ WD

(
� if � > ��;

p�=.kp�nC �/ if 0 < � < ��:

We prove also that for k > 1 and for the critical value � D �� the corresponding .�; �/-N-property fails
in general. Nevertheless, this .�; �/-N-property holds for � D �� if we assume in addition that the highest
derivatives rkv belong to the Lorentz space Lp;1.Rn/ instead of Lp .

We extend these results to the case of fractional Sobolev spaces as well. Also, we establish some
Fubini-type theorems for N-Nproperties and discuss their applications to the Morse–Sard theorem and its
recent extensions.

1. Introduction

The classical Luzin N-property means that for a mapping f WRn!Rn one has measf .E/D 0 whenever
measE D 0. (Here measE is the usual n-dimensional Lebesgue measure.)

This property plays a crucial role in classical real analysis and differentiation theory [Saks 1937]. It is
very useful also in elasticity theory and in geometrical analysis, especially in the theory of quasiconformal
mappings and, more generally, in the theory of mappings with bounded distortions, i.e., mappings
f W � � Rn ! Rn of Sobolev class W 1

n .R
n/ such that kf 0.x/kn � K detf 0.x/ almost everywhere

with some constant K 2 Œ1;C1/. The notion of mappings with bounded distortion was introduced by
Yu. G. Reshetnyak; see, e.g., his classical books [Reshetnyak 1989; 1994; Goldshtein and Reshetnyak
1990]. He proved that they satisfy the N-property and this was very helpful in his subsequent proofs of
other basic topological properties of such mappings (openness, discreteness and etc.). Further this MBD
theory was successfully developed by many mathematicians in both analytical and geometrical directions,
and many interesting and deep results were obtained; see the monographs [Rickman 1993; Iwaniec and
Martin 2001], for example.

The notion of mappings with bounded distortion leads to the theory of more general mappings with
finite distortion (i.e., when K in the definition above depends on x and is not assumed to be uniformly
bounded; see, e.g., the pioneering paper [Vodop’yanov and Goldshtein 1976], where the monotonicity,

MSC2010: primary 46E35, 58C25; secondary 26B35, 46E30.
Keywords: Sobolev–Lorentz mappings, fractional Sobolev classes, Luzin N-property, Morse–Sard theorem, Hausdorff measure.
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continuity and N-property of such mappings from the class W 1
n were established). This theory has been

intensively developed in the last decades (see, e.g., the book [Hencl and Koskela 2014] for an overview),
and studying the N-property constitutes one of the most important directions [Kauhanen et al. 2001;
D’Onofrio et al. 2016].

Note that the belonging of a mapping to the Sobolev class W 1
n .R

n;Rn/ is crucial for N-properties.
Indeed, every mapping of class W 1

p .R
n;Rn/ with p > n is continuous and supports the N-property (it is

a simple consequence of the Morrey inequality). But even if a mapping f 2W 1
n .R

n;Rn/ is continuous
(which is not guaranteed in general), it may not have the N-property. On the other hand, the N-property
holds for functions of the classW 1

n .R
n;Rn/ under some additional assumptions on its topological features,

namely, for homeomorphic and open mappings [Reshetnyak 1987] (see also [Roskovec 2018]) and for
quasimonotone1 mappings [Vodop’yanov and Goldshtein 1976; Malý and Martio 1995].

The results above are very delicate and sharp: indeed, for any p < n there are homeomorphisms
f 2W 1

p .R
n;Rn/ without the N-property. This phenomenon was discovered by S. P. Ponomarev [1971].

In recent years his construction has been very refined and an example was constructed of a Sobolev
homeomorphism with zero Jacobian a.e. which belongs simultaneously to all the classes W 1

p .R
n;Rn/

with p < n [Hencl 2011; Černý 2011] — of course, this “strange” homeomorphism certainly fails to have
the N-property.2

In the positive direction, it was proved in [Kauhanen et al. 1999], see also [Romanov 2008], that every
mapping of the Sobolev–Lorentz class W 1

n;1.R
n;Rn/ (i.e., its distributional derivatives belong to the

Lorentz space Ln;1; see Section 2 for the exact definitions) satisfies the N-property. Note that this space
W 1
n;1.R

n;Rn/ is limiting in a natural sense between classes W 1
n and W 1

p with p > n.
Another direction is to study theN-properties with respect to Hausdorff (instead of Lebesgue) measures.

One of the most elegant results was achieved for the class of plane quasiconformal mappings.
The famous area distortion theorem of K. Astala [1994] implies the following dimension distortion

result: if f W C! C is a K-quasiconformal mapping (i.e., it is a plane homeomorphic mapping with
K-bounded distortion) and E is a compact set of Hausdorff dimension t 2 .0; 2/, then the image f .E/
has Hausdorff dimension at most t 0 D 2Kt=.2C .K � 1/t/. This estimate is sharp; however, it leaves
open the endpoint case: does Ht .E/ D 0 imply Ht 0.f .E// D 0? The remarkable paper [Lacey et al.
2010] gives an affirmative answer to Astala’s conjecture (see also [Astala et al. 2013], where the further
implication H t .E/ <1)Ht 0.f .E// <1 was considered).

Let us go to results which are closer to the present paper. It is more natural to discuss the topic in
the scale of fractional Sobolev spaces, i.e., for .Bessel/-potential space L ˛

p with ˛ > 0. Recall that a
function v W Rn ! Rd belongs to the space L ˛

p if it is a convolution of the Bessel kernel K˛ with a

1Some of these results were generalised for the more delicate case of Carnot groups and manifolds; see, e.g., [Vodop’yanov
2003].

2Moreover, even the examples of bi-Sobolev homeomorphisms of class W 1
p .R

n;Rn/, p < n� 1, with zero Jacobian a.e.
were constructed recently; see, e.g., [D’Onofrio et al. 2014; Černý 2015]. Such homeomorphisms are impossible in the
Sobolev class W 1

n�1.R
n;Rn/. Furthermore, Hencl and Vejnar [2016] constructed an example of a Sobolev homeomorphism

f 2W 1
1 ..0; 1/

n;Rn/ such that the Jacobian detf 0.x/ changes its sign on sets of positive measure.
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function g 2 Lp.Rn/, where yK˛.�/D .1C 4�2�2/�˛=2. It is well known that

L ˛
p .R

n/DW ˛
p .R

n/ if ˛ 2 N and 1 < p <1:

Recently H. Hencl and P. Honzík proved, in particular, the following assertion:

Theorem 1.1 [Hencl and Honzík 2015]. Let n; d 2 N, ˛ > 0, p > 1, ˛p > n, and 0 < � � n. Suppose
that a mapping f WRn!Rd belongs to the (fractional) Sobolev class L ˛

p . Then for any set E �Rn with
Hausdorff dimension dimH E � � the inequality dimH f .E/� �.�/ holds, where

�.�/ WD

�
� if � � �� WD n� .˛� 1/p;
p�=.˛p�nC �/ if 0 < � < ��:

(1-1)

But as above (see the discussion around the Astala theorem), this result raises a natural question. What
happens in the limiting case, i.e., is it true that H� .E/D 0 implies H�.�/.f .E//D 0? Of course, such
an N-property is much more precise and stronger than the assertion of Theorem 1.1.

Six years ago G. Alberti [2012] announced the validity of the following result, obtained in collaboration
with M. Csörnyei, E. D’Aniello and B. Kirchheim.

Theorem 1.2. Let k; n; d 2 N, p > 1, kp > n, and 0 < � � n. Suppose that a mapping f W Rn! Rd

belongs to the Sobolev class W k
p and � ¤ �� D n� .k� 1/p. Then f has the .�; �/-N-property, where

the value � D �.�/ is defined in (1-1).

Here for convenience we use the following notation: a mapping f W Rn! Rd is said to satisfy the
.�; �/-N-property if H� .f .E//D 0 whenever H� .E/D 0, E � Rn.

We remark that in [Alberti 2012] the limiting case � D �� > 0 is left as an open question. Further, as
far as we know, proofs of the results announced have not been published (it was written in [Alberti 2012]
that the work was still “in progress”).

In the present paper we extend the assertion above to the case of fractional Sobolev spaces and also we
cover the critical case � D �� as well.

Theorem 1.3. Let ˛ > 0, 1 < p <1, ˛p > n, and v 2L ˛
p .R

n;Rd /. Suppose that 0 < � � n. Then the
following assertions hold:

(i) If � ¤ �� D n� .˛ � 1/p, then v has the .�; �/-N-property, where the value � D �.�/ is defined
in (1-1).

(ii) If ˛ > 1 and � D �� > 0, then �.�/D �� and the mapping v in general has no .��; ��/-N-property;
i.e., it could be that H��.v.E// > 0 for some E � Rn with H��.E/D 0.

Remark 1.4. We stress that there is no “competition” with Alberti, Csörnyei, D’Aniello and Kirchheim
concerning Theorems 1.2–1.3. When we published our first paper on the topic [Bourgain et al. 2013],
those authors contacted us and it was agreed that mutual citations would be provided (and indeed appeared
in [Alberti 2012; Bourgain et al. 2013]). Similarly, when the present paper was finished, we contacted
one of those authors. They told us that after [Alberti 2012] they had some further progress, especially for
� D ��. We came to an agreement that each research group could publish their results with independent
proofs, respecting each other’s activity in the subject.
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Remark 1.5. If ˛ D 1 and p > n, then �� D n and L ˛
p .R

n;Rd / D W 1
p .R

n;Rd /, and the validity of
the .�; �/-N-property for all � 2 .0; n� and for all mappings of these spaces is a simple corollary of the
classical Morrey inequality [Malý and Martio 1995].

Theorem 1.3 omits the limiting cases ˛p D n and � D ��. It is possible to cover these cases as
well using the Lorentz norms. Namely, denote by L ˛

p;1.R
n;Rd / the space of functions which can be

represented as a convolution of the Bessel potential K˛ with a function g from the Lorentz space Lp;1
(see the definition of these spaces in Section 2); that is,

kvkL ˛
p;1
WD kgkLp;1 :

Theorem 1.6. Let ˛ > 0, 1 < p <1, ˛p � n, and 0 < � � n. Suppose that v 2 L ˛
p;1.R

n;Rd /. Then
v is a continuous function satisfying the .�; �/-N-property, where again the value � D �.�/ is defined
in (1-1) (i.e., the limiting case � D �� is included).

Remark 1.7. In the case ˛ D k 2 N, kp D n, p � 1, we have �� D p and the validity of the .�; �/-
N-property for mappings of the corresponding Sobolev–Lorentz space W k

p;1.R
n;Rd / was proved in

[Bourgain et al. 2015; Korobkov and Kristensen 2018].

1A. The counterexample for the limiting case � D �* in Theorem 1.3(ii). Suppose again that

n > .˛� 1/p > n�p:

Let us demonstrate that the positive assertion in Theorem 1.3(i) is very sharp: it fails in general for the
limiting case

� D �� D n� .˛� 1/p:

Take
nD 4; ˛ D 2; p D 3:

Then by definition
�� D 1:

So we have to construct a function from the Sobolev space L 2
3 .R

4/DW 2
3 .R

4/ which does not have the
N-property with respect to H1-measure. Consider the restrictions (traces) of functions fromW 4

3 .R
4/ to the

real line. It is well known that the space of these traces coincides exactly with the Besov spaceB13;3.R/; see,
e.g., [Jonsson and Wallin 1984, Chapter 1, Theorem 4 on p. 20]. Consider the function of one real variable

f� .x/D e
�x2

1X
mD1

5�mm�� cos.5mx/;

where
1
3
< � < 1

2
:

It is known that f� 2 B13;3.R/ under the assumptions above; see, e.g., §6.8 in Chapter V of [Stein 1970].
Nevertheless, the following result holds.

Theorem 1.8. The function f� W R! R from above does not have the .1;1/-N-property (with respect to
H1-measure).
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This result is a direct consequence of the following two classical facts:

Theorem 1.9 [Saks 1937, Chapter IX, Theorem 7.7]. If a continuous function f W R ! R has the
N-property, then it is differentiable on a set of positive measure.

Theorem 1.10 [Zygmund 1959, Chapter V, §6, p. 206]. The continuous function

f .x/D

1X
mD1

b�m"m cos.bmx/;

with b > 1 and "m! 0,
P1
mD1 "

2
m D1, is not differentiable almost everywhere.

Note that the functions f� , f from Theorems 1.8 and 1.10 are the typical examples of so-called
lacunary Fourier series.

From Theorem 1.8 it follows that there exists a function v 2W 2
3 .R

4/ whose restriction to the real line
coincides with f� ; i.e., v does not have the .1;1/-N-property. The construction of the counterexample is
finished.

1B. Fubini-type theorems for N-properties. The N-properties formulated above have an important
application in the recent extension of the Morse–Sard theorem to Sobolev spaces (see [Ferone et al. 2017]
and also Section 1C below). Here we need the following notion.

For a pair numbers �; � > 0 we will say that a continuous function v W Rn! Rd satisfies the .�; �/-
N�-property if for every q 2 Œ0; �� and for any set E � Rn with H � .E/D 0 we have

H�.1�
q
�
/.E \ v�1.y//D 0 for Hq-a.a. y 2 Rd : (1-2)

This implies, in particular, the usual .�; �/-N-property

H� .v.E//D 0 whenever H� .E/D 0:

(Indeed, it is sufficient to take q D � in (1-2).) In other words, the .�; �/-N�-property is stronger than
the usual .�; �/ one.

The N�-property can be considered as a Fubini-type theorem for the usual N-property. Now we can
strengthen our previous results in the following way.

Theorem 1.11. Let ˛ > 0, 1 < p <1, ˛p > n, and v 2L ˛
p .R

n;Rd /. Suppose that 0 < � � n. Then:

(i) If � ¤ �� D n� .˛� 1/p, then v has the .�; �/-N�-property, where the value � D �.�/ is defined
in (1-1).

(ii) If ˛ > 1 and � D ��, then �.�/D �� and the mapping v in general has no .��; ��/-N-property; i.e.,
it could be that H��.v.E// > 0 for some E � Rn with H��.E/D 0.

Remark 1.12. If ˛ D 1 and p > n, then �� D n and L ˛
p .R

n;Rd / D W 1
p .R

n;Rd /, and the validity of
the .�; �/-N�-property for all � 2 .0; n� and for all mappings of these spaces is a simple corollary of the
classical Morrey inequality and Theorem 4.1 below.

Of course, Theorem 1.11 omits the limiting cases ˛p D n and � D ��. Again, it is possible to cover
these cases as well using the Lorentz norms.
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Theorem 1.13. Let ˛ > 0, 1 < p <1, ˛p � n, and 0 < � � n. Suppose that v 2L ˛
p;1.R

n;Rd /. Then
v is a continuous function satisfying the .�; �/-N�-property, where again the value � D �.�/ is defined
in (1-1).

Remark 1.14. In the case ˛ D k 2 N, kp D n, p � 1, we have �� D p and the validity of the .�; �/-
N�-property for mappings of the corresponding Sobolev–Lorentz space W k

p;1.R
n;Rd / was proved in

[Bourgain et al. 2015; Hajłasz et al. 2017].

1C. Application to the Morse–Sard and Dubovitskiı̆–Federer theorems. The classical Morse–Sard the-
orem claims that for a mapping vWRn!Rm of class Ck the measure of the set of critical values v.Zv;m/
is zero under the condition k > max.n �m; 0/. Here the critical set, or m-critical set, is defined as
Zv;mDfx 2Rn W rankrv.x/<mg. Further Dubovitskiı̆ [1957; 1967] and Federer [1969, Theorem 3.4.3]
independently found some elegant extensions of this theorem to the case of other (e.g., lower) smoothness
assumptions. They also established the sharpness of their results within the Ck category.

Recently the following bridge theorem, which includes all the results above as particular cases, was
found.

We say that a mapping v WRn!Rd belongs to the class C k;˛ for some integer positive k and 0<˛� 1
if there exists a constant L� 0 such that

jr
kv.x/�rkv.y/j � Ljx�yj˛ for all x; y 2 Rn:

To simplify the notation, let us make the following agreement: for ˛ D 0 we identify C k;˛ with usual
spaces of C k-smooth mappings. The following theorem was obtained in [Ferone et al. 2017].

Theorem 1.15. Let m 2 f1; : : : ; ng, k � 1, d � m, 0 � ˛ � 1, and v 2 C k;˛.Rn;Rd /. Then for any
q 2 .m� 1;1/ the equality

H�q .Zv;m\ v�1.y//D 0 for Hq-a.a. y 2 Rd

holds, where

�q D n�mC 1� .kC˛/.q�mC 1/;

and Zv;m denotes the set of m-critical points of v, that is, Zv;m D fx 2 Rn W rankrv.x/�m� 1g.

Here and in the following we interpret Hˇ as the counting measure when ˇ � 0. Let us note that for
the classical C k-case, i.e., when ˛ D 0, the behaviour of the function �q is very natural:

�q D 0 for q D qı Dm� 1C .n�mC 1/=k (Dubovitskiı̆–Federer theorem, 1967);

�q < 0 for q > qı (Dubovitskiı̆–Federer theorem, 1967);

�q D n�m� kC 1 for q Dm (Dubovitskiı̆ theorem, 1957);

�q D n�mC 1 for q Dm� 1:

The last value cannot be improved in view of the trivial example of a linear mapping LWRn! Rd of
rank m� 1.



LUZIN N-PROPERTY AND UNCERTAINTY PRINCIPLE FOR SOBOLEV MAPPINGS 1155

Thus, Theorem 1.15 contains all the previous theorems (Morse–Sard, Dubovitskiı̆–Federer, and even
the Bates theorem [1993] for C k;1-Lipschitz functions) as particular cases.

Intuitively, the sense of this bridge theorem is very close to Heisenberg’s uncertainty principle in
theoretical physics: the more precise the information we receive on the measure of the image of the
critical set, the less precisely the preimages are described, and vice versa.

The following analog of the bridge theorem, Theorem 1.15, was obtained for the Sobolev and fractional
Sobolev cases (items (i)–(ii) and items (iii)–(iv), respectively).

Theorem 1.16 [Hajłasz et al. 2017; Ferone et al. 2017]. Let m 2 f1; : : : ; ng, k � 1, d �m, 0� ˛ < 1,
p � 1 and let v W Rn! Rd be a mapping for which one of the following cases holds:

(i) ˛ D 0, kp > n, and v 2W k
p .R

n;Rd /.

(ii) ˛ D 0, kp D n, and v 2W k
p;1.R

n;Rd /.

(iii) 0 < ˛ < 1, p > 1, .kC˛/p > n, and v 2L kC˛
p .Rn;Rd /.

(iv) 0 < ˛ < 1, p > 1, .kC˛/p D n, and v 2L kC˛
p;1 .Rn;Rd /.

Then for any q 2 .m� 1;1/ the equality

H�q .Zv;m\ v�1.y//D 0 for Hq-a.a. y 2 Rd

holds, where again
�q D n�mC 1� .kC˛/.q�mC 1/;

and Zv;m denotes the set of m-critical points of v, that is, Zv;m D fx 2 Rn nAv W rankrv.x/�m� 1g.

Here Av means the set of nondifferentiability points for v. Recall, that by approximation results
[Swanson 2002; Korobkov and Kristensen 2018] under the conditions of Theorem 1.16 the equalities

H� .Av/D 0 for all � > �� WD n� .kC˛� 1/p in cases (i), (iii);

H��.Av/DHp.Av/D 0 �� WD n� .kC˛� 1/p D p in cases (ii), (iv)
are valid (in particular, Av D∅ if .kC˛�1/p > n). Our purpose is to prove that the impact of the “bad”
set Av is negligible in the bridge Dubovitskiı̆–Federer theorem (Theorem 1.16), i.e., that the following
statement holds:

Theorem 1.17. Let the conditions of Theorem 1.16 be fulfilled for a function v W Rn! Rd. Then

H�q .Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd

for any q > m� 1.

Remark 1.18. Since �q � 0 for q � qı D m� 1C n�mC1
kC˛

, the assertions of Theorems 1.16–1.17 are
equivalent to the equality 0DHqŒv.Av [Zv;m/� for q � qı, so it is sufficient to check the assertions of
Theorems 1.16–1.17 for q 2 .m� 1; qı� only.

Finally, let us comment briefly that the merge ideas for the proofs are from our previous papers
[Bourgain et al. 2015; Korobkov and Kristensen 2014; 2018; Hajłasz et al. 2017]. In particular, the papers
[Bourgain et al. 2013; 2015] by one of the authors with J. Bourgain and J. Kristensen contain many of
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the key ideas that allow us to consider nondifferentiable Sobolev mappings. For the implementation of
these ideas one relies on estimates for the Hardy–Littlewood maximal function in terms of Choquet-type
integrals with respect to Hausdorff capacity. In order to take full advantage of the Lorentz context we
exploit the recent estimates from [Korobkov and Kristensen 2018] (recalled in Theorem 2.11 below);
see also [Adams 1988] for the case p D 1.

2. Preliminaries

By an n-dimensional interval we mean a closed cube in Rn with sides parallel to the coordinate axes. If
Q is an n-dimensional cubic interval then we write `.Q/ for its side-length.

For a subset S of Rn we write L n.S/ for its outer Lebesgue measure (sometimes we use the sym-
bol measS for the same object). The m-dimensional Hausdorff measure is denoted by Hm and the
m-dimensional Hausdorff content by Hm1. Recall that for any subset S of Rn we have by definition

Hm.S/D lim
t&0

Hmt .S/D sup
t>0

Hmt .S/;

where for each 0 < t �1,

Hmt .S/D inf
� 1X
iD1

.diamSi /
m
W diamSi � t; S �

1[
iD1

Si

�
:

It is well known that Hn.S/DHn1.S/�L n.S/ for sets S � Rn (“�” means, here and in the following,
that these values have upper and lower bounds with positive constants independent of the set S ).

By Lp.Rn/, 1 � p �1, we will denote the usual Lebesgue space equipped with the norm k � kLp .
The notation kf kLp.E/ means k1E �f kLp , where 1E is the indicator function of E.

Working with locally integrable functions, we always assume that the precise representatives are chosen.
If w 2 L1;loc.�/, then the precise representative w� is defined for all x 2� by

w�.x/D

�
limr&0 �

R
B.x;r/w.z/ dz if the limit exists and is finite,

0 otherwise;

where the dashed integral as usual denotes the integral mean,

�

Z
B.x;r/

w.z/ dz D
1

L n.B.x; r//

Z
B.x;r/

w.z/ dz;

and B.x; r/ D fy W jy � xj < rg is the open ball of radius r centred at x. Henceforth we omit special
notation for the precise representative, writing simply w� D w.

For 0� ˇ < n, the fractional maximal function of w of order ˇ is given by

Mˇw.x/D sup
r>0

rˇ �

Z
B.x;r/

jw.z/j dz: (2-1)

When ˇ D 0, M0 reduces to the usual Hardy-Littlewood maximal operator M.

The Sobolev space Wk
p.R

n;Rd / is as usual defined as consisting of those Rd -valued functions f 2
Lp.Rn/ whose distributional partial derivatives of orders l � k belong to Lp.Rn/; for detailed definitions
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and differentiability properties of such functions, see, e.g., [Evans and Gariepy 1992; Mazya 1985; Ziemer
1989; Dorronsoro 1989]. Denote by rkf the vector-valued function consisting of all k-th order partial
derivatives of f arranged in some fixed order. However, for the case of first order derivatives k D 1 we
shall often think of rf .x/ as the Jacobi matrix of f at x, that is, the d �n matrix whose r-th row is the
vector of partial derivatives of the r-th coordinate function.

We use the norm
kf kWk

p
D kf kLp Ckrf kLp C � � �C kr

kf kLp ;

and unless otherwise specified all norms on the spaces Rs (s 2 N) will be the usual euclidean norms.
If k < n, then it is well known that functions from Sobolev spaces Wk

p.R
n/ are continuous for p >n=k

and can be discontinuous for p � pı D n=k [Mazya 1985; Ziemer 1989]. The Sobolev–Lorentz space
Wk
pı;1

.Rn/�Wk
pı
.Rn/ is a refinement of the corresponding Sobolev space. Among other things, functions

that are locally in Wk
pı;1

on Rn are in particular continuous.
Here we only mentioned the Lorentz space Lp;1, and in this case one may rewrite the norm as follows

[Malý 2003, Proposition 3.6]:

kf kLp;1 D

Z C1
0

ŒL n.fx 2 Rn W jf .x/j> tg/�
1
p dt:

As for Lebesgue norm we set kf kLp;1.E/ WD k1E �f kLp;1 . Of course, we have the inequality

kf kLp � kf kLp;1 : (2-2)

Moreover, recall that by properties of Lorentz spaces, the standard estimate

kMf kLp;q � Ckf kLp;q (2-3)

holds for 1 < p <1 [Malý 2003, Theorem 4.4].
Denote by Wk

p;1.R
n/ the space of all functions v 2 Wk

p.R
n/ such that in addition the Lorentz

norm krkvkLp;1 is finite.

2A. On potential spaces L ˛
p . In this paper we deal with the .Bessel/ potential spaces L ˛

p with ˛ > 0.
Recall that a function v WRn!Rd belongs to the space L ˛

p if it is a convolution of the Bessel kernel K˛
with a function g 2 Lp.Rn/:

v D G˛.g/ WDK˛ �g;

where yK˛.�/D .1C 4�2�2/�˛=2. In particular,

kvkL ˛
p
WD kgkLp :

It is well known that
L ˛
p .R

n/DW ˛
p .R

n/ if ˛ 2 N and 1 < p <1; (2-4)

and we use the agreement that L ˛
p .R

n/D Lp.R
n/ when ˛ D 0. Moreover, the following well-known

result holds:
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Theorem 2.1 [Stein 1970, Lemma 3, p. 136]. Let ˛ � 1 and 1 < p <1. Then v 2L ˛
p .R

n/ if and only if
v 2L ˛�1

p .Rn/ and @v=@xj 2L ˛�1
p .Rn/ for every j D 1; : : : ; n.

The following technical bounds will be used on several occasions (for convenience, we prove them in
the Appendix).

Lemma 2.2. Let ˛ > 1, nCp > ˛p > n, and p > 1. Suppose that v 2L ˛
p .R

n/; i.e., vD G˛.g/ for some
g 2 Lp.R

n/. Then for every n-dimensional cubic interval Q � Rn with r D `.Q/� 1 the estimate

diam v.Q/� C

�
kMgkLp.Q/r

˛� n
p C

1

rn�1

Z
Q

I˛�1jgj.y/ dy
�

(2-5)

holds, where the constant C depends on n; p; d; ˛ only, and

Iˇf .x/ WD

Z
Rn

f .y/

jy � xjn�ˇ
dy

is the Riesz potential of order ˇ.

Sometimes it is not convenient to work with the Riesz potential, and we need also the following variant
of the estimates above.

Lemma 2.3. Let ˛ > 0, nC p > ˛p > n, and p > 1. Suppose that v 2 L ˛
p .R

n/; i.e., v D G˛.g/ for
some g 2 Lp.Rn/. Fix arbitrary � > 0 such that ˛C � � 1. Then for every n-dimensional cubic interval
Q � Rn with r D `.Q/� 1 the estimate

diam v.Q/� C

�
kMgkLp.Q/r

˛� n
p C

1

rnC��1

Z
Q

M˛�1C�g.y/ dy
�

(2-6)

holds, where the constant C depends on n; p; d; ˛; � only.

For reader’s convenience, we prove Lemmas 2.2–2.3 in the Appendix.

2B. On Lorentz potential spaces L ˛
p;1

. To cover some other limiting cases, denote by L ˛
p;1.R

n;Rd / the
space of functions which can be represented as a convolution of the Bessel potential K˛ with a function g
from the Lorentz space Lp;1; that is,

kvkL ˛
p;1
WD kgkLp;1 :

Because of inequality (2-2), we have the evident inclusion

L ˛
p;1.R

n/�L ˛
p .R

n/:

Since these spaces are not so common, let us discuss briefly some of their properties. We need some
technical facts concerning the Lorentz spaces.

Lemma 2.4 [Rakotondratsimba 1998]. Let 1 < p <1. Then for any j D 1; : : : ; n the Riesz transform
Rj is continuous from Lp;1.R

n/ to Lp;1.Rn/.

Lemma 2.5 [Schep 1995]. Let 1 < p <1 and � be a finite Borel measure on Rn. Then the convolution
transform f 7! f �� is continuous in the space Lp;1.Rn/ and in L ˛

p .R
n/ for all ˛ > 0.
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Using these facts and repeating almost word for word the arguments from [Stein 1970, §3.3–3.4], one
can obtain the following very natural results.

Theorem 2.6 (cf. [Stein 1970, Lemma 3, p. 136]). Let ˛ � 1 and 1 < p <1. Then f 2L ˛
p;1.R

n/ if and
only if f 2L ˛�1

p;1 .Rn/ and @f=@xj 2L ˛�1
p;1 .Rn/ for every j D 1; : : : ; n.

Corollary 2.7. Let k 2 N and 1 < p <1. Then L k
p;1.R

n/DW k
p;1.R

n/, where W k
p;1.R

n/ is the space of
functions such that all its distributional partial derivatives of order � k belong to Lp;1.Rn/.

Note that the space W k
p;1.R

n/ admits an even simpler (but equivalent) description: it consists of
functions f from the usual Sobolev space W k

p .R
n/ satisfying the additional condition rkf 2 Lp;1.Rn/

(i.e., this condition is on the highest derivatives only); see, e.g., [Malý 2003].
As before, we need some standard estimates.

Lemma 2.8. Let ˛ > 0, nCp � ˛p � n, and p > 1. Suppose that v 2 L ˛
p;1.R

n/; i.e., v D G˛.g/ for
some g 2Lp;1.Rn/. Then the function v is continuous and for every n-dimensional cubic intervalQ�Rn

with r D `.Q/� 1 the estimate

diam v.Q/� C

�
kMgkLp;1.Q/r

˛� n
p C

1

rnC��1

Z
Q

M˛�1C�g.y/ dy
�

(2-7)

holds for arbitrary (fixed) parameter � > 0 such that ˛C � � 1 (here the constant C again depends on
n; p; d; ˛; � only). Furthermore, if ˛ > 1, then

diam v.Q/� C

�
kMgkLp;1.Q/r

˛� n
p C

1

rn�1

Z
Q

I˛�1jgj.y/ dy
�
: (2-8)

For the reader’s convenience, we prove Lemma 2.8 in the Appendix.

2C. On Choquet-type integrals. Let M ˇ be the space of all nonnegative Borel measures � on Rn such
that

kj�kjˇ D sup
I�Rn

`.I /�ˇ�.I / <1;

where the supremum is taken over all n-dimensional cubic intervals I � Rn and `.I / denotes the side
length of I.

Recall the following classical theorem proved by D. R. Adams.

Theorem 2.9 (see [Mazya 1985, §1.4.1] or [Adams 1973]). Let ˛ > 0, n�˛p > 0, s > p > 1 and � be
a positive Borel measure on Rn. Then for any g 2 Lp.Rn/ the estimateZ

jI˛gj
s d�� Ckj�kjˇ � kgk

s
Lp

(2-9)

holds with ˇ D s
p
.n�˛p/, where C depends on n, p, s, ˛ only.

The estimate (2-9) fails for the limiting case s D p. Namely, there exist functions g 2 Lp.Rn/ such
that jI˛gj.x/DC1 on some set of positive .n�˛p/-Hausdorff measure. Nevertheless, there are two
ways to cover this limiting case s D p. The first way is to use the maximal function M˛ instead of the
Riesz potential on the left-hand side of (2-9).
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Theorem 2.10 [Adams 1998, Theorem 7, p. 28]. Let ˛ > 0, n�˛p > 0, s � p > 1 and � be a positive
Borel measure on Rn. Then for any g 2 Lp.Rn/ the estimateZ

jM˛gj
s d�� Ckj�kjˇ � kgk

s
Lp

(2-10)

holds with ˇ D .s=p/.n�˛p/, where C depends on n, p, s, ˛ only.

The second way is to use the Lorentz norm instead of the Lebesgue norm on the right-hand side
of (2-9):

Theorem 2.11 [Korobkov and Kristensen 2018, Theorem 0.2]. Let ˛ >0, n�˛p >0, and � be a positive
Borel measure on Rn. Then for any g 2 Lp.Rn/ the estimateZ

jI˛gj
p d�� Ckj�kjˇ � kgk

p
Lp;1

holds with ˇ D n�˛p, where C depends on n, p, ˛ only.

2D. On Fubini-type theorems forN-properties. Recall that by the usual Fubini theorem if a set E �R2

has zero plane measure, then for H1-almost all straight lines L parallel to the coordinate axes we have
H1.L\E/D 0. The next result can be considered as a Fubini-type theorem for the N-property.

Theorem 2.12 [Hajłasz et al. 2017, Theorem 5.3]. Let �� 0, q > 0, and v W Rn! Rd be a continuous
function. For a set E � Rn define the set function

ˆ.E/D inf
E�

S
j Dj

X
j

.diamDj /
� Œdiam v.Dj /�

q;

where the infimum is taken over all countable families of compact sets fDj gj2N such that E �
S
j Dj .

Then ˆ. � / is countably subadditive and we have the implication

ˆ.E/D 0 D)
�
H�.E \ v�1.y//D 0 for Hq-a.a. y 2 Rd

�
:

2E. On local properties of considered potential spaces. Let B be some family of continuous functions
defined on Rn. For a set �� Rn define the space Bloc.�/ in the following standard way:

Bloc.�/

WD ff W�! R W for any compact set E ��; there exists g 2 B such that f .x/D g.x/ for all x 2Eg:

For simplicity put Bloc D Bloc.R
n/.

It is easy to see that for ˛ > 0 and q > s > p > 1 with ˛p � n the following inclusions hold:

L ˛
q;loc �L ˛

s;loc �L ˛
p;1;loc:

Since the N-properties have a local nature, this means that if we prove some N - (or N�-) property for L ˛
p ,

then the same N-property will be valid for the spaces L ˛
p;1 and L ˛

q for all q > p. Similarly, if we prove
some N - (or N�-) property for L ˛

p;1, then the same N-property will be valid for the spaces L ˛
q with

q > p, etc.
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3. Proofs of the N-properties (Theorems 1.3, 1.6)

In this section we will prove Theorems 1.3 and 1.6. For each theorem, we will consider different cases.
The most interesting case is when ˛p < nCp, which implies that �� > 0: in such a situation we will
consider the supercritical case � > �� > 0 and the subcritical case 0 < � < �� (see, respectively, Sections
3A and 3B below). The case ˛p � nCp is contained in Section 3C.

In the proofs we will consider a particular family of intervals to cover a given set, whose properties
are more suitable for our aims. Below a dyadic interval means a closed cube in Rn of the form
Œk1=2

l ; .k1C 1/=2
l �� � � � � Œkn=2

l ; .knC 1/=2
l �, where ki ; l are integers. Define

ƒs.E/D inf
� 1X
iD1

`.Qi /
s
WE �

1[
iD1

Qi ; Qi dyadic
�
:

It is well known that ƒs.E/�Hs.E/ for all subset E �Rn; in particular, ƒs and Hs have the same null
sets.

Let fQj gj2N be a family of n-dimensional dyadic intervals. For a given parameter � > 0 we say that
the family fQj g is regular if

P
`.Qj /

� <1 and for any n-dimensional dyadic interval Q the estimate

`.Q/� �
X

j WQj�Q

`.Qj /
� (3-1)

holds. Since dyadic intervals are either nonoverlapping or contained in one another, (3-1) implies that
any regular family fQj g must in particular consist of nonoverlapping intervals. Moreover, the following
result holds.

Lemma 3.1 [Bourgain et al. 2015, Lemma 2.3]. Let fJig be a family of n-dimensional dyadic intervals
with

P
i `.Ji /

� <1. Then there exists a regular family fQj g of n-dimensional dyadic intervals such thatS
i Ji �

S
j Qj and X

j

`.Qj /
�
�

X
i

`.Ji /
� :

3A. Proof of Theorem 1.3: the supercritical case � > �* > 0. Fix the parameters n 2N, ˛ > 0, p > 1
such that

˛p > n; �� D n� .˛� 1/p > 0; (3-2)

and take
� 2 .��; n�: (3-3)

Fix also a mapping v 2L ˛
p .R

n;Rd /. If ˛D 1, then v 2W 1
p .R

n/ with p > n and � D n, and the result is
well known. So we restrict our attention to the nontrivial case ˛ > 1, � < n.

Now let fQigi2N be a regular family of n-dimensional dyadic intervals. Consider the corresponding
measure � defined as Z

f d� WD
X
i

1

`.Qi /n��

Z
Qi

f .y/ dy: (3-4)
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As usual, for a measurable set E � Rn put �.E/D
R
1E d�, where 1E is an indicator function of E.

Lemma 3.2 [Korobkov and Kristensen 2014, Lemma 2.4]. For any regular family fQigi2N of n-
dimensional dyadic intervals the corresponding measure � defined by (3-4) satisfies

�.Q/� `.Q/�

for any dyadic cube Q � Rn.

From this fact and from the Adams Theorem 2.9, we immediately obtain:

Lemma 3.3. Let g 2 Lp.Rn/. Then for any regular family fQig of n-dimensional dyadic intervals the
estimate X

i

1

`.Qi /n��

Z
Qi

.I˛�1jgj/
s dy � CkgksLp (3-5)

holds, where s WD .�=��/p > p and C does not depend on g.

Now we are ready to formulate the key step of the proof.

Lemma 3.4. Under the assumptions above, for each " > 0 there exists ı D ı."; v/ > 0 such that for any
regular family fQig of n-dimensional dyadic intervals ifX

i

`.Qi /
� < ı;

then X
i

Œdiam v.Qi /�
� < ":

Proof. Since v 2L ˛
p .R

n;Rd /, by the definition of this space, it is easy to see that for any Q" > 0 there
exists a representation

v D v1C v2;

where vi 2L ˛
p .R

n;Rd /, v1 2 C1.Rn/,

krv1kL1.Rn/ <1;

and
v2 D G˛.g/ with kgkLp < Q": (3-6)

This means, in particular, that
jrv1.x/j<K for all x 2 Rn; (3-7)

for some K DK.Q"; v/ 2 R. Take any regular family fQig of n-dimensional dyadic intervals such thatX
i

`.Qi /
� < ı (3-8)

(the exact value of ı will be specified below). Put ri D `.Qi /. Then by Lemma 2.2X
i

Œdiam v.Qi /�
�
� C.S1CS2CS3/;
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where

S1 D
X
i

Œdiam v1.Qi /�
�

(3-7)�(3-8)
� n�=2K�ı;

S2 D
X
i

kMgk�Lp.Qi /r
�.˛� n

p
/

i ;

S3 D
X
i

�
1

rn�1i

Z
Qi

I˛�1jgj.y/ dy
��
:

Let us estimate S2. Since ˛� n
p
< 1 by (3-2), we can apply the Hölder inequality to obtain

S2 �

�X
i

kMgk
� p
n�p.˛�1/

Lp.Qi /

�n
p
�˛C1

�

�X
i

r�i

�̨ � n
p (3-8)
�

�X
i

kMgk
� p
n�p.˛�1/

Lp.Qi /

�n
p
�˛C1

� ı˛�
n
p

(3-2)
D

�X
i

kMgk
p �
��

Lp.Qi /

���
p

� ı˛�
n
p

(3-3)
� kMgk�Lp.[iQi / � ı

˛� n
p

(3-6)
� C Q"� � ı˛�

n
p I

here C is the constant from the the Hardy–Littlewood maximal inequality. Similarly, taking s D .�=��/p
and applying twice the Hölder inequality in S3 (the first time for the integrals, and the second time for
sums), we obtain

S3 �
X
i

�Z
Qi

.I˛�1jgj/
s dy

���
p

� r
n.�� ��

p
/

i � r
.1�n/�
i D

X
i

�
1

rn��i

Z
Qi

.I˛�1jgj/
s dy

���
p

� r
.1� ��

p
/�

i

Hölder
�

�X
i

1

rn��i

Z
Qi

.I˛�1jgj/
s dy

���
p

�

�X
i

r�i

�1� ��
p (3-5); (3-6); (3-8)

� C Q"� � ı1�
��
p :

So taking ı sufficiently small so that K�ı < 1
2
" is small, we have S1C S2C S3 < " as required, and

Lemma 3.4 is proved. �

Finally, if E is a set such that H� .E/ D 0, then also ƒ� .E/ D 0, and this lemma together with
Lemma 3.1 implies the validity of the assertion Theorem 1.3(i) for the supercritical case � > �� > 0.

3B. Proof of Theorem 1.3: the subcritical case 0 < � < �*. Now fix the parameters n 2 N, ˛ > 0,
p > 1 such that

˛p > n; �� D n� .˛� 1/p > 0; (3-9)

and take
� 2 .0; ��/; � D

p�

˛p�nC �
:

Evidently, by this definition
� > �: (3-10)

Fix also a mapping v 2L ˛
p .R

n;Rd /. Take an additional parameter � such that

.˛� 1C �/ > 0 and n� .˛� 1C �/p > 0:
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From Lemma 3.2 and the Adams theorem 2.10, taking s D p, we immediately obtain:

Lemma 3.5. Let g 2 Lp.Rn/. Then for any � -regular family fQig of n-dimensional dyadic intervals the
estimate X

i

1

`.Qi /n���

Z
Qi

.M˛�1C� jgj/
p dy � CkgkpLp (3-11)

holds, where �� D n� .˛� 1C �/p and C does not depend on g.

As in the previous case, the proof of Theorem 1.3 in the case 0 < � < �� will be complete once we
establish the following result.

Lemma 3.6. Under above assumptions, for each " > 0 there exists ı D ı."; v/ > 0 such that for any
regular family fQig of n-dimensional dyadic intervals ifX

i

`.Qi /
� < ı;

then X
i

Œdiam v.Qi /�
� < ":

Proof. Again, since v 2 L ˛
p .R

n;Rd /, by the definition of this space, for any Q" > 0 there exists a
representation

v D v1C v2;

where vi 2L ˛
p .R

n;Rd /, v1 2 C1.Rn/,

krv1kL1.Rn/ <1;

and

v2 D G˛.g/ with kgkLp < Q": (3-12)

This means, in particular, that

jrv1.x/j<K for all x 2 Rn; (3-13)

for some K DK.Q"; v/ 2 R. Take any regular family fQig of n-dimensional dyadic intervals such thatX
i

`.Qi /
� < ı < 1 (3-14)

(the exact value of ı will be specified below). Put ri D `.Qi /. Then by Lemma 2.3X
i

Œdiam v.Qi /�
�
� C.S1CS2CS3/;
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where

S1 D
X
i

Œdiam v1.Qi /�
�

(3-10);(3-13)�(3-14)
� CK�ı;

S2 D
X
i

kMgk�Lp.Qi /r
�.˛� n

p
/

i ;

S3 D
X
i

�
1

rn�1C�i

Z
Qi

M˛�1C�g.y/ dy
��
:

Let us estimate S2. Since by assumptions (3-9) the inequality � < p holds and

p� �

p
D

˛p�n

˛p�nC �
; �

p

p� �
D

�

˛� .n=p/
(3-15)

we can apply the Hölder inequality to obtain

S2 �

�X
i

kMgk
p

Lp.Qi /

��
p

�

�X
i

r
�.˛� n

p
/ p
p��

i

�p��
p

D .kMgk
p

Lp.
S
iQi /

/
�
p �

�X
i

r�i

�p��
p (3-14); (3-12)

� C Q"�ı1�
�
p :

Similarly, applying twice the Hölder inequality in S3 (the first time for the integrals, and the second time
for sums), we obtain

S3�
X
i

�Z
Qi

.M˛�1C�g/
p dy

��
p

�r
np�1
p
�

i �r
.1�n��/�
i D

X
i

�
1

r
n���
i

Z
Qi

.M˛�1C� jgj/
p dy

��
p

�r
.˛� n

p
/�

i

Hölder
�

�X
i

1

r
n���
i

Z
Qi

.M˛�1C� jgj/
p dy

��
p

�

�X
i

r
.˛� n

p
/� p
p��

i

�1��
p

(3-15)
D

�X
i

1

r
n���
i

Z
Qi

.M˛�1C� jgj/
p dy

��
p

�

�X
i

r�i

�1��
p (3-11); (3-12); (3-14)

� C Q"��ı1�
�
p :

So taking ı sufficiently small so that K�ı < 1
2
" is small, we have S1CS2CS3 < " as required, and the

lemma is proved. �

Finally, we conclude exactly as in the previous case.

3C. Proof of Theorem 1.3: the supercritical case �* � 0 < �. Consider now the case ˛p > n and
�� D n � .˛ � 1/p � 0. If .˛ � 1/p > n, then every function v 2 L ˛

p .R
n;Rd / is locally Lipschitz

(even C 1) and the result is trivial. Suppose now .˛� 1/p D n. Under these assumptions, let � > 0 and
v 2L ˛

p .R
n;Rd /. Take a number 1 < Qp < p such that ˛ Qp > n and � > ��� D n� .˛� 1/ Qp > 0. Then we

have v 2L ˛
Qp;loc.R

n;Rd / (see Section 2E). Therefore, by the previous case � > Q�� > 0, the mapping v
has the .�; �/-N-property. �
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3D. Proof of Theorem 1.6. The proof of Theorem 1.6 is very similar to that of Theorem 1.3: the main
differences concern the limiting cases ˛p D n or � D ��.

Case I: ˛p > n and � ¤ ��. The required assertion follows immediately from Theorem 1.3 and from the
inclusion L ˛

p;1.R
n/�L ˛

p .R
n/ (this inclusion follows from the definitions of these space and from the

relation Lp;1.Rn/� Lp.Rn/).

Case II: ˛pD n and � > ��>0. The required assertion can be proved by repeating almost word for word
the same arguments as in the supercritical case in Theorem 1.3 with the following evident modifications:
now one has to apply the estimate (2-8) (which covers the case ˛pD n) instead of previous estimate (2-5),
and, in addition, one needs the following analog of the additivity property for the Lorentz norms:X

i

kf k
p

Lp;1.Qi /
� kf k

p

Lp;1.
S
iQi /

for any family of disjoint cubes [Malý 2003, Lemma 3.10].

Case III: ˛p � n and � D ��. The required assertion can be proved by repeating almost word for word
the same arguments as in the supercritical case in Theorem 1.3 with the following evident modifications:
now � D �� (this simplifies the calculations a little bit) and one has to apply Theorem 2.11 (which covers
the case s D p) and the estimate (2-8) instead of Theorem 2.9 (where s > p) and the inequality (2-5),
respectively.

Case IV: ˛p D n and 0 < � < ��. By a direct calculation, we get �.�/� p for any � 2 .0; ���, and the
result follows from the above-considered critical case � D ��.

Thus Theorems 1.3 and 1.6 are proved completely.

Remark 3.7. Really, we have proved that under the assumptions of Theorems 1.3 and 1.6, for every fixed
function v W Rn ! Rd from the considered potential spaces and for the corresponding pair .�; �/ the
following assertion holds: for any " > 0 there exists ı > 0 such that for every �-regular family of cubes
Qi � Rn if

P
i `.Qi /

� < ı, then
P
i Œdiam v.Qi /�

� < ".

4. Proof of “Fubini-type” N*-properties

Here we have to prove Theorems 1.11 and 1.13. We need the following general fact.

Theorem 4.1. Let � 2 .0; n�, � > 0, and let v W Rn! Rd be a continuous function. Suppose that for any
E � Rn with H� .E/D 0 and for every " > 0 there exists a family of compact sets fDigi2N such that

E �
[
i

Di and
X
i

ŒdiamDi �
� < " and

X
i

Œdiam v.Di /�
� < ": (4-1)

Then v has the .�; �/-N�-property; i.e., for every q 2 Œ0; �� and for any set E � Rn with H � .E/D 0 we
have

H�.1�
q
�
/.E \ v�1.y//D 0 for Hq-a.a. y 2 Rd : (4-2)
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Proof. Let the assumptions of the theorem be fulfilled. Fix q 2 Œ0; ��. If qD 0 or qD � , then the required
assertion (4-2) follows trivially from these assumptions. Suppose now that

0 < q < �:

Fix an arbitrary " > 0 and take the corresponding sequence of compact sets Di satisfying (4-1). Put
�D �

�
1� q

�

�
< � . Then

X
i

.diamDi /
�Œdiam v.Di /�

q
Hölder
�

�X
i

ŒdiamDi �
� �
��q

�1� q
�

�

�X
i

Œdiam v.Di /�
�

�q
�

D

�X
i

ŒdiamDi �
�

�1� q
�
�X

i

Œdiam v.Di /�
�

�q
� (4-1)
< ":

Since " > 0 was arbitrary, now the required assertion follows immediately from Theorem 2.12. �

The theorem just proved and Remark 3.7 clearly imply the assertions of Theorems 1.11 and 1.13.

4A. Proof of Theorem 1.17. Fix a mapping v W Rn! Rd for which the assumptions of Theorem 1.16
are fulfilled. We have to prove that

H�q .Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd ; (4-3)

for any q > m� 1, where �q D n�mC 1� .kC˛/.q�mC 1/ and Av is the set of nondifferentiability
points of v. Recall that, by approximation results [Swanson 2002; Korobkov and Kristensen 2018], under
the conditions of Theorem 1.16 the equalities

H� .Av/D 0 for all � > �� WD n� .kC˛� 1/p in cases (i), (iii); (4-4)

H��.Av/DHp.Av/D 0 �� WD n� .kC˛� 1/p D p in cases (ii), (iv) (4-5)

are valid.
Because of Remark 1.18 we can assume without loss of generality that q 2 .m� 1; qı�. Then for all

cases (i)–(iv) we have�
n

kC˛
� p

�
D)

�
q�mC 1� qı�mC 1D

n�mC 1

kC˛
� p

�
D) �q D n�mC 1� .kC˛/.q�mC 1/

D n� .kC˛� 1/.q�mC 1/� q � n� .kC˛� 1/p� q D ��� q:

In other words,

�q � ��� q; (4-6)

where the equality holds if and only if

k D 1; ˛ D 0; �q D n� q D ��� q (4-7)
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or
mD 1; .kC˛/p D n; q D p D ��; �q D 0: (4-8)

Below for convenience we consider the cases (i)–(iv) of Theorem 1.16 separately.

Case I: ˛ D 0, kp > n, p � 1, v 2W k
p .R

n;Rd /. This case splits into the following three subcases.

Case Ia: k D 1, p > n, �� D n, �q D n� q. Then the required assertion (4-3) follows immediately
from the equality Hn.Av/D 0 and from Remark 1.12.

Case Ib: �� < 0 or �� D 0, k D nC 1, p D 1. Then the set Av is empty (since functions of the space
W k
p .R

n;Rd / are C 1-smooth), and there is nothing to prove.

Case Ic: �� � 0, p > 1, k > 1, kp > n. Then by (4-4) we have

for all � > ��; H� .Av/D 0: (4-9)

Further, by Theorem 1.11 the function v has the .�; �/-N�-property for every � > ��. This implies, in
particular, by virtue of (4-9), that for every � > �� and for every q 2 Œ0; �� the equality

H��q.Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd (4-10)

holds. Fix q 2 .m�1; qı� and take � D qC�q . Since by construction �q � 0, we have � � q. Moreover,
by (4-6)–(4-8) we have � > ��. The last two inequalities together with (4-10) imply

H�q .Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd :

So the required assertion is proved for this case.

Case II: ˛ D 0, kp D n, p � 1, v 2W k
p;1.R

n;Rd /. In this case by definition

�� WD n� .k� 1/p D p;

and, by (4-5) we have
Hp.Av/D 0: (4-11)

Further, by [Hajłasz et al. 2017, Theorem 2.3] the function v has the .�; �/-N�-property for every � � p.
This implies, in particular, by virtue of (4-11), that for every � � p and for every q 2 Œ0; �� the equality

H��q.Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd (4-12)

holds. Fix q 2 .m�1; qı� and take � D qC�q . Since by construction �q � 0, we have � � q. Moreover,
by (4-6)–(4-8) we have � � �� D p. The last two inequalities together with (4-12) imply

H�q .Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd :

So the required assertion is proved for this case.

Case III: 0 < ˛ < 1, .kC ˛/p > n, p > 1, v 2 L kC˛
p .Rn;Rd /. If �� D n� .kC ˛ � 1/p < 0, then

Av D∅ and there is nothing to prove. Suppose now that �� � 0. We obtain from Theorem 1.11 that v has
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the .�; �/-N�-property for every � > �� WD n� .˛� 1/p. This implies, in particular, by virtue of (4-4),
that for every � > �� and for every q 2 Œ0; �� the equality

H��q.Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd (4-13)

holds. Fix q 2 .m�1; qı� and take � D qC�q . Since by construction �q � 0, we have � � q. Moreover,
by (4-6)–(4-8) we have � > ��. The last two inequalities together with (4-13) imply

H�q .Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd :

So the required assertion is proved for this case.

Case IV: 0 < ˛ < 1, .kC˛/p D n, p > 1, v 2L kC˛
p;1 .Rn;Rd /. In this case by definition

�� WD n� .k� 1/p D p;

and, by (4-5) we have

Hp.Av/D 0: (4-14)

Further, by Theorem 1.13 the function v has the .�; �/-N�-property for every � � p. This implies, in
particular, by virtue of (4-14), that for every � � p and for every q 2 Œ0; �� the equality

H��q.Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd (4-15)

holds. Fix q 2 .m�1; qı� and take � D qC�q . Since by construction �q � 0, we have � � q. Moreover,
by (4-6)–(4-8) we have � � �� D p. The last two inequalities together with (4-15) imply

H�q .Av \ v�1.y//D 0 for Hq-a.a. y 2 Rd :

So the required assertion is proved for this case, which is the last one.

Thus Theorem 1.17 is proved completely. �

Appendix

We prove the technical estimates of Lemmas 2.2, 2.3 and 2.8. Fix a cube Q � Rn of size r D `.Q/� 1.
Recall that by 2Q we denote the double cube with the same centre as Q of size `.2Q/D 2`.Q/. We
need some general elementary estimates.

Lemma A.1. For any measurable function g W Rn! RC and for every x 2Q the inequalityZ
2Q

g.y/

jx�yjn�˛
dy � C

Z
Q

Mg.y/

jx�yjn�˛
dy (A-1)

holds.

Here C denotes some universal constant that does not depend on g;Q, etc.
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Proof. Fix x 2Q. Define r0 D 7
2

p
nr . In particular, 2Q � B

�
x; 1
2
r0
�
.

Now put rj D 2�j r0 and Bj D B.x; rj / nB.x; rjC1/, j 2 N. Clearly,

2QD
S
j2N

.2Q\Bj / (A-2)

and
meas.Q\Bj /� Crnj for all j 2 N (A-3)

(here and henceforth we denote by C general constants depending on the parameters n; p; d; ˛ only).
Since jx � yj � rj for y 2 Bj , by the definition of the maximal function, it is easy to see that the

estimate Z
2Q\Bj

g.y/

jx�yjn�˛
dy � Cr˛j Mg.z/ for all z 2Q\Bj

holds for all j 2 N. Integrating this inequality with respect to z 2Q\Bj and using (A-3), we haveZ
2Q\Bj

g.y/

jx�yjn�˛
dy � Cr˛�nj

Z
Q\Bj

Mg.z/ dz: (A-4)

Since jx� zj � rj for z 2Q\Bj , the last inequality impliesZ
2Q\Bj

g.y/

jx�yjn�˛
dy � C

Z
Q\Bj

Mg.y/

jx�yjn�˛
dy: (A-5)

Then summing these inequalities for all j 2 N and taking into account (A-2), we obtain the required
estimate (A-1). �

Henceforth, fix p > 1, ˛ > 0 with n C p � ˛p � n (in particular, ˛ < n C 1), and a function
v.x/D G˛.x/D

R
Rn
g.y/K˛.x�y/ dy with some g 2 Lp.R

n/.
Split our function v into a sum

v D v1C v2; (A-6)

where
v1 WD

Z
Rn
g1.y/K˛.x�y/ dy; v2 WD

Z
Rn
g2.y/K˛.x�y/ dy;

and
g1 WD g � 12Q; g2 WD g � 1Rnn2Q:

Lemma A.2. If nCp > ˛p > n, we have

diam v1.Q/� C kMgkLp.Q/ r
˛� n

p : (A-7)

Proof. If 0 < ˛ < n, then K˛.x/ < c˛ jxj˛�n (see [Adams and Hedberg 1996, page 10], for example),
and from Lemma A.1 we have

jv1.x/j � C

Z
Q

Mg.y/

jx�yjn�˛
dy for all x 2Q;

so the required estimate (A-7) follows immediately from the Hölder inequality.
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If n� ˛ < nC 1, then ˇ̌
rK˛.x/

ˇ̌
� C jxj˛�n�1

(see [Adams and Hedberg 1996, page 13], for example), and by Lemma A.1 we have

jrv1.x/j � C

Z
Q

Mg.y/

jx�yjn�˛C1
dy for all x 2Q: (A-8)

Then by the Hardy–Littlewood–Sobolev inequality for Riesz potentials we have

krv1kLq.Q/ � C kMgkLp.Q/;

where
1

q
D
1

p
�
˛� 1

n
:

It is easy to see that q > n, then by the Morrey inequality

diam v1.Q/� C krv1kLq.Q/ r
1�n

q � C1 kMgkLp.Q/r
˛� n

p

as required. �

We need a modification of lemma above to the case of Lorentz spaces.

Lemma A.3. If nCp � ˛p � n, we have

diam v1.Q/� C kMgkLp;1.Q/ r
˛� n

p :

Proof. We have to repeat the previous arguments using the following facts for Lorentz norms: the general-
ized Hölder inequalityZ

Q

f .y/

jy � xjn�˛
dy � kf kLp;1 �





 1Q

j � �xjn�˛






L p
p�1

;1

D C kf kLp;1r
˛� n

p

for n > ˛ � n
p

[Malý 2003, Theorem 3.7], and the generalized Hardy–Littlewood–Sobolev inequality for
Riesz potentials

kIˇf kLq;1.Q/ � C kf kLp;1.Q/ with
1

q
D
1

p
�
ˇ

n

if ˇp � n [Bennett and Sharpley 1988, Theorem IV.4.18], and the generalized Morrey inequality

diam v1.Q/� C krv1kLq;1.Q/ r
1�n

q

for q � n (see, e.g., [Korobkov and Kristensen 2014, Lemma 1.3] ). �

Now we have to estimate the term v2.

Lemma A.4. For an arbitrary positive parameter � � 1�˛ the inequality

diam
�
v2.Q/

�
� C r1���n

Z
Q

M˛C��1g.y/ dy (A-9)

holds, where we recall that r D `.Q/.
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Proof. Without loss of generality suppose that Q is centred at the origin. Since

C1jyj � jy � xj � C2jyj for all x 2Q; for all y 2 Rn n 2Q; (A-10)

and K 0˛.�/� C�
˛�1�n for 0 < ˛ < nC 1, it is easy to deduce that

diam v2.Q/� sup
x1;x22Q

Z
Rnn2Q

jg.y/jŒK˛.x1�y/�K˛.x2�y/� dy

� C r

Z
Rnn2Q

jg.y/j

jyjn�˛C1
dy: (A-11)

Fix � > 0 such that
˛C � � 1� 0: (A-12)

Put r0 D 1
2
r , rj D 2j r0, and consider a sequence of sets Bj D B.0; rjC1/ nB.0; rj /. By construction,

Rn n 2Q �
S
j2N

Bj (A-13)

and Z
Bj

jg2.y/j

jyjn�˛C1
dy � Cr��j r˛C��1j

�

Z
Bj

jg2.y/j dy � Cr��j M˛C��1g2.0/; (A-14)

where we recall that g2 WDg �1Rnn2Q. Therefore, by summing over j and using (A-13) and the elementary
formula for geometric progressions, we obtainZ

Rnn2Q

jg2.y/j

jyjn�˛C1
dy � CM˛C��1g2.0/

1X
jD1

r��j � Cr��M˛C��1g2.0/; (A-15)

It is easy to check (using the assumption that g2 � 0 on 2Q) that M˛C��1g2.0/� CM˛C��1g2.z/ for
every z 2Q. Therefore,

M˛C��1g2.0/� C �

Z
Q

M˛C��1g2.z/ dzI (A-16)

thus Z
Rnn2Q

jg2.y/j

jyjn�˛C1
dy � Cr���n

Z
Q

M˛C��1g2.z/ dz: (A-17)

Finally we obtain from (A-11) that

diamŒv.Q/�� Cr1���n
Z
Q

M˛C��1g2.z/ dz (A-18)

as required. �

The next result is established using the same arguments, with some evident simplifications.

Lemma A.5. If , in addition to the assumptions above, we have ˛ > 1, then the estimate

diam v2.Q/� C r
1�n

Z
Q

I˛�1jgj.y/ dy (A-19)

holds, where we recall that I˛�1jgj is the corresponding Riesz potential of the function jgj.
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Lemmas A.2–A.5 clearly imply the assertions of Lemmas 2.2, 2.3 and 2.8.
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UNSTABLE NORMALIZED STANDING WAVES FOR THE SPACE PERIODIC NLS

NILS ACKERMANN AND TOBIAS WETH

For the stationary nonlinear Schrödinger equation −1u+ V (x)u− f (u)= λu with periodic potential V
we study the existence and stability properties of multibump solutions with prescribed L2-norm. To this
end we introduce a new nondegeneracy condition and develop new superposition techniques which allow
us to match the L2-constraint. In this way we obtain the existence of infinitely many geometrically distinct
solutions to the stationary problem. We then calculate the Morse index of these solutions with respect to
the restriction of the underlying energy functional to the associated L2-sphere, and we show their orbital
instability with respect to the Schrödinger flow. Our results apply in both, the mass-subcritical and the
mass-supercritical regime.

1. Introduction

Suppose that N ∈N and consider the stationary nonlinear Schrödinger equation with prescribed L2-norm

−1u+ V (x)u− f (u)= λu, u ∈ H 1(RN ), |u|22 = α, (Pα)

which we will call the constrained equation. Here | · |2 denotes the standard L2-norm, V ∈ L∞(RN ) is
periodic in all coordinates, f is a superlinear nonlinearity of class C1 with Sobolev-subcritical growth,
α > 0 is given, u is the unknown weak solution and λ ∈ R is an unknown parameter. Solutions to (Pα)
are standing wave solutions for the time-dependent Schrödinger equation modeling a Bose–Einstein
condensate in a periodic optical lattice [Aftalion and Helffer 2009; Morsch and Oberthaler 2006; Baizakov
et al. 2003; Efremidis and Christodoulides 2003; Fleischer et al. 2003; Louis et al. 2003; Ostrovskaya
and Kivshar 2003; Hilligsøe et al. 2002; Dalfovo et al. 1999]. In this model α is proportional to the total
number of atoms in the condensate.

Set
6α := {u ∈ H 1(RN ) : |u|22 = α} (1-1)

for α > 0. Define the functional 8 : H 1(RN )→ R by

8(u) := 1
2

∫
RN
(|∇u|2+ V u2)−

∫
RN

F(u), (1-2)

Ackermann was supported by CONACYT grant 237661, UNAM-DGAPA-PAPIIT grant IN100718 and the program UNAM-
DGAPA-PASPA (Mexico).
MSC2010: primary 35J91, 35Q55; secondary 35J20.
Keywords: nonlinear Schrödinger equation, periodic potential, standing wave solution, orbitally unstable solution, multibump

construction, prescribed norm.
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where we set F(s) :=
∫ s

0 f . Then the pair (u, λ) is a weak solution of (Pα) if and only if u is a critical
point of the restriction of 8 to 6α with Lagrange multiplier λ.

Not assuming periodicity of V but instead supRN V = lim|x |→∞ V (x), the existence of a minimizer
of 8 on 6α in the mass-subcritical case was shown under additional assumptions on the growth of the
nonlinearity f by Lions [1984]; see also [Jeanjean and Squassina 2011] for a different approach. For
constant V, solutions of (Pα) are constructed in the mass-supercritical case in [Bartsch and Soave 2017;
Bartsch and de Valeriola 2013; Jeanjean 1997]; here the corresponding critical points of8|6α are not local
minimizers. In [Bellazzini et al. 2017; Bellazzini and Jeanjean 2016; Fukuizumi and Ohta 2003; Fukuizumi
2001] local minimizers are found in the mass-supercritical case under spatially constraining potentials.

The structure of the solution set of the constrained equation is rather poorly understood up to now in
the case where V ∈ L∞(RN ) is not constant, but 1-periodic in all coordinates. In contrast, a large amount
of information is available for the free equation

−1u+ V (x)u = f (u), u ∈ H 1(RN ),

where essentially the parameter λ is fixed but the L2-norm is not prescribed anymore. Of particular
interest for us are the results on the existence of so-called multibump solutions. In [Arioli et al. 2009;
Kryszewski and Szulkin 2009; Ackermann 2006; 1996; Ackermann and Weth 2005; Rabinowitz 1997;
Spradlin 1995; Alama and Li 1992; Coti Zelati and Rabinowitz 1992], an infinite number of solutions are
built using nonlinear superposition of translates of a special solution which satisfies a nondegeneracy
condition of some form.

The main goal of the present work is to apply nonlinear superposition techniques to the constrained
problem with periodic V to obtain an infinity of L2-normalized solutions in the form of multibump
solutions. We succeed in doing this, but have to impose a stricter nondegeneracy condition than in the case
of the free equation which nevertheless is fulfilled in many situations. This provides, as far as we know,
the first result on multibump solutions for the constrained problem, and also the first multiplicity result in
the case of a nonconstant periodic potential V. We also compute the Morse index of these normalized
multibump solutions with respect to the restricted functional 8|6α , and we will use the Morse index
information to derive orbital instability of the multibump solutions.

To state our results, we need the following hypotheses. We consider, as usual, the critical Sobolev
exponent defined by 2∗ := 2N/(N − 2) in the case N ≥ 3 and 2∗ :=∞ in the case N = 1, 2:

(H1) V ∈ L∞(RN ).

(H2) V is 1-periodic in all coordinates.

(H3) f ∈ C1(R), f (0)= f ′(0)= 0,

lim
s→∞

f ′(s)
|s|2∗−2 = 0

if N ≥ 3, and there is p > 2 such that

lim
s→∞

f ′(s)
|s|p−2 = 0

if N = 1 or N = 2.
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Throughout this paper we assume (H1) and (H3). It is well known that 8 is well-defined by (1-2) and
of class C2. The standard example for a function satisfying (H3) is f (s) := |s|p−2s with p ∈ (2, 2∗). In
the following, we let H−1(RN ) denote the topological dual of H 1(RN ). For our main result, we need the
notion of a fully nondegenerate critical point of 8|6α .

Definition 1.1. Assume (H1) and (H3). For α > 0, a critical point u ∈ H 1(RN ) of 8|6α with Lagrangian
multiplier λ will be called fully nondegenerate if for every g ∈ H−1(RN ) there exists a unique weak
solution zg ∈ H 1(RN ) of the linearized equation

−1zg + [V − λ]zg − f ′(u)zg = g in RN, (1-3)

and if in the case g = u we have
∫

RN uzu 6= 0. Here, as usual, we regard H 1(RN ) as a subspace of
H−1(RN ), so u ∈ H−1(RN ).

As we shall see in Section 2 below, the full nondegeneracy of a critical point u ∈ H 1(RN ) of 8|6α
with Lagrangian multiplier λ implies the nondegeneracy of the Hessian of 8|6α at u. By definition, this
Hessian is the bilinear form

(v,w) 7→

∫
RN
(∇v∇w+ [V − λ]vw− f ′(u)vw) (1-4)

defined on the tangent space
Tu6α = {v ∈ H 1(RN ) : (v, u)2 = 0};

see Definition 2.5 below. Here ( · , · )2 denotes the standard scalar product in L2(RN ). We also need to fix
the following elementary notation. If n ∈ N and a = (a1, a2, . . . , an) ∈ (ZN )n is a tuple of n elements
from ZN, define

d(a) :=min
i 6= j
|ai
− a j
|.

Moreover, for b ∈ RN we denote by Tb the associated translation operator; i.e., for u : RN
→ R the

function Tbu : RN
→ R is given by

Tbu(x) := u(x − b) for x ∈ RN.

Our first main result is the following.

Theorem 1.2 (multibump solutions). Assume (H1)–(H3) and fix α > 0, n ∈N, n ≥ 2. Moreover, suppose
that ū is a fully nondegenerate critical point of 8|6α/n with Lagrangian multiplier λ̄. Then for every ε > 0
there exists Rε > 0 such that for every a ∈ (ZN )n with d(a)≥ Rε there is a critical point ua of 8|6α with
Lagrange multiplier λa such that∥∥∥∥ua −

n∑
i=1

Tai ū
∥∥∥∥

H1(RN )

≤ ε and |λa − λ̄| ≤ ε.

If ε is chosen small enough then ua is unique. Moreover, if ū is a positive function and f (ū)≥ 0 on RN,
f (ū) 6≡ 0, then ua is positive as well.
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The proof of Theorem 1.2 is based on a general shadowing lemma, a simple consequence of Banach’s
fixed point theorem, applied to approximate zeros of the gradient of the extended Lagrangian Gα for the
constrained variational problem on 6α. If ū is a nondegenerate local minimum of 8 on 6α/n then it is
easy to see that the sum ũ of n translates of ū is an approximate zero of ∇Gα if these translates are far
enough apart from each other. The shadowing lemma implies that to obtain a zero of ∇Gα near ũ it is
sufficient to prove that D2Gα(ũ) is invertible and that the norm of its inverse is bounded appropriately.
This step is the main difficulty and requires the assumption of full nondegeneracy of ū.

Our next result is concerned with the Morse index of the solutions ua given in Theorem 1.2 with
respect to the functional 8|6α . For this we recall that the Morse index m(u) of a critical point u of 8|6α
with Lagrangian multiplier λ is defined as the maximal dimension of a subspace W ⊂ Tu6α such that the
quadratic form in (1-4) is negative definite on W. If such a maximal dimension does not exist, one sets
m(u)=∞. We also introduce the following additional assumption:

(H4) f (s)/|s| is nondecreasing in R and f (s)s > 0 for all s 6= 0.

Theorem 1.3. Assume (H1)–(H3), fix α > 0, n ∈N, n ≥ 2, and suppose that ū is a fully nondegenerate
critical point of 8|6α/n with Lagrangian multiplier λ̄ and finite Morse index m(ū). Moreover, let zū be
given as in Definition 1.1 with u = ū. Then the critical points ua found in Theorem 1.2 have, for small ε,
the following Morse index m(ua) with respect to 8|6α :

m(ua)=

{
n(m(ū)+ 1)− 1 if (ū, zū)2 < 0,
nm(ū) if (ū, zū)2 > 0.

If moreover (H4) holds true, then m(ua) > 0.

The key role of the sign of the scalar product (ū, zū)2 in this theorem is not surprising since it is
closely related to variational properties of the underlying critical point ū. More precisely, we shall see in
Lemma 2.6 below that it determines the relationship between the Morse index of ū with respect to 8|6α/n

and its free Morse index with respect to the functional u 7→8(u)− λ̄|u|22 on H 1(RN ).
We now consider the special case where (H4) holds true and ū is a nondegenerate local minimum

of 8|6α/n . By a nondegenerate local minimum we mean a critical point ū of 8|6α/n with Lagrangian
multiplier λ̄ such that the quadratic form in (1-4) is positive definite on Tu6α/n . In this case, we shall
see in Section 2 below that ū is fully nondegenerate, and we will deduce the following corollary from
Theorems 1.2 and 1.3 in Section 4.

Corollary 1.4. Assume (H1)–(H4) and fix α > 0, n ∈ N, n ≥ 2. Moreover, suppose that ū is a
nondegenerate local minimum of 8|6α/n with Lagrangian multiplier λ̄. Then for every ε > 0 there exists
Rε > 0 such that for every a ∈ (ZN )n with d(a)≥ Rε there is a critical point ua of 8|6α with Lagrange
multiplier λa such that ∥∥∥∥ua −

n∑
i=1

Tai ū
∥∥∥∥

H1(RN )

≤ ε and |λa − λ̄| ≤ ε.

If ε is chosen small enough then ua is unique. Moreover, ua does not change sign and has Morse index
m(ua)=n−1 with respect to 8|6α .
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Next we present an example where the nondegeneracy hypotheses of the previous theorems can be
verified. For this we make the following assumptions:

(H5) V ∈C2(RN ) is 1-periodic in all coordinates, positive, and has a nondegenerate critical point at some
point x0 ∈ RN.

(H6) f (s)= |s|p−2s for some p ∈ (2, 2∗)\{2+ 4/N }.

We then consider the constrained singularly perturbed equation

−ε21u+ V (x)u− |u|p−2u = λu, u ∈ H 1(RN ), |u|22 = α, (Pα,ε)

in the semiclassical limit ε→ 0. Its weak solutions correspond, for each ε > 0, to critical points and
Lagrange multipliers of the restriction of the functional

8ε : H 1(RN )→ R, 8ε(u) :=
1
2

∫
RN
(ε2
|∇u|2+ V u2)−

1
p

∫
RN
|u|p,

to 6α. We also consider the related free problem

−ε21u+ V (x)u = |u|p−2u, u ∈ H 1(RN ), (Fε)

whose weak solutions coincide with critical points of 8ε for every ε > 0. It is well known, see [Grossi
2002], that there exists a locally unique curve of solutions of (Fε) that concentrate near x0 as ε→ 0. For
our purposes we need to show additional properties of these solutions.

Theorem 1.5. Assume (H5) and (H6). Then there exist ε0 > 0 and a continuous map (0, ε0)→ H 1(RN ),
ε→ ūε, such that the following properties hold true:

(i) For each ε ∈ (0, ε0) the function ūε is a positive solution of (Fε).

(ii) As ε→ 0, the functions x 7→ ūε concentrate near x0 in the sense that the functions x 7→ ūε(x0+ εx)
converge in H 1(RN ) to the unique radial positive solution u0 ∈ H 1(RN ) of the equation

−1u0+ V (x0)u0 = u p−1
0

in RN .

(iii) |ūε|22→ 0 as ε→ 0.

(iv) For each ε ∈ (0, ε0) the function ūε is a fully nondegenerate critical point of the restriction of 8ε to
6
|ūε|22

with Morse index

m(ūε)=

{
mV if 2< p < 2+ 4

N
,

mV + 1 if 2+ 4
N
< p < 2∗.

(1-5)

Here mV denotes the number of negative eigenvalues of the Hessian of V at x0.

We emphasize that properties (i)–(ii) were already proved in [Grossi 2002], and that (iii) follows from
(ii) by a simple change of variable. For our purposes, the property (iv) is of key importance. We shall
also see in Section 5 below that, for ε ∈ (0, ε0),

(ūε, zūε)2 < 0 if 2< p < 2+ 4
N

and (ūε, zūε)2 > 0 if 2+ 4
N
< p < 2∗, (1-6)
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where zūε is given as in Definition 1.1 corresponding to u = ūε. Since the solutions ūε in Theorem 1.5
depend continuously on ε and |ūε|22→ 0 as ε→ 0, we can find, for every α > 0 and large enough n ∈ N,
a number εn ∈ (0, ε0) such that |ūεn |

2
2 = α/n. The combination of Theorems 1.2, 1.3 and 1.5 with (1-6)

therefore yields the following corollary.

Corollary 1.6. Assume (H5) and (H6). Then for every α > 0 there exist nα ∈N and a sequence εn→ 0
such that for every n ≥ nα the problem Pα,εn has infinitely many geometrically distinct positive solutions.
More precisely, for every n ∈ N with n ≥ nα, and every δ > 0 there exists Rδ,n > 0 such that for every
a ∈ (ZN )n with d(a)≥ Rδ,n there is a critical point ua of 8εn |6α with Lagrange multiplier λa such that∥∥∥∥ua −

n∑
i=1

Tai ūεn

∥∥∥∥
H1(RN )

≤ δ and |λa| ≤ δ.

If δ is chosen small enough then ua is unique. Moreover, ua is a positive function, and its Morse index
with respect to 8|6α is given by

m(ua)=

{
n(mV + 1)− 1 if 2< p < 2+ 4

N
,

n(mV + 1) if 2+ 4
N
< p < 2∗,

where mV denotes the number of negative eigenvalues of the Hessian of V at x0.

Our next result is concerned with the orbital instability of the normalized multibump solutions we have
constructed in the previous theorems. For this we focus on odd nonlinearities f in (Pα) satisfying (H3)
and therefore assume

(H7) the function f is odd.

We also assume (H1) and (H3), so 8 in (1-2) is a well-defined C2-functional. If ϕ ∈6α is a critical
point of 8|6α with Lagrangian multiplier λ, then the function

uϕ : R×RN
→ C, uϕ(t, x)= ϕ(x)eiλt , (1-7)

is a solution of the time-dependent nonlinear Schrödinger equation

−iut =−1u+ V (x)u− g(|u|2)u, (1-8)

where g is defined by f (t) = g(|t |2)t . Solutions of this special type are usually called solitary wave
solutions. The solution uϕ is called orbitally stable if for every ε > 0 there exists δ > 0 such that
every solution u : [0, t0)→ H 1(RN,C) of (1-8) with ‖u(0, · )−ϕ‖H1 < δ can be extended to a solution
[0,∞)→ H 1(RN,C) which satisfies

sup
0<t<∞

inf
s∈R

‖u(t, · )− uϕ(s, · )‖H1 < ε.

Otherwise, uϕ is called orbitally unstable. We then have the following result.

Theorem 1.7. Assume (H1), (H3), and (H7), and suppose that ϕ ∈6α is a positive function which is a
critical point of 8|6α with positive Morse index and Lagrangian multiplier λ < inf σess(−1+ V ). Then
the corresponding solitary wave solution uϕ of (1-8) is orbitally unstable.
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Here and in the following, σess(−1+ V ) denotes the essential spectrum of the Schrödinger operator
−1+ V. We note that Theorem 1.7 neither requires periodicity of V, nor does it require the assumption
on the oddness of a certain difference of numbers of eigenvalues in the seminal instability result in
[Grillakis et al. 1990, p. 309]. Theorem 1.7 applies to the normalized multibump solutions constructed in
Theorem 1.2 and Corollaries 1.4 and 1.6 in the case where the nonlinearity satisfies (H4) and (H7). In
these cases, the extra assumption λ < inf σess(−1+ V ) follows from Lemma 2.9 below and the fact that
the Lagrangian multipliers of the multibump solutions are arbitrarily close to the multiplier of the initial
solution.

There are many results on the orbital stability and instability of the standing waves generated by
solutions to (Pα); see [Ianni and Le Coz 2009; Stuart 2008; Hilligsøe et al. 2002; Grillakis et al. 1987;
Cazenave and Lions 1982]. However, none of these results covers the situation addressed in Theorem 1.7.

The paper is organized as follows. In Section 2 we collect some preliminary notions and observations.
In particular, here we explain our new notions of fully nondegenerate restricted critical point and of the
free Morse index. In Section 3 we then prove Theorem 1.2. In Section 4 we derive a general result on
the Morse index of normalized multibump solutions which gives rise to Theorem 1.3. At the end of this
section, we also complete the proof of Corollary 1.4. In Section 5, we analyze the singular perturbed
equation (Fε) and we prove Theorem 1.5. In Section 6, we then prove the orbital instability result given
in Theorem 1.7. Finally, in the Appendix we provide a computation of the free Morse index of the
solutions uε considered in Theorem 1.5. This computation is partly contained in [Lin and Wei 2008, proof
of Theorem 2.5], but some details have been omitted there. We therefore provide a somewhat different
argument in detail for the convenience of the reader.

We finally remark that the main results of our paper can be extended to more general nonlinearities.
In particular, Theorem 1.2 has an abstract proof that extends to nonlinearities that also depend on x ,
1-periodically in every coordinate. This proof also extends to nonlocal nonlinearities with convolution
terms as in [Ianni and Le Coz 2009]. This follows from Brézis–Lieb-type splitting properties for these
nonlinearities that were proved in [Ackermann 2006].

Notation. In the remainder of the paper, we write | · |p for the standard L p(RN )-norm, 1≤ p ≤∞. We
also use the notation ( · , · )2 for the standard L2(RN )-scalar product. For the sake of brevity, we write L2

in place of L2(RN ) and H k in place of H k(RN ) for k ∈N. By (H1), −1+V is a self adjoint operator in
L2 with domain H 2. Since we assume (H1) throughout the paper and λ is a free parameter in (Pα), we
may assume without loss of generality that γ :=min σ(−1+ V ) > 0, where σ(−1+ V ) stands for the
spectrum of −1+ V. Then H 1 is the form domain (the energy space) of −1+ V, and we may endow
H 1 with the scalar product

〈u, v〉 =
∫

RN
(∇u · ∇v+ V uv), u, v ∈ H 1. (1-9)

The norm ‖ · ‖ induced by 〈 · , · 〉 is equivalent to the standard norm on H 1. It will be convenient to define
S := (−1+ V )−1; then we have

〈u, v〉 = (S−1/2u, S−1/2v)2 for u, v ∈ H 1. (1-10)
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We point out that, for a subspace Z ⊂ H 1, the notation Z⊥ always refers to the orthogonal complement
of Z in H 1 with respect to the scalar product 〈 · , · 〉.

We recall that the spectrum σ(−1+ V ) is purely essential if (H2) is assumed. In this case, it also
follows that all powers of S are equivariant with respect to the action of ZN. Hence

〈Tav, Taw〉 = 〈v,w〉 for all v,w ∈ H 1, for all a ∈ ZN .

For any two normed spaces X, Y the space of bounded linear operators from X in Y is denoted by
L(X, Y ), and we write L(X) := L(X, X).

For a C1-functional 2 defined on H 1, we let d2 : H 1
→ (H 1)∗ denote the derivative of 2 and

∇2 : H 1
→ H 1 the gradient with respect to the scalar product 〈 · , · 〉 defined in (1-9). Moreover, if

2 is of class C2, then d22(u) : H 1
× H 1

→ R denotes the Hessian of 2 at a point u ∈ H 1, whereas
D22(u) ∈ L(H 1) stands for the derivative of the gradient of 2 at u. We then have

〈D22(u)v,w〉 = d22(u)[v,w] for v,w ∈ H 1.

2. Some preliminary abstract results and notions

We now state some abstract results which will be used in Section 3 in the proof of Theorem 1.2. We start
with a standard corollary of Banach’s fixed point theorem, which is sometimes referred to as a shadowing
lemma.

Lemma 2.1. Let (E, ‖ · ‖) be a Banach space, let h : E→ E be continuously differentiable with derivative
dh : E→ L(E), and let v0 ∈ E , δ > 0, q ∈ (0, 1) satisfy the following:

(i) T := dh(v0) ∈ L(E) is an isomorphism.

(ii) ‖h(v0)‖< δ(1− q)/‖T−1
‖L(E).

(iii) ‖dh(y)− T ‖L(E) ≤ q/‖T−1
‖L(E) for y ∈ Bδ(v0).

Then h has a unique zero in Bδ(v0).

The proof of this lemma is standard by showing that the map y 7→ y−T−1h(y) defines a q-contraction
on Bδ(v0). Applying Banach’s fixed point theorem to this map gives rise to a unique zero of h in Bδ(v0),
and it easily follows from the above assumptions that this zero is contained in Bδ(v0).

We will use the following immediate corollary of Lemma 2.1.

Corollary 2.2. Let (E, ‖ · ‖) be a Banach space, let h : E → E be differentiable and such that its
derivative dh : E → L(E) is uniformly continuous on bounded subsets of E. Moreover, let (vk)k be a
bounded sequence in E such that

(i) h(vk)→ 0 as k→∞;

(ii) dh(vk) ∈ L(E) is an isomorphism for k ∈ N, and supk∈N‖dh(vk)
−1
‖L(E) <∞.

Then there exist k0 ∈ N and uk ∈ E , k ≥ k0, with

h(uk)= 0 for k ≥ k0 (2-1)
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and
‖uk − vk‖→ 0 as k→∞. (2-2)

Moreover, the sequence (uk)k is uniquely determined by properties (2-1), (2-2) for large k.

In the remainder of this section, we collect some preliminary results and notions related to the
functional 8 defined in (1-2) and its restrictions to spheres with respect to the L2(RN )-norm. Recall that
we are assuming conditions (H1) and (H3). We define

9(u) :=
∫

RN
F(u),

so
8(u)= 1

2‖u‖
2
−9(u).

Following [Ackermann 2006] we say that a map g : X → Y of Banach spaces X and Y BL-splits if
g(xn)− g(xn − x∗)→ g(x∗) in Y if xn ⇀ x∗ in X . For example, by [Ackermann 2006, Remark 3.3] the
maps ‖ · ‖2 and | · |22 BL-split. The next result about BL-splitting maps is less obvious:

Lemma 2.3. The maps 9, ∇9 and D29 BL-split, and they are uniformly continuous on bounded subsets
of H 1.

Before we give the proof we fix some p ∈ (2, 2∗) if N ≥ 3 and we use p given in (H3) if N = 1, 2.
Using (H3) it is easy to construct, for every ε > 0, functions fi,ε ∈ C1(R), i = 1, 2, 3, and a constant
Cε > 0 such that

f =
3∑

i=1

fi,ε (2-3)

and such that

| f ′1,ε(s)| ≤ ε, | f
′

2,ε(s)| ≤ Cε|s|p−2, and | f ′3,ε(s)| ≤ ε|s|
2∗−2 for all s ∈ R. (2-4)

If N = 1, 2 we simply choose f3,ε ≡ 0 and ignore all terms that contain 2∗.

Proof of Lemma 2.3. We only prove this in the case N ≥ 3; the other cases are treated similarly. Consider
(un)⊆ H 1 such that un ⇀ u. Then (un) is bounded in H 1 and therefore also in Lq for q ∈ [2, 2∗]. For
fixed ε > 0 we have

| f ′2,ε(un)− f ′2,ε(un − u)− f ′2,ε(u)|p/(p−2)→ 0

by [Ackermann 2016, Theorem 1.3]. On the other hand, there are varying constants C > 0, independent
of ε, such that

| f ′1,ε(un)− f ′1,ε(un − u)− f ′1,ε(u)|∞ ≤ Cε,

| f ′3,ε(un)− f ′3,ε(un − u)− f ′3,ε(u)|2∗/(2∗−2) ≤ Cε

for all n. For all v,w ∈ H 1 with ‖v‖ = ‖w‖ = 1 it follows that∣∣〈(D29(un)−D29(un − u)−D29(u)
)
v,w

〉∣∣
≤ Cε|v|2|w|2+ | f ′2,ε(un)− f ′2,ε(un − u)− f ′2,ε(u)|p/(p−2)|v|p|w|p +Cε|v|2∗ |w|2∗

≤ C(ε+ o(1))
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and hence lim supn→∞‖D
29(un)−D29(un − u)−D29(u)‖L(H1) ≤ Cε. Letting ε→ 0 we obtain the

claim for D29. The proof for the uniform continuity of D29 on bounded subsets of H 1 is similar. One
treats the maps ∇9 and 9 analogously. �

We shall need the following simple consequence of (H4).

Lemma 2.4. If conditions (H1) and (H3)–(H4) hold true and u ∈ H 1
\{0} satisfies ∇8(u) = λSu for

some λ ∈ R, then
〈(D28(u)− λS)u, u〉< 0.

Proof. By (H3) and (H4), the map s 7→ f ′(s)s2
− f (s)s is nonnegative in R, and it is positive on a

nonempty open subset of (−ε, ε)\{0} for every ε > 0. Moreover, since u ∈ H 1 is a weak solution of

−1u+ [V (x)− λ]u = f (u) in RN

by assumption, standard elliptic regularity shows that u is continuous and that u(x)→ 0 as |x | →∞.
Consequently, we have

〈D28(u)u, u〉− λ〈Su, u〉 = 〈D28(u)u, u〉− 〈∇8(u), u〉

= 〈∇9(u), u〉− 〈D29(u)u, u〉 =
∫

RN
( f (u)u− f ′(u)u2) < 0,

as claimed. �

As before, for α > 0, we consider the sphere 6α ⊂ H 1 as defined in (1-1), and we let Jα : 6α→ R

denote the restriction of 8 to 6α. We note that, for u ∈6α, the tangent space of 6α at u is given by

Tu6α = {v ∈ H 1
: (v, u)2 = 0} = {v ∈ H 1

: 〈v, Su〉 = 0} ⊂ H 1, (2-5)

where latter equality follows from (1-10). If u is a critical point of Jα, we have

∇8(u)= λSu (2-6)

for some λ ∈ R, the corresponding Lagrange multiplier. Moreover, the Hessian d2 Jα(u) is a well-defined
quadratic form on Tu6α given by

d2 Jα(u)[v,w] = 〈D28(u)v,w〉− λ〈Sv,w〉 for v,w ∈ Tu6α. (2-7)

For the general definition of the Hessian of C2-functionals on Banach manifolds at critical points, see,
e.g., [Palais 1963, p. 307]. To see (2-7), one may argue with local coordinates for 6α at u, as is done,
e.g., in [Edwards 1994, Theorem 8.9] in the finite-dimensional case. Alternatively, to prove (2-7) we may
consider smooth vector fields ṽ, w̃ on 6α with ṽ(u)= v, w̃(u)= w, and we extend ṽ, w̃ arbitrarily as
smooth vector fields ṽ, w̃ : H 1

→ H 1. Using (2-6), we then have

d2 Jα(u)[v,w] = ∂ṽ∂w̃8(u)= ∂ṽ|u〈∇8,w〉 = 〈D28(u)v,w〉+ 〈∇8(u), dw̃(u)v〉

= 〈D28(u)v,w〉+ λ(u, dw̃(u)v)2 = 〈D28(u)v,w〉− λ(v,w)2,

where the last equality follows from the fact that the function u∗ 7→ h(u∗) := (u∗, w̃(u∗))2 vanishes on
6α and therefore 0= ∂ṽh(u)= (v,w)2+ (u, dw(u)v)2.
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We need the following definitions.

Definition 2.5. Let u ∈ H 1 be a critical point of Jα with Lagrange multiplier λ. Put 3 := Tu6α and let
P ∈ L(H 1,3) denote the 〈 · , · 〉-orthogonal projection onto 3. Moreover, put B := D28(u)− λS.

(a) The Morse index m(u) ∈ N∪ {0,∞} of u with respect to Jα is defined as

m(u) := sup{dim Z : Z subspace of 3 with 〈Bv, v〉< 0 for all v ∈ Z\{0}}.

(b) The free Morse index mf(u) ∈ N∪ {0,∞} of u is defined as

mf(u) := sup{dim Z : Z subspace of H 1 with 〈Bv, v〉< 0 for all v ∈ Z\{0}}.

(c) We call u a nondegenerate critical point of Jα if P B|3 is an isomorphism of 3.

(d) We call u freely nondegenerate if B is an isomorphism of H 1. In this case we put

zu := B−1Su ∈ H 1.

For a critical point u ∈ H 1 of Jα, it is clear that

mf(u)= m(u) or mf(u)= m(u)+ 1. (2-8)

In the case where u is freely nondegenerate, the scalar product (zu, u)2 determines whether u is nonde-
generate and which case occurs in (2-8). More precisely, we have the following simple but important
lemma.

Lemma 2.6. Let u ∈ H 1 be a freely nondegenerate critical point of Jα with Lagrange multiplier λ:

(a) u is nondegenerate if and only if (zu, u)2 6= 0.

(b) If m(u) is finite and (zu, u)2 > 0, then mf(u)= m(u).

(c) If m(u) is finite and (zu, u)2 < 0, then mf(u)= m(u)+ 1.

Proof. In the following, we let N (L) denote the kernel and R(L) denote the range of a linear operator L .
Moreover, we let B, P and 3 be as in Definition 2.5.

(a): By definition, we have zu = B−1Su ∈ N (P B) \ {0}. Moreover, we have dimN (P B) = 1 since
B : H 1

→ H 1 is an isomorphism. Consequently,

N (P B)= span(zu) and R(P B)=3.

Now, again by definition, u is nondegenerate if and only if P B|3 : 3→3 is an isomorphism, and this
holds true if and only if H 1

= span(zu)⊕3. By (2-5), the latter property is equivalent to (zu, u)2 6= 0.

(b) and (c): Since codim3 = 1 and zu /∈ 3, there are, for every φ ∈ H 1, unique elements µ ∈ R and
w ∈3 such that

φ = µzu +w. (2-9)
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Recall that span(Su)=N (P)=3⊥. We therefore have the representation

〈Bφ, φ〉 = µ2
〈Bzu, zu〉+ 2µ〈Bzu, w〉+ 〈Bw,w〉

= µ2
〈Su, zu〉+ 2µ〈Su, w〉+ 〈Bw,w〉

= µ2(zu, u)2+〈Bw,w〉. (2-10)

To see (b), recall that the definition of m(u) implies the existence of a subspace Z ⊂3 of codimension
m(u) in 3 such that 〈Bφ, φ〉 ≥ 0 for all φ ∈ Z . Since zu /∈3, the space Z̃ := span(zu)⊕ Z has at most
codimension m(u) in H 1. Moreover, in the representation (2-9) for φ ∈ Z̃ we find w ∈ Z . Therefore,
(2-10) yields 〈Bφ, φ〉 ≥ 〈Bw,w〉 ≥ 0. This implies mf(u)≤ m(u), and thus equality follows by (2-8).

To see (c), let Z ⊂3 be an m(u)-dimensional subspace such that 〈Bw,w〉< 0 for all w ∈ Z\{0}. Put
Z̃ := span(zu)⊕ Z . Then dim Z̃ =m(u)+1, and for the representation (2-9) for φ ∈ Z̃\{0} we find w ∈ Z .
Then (2-10) implies 〈Bφ, φ〉< 0 since either µ 6= 0 or w ∈ Z\{0}. Consequently, mf(u)≥m(u)+ 1, and
thus equality follows by (2-8). �

Parts (b) and (c) of Lemma 2.6 can also be derived from [Maddocks 1985, (2.7) of Theorem 2]. For
the convenience of the reader we gave a simple direct proof.

Definition 2.7. A critical point u ∈ H 1 of Jα will be called fully nondegenerate if u is freely nondegenerate
and the equivalent properties in Lemma 2.6(a) hold true.

Definition 2.7 is consistent with Definition 1.1, as the function zu = B−1Su defined in Definition 2.5
is uniquely determined as the weak solution of (1-3) with g = u.

In the next lemma, we show that nondegenerate local minima of Jα are fully nondegenerate critical
points.

Lemma 2.8. Suppose that (H4) holds true, and let u ∈ H 1 be a nondegenerate critical point of Jα with
m(u)= 0 (i.e., u is a nondegenerate local minimum of Jα). Then u is fully nondegenerate, and either u or
−u is a positive function.

Proof. We continue using the notation from the proof of Lemma 2.6. Since u is nondegenerate, we have
3 = R(P B|3) and therefore H 1

= N (P)+R(B|3). This implies codimR(B) ≤ codimR(B|3) ≤ 1
and hence that R(B) is closed. Since P B|3 is injective, N (B) ∩3 = {0} and hence dimN (B) ≤ 1.
If dimN (B) = 1 were true, then we would have H 1

= N (B)⊕3. Since the quadratic form 〈B · , · 〉
is positive definite on 3, it would be positive semidefinite on H 1, in contradiction with Lemma 2.4.
Therefore N (B)= {0} and B, being symmetric with closed range, is an isomorphism. Hence u is freely
nondegenerate, and thus it is also fully nondegenerate.

Next, we suppose by contradiction that u changes sign. A variant of the proof of Lemma 2.4 then shows
that the quadratic form 〈B · , · 〉 is negative definite on the two-dimensional subspace span(u+, u−)⊂ H 1,
where u± := max{0,±u} denotes the positive, respectively negative, part of u. Since this space has a
nontrivial intersection with 3, we thus obtain a contradiction to the assumption m(u)= 0. �

Next we add an observation for the case where u is a fully nondegenerate critical point of Jα and a
positive function.



UNSTABLE NORMALIZED STANDING WAVES FOR THE SPACE PERIODIC NLS 1189

Lemma 2.9. Let u ∈ H 1 be a fully nondegenerate critical point of Jα with Lagrangian multiplier λ such
that u is a positive function and f (u)≥ 0 on RN, f (u) 6≡ 0. Then we have

λ < inf σ(−1+ V ). (2-11)

Proof. Since u is freely nondegenerate, we see that

λ 6∈ σ(−1+ V − f ′(u)). (2-12)

Moreover, u(x)→ 0 as |x | →∞ by standard elliptic estimates, and the same is true for the functions
x 7→ f ′(u(x)), x 7→ f (u(x))/u(x). Consequently, by (2-12) and Theorem 14.6 and the proof of
Theorem 14.9 in [Hislop and Sigal 1996], we have for L0 := −1+ V and L := −1+ V − f (u)/u that

λ /∈ σess(−1+ V − f ′(u))= σess(L0)= σess(L),

where σess denotes the essential spectrum. Since u is an eigenfunction of the Schrödinger operator L
corresponding to the eigenvalue λ, it follows that λ is isolated in σ(L). Since moreover u is positive, it is
then easy to see that λ= inf σ(L), and that λ is a simple eigenvalue. On the other hand, the assumption
f (u)/u ≥ 0 implies

inf σ(L0)≥ inf σ(L)= λ.

If λ= inf σ(L0) were true, we could obtain from λ /∈ σess(L0) that λ is also an isolated eigenvalue of L0

with a positive eigenfunction v. But then, since f (u) 6≡ 0 by assumption,

λ=

∫
RN (|∇v|

2
+ V v2)∫

RN v2 >

∫
RN (|∇v|

2
+ (V − f (u)/u)v2)∫

RN v2 ≥ λ,

a contradiction. Hence λ < inf σ(L0). �

We close this section by introducing the extended Lagrangian

Gα : H 1
×R→ R, Gα(u, λ) :=8(u)− 1

2λ(|u|
2
2−α)=8(u)−

1
2λ(〈Su, u〉−α).

By definition, u ∈ H 1 is a critical point of Jα with Lagrange multiplier λ if and only if (u, λ) is a critical
point of Gα. We endow H 1

×R with the natural scalar product

〈(u, s), (v, t)〉 := 〈u, v〉+ st.

The respective gradient of Gα is

∇Gα : H 1
×R→ H 1

×R, ∇Gα(u, λ)=
(
∇8(u)− λSu,− 1

2(|u|
2
2−α)

)
. (2-13)

Moreover, we have

D2Gα(u, λ)[(v, µ)] = (D28(u)v− λSv−µSu,−〈Su, v〉). (2-14)

The operator D2Gα(u, λ) is known in the literature as the bordered Hessian of 8 at (u, λ). It has
been used extensively in finite-dimensional settings to discern local extrema of restricted functionals; see,
e.g., [Greenberg et al. 2000; Shutler 1995; Hassell and Rees 1993; Hughes 1991; Spring 1985; Baxley
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and Moorhouse 1984]. We will use it only in Section 3 below for a gluing procedure respecting an
L2-constraint.

Although we do not need this property in the present paper, we note that a critical point u ∈ H 1 of Jα
is nondegenerate if and only if D2Gα(u, λ) is an isomorphism of H 1

×R. The proof is straightforward.

3. Gluing bumps with L2-constraint

This section is devoted to the proof of Theorem 1.2, which we reformulate in the following way for
matters of convenience. We continue to use the notation introduced in Section 2.

Theorem 3.1. Assume (H1)–(H3) and fix α > 0. Given n ∈ N, n ≥ 2, suppose that ū is a fully nondegen-
erate critical point of Jα/n with Lagrange multiplier λ̄. Let also (ak) ⊆ (Z

N )n be a sequence such that
d(ak)→∞ as k→∞. Then there exists k0 ∈ N such that for k ≥ k0 there exist critical points uk of Jα
with Lagrange multiplier λk . Moreover, we have

‖uk − vk‖→ 0 and |λk − λ̄| → 0 as k→∞, where vk :=

n∑
i=1

Tai
k
ū ∈ H 1, (3-1)

and the sequence (uk)k is uniquely determined by these properties for large k. Furthermore, if ū is a
positive function and f (ū)≥ 0 on RN, f (ū) 6≡ 0, then uk is positive as well for large k.

The remainder of this section is devoted to the proof of this theorem. Let α > 0, n ≥ 2, and ū, λ̄ be as
in the statement of the theorem. Since ū is nondegenerate and freely nondegenerate, Definition 2.5 and
Definition 2.7 imply

B := D28(ū)− λ̄S ∈ L(H 1) is an isomorphism (3-2)

and
there exists zū ∈ H 1 with (zū, ū)2 6= 0 and Bzū = Sū. (3-3)

Let (ak)⊆ (Z
N )n be a sequence such that d(ak)→∞ as k→∞, and let vk ∈ H 1 be given as in (3-1)

for k ∈ N. For simplicity we assume that

a1
k = 0 for all k ∈ N. (3-4)

We wish to prove that
∇Gα(vk, λ̄)→ 0 as k→∞ (3-5)

and that

D2Gα(vk, λ̄) ∈ L(H 1
×R) is invertible for large k,

and the norm of the inverse remains bounded as k→∞. (3-6)

Once these assertions are proved, we may apply Corollary 2.2 with h := ∇Gα to find, for k large, critical
points uk of Jα with Lagrange multiplier λk such that (3-1) holds true. Here we use the fact that the
sequence (vk)k is bounded in H 1 and that D28 is uniformly continuous on bounded subsets of H 1.

By the BL-splitting properties, (2-13) implies∥∥∥∥∇Gα(vk, λ̄)−

n∑
i=1

∇Gα/n(Tai
k
ū, λ̄)

∥∥∥∥
L(H1×R)

→ 0.
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Since ‖∇Gα/n(Tai
k
ū, λ̄)‖L(H1×R) = ‖∇Gα/n(ū, λ̄)‖L(H1×R) = 0 for i = 1, 2, . . . , n and every k, (3-5)

follows.
We now turn to the (more difficult) proof of (3-6). For this we consider the operators

Bk := D28(vk)− λ̄S ∈ L(H 1) for k ∈ N.

and we claim that

T
−ai

k
BkTai

k
w→ Bw in H 1 for w ∈ H 1, i = 1, 2, . . . , n. (3-7)

To see this, we recall that D29 BL-splits and that therefore

D29(vk)=

n∑
j=1

D29(Ta j
k
ū)+ o(1) in L(H 1), (3-8)

which implies

Bk = I − λ̄S−D29(vk)= I − λ̄S−
n∑

j=1

D29(Ta j
k
ū)+ o(1) in L(H 1). (3-9)

It is easy to see that

T
−ai

k
D29(Tai

k
ū)Tai

k
= D29(ū) for k ∈ N and i = 1, . . . , n. (3-10)

Moreover, if i 6= j , then for w ∈ H 1 we have

D29(Ta j
k
ū)Tai

k
w = Ta j

k
T
−a j

k
D29(Ta j

k
ū)Ta j

k
Tai

k−a j
k
w = Ta j

k
D29(ū)Tai

k−a j
k
w→ 0 (3-11)

in H 1, since Tai
k−a j

k
w ⇀ 0 and D29(ū) ∈ L(H 1) is a compact operator. Combining (3-9)–(3-11) and

recalling that S commutes with Tai
k
, we find that

T
−ai

k
BkTai

k
w = (I − λ̄S)w−

n∑
j=1

T
−ai

k
D29(Ta j

k
ū)Tai

k
w+ o(1)

= (I − λ̄S)w−D29(ū)w+ o(1)= Bw+ o(1) as k→∞

for w ∈ H 1 and i = 1, . . . , n, as claimed in (3-7).
We note that (3-7) implies

T
−ai

k
BkTa j

k
w = Ta j

k−ai
k
T
−a j

k
BkTa j

k
w = Ta j

k−ai
k
Bw+ o(1) ⇀ 0 in H 1 (3-12)

for w ∈ H 1 and i 6= j . We now prove (3-6) by contradiction. Supposing that (3-6) does not hold true, we
find, after passing to a subsequence, that there are wk ∈ H 1 and µk ∈ R such that ‖wk‖

2
+µ2

k = 1 and
D2Gα(vk, λ̄)[(wk, µk)] → 0. By (2-14) this implies

Bkwk −µk Svk→ 0 in H 1, (3-13)

(vk, wk)2→ 0 in R. (3-14)

Define for i = 1, 2, . . . , n, possibly after passing to a subsequence, the functions

wi
:= w-lim

k→∞
T
−ai

k
wk ∈ H 1
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and µ := limk→∞ µk . Let zū ∈ H 1 be given as in (3-3). Forming the H 1-scalar product of (3-13) with
Tai

k
zū and using (3-7) together with the fact that T

−ai
k
vk ⇀ ū in H 1, we obtain

o(1)= 〈Bkwk, Tai
k
zū〉−µk〈Svk, Tai

k
zū〉 = 〈wk, BkTai

k
zū〉−µk(vk, Tai

k
zū)2

= 〈T
−ai

k
wk, T−ai

k
BkTai

k
zū〉−µk(T−ai

k
vk, zū)2 = 〈w

i , Bzū〉−µ(ū, zū)2+ o(1)

= 〈wi , Sū〉−µ(ū, zū)2+ o(1)= (wi , ū)2−µ(ū, zū)2+ o(1)

for i = 1, . . . , n. Hence
(wi , ū)2 = µ(ū, zū)2 for i = 1, . . . , n.

By (3-14) we thus have

0= lim
k→∞

(vk, wk)2 = lim
k→∞

n∑
i=1

(Tai
k
ū, wk)2 = lim

k→∞

n∑
i=1

(ū, T
−ai

k
wk)2 =

n∑
i=1

(ū, wi )2 = nµ(ū, zū)2.

Since (ū, zū)2 6= 0, this gives µ= 0. Hence (3-13) reduces to

Bkwk→ 0 in H 1 as k→∞. (3-15)

We now set

zk := wk −

n∑
j=1

Ta j
k
w j for k ∈ N,

so
T
−ai

k
zk ⇀ 0 for i = 1, . . . , n. (3-16)

By (3-7), (3-12) and (3-15) we have

0= w-lim
k→∞

T
−ai

k
Bkwk = w-lim

k→∞

[ n∑
j=1

T
−ai

k
BkTa j

k
w j
+ T
−ai

k
Bkzk

]
= Bwi

+w-lim
k→∞

T
−ai

k
Bkzk . (3-17)

Moreover,
D29(ū)T

−ai
k
zk→ 0 in H 1 for i = 1, . . . , n (3-18)

by (3-16) and since D29(ū) ∈ L(H 1) is a compact operator, which by (3-10) implies

T
−ai

k
D29(Ta j

k
ū)zk = Ta j

k−ai
k
D29(ū)T

−a j
k
zk→ 0 in H 1 (3-19)

for i, j = 1, . . . , n. Using (3-9) again, we obtain

w-lim
k→∞

T
−ai

k
Bkzk = w-lim

k→∞

(
T
−ai

k
(I − λ̄S)zk −

n∑
j=1

T
−ai

k
D29(Ta j

k
ū)zk

)
= w-lim

k→∞
(I − λ̄S)T

−ai
k
zk = 0

for i = 1, . . . , n. Combining this with (3-17), we conclude that Bwi
= 0 for i = 1, . . . , n and thus

wi
= 0 for i = 1, . . . , n
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by (3-2). We therefore have wk = zk for all k. Recalling (3-15), (3-9), (3-4), and choosing i = 1 in (3-18)
and (3-19), we find

o(1)= Bkwk = Bkzk = (I − λ̄S)zk −

n∑
j=1

D29(Ta j
k
ū)zk + o(1)= (I − λ̄S)zk + o(1)

= (I − λ̄S)zk −D29(ū)zk + o(1)= Bzk + o(1)= Bwk + o(1),

and thus wk→ 0 in H 1 by (3-2). Since µ= 0, this contradicts our assumption that ‖wk‖
2
+µ2

k = 1 for
all k. This proves (3-6), as desired.

In the following we assume N ≥ 3. The cases N = 1, 2 are proved similarly, ignoring those terms
below that include the critical exponent 2∗.

As remarked above, applying Corollary 2.2 with h := ∇Gα now yields, for k large, critical points uk

of Jα with Lagrange multiplier λk such that (3-1) holds true. To finish the proof of Theorem 3.1, we now
assume that ū ∈ H 1 is positive with f (ū)≥ 0 in RN, f (ū) 6≡ 0, and we show that uk is also positive for k
large. By Lemma 2.9 we then have λ̄ < inf σ(−1+ V )= γ , so∫

RN
(|∇v|2+ [V − λ̄]|v|2)≥ (γ − λ̄)‖v‖2 for all v ∈ H 1.

On the other hand, for fixed ε ∈ (0, γ − λ̄) it easily follows from (H3), Sobolev embeddings, the
representation (2-3), and (2-4), that there is a constant C > 0 such that∫

RN
f (v)v ≤ ε‖v‖2+C‖v‖p

+ ε‖v‖2
∗

for v ∈ H 1.

Moreover, since vk is positive, (3-1) implies u−k :=min{uk, 0} → 0 in H 1 as k→∞. However, we have

0=
∫

RN
(−1uk + [V − λk]uk − f (uk))u−k

=

∫
RN
(|∇u−k |

2
+ [V − λk]|u−k |

2)−

∫
RN

f (u−k )u
−

k

and therefore

(γ − λ̄)‖u−k ‖
2
≤

∫
RN
(|∇u−k |

2
+ [V − λ̄]|u−k |

2)

= o(1)|u−k |
2
2+

∫
RN
(|∇u−k |

2
+ [V − λk]|u−k |

2)

= o(1)‖u−k ‖
2
+

∫
RN

f (u−k )u
−

k

≤ (ε+ o(1))‖u−k ‖
2
+C‖u−k ‖

p
+ ε‖u−k ‖

2∗ .

By the choice of ε, this implies u−k = 0 for large k. Consequently, uk is strictly positive on RN for large k
by the strong maximum principle. The proof of Theorem 3.1 is finished.
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4. Morse index and nondegeneracy of normalized multibump solutions

In this section, we prove a general result on the nondegeneracy and the Morse index of normalized
multibump solutions built from fully nondegenerate critical points of the restriction of 8 to 6α/n .
Moreover, we also complete the proof of Corollary 1.4 at the end of the section.

Recall, for α > 0 and a critical point u of Jα =8|6α , the definitions of the Morse index m(u) and the
free Morse index mf(u) given in Definition 2.5. The following theorem is the main result of this section,
and together with Lemma 2.6 it readily implies Theorem 1.3.

Theorem 4.1. Assume (H1)–(H3) and fix α > 0. Given n ∈ N, n ≥ 2, suppose that ū is a fully nonde-
generate critical point of Jα/n with Lagrange multiplier λ̄ and finite Morse index m(ū). Furthermore, let
(ak)⊆ (Z

N )n be a sequence such that d(ak)→∞ as k→∞, and such that the critical points uk of Jα
with Lagrange multiplier λk and with

‖uk − vk‖→ 0 and |λk − λ̄| → 0 as k→∞, where vk :=

n∑
i=1

Tai
k
ū ∈ H 1 (4-1)

from Theorem 3.1 exist for all k. Then, for k sufficiently large, uk is a nondegenerate critical point of Jα,
m(uk) = n(m(ū)+ 1)− 1 if (ū, zū)2 < 0, and m(uk) = nm(ū) if (ū, zū)2 > 0. If (H4) holds true, then
m(uk) > 0 for large k.

To prove this theorem, we set B :=D28(ū)− λ̄S and Bk :=D28(vk)− λ̄S, as in Section 3. Moreover,
we consider the self adjoint operators

Ck := D28(uk)− λk S ∈ L(H 1)

for k ∈ N. First we show that the constrained critical points uk of 8 are freely nondegenerate and that

mf(uk)= nmf(ū) for large k.

To this end it is sufficient to prove the following.

Lemma 4.2. It holds true that

lim sup
k→∞

inf
W6H1

dim W=nmf(ū)

sup
w∈W
‖w‖=1

〈Ckw,w〉< 0, (4-2)

lim inf
k→∞

inf
W6H1

dim W=nmf(ū)+1

sup
w∈W
‖w‖=1

〈Ckw,w〉> 0. (4-3)

Proof. By (4-1) and since D28 : H 1
→ L(H 1) is uniformly continuous on bounded subsets of H 1, the

assertion follows once we have established the following estimates:

lim sup
k→∞

inf
W6H1

dim W=nmf(ū)

sup
w∈W
‖w‖=1

〈Bkw,w〉< 0, (4-4)

lim inf
k→∞

inf
W6H1

dim W=nmf(ū)+1

sup
w∈W
‖w‖=1

〈Bkw,w〉> 0. (4-5)
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Let Z ⊂ H 1 denote the generalized eigenspace of the self-adjoint operator B in H 1 corresponding to its
mf(ū) negative eigenvalues. Pick δ > 0 such that 〈Bw,w〉 ≤ −δ‖w‖2 for all w ∈ Z and 〈By, y〉 ≥ δ‖y‖2

for all y ∈ Z⊥. Put

Zk :=

n∑
i=1

Tai
k
Z ⊂ H 1 for k ∈ N.

Since d(ak)→∞, the sum is direct and hence dim Zk = nmf(ū) for k sufficiently large. If wk ∈ Zk

satisfies ‖wk‖ = 1 for all k, then it suffices to show

lim sup
k→∞

〈Bkwk, wk〉 ≤ −δ (4-6)

along a subsequence to prove (4-4). We write

wk =

n∑
i=1

Tai
k
ρi

k for k ∈ N with ρi
k ∈ Z .

Since Z is finite-dimensional, we may pass to a subsequence such that ρi
k→ ρi

∈ Z for i = 1, . . . , n as
k→∞. It is easy to see that then

1= ‖wk‖
2
=

n∑
i=1

‖ρi
‖

2
+ o(1) as k→∞.

Thus (3-7) and (3-12) imply

〈Bkwk, wk〉 =

n∑
i, j=1

〈BkTai
k
ρi

k, Ta j
k
ρ

j
k 〉 =

n∑
i, j=1

〈T
−a j

k
BkTai

k
ρi , ρ j

〉+ o(1)=
n∑

i=1

〈Bρi , ρi
〉+ o(1)

≤−δ

n∑
i=1

‖ρi
‖

2
+ o(1)=−δ+ o(1),

that is, (4-6).
If yk ∈ Z⊥k satisfies ‖yk‖ = 1 for all k, then it suffices to show

lim inf
k→∞

〈Bk yk, yk〉 ≥ δ (4-7)

for a subsequence to prove (4-5). Passing to a subsequence, we may assume that

wi
:= w-lim

k→∞
T
−ai

k
yk

exists for i = 1, . . . , n. Let v ∈ Z . Since Tai
k
v ∈ Zk , we infer that

0= 〈Tai
k
v, yk〉 = 〈v, T−ai

k
yk〉 = 〈v,w

i
〉+ o(1) for i = 1, . . . , n.

Consequently,

wi
∈ Z⊥ for i = 1, . . . , n. (4-8)
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We now set

zk := yk −

n∑
i=1

Tai
k
wi for k ∈ N,

noting that
w-lim
k→∞

T
−ai

k
zk = 0 for i = 1, . . . , n. (4-9)

In particular, this implies
zk ⇀ 0 in H 1 (4-10)

by (3-4) which we may again assume without loss of generality. Using (3-7), (3-12), and (4-9) we obtain
the splitting

〈Bk yk, yk〉 = 〈Bkzk, zk〉+ 2
n∑

i=1

〈BkTai
k
wi , zk〉+

n∑
i, j=1

〈BkTai
k
wi , Ta j

k
w j
〉

= 〈Bkzk, zk〉+ 2
n∑

i=1

〈T
−ai

k
BkTai

k
wi , T

−ai
k
zk〉+

n∑
i, j=1

〈T
−a j

k
BkTai

k
wi , w j

〉

= 〈Bkzk, zk〉+

n∑
i=1

〈Bwi , wi
〉+ o(1), (4-11)

where
〈Bkzk, zk〉 = ‖zk‖

2
− λ|zk |

2
2−〈D

29(vk)zk, zk〉

= ‖zk‖
2
− λ|zk |

2
2−

n∑
i=1

〈D29(Tai
k
ū)zk, zk〉+ o(1)

= ‖zk‖
2
− λ|zk |

2
2−

n∑
i=1

〈D29(ū)T
−ai

k
zk, T−ai

k
zk〉+ o(1)

= ‖zk‖
2
− λ|zk |

2
2+ o(1)

= ‖zk‖
2
− λ|zk |

2
2−〈D

29(ū)zk, zk〉+ o(1)

= 〈Bzk, zk〉+ o(1). (4-12)

Here we have used (3-8), (3-10), (4-9), (4-10), and the compactness of the operator D29(ū) ∈ L(H 1).
Let P ∈ L(H1) denote the 〈 · , · 〉-orthogonal projection on Z , and let Q := I − P. Since P has finite

range, we see that
zk − Qzk = Pzk→ 0 in H 1 as k→∞. (4-13)

Combining (4-8), (4-11), (4-12), and (4-13), we obtain

〈Bk yk, yk〉 = 〈B Qzk, Qzk〉+

n∑
i=1

〈Bwi , wi
〉+ o(1)≥ δ

(
‖Qzk‖

2
+

n∑
i=1

‖wi
‖

2
)
+ o(1)

= δ

(
‖zk‖

2
+

n∑
i=1

‖wi
‖

2
)
+ o(1)= δ‖yk‖

2
+ o(1)= δ+ o(1),

and hence (4-7). �
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From Lemma 4.2 it follows that Ck is invertible for large k and that the norm of its inverse remains
bounded as k→∞. We now recall the function zuk = C−1

k Suk ∈ H 1, which by Lemma 2.6 is of key
importance to compute m(uk).

Lemma 4.3. For i = 1, . . . , n we have

T
−ai

k
zuk ⇀ zū = B−1Sū in H 1 as k→∞.

Proof. Let ψ ∈ H 1, and let ϕ = B−1ψ ∈ H 1. Recalling that D28 : H 1
→ L(H 1) is uniformly continuous

on bounded subsets of H 1, we may deduce from (3-7) that

T
−ai

k
CkTai

k
ϕ = T

−ai
k
BkTai

k
ϕ+ o(1)→ Bϕ = ψ in H 1

as k→∞. Since moreover the sequence (zuk )k is bounded in H 1 and T
−ai

k
uk ⇀ ū in H 1 as k→∞, we

have

〈zū, ψ〉 = 〈B−1(Sū), ψ〉 = 〈Sū, ϕ〉 = 〈S(T
−ai

k
uk), ϕ〉+ o(1)= 〈Suk, Tai

k
ϕ〉+ o(1)

= 〈Ckzuk , Tai
k
ϕ〉+ o(1)= 〈zuk ,CkTai

k
ϕ〉+ o(1)= 〈T

−ai
k
zuk , T−ai

k
CkTai

k
ϕ〉+ o(1)

= 〈T
−ai

k
zuk , ψ〉+ o(1) as k→∞. �

Proof of Theorem 4.1. With the help of Lemma 4.3, we compute

(uk, zuk )2 = (vk, zuk )2+ o(1)=
n∑

i=1

(Tai
k
ū, zuk )2+ o(1)

=

n∑
i=1

(ū, T
−ai

k
zuk )2+ o(1)= n(ū, zū)2+ o(1).

Since (ū, zū)2 6= 0 as ū is fully nondegenerate by assumption, we infer that (uk, zuk )2 is also nonzero
and has the same sign as (ū, zū)2 for large k. Moreover, uk is freely nondegenerate by Lemma 4.2, so
Lemma 2.6 yields that uk is a fully nondegenerate critical point of 8|6α for large k. Its Morse index
is, by the same token, m(uk) = mf(uk)− 1 = nmf(ū)− 1 = n(m(ū)+ 1)− 1 if (ū, zū)2 < 0, and it is
m(uk)= mf(uk)= nmf(ū)= nm(ū) if (ū, zū)2 > 0.

To show the last statement of the present theorem, suppose that (H4) is satisfied. Lemma 2.4 implies
〈Bū, ū〉< 0, that is, mf(ū) > 0. In any case it follows from the preceding calculations that m(uk) > 0 for
large k. This completes the proof of Theorem 4.1. �

Proof of Corollary 1.4. Let ū be a nondegenerate local minimum of Jα/n with Lagrange multiplier λ̄.
Moreover, let (ak) ⊆ (Z

N )n be a sequence such that d(ak) → ∞ as k → ∞. By Lemma 2.8, ū is
fully nondegenerate and, without loss of generality, a positive function. Thus, (H4) and Theorem 3.1
imply the existence of positive critical points uk of Jα with Lagrange multiplier λk for large k and
such that (4-1) holds true. Moreover, the sequence (uk)k is uniquely determined by these properties.
Since mf(ū) > 0= m(ū) by (H4) and Lemma 2.4, Theorem 4.1 now implies uk is nondegenerate with
m(uk)= n− 1 for large k. �
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5. Proof of Theorem 1.5

In this section we wish to prove Theorem 1.5. For this we will assume hypotheses (H5) and (H6). Without
loss of generality we may also assume for the nondegenerate critical point x0 of V that

x0 = 0 and V (x0)= 1.

We are then concerned with positive solutions of the singularly perturbed equation

−ε21u+ V (x)u = |u|p−2u, u ∈ H 1, (5-1)

where p ∈ (2, 2∗). By [Grossi 2002, Theorem 1.1], there exists ε0 and a family of positive single peak
solutions ūε, ε ∈ (0, ε0), of (5-1) which concentrates at x0 = 0. This means that each ūε has only one
local maximum, and the rescaled functions

uε ∈ H 1, uε(x) := ūε(εx), (5-2)

converge, as ε→ 0, in H 1 to the unique radial positive solution of the limit equation

−1u0+ u0 = u p−1
0 in RN. (5-3)

Moreover, as follows from the uniqueness statement in [loc. cit., Theorem 1.1], this convergence property
after rescaling determines the solutions ūε uniquely for ε > 0 small. In addition, we can assume by
[loc. cit., Theorem 6.2] that ūε is nondegenerate; i.e., the linear operator

H 1
7→ H 1, v 7→ v− (p− 1)(−ε21+ V )−1ū p−2

ε v, is an isomorphism (5-4)

for ε ∈ (0, ε0). Here, for ε > 0, the operator −ε21+V ∈ L(H 1, H−1) is understood as the Hilbert space
isomorphism H 1

→ H−1 associated with the scalar product

(u, v) 7→
∫

RN

(ε2
∇u · ∇v+ V uv)

on H 1 via Riesz’s representation theorem. Since 0<min V ≤max V <∞, this scalar product is equivalent
to the standard scalar product on H 1, which we denote by

〈u, v〉H1 :=

∫
RN
(∇u · ∇v+ uv). (5-5)

We also let ‖ · ‖H1 denote the associated norm.

Lemma 5.1. The map (0, ε0)→ H 1, ε 7→ ūε, is continuous.

Proof. For ε > 0, let K (ε) := −ε21+ V ∈ L(H 1, H−1). Then the map K : (0,∞)→ L(H 1, H−1)

is continuous. Moreover, since p is subcritical, the nonlinear superposition operator H 1
→ H−1,

u 7→ |u|p−2u, is of class C1. Consequently, the map

h : (0,∞)× H 1
→ H−1, (ε, u) 7→ K (ε)u− |u|p−2u,
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is continuous, and continuously differentiable in its second argument. Since ūε is a weak solution of
(5-1), we have h(ε, uε)= 0. Furthermore, the operator

hu(ε, uε)= K (ε)− (p− 1)|ūε|p−2
∈ L(H 1, H−1)

is an isomorphism as a consequence of (5-4). Hence the claim follows from the implicit function theorem;
see, e.g., [Deimling 1985, Theorem 15.1]. �

Since the map ε 7→ ūε is continuous and

|ūε|22 =
∫

RN
ū2
ε = ε

N
∫

RN
u2
ε = ε

N
∫

RN
u2

0+ o(1)= o(1) as ε→ 0,

the assertions (i)–(iii) of Theorem 1.5 are already verified. The remainder of this section is devoted to the
proof of Theorem 1.5(iv).

For this we first note that the function uε ∈ H 1 defined in (5-2) satisfies the rescaled equation

−1uε + Vε(x)uε = |uε|p−2uε, u ∈ H 1, (5-6)

with
Vε : RN

→ R, Vε(x)= V (εx). (5-7)

Moreover, by (5-4), the linear operator

Bε ∈ L(H 1), Bεv = v− (p− 1)(−1+ Vε)−1u p−2
ε v, is an isomorphism (5-8)

for ε ∈ (0, ε0). We also note that the functions uε have uniform exponential decay; i.e., there exist
constants α,C > 0 such that

|uε(x)| ≤ Ce−α|x | for all x ∈ RN, ε ∈ (0, ε0); (5-9)

see [Grossi 2002, Lemma 4.2(i)]. Moreover,

uε→ u0 in H 2(RN ) and uniformly in RN ; (5-10)

see [loc. cit., Theorem 4.1 and Lemma 4.2(ii)]. Note that uε satisfies [loc. cit., Equation (4.1)] with
ci,y,ε = 0 since it is a solution of (5-6).

We need to recall some properties of the unique radial positive solution u0 of the limit equation (5-3)
and therefore consider the functional

8∗0 : H 1
→ R, 8∗0(u) :=

1
2

∫
RN
(|∇u|2+ u2)−

1
p

∫
RN
|u|p.

It is easy to see that D28∗0(u0) ∈ L(H 1) has exactly one negative eigenvalue, the value 2− p, with
corresponding eigenspace generated by u0. Here, the symbol D2 denotes the derivative of the gradient
with respect to the scalar product 〈 · , · 〉H1 .

Its kernel is spanned by the partial derivatives ∂1u0, ∂2u0, . . . , ∂N u0; see [Ni and Takagi 1993,
Lemma 4.2(i)]. Letting H̃ denote the 〈 · , · 〉-orthogonal complement of span(∂1u0, ∂2u0, . . . , ∂N u0)
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in H 1, we therefore find that the operator

B0
∈ L(H 1), B0v = D28∗0(u0)v = v− (p− 1)[1+ 1]−1u0

p−2,

restricts to an isomorphism H̃ → H̃. Moreover, H̃ contains all radial functions, so in particular u∗ :=
[1+ 1]−1u0 ∈ H̃. Consequently, there exists a unique z∗ ∈ H̃ with B0z∗ = u∗.

Lemma 5.2. We have

(z∗, u0)2 =
(N

4
−

1
p−2

)
|u0|

2
2 =

p− (2+ 4/N )
4N (p− 2)

|u0|
2
2.

Proof. For λ > 0, consider the function

wλ ∈ H 1, wλ(x)= λ1/(p−2)u0(
√
λx) for x ∈ RN,

which is the unique radial positive solution of

−1wλ+ λwλ−w
p−1
λ = 0 in RN, (5-11)

so w1 = u0. Moreover, consider

z̃ ∈ H 1, z̃(x)= ∂

∂λ

∣∣∣
λ=1
wλ(x).

We claim that z∗ =−z̃. Indeed, we have B0 z̃ =−u∗ since differentiating (5-11) at λ= 1 yields

−1z̃+ z̃− (p− 1)u p−2
0 z̃ =−u0 in RN. (5-12)

Moreover, z̃ ∈ H̃ since z̃ is a radial function. By the remarks above, this implies z∗ =−z̃. We therefore
compute

(z∗, u0)2 =−(z̃, u0)2 =−
1
2

d
dλ

∣∣∣
λ=1
|wλ|

2
2 =−

1
2

d
dλ

∣∣∣
λ=1

(
λ2/(p−2)

∫
RN

u2
0(
√
λx) dx

)
=−

1
2

d
dλ

∣∣∣
λ=1
λ2/(p−2)−N/2

|u0|
2
2 =

1
2

(N
2
−

2
p−2

)
|u0|

2
2,

as claimed. �

Next we collect some properties of the scaled potentials Vε, ε ∈ (0, ε0), defined in (5-7). Note that
these functions are uniformly bounded and satisfy

|Vε(x)− 1| ≤ c ε2
|x |2 for x ∈ RN, ε ∈ (0, ε0), with a constant c > 0. (5-13)

We also note that

lim
ε→0

∂i Vε(x)
ε2 =

N∑
j=1

∂i j V (0)x j locally uniformly in x ∈ RN (5-14)

for i = 1, . . . , N , so

|∂i Vε(x)| ≤ c ε2
|x | for x ∈ RN, ε ∈ (0, ε0), with a constant c > 0. (5-15)
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Next we consider

zε := [Bε]−1(−1+ Vε)−1uε ∈ H 1 for ε ∈ (0, ε0),

where Bε is defined in (5-8). Hence zε is the unique weak solution of

−1zε + Vε(x)zε − (p− 1)u p−2
ε zε = uε in RN. (5-16)

We claim that

(zε, uε)2→ (z∗, u0)2 as ε→ 0. (5-17)

To prove this, we argue by contradiction and suppose that there exists δ > 0 and a sequence (εn)n ∈ (0, ε0)

such that εn→ 0 as n→∞ and

|(zn, un)2− (z∗, w)2| ≥ δ for all n ∈ N, where zn := zεn and un := uεn . (5-18)

We first claim that the sequence (zn)n is bounded in H 1. Indeed, if not, we can pass to a subsequence
such that ‖zn‖H1 > 0 for all n and ‖zn‖H1 →∞ as n→∞. We then consider yn := zn/‖zn‖H1 , and we
may pass to a subsequence such that yn ⇀ y in H 1. Since yn is a weak solution of the equation

−1yn + Vεn yn − (p− 1)u p−2
n yn =

un

‖zn‖H1
in RN for every n, (5-19)

we have ∫
RN
[∇ y∇v+ yv− (p− 1)u p−2

0 v] = lim
n→∞

∫
RN
[∇ yn∇v+ Vεn ynv− (p− 1)u p−2

n ynv]

= lim
n→∞

1
‖zn‖H1

∫
RN

unv = 0 for every v ∈ H 1.

Consequently, y ∈ H 1 is a weak solution of −1y + y − (p − 1)u p−2
0 y = 0 in RN, which means that

B0 y = 0. Hence there exist a1, . . . , aN ∈ R with y =
∑N

i=1 ai ∂i u0. Next we note that ∂i un solves the
equation

−1(∂i un)+ Vε ∂i un + un ∂i Vεn − (p− 1)u p−2
n ∂i un = 0 for i = 1, . . . , N .

Multiplying this equation with yn and integrating over RN, we obtain by (5-19) that∫
RN

un yn ∂i Vεn =−
1

‖zn‖H1

∫
RN

un ∂i un = 0 for all n ∈ N.

Dividing this equation by ε2
n and passing to the limit, we may then use (5-9), (5-14), (5-15) and Lebesgue’s

theorem to see that

0= lim
n→∞

1
ε2

n

∫
RN

un yn ∂i Vεn =

N∑
j=1

∫
RN
∂i j V (0)x j u0(x)y(x) dx

=

N∑
`, j=1

a` ∂i j V (0)
∫

RN
x j u0(x) ∂`u0(x) dx =−

|u0|
2
2

2

N∑
j=1

a j ∂i j V (0) for i = 1, . . . , N .
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Here we have integrated by parts in the last step. Since 0 is a nondegenerate critical point of V by
assumption, we conclude that a j = 0 for j = 1, . . . , N and therefore y = 0. This implies in particular that
(y2

n) is bounded in L p/2 and that y2
n → 0 in L p/2

loc . Moreover, u p−2
n → u p−2

0 in L p/(p−2). Testing (5-19)
with yn we obtain∫

RN
(|∇ yn|

2
+ Vεn |yn|

2)= (p− 1)
∫

RN
u p−2

n |yn|
2
+

1
‖zn‖H1

∫
RN

un yn→ 0

as n→∞ and therefore ‖yn‖H1 → 0 as n→∞, which is a contradiction. We thus conclude that the
sequence (zn)n is bounded. We may thus pass to a subsequence such that zn ⇀ z in H 1. We then have by
(5-16) ∫

RN
[∇z∇v+ zv− (p− 1)u p−2

0 v] = lim
n→∞

∫
RN
[∇zn∇v+ Vεn znv− (p− 1)u p−2

n znv]

= lim
n→∞

∫
RN

unv =

∫
RN

u0v for every v ∈ H 1.

Consequently, z ∈ H 1 is a weak solution of −1z + z − (p− 1)u p−2
0 z = u0 in RN, which means that

B0z = u∗. As a consequence, B0(z− z∗) = 0, which implies z− z∗ ∈ span(∂1u0, ∂2u0, . . . , ∂N u0) and
therefore (z− z∗, u0)2 = 0. We thus conclude that

(zn, un)2→ (z, u0)2 = (z∗, u0)2 as n→∞,

contrary to (5-18). This shows (5-17), as claimed. Combining (5-17) with Lemma 5.2, we see that for
fixed p ∈ (2, 2∗)\{2+ 4/N }, we may take ε0 > 0 smaller if necessary such that

(zε, uε)2 < 0 if 2< p < 2+ 4
N

and (zε, uε)2 > 0 if 2+ 4
N
< p < 2∗. (5-20)

Moreover, from (5-20) we immediately deduce (1-6) by rescaling. Since ūε is a critical point of 8ε,
it is also a critical point of 8ε|6

|ūε |22
with Lagrange multiplier 0, which implies, together with (1-6)

and Definition 1.1, that ūε is a fully nondegenerate critical point of 8ε|6
|ūε |22

.
To conclude the proof of Theorem 1.5, it remains to compute the Morse index of ūε for ε > 0 small.

From (1-6) and Lemma 2.6, we deduce that

m(ūε)= mf(ūε)− 1 if 2< p < 2+ 4
N

and m(ūε)= mf(ūε) if 2+ 4
N
< p < 2∗. (5-21)

It therefore suffices to compute the free Morse index mf(ūε), which by rescaling is the same as the free
Morse index mf(uε) with respect to the rescaled potential

8∗ε : H 1
→ R, 8∗ε(u) :=

1
2

∫
RN
(|∇u|2+ Vεu2)−

1
p

∫
RN
|u|p.

More precisely, the equalities in (1-5) follow from (5-21) once we have shown that

mf(uε)= mV + 1 for all p ∈ (2, 2∗) and ε > 0 small, (5-22)
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where mV denotes the number of negative eigenvalues of the Hessian of V at x0. The argument is partly
contained in the proof of [Lin and Wei 2008, Theorem 2.5]. Nevertheless, since some details are omitted
there, we give a complete proof of (5-22) in the Appendix. The proof of Theorem 1.5 is thus finished.

6. Orbital instability

This section is devoted to the proof of Theorem 1.7. To simplify the presentation we only give a proof for
the case N ≥ 3; the cases N = 1, 2 can be treated similarly, slightly modifying the arguments below.

Throughout this section, we consider the special case where the nonlinearity f is odd. We may
therefore write it in the form f (t)= g(|t |2)t , where g ∈ C([0,∞))∩C1((0,∞)) satisfies g(0)= 0 and

lim
s→∞

g′(s)
s2∗/2−2 = 0.

Note that in this case we have

8(u)= 1
2
‖u‖2−

∫
RN

G(|u|2)= 1
2

∫
RN

(
|∇u|2+ V |u|2

)
−

∫
RN

G(|u|2)

for u ∈ H 1 with G(t)= 1
2

∫ t
0 g for t ≥ 0. To prove the assertion on orbital instability given in Theorem 1.7,

we apply an argument from [Esteban and Strauss 1994] with some modifications. We identify C with R2

and write the time-dependent nonlinear Schrödinger equation (1-8) as the following system in u =
( u1

u2

)
with u1 = Re u, u2 = Im u:

ut = J (−1u+ V (x)u− g(u2
1+ u2

2)u) with J :=
(

0 −1
1 0

)
. (6-1)

In order to set up the functional analytic equation for this system, we denote the dual paring between
H−1 and H 1 by 〈 · , · 〉∗. We put H := H 1

× H 1 and write H∗ = H−1
× H−1 for the topological dual

of H. Recalling that we are assuming min σ(−1+ V ) > 0, we use the scalar product

〈u, v〉H = 〈u1, v1〉+ 〈u2, v2〉 =

2∑
i=1

∫
RN

(
∇ui · ∇vi + V uivi

)
for u, v ∈H,

and denote the induced norm by ‖ · ‖H. The dual pairing between H∗ and H is given by

〈u, v〉H∗,H = 〈u1, v1〉∗+〈u2, v2〉∗ for u =
(

u1

u2

)
∈H∗, v =

(
v1

v2

)
∈H.

As usual in the context of Gelfand triples, we consider the continuous embedding I : H 1 ↪→ H−1 given by

〈I u, v〉∗ :=
∫

RN
uv for u, v ∈ H 1.

The corresponding embedding H ↪→H∗ will also be denoted by I ; i.e., we set

〈I u, v〉H∗,H :=
∫

RN
(u1v1+ u2v2) for u =

(
u1

u2

)
, v =

(
v1

v2

)
∈H.
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With this notation, we write system (6-1) in the more abstract form of a Hamiltonian system. For this we
consider the functionals

8̃ ∈ C2(H,R), 8̃(u)= 1
2‖u‖

2
H−

∫
RN

G(u2
1+ u2

2),

8̃λ ∈ C2(H,R), 8̃λ(u)=8(u)−
λ

2

∫
RN
(u2

1+ u2
2).

With this notation, (6-1) can be written as

(I u)t = Jd8̃(u) in H∗,

where d8̃ : H→H∗ denotes the derivative of 8̃ and J is regarded as a matrix multiplication operator on
H∗ = H−1

× H−1.
Now let ϕ ∈6α satisfy the assumptions of Theorem 1.7, and let λ∈R be the corresponding Lagrangian

multiplier. Moreover, in the following, we let d28̃λ(ψ) ∈ L(H,H∗) denote the second derivative of 8̃λ
at ψ :=

(
ϕ
0

)
∈H, which by direct computation is given as

d28̃λ(ψ)=

(
L1 0
0 L2

)
, where

{
L1w =−1w+ [V (x)− λ]w− f ′(ϕ)w,
L2w =−1w+ [V (x)− λ]w− g(|ϕ|2)w.

Note here that f ′(t)= g(|t |2)+ 2g′(|t |2)t2, so by (H3) we have L i ∈ L(H 1, H−1) for i = 1, 2. Similarly
as noted in [Esteban and Strauss 1994, p. 187], the orbital instability of the solitary wave solution uϕ in
(1-7) follows by the same argument as in the proof of [Grillakis et al. 1990, Theorem 6.2] once we have
established the following.

Proposition 6.1. The operator
M := Jd28̃λ(ψ) ∈ L(H,H∗)

has a positive real eigenvalue; i.e., there exists ρ > 0 and w ∈H\{0} such that Mw = ρ Iw.

The remainder of this section is devoted to the proof of Proposition 6.1. We first note that

L2ϕ = 0 in H−1,

since ϕ is a critical point of 8|6α with Lagrangian multiplier λ. Moreover, since λ < inf σess(−1+ V )
by assumption, and since g(|ϕ|2) vanishes at infinity, Persson’s theorem [Hislop and Sigal 1996, Theo-
rem 14.11] implies

0< inf σess(−1+ V − λ)= inf σess(L2).

Since moreover ϕ is a positive eigenfunction of L2 corresponding to the eigenvalue 0, it follows that
0= inf σ(L2) is a simple isolated eigenvalue. Consequently, putting

3̃ :=
{
v ∈ H−1

: 〈v, ϕ〉∗ = 0} ⊂ H−1,

3 := I−1(3̃)=
{
v ∈ H 1

:
∫

RN vϕ = 0
}
⊂ H 1,

we see that the quadratic form v 7→ 〈L2v, v〉∗ is positive definite on3 and that L2 defines an isomorphism
3 7→ 3̃. From these properties, we deduce the following.
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Lemma 6.2. We have 〈I L−1
2 Iv, v〉∗ > 0 for all v ∈3\{0}.

Proof. Let v ∈ 3\{0}; then Iv ∈ 3̃ and by the remarks above there exists ṽ ∈ 3\{0} with L2ṽ = Iv.
Consequently, we have

〈I L−1
2 Iv, v〉∗ = 〈I ṽ, v〉∗ = 〈Iv, ṽ〉∗ = 〈L2ṽ, ṽ〉∗ > 0,

by the positive definiteness of the quadratic form ṽ 7→ 〈L2ṽ, ṽ〉∗ on 3. �

The following lemma is the key step in the proof of Proposition 6.1. It resembles [Esteban and Strauss
1994, Lemma 2.2], but we need to prove it by a different (more general) argument since our setting does
not satisfy the assumptions in that paper.

Lemma 6.3. We have

µ := inf
v∈3\{0}

〈L1v, v〉∗

〈I L−1
2 Iv, v〉∗

∈ (−∞, 0).

Moreover, µ is attained at some v ∈3\{0} satisfying the equation

L1v = µI L−1
2 Iv+ Iβϕ in H−1 (6-2)

for some β ∈ R.

Proof. Since ϕ has positive Morse index with respect to 8|6α , there exists v ∈3\{0} with 〈L1v, v〉∗ < 0,
which implies µ < 0. In the following, we consider the spectral decomposition

3= V−⊕ V+

with the properties that dim V− <∞ and

〈L1v, v〉∗ ≤ 0, 〈L1w,w〉∗ ≥ δ‖w‖
2, 〈L1v,w〉∗ = 0 for v ∈ V−, w ∈ V+, (6-3)

with some δ > 0. The existence of such a decomposition follows from the fact that inf σess(L1) =

inf σess(−1 + V − λ) > 0. For v ∈ 3, we now write v = v− + v+ with v− ∈ V−, v+ ∈ V+. Let
(vn)n ⊂3\{0} be a minimizing sequence for the quotient

v 7→ q(v) :=
〈L1v, v〉∗

〈I L−1
2 Iv, v〉∗

.

Since µ= infv∈3\{0} q(v) < 0, we may assume that

〈L1vn, vn〉∗ = 〈L1v
−

n , v
−

n 〉∗+〈L1v
+

n , v
+

n 〉∗ < 0 for all n ∈ N. (6-4)

Thus v−n 6= 0, and we may assume that ‖v−n ‖ = 1 for all n ∈ N. Since V− is finite-dimensional, we may
pass to a subsequence such that v−n → v− ∈ V− with ‖v−‖ = 1. Then (6-3) and (6-4) imply

δ lim sup
n→∞

‖v+n ‖
2
≤ lim sup

n→∞
〈L1v

+

n , v
+

n 〉∗ ≤− lim
n→∞
〈L1v

−

n , v
−

n 〉∗ =−〈L1v−, v−〉∗
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and thus v+n is bounded in H 1 as well. Hence (vn)n ⊂3 is bounded in H 1, and we may thus pass to a
subsequence such that

v+n ⇀v+, vn ⇀v := v−+ v+ ∈ 3\{0},

〈L1vn, vn〉∗→ κ1 ≤ 0 and 〈I L−1
2 Ivn, vn〉∗→ κ2 ≥ 0

as n→∞. By weak lower semicontinuity, we then have

〈L1v+, v+〉∗ ≤ lim
n→∞
〈L1v

+

n , v
+

n 〉∗ = κ1−〈L1v−, v−〉∗

and thus

〈L1v, v〉∗ ≤ κ1 ≤ 0.

Consequently, since also

0< 〈I L−1
2 Iv, v〉∗ ≤ κ2

by Lemma 6.2 and weak lower semicontinuity, we find that

q(v)=
〈L1v, v〉∗

〈I L−1
2 Iv, v〉∗

≤
〈L1v, v〉∗

κ2
≤
κ1

κ2
= µ.

Hence v is a minimizer of q in 3\{0}, and therefore q(v) = µ > −∞. Moreover, v minimizes the
functional

3→ R, w 7→ 〈L1w−µI L−1
2 Iw,w〉∗,

and therefore we have

〈L1v−µI L−1
2 Iv,w〉∗ = 0 for all w ∈3.

This implies that there exists β ∈ R such that

〈L1v−µI L−1
2 Iv,w〉∗ = β

∫
R

ϕw for all w ∈ H 1,

i.e.,

L1v−µI L−1
2 Iv = β Iϕ in H−1,

which gives (6-2). �

Proof of Proposition 6.1 (completed). Let µ and v be as in Lemma 6.3, let ρ =
√
−µ > 0, and consider

w =

(
v

−ρL−1
2 Iv+ ρ−1βϕ

)
∈H\{0}.

Then we have

Mw =

(
0 −L2

L1 0

)
w =

(
ρ Iv

µI L−1
2 Iv+ Iβϕ

)
= ρ Iw,

so w ∈H is an eigenfunction of M corresponding to the eigenvalue ρ > 0. �
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Appendix: Proof of (5-22)

In this section we compute the free Morse index of the rescaled single peak solutions uε of (5-6) studied
in Section 5. More precisely, we will prove the equality (5-22) for ε > 0 small. We continue to use the
notation from Section 5. Recall that since uε is a critical point of 8∗ε on 6

|uε|22
with Lagrange multiplier 0,

the free Morse index coincides with the Morse index of uε as a critical point of8∗ε in H 1. Recall moreover
that uε has a unique local maximum point xε, where xε→0 as ε→0 by [Grossi 2002, Proposition 5.2]. Put

u0,ε := u0( · − xε)= Txεu0 ∈ H 1 for ε ∈ (0, ε0).

We first need the following refined convergence estimate:

‖u0,ε − uε‖H2 = O(ε2) as ε→ 0. (A-1)

Suppose by contradiction that this is false; then along a sequence (εn)n⊂ (0, ε0)with εn→0 we have dn :=

‖u0,εn−uεn‖H2 ≥ nε2
n for all n ∈N. Put wn := (u0,εn−uεn )/dn; then wn is a weak solution of the equation

−1wn +wn =
1
dn
(u p−1

0,εn
− u p−1

εn
+ (Vεn − 1)uεn )= τnwn +

Vεn − 1
dn

uεn , (A-2)

with

τn(x)= (p− 1)
∫ 1

0
[(1− s)u0,εn + suεn ]

p−2 ds.

We pass to a subsequence such that wn ⇀w in H 2. Since τn→ (p− 1)u p−2
0 as n→∞ uniformly in

RN by (5-10), and since∣∣∣∣Vεn − 1
dn

uεn (x)
∣∣∣∣≤ c

n
|x |2e−α|x | for x ∈ RN, n ∈ N with constants c, α > 0 (A-3)

by (5-9) and (5-13), we may pass to the limit in (A-2) to see that w is a (weak) solution of the equation

−1w+w− (p− 1)u p−2
0 w = 0.

Consequently, w=
∑N

`=1 a` ∂`u0 with `= 1, . . . , N . However, since both u0,εn and uεn attain a maximum
at xεn , we infer from (A-2) and elliptic regularity that

0= lim
n→∞

∂ jwn(xεn )= ∂ jw(0)=
N∑
`=1

a` ∂`j u0(0) for j = 1, . . . , N .

It is well known that 0 is the only maximum point of u0; see, e.g., [McLeod 1993, Lemma 1(b)].
Considering that u0(x) = U0(|x |), where U0 is the solution with initial values U0(0) = u0(0) and
U ′0(0)= 0 of the ordinary differential equation on [0,∞) corresponding to radial solutions of (5-3), and
considering the uniqueness of solutions to that ODE, it is clear that 0 is a nondegenerate maximum point
for u0. Hence it follows that a1, . . . , aN = 0 and thus w = 0. This implies wn→ 0 in L2

loc(R
N ), and thus

−1wn +wn = o(1) in L2(RN )
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by (A-2), (A-3), and since τn has exponential decay in x , uniformly in n. The boundedness of the inverse
of −1+ 1 on L2 implies ‖wn‖H2 → 0, contrary to the definition of wn . Hence (A-1) follows.

We now consider the uniformly bounded families of linear operators

Aε := D28∗ε(uε) ∈ L(H
1),

Cε := T−xε ◦ Aε ◦ Txε ∈ L(H
1), ε ∈ (0, ε0).

Here, as before, the symbol D2 denotes the derivative of the gradient with respect to the scalar product
〈 · , · 〉H1 . The quadratic form associated with Aε is given by

〈Aεv,w〉H1 =

∫
RN
(∇v · ∇w+ [Vε − (p− 1)u p−2

ε ]vw) for v,w ∈ H 1. (A-4)

It is then clear that Aε and Cε share the same spectrum. We have

lim
ε→0
‖Cεv− B0v‖H1 = lim

ε→0
‖Aεv− B0v‖H1 = 0 for all v ∈ H 1, (A-5)

where, as before, B0
= D28∗0(u0) ∈ L(H 1), and the convergence is uniform on compact subsets of H 1.

We claim that
‖Cε ∂i u0‖H1 = O(ε2) for i = 1, . . . , N , (A-6)

and that
〈Cε ∂i u0, ∂ j u0〉H1 =

1
2ε

2 ∂i j V (0)|u0|
2
2+ o(ε2) for i, j = 1, . . . , N (A-7)

as ε→ 0. For this we recall that ∂i uε solves the equation

−1(∂i uε)+ Vε ∂ j uε − (p− 1)u p−2
ε ∂ j uε =−uε ∂ j Vε, (A-8)

and therefore (5-9) and (5-14) yield

Aε ∂i uε = (−1+ 1)−1(−1(∂i uε)+ Vε ∂i uε − (p− 1)u p−2
ε ∂i uε)

=−(−1+ 1)−1uε ∂ j Vε = O(ε2) in H 1. (A-9)

Combining this with (A-1), we find that

‖Cε ∂i u0‖H1 = ‖Aε ∂i u0,ε‖H1 = ‖Aε ∂i uε‖H1 + O(ε2)= O(ε2),

as claimed in (A-6). To see (A-7), we note that

〈Cε ∂i u0,∂ j u0〉H1 =〈Aε ∂i u0,ε,∂ j u0,ε〉H1

=〈Aε ∂i uε,∂ j uε〉H1+〈Aε ∂i u0,ε,∂ j (u0,ε−uε)〉H1+〈Aε ∂ j uε,∂i (u0,ε−uε)〉H1, (A-10)

where, since ∂i u0,ε satisfies −1∂i u0,ε + ∂i u0,ε − (p− 1)u p−2
0,ε ∂i u0,ε = 0 in RN,

〈Aε ∂i u0,ε, ∂ j (u0,ε − uε)〉H1 =

∫
RN
[Vε − 1+ (p− 1)(u p−2

0,ε − u p−2
ε )] ∂i u0,ε ∂ j (u0,ε − uε)= o(ε2)

as ε→ 0. Here, in the last step, we used (A-1) together with the fact that

‖[Vε − 1+ (p− 1)(u p−2
0,ε − u p−2

ε )] ∂i u0,ε‖L2 → 0 as ε→ 0.
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Moreover,

|〈Aε ∂ j uε, ∂i (u0,ε − uε)〉H1 | ≤ ‖Aε ∂ j uε‖H1‖∂i (u0,ε − uε)‖H1 ≤ O(ε4)

by (A-1) and (A-9). Inserting these estimates in (A-10) and using (A-8) once more, together with (5-9),
(5-10), and (5-14) we find that

〈Cε ∂i u0, ∂ j u0〉H1 = 〈Aε ∂i uε, ∂ j uε〉H1 + o(ε2)=−

∫
RN

uε ∂i Vε ∂ j uε + o(ε2)

=−ε2
N∑
`=1

∂i`V (0)
∫

RN
x`u0 ∂ j u0 dx + o(ε2)= 1

2ε
2 ∂i j V (0)|u0|

2
2+ o(ε2).

In the last step we have integrated by parts again. This yields (A-7).
To conclude the proof of (5-22), we now put X = span(u0), Y := span(∂1u0, . . . , ∂N u0), and we let

Z denote the 〈 · , · 〉H1-orthogonal complement of X ⊕ Y in H 1. We then have the 〈 · , · 〉H1-orthogonal
decomposition H 1

= X ⊕ Y ⊕ Z , and we let PX , PY , PZ ∈ L(H 1) denote the corresponding orthogonal
projections onto X , Y , and Z . It then follows from (A-6) that

‖CεPY‖L(H1) = O(ε2) as ε→ 0. (A-11)

Moreover, by the remarks before Lemma 5.2, there exists 0< δ < 1 such that

〈B0u0, u0〉H1 ≤−δ and 〈B0w,w〉H1 ≥ δ‖w‖2H1 for all w ∈ Z . (A-12)

It then follows from (A-5) that

〈Cεu0, u0〉H1 <− 1
2δ for ε > 0 sufficiently small. (A-13)

We also claim that

inf
w∈Z ,‖w‖H1=1

〈Cεw,w〉H1 > δ+ :=
1
2 min

{
δ, inf

RN
V
}

for ε > 0 sufficiently small. (A-14)

Indeed, suppose by contradiction there exist εn ∈ (0, ε0) and wn ∈ Z with ‖wn‖H1 = 1 for n ∈ N such
that εn→ 0 as n→∞ and

〈Cεnwn, wn〉H1 ≤ δ+ as n→∞. (A-15)

Passing to a subsequence, we may then assume that wn ⇀w in H 1 with w ∈ Z . We put w̃n := Txεnwn =

wn( · − xεn ) for n ∈ N; then also w̃n ⇀ w, and we may pass to a subsequence such that w̃n → w in
L2

loc(R
N ) and w̃n→ w pointwise a.e. on RN. By (5-9) and (5-10) this implies∫

RN
u p−2
εn

w̃2
n→

∫
RN

u p−2
0 w2 as n→∞. (A-16)

We also have∫
RN

(
|∇(w̃n −w)|

2
+ Vεn (w̃n −w)

2)
=o(1)+

∫
RN

(
|∇w̃n|

2
− |∇w|2+ Vεn [w̃

2
n −w

2
− 2(w̃n −w)w]

)
,
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where, since |w̃n −w|⇀ 0 in L2(RN ),∣∣∣∣∫
RN

Vεn (w̃n −w)w

∣∣∣∣≤ ‖V ‖L∞(RN )

∫
RN
|w̃n −w||w| → 0 as n→∞.

Moreover, ∫
RN

Vεnw
2
→

∫
RN
w2 as n→∞

by (5-13) and Lebesgue’s theorem. Consequently,∫
RN
(|∇w̃n|

2
+Vεn w̃

2
n)=

∫
RN
(|∇w|2+w2)+

∫
RN
(|∇(w̃n−w)|

2
+Vεn (w̃n−w)

2)+o(1)

≥‖w‖2H1+min
{
1, inf

RN
V
}
‖w̃n−w‖

2
H1+o(1)≥‖w‖2H1+2δ+‖w̃n−w‖

2
H1+o(1),

and together with (A-4), (A-12) and (A-16) this implies

〈Cεnwn, wn〉H1 = 〈Aεn w̃n, w̃n〉H1 ≥ 〈B0w,w〉H1 + 2δ+‖w̃n −w‖
2
H1 + o(1)

≥ 2δ+‖w‖2H1 + 2δ+‖w̃n −w‖
2
H1 + o(1)= 2δ+‖wn‖

2
H1 + o(1)= 2δ++ o(1).

This contradicts (A-15), and hence (A-14) follows.
In the following, we let M ∈ RN×N denote the Hessian of the potential V at 0 which is nondegenerate

by assumption. Then there exists a basis of eigenvectors b1, . . . , bN
∈ RN of M corresponding to the

eigenvalues µ1 ≤ · · · ≤ µN , where

µi < 0 for i ≤ mV and µi > 0 for i > mV .

We then let w1, . . . , wN
∈ span(∂1u0, . . . , ∂N u0) be defined by

wi
:=

N∑
j=1

bi
j ∂ j u0 for i = 1, . . . , N ,

and we define the subspaces Ỹ± ⊂ Y by

Ỹ− := span(w1, . . . , wm) and Ỹ+ := span(wm+1, . . . , wN ).

By (A-7) and construction, there exists δ̃ > 0 such that for ε > 0 sufficiently small we have

〈Cεw,w〉H1 ≤−δ̃ε2
‖w‖2H1 for w ∈ Ỹ− and 〈Cεw,w〉H1 ≥ δ̃ε2

‖w‖2H1 for w ∈ Ỹ+. (A-17)

We now consider the spaces

X̃ := span(u0)⊕ Ỹ− and Z̃ := Z ⊕ Ỹ+.

Then (5-22) follows once we have shown that

sup
w∈X̃ ,‖w‖H1=1

〈Cεw,w〉H1 < 0, (A-18)

inf
w∈Z̃ ,‖w‖H1=1

〈Cεw,w〉H1 > 0 (A-19)
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for ε > 0 sufficiently small. We only show (A-19); the proof of (A-18) is very similar but simpler. Suppose
by contradiction that (A-19) does not hold true for ε > 0 sufficiently small. Then there exist εn ∈ (0, ε0)

and wn ∈ Z̃ with ‖wn‖H1 = 1 for n ∈ N such that εn→ 0 as n→∞ and

〈Cεnwn, wn〉H1 ≤ 0 as n→∞. (A-20)

With w1
n := PZwn ∈ Z and w2

n := PYwn ∈ Ỹ+ we have, by (A-11), (A-14) and (A-17),

〈Cεnwn, wn〉H1 = 〈Cεnw
1
n, w

1
n〉H1 +〈Cεnw

2
n, w

2
n〉H1 + 2〈Cεnw

2
n, w

1
n〉H1

≥ δ+‖w
1
n‖

2
H1 + δ̃‖w

2
n‖

2
H1ε

2
n + O(‖w1

n‖H1ε2
n).

Passing to a subsequence, we may assume that either ‖w1
n‖H1 → 0 and ‖w2

n‖H1 → 1 as n→∞, or that
‖w1

n‖H1 ≥ c for some constant c > 0 and all n ∈ N. In the first case, we deduce that

〈Cεnwn, wn〉H1 ≥ δ̃ε2
n + o(ε2

n)

and in the second case we obtain that

〈Cεnwn, wn〉H1 ≥ δ+c2
+ o(1)

as n→∞. In both cases we arrive at a contradiction to (A-20), and thus (A-19) is proved. As remarked
before, (A-18) is obtained similarly by using (A-13) and the first inequality in (A-17). The proof of (5-22)
is thus finished.
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SCALE-INVARIANT FOURIER RESTRICTION TO A HYPERBOLIC SURFACE

BETSY STOVALL

This result sharpens the bilinear-to-linear deduction of Lee and Vargas for extension estimates on the
hyperbolic paraboloid in R3 to the sharp line, leading to the first scale-invariant restriction estimates,
beyond the Stein–Tomas range, for a hypersurface on which the principal curvatures have different signs.

1. Introduction

We consider the Fourier restriction/extension problem for the hyperbolic paraboloid

S WD f.�; �/ 2 R1C2 W � D �1�2g:

We denote by E the extension operator,

Ef .t; x/ WD
Z

R2
ei.t;x/.�1�2;�/f .�/ d�: (1-1)

For consistency of exponents, we will consider the problem of establishing Lr!L2s extension estimates
for E , and we are primarily interested in the case when r D s0.

Lee [2006] and Vargas [2005] independently established an essentially optimal L2-based bilinear
adjoint restriction estimate for S. This result states that if f and g are supported in 1� 1 axis-parallel
rectangles that are separated from one another by a distance 1 in the horizontal direction and 1 in the
vertical direction, then

kEf Egks . kf k2 kgk2; s > 5
3
: (1-2)

This two-parameter separation of the tiles is both necessary and troublesome. On the one hand, necessity
can be seen by considering the case when each of f˙ is supported on a 1

2
-neighborhood of .˙1; 0/. On

the other hand, the separation leads to difficulty in deducing linear restriction estimates from the bilinear
ones. Indeed, the natural analogue of the Whitney decomposition approach of [Tao, Vargas, and Vega
1998] produces a sum in two scales, length and width, rather than a single distance scale, leading to a
loss of the scaling line in the distinct approaches of [Lee 2006] and [Vargas 2005].

The purpose of this note is to overcome this obstacle and recover the sharp line.

Theorem 1.1. With E as in (1-1), assume that the estimate

kEf Egks . kf kr kgkr (1-3)

MSC2010: 42B20.
Keywords: Fourier restriction, bilinear restriction, hyperbolic restriction.
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holds for some 3
2
<s <2 and r

2
<s <r 0, whenever f and g are supported on 1�1, axis-parallel rectangles

that are separated from one another by a distance 1 in both the horizontal and vertical directions. Then E
is of restricted strong type .s0; 2s/, and consequently of strong type .Qs0; 2Qs/ for all Qs > s.

To put the hypothesis on s in context, we recall that for s � 3
2

, linear extension estimates are known to
be impossible; that for s > 3

2
, 2s > s0; and that for s � 2, linear extension estimates are already known,

[Tomas 1975].
As is well known, a (local, linear) Lr0 ! L2s0 extension estimate for some r0 > s00 allows us, by

interpolation with the L2-based bilinear extension estimate (1-2), to establish the Lr -based bilinear
extension estimate (1-3) for some s > s0 and r

2
< s < r 0. Replacing s0 with s is a loss (whose magnitude

depends on the distance from .r�10 ; s�10 / to the scaling line), but r < s0 is a gain in the sense that the
corresponding linear extension estimate E W Lr ! L2s is false.

Lee [2006] and Vargas [2005] independently used the bilinear extension estimate (1-2) to prove that

kEf k2s . kf kLr (1-4)

for all s > 5
3

, r > s0, and f supported in the unit ball. Cho and Lee [2017] used the polynomial partitioning
argument from [Guth 2016] to prove (1-4) for f supported in the unit ball and 2s D r > 3:25; this was
subsequently improved by Kim [2017] to the range 2s > 3:25 and r > s0. Using these results and the
discussion in the preceding paragraph, Theorem 1.1 immediately yields the following slight improvement
on Kim’s result.

Corollary 1.2. For 2s > 3:25, the extension operator E is bounded from Ls
0

to L2s.

To the author’s knowledge, this is the first scalable restriction estimate for a negatively curved hyper-
surface, beyond the Stein–Tomas range (s D 2).

Terminology. A constant will be said to be admissible if it depends only on s; r . The inequality A. B
means that A� CB for some implicit, admissible constant C, and implicit constants will be allowed to
change from line to line. A dyadic interval is an interval of the form Œm2�n; .mC1/2�n� for somem; n2Z,
and In denotes the set of all dyadic intervals of length 2�n. A tile is a product of two dyadic intervals,
and DJ;K denotes the set of all 2�J � 2�K tiles. We denote by �1; �2 the projections �j W R2 ! R,
�j .x/D xj . We use H1 for the one-dimensional Hausdorff measure. Finally, we use log to denote the
base-2 logarithm.

Outline of proof. To prove our restricted strong-type estimate, it suffices to bound the extension of a
characteristic function. Our starting point is the bilinear-to-linear deduction of [Vargas 2005], which shows
that, under the hypotheses of Theorem 1.1, the extension of the characteristic function of a set � with
roughly constant (vertical) fiber length obeys the scalable restriction estimate kE��k2s . j�j

1
s0 . In [Vargas

2005], off-scaling estimates are obtained by subdividing a set � in the unit cube into subsets having
constant fiber length. Off-scaling contributions from those subsets with very short fibers are small (because
the sets themselves are small), and adding these amounts to summing a convergent geometric series.
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We wish to remain on the sharp line, so we must be more careful. Our first step, taken in Section 2, is
to understand when Vargas’s constant fiber length estimate can be improved. To this end, we prove a
dichotomy result: If � has constant fiber length, then either � is highly structured (more precisely, � is
nearly a tile), or we have a better bound on the extension of ��. Roughly speaking, this reduces matters
to controlling the extension of a union of tiles �k each having height 2�k, which is the task of Section 3.
We can estimate

kE�S �kk2s .
�X

kE��kk
2s
2s

� 1
2s

C off-diagonal terms;

where the off-diagonal terms involve products E��kE��k0 , with jk� k0j large. Boundedness of the main
term follows from Vargas’s estimate and convexity (2s > s0). It remains to bound the off-diagonal terms,
for which it suffices to prove a bilinear estimate with decay:

kE��kE��k0ks . 2
�c0jk�k

0jmaxfj�kj; j�k0 jg
1
s0 ;

and we prove this by combining the bilinear extension estimate for separated tiles with a further decom-
position.

Of course, we have lied. In Section 2, our dichotomy is not that a constant fiber length set � is either
a tile or has zero extension, and so we still have remainder terms that must be summed. To address
this, we argue more quantitatively than has been suggested above: Any constant fiber length set can be
approximated by a union of tiles, where the number of tiles and tightness of the approximation depends
on the sharpness of our estimate kE��k2s . j�j

1
s0 ; then we must bound extensions of sets

S
k

S
�2Tk � ,

where Tk � Dj.k/;k may be large (but fortunately, not too large).

2. An inverse problem related to Vargas’s linear estimate

To prove Theorem 1.1, it suffices to prove that kE��k2s . j�j
1
s0 for all measurable sets �. By scaling, it

suffices to consider � contained in the unit cube Œ�1; 1�2. Vargas [2005] proved the following.

Theorem 2.1 [Vargas 2005]. For each K � 0, let

�.K/ WD f� 2� WH1.��11 .�1/\�/� 2
�K
g: (2-1)

Then under the hypotheses of Theorem 1.1, for any measurable set �0 ��.K/,

kE��0k2s . j�.K/j
1
s0 : (2-2)

This version differs slightly from the one stated in [Vargas 2005], but it follows from the same proof. In
proving the next proposition, we will review Vargas’s argument, so the reader may verify the above-stated
version below.

Our first step is to solve an inverse problem: Characterize those sets�D�.K/ for which the inequality
in (2-2) can be reversed.

Proposition 2.2. Assume that the hypotheses of Theorem 1.1 hold. Let � � Œ�1; 1�2 be a measurable
set, and assume that � D �.K/ for some integer K � 0. Choose a nonnegative integer J such that
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j�1.�/j � 2
�J, and let ". 1 denote the smallest dyadic number such that

kE��0k2s � "j�j
1
s0

for every measurable �0 ��. Then �D
S
0<ı�"�ı , with the union taken over dyadic ı. For each ı,

�ı �
S
�2Tı� , where Tı � DJ;K has cardinality at most O.ı�C /, with C an admissible constant. For

each subset �0 ��ı , kE��0k2s . ıj�j
1
s0 .

Proof of Proposition 2.2. It suffices to produce a union that contains almost every point of �, as a set of
measure zero makes no contribution to the extension. Our decomposition will be done in three stages.
Our first decomposition will be of � into sets �1�, with �1.�1�/ nearly an interval, I 2 IJ . Our second
decomposition will be of �1� into sets �2�;�, � � �, each of which is nearly a product of I with a set
of measure 2�K. Our third decomposition will be of �2�;� into sets �3

�;�;ı
, ı � �, each of which is

nearly a product of I with an interval in IK . The product of two dyadic intervals is a tile, so we take
�ı WD

S
��ı

S
����

3
�;�;ı

; the .log ı�1/2 factor that arises from taking this union is harmless.
Let S WD �1.�/. We know that jS j � 2�J and that S � Œ�1; 1�. Let �1 2 S, and for each 0 < � < ",

let I�.�1/ be the maximal dyadic interval I 3 �1 satisfying jI \S j � �C jI j, if such an interval exists.
We record that jI�.�1/j � ��C 2�J, and if �1 is a Lebesgue point of S, then jI�.�1/j> 0. Let

T� WD f�1 2 S W jI�.�1/j � �
C 2�J g;

and let S" WD T", S� WD T� nT2� for dyadic 0 < � < ". Then a.e. (indeed, every Lebesgue) point of S is
contained in a unique S�. We set �1� WD�\�

�1
1 .S�/.

Lemma 2.3. For each 0 < � � ", S� is contained in a union of O.��3C / dyadic intervals I 2 IJ , and
for each � < " and each subset �0 ��1�,

kE��0k2s . �2j�j
1
s0 : (2-3)

Proof of Lemma 2.3. By construction, S� is covered by dyadic intervals I of length jI j � �C jS j, in which
S has density jI \S j � �C jI j. The density of each such interval in S is jI \S j � �2C jS j, and so the
collection of maximal (hence pairwise disjoint) dyadic intervals with these properties has cardinality
at most ��2C. Moreover, from the density estimate, we see that jI j � ��C 2�J, so these intervals are
covered by a total of ��3C intervals in IJ .

To establish (2-3), we will optimize Vargas’s proof of Theorem 2.1. Performing a Whitney decomposi-
tion in each variable �1; �2 separately and applying the almost orthogonality lemma from [Tao, Vargas,
and Vega 1998] (for which it is important that s � 2),

kE��0k22s .
X
k;j

� X
��� 02Dj;k

kE��0\�E��0\� 0kss

�1
s

;

where we say that � � � 0 if � and � 0 are 2�j separated in the horizontal direction and 2�k separated in
the vertical direction.
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By rescaling our hypothesis, (1-3), for f; g supported on tiles in Dj;k that are separated by a distance 2�k

in the vertical direction and 2�j in the horizontal direction,

kEf Egks . 2.jCk/.
2
s
C 2
r
�2/
kf krkgkr : (2-4)

Thus

kE��0k22s .
X
k;j

2.jCk/.
2
s
C 2
r
�2/

� X
�2Dj;k

j�0\ � j
2s
r

�1
s

.
X
k;j

2.jCk/.
2
s
C 2
r
�2/ max

�2Dj;k
j�0\ � j

2
r
� 1
s j�0j

1
s : (2-5)

Our hypotheses on r; s imply that all exponents in the above sum are positive. To bound this double sum,
Vargas used the inequality

j�0\ � j.minf2�j; 2�J gminf2�k; 2�Kg: (2-6)

The definition of �1� will allow us to improve on this bound.
For Ij 2Ij , we trivially have jIj\S�j�minfjIj j; jS�jg�minf2�j; 2�J g, but when jj�J j< C

4
log ��1,

we can do rather better. Suppose that jj �J j � C
4

log ��1. Since

jIj j D 2
�j
� �

C
4 2�J � .2�/C 2�J

(provided � is sufficiently small), Ij \S� ¤∅ implies that Ij \S� 6� T2�, whence

jIj \S�j � jIj \S j � .2�/
C
jIj j D .2�/

C 2�j . �
3C
4 minf2�j; 2�J g;

where for the last inequality, we used 2�j � ��
C
4 2�J.

Inserting this gain and j�0\.Ij �Ik/j � jS�\Ij jminf2�k; 2�Kg into (2-5), and summing the resulting
geometric series gives

kE��0k2s . �C
0

2�.JCK/.1�
3
2s
/
j�0j

1
2s . �C

0

j�j
1
s0

for C 0 > 0 some admissible constant dictated by C; r; s; we can reverse engineer C so that C 0 D 2. �

We now turn to our second decomposition. Although �1.�1�/ may be (roughly) thought of as a union
of a small number of intervals, an individual horizontal slice ��12 .�2/\�

1
� might be much smaller. Our

next step is to decompose into sets where the size of a nonempty slice is roughly comparable to the size
of the projection of the whole. (Sets with this property are nearly products.)

Fix 0 < �� ". For dyadic 0 < � � �, we define

V� D f�2 2 �2.�
1
�/ WH

1.��12 .�2/\�
1
�/� �

C 2�J g;

and set U� WD V�, U� WD V� nV2� for � < �. We define �2�;� WD �
�1
2 .U�/\�

1
�.

Lemma 2.4. For each 0 < � < �� ", and each subset �0 ��2�;�, we have kE��0k2s . �2j�j
1
s0 .
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Proof of Lemma 2.4. Let � 2 Dj;k and �0 ��2�;�. Then � \�0 has vertical and horizontal fiber lengths
at most Z

��\�0.�1; �2/ d�2 .minf2�K; 2�kg;
Z
��\�0.�1; �2/ d�1 .minf�C 2�J; 2�j g;

respectively, and projections of size at most

j�1.� \�
0/j.minf2�J; 2�j g; j�2.� \�0/j. 2�k :

By Fubini, we can bound j� \�0j by the measure of the projection times the maximum fiber length, so

j� \�0j.minf2�.JCK/; 2�.jCK/; 2�.jCk/; �C 2�.JCk/g: (2-7)

To utilize (2-7), we let C 0 D C
2

and subdivide Z2 DR1[R2[R3[R4, where

R1 WDf.j; k/ W J �C
0 log ��1 � j; K � kg[ f.j; k/ W J � j; K �C 0 log ��1 � kg;

R2 WDf.j; k/ W j � J CC
0 log ��1; K � kg[ f.j; k/ W j � J; K �C 0 log ��1 � kg;

R3 WDf.j; k/ W j � J CC
0 log ��1; k �Kg[ f.j; k/ W j � J; k �KCC 0 log ��1g;

R4 WDf.j; k/ W J CC
0 log ��1 � j; kCC 0 log ��1 �Kg:

Now we insert (2-7) into (2-5) to obtain

kE��0k22s .
X
R1

2.jCk/.
2
s
C 2
r
�2/2�

2.JCK/
r C

X
R2

2�j.2�
3
s
/2k.

2
s
C 2
r
�2/2�

J
s 2�

2K
r

C

X
R3

2�.jCk/.2�
3
s
/2�

JCK
s C �C.

2
r
� 1
s
/
X
R4

2�k.2�
3
s
/2j.

2
s
C 2
r
�2/2�

2J
r 2�

K
s :

As 2
s
C
2
r
� 2 and 2� 3

s
are both positive, it is a simple matter to sum each of these terms, obtaining

kE��0k22s . .�
. 2
s
C 2
r
�2/C 0

C �.2�
3
s
/C 0
C �C.

2
r
� 1
s
/�C 0.2� 3

s
/�C 0. 2

s
C 2
r
�2//2�

2.JCK/

s0 :

Since 2
r
�
1
s
> 0 and j�j�2�.JCK/, we obtain the bound claimed in the lemma by choosingC sufficiently

large. �

Now we turn to our third decomposition. A single�2�;� is “nearly” a product, but �2.�2�;�/might be far
from an interval. However, we may simply perform the first decomposition, with the roles of the coordinate
indices reversed. Indeed, our sets satisfy analogous hypotheses to those in Lemma 2.3 (i.e., the hypotheses
of Proposition 2.2 with the indices reversed) when � < �, because jH1.��12 .�2/\�

2
�;�/j � �

C 2�J for
all �2 2 �2.�2�;�/; when �D �, we may abuse notation slightly by decomposing �2�;� into log ��1 sets
�2�;� with the same property.

We complete the proof of Proposition 2.2 by taking unions as described at the outset. The factors of �2

and �2 in Lemmas 2.3 and 2.4 (and the factor of ı2 in the analogue for �3
�;�;ı

) mean that the resulting
factor of .log ı�1/2 is indeed harmless. �
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3. Extensions of characteristic functions of near tiles

We recall the definition (2-1) of �.K/. For each K, we define J.K/ to be an integer such that j�.K/j �
2�J.K/�K. Let K."/ denote the collection of all K 2 Z�0 for which " is the smallest dyadic number such
that kE��0k2s � "j�.K/j

1
s0 holds for all �0 ��.K/. Then Proposition 2.2 gives us a decomposition

�.K/D
S
0<ı�"�ı.K/, where for each ı, we have �ı.K/�

S
�2Tı.K/� for some Tı.K/� DJ.K/;K

of cardinality #Tı.K/. ı�C.

Lemma 3.1. For 0 < ı � ", under the hypotheses of Theorem 1.1,



 X
K2K."/

E��ı.K/





2s
2s

. .log ı�1/4s
X

K2K."/

kE��ı.K/k
2s
2sC ıj�j

2s
s0 :

Proof of Lemma 3.1. To prove the lemma, it suffices to prove



X
K2K

E��ı.K/





2s
2s

.
X
K2K

kE��ı.K/k
2s
2sC ı

2
j�j

2s
s0 ;

with K � K."/ chosen so that K and J.K/ are both A log ı�1-separated, with A a sufficiently large
admissible constant. (A will be much larger than the constant C in Proposition 2.2.) Since s < 2, the
triangle inequality gives



X

K2K

E��ı.K/





2s
2s

D

Z ˇ̌̌̌ X
K2K4

4Y
iD1

E��ı.Ki /

ˇ̌̌̌ s
2

.
X
K2K





E��ı.K/



2s
2s

C

X0




 4Y
iD1

E��ı.Ki /





 s2
s
2

;

where
P0 indicates a sum taken on quadruples K D .K1; K2; K3; K4/ 2 K4, with at least two entries

distinct. The following lemma will be useful in controlling this sum.

Lemma 3.2. If K;K 0 2 K, and J WD J.K/, J 0 WD J.K 0/, then

kE��ı.K/E��ı.K0/ks . 2
�c0jK�K

0jmaxfj�.K/j; j�.K 0/jg
2
s0 (3-1)

for some admissible constant c0 > 0.

Proof of Lemma 3.2. Inequality (3-1) is an immediate consequence of Cauchy–Schwarz and (2-2)
whenever

j�.K/j
1
s0 j�.K 0/j

1
s0 . 2�

jK�K0j

s0 maxfj�.K/j; j�.K 0/jg
2
s0 :

This inequality holds whenever KDK 0, J DJ 0, J <J 0 and K <K 0, or J >J 0 and K >K 0.
By symmetry, this leaves us to prove (3-1) when K < K 0 and J > J 0. By Proposition 2.2 and the

separation condition on K, it suffices to prove that

kE��\�ı.K/E�� 0\�ı.K0/ks . ı
�C 2�c0jK�K

0j
j�.K/j

1
s0 j�.K 0/j

1
s0 (3-2)

for tiles � 2 Tı.K/, � 0 2 Tı.K 0/.
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Note that our conditions on J, J 0, K, K 0 mean that � is taller than � 0, and � 0 is wider than � . By
translating, we may assume that the y-axis forms the center line of � and that the x-axis forms the center
line of � 0. Now our tiles are contained in Œ�2; 2�2, and we decompose:

� D

K0[
kD0

�k; � 0 D

J[
jD0

� 0j ;

where

�k D

�
� \f� W j�2j � 2

�kg; k < K 0;

� \f� W j�2j. 2�K
0

g; k DK 0
and � 0j D

�
� 0\f� W j�1j � 2

�j g; j < J;

� 0\f� W j�1j. 2�J g; j D J:

By the (2-parameter) Littlewood–Paley square function estimate (the two-parameter version can be proved
using Khintchine’s inequality), the fact that s < 2, and the triangle inequality,

kE��\�ı.K/E�� 0\�ı.K0/k
s
s .

Z � K0X
kD0

JX
jD1

jE��k\�.K/E�� 0j\�.K0/j
2

�s
2

.
K0X
kD0

JX
jD0

kE��k\�.K/E�� 0j\�.K0/k
s
s: (3-3)

We begin with the sum over those terms with k DK 0. By Cauchy–Schwarz and (2-2),

JX
jD0

kE��K0\�.K/E�� 0j\�.K0/k
s
s .

JX
jD0

kE��K0\�.K/k
s
2s kE�� 0j\�.K0/k

s
2s .

JX
jD0

j�K0 j
s
s0 j� 0j j

s
s0 :

Because of the way the � 0j were defined, we have at most two nonempty � 0j with j � J 0. This, combined
with the bound j� 0j j �minf2�.j�J

0/; 1gj� 0j gives
P
j j�
0
j j

s
s0 . j� 0j

s
s0 (despite the fact that s < s0). Since

j�K0 j � 2
�.K0�K/j� j, j� j � j�.K/j, and j� 0j � j�.K 0/j,

JX
jD0

kE��K0\�.K/E�� 0j\�.K0/k
s
s . 2

�.K0�K/ s
s0 j�.K/j

s
s0 j�.K 0/j

s
s0 :

In the case j D J, a similar argument implies that

K0X
kD0

kE��k\�.K/E�� 0J\�.K0/k
s
s . 2

�.J�J 0/ s
s0 j�.K/j

s
s0 j�.K 0/j

s
s0 � 2�.K

0�K/ s
s0 j�.K/j

2s
s0 :

In the cases k < K 0 and j < J, we have a gain, due to our bilinear extension estimate. If k < K 0 and
j < J, then �k is a (subset of four) tile(s) in DJ;maxfk;Kg, �j is a (subset of four) tile(s) in Dmaxfj;J 0g;K0 ,
and these tiles are separated by a distance 2�k in the vertical direction 2�j in the horizontal direction.
These tiles are thus contained in separated tiles in Dj;k , so by (2-4),

kE��k\�.K/E�� 0j\�.K0/ks . 2
.jCk/. 2

s
C 2
r
�2/
j�k \�.K/j

1
r j� 0j \�.K

0/j
1
r :
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From our observation above that we have at most two values of j (resp. k) in our sum with j � J 0 (resp.
k �K), our assumption that r < s0 gives

JX
jD0

K0X
kD0

2.jCk/.2C
2s
r
�2s/
j�k \�.K/j

s
r j� 0j \�.K

0/j
s
r

�

JX
jD0

K0X
kD0

2.jCk/.2C
2s
r
�2s/
j�kj

s
r j� 0j j

s
r

. 2.J
0CK/.2C 2s

r
�2s/
j� j

s
r j� 0j

s
r � ı�C 2.J

0CK/.2C 2s
r
�2s/
j�.K/j

s
r j�.K 0/j

s
r

. ı�C 2.J�J
0CK0�K/.1C s

r
�s/
j�.K/j

s
s0 j�.K 0/j

s
s0 ;

which, by (3-3) and 1
s
C
1
r
� 1 > 0, is stronger than (3-2). �

We return to the proof of Lemma 3.1.
Let K1; K2; K3; K4 2 K, not all equal. Rearranging indices if needed, we may assume that N1 WD

K1CJ.K1/ is minimal among all Ni WDKiCJ.Ki / and that jK1�K4j � 1
2
jKi �Kj j for all i; j . Thus

j�.K1/j is maximal. By Hölder’s inequality and Lemma 3.2,



 4Y
iD1

E��ı.Ki /






s
2

. 2�c0jK1�K4jj�.K1/j
4
s0 :

Therefore

X0




 4Y
iD1

E��ı.Ki /





 s2
s
2

.
X
K12K

X
K1¤K42K

jK4�K1j
2 2�c0jK4�K1jj�.K1/j

2s
s0 :

Because 2s > s0 and K is A log ı�1-separated for some very large A, this error term is bounded by
ıC j�j

2s
s0 . �

Proof of Theorem 1.1. We decompose � by fiber length as in (2-1), � D
S
�.K/, then decompose

the fiber lengths according to the exactness of Vargas’s estimate as at the beginning of Section 3,
Z�0 D

S
0�".1K."/, and finally apply the decomposition in Proposition 2.2, �.K/D

S
0<ı�"�ı.K/.

By the triangle inequality,

kE��k2s �
X
0<".1

X
0<ı�"





 X
K2K."/

E��ı.K/






2s

:

Thus by Lemma 3.1 and Proposition 2.2,

kE��k2s .
X
0<".1

X
0<ı�"

�
.log ı�1/4s

X
K2K."/

kE��ı.K/k
2s
2sC ıj�j

2s
s0

� 1
2s

.
� X
0<".1

X
0<ı�"

.log ı�1/2
� X
K2K."/

ı2sj�.K/j
2s
s0

� 1
2s
�
Cj�j

1
s0 :
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Since 2s > s0 and the �.K/ are disjoint, we may use the triangle inequality for `
2s
s0 to sum the volumes

of the �.K/ in the preceding, and, finally, we sum a geometric series to obtain

kE��k2s .
X
0<".1

X
0<ı�"

.log ı�1/2ıj�j
1
s0 . j�j

1
s0 : �
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STEADY THREE-DIMENSIONAL ROTATIONAL FLOWS: AN APPROACH VIA
TWO STREAM FUNCTIONS AND NASH–MOSER ITERATION

BORIS BUFFONI AND ERIK WAHLÉN

We consider the stationary flow of an inviscid and incompressible fluid of constant density in the region
D = (0, L)×R2. We are concerned with flows that are periodic in the second and third variables and
that have prescribed flux through each point of the boundary ∂D. The Bernoulli equation states that the
“Bernoulli function” H := 1

2 |v|
2
+ p (where v is the velocity field and p the pressure) is constant along

stream lines, that is, each particle is associated with a particular value of H. We also prescribe the value of
H on ∂D. The aim of this work is to develop an existence theory near a given constant solution. It relies on
writing the velocity field in the form v =∇ f ×∇g and deriving a degenerate nonlinear elliptic system for
f and g. This system is solved using the Nash–Moser method, as developed for the problem of isometric
embeddings of Riemannian manifolds; see, e.g., the book by Q. Han and J.-X. Hong (2006). Since we can
allow H to be nonconstant on ∂D, our theory includes three-dimensional flows with nonvanishing vorticity.

1. Introduction

The Euler equation for an inviscid and incompressible fluid of constant density is given by

(v · ∇)v =−∇ p, div v = 0,

if in addition the velocity field v is independent of time. As we are concerned with stationary flows on
D = (0, L)×R2 that are periodic in the second and third variables, it is useful to introduce the cell of the
periodic lattice

P = (0, L)× (0, P1)× (0, P2),

where L > 0 and the periods P1, P2 > 0 are given; in particular integrations will mainly be over P
and maxima of continuous functions considered on P . Any constant vector field v̄ is a solution on D
with constant pressure p̄. Such a field can always be written in the form v̄ =∇ f̄ ×∇ ḡ for some linear
functions f̄ , ḡ. If the real-valued functions

(x, y, z) 7→ f0(x, y, z), (x, y, z) 7→ g0(x, y, z), (x, y, z) ∈ D,

are near 0 and (P1, P2)-periodic in (y, z), one may try looking for a velocity field of the form

v∗ =∇( f̄ + f0+ f ∗)×∇(ḡ+ g0+ g∗)

for unknown functions f ∗ and g∗ that vanish at the boundaries x = 0 and x = L . The functions f0 and g0

can be interpreted as encoding a perturbation of the boundary conditions at x = 0 and x = L given by f̄

MSC2010: 35Q31, 76B03, 76B47, 35G60, 58C15.
Keywords: incompressible flows, vorticity, boundary conditions, Nash–Moser iteration method.
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and ḡ. If f0 and g0 vanish at x = 0 and x = L , then nothing is gained with respect to the case f0 = g0 = 0
on D.

In the following theorem, the Sobolev spaces W n,p
loc (D) and H n

loc(D) consist of functions defined on D
such that, when restricted to every bounded open subset Db ⊂ D, they belong to W n,p(Db) and H n(Db).
Note that, in contrast with the usual definition, Db is not required to be included in D. Moreover, Q is
the parallelogram in R2 spanned by R P1e1 and R P2 e2, where

R =
(
∂2 f̄ ∂3 f̄
∂2ḡ ∂3ḡ

)
is the Jacobian matrix of ( f̄ , ḡ) with respect to (y, z) and N0 = {0, 1, 2, . . .}.

Theorem 1.1. Let j ∈N0 and assume that the first component of v̄ does not vanish. Then it is possible to
choose ε̄ > 0 such that if

• H0 ∈ C11+ j (R2) is periodic with respect to the lattice in R2 generated by R P1e1 and R P2 e2 (not
necessarily the fundamental periods, this remark holding generally throughout),

• c1, c2 ∈ R,

• f0, g0 ∈ H 13+ j
loc (D)=W 13+ j,2

loc (D), P1-periodic in y and P2-periodic in z,

• ‖( f0, g0)‖
2
H13+ j (P)+‖H0‖

2
C11+ j (Q)+ |c|

2 < ε̄2,

then there exists ( f ∗, g∗) ∈ H 6+ j
loc (D) satisfying

• f ∗, g∗ are P1-periodic in y and P2-periodic in z,

• f ∗, g∗ vanish when x ∈ {0, L}, (1)

• v∗ := ∇( f̄ + f0+ f ∗)×∇(ḡ+ g0+ g∗) is a solution to the Euler equation

(v∗ · ∇)v∗ =−∇ p∗, div v∗ = 0 on D,

with

p∗=− 1
2 |v
∗
|
2
+H( f̄+ f0+ f ∗, ḡ+g0+g∗) and H( f,g)=c1 f+c2g+H0( f,g) for all f,g∈R. (2)

Moreover, there exists a constant C > 0 (independent of ( f0, g0), H0 and c) such that

‖( f ∗, g∗)‖H6+ j (P) ≤ C ε̄.

The solution is locally unique in the following sense. Let H be as above (but H0 can be assumed of class
C2 only), f , g, f̃ , g̃ ∈ C3(D) with ( f − f̄ , g− ḡ), ( f̃ − f̄ , g̃− ḡ) both (P1, P2)-periodic in y and z, and

( f (x, y, z), g(x, y, z))= ( f̃ (x, y, z), g̃(x, y, z)) for all (x, y, z) ∈ {0, L}×R2.

Assume that v = ∇ f ×∇g and ṽ = ∇ f̃ ×∇ g̃ are both solutions to the Euler equation with pressures
−

1
2 |v|

2
+ H( f, g) and −1

2 |ṽ|
2
+ H( f̃ , g̃), respectively. If (∇ f,∇g) and (∇ f̃ ,∇ g̃) are in a sufficiently

small open convex neighborhood of (∇ f̄ ,∇ ḡ) in C2(P) and ‖H0‖C2(Q) is sufficiently small, then ( f, g)=
( f̃ , g̃) on [0, L]×R2.
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Remarks. • Observe that ∇( f,g)H( f̄ + f0+ f ∗, ḡ+ g0+ g∗) is P1-periodic in y and P2-periodic in z.
In general the choice ( f ∗, g∗) = −( f0, g0) is not allowed, as ( f ∗, g∗) is required to vanish at x = 0
and x = L , but not ( f0, g0). When H is constant, the choice ( f ∗, g∗)=−( f0, g0) leads to the constant
solution v∗ = v̄, provided that f0 and g0 vanish when x ∈ {0, L}. However, when H is not constant, (1)
and (2) do not allow to choose ( f ∗, g∗)=−( f0, g0). Indeed, if ( f ∗, g∗)=−( f0, g0), then v∗ = v̄ and p∗

should be constant, which is not compatible with (2) when H is not constant.

• If H0, f0 and g0 are C∞ smooth, we obtain solutions of arbitrarily high regularity. However, we don’t
necessarily obtain C∞ smooth solutions since ε̄ depends on j . It might be possible to obtain smooth
solutions by applying other versions of the Nash–Moser theorem, for example an analytic version, but
that’s outside the scope of the paper.

• The uniqueness assertion implies that the solution ( f̄ + f0+ f ∗, ḡ+ g0+ g∗) only depends on f0 and
g0 through their boundary values.

• On the other hand, it is possible for two different sets of data to give rise to the same velocity field v
(see the Appendix for more details).

The following example illustrates the relationship with Beltrami flows (flows such that, at each point
of D, the vorticity is parallel to the velocity) and the role of the boundary conditions at x = 0 and x = L .

Example. Let f̄ (x, y, z)= y, ḡ(x, y, z)= z, c1, c2=0 and H0=0, so that v̄= (1, 0, 0). Let f0(x, y, z)=
δx sin(2π z/P2) and g0 = 0, and let ( f ∗, g∗) be given by Theorem 1.1 (for |δ| small enough). Remember
that f ∗ and g∗ vanish at x = 0 and x = L . The pointwise flux of v∗ at x = 0 and x = L is the constant 1:

v∗1 = ∂y( f̄ + f0) ∂z(ḡ+ g0)− ∂z( f̄ + f0) ∂y(ḡ+ g0)= 1.

Let us prove that v∗ is not irrotational by assuming the opposite. Then v∗1 would be a (P1, P2)-periodic
function in y and z that is harmonic. By the maximum principle, v∗1 = 1 and thus (v∗2 , v

∗

3) would be
x-independent. The functions v∗2 and v∗3 would also be harmonic and thus they would be constant, and
v∗ would be a constant vector field. Hence the map that sends a fluid parcel when x = 0 to its position
when x = L would be a translation. But this is impossible because f̄ + f0+ f ∗ is preserved along every
parcel trajectory and its level sets at x = 0 (that is, the level sets of f̄ + f0 at x = 0) cannot be sent
by a translation to its level sets at x = L . Although v∗ is not an irrotational flow, it is a Beltrami flow
because H = 0. As the flux through the boundaries x = 0 and x = L does not vanish, the proportionality
factor between the velocity and the vorticity cannot be constant (using also the periodicity in the y-
and z-directions). Beltrami flows have been considered in many papers, for example in [Enciso and
Peralta-Salas 2015] (Beltrami flows with constant proportionality factors) and [Kaiser et al. 2000] (with
nonconstant proportionality factors).

The representation v =∇ f ×∇g can be seen as a generalization of the stream function representation
v=∇⊥ψ for planar divergence-free stationary flows, in which the stream function ψ is replaced by a pair
of functions f and g (note that f and g are constant on stream lines). This representation always holds
locally near regular points of the velocity field; see, e.g., [Barbarosie 2011]. For the reader’s convenience,
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we give in the Appendix a self-contained proof when v1 is nonvanishing that the representation holds
globally in D with additional (P1, P2)-periodicity with respect to y and z for ∇ f and ∇g.

In this formulation, the Euler equation has a particularly helpful variational structure [Keller 1996];
see also [Buffoni 2012]. Namely, the pair of functions ( f, g) will be called admissible for the present
purpose if

• f and g are of class C2(D),

• ∇ f and ∇g are P1-periodic in y and P2-periodic in z,

• ( f (x, y, z), g(x, y, z))= ( f̃0(x, y, z), g̃0(x, y, z)) for all (x, y, z) ∈ {0, L}×R2,

where f̃0 and g̃0 are two fixed functions of class C2(D) such that ∇ f̃0 and ∇ g̃0 are P1-periodic in y and
P2-periodic in z. Under these conditions, v =∇ f ×∇g is divergence-free and the first component

v1 = (∇ f ×∇g) · (1, 0, 0)= ∂y f ∂zg− ∂yg ∂z f = ∂y f̃0 ∂z g̃0− ∂y g̃0 ∂z f̃0

of v is prescribed on {0, L}×R2. In order to get a better insight into the set of admissible ( f, g), note
that f (x, y, z)−a1 y−a2z and g(x, y, z)−a3 y−a4z are P1-periodic in y and P2-periodic in z for some
constants a1, a2, a3, a4 ∈ R. The boundary condition ensures that a1, a2, a3, a4 ∈ R do not depend on the
particular admissible pair of functions ( f, g).

We also assume that the function H : R2
→ R is of class C2 and that ∂ f H and ∂g H composed with

every admissible pair ( f, g) are (P1, P2)-periodic in y and z. The latter is equivalent to requiring that
∇( f,g)H is periodic with respect to the lattice generated by P1(a1, a3) and P2(a2, a4).

Let ( f̃ , g̃) be admissible and assume that ( f̃ , g̃) is a critical point of the integral functional∫
P

{ 1
2 |∇ f ×∇g|2+ H( f, g)

}
dx dy dz (3)

defined on the set of admissible pairs ( f, g). Let us check that ṽ := ∇ f̃ × ∇ g̃ is a solution to the
Euler equation with p̃ = − 1

2 |ṽ|
2
+ H( f̃ , g̃). We consider admissible variations ( fs, gs), that is, maps

(s, x, y, z)→ ( fs(x, y, z), gs(x, y, z)) of class C2([−1, 1]× D) such that ( f0, g0)= ( f̃ , g̃), ( f1, g1) is
admissible and

( fs, gs)= ((1− s) f0+ s f1, (1− s)g0+ sg1) for all s ∈ (−1, 1).

The meaning of critical point is that the integral functional at ( fs, gs) as a function of s has a vanishing
derivative at s = 0 for every admissible variation ( fs, gs). If in addition we assume that ( f1− f0, g1−g0)

is compactly supported in P , we get the Euler–Lagrange equation(
− div(∇ g̃× (∇ f̃ ×∇ g̃))+ ∂ f H( f̃ , g̃)
− div((∇ f̃ ×∇ g̃)×∇ f̃ ))+ ∂g H( f̃ , g̃)

)
= 0. (4)

Because of the periodicity assumption on ∇ f̃ and ∇ g̃, more general admissible variations ( fs, gs) do not
provide additional knowledge and, thanks to the periodicity condition on ∂ f H( f̃ , g̃) and ∂g H( f̃ , g̃), (4)
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holds true on all of D. Equation (4) can also be written

∇ g̃ · rot ṽ+ ∂ f H( f̃ , g̃)= 0 and − rot ṽ · ∇ f̃ + ∂g H( f̃ , g̃)= 0, with ṽ =∇ f̃ ×∇ g̃. (5)

It then follows that

ṽ× rot ṽ = (∇ f̃ ×∇ g̃)× rot ṽ = (∇ f̃ · rot ṽ)∇ g̃− (∇ g̃ · rot ṽ)∇ f̃

= ∂ f H( f̃ , g̃)∇ f̃ + ∂g H( f̃ , g̃)∇ g̃ =∇(x,y,z)H( f̃ , g̃). (6)

The identity, see, e.g., [Serrin 1959, p. 151],

∇
( 1

2 |ṽ|
2)
= ṽ× rot ṽ+ (ṽ · ∇)ṽ

gives
(ṽ · ∇)ṽ−∇

( 1
2 |ṽ|

2)
+∇(x,y,z)H( f̃ , g̃)= 0,

which is equivalent to the classical Euler equation for inviscid, incompressible and time-independent
flows

(ṽ · ∇)ṽ+∇ p̃ = 0 with p̃ =− 1
2 |ṽ|

2
+ H( f̃ , g̃).

H( f̃ , g̃) can be seen as the Bernoulli function, which is preserved by the flow since∇(x,y,z)(H( f̃ , g̃))·ṽ=0
by (6).

The aim of the paper is to develop an existence theory in a small neighborhood of ( f̄ , ḡ) ∈ C∞(D)
when

• ∇ f̄ and ∇ ḡ are constant, and

• the first component of v̄ =∇ f̄ ×∇ ḡ does not vanish.

If we perturb (4) into the equation(
−ε(∂2

y f̃ + ∂2
z f̃ )− div(∇ g̃× (∇ f̃ ×∇ g̃))+ ∂ f H( f̃ , g̃)

−ε(∂2
y g̃+ ∂2

z g̃)− div((∇ f̃ ×∇ g̃)×∇ f̃ ))+ ∂g H( f̃ , g̃)

)
= 0

and then linearize this perturbed equation, the obtained linear problem is coercive [Kohn and Nirenberg
1965], provided that ε > 0. The linearization of (4) can thus be described as “degenerate”, the x-direction
being however nondegenerate [loc. cit.]. In Section 2, we analyze the linear operator obtained from the
linearization of (4) and its invertibility, following the classical work [Kohn and Nirenberg 1965] for
noncoercive boundary value problems. The analysis of the linearized problem relies on the particular
structure of the integral functional (3). The main point is that its quadratic part is positive definite (see
Proposition 2.3 for a precise statement). The local uniqueness result is obtained as a corollary.

The Nash–Moser iteration method [Moser 1961; Zehnder 1975] has been applied to noncoercive
problems in previous works, like [Kiremidjian 1978; Han and Hong 2006]. The approach we shall follow
is the one described in Section 6 of [Han and Hong 2006] for the embedding problem of Riemannian
manifolds with nonnegative Gauss curvature. The details are given in Section 3. For simplicity, we have
restricted ourselves as in [loc. cit.] to periodicity conditions with respect to (y, z). A key ingredient
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are tame estimates for the inverse of the linearization, which are obtained in Section 2 using suitable
commutator estimates.

Alber [1992] deals with a closely related setting. The steady Euler equation is considered in a bounded,
simply connected, smooth domain � ⊂ R3. There are three boundary conditions: (1) the flux through
∂� is given by a function f : ∂�→ R, (2) a condition on the vorticity flux through the entrance set
{(x, y, z) ∈ R3

: f (x, y, z) < 0} := ∂�− and (3) a condition on the Bernoulli function on ∂�−. Under
precise assumptions, existence and uniqueness are obtained near a solution v0 with small vorticity when
the boundary conditions (2) and (3) are slightly modified. In the present paper, boundary condition (2) is,
roughly speaking, replaced by a condition on the Bernoulli function on the exit set. These more symmetric
boundary conditions might be a first step to considering flows which are periodic in x , which is a natural
geometry in the study of water waves. Our approach also has the benefit of using a variational structure.

Note that the stationary Euler equation also appears as a model in ideal magnetohydrodynamics, with
v replaced by the magnetic field B, the vorticity rot v replaced by the current density J (up to a constant
multiple) and the Bernoulli function H replaced by the negative of the fluid pressure p. Grad and Rubin
[1958] derived a variational principle for this problem which is rather close to the one considered here,
see, e.g., [loc. cit., Theorem 1], although they did not use it to construct solutions. Moreover the above
example is related to their Theorems 3 and 5 and to a remark that follows their Theorem 5. A recent work
that relies on this variational principle for Euler flows is [Slobodeanu 2015]; it is formulated in a more
general geometric framework. An iterative method, not of Nash–Moser type, is developed in [Kaiser
et al. 2000] to get Beltrami flows with nonconstant proportionality factors. The boundary conditions there
have the same flavor as the ones in [Alber 1992]. Writing a divergence-free velocity field v in the form
v = ∇ f ×∇g may also be useful for irrotational flows, as it could lead to helpful changes of variables;
see [Plotnikov 1980].

2. Linearization

The variational structure of (4) allows one to study its linearization with the help of the quadratic part
of the integral functional (3) around an admissible pair ( f, g). From now on we shall call a pair ( f, g)
admissible if

(Ad1) f and g are of class C3(D),

(Ad2) ∇ f and ∇g are (P1, P2)-periodic in y and z.

The quadratic part is given by

(F,G) 7→
∫
P

{ 1
2 |∇F ×∇g+∇ f ×∇G|2+ (∇ f ×∇g) · (∇F ×∇G)

+
1
2

(
∂2

f H( f, g)F2
+ 2∂ f ∂g H( f, g)FG+ ∂2

g H( f, g)G2)} dx dy dz,

where (F,G) is assumed admissible in the sense that

(Ad′1) F and G are in the Sobolev space H 1
loc(D),

(Ad′2) F and G are (P1, P2)-periodic in y and z,
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(Ad′3) (F,G)= 0 on ∂D in the sense of traces.

Condition (Ad′3) is introduced because we shall assume later that the restriction of ( f, g) to ∂D is a priori
given.

Given an admissible pair ( f, g), we shall call H admissible if

(Ad′′) H ∈ C2(R2) and H ′′( f, g) is (P1, P2)-periodic in y and z.

In this section we will mostly think of H ′′( f, g) as a given function of (x, y, z) rather than a composition.
The quadratic part can be written 1

2 B( f,g)((F,G), (F,G)), where B( f,g) is the symmetric bilinear form

B( f,g)((F,G), (δF, δG))

=

∫
P

{
(∇F ×∇g+∇ f ×∇G) · (∇δF ×∇g+∇ f ×∇δG)

+ (∇ f ×∇g) · (∇F ×∇δG)+ (∇ f ×∇g) · (∇δF ×∇G)

+ ∂2
f H( f, g)FδF + ∂ f ∂g H( f, g)(FδG+GδF)+ ∂2

g H( f, g)GδG
}

dx dy dz.

This section contains two kinds of results: firstly, we bound from below the quadratic part and, secondly,
we study the regularity of solutions to the linearization of problem (4) at ( f, g). A preliminary observation
is that the quadratic part is not coercive at ( f, g) in the sense that there is no α > 0 such that, for all
admissible (F,G),

1
2 B( f,g)((F,G), (F,G))≥

∫
P
{α(|∇F |2+ |∇G|2)−α−1(F2

+G2)} dx dy dz.

For example, taking G = 0, the quadratic part becomes

F 7→
∫
P

( 1
2 |∇F ×∇g|2+ 1

2∂
2
f H( f, g)F2) dx dy dz.

In the particular case f (x, y, z)= y, g(x, y, z)= z, H = 0 and P1 = P2 = 1, the integral reduces to

1
2

∫
P
(F2

x + F2
y ) dx dy dz.

Choosing Fn of the form
Fn(x, y, z)= φ(x) cos(2πnz),

where φ ∈ C∞(R, [0, 1]) is compactly supported in (0, 1) and takes the value 1 on
( 1

4 ,
3
4

)
, we find that

the quadratic part and ‖(Fn,G)‖L2(P) have positive constant values along the sequence {(Fn,G)}n≥1.
However, ‖(∇Fn,∇G)‖L2(P)→∞ and thus α as above cannot exist. For a general pair ( f, g), we instead
fix (x0, y0, z0) ∈ P such that ∇g(x0, y0, z0) 6= 0 and consider Fn which is (P1, P2)-periodic in (y, z) and
when restricted to P is given by

Fn(x, y, z)= φ(x, y, z) cos(ng(x, y, z)),

where φ ∈ C∞(P, [0, 1]) is compactly supported in P , with φ(x0, y0, z0) = 1. By choosing n large
enough, one again obtains that α cannot exist. In fact, we have made the stronger observation that, for all
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α > 0, there exists a sequence {(Fn,Gn)} of admissible pairs such that

1
2 B( f,g)((Fn,Gn), (Fn,Gn))+α

−1
∫
P
(F2

n +G2
n) dx dy dz

remains bounded, but {(Fn,Gn)} does not have any subsequence converging in L2(P). This has implica-
tions for the regularity of the solutions to the linearized problem, as described below.

Nevertheless, in Theorem 2.1, we bound from below the quadratic part in a rougher way. The term∫
P

1
2 |∇F × ∇g + ∇ f × ∇G|2 dx dy dz turns out to be rather nice, as shown in the first part of the

proof, because it is bounded from below by
∫
P{(v · ∇F)2+ (v · ∇G)2} dx dy dz (under the simplifying

assumption (7), otherwise there is an additional factor). With the help of a Poincaré inequality and thanks
to the Dirichlet boundary condition at x = 0 and x = L ,

∫
P{(v · ∇F)2+ (v · ∇G)2} dx dy dz can in turn

be bounded from below by a positive constant times ‖(F,G)‖2L2(P). In the second and third parts of the
proof of Theorem 2.1, we bound from below the second term of the quadratic part, that is,

∫
P(∇ f ×∇g) ·

(∇F×∇G) dx dy dz: it cannot become too negative with respect to
∫
P

1
2 |∇F×∇g+∇ f×∇G|2 dx dy dz.

In these estimates, it is assumed that (∇ f,∇g) is in some small neighborhood of (∇ f̄ ,∇ ḡ) in C2(P).
To get a better feeling for the term

∫
P(∇ f ×∇g) · (∇F ×∇G) dx dy dz, observe that it vanishes when v

is irrotational because (see the beginning of the second step)∫
P
(∇ f ×∇g) · (∇F ×∇G) dx dy dz = 1

2

∫
P

rot v · (F∇G−G∇F) dx dy dz.

As we allow v to be slightly rotational, this term needs careful estimates.
As a consequence of Theorem 2.1, the integral functional is strictly convex in a neighborhood of ( f̄ , ḡ),

which implies local uniqueness of a solution to (4) (but not existence at this stage); see Theorem 2.2.
With the aim to apply the technique of elliptic regularization [Kohn and Nirenberg 1965], we consider

for ε ∈ [0, 1] the regularized quadratic part

(F,G) 7→
∫
P

{1
2 |∇F×∇g+∇ f ×∇G|2+ (∇ f ×∇g) · (∇F×∇G)+ 1

2ε(|∇F |2+|∇G|2)

+
1
2

(
∂2

f H( f, g)F2
+2∂ f ∂g H( f, g)FG+ ∂2

g H( f, g)G2)} dx dy dz

:=
1
2 Bε( f,g)((F,G), (F,G)).

All the obtained estimates are uniform in ε ∈ [0, 1], but, in addition, the problem becomes elliptic for
ε ∈ (0, 1].

For every admissible ( f, g) ∈ C3(D), we introduce the following system for (µ, ν) ∈ L2
loc(D) that is

(P1, P2)-periodic in y and z, and for (F,G) ∈ H 2
loc(D) admissible in the sense of (Ad′1)–(Ad′3):

µ=− div
(
∇g×(∇F×∇g+∇ f ×∇G)+∇G×(∇ f ×∇g)

)
−ε1F+∂2

f H( f, g)F+∂ f ∂g H( f, g)G,

ν =− div
(
(∇F×∇g+∇ f ×∇G)×∇ f +(∇ f ×∇g)×∇F

)
−ε1G+∂ f ∂g H( f, g)F+∂2

g H( f, g)G.

The right-hand side is the linear operator related to the regularized quadratic part. This system also makes
sense in a weak form if, instead of (F,G) ∈ H 2

loc(D), we ask that (F,G) ∈ H 1
loc(D). Given (µ, ν) in any

higher-order Sobolev space, the main issue of Section 2 is to study the regularity of a solution (F,G),
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aiming at estimates of the Sobolev norms, uniformly in ε ∈ [0, 1]. Such a pair (F,G) is easily proved to be
unique and its existence for ε ∈ (0, 1] follows from the fact that the system is elliptic. The same particular
case as above gives more insight into this system. Setting µ = ν = 0, ε = 0, G = 0, f (x, y, z) = y,
g(x, y, z)= z and P1 = P2 = 1, we get

− div(∂1 F, ∂2 F, 0)+ ∂2
f H( f, g)F = 0,

− div(0,−∂3 F, 2∂2 F)+ ∂ f ∂g H( f, g)F = 0.

Keeping only the second-order terms and forgetting the boundary and periodicity conditions, we see that
F(x, y, z)= cos(z) is a solution to both equations. Hence the regularity theory in [Agmon et al. 1964]
cannot be used when ε = 0, f (x, y, z)= y, g(x, y, z)= z and P1 = P2 = 1.

In Proposition 2.4, we explain how the general system allows one to express ∂2
11 F and ∂2

11G with
respect to the other second-order partial derivatives of F and G, and lower-order terms, involving µ and
ν too. After iterative differentiations, this also yields expressions for higher-order derivatives that contain
at least two partial derivatives with respect to x . In a more general setting, this is developed in [Kohn and
Nirenberg 1965].

For i ∈ {2, 3}, multiplying both sides of each equation of the system by (−1)r∂2r
i F and (−1)r∂2r

i G,
respectively, summing the two equations and then integrating by parts many times, B( f,g)(∂

r
i F, ∂r

i F)
arises, with additional bilinear terms in (F,G) that turn out to involve at most r partial derivatives of F
and G for each of the two components of each bilinear term. We can make some of these additional terms
small if v is near v̄ (here, the hypothesis that ∇ f̄ and ∇ ḡ are constant is used; see the remarks following
Theorem 2.7). This crucial observation is developed in [Kohn and Nirenberg 1965] in a more general
framework, and is presented here in our specific setting in Theorem 2.5. The quadratic part gives then
control on the L2(P)-norms of ∂r

i F and ∂r
i G, but also on the L2(P)-norms of ∂1∂

r
i F and ∂1∂

r
i G. Hence the

L2(P)-norms of ∂r
i F , ∂r

i G, ∂1∂
r
i F and ∂1∂

r
i G are controlled by the L2(P)-norms of ∂r

i µ and ∂r
i ν and by

a small factor times the H r (P)-norms of F and G. With all these tools, we get the estimate of Theorem 2.8
at the end of Section 2, in which the norm of ( f, g) in some Sobolev space also appears, the order of
which is under sufficient control. Although we follow ideas from [loc. cit.] (see in particular Theorem 2′),
explicit estimates allow one to get explicit regularity results for the solutions obtained by the Nash–Moser
procedure. It may be expected that these estimates could be improved and thus also the statements on
regularity, but we do not strive in the present work to be optimal. The lack of compactness mentioned above
prevents us from proving C∞ smoothness of the solution using the method behind Theorem 2 in [loc. cit.].

Our first aim is to find conditions that ensure that B( f,g) is positive definite. In [Buffoni 2012], a
minimizer of a more general integral functional could be found in some space of general flows, in a very
similar spirit as in [Brenier 1999]. Hence it could be expected that, under appropriate conditions, the
quadratic part is nonnegative at a solution of (4). In the proof of the following theorem, we also rely on
Poincaré’s inequality to get the stronger result that the quadratic part is positive definite for ( f, g) (not
necessarily a solution to (4)) sufficiently close to ( f̄ , ḡ) and H ′′ sufficiently small (see Theorem 2.1). For
simplicity, we shall assume in the following statement that

|∇ f̄ |2+ |∇ ḡ|2+
√
(|∇ f̄ |2+ |∇ ḡ|2)2− 4|v̄|2 ≤ 2, v̄ := ∇ f̄ ×∇ ḡ. (7)
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As for (small) λ > 0, equation (4) remains invariant under the transformation

( f̃ , g̃)→ (λ f̃ , λg̃), H → λ4 H(λ−1
· , λ−1

· ),

there is no loss of generality.

Theorem 2.1. Assume that ∇ f̄ and ∇ ḡ are constant, that the first component of v̄ does not vanish and
that (7) holds true. For admissible ( f, g) and (F,G),

B( f,g)((F,G), (F,G))

≥

∫
P

{
1

16(v · ∇F)2+ 1
16(v · ∇G)2+ (1− O(‖v′‖C(P)))

π2 minP v
2
1

16L2 (F2
+G2)

+ ∂2
f H( f, g)F2

+ 2∂ f ∂g H( f, g)FG+ ∂2
g H( f, g)G2

}
dx dy dz (8)

holds if (∇ f,∇g) is in some small neighborhood of (∇ f̄ ,∇ ḡ) in C2(P) (independent of H admissible).

Notation. The notation u = O(v) means that the norm (or absolute value) of u is less than a constant
times v in the relevant domain. We also use the notation u . v to indicate that there exists a constant
C > 0 (independent of u and v) such that u ≤ Cv.

Remark. It is not essential that ∇ f̄ and ∇ ḡ are constant for this result to hold. The result would
still remain true if we instead were to require that rot v̄ = 0 (the other hypotheses remaining the
same) and replace the coefficient 1− O(‖v′‖C(P)) in (8) by exp(−4L‖(v/v1)

′
‖C(P)). This might be

useful for considering perturbations of other irrotational flows. See, however, the remarks following
Theorem 2.7.

Proof. Under the hypotheses of the theorem, we can assume that the first component of the velocity field
v =∇ f ×∇g never vanishes (like the one of v̄). We study the various terms separately.

First step: Let us first show that∫
P
|∇F ×∇g+∇ f ×∇G|2 dx dy dz ≥

∫
P
{(v · ∇F)2+ (v · ∇G)2} dx dy dz

≥ (1− O(‖v′‖C(P)))
π2 minP v

2
1

L2

∫
P
(F2
+G2) dx dy dz

if (∇ f,∇g) is near enough to (∇ f̄ ,∇ ḡ) in C1(P).
To this end, write

∇F ×∇g+∇ f ×∇G = a∇ f + b∇g+ c∇ f ×∇g.

By taking the scalar product of both sides with ∇ f , ∇g and ∇ f ×∇g successively, we get
(∇g×∇ f ) · ∇F = a|∇ f |2+ b∇ f · ∇g,
(∇g×∇ f ) · ∇G = a∇ f · ∇g+ b|∇g|2,
(∇g× (∇ f ×∇g)) · ∇F + ((∇ f ×∇g)×∇ f ) · ∇G = c|∇ f ×∇g|2
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and

a =
−|∇g|2(v · ∇F)+ (∇ f · ∇g)(v · ∇G)

|∇ f |2|∇g|2− (∇ f · ∇g)2
=
−|∇g|2(v · ∇F)+ (∇ f · ∇g)(v · ∇G)

|v|2
,

b =
−|∇ f |2(v · ∇G)+ (∇ f · ∇g)(v · ∇F)

|v|2
,

c =
(v×∇ f ) · ∇G+ (∇g× v) · ∇F

|v|2
.

Hence∫
P
|∇F×∇g+∇ f×∇G|2 dx dy dz

≥

∫
P
|a∇ f+b∇g|2 dx dy dz

=

∫
P
(a b)

(
|∇ f |2 ∇ f ·∇g
(∇ f ·∇g) |∇g|2

)(
a
b

)
dx dy dz

=

∫
P

1
|v|4

(
v·∇F v·∇G

)
×

(
−|∇g|2 ∇ f ·∇g
∇ f ·∇g −|∇ f |2

)(
|∇ f |2 ∇ f ·∇g
∇ f ·∇g |∇g|2

)(
−|∇g|2 ∇ f ·∇g
∇ f ·∇g −|∇ f |2

)(
v·∇F
v·∇G

)
dx dy dz

=

∫
P

1
|v|4

(
v·∇F v·∇G

) (−|∇g|2 ∇ f ·∇g
∇ f ·∇g −|∇ f |2

)(
−|v|2 0

0 −|v|2

)(
v·∇F
v·∇G

)
dx dy dz

=

∫
P

1
|v|2

(
v·∇F v·∇G

) ( |∇g|2 −∇ f ·∇g
−∇ f ·∇g |∇ f |2

)(
v·∇F
v·∇G

)
dx dy dz

≥

∫
P

|∇ f |2+|∇g|2−
√
(|∇ f |2+|∇g|2)2−4|v|2

2|v|2
{(v·∇F)2+(v·∇G)2} dx dy dz

because the eigenvalues of (
|∇g|2 −∇ f · ∇g
−∇ f · ∇g |∇ f |2

)
are 1

2

(
|∇ f |2+ |∇g|2±

√
(|∇ f |2+ |∇g|2)2− 4|v|2

)
. By the simplifying assumption (7),∫

P
|∇F ×∇g+∇ f ×∇G|2 dx dy dz ≥

∫
P
{(v · ∇F)2+ (v · ∇G)2} dx dy dz

if (∇ f,∇g) is near enough to (∇ f̄ ,∇ ḡ) in C(P).
To obtain the second inequality of the first step, we now use Poincaré’s inequality in one dimension by

relying on the fact that F and G vanish on {0, L}× (0, P1)× (0, P2), and then integrate with respect to
the two remaining variables. We use again that the first component of v̄ does not vanish and that v is in
some small neighborhood of v̄, so that the first component of v does not vanish either. Given (ỹ, z̃) ∈ R2,
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let 0(ỹ,z̃) : [0, L] → R2 be the function of the variable x̃ ∈ [0, L] satisfying

0′(ỹ,z̃)(x̃)=
1

v1(x̃, 0(ỹ,z̃)(x̃))
(v2(x̃, 0(ỹ,z̃)(x̃)), v3(x̃, 0(ỹ,z̃)(x̃)))

with the initial condition 0(ỹ,z̃)(0)= (ỹ, z̃). By Theorem 7.2 of Chapter 1 in [Coddington and Levinson
1955] on the regularity of solutions of ODEs, the map (x̃, ỹ, z̃)→ 0(ỹ,z̃)(x̃) is of class C2(P).

Moreover the Jacobian determinant of the map (ỹ, z̃)→ 0(ỹ,z̃)(s) is given by

exp
∫ s

0
div(y,z)(v2/v1, v3/v1)|(x̃,0(ỹ,z̃)(x̃)) dx̃ .

Given x̃ ∈ (0, L), we associate to (x̃, ỹ, z̃) the point

(x, y, z)= (x̃, 0(ỹ,z̃)(x̃)).

Observe that x = x̃ . We denote by J (x̃, ỹ, z̃) the Jacobian determinant and obtain

J (s, ỹ, z̃)= exp
∫ s

0
div(y,z)(v2/v1, v3/v1)|(x̃,0(ỹ,z̃)(x̃)) dx̃ = 1+ O(‖v′‖C(P))

uniformly in (s, ỹ, z̃) ∈ P if v is near enough to v̄ in C1(P).
Setting

F̃(x̃, ỹ, z̃)= F(x, y, z), G̃(x̃, ỹ, z̃)= G(x, y, z), ṽ1(x̃, ỹ, z̃)= v1(x, y, z),

we get

∂1 F̃(x̃, ỹ, z̃)=
d

dx̃
F(x̃, 0(ỹ,z̃)(x̃))=∇F ·

 1
v2/v1

v3/v1

 at (x̃, 0(ỹ,z̃)(x̃)),

ṽ1∂1 F̃ = v · ∇F, ṽ1∂1G̃ = v · ∇G

and∫
P
{(v · ∇F)2+ (v · ∇G)2} dx dy dz =

∫
P
{(ṽ1∂1 F̃)2+ (ṽ1∂1G̃)2}J (x̃, ỹ, z̃) dx̃ d ỹ d z̃

≥min
P
(ṽ2

1 J )
∫
(0,P1)×(0,P2)

{∫ L

0
{(∂1 F̃)2+ (∂1G̃)2} dx̃

}
d ỹ dz̃

≥
π2 minP ṽ

2
1 J

L2

∫
(0,P1)×(0,P2)

{∫ L

0
(F̃2
+ G̃2)dx̃

}
d ỹ dz̃

≥
π2 minP ṽ

2
1 J

L2 maxP J

∫
P
(F2
+G2) dx dy dz

≥ (1− O(‖v′‖C(P)))
π2 minP v

2
1

L2

∫
P
(F2
+G2) dx dy dz

if v is in some small neighborhood of v̄ in C1(P).



STEADY THREE-DIMENSIONAL ROTATIONAL FLOWS 1237

Second step: We now deal with the term
∫
P(∇ f ×∇g) · (∇F ×∇G) dx dy dz. Write

rot v = αv+βv×∇ f + γ∇g× v,

with
α =

rot v · v
|v|2

, β =
rot v · ∇g
|v|2

, γ =
rot v · ∇ f
|v|2

.

We get ∫
P
(∇ f ×∇g) · (∇F ×∇G) dx dy dz = 1

2

∫
P
v · rot(F∇G−G∇F) dx dy dz

=
1
2

∫
P

rot v · (F∇G−G∇F) dx dy dz

because

0=
∫
P

div(v×(F∇G−G∇F)) dx dy dz =
∫
P
(rot v ·(F∇G−G∇F)−v ·rot(F∇G−G∇F)) dx dy dz.

Hence∫
P
(∇ f ×∇g) · (∇F ×∇G) dx dy dz

=
1
2

∫
P
(αv+βv×∇ f + γ∇g× v) · (F∇G−G∇F) dx dy dz

=
1
2

∫
P

{
α(∇F ×∇g+∇ f ×∇G) · (G∇ f − F∇g)

+ (βv×∇ f + γ∇g× v) · (F∇G−G∇F)
}

dx dy dz

≥

∫
P

{
−

1
8 |∇F ×∇g+∇ f ×∇G|2−α2(G2

|∇ f |2+ F2
|∇g|2)

+
1
2(βv×∇ f + γ∇g× v) · (F∇G−G∇F)

}
dx dy dz.

The (absolute value of the) first term in this expression does not create problems because it can be
controlled by one eighth of the term studied in the first step. Neither does the second term because it can
also be controlled by any fraction of the term studied in the first step (as the second term is quadratic in
(F,G) and |α| is as small as needed if rot v is near enough to rot v̄ = 0). The aim of the next step is to
deal with the last term.

Third step: The aim of this step it to get control of the term

1
2

∫
P
(βv×∇ f + γ∇g× v) · (F∇G−G∇F) dx dy dz.

First, using ∇(FG)= G∇F + F∇G, we have

1
2

∫
P
(βv×∇ f ) · (F∇G−G∇F) dx dy dz

=
1
2

∫
P
(βv×∇ f ) · ∇(FG) dx dy dz−

∫
P
(βv×∇ f ) · (G∇F) dx dy dz

=−
1
2

∫
P

FG(β rot v+∇β × v) · ∇ f dx dy dz−
∫
P
(βv×∇ f ) · (G∇F) dx dy dz.
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Similarly, we can rewrite

1
2

∫
P
(γ∇g× v) · (F∇G−G∇F) dx dy dz

=−
1
2

∫
P
(γ∇g× v) · ∇(FG) dx dy dz+

∫
P
(γ∇g× v) · (F∇G) dx dy dz

=−
1
2

∫
P

FG(γ rot v+∇γ × v) · ∇g dx dy dz+
∫
P
(γ∇g× v) · (F∇G) dx dy dz.

As

| −βFv · (∇F ×∇g+∇ f ×∇G)| ≤ 2β2 F2
|v|2+ 1

8 |∇F ×∇g+∇ f ×∇G|2

and

0=
∫
P

div
(
v×

(
−

1
2βF2

∇g+βFG∇ f
))

dx dy dz

=

∫
P

rot v ·
(
−

1
2βF2

∇g+βFG∇ f
)

dx dy dz−
∫
P
v · rot

(
−

1
2βF2

∇g+βFG∇ f
)

dx dy dz, (9)

we have∫
P

1
8 |∇F ×∇g+∇ f ×∇G|2 dx dy dz

≥

∫
P
{−βFv · (∇F ×∇g+∇ f ×∇G)− 2β2 F2

|v|2} dx dy dz

=

∫
P

{
v ·
(
rot
(
−β 1

2 F2
∇g+βFG∇ f

)
+

1
2 F2
∇β ×∇g

− FG∇β ×∇ f −βG∇F ×∇ f
)
− 2β2 F2

|v|2
}

dx dy dz

(9)
=

∫
P

{
rot v ·

(
−β 1

2 F2
∇g+βFG∇ f

)
+

1
2 F2v · (∇β ×∇g)

− FGv · (∇β ×∇ f )−βGv · (∇F ×∇ f )− 2β2 F2
|v|2

}
dx dy dz

and therefore

−

∫
P
(βv×∇ f ) · (G∇F) dx dy dz

=

∫
P
βGv · (∇F ×∇ f ) dx dy dz

≥−

∫
P

1
8 |∇F ×∇g+∇ f ×∇G|2 dx dy dz

+

∫
P

{
rot v ·

(
−

1
2βF2

∇g+βFG∇ f
)
+

1
2 F2v · (∇β ×∇g)

− FGv · (∇β ×∇ f )− 2β2 F2
|v|2

}
dx dy dz.
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In the previous computations, substitute f and F by −g and −G, g and G by f and F , and β by γ,
yielding∫
P
(γ∇g×v)·(F∇G) dx dy dz

≥−

∫
P

1
8 |∇F×∇g+∇ f×∇G|2 dx dy dz

+

∫
P

{
rot v·

(
−

1
2γG2

∇ f+γ FG∇g
)
+

1
2 G2v·(∇γ×∇ f )−FGv·(∇γ×∇g)−2γ 2G2

|v|2
}

dx dy dz.

Adding the different contributions, we find that

1
2

∫
P
(βv×∇ f+γ∇g×v)·(F∇G−G∇F) dx dy dz

≥−

∫
P

1
4 |∇F×∇g+∇ f×∇G|2 dx dy dz

+

∫
P

{
rot v·

(
−

1
2βF2

∇g+1
2 FGβ∇ f

)
+

1
2 F2v·(∇β×∇g)− 1

2 FGv·(∇β×∇ f )−2β2 F2
|v|2

}
dx dy dz

+

∫
P

{
rot v·

(
−

1
2γG2

∇ f+1
2 FGγ∇g

)
+

1
2 G2v·(∇γ×∇ f )−1

2 FGv·(∇γ×∇g)−2γ 2G2
|v|2

}
dx dy dz.

All the absolute values of these terms are controlled by multiples of the term studied in the first step.
Moreover |∇β| and |∇γ | become small if (∇ f,∇g) is near enough to (∇ f̄ ,∇ ḡ) in C2(P).

Last step:∫
P

{ 1
2 |∇F×∇g+∇ f×∇G|2+(∇ f×∇g)·(∇F×∇G)

}
dx dy dz

step 2
≥

∫
P

{ 3
8 |∇F×∇g+∇ f×∇G|2−α(G2

|∇ f |2+F2
|∇g|2)

+
1
2(βv×∇ f+γ∇g×v)·(F∇G−G∇F)

}
dx dy dz

step 3
≥

∫
P

{ 1
8 |∇F×∇g+∇ f×∇G|2−α(G2

|∇ f |2+F2
|∇g|2)

}
dx dy dz

+

∫
P

{
rotv·

(
−β 1

2 F2
∇g+1

2 FGβ∇ f
)
+

1
2 F2v·(∇β×∇g)− 1

2 FGv·(∇β×∇ f )−2β2 F2
|v|2

}
dx dy dz

+

∫
P

{
rotv·

(
−γ 1

2 G2
∇ f+1

2 FGγ∇g
)
+

1
2 G2v·(∇γ×∇ f )−1

2 FGv·(∇γ×∇g)−2γ 2G2
|v|2

}
dx dy dz

step 1
≥

∫
P

1
16 |∇F×∇g+∇ f×∇G|2 dx dy dz

step 1
≥

∫
P

{
1
32(v·∇F)2+ 1

32(v·∇G)2+(1−O(‖v′‖C(P)))
π2 minP v

2
1

32L2 (F2
+G2)

}
dx dy dz

if (∇ f,∇g) is in some small neighborhood of (∇ f̄ ,∇ ḡ) in C2(P) (independent of H ). �

Theorem 2.1 implies local uniqueness of solutions (existence will be discussed later).
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Theorem 2.2. Assume that ( f, g) and ( f̃ , g̃) and are admissible (see (Ad1)–(Ad2) above) such that

( f (x, y, z), g(x, y, z))= ( f̃ (x, y, z), g̃(x, y, z)) for all (x, y, z) ∈ {0, L}×R2,

and both ( f, g) and ( f̃ , g̃) are solutions to (4). In addition let ( f̄ , ḡ) be as in Theorem 2.1 and H
be as in Theorem 1.1 (but H0 can be assumed of class C2 only). If (∇ f,∇g) and (∇ f̃ ,∇ g̃) are in a
sufficiently small open convex neighborhood of (∇ f̄ ,∇ ḡ) in C2(P) and ‖H ′′0 ‖C(Q) is sufficiently small,
then ( f, g)= ( f̃ , g̃) on [0, L]×R2.

Proof. If they were not equal, we could consider

( fθ , gθ )= θ( f̃ , g̃)+ (1− θ)( f, g)

for θ in some slightly larger interval than [0, 1]. The map

θ→

∫
P

{ 1
2 |∇ fθ ×∇gθ |2+ H( fθ , gθ )

}
dx dy dz

would be of class C2, its derivative would vanish at θ = 0 and θ = 1, and its second derivative would be
strictly positive on [0, 1] (by Theorem 2.1), which is a contradiction. �

Remark. The proof of Theorem 2.2 relies on the local convexity of the functional (3). It is natural
to wonder if local convexity may lead to existence too. Theorem 2.1 shows that the quadratic form
B( f,g)((F,G), (F,G)) is positive definite if (∇ f,∇g) is in some small neighborhood of (∇ f̄ ,∇ ḡ) in
C2(P) (independent of H as long as ‖H ′′( f, g)‖C(P) is sufficiently small). However, as mentioned above,
the quadratic form is not coercive at ( f, g) = ( f̄ , ḡ). This feature creates difficulties in getting good
a priori bounds on minimizing sequences. One can hope that they may converge in some weak sense to
some kind of weak solution and indeed such kind of results, in a more general setting, are obtained in
[Buffoni 2012]. One can also wonder if some kind of regularization of the integral functional followed by
a limiting process could lead to regular solutions. If this were feasible, it seems likely that it would rely
on a regularity analysis similar to the one that follows. We leave these considerations for further works.

To implement a Nash–Moser iteration, we introduce for ε ∈ [0, 1] the regularized quadratic form

(F,G) 7→
∫
P

{1
2 |∇F×∇g+∇ f ×∇G|2+(∇ f ×∇g)·(∇F×∇G)+ 1

2ε(|∇F |2+|∇G|2)

+
1
2

(
∂2

f H( f, g)F2
+2∂ f ∂g H( f, g)FG+∂2

g H( f, g)G2)} dx dy dz,

which is clearly also positive definite if (∇ f,∇g) is in some small neighborhood of (∇ f̄ ,∇ ḡ) in C2(P)
and ‖H ′′( f, g)‖C(P) is small enough, uniformly in ε ∈ [0, 1], and coercive for a fixed ε ∈ (0, 1]. Again,
the regularized quadratic form can be written 1

2 Bε( f,g)((F,G), (F,G)), where Bε( f,g) is the corresponding
symmetric bilinear form.

For an admissible ( f, g) ∈ C3(D) (see (Ad1)–(Ad2) above), we are interested in the map (µ, ν) 7→
(F,G) defined as follows:

• (F,G) ∈ H 1
loc(D) is admissible in the sense of (Ad′1)–(Ad′3).

• (µ, ν) ∈ L2
loc(D) is (P1, P2)-periodic in y and z.
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• For all δF, δG ∈ H 1
loc(D) that are admissible in the sense of (Ad′1)–(Ad′3)

Bε( f,g)((F,G), (δF, δG))=
∫
P
(µδF + νδG) dx dy dz. (10)

If ( f, g) is admissible and (F,G) is admissible in H 2
loc(D), (10) is equivalent to the system

µ=−div
(
∇g×(∇F×∇g+∇ f×∇G)+∇G×(∇ f×∇g)

)
−ε1F+∂2

f H( f,g)F+∂ f ∂g H( f,g)G,

ν=−div
(
(∇F×∇g+∇ f×∇G)×∇ f+(∇ f×∇g)×∇F

)
−ε1G+∂ f ∂g H( f,g)F+∂2

g H( f,g)G.
(11)

In particular, if ε = 0, then the linear operator related to Bε( f,g) is the linearization of (4) around ( f, g).
Thanks to the fact that the regularized quadratic form is positive definite, (F,G) is uniquely defined

by (µ, ν). We leave for later the issue of the existence of (F,G) and its regularity, as dealt with in [Kohn
and Nirenberg 1965].

Proposition 2.3. Assume that ∇ f̄ and ∇ ḡ are constant, that the first component of v̄ does not vanish
and that (7) holds true. If f, g (admissible) are of class C3(D) and H (admissible) is of class C2(R2),
(∇ f,∇g) is in some small enough neighborhood of (∇ f̄ ,∇ ḡ) in C2(P) and ‖H ′′( f, g)‖C(P) is small
enough, then

Bε( f,g)((F,G), (F,G))≥
∫
P

{
1
16(v · ∇F)2+ 1

16(v · ∇G)2+
π2 minP v

2
1

32L2 (F2
+G2)

}
dx dy dz. (12)

Moreover

‖(F,G)‖L2(P) ≤
32L2

π2 minP v
2
1
‖(µ, ν)‖L2(P) (13)

and ∫
P

{ 1
16(v · ∇F)2+ 1

16(v · ∇G)2
}

dx dy dz ≤
32L2

π2 minP v
2
1
‖(µ, ν)‖2L2(P)

for all periodic (µ, ν) ∈ L2
loc(D) and all admissible (F,G) ∈ H 1

loc(D) satisfying (10). These estimates
are uniform in ε ∈ [0, 1].

Proof. Assuming |v′| and |H ′′( f, g)| small enough (as we can), we get in (8)

(1− O(‖v′‖C(P)))
π2 minP v

2
1

32L2 (F2
+G2)+ 1

2

(
∂2

f H( f, g)F2
+ 2∂ f ∂g H( f, g)FG+ ∂2

g H( f, g)G2)
≥
π2 minP v

2
1

64L2 (F2
+G2)

and inequality (12) follows from (8). Applying (10) to (δF, δG)= (F,G),∫
P

{
1

16(v · ∇F)2+ 1
16(v · ∇G)2+

π2 minP v
2
1

32L2 (F2
+G2)

}
dx dy dz ≤ Bε( f,g)((F,G), (F,G))

≤ ‖(µ, ν)‖L2(P)‖(F,G)‖L2(P),

‖(F,G)‖L2(P) ≤
32L2

π2 minP v
2
1
‖(µ, ν)‖L2(P)
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and ∫
P

{ 1
16(v · ∇F)2+ 1

16(v · ∇G)2
}

dx dy dz ≤
32L2

π2 minP v
2
1
‖(µ, ν)‖2L2(P). �

Proposition 2.4. Assume that the first component of v̄ does not vanish and that (∇ f,∇g) is near enough
to (∇ f̄ ,∇ ḡ) in C2(P). Then system (11) allows one to express the partial derivatives ∂2

11 F and ∂2
11G

linearly with respect to µ, ν, the other second-order partial derivatives of F and G, the first-order partial
derivatives of F and G, and F and G. The coefficients of these two linear expressions are rational
functions of f ′, g′, f ′′, g′′, H ′′( f, g), ε (without singularities on D). More precisely,

∂2
11 F = a1µ+a2ν+a3∂

2
12 F+a4∂

2
13 F+a5∂

2
22 F+a6∂

2
23 F+a7∂

2
33 F+a8∂

2
12G+a9∂

2
13G+a10∂

2
22G

+a11∂
2
23G+a12∂

2
33G+a13∂1 F+a14∂2 F+a15∂3 F+a16∂1G+a17∂2G+a18∂3G+a19 F+a20G,

where each ai , 1≤ i ≤ 20, is of the form

ai =
Qi

v2
1 + ε|(∂2 f, ∂3 f, ∂2g, ∂3g)|2+ ε2

for some polynomial

Qi =


Qi ( f ′, g′, ε), 1≤ i ≤ 12,
Qi ( f ′′, g′′), 13≤ i ≤ 18,
Qi (H ′′), 19≤ i ≤ 20.

The denominator does not vanish on D because (∇ f,∇g) is supposed near enough to (∇ f̄ ,∇ ḡ) and
ε ∈ [0, 1]. Moreover, for all integers 1≤ i ≤ 20 and `≥ 0,

‖ai‖C`(P) =


O(‖( f, g)‖C`+1(P)+ 1), 1≤ i ≤ 12,
O(‖( f, g)‖C`+2(P)+ 1), 13≤ i ≤ 18,
O(‖H ′′( f, g)‖C`(P)+‖( f, g)‖C`+1(P)+ 1), 19≤ i ≤ 20

if all norms are well-defined. Analogous results hold for ∂2
11G and all the estimates are uniform in

ε ∈ [0, 1].

Proof. If we keep only the second-order terms in (F,G), we get

µ=∇g · rot(∇F ×∇g+∇ f ×∇G)− ε1F + · · · ,

ν =− rot(∇F ×∇g+∇ f ×∇G) · ∇ f − ε1G+ · · · .
Observe that

rot(∇F ×∇g)=1g∇F −1F∇g+ F ′′∇g− g′′∇F

and thus
µ=∇g · ((F ′′−1F I )∇g)−∇g · ((G ′′−1G I )∇ f )− ε1F + · · · ,

ν =−∇ f · ((F ′′−1F I )∇g)+∇ f · ((G ′′−1G I )∇ f )− ε1G+ · · · ,

where I is the identity matrix. To see that this allows one to express ∂2
11 F and ∂2

11G with respect to µ, ν,
the other second-order partial derivatives of F and G, and the first-order partial derivatives of F and G,
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and F and G, it is sufficient to study

µ=−∂2
11 F∇g · (J∇g)+ ∂2

11G∇ f · (J∇g)− ε∂2
11 F + · · · ,

ν = ∂2
11 F∇ f · (J∇g)− ∂2

11G∇ f · (J∇ f )− ε∂2
11G+ · · · ,

where J is the diagonal matrix with entries (0, 1, 1) on the diagonal and the remainders now also contain
the other second-order partial derivatives of F and G. The discriminant of this system for (∂2

11 F, ∂2
11G) is

(|J∇g|2+ ε)(|J∇ f |2+ ε)− ((J∇ f ) · (J∇g))2 = |(J∇ f )× (J∇g)|2+ ε|J∇ f |2+ ε|J∇g|2+ ε2

= v2
1 + ε|J∇ f |2+ ε|J∇g|2+ ε2.

We estimate ‖ai‖C`(P), 1≤ i ≤ 20, using the inequality

‖ξ(u1, . . . , uN )‖Ck(P) ≤ C‖ξ‖Ck (1+‖u1‖Ck(P)+ · · ·+ ‖uN‖Ck(P)) (14)

for ξ ∈ Ck([−M,M]N ) and u j ∈ Ck(P) with ‖u j‖C(P) ≤ M for 1 ≤ j ≤ N , which, e.g., follows by
interpolation in Ck spaces, see, e.g., of [Hamilton 1982, Theorem 2.2.1, p. 143], and the Faà di Bruno
formula. Hence

O(‖ai‖C`(P))=


O(‖( f, g)‖C`+1(P)+ 1), 1≤ i ≤ 12,
O(‖( f, g)‖C`+2(P)+ 1), 13≤ i ≤ 18,
O(‖H ′′( f, g)‖C`(P)+‖( f, g)‖C`+1(P)+ 1), 19≤ i ≤ 20. �

We now study to which extent Bε( f,g) commutes with differentiations in y and z, following the general
approach of [Kohn and Nirenberg 1965].

Theorem 2.5. Let (∇ f,∇g) be in any bounded subset of C1(P), r ∈ {1, 2, 3, . . .}, ( f, g) ∈ Cr+2(D),
H ∈ Cr+2(R2) and (F,G) ∈ H 2r+1

loc (D) (all admissible). Then, for j ∈ {2, 3},

Bε( f,g)((∂
r
j F, ∂r

j G), (∂r
j F, ∂r

j G))− Bε( f,g)((F,G), (−1)r (∂2r
j F, ∂2r

j G))

=

∑
p∈S

∫
P
∂

2r−sp−tp
j L p ∂

sp
j u p ∂

tp
j vp dx dy dz+

∑
p∈S̃

∫
P
∂

r−s̃p
j L̃ p ∂

s̃p
j ũ p ∂

r
j ṽp dx dy dz,

where, for each p in some finite sets S and S̃ of indices,

0≤ sp ≤ tp ≤ r − 1, 2≤ 2r − sp − tp ≤ r + 1, 0≤ s̃p ≤ r − 1

and

{u p, vp} ⊂ {∂1 F, ∂2 F, ∂3 F, ∂1G, ∂2G, ∂3G}, {ũ p, ṽp} ⊂ {F,G}.

For each p, the coefficient L p(x, y, z) is a polynomial of all partial derivatives of f and g of order 1,
while L̃ p is a second-order partial derivative of H (with respect to f and g). Moreover we have the
following estimate, where the dependence on r is more explicitly stated:∥∥∥∥ ∑

p∈S:
sp=tp=r−1

∂
2r−sp−tp
j L p

∥∥∥∥
C(P)
=

∥∥∥∥ ∑
p∈S:

sp=tp=r−1

∂2
j L p

∥∥∥∥
C(P)
= O(r2)‖(∂ j∇ f, ∂ j∇g)‖C1(P) (15)



1244 BORIS BUFFONI AND ERIK WAHLÉN

(the function O(r2) being independent of f, g, F,G, H ′′( f, g) and ε). Finally, for the other indices p,

‖∂
2r−sp−tp
j L p‖C(P) = O(‖(∇ f,∇g)‖C2r−sp−tp (P)+ 1), p ∈ S,

‖∂
r−s̃p
j L̃ p‖C(P) = O(‖H ′′( f, g)‖Cr−s̃ p (P)), p ∈ S̃,

(16)

where the constants in the estimates may depend on r.

Remarks. The expression

Bε( f,g)((∂
r
j F, ∂r

j G), (∂r
j F, ∂r

j G))− Bε( f,g)((F,G), (−1)r (∂2r
j F, ∂2r

j G))

would vanish if (∇ f,∇g) and H ′′( f, g) were independent of y and z, and the statement allows one to
estimate its size otherwise. In the statement, we add the property sp ≤ tp. In fact we shall omit this
property in the proof, as it is easy to get it by renaming sp and tp. The statement would be much easier if
we would aim at the weaker inequality 0 ≤ sp ≤ tp ≤ r (the proof would then rely on straightforward
integrations by parts). The crucial regularity gain sp, tp ≤ r − 1 has been explored in a general setting in
[Kohn and Nirenberg 1965].

Proof. The typical term of Bε( f,g)((F,G), (F,G)) is of either of the form∫
P

2L(x, y, z)u(x, y, z)v(x, y, z) dx dy dz,

where

{u, v} ⊂ {∂1 F, ∂2 F, ∂3 F, ∂1G, ∂2G, ∂3G}

and the coefficient L(x, y, z) can be expressed as a polynomial of the partial derivatives of f and g of
order 1, or of the form ∫

P
2L̃(x, y, z)ũ(x, y, z)ṽ(x, y, z) dx dy dz,

where

{ũ, ṽ} ⊂ {F,G}

and L̃ is equal to ∂2
f H( f, g), 2∂ f ∂g H( f, g) or ∂2

g H( f, g). The typical term of

Bε( f,g)((∂
r
j F, ∂r

j G), (∂r
j F, ∂r

j G))− Bε( f,g)((F,G), (−1)r (∂2r
j F, ∂2r

j G))

is therefore either of the form∫
P

(
2L∂r

j u∂
r
jv− (−1)r Lv∂2r

j u− (−1)r Lu∂2r
j v
)

dx dy dz

or ∫
P

(
2L̃∂r

j ũ∂
r
j ṽ− (−1)r L̃ ṽ∂2r

j ũ− (−1)r L̃ũ∂2r
j ṽ
)

dx dy dz.

We only give the details for the first type of term since the argument for the second is similar but simpler
(move r derivatives using integration by parts).
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We get as in [Kohn and Nirenberg 1965] (but in a simpler setting)∫
P
−(−1)r Lv∂2r

j u dx dy dz =
∫
P
∂r+1

j (Lv)∂r−1
j u dx dy dz

=

∫
P

r+1∑
k=0

(r+1
k

)
∂r+1−k

j L∂k
j v∂

r−1
j u dx dy dz

=

∫
P

L∂r+1
j v∂r−1

j u dx dy dz+
∫
P
(r + 1)∂ j L∂r

jv∂
r−1
j u dx dy dz

+

∫
P

1
2r(r + 1)∂2

j L∂r−1
j v∂r−1

j u dx dy dz

+

∫
P

r−2∑
k=0

(r+1
k

)
∂r+1−k

j L∂k
j v∂

r−1
j u dx dy dz

and thus, together with the equality one gets by permuting u and v,∫
P

(
2L∂r

j u∂
r
jv− (−1)r Lv∂2r

j u− (−1)r Lu∂2r
j v
)

dx dy dz

=

∫
P

L∂2
j (∂

r−1
j u∂r−1

j v) dx dy dz

+

∫
P
(r + 1)∂ j L∂ j (∂

r−1
j u∂r−1

j v) dx dy dz+
∫
P

r(r + 1)∂2
j L∂r−1

j u∂r−1
j v dx dy dz

+

∫
P

r−2∑
k=0

(r+1
k

)
∂r+1−k

j L(∂k
j v∂

r−1
j u+ ∂k

j u∂r−1
j v) dx dy dz

= r2
∫
P
∂2

j L∂r−1
j u∂r−1

j v dx dy dz+
∫
P

r−2∑
k=0

(r+1
k

)
∂r+1−k

j L(∂k
j v∂

r−1
j u+ ∂k

j u∂r−1
j v) dx dy dz.

With respect to the j-th variable, L is differentiated at most r + 1 times, and u and v at most r − 1 times.
Moreover the term containing ∂r−1

j u∂r−1
j v is given by

r2
∫
P
∂2

j L∂r−1
j u∂r−1

j v dx dy dz,

where
‖∂2

j L‖C(P) = O(‖(∂ j∇ f, ∂ j∇g)‖C1(P))

(using the fact that (∇ f,∇g) is supposed to be in some bounded subset of the algebra C1(P)). To get
(16), we use (14) with k = 2r − sp − tp and ξ = L . �

In the two following results, everything is uniform in ε ∈ [0, 1] and we do not state explicitly the
dependence on ε.

Proposition 2.6. If ( f, g, H) ∈ C3(D) × C3(D) × C3(R2) is admissible, (∇ f,∇g) is in some small
enough neighborhood of (∇ f̄ ,∇ ḡ) in C2(P) and ‖H ′′( f, g)‖C(P) is small enough, then

‖(F,G)‖H1(P) = O(‖H ′′( f, g)‖C1(P)+ 1)‖(µ, ν)‖H1(P) (17)
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and ∑
j∈{2,3}

∫
P

{ 1
16(v · ∇∂ j F)2+ 1

16(v · ∇∂ j G)2
}

dx dy dz = O(‖H ′′( f, g)‖C1(P)+ 1)2‖(µ, ν)‖2H1(P)

for all periodic (µ, ν) ∈ H 1
loc(D) and all admissible (F,G) ∈ H 3

loc(D) satisfying (10).

Proof. In Theorem 2.5, we consider r = 1. Applying (10) to (δF, δG)=−(∂2
j F, ∂2

j G) with j ∈ {2, 3}
and using Proposition 2.3, we get∫
P

{
1

16(v·∇∂ j F)2+ 1
16(v·∇∂ j G)2+

π2 minP v
2
1

32L2 ((∂ j F)2+(∂ j G)2)
}

dx dy dz

≤ Bε( f,g)((∂ j F,∂ j G), (∂ j F,∂ j G))

= Bε( f,g)((F,G),−(∂
2
j F,∂2

j G))+{Bε( f,g)((∂ j F,∂ j G), (∂ j F,∂ j G))−Bε( f,g)((F,G),−(∂
2
j F,∂2

j G))}

(10)
=

∫
P
(∂ jµ∂ j F+∂ jν∂ j G)dx dy dz+{Bε( f,g)((∂ j F,∂ j G), (∂ j F,∂ j G))−Bε( f,g)((F,G),−(∂

2
j F,∂2

j G))}

(15),(16)
≤ ‖(∂ jµ,∂ jν)‖L2(P)‖(∂ j F,∂ j G)‖L2(P)+O(‖(∂ j∇ f,∂ j∇g)‖C1(P))‖(F,G)‖

2
H1(P)

+O(‖H ′′( f,g)‖C1(P))‖(F,G)‖L2(P)‖(∂ j F,∂ j G)‖L2(P)

≤ ‖(∂ jµ,∂ jν)‖L2(P)‖(∂ j F,∂ j G)‖L2(P)+O(‖(∂ j∇ f,∂ j∇g)‖C1(P))‖(F,G)‖
2
H1(P)

+δ−1O(‖H ′′( f,g)‖C1(P))
2
‖(F,G)‖2L2(P)+δ‖(∂ j F,∂ j G)‖2L2(P).

If, in addition,
‖(∂2∇ f, ∂3∇ f, ∂2∇g, ∂3∇g)‖C1(P) < δ

and δ > 0 is small enough, we get (note that the coefficient 32 is replaced by 64, and later by 128)∑
j∈{2,3}

∫
P

{
1
16(v · ∇∂ j F)2+ 1

16(v · ∇∂ j G)2+
π2 minP v

2
1

64L2 ((∂ j F)2+ (∂ j G)2)
}

dx dy dz

. ‖(µ, ν)‖2H1(P)+ δ
−1(‖H ′′( f, g)‖C1(P)+ 1)2‖(F,G)‖2L2(P)+ δ‖(∂1 F, ∂1G)‖2L2(P)

(13)
. ‖(µ, ν)‖2H1(P)+ δ

−1(‖H ′′( f, g)‖C1(P)+ 1)2‖(µ, ν)‖2L2(P)+ δ‖(∂1 F, ∂1G)‖2L2(P).

Using the last inequality in Proposition 2.3 to estimate ‖∂1 F‖2L2(P) and ‖∂1G‖2L2(P) (using also the fact
that the first component of v never vanishes), we obtain

‖(∂1 F, ∂1G)‖2L2(P) = O(‖(µ, ν, ∂2 F, ∂2G, ∂3 F, ∂3G)‖2L2(P))

and∑
j∈{2,3}

∫
P

{
1

16(v · ∇∂ j F)2+ 1
16(v · ∇∂ j G)2

}
dx dy dz+

π2 minP v
2
1

128L2 ‖(∇F,∇G)‖2L2(P)

= O(‖H ′′( f, g)‖C1(P)+ 1)2‖(µ, ν)‖2H1(P).

We get (17) by combining this with (13). �
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By induction, we get the following theorem.

Theorem 2.7. Let r ≥ 1 be an integer, ( f, g) ∈ H r+4
loc (D) (admissible) be in some small enough neighbor-

hood of ( f̄ , ḡ) in H 5(P), H ∈ C2(R2) be admissible, H ′′( f, g) ∈ Cr (P) and H ′′( f, g) be small enough
in C(P). There exists a constant Cr > 0 such that, if

‖(∂2∇ f, ∂3∇ f, ∂2∇g, ∂3∇g)‖C1(P) < C−1
r , (18)

then∑
j∈{2,3}

∫
P

{ 1
16(v · ∇∂

r
j F)2+ 1

16(v · ∇∂
r
j G)2

}
dx dy dz+‖(F,G)‖2H r (P)

≤ Cr‖(µ, ν)‖
2
H r (P)+Cr‖(µ, ν)‖

2
H1(P)(‖( f, g)‖H r+4(P)+‖H

′′( f, g)‖Cr (P)+ 1)2 (19)

for all periodic (µ, ν) ∈ H r (P) and all admissible (F,G) ∈ H 2r+1
loc (D) satisfying (10).

Remarks. • In (18), all terms in the norm are differentiated at least once with respect to y or z. In the
first sentence of the statement, the small neighborhood and the small bound on the size of H ′′( f, g) in
C(P) are independent of r ≥ 1. The constant Cr can depend on them, on r , f̄ and ḡ, but not on H, f
and g.

• The r-dependence in (18) is due to the appearance of r in the estimate (15) in Theorem 2.5; see also
(23) below.

• Unlike Theorem 2.1 where the constancy of v̄ was not essential it really does matter here; see (18).

Proof. As the result is already known for r = 1 (see Proposition 2.6) let us assume that r ≥ 2.

First step: We first bound from above∫
P

{
1

16(v · ∇∂
r
j F)2+ 1

16(v · ∇∂
r
j G)2+

π2 minP v
2
1

32L2 ((∂r
j F)2+ (∂r

j G)2)
}

dx dy dz

for j ∈ {2, 3}. We shall deal with ∂r
1 F and ∂r

1 G in the third and fourth steps. Applying (10) to (δF, δG)=
(−1)r (∂2r

j F, ∂2r
j G) with j ∈ {2, 3}, and using Proposition 2.3 we get∫

P

{
1

16(v · ∇∂
r
j F)2+ 1

16(v · ∇∂
r
j G)2+

π2 minP v
2
1

32L2 ((∂r
j F)2+ (∂r

j G)2)
}

dx dy dz

≤ Bε( f,g)((∂
r
j F, ∂r

j G), (∂r
j F, ∂r

j G))

= Bε( f,g)((F,G), (−1)r (∂2r
j F, ∂2r

j G))

+{Bε( f,g)((∂
r
j F, ∂r

j G), (∂r
j F, ∂r

j G))− Bε( f,g)((F,G), (−1)r (∂2r
j F, ∂2r

j G))}

(10)
=

∫
P
(∂r

jµ∂
r
j F + ∂r

j ν∂
r
j G) dx dy dz

+{Bε( f,g)((∂
r
j F, ∂r

j G), (∂r
j F, ∂r

j G))− Bε( f,g)((F,G), (−1)r (∂2r
j F, ∂2r

j G))}.
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By Theorem 2.5,∫
P

{
1

16(v · ∇∂
r
j F)2+ 1

16(v · ∇∂
r
j G)2+

π2 minP v
2
1

32L2 ((∂r
j F)2+ (∂r

j G)2)
}

dx dy dz

≤ ‖(∂r
jµ, ∂

r
j ν)‖L2(P)‖(∂

r
j F, ∂r

j G)‖L2(P)+ O(r2)‖(∂ j∇ f, ∂ j∇g)‖C1(P)‖(F,G)‖2H r (P)

+

∑
O(‖( f, g)‖H k1+3(P)+ 1)‖(F,G)‖H k2+1(P)‖(F,G)‖H k3+1(P)

+

∑
O(‖H ′′( f, g)‖Cr−k4 (P))‖(F,G)‖H k4 (P)‖(F,G)‖H r (P), (20)

where the sums are over all integers k1, k2, k3 ≥ 0 such that

k1+ k2+ k3 = 2r, k1 ≤ r + 1, k2 ≤ k3 ≤ r − 1, k2+ k3 < 2r − 2

(this implies k1 > 2 and, as r ≥ 2, k2+ k3 > 0) and 0≤ k4 ≤ r − 1. Here and in the following estimates,
we only indicate the r-dependence in the coefficients of ‖(F,G)‖H r (P). We don’t keep track of the
r -dependence of the lower-order terms.

By standard interpolation in Sobolev spaces based on the equality

k j + 1=
r − 1− k j

r − 1
· 1+

k j

r − 1
· r, j = 2, 3,

see, e.g., [Han and Hong 2006, Section 4.3], the first sum can be estimated by∑
O(‖( f, g)‖H k1+3(P)+ 1)‖(F,G)‖(k1−2)/(r−1)

H1(P) ‖(F,G)‖(2r−k1)/(r−1)
H r (P)

=

∑
{O(‖( f, g)‖H k1+3(P)+ 1)(2(r−1))/(k1−2)δ−(2r−k1)/(k1−2)

‖(F,G)‖2H1(P)}
(k1−2)/(2(r−1))

×{δ‖(F,G)‖2H r (P)}
(2r−k1)/(2(r−1)),

where δ > 0 will be chosen as small as needed. The choice of δ > 0 can depend on r , f̄ and ḡ, but not
on (F,G), (µ, ν), H, f and g. In what follows, we write explicitly some negative powers of δ, even
when they can be merged with other positive factors, for example those referred to in the notation .
(possibly depending on r , f̄ and ḡ). By Young’s inequality for products, xy ≤ p−1x p

+ q−1 yq with
p = 2(r − 1)/(k1− 2), q = 2(r − 1)/(2r − k1), and interpolation based on the equality

k1+ 3=
r + 1− k1

r − 1
· 5+

k1− 2
r − 1

· (r + 4),

this can in turn be estimated by

δ‖(F,G)‖2H r (P)+
∑

δ−(2r−k1)/(k1−2)O(‖( f,g)‖H k1+3(P)+1)2(r−1)/(k1−2)
‖(F,G)‖2H1(P)

. δ‖(F,G)‖2H r (P)+
∑

δ−(2r−k1)/(k1−2)

×(‖( f,g)‖H5(P)+1)2(r+1−k1)/(k1−2)(‖( f,g)‖H r+4(P)+1)2‖(F,G)‖2H1(P).

By Proposition 2.6, the sum is thus estimated above:∑
(‖( f, g)‖H k1+3(P)+ 1)‖(F,G)‖H k2+1(P)‖(F,G)‖H k3+1(P)

. δ−2r (‖( f, g)‖H r+4(P)+ 1)2‖(µ, ν)‖2H1(P)+ δ‖(F,G)‖2H r (P). (21)

We have also used that, by assumption, ( f, g) is in some small enough neighborhood of ( f̄ , ḡ) in H 5(P).
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The second sum can similarly be estimated as follows:∑
‖H ′′( f, g)‖Cr−k4 (P)‖(F,G)‖H k4 (P)‖(F,G)‖H r (P)

.
∑
‖H ′′( f, g)‖k4/r

C(P)‖H
′′( f, g)‖(r−k4)/r

Cr (P) ‖(F,G)‖(r−k4)/r
L2(P) ‖(F,G)‖(r+k4)/r

H r (P)

(13)
. δ−2r

‖H ′′( f, g)‖2Cr (P)‖(µ, ν)‖
2
L2(P)+ δ‖(F,G)‖2H r (P). (22)

Let us now choose
‖(∂2∇ f, ∂3∇ f, ∂2∇g, ∂3∇g)‖C1(P) < r−2δ. (23)

If δ is small enough (this is allowed by assumption (18)), then, by (20)–(22) (note that the coefficient 32
is replaced by 64),∑
j∈{2,3}

∫
P

{
1
16(v · ∇∂

r
j F)2+ 1

16(v · ∇∂
r
j G)2+

π2 minP v
2
1

64L2 ((∂r
j F)2+ (∂r

j G)2)
}

dx dy dz+‖(F,G)‖2L2(P)

. ‖(F,G)‖2L2(P)+ δ
−1
‖(µ, ν)‖2H r (P)+ δ‖(F,G, ∂1 F, ∂1G)‖2H r−1(P)

+ δ−2r (‖( f, g)‖H r+4(P)+‖H
′′( f, g)‖Cr (P)+ 1)2‖(µ, ν)‖2H1(P)

because, for r̂ = r ,∑
|α2|+|α3|≤r̂

‖(∂αF, ∂αG)‖2L2(P) . ‖(F,G)‖2L2(P)+
∑

j∈{2,3}

‖(∂ r̂
j F, ∂ r̂

j G))‖2L2(P), (24)

where the sum is over all multi-indices α = (α2, α3) ∈ N2
0 such that |α2| + |α3| ≤ r̂ and ∂α is the

corresponding partial derivative with respect to the variables (y, z). Thanks to the induction hypothesis,∑
j∈{2,3}

∫
P

{
1
16(v · ∇∂

r
j F)2+ 1

16(v · ∇∂
r
j G)2+

π2 minP v
2
1

64L2 ((∂r
j F)2+ (∂r

j G)2)
}

dx dy dz+‖(F,G)‖2L2(P)

. δ−1
‖(µ, ν)‖2H r (P)+ δ‖(∂1 F, ∂1G)‖2H r−1(P)

+ δ−2r (‖( f, g)‖H r+4(P)+‖H
′′( f, g)‖Cr (P)+ 1)2‖(µ, ν)‖2H1(P). (25)

Second step: Let us now deal with the terms containing only one partial derivative with respect to x and
r − 1 partial derivatives with respect to y or z. By induction, we know that∑
j∈{2,3}

∫
P

{ 1
16(v · ∇∂

r−1
j F)2+ 1

16(v · ∇∂
r−1
j G)2

}
dx dy dz+‖(F,G)‖2H r−1(P)

≤ Cr−1‖(µ, ν)‖
2
H r−1(P)+Cr−1‖(µ, ν)‖

2
H1(P)(‖( f, g)‖H r+3(P)+‖H

′′( f, g)‖Cr−1(P)+ 1)2

and thus∑
j∈{2,3}

‖(∂1∂
r−1
j F, ∂1∂

r−1
j G)‖2L2(P)

.
∑

j∈{2,3}

‖(∂2∂
r−1
j F, ∂2∂

r−1
j G, ∂3∂

r−1
j F, ∂3∂

r−1
j G)‖2L2(P)

+‖(µ, ν)‖2H r−1(P)+‖(µ, ν)‖
2
H1(P)(‖( f, g)‖H r+3(P)+‖H

′′( f, g)‖Cr−1(P)+ 1)2
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because the first component of v never vanishes. Together with the first step and thanks to (24) with r̂ = r ,
this gives

‖(F,G)‖2L2(P)+
∑

j∈{2,3}

‖(∂1∂
r−1
j F, ∂1∂

r−1
j G)‖2L2(P)

. δ−1
‖(µ, ν)‖2H r (P)+ δ‖(∂1 F, ∂1G)‖2H r−1(P)

+ δ−2r (‖( f, g)‖H r+4(P)+‖H
′′( f, g)‖Cr (P)+ 1)2‖(µ, ν)‖2H1(P).

Applying (24) to r̂ = r − 1 and to (∂1 F, ∂1G), we obtain for small enough δ

‖(F,G)‖2L2(P)+‖(∂1 F, ∂1G)‖2L2(P)+
∑

j∈{2,3}

‖(∂r−1
j ∂1 F, ∂r−1

j ∂1G)‖2L2(P)

. δ−1
‖(µ, ν)‖2H r (P)+ δ‖(∂

2
1 F, ∂2

1 G)‖2H r−2(P)

+ δ−2r (‖( f, g)‖H r+4(P)+‖H
′′( f, g)‖Cr (P)+ 1)2‖(µ, ν)‖2H1(P). (26)

Third step: We now deal with partial derivatives in which F and G are differentiated at least twice with
respect to x . We estimate these using induction on the number of partial derivatives with respect to x for
a fixed r . In the special case r = 2 there is only one second-order partial derivative to estimate, and we
simply note directly using Proposition 2.4 that

‖(∂2
1 F, ∂2

1 G)‖L2(P) . ‖(µ, ν)‖L2(P)+‖(∂2∇F, ∂2∇G, ∂3∇F, ∂3∇G)‖L2(P)+‖(F,G)‖H1(P)
(17)
. (‖H ′′( f, g)‖C1(P)+ 1)‖(µ, ν)‖H1(P)+‖(∂2∇F, ∂2∇G, ∂3∇F, ∂3∇G)‖L2(P).

Next, let r > 2 and Bs be a differential operator of order r − 2 in (x, y, z) that consists of an iteration
of r − 2 partial derivatives, exactly s of which are with respect to x (0 ≤ s ≤ r − 2). Differentiating
r − 2 times the expressions for ∂2

1 F and ∂2
1 G in Proposition 2.4, we get

‖(Bs∂
2
1 F, Bs∂

2
1 G)‖L2(P).

r−2∑
k=0

(‖( f,g)‖H r+1−k(P)+1)‖(µ,ν)‖H k(P)

+

r−2∑
k=0

(‖( f,g)‖H r+2−k(P)+1)‖(F,G)‖H k+1(P)

+

r−2∑
k=0

‖H ′′‖Cr−2−k(P)‖(F,G)‖H k(P)

+(‖( f,g)‖H3(P)+1)(‖Ds(∂2 F,∂2G)‖L2(P)+‖Es(∂3 F,∂3G)‖L2(P)),

where Ds and Es are matricial differential operators of order r − 1 in (x, y, z), but at most of order s+ 1
when seen as differential operators in x (their coefficients being constants). The terms involving Es and
Ds come from applying Bs to the terms in Proposition 2.4 involving ∂2

αβF or ∂2
αβG with (α, β) 6= (1, 1).

The last inequality allows one to estimate differential expressions of order s + 2 with respect to x by
differential expressions of orders at most s+ 1 with respect to x .
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We get again by interpolation and Young’s inequality

‖(Bs∂
2
1 F, Bs∂

2
1 G)‖L2(P)

. (‖( f, g)‖H r+1(P)+ 1)‖(µ, ν)‖L2(P)+ (‖( f, g)‖H3(P)+ 1)‖(µ, ν)‖H r−2(P)

+ (‖( f, g)‖H r+3(P)+ 1)‖(F,G)‖L2(P)+ (‖( f, g)‖H4(P)+ 1)‖(F,G)‖H r−1(P)

+‖H ′′( f, g)‖Cr−2(P)‖(F,G)‖L2(P)+‖H
′′( f, g)‖C(P)‖(F,G)‖H r−2(P)

+ (‖( f, g)‖H3(P)+ 1)(‖Ds(∂2 F, ∂2G)‖L2(P)+‖Es(∂3 F, ∂3G)‖L2(P))

. (‖( f, g)‖H r+3(P)+‖H
′′( f, g)‖Cr−2(P)+ 1)‖(µ, ν)‖L2(P)

+‖(µ, ν)‖H r−2(P)+‖(F,G)‖H r−1(P)+‖Ds(∂2 F, ∂2G)‖L2(P)+‖Es(∂3 F, ∂3G)‖L2(P)

. (‖( f, g)‖H r+3(P)+‖H
′′( f, g)‖Cr−1(P)+ 1)‖(µ, ν)‖H1(P)

+‖(µ, ν)‖H r−1(P)+‖Ds(∂2 F, ∂2G)‖L2(P)+‖Es(∂3 F, ∂3G)‖L2(P),

where we’ve used the induction hypothesis (19) with r replaced by r − 1 in the last step. By induction
on s, we get the estimate

‖(Bs∂
2
1 F, Bs∂

2
1 G)‖L2(P). (‖( f,g)‖H r+4(P)+‖H

′′( f,g)‖Cr (P)+1)‖(µ,ν)‖H1(P)

+‖(µ,ν)‖H r (P)+
∑

j∈{2,3}

‖(∂r−1
j ∂1 F,∂r−1

j ∂1G)‖L2(P)+δ‖(∂
2
1 F,∂2

1 G)‖H r−2(P),

thanks to (24) applied to (F,G) and (∂1 F, ∂1G), and to (25). Hence, choosing δ sufficiently small

‖(∂2
1 F, ∂2

1 G)‖H r−2(P) . (‖( f, g)‖H r+4(P)+‖H
′′( f, g)‖Cr (P)+ 1)‖(µ, ν)‖H1(P)

+‖(µ, ν)‖H r (P)+
∑

j∈{2,3}

‖(∂r−1
j ∂1 F, ∂r−1

j ∂1G)‖L2(P). (27)

Combining (27) with (26) and again choosing δ sufficiently small allows us to estimate all partial
derivatives of order r with precisely one derivative with respect to x . Substitution of the resulting estimate
into (27) gives us control of all derivatives with at least two derivatives with respect to x .

Conclusion: The estimate of the statement follows from the three steps. �

Let us deal with the case ε = 0 with the help of the technique of elliptic regularization introduced and
well explained in [Kohn and Nirenberg 1965]; see, e.g, p. 449, the beginning of the proof of Theorem 2
and the proof of Theorem 2′ in that work. Firstly, when ε > 0, one deduces from this a priori estimate the
existence of an admissible solution (F,G) ∈ H r (P) given any (µ, ν) ∈ H r (P), by approximating ( f, g),
H ′′( f, g) itself and (µ, ν) by smooth functions. The existence of (F,G) is ensured because the problem
is elliptic in this case. Secondly, as the above estimate holds uniformly in ε ∈ (0, 1], the existence persists
when taking the limit ε→ 0. Thus we get the following theorem.

Theorem 2.8. Let ε = 0, r ≥ 1 be an integer, ( f, g) ∈ H r+4
loc (D) (admissible) be in some small enough

neighborhood of ( f̄ , ḡ) in H 5(P), H ∈ C2(R2) be admissible, H ′′( f, g) ∈ Cr (D) and H ′′( f, g) be small
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enough in C(P). There exists a constant Cr > 0 such that if

‖(∂2∇ f, ∂3∇ f, ∂2∇g, ∂3∇g)‖C1(P) < C−1
r ,

then for any periodic (µ, ν) ∈ H r
loc(D) there exists an admissible (F,G) ∈ H r

loc(D) satisfying (10) (with
ε = 0) and

‖(F,G)‖2H r (P) ≤ Cr‖(µ, ν)‖
2
H r (P)+Cr‖(µ, ν)‖

2
H1(P)(‖( f, g)‖H r+4(P)+‖H

′′( f, g)‖Cr (P)+ 1)2.

This result remains true without the simplifying hypothesis (7).

3. A solution by the Nash–Moser method

In this section we shall take f̄ and ḡ to be some fixed linear functions and let R be the corresponding
Jacobian matrix with respect to (y, z) as in the Introduction.

Let us define three decreasing sequences of Banach spaces.

Definition of the Banach spaces Uk. For each integer k ≥ 2, let Uk be the real linear space of all (F,G)
in H k

loc(D) satisfying (Ad′2) and (Ad′3). We define the norm ‖ · ‖k on Uk as

‖(F,G)‖2k = ‖F‖
2
H k(P)+‖G‖

2
H k(P).

Definition of the Banach spaces Vk. For each integer k ≥ 0, let Vk be the real linear space of all (µ, ν)
in H k

loc(D) that satisfy the periodicity condition (Ad′2) almost everywhere. We define the norm ‖ · ‖k on
Vk by

‖(µ, ν)‖2k = ‖µ‖
2
H k(P)+‖ν‖

2
H k(P).

Definition of the Banach spaces Wk. For each integer k ≥ 4, let Wk be the real linear space of
( f0, g0, H0, c) such that

(i) f0, g0 ∈ H k
loc(D) satisfy the periodicity condition (Ad′2),

(ii) H0 ∈ Ck−2(R2) is periodic with respect to the lattice generated by R P1e1 and R P2 e2, and c ∈ R2.

Note that (ii) ensures that H0( f̄ + f0+ f1, ḡ+ g0+ g1) satisfies (Ad′2) for all ( f1, g1) ∈ Uk .
We define the norm ‖ · ‖k on Wk by

‖( f0, g0, H0, c)‖2k = ‖ f0‖
2
H k(P)+‖g0‖

2
H k(P)+‖H0‖

2
Ck−2(Q)+ |c|

2.

Given ( f0, g0, H0, c) ∈W4, with H0 ∈ C3(R2), we define the map F : U4→ V2 by(
f1

g1

)
→ F

(
f1

g1

)
=

(
− div(∇g× (∇ f ×∇g))+ ∂ f H( f, g)
− div((∇ f ×∇g)×∇ f ))+ ∂g H( f, g)

)
with f = f̄ + f0+ f1, g = ḡ+ g0+ g1 and H( f, g)= c1 f + c2g+ H0( f, g).

The following theorem results directly from Theorem 2.8 and (14) (with ξ = H ).
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Theorem 3.1. Let k≥1 be an integer and suppose that ( f0, g0, H0, c)∈Wk+4, ( f1, g1)∈Uk+4, ‖H ′′0 ‖C(Q)
is small enough, and ( f, g) is in some small enough neighborhood of ( f̄ , ḡ) in H 5(P), with

f = f̄ + f0+ f1, g = ḡ+ g0+ g1 and H( f, g)= c1 f + c2g+ H0( f, g).

There exists a constant Mk > 0 such that if

‖(∂2∇ f, ∂3∇ f, ∂2∇g, ∂3∇g)‖C1(P) < M−1
k ,

we get the following. Given any (µ, ν) ∈ Vk , there exists a unique (F,G) ∈ Uk satisfying (10) with ε = 0.
It also satisfies

‖(F,G)‖k ≤ Mk‖(µ, ν)‖k +Mk‖(µ, ν)‖1(‖( f1, g1)‖H k+4(P)+ 1)
and

‖(F,G)‖0 ≤ M0‖(µ, ν)‖0

for some constant M0 > 0 independent of k.

Remark. The constants Mk in Theorem 3.1 can also depend on ( f0, g0, H0, c) and ( f̄ , ḡ).

Let us state Theorem 6.3.1 in [Han and Hong 2006]. There � is a smooth domain in Rn or a rectangle
with the sides parallel to the coordinate axes and with periodic boundary conditions with respect to n− 1
coordinates. The corresponding Sobolev spaces are simply denoted by H k .

Theorem 3.2. Suppose F(w) is a nonlinear differential operator of order m in a domain�⊂Rn , given by

F(w)= 0(x, w, ∂w, . . . , ∂mw),

where 0 is smooth (see, however, the remark below).
Suppose that d0, d1, d2, d3, s0 and s̃ are nonnegative integers with

d0 ≥ m+ [n/2] + 1
and

s̃ ≥max{3m+ 2d∗+ [n/2] + 2,m+ d∗+ d0+ 1,m+ d2+ d3+ 1},

where d∗ =max{d1, d3− s0− 1}. Assume that, for any h ∈ H s̃+d1 = H s̃+d1(�) and w ∈ H s̃+d2 with

‖w‖Hd0 ≤ r0 := 1,
the linear equation

F ′(w)ρ = h (28)

admits a solution ρ ∈ H s̃ satisfying for any s = 0, 1, . . . , s̃

‖ρ‖H s ≤ cs(‖h‖H s+d1 + (s− s0)
+(‖w‖H s+d2 + 1)‖h‖Hd3 ),

where cs is a positive constant independent of h, w and ρ. Then there exists a positive constant µ∗,
depending only on �, cs,m, d0, d1, d2, d3, s0 and s̃, such that if

‖F(0)‖H s̃−m ≤ µ2
∗
, (29)

the equation F(w)= 0 admits an H s̃−m−d∗−1 solution w in �.
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Remarks. • By inspecting the proof in [Han and Hong 2006], we see that it holds as well for systems of
N ≥ 1 differential equations. Moreover the constant r0 = 1 can be replaced by any fixed value r0 > 0 by
multiplying appropriately functions by constant factors.

• Also the solution w is the limit in H s̃−m−d∗−1 of sums of solutions in H s̃ to linear equations of type (28).
See in [loc. cit.] equations (6.3.14) and (6.3.15), and the proof of Theorem 6.3.1 on p. 103.

• We can relax the condition that 0 is smooth. Let ĉ > 0 be such that, for all w ∈ H d0 with ‖w‖Hd0 ≤ r0,
we have

‖w‖Cm(�) ≤ ĉ,

and define 6 ⊂ RN+Nn+Nn2
+···+Nnm

as the ball of radius ĉ centered at the origin. In the proof, the map 0
appears in the various estimates via ‖F(0)‖H s̃−m and via “constants” depending on

‖∂α∂β0‖C s̃−m(�×6),

where ∂α and ∂β are all possible partial derivatives with respect to w, . . . , ∂mw. See (14) and, in [loc. cit.],
the proof of (P3)`+1 on p. 101. It therefore suffices to assume that 0 is of class C s̃−m+2.

• From [loc. cit.] it follows that there exists a constant C > 0 such that ‖w‖H s̃−m−d∗−1 ≤ Cµ2
∗
. More

precisely, see in [loc. cit.] the last estimate in the proof of (P1)l+1 on p. 100, (6.3.31) and the proof of
Theorem 6.3.1 on p. 103.

To apply this theorem, we need to check (29). For this reason, we shall stay near a solution (namely
( f1, g1)= 0) to an unperturbed problem (namely ( f0, g0)= 0 and H = 0), so that (29) is satisfied, and
rely on the fact that all relevant “constants” (in particular µ∗) for the perturbed problem can be chosen
equal to those of the unperturbed problem.

Theorem 3.3. Let j ≥ 0 be an integer, R > 0 arbitrary and δ > 0 sufficiently small and assume that
( f0, g0, H0, c)∈W13+ j with ‖( f0, g0, H0, c)‖13+ j < R and ‖( f0, g0, H0, 0)‖5<δ. It is possible to choose
ε > 0 (independent of ( f0, g0, H0, c), but depending on ( f̄ , ḡ), j , R and δ) such that if ‖F(0, 0)‖7+ j < ε

then there exists ( f ∗, g∗) ∈ U6+ j satisfying F( f ∗, g∗)= 0.

Proof. We choose r0 > 0 small enough so that Theorem 3.1 with k = 9 + j can be applied for all
( f1, g1) ∈ U5 in the closed ball of radius r0 centered at the origin. Let ĉ > 0 be such that

‖( f1, g1)‖C2(P) ≤ ĉ

for all ( f1, g1) ∈ U5 in this ball, and define 6 ⊂ R2+6+18 as the ball of radius ĉ centered at the origin.
We apply Theorem 3.2 with m = 2, � = P ⊂ Rn , n = 3, d0 = 5, d1 = 0, d2 = 4, d3 = 1, s0 = 1,

d∗ = 0 and s̃ = 9+ j . We get

s̃+ d1 = 9+ j, s̃+ d2 = 13+ j, s̃−m = 7+ j, s̃−m− d∗− 1= 6+ j

and a solution ( f ∗, g∗) ∈ H 6+ j (P). Let the map 0 : P ×R1+1+3+3+9+9
→ R2 be such that

F( f1, g1)= 0(x, y, z, f1, g1, f ′1, g′1, f ′′1 , g′′1 ).
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It appears in the various estimates also via “constants” depending on ‖∂α∂β0‖C s̃−m(P×6), where ∂α
and ∂β are all possible partial derivatives with respect to f1, g1, f ′1, g′1, f ′′1 or g′′1. Observe that
( f0, g0, H0, c) ∈ W13+ j implies ( f0, g0, H0, c) ∈ C s̃+2(P)× C s̃+2(P)× C s̃+2(Q)× R2 and ∂α∂β0 ∈
C s̃−m(P×6). As ( f ∗, g∗) is the limit in H 6+ j (P) of sums of solutions in U 9+ j to equations of type (10)
(with ε = 0), it satisfies (Ad′3) and thus belongs to U6+ j . �

As a corollary, we get the following simplified statement.

Theorem 3.4. Assume that H0 ∈ C11+ j and f0, g0 ∈ H 13+ j. It is possible to choose ε̄ > 0 such that if
‖( f0, g0, H0, c)‖13+ j < ε̄, then there exists ( f ∗, g∗) ∈ U6+ j satisfying F( f ∗, g∗)= 0.

Theorem 1.1 is a reformulation of this last result and Theorem 2.2.

Appendix: Representation of divergence-free vector fields

The fact that the vector field ∇ f ×∇g is divergence-free if f and g are C2 is easily checked using the
formula div(u×v)= v · rot u−u · rot v. A local converse near points where v is nonzero has been known
for a long time; see, e.g., [Barbarosie 2011; Cartan 1967, Chapter 3, Exercise 14]. A local converse that
can be seen as a global converse under additional conditions can be found in Appendix I in [Grad and
Rubin 1958]. In the present appendix, we give for the reader’s convenience a self-contained proof that a
divergence-free vector field v ∈ C2(D) can be represented globally in this form if v is periodic in y and z
and v1 6= 0 in D, and that f and g can be chosen to be of the form “linear plus periodic”. Our argument
is essentially a simple version of an elementary proof of global equivalence of volume forms on compact
connected manifolds due to [Moser 1965].

For a given point (x, y, z) ∈ D we solve the system of ODEs φ′ = v(φ), with φ(0) = (x, y, z), and
let T = T (x, y, z) be the unique time such that φ1(−T ; x, y, z)= 0 (here we use that infD |v1|> 0 and
supD |v|<∞). We define the C2 functions Y, Z : D→ R2 by

Y : (x, y, z) 7→ φ2(−T ; x, y, z) and Z : (x, y, z) 7→ φ3(−T ; x, y, z).

The functions Y and Z are invariants of the vector field v and therefore ∇Y×∇Z =λv for some function λ.
Using the fact that v is divergence-free, it is easily established that λ is another invariant and therefore

∇Y ×∇Z =
1

v1(0, Y, Z)
v

in view of the relations Y (0, y, z)= y and Z(0, y, z)= z. If F,G : R2
→ R2 and

f (x, y, z)= F(Y (x, y, z), Z(x, y, z)), g(x, y, z)= G(Y (x, y, z), Z(x, y, z)),

then
∇ f ×∇g = (∂1 F ∂2G− ∂2 F ∂1G)∇Y ×∇Z .

Thus in order to have ∇ f ×∇g = v we must find F and G with

∂1 F(Y, Z) ∂2G(Y, Z)− ∂2 F(Y, Z) ∂1G(Y, Z)= v1(0, Y, Z).
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If it weren’t for the periodicity conditions, this would be trivial. We describe next how to make a choice
which respects these conditions (the choice is not unique).

Note that v1(0, Y, Z) is P1-periodic in Y and P2-periodic in Z . Let

α =
1

P1 P2

∫ P1

0

∫ P2

0
v1(0, Y, Z) dY d Z

and write v1(0, Y, Z)= a(Y ) b(Y, Z), where

a(Y )=
1
P2

∫ P2

0
v1(0, Y, Z) d Z and b(Y, Z)=

v1(0, Y, Z)
a(Y )

,

so that
1
P1

∫ P1

0
a(Y ) dY = α and

1
P2

∫ P2

0
b(Y, Z) d Z = 1.

We choose

F(Y )=
∫ Y

0
a(s) ds and G(Y, Z)=

∫ Z

0
b(Y, s) ds.

Note that F and G (and hence f and g) are C2 and that the map

9 : (Y, Z) 7→ (F(Y ),G(Y, Z))

from R2 to itself is bijective. It is easily verified that

∂1 F(Y ) ∂2G(Y, Z)= a(Y ) b(Y, Z)= v1(0, Y, Z),

that F(Y )− αY is P1-periodic and that G(Y, Z)− Z is (P1, P2)-periodic. Finally, by the periodicity
of v and standard ODE theory, it follows that (Y (x, y, z), Z(x, y, z))− (y, z) is P1 periodic in y and
P2-periodic in z, and therefore so is ( f (x, y, z), g(x, y, z))− (αy, z). This concludes the proof.

As mentioned above, the representation v=∇ f ×∇g is not unique. Indeed, if8∈C2(R2,R2) satisfies

det8′ = ∂181∂282− ∂281∂182 = 1,

then ( f̃ , g̃)=8( f, g) also satisfies ∇ f̃ ×∇ g̃ = v. Moreover, ( f̃ , g̃) is also linear plus (P1, P2)-periodic
in (y, z) if 8( f, g)= T ( f, g)+80( f, g), where T : R2

→ R2 is linear and 80 is (αP1, P2)-periodic.
Note that T is bijective, since otherwise one could find a nonzero linear functional ` annihilating its

range. This would cause ` ◦8 to be periodic, and thus ` ◦8 would have a critical point at which det8′

would vanish. As T is bijective, 8 is proper and hence bijective by the global inversion theorem (using
again det8′ = 1).

Conversely, if v = ∇ f̃ ×∇ g̃ for some C2 functions f̃ and g̃, then f̃ and g̃ are constant along the
streamlines of v. Hence

( f̃ (x, y, z), g̃(x, y, z))= ( f̃ (0, Y, Z), g̃(0, Y, Z))

with (Y, Z)=(Y (x, y, z), Z(x, y, z)) as above, and we obtain ( f̃ , g̃)=8( f,g), where8=( f̃ , g̃)|x=0◦9
−1

is C2. Moreover, 8 is linear plus (αP1, P2)-periodic and det8′ = 1.
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Let us finally note that the Bernoulli function H = 1
2 |v|

2
+ P can clearly be written as a function of

( f, g) since it is constant on streamlines. Denoting this function also by H( f, g), we find that if ( f, g) is
transformed to ( f̃ , g̃)=8( f, g) with 8 as above, then H is transformed to H ◦8−1.
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SPARSE BOUNDS FOR THE DISCRETE CUBIC HILBERT TRANSFORM

AMALIA CULIUC, ROBERT KESLER AND MICHAEL T. LACEY

Consider the discrete cubic Hilbert transform defined on finitely supported functions f on Z by

H3 f (n)=
∑
m 6=0

f (n−m3)

m
.

We prove that there exists r < 2 and universal constant C such that for all finitely supported f, g on Z

there exists an (r, r)-sparse form 3r,r for which

|〈H3 f, g〉| ≤ C3r,r ( f, g).

This is the first result of this type concerning discrete harmonic analytic operators. It immediately implies
some weighted inequalities, which are also new in this setting.

1. Introduction

The purpose of this paper is to initiate a theory of sparse domination for discrete operators in harmonic
analysis. We do so in the simplest nontrivial case; it will be clear that there is a much richer theory to be
uncovered.

Our main result concerns the discrete cubic Hilbert transform, defined for finitely supported functions f
on Z by

H3 f (x)=
∑
n 6=0

f (x − n3)

n
.

It is known [Stein and Wainger 1990; Ionescu and Wainger 2006] that this operator extends to a bounded
linear operator on `p(Z) to `p(Z) for all 1 < p <∞. We prove a sparse bound, which in turn proves
certain weighted inequalities. Both results are entirely new.

By an interval we mean a set I = Z∩ [a, b] for a < b ∈ R. For 1≤ r <∞, set

〈 f 〉I,r :=
[

1
|I |

∑
x∈I

| f (x)|r
]1/r

.

We say a collection of intervals S is sparse if there are subsets ES ⊂ S⊂Z with (a) |ES|>
1
4 |S|, uniformly

in S ∈ S, and (b) the sets {ES : S ∈ S} are pairwise disjoint. For sparse collections S, consider sparse
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bisublinear forms
3S,r,s( f, g) :=

∑
S∈S

|S|〈 f 〉S,r 〈g〉S,s .

Frequently we will suppress the collection S, and if r = s = 1, we will suppress this dependence as well.
The main result of this paper is the following theorem.

Theorem 1.1. There is a choice of 1 < r < 2 and constant C > 0 so that for all f, g that are finitely
supported on Z there is a sparse collection of intervals S so that

|〈H3 f, g〉| ≤ C3S,r,r ( f, g).

The beauty of sparse operators is that they are both positive and highly localized operators. In particular,
many of their mapping properties can be precisely analyzed. As an immediate corollary [Bernicot et al.
2016, §6] we obtain weighted inequalities, holding in an appropriate intersection of Muckenhoupt and
reverse Hölder weight classes.

Corollary 1.2. There exists 1< r < 2 so that for all weights w−1, w ∈ A2 ∩ RHr we have

‖H3 : `
2(w) 7→ `2(w)‖. 1.

For instance, one can take

w(x)= [1+ |x |]a for − 1
2 < a < 1

2 .

The concept of a sparse bound originated in [Lerner 2013; Conde-Alonso and Rey 2016; Lacey 2017],
so it is new, in absolute terms, as well as this area. On the other hand, the study of norm inequalities for
discrete arithmetic operators has been under active investigation for over 30 years. However, no weighted
inequalities have ever been proved in this setting.

The subject of discrete norm inequalities of this type began with the breakthrough work of Bourgain
[1988a; 1988b] on arithmetic ergodic theorems. He proved, for instance, the following theorem.

Theorem 1A. Let P be a polynomial on Z which takes integer values. Then the maximal function MP

below maps `p(Z) to `p(Z) for all 1< p <∞:

MP f (x)= sup
N

1
N

N∑
n=1

| f (x − p(n))|.

Subsequently, attention turned to a broader understanding of Bourgain’s work, including its implications
for singular integrals and Radon transforms [Ionescu et al. 2007; Stein and Wainger 1990]. The fine
analysis needed to obtain results in all `p spaces was developed by Ionescu and Wainger [2006]. This
theme is ongoing, with recent contributions in [Mirek et al. 2015; 2017; 2018], while other variants of
these questions can be found in [Krause and Lacey 2017; Pierce 2010].

Initiated by Lerner [2013] as a remarkably simple proof of the so-called A2 theorem, the study of
sparse bounds for operators has recently been an active topic. The norm control provided in [Lerner 2013]
was improved to a pointwise control for Calderón–Zygmund operators in [Lacey 2017; Conde-Alonso
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and Rey 2016]. The paper [Culiuc et al. 2016] proved sparse bounds for the bilinear Hilbert transform,
in the language of sparse forms, pointing to the applicability of sparse bounds outside the classical
Calderón–Zygmund setting. That point of view is crucial for this paper.

Two papers [Lacey and Spencer 2017; Krause and Lacey 2018] have proved sparse bounds for random
discrete operators, a much easier setting than the current one. A core technique of these papers reappears
in Section 4. Sparse bounds continue to be explored in a variety of settings [Benea et al. 2017; Bernicot
et al. 2016; Karagulyan 2016; Lacey and Mena Arias 2017; Hytönen et al. 2017].

We recall some aspects of known techniques in sparse bounds in Section 2. These arguments and results
are formalized in a new notation, which makes the remaining quantitative proof more understandable.
In particular, we define a “sparse norm” and formalize some of its properties. Our main theorem above
is a sparse bound for a Fourier multiplier. In Section 3, we describe a decomposition of this Fourier
multiplier, which has a familiar form within the discrete harmonic analysis literature. The multiplier is
decomposed into “minor” and “major” arc components, which require dramatically different methods to
control. Concerning the minor arcs, there is one novel aspect of the decomposition, a derivative condition
which has a precursor in [Krause and Lacey 2017]. Using this additional feature, the minor arcs are
controlled in Section 4 through a variant of an argument in [Lacey and Spencer 2017]. The major arcs
are the heart of the matter, and are addressed in Section 5.

An expert in the subject of discrete harmonic analysis will recognize that there are many possible
extensions of the main result of this paper. We have chosen to present the main techniques in the simplest
nontrivial example. Many variants and extensions to our main theorem hold, but all the ones we are aware
of are more complicated than this one.

2. Generalities

We collect some additional notation, beginning with the one term that is not standard, namely the sparse
operators. Given an operator T acting on finitely supported functions on Z, and index 1≤ r, s <∞, we
set

‖T : Sparse(r, s)‖ (2.1)

to be the infimum over constants C > 0 so that for all finitely supported functions f, g on Z,

|〈T f, g〉| ≤ C sup3r,s( f, g),

where the supremum is over all sparse forms. In particular, the “sparse norm” in (2.1) satisfies a triangle
inequality: ∥∥∥∥∑

j

Tj : Sparse(r, s)
∥∥∥∥≤∑

j

‖Tj : Sparse(r, s)‖.

We collect some quantitative estimates for different operators; hence the notation. As the notation indicates,
it suffices to exhibit a single sparse bound for 〈T f, g〉.
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It is known that the Hardy–Littlewood maximal function

MHL f = sup
N

1
2N + 1

N∑
j=−N

| f (x − j)|

satisfies a sparse bound. This is even a classical result.

Theorem 2B. We have
‖MHL : Sparse(1, 1)‖. 1.

The following is a deep fact about sparse bounds that is at the core of our main theorem.

Theorem 2C [Conde-Alonso and Rey 2016; Lacey 2017]. Let TK be the convolution with any Calderón–
Zygmund kernel. For a Hilbert space H, and viewing TK as acting on H-valued functions, we have the
sparse bound

‖TK : Sparse(1, 1)‖<∞.

We make the natural extension of the definition of the sparse form to vector-valued functions, namely
〈 f 〉I = |I |−1∑

x∈I‖ f ‖H.

Recall that K is a Calderón–Zygmund kernel on R if K : R \ {0} → C satisfies

sup
x∈R\{0}

|x K (x)| +
∣∣∣x2 d

dx
K (x)

∣∣∣<∞, (2.2)

and TK acts boundedly from L2 to L2. The kernels that we will encounter are small perturbations of 1/x .
Restricting a Calderón–Zygmund kernel to the integers, we have a kernel which satisfies Theorem 2C.

In a different direction, we will accumulate a range of sparse operator bounds at different points of our
argument. Yet there is, in a sense, a unique maximal sparse operator, once a pair of functions f, g are
specified. Thus we need not specify the exact sparse form which proves our main theorem.

Lemma 2.3 [Lacey and Mena Arias 2017, Lemma 4.7]. Given finitely supported functions f, g and
choices of 1 ≤ r, s <∞, there is a sparse form 3∗r,s , and constant C > 0 so that for any other sparse
form 3r,s we have

3r,s( f, g)≤ C3∗r,s( f, g).

A couple of elementary estimates, which we will appeal to, are in this next proposition. The use of
these inequalities in the sparse-bound setting appeared in [Lacey and Spencer 2017].

Proposition 2.4. Let TK f (x) =
∑

n K (n) f (x − n) be convolution with kernel K . Assuming that K is
finitely supported on interval [−N , N ] we have the inequalities

‖TK : Sparse(r, s)‖. N 1/r+1/s−1
‖TK : `

r
7→ `s′

‖, 1≤ r, s <∞. (2.5)

The two instances of the above inequality we will use are (r, s)= (1, 1), (2, 2). In the latter case, one
should observe that the power of N above is zero.
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Proof. Let I be a partition of Z into intervals of length 2N . Assume that if I, I ′ ∈ I with dist(I, I ′)≤ 1,
then either f 1I or f 1I ′ are identically zero. Then,

|〈TK f, g〉| ≤
∑
I∈I

〈 f 1I , T ∗K (g13I )〉

≤ ‖TK : `
r
7→ `s′

‖

∑
I∈I

‖ f 13I‖r ‖g13I‖s

. N 1/r+1/s−1
‖TK : `

r
7→ `s′

‖

∑
I∈I

|3I | · 〈 f 〉3I,r 〈g〉3I,s . �

The definition of sparse collections has a useful variant. Let 0 < η ≤ 1
4 . We say a collection of

intervals S is η-sparse if there are subsets ES ⊂ S ⊂ Z with (a) |ES| > η|S|, uniformly in S ∈ S, and
(b) the sets {ES : S ∈ S} are pairwise disjoint.

Lemma 2.6. For each f, g there is a 1
2 -sparse form 3 so that for all η-sparse forms 3η, we have

3η( f, g). η−13( f, g), 0< η < 1
4 .

Proof. Let Sη be the sparse collection of intervals associated to 3η. Using shifted dyadic grids [Hytönen
et al. 2013, Lemma 2.5], we can, without loss of generality, assume that Sη consists of dyadic intervals.
It follows that we have the uniform Carleson measure estimate∑

J∈S:J⊂I

|J |. η−1
|I |, I ∈ Sη.

Then, for an integer J . η−1, we can decompose Sη into subcollections Sj , for 1≤ j ≤ J , so that each
collection Sj is 1

2 -sparse.
Now, with f, g fixed, by Lemma 2.3, there is a single sparse operator 3 so that uniformly in 1≤ j ≤ J

we have

3Sj ( f, g).3( f, g). �

A variant of the sparse operator will appear, one with a “long tails” average. Define

{ f }S =
1
|S|

∑
x

| f (x)|
(1+ dist(x, S)/|S|)3

. (2.7)

Lemma 2.8. For all finitely supported f, g, there is a sparse operator 3 so that for any sparse collec-
tion S0 there holds ∑

S∈S0

|S|{ f }S{g}S .3( f, g).

Proof. For integers t > 0 let St = {2t S : S ∈ S}. Assuming that S0 is 1
2 -sparse, it follows that St is

2−t−1-sparse, for t > 0. Appealing to the power decay in (2.7),∑
S∈S0

|S|{ f }S{g}S .
∞∑

t=0

2−2t3St ( f, g).



1264 AMALIA CULIUC, ROBERT KESLER AND MICHAEL T. LACEY

But by Lemma 2.6, there is a fixed 1
2 -sparse form 3( f, g) so that

3St ( f, g). 2t3( f, g), t > 0. �

Throughout, e(x) := e2π i x, and ε > 0 is a fixed small absolute constant. For a function f ∈ `2(Z), the
(inverse) Fourier transform of f is defined as

F f (β) :=
∑
n∈Z

f (n)e(−βn),

F−1g(n)=
∫

T

g(β)e(βn) dβ.

We will define operators as Fourier multipliers. Namely, given a function M : T 7→ C, we define the
associated linear operator by

F[8M f ](β)= M(β)F f (β). (2.9)

The notation F−1 M = M̌ will be convenient. As above, for kernel K , the operator TK will denote
convolution with respect to K . Thus, 8M = TM̌ .

3. The main decomposition

We prove the main result by decomposition of the Fourier multiplier

M(β) :=
∑
m 6=0

e(−βm3)

m
. (3.1)

In this section, we detail the decomposition, which is done in the standard way, with one new point
needed.

The kernel. Let {ψj }j≥0 be a dyadic resolution of 1/t , where ψj (x) = 2− jψ(2− j x) is a smooth odd
function satisfying |ψ(x)| ≤ 1[1/4,1](|x |). In particular∑

k≥0

ψk(t)=
1
t
, |t | ≥ 1. (3.2)

The major arcs. The rationals in the torus are the union over s ∈ N of the collections Rs given by

Rs := {B/Q ∈ T : (B, Q)= 1, 2s−1
≤ Q < 2s

}. (3.3)

Namely the denominator of the rationals is held approximately fixed. For all rationals B/Q ∈Rs , define
the j-th major box at B/Q to be

Mj (B/Q) := {β ∈ T : |β − B/Q| ≤ 2(ε−3) j
}, s ≤ ε j.

Collect the major arcs, defining

Mj :=
⋃

(B,Q)=1:Q≤26 jε

Mj (B/Q). (3.4)
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Note in particular that for a sufficiently small ε, in the union above no two distinct major arcs Mj (B/Q)
intersect. That is, if B1/Q1 6= B2/Q2, suppose that β ∈Mj (B1/Q1)∪Mj (B2/Q2). Then

2−6 jε
≤ |B1/Q1− B2/Q2| ≤ |B1/Q1−β| + |B2/Q2−β| ≤ 2(ε−3) j+1,

which is a contradiction for ε < 2
7 .

Multipliers. We use the notation below for the decomposition of the multiplier:

Mj (β) :=
∑
m∈Z

e(−βm3)ψj (m), (3.5)

Hj (y) :=
∫

R

e(−yt3)ψj (t) dt (continuous analog of Mj ), (3.6)

S(B/Q) :=
1
Q

Q−1∑
r=0

e(−B/Q · r3) (Gauss sum),

L j,s(β) :=
∑

B/Q∈Rs

S(B/Q)Hj (β − B/Q)χs(β − B/Q), (3.7)

where χ is a smooth even bump function with 1[−1/10,1/10] ≤ χ ≤ 1[−1/5,1/5] and χs(t)= χ(10s t),

L j (β) :=
∑
s≤ jε

L j,s(β), j ≥ 1, (3.8)

Ls(β) :=
∑
j≥s/ε

L j,s(β), s ≥ 1, (3.9)

L(β) :=
∞∑

s=1

Ls(β)=

∞∑
j=1

L j (β),

E j (β) := Mj (β)− L j (β), j ≥ 1, (3.10)

E(β) :=
∞∑

j=1

E j (β). (3.11)

Therefore, by construction, M(β)= L(β)+ E(β) for all β ∈ T. Our motivation for introducing the above
decomposition is that the discrete multiplier Mj is well-approximated by its continuous analog L j on the
major arcs in Mj . And off of the major arcs, the multiplier is otherwise small.

Theorem 1.1 is proved by showing that there exist 1< r < 2 and κ > 0 such that

‖8E j : Sparse(r, r)‖. 2−κ j , j ≥ 1, (3.12)

‖8Ls : Sparse(r, r)‖. 2−κs, s ≥ 1. (3.13)

Indeed, from the above inequalities, it follows that

‖8L : Sparse(r, r)‖ ≤
∞∑

s=1

‖8Ls : Sparse(r, r)‖.
∞∑

s=1

2−κs . 1,
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‖8E : Sparse(r, r)‖ ≤
∞∑

j=1

‖8E j : Sparse(r, r)‖.
∞∑

j=1

2−κ j . 1.

Therefore, our main theorem follows from

‖8M : Sparse(r, r)‖ ≤ ‖8L : Sparse(r, r)‖+‖8E : Sparse(r, r)‖. 1.

We prove the “minor arcs” estimate (3.12) in Section 4 and the “major arcs” estimate (3.13) in Section 5.

The next theorem gives quantitative estimates for the Gauss sums (3.15) and the multipliers E j defined
in (3.10) that are essential to our proof of Theorem 1.1.

Theorem 3.14. For absolute choices of ε > 0,

|S(B/Q)|. 2−εs, B/Q ∈Rs, s ≥ 1, (3.15)

‖E j (β)‖∞ . 2−ε j , j ≥ 1, (3.16)∥∥∥∥ d2

dβ2 E j (β)

∥∥∥∥
∞

. 27 j , j ≥ 1. (3.17)

The first two are well-known estimates. The estimate (3.15) is the Gauss sum bound, see [Hua 1982],
while the estimate (3.16) is gotten by combining Lemmas 3.21 and 3.18. The only unfamiliar estimate is
the derivative bound (3.17), but our claim is very weak and follows from elementary considerations.

The details of a proof of Theorem 3.14 are represented in the literature [Stein and Wainger 1990;
Krause and Lacey 2017]. We indicate the details. A central lemma is this approximation of Mj defined in
(3.5), in terms of L j defined in (3.8).

Lemma 3.18. For 1≤ s ≤ ε j , B/Q ∈Rs , we have the approximation

Mj (β)= L j (β)+ O(2(2ε−1) j ), β ∈Mj (B/Q).

Proof. We closely follow the argument in [Krause and Lacey 2017]. There are two estimates to prove:

|Mj (β)− S(B/Q)Hj (β − B/Q)|. 2(2ε−1) j , (3.19)

|L j (β)− S(B/Q)Hj (β − B/Q)|. 2(2ε−1) j , (3.20)

both estimates holding uniformly over β ∈Mj (B/Q), and B/Q ∈Rs .
For the second estimate (3.20), it follows from the definitions of L j and L j,s in (3.7), as well as the

disjointess of the major arcs, that

|L j (β)− S(B/Q)Hj (β − B/Q)| = |L j,s(β)− S(B/Q)Hj (β − B/Q)|

≤ |S(B/Q)Hj (β − B/Q)|(1Mj (B/Q)−χ(10s(β − B/Q)))

. sup
|β|>(1/2)10s−1

|Hj (β)|. 10−s .

The last bound is a standard van der Corput estimate.
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We turn to (3.19). Write β = B/Q+ η, where |η| ≤ 2(ε−3) j. For all positive m in the support of ψj ,
decompose these integers into their residue classes mod Q, i.e., m = pQ+ r , where 0 ≤ r < Q ≤ 2 jε

and the p-values are integers in [c, d], with c= d/8' 2 j/Q to cover the support of ψj . The argument of
the exponential in (3.1) is, modulo 1, given by

β(pQ+ r)3 = (B/Q+ η)(pQ+ r)3 ≡ r3 B/Q+ (pQ)3η+ O(2 j (2ε−1)).

Then the sum over all positive integers m in the support of ψj can be written as

∑
p∈[c,d]

Q−1∑
r=0

[e(−r3 B/Q− (pQ)3η)+ O(2(2ε−1) j )]ψj (pQ+ r)

=

Q−1∑
r=0

e(−r3
· B/Q)×

∑
p∈[c,d]

e(−η(pQ)3)ψj (pQ)+ O(2(2ε−1) j )

= S(B, Q)× Q
∑

p∈[c,d]

e(−η(pQ)3)ψj (pQ)+ O(2(2ε−1) j ).

For fixed p ∈ [c, d] and 0≤ t ≤ Q, we have

|e(−η(pQ)3)ψj (pQ)− e(−η(pQ+ t)3)ψj (pQ+ t)|

. |e(−η(pQ)3)− e(−η(pQ+ t)3)|2− j
+ |ψj (pQ)−ψj (pQ+ t)|

. 2(2ε−2) j .

Therefore,

Q
∑

p∈[c,d]

e(−η(pQ)3)ψj (pQ)=
∫
∞

0
e(−ηt3)ψj (t) dt + O(2(2ε−1) j ).

The analogous computation for negative values of m yields∑
m<0

e(−βm3)ψj (m)= S(B, Q)×
∫ 0

−∞

e(−ηt3)ψj (t) dt + O(2(2ε−1) j ),

and combining the two estimates with the notation in (3.11) leads to the desired conclusion. �

We also need control of Mj and L j , defined in (3.8) on the minor arcs, which are the open components
of the complement of Mj defined in (3.4).

Lemma 3.21. There is a δ = δ(ε) so that uniformly in j ≥ 1,

|Mj (β)| + |L j (β)|. 2−δ j , β 6∈Mj .

This estimate is essentially present in [Krause and Lacey 2017]. The bound |Mj (β)|. 2−δ j for β 6∈Mj

can be seen from [Bourgain 1989, Lemma 5.4], and is a consequence of a fundamental estimate of Weyl
[Iwaniec and Kowalski 2004, Theorem 8.1]. The corresponding bound on L j is an easy consequence of
the van der Corput estimate |Hj (y)|. 2− j

|y|−1/3.
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4. Minor arcs

Recalling the sparse-form notation (2.1) and the Fourier multiplier notation (2.9), we now proceed to the
proof of the bound in (3.12).

Lemma 4.1. There exists κ > 0 and 1< r < 2 such that

‖8E j : Sparse(r, r)‖. 2−κ j , j ≥ 1.

Proof. We only need the L∞ bound on E j given in (3.16), and the derivative condition (3.17). In particular,
these two conditions imply

|F−1 E j (m)|.min
{

2−ε j ,
27 j

1+m2

}
. (4.2)

Write F−1 E j = Ě j,0 + Ě j,1, where Ě j,0(m) = [F−1 E j (m)]1[−210 j ,210 j ](m). It follows immediately
from (4.2) that

‖TĚ j,1
: `2
7→ `2

‖. ‖Ě j,1‖1 . 2−3 j .

(Recall that TK denotes convolution with respect to kernel K .) But, it follows that TK f . MHL f , where
the latter is the maximal function. And so by Theorem 2B, we have

‖TĚ j,1
: Sparse(1, 1)‖. 2−3 j .

It remains to provide a sparse bound for TĚ j,0
(which is the interesting case). We are in a position to

use (2.5), with N ' 210 j. We have for 1< r < 2

‖TĚ j,0
: Sparse(r, r)‖. 210 j (2/r−1)

‖TĚ j,0
: `r
7→ `r ′

‖. (4.3)

Notice that 2/r − 1 can be made arbitrarily small. We need to estimate the operator norm above. But, we
have the two estimates

‖TĚ j,0
: `s
7→ `s′

‖. 2−ε j , s = 1, 2.

The case of s = 1 follows from (4.2), and the case of s = 2 from Plancherel and (3.16). We therefore
see that we have a uniformly small estimate on the norm of TĚ j,0

from `r
7→ `r ′ for 1 < r < 2. For

0< 2− r � ε, we have the desired bound in (4.3). �

5. Major arcs

The following estimate is the core of the main result, Theorem 1.1. Recalling the definition of Ls in (3.9),
the notation for Fourier multipliers (2.9) and the sparse norm notation (2.1), we have this, which verifies
the bound in (3.13):

Lemma 5.1. There exist κ > 0 and 1< r < 2 such that

‖8Ls : Sparse(r, r)‖. 2−κs, s ≥ 1.

Combining the “major arcs” estimate in Lemma 5.1 with the “minor arcs” estimate in Lemma 4.1, the
proof of Theorem 1.1 is complete.
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The remainder of this section is taken up with the proof of the lemma. The central facts are (1) the Gauss
sum bound (3.15); (2) the sparse bound for Hilbert-space-valued singular integrals Theorem 2C, which
is applied to Fourier projections of f and g onto the major arcs; (3) an argument to pass from a sparse
operator applied to the aforementioned Fourier projections to a sparse bound in terms of just f and g.

Step 1. We define our Hilbert-space-valued functions, where the Hilbert space will be the finite-
dimensional space `2(Rs). Recall that the rationals Rs are defined in (3.3), and the functions χs are
defined in (3.7). Given f ∈ `2, set

fs = { fs,B/Q : B/Q ∈Rs} := {χs−1 ∗ (Mod−B/Q f ) : B/Q ∈Rs}. (5.2)

Above, Modλ f (x)= e(λx) f (x) is modulation by λ. The intervals

{[B/Q− 10−s, B/Q+ 10−s
] : B/Q ∈Rs} (5.3)

are pairwise disjoint, so that by Bessel’s theorem, we have

‖ fs‖`2(`2(Rs)) = ‖{ fs,B/Q : B/Q ∈Rs}‖`2(`2(Rs)) ≤ ‖ f ‖2.

Step 2. The inner product we are interested in can be viewed as one acting on `2(Rs) functions. Observe
that the Fourier multiplier associated to Ls enjoys the equalities below. Beginning from (3.9) and (3.7),

〈8Ls f, g〉 =
∑

B/Q∈Rs

∑
j≥s/ε

S(B, Q) · 〈Hj (β − B/Q)χs(β − B/Q)F f (β),Fg(β)〉

=

∑
B/Q∈Rs

∑
j≥s/ε

S(B, Q) · 〈Hj (β)χs(β) f (β + B/Q),Fg(β + B/Q)〉

=

∑
B/Q∈Rs

∑
j≥s/ε

S(B, Q) · 〈Hj (β)χs(β)F fs,B/Q(β),Fgs,B/Q(β)〉.

Crucially, above we have removed some modulation factors to get a fixed multiplier acting on a Hilbert-
space-valued function. Continuing the equalities, we have

=

∑
B/Q∈Rs

S(B, Q)〈8H s fs,B/Q, gs,B/Q〉, where H s
=

∑
j≥s/ε

Hj . (5.4)

We address the Gauss sums S(B, Q) above. Recalling (3.15) and setting f ′s = {λB/Q fs,B/Q} for
appropriate choice of |λB/Q | = 1, we have

|〈8Ls fs, gs〉|. 2−εs〈8H s f ′s , gs〉. (5.5)

Above we have gained a geometric decay in s.

On the right-hand side of (5.5), we have an operator acting on Hilbert-space-valued functions. Noting
that ‖ f ′s‖`2(Rs) = ‖ fs‖`2(Rs) pointwise, we are free to replace f ′s in (5.5) by simply fs , as defined in (5.2).
The remaining estimate to prove is that there is a choice of 1< r < 2 and sparse operator 3r,r so that

|〈8H s fs, gs〉|. 2(ε/4)s3r,r ( f, g). (5.6)
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Note in particular that we will allow small geometric growth in this estimate, which will be absorbed into
the geometric decay in (5.5).

Step 3. The principal step is the application of the sparse bound in Theorem 2C. From the definitions in
(3.6) and (5.4), we have

H s(β)=
∑

j≥s/ε

Hj (β)=
∑

j≥s/ε

∫
e(−βt3)ψj (t) dt.

By the choice of ψ in (3.2), it follows that the integrand on the right equals e(−βt3)dt/t for t > 2s/ε+1.
And, in particular,

H s(β)=
1
3

∑
j≥s/ε

∫
e(−βs)

ψj (s1/3)

s2/3 ds.

But ψ is odd; hence so is ψj (s1/3)/s2/3. It follows that Ȟ s is a Calderón–Zygmund kernel; that is, it
meets the conditions in (2.2). Thus, the operator we are considering is convolution with respect to Ȟ s,
namely 8H s = TȞ s .

Therefore, from Theorem 2C, we have the following inequality for the expression in (5.4):

|〈TȞ s fs, gs〉|.31,1( fs, gs). (5.7)

There is one additional fact: all the intervals used in the definition of the sparse form in (5.7) above have
length at least 23(s/ε−2). This is a simple consequence of Ȟ s(x)1[−23(s/ε−2),23(s/ε−2)] ≡ 0.

Step 4. We should emphasize that (5.7) has a small abuse of notation: The sparse form is computed
on the vector-valued functions fs and gs . That is, the implied averages have to be made relative to the
`2(Rs)-norm. The last step is to remove the norm. Namely, we show that there is a choice of 1< r < 2
and sparse form 3r,r so that

31,1( fs, gs). 2(ε/4)s3r,r ( f, g). (5.8)

Combining this estimate with (5.7) proves (5.6), completing the proof.

The proof of (5.8) is reasonably routine. It will be crucial that we have the estimate ]Rs . 22s. Let S
be the sparse collection of intervals associated with the sparse form 31,1( fs, gs). As noted, we are free to
assume that for all S ∈ S, we have |S| ≥ 10s/4ε. Recall the definition of fs in (5.2). Write fs = f S,0

s + f S,1
s ,

where

f S,0
s := {χs−1 ∗ (Mod−B/Q( f 12S)) : B/Q ∈Rs}.

Above, we have localized the support of f to the interval 2S. The same decomposition is used on the
functions g and gs . By subadditivity, we have

31,1( fs, gs)≤31,1( f S,0
s , gS,0

s ) (5.9)

+31,1( f S,1
s , gS,0

s )+31,1( f S,0
s , gS,1

s ) (5.10)

+31,1( f S,1
s , gS,1

s ). (5.11)
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The crux of the matter is this estimate: For each interval S ∈ S, we have

〈 f S,0
s 〉S . 2s(2−r)/r

〈 f 〉2S,r , 1< r < 2. (5.12)

And, the fraction (2− r)/r in the exponent can be made arbitrarily small by taking 0< 2− r very small.
Indeed, using the disjointness of the intervals in (5.3), and Plancherel, we have

〈 f S,0
s 〉S,2 . 〈 f 〉2S,2. (5.13)

Second, it is trivial that
〈χs−1 ∗ (Mod−B/Q f 12S)〉S . 〈 f 〉2S

and by simply summing over the bounded number of choices of B/Q ∈Rs , we have

〈 f S,0
s 〉S . 22s

〈 f 〉2S.

Interpolating between this and (5.13) proves (5.12). With that inequality in hand, we have, for 0< 2− r
sufficiently small, ∑

S∈S

|S|〈 f S,0
s 〉S〈g

S,0
s 〉S . 2s(ε/4)

∑
S∈S

|S|〈 f 〉2S,r 〈g〉2S,r .

If the family S is 1
2 -sparse, then the family {2S : S ∈ S} is 1

4 -sparse, so we have our desired bound for the
term on the right in (5.9).

There are three more terms, in (5.10) and (5.11), which are all much smaller. Recall the notation { f }
of (2.7). Since χ , as chosen in (3.7), is smooth, and the length of S ∈ S is much larger than 10s, we have

〈χs−1 ∗ (Mod−B/Q f 1R\2S)〉S . 2−100s
{ f }S, B/Q ∈Rs .

Summing this estimate over all 22s choices B/Q ∈Rs , we see that each of the three terms in (5.10) and
(5.11) are at most

2−s
∑
S∈S

|S|{ f }S{g}S.

It remains to bound this last bilinear form, which is the task taken up in Lemma 2.8. This completes the
argument for (5.8).
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ON THE DIMENSION AND SMOOTHNESS OF RADIAL PROJECTIONS

TUOMAS ORPONEN

This paper contains two results on the dimension and smoothness of radial projections of sets and measures
in Euclidean spaces.

To introduce the first one, assume that E, K ⊂ R2 are nonempty Borel sets with dimH K > 0. Does
the radial projection of K to some point in E have positive dimension? Not necessarily: E can be
zero-dimensional, or E and K can lie on a common line. I prove that these are the only obstructions: if
dimH E > 0, and E does not lie on a line, then there exists a point in x ∈ E such that the radial projection
πx (K ) has Hausdorff dimension at least (dimH K )/2. Applying the result with E = K gives the following
corollary: if K ⊂ R2 is a Borel set which does not lie on a line, then the set of directions spanned by K
has Hausdorff dimension at least (dimH K )/2.

For the second result, let d ≥ 2 and d − 1< s < d . Let µ be a compactly supported Radon measure in
Rd with finite s-energy. I prove that the radial projections of µ are absolutely continuous with respect to
Hd−1 for every centre in Rd

\ sptµ, outside an exceptional set of dimension at most 2(d − 1)− s. In fact,
for x outside an exceptional set as above, the proof shows that πx]µ ∈ L p(Sd−1) for some p > 1. The
dimension bound on the exceptional set is sharp.

1. Introduction

This paper studies visibility and radial projections. Given x ∈Rd, define the radial projection πx : Rd
\{x}→

Sd−1 by

πx(y)=
y− x
|y− x |

.

A Borel set K ⊂ R2 will be called

• invisible from x if Hd−1(πx(K \ {x}))= 0, and

• totally invisible from x if dimH πx(K \ {x})= 0.

Above, dimH stands for Hausdorff dimension and Hs stands for s-dimensional Hausdorff measure. I will
only consider Hausdorff dimension in this paper, as many of the results below would be much easier for
box dimension. The study of (in-)visibility has a long tradition in geometric measure theory. For many

Orponen is supported by the Academy of Finland via the project Quantitative rectifiability in Euclidean and non-Euclidean
spaces, grant number 309365. The research was also partially supported by travel grants from the Väisälä fund and Mathematics
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more results and questions than I can introduce here, see Section 6 of [Mattila 2004]. The basic question
is the following: given a Borel set K ⊂ Rd, how large can the sets

Inv(K )= {x ∈ Rd
: K is invisible from x},

InvT (K ) := {x ∈ Rd
: K is totally invisible from x}

be? Clearly InvT (K ) ⊂ Inv(K ), and one generally expects InvT (K ) to be significantly smaller than
Inv(K ). The existing results fall roughly into the following three categories:

(1) What happens if dimH K > d − 1?

(2) What happens if dimH K ≤ d − 1?

(3) What happens if 0<Hd−1(K ) <∞?

Cases (1) and (3) are the most classical, having already been studied (for d = 2) in [Marstrand 1954].
Given s > 1, Marstrand proved that any Borel set K ⊂ R2 with 0 < Hs(K ) < 1 is visible (that is, not
invisible) from Lebesgue almost every point x ∈R2, and also from Hs-almost every point x ∈ K. Unifying
Marstrand’s results, and their generalisations to Rd, the following sharp bound was recently established
by Mattila and the author in [Mattila and Orponen 2016; Orponen 2018]:

dimH Inv(K )≤ 2(d − 1)− dimH K (1.1)

for all Borel sets K ⊂ Rd with d − 1< dimH K ≤ d . This paper contains a variant of the bound (1.1) for
measures; see Section 1B.

The visibility of sets K in Case (3) depends on their rectifiability. I will restrict the discussion to the
case d = 2 for now. It is easy to show that 1-rectifiable sets which are not H1-almost surely covered by
a single line are visible from all points in R2, with possibly one exception; see [Orponen and Sahlsten
2011]. On the other hand, if K ⊂ R2 is purely 1-unrectifiable, then the sharp bound

dimH[R
2
\ Inv(K )] = dimH{x ∈ R2

: K is visible from x} ≤ 1

was obtained by Marstrand, building on Besicovitch’s projection theorem. For generalisations, improve-
ments and constructions related to the bound above, see [Mattila 1981, Theorem 5.1; Csörnyei 2000;
2001]. Marstrand raised the question — which remains open to the best of my knowledge — whether it is
possible that H1(R2

\ Inv(K )) > 0: in particular, can a purely 1-unrectifiable set be visible from a positive
fraction of its own points? For purely 1-unrectifiable self-similar sets K ⊂ R2 one has Inv(K )= R2, as
shown by Simon and Solomyak [2006/07].

1A. The first main result. Case (2) has received less attention. To simplify the discussion, assume that
dimH K = 1 and H1(K )= 0, so that Inv(K )=R2, and the relevant question becomes the size of InvT (K ).
The radial projections πp fit the influential generalised projections framework of [Peres and Schlag 2000].
If K ⊂ R2 is a Borel set with arbitrary dimension s ∈ [0, 2], then it follows from Theorem 7.3 of that
paper that

dimH InvT (K )≤ 2− s. (1.2)
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T

T

E

x

x

T ∗

K

Figure 1. What is the next step in the construction of E?

When s > 1, the bound (1.2) is a weaker version of (1.1), but the benefit of (1.2) is that it holds without
any restrictions on s. In particular, if s = 1, one obtains

dimH InvT (K )≤ 1. (1.3)

This bound is sharp for a trivial reason: consider the case, where K lies on a single line `⊂ R2. Then,
InvT (K )= `. The starting point for this paper was the question: are there essentially different examples
manifesting the sharpness of (1.3)? The answer turns out to be negative in a very strong sense. Here are
the first main results of the paper:

Theorem 1.4 (weak version). Assume that K ⊂ R2 is a Borel set with dimH K > 0. Then, at least one of
the following holds:

• dimH InvT (K )= 0.

• InvT (K ) is contained on a line.

In fact, more is true. For K ⊂ R2, define

Inv1/2(K ) :=
{

x ∈ R2
: dimH πx(K \ {x}) < 1

2 dimH K
}
.

Then, if dimH K > 0, one evidently has InvT (K )⊂ Inv1/2(K )⊂ Inv(K ).

Theorem 1.5 (strong version). Theorem 1.4 holds with InvT (K ) replaced by Inv1/2(K ). That is, if
E ⊂ R2 is a Borel set with dimH E > 0, not contained on a line, then there exists x ∈ E such that
dimH πx(K \ {x})≥ (dimH K )/2.

Remark 1.6. A closely related result is Theorem 1.6 in [Bond, Łaba and Zahl 2016]; with some imagina-
tion, part (a) of that theorem can be viewed as a “single scale” variant of Theorem 1.5, although at this
scale, their Theorem 1.6(a) contains more information than Theorem 1.5. As far as I can tell, proving the
Hausdorff dimension statement in this context presents a substantial extra challenge, so Theorem 1.5 is
not easily implied by the results in [Bond, Łaba and Zahl 2016].

Example 1.7. Figure 1 depicts the main challenge in the proofs of Theorems 1.4 and 1.5. The set E has
dimH E>0, and consists of something inside a narrow tube T, plus a point x /∈T. Then, Theorem 1.4 states
that E 6⊂ InvT (K ) for any compact set K ⊂ R2 with dimH K > 0. So, in order to find a counterexample
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to Theorem 1.5, all one needs to do is find K by a standard “Venetian blind” construction in such a way
that dimH K > 0 and dimH πy(K )= 0 for all y ∈ E . The first steps are obvious: to begin with, require
that K ⊂ T ∗ for another narrow tube parallel to T ; see Figure 1. Then πy(K ) is small for all y ∈ T. To
handle the special point x ∈ E , split the contents of T ∗ into a finite collection of new narrow tubes in
such a way that πx(K ) is small. In this manner, πy(K ) can be made arbitrarily small for all y ∈ E (in the
sense of ε-dimensional Hausdorff content, for instance, for any prescribed ε > 0). It is quite instructive to
think why the construction cannot be completed: why cannot the Venetian blinds be iterated further (for
both E and K ) so that, at the limit, dimH πy(K )= 0 for all x ∈ E?

Theorem 1.5 has the following immediate consequence:

Corollary 1.8 (corollary to Theorem 1.5). Assume that K ⊂ R2 is a Borel set not contained on a line.
Then the set of unit vectors spanned by K, namely

S(K ) :=
{

x − y
|x − y|

∈ S1
: x, y ∈ K and x 6= y

}
,

satisfies dimH S(K )≥ (dimH K )/2.

Proof. If dimH K = 0, there is nothing to prove. Otherwise, Theorem 1.5 implies that K 6⊂ Inv1/2(K ),
whence dimH S(K )≥ dimH πx(K \ {x})≥ (dimH K )/2 for some x ∈ K. �

Corollary 1.8 is probably not sharp, and the following conjecture seems plausible:

Conjecture 1.9. Assume that K ⊂ R2 is a Borel set not contained on a line. Then dimH S(K ) =
min{dimH K , 1}.

This follows from Marstrand’s result, discussed in Case (1) above, when dimH K > 1. For dimH K ≤ 1,
Conjecture 1.9 is closely connected with continuous sum-product problems, which means that significant
improvements over Corollary 1.8 will, most likely, require new technology. It would, however, be
interesting to know if an ε-improvement over Corollary 1.8 is possible, combining the proof below with
ideas from [Katz and Tao 2001], and using the discretised sum-product theorem of [Bourgain 2003].

I have the referee to thank for pointing out that a natural discrete variant of Conjecture 1.9 has been
solved by P. Ungar [1982]: a set of n ≥ 3 points in the plane, not all on a single line, determine at least
n− 1 distinct directions.

1B. The second main result. The second main result is a version of the estimate (1.1) for measures. Fix
d ≥ 2, and denote the space of compactly supported Radon measures on Rd by M(Rd). For µ ∈M(Rd),
write

S(µ) := {x ∈ Rd
\ sptµ : πx]µ is not absolutely continuous with respect to Hd−1

|Sd−1}.

Note that whenever x ∈ Rd
\ sptµ, the projection πx is continuous on sptµ, and πx]µ is well-defined.

One can check that the family of projections {πx}x∈Rd\sptµ fits in the generalised projections framework
of [Peres and Schlag 2000], and indeed Theorem 7.3 in that paper yields

dimH S(µ)≤ 2d − 1− s, (1.10)
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whenever d − 1< s < d and µ ∈M(Rd) has finite s-energy (see (1.12) for a definition). Combining this
bound with standard arguments shows that if K ⊂ Rd is a Borel set with d − 1< dimH K ≤ d , then

dimH Inv(K )= dimH{x ∈ Rd
:Hd−1(πx(K ))= 0} ≤ 2d − 1− dimH K .

This is weaker than the sharp bound (1.1), so it is natural to ask whether the bound (1.10) for measures
could be lowered to match (1.1). The answer is affirmative:

Theorem 1.11. If µ ∈M(Rd) and

Is(µ) :=

∫∫
dµ(x) dµ(y)
|x − y|s

<∞ (1.12)

for some s > d − 1, then dimH S(µ)≤ 2(d − 1)− s.

The bound is sharp, essentially because (1.1) is, and Theorem 1.11 implies (1.1). More precisely,
following [Orponen 2018, Section 2.2], there exist compact sets K ⊂ Rd of any dimension dimH K ∈
(d − 1, d) such that

dimH[Inv(K ) \ K ] = 2(d − 1)− dim K .

Then, the sharpness of Theorem 1.11 follows by considering Frostman measures supported on K, and
noting that S(µ)⊃ Inv(K ) \ K whenever µ ∈M(Rd) and sptµ⊂ K.

An open question is the validity of Theorem 1.11 for s = d − 1. If Id−1(µ) <∞, Theorem 7.3 in
[Peres and Schlag 2000] implies that Ld(S(µ))= 0, but I do not even know if dimH S(µ) < d.

Theorem 1.11 does not immediately follow from the proof of (1.1) in [Mattila and Orponen 2016;
Orponen 2018], as the argument in those papers was somewhat indirect. Having said that, many observa-
tions from the previous papers still play a role in the new proof. Theorem 1.11 will be deduced from the
next statement concerning L p-densities:

Theorem 1.13. Let µ ∈M(Rd) be as in Theorem 1.5. For p ∈ (1, 2), write

Sp(µ) := {x ∈ Rd
\ sptµ : πx]µ /∈ L p(Sd−1)}.

Then dimH Sp(µ)≤ 2(d − 1)− s+ δ(p), where δ(p) > 0, and δ(p)→ 0 as p↘ 1.

Note that the claim is vacuous for “large” values of p. The dependence of δ(p) > 0 on p is effective
and not very hard to track; see (3.5).

Remark 1.14. Theorem 1.13 can be viewed as an extension of Falconer’s exceptional set estimate [1982].
I only discuss the planar case. Falconer proved that if Is(µ) <∞ for some 1< s < 2, then the orthogonal
projections of µ to all 1-dimensional subspaces are in L2, outside an exceptional set of dimension at
most 2− s. Now, orthogonal projections can be viewed as radial projections from points on the line at
infinity. Alternatively, if the reader prefers a more rigorous statement, Falconer’s proof shows that if
`⊂ R2 is any fixed line outside the support of µ, then all the radial projections of µ to points on ` are
in L2, outside an exceptional set of dimension at most 2− s. In comparison, Theorem 1.13 states that the
radial projections of µ to points in R2

\ sptµ are in L p for some p > 1, outside an exceptional set of
dimension at most 2− s. So, the size of the exceptional set remains the same even if the “fixed line `” is
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removed from the statement. The price to pay is that the projections only belong to some L p with p > 1
(possibly) smaller than 2. I do not know if the reduction in p is necessary, or an artefact of the proof.

2. Proof of Theorem 1.5

If `⊂ R2 is a line, I denote by T (`, δ) the open (infinite) tube of width 2δ, with ` “running through the
middle”, that is, dist(`,R2

\T (`, δ))= δ. The notation B(x, r) stands for a closed ball with centre x ∈R2

and radius r > 0. The notation A . B means that there is an absolute constant C ≥ 1 such that A ≤ C B.

Lemma 2.1. Assume that µ is a Borel probability measure on B(0, 1)⊂ R2, and µ(`)= 0 for all lines
`⊂ R2. Then, for any ε > 0, there exists δ > 0 such that µ(T (`, δ))≤ ε for all lines `⊂ R2.

Proof. Assume not, so there exists ε > 0, a sequence of positive numbers δ1>δ2> · · ·> 0 with δi↘ 0 and
a sequence of lines {`i }i∈N ⊂ R2 with µ(T (`i , δi ))≥ ε. Since sptµ⊂ B(0, 1), one has `i ∩ B(0, 1) 6=∅
for all i ∈ N. Consequently, there exists a subsequence (i j )j∈N and a line `⊂ R2 such that `j → ` in the
Hausdorff metric. Then, for any given δ > 0, there exists j ∈ N such that

B(0, 1)∩ T (`i j , δi j )⊂ T (`, δ),

so that µ(T (`, δ))≥ ε. It follows that µ(`)≥ ε, a contradiction. �

The next lemma contains all the information needed to prove Theorem 1.5. I state two versions: the
first one is slightly easier to read and apply, while the second one is slightly more detailed.

Lemma 2.2. Assume that µ, ν are Borel probability measures with compact supports K , E ⊂ B(0, 1),
respectively. Assume that both measures µ and ν satisfy a Frostman condition with exponents κµ, κν ∈
(0, 2], respectively:

µ(B(x, r))≤ Cµrκµ and ν(B(x, r))≤ Cνrκν (2.3)

for all balls B(x, r)⊂ R2 and for some constants Cµ,Cν ≥ 1. Assume further that µ(`)= 0 for all lines
`⊂ R2. Fix also

0< τ < 1
2κµ and ε > 0,

and write δk := 2−(1+ε)
k
.

Then, there exists a compact subset K ′ ⊂ K with

µ(K ′)≥ 1
2 ,

a number η= η(ε, κµ, κν, τ ) > 0, an index k0 = k0(ε, µ, κν, τ ) ∈N, and a point x ∈ E with the following
property. If k > k0, and T (`1, δk), . . . , T (`N , δk) is a family of δk-tubes of cardinality N ≤ δ−τk , each
containing x , then

µ

(
K ′ ∩

N⋃
j=1

T (`j , δk)

)
≤ δ

η

k . (2.4)

Roughly speaking, the conclusion (2.4) means that K ′ has a radial projection of dimension ≥ τ relative
to the viewpoint x ∈ E , since only a tiny fraction of K ′ can be covered by ≤ δ−τk tubes of width 2δk

containing x .
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The set K ′ ⊂ K and the point x ∈ E will be found by induction on the scales δk . To set the scene for
the induction, it is convenient to state a more detailed version of the lemma:

Lemma 2.5. Assume that µ, ν are Borel probability measures with compact supports K , E ⊂ B(0, 1),
respectively. Assume that both measures µ and ν satisfy a Frostman condition with exponents κµ, κν ∈
(0, 2], respectively:

µ(B(x, r))≤ Cµrκµ and ν(B(x, r))≤ Cνrκν

for all balls B(x, r)⊂ R2 and for some constants Cµ,Cν ≥ 1. Assume further that µ(`)= 0 for all lines
`⊂ R2. Fix also

0< τ < 1
2κµ and ε > 0,

and write δk := 2−(1+ε)
k
.

Then, there exist numbers β = β(κµ, κν, τ ) > 0, η = η(ε, κµ, κν, τ ) > 0, and an index k0 =

k0(ε, µ, κν, τ ) ∈ N with the following properties. For all k ≥ k0, there exist

(a) compact sets K ⊃ Kk0 ⊃ Kk0+1 · · · with

µ(Kk)≥ 1−
∑

k0≤ j<k

( 1
4

) j−k0+1
≥

1
2 , (2.6)

(b) compact sets E ⊃ Ek0 ⊃ Ek0+1 · · · with ν(Ek)≥ δ
β

k

with the following property: if k > k0, x ∈ Ek , and T (`1, δk), . . . , T (`N , δk) is a family of tubes of
cardinality N ≤ δ−τk , each containing x , then

µ

(
Kk ∩

N⋃
j=1

T (`j , δk)

)
≤ δ

η

k . (2.7)

Remark 2.8. The index k0 can be chosen as large as desired; this will be clear from the proof below. It
will also be used on many occasions, without separate remark, that δk can be assumed very small for all
k ≥ k0. I also record that Lemma 2.2 follows from Lemma 2.5: simply take K ′ to be the intersection of
all the sets K j , j ≥ k0, and let x ∈ E be any point in the intersection of all the sets E j , j ≥ k0.

Proof. As stated above, the proof is by induction, starting at the largest scale k0, which will be presently
defined. Fix η = η(ε, κµ, κν, τ ) > 0 and

0 = 0(ε, κµ, κν, τ ) ∈ N. (2.9)

The number 0 will be specified at the very end of the proof, right before (2.34), and there will be several
requirements for the number η; see (2.24), (2.30), and (2.33). Applying Lemma 2.1, first pick an index
k1 = k1(ε, µ, κν, τ ) ∈ N such that µ(T (`, δk1))≤

( 1
4

)0+1 for all tubes T (`, δk1)⊂ R2, and

δ
η

k−0 ≤
(1

4

)k−0+1
, k ≥ k1. (2.10)
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Set k0 := k1+0. Then, the following holds for all k ∈ {k0, . . . , k0+0}. For any subset K ′ ⊂ K, and any
tube T (`, δk−0)⊂ R2, one has

µ(K ′ ∩ T (`, δk−0))≤ µ(T (`, δk1))≤
( 1

4

)0+1
≤
( 1

4

)k−k0+1
. (2.11)

Define
Kk := K and Ek := E, k1 ≤ k ≤ k0.

(The definitions of Ek, Kk for k1 ≤ k < k0 are only given for notational convenience.)
I start by giving an outline of how the induction will proceed. Assume that, for a certain k ≥ k0, the

sets Kk and Ek have been constructed such that:

(i) The condition (2.11) is satisfied with K ′ = Kk , and for all tubes T (`, δk−0) with T (`, δk−0) ∩

Ek−0 6=∅.

(ii) Kk and Ek satisfy the measure lower bounds (a) and (b) from the statement of the lemma.

Under the conditions (i)–(ii), I claim that it is possible to find subsets Kk+1⊂ Kk and Ek+1⊂ Ek satisfying
(ii) at level k+ 1, and also the nonconcentration condition (2.7) at level k+ 1. This is why (2.7) is only
claimed to hold for k > k0, and no one is indeed claiming that it holds for the sets Kk0 and Ek0 . These
sets satisfy (i), however, which should be viewed as a weaker substitute for (2.7) at level k, which is just
strong enough to guarantee (2.7) at level k+1. There is one obvious question at this point: if (i) at level k
gives (2.7) at level k+ 1, then where does one get (i) back at level k+ 1?

If k+ 1 ∈ {k0, . . . , k0+0}, the condition (i) is simply guaranteed by the choice of k0 (one does not
even need to assume that T (`, δk−0)∩ Ek−0 6=∅). For k+ 1> k0+0, this is no longer true. However,
for k+ 1> 0+ k0, one has k+ 1−0 > k0, and thus Kk+1−0 and Ek+1−0 have already been constructed
to satisfy (2.7). In particular, if Ek+1−0 ∩ T (`, δk+1−0) 6=∅, then

µ(Kk+1 ∩ T (`, δk+1−0))≤ µ(Kk+1−0 ∩ T (`, δk+1−0))≤ δ
η

k+1−0 ≤
( 1

4

)(k+1)−k0+1 (2.12)

by (2.7) and (2.10). This means that (i) is satisfied at level k+ 1, and the induction may proceed.
So, it remains to prove that (i)–(ii) at level k imply (ii) and (2.7) at level k+ 1. To avoid clutter, I write

δ := δk+1.

Assume that the sets Kk, Ek have been constructed for some k ≥ k0 satisfying (i)–(ii). The main task is to
understand the structure of the set of points x ∈ Ek for which (2.7) fails. To this end, we define the set
Badk⊂ Ek as follows: x ∈Badk if and only if x ∈ Ek , and there exist N ≤δ−τ tubes T (`1, δ), . . . , T (`N , δ),
each containing x , such that

µ

(
Kk ∩

N⋃
j=1

T (`j , δ)

)
> δη. (2.13)

Note that if Badk = ∅, then one can simply define Ek+1 := Ek and Kk+1 := Kk , and (ii) and (2.7) (at
level k+ 1) are clearly satisfied.

Instead of analysing Badk directly, it is useful to split it up into “directed” pieces, and digest the pieces
individually. To make this precise, let S be the “space of directions”; for concreteness, I identify S with
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B ′d(X j ) x j
direction d

Figure 2. The set Badd
k .

the upper half of the unit circle. Then, if T = T (`, δ) ⊂ R2 is a tube, I denote by dir(T ) the unique
vector e ∈ S such that `‖e.

Recall the small parameter η > 0, and partition S into D = δ−η arcs J1, . . . , JD of length ∼ δη.1 For
d ∈ {1, . . . , D} fixed (“d” for “direction”), consider the set Badd

k : it consists of those points x ∈ Ek such
that there exist N ≤ δ−τ tubes T (`1, δ), . . . , T (`N , δ), each containing x , with dir(T (`i , δ)) ∈ Jd , and
satisfying

µ

(
Kk ∩

N⋃
j=1

T (`j , δ)

)
> δ2η.

Since the direction of every possible tube in R2 belongs to one of the arcs Ji , and there are only D = δ−η

arcs in total, one has

Badk ⊂

D⋃
d=1

Badd
k . (2.14)

The next task is to understand the structure of Badd
k for a fixed direction d ∈ {1, . . . , D}. I claim

that Badd
k looks like a garden of flowers, with all the petals pointing in direction Jd ; see Figure 2 for

a rough idea. To make the statement more precise, I introduce an additional piece of notation. Fix
X ⊂ Kk , and let Bd(X) consist of those points x ∈ Ek such that X can be covered by N ≤ δ−τ tubes
T (`1, δ), . . . , T (`N , δ), with directions dir(T (`i , δ)) ∈ Jd , and each containing x . Then, note that

Badd
k = {x ∈ Ek : there exists X ⊂ Kk with µ(X) > δ2η and x ∈ Bd(X)}. (2.15)

The sets Bd(X) also have the trivial but useful property that

X ⊂ X ′ ⊂ Kk =⇒ Bd(X ′)⊂ Bd(X).

There are two steps in establishing the “garden” structure of Badd
k : first, one needs to find the “flowers”,

and second, one needs to check that the sets obtained actually look like flowers in a nontrivial sense. I

1Here, it might be better style to pick another letter, say α > 0, in place of η, since the two parameters play slightly different
roles in the proof. Eventually, however, one would end up considering min{η, α}, and it seems a bit cleaner to let η > 0 be a
“jack of all trades” from the start.
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start with the former task. Assuming that Badd
k 6=∅, pick any point x1 ∈ Badd

k and an associated subset
X1 ⊂ Kk with

µ(X1) > δ
2η and x1 ∈ Bd(X1).

Then, assume that x1, . . . , xm ∈ Badd
k and X1, . . . , Xm have already been chosen with the properties

above, and further satisfying

µ(X i ∩ X j )≤
1
2δ

4η, 1≤ i < j ≤ m. (2.16)

Then, see if there still exists a subset Xm+1 ⊂ Kk with the following three properties: µ(Xm+1) > δ
2η,

Bd(Xm+1) 6=∅, and µ(Xm+1 ∩ X i ) ≤ δ
4η/2 for all 1 ≤ i ≤ m. If such a set no longer exists, stop; if it

does, pick xm+1 ∈ Bd(Xm+1), and add Xm+1 to the list.
It follows from the “competing” conditions µ(X i ) > δ2η, and (2.16), that the algorithm needs to

terminate in at most

M ≤ 2δ−4η (2.17)

steps. Indeed, assume that the sets X1, . . . , X M have already been constructed, and consider the following
chain of inequalities:

1
M
+

1
M(M − 1)

∑
i1 6=i2

µ(X i1 ∩ X i2)≥
1

M2

M∑
i1,i2=1

µ(X i1 ∩ X i2)

=
1

M2

∫ M∑
i1,i2=1

1X i1∩X i2
(x) dµ(x)

=
1

M2

∫
[card{1≤ i ≤ M : x ∈ X i }]

2 dµ(x)

≥
1

M2

(∫
card{1≤ i ≤ M : x ∈ X i } dµ(x)

)2

=
1

M2

( M∑
i=1

µ(X i )

)2

> δ4η.

Thus, if M > 2δ−4η, there exists a pair X i1, X i2 with i1 6= i2 such that µ(X i1 ∩ X i2) > δ
4η/2, and the

algorithm has already terminated earlier. This proves (2.17).
With the sets X1, . . . , X M now defined, write

B ′d(X j ) :=
{

x ∈ Ek : there exists X ′ ⊂ X j with µ(X ′) > 1
2δ

4η and p ∈ Bd(X ′)
}
.

I claim that

Badd
k ⊂

M⋃
j=1

B ′d(X j ). (2.18)
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y Tx

T ∗x

Figure 3. Covering X j ∩ Tx by tubes centred at points outside T ∗x .

Indeed, if x ∈ Badd
k , then x ∈ Bd(X) for some X ⊂ Kk with µ(X) > δ2η by (2.15). It follows that

µ(X ∩ X j ) >
1
2δ

4η (2.19)

for one of the sets X j , 1≤ j ≤ M, because either X ∈ {X1, . . . , X M} and (2.19) is clear (all the sets X j

even satisfy µ(X j ) > δ2η), or else (2.19) must hold by virtue of X not having been added to the list
X1, . . . , X M in the algorithm. But (2.19) implies that x ∈ B ′d(X j ), since X ′ = X ∩ X j ⊂ X j satisfies
µ(X ′) > δ4η/2 and x ∈ Bd(X)⊂ Bd(X ′).

According to (2.17) and (2.18) the set Badd
k can be covered by M ≤ 2δ−4η sets of the form B ′d(X j );

see Figure 2. These sets are the “flowers”, and their structure is explored in the next lemma:

Lemma 2.20. The following holds if δ = δk+1 and η > 0 are small enough (the latter depending on κµ, τ
here). For 1≤ d ≤ D and 1≤ j ≤ M fixed, the set B ′d(X j ) can be covered by ≤ 4δ−8η tubes of the form
T = T (`, δρ), where dir(T ) ∈ Jd and ρ = ρ(κµ, τ ) > 0. The tubes can be chosen to contain the point
x j ∈ Bd(X j ).

Proof. Fix 1 ≤ j ≤ M and x ∈ B ′d(X j ). Recall the point x j ∈ Bd(X j ) from the definition of X j . By
definition of x ∈ B ′d(X j ), there exists a set X ′ ⊂ X j with µ(X ′) > δ4η/2 and x ∈ Bd(X ′). Unwrapping the
definitions further, there exist N ≤ δ−τ tubes T (`1, δ), . . . , T (`N , δ), the union of which covers X ′, and
each satisfies dir(T (`i , δ)) ∈ Jd and x ∈ T (`i , δ). In particular, one of these tubes, say Tx = T (`i , δ), has

µ(X j ∩ Tx)≥ µ(X ′ ∩ Tx)≥ µ(X ′) · δτ ≥ 1
2δ

4η+τ
≥

1
4δ

8η+τ . (2.21)

(The final inequality is just a triviality at this point, but is useful for technical purposes later.) Here comes
perhaps the most basic geometric observation in the proof: if the measure lower bound (2.21) holds for
some δ-tube T — this time Tx — and a sufficiently small η > 0 (crucially so small that 8η+ τ < κµ/2),
then the whole set Bd(X j ) is actually contained in a neighbourhood of T, called T ∗, because X j ∩ T is so
difficult to cover by δ-tubes centred at points outside T ∗; see Figure 3. In particular, in the present case,

x j ∈ Bd(X j )⊂ T (`i , δ
4ρ)=: T ∗x (2.22)
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for a suitable constant ρ=ρ(κµ, τ )> 0, specified in (2.24). To see this formally, pick y ∈ B(0, 1)\T ∗x , and
argue as follows to show that y /∈ Bd(X j ). First, any δ-tube T containing y and intersecting Tx ∩ B(0, 1)
makes an angle & δ4ρ with Tx . It follows that

diam(T ∩ Tx ∩ B(0, 1)). δ1−4ρ,

and consequently µ(T ∩ Tx ∩ B(0, 1)). Cµδκµ(1−4ρ). So, in order to cover X j ∩ Tx (let alone the whole
set X j ) it takes by (2.21)

&
µ(X j ∩ Tx)

Cµδκµ(1−4ρ) ≥
δ8η+τ−κµ(1−4ρ)

4Cµ
≥
δ8η−κµ/2+8ρ

4Cµ
(2.23)

tubes T containing y. But if

0< 8η <
κµ/2− τ

2
and 8ρ =

κµ/2− τ
2

, (2.24)

then the number on the right-hand side of (2.23) is far larger than δ−τ, which means that y /∈ Bd(X j ), and
proves (2.22).

Recall the statement of Lemma 2.20, and compare it with the previous accomplishment: (2.22) states
that if x ∈ B ′d(X j ), then x lies in a certain tube of width δ4ρ (namely Tx ), which has direction in Jd , and
also contains x j . This sounds a bit like the statement of the lemma, but there is a problem: in principle,
every point x ∈ B ′(X j ) could give rise to a different tube Tx . So, it essentially remains to show that all
these δ4ρ-tubes Tx can be covered by a small number of tubes of width δρ. To begin with, note that the
ball Bj := B(x j , δ

2ρ) can be covered by a single tube of width δρ, in any direction desired. So, to prove
the lemma, it remains to cover B ′d(X j ) \ Bj .

Note that if x, y satisfy |x − y| ≥ δ2ρ, then the direction of any δ4ρ-tube containing both x, y lies in
a fixed arc J (x, y) ⊂ S of length |J (x, y)| . δ4ρ/δ2ρ

= δ2ρ. As a corollary, the union of all δ4ρ-tubes
containing x, y, intersected with B(0, 1), is contained in a single tube of width ∼ δ2ρ. In particular, this
union (still intersected with B(0, 1)) is contained in a single δρ-tube, assuming that δ > 0 is small; this
tube can be chosen to be a δρ-tube around an arbitrary δ4ρ-tube containing both x and y.

The tube-cover of B ′d(X j ) \ Bj can now be constructed by adding one tube at a time. First, assume
that there is a point y1 ∈ B ′d(X j ) \ Bj left to be covered, and find a tube T (`1, δ

4ρ) containing both y1

and x j , with direction in Jd ; existence follows from (2.22). Add the tube T (`1, δ
ρ) to the tube-cover

of B ′d(X j ) \ Bj , and recall from the previous paragraph that T (`1, δ
ρ) now contains T ∩ B(0, 1) for

any δ4ρ-tube T ⊃ {y1, x j } (of which T = T (`1, δ
4ρ) is just one example). Finally, by the definition of

y1 ∈ B ′d(X j ), associate to y1 a subset X ′1 ⊂ X j with

µ(X ′1) >
1
2δ

4η and y1 ∈ Bd(X ′1). (2.25)

Assume that the points y1, . . . , yH ∈ B ′d(X j )\Bj , along with the associated tubes {yi , x j }⊂T (`i , δ
4ρ)⊂

T (`i , δ
ρ), and subsets X ′i ⊂ X j , as in (2.25), have already been constructed. Assume inductively that

µ(X ′i1
∩ X ′i2

)≤ 1
4δ

8η, 1≤ i1 < i2 ≤ H. (2.26)
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To proceed, pick any point yH+1∈ B ′d(X j )\Bj , and associate to yH+1 a subset X ′H+1⊂ X j withµ(X ′H+1)>

δ4ρ/2 and yH+1∈ Bd(X ′H+1). Then, test whether (2.26) still holds, that is, whetherµ(X ′H+1∩X ′i )≤δ
8η
k+1/4

for all 1 ≤ i ≤ H. If such a point yH+1 can be chosen, run the argument from the previous paragraph,
first locating a tube T (`H+1, δ

4ρ) containing both yH+1 and pj , with direction in Jd , and finally adding
T (`H+1, δ

ρ) to the tube-cover under construction.
The “competing” conditions µ(X ′i ) > δ

4η/2 and (2.26) guarantee that the algorithm terminates in

H ≤ 4δ−8η

steps. The argument is precisely the same as that used to prove (2.17), so I omit it. Once the algorithm
has terminated, I claim that all points of B ′d(X j ) \ Bj are covered by the tubes T (`i , δ

ρ), with 1≤ i ≤ H.
To see this, pick y ∈ B ′d(X j ) \ Bj , and a subset X ′ ⊂ X j with µ(X ′) > δ4η/2, and y ∈ Bd(X ′). Since the
algorithm has already terminated, it must be the case that

µ(X ′ ∩ X ′i ) >
1
4δ

8η

for some index 1≤ i ≤ H. Since X ′′ := X ′ ∩ X ′i ⊂ X ′ and consequently y ∈ Bd(X ′′), one can find a tube
Ty = T (`y, δ) 3 y, with dir(Ty) ∈ Jd , satisfying

µ(X ′i ∩ Ty)≥ µ(X ′′ ∩ Ty)≥ µ(X ′′) · δτ > 1
4δ

8η+τ .

This lower bound is precisely the same as in (2.21). Hence, it follows from the same argument which
gave (2.22) that

yi ∈ Bd(X ′i )⊂ T (`y, δ
4ρ).

Since X ′i ⊂ X j , we also have x j ∈ Bd(X j )⊂ Bd(X ′i )⊂ T (`q , δ
4ρ). So,

{y, yi , x j } ⊂ B(0, 1)∩ T (`y, δ
4ρ). (2.27)

In particular, T (`y, δ
4ρ) is a δ4ρ-tube containing both yi , x j , and hence

B(0, 1)∩ T (`y, δ
4ρ)⊂ T (`i , δ

ρ).

Combined with (2.27), this yields y ∈ T (`i , δ
ρ), as claimed. This concludes the proof of Lemma 2.20. �

Combining (2.17)–(2.18) with Lemma 2.20, the structural description of Badd
k is now complete: Badk

d
is covered by

≤ M · 4δ−8η
≤ 8δ−12η (2.28)

tubes of width δρ, with directions in Jd . For nonadjacent d1, d2 ∈ {1, . . . , D} (the ordering of indices
corresponds to the ordering of the arcs Jd ⊂ S), the covering tubes are then fairly transversal. This is can
be used to infer that most points in Ek do not lie in many different sets Badd

k . Indeed, consider the set
BadBadk of those points in R2 which lie in (at least) two sets Badd1

k and Badd2
k with |d2− d1| > 1. By

Lemma 2.20, such points lie in the intersection of some pair of tubes T1 = T (`1, δ
ρ) and T2 = T (`2, δ

ρ)

with dir(Ti ) ∈ Jdi . The angle between these tubes is & δη, whence

diam(T1 ∩ T2). δ
ρ−η,
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and consequently

ν(T1 ∩ T2). Cνδκν(ρ−η) ≤ Cνδκνρ−2η. (2.29)

For d ∈ {1, . . . , D} fixed, there correspond . δ−12η tubes in total, as pointed out in (2.28). So, the number
of pairs T1, T2, as above, is bounded by

. D2
· δ−24η

≤ δ−26η.

Consequently, by (2.29),

ν(BadBadk). Cνδ−28η+κνρ .

This upper bound is far smaller than δβk /2≤ ν(Ek)/2, taking 0<max{β, 28η}< κνρ/2, so that

0< β < κνρ− 28η. (2.30)

For such choices of β, η, the next task is then to choose Ek+1 ⊂ Ek such that ν(Ek+1)≥ δ
β

k+1. Start by
writing Gk := Ek \BadBadk , so that

ν(Gk)≥
1
2ν(Ek)≥

1
2δ
β

k

by the choice of β. Now, either

ν(Gk ∩Badk)≥
1
2ν(Gk) or ν(Gk ∩Badk) <

1
2ν(Gk). (2.31)

The latter case is quick and easy: set Ek+1 :=Gk \Badk and Kk+1 := Kk . Then ν(Ek+1)≥ ν(Ek)/4≥ δ
β

k+1
(assuming that k ≥ k0 is large enough). Moreover, the set Ek+1 no longer contains any points in Badk , so
(2.7) is satisfied at level k+ 1 by the very definition of Badk ; see (2.13).

So, it remains to treat the first case in (2.31). Start by recalling from (2.14) that Badk is covered by the
sets Badd

k , 1≤ d ≤ D, so

ν(Gk ∩Badd
k )≥

ν(Gk)

2D
≥

1
4δ
ηδ
β

k =
1
4δ
η+β/(1+ε)

for some fixed d ∈ {1, . . . , D}. Then, recall from (2.28) that Badd
k can be covered by ≤ 8δ−12η tubes of

the form T (`, δρ) with directions in Jd . It follows that there exists a fixed tube T0 = T (`0, δ
ρ) such that

dir(T0) ∈ Jd and ν(Gk ∩ T0 ∩Badd
k )≥

1
32δ

13η+β/(1+ε). (2.32)

So, to ensure ν(Gk ∩ T0 ∩Badd
k )≥ δ

β, choose η > 0 so small that

13η+
β

1+ ε
< β. (2.33)

To convince the reader that there is no circular reasoning at play, I gather here all the requirements for β
and η (harvested from (2.24), (2.30), and (2.33)):

0< β <
κνρ

2
and 0< η <min

{
κµ/2− τ

2
,
κνρ

56
,

εβ

13(1+ ε)

}
.
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With such choices of β, η, recalling (2.32), and assuming that δ is small enough, the set

Ek+1 := Gk ∩ T0 ∩Badd
k

satisfies ν(Ek+1)≥ δ
β, which is statement (b) from the lemma. It remains to define Kk+1. To this end,

recall that T0 is a tube around the line `0 ⊂ R2. Define

Kk+1 := Kk \ T (`0, δ
η/2).

Then, assuming that η/2 has the form η/2= (1+ ε)−0−1 for an integer 0 = 0(ε, κµ, κν, τ ) ∈ N (this is
finally the integer from (2.9)), one has

δη/2 = δk−0. (2.34)

Since T (`0, δk−0)∩ Ek−0 6=∅, it follows from the induction hypothesis (i) that

µ(Kk ∩ T (`0, δk−0))≤
( 1

4

)k−k0+1
.

Consequently,

µ(Kk+1)≥ µ(Kk)−
( 1

4

)k−k0+1
≥ 1−

∑
k0≤ j<k+1

( 1
4

) j−k0+1
,

which is the desired lower bound from (a) of the statement of the lemma. So, it remains to verify the
nonconcentration condition (2.7) for Ek+1 and Kk+1. To this end, pick x ∈ Ek+1. First, observe that every
tube T = T (`, δ) which contains x and has nonempty intersection with Kk+1⊂ B(0, 1)\T (`, δη/2) forms
an angle & δη/2 with T0. In particular, this angle is far larger than δη. Since dir(T0) ∈ Jd by (2.32), this
implies that dir(T ) ∈ Jd ′ for some |d ′− d|> 1.

Now, if the nonconcentration condition (2.7) still fails for x ∈ Ek+1, there would exist N ≤ δ−τ tubes
T (`1, δ), . . . , T (`N , δ), each containing x , and with

µ

(
Kk+1 ∩

N⋃
i=1

T (`i , δ)

)
> δη.

By the pigeonhole principle, it follows that the tubes T (`i , δ) with dir(Ti ) ∈ Jd ′ for some fixed arc Jd ′

cover a set X ⊂ Kk+1 ⊂ Kk of measure µ(X) > δ2η. This means precisely that x ∈ Badd ′
k , and by the

observation in the previous paragraph, |d − d ′|> 1. But x ∈ Ek+1 ⊂ Badd
k by definition, so this would

imply that x ∈ BadBadk , contradicting the fact that x ∈ Ek+1 ⊂ Gk . This completes the proof of (2.7),
and the lemma. �

The proof of Theorem 1.5 is now quite standard:

Proof of Theorem 1.5. Write s := dimH K, and assume that s > 0 and dimH E > 0. Make a counter-
assumption: E is not contained on a line, but dimH πx(K ) < s/2 for all x ∈ E . Then, find t < s/2,
and a positive-dimensional subset Ẽ ⊂ E not contained on any single line, with dimH πx(K )≤ t for all
x ∈ Ẽ (if your first attempt at Ẽ lies on some line `, simply add a point x0 ∈ E \ ` to Ẽ , and replace t by
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max{t, dimH πx0(K )}< s/2). So, now Ẽ satisfies the same hypotheses as E , but with “< s/2” replaced
by “≤ t < s/2”. Thus, without loss of generality, one may assume that

dimH πx(K )≤ t < 1
2 s, x ∈ E . (2.35)

Using Frostman’s lemma, pick probability measures µ, ν, with sptµ⊂ K and spt ν ⊂ E , satisfying
the growth bounds (2.3) with exponents 0< κµ < s and κν > 0. Pick, moreover, κµ so close to s that

1
2κµ > t. (2.36)

Observe that µ(`) = 0 for all lines ` ⊂ R2. Indeed, if µ(`) > 0 for some line ` ⊂ R2, then there exists
x ∈ E \ ` by assumption, and

dimH πx(K )≥ dimH πx(sptµ∩ `)≥ κµ > t,

violating (2.35) at once. Finally, by restricting the measures µ and ν slightly, one may assume that they
have disjoint supports.

In preparation for using Lemma 2.2, fix ε > 0, 0< τ < κµ/2 in such a way that

τ

(1+ ε)2
> t. (2.37)

This is possible by (2.36). Then, apply Lemma 2.2 to find the set K ′ ⊂ sptµ⊂ K with

µ(K ′)≥ 1
2 ,

the parameters η > 0 and k0 ∈ N, and the point x ∈ E satisfying (2.4). I claim that

dimH πx(K ′)≥
τ

(1+ ε)2
, (2.38)

which violates (2.35) by (2.37). If not, cover πx(K ) efficiently by arcs J1, J2, . . . of lengths restricted to
the values δk = 2−(1+ε)

k
, with k ≥ k0. More precisely: assuming that (2.38) fails, start with an arbitrary

efficient cover J̃1, J̃2, . . . by arcs of length | J̃i | ≤ δk0 , satisfying∑
j≥1

| J̃j |
τ/(1+ε)2

≤ 1.

Then, replace each J̃j by the shortest concentric arc Jj ⊃ J̃j , whose length is of the form δk . Note that
`(Jj )≤ `( J̃j )

1/(1+ε), so that ∑
j≥1

|Jj |
τ/(1+ε)

≤

∑
j≥1

| J̃j |
τ/(1+ε)2

≤ 1.

The arcs J1, J2, . . . now cover πx(K ′), and there are ≤ δ−τ/(1+ε)k arcs of any fixed length δk . Since x /∈ K ′,
for every k ≥ k0 there exists a collection of tubes Tk of the form T (`, δk) 3 x , such that |Tk |. δ

−τ/(1+ε)
k

(the implicit constant depends on dist(x, K ′)), and

K ′ ⊂
⋃
k≥k0

⋃
T∈Tk

T .
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In particular |Tk | ≤ δ
−τ
k , assuming that δk is small enough for all k ≥ k0. Recall that µ(K ′)≥ 1

2 . Hence, by
the pigeonhole principle, one can find k ∈N such that the following holds: there is a subset K ′k ⊂ K ′ with
µ(K ′k) ≥ 1/(100k2) such that K ′k is covered by the tubes in Tk . But 1/(100k2) is far larger than δηk , so
this is explicitly ruled out by nonconcentration estimate (2.4). This contradiction completes the proof. �

3. Proof of Theorem 1.11

This section contains the proof of Theorem 1.13, which evidently implies Theorem 1.11. Fix µ ∈M(Rd)

and x ∈Rd
\sptµ. For a suitable constant cd > 0 to be determined shortly, consider the weighted measure

µx := cdkx dµ,

where kx := |x − y|1−d is the (d−1)-dimensional Riesz kernel, translated by x . A main ingredient in the
proof of Theorem 1.13 is the following identity:

Lemma 3.1. Let µ ∈ C0(R
d) (that is, µ is a continuous function with compact support) and ν ∈M(Rd).

Assume that sptµ∩ spt ν =∅. Then, for p ∈ (0,∞),∫
‖πx]µx‖

p
L p(Sd−1)

dν(x)=
∫

Sd−1
‖πe]µ‖

p
L p(πe]ν)

dHd−1(e).

Here, and for the rest of the paper, πe stands for the orthogonal projection onto e⊥ ∈ G(d, d − 1).

Proof. Start by assuming that also ν ∈ C0(R
d). Fix x ∈ Rd. The first aim is to find an explicit expression

for the density πxµx on Sd−1, so fix f ∈ C(Sd−1) and compute as follows, using the definition of the
measure µx , integration in polar coordinates, and choosing the constant cd > 0 appropriately:∫

f (e) d[πx]µx ](e)=
∫

f (πx(y)) dµx(y)= cd

∫
f (πx(y))
|x − y|d−1 dµ(y)

=

∫
Sd−1

f (e)
∫

R

µ(x + re) dr dHd−1(e)

=

∫
Sd−1

f (e) ·πe]µ(πe(x)) dHd−1(e).

Since the equation above holds for all f ∈ C(Sd−1), one infers that

πx]µx = [e 7→ πe]µ(πe(x))] dHd−1
|Sd−1 . (3.2)

Now, one may prove the lemma by a straightforward computation, starting with∫
‖πx]µx‖

p
L p(Sd−1)

dν(x)=
∫∫

Sd−1
[πx]µx(e)]p dHd−1(e) dν(x)

=

∫
Sd−1

∫
e⊥

∫
π−1

e {w}

[πe]µ(πe(x))]pν(x) dH1(x) dHd−1(w) dHd−1(e).
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Note that if x ∈ π−1
e {w}, then πe(x)= w, so the expression [· · · ]p above is independent of x . Hence,∫

‖πx]µx‖
p
L p(Sd−1)

dν(x)=
∫

Sd−1

∫
e⊥
[πe]µ(w)]

p
(∫

π−1
e {w}

ν(x) dH1(x)
)

dHd−1(w) dH1(e)

=

∫
Sd−1

∫
e⊥
[πe]µ(w)]

pπe]ν(w) dHd−1(w) dHd−1(e)

=

∫
Sd−1
‖πe]µ‖

p
L p(πe]ν)

dHd−1(e),

as claimed.
Finally, if ν ∈M(Rd) is arbitrary, not necessarily smooth, note that

x 7→ ‖πx]µx‖
p
L p(Sd−1)

is continuous, assuming that µ ∈ C0(R
d), as we do (to check the details, it is helpful to infer from (3.2)

that πxµx ∈ L∞(Sd−1) uniformly in x , since the projections πe]µ clearly have bounded density, uniformly
in e ∈ Sd−1). Thus, if (ψn)n∈N is a standard approximate identity on Rd, one has∫

‖πx]µx‖
p
L p(Sd−1)

dν(x)= lim
n→∞

∫
Sd−1
‖πe]µ‖

p
L p(πe]νn)

dHd−1(e), (3.3)

with νn = ν ∗ψn . Since πe]νn converges weakly to πe]ν for any fixed e ∈ Sd−1, and πe]µ ∈ C0(e⊥), it is
easy to see that the right-hand side of (3.3) equals∫

Sd−1
‖πe]µ‖

p
L p(πe]ν)

dHd−1(e). �

Here is one more (classical) tool required in the proof of Theorem 1.13:

Lemma 3.4. Let 0<σ < d/2, and let µ∈M(Rd) be a measure with sptµ⊂ B(0, 1) and Id−2σ (µ)<∞.
Then

‖ f ‖L1(µ) .d,σ
√

Id−2σ (µ)‖ f ‖Hσ (Rd )

for all continuous functions f ∈ Hσ (Rd), where

‖ f ‖Hσ (Rd ) :=

(∫
| f̂ (ξ)|2 |ξ |2σ dξ

)1/2

.

Proof. See Theorem 17.3 in [Mattila 2015]. Since f is assumed continuous here, | f | is pointwise bounded
by the maximal function M̃ f appearing in [Mattila 2015, Theorem 17.3]. �

Proof of Theorem 1.13. Fix 2(d − 1)− s < t < d − 1. It suffices to prove that if ν ∈M(Rd) is a fixed
measure with It(ν) <∞, and sptµ∩ spt ν =∅, then

πx]µx ∈ L p(Sd−1) for ν a.e. x ∈ Rd ,

whenever

1< p ≤min
{

2−
t

(d − 1)
,

t
2(d − 1)− s

}
. (3.5)
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I will treat the numbers d, p, s, t as “fixed” from now on, and in particular the implicit constants in the
. notation may depend on d, p, s, t . Note that the right-hand side of (3.5) lies in (1, 2), so this is a
nontrivial range of p’s. Fix p as in (3.5). The plan is to show that∫

‖πx]µx‖
p
L p(Sd−1)

dν(x). It(ν)
1/2p Is(µ)

1/2 <∞. (3.6)

This will be done via Lemma 3.1, but one first needs to reduce to the case µ ∈ C0(R
d). Let (ψn)n∈N be a

standard approximate identity on Rd, and write µn = µ ∗ψn . Then πx](µn)x converges weakly to πx]µx

for any fixed x ∈ spt ν ⊂ Rd
\ sptµ:∫

f (e) d[πx]µx(e)] = lim
n→∞

∫
f (e) dπx](µn)x(e), f ∈ C(Sd−1).

It follows that

‖πx]µx‖
p
L p(Sd−1)

≤ lim inf
n→∞

‖πx](µn)x‖
p
L p(Sd−1)

, x ∈ spt ν,

and consequently ∫
‖πx]µx‖

p
L p(Sd−1)

dν(x)≤ lim inf
n→∞

∫
‖πx](µn)x‖

p
L p(Sd−1)

dν(x)

by Fatou’s lemma. Now, it remains to find a uniform upper bound for the terms on the right-hand side;
the only information about µn , which we will use, is that Is(µn). Is(µ). With this in mind, I simplify
notation by defining µn :=µ. For the remainder of the proof, one should keep in mind that πe]µ∈C∞0 (e

⊥)

for e ∈ Sd−1, so the integral of πe]µ with respect to various Radon measures on e⊥ is well-defined, and
the Fourier transform of πe]µ on e⊥ (identified with Rd−1) is a rapidly decreasing function.

We start by appealing to Lemma 3.1:∫
‖πx]µx‖

p
L p(Sd−1)

dν(x)=
∫

Sd−1
‖πe]µ‖

p
L p(πe]ν)

dHd−1(e). (3.7)

The next task is to estimate the L p(πe]ν)-norms of πe]µ individually, for e ∈ Sd−1 fixed. I start by
recording the standard fact, see for example the proof of Theorem 9.3 in [Mattila 1995], that It(πe]ν)<∞

for Hd−1-almost every e ∈ Sd−1; I will only consider those e ∈ Sd−1 satisfying this condition. Recall that
1< p ≤ t/[2(d − 1)− s]. Fix f ∈ Lq(πe]ν), with q = p′ and ‖ f ‖Lq (πe]ν) = 1, and note that

I2(d−1)−s( f dπe]ν)=

∫∫
f (x) f (y) dπe]ν(x) dπe]ν(y)

|x − y|2(d−1)−s . It(πe]ν)
1/p

by Hölder’s inequality. It now follows from Lemma 3.4 (applied in e⊥ ∼= Rd−1 with σ = [s− (d − 1)]/2)
that ∫

πe]µ · f dπe]ν .
√

I2(d−1)−s( f dπe]ν)‖πe]µ‖H [s−(d−1)]/2

. (It(πe]ν))
1/2p

(∫
e⊥
|π̂e]µ(ξ)|

2
|ξ |s−(d−1) dξ

)1/2

.
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Since the function f ∈ Lq(πe]ν) with ‖ f ‖Lq (πe]ν) = 1 was arbitrary, one may infer by duality that

‖πe]µ‖L p(πe]ν) . (It(πe]ν))
1/2p

(∫
e⊥
|π̂e]µ(ξ)|

2
|ξ |s−(d−1) dξ

)1/2

.

Now it is time to estimate (3.7). This uses duality once more, so fix f ∈ Lq(Sd−1) with ‖ f ‖Lq (Sd−1) = 1.
Then, write∫

Sd−1
‖πe]µ‖L p(πe]ν) · f (e) dHd−1(e)

.
∫

Sd−1
(It(πe]ν))

1/2p
(∫

e⊥
|π̂e]µ(ξ)|

2
|ξ |s−(d−1) dξ

)1/2

· f (e) dHd−1(e)

.

(∫
Sd−1

It(πe]ν)
1/p
· f (e)2 dHd−1(e)

)1/2(∫
Sd−1

∫
e⊥
|π̂e]µ(ξ)|

2
|ξ |s−(d−1) dξ dHd−1(e)

)1/2

.

The second factor is bounded by . Is(µ)
1/2 <∞, using (generalised) integration in polar coordinates;

see for instance (2.6) in [Mattila and Orponen 2016]. To tackle the first factor, say “I ”, write f 2
= f · f

and use Hölder’s inequality again:

I .
(∫

Sd−1
It(πe]ν) · f (e)p dHd−1(e)

)1/2p

· ‖ f ‖1/2Lq (Sd−1)
.

The second factor equals 1. To see that the first factor is also bounded, note that if B(e, r)⊂ Sd−1 is a
ball, then ∫

B(e,r)
f p dHd−1

≤ (Hd−1(B(e, r)))2−p
·

(∫
Sd−1

f q dHd−1
)p−1

. r (d−1)(2−p).

Thus, σ = f p dHd−1 is a Frostman measure on Sd−1 with exponent (d − 1)(2− p). Now, it is well
known (and first observed by Kaufman [1968]) that∫

Sd−1
It(πe]ν) dσ(e)=

∫∫∫
Sd−1

dσ(e)
|πe(x)−πe(y)|t

dν(x) dν(y). It(ν),

as long as t < (d − 1)(2− p), which is implied by (3.5). Hence I . It(ν)
1/2p, and finally∫

Sd−1
‖πe]µ‖L p(πe]ν) · f (e) dHd−1(e). It(ν)

1/2p Is(µ)
1/2

for all f ∈ Lq(Sd−1) with ‖ f ‖Lq (Sd−1) = 1. By duality, it follows that

(3.7). It(ν)
1/2p Is(µ)

1/2 <∞.

This proves (3.6), using (3.7). The proof of Theorem 1.13 is complete. �
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CARTAN SUBALGEBRAS OF TENSOR PRODUCTS
OF FREE QUANTUM GROUP FACTORS

WITH ARBITRARY FACTORS

YUSUKE ISONO

Let G be a free (unitary or orthogonal) quantum group. We prove that for any nonamenable subfactor
N ⊂ L∞(G) which is an image of a faithful normal conditional expectation, and for any σ -finite factor B,
the tensor product N ⊗ B has no Cartan subalgebras. This generalizes our previous work that provides the
same result when B is finite. In the proof, we establish Ozawa–Popa and Popa–Vaes’s weakly compact
action on the continuous core of L∞(G)⊗ B as the one relative to B, by using an operator-valued weight
to B and the central weak amenability of Ĝ.

1. Introduction

Let M be a von Neumann algebra. A Cartan subalgebra A ⊂ M is an abelian von Neumann subalgebra
which is an image of a faithful normal conditional expectation such that (i) A is maximal abelian and
(ii) the normalizer NM(A) generates M as a von Neumann algebra [Feldman and Moore 1977]. Here
NM(A) is given by {u ∈ U(M) | u Au∗ = A}.

The group measure space construction of Murray and von Neumann gives a typical example of a
Cartan subalgebra. Indeed, the canonical subalgebra L∞(X, µ)⊂ L∞(X, µ)o0 is Cartan whenever the
given action 0y (X, µ) is free. More generally, one can associate any (not necessarily free) group action
with a Cartan subalgebra by its orbit equivalence relation. Conversely when M has separable predual, any
Cartan subalgebra A ⊂ M is realized by an orbit equivalence relation (with a cocycle), and hence by a
group action. Thus the notion of Cartan subalgebras is closely related to group actions. In particular if M
has no Cartan subalgebras, then it cannot be constructed by any group actions. It was an open problem to
find such a von Neumann algebra.

The first result in this direction was given by Connes [1975]. He constructed a II1 factor which is
not isomorphic to its opposite algebra, so it is particularly not isomorphic to any group action (without
cocycle) von Neumann algebra. Voiculescu [1996] then provided a complete solution to this problem, by
proving free group factors LFn (n ≥ 2) have no Cartan subalgebras. He used his celebrated free entropy
technique, and it was later developed to give other examples [Shlyakhtenko 2000; Jung 2007].

After these pioneering works, Ozawa and Popa [2010] introduced a completely new framework to study
this subject. Among other things, they proved that free group factors are strongly solid, that is, for any
diffuse amenable subalgebra A ⊂ LFn , the von Neumann algebra generated by the normalizer NLFn (A)

MSC2010: primary 46L10, 46L36; secondary 58B32.
Keywords: von Neumann algebra, type III factor, Cartan subalgebra.
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remains amenable. Since LFn itself is nonamenable, this immediately yields that LFn has no Cartan
subalgebras. Note that strong solidity is stable under taking subalgebras and hence any nonamenable
subfactor of LFn also has no Cartan subalgebras.

The proof of Ozawa and Popa consist of two independent steps. First, by using weak amenability
of Fn , they observed that the normalizer group acts weakly compactly on a given amenable subalgebra.
Second, combining this weakly compact action with Popa’s deformation and intertwining techniques
[Popa 2006a; 2006b], they constructed a state which is central with respect to the normalizer group.
Thus they obtained that the normalizer group generates an amenable von Neumann algebra. Since these
techniques are applied to any finite crossed product B oFn with the W∗CMAP (weak∗ completely metric
approximation property, see Section 2D), they also proved that for any finite factor B with the W∗CMAP,
the tensor product LFn ⊗ B has no Cartan subalgebras.

To remove the W∗CMAP assumption on BoFn , Popa and Vaes [2014a] introduced a notion of relative
weakly compact action. This is an appropriate “relativization” of the first step above in the view of the
relative tensor product L2(B o Fn)⊗B L2(B o Fn). In particular this only requires the weak amenability
of Fn . Thus by modifying the proof in the second step above, they obtained, among other things, the
tensor product LFn ⊗ B has no Cartan subalgebras for any finite factor B.

The aim of the present paper is to develop these techniques to study type III von Neumann algebras.
More specifically we replace the free group factor LFn with the free quantum group factor, which is a
type III factor in most cases. We have already studied this [Isono 2015a; 2015b] when B is finite. In the
general case however, namely, when B is a type III factor, we could not provide a satisfactory answer to
this problem, and this will be discussed in this article.

We note that the first solution to the Cartan subalgebra problem for type III factors in our framework
was obtained by Houdayer and Ricard [2011]. They followed the proof of [Ozawa and Popa 2010]
by exploiting techniques in [Chifan and Houdayer 2010], that is, the use of Popa’s deformation and
intertwining techniques together with the continuous core decomposition. While Houdayer and Ricard
followed the idea of [Ozawa and Popa 2010], our approach in [Isono 2015a; 2015b] was based on
[Popa and Vaes 2014b]. In particular, in the second step above, we made use of Ozawa’s condition
(AO) [2004] (or biexactness, see Section 2C) at the level of the continuous core. In this article, we
stand again on the use of biexactness, and we will further develop techniques of [Isono 2015b]. See
[Boutonnet et al. 2014] for other examples of type III factors with no Cartan subalgebras, and [Chifan and
Sinclair 2013; Chifan et al. 2013] for other works on Cartan subalgebras of biexact group von Neumann
algebras.

The following theorem is the main observation of this article. This should be regarded as a generalization
of [Isono 2015b, Theorem B], and this allows us to obtain a satisfactory answer to the Cartan problem in
the type III setting. See Section 2 for items in this theorem.

Theorem A. Let G be a compact quantum group with the Haar state h, and B a type III1 factor with a
faithful normal state ϕB . Put M := L∞(G)⊗ B and ϕ := h⊗ϕB . Let CϕB (B) and Cϕ(M) be continuous
cores of B and M with respect to ϕB and ϕ, and regard CϕB (B) as a subset of Cϕ(M). Let Tr be a
semifinite trace on Cϕ(M) with Tr |CϕB (B) semifinite, and p ∈ Cϕ(M) a projection with Tr(p) <∞.
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Assume that Ĝ is biexact and centrally weakly amenable with Cowling–Haagerup constant 1. Then for
any amenable von Neumann subalgebra A ⊂ pCϕ(M)p, we have either one of the following conditions:

(i) We have A �Cϕ(M) CϕB (B).

(ii) The von Neumann algebra NpCϕ(M)p(A)
′′ is amenable relative to CϕB (B).

As a consequence of the main theorem, we obtain the following corollary. This is the desired one since
our main example, free quantum groups, satisfies the assumptions in this corollary. See [Isono 2015b, Theo-
rem C] for other examples of quantum groups satisfying these assumptions. Below we say that an inclusion
of von Neumann algebras A ⊂ M is with expectation if there is a faithful normal conditional expectation.

Corollary B. Let G be a compact quantum group as in Theorem A. Then for any nonamenable subfactor
N ⊂ L∞(G) with expectation and any σ -finite factor B, the tensor product N ⊗ B has no Cartan
subalgebras.

For the proof of Theorem A, we will establish a weakly compact action on the continuous core of
L∞(G)⊗ B as the one relative to B. The central weak amenability of Ĝ is used to find approximation
maps on the continuous core which are relative to B oR. Then combined with the amenability of R, we
construct appropriate approximation maps on the core relative to B. In this process, since B is not with
expectation in the core, we use operator-valued weights instead. This is our strategy for the first step.

For the second step, although we go along a very similar line to [Isono 2015b], we need a rather
different (and general) approach to the proof. We note that this is why we assume only biexactness of Ĝ,
and do not need the notion of condition (AOC)+ as in [Isono 2015a; 2015b].

This paper is organized as follows. In Section 2, we recall fundamental facts for our paper, such as
Tomita–Takesaki theory, free quantum groups, biexactness, weak amenability, and Popa’s intertwining
techniques.

In Section 3, we study a generalization of the relative weakly compact action on the continuous core
by constructing appropriate approximation maps on the core. The main tools for this construction are:
operator-valued weights; central weak amenability; and weak containment, together with the amenability
of R. This is the most technical part of this paper.

In Section 4, we prove the main theorem. We follow the proof of [Popa and Vaes 2014b; Isono 2015b],
using the weakly compact action given in Section 3.

2. Preliminaries

2A. Tomita–Takesaki theory and operator-valued weights. We first recall some notions in Tomita–
Takesaki theory. We refer the reader to [Takesaki 1979] for this theory, and to [Haagerup 1979a;
1979b] and [Takesaki 1979, Chapter IX, §4] for operator-valued weights.

Let M be a von Neumann algebra and ϕ a faithful normal semifinite weight on M. Put nϕ := {x ∈ M |
ϕ(x∗x) <∞} and denote by 3ϕ : nϕ → L2(M, ϕ) the canonical embedding. We denote the modular
operator, modular conjugation, and modular action for M ⊂B(L2(M, ϕ)) by 1ϕ , Jϕ and σ ϕ respectively.
The Hilbert space L2(M, ϕ) with Jϕ and with its positive cone Pϕ is called the standard representation
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for M [Takesaki 1979, Chapter IX, §1] and does not depend on the choice of ϕ. Any state on M is
represented by a vector state, from which the vector is uniquely chosen from Pϕ . Any element α ∈Aut(M)
is written as α=Ad u by a unique u ∈B(L2(M, ϕ)) which preserves the standard representation structure.
The crossed product Moσ ϕ R by the modular action is called the continuous core [loc. cit., Chapter XII, §1]
and is written as Cϕ(M), which is equipped with the dual weight ϕ̂ and the canonical trace Trϕ := ϕ̂(h−1

ϕ · ),
where hϕ is a self-adjoint positive closed operator affiliated with LR. For any other faithful normal
semifinite weight ψ , there is a family of unitaries ([Dϕ, Dψ]t)t∈R in M called the Connes cocycle
[loc. cit., Definition VIII.3.4]. This gives a cocycle conjugate for modular actions of ϕ and ψ , and hence
there is a ∗-isomorphism

5ψ,ϕ : Cϕ(M)→ Cψ(M), 5ψ,ϕ(x)= x (x ∈ M), 5ψ,ϕ(λ
ϕ
t )= [Dψ, Dϕ]∗t λ

ψ
t (t ∈ R).

It holds that 5ψ,ϕ ◦5ϕ,ω =5ψ,ω for any other ω on M, and 5ψ◦EM ,ϕ◦EM |Cϕ(M) =5ψ,ϕ for any M ⊂ N
with expectation EM . It preserves traces Trψ ◦5ψ,ϕ = Trϕ [loc. cit., Theorem XII.6.10(iv)]. So the pair
(Cϕ(M),Trϕ) does not depend on the choice of ϕ, and we call Trϕ the canonical trace. A von Neumann
algebra is said to be a type III1 factor if its continuous core is a II∞ factor.

Let B ⊂ M be any inclusion of von Neumann algebras. We denote by M̂+ the extended positive cone
of M. For any operator-valued weight T : M̂+→ B̂+, we use the notation

nT := {x ∈ M | ‖T (x∗x)‖∞ <+∞},

mT := (nT )
∗nT =

{∑n
i=1 x∗i yi

∣∣ n ≥ 1, xi , yi ∈ nT for all 1≤ i ≤ n
}
.

Then T has a unique extension T :mT → B as a B-bimodule linear map. In this paper, all the operator-
valued weights that we consider are assumed to be faithful, normal and semifinite. Note that since the
operator-valued weight is nothing but a weight when B = C, we may also extend a faithful normal
semifinite weight ϕ on mϕ .

For any inclusion B ⊂ M of von Neumann algebras with faithful normal weights ϕB and ϕM on B
and M respectively, the modular actions of them satisfy σ ϕM |B = σ

ϕB if and only if there is an operator-
valued weight EB from M to B which satisfies ϕB ◦ EB = ϕM , and EB is determined uniquely by this
equality [loc. cit., Theorem IX.4.18]. We call EB the operator-valued weight from (M, ϕM) to (B, ϕB).
In this case, the cores satisfy the inclusion CϕB (B) ⊂ CϕM (M) since σ ϕM |B = σ

ϕB. When ϕM |B = ϕB ,
EB is a faithful normal conditional expectation [loc. cit., Theorem IX.4.2].

Let M be a von Neumann algebra and ϕ a faithful normal semifinite weight on M. Put L2(M) :=
L2(M, ϕ) and let α be an action of R on M. In this article, as a representation of M oα R, we use that for
any ξ ∈ L2(R)⊗ L2(M)' L2(R,M) and s, t ∈ R,

M 3 x 7→ πα(x), (πα(x)ξ)(s) := α−s(x)ξ(s),

LR 3 λt 7→ 1M ⊗ λt , ((1⊗ λt)ξ)(s) := ξ(s− t).

Let Cc(R,M) be the set of all ∗-strongly continuous functions from R to M with compact supports. Then
there is an embedding

π̂α : Cc(R,M) 3 f 7→
∫

R

(1⊗ λt)πα( f (t)) dt ∈ M oα R,
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where the integral here should be understood as the map T ∈ B(L2(R)⊗ L2(M)) given by

〈T ξ, η〉 =
∫

R

〈(1⊗ λt)πα( f (t))ξ, η〉 dt

for all ξ, η ∈ L2(R)⊗ L2(M). We note that by

( f ∗ g)(t) :=
∫

R

αs( f (t + s))g(−s) ds and f ](t) := α−1
t ( f (−t)∗) for f, g ∈ Cc(R,M) and t ∈ R,

Cc(R,M) is a ∗-algebra, so that π̂α is a ∗-homomorphism. For f ∈ Cc(R,M) and x ∈ M, we define
( f · x)(t) := f (t)x for t ∈ G. Let Cc(R,M)nϕ ⊂ Cc(R,M) be the set of linear spans of f · x for
f ∈ Cc(R,M) and x ∈ nϕ . With this notation, the dual weight satisfies

ϕ̂(π̂α(g)∗π̂α( f ))= ϕ((g] ∗ f )(0))=
∫

R

ϕ(g(t)∗ f (t)) dt for any f, g ∈ Cc(R,M)nϕ

[Takesaki 1979, Theorem X.1.17]. The modular objects of ϕ̂ are given by

σ
ϕ̂
t |M = σ

ϕ
t and σ

ϕ̂
t (λs)= λs[D(ϕ ◦αs), Dϕ]t for s, t ∈ R,

(Jϕ̂ξ)(t)= u∗(t)Jϕξ(−t) for t ∈ R and ξ ∈ L2(R, L2(M)),

where u(t) is the unitary such that αt = Ad u(t), which preserves the standard structure of L2(M, ϕ).
In particular σ ϕ̂ globally preserves M and so there is a canonical operator-valued weight EM from
(M oα R, ϕ̂) to (M, ϕ). By the equality ϕ ◦ EM = ϕ̂, it holds that for any f, g ∈ Cc(R,M),

EM(π̂α(g)∗π̂α( f ))= (g] ∗ f )(0)=
∫

R

g(t)∗ f (t) dt.

Here we prove a few lemmas.

Lemma 2.1. Let (N , ϕN ) and (B, ϕB) be von Neumann algebras with faithful normal semifinite weights
with ϕN (1)= 1. Let αB be an action of R on B, and put M := N⊗ B, ϕ := ϕN ⊗ϕB , α := σ ϕN ⊗αB. Let
EM , EB , EBoR be the canonical operator-valued weights from (M oαR, ϕ̂) to (M, ϕ), from (M oαR, ϕ̂)

to (B, ϕB), and from (M oα R, ϕ̂) to (B oαB R, ϕ̂B) respectively. Then we have EBoR ◦ EM = EB .

Proof. Let PN be the one-dimensional projection from L2(N , ϕN ) onto C3ϕN (1N ) and observe that the
compression map by PN ⊗ 1B ⊗ 1L2(R) on N ⊗ B ⊗B(L2(R)) gives a normal conditional expectation
E : M oα R→ B oαB R satisfying E((x ⊗ b)λt)= ϕN (x)bλt for x ∈ N, b ∈ B, and t ∈ R. It is faithful
on M oα R since it is faithful on N ⊗ B ⊗ B(L2(R)). A simple computation shows that E = EBoR

and EBoR((x ⊗ b)λt) = ϕN (x)bλt for x ∈ N, b ∈ B, and t ∈ R. In particular EBoR|M is the canonical
conditional expectation E M

B from (M, ϕ) to (B, ϕB). Then by definition, ϕB ◦ E M
B ◦ EM = ϕ ◦ EM = ϕ̂,

and hence E M
B ◦ EM = EB . Since E M

B ◦ EM = EBoR ◦ EM , we obtain the conclusion. �

We next recall the following well-known fact. We include a proof for the reader’s convenience.

Lemma 2.2. Let M be a type III1 factor and N a von Neumann algebra. Then the center of the continuous
core of M ⊗ N coincides with the center of N.
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Proof. Since M is a type III1 factor, there is a faithful normal semifinite weight ϕM on M such that
(MϕM )

′
∩M = C [Takesaki 1979, Theorem XII.1.7], where MϕM is the fixed point algebra of the modular

action of ϕM . Let ϕN be a faithful normal semifinite weight on N and put ϕ := ϕM ⊗ϕN . Observe that
the center of Cϕ(M ⊗ N ) is contained in

(MϕM ⊗C1L2(N )⊗L2(R))
′
∩M ⊗ N ⊗B(L2(R))= C1L2(M,ϕM )⊗ N ⊗B(L2(R)).

On the other hand, since Z(Cϕ(M ⊗ N )) commutes with LR, it is contained in (M ⊗ N )ϕ ⊗ LR; see,
e.g., [Houdayer and Ricard 2011, Proposition 2.4]. Hence

Z(Cϕ(M ⊗ N ))⊂ C⊗ N ⊗B(L2(R))∩ (M ⊗ N )ϕ ⊗ LR= C⊗ NϕN ⊗ LR.

Finally since Z(Cϕ(M ⊗ N )) commutes with M, and NϕN commutes with M and LR, (up to exchanging
positions of M and N ) we have

Z(Cϕ(N ⊗M))⊂ M ′ ∩ NϕN ⊗C⊗ LR= NϕN ⊗ (M
′
∩C⊗ LR)= NϕN ⊗C1,

where we used M ′ ∩ C ⊗ LR ⊂ Z(CϕM (M)) = C. Since N ′ ∩ NϕN = Z(N ), we conclude that
Z(Cϕ(M⊗N ))=Z(N ). Since all continuous cores are isomorphic with each other, preserving the position
of M ⊗ N, for any other faithful normal semifinite weight ψ , we obtain Z(Cψ(M ⊗ N ))= Z(N ). �

2B. Relative tensor products, basic constructions and weak containments. Let M and N be von Neu-
mann algebras and H a Hilbert space. Throughout this paper, we denote opposite objects with a circle
superscript (e.g., N ◦ := N op, x◦ := xop

∈ N ◦, (xy)◦= y◦x◦ for x, y∈ N ). We say that H is a left M-module
(resp. a right N-module) if there is a normal unital injective ∗-homomorphism πH : M→ B(H) (resp.
θH : N ◦→ B(H)). We say H is an M-N-bimodule if H is a left M-module and a right N -module with
commuting ranges. The standard bimodule of M is a standard representation L2(M) as an M-bimodule,
where the right action is given by M◦ 3 x◦ 7→ J x∗ J ∈ M ′ ⊂ B(L2(M)).

Let N be a von Neumann algebra, ϕ a faithful normal semifinite weight, and H = HN a right N -module
with the right action θ . A vector ξ ∈ H is said to be left ϕ-bounded if there is a constant C > 0 such
that ‖θ(x◦)ξ‖ ≤ C‖Jϕ3ϕ(x∗)‖ for all x ∈ n∗ϕ . We denote by D(H, ϕ) all left ϕ-bounded vectors in H.
It is known that the subspace D(H, ϕ) ⊂ H is always dense [Takesaki 1979, Lemma IX.3.3(iii)]. For
ξ ∈ D(H, ϕ), define a bounded operator

Lξ : L2(N , ϕ)→ H ; Lξ Jϕ3ϕ(a∗)= θ(a◦)ξ.

It is easy to verify that

θ(x◦)Lξ = Lξ Jϕx∗ Jϕ (x ∈ N ),

Lξ L∗η ∈ θ(N
◦)′ and L∗ηLξ ∈ (JϕN Jϕ)′ = N (ξ, η ∈ D(H, ϕ)),

x Lξ y = L xθ(σ ϕi/2(y)
◦)ξ (x ∈ θ(N ◦)′, y ∈ Na),

where Na⊂N is the subalgebra consisting of all analytic elements with respect to (σ ϕt ) (see [Takesaki 1979,
Lemma IX.3.3(v)] for the third statement). For a left N -module K = N K, the relative tensor product H⊗N

K is defined as the Hilbert space obtained by separation and compression of D(H, ϕ)⊗alg K with an inner
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product 〈ξ1⊗N η1, ξ2⊗N η2〉 := 〈L∗ξ2
Lξ1η1, η2〉K . When H = M HN is an M-N -bimodule and K = N K A

is an N -A-bimodule for von Neumann algebras M and A, the Hilbert space H⊗N K is an M-A-bimodule
given by π(x)θ(a◦)(ξ ⊗N η) := (πH (x)ξ)⊗B (θK (a◦)η) for x ∈ M, a ∈ A, ξ ∈ D(H, ϕ) and η ∈ K.

Since all standard representations L2(M) of M are isomorphic as M-bimodules, when we consider
H = K = L2(M) and N ⊂ M, the Hilbert space L2(M)⊗N L2(M) is determined canonically, and does
not depend on the choice of a faithful normal semifinite weight ϕ on M with L2(M)= L2(M, ϕ).

Let B ⊂ M be an inclusion of von Neumann algebras and ϕ a faithful normal semifinite weight on M.
The basic construction of the inclusion B ⊂ M is defined by

〈M, B〉 := (JϕB Jϕ)′ ∩B(L2(M, ϕ)).

Since all standard representations are canonically isomorphic, the basic construction does not depend on
the choice of ϕ. Assume that the inclusion B ⊂ M is with an operator-valued weight EB . Fix a faithful
normal semifinite weight ϕB on B and put ϕ := ϕB ◦ EB . Here we observe that any x ∈ nEB ∩ nϕ is
left ϕ-bounded and L3ϕ(x)3ϕB (a) = 3ϕ(xa) for a ∈ nϕB . Indeed, for any analytic a ∈ nϕB ∩ n

∗
ϕB

, we
have JϕB3ϕB (a

∗) = 1
1/2
ϕB 3ϕB (a) = 3ϕB (σ

ϕB
−i/2(a)), see, e.g., the equation just before [Takesaki 1979,

Lemma VIII.2.4], and hence by Lemma V.III.3.18(ii) of the same work,

L3ϕ(x)3ϕB (σ
ϕB
−i/2(a))= L3ϕ(x) JϕB3ϕB (a

∗)= Jϕa∗ Jϕ3ϕ(x)=3ϕ(xσ
ϕ

−i/2(a)).

Since σ ϕB
−i/2(a)= σ

ϕ

−i/2(a) (because σ ϕt |B = σ
ϕB
t for t ∈ R, and the analytic extension is unique if exists),

this means that L3ϕ(x)3ϕB (b)=3ϕ(xb) for any analytic b ∈ nϕB ∩ n
∗
ϕB

. At the same time, we can define
a bounded operator L x :3ϕB (a) 7→3ϕ(xa) for a ∈ nϕB (use x ∈ nEB ). So the map L3ϕ(x) has a bounded
extension on L2(B, ϕB) and coincides with L x , as desired. Now it is easy to verify that

L∗3ϕ(y)L3ϕ(x) = EB(y∗x) ∈ (JϕB Jϕ)′ = B ⊂ B(L2(B, ϕB)) (x, y ∈ nEB ∩ nϕ).

We will use this formula for calculations in the proposition below and in Section 3.
Here we observe that a relative tensor product has a useful identification. We will use this proposition

in Sections 3 and 4.

Proposition 2.3. Let N and B be von Neumann algebras, and αN and αB actions of R on N and B
respectively. Put M := N ⊗ B and α := αN

⊗αB, and define H := L2(M oα R)⊗B L2(M oα R) as an
M oα R-bimodule with left and right actions πH and θH .

Then there is a
U : H → L2(R) ⊗ L2(N ) ⊗ L2(B) ⊗ L2(N ) ⊗ L2(R) such that, putting π̃H := Ad U ◦ πH and

θ̃H := Ad U ◦ θH ,

• π̃H (M oα R)⊂ B(L2(R)⊗ L2(N )⊗ L2(B))⊗C1N ⊗C1L2(R),

π̃H (λt)= λt ⊗ 1N ⊗ 1B and π̃H (x)= πα(x) (t ∈ R, x ∈ N ⊗ B = M);

• θ̃H ((M oα R)◦)⊂ C1L2(R)⊗C1N ⊗B(L2(B)⊗ L2(N )⊗ L2(R))

θ̃H (λ
◦

t )= 1B ⊗ 1N ⊗ ρt and θ̃H (y◦)= θα(y◦) (t ∈ R, y ∈ B⊗ N ' M),

where (θα(y◦)ξ)(s) := αs(y)◦ξ(s) for ξ ∈ L2(R, L2(B)⊗ L2(N )) and s ∈ R.
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Proof. We fix a faithful normal semifinite weight ϕB on B and put ϕ := ϕN ⊗ϕB . Denote by ϕ̂ the dual
weight of ϕ and then the standard representation of M oα R is given by

L2(M oα R, ϕ̂)= L2(N , ϕN )⊗ L2(B, ϕB)⊗ L2(R)' L2(R, L2(N , ϕN )⊗ L2(B, ϕB)).

For simplicity we put L2(N ) := L2(N , ϕN ) and L2(B) := L2(B, ϕB). Let EB be the canonical operator-
valued weight from M̃ to B given by ϕ̂ = ϕB ◦ EB . Then for E M

B := ϕN ⊗ idB on M and for the canonical
operator-valued weight EM from (M oR, ϕ̂) to (M, ϕ), we have ϕ̂ = ϕ ◦ EM = ϕB ◦ E M

B ◦ EM , and hence
EB = E M

B ◦ EM by the uniqueness condition. Observe then for any f, g ∈ Cc(R,M),

EB(π̂α(g)∗π̂α( f ))=
∫

R

E M
B (g(t)

∗ f (t)) dt.

Define a well-defined linear map

V :3ϕ(nϕN ⊗alg nϕB )⊗alg Jϕ3ϕ(nϕB ⊗alg nϕN )→ L2(N )⊗ L2(B)⊗ L2(N )

by V (3ϕ(x ⊗ a)⊗ Jϕ3ϕ(b⊗ y)) :=3ϕN (x)⊗ a JϕB3ϕB (b)⊗ JϕN3ϕN (y). We then define a linear map

U : L2(R, L2(N )⊗ L2(B))⊗B L2(R, L2(B)⊗ L2(N ))→ L2(R×R, L2(N )⊗ L2(B)⊗ L2(N ))

by (U ( f ⊗B Jϕ̂g))(t, s) := V (3ϕ( f (t))⊗ Jϕ3ϕ(g(−s))) for f ∈ Cc(R, N ⊗alg B)(nϕN ⊗alg nϕB ) and
g ∈Cc(R, B⊗alg N )(nϕB⊗algnϕN ). (Note that we are identifying3ϕ̂(π̂α( f )) and3ϕ̂(π̂α(g)) as f and g.)
We have to show that it is a well-defined unitary map. For fi ∈ Cc(R, N ⊗alg B)(nϕN ⊗alg nϕB ) and gi ∈

Cc(R, B⊗alg N )(nϕB⊗algnϕN ), straightforward but rather complicated computations yield, on the one hand,∥∥∥∥∑
i

fi ⊗B Jϕ̂gi

∥∥∥∥2

2
=

∑
i, j

∫
R

∫
R

〈Fj,i Jϕ3ϕ(gi (−s)), Jϕ3ϕ(gj (−s))〉 ds dt,

where Fj,i := E M
B ( f j (t)∗ fi (t)), and on the other hand,∥∥∥∥U

∑
i

( fi⊗B Jϕ̂gi )

∥∥∥∥2

2
=

∑
i, j

∫
R×R

〈
V
(
3ϕ( fi (t))⊗Jϕ3ϕ(gi (−s))

)
, V
(
3ϕ( f j (t))⊗Jϕ3ϕ(gi (−s))

)〉
dt ds.

Hence if we show

〈V (3ϕ(x)⊗ Jϕ3ϕ(a)), V (3ϕ(y)⊗ Jϕ3ϕ(b))〉 = 〈E M
B (y

∗x)Jϕ3ϕ(a), Jϕ3ϕ(b)〉

for any x, y ∈ nϕN ⊗alg nϕB and a, b ∈ nϕB ⊗alg nϕN , then U is a well-defined unitary map. However this
equation follows easily if we use elementary elements.

Finally L2(R×R, L2(N )⊗ L2(B)⊗ L2(N )) is canonically isomorphic to L2(R)⊗ L2(N )⊗ L2(B)⊗
L2(N )⊗L2(R), where the first (resp. the second) variable in R×R corresponds to LR of the left one (resp.
the right one) in the Hilbert space. It is then easy to see that π̃H and θ̃H satisfy the desired condition. �

Let M and N be von Neumann algebras, and let H and K be M-N -bimodules. We denote by πH and
θH (resp. πK and θK ) left and right actions on H (resp. K ). We say that K is weakly contained in H ,
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denoted by K ≺ H, if for any ε > 0, finite subsets E ⊂ M and F ⊂ N, and any vector ξ ∈ K, there are
vectors (ηi )

n
i=1 ⊂ H such that∣∣∣∣ n∑

i=1

〈πH (x)θH (y◦)ηi , ηi 〉H −〈πK (x)θK (y◦)ξ, ξ〉K

∣∣∣∣< ε (x ∈ E, y ∈ F).

This is equivalent to saying that the algebraic ∗-homomorphism given by πH (x)θH (y◦) 7→ πK (x)θK (y◦)
for x ∈ M and y ∈ N is bounded on ∗-alg{πH (M), θH (N ◦)}. We denote by νK ,H the associated
∗-homomorphism for K ≺ H.

Let M and N be σ -finite von Neumann algebras and let X be a self-dual M-N -correspondence (i.e.,
a Hilbert N -module with a normal left M-action, see [Paschke 1973, Section 3] for self-duality and
normality). Then the interior tensor product, see, e.g., [Lance 1995, Section 4], H(X) := X ⊗N L2(N )
is an M-N -bimodule. Conversely if H is an M-N -bimodule, then one can define a self-dual M-N -
correspondence (i.e., a W∗-Hilbert N -module with a left M-action)

X (H) := {T : L2(N )→ H | bounded, N ◦-module linear map}.

They in fact give a one-to-one correspondence between M-N -bimodules and self-dual M-N -correspon-
dences, up to unitary equivalence; see [Baillet et al. 1988, Theorem 2.2] and [Rieffel 1974, Proposi-
tion 6.10]. By [Anantharaman-Delaroche 1990, §1.12, Proposition], K ≺ H if and only if X (K )≺ X (H)
in the following sense: for any σ -weak neighborhood V of 0 ∈ N, finite subsets E ⊂ M and F ⊂ N, and
any ξ ∈ X (K ), there are vectors (ηi )

n
i=1 ⊂ X (H) such that

n∑
i=1

〈ηi , xηi y〉X (H)−〈ξ, xξ y〉X (K ) ∈ V (x ∈ E, y ∈ F).

Suppose that M = N, L2(M) = K, and M = X (K ). Then if L2(M) ≺ H, putting ξ := 1M , for any
finite subset E ⊂ M and for any σ -weak neighborhood V of 0 ∈ N, there are vectors (ηi )

n
i=1 ⊂ X (H)

such that
n∑

i=1

〈ηi , xηi 〉X (H)− x ∈ V (x ∈ E).

So putting ψ(E,V)(x) :=
∑n

i=1〈ηi , xηi 〉X (H) for x ∈ M, we find a net (ψi )i such that each ψi is given by
a sum of compression maps by vectors in X (H) and such that it converges to idM in the point σ -weak
topology. In this case, up to replacing ηi , we may assume that each ψi is a contraction [Anantharaman-
Delaroche and Havet 1990, Lemma 2.2]. Then it is known that the existence of such a net is equivalent to
L2(M)≺ H as follows, although we do not need this equivalence. See Proposition 2.4 of the same work
for a more general statement.

Proposition 2.4. Let M be a σ -finite von Neumann algebra and H an M-bimodule. Then L2(M)≺ H as
M-bimodules if and only if there is a net (ψi )i of normal contractive completely positive (c.c.p.) maps
on M, which converges to idM point σ -weakly, such that each ψi is a finite sum of 〈η, · η〉X (H) for some
η ∈ X (H).

We recall the following well-known fact. This will be used in Section 3.
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Lemma 2.5. Let B ⊂ M be an inclusion of σ -finite von Neumann algebras with an operator-valued
weight EB . Then the vector space nEB is a pre-Hilbert B-module with the inner product 〈x, y〉 := EB(x∗y)
for x, y ∈ nEB , and its self-dual completion n̄EB is an M-B-correspondence.

Let X be the self-dual completion of the interior tensor product n̄EB ⊗B M. Then as an M-M-
correspondence, X is the unique one corresponding to the M-bimodule L2(M)⊗B L2(M), using the
one-to-one correspondence above.

Proof. It is easy to see that the B-valued inner product on nEB in the statement is well-defined, so that
nEB is a pre-Hilbert B-module with a left M-action. Since the left M-action is faithful on nEB , so is on
the self-dual completion; see, e.g., [Paschke 1973, Corollary 3.7]. This left M-action is normal, since the
functional M 3 x 7→ ω(〈ξ, xη〉) is normal for all ω ∈ M∗ and ξ, η ∈ nEB , and hence for all ξ, η ∈ n̄EB by
[Paschke 1976, Lemma 2.3]. Thus n̄EB is an M-B-correspondence.

Let X be as in the statement. Then as in the first paragraph, it is easy to see that it is really an M-M-
correspondence (i.e., the left M-action is well-defined, injective, and normal). Let us fix faithful normal
states ϕB and ϕ on B and M respectively. Then the interior tensor product X⊗M L2(M, ϕ) is canonically
identified as L2(M, ϕB ◦ EM)⊗B L2(M, ϕ), so that X is identified as X (L2(M)⊗B L2(M)). �

2C. Free quantum groups and biexactness. For compact quantum groups, we refer the reader to
[Woronowicz 1998; Maes and Van Daele 1998].

Let G be a compact quantum group. In this paper, we use the following notation, which will only
be used in Section 4. We denote the Haar state by h, the set of equivalence classes of all irreducible
unitary corepresentations by Irred(G), and right and left regular representations by ρ and λ respectively.
We regard Cred(G) := ρ(C(G)) as our main object and we frequently omit ρ when we see the dense
Hopf ∗-algebra. The GNS representation of h is written as L2(G) and it has a decomposition L2(G)=∑

x∈Irred(G) ⊕ (Hx ⊗ Hx̄). Along the decomposition, the modular operator of h is of the form 1i t
h =∑

x∈Irred(G)⊕ (Q
i t
x ⊗ Q−i t

x̄ ) for some positive matrices Qx .
Let F be a matrix in GL(n,C). The free unitary quantum group (resp. free orthogonal quantum group)

for F [Wang 1995; Van Daele and Wang 1996] is the C∗-algebra C(Au(F)) (resp. C(Ao(F))) defined
as the universal unital C∗-algebra generated by all the entries of a unitary n by n matrix u = (ui, j )i, j

satisfying that F(u∗i, j )i, j F−1 is a unitary (resp. F(u∗i, j )i, j F−1
= u). We simply say that G is a free

quantum group if G is a free unitary or orthogonal quantum group.
Here we recall the notion of biexactness introduced in [Isono 2015b, Definition 3.1], based on the

group case [Brown and Ozawa 2008, Lemma 15.1.2].

Definition 2.6. Let G be a compact quantum group. We say that the dual Ĝ is biexact if it satisfies
following conditions:

(i) Ĝ is exact (i.e., Cred(G) is exact).

(ii) There exists a unital completely positive (u.c.p.) map 2 : Cred(G)⊗min Cred(G)
◦
→ B(L2(G)) such

that

2(a⊗ b◦)− ab◦ ∈ K(L2(G)) for any a, b ∈ Cred(G).
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Biexactness of free quantum groups was proved in [Vergnioux 2005; Vaes and Vergnioux 2007; Vaes
and Vander Vennet 2010]. See [Isono 2015b, Theorem C] for other examples of biexact quantum groups.

Theorem 2.7. Let G be a free quantum group (more generally, a compact quantum group in [Isono 2015b,
Theorem C]). Then the dual Ĝ is biexact.

2D. Central weak amenability and the W∗CMAP. Let G be a compact quantum group. Denote the
dense Hopf ∗-algebra by C (G). To any element a ∈ `∞(Ĝ) we can associate a linear map ma on C (G),
given by (ma ⊗ ι)(ux)= (1⊗ apx)ux for any x ∈ Irred(G), where px ∈ c0(Ĝ) is the canonical projection
onto the x-component. We say Ĝ is weakly amenable (with Cowling–Haagerup constant 1) if there exists
a net (ai )i of elements of `∞(Ĝ) such that:

• Each ai has finite support; namely, ai px = 0 except for finitely many x ∈ Irred(G).

• (ai )i converges to 1 pointwise; namely, ai px converges to px in B(Hx) for any x ∈ Irred(G).

• Each mai is extended on L∞(G) as a completely contractive (say c.c.) map.

Note that, since ai is finitely supported, each mai is actually a map from L∞(G) to C (G). We say Ĝ

is centrally weakly amenable if each ai px above is taken as a scalar matrix for all i and x ∈ Irred(G).
In this case, the associated multiplier mai commutes with the modular action of the Haar state. This
commutativity is important to us since such multipliers can be extended naturally on the continuous
core with respect to the Haar state. Indeed, the maps mai ⊗ idL2(R) on L∞(G)⊗B(L2(R)) restrict to
approximation maps on the core. With this phenomenon in mind, we introduce the following terminology.

Definition 2.8. Let M be a von Neumann algebra and ϕ a fixed faithful normal state on M. We say that
M has the weak∗ completely metric approximation property with respect to ϕ (or ϕ-W∗CMAP, in short) if
there exists a net (ψi )i of normal c.c. maps on M such that:

• Each ψi commutes with σ ϕ; that is, ψi ◦ σ
ϕ
t = σ

ϕ
t ◦ψi for all i and t ∈ R.

• Each ψi is a finite sum of ϕ(b∗ · a)z for some a, b, z ∈ M .

• ψi converges to idM in the point σ -weak topology.

It is easy to see that the central weak amenability of Ĝ implies the W∗CMAP with respect to the Haar
state.

Weak amenability of the free quantum group was first obtained in [Freslon 2013], using the Haagerup
property [Brannan 2012]. This is for the Kac type and hence is equivalent to the central weak amenability.
The general case was solved later in [De Commer et al. 2014] and its proof in fact shows the central weak
amenability as follows.

Theorem 2.9. Let G be a free quantum group (more generally a quantum group in [Isono 2015b,
Theorem C]). Then the dual Ĝ is centrally weakly amenable.

In particular there is a net (ψi )i of normal c.c. maps on L∞(G), possessing the W∗CMAP with respect
to the Haar state, such that ψi (L∞(G))⊂ C (G) for all i .
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2E. Popa’s intertwining techniques. Popa [2006a; 2006b] introduced a powerful tool called intertwining
techniques. This is one of the main ingredients in the recent development of the von Neumann algebra
theory. Here we introduce the one defined and studied in [Houdayer and Isono 2017, Definition 4.1
and Theorem 4.3] which treats general von Neumann algebras.

Definition 2.10. Let M be any σ -finite von Neumann algebra, 1A and 1B any nonzero projections in M,
A ⊂ 1A M1A and B ⊂ 1B M1B any von Neumann subalgebras with expectation. We say that A embeds
with expectation into B inside M and write A�M B if there exist projections e ∈ A and f ∈ B, a nonzero
partial isometry v ∈ eM f and a unital normal ∗-homomorphism θ : eAe→ f B f such that the inclusion
θ(eAe)⊂ f B f is with expectation and av = vθ(a) for all a ∈ eAe.

Theorem 2.11. Keep the same notation as in Definition 2.10 and assume that A is finite. Then the
following conditions are equivalent:

(1) We have A �M B.

(2) There exists no net (wi )i∈I of unitaries in U(A) such that EB(b∗wi a)→ 0 in the σ -∗-strong topology
for all a, b ∈ 1A M1B , where EB is a fixed faithful normal conditional expectation from 1B M1B

onto B.

For the proof of Corollary B, we prove a lemma. In the proof below, we make use of the ultraproduct
von Neumann algebras [Ocneanu 1985]. We will actually use a more general one used in [Houdayer and
Isono 2017], which treats a general directed set instead of N. Recall from Section 2 of that paper that
for any σ -finite von Neumann algebra M and any free ultrafilter U on a directed set I, we may define
the ultraproduct von Neumann algebra MU, using `∞(I )⊗ M. In the proof below, we only need the
following elementary properties: with the standard notation (xi )U ∈ MU for (xi )i∈I :

• M ⊂ MU is with expectation by EU ((xi )U ) := limi→U xi .

• For any σ -finite von Neumann algebras A ⊂ M with expectation E A, AU
⊂ MU is with expectation

defined by E AU ((xi )U ) := (E A(xi ))U .

• If the subalgebra A is finite, then any norm bounded net (ai )i∈I determines an element (ai )U in MU.

Lemma 2.12. Let (B, ϕB) and (N , ϕN ) be von Neumann algebras with faithful normal states. Put
M := B ⊗ N, ϕ := ϕB ⊗ ϕN , EB = idB ⊗ ϕN and EN = ϕB ⊗ idN . Let p ∈ M be a projection
and A ⊂ pMp a von Neumann subalgebra with expectation. Fix a := (ai )i∈I ∈ `

∞(I )⊗ A and a free
ultrafilter U on I such that (ai )U ∈ AU. Then EBU (y∗ax)=0 for all x, y ∈M if and only if EN ◦EU (c∗ab)
for all b, c ∈ BU.

In particular, if A is finite, then A�M B if and only if A�B⊗N0
B for any N0⊂ N with expectation EN0

such that ϕN ◦ EN0 = ϕN , p ∈ B⊗ N0 and A ⊂ p(B⊗ N0)p.

Proof. Observe first that EBU (y∗ax)= 0 for all x, y ∈ M if and only if EBU ((1⊗ y∗)a(1⊗ x))= 0 for
all x, y ∈ N, which is equivalent to〈

EBU ((1⊗ y∗)a(1⊗ x))3ϕUB (b),3ϕUB (c)
〉
ϕUB
= 0
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for all x, y ∈ N and b, c ∈ BU. Writing b = (bi )U and c = (ci )U , we calculate that〈
EBU ((1⊗ y∗)a(1⊗ x))3ϕUB (b),3ϕUB (c)

〉
ϕUB
= lim

i→U

〈
EB((1⊗ y∗)ai (1⊗ x))3ϕB (bi ),3ϕB (ci )

〉
ϕB

= lim
i→U

ϕB
(
c∗i EB((1⊗ y∗)ai (1⊗ x))bi

)
= lim

i→U
ϕB ◦ EB((c∗i ⊗ y∗)ai (bi ⊗ x))

= lim
i→U

ϕN ◦ EN ((c∗i ⊗ y∗)ai (bi ⊗ x))

= lim
i→U

ϕN
(
y∗EN ((c∗i ⊗ 1)ai (bi ⊗ 1))x

)
= ϕN

(
y∗EN ( lim

i→U
((c∗i ⊗ 1)ai (bi ⊗ 1)))x

)
= ϕN

(
y∗EN ◦ EU ((c∗⊗ 1)a(b⊗ 1))x

)
.

Then since functionals of the form ϕN (y∗ · x) for x, y ∈ N are norm dense in N∗, the final term above is
zero for all x, y ∈ N if and only if EN ◦ EU ((c∗⊗ 1)a(b⊗ 1))= 0. Thus we proved that EBU (y∗ax)= 0
for all x, y ∈ M if and only if EN ◦ EU ((c∗⊗ 1)a(b⊗ 1))= 0 for all b, c ∈ BU.

For the second half of the statement, suppose that A is finite and A 6�B⊗N0
B. We will show A 6�M B.

Since A is finite, there is a net (ui )i∈I ⊂ U(A) for a directed set I such that EB(y∗ui x)→ 0 strongly
as i →∞ for all x, y ∈ B ⊗ N0. Fix any cofinal ultrafilter U on I. Since A is finite, u := (ui )U ∈ AU

and hence EBU (y∗ux) = 0 for all x, y ∈ B ⊗ N0. By the first half of the statement, this is equivalent
to EN0 ◦ EU (c∗ub) = 0 for all b, c ∈ BU. Then since EU (c∗ub) is contained in B ⊗ N0 and since
EN |B⊗N0

= (ϕB ⊗ idN )|B⊗N0
= EN0 , we have EN ◦ EU (c∗ub) = 0 for all b, c ∈ BU, which is in turn

equivalent to EBU (y∗ux)= 0 for x, y ∈M by the first half of the statement. Since this holds for arbitrary U
on I, we conclude that EB(y∗ui x)→ 0 ∗-strongly as i →∞ for all x, y ∈ M. Thus we proved that
A 6�B⊗N0

B implies A 6�M B. �

3. Weakly compact actions

In this section, we define and study weakly compact actions on continuous cores. The main observation
is Theorem 3.10, and the key item for the proof is Lemma 3.3.

3A. Relative amenability and approximation maps. In this subsection, we recall relative amenability
for general von Neumann algebras introduced in [Isono 2017], which generalizes [Ozawa and Popa 2010;
Popa and Vaes 2014a].

Definition 3.1. Let B ⊂M be von Neumann algebras, p ∈M a projection and A⊂ pMp a von Neumann
subalgebra with expectation E A. We say that the pair (A, E A) is injective relative to B in M , and write
(A, E A)lM B, if there exists a conditional expectation from p〈M, B〉p onto A which restricts to E A

on pMp.

Using amenability of R and the notion of relative amenability, we prove a lemma for approximation
maps on the continuous core. For this we fix the following notation.
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Let (M, ϕ) be a von Neumann algebra with a faithful normal semifinite weight, and M̃ := M oR the
continuous core of M with the modular action σ ϕ. We denote by ϕ̂ the dual weight of ϕ, and by EM the
canonical operator-valued weight from M̃ to M given by ϕ̂ = ϕ ◦ EM . We denote by M oalg G all the
linear spans of xλt for x ∈ M and t ∈ G, which is a ∗-strongly dense subalgebra in M̃.

Lemma 3.2. In this setting, we have

M̃ L2(M̃)M̃ ≺ M̃ L2(M̃)⊗M L2(M̃)M̃ .

Proof. Recall first that

M oR= (M◦⊗ 1)′ ∩ {1i t
ϕ ⊗ ρt | t ∈ R}′, 〈M oR,M〉 = (M◦⊗ 1)′,

where ρ is the right regular representation. Since R is amenable, there are positive functionals ( fn)n ⊂

L1(R) with ‖ fn‖1 = 1 satisfying λg fn − fn→ 0 weakly for all g ∈ R. For each n, define a positive map

Fn : B(L2(M)⊗ L2(R))→ B(L2(M)⊗ L2(R))

by

Fn(T ) :=
∫

R

(1i t
ϕ ⊗ ρt) T (1i t

ϕ ⊗ ρt)
∗ fn(t) · dt.

Since ‖Fn‖ = 1, we can take a cluster point of (Fn)n , which we write as F. Then it satisfies

(1i t
ϕ ⊗ ρt)F(T )(1i t

ϕ ⊗ ρt)
∗
= F(T )

for all t ∈ R and hence F is a conditional expectation onto {1i t
ϕ ⊗ ρt | t ∈ R}′. It is easy to see that

F(T )∈ (M◦⊗1)′ for any T ∈ (M◦⊗1)′. Hence F restricts to a conditional expectation from 〈MoR,M〉
onto M o R. We obtain (M o R, id)lMoR M. Finally since M o R is semifinite, using [Isono 2017,
Theorem A.5], we get the conclusion. �

Lemma 3.3. In this setting, there is a net (ωj )j of c.c.p. maps on M̃ such that ωj → idM̃ point σ -weakly
and each ωj is a finite sum of λ∗q EM(z∗ · y)λp for some y, z ∈ nEM and p, q ∈ R.

Proof. By Lemma 3.2 and Proposition 2.4, there is a net (ωj )j of c.c.p. maps on M̃ such that ωj → idM̃

point σ -weakly and each ωj is a finite sum of 〈η, · η〉X (L2(M̃)⊗M L2(M̃)) for some η∈ X (L2(M̃)⊗M L2(M̃)).
We first replace each η in ωj with some “algebraic” element in X (L2(M̃)⊗M L2(M̃)).

By Lemma 2.5, the self dual completion X of n̄EM ⊗alg M̃ is identified as the one correspond-
ing to L2(M̃) ⊗M L2(M̃). We denote by X0 the image of n̄EM ⊗alg M̃ in X . By [Paschke 1976,
Lemma 2.3], X0 ⊂ X is dense in the s-topology; that is, for any η ∈ X there is a net (ηi )i ⊂ X0

such that 〈η− ηi , η− ηi 〉X → 0 in the σ -weak topology in M̃. In our case, since nEB ⊂ n̄EB is dense in
the s-topology and since M oalg G ⊂ M̃ is ∗-strongly dense, the image of nEM ⊗alg (M oalg G) in X is
dense in the s-topology. Hence we may replace each vector η ∈ X , appearing in ωj above, with the one
represented by elements in nEM ⊗alg (M oalg G).

Thus, we may assume that each ωj is a finite sum of λ∗q EM(z∗ · y)λp for some y, z ∈ nEM and p, q ∈R.
However the completely bounded (c.b.) norms of the resulting net (ωj )j are no longer uniformly bounded.
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So we have to again replace (ωj )j with c.c.p. maps. For this, we assume that, up to convex combinations,
the convergence ωj → idM̃ is in the point strong topology.

Recall from (the first half of) the proof of [Anantharaman-Delaroche 1990, Lemma 2.2] that if we put
ϕi (x) := cjωj (x)cj for x ∈ M̃, where cj := 2(1+ωj (1))−1, then the net (ϕi )i satisfies that each ϕi is c.c.p.
and that ϕi → idM̃ in the point strong topology. We will replace cj with elements in M oalg G. For this,
fix j and observe that, since 1+ωj (1) is in Moalg G, each cj is actually contained in C∗{Moalg G}, which
is the norm closure of M oalg G. So there is a sequence (an)n in M oalg G such that ‖an‖∞ ≤ ‖c

1/2
j ‖∞

and ‖an − c1/2
j ‖∞→ 0. Put bn := a∗nan ∈ M oalg G and observe that it satisfies ‖bn‖∞ ≤ ‖cj‖∞ and

‖bn − cj‖∞→ 0. It then holds that for any x ∈ M̃,

‖cjωj (x)cj − bnωj (x)bn‖∞ ≤ 2‖cj‖∞ ‖ωj‖cb ‖x‖∞ ‖cj − bn‖∞→ 0 as n→∞.

Now fix any ε > 0 and finite subset F ⊂ (M̃)1 such that 1 ∈ F , and choose bn such that

‖cjωj (x)cj − bnωj (x)bn‖∞ < ε

for all x ∈ F . Then since 1 ∈ F, we have

‖bnωj ( · )bn‖cb = ‖bnωj (1)bn‖∞ < ‖cjωj (1)cj‖∞+ ε ≤ 1+ ε.

So (1+ ε)−1bnωj ( · )bn is a c.c.p. map which is still close to cjωj ( · )cj on F. Thus we proved that for
any j there is a net of c.c.p. maps converging to cjωj ( · )cj in the point norm topology such that each
map is a finite sum of λ∗q EM(z∗ · y)λp for some y, z ∈ nEM and p, q ∈ G. Using this observation, since
cjωj ( · )cj → idM̃ as j→∞ in the point strong topology, it is easy to construct a desired net. �

3B. Definition of weakly compact actions. We introduce the following notion, which is an appropriate
generalization of [Ozawa and Popa 2010, Definition 3.1] in our setting; see also [Popa and Vaes 2014a,
Theorem 5.1]. Indeed, in the definition below, if we take M= M ⊗M◦, this coincides with the original
definition of weakly compact actions.

Definition 3.4. Let M be a semifinite von Neumann algebra with trace Tr, and let M be a von Neumann
algebra which contains M and M◦ as von Neumann subalgebras, which we denote by π(M) and θ(M◦),
such that [π(M), θ(M◦)] = 0.

Let p ∈M be a projection with Tr(p)= 1, A⊂ pMp be a von Neumann subalgebra, and G≤NpMp(A)
a subgroup. We say that the adjoint action of G on A is weakly compact for (M,Tr, π, θ,M) if there is a
net (ξi )i of unit vectors in the positive cone of L2(M) such that

(i) 〈π(x)ξi , ξi 〉L2(M)→ Tr(pxp) for any x ∈ M ;

(ii) ‖π(a)θ(ā)ξi − ξi‖L2(M)→ 0 for any a ∈ U(A);

(iii) ‖π(u)θ(ū)JMπ(u)θ(ū)JMξi − ξi‖L2(M)→ 0 for any u ∈ G.

Here ā means (a◦)∗ and JM is the modular conjugation for L2(M).



1310 YUSUKE ISONO

Remark 3.5. In this definition, since JMξi = ξi for all i , condition (ii) for a ∈U(A) implies condition (iii)
for a ∈ U(A). Hence up to replacing G with the group generated by U(A) and G, we may always assume
that G contains U(A).

Below we record a characterization for weakly compact actions.

Proposition 3.6. Keep the notation in Definition 3.4. The following conditions are equivalent:

(1) The group G acts on A as a weakly compact action for (M,Tr, π, θ,M).

(2) There exists a net (ωi )i of normal states on M such that

(i) ωi (π(x))→ Tr(pxp) for any x ∈ pMp;
(ii) ωi (π(a)θ(ā))→ 1 for any a ∈ U(A);

(iii) ‖ωi ◦Ad(π(u)θ(ū))−ωi‖→ 0 for any u ∈ G.

(3) There is a G-central state ω on M such that for any x ∈ M and a ∈ U(A)

ω(x)= Tr(pxp) and ω(π(a)θ(ā))= 1.

(4) There is a state � on B(L2(M)) such that for any x ∈ M, a ∈ U(A) and u ∈ G,

�(x)= Tr(pxp), �(π(a)θ(ā))= 1, and �((π(u)θ(ū)JMπ(u)θ(ū)JM)= 1.

Proof. This theorem follows from well-known arguments; see, e.g., the proof of [Ozawa and Popa 2010,
Theorem 2.1]. So we give a sketch of proofs.

If (1) holds, then put � := Limi 〈 · ξi , ξi 〉L2(M) and obtain (4). If (4) holds, then the restriction of �
on M gives (3). If (3) holds, then we can approximate ω by a net of normal states (ωi )i ⊂M∗ weakly.
Then by the Hahn–Banach separation theorem, up to convex combinations, we may assume that the
convergence is in the norm and obtain (2). Finally if (2) holds, then for each i one can find a unique
ξi ∈ L2(M) which is in the positive cone such that ωi =〈 · ξi , ξi 〉L2(M). By the Powers–Størmer inequality
[Takesaki 1979, Theorem IX.1.2(iv)], we obtain

‖π(u)θ(ū)JMπ(u)θ(ū)JMξi − ξi‖
2
≤ ‖ωi ◦Ad(π(u∗)θ(u◦))−ωi‖→ 0

for any u ∈ G and hence (1) holds. �

3C. W∗CMAP with respect to a state produces approximation maps on continuous cores. We con-
struct a family of approximation maps on continuous cores by assuming the W∗CMAP with respect to a
state.

For this, we fix the following setting. Let N and B be von Neumann algebras and ϕN and ϕB faithful
normal states on N and B respectively. Put

M := N ⊗ B, ϕ := ϕN ⊗ϕB, EN := idN ⊗ϕB, EB := ϕN ⊗ idB,

and we regard B̃ := B oσ ϕB R and Ñ := N oσ ϕN R as subalgebras of M̃ := M oσ ϕ R. We denote by EM

the canonical operator-valued weight from M̃ to M given by ϕ̂ = ϕ ◦ EM , where ϕ̂ is the dual weight on
M̃. We also denote by EB the canonical operator-valued weight from M̃ to B given by ϕ̂ = ϕB ◦ EB .
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Lemma 3.7. Let ω : M̃→ M̃ and ψ : N → N be c.b. maps given by

ω := λ∗q EM(z∗ · y)λp and ψ :=

n∑
i=1

ϕN (z∗i · yi )ci

for some p, q ∈R, y, z ∈ nEM and ci , yi , zi ∈ N. Suppose ψ ◦σ ϕN
t = σ

ϕN
t ◦ψ for all t ∈R, so that the map

ψ̃ := ψ ⊗ idB ⊗ idL2(R) on M ⊗B(L2(R)) induces the map M̃→ M̃ given by ψ̃(xλt)= (ψ ⊗ idB)(x)λt

for x ∈ M and t ∈ R. Then the composition ψ̃ ◦ω is given by

ψ̃ ◦ω(x)=
n∑

i=1

λ∗q EB
(
σ ϕN

q (z∗i )z
∗xyσ ϕN

p (yi )
)
λpci , x ∈ M̃ .

Proof. Recall from the proof of Lemma 2.1 that the canonical conditional expectation from (M̃, ϕ̂) to
(B̃, ϕ̂B) is given by EBoR((x⊗b)λt)=ϕN (x)bλt for x ∈ N, b∈ B and t ∈R. For x ∈ M̃, we calculate that

ψ̃ ◦ω(x)= ψ̃(λ∗q EM(z∗xy)λp)

=

n∑
i=1

(ϕN (z∗i · yi )⊗ idB ⊗ idL2(R))(λ
∗

q EM(z∗xy)λp)ci

=

n∑
i=1

EBoR(z∗i λ
∗

q EM(z∗xy)λp yi )ci

=

n∑
i=1

λ∗q EBoR ◦ EM(σ
ϕN
q (z∗i )z

∗xyσ ϕN
p (yi ))λpci .

Since EBoR ◦ EM = EB by Lemma 2.1, we obtain the conclusion. �

Lemma 3.8. Suppose that N has the ϕN -W∗CMAP. Then there exists a net (ϕλ)λ of c.c. maps on M̃ such
that ϕλ→ idM̃ point σ -weakly and such that each ϕλ is a finite sum of d∗EB(z∗ · y)c for some c, d ∈ M̃
and y, z ∈ nEB .

Proof. Fix a net (ψi )i of normal c.c. maps on N as in Definition 2.8 and put (ψ̃i )i as in the statement of
the previous lemma. Let (ωj )j be a net of c.c.p. maps on M̃ given by Lemma 3.3. Then by Lemma 3.7
the composition ψ̃i ◦ ωj is a finite sum of d∗EB(z∗ · y)c for some c, d ∈ M̃ and y, z ∈ nEB . Since
limi (limj ψ̃i ◦ωj )= idM̃ in the point σ -weak topology, it is easy to show that for any finite subset F ⊂ M̃
and any σ -weak neighborhood V of 0, there are i and j such that ψ̃i ◦ωj (x)− x ∈ V for all x ∈ F. So
putting this ψ̃i ◦ωj as ϕ(F,V), one can construct a desired net (ϕλ)λ := (ϕ(F,V))(F,V). �

3D. Relative weakly compact actions on continuous cores. We keep the notation from the previous
subsection, such as M = N ⊗ B and ϕ = ϕN ⊗ϕB . Let Tr be an arbitrary semifinite trace on M̃, p ∈ M̃
a projection with Tr(p) = 1, and A ⊂ pM̃ p a von Neumann subalgebra with expectation E A. In this
subsection, we prove that under some assumptions on A and M, the normalizer of A in pMp acts on A
as a weakly compact action with an appropriate representation.

Since our proof is a generalization of the one of [Popa and Vaes 2014a, Theorem 5.1], we make use of
the following notation, which is similar to notation used in that theorem:
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H := L2(M̃, ϕ̂)⊗B L2(M̃,Tr), with left, right actions πH , θH ,

MH :=W∗{πH (M̃), θH (M̃◦)} ⊂ B(H),

H := (θH (p)H)⊗A pL2(M̃,Tr),

πH : M̃ 3 x 7→ (x ⊗B p◦)⊗A p ∈ B(H),

θH : M̃◦ 3 y◦ 7→ (1⊗B p◦)⊗A y◦ ∈ B(H),

M :=W∗{πH(M̃), θH(M̃◦)} ⊂ B(H).

As we observed in Proposition 3.6, we actually use the weakly compact action with the standard
representation of M. So we first observe that M admits a useful identification as a crossed product, and
so its standard representation is taken as a simple form.

Lemma 3.9. Let X ⊂M be the von Neumann subalgebra generated by πH(B) and θH(M̃◦), and let
X ⊂ B(L2(X)) be a standard representation, so that B and M̃◦ acts on L2(X). Then M is isomorphic to
the crossed product von Neumann algebra Rn (N ⊗ X) by the diagonal action σ ϕN ⊗αX, where αX is
given by αX

t (πH(b)θH(y
◦))= πH(σ

ϕB
t (b))θH(y◦) for t ∈ R, b ∈ B, and y ∈ M̃.

In particular the standard representation of M is given by L2(R)⊗ L2(N )⊗ L2(X) with the following
representation: for any ξ ∈ L2(R)⊗ L2(N )⊗ L2(X)= L2(R, L2(N )⊗ L2(X)) and s ∈ R,

LR 3 λt 7→ λt ⊗ 1N ⊗ 1X , ((λt ⊗ 1N ⊗ 1X )ξ)(s) := ξ(s− t),

N 3 x 7→ π
σ ϕ

N (x)⊗ 1X , ((π
σ ϕ

N (x)⊗ 1X )ξ)(s) := (σ
ϕN
−s (x)⊗ 1X )ξ(s),

B 3 b 7→ π
σ ϕ

B (b)13, ((π
σ ϕ

B (b)13)ξ)(s) := (1N ⊗ σ
ϕB
−s (b))ξ(s),

M̃◦ 3 y◦ 7→ 1L2(R)⊗ 1N ⊗ y◦, ((1R⊗ 1N ⊗ y◦)ξ)(s) := (1N ⊗ y◦)ξ(s).

Proof. By Proposition 2.3, H is isomorphic to L2(R)⊗ L2(N )⊗ L2(B)⊗ L2(N )⊗ L2(R). Since the
right M̃-action acts only on the right three Hilbert spaces, the Hilbert space H= H ⊗A pL2(M̃,Tr) is
identified as L2(R)⊗ L2(N )⊗ K, where

K := θH (p◦)(L2(B)⊗ L2(N )⊗ L2(R))⊗A pL2(M̃,Tr).

Note that M̃◦ acts on K by θH, and B acts on L2(R)⊗ K by πH, so that X acts on L2(R)⊗ K. More
precisely we have X ⊂ L∞(R)⊗C1N ⊗B(K ).

Let W be a unitary on L2(R)⊗L2(N ) given by (W ξ)(t) :=1i t
ϕN
ξ(t) for t ∈R and ξ ∈ L2(R)⊗L2(N )=

L2(R, L2(N )). It satisfies that for any f ∈ L∞(R), t ∈ R, and x ∈ N,

Wπσ ϕN (x)W ∗ = 1L2(R)⊗ x, W (λt ⊗ 1N )W ∗ = λt ⊗1
i t
ϕN
, and W ( f ⊗ 1N )W ∗ = f ⊗ 1N .

Let next V be a unitary on L2(R)⊗ L2(R) defined similarly to W exchanging 1i t
ϕN

with λt , so that it
satisfies for t ∈ R and f ∈ L∞(R),

V (1⊗ λt)V ∗ = λt ⊗ λt and V (1⊗ f )V ∗ = 1⊗ f.
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Define then a unitary on L2(R)⊗H by U := (V ⊗ 1N ⊗ 1K )(1L2(R) ⊗W ⊗ 1K ). One can show that
Ad U = id on C1L2(R)⊗ X ⊂ C1L2(R)⊗ L∞(R)⊗C1N ⊗B(K ), and

Ad U (1L2(R)⊗ λt ⊗ 1N ⊗ 1K )= (λt ⊗ λt ⊗1
i t
ϕN
⊗ 1K ) for t ∈ R,

Ad U (1L2(R)⊗πσ ϕN (x)⊗ 1K )= (1L2(R)⊗ 1L2(R)⊗ x ⊗ 1K ) for x ∈ N.

Then Ad U (M) is identified as the crossed product von Neumann algebra R n (N ⊗ X) given by the
R-action σ ϕN ⊗αX, where αX is given by Ad(λt ⊗ 1N ⊗ 1K ) using X ⊂ L∞(R)⊗C1N ⊗B(K ), which
is exactly the action given in the statement. Finally one can choose the standard representation of
Rn (N ⊗ X) as in the statement and we can end the proof. �

Now we prove the main observation of this section. This is a generalization of [Ozawa and Popa
2010, Theorem 3.5] and [Popa and Vaes 2014a, Theorem 5.1]. Since we already obtained approximation
maps for M̃ in Lemma 3.8, which are “relative to B”, almost the same arguments as the above-cited
theorems work. However, since our approximation maps are not defined directly on MH , we need a
stronger assumption on the subalgebra A; namely, we need amenability, instead of relative amenability.
See Step 1 in the proof below and observe that we really need amenability for a subalgebra Q ⊂ pMp.

Theorem 3.10. Keep the setting above and suppose the following conditions:

• The algebra B is a type III1 factor.

• The algebra A is amenable.

• The algebra N has the ϕN -W∗CMAP.

Then NpM̃ p(A) acts on A as a weakly compact action for (M̃,Tr, πH, θH,M).

Proof. The proof consists of several steps. For any von Neumann subalgebra Q ⊂ pM̃ p, we denote by
CH,Q (resp. MH,Q) the C∗-algebra (resp. the von Neumann algebra) generated by πH (pM̃ p)θH (Q◦).

Step 1. Using the ϕN -W∗CMAP of N, we construct a net of normal functionals on MH which are
contractive on MH,Q for any amenable Q.

In this step, we show that there is a net (µi )i of normal functional on MH such that

• µi (πH (a)θH (b◦))= Tr(pϕi (a)pbp) for all a, b ∈ M̃,

• we have ‖µi |MH,Q‖ ≤ 1 for any amenable von Neumann subalgebra Q ⊂ pM̃ p.

By Lemma 3.8, there exists a net (ϕi )i of c.c. maps on M̃ such that ϕi → idM̃ point σ -weakly and that
each ϕi is a finite sum of d∗EB(z∗ · y)c for c, d ∈ M̃ and y, z ∈ nEB . Observe that for any functional
d∗EB(z∗ ·y)c for some c, d ∈ M̃ and y, z ∈nEB , one can define an associated normal functional on MH by

MH 3 T 7→
〈
T (3ϕ̂(y)⊗B 3Tr(cp)),3ϕ̂(z)⊗B 3Tr(dp)

〉
H .

In this way, since ϕi is a finite sum of such maps, one can associate each ϕi with a normal functional on MH ,
which we denote byµi . Then by the formula L∗3ϕ̂(z)aL3ϕ̂(y)= EB(z∗ay) for x, y∈nEB∩nϕ and a∈ M̃, it is
easy to verify that µi (πH (a)θH (b◦))=Tr(pϕi (a)pbp) for a, b∈ M̃. We need to show that ‖µi |MH,Q‖≤ 1
for any amenable Q ⊂ pM̃ p. For this, since µi is normal, we have only to show that ‖µi |CH,Q‖ ≤ 1.
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By Lemma 3.11 below, since B is a type III1 factor, the ∗-algebra generated by πH (M̃) and θH (M̃◦) is
isomorphic to M̃⊗alg M̃◦. So for any amenable Q⊂ pM̃ p, the C∗-algebra generated by πH (M̃)θH (Q◦) is
isomorphic to M̃⊗min Q◦. Hence one can define c.c. maps ϕi⊗idQ◦ on CH,Q . Since Q is amenable, one has

M̃ L2(M̃ p)Q ≺ M̃(θH (p◦)H)Q .

Finally if we denote by ν the associated ∗-homomorphism with this weak containment, then the functional
T 7→ 〈ν◦(ϕi⊗idQ◦)(T )3Tr(p),3Tr(p)〉Tr coincides with µi on CH,Q , and hence we obtain ‖µi |CH,Q‖≤ 1.
Thus we obtained a desired net (µi )i .

Step 2. Using the amenability of A, the absolute values of normal functionals (µi )i constructed in Step 1
satisfy desired properties on MH,A.

Before this step, recall from the first part of the proof of [Ozawa and Popa 2010, Theorem 3.5] that for
any C∗-algebra C , any state ω on C and any partial isometry u ∈ C with p := uu∗ and q := u∗u, one has

max
{
‖ω( · u∗)−ω( · q)‖2, ‖ω(u · u∗)−ω(q · q)‖2

}
≤ 4(ω(p)+ω(q)−ω(u)−ω(u∗)).

Let (µi )i be a net constructed in Step 1. For notational simplicity, for any amenable von Neumann
subalgebra Q ⊂ pM̃ p we denote by µQ

i the restriction of µi on MH,Q .

Claim. For any amenable Q, one has

‖µ
Q
i ‖→ 1 and ‖µ

Q
i − |µ

Q
i |‖→ 0,

where |µQ
i | is the absolute value of µQ

i .

Proof of Claim. By Step 1, we know ‖µQ
i ‖ ≤ 1 and hence ‖µQ

i ‖ → 1, since µi (πH (p)θH (p◦))→ 1.
Let µQ

i = |µ
Q
i |( · ui ) be the polar decomposition with a partial isometry ui ∈MH,Q . For pi := ui u∗i and

qi := u∗i ui , it holds that

|µ
Q
i | = µ

Q
i ( · u

∗

i ), |µ
Q
i | = |µ

Q
i |(qi · qi ), and µ

Q
i = µ

Q
i ( · pi )= µ

Q
i (qi · ).

The final equation says that µQ
i (pi )= µ

Q
i (1Q)→ 1. Then by the inequality at the beginning of this step,

we have
‖µ

Q
i − |µ

Q
i |‖

2
= ‖|µ

Q
i |( · u

∗

i )− |µ
Q
i |( · qi )‖

2

≤ 4
(
|µ

Q
i |(pi )+ |µ

Q
i |(qi )− |µ

Q
i |(ui )− |µ

Q
i |(u

∗

i )
)

≤ 4
(
‖µ

Q
i ‖+‖µ

Q
i ‖− 2 Re(µQ

i (pi ))
)
→ 0. �

Put ωi := |µ
A
i |/‖µ

A
i ‖. In this step, we show that (ωi )i satisfies the following conditions:

(1) ωi (πH (x)θH (p◦))→ Tr(pxp) for all x ∈ pM̃ p.

(2) ωi (πH (a)θH (ā))→ 1 for all a ∈ U(A).

(3) ‖ωi ◦Ad(πH (u)θH (ū))−ωi‖M∗

H,A
→ 0 for all u ∈NpM̃ p(A).
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Since ‖µA
i ‖→ 1 and ‖µA

i −|µ
A
i |‖→ 0, to verify these three conditions, we have only to show that (µi )i

satisfies the same conditions. Then by construction, it is easy to verify (i) and (ii). So we will check only
the final condition.

Fix u ∈ NpM̃ p(A) and recall that the von Neumann algebra Au generated by A and u is amenable
[Ozawa and Popa 2010, Lemma 3.4]. Hence by Step 1, ‖|µAu

i | −µ
Au

i ‖M∗

H,Au → 0. Combined with the
inequality at the beginning of this step, putting U := πH (u)θH (ū), we have

lim
i
‖µA

i ◦Ad U −µA
i ‖

2
M∗

H,A
≤ lim

i
‖µAu

i ◦Ad U −µAu

i ‖
2
M∗

H,Au

= lim
i
‖|µAu

i | ◦Ad U − |µAu

i |‖
2
M∗

H,Au

≤ lim
i

4(2− 2 Re(|µAu

i |(U )))

= lim
i

4(2− 2 Re(µAu

i (U )))= 0.

Thus we proved that the net (ωi )i of normal states on MH satisfies conditions (i), (ii) and (iii) above.

Step 3. Using a normal u.c.p. map from M to MH,A, we obtain desired functionals on M.

In this step, we first construct a normal u.c.p. map E :M→MH,A satisfying

E(πH(a)θH(b◦))= πH (pap)θH (E A(pbp)◦) for any a, b ∈ M̃,

where E A is the unique Tr-preserving conditional expectation from pM̃ p onto A.
For this, observe first that for any right A-module K with the right action θK , there is an isometry

VK : K → K ⊗A pL2(M̃,Tr) given by V ξ = ξ ⊗A3Tr(p) for any left Tr-bounded vector ξ ∈ K. Indeed,
using the fact 3Tr(p)= JTr3Tr(p), one has

‖V ξ‖ = ‖ξ ⊗A 3Tr(p)‖ = ‖Lξ3Tr(p)‖2,Tr = ‖Lξ3Tr(p)‖2,Tr = ‖θK (p◦)ξ‖K = ‖ξ‖K .

Hence, since πH (p)θH (p◦)H is a right A-module, one can define an isometry

V : πH (p)θH (p◦)H → πH(p)θH(p◦)H⊂H, V ξ := ξ ⊗A 3Tr(p).

It is then easy to verify that

V ∗πH(a)θH(b◦)V = πH (pap)θH (E A(pbp)◦) for any a, b ∈ M̃ .

Thus we obtain a normal u.c.p. map E :M→MH,A by E(T ) := V ∗T V.
Let now (ωi )i be the net of normal states on MH,A constructed in Step 2. By conditions (i) and (ii)

on (ωi )i , it is easy to see that normal states γi := ωi ◦ E on M satisfy

(i) ′ γi (πH(x))→ τ(pxp) for all x ∈ M̃ ;

(ii) ′ γi (πH(a)θH(ā))→ 1 for all a ∈ U(A).

Finally since E A satisfies E A ◦Ad u = Ad u ◦ E A for any u ∈NpM̃ p(A), one has

γi ◦Ad(πH(u)θH(ū))= ωi ◦Ad(πH(u)θH(ū)) ◦ E
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on πH(M̃)θH(M̃), and hence on M by normality. So condition (iii) on (ωi )i shows

(iii) ′ ‖γi ◦Ad(πH(u)θH(ū))− γi‖→ 0 for all u ∈NpM̃ p(A).

Thus the net (γi )i on M satisfies conditions (i)′, (ii)′ and (iii)′. By Proposition 3.6(2), we conclude
that NpM̃ p(A) acts on A weakly compactly for (M̃,Tr, πH, θH,M). �

We prove a lemma used in the proof above.

Lemma 3.11. Assume that B is a type III1 factor. Then the ∗-algebra generated by πH (M̃) and θH (M̃◦)
is isomorphic to M̃ ⊗alg M̃◦.

Proof. Let ν : M̃ ⊗alg M̃◦ → ∗-alg{πH (M̃), θH (M̃◦)} be a ∗-homomorphism given by ν(x ⊗ y◦) =
πH (x)θH (y◦) for x, y ∈ M̃. We will show that ν is injective.

Assume that ν
(∑n

i=1xi ⊗ y◦i
)
=
∑n

i=1πH (xi )θH (y◦i )= 0 for some xi , yi ∈ M̃. We may assume yi 6= 0
for all i . Put

X :=


πH (x1) πH (x2) · · · πH (xn)

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 and Y :=


θH (y◦1) 0 · · · 0
θH (y◦2) 0 · · · 0
...

...
. . .

...

θH (y◦n) 0 · · · 0


and observe XY = 0. We regard them as elements in B(H)⊗Mn . Let p be the left support projection
of Y which is contained in θH (M̃◦) ⊗Mn and satisfies X p = 0. Since Xupu∗ = 0 for any unitary
u ∈ B(H)⊗Mn which commutes with X , and since θH (M̃◦)⊗Cn commutes with X (where Cn

⊂Mn is
the diagonal embedding), we have Xz = 0 for z := sup{upu∗ | u ∈ U(θH (M̃◦)⊗Cn)}. Observe that z is
contained in

(θH (M̃◦)⊗Mn)∩ (θH (M̃◦)⊗Cn)′ = θH (Z(M̃)◦)⊗Cn

and hence we can write z = (zi )
n
i=1 for some zi ∈ θH (Z(M̃)◦). Then the condition Xz = 0 is equivalent

to πH (xi )zi = 0 for all i . Observe also that zi 6= 0 for all i . Indeed, since z ≥ p and pY = Y, we have
zY = Y and hence ziθH (y◦i )= θH (y◦i ). This implies zi 6= 0 since we assume yi 6= 0 for all i .

Now we claim that πH (xi )zi = 0 is equivalent to xi = 0 or zi = 0. Once we prove the claim, since
zi 6= 0, we have xi = 0 and so

∑n
i=1xi ⊗ y◦i = 0, which gives the injectivity of ν.

By Lemma 2.2, the center of M̃ coincides with Z(N ). Then by Proposition 2.3, we identify H =
L2(R)⊗ L2(N )⊗ L2(B, ψB)⊗ L2(N )⊗ L2(R) on which we have

πH (M̃)⊂ B(L2(R)⊗ L2(N )⊗ L2(B, ψB))⊗C1L2(N )⊗L2(R),

θH (M̃◦)⊂ C1L2(R)⊗L2(N )⊗B(L2(B, ψB)⊗ L2(N )⊗ L2(R)).

In particular θH (Z(M̃)◦)= θH (Z(N ))⊂C1L2(R)⊗L2(N )⊗L2(B,ψB)⊗B(L2(N )⊗L2(R)), and hence the C∗-
algebra generated by πH (M̃) and θH (Z(M̃)◦) is isomorphic to M̃⊗minZ(M̃)◦. Thus since zi ∈θH (Z(M̃)◦),
the condition πH (xi )zi = 0 is equivalent to xi = 0 or zi = 0. �
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4. Proof of Theorem A

To prove Theorem A we follow the proof of [Isono 2015b, Theorem B], which originally comes from the
one of [Popa and Vaes 2014b, Theorem 1.4].

4A. Some general lemmas. Let G be a compact quantum group with the Haar state h and put N0 :=

Cred(G) ⊂ L∞(G) =: N and ϕN := h. Let (X, ϕX ) be a von Neumann algebra with a faithful normal
semifinite weight. Let αX be an action of R on X and put α := σ ϕN ⊗αX and M := (N ⊗ X)oα R.

In this setting, we prove two general lemmas. We use the following general fact for quantum groups.

• For any x ∈ Irred(G), there is an orthonormal basis {ux
i, j }i, j ⊂ Cred(G) of Hx with λx

i, j > 0 such that
σ h

t (u
x
i, j )= λ

x
i, j u

x
i, j for all t ∈ R.

Recall that all the linear spans of such a basis, which is usually called a dense Hopf ∗-algebra, make a
norm-dense ∗-subalgebra of Cred(G). We note that each matrix (ux

i, j )i, j may not be a unitary, since we
assume {ux

i, j }i, j is orthonormal (i.e., they are normalized).

Convention. Throughout this section, we fix such a basis {ux
i, j }

x
i, j . For notation simplicity, we identify

any subset E ⊂ Irred(G) (possibly E = Irred(G)) with the set {ux
i, j | x ∈ E, i, j}.

Note that this identification will not cause any confusion, since in proofs of this section we only use
the property that E ⊂ Irred(G) is a finite set.

Here we record an elementary lemma.

Lemma 4.1. For any a ∈ N0, the element πσ ϕN (a) ∈ N oσ ϕN R ⊂ B(L2(N )⊗ L2(R)) is contained in
N0⊗min Cb(R), where Cb(R) is the set of all norm continuous bounded functions on R.

Proof. We may assume that a is an eigenvector; namely, σ ϕN
t (a) = λi t a for some λ > 0. Then since

(πσ ϕN (a)ξ)(t)= σ ϕN
−t (a)ξ(t)= λ

−i t aξ(t) for t ∈ R, one has πσ ϕN (a)= a⊗ f , where f ∈ Cb(R) is given
by f (t) := λ−i t. Hence we get the conclusion. �

We fix a faithful normal semifinite weight ϕX on X and put ψ :=ϕN⊗ϕX with its dual weight ψ̂. Recall
that the compression map PN⊗1X⊗1L2(R), where PN is the one-dimensional projection from L2(N ) onto
C3ϕN (1N ), is a conditional expectation EXoR :M→ X oR, which satisfies ψ̂ = ϕ̂X ◦ EXoR (this was
shown in the first half of the proof of Lemma 2.1). For any a ∈M and f ∈ Cc(R,M)nψ , we denote by
a f an element in Cc(R,M)nψ given by t 7→ α−t(a) f (t). Observe that 3ψ̂(π̂α(a f ))= πα(a)3ψ̂(π̂α( f )).
A simple computation shows that for any a, b ∈ N and f, g ∈ Cc(R, X)nϕX ,

〈a f, bg〉ψ̂ = 〈a, b〉ϕN 〈 f, g〉ϕ̂X .

Observe that all the linear spans of u f for u ∈ Irred(G) and f ∈ Cc(R, X)nϕX are dense in L2(N )⊗
L2(X)⊗ L2(R). So if { fλ}λ ⊂ Cc(R, X)nϕX is an orthonormal basis in L2(X)⊗ L2(R), then the set
{u fλ}u,λ is an orthonormal basis of L2(N )⊗ L2(X)⊗ L2(R). Along this basis, any a ∈ nψ̂ can be
decomposed in L2(N )⊗ L2(X)⊗ L2(R) as, for some αu,λ ∈ C,

3ψ̂(a)=
∑
u,λ

αu,λu fλ =
∑
u,λ

αu,λπϕN (u)3ψ̂(π̂α( fλ))=
∑

u

πσ ϕN (u)au,
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where au =
∑

λ αu,λ fλ ∈ L2(R, X). If we apply (PN ⊗ 1X ⊗ 1L2(R))πσ ϕN (v∗) for some v ∈ Irred(G) to
this decomposition, then on the one hand

(PN ⊗ 1X ⊗ 1L2(R))πσ ϕN (v
∗)3ψ̂(a)= (PN ⊗ 1X ⊗ 1L2(R))3ψ̂(v

∗a)=3ψ̂(EXoR(v
∗a))

and on the other hand

(PN ⊗ 1X ⊗ 1L2(R))πσ ϕN (v
∗)
∑

u

πσ ϕN (u)au =
∑

u

ϕN (v
∗u)au = ϕN (v

∗v)av = av.

Hence we have av =3ψ̂(EXoR(v
∗a)) for all v ∈ Irred(G). Thus we observe that any element a ∈ nψ̂ has

the Fourier expansion in the sense that

3ψ̂(a)=
∑

u

πσ ϕN (u)au =
∑

u

3ψ̂(uEXoR(u∗a)), where au =3ψ̂(EXoR(u∗a)).

Using this property, we can prove the following lemma. We omit the proof, since it is straightforward.

Lemma 4.2. Let M0 ⊂M be the C∗-subalgebra generated by N0 and X oR. Then one has

M0 = spannorm
{ax | a ∈ N0, x ∈ X oR}

= spannorm
{xa | a ∈ N0, x ∈ X oR}.

4B. Proof of Theorem A. Let G be a compact quantum group with the Haar state h and put N0 :=

Cred(G)⊂ L∞(G)=: N and ϕN := h. Let (B, ϕB) be a von Neumann algebra with a faithful normal state.
We keep the notation from Sections 3C and 3D, such as M, ϕ, B̃, M̃, Tr, p, A, H, πH, θH, M, except for the
Hilbert space H (which is used just below in a different manner). Assume that Tr |B̃ is semifinite. Recall
that by Lemma 3.9, M=Rn(N⊗X) with the standard representation L2(M)= L2(R)⊗L2(N )⊗L2(X).
Set π := πH and θ := θH for simplicity, and we sometimes omit π and θ by regarding M̃, M̃◦ as subsets
of M. Using Proposition 2.3, we put

H := L2(M)⊗X L2(M)= L2
`(R)⊗ L2

`(N )⊗ L2(X)⊗ L2
r (N )⊗ L2

r (R),

K := L2(M)⊗(N⊗X) L2(M)= L2
`(R)⊗ L2(N )⊗ L2(X)⊗ L2

r (R),

and we denote by πH , ρH , πK and ρK corresponding left and right actions of M. Here we are using
symbols ` and r for L2(R) and L2(N ), so that πH and πK act on L2

`(R)⊗ L2
`(N )⊗ L2(X) and L2

`(R)⊗

L2
`(N )⊗L2(X) respectively, and θH and θK act on L2(X)⊗L2

r (N )⊗L2
r (R) and L2(N )⊗L2(X)⊗L2

r (R)

respectively. We denote by νK ,H the corresponding ∗-homomorphism as M-bimodules, which is not
bounded in general.

In this setting, we prove two lemmas. The first one uses biexactness of quantum groups, which
corresponds to [Isono 2015a, Lemma 4.1.3], while the second one uses Popa’s intertwining techniques,
which corresponds to [Isono 2015a, Lemma 4.1.2; 2015b, Lemma 4.4]. See also [Popa and Vaes 2014b,
Sections 3.2 and 3.5] for the origins of them.

Lemma 4.3. Assume that Ĝ is biexact with a u.c.p. map 2 as in the definition of biexactness. Let M0 be
the C∗-algebra generated by N0 and Rn X. Then 2 can be extended to a u.c.p. map

2̃ : C∗{πH (M0), θH (M0)} → B(K )
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which satisfies, using the flip 612 : K ' L2(N )⊗ L2
`(R)⊗ L2(X)⊗ L2

r (R),

612
(
2̃(πH (xa)θH (b◦y◦))−πK (xa)θK (b◦y◦)

)
612 ∈ K(L2(N ))⊗min B(L2

`(R)⊗ L2(X)⊗ L2
r (R))

for any a, b ∈ N0 and x, y ∈ Rn X.

Proof. By applying flip maps, we identify

H = L2
`(N )⊗ L2

r (N )⊗ L2
`(R)⊗ L2(X)⊗ L2

r (R),

K = L2(N )⊗ L2
`(R)⊗ L2(X)⊗ L2

r (R).

We define a u.c.p. map 2̃ by

2̃ :=2⊗ idL2
`(R)
⊗ idL2(X)⊗ idL2

r (R)
: N0⊗min N ◦0 ⊗min B(L2

`(R)⊗ L2(X)⊗ L2
r (R))→ B(K ).

Observe that by Lemma 4.1, πH (M0) and ρH (M0) are contained in

N0⊗min N ◦0 ⊗min B(L2
`(R)⊗ L2(X)⊗ L2

r (R)).

Recall that for a, b ∈ N, πH (a) and θH (b◦) are given by πσ ϕN (a) on L2
`(R)⊗ L2

`(N ) and θσ ϕN (b◦) on
L2

r (N )⊗ L2
r (R). So if a and b are eigenvectors, they are of the form πH (a)= f ⊗a and θH (b◦)= b◦⊗g

for some f, g ∈ Cb(R) by Lemma 4.1. It then holds that for any x, y ∈ Rn X ,

2̃(πH (xa)θH (b◦y◦))−πK (xa)θK (b◦y◦)

= 2̃(πH (x)πH (a)θH (b◦)θH (y◦))−πK (x)πK (a)θK (b◦)θK (y◦)

= 2̃
(
πH (x)(a⊗ b◦⊗ f ⊗ 1L2(X)⊗ g)θH (y◦)

)
−πK (x)(ab◦⊗ f ⊗ 1L2(X)⊗ g)θK (y◦)

= πK (x)
(
(2(a⊗ b◦)− ab◦)⊗ f ⊗ 1L2(X)⊗ g

)
θK (y◦).

Since 2(a ⊗ b◦)− ab◦ ∈ K(L2(N )) and πK (x), θK (y◦) ∈ C1N ⊗min B(L2
`(R)⊗ L2(X)⊗ L2

r (R)), the
last term above is contained in K(L2(N ))⊗min B(L2

`(R)⊗ L2(X)⊗ L2
r (R))). Then by Lemma 4.2, we

obtain the conclusion. �

Lemma 4.4. Let � be a state on B(K ) satisfying for any x ∈ M̃ and a ∈ U(A),

�(πK (π(x)))= Tr(pxp) and �(πK (π(a)θ(ā)))= 1.

If A 6�M̃ B̃, then using the flip 612 : K ' L2(N )⊗ L2
`(R)⊗ L2(X)⊗ L2

r (R), it holds that

� ◦Ad(612)
(
K(L2(N ))⊗min B(L2

`(R)⊗ L2(X)⊗ L2
r (R))

)
= 0.

Proof. Since � is a state, by the Cauchy–Schwarz inequality, we have only to show that

� ◦Ad(612)(K(L2(N ))⊗min C1L2
`(R)⊗L2(X)⊗L2

r (R)
)= 0.

In this setting we can follow the proof of [Isono 2015b, Lemma 4.4]. Indeed suppose by contradiction
that there exist δ > 0 and a finite subset F ⊂ Irred(G) such that

�(1L2
`(R)
⊗ PF ⊗ 1L2(X)⊗L2

r (R)
) > δ,
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where PF is the orthogonal projection onto
∑

x∈F Hx ⊗ Hx̄ . Then the argument in [loc. cit., Lemma 4.4]
works by replacing ‖ · ‖ with �. Hence we omit the proof. �

Now we are in position to prove the main theorem. We actually prove the following more general
theorem. Theorem A then follows immediately with Theorem 3.10.

Theorem 4.5. Let A ⊂ pM̃ p be a von Neumann subalgebra and G ≤NpM̃ p(A) a subgroup. Assume the
following three conditions:

(A) The group G acts on A by conjugation as a weakly compact action for (M̃, π, θ,M).

(B) The quantum group Ĝ is biexact and centrally weakly amenable.

(C) We have A 6�M̃ B̃.

Then there is a (U(A)∪ G)-central state on p〈M̃, B̃〉p which coincides with Tr on pM̃ p. In particular
the von Neumann algebra generated by A and G is amenable relative to B̃.

Proof. By Remark 3.5, we may assume U(A)⊂ G. Recall from Lemma 3.2 that as M-bimodules,

L2(M)≺ L2(M)⊗(N⊗X) L2(M)= K ,

and we denote by ν the associated ∗-homomorphism. Let (ξi )i ⊂ L2(M) be a net for the given weakly
compact action of G and put a state �(X) := Limi 〈ν(X)ξi , ξi 〉L2(M) on C∗{πK (M), θK (M◦)}. Observe
that it satisfies

(i) ′ �(πK (π(x)))= Tr(pxp) for any x ∈ M̃ ;

(ii) ′ �(πK (π(a)θ(ā)))= 1 for any a ∈ U(A);

(iii) ′ �(πK (π(u)θ(ū))θK (π(u∗)◦θ(u◦)◦))= 1 for any u ∈ G.

Note that since JMξi = ξi , we also have �(θK (π(x)◦))= Tr(pxp) for any x ∈ M̃. Denote by νK ,H

the (not necessarily bounded) ∗-homomorphism for M-bimodules H and K. Here we claim that, using
the biexactness of Ĝ, the functional �̃ :=� ◦ νK ,H satisfies the following boundedness condition.

Claim. The functional �̃ is bounded on C∗{πH (M0), θH (M◦

0)}.

Proof of Claim. We first extend � on B(K ) by the Hahn–Banach theorem. Then by Lemma 4.4, using
assumption (C) and conditions (i)′ and (ii)′, one has

� ◦Ad(612)
(
K(L2(N ))⊗min B(L2

`(R)⊗ L2(X)⊗ L2
r (R))

)
= 0.

Let 2 be a u.c.p. map for biexactness of Ĝ and denote by 2̃ the extension given in Lemma 4.3. Define a
state on C∗{πH (M0), θH (M◦

0)} by �̂ :=� ◦ 2̃. Then conclusions of Lemmas 4.3 and 4.4 show that for
any a, b ∈ N0 and x, y ∈ Rn X ,

�̂(πH (xa)θH (b◦y◦))=� ◦ 2̃(πH (xa)θH (b◦y◦))=�(πK (xa)θK (b◦y◦)).

This means that the functional �̃ coincides with �̂ on ∗-alg{πH (M0), θH (M◦

0)}, and hence it is a state
on C∗{πH (M0), θH (M◦

0)} since so is �̂. �
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We next show that the above boundedness extends partially, using the central weak amenability and a
normality of �̃. This is the second use of the weak amenability. Recall that M is generated by a copy of
M̃ and M̃◦. We put M̃0 ⊂M0 as the C∗-subalgebra generated by B̃ and N0, and note that Lemma 4.2 is
applied to M̃0.

Claim. The functional �̃ is bounded on

C∗{πH (M̃), πH (M̃◦), θH (M̃◦), θH (M̃)} =: A,

where θH (M̃) should be understood as θH ((M̃◦)◦).

Proof of Claim. Let (ψi )i be a net of finite-rank normal c.c. maps on N as in Theorem 2.9. Up to
convex combinations, we may assume ψi → idN in the point ∗-strong topology. For each i we put
ψ◦i := JNψi (JN · JN )JN as a normal c.c. map on N ◦. For each i , since ψi commutes with the modular
action, one can define a normal c.c. map on A by

9i := idL2
`(R)
⊗ψi ⊗ idL2(X)⊗ψ

◦

i ⊗ idL2
r (R)

.

Observe that the restriction of 9i on πH (M̃) defines a normal c.c. map ψ̃i : M̃→ M̃0 (use Lemma 4.2).
The same holds for θH (M̃◦) and define ψ̃◦i similarly. Then with the formula ‖πH (z)‖2,�̃ = ‖zp‖2,Tr =

‖θH (z̄)‖2,�̃ for z ∈ M̃ and by the Cauchy–Schwarz inequality, it holds that for any a, b, x, y ∈ M̃∣∣�̃ ◦9i (πH (ax◦)θH (b◦y))− �̃(πH (ax◦)θH (b◦y))
∣∣

=
∣∣�̃(πH (ψ̃i (a)x◦)θH (ψ̃

◦

i (b
◦)y))− �̃(πH (ax◦)θH (b◦y))

∣∣
≤ ‖ψ̃i (a)∗− a∗‖2,Tr‖x‖∞ ‖b‖∞ ‖y‖∞+‖ψ̃i (b)∗− b∗‖2,Tr ‖a‖∞ ‖x‖∞ ‖y‖∞

→ 0 as i→∞.

Hence �̃ ◦ 9i converges pointwisely to �̃ on the norm-dense ∗-subalgebra A0 ⊂ A generated by
πH (M̃), πH (M̃◦), θH (M̃◦), and θH (M̃). Observe that ‖�̃ ◦ 9i |A‖ ≤ 1 for all i , since the range of
9i is contained in C∗{πH (M0), θH (M◦

0)} and �̃ is bounded by 1 on this C∗-algebra by the previous
claim. So we conclude ‖�̃|A‖ ≤ 1, as desired. �

Observe that �̃ is a state, since it is positive on A0 by construction, and �̃(1)= 1. By the Hahn–Banach
theorem, we extend �̃ from A to B(H) and we still denote it by �̃. By construction, it satisfies that for
all x ∈ M̃ and u ∈ G,

�̃(πH (x))= Tr(pxp) and �̃
(
πH (π(u)θ(ū))θH (π(u∗)◦θ(u◦)◦)

)
= 1.

Putting U (u) :=πH (π(u)θ(ū))θH (π(u∗)◦θ(u◦)◦), the second condition implies �̃(Y )= �̃(U (u)YU (u)∗)
for any u∈G and Y ∈B(H). Recall that since H= L2(M)⊗X L2(M), regarding L2(M) as an 〈M,RnX〉-
X -bimodule, the basic construction 〈M,Rn X〉 acts on H on the left, which we again denote by πH ,
and its image commutes with θH (M◦). So if Y ∈ 〈M,Rn X〉 ∩ θ(M̃◦)′, then

�̃(πH (Y ))= �̃(U (u)πH (Y )U (u)∗)= �̃(πH (π(u))πH (Y )πH (π(u))∗)
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for any u∈G. So the state �̃◦πH is a G-central state on 〈M,RnX〉∩θ(M̃◦)′. Finally since M̃ L2(RnX)⊂
L2(M) is dense, the von Neumann subalgebra in 〈M,Rn X〉 ∩ θ(M̃◦)′ generated by M̃ and eRnX :=

1L2(R)⊗ PN ⊗ 1X , where PN is the 1-dimensional projection onto C3ϕN (1N ), is canonically identified
as 〈M̃, B̃〉 (by the fact that eRnX a eRnX = E B̃(a)eRnX for a ∈ M̃). Thus the restriction of �̃ ◦ πH on
〈M̃, B̃〉 is a G-central state which coincides with Tr on pM̃ p. Using the normality on pM̃ p and by the
Cauchy–Schwarz inequality, we obtain that G′′ is amenable relative to B̃ in M̃. �

4C. Proof of Corollary B.

Proof of Corollary B. Put M := N ⊗ B ⊃ N0⊗ B =: M0 and suppose that A⊂ M0 is a Cartan subalgebra.
We will deduce a contradiction. For this, let R∞ be the AFD III1 factor and A0⊂ R∞ a Cartan subalgebra.
Up to exchanging B and A with B⊗ R∞ and A⊗ A0 respectively, we assume that B is a type III1 factor
(see, e.g., Lemma 2.2).

Let ψN0 and τA be faithful normal states on N0 and A respectively, and EN0 and E A faithful normal
conditional expectations from N to N0 and from M0 to A respectively. Put

ψA := τA ◦ E A, ψN := ψN0 ◦ EN0, ψ := ψN ⊗ϕB, ϕ := h⊗ϕB

and EM0 := EN0 ⊗ idB . Then since all continuous cores are isomorphic, we have 5ψA◦EM0 ,ψ
: Cψ(M)→

CψA◦EM0
(M), which restricts to5ψA,ψN0⊗ϕB :CψN0⊗ϕB (M0)→CψA(M0). Recall that A⊗LR⊂CψA(M0)

is a Cartan subalgebra, see, e.g., [Houdayer and Ricard 2011, Proposition 2.6], and hence so is the image

Ã :=5ϕ,ψA◦EN0
(A⊗ LR)⊂5ϕ,ψA◦EN0

(CψA(M0))=:N.

Claim. There is a conditional expectation E : 〈Cϕ(M),CϕB (B)〉 → N which is faithful and normal
on Cϕ(M).

Proof. We first show A 6�M B. Indeed, if A �M B, then we have A �M0 B by Lemma 2.12. So by
[Houdayer and Isono 2017, Lemma 4.9], one has N0= B ′∩M0�M0 A′∩M0= A, which is a contradiction.
Hence we have A 6�M B.

We apply [Boutonnet et al. 2014, Proposition 2.10] (this holds if A is finite by exactly the same proof)
and get Ã 6�Cϕ(M) CϕB (B). Fix any projection p ∈ Ã with Tr(p) <∞, where Tr is the canonical trace
on the core, and observe p Ã p 6�Cϕ(M) CϕB (B) by definition. We apply Theorem A to p Ã p and get that
NpCϕ(M)p(p Ã p)′′ is amenable relative to CϕB (B). Observe that NpCϕ(M)p(p Ã p)′′ = p(NCϕ(M)( Ã)

′′)p;
see, e.g., [Houdayer and Ricard 2011, Proposition 2.7]. Combined with [Isono 2017, Remark 3.3], there is a
conditional expectation E p : p〈Cϕ(M),CϕB (B)〉p→ pN p which restricts to the Tr-preserving expectation
on pCϕ(M)p. Taking a net (pi )i of Tr-finite projections converging to 1 weakly, one can construct a
desired conditional expectation by E(x) := σ -weak Limi E pi (pi xpi ) for x ∈ 〈Cϕ(M),CϕB (B)〉. �

We apply [Isono 2017, Theorem 3.2] to the conclusion of the claim and get that M0 is amenable relative
to B in M. Hence there is a conditional expectation F : 〈M, B〉 → M0 which is faithful and normal
on M. Using the identification 〈M, B〉 =B(L2(M))⊗ B, we can construct a conditional expectation from
B(L2(M)) onto N0, which means N0 is injective. This is a contradiction. �
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COMMUTATORS OF MULTIPARAMETER FLAG
SINGULAR INTEGRALS AND APPLICATIONS

XUAN THINH DUONG, JI LI, YUMENG OU, JILL PIPHER AND BRETT D. WICK

We introduce the iterated commutator for the Riesz transforms in the multiparameter flag setting, and prove
the upper bound of this commutator with respect to the symbol b in the flag BMO space. Our methods
require the techniques of semigroups, harmonic functions and multiparameter flag Littlewood–Paley
analysis. We also introduce the big commutator in this multiparameter flag setting and prove the upper
bound with symbol b in the flag little bmo space by establishing the “exponential-logarithmic” bridge
between this flag little bmo space and the Muckenhoupt Ap weights with flag structure. As an application,
we establish the div-curl lemmas with respect to the appropriate Hardy spaces in the multiparameter
flag setting.

1. Introduction and statement of main results

The Calderón–Zygmund theory of singular integrals has been central to the success and applicability of
modern harmonic analysis in the last fifty years. This theory has had extensive applications to other fields
of mathematics such as complex analysis, geometric measure theory and partial differential equations. In
the setting of Euclidean spaces Rn, a notable property of standard Calderón–Zygmund singular integrals,
shared with the Hardy–Littlewood maximal operator, is that these operators commute with the classical
one-parameter family of dilations on Rn, δ · x = (δx1, . . . , δxn) for δ > 0. See for example [Stein 1993].

The product Calderón–Zygmund theory in harmonic analysis was introduced in the 1970s and has been
studied extensively since then. The model case is a tensor product of classical singular integral operators;
such operators arise in the context of questions about summation of multiple variable Fourier series. Early
key work in this field includes that of Chang and R. Fefferman [1980; 1982; 1985], R. Fefferman [1986;
1987; 1999], R. Fefferman and Stein [1982], C. Fefferman and Stein [1972], Gundy and Stein [1979],
Journé [1985], and Pipher [1986]. Included in these works are the identification of appropriate notions of
product BMO space and product Hardy space H p(Rn

×Rm).
More recently, the theory of (iterated) commutators has been developed in connection with the Chang–

Fefferman BMO space, including paraproducts and multiparameter div-curl lemmas; see, for example,
[Dalenc and Ou 2016; Ferguson and Lacey 2002; Ferguson and Sadosky 2000; Lacey et al. 2009; 2010;
2012; Lacey and Terwilleger 2009]. In contrast with the classical Euclidean setting, the product Calderón–
Zygmund singular integrals and the strong maximal function operator commute with the multiparameter
dilations on Rn, δ · x = (δ1x1, . . . , δnxn) for δ = (δ1, . . . , δn) ∈ (0,∞)n.

MSC2010: 42B30, 42B20, 42B35.
Keywords: multiparameter flag setting, flag commutator, Hardy space, BMO space, div-curl lemma .

1325

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2019.12-5
http://dx.doi.org/10.2140/apde.2019.12.1325
http://msp.org


1326 XUAN THINH DUONG, JI LI, YUMENG OU, JILL PIPHER AND BRETT D. WICK

A new type of multiparameter structure, which lies in between one-parameter and tensor product, was
introduced by Müller, Ricci and Stein in [Müller et al. 1995; 1996], where they studied the L p boundedness
of Marcinkiewicz multipliers m(L, iT ) on the Heisenberg group, where L is the sub-Laplacian and T is
the central invariant vector field, with m being a multiplier of Marcinkiewicz-type. They showed that
such Marcinkiewicz multipliers can be characterized by a convolution operator f ∗ K, where K is a
so-called flag convolution kernel. This multiparameter flag structure is not explicit, but only implicit in
the sense that one cannot formulate it in terms of an explicit dilation δ acting on x . Later, the notion of
flag kernels (having singularities on appropriate flag varieties) and the properties of the corresponding
singular integrals were then extended to the higher-step case by Nagel, Ricci and Stein [Nagel et al. 2001]
on Euclidean space and their applications on certain quadratic CR submanifolds of Cn. Recently, Nagel,
Ricci, Stein and Wainger [Nagel et al. 2012; 2018] established the theory of singular integrals with flag
kernels in a more general setting of homogeneous groups. They proved that, on a homogeneous group,
singular integral operators with flag kernels are bounded on L p, 1< p <∞, and form an algebra. (See
also [Głowacki 2010] for related work.) Associated to this implicit multiparameter flag structure, the
Hardy space H 1

F (R
n
×Rm) and BMO space BMOF (R

n
×Rm) were introduced by Han, Lu and Sawyer

[Han and Lu 2008; Han et al. 2014] through their creation of a flag-type Littlewood–Paley theory. More
recently, Han, Lee, and the second and fifth authors [Han et al. 2016a] established a full characterization
of H 1

F (R
n
×Rm) via appropriate flag-type nontangential, radial maximal functions, Littlewood–Paley

theory via Poisson integrals, the flag-type Riesz transforms, as well as flag atomic decompositions.

In the multiparameter setting, the dilation structure δ · x = (δ1x1, . . . , δnxn) for δ := (δ1, . . . , δn) ∈

(0,∞)n determines a geometry that is reflected by axes-parallel rectangles of arbitrary side-lengths.
Indeed, the strong maximal function is defined as the supremum of averages over such rectangles, and the
Chang–Fefferman product BMO space can also be characterized using such rectangles. When it comes to
the flag setting, the lack of an explicit dilation structure makes its geometry much more obscure. However,
from the study of properties of the flag singular integrals, such as the flag Riesz transforms that will be
introduced below, one realizes that the flag geometry can be reflected by axes-parallel rectangles with
certain restriction on the side-lengths. For example, the flag rectangles in Rn

×Rm are the ones of the
form R = I × J ⊂ Rn

×Rm with `(I )≤ `(J ). Compared to the multiparameter setting, the restriction
`(I ) ≤ `(J ) gives rise to new difficulties. For instance, a very useful trick in the study of problems in
the multiparameter setting is to take a sequence of rectangles {I × Ji } and let Ji shrink to a point y0 as
i→∞. This can usually effectively reduce the problem to one-parameter. However, in the flag setting,
such an operation is not allowed anymore. Other intrinsic difficulties of the flag setting can be better
described from the analytic perspective, which will be discussed below.

A commutator of a classical Calderón–Zygmund singular integral with a BMO function is a bounded
operator on L p with norm equivalent to the BMO norm of the symbol [Coifman et al. 1976]. Modern
methods of proving the upper bound of these commutators in the multiparameter product setting rely
upon the existence of a wavelet basis for L2(Rn), such as the Meyer wavelets or Haar wavelets; see for
example [Lacey et al. 2009; Dalenc and Ou 2016]. It turns out that the behavior of the commutator is
straightforward to analyze in terms of the wavelet basis. One method of proof shows that the commutator
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can be written as a linear combination of paraproducts and simple wavelet analogs of the Calderón–
Zygmund operator in question. The other approach uses the wavelet basis to dominate the commutator by
a composition of sparse operators. In the flag setting, we lack a suitable wavelet basis and this approach
is not available. Essentially, the wavelet basis requires the construction of a suitable multiresolution
analysis, which we do not have in this flag setting. Hence, instead of the wavelet basis, we resort to using
a method based on heat semigroups and flag-type Littlewood–Paley theory, exploiting the connection
between the Reisz transforms and the Laplacian.

We now recall the flag Riesz transforms as studied in [Han et al. 2016a]. We use R(1)j to denote the
j-th Riesz transform on Rn+m, j = 1, 2, . . . , n+m, and we use R(2)k to denote the k-th Riesz transform
on Rm, k = 1, 2, . . . ,m. Namely, we have that for g(1) ∈ L2(Rn+m),

R(1)j g(1)(x)= p.v. cn+m

∫
Rn+m

x j − yj

|x − y|n+m+1 g(1)(y) dy, x ∈ Rn+m,

and for g(2) ∈ L2(Rm),

R(2)k g(2)(z)= p.v. cm

∫
Rm

wj − z j

|w− z|m+1 g(2)(w) dw, z ∈ Rm .

For f ∈ L2(Rn+m), we set
Rj,k( f )= R(1)j ∗ R(2)k ∗2 f ; (1-1)

that is, Rj,k is the composition of R(1)j and R(2)k . Note that the flag structure appears in Rj,k .
Given two functions b, f ∈ L2(Rn+m), we first recall the usual definition of commutator

[b, R(1)j ]( f )(x1, x2) := b(x1, x2)R
(1)
j ∗ f (x1, x2)− R(1)j ∗ (b f )(x1, x2). (1-2)

The commutator can also act only on the second variable:

[b, R(2)k ]2( f )(x1, x2) := b(x1, x2)R
(2)
k ∗2 f (x1, x2)− R(2)k ∗2 (b f )(x1, x2). (1-3)

Iterated commutators arise in the study of commutators of multiparameter singular integral operators
which are tensor products. In the flag setting, our iterated commutator takes the following form:

Definition 1.1. Given two functions b, f ∈ L2(Rn+m), the iterated commutator in the flag setting of
Rn
×Rm is

[[b, R(1)j ], R(2)k ]2( f ) := b(x1, x2)R
(1)
j ∗ R(2)k ∗2 f (x1, x2)− R(1)j ∗ (b · R

(2)
k ∗2 f )(x1, x2)

− R(2)k ∗2 (b · R
(1)
j ∗ f )(x1, x2)+ R(2)k ∗2 R(1)j ∗ (b · f )(x1, x2).

We point out that another possible definition via [[b, R(2)k ]2, R(1)j ]( f ) turns out to be equivalent; see
Proposition 2.5 in Section 2.

We also introduce the big commutator in the flag setting as follows.

Definition 1.2. Given two functions b, f ∈ L2(Rn+m), the big commutator in the flag setting of Rn
×Rm is

[b, Rj,k]( f )(x) := b(x)Rj,k( f )(x)− Rj,k(b f )(x). (1-4)
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The main results, below, of this paper relate iterated and big commutator bounds to flag BMO spaces.
As the definition of the space BMOF (R

n
× Rm) is very technical, we refer the reader to Section 2,

Definition 2.4 for details.

Theorem 1.3. Suppose b ∈ BMOF (R
n
× Rm) and 1 < p < ∞. Then for every j = 1, . . . , n + m,

k = 1, . . . ,m, f ∈ L p(Rn+m),

‖[[b, R(1)j ], R(2)k ]2( f )‖L p(Rn+m) . ‖b‖BMOF (Rn×Rm)‖ f ‖L p(Rn+m). (1-5)

Lacking methods related to analyticity ([Ferguson and Sadosky 2000] for the Hilbert transform) or
wavelets [Lacey et al. 2009; 2010; Dalenc and Ou 2016], we instead obtain this upper bound using
the duality argument and the tools of semigroups, harmonic function extensions and techniques from
multiparameter analysis.

Next, we introduce the little flag BMO space. The flag structure has a geometry which is reflected by
the axes-parallel rectangles R = I × J ⊂ Rn+m satisfying `(I )≤ `(J ), the collection of which is referred
to as flag rectangles, denoted by RF . One can then define the little flag BMO space and the flag-type
Muckenhoupt weights AF,p with respect to RF .

Definition 1.4. A locally integrable function b is in little flag BMO space, denoted by bmoF (R
n
×Rm), if

‖b‖bmoF (Rn×Rm) := sup
R∈RF

1
|R|

∫
R
|b(x, y)−〈b〉R| dx dy <∞, (1-6)

where 〈b〉R = (1/|R|)
∫

R b(x1, x2) dx1 dx2.

Theorem 1.5. Suppose TF is a flag singular integral operator on Rn
×Rm, b ∈ bmoF (R

n
×Rm) and

1< p <∞. Then for f ∈ L p(Rn+m),

‖[b, TF ]( f )‖L p(Rn+m) . ‖b‖bmoF (Rn×Rm)‖ f ‖L p(Rn+m). (1-7)

In the above, the flag singular integral TF can be taken as the Riesz transform Rj,k . The class of
flag singular integral operators TF naturally generalize the Riesz transforms Rj,k and are assumed to be
associated to kernels having a standard flag structure. We refer the reader to Definition 4.4 in Section 4
for its precise definition. To obtain this upper bound, we study the little flag BMO space bmoF (R

n
×Rm)

and find the connection with the John–Nirenberg BMO space on Rn+m and on Rm. We also establish the
bridge between functions in bmoF (R

n
×Rm) and weights in AF,p. These structures lead to the upper

bound for [b, Rj,k]( f ).
As application, the commutator estimates obtained above imply certain versions of div-curl lemmas,

which seem to be first of their kind in the flag setting. Roughly speaking, a div-curl lemma says that if
vector fields E and B initially in L2 have some cancellation (e.g., divergence or curl zero) then one can
expect their dot product E · B to belong to a better space of functions instead of just L1 (as provided for
by Cauchy–Schwarz). The cancellation conditions allow one to deduce some type of cancellation, e.g.,∫

E · B = 0, suggesting that the function should belong to a suitable Hardy space since it is integrable and
has mean zero. The algebraic structure of E · B coupled with the duality between Hardy spaces and BMO
spaces then points to the use of the commutator theorem to arrive at the membership of E · B in the Hardy
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space; different commutator results suggest different div-curl lemmas that can be explored. In the classical
one-parameter setting, the div-curl lemma says that given two vector fields, one with divergence zero
and the other with curl zero, their dot product belongs to a Hardy space [Coifman et al. 1993]. Later on,
Lacey, Petermichl, and the fourth and the fifth authors proved multiple versions of div-curl lemmas in the
multiparameter setting [Lacey et al. 2012], which are expected since the multiparameter setting offers
several different interpretations of the Hardy and BMO spaces. Thus, it is natural that our Theorems 1.3
and 1.5 lead to two versions of flag-type div-curl lemmas.

First, consider vector fields on Rn
×Rm that take values in Mn+m,m and are associated with the flag

structure (see Section 5 for the precise definitions and details). We establish the div-curl lemma in the
flag setting with respect to the flag Hardy space below, which is a consequence of Theorem 1.3.

Theorem 1.6. Let 1< p, q <∞ with 1/p+ 1/q = 1. Suppose that E, B are vector fields on Rn
×Rm

taking the values in Mn+m,m , associated with the flag structure. Moreover, suppose E = E (1) ∗2 E (2) ∈
L p
F (R

n
×Rm

;Mn+m,m) and B = B(1) ∗2 B(2) ∈ Lq
F (R

n
×Rm

;Mn+m,m) satisfy

div(x,y) E (1)j (x, y)= 0 and curl(x,y) B(1)j (x, y)= 0 for all k

and

divy E (2)k (x, y)= 0 and curly B(2)k (x, y)= 0 for all x ∈ Rn, for all j.

Then E · B belongs to the flag Hardy space H 1
F (R

n
×Rm) with

‖E · B‖H1
F (R

n×Rm) . ‖E‖L p(Rn×Rm;Mn+m,m)‖B‖Lq (Rn×Rm;Mn+m,m). (1-8)

We also prove another version of the div-curl lemma in the flag setting, which is with respect to the
Hardy spaces on Rn+m and on Rm, respectively. This version relies on the intermediate result in the proof
of Theorem 1.5, namely, the structure of the flag little bmo space.

Theorem 1.7. Let 1< p, q <∞ with 1/p+ 1/q = 1. Suppose that E, B are vector fields on Rn
×Rm

taking the values in Rn+m. Moreover, suppose E ∈ L p(Rn
×Rm

;Rn+m) and B ∈ Lq(Rn
×Rm

;Rn+m)

satisfy

div(x,y) E(x, y)= 0 and curl(x,y) B(x, y)= 0

and

divy E(x, y)= 0 and curly B(x, y)= 0 for all x ∈ Rn.

Then we have

‖E · B‖H1(Rn+m) . ‖E‖L p(Rn×Rm;Rn+m)‖B‖Lq (Rn×Rm;Rn+m), (1-9)

and ∫
Rm
‖E( · , y) ·2 B( · , y)‖H1(Rm) dy . ‖E‖L p(Rn×Rm;Rn+m)‖B‖Lq (Rn×Rm;Rn+m), (1-10)

where

E(x, y) ·2 B(x, y) :=
m∑

k=1

En+k(x, y)Bk(x, y).
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It is known that the div-curl lemma in the classical setting has many applications in PDE and com-
pensated compactness [Coifman et al. 1993]. Similarly, we expect that the flag-type div-curl lemmas
described above would have interesting implications in these directions as well. For instance, following
the ideas in [Coifman et al. 1993], one can study weak convergence problems in the flag Hardy space.
And it would be interesting to know whether one can use the flag-type regularity (implied by our div-curl
lemmas) of certain nonlinear quantities to obtain improved regularity results for certain nonlinear PDE.

This paper is organized as follows. In Section 2 we provide necessary preliminaries with respect to
the flag structures. In Section 3 we study the flag iterated commutators as in Definition 1.1 and prove
Theorem 1.3. In Section 4 we give a complete treatment of the flag little bmo spaces and flag-type
Muckenhoupt Ap weights, toward the proof of Theorem 1.5. In the last section, we apply the boundedness
of flag commutators from Theorems 1.3 and 1.5 to establish the flag div-curl results, Theorems 1.6 and 1.7.

2. Preliminaries in the flag setting

Recall the classical Poisson kernel on Rn:

P(x) :=
cn

(1+ |x |2)(n+1)/2 .

And we define

Pt(x) :=
1
tn P

(
x
t

)
.

For f ∈ L1(Rn), let F(x, t) := Pt ∗ f (x). Then we have the following standard pointwise estimates for
the Poisson integral; see in particular [Stein 1993].

Proposition 2.1. Suppose f ∈ L1(Rn). Then

sup
(x,t)∈Rn+1

+

tn+k
|∇

k
x,t F(x, t)| ≤ C‖ f ‖L1(Rn). (2-1)

We now recall the flag Poisson kernel given by

P(x, y)= P (1) ∗Rm P (2)(x, y)=
∫

Rm
P (1)(x, y− z)P (2)(z) dz,

where
P (1)(x, y)=

cn+m

(1+ |x |2+ |y|2)(n+m+1)/2 and P (2)(z)=
cm

(1+ |z|2)(m+1)/2

are the classical Poisson kernels on Rn+m and Rm, respectively. Then we have

Pt1,t2(x, y)= P (1)t1 ∗Rm P (2)t2 (x, y).

We define the Lusin area function with respect to u = Pt1,t2 ∗ f as follows.

Definition 2.2. For f ∈ L1(Rn
×Rm) and u(x1, x2, t1, t2)= Pt1,t2 ∗ f (x1, x2), the Lusin area integral of

u(x1, x2, t1, t2), denoted by SF (u), is defined by

SF (u)(x1, x2)=

{∫
Rn+1
+

∫
Rm+1
+

χt,s(x1−w1, x2−w2)|t1∇(1)t2∇(2)u(w1, w2, t1, t2)|2
dw1 dt1
tn+m+1
1

dw2 dt2
tm+1
2

}1
2

,
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where ∇(1) = (∂t1, ∂w1,1 · · · ∂w1,n , ∂w2,1 · · · ∂w2,m ) is the standard gradient on Rn+m+1, and ∇(2) = (∂t2,

∂w2,1 · · · ∂w2,m ) is the standard gradient on Rm+1, and

χt1,t2(x1, x2) := χ
(1)
t1 ∗Rm χ

(2)
t2 (x1, x2), (2-2)

χ
(1)
t1 (x1, x2) := t1−(n+m)χ (1)(x1/t1, x2/t1), χ

(2)
t2 (z) := t2−mχ (2)(z/t2), and χ (1)(x, y) and χ (2)(z) are the

indicator functions of the unit balls of Rn+m and Rm, respectively.

Definition 2.3. The flag Hardy space H 1
F (R

n
×Rm) is defined to be the collection of f ∈ L1(Rn

×Rm)

such that SF (u) ∈ L1(Rn
×Rm). The norm of H 1

F (R
n
×Rm) is defined by

‖ f ‖H1
F (R

n×Rm) = ‖SF (u)‖L1(Rn×Rm). (2-3)

We now recall the definition of the flag BMO space.

Definition 2.4. The flag BMO space BMOF (R
n
×Rm) is defined to be the collection of b∈ L1

loc(R
n
×Rm)

such that

‖b‖BMOF (Rn×Rm) := sup
�

(
1
|�|

∫
T (�)
|t1∇(1)t2∇(2)u(w1, w2, t1, t2)|2

dw1 dt1dw2 dt2
t1t2

)1
2

<∞, (2-4)

where the supremum is taken over all open sets in Rn
×Rm with finite measures, and T (�)=

⋃
R⊂� T (R)

with R = I × J , `(I )≤ `(I ) and T (R)= I ×
( 1

2`(I ), `(I )
]
× J ×

( 1
2`(J ), `(J )

]
.

Proposition 2.5. Given two functions b, f ∈ L2(Rn+m), we have

[[b, R(1)j ], R(2)k ]2( f )= [[b, R(2)k ]2, R(1)j ]( f ). (2-5)

Proof. By definition, we see that

[[b, R(1)j ], R(2)k ]2( f )(x1, x2)= [b, R(1)j ]R
(2)
k ∗2 f (x1, x2)− R(2)k ∗2 ([b, R(1)j ]( f ))(x1, x2)

= b(x1, x2)R
(1)
j ∗ R(2)k ∗2 f (x1, x2)− R(1)j ∗ (b · R

(2)
k ∗2 f )(x1, x2)

− R(2)k ∗2 (b · R
(1)
j ∗ f − R(1)j ∗ (b · f ))(x1, x2)

= b(x1, x2)R
(1)
j ∗ R(2)k ∗2 f (x1, x2)− R(1)j ∗ (b · R

(2)
k ∗2 f )(x1, x2)

− R(2)k ∗2 (b · R
(1)
j ∗ f )(x1, x2)+ R(2)k ∗2 R(1)j ∗ (b · f )(x1, x2).

And we also have

[[b, R(2)k ]2, R(1)j ]( f )(x1, x2)= [b, R(2)k ]2 R(1)j ∗ f (x1, x2)− R(1)j ∗ ([b, R(2)k ]2( f ))(x1, x2)

= b(x1, x2)R
(2)
k ∗2 Rj ∗ f (x1, x2)− R(2)k ∗2 (b · R

(1)
j ∗ f )(x1, x2)

− R(1)j ∗ (b · R
(2)
k ∗2 f − R(2)k ∗2 (b · f ))(x1, x2)

= b(x1, x2)R
(2)
k ∗2 R(1)j ∗ f (x1, x2)− R(2)k ∗2 (b · R

(1)
j ∗ f )(x1, x2)

− R(1)j ∗ (b · R
(2)
k ∗2 f )(x1, x2)+ R(1)j ∗ R(2)k ∗2 (b · f )(x1, x2).
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It is direct to see that, by changing of variables,

R(2)k ∗2 R(1)j ∗ f (x1, x2)=

∫
R(2)k (x2− z)R(1)j (x1− y1, z− y2) f (y1, y2) dz dy1 dy2

=

∫
R(2)k (z̃− y2)R

(1)
j (x1− y1, x2− z̃) f (y1, y2) dz̃ dy1 dy2

=

∫
R(1)j (x1− y1, x2− z̃)R(2)k (z̃− y2) f (y1, y2) dz̃ dy1 dy2

= R(1)j ∗ R(2)k ∗2 f (x1, x2),

which implies that (2-5) holds. �

3. Upper bound of the iterated commutator [[b, R(1)
i ], R(2)

j ]2

In this section, we prove Theorem 1.3, i.e., the upper bound of the iterated commutator [[b, R(1)i ], R(2)j ]2.
As we pointed out earlier, in the flag setting, there is lack of a suitable wavelet basis or Haar basis
and hence the approaches in [Lacey et al. 2009; Dalenc and Ou 2016] are not available. We establish
a fundamental duality argument (Lemma 3.3) with respect to general flag-type area integrals and flag
Carleson measures, and then apply the technique of harmonic expansion to obtain the full versions
of flag-type Carleson measure inequalities (Proposition 3.5), which plays the role of “paraproducts”.
Then, by considering the bilinear form associated with the iterated commutator [[b, R(1)i ], R(2)j ]2 and
by integration by parts, we can decompose the bilinear form into a summation of different versions of
“paraproducts”. Then the upper bound of the iterated commutator [[b, R(1)i ], R(2)j ]2 follows from applying
Proposition 3.5 to each “paraproducts”.

Extension via flag Poisson operator. For any f ∈ L1(Rn
× Rm), we define the flag Poisson integral

of f by
F(x1, x2, t1, t2) := Pt1,t2 ∗ f (x1, y2), (3-1)

where
Pt1,t2(x1, x2)= P (1)t1 ∗Rm P (2)t2 (x1, x2). (3-2)

Since P(x1, x2) ∈ L1(Rn
×Rm), it easy to see that F(x1, x2, t1, t2) is well-defined. Moreover, for any

fixed t1 and t2, we know Pt1,t2 ∗ f (x1, x2) is a bounded C∞ function and the function F(x1, x2, t1, t2) is
harmonic in (x1, x2, t1) and (x2, t2), respectively. F(x1, x2, t1, t2) is the flag harmonic extension of f to
Rn+1
+ ×Rm+1

+ . More precisely,

1Rn+m+1 F(x1, x2, t1, t2)= (∂2
t1 +1x1,x2)F(x1, x2, t1, t2)= 0 in Rn+m+1

+
,

1Rm+1 F(x1, x2, t1, t2)= (∂2
t2 +1x2)F(x1, x2, t1, t2)= 0 in Rm+1

+
,

(3-3)

and

lim
t1→0

∂t1 F(x1, x2, t1, t2)=−(1x1,x2)
1
2 P (2) ∗Rm f (x1, x2) on Rn+m,

lim
t2→0

∂t2 F(x1, x2, t1, t2)=−(1x2)
1
2 P (1) ∗ f (x1, x2) on Rn+m,
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lim
t1→0

F(x1, x2, t1, t2)= P (2) ∗Rm f (x1, x2) on Rn+m,

lim
t2→0

F(x1, x2, t1, t2)= P (1) ∗ f (x1, x2) on Rn+m,

lim
t1→0, t2→0

F(x1, x2, t1, t2)= f (x1, x2) on Rn+m,

lim
|(x1,x2,t1)|→∞

F(x1, x2, t1, t2)= 0,

lim
|(x2,t2)|→∞

F(x1, x2, t1, t2)= 0.

We then have the following lemma providing a connection between the boundary values f and the flag
harmonic extension F. This follows from the decay of the flag harmonic extensions of f and repeated
applications of integration by parts in the variables t1 and t2.

Lemma 3.1. For f ∈ L1(Rn
×Rm), let F be the same as in (3-1). Then we have∫

Rn×Rm
f (x1, x2) dx1 dx2 =

∫
Rn+1
+ ×Rm+1

+

t1∂2
t1 t2∂2

t2 F(x1, x2, t1, t2) dx1 dx2 dt1 dt2. (3-4)

Proof. We start from the right-hand side of (3-4). We write∫
Rn+1
+ ×Rm+1

+

t1∂2
t1 t2∂2

t2 F(x1, x2, t1, t2) dx1 dx2 dt1 dt2

=

∫
Rm+1
+

t2 ∂2
t2 P (2)t2 ∗Rm

(∫
Rn+1
+

t1 ∂2
t1 P (1)t1 ∗ f (x1, x2) dx1 dt1

)
dx2 dt2

=

∫
Rm

(∫
Rn+1
+

t1 ∂2
t1 P (1)t1 ∗ f (x1, x2) dx1 dt1

)
dx2,

where the last equality follows from decay of the flag harmonic extensions of f and using integration by
parts in the variable t2. To continue, we write the right-hand side of the last equality above as∫

Rn+m+1
+

t1 ∂2
t1 P (1)t1 ∗ f (x1, x2) dx1 dx2 dt1 =

∫
Rn+m

f (x1, x2) dx1 dx2,

which yields (3-4). Again, the last equality follows from decay of the flag harmonic extensions of f and
using integration by parts in the variable t1. �

Flag area functions and estimates. We also have a more general version of the area function.

Definition 3.2. For a function G(x1, x2, t1, t2) defined on Rn+1
+ ×Rm+1

+ , the general flag-type Lusin area
integral of G is defined by

SF,L(G)(x1, x2) :=

{∫
Rn+1
+

∫
Rm+1
+

χt,s(x1−w1, x2−w2)|G(w1, w2, t1, t2)|2
dw1 dt1
tn+m+1
1

dw2 dt2
tm+1
2

}1
2

. (3-5)
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Lemma 3.3. Suppose F(x1, x2, t1, t2) and G(x1, x2, t1, t2) are defined on Rn+1
+ ×Rm+1

+ . Then the follow-
ing estimate holds:∫

Rn+1
+

∫
Rm+1
+

F(x1, x2, t1, t2)G(x1, x2, t1, t2) dx1 dx2 dt1 dt2

≤ C sup
�⊂Rn×Rm

(
1
|�|

∫
T (�)

t1 t2 |F(y1, y2, t1, t2)|2 dy1 dy2 dt1 dt2

)1/2

×

∫
Rn

∫
Rm

(∫
Rn+1
+

∫
Rm+1
+

χt1,t2(x1− y1, x2− y2)|G(y1, y2, t1, t2)|2
dy1 dy2 dt1 dt2

tn+m+1
1 tm+1

2

)1/2

dx1 dx2. (3-6)

Proof. Suppose both factors on the right-hand side above are finite, since otherwise there is nothing to
prove. We also note that the second factor is actually ‖SF (G)‖L1(Rn×Rm).

We now let
�k := {(x1, x2) ∈ Rn

×Rm
: SF,L(G)(x1, x2) > 2k

}

and define

Bk :=
{

R = I1× I2 : |(I1× I2)∩�k |>
1
2 |I1× I2|, |(I1× I2)∩�k+1| ≤

1
2 |I1× I2|

}
,

where I1 and I2 are dyadic cubes in Rn and Rm with side-lengths `(I ) and `(J ) satisfying `(I )≤ `(J ).
Moreover, we define

�k =
⋃

R∈Bk

R and �̃k =
{
(x1, x2) ∈ Rn

×Rm
: Mflag(χ�k )(x1, x2) >

1
2

}
.

Next, we have∫
Rn+1
+

∫
Rm+1
+

F(x1, x2, t1, t2)G(x1, x2, t1, t2) dx1 dx2 dt1 dt2

=

∑
k

∑
R∈Bk

∫
T (R)

√
t1t2 F(x1, x2, t1, t2)

G(x1, x2, t1, t2)
√

t1t2
dx1 dx2 dt1 dt2

≤

∑
k

(∑
R∈Bk

∫
T (R)

t1t2|F(x1, x2, t1, t2)|2 dx1 dx2 dt1 dt2

)1/2

×

(∑
R∈Bk

∫
T (R)
|G(x1, x2, t1, t2)|2

dx1 dx2 dt1 dt2
t1t2

)1/2

=

∑
k

(
1
|�k |

∑
R∈Bk

∫
T (R)

t1t2|F(x1, x2, t1, t2)|2 dx1 dx2 dt1 dt2

)1/2

×

(
|�k |

∑
R∈Bk

∫
T (R)
|G(x1, x2, t1, t2)|2

dx1 dx2 dt1 dt2
t1t2

)1/2

≤

∑
k

(
1
|�k |

∫
T (�k)

t1t2|F(x1, x2, t1, t2)|2 dx1 dx2 dt1 dt2

)1/2

×

(
|�̃k |

∑
R∈Bk

∫
T (R)
|G(x1, x2, t1, t2)|2

dx1 dx2 dt1 dt2
t1t2

)1/2
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≤ sup
�⊂Rn×Rm

(
1
|�|

∫
T (�)

t1t2|F(x1, x2, t1, t2)|2 dx1 dx2 dt1 dt2

)1/2

×

∑
k

(
|�̃k |

∑
R∈Bk

∫
T (R)
|G(x1, x2, t1, t2)|2

dx1 dx2 dt1 dt2
t1t2

)1/2

.

As for the second factor in the last inequality above, note that

22k
|�̃k\�k | ≥

∫
�̃k\�k

SF,L(G)(x1, x2)
2 dx1 dx2

=

∫
�̃k\�k

∫
Rn+1
+

∫
Rm+1
+

χt1,t2(x1− y1, x2− y2)|G(y1, y2, t1, t2)|2
dy1 dy2 dt1 dt2

tn+m+1
1 tm+1

2

dx1 dx2

=

∫
Rn+1
+

∫
Rm+1
+

∫
�̃k\�k

χt1,t2(x1− y1, x2− y2) dx1 dx2 |G(y1, y2, t1, t2)|2
dy1 dy2 dt1 dt2

tn+m+1
1 tm+1

2

≈

∫
Rn+1
+

∫
Rm+1
+

|G(y1, y2, t1, t2)|2
dy1 dy2 dt1 dt2

t1t2

≥

∑
R∈Bk

∫
T (R)
|G(x1, x2, t1, t2)|2

dx1 dx2 dt1 dt2
t1t2

.

Thus, we have∫
Rn+1
+

∫
Rm+1
+

F(x1, x2, t1, t2)G(x1, x2, t1, t2) dx1 dx2 dt1 dt2

≤ sup
�⊂Rn×Rm

(
1
|�|

∫
T (�)

t1t2|F(x1, x2, t1, t2)|2 dx1 dx2 dt1 dt2

)1/2∑
k

(|�̃k |22k
|�̃k\�k |)

1/2

≤ sup
�⊂Rn×Rm

(
1
|�|

∫
T (�)
|t1t2 F(x1, x2, t1, t2)|2

dx1 dx2 dt1 dt2
t1t2

)1/2∑
k

|�k |2k

≤ sup
�⊂Rn×Rm

(
1
|�|

∫
T (�)
|t1t2 F(x1, x2, t1, t2)|2

dx1 dx2 dt1 dt2
t1t2

)1/2

‖SF,L(G)‖L1(Rn×Rm),

which gives (3-6). �

From Lemma 3.3 above and the definition of BMOF (R
n
×Rm), we can obtain the following corollary

immediately.

Corollary 3.4. Suppose G(x1, x2, t1, t2) is defined on Rn+1
+ × Rm+1

+ , and F(x1, x2, t1, t2) := Pt1,t2 ∗

f (x1, x2), where f ∈ BMOF (R
n
×Rm). Then we have∫

Rn+1
+

∫
Rm+1
+

|∇
(1)
∇
(2)F(x1, x2, t1, t2)||G(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖ f ‖BMOF (Rn×Rm)‖SF,L(G)‖L1(Rn×Rm). (3-7)

Moreover, based on Lemma 3.3, we can also establish the following estimates.
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Proposition 3.5. Suppose F(x1, x2, t1, t2) = Pt1,t2 ∗ f (x1, x2), G(x1, x2, t1, t2) = Pt1,t2 ∗ g(x1, x2), and
B(x1, x2, t1, t2)= Pt1,t2 ∗ b(x1, x2). Then we have∫

Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(1)
∇
(2)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 (−1x2)

1
2 g‖L p(Rn×Rm)‖(−1x1,x2)

1
2 (−1x2)

1
2 f ‖L p′ (Rn×Rm), (3-8)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(1)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 (−1x2)

1
2 g‖L p(Rn×Rm)‖(−1x1,x2)

1
2 f ‖L p′ (Rn×Rm), (3-9)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(2)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 (−1x2)

1
2 g‖L p(Rn×Rm)‖(−1x2)

1
2 f ‖L p′ (Rn×Rm), (3-10)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm), (3-11)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(1)
∇
(2)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 g‖L p(Rn×Rm)‖(−1x1,x2)

1
2 (−1x2)

1
2 f ‖L p′ (Rn×Rm), (3-12)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(1)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 g‖L p(Rn×Rm)‖(−1x1,x2)

1
2 f ‖L p′ (Rn×Rm), (3-13)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(2)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 g‖L p(Rn×Rm)‖(−1x2)

1
2 f ‖L p′ (Rn×Rm), (3-14)
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Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm), (3-15)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(1)
∇
(2)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x2)
1
2 g‖L p(Rn×Rm)‖(−1x1,x2)

1
2 (−1x2)

1
2 f ‖L p′ (Rn×Rm), (3-16)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(1)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x2)
1
2 g‖L p(Rn×Rm)‖(−1x1,x2)

1
2 f ‖L p′ (Rn×Rm), (3-17)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(2)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x2)
1
2 g‖L p(Rn×Rm)‖(−1x2)

1
2 f ‖L p′ (Rn×Rm), (3-18)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x2)
1
2 g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm), (3-19)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇(1)∇(2)G(x1, x2, t1, t2)|

× |∇
(1)
∇
(2)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖(−1x1,x2)
1
2 (−1x2)

1
2 f ‖L p′ (Rn×Rm), (3-20)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇(1)∇(2)G(x1, x2, t1, t2)|

× |∇
(1)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖(−1x1,x2)
1
2 f ‖L p′ (Rn×Rm), (3-21)
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Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇(1)∇(2)G(x1, x2, t1, t2)|

× |∇
(2)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖(−1x2)
1
2 f ‖L p′ (Rn×Rm), (3-22)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇(1)∇(2)G(x1, x2, t1, t2)|

× |F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm). (3-23)

Proof. We first point out that for f ∈ C∞0 (R
n+m), F(x1, x2, t1, t2)= Pt1,t2 ∗ f (x1, x2),

sup
(y1,y2,t1,t2)

χt1,t2 (x1−y1,x2−y2) 6=0

|F(y1, y2, t1, t2)| ≤ sup
(y1,y2,t1,t2)

|x1−y1|<t1+t2,|x2−y2|<t2

|Pt1,t2 ∗ f (y1, y2)|

≤ M1(M2( f ( ·1 , · ))( ·2 ))(x1, x2),

where M1 and M2 are the Hardy–Littlewood maximal functions on Rn+m and Rm, respectively.
Next, based on the estimate above and from the property of the Poisson semigroup, we have

sup
(y1,y2,t1,t2)

χt1,t2 (x1−y1,x2−y2) 6=0

|∂t1∂t2 F(y1, y2, t1, t2)| ≤ sup
(y1,y2,t1,t2)

|x1−y1|<t1+t2,|x2−y2|<t2

|Pt1,t2 ∗((−1(1))
1
2 (−1(2))

1
2 f )(y1, y2)|

≤ M1
(
M2(((−1x1,x2)

1
2 (−1x2)

1
2 f )( ·1 , · ))( ·2 )

)
(x1, x2).

Also, we have
sup

(y1,y2,t1,t2)
χt1,t2 (x1−y1,x2−y2) 6=0

|∇y1,y2∇y2 F(y1, y2, t1, t2)| ≤ sup
(y1,y2,t1,t2)

|x1−y1|<t1+t2,|x2−y2|<t2

|Pt1,t2 ∗ (∇·1,·2∇·2 f )(y1, y2)|

≤ M1
(
M2((∇·1,·2∇·2 f )( ·1 , · ))( ·2 )

)
(x1, x2).

Then, we first consider (3-8). Based on the estimates above and Corollary 3.4, we have∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

×|∇
(1)
∇
(2)F(x1, x2, t1, t2)|dx1 dx2 dt1 dt2

≤C‖b‖BMOF (Rn×Rm)

∫
Rn×Rm

SF,L(t1t2∇x1,x2∇x2∇
(1)
∇
(2)G)(x1, x2)

×

(
M1
(
M2(((−1x1,x2)

1
2 (−1x2)

1
2 f )( ·1 , ·))( ·2 )

)
(x1, x2)

+M1
(
M2((∇·1,·2∇·2 f )( ·1 , ·))( ·2 )

)
(x1, x2)

)
dx1 dx2

≤C‖b‖BMOF (Rn×Rm)∫
Rn×Rm

SF
(
∇x1,x2∇x2(−1x1,x2)

−
1
2 (−1x2)

−
1
2 (−1x1,x2)

1
2 (−1x2)

1
2 G
)
(x1, x2)

×

(
M1
(
M2(((−1x1,x2)

1
2 (−1x2)

1
2 f )( ·1 , ·))( ·2 )

)
(x1, x2)

+M1
(
M2((∇·1,·2∇·2(−1·1,·2)

−
1
2 (−1·2)

−
1
2 (−1·1,·2)

1
2 (−1·2)

1
2 f )( ·1 , ·))( ·2 )

)
(x1, x2)

)
dx1 dx2

≤C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 (−1x2)

1
2 g‖L p(Rn×Rm)‖(−1x1,x2)

1
2 (−1x2)

1
2 f ‖L p′ (Rn×Rm), (3-24)
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where in the second inequality the area function SF is defined as in Definition 2.2, and the last inequality
follows from Hölder’s inequality and boundedness of the maximal functions as well as the boundedness
of the flag Riesz transforms. Hence we see that (3-8) holds.

By using an estimate similar to that above, we can obtain the estimates in (3-9)–(3-23). We omit the
details here since they are straightforward. �

Upper bound for iterated commutators.

Theorem 3.6. For every b ∈ BMOF (R
n
× Rm), g ∈ C∞c (R

n
× Rm) and for any i = 1, 2, . . . ,m + n,

j = 1, . . . , n, there exits a positive constant C depending only on p, n and m such that

‖[[b, R(1)i ], R(2)j ]2(g)‖L p(Rn×Rm) ≤ C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm). (3-25)

Proof. Recall that

[[b, R(1)i ], R(2)j ]2(g)(x1, x2)= b(x1, x2)R
(1)
i ∗ R(2)j ∗2 g(x1, x2)− R(1)i ∗ (b · R

(2)
j ∗2 g)(x1, x2)

− R(2)j ∗2 (b · R
(1)
i ∗ g)(x1, x2)+ R(2)j ∗2 R(1)i ∗ (b · g)(x1, x2).

Hence, for every f ∈ C∞c (R
n
×Rm), we have

〈 f, [[b, R(1)i ], R(2)j ]2(g)〉 = 〈 f · b, R(1)i ∗ R(2)j ∗2 g〉+ 〈R(1)i ∗ f, b · R(2)j ∗2 g〉

+ 〈R(2)j ∗2 f, b · R(1)i ∗ g〉+ 〈R(2)j ∗2 R(1)i ∗ f, b · g〉.

Denote by B, F, G the flag harmonic extensions of the functions b, f, g, respectively, as defined
in (3-1). And for each fixed i, j , denote by (R(1)i ∗ f )∼, (R(2)j ∗2 f )∼ and (R(1)i ∗ R(2)j ∗2 f )∼ the flag
harmonic extensions of R(1)i ∗ f , R(2)j ∗2 f and R(1)i ∗ R(2)j ∗2 f .

Then we write

〈 f, [[b, R(1)i ], R(2)j ]2(g)〉

=

∫
Rn+1
+ ×Rm+1

+

t1∂2
t1 t2∂2

t2

(
F ·B·(R(1)i ∗R(2)j ∗2g)∼+(R(1)i ∗ f )∼·B·(R(2)j ∗2g)∼

+(R(2)j ∗2 f )∼ ·B·(R(1)i ∗g)
∼
+(R(2)j ∗2 R(1)i ∗ f )∼·B·G

)
dx1 dx2 dt1 dt2. (3-26)

We now claim that the right-hand side of (3-26) is bounded by

C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm). (3-27)

To see this, we compute the derivatives t1∂2
t1 t2∂2

t2 for the integrand in the right-hand side of (3-26).
Then we have the following terms:

C1 =

∫
Rn+1
+ ×Rm+1

+

(
t1∂2

t1 t2∂2
t2 B · F · (R(1)i ∗ R(2)j ∗2 g)∼+ t1∂2

t1 t2∂2
t2 B · (R(1)i ∗ f )∼ · (R(2)j ∗2 g)∼

+ t1∂2
t1 t2∂2

t2 B · (R(2)j ∗2 f )∼ · (R(1)i ∗ g)∼

+ t1∂2
t1 t2∂2

t2 B · (R(2)j ∗2 R(1)i ∗ f )∼ ·G
)

dx1 dx2 dt1 dt2; (3-28)
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C2=

∫
Rn+1
+ ×Rm+1

+

t1∂2
t1 t2∂t2 B ·∂t2(F ·(R

(1)
i ∗R(2)j ∗2 g)∼)+t1∂2

t1 t2∂t2 B ·∂t2((R
(1)
i ∗ f )∼ ·(R(2)j ∗2 g)∼)

+ t1∂2
t1 t2∂t2 B · ∂t2((R

(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1∂2
t1 t2∂t2 B · ∂t2((R

(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2; (3-29)

C3=

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2 ∂2
t2 B ·∂t1(F ·(R

(1)
i ∗R(2)j ∗2 g)∼)+t1 ∂t1 t2 ∂2

t2 B ·∂t1((R
(1)
i ∗ f )∼ ·(R(2)j ∗2 g)∼)

+ t1 ∂t1 t2 ∂2
t2 B · ∂t1((R

(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1 ∂t1 t2 ∂2
t2 B · ∂t1((R

(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2; (3-30)

C4=

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2 ∂t2 B·∂t1∂t2(F ·(R
(1)
i ∗R(2)j ∗2g)∼)+t1 ∂t1 t2 ∂t2 B·∂t1∂t2((R

(1)
i ∗ f )∼·(R(2)j ∗2g)∼)

+t1 ∂t1 t2 ∂t2 B·∂t1∂t2((R
(2)
j ∗2 f )∼·(R(1)i ∗g)

∼)

+t1 ∂t1 t2 ∂t2 B·∂t1∂t2((R
(2)
j ∗2 R(1)i ∗ f )∼·G)dx1 dx2 dt1 dt2; (3-31)

C5=

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2 B ·∂t1∂
2
t2(F ·(R

(1)
i ∗R(2)j ∗2 g)∼)+t1 ∂t1 t2 B ·∂t1∂

2
t2((R

(1)
i ∗ f )∼ ·(R(2)j ∗2 g)∼)

+ t1 ∂t1 t2 B · ∂t1∂
2
t2((R

(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1 ∂t1 t2 B · ∂t1∂
2
t2((R

(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2; (3-32)

C6=

∫
Rn+1
+ ×Rm+1

+

t1t2 ∂t2 B ·∂2
t1∂t2(F ·(R

(1)
i ∗R(2)j ∗2 g)∼)+t1t2∂t2 B ·∂2

t1∂t2((R
(1)
i ∗ f )∼ ·(R(2)j ∗2 g)∼)

+ t1t2 ∂t2 B · ∂2
t1∂t2((R

(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1t2 ∂t2 B · ∂2
t1∂t2((R

(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2; (3-33)

C7 =

∫
Rn+1
+ ×Rm+1

+

t1t2 ∂2
t2 B · ∂2

t1(F · (R
(1)
i ∗ R(2)j ∗2 g)∼)+ t1t2 ∂2

t2 B · ∂2
t1((R

(1)
i ∗ f )∼ · (R(2)j ∗2 g)∼)

+ t1t2 ∂2
t2 B · ∂2

t1((R
(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1t2 ∂2
t2 B · ∂2

t1((R
(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2; (3-34)

C8 =

∫
Rn+1
+ ×Rm+1

+

t1t2 ∂2
t1 B · ∂2

t2(F · (R
(1)
i ∗ R(2)j ∗2 g)∼)+ t1t2 ∂2

t1 B · ∂2
t2((R

(1)
i ∗ f )∼ · (R(2)j ∗2 g)∼)

+ t1t2 ∂2
t1 B · ∂2

t2((R
(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1t2 ∂2
t1 B · ∂2

t2((R
(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2; (3-35)

C9 =

∫
Rn+1
+ ×Rm+1

+

t1t2 B · ∂2
t1∂

2
t2(F · (R

(1)
i ∗ R(2)j ∗2 g)∼)+ t1t2 B · ∂2

t1∂
2
t2((R

(1)
i ∗ f )∼ · (R(2)j ∗2 g)∼)

+ t1t2 B · ∂2
t1∂

2
t2((R

(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1t2 B · ∂2
t1∂

2
t2((R

(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2. (3-36)
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We first consider C1. Note that ∂2
t2 B =−1x2 B =−∇x2 · ∇x2 B and that ∂2

t1 B =−1x1,x2 B =−∇x1,x2 ·

∇x1,x2 B. So, integration by parts gives

C1 =

∫
Rn+1
+ ×Rm+1

+

t1t2∇x1,x2∇x2 B · ∇x1,x2∇x2(F · (R
(1)
i ∗ R(2)j ∗2 g)∼)

+ t1t2∇x1,x2∇x2 B · ∇x1,x2∇x2((R
(1)
i ∗ f )∼ · (R(2)j ∗2 g)∼)

+ t1t2∇x1,x2∇x2 B · ∇x1,x2∇x2((R
(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1t2∇x1,x2∇x2 B · ∇x1,x2∇x2((R
(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2

=: C1,1+ C1,2+ C1,3+ C1,4.

For the first term, it is clear that

C1,1 =

∫
Rn+1
+ ×Rm+1

+

t1t2∇x1,x2∇x2 B · ∇x1,x2∇x2 F · (R(1)i ∗ R(2)j ∗2 g)∼ dx1 dx2 dt1 dt2

=

∫
Rn+1
+ ×Rm+1

+

t1t2∇x1,x2∇x2 B · ∇x1,x2 F · ∇x2(R
(1)
i ∗ R(2)j ∗2 g)∼ dx1 dx2 dt1 dt2

=

∫
Rn+1
+ ×Rm+1

+

t1t2∇x1,x2∇x2 B · ∇x2 F · ∇x1,x2(R
(1)
i ∗ R(2)j ∗2 g)∼ dx1 dx2 dt1 dt2

=

∫
Rn+1
+ ×Rm+1

+

t1t2∇x1,x2∇x2 B · F · ∇x1,x2∇x2(R
(1)
i ∗ R(2)j ∗2 g)∼ dx1 dx2 dt1 dt2

=: C1,1,1+ C1,1,2+ C1,1,3+ C1,1,4.

It is direct that C1,1,1 and C1,1,4 can be handled by using (3-9), and C1,1,2 and C1,1,3 can be handled by
using (3-10), which gives

C1,1 ≤ C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm).

Symmetrically we obtain the estimate for C1,4, and using similar estimates we can handle C1,2 and C1,3.
All these three terms are have the same upper as C1,1 above.

Next, for C2, note that ∂2
t1 B=−1x1,x2 B=−∇x1,x2 ·∇x1,x2 B. Thus, similar to the term C1, by integration

by parts, we have

C2 =−

∫
Rn+1
+ ×Rm+1

+

t1t2∇x1,x2 ∂t2 B · ∇x1,x2 ∂t2(F · (R
(1)
i ∗ R(2)j ∗2 g)∼)

+ t1t2∇x1,x2 ∂t2 B · ∇x1,x2 ∂t2((R
(1)
i ∗ f )∼ · (R(2)j ∗2 g)∼)

+ t1t2∇x1,x2 ∂t2 B · ∇x1,x2 ∂t2((R
(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1t2∇x1,x2 ∂t2 B · ∇x1,x2 ∂t2((R
(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2

=: C2,1+ C2,2+ C2,3+ C2,4.

Again, the upper bounds from the four terms above can be obtained by applying Proposition 3.5, and they
are all controlled by

C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm).

The term C3 can be handled symmetrically to C2 and we obtain the same upper bounds.
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For the term C4, by noting that |∂t1∂t2 B(x1, x2, t1, t2)| is bounded by |∇(1)∇(2)B(x1, x2, t1, t2)|, we
obtain that C4 is bounded by

C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm),

where we apply again the upper bounds in Proposition 3.5.
We now turn to the term C9. We first point out the following equalities:

∂t1(R
(1)
i ∗ R(2)j ∗2 g)∼(x1, x2)=−c ∂(x1,x2),i (R

(2)
j ∗2 g)∼(x1, x2),

∂2
t1(R

(1)
i ∗ R(2)j ∗2 g)∼(x1, x2)=−c ∂t1∂(x1,x2),i (R

(2)
j ∗2 g)∼(x1, x2),

∂t2(R
(1)
i ∗ R(2)j ∗2 g)∼(x1, x2)=−c ∂x2, j (R

(1)
i ∗ g)∼(x1, x2),

∂2
t2(R

(1)
i ∗ R(2)j ∗2 g)∼(x1, x2)=−c ∂t2∂x2, j (R

(1)
i ∗ g)∼(x1, x2),

∂t1(R
(1)
i ∗ f )∼ =−c ∂(x1,x2),i ( f )∼,

∂2
t1(R

(1)
i ∗ f )∼ =−c ∂t1∂(x1,x2),i ( f )∼,

∂t2(R
(2)
j ∗2 g)∼ =−c ∂x2, j (g)

∼,

∂2
t2(R

(2)
j ∗2 g)∼ =−c ∂t2∂x2, j (g)

∼.

Then for the term C9, we get

∂2
t1∂

2
t2(F ·(R

(1)
i ∗R(2)j ∗2 g)∼+(R(1)i ∗ f )∼ ·(R(2)j ∗2 g)∼+(R(2)j ∗2 f )∼ ·(R(1)i ∗g)∼+(R(2)j ∗2 R(1)i ∗ f )∼ ·G)

= 4 ∂(x1,x2),i∂t1∂x2, j ∂t2(FG)

−2∇x1,x2 ∂x2, j ∂t2(∇x1,x2(R
(1)
i ∗ f )∼ ·G)−2∇x1,x2 ∂x2, j ∂t2(F ·∇x1,x2(R

(1)
i ∗g)∼)

+2∇x1,x2 ∂x2, j ∂t2(∇x1,x2 F ·(R(1)i ∗g)∼)+2∇x1,x2 ∂x2, j ∂t2((R
(1)
i ∗ f )∼ ·∇x1,x2 G)

−2 ∂(x1,x2),i∂t1∇x2(∇x2(R
(2)
j ∗ f )∼ ·G)

+∇x1,x2∇x2(∇x1,x2∇x2(R
(2)
j ∗2 R(1)i ∗ f )∼ ·G)+∇x1,x2∇x2(∇x2(R

(2)
j ∗2 f )∼ ·∇x1,x2(R

(1)
i ∗g)∼)

−∇x1,x2∇x2(∇x1,x2∇x2(R
(2)
j ∗2 f )∼ ·(R(1)i ∗g)∼)−∇x1,x2∇x2(∇x2(R

(2)
j ∗2 R(1)i ∗ f )∼ ·∇x1,x2 G)

−2 ∂(x1,x2),i∂t1∇x2(F ·∇x2(R
(2)
j ∗g)∼)

+∇x1,x2∇x2(∇x1,x2(R
(1)
i ∗ f )∼ ·∇x2(R

(2)
j ∗2 g)∼)+∇x1,x2∇x2(F ·∇x1,x2∇x2(R

(1)
i ∗R(2)j ∗2 g)∼)

−∇x1,x2∇x2(∇x1,x2∇x2(R
(2)
j ∗2 f )∼ ·(R(1)i ∗g)∼)−∇x1,x2∇x2(∇x2(R

(2)
j ∗2 R(1)i ∗ f )∼ ·∇x1,x2 G)

+2 ∂(x1,x2),i∂t1∇x2(∇x2 F ·(R(2)j ∗g)∼)

−∇x1,x2∇x2(∇x1,x2∇x2(R
(1)
i ∗ f )∼ ·(R(2)j ∗2 g)∼)−∇x1,x2∇x2(∇x2 F ·∇x1,x2(R

(1)
i ∗R(2)j ∗2 g)∼)

+∇x1,x2∇x2(∇x1,x2∇x2 F ·(R(1)i ∗R(2)j ∗2 g)∼)+∇x1,x2∇x2(∇x2(R
(1)
i ∗ f )∼ ·∇x1,x2(R

(2)
j ∗2 g)∼)

+2 ∂(x1,x2),i∂t1∇x2((R
(2)
j ∗ f )∼ ·∇x2 G)

−∇x1,x2∇x2(∇x1,x2(R
(1)
i ∗R(2)j ∗2 f )∼ ·∇x2 G)−∇x1,x2∇x2((R

(2)
j ∗2 f )∼ ·∇x1,x2∇x2(R

(1)
i ∗g)∼)

+∇x1,x2∇x2(∇x1,x2(R
(2)
j ∗2 f )∼ ·∇x2(R

(1)
i ∗g)∼)+∇x1,x2∇x2((R

(1)
i ∗R(2)j ∗2 f )∼ ·∇x1,x2∇x2 G).
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Thus, we input the above 25 terms back into the right-hand side of C9 and obtain the terms as follows:

C9 =

∫
Rn+1
+ ×Rm+1

+

t1t2 B · ∂2
t1∂

2
t2

(
F · (R(1)i ∗ R(2)j ∗2 g)∼+ (R(1)i ∗ f )∼ · (R(2)j ∗2 g)∼

+ (R(2)j ∗2 f )∼ · (R(1)i ∗ g)∼+ (R(2)j ∗2 R(1)i ∗ f )∼ ·G
)

dx1 dx2 dt1 dt2

= 4
∫

Rn+1
+ ×Rm+1

+

t1t2 ∂(x1,x2),i∂x2, j B · ∂t1∂t2(FG) dx1 dx2 dt1 dt2

− 2
∫

Rn+1
+ ×Rm+1

+

t1t2∇x1,x2 ∂x2, j B · ∂t2(∇x1,x2(R
(1)
i ∗ f )∼ ·G) dx1 dx2 dt1 dt2

· · · +

∫
Rn+1
+ ×Rm+1

+

t1t2∇x1,x2∇x2 B · ((R(1)i ∗ R(2)j ∗2 f )∼ · ∇x1,x2∇x2 G) dx1 dx2 dt1 dt2

= C9,1+ C9,2+ · · ·+ C9,25,

where we get all these terms from the equality ∂2
t1∂

2
t2(· · · ) by integration by parts and taking all the

gradients or partial derivatives with respect to x1, x2 to the function B. By applying Proposition 3.5 to all
these terms, we obtain that they are all controlled by

C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm).

Next we consider the term C5, which can be considered as a cross term in between C1 and C9. To
continue, we write

∂2
t2(F ·(R

(1)
i ∗ R(2)j ∗2 g)∼+(R(1)i ∗ f )∼ ·(R(2)j ∗2 g)∼+(R(2)j ∗2 f )∼ ·(R(1)i ∗g)∼+(R(2)j ∗2 R(1)i ∗ f )∼ ·G)

= ∂2
t2(F · (R

(2)
j ∗2 (R

(1)
i ∗ g))∼+ (R(2)j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ ∂2
t2((R

(1)
i ∗ f )∼ · (R(2)j ∗2 g)∼+ (R(2)j ∗2 (R

(1)
i ∗ f ))∼ ·G)

= E1+ E2.

For the term E1, we write

E1 =−2 ∂x2, j ∂t2(F · (R
(1)
i ∗ g)∼)+∇x2

(
∇x2(R

(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼+ F · ∇x2(R

(2)
j ∗2 R(1)i ∗ g)∼

−∇x2 F · (R(2)j ∗2 R(1)i ∗ g)∼− (R(2)j ∗2 f )∼ · ∇x2(R
(1)
i ∗ g)∼

)
.

For the term E2, we write

E2 =−2 ∂x2, j ∂t2((R
(1)
i ∗ f )∼ ·G)+∇x2

(
∇x2(R

(2)
j ∗2 R(1)i ∗ f )∼ ·G+ (R(1)i ∗ f )∼ · ∇x2(R

(2)
j ∗2 g)∼

−∇x2(R
(1)
i ∗ f )∼ · (R(2)j ∗2 g)∼− (R(2)j ∗2 f )∼ · ∇x2 G

)
.

As a consequence, by substituting the above 10 terms in the right-hand side of the equalities E1 and E2

back into the term C5, we have

C5 = 2
∫

Rn+1
+ ×Rm+1

+

t1 ∂t1 t2 ∂x2, j B · ∂t1∂t2(F · (R
(1)
i ∗ g)∼) dx1 dx2 dt1 dt2

−

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2∇x2 B · ∂t1(∇x2(R
(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼) dx1 dx2 dt1 dt2
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−

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2∇x2 B · ∂t1(F · ∇x2(R
(2)
j ∗2 R(1)i ∗ g)∼) dx1 dx2 dt1 dt2

+

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2∇x2 B · ∂t1(∇x2 F · (R(2)j ∗2 R(1)i ∗ g)∼) dx1 dx2 dt1 dt2

+

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2∇x2 B · ∂t1((R
(2)
j ∗2 f )∼ · ∇x2(R

(1)
i ∗ g)∼) dx1 dx2 dt1 dt2

+ 2
∫

Rn+1
+ ×Rm+1

+

t1 ∂t1 t2 ∂x2, j B · ∂t1∂t2((R
(1)
i ∗ f )∼ ·G) dx1 dx2 dt1 dt2

−

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2∇x2 B · ∂t1(∇x2(R
(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2

−

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2∇x2 B · ∂t1((R
(1)
i ∗ f )∼ · ∇x2(R

(2)
j ∗2 g)∼) dx1 dx2 dt1 dt2

+

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2∇x2 B · ∂t1(∇x2(R
(1)
i ∗ f )∼ · (R(2)j ∗2 g)∼) dx1 dx2 dt1 dt2

+

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2∇x2 B · ∂t1((R
(2)
j ∗2 f )∼ · ∇x2 G) dx1 dx2 dt1 dt2

=: C5,1+ · · ·+ C5,10.

By applying Proposition 3.5 to these terms, we obtain that they are all controlled by

C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm).

The estimates for the term C6 can be handled symmetrically, and we get the same upper bound for C6 as
that for C5 above.

For the term C7, first note that ∂2
t2 B =−1x2 B =−∇x2 · ∇x2 B. Hence we can write

C7 =−

∫
Rn+1
+ ×Rm+1

+

t1t2∇x2 B · ∇x2 ∂
2
t1(F · (R

(1)
i ∗ R(2)j ∗2 g)∼+ (R(1)i ∗ f )∼ · (R(2)j ∗2 g)∼

+ (R(2)j ∗2 f )∼ · (R(1)i ∗ g)∼+ (R(2)j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2.

Similar to the calculation in the terms E1 and E2 in the estimate of C5, we can now decompose

∂2
t1(F ·(R

(1)
i ∗ R(2)j ∗2 g)∼+(R(1)i ∗ f )∼ ·(R(2)j ∗2 g)∼+(R(2)j ∗2 f )∼ ·(R(1)i ∗g)∼+(R(2)j ∗2 R(1)i ∗ f )∼ ·G)

into 10 terms, which further gives

C7 = C7,1+ · · ·+ C7,10.

Then by applying Proposition 3.5 to these terms, we obtain that they are all controlled by

C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm).

The estimates for the term C8 can be handled symmetrically, and we get the same upper bound for C7

above. �
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4. Upper bound of the big commutator [b, R j,k]

We derive a general upper bound result for commutators of any flag singular integral. The proof is
based on the AF,p weighted estimate of flag singular integral operators and a Cauchy integral trick that
goes back to the work of Coifman, Rochberg, and Weiss [Coifman et al. 1976]. Roughly speaking, this
technique allows one to bootstrap the weighted estimate for an arbitrary linear operator to that of its
commutators of any order. This is the first time this idea is explored in the multiparameter flag setting.
In fact, although not needed for our upper bound proof, we demonstrate the bootstrapping result in the
general higher-order, two-weight setting.

A p weight and little bmo in the flag setting. To begin with, we define the Muckenhoupt Ap weights in
the flag setting, which consists of positive, locally integrable functions w satisfying

[w]AF,p := sup
R∈RF

(
1
|R|

∫
R
w(x, y) dx dy

)(
1
|R|

∫
R
w(x, y)1−p′ dx dy

)p−1

<∞, 1< p <∞, (4-1)

where p′ denotes the Hölder conjugate of p. The following result of [Wu 2014] provides a way of
approaching the AF,p weights via the classical weights:

AF,p = Ap ∩ A(2)p for all 1< p <∞, (4-2)

where Ap is the classical Muckenhoupt Ap class of weights on Rn+m, and A(2)p consists of weights w(x, y)
such that w(x, · ) ∈ Ap with uniformly bounded characteristics for a.e. fixed x ∈ Rn.

We first show that a similar relation holds true for bmoF , which will be a useful tool for us in the study
of this space.

Lemma 4.1. Let BMO(Rn+m)denote the classical John–Nirenberg BMO space on Rn+m, and BMO(2)(Rm)

be the space consisting of functions f (x, y) such that f (x, · ) ∈ BMO(Rm) for a.e. fixed x ∈ Rn with
uniformly bounded norm. There holds

bmoF (R
n+m)= BMO(Rn+m)∩BMO(2)(Rm)

with comparable norms.

Proof. The inclusion

bmoF (R
n+m)⊂ BMO(Rn+m)∩BMO(2)(Rm)

can be easily verified. Indeed, the inclusion bmoF (R
n+m)⊂ BMO(Rn+m) is obvious from the definition.

Now fix x ∈ Rn. For any cube J ⊂ Rm, one can find a sequence of cubes Ik ⊂ Rn such that `(Ik)≤ `(J )
and Ik shrinks to the point {x} as k→∞. The containment thus follows from the Lebesgue differentiation
theorem.

The other inclusion (“⊃”) of the lemma follows from Proposition 4.2 below, which establishes the
exp-log connection between AF,p weights and bmoF (R

n+m), much as in the one-parameter and the
product settings. �
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Proposition 4.2. Suppose w is a weight and 1< p <∞. We have

(i) if w ∈ AF,p, then logw ∈ bmoF (R
n+m);

(ii) if logw ∈ bmoF (R
n+m), then wη ∈ AF,p for sufficiently small η > 0.

Proof. One observes directly from the definition that

AF,p ⊂ AF,q for all 1< p ≤ q <∞,

and

w ∈ AF,p⇐⇒ w1−p′
∈ AF,p′ for all 1< p <∞.

Therefore, it suffices to prove the case p = 2.
We first prove (i). Suppose w ∈ AF,2 and let γ = logw. Then, for any R ∈ RF the AF,2 condition

implies (
1
|R|

∫
R

eγ (x,y)−〈γ 〉R dx dy
)(

1
|R|

∫
R

e〈γ 〉R−γ (x,y) dx dy
)
≤ [w]AF,2 <∞.

By Jensen’s inequality we have each of the factors above is at least 1 and at most [w]AF,2 . Therefore, the
inequality

1
|R|

∫
R

e|γ (x,y)−〈γ 〉R | dx dy ≤ 2[w]AF,2

holds, which, using the trivial estimate t ≤ et , implies

1
|R|

∫
R
|γ (x, y)−〈γ 〉R| dx dy ≤ 2[w]AF,2 .

Hence, γ ∈ bmoF (R
n+m).

We now prove (ii). Let γ = logw ∈ bmoF (R
n+m); it follows from Lemma 4.1 that γ ∈ BMO(Rn+m)

and γ ∈ BMO(2)(Rm). According to the classical exp-log connection between BMO and A2, there hold
for sufficiently small η > 0

eηγ ( · ,· ) ∈ A2(R
n+m),

eηγ (x,· ) ∈ A2(R
m) uniformly in x ∈ Rn.

Hence, (4-2) implies eηγ ∈ AF,2 for sufficiently small η > 0, which completes the proof. �

Upper bound of the commutator. Given an operator T, define its k-th order commutator as

Ck
Eb
(T ) := [bk, [bk−1, . . . , [b1, T ] · · · ]],

where each bj is a function on Rn
×Rm for all 1≤ j ≤ k.

Theorem 4.3. Let ν be a fixed weight on Rn
×Rm, 1< p <∞, and T be a linear operator satisfying

‖T ‖L p(µ)→L p(λ) ≤ Cn,m,p,T ([µ]AF,p , [λ]AF,p),



COMMUTATORS OF MULTIPARAMETER FLAG SINGULAR INTEGRALS AND APPLICATIONS 1347

where Cn,m,p,T ( · , · ) is an increasing function of both components, with µ, λ ∈ AF,p and µ/λ= ν p. For
k ≥ 1, let bj ∈ bmoF (R

n
×Rm), 1≤ j ≤ k; then there holds

‖Ck
Eb
(T )‖L p(µ)→L p(λ) ≤ Cn,m,p,k,T ([µ]AF,p , [λ]AF,p)

k∏
j=1

‖bj‖bmoF .

Assuming Theorem 4.3, in order to derive an (even unweighted) upper estimate for commutator of
operator T, it suffices to know the corresponding weighted estimate for T itself. When T is a flag singular
integral operator (which includes the flag Riesz transform Rj,k), such a result was obtained by Han, Lin
and Wu [Han et al. 2016b].

Definition 4.4. A flag singular integral TF : f 7→ K ∗ f is defined via a flag kernel K on Rn
× Rm,

which is a distribution on Rn+m that coincides with a C∞ function away from the coordinate subspace
{(0, y)} ⊂ Rn+m and satisfies:

(i) (differential inequalities) For each α = (α1, . . . , αn), β = (β1, . . . , βn)

|∂αx ∂
β
y K(x, y)|. |x |−n−|α|(|x | + |y|)−m−|β|

for all (x, y) ∈ Rn+m with |x | 6= 0.

(ii) (cancellation conditions) ∣∣∣∣∫
Rm
∂αx K(x, y)ψ1(δy) dy

∣∣∣∣≤ Cα|x |−n−|α|

for every multi-index α and for every normalized bump function ψ1 on Rm and every δ > 0;∣∣∣∣∫
Rn
∂βy K(x, y)ψ2(δy) dy

∣∣∣∣≤ Cβ |y|−m−|β|

for every multi-index β and for every normalized bump function ψ2 on Rn and every δ > 0;∣∣∣∣∫
Rn+m

K(x, y)ψ3(δ1x, δ2 y) dx dy
∣∣∣∣≤ C

for every normalized bump function ψ3 on Rn+m and every δ1, δ2 > 0.

Theorem 4.5 [Han et al. 2016b, Remark 1.4]. Let 1< p <∞ and w ∈ AF,p(R
n+m); there holds

‖TF ( f )‖L p
w(Rn+m) ≤ C p‖ f ‖L p

w(Rn+m) for all f ∈ L p
w(R

n+m).

Applying Theorem 4.3 (with the choice µ=λ=w) together with Theorem 4.5, one obtains immediately
the following.

Corollary 4.6. Let w ∈ AF,p, 1< p <∞, and T be a flag singular integral operator as defined above.
For any k ≥ 1, Eb = (b1, . . . , bk) where bj ∈ bmoF (R

n
×Rm), j = 1, . . . , k, there holds

‖Ck
Eb
(T )‖L p(w)→L p(w) ≤ Cn,m,p,k,w,T

k∏
j=1

‖bj‖bmoF .



1348 XUAN THINH DUONG, JI LI, YUMENG OU, JILL PIPHER AND BRETT D. WICK

Obviously, the result above in the first-order unweighted case is precisely the desired upper bound
estimate in Theorem 1.5.

The core of the proof of Theorem 4.3 lies in a complex function representation of the commutators
and the Cauchy integral formula. This method has been widely used to obtain upper estimates for linear
and multilinear commutators in various settings; see [Chung et al. 2012; Coifman et al. 1976; Hytönen
2016; Bényi et al. 2017; Kunwar and Ou 2017] for examples. The main new challenge in our problem is
the unique structure of the little flag BMO space and flag weights, which for instance doesn’t seem to fall
into the category of spaces recently studied in [Bényi et al. 2017].

Proof of Theorem 4.3. Observe that

Ck
Eb
(T )= ∂z1 · · · ∂zk F(E0), F(Ez) := e

∑k
j=1 b1z1 T e−

∑k
j=1 bj z j ,

which generalizes a classical formula representing higher-order commutators. We remark that when all
the symbol functions bj are the same, one can work instead with a simpler formula using single variable
complex functions and their k-th order derivatives. According to the Cauchy integral formula on polydiscs,

Ck
Eb
(T )=

1
(2π i)k

∮
· · ·

∮
F(Ez) dz1 · · · dzk

z2
1 · · · z

2
k

,

where each integral is over any closed path around the origin in the corresponding variable. For fixed
(δ1, . . . , δk) which will be determined later, there holds by the Minkowski inequality

‖Ck
Eb
(T )‖L p(µ)→L p(λ)

≤
1

(2π)k

∮
|z1|=δ1

· · ·

∮
|zk |=δk

‖T ‖
L p(e

p Re(
∑k

j=1 bj zj )µ)→L p(e
p Re(

∑k
j=1 bj zj )λ)

|dz1| · · · |dzk |

δ2
1 · · · δ

2
k

≤
1

(2π)k

∮
|z1|=δ1

· · ·

∮
|zk |=δk

Cn,m,p,T ([ep Re (
∑k

j=1 bj z j)µ]AF,p , [e
p Re (

∑k
j=1 bj z j)λ]AF,p)

|dz1| · · · |dzk |

δ2
1 · · · δ

2
k

,

where we have used the fact that (ep Re (
∑k

j=1 bj z j)µ, ep Re (
∑k

j=1 bj z j)λ) is a pair of weights satisfying

ep Re (
∑k

j=1 bj z j)µ

ep Re (
∑k

j=1 bj z j)λ
=
µ

λ
= ν p.

Now we choose {δj } according to Lemma 4.7 below, which is the key ingredient of the proof concerning
the relation between AF,p weights and little flag BMO functions. Let

δ1 :=
εn,m,p

max((µ)AF,p , (λ)AF,p)‖b1‖bmoF
,

where for any w ∈ AF,p

(w)AF,p :=max([w]AF,p , [σ ]AF,p′ ). (4-3)

Here we have used the notation σ := w1−p′ to denote the dual weight of w, and the relevant property of
(w)AF,p to us is that

(w)AF,p =max([w]AF,p , [w]
p′−1
AF,p

)= [w]
max(1,p′−1)
AF,p

.
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Recursively, for any j ≥ 2, choose

δj :=
εn,m,p

sup{zt }: |z1|=δ1,...,|z j−1|=δj−1
max((ep Re (

∑ j−1
t=1 bt zt)µ)AF,p , (e

p Re (
∑ j−1

t=1 bt zt)λ)AF,p)‖bj‖bmoF

.

Then applying Lemma 4.7 iteratively shows that

[ep Re (
∑k

j=1 bj z j)µ]AF,p ≤ Cn,m,p[ep Re (
∑k−1

j=1 bj z j)µ]AF,p ≤ · · · ≤ Ck
n,m,p[µ]AF,p ,

and similarly
[ep Re (

∑k
j=1 bj z j)λ]AF,p ≤ Ck

n,m,p[λ]AF,p ,

which in turn via the monotonicity of Cn,m,p,T ( · , · ) leads to

Cn,m,p,T ([ep Re (
∑k

j=1 bj z j)µ]AF,p , [e
p Re (

∑k
j=1 bj z j)λ]AF,p)≤ C ′n,m,p,k,T ([µ]AF,p , [λ]AF,p).

Therefore,

‖Ck
Eb
(T )‖L p(µ)→L p(λ) ≤

1
δ1 · · · δk

C ′n,m,p,k,T ([µ]AF,p , [λ]AF,p)

≤ Cn,m,p,k,T ([µ]AF,p , [λ]AF,p)

k∏
j=1

‖bj‖bmoF . �

Lemma 4.7. Let w ∈ AF,p, 1< p<∞, and b ∈ bmoF (R
n
×Rm). There are constants εn,m,p,Cn,m,p > 0

such that
[eRe(bz)w]AF,p ≤ Cn,m,p[w]AF,p

whenever z ∈ C satisfies
|z| ≤

εn,m,p

‖b‖bmoF (w)AF,p

,

where (w)AF,p is defined as in (4-3).

Proof. This estimate is a consequence of (4-2), Lemma 4.1 and a one-parameter version proven by
Hytönen [2016], which states that for any w ∈ Ap, the classical Muckenhoupt Ap class on Rd, 1< p<∞,
there exist εd,p,Cd,p > 0 such that

[eRe(bz)w]Ap ≤ Cd,p[w]Ap

for all z ∈ C with
|z| ≤

εn,p

‖b‖BMO(w)Ap

.

To see this, by (4-2) and Lemma 4.1, given w ∈ AF,p and b ∈ bmoF , there hold w ∈ Ap ∩ A(2)p and
b ∈ BMO(Rn+m)∩BMO(2)(Rm). Hence, taking εn,m,p > 0 sufficiently small, for all z ∈ C satisfying

|z| ≤
εn,m,p

‖b‖bmoF (w)AF,p

,

one has
[eRe(bz)w]Ap ≤ Cn+m,p[w]Ap ≤ Cn,m,p[w]AF,p
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and
[eRe(b(x,· )z)w(x, · )]Ap ≤ Cm,p[w(x, · )]Ap ≤ Cn,m,p[w]AF,p a.e. x ∈ Rn,

by observing that
‖b‖bmoF &max

(
‖b‖BMO(Rn+m), sup

x∈Rn
‖b(x, · )‖BMO(2)(Rm)

)
and that

(w)AF,p &max([w]Ap , sup
x∈Rn
[w(x, · )]Ap). �

5. Applications: div-curl lemmas in the flag setting

Let E (1) be a vector field on Rn+m taking the values in Rn+m, and let E (2) be a vector field on Rm taking
the values in Rm. Now let Mn+m,m denote the set of all (n +m)×m matrices. We now consider the
following version of vector fields on Rn

×Rm taking the values in Mn+m,m , associated with the flag
structure:

E = E (1) ∗2 E (2) :=

 E (1)1 ∗2 E (2)1 . . . E (1)1 ∗2 E (2)m
... . . . ...

E (1)n+m ∗2 E (2)1 . . . E (1)n+m ∗2 E (2)m

 , (5-1)

where

E (1)j ∗2 E (2)k (x, y)=
∫

Rm
E (1)j (x, y− z)E (2)k (z) dz.

Next we consider the following L p space via projections. Suppose 1< p<∞. We define L p
F (R

n
×Rm
;

Mn+m,m) to be the set of vector fields E in L p(Rn
×Rm

;Mn+m,m) such that there exist r1, r2 ∈ (1,∞)
with 1/r1+ 1/r2 = 1/p+ 1, E (1) ∈ Lr1(Rn+m

;Rn+m), E (2) ∈ Lr2(Rm
;Rm) and that E = E (1) ∗2 E (2);

moreover,
‖E‖L p

F (R
n×Rm;Mn+m,m)

:= inf ‖E (1)‖Lr1 (Rn+m;Rn+m)‖E (2)‖Lr2 (Rm;Rm),

where the infimum is taken over all possible r1, r2 ∈ (1,∞), E (1) ∈ Lr1(Rn+m
;Rn+m), E (2) ∈ Lr2(Rm

;Rm).
Given two matrices A, B ∈Mn+m,m , we define the “dot product” between A and B by

A · B =
n+m∑
j=1

m∑
k=1

Aj,k Bj,k .

We point out that this is the Hilbert–Schmidt inner product for two matrices and more generally this is
referred to as the Schur product of two matrices.

Proof of Theorem 1.6. Note that B is a vector field on Rn
×Rm taking the values in Mn+m,m , associated

with the flag structure (5-1). Then there exist certain vector fields B(1) on Rn+m taking the values in Rn+m

and B(2) on Rm taking the values in Rm such that B = B(1) ∗2 B(2) and that

‖B‖Lq
F (R

n×Rm;Mn+m,m)
≈ inf ‖B(1)‖Lq1 (Rn+m;Rn+m)‖B(2)‖Lq2 (Rm;Rm)

with 1/q1+ 1/q2 = 1/q + 1.
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Thus, curl(x,y) B(1) = 0 implies that there exists φ(1) ∈ Lq(Rn+m) such that

B(1) = (R(1)1 φ(1), . . . , R(1)n+mφ
(1))

with ‖B(1)‖Lq1 (Rn+m;Rn+m) ≈ ‖φ
(1)
‖Lq1 (Rn+m). Again, curly B(2) = 0 implies that there exists φ(2) ∈

Lq2(Rn+m) such that

B(2) = (R(2)1 φ(2), . . . , R(2)m φ(2))

with ‖B(2)‖Lq2 (Rm;Rm) ≈ ‖φ
(2)
‖Lq2 (Rm). As a consequence we get that the matrix B has elements

Bj,k = Rj,k ∗φ, j = 1, . . . , n+m, k = 1, . . . ,m,

where φ = φ(1) ∗2 φ
(2) and ‖B‖Lq

F (R
n×Rm;Mn+m,m)

≈ ‖φ‖Lq (Rn+m).
Similarly, note that E is a vector field on Rn

×Rm taking the values in Mn+m,m , associated with the
flag structure (5-1). Then there exist certain vector fields E (1) on Rn+m taking the values in Rn+m and
E (2) on Rm taking the values in Rm such that E = E (1) ∗2 E (2) and that

‖E‖L p
F (R

n×Rm;Mn+m,m)
≈ inf ‖E (1)‖L p1 (Rn+m;Rn+m)‖E (2)‖L p2 (Rm;Rm)

with 1/p1+ 1/p2 = 1/p+ 1.
Thus, the conditions div(x,y) E (1) = 0 and divy E (2) = 0 imply

n+m∑
j=1

R(1)j ∗ E (1)j (x, y)= 0 and
m∑

k=1

R(2)k ∗2 E (2)k (y)= 0.

Hence, we get
n+m∑
j=1

R(1)j ∗ E j,k(x, y)= 0 and
m∑

k=1

R(2)k ∗2 E j,k(x, y)= 0.

With these facts, we have

E(x, y) · B(x, y)=
n+m∑
j=1

m∑
k=1

E j,k(x, y)Bj,k(x, y)=
n+m∑
j=1

m∑
k=1

E j,k(x, y)Rj,k ∗φ(x, y)

=

n+m∑
j=1

m∑
k=1

{
E j,k(x, y)Rj,k ∗φ(x, y)+ R(1)j ∗ E j,k(x, y)R(2)k ∗2 φ(x, y)

+ R(2)k ∗2 E j,k(x, y)R(1)j ∗φ(x, y)+ Rj,k ∗ E j,k(x, y)φ(x, y)
}
.

Now testing this equality over all functions in the flag BMO space, i.e., for every b ∈ BMOF (R
n
×Rm),

and then unravelling the expression with the Riesz transforms we see that∫
Rn×Rm

E(x, y) · B(x, y) b(x, y) dx dy =
n+m∑
j=1

m∑
k=1

∫
Rn×Rm

[[b, R(1)j ], R(2)k ]2(E j,k)(x, y)φ(x, y) dx dy.

Then based on Theorem 1.3, since b ∈ BMOF (R
n
×Rm) we have that each of the above commutators is

a bounded operator on L p(Rn
×Rm) with norm controlled by the norm of b, i.e., ‖b‖BMOF (Rn×Rm).
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As a consequence, we get∣∣∣∣∫
Rn×Rm

E(x, y)·B(x, y) b(x, y) dx dy
∣∣∣∣. ‖b‖BMOF (Rn×Rm)‖E‖L p

F (R
n×Rm;Mn+m,m)

‖φ‖Lq (Rn+m)

. ‖b‖BMOF (Rn×Rm)‖E‖L p
F (R

n×Rm;Mn+m,m)
‖B‖Lq

F (R
n×Rm;Mn+m,m)

.

Then from the duality of H 1
F (R

n
×Rm) with BMOF (R

n
×Rm), we obtain

‖E · B‖H1
F (R

n×Rm) . ‖b‖BMOF (Rn×Rm)‖E‖L p
F (R

n×Rm;Mn+m,m)
‖B‖Lq

F (R
n×Rm;Mn+m,m)

. �

Proof of Theorem 1.7. Suppose that E, B are vector fields on Rn
×Rm taking values in Rn+m. Moreover,

suppose E ∈ L p(Rn
×Rm

;Rn+m) and B ∈ Lq(Rn
×Rm

;Rn+m) satisfy

div(x,y) E(x, y)= 0 and curl(x,y) B(x, y)= 0

and
divy E(x, y)= 0 and curly B(x, y)= 0 for all x ∈ Rn.

We now define the projection operator P as

PE =
(

E1+ R(1)1

(n+m∑
k=1

R(1)k Ek

)
, . . . , En+m + R(1)n+m

(n+m∑
k=1

R(1)k Ek

))
.

Then by definition, it is direct that
div(x,y) PE = 0

since
n+m∑
j=1

R(1)j

(
E j + R(1)j

(n+m∑
k=1

R(1)k Ek

))
= 0. (5-2)

Moreover, we also have P ◦PE = PE . Next, we point out that applying [b,P] to the vector field E ,
we can get that the j-th component is given by

n+m∑
k=1

[b, R(1)j R(1)k ](Ek).

Suppose now b ∈ bmoF (R
n
×Rm). Then from Lemma 4.1 we know

bmoF (R
n+m)= BMO(Rn+m)∩BMO(2)(Rm)

with comparable norms. Hence, we have b ∈ BMO(Rn+m) with

‖b‖BMO(Rn+m) . ‖b‖bmoF (Rn×Rm).

With all these observations, an application of the Coifman, Rochberg and Weiss theorem demonstrates
that [b,P](E) is bounded on L p(Rn

×Rm
;Rn+m) with

‖[b,P](E)‖L p(Rn×Rm;Rn+m) . ‖b‖BMO(Rn+m)‖E‖L p(Rn×Rm;Rn+m)

. ‖b‖bmoF (Rn×Rm)‖E‖L p(Rn×Rm;Rn+m).
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As a consequence, from the definition of [b, P] and (5-2) we get∣∣∣∣∫
Rn+m

E(x, y) · B(x, y) b(x, y) dx dy
∣∣∣∣= ∣∣∣∣∫

Rn+m
[b, P]E(x, y) · B(x, y) dx dy

∣∣∣∣
. ‖b‖BMO(Rn+m)‖E‖L p(Rn×Rm;Rn+m)‖B‖Lq (Rn×Rm;Rn+m)

. ‖b‖bmoF (Rn×Rm)‖E‖L p(Rn×Rm;Rn+m)‖B‖Lq (Rn×Rm;Rn+m).

Thus we get that E · B is in H 1(Rn+m) with

‖E · B‖H1(Rn+m) . ‖E‖L p(Rn×Rm;Rn+m)‖B‖Lq (Rn×Rm;Rn+m).

To show the second result, we now define the projection operator P(2) as

P(2)E =
(

En+1+ R(2)1

( m∑
k=1

R(2)k En+k

)
, . . . , En+m + R(1)n+m

( m∑
k=1

R(1)k En+k

))
.

Then, again, by definition, we have
divy P(2)E = 0

since m∑
j=1

R(2)j

(
En+ j + R(2)j

( m∑
k=1

R(2)k En+k

))
= 0. (5-3)

Now fix x ∈ Rn; by using the definition of P(2) and the fact (5-3), we get that for b ∈ bmoF (R
n
×Rm),∫

Rm
E(x, y) ·2 B(x, y)b(x, y) dy =

∫
Rm
[b(x, · ),P(2)]E(x, y)ψ(x, y) dy.

Integrating the above equality over Rn, we have∣∣∣∣∫
Rn

∫
Rm

E(x, y) ·2 B(x, y)b(x, y) dy dx
∣∣∣∣= ∣∣∣∣∫

Rn

∫
Rm
[b(x, · ),P(2)]E(x, y) ·2 B(x, y) dy dx

∣∣∣∣
.
∫

Rn
‖b(x, · )‖BMO(Rn)‖E(x, · )‖L p(Rm)‖B(x, · )‖Lq (Rm) dx

. ‖b‖bmoF (Rn×Rm)

∫
Rn
‖E(x, · )‖L p(Rm)‖B(x, · )‖Lq (Rm) dx

. ‖b‖bmoF (Rn×Rm)‖E‖L p(Rm×Rn;Rn+m)‖B‖L p(Rm×Rn;Rn+m).

Here we use again Lemma 4.1 and Hölder’s inequality. Taking the supremum over all b∈ bmoF (R
n
×Rm)

we obtain that∫
Rm
‖E( · , y) ·2 B( · , y)‖H1(Rm) dy . ‖E‖L p(Rn×Rm;Rn+m)‖B‖Lq (Rn×Rm;Rn+m). �
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ROKHLIN DIMENSION: ABSORPTION OF MODEL ACTIONS

GÁBOR SZABÓ

We establish a connection between Rokhlin dimension and the absorption of certain model actions on
strongly self-absorbing C∗-algebras. Namely, as to be made precise in the paper, let G be a well-behaved
locally compact group. If D is a strongly self-absorbing C∗-algebra and α : G y A is an action on a
separable, D-absorbing C∗-algebra that has finite Rokhlin dimension with commuting towers, then α
tensorially absorbs every semi-strongly self-absorbing G-action on D. In particular, this is the case when
α satisfies any version of what is called the Rokhlin property, such as for G = R or G = Zk. This contains
several existing results of similar nature as special cases. We will in fact prove a more general version
of this theorem, which is intended for use in subsequent work. We will then discuss some nontrivial
applications. Most notably it is shown that for any k ≥ 1 and on any strongly self-absorbing Kirchberg
algebra, there exists a unique Rk-action having finite Rokhlin dimension with commuting towers up to
(very strong) cocycle conjugacy.
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Introduction

The present work is a continuation of the author’s quest to study fine structure and classification of
certain C∗-dynamics by employing ideas related to tensorial absorption. In previous work, the theory
of (semi-)strongly self-absorbing actions on C∗-algebras [Szabó 2017b; 2018b; 2018c] was developed,
closely following the important results established in the classical theory of strongly self-absorbing
C∗-algebras by Toms and Winter [2007] and others [Kirchberg 2006; Dadarlat and Winter 2009]. Strongly
self-absorbing C∗-algebras have historically emerged by example [Jiang and Su 1999], and now play
a central role in the structure theory of simple nuclear C∗-algebras; see for example [Kirchberg and
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Phillips 2000; Rørdam 2004; Elliott and Toms 2008; Winter and Zacharias 2010; Winter 2010; 2012;
2014; Matui and Sato 2012b; 2014a; Bosa et al. 2015; Castillejos et al. 2018]. Roughly speaking, a
tensorial factorization of the form A ∼= A⊗D — for a given C∗-algebra A and a strongly self-absorbing
C∗-algebra D — provides sufficient space to perform nontrivial manipulations on elements inside A,
which often gives rise to structural properties of particular interest for classification. The underlying
motivation behind [Szabó 2017b; 2018b; 2018c] is the idea that this kind of phenomenon should persist at
the level of C∗-dynamics if one is interested in classification of group actions up to cocycle conjugacy; in
fact some much earlier work [Kishimoto 2001; 2002; Izumi and Matui 2010; 2012; Goldstein and Izumi
2011; Matui and Sato 2012a; 2014b] has (sometimes implicitly) used this idea to reasonable success.
It was further demonstrated in [Szabó 2017b; 2018a] how this approach can indeed give rise to new
insights about classification or rigidity of group actions on certain C∗-algebras, in particular strongly
self-absorbing ones.

Starting from Connes’ groundbreaking work [1975; 1976; 1977] on injective factors, which involved
classification of single automorphisms, the Rokhlin property in its various forms became a key tool to
classify actions of amenable groups on von Neumann algebras [Jones 1980; Ocneanu 1985; Sutherland
and Takesaki 1989; Kawahigashi et al. 1992; Katayama et al. 1998; Masuda 2007]. It did not take long for
these ideas to reach the realm of C∗-algebras. Initially appearing in [Herman and Jones 1982] and [Herman
and Ocneanu 1984], the Rokhlin property for single automorphisms and its applications for classification
were perfected in works of Kishimoto and various collaborators [Kishimoto 1995; 1996b; 1998a; 1998b;
Bratteli et al. 1993; 1995; Evans and Kishimoto 1997; Elliott et al. 1998; Bratteli and Kishimoto 2000;
Nakamura 2000]. Further work pushed these techniques to actions of infinite higher-rank groups as well
[Nakamura 1999; Katsura and Matui 2008; Matui 2008; 2010; 2011; Izumi and Matui 2010; 2012; 2018].
The case of finite groups was treated in [Izumi 2004a; 2004b], where it was shown that such actions with
the Rokhlin property have a particularly rigid theory; see also [Santiago 2015; Gardella and Santiago
2016; Gardella 2014a; 2014b; 2017; Barlak and Szabó 2016; Barlak et al. 2017]. In contrast to von
Neumann algebras, however, the Rokhlin property for actions on C∗-algebras has too many obstructions
in general, ranging from obvious ones like lack of projections to more subtle ones of K -theoretic nature.

Rokhlin dimension is a notion of dimension for actions of certain groups on C∗-algebras and was
first introduced by Hirshberg, Winter and Zacharias [Hirshberg et al. 2015]. Several natural variants
of Rokhlin dimension have been introduced, and all of them have in common that they generalize (to
some degree) the Rokhlin property for actions of either finite groups or the integers. The theory has been
extended and applied in many following works, such as [Szabó 2015; Hirshberg and Phillips 2015; Szabó
et al. 2017; Gardella 2017; Hirshberg et al. 2017; Liao 2016; 2017; Brown et al. 2018; Gardella et al.
2017]. In short, the advantage of working with Rokhlin dimension is that it is both more prevalent and
more flexible than the Rokhlin property, but is yet often strong enough to deduce interesting structural
properties of the crossed product, such as finite nuclear dimension [Winter and Zacharias 2010].

A somewhat stronger version of Rokhlin dimension, namely with commuting towers, has been con-
sidered from the very beginning as a variant that was also compatible with respect to the absorption of
strongly self-absorbing C∗-algebras. Although the assumption of commuting towers initially only looked
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like a minor technical assumption, it was eventually discovered that it can make a major difference in
some cases, such as for actions of finite groups [Hirshberg and Phillips 2015].

The purpose of this paper is to showcase a decisive connection between finite Rokhlin dimension
with commuting towers and the absorption of semi-strongly self-absorbing model actions. The following
describes a variant of the main result; see Theorem 4.4:

Theorem A. Let G be a second-countable, locally compact group and N ⊂G a closed, normal subgroup.
Suppose that the quotient G/N contains a discrete, normal, cocompact subgroup that is residually finite
and has a box space with finite asymptotic dimension. Let A be a separable C∗-algebra with an action
α : G y A. Let γ : G yD be a semi-strongly self-absorbing action that is unitarily regular. Suppose that
α|N is γ |N -absorbing. If the Rokhlin dimension of α with commuting towers relative to N is finite, then it
follows that α is γ -absorbing.

Since many assumptions in this theorem are fairly technical at first glance, it may be helpful for the
reader to keep in mind some special cases. For example, the above assumptions on the pair N ⊂ G are
satisfied when the quotient G/N above is isomorphic to either R or Z. In this case, the theorem states that
as long as the action α satisfies a suitable Rokhlin-type criterion relative to N, tensorial absorption of the
G-action γ can be detected by restricting to the N -actions, even though this restriction procedure (a priori)
comes with great loss of dynamical information. This is most apparent when the normal subgroup N is
trivial, which is yet another important special case; see Corollary 5.1:

Corollary B. Let G be a second-countable, locally compact group. Suppose that G contains a discrete,
normal, cocompact subgroup that is residually finite and has a box space with finite asymptotic dimension.
Let A be a separable C∗-algebra with an action α : G y A. Suppose that D is a strongly self-absorbing
C∗-algebra with A∼= A⊗D. If the Rokhlin dimension of α with commuting towers is finite, then it follows
that α is γ -absorbing for every semi-strongly self-absorbing action γ : G y D.

Here it may be useful to keep in mind that any version of what is called the Rokhlin property for G =R

or G = Zk will automatically imply finite Rokhlin dimension with commuting towers, and is therefore
covered by Corollary B. This is in turn a generalization of [Hirshberg and Winter 2007, Theorem 1.1;
Hirshberg et al. 2015, Theorems 5.8, 5.9; 2017, Theorem 5.3; Szabó et al. 2017, Theorem 9.6; Gardella
and Lupini 2018, Theorem 4.50(2)]. We will in fact only apply the corollary within this paper, with a
particular focus on the special case where the action is assumed to have the Rokhlin property. Some
immediate applications of Corollary B will be discussed in Section 5. The main nontrivial application is
pursued in Section 6, which is as follows; see Theorem 6.7 and Corollary 6.11:

Theorem C. Let D be a strongly self-absorbing Kirchberg algebra. Then up to (very strong) cocycle
conjugacy, there is a unique action γ : Rk y D that has finite Rokhlin dimension with commuting towers.

We note that a strongly self-absorbing C∗-algebra is a Kirchberg algebra precisely when it is traceless.
Kirchberg algebras are (by convention) the separable, simple, nuclear, purely infinite C∗-algebras, whose
celebrated classification is due to [Kirchberg and Phillips 2000; Phillips 2000; Kirchberg 2003] and which
constitutes a prominent special case of the Elliott classification program. We note that all other strongly
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self-absorbing C∗-algebras are conjectured to be quasidiagonal — see [Tikuisis et al. 2017, Corollary 6.7] —
and so any Rokhlin flows on them would induce Rokhlin flows on the universal UHF algebra, which
do not exist; see [Kishimoto 1996a, page 600; 1998a, page 289; Hirshberg et al. 2017, Section 2]. In
particular, the underlying problem above is only interesting to consider in the purely infinite case.

Although the theorem above is not too far off from being a very special case of [Szabó 2017a] for
ordinary flows, this result is entirely new for k≥ 2, and is in fact the first classification result for Rk-actions
on C∗-algebras up to cocycle conjugacy.

The proof goes via induction in the number k of flows generating the action. In order to achieve a
major part of the induction step, the corollary above is used in order to see that any two Rk-actions
as in the statement absorb each other tensorially. However, in order for this to make sense, it has to
be at least established beforehand (as part of the induction step) that any such action has equivariantly
approximately inner flip. This is achieved via a relative Kishimoto-type approximate cohomology-
vanishing argument inspired by [Kishimoto 2002, Section 3], which combines arguments related to
the Rokhlin property for Rk-actions with arguments related to the structure theory of semi-strongly
self-absorbing actions.

At this moment it seems unclear whether or not to expect a similarly rigid situation for Rokhlin
Rk-actions on general Kirchberg algebras, as is the case for k = 1 [Szabó 2017a]. In general, in order to
implement a more general classification of this sort, it would require a technique for both constructing
and manipulating cocycles for Rk-actions (where k ≥ 2) with the help of the Rokhlin property, which may
potentially be much more complicated than for k = 1. In essence, our approach based on ideas related to
strong self-absorption works because the main result allows one to bypass the need to bother with general
cocycles for all of Rk, but instead requires one only to consider individual copies of R inside Rk at a time
(represented by the flows generating the Rk-action), enabling an induction process.

In forthcoming work, the full force of the aforementioned main result of this paper (Theorem 4.4) will
form the basis of further uniqueness results regarding actions of certain discrete amenable groups on
strongly self-absorbing C∗-algebras.

1. Preliminaries

Notation 1.1. Unless specified otherwise, we will stick to the following notational conventions:

• G denotes a locally compact Hausdorff group.

• A and B denote C∗-algebras.

• The symbols α, β, γ are used to denote point-norm continuous actions on C∗-algebras. Since
continuity is always assumed in this context, we will simply refer to them as actions.

• If α : G y A is an action, then Aα denotes the fixed-point algebra of A.

• If F is a finite subset inside some set M, we often write F ⊂⊂ M.

• If (X, d) is some metric space with elements a, b ∈ X , then we write a =ε b as a shorthand for
d(a, b)≤ ε.



ROKHLIN DIMENSION: ABSORPTION OF MODEL ACTIONS 1361

We first recall some needed definitions and notation.

Definition 1.2 (cf. [Packer and Raeburn 1989, Definition 3.2] and [Szabó 2018b; 2017b, Section 1]). Let
α : G y A be an action. Consider a strictly continuous map w : G→ U(M(A)):

(i) w is called an α-1-cocycle if one has wgαg(wh) = wgh for all g, h ∈ G. In this case, the map
αw :G→Aut(A) given by αwg =Ad(wg)◦αg is again an action, and is called a cocycle perturbation of α.
Two G-actions on A are called exterior equivalent if one of them is a cocycle perturbation of the other.

(ii) Assume that w is an α-1-cocycle. It is called an approximate coboundary if there exists a sequence
of unitaries xn ∈ U(M(A)) such that xnαg(x∗n )

str
−→wg for all g ∈ G and uniformly on compact sets. Two

G-actions on A are called strongly exterior equivalent if one of them is a cocycle perturbation of the other
via an approximate coboundary.

(iii) Assume w is an α-1-cocycle. It is called an asymptotic coboundary if there exists a strictly continuous
map x : [0,∞)→ U(M(A)) with x0 = 1 and such that xtαg(x∗t )

str
−→wg for all g ∈ G and uniformly on

compact sets. Two G-actions on A are called very strongly exterior equivalent if one of them is a cocycle
perturbation of the other via an asymptotic coboundary.

(iv) Let β : G y B be another action. The actions α and β are called cocycle conjugate, written α 'cc β

if there exists an isomorphism ψ : A→ B such that ψ−1
◦β ◦ψ and α are exterior equivalent. If ψ can

be chosen such that ψ−1
◦β ◦ψ and α are strongly exterior equivalent, then α and β are called strongly

cocycle conjugate, written α 'scc β. If ψ can be chosen such that ψ−1
◦β ◦ψ and α are very strongly

exterior equivalent, then α and β are called very strongly cocycle conjugate, written α 'vscc β.

Note that for a cocycle w, the cocycle identity applied to g = h = e yields we =w
2
e , and hence we = 1.

This is implicitly used in many calculations without further mention.

Definition 1.3 (cf. [Kirchberg 2006, Definition 1.1] and [Szabó 2018b, Section 1]). Let A be a C∗-algebra
and let α : G y A be an action of a locally compact group:

(i) The sequence algebra of A is given as

A∞ = `∞(N, A)/
{
(xn)n

∣∣ lim
n→∞
‖xn‖ = 0

}
.

There is a standard embedding of A into A∞ by sending an element to its constant sequence. We shall
always identify A ⊂ A∞ this way, unless specified otherwise.

(ii) Pointwise application of α on representing sequences defines a (not necessarily continuous) G-
action α∞ on A∞. Let

A∞,α = {x ∈ A∞ | [g 7→ α∞,g(x)] is continuous}

be the continuous part of A∞ with respect to α.

(iii) For some C∗-subalgebra B ⊂ A∞, the (corrected) relative central sequence algebra is defined as

F(B, A∞)= (A∞ ∩ B ′)/Ann(B, A∞).
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(iv) If B ⊂ A∞ is α∞-invariant, then the G-action α∞ on A∞ induces a (not necessarily continuous)
G-action α̃∞ on F(B, A∞). Let

Fα(B, A∞)= {y ∈ Fα(B, A∞) | [g 7→ α̃∞,g(y)] is continuous}

be the continuous part of F(B, A∞) with respect to α.

(v) When B = A, we write F(A, A∞)= F∞(A) and Fα(A, A∞)= F∞,α(A).

Definition 1.4 [Barlak and Szabó 2016, Definition 3.3]. Let G be a second-countable, locally com-
pact group, and let α : G y A and β : G y B be actions on separable C∗-algebras. An equivari-
ant ∗-homomorphism ϕ : (A, α)→ (B, β) is called (equivariantly) sequentially split if there exists a
∗-homomorphism ψ : (B, β)→ (A∞,α, α∞) such that ψ(ϕ(a))= a for all a ∈ A.

Definition 1.5. Let G be a second-countable, locally compact group, and let α : G y A and β :
G y B be actions on unital C∗-algebras. Let ϕ1, ϕ2 : (A, α)→ (B, β) be two unital and equivariant
∗-homomorphisms. We say that ϕ1 and ϕ2 are approximately G-unitarily equivalent if the following
holds. For every F ⊂⊂ A, ε > 0, and compact set K ⊆ G, there exists a unitary v ∈ U(B) such that

max
a∈F
‖ϕ2(a)− vϕ1(a)v∗‖ ≤ ε, max

g∈K
‖v−βg(v)‖ ≤ ε.

Definition 1.6 [Szabó 2018b, Definitions 3.1, 4.1]. Let D be a separable, unital C∗-algebra and G a
second-countable, locally compact group. Let γ : G y D be an action. We say that:

(i) γ is a strongly self-absorbing action if the equivariant first-factor embedding

idD⊗ 1D : (D, γ )→ (D⊗D, γ ⊗ γ )

is approximately G-unitarily equivalent to an isomorphism.

(ii) γ is semi-strongly self-absorbing if it is strongly cocycle conjugate to a strongly self-absorbing action.

Definition 1.7 [Szabó 2018c, Definition 2.17]. Let G be a second-countable, locally compact group. An
action α : G y A on a unital C∗-algebra is called unitarily regular if for every ε > 0 and compact set
K ⊆ G, there exists δ > 0 such that for every pair of unitaries

u, v ∈ U(A) with max
g∈K

max{‖αg(u)− u‖, ‖αg(v)− v‖} ≤ δ,

there exists a continuous path of unitaries w : [0, 1] → U(A) satisfying

w(0)= 1, w(1)= uvu∗v∗, max
0≤t≤1

max
g∈K
‖αg(w(t))−w(t)‖ ≤ ε.

Let us recall some of the main results from [Szabó 2017b; 2018b; 2018c], which we will use throughout.
We will also use the perspective given in [Barlak and Szabó 2016, Section 4].

Theorem 1.8 (cf. [Szabó 2018b, Theorems 3.7, 4.7]). Let G be a second-countable, locally compact
group. Let A be a separable C∗-algebra and α :G y A an action. Let D be a separable, unital C∗-algebra
and γ : G y D a semi-strongly self-absorbing action. The following are equivalent:
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(i) α and α⊗ γ are strongly cocycle conjugate.

(ii) α and α⊗ γ are cocycle conjugate.

(iii) There exists a unital, equivariant ∗-homomorphism from (D, γ ) to (F∞,α(A), α̃∞).

(iv) The equivariant first-factor embedding idA⊗ 1 : (A, α)→ (A⊗D, α⊗ γ ) is sequentially split.

If γ is moreover unitarily regular, then these statements are equivalent to

(v) α and α⊗ γ are very strongly cocycle conjugate.

Remark. For the rest of this paper, an action α satisfying condition (i) from above is called γ -absorbing
or γ -stable. In the particular case that γ is the trivial G-action on a strongly self-absorbing C∗-algebra D,
we will say that α is equivariantly D-stable.

Remark 1.9. Unitary regularity for an action is a fairly mild technical assumption. It can be seen as the
equivariant analog of the C∗-algebraic property that the commutator subgroup inside the unitary group
lies in the connected component of the unit. Unitary regularity holds automatically under equivariant
Z-stability, but also in other cases; see [Szabó 2018c, Proposition 2.19 and Example 6.4].

Theorem 1.10 [Szabó 2018c, Theorem 5.9]. A semi-strongly self-absorbing action γ :G yD is unitarily
regular if and only if the class of all separable γ -absorbing G-C∗-dynamical systems is closed under
equivariant extensions.

We will extensively use the following without much mention:

Proposition 1.11 [Brown 2000]. Let G be a second-countable, locally compact group. Let A be a
C∗-algebra and α : G y A an action. Let x ∈ A∞,α and (xn)n ∈ `

∞(N, A) be a bounded sequence
representing x. Then (xn)n is a continuous element with respect to the componentwise action of α on
`∞(N, A).

2. Box spaces and partitions of unity over groups

Definition 2.1. Let G be a second-countable, locally compact group. A residually compact approximation
of G is a decreasing sequence Hn+1 ⊆ Hn ⊆ G of normal, discrete, cocompact subgroups in G with⋂

n∈N Hn = {1}. If G is a discrete group, then the subgroups Hn will have finite index, in which case we
call the sequence (Hn)n a residually finite approximation.

Remark 2.2. In the above setting, the sequence (Hn)n is automatically a residually finite approximation
of the discrete group H1.

Recall the definition of a box space; see [Roe 2003, Definition 10.24; Khukhro 2012].

Definition 2.3. Let 0 be a countable discrete group and S = (Hn)n a residually finite approximation of 0.
Let d be a proper, right-invariant metric on 0. For every n ∈ N, denote by πn : 0→ 0/Hn the quotient
map and by πn∗(d) the push-forward metric on 0/Hn that is induced by d . The box space of 0 along S,
denoted by �S0, is the coarse disjoint union of the sequence of finite metric spaces (0/Hn, πn∗(d)).

The main purpose of this section will be to prove the following technical lemma:
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Lemma 2.4. Let G be a second-countable, locally compact group and S = (Hn)n a residually compact
approximation of G. Assume that the box space �S H1 has finite asymptotic dimension d. Then for
every ε > 0 and compact set K ⊂ G, there exists n ∈ N and continuous, compactly supported functions
µ(0), . . . , µ(d) : G→ [0, 1] satisfying:

(a) For every l = 0, . . . , d and h ∈ Hn \ {1}, we have

supp(µ(l))∩ supp(µ(l)) · h =∅.
(b) For every g ∈ G, we have

d∑
l=0

∑
h∈Hn

µ(l)(gh)= 1.

(c) For every l = 0, . . . , d and g ∈ K, we have

‖µ(l)(g · _ )−µ(l)‖∞ ≤ ε.

Remark 2.5. In the case that G = 0 is a discrete group and S is a residually finite approximation, this is
precisely [Szabó et al. 2017, Lemma 2.13]. In order to prove Lemma 2.4, we shall convince ourselves
that the desired functions can be constructed from finitely supported functions with similar properties on
the cocompact subgroup H1. For this, we first have to observe a slightly improved version of [Szabó et al.
2017, Lemma 2.13] in the discrete case.

Lemma 2.6. Let 0 be a countable discrete group and S = (Hn)n a residually finite approximation of 0.
Assume that the box space �S0 has finite asymptotic dimension d. Then for every ε > 0 and finite set
F ⊂⊂ 0, there exists n ∈ N and finitely supported functions ν(0), . . . , ν(d) : 0→ [0, 1] satisfying:

(a) For every l = 0, . . . , d and h ∈ Hn \ {1}, we have

g1hg−1
2 /∈ F for all g1, g2 ∈ supp(ν(l)).

(b) For every g ∈ 0, we have
d∑

l=0

∑
h∈Hn

ν(l)(gh)= 1.

(c) For every l = 0, . . . , d and g ∈ F, we have

‖ν(l)(g · _ )− ν(l)‖∞ ≤ ε.

Proof. Let ε > 0 and F ⊂ G be given. We apply [Szabó et al. 2017, Lemma 2.13] and choose some n
and finitely supported functions θ (0), . . . , θ (d) : 0→ [0, 1] satisfying

supp(θ (l))∩ supp(θ (l)) · hn =∅ for all hn ∈ Hn \ {1}, (2-1)

as well as properties (b) and (c). Combining property (2-1) and (c), we see that if g1, g2 ∈ supp(θ (l)) and
h ∈ Hn \ {1} are such that g1hg−1

2 = g1(g2h−1) ∈ F, then we get

|θ (l)(g1)| = |θ
(l)(g1hg−1

2 · g2h−1)|
(c)
≤ ε+ |θ (l)(g2h−1)|

(2-1)
= ε. (2-2)
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Let us define new functions κ(l) : 0→ [0, 1] via

κ(l)(g)= (θ (l)(g)− ε)+. (2-3)

These new functions clearly still satisfy property (c). For any g1, g2 ∈ supp(κ(l)), we evidently have
g1, g2 ∈ supp(θ (l)), so assuming g1hg−1

2 ∈ F for some h ∈ Hn \ {1} would imply κ(l)(g1) = 0 by (2-2)
and (2-3), a contradiction. In particular we obtain property (a) for these functions.

Lastly, note that property (a) implies that any sum as in (b) can have at most d + 1 nonvanishing
summands, and thus we may estimate for all g ∈ 0 that

1=
d∑

l=0

∑
h∈Hn

θ (l)(gh)≥
d∑

l=0

∑
h∈Hn

κ(l)(gh)≥
( d∑

l=0

∑
h∈Hn

θ (l)(gh)
)
− (d + 1)ε = 1− (d + 1)ε.

So let us yet again define new functions ν(l) : 0→ [0, 1] via

ν(l)(g)=
( d∑

l=0

∑
h∈Hn

κ(l)(gh)
)−1

κ(l)(g).

By our previous calculation, we have

κ(l) ≤ ν(l) ≤
1

1− (d + 1)ε
κ(l).

For these functions, property (a) will still hold, while property (b) holds by construction. Moreover
property (c) holds with regard to the tolerance

ηε := ε+
2(d + 1)ε

1− (d + 1)ε

in place of ε. Since ηε→ 0 as ε→ 0, this means that the functions ν(l) will have the desired property
after rescaling ε. This shows our claim. �

Lemma 2.7. Let G be a locally compact group and H ⊂ G a closed and cocompact subgroup. Let µ be
a left-invariant Haar measure on H :

(i) There exists a compactly supported continuous function C : G→ [0,∞) satisfying the equation∫
H

C(gh) dµ(h)= 1 for all g ∈ G.

(ii) Assume furthermore that G is amenable. Let ε > 0 and let K ⊂ G be a compact subset. Then there
exists a function C as above with the additional property that

‖C(g · _ )−C‖∞ ≤ ε

for all g ∈ K .

Proof. (i): As H is a cocompact subgroup, there exists some compact set K H ⊂ G such that G = K H · H.
By Urysohn–Tietze, we may choose a compactly supported continuous function c : G → [0, 1] with
c|K H = 1. Define the compact set Kc ⊂ H via

Kc = (K−1
H · supp(c))∩ H.
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Then for every g ∈ G, there is some h0 ∈ H with gh0 ∈ K H . We have

supp(c(gh0 · _ ))∩ H = ((gh0)
−1
· supp(c))∩ H ⊂ Kc.

Thus, we get that

0<
∫

H
c(gh) dµ(h)=

∫
H

c(gh0h) dµ(h)≤ µ(Kc) <∞.

Note that by the properties of the Haar measure, the assignment

I : G→ (0,∞), g 7→
∫

H
c(gh) dµ(h),

is H -periodic. Then the above computation shows that this assignment yields a well-defined, continuous
function on G, which by H -periodicity and cocompactness of H can be viewed as a continuous function
on the compact space G/H. Thus the image of this function is compact. In particular, its (pointwise)
multiplicative inverse is also bounded and continuous. Let us define

C : G→ [0,∞), g 7→ I(g)−1c(g).

Then this again yields a continuous function on G with compact support, but with the property that∫
H

C(gh) dµ(h)= 1 for all g ∈ G. (2-4)

(ii): Let us now additionally assume that G is amenable. Let ε > 0 and K ⊂G be given as in the statement.
Let ρG denote a right-invariant Haar measure on G. It follows from [Emerson and Greenleaf 1967] that
we may find some compact set J ⊂ G with ρG(J ) > 0 such that ρG(J1(J · K )) ≤ ε/‖C‖∞ · ρG(J ).
Define C ′ : G→ [0,∞) via

C ′(g)=
1

ρG(J )
·

∫
J

C(xg) dρG(x).

Clearly C ′ is yet another continuous function with compact support contained in J−1
· supp(C). Given

any element g ∈ G, we compute∫
H

C ′(gh) dµ(h)=
∫

H

1
ρG(J )

(∫
J

C(xgh) dρG(x)
)

dµ(h)

=
1

ρG(J )

∫
J

(∫
H

C(xgh) dµ(h)
)

dρG(x)

(2-4)
=

1
ρG(J )

∫
J

1 dρG(x)= 1.

Furthermore, we have for any gK ∈ K and g ∈ G that

|C ′(gK g)−C ′(g)| =
1

ρG(J )
·

∣∣∣∣∫
J

C(xgK g) dρG(x)−
∫

J
C(xg) dρG(x)

∣∣∣∣
≤

1
ρG(J )

· ‖C‖∞ · ρG(J1JgK )

≤ ε.

This shows the last part of the claim. �
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Proof of Lemma 2.4. We first remark that since the box space �S H1 has finite asymptotic dimension, it
also has property A, and therefore H1 is amenable; see [Nowak and Yu 2012, Theorems 4.3.6 and 4.4.6;
Roe 2003, Proposition 11.39]. As H1 is a discrete cocompact normal subgroup in G, we also see that G
is amenable.

Let ε > 0 and K ⊂ G be given. Then there exists a function C : G→ [0,∞) as in Lemma 2.7 for H1

in place of H, with the property that

‖C(g · _ )−C‖∞ ≤ ε for all g ∈ K . (2-5)

Let us denote the support of C by S = supp(C). As H1 is discrete in G and S is compact, there exists a
finite set F ⊂ H1 with

h1 ∈ F whenever h1 ∈ H and S ∩ Sh1 6=∅. (2-6)

Applying Lemma 2.6, there exists some n and finitely supported functions ν(0), . . . , ν(d) : H1→ [0, 1]
satisfying the following properties:1

h1hnh−1
2 /∈ F for all h1, h2 ∈ supp(ν(l)) and hn ∈ Hn \ {1}, (2-7)

1=
d∑

l=0

∑
hn∈Hn

ν(l)(h1hn) for all h1 ∈ H1. (2-8)

We define µ(l) : G→ [0,∞) for l = 0, . . . , d via

µ(l)(g)=
∑

h1∈H1

C(gh−1
1 )ν(l)(h1).

Since ν(l) is finitely supported on H1, we see that µ(l) is a finite sum of continuous functions with compact
support, and hence µ(l) ∈ Cc(G).

We claim that these functions have the desired properties. Let us verify (a), which is equivalent to the
statement that

µ(l)(g) ·µ(l)(gh−1
n )= 0 for all g ∈ G and hn ∈ Hn \ {1}.

Fix an element hn ∈ Hn \ {1} for the moment. We compute

µ(l)(g) ·µ(l)(gh−1
n )=

∑
h1,h2∈H1

C(gh−1
1 )C(gh−1

n h−1
2 )ν(l)(h1)ν

(l)(h2)

=

∑
h1,h2∈H1

C(gh−1
1 )C(gh−1

2 )ν(l)(h1)ν
(l)(h2h−1

n ).

We claim that each individual summand is zero. Indeed, suppose h1, h2 ∈ H1 are such that

ν(l)(h1)ν
(l)(h2h−1

n ) > 0.

1Note that we will reserve the notation h1, h2 for elements in H1, whereas hn will denote an element in the smaller subgroup
Hn for n > 2.
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Then h1 ∈ supp(ν(l)) and h2 ∈ supp(ν(l)) · hn , which implies h1h−1
2 /∈ F by (2-7). By our choice of F, we

obtain

supp(C( _ · h−1
1 ))∩ supp(C( _ · h−1

2 ))⊆ Sh1 ∩ Sh2 = (Sh1h−1
2 ∩ S) · h2

(2-6)
= ∅,

and in particular C(gh−1
1 )C(gh−1

2 )= 0. This finishes the proof that each summand of the above sum is
zero and shows property (a).

Let us now show property (b). We calculate for every g ∈ G that

d∑
l=0

∑
hn∈Hn

µ(l)(ghn)=

d∑
l=0

∑
hn∈Hn

∑
h1∈H1

C(ghnh−1
1 )ν(l)(h1)

=

d∑
l=0

∑
hn∈Hn

∑
h1∈H1

C(gh−1
1 )ν(l)(h1hn)

=

∑
h1∈H1

C(gh−1
1 )

( d∑
l=0

∑
hn∈Hn

ν(l)(h1hn)

)
(2-8)
=

∑
h1∈H1

C(gh1)

Lem. 2.7
= 1.

Let us now turn to (c). Given any g ∈ G and gK ∈ K, we compute

|µ(l)(gK g)−µ(l)(g)| =
∣∣∣∣ ∑
h1∈H1

(C(gK gh−1
1 )−C(gh−1

1 ))ν(l)(h1)

∣∣∣∣
(2-8)
≤ sup

h1∈H1

|C(gK gh−1
1 )−C(gh−1

1 )|

≤ ‖C(gK · _ )−C‖∞
(2-6)
≤ ε.

As g ∈ G was arbitrary, this finishes the proof. �

Remark. Let G be a locally compact group and H ⊂ G a closed, cocompact subgroup. For any C∗-
algebra A, we may naturally view C(G/H, A) as a C∗-subalgebra of (right-)H -periodic functions inside
Cb(G, A) by assigning a function f to the function f ′ given by f ′(g)= f (gH).

In what follows, we will briefly establish a technical result that allows one to perturb approximately
H -periodic functions in Cb(G, A) to exactly H -periodic functions in a systematic way.

Lemma 2.8. Let G be a locally compact group and H ⊂ G a closed, cocompact subgroup. Let A be a
C∗-algebra. Then there exists a conditional expectation E : Cb(G, A)→ C(G/H, A) with the following
property.

For every ε > 0 and compact set K ⊂ G, there exists δ > 0 and a compact set J ⊂ H such that the
following holds:
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If f ∈ Cb(G, A) satisfies
max
g∈K

max
h∈J
‖ f (g)− f (gh)‖ ≤ δ,

then
‖ f − E( f )‖∞,K ≤ ε.

Proof. Let µ be a left-invariant Haar measure on H. Let C ∈ Cc(G) be a function as in Lemma 2.7. Then
we define

E : Cb(G, A)→ C(G/H, A), E( f )(gH)=
∫

H
C(gh) f (gh) dµ(h).

Since C is compactly supported and the Haar measure µ is left-invariant, it is clear that E is well-defined
and indeed a conditional expectation. Let ε > 0 and K ⊂ G be given. Let S be the compact support of C .
Then the set J := (K−1S)∩ H is compact in H with the property that

g ∈ K and gh ∈ S =⇒ h ∈ J (2-9)
for all h ∈ H. Set

δ =
ε

1+µ(J ) · ‖C‖∞
.

For every f ∈ Cb(G, A) with
max
g∈K

max
h∈J
‖ f (g)− f (gh)‖ ≤ δ,

it follows for every g ∈ K that

‖ f (g)− E( f )(gH)‖ =
∥∥∥∥(∫

H
C(gh) dµ(h)

)
f (g)−

∫
H

C(gh) f (gh) dµ(h)
∥∥∥∥

(2-9)
=

∥∥∥∥∫
J

C(gh)( f (g)− f (gh)) dµ(h)
∥∥∥∥

≤ µ(J ) · ‖C‖∞ · δ ≤ ε.

This shows our claim. �

Corollary 2.9. Let G be a locally compact group and H ⊂ G a closed, cocompact subgroup. Let A and
B be two C∗-algebras. Then for every ε > 0, F ⊂⊂ B and compact set K ⊂ G, there exists δ > 0 and a
compact set J ⊂ H such that the following holds:

If 2 : B→ Cb(G, A) is a c.p.c. map with

max
g∈K

max
h∈J
‖2(b)(g)−2(b)(gh)‖ ≤ δ for all b ∈ F,

then there exists a c.p.c. map 9 : B→ C(G/H, A) with

max
g∈K
‖9(b)(gH)−2(b)(g)‖ ≤ ε for all b ∈ F.

Proof. Let E : Cb(G, A)→ C(G/H, A) be a conditional expectation as in Lemma 2.8. Given a triple
(ε, F, K ), choose δ > 0 and J ⊂ H so that the property in Lemma 2.8 holds for all f ∈ Cb(G, A) with
respect to the pair (ε, K ). Then we can directly conclude that if 2 is a map as in the statement, then
9 = E ◦2 has the desired property. �
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3. Systems generated by order-zero maps with commuting ranges

The following notation and observations are [Hirshberg et al. 2017, Lemma 6.6] and originate in [Hirshberg
et al. 2015, Section 5].

Notation 3.1. Let D1, . . . , Dn be finitely many unital C∗-algebras. For t ∈ [0, 1] and j = 1, . . . , n, we
define

D(t)
j :=

{
D j , t > 0,
C · 1D j , t = 0.

Given moreover a tuple Et = (t1, . . . , tn) ∈ [0, 1]n, let us define

D(Et )
:= D(t1)

1 ⊗max D(t2)
2 ⊗max · · · ⊗max D(tn)

n .

Consider the simplex
1(n) := {Et ∈ [0, 1]n | t1+ · · ·+ tn = 1}

and set
E(D1, . . . , Dn) := { f ∈ C(1(n), D1⊗max · · · ⊗max Dn)| f (Et ) ∈ D(Et )

}.

In the case that D j = D are all the same C∗-algebra, we will write

E(D1, . . . , Dn)=: E(D, n)

instead. For every j = 1, . . . , n, we will consider the canonical c.p.c. order-zero map

η j : D j → E(D1, . . . , Dn)

given by
η j (d j )(Et )= t j · (1D1 ⊗ · · ·⊗ 1D j−1 ⊗ d j ⊗ 1D j+1 ⊗ · · ·⊗ 1Dn ).

One easily checks that the ranges of the maps η j generate E(D1, . . . , Dn) as a C∗-algebra.

Proposition 3.2. Let D1, . . . , Dn be unital C∗-algebras. Then the C∗-algebra E(D1, . . . , Dn), together
with the c.p.c. order-zero maps η j : D j → E(D1, . . . , Dn), satisfies the following universal property:

If B is any unital C∗-algebra and ψ j : D j → B for j = 1, . . . , n are c.p.c. order-zero maps with
pairwise commuting ranges and

ψ1(1D1)+ · · ·+ψn(1Dn )= 1B,

then there exists a unique unital ∗-homomorphism 9 : E(D1, . . . , Dn)→ B such that 9 ◦ η j = ψ j for all
j = 1, . . . , n.

Notation 3.3. Let G be a second-countable, locally compact group. Let D1, . . . , Dn be unital C∗-algebras
with continuous actions α( j)

:G y D j for j=1, . . . , n. Then the G-action on C(1(n), D1⊗max· · ·⊗max Dn)

defined fibrewise by α(1)⊗max · · · ⊗max α
(n) restricts to a well-defined action

E(α(1), . . . , α(n)) : G y E(D1, . . . , Dn).

We will again write E(α, n) := E(α(1), . . . , α(n)) in the special case that all (D j , α
( j))= (D, α) are the

same C∗-dynamical system.
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Remark 3.4. By the universal property in Proposition 3.2, the G-action E(α(1), . . . , α(n)) defined in
Notation 3.3 is uniquely determined by the identity E(α(1), . . . , α(n))g ◦η j = η j ◦α

( j)
g for all j = 1, . . . , n

and g ∈ G.
This immediately allows us obtain the following equivariant version of Proposition 3.2 as a consequence:
Let B be any unital C∗-algebra with an action β : G y B. If ψ j : (D j , α

( j))→ (B, β) are equivariant
c.p.c. order-zero maps with pairwise commuting ranges and ψ1(1D1)+ · · ·+ψn(1Dn )= 1B , then there
exists a unique unital equivariant ∗-homomorphism

9 : (E(D1, . . . , Dn), E(α(1), . . . , α(n)))→ (B, β)

satisfying 9 ◦ η j = ψ j for all j = 1, . . . , n.

Remark 3.5. Let us now also convince ourselves of a different natural way to view the C∗-algebras from
Notation 3.1.

For this, let us first consider the case n = 2, so we have two unital C∗-algebras D1 and D2. Notice that
[0, 1] is naturally homeomorphic to the simplex 1(2) = {(t1, t2) ∈ [0, 1]2 | t1+ t2 = 1} via the assignment
t 7→ (t, t − 1). In this way we may see that there is a natural isomorphism

E(D1, D2)
def
= { f ∈ C(1(2), D1⊗max D2) | f (0, 1) ∈ D1⊗ 1, f (1, 0) ∈ 1⊗ D2}

∼= { f ∈ C([0, 1], D1⊗max D2) | f (0) ∈ D1⊗ 1, f (1) ∈ 1⊗ D2}

=: D1 ? D2.

In particular, we see that the notation E(D1, D2) is consistent with [Szabó 2018c, Definition 5.1]. As
pointed out in Remark 5.2 of the same paper, the assignment (D1, D2) 7→ E(D1, D2) on pairs of unital
C∗-algebras therefore generalizes the join construction for pairs of compact spaces, which gives rise to
the notation D1 ? D2.

Let now n ≥ 2 and let D1, . . . , Dn+1 be unital C∗-algebras. The simplex 1(n+1) is homeomorphic to
[0, 1]×1(n) via the assignment

(t1, Et ) 7→
{
(1, Et ), t1 = 0,
(1− t1, Et/(1− t1)), t1 6= 0

for (Et, tn+1) ∈1
(n+1). Keeping this in mind, we see that there is a natural map

8 : D1 ? E(D2, . . . , Dn+1)→ E(D1, . . . , Dn+1)

given by2

8( f )(t1, Et )=
{

f (1)(Et ), t1 = 0,
f (1− t1)(Et/(1− t1)), t1 6= 0

for (t1, Et ) ∈ 1(n+1). It is a simple exercise to see that this is a well-defined isomorphism. This shows
that it makes sense to view the C∗-algebra E(D1, . . . , Dn) as the n-fold join D1 ? · · · ? Dn . We can also

2The reader should keep in mind that an element f in the domain is a continuous function on [0, 1] whose values are in turn
(certain) continuous functions from 1(n) to the tensor product D1⊗max · · · ⊗max Dn+1.
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observe that this isomorphism is natural in each C∗-algebra, and therefore becomes equivariant as soon as
we equip each C∗-algebra D j with an action α( j) of some group G.

Henceforth, we will in particular write

D?n
:= E(D, n) and α?n := E(α, n)

for a unital C∗-algebra D and some group action α : G y D.

Remark 3.6. By the definition of the join of two C∗-algebras D1 and D2, there is a natural short exact
sequence

0−→ C0(0, 1)⊗ D1⊗max D2 −→ D1 ? D2 −→ D1⊕ D2 −→ 0.

Given some n ≥ 1 and a unital C∗-algebra D, we have D?n+1 ∼= D ? (D?n), and therefore a special case
of the above yields the short exact sequence

0−→ C0(0, 1)⊗ D⊗max D?n
−→ D?n+1

−→ D⊕ D?n
−→ 0.

Again by naturality, we note that this short exact sequence is automatically equivariant if we additionally
equip D with a group action.

We now come to the main observation about C∗-dynamical systems arising in this fashion, which will
be crucial in proving our main result:

Lemma 3.7. Let G be a second-countable, locally compact group. Let A be a separable, unital
C∗-algebra with an action α : G y A. Suppose that γ : G y D is a semi-strongly self-absorbing
and unitarily regular action. If α is γ -absorbing, then so is the action α?n : G y A?n for all n ≥ 2.

Proof. This follows directly from Remark 3.6 and Theorem 1.10 by induction. �

Remark 3.8. It ought to be mentioned that Lemma 3.7 does not depend in any way on the fact that one
considers the n-fold join over the same C∗-algebra and the same action. The analogous statement is valid
for more general joins of the form

α(1) ? · · · ? α(n) : G y A1 ? · · · ? An

by virtually the same argument.
In fact, by putting in a bit more work, one could likely prove an equivariant version of [Hirshberg

et al. 2007, Theorem 4.6] for C0(X)-G-C∗-algebras with dim(X) < ∞ whose fibres absorb a given
semi-strongly self-absorbing and unitarily regular action. This would contain Lemma 3.7 as a special case
since the G-C∗-algebra A1 ? · · · ? An is in fact a C(1(n))-G-C∗-algebra with each fibre being isomorphic
to some finite tensor product of the A j . We will never need this level of generality within this paper,
however.

4. Rokhlin dimension with commuting towers

The following notion generalizes analogous definitions made in [Hirshberg et al. 2015; 2017; Szabó et al.
2017; Gardella 2017].
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Definition 4.1 (cf. [Hirshberg et al. 2017, Definition 4.1]). Let G be a second-countable, locally compact
group. Let α : G y A be an action on a separable C∗-algebra:

(i) Let H ⊂ G be a closed, cocompact subgroup. The Rokhlin dimension of α with commuting towers
relative to H, denoted by dimc

Rok(α, H), is the smallest natural number d such that there exist equivariant
c.p.c. order-zero maps

ϕ(0), . . . , ϕ(d) : (C(G/H),G-shift)→ (F∞,α(A), α̃∞)

with pairwise commuting ranges such that 1= ϕ(0)(1)+ · · ·+ϕ(d)(1).

(ii) If S = (Gk)k denotes a decreasing sequence of closed, cocompact subgroups, then we define the
Rokhlin dimension of α with commuting towers relative to S via

dimc
Rok(α,S)= sup

k∈N

dimc
Rok(α,Gk).

(iii) Let N ⊂ G be any closed, normal subgroup. The Rokhlin dimension of α with commuting towers
relative to N is defined as

dimc
Rok(α, N ) := sup{dimc

Rok(α, H) | H ⊆ G closed, cocompact,N ⊆ H}.

(iv) Lastly, the Rokhlin dimension of α with commuting towers is defined as

dimc
Rok(α) := dimc

Rok(α, {1})

= sup{dimc
Rok(α, H) | H ⊆ G closed, cocompact}.

We note that, even though the second half of Definition 4.1 always makes sense, these concepts are not
expected to be of any practical use when G (or G/N ) is not assumed to have enough closed cocompact
subgroups, or to admit at least some residually compact approximation.

Notation 4.2. Let G be a second-countable, locally compact group. Given a decreasing sequence
S = (Gk)k of closed, cocompact subgroups, we will define

G/S = lim
←−

G/Gk .

This is a metrizable, compact space,3 which carries a natural continuous G-action induced by the left
G-shift on each building block G/Gk ; in particular we will call the resulting action also just the G-shift
and denote it by

σS
: G y G/S.

In the sequel, we will adopt the perspective of the associated G-C∗-dynamical system, which is given as
the equivariant inductive limit

C(G/S)= lim
−→

C(G/Gk).

3This construction generalizes the profinite completion of a discrete residually finite group along a chosen separating sequence
of normal subgroups of finite index.
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We will moreover consider C(G/S)?n for n ≥ 2. With some abuse of terminology, we will use the term
“G-shift” also to refer to the canonical action on this C∗-algebra (or the underlying space) that is induced
by the n-fold tensor products of the G-shift on each fibre.

Lemma 4.3. Let G be a second-countable, locally compact group. Let α : G y A be an action on a
separable C∗-algebra. Let S = (Gk)k be a decreasing sequence of closed, cocompact subgroups. Let
d ≥ 0 be some natural number. Then the following are equivalent:

(i) dimc
Rok(α,S)≤ d.

(ii) There exist equivariant c.p.c. order-zero maps

ϕ(0), . . . , ϕ(d) : (C(G/S),G-shift)→ (F∞,α(A), α̃∞)

with pairwise commuting ranges such that 1= ϕ(0)(1)+ · · ·+ϕ(d)(1).

(iii) There exists a unital G-equivariant ∗-homomorphism

(C(G/S)?(d+1),G-shift)→ (F∞,α(A), α̃∞).

(iv) The first-factor embedding

idA⊗ 1 : (A, α)→ (A⊗ C(G/S)?(d+1), α⊗ (G-shift))

is G-equivariantly sequentially split.

Proof. The equivalence (i)⇔(ii) follows from a standard reindexing trick such as Kirchberg’s ε-test [2006,
Lemma A.1], using the equivariant inductive limit structure of C(G/S) as pointed out in Notation 4.2.
We will leave the details to the reader.

The equivalence (ii)⇔(iii) is a direct consequence of Proposition 3.2 and Remark 3.5, and the equiva-
lence (iii)⇔(iv) is a direct consequence of [Barlak and Szabó 2016, Lemma 4.2]. �

The purpose of this section is to prove the following theorem, which can be regarded as the main result
of the paper. Some of its nontrivial applications will be discussed in the subsequent sections. See in
particular Corollary 5.1 for a possibly more accessible special case of this theorem.

Theorem 4.4. Let G be a second-countable, locally compact group and N ⊂G a closed, normal subgroup.
Denote by πN : G → G/N the quotient map. Let S1 = (Hk)k be a residually compact approximation
of G/N, and set Gk = π

−1
N (Hk) for all k ∈ N and S0 = (Gk)k . Let A be a separable C∗-algebra and

D a strongly self-absorbing C∗-algebra. Let α : G y A be an action and γ : G y D a semi-strongly
self-absorbing, unitarily regular action. Suppose that for the restrictions to the N-actions, we have
α|N 'cc (α⊗ γ )|N . If

asdim(�S1 H1) <∞ and dimc
Rok(α,S0) <∞,

then α 'cc α⊗ γ .

We note that Theorem A is a direct consequence of this result. The hypothesis that G/N has some
discrete, normal, residually finite, cocompact subgroup admitting a box space with finite asymptotic
dimension means that there is choice for S1 as required by the above statement. The hypothesis
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that α has finite Rokhlin dimension with commuting towers means that the value dimc
Rok(α,S0) has

a finite uniform upper bound, for any possible choice of S1. Hence the statement of Theorem A
follows.

The proof of Theorem 4.4 will occupy the rest of this section. The first and most difficult step is to
convince ourselves of a very special case of Theorem 4.4, which involves the technical preparation below
and from Section 2.

For convenience, we isolate the following lemma, which is a consequence of Proposition 1.11, the
Winter–Zacharias structure theorem for order-zero maps, along with the Choi–Effros lifting theorem
[1976]; see also [Winter and Zacharias 2009, Section 3].

Lemma 4.5. Let G be a second-countable, locally compact group. Let A be a separable C∗-algebra
and B a separable, unital and nuclear C∗-algebra. Let α : G y A and β : G y B be two actions.
Let κ : (B, β)→ (A∞,α, α∞) be an equivariant c.p.c. order-zero map. Then κ can be represented by a
sequence of c.p.c. maps κn : B→ A satisfying

(a) ‖κn(xy)κ(1)− κn(x)κn(y)‖→ 0,

(b) maxg∈K ‖(κn ◦ γg)(x)− (αg ◦ κn)(x)‖→ 0,

for all x, y ∈ B and compact subsets K ⊂ G.

The proof of the following is based on a standard reindexing trick. In the short proof below, precise
references are provided for completeness, although we note that this might not be the most elegant or
direct way to show these statements.

Lemma 4.6. Let G be a second-countable, locally compact group. Suppose that α : G y A, β : G y B,
and γ : G y D are actions on separable C∗-algebras. Assume furthermore that D is unital, that γ is
semi-strongly self-absorbing, and that β 'cc β⊗ γ :

(i) Suppose that there exists an equivariant ∗-homomorphism (A, α)→ (B, β) that is G-equivariantly
sequentially split. Then α 'cc α⊗ γ .

(ii) Suppose that B is unital and that there exists an equivariant and unital ∗-homomorphism from (B, β)
to (F∞,α, α̃∞). Then α 'cc α⊗ γ .

Proof. (i): By Theorem 1.8, the statement β 'cc β ⊗ γ is equivalent to the equivariant first-factor
embedding

idB ⊗ 1 : (B, β)→ (B⊗D, β⊗ γ )

being sequentially split. Let ϕ : (A, α)→ (B, β) be sequentially split. By [Barlak and Szabó 2016,
Proposition 3.7], the composition ϕ⊗ 1D = (idB ⊗ 1D) ◦ϕ is also sequentially split. However, we also
have

ϕ⊗ 1D = (ϕ⊗ idD) ◦ (idA⊗ 1D),

which implies that idA⊗ 1D is also sequentially split. This implies the claim that α 'cc α⊗ γ .
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(ii): By [Barlak and Szabó 2016, Lemma 4.2], it follows that the embedding

idA⊗ 1B : (A, α)→ (A⊗max B, α⊗β)

is sequentially split. Since we assumed that β is γ -absorbing, so is α⊗β, and so the claim arises as a
special case of (i). �

The following is a special case of Theorem 4.4, as the process of tensorially stabilizing any action
α :G y A with (C(G/S), σS) causes the Rokhlin dimension relative to S to collapse to zero by definition.
This explains why the statement below makes no explicit reference to Rokhlin dimension. Its proof is by
far the most technical part of this paper:

Lemma 4.7. Let G be a second-countable, locally compact group and N ⊂ G a closed, normal subgroup.
Denote by πN : G → G/N the quotient map. Let S1 = (Hk)k be a residually compact approximation
of G/N, and set Gk = π

−1
N (Hk) for all k ∈ N and S0 = (Gk)k . Let A be a separable C∗-algebra and

D a strongly self-absorbing C∗-algebra. Let α : G y A be an action and γ : G y D a semi-strongly
self-absorbing, unitarily regular action. Suppose that for the restrictions to the N-actions, we have
α|N 'cc (α⊗ γ )|N . If asdim(�S1 H1) <∞, then the G-action

σS0 ⊗α : G y C(G/S0)⊗ A

is γ -absorbing.

Proof. Set d := asdim(�S1 H1). Let

κ̃ : (D, γ |N )→ (F∞,α|N (A), α̃∞|N )

be an N -equivariant, unital ∗-homomorphism. Using [Szabó 2018c, Example 4.4 and Proposition 4.5],
we may choose an equivariant c.p.c. order-zero map

κ : (D, γ |N )→ (A∞,α|N ∩ A′, α∞|N )
that lifts κ̃ .

Consider a sequence of c.p.c. maps κn : B→ A lifting κ as in Lemma 4.5. Let us choose finitely many
subsequences κ(l)n : B→ A of the maps κn for l = 0, . . . , d so that, using Lemma 4.5, each sequence κ(l)n

has the following properties for all a ∈ A, b, b1, b2 ∈ D and compact sets L ⊆ N :

‖[κ(l)n (b), a]‖→ 0, (4-1)

‖κ(l)n (b1b2)κ
(l)
n (1)− κ

(l)
n (b1)κ

(l)
n (b2)‖→ 0, (4-2)

‖(κ(l)n (1)− 1) · a‖→ 0, (4-3)

max
r∈L
‖(κ(l)n ◦ γr )(b)− (αr ◦ κ

(l)
n )(b)‖→ 0, (4-4)

and additionally one has for every compact set K ⊆ G that

max
g∈K
‖[κ(l1)

n (b1), (αg ◦ κ
(l2)
n )(b2)]‖→ 0 for all l1 6= l2. (4-5)

Let now ε > 0 be a fixed parameter and 1G ∈ K ⊆ G a fixed compact set. Apply Lemma 2.4 and find
k and compactly supported functions µ(0), . . . , µ(d) ∈ Cc(G/N ), so that for every l = 0, . . . , d we have
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supp(µ(l))∩ supp(µ(l)) · h =∅ for all h ∈ Hk \ {1}, (4-6)
d∑

l=0

∑
h∈Hk

µ(l)(πN (g)h)= 1 for all g ∈ G, (4-7)

‖µ(l)(πN (g) · _ )−µ(l)‖∞ ≤ ε for all g ∈ K ∪ K−1. (4-8)

The group Hk is discrete, so we may choose a cross-section σ : Hk → Gk = π
−1
N (Hk) ⊆ G. For each

l = 0, . . . , d , consider the sequence of c.p.c. maps

2(l)n : D→ Cb(G, A)
given by

2(l)n (b)(g)=
∑
h∈Hk

µ(l)(πN (g)h) · (αgσ(h) ◦ κ
(l)
n ◦ γ

−1
gσ(h))(b). (4-9)

This sum is well-defined because the compact support of the function µ(l) on G/N meets a set of the
form πN (g) · Hk at most once according to (4-6).

We wish to show that given an element b ∈D, the functions 2(l)n (b) are approximately Gk-periodic on
large compact sets. This is so that we may apply Corollary 2.9 in order to approximate the maps 2(l)n by
other maps going into C(G/Gk, A).

Let K Hk ⊆ Gk and KG ⊆ G be two compact sets. As Hk is discrete, we observe two facts. First, there
exists a compact set KN ⊆ N and a finite set 1 ∈ Fk ⊂⊂ Hk with

K Hk ⊂ σ(Fk) · KN . (4-10)

Second, by possibly enlarging Fk if necessary, we may assume by (4-6) that also

µ(l)(πN (g)h) > 0 implies h ∈ Fk for all g ∈ KG . (4-11)
Define also

K ′N =
⋃

h0,h∈Fk

σ(h0) · KN · σ(h−1
0 h)σ (h)−1

⊆ N , (4-12)

K ′′N =
⋃

h∈Fk

σ(h)−1
· K ′N · σ(h)⊆ N . (4-13)

As N is a normal subgroup and σ is a cross-section for the quotient map πN , it follows that these are
compact subsets in N.

We compute for all l = 0, . . . , d , b∈D, g ∈ KG , h0 ∈ Fk and r ∈ K ′N that

‖(αgσ(h0) ◦ κ
(l)
n ◦ γ

−1
gσ(h0)

)(b)− (αgrσ(h0) ◦ κ
(l)
n ◦ γ

−1
grσ(h0)

)(b)‖

= ‖(ασ(h0) ◦ κ
(l)
n ◦ γ

−1
σ(h0)

)(γ−1
g (b))− (αrσ(h0) ◦ κ

(l)
n ◦ γ

−1
rσ(h0)

)(γ−1
g (b))‖

= ‖(ασ(h0) ◦ κ
(l)
n ◦ γ

−1
σ(h0)

)(γ−1
g (b))− (ασ(h0) ◦ασ(h0)−1rσ(h0) ◦ κ

(l)
n ◦ γ

−1
σ(h0)−1rσ(h0)

◦ γ−1
σ(h0)

)(γ−1
g (b))‖

(4-13)
≤ max

g∈KG
max
s∈K ′′N
‖(αs ◦ κ

(l)
n ◦ γ

−1
s )(γ−1

gσ(h0)
(b))− κ(l)n (γ

−1
gσ(h0)

(b))‖

(4-4)
−→ 0 (uniformly on KG, K ′N ).
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It thus follows for all l = 0, . . . , d, b∈D, g ∈ KG , h0 ∈ Fk and r ∈ KN that

‖2(l)n (b)(g)−2
(l)
n (b)(gσ(h0)r)‖

(4-9),
(4-11)
=

∥∥∥∥∑
h1∈Fk

µ(l)(πN (g)h1) · (αgσ(h1) ◦ κ
(l)
n ◦ γ

−1
gσ(h1)

)(b)

−

∑
h2∈h−1

0 Fk

µ(l)(πN (g)h0h2) · (αgσ(h0)rσ(h2) ◦ κ
(l)
n ◦ γ

−1
gσ(h0)rσ(h2)

)(b)
∥∥∥∥

=

∥∥∥∥∑
h1∈Fk

µ(l)(πN (g)h1) · (αgσ(h1) ◦ κ
(l)
n ◦ γ

−1
gσ(h1)

)(b)

−

∑
h2∈Fk

µ(l)(πN (g)h2) · (αgσ(h0)rσ(h−1
0 h2)
◦ κ(l)n ◦ γ

−1
gσ(h0)rσ(h−1

0 h2)
)(b)

∥∥∥∥
(4-6)
= max

h∈Fk
‖(αgσ(h) ◦ κ

(l)
n ◦ γ

−1
gσ(h))(b)− (αgσ(h0)rσ(h−1

0 h) ◦ κ
(l)
n ◦ γgσ(h0)rσ(h−1

0 h))(b)‖

= max
h∈Fk
‖(αgσ(h) ◦ κ

(l)
n ◦ γ

−1
gσ(h))(b)− (αgσ(h0)rσ(h−1

0 h)σ (h)−1σ(h) ◦ κ
(l)
n ◦ γ

−1
gσ(h0)rσ(h−1

0 h)σ (h)−1σ(h)
)(b)‖

(4-12)
= max

h∈Fk
max
s∈K ′N
‖(αgσ(h) ◦ κ

(l)
n ◦ γ

−1
gσ(h))(b)− (αgsσ(h) ◦ κ

(l)
n ◦ γ

−1
gsσ(h))(b)‖

−→ 0 (uniformly on KG, KN ).

Here we have used (4-6) in the third equality in the sense that µ(l)(πN (g)h) is nonzero for a unique
element h ∈ Fk . By (4-10) we get for all b ∈ D that

max
g∈KG

max
t∈K Hk

‖2(l)n (b)(g)−2
(l)
n (b)(gt)‖

(4-10)
≤ max

g∈KG
max
h0∈Fk

max
r∈KN
‖2(l)n (b)(g)−2

(l)
n (b)(gσ(h0)r)‖ −→ 0.

Since KG ⊆ G and K Hk ⊆ Gk were arbitrary compact sets, we are in the position to apply Corollary 2.9.
As D is separable, it follows for every l = 0, . . . , d that there exists a sequence of c.p.c. maps

9(l)
n : B→ C(G/Gk, A)

so that for every compact set KG ⊆ G and b ∈ D, we have

max
g∈KG
‖9(l)

n (b)(gGk)−2
(l)
n (b)(g)‖→ 0. (4-14)

We now wish to show that these c.p.c. maps are approximately equivariant with regard to γ and
σGk ⊗α, where σGk is the G-action on C(G/Gk) induced by the left-translation of G on G/Gk .

Let us fix a compact set KG ⊆ G as above. Without loss of generality, let us assume that it is large
enough so that the quotient map G→ G/Gk is still surjective when restricted to KG . Given b ∈ D, set

ρn(b)= max
l=0,...,d

max
g∈K−1 KG

‖9(l)
n (b)(gGk)−2

(l)
n (b)(g)‖. (4-15)

Note that by an elementary compactness argument, it follows from (4-14) that for every compact set
J ⊂ D, we have

max
b∈J

ρn(b)→ 0. (4-16)
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Let t ∈ K, g ∈ KG and b ∈ D with ‖b‖ ≤ 1. Then

(σ
Gk
t ⊗αt)((9

(l)
n )(b))(gGk)= αt(9

(l)
n (b)(t

−1gGk))

(4-15)
=ρn(b) αt(2

(l)
n (b)(t

−1gGk))

(4-9)
=

∑
h∈Hk

µ(l)(πN (t−1g)h) · (αgσ(h) ◦ κ
(l)
n ◦ γ

−1
t−1gσ(h))(b)

(4-6),(4-8)
=ε

∑
h∈Hk

µ(l)(πN (g)h) · (αgσ(h) ◦ κ
(l)
n ◦ γ

−1
t−1gσ(h))(b)

(4-15),(4-9)
=ρn(γt (b)) 9

(l)
n (γt(b))(gGk).

Note that as KG contains a representative for every Gk-orbit in G, these approximations carry over to the
‖ · ‖∞-norm of the involved functions. Using (4-16), we obtain for all b ∈ D with ‖b‖ ≤ 1 that

lim sup
n→∞

max
t∈K
‖(σ

Gk
t ⊗αt)(9

(l)
n )(b)− (9

(l)
n ◦ γt)(b)‖ ≤ ε. (4-17)

Next, we wish to show that for l1 6= l2, the c.p.c. maps 9(l1)
n and 9(l2)

n have approximately commuting
ranges as n→∞. Let g1, g2 ∈ KG and b ∈ D with ‖b‖ ≤ 1 be given. Then we compute

‖[9(l1)
n (b)(g1Gk),9

(l2)
n (b)(g2Gk)]‖

(4-15)
=4ρn(b) ‖[2

(l1)
n (b)(g1),2

(l2)
n (b)(g2)]‖

(4-6),(4-9),
(4-11)
≤ max

h1,h2∈Fk
‖[(αg1σ(h1) ◦ κ

(l1)
n ◦ γ

−1
g1σ(h1)

)(b), (αg2σ(h2) ◦ κ
(l2)
n ◦ γ

−1
g2σ(h2)

)(b)]‖

= max
h1,h2∈Fk

‖[(κ(l1)
n ◦ γ

−1
g1σ(h1)

)(b), (ασ(h1)−1g−1
1 g2σ(h2)

◦ κ(l2)
n ◦ γ

−1
g2σ(h2)

)(b)]‖

In particular, we obtain for every contraction b ∈ D that

max
g1,g2∈KG

‖[9(l1)
n (b)(g1Gk),9

(l2)
n (b)(g2Gk)]‖

≤ max
g1,g2∈KG

max
h1,h2∈Fk

‖[(κ(l1)
n ◦ γ

−1
g1σ(h1)

)(b), (ασ(h1)−1g−1
1 g2σ(h2)

◦ κ(l2)
n ◦ γ

−1
g2σ(h2)

)(b)]‖+ 4ρn(b)

(4-16),(4-5)
−→ 0. (4-18)

Here we have used that the convergence in (4-5) automatically holds uniformly when quantifying over
b1, b2 belonging to some compact subset in D, in this case

b1, b2 ∈ {γ
−1
g (b) | g ∈ KG · σ(Fk)}.

In exactly the same fashion, one also computes

‖[9(l)
n (b), a]‖ −→ 0 (4-19)

for all l = 0, . . . , d, b ∈ D, and a ∈ A, by using (4-1) in place of (4-5).
Next, we wish to show that for each l = 0, . . . , d, the c.p.c. maps 9(l)

n behave approximately like
order-zero maps. Let g ∈ KG . Choose the unique element h0 ∈ Fk with µ(l)(πN (g)h0) > 0. Then it
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follows for every b1, b2 ∈ D that

2(l)n (b1)(g) ·2(l)n (b2)(g)= µ(l)(πN (g)h0)
2
· (αgσ(h0) ◦ κ

(l)
n ◦ γ

−1
gσ(h0)

)(b1) · (αgσ(h0) ◦ κ
(l)
n ◦ γ

−1
gσ(h0)

)(b2)

= µ(l)(πN (g)h0)
2
·αgσ(h0)

(
(κ(l)n ◦ γ

−1
gσ(h0)

)(b1) · (κ
(l)
n ◦ γ

−1
gσ(h0)

)(b1)
)
.

It follows from this calculation that

‖2(l)n (b1) ·2
(l)
n (b2)−2

(l)
n (b1b2) ·2

(l)
n (1)‖∞,KG

≤ max
s∈KGk ·σ(Fk)

‖(κ(l)n ◦ γ
−1
s )(b1) · (κ

(l)
n ◦ γ

−1
s )(b1)− (κ

(l)
n ◦ γ

−1
s )(b1b2) · (κ

(l)
n ◦ γ

−1
s )(1)‖

(4-7),(4-8)
−→ 0.

As KG contains a representative of every Gk-orbit in G, it follows from (4-14) that

‖9(l)
n (b1) ·9

(l)
n (b2)−9

(l)
n (b1b2) ·9

(l)
n (1)‖ −→ 0 (4-20)

for every b1, b2 ∈ D.
Next, we wish to show that the completely positive sum

∑d
l=09

(l)
n behaves approximately like a u.c.p.

map upon multiplication with an element of 1⊗ A as n→∞. Let g ∈ KG . We have

2(l)n (1)(g)
(4-9),
(4-10)
=

∑
h∈Fk

µ(l)(πN (g)h) · (αgσ(h) ◦ κ
(l)
n ◦ γ

−1
gσ(h))(1)

=

∑
h∈Fk

µ(l)(πN (g)h) · (αgσ(h) ◦ κ
(l)
n )(1).

It follows for all a ∈ A that

max
g∈KG

∥∥∥∥(1−
d∑

l=0

2(l)n (1)(g)
)
· a
∥∥∥∥

≤ max
g∈KG

(d+1)·max
l

max
h∈Fk
‖(ασ(h)◦κ

(l)
n )(1)−κ

(l)
n (1)‖+

∥∥∥∥(1−
d∑

l=0

∑
h∈Fk

µ(l)(πN (g)h)·(αg◦κ
(l)
n )(1)

)
·a
∥∥∥∥

(4-7)
= max

g∈KG
(d+1)·max

l
max
h∈Fk
‖(ασ(h)◦κ

(l)
n )(1)−κ

(l)
n (1)‖+

∥∥∥∥( d∑
l=0

∑
h∈Fk

µ(l)(πN (g)h)·(1−(αg◦κ
(l)
n )(1))

)
·a
∥∥∥∥

(4-6)
≤ max

g∈KG

(
(d + 1) ·max

l
max
h∈Fk
‖(ασ(h) ◦ κ

(l)
n )(1)− κ

(l)
n (1)‖+ (d + 1) ·max

l
‖(1− κ(l)n (1)) ·α

−1
g (a)‖

)
(4-3),(4-4)
−→ 0.

Since KG contains every Gk-orbit in G, it follows from (4-14) that∥∥∥∥(1−
d∑

l=0

9(l)
n (1)

)
· (1⊗ a)

∥∥∥∥→ 0 for all a ∈ A. (4-21)
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Let us now summarize everything we have obtained so far. The c.p.c. maps 9(l)
n : D→ C(G/Gk, A),

for l = 0, . . . , d and n ∈ N satisfy the following properties for all b, b1, b2 ∈ D and a ∈ A:

‖[9(l)
n (b), 1⊗ a]‖ −→ 0, (4-22)

lim sup
n→∞

max
t∈K
‖((σGk ⊗α)t ◦9

(l)
n )(b)− (9

(l)
n ◦ γt)(b)‖ ≤ ε, (4-23)

‖[9(l1)
n (b),9(l2)

n (b)]‖ −→ 0 for all l1 6= l2, (4-24)

‖9(l)
n (b1) ·9

(l)
n (b2)−9

(l)
n (b1b2) ·9

(l)
n (1)‖ −→ 0, (4-25)∥∥∥∥(1−

d∑
l=0

9(l)
n (1)

)
· 1⊗ a

∥∥∥∥−→ 0. (4-26)

Note that k, and thus the codomain of 9(l)
n , had to be chosen depending on ε and K ⊆ G. However, we

have canonical (equivariant) inclusions C(G/Gk, A)⊆ C(G/S0, A), which we may compose our maps
with. It is then clear that the same properties as in (4-22) up to (4-26) hold, where we replace the action
σGk : G y C(G/Gk) by σS0 : G y C(G/S0).

Since A and D are separable and G is second-countable, we can let the tolerance ε go to zero, let the
set K ⊆ G get larger and apply a diagonal sequence argument. Putting the appropriate choices of c.p.c.
maps into a single sequence, we can thus obtain c.p.c. maps

ψ (l) : B→ (C(G/S0)⊗ A)∞, l = 0, . . . , d,

that satisfy the following properties for all g ∈ G, a ∈ A, and b, b1, b2 ∈ D:

[ψ (l)(b), 1⊗ a] = 0, (4-27)

(σS0 ⊗α)g ◦ψ
(l)
= ψ (l) ◦ γg, (4-28)

[ψ (l1)(b), ψ (l2)(b)] = 0 for all l1 6= l2, (4-29)

ψ (l)(b1) ·ψ
(l)(b2)= ψ

(l)(b1b2) ·ψ
(l)(1), (4-30)(

1−
d∑

l=0

ψ (l)(1)
)
· 1⊗ a = 0. (4-31)

Since γ : G y D is point-norm continuous, (4-28) implies that the image of each map ψ (l) is in the
continuous part (C(G/S0)⊗ A)∞,σS0⊗α . In fact it is in the relative commutant of 1⊗ A by (4-27), but then
also automatically in the relative commutant of all of C(G/S0)⊗ A. This allows us to define equivariant
maps

ζ (l) : D→ F∞,σS0⊗α(C(G/S0)⊗ A), ζ (l)(b)= ψ (l)(b)+Ann(C(G/S0)⊗ A)

for all l = 0, . . . , d. Then (4-29) implies that these maps have commuting ranges, (4-30) implies that
they are c.p.c. order-zero, and finally (4-31) implies the equation

∑d
l=0ζ

(l)(1)= 1.
By virtue of Proposition 3.2 and Remark 3.5, this gives rise to a unital equivariant ∗-homomorphism

(D?(d+1), γ ?(d+1))→
(
F∞,σS0⊗α(C(G/S0)⊗ A), (σ̃S0 ⊗α)∞

)
.
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As γ is unitarily regular, it follows from Lemma 3.7 that γ ?(d+1) is a γ -absorbing action. Applying
Lemma 4.6 yields that σS0 ⊗α is γ -absorbing, which finishes the proof. �

Now we are in a position to prove Theorem 4.4:

Proof of Theorem 4.4. Let α : G y A and γ : G y D be the two actions as in the assumption. Let also
N ⊂ G, Hk ⊂ G/N, and Gk ⊂ G be subgroups as specified in the statement, and denote by S1 = (Hk)k a
sequence of subgroups in G/N, and by S0 = (Gk)k a sequence of subgroups in G.

Suppose asdim(�S1 H1) <∞ and s := dimc
Rok(α,S0) <∞. Using the latter, Lemma 4.3(iv) implies

that the equivariant embedding

idA⊗ 1 : (A, α)→ (A⊗ C(G/S0)
?(s+1), α⊗ (G-shift))

is G-equivariantly sequentially split. By Lemma 4.6, in order to show that α is γ -absorbing, it suffices to
show that the G-C∗-algebra A⊗ C(G/S0)

?(s+1) is γ -absorbing. We will show this via induction on s.
For s = 0, the claim is precisely Lemma 4.7, and in particular it holds because we assumed that

asdim(�S1 H1) <∞.
Given s ≥ 1, assume that the claim holds for s− 1. It follows by Remark 3.6 that there is an extension

of G-C∗-algebras of the form

0−→ J (s) −→ A⊗ C(G/S0)
?(s+1)

−→ Q(s)
−→ 0,

where
J (s) = A⊗ C0(0, 1)⊗ C(G/S0)⊗ C(G/S0)

?s,

Q(s)
= A⊗ (C(G/S0)⊕ C(G/S0)

?s).

By the induction hypothesis, both the kernel and the quotient of this extension are γ -absorbing G-C∗-
algebras, and therefore so is the middle by Theorem 1.10. This finishes the induction step and the proof. �

Remark 4.8. We remark that the statement of the main result holds verbatim for cocycle actions instead
of genuine actions. Note that the concept of Rokhlin dimension makes sense for cocycle actions with
the same definition, since there is still a natural genuine action induced on the central sequence algebra.
If (α,w) : G y A is a cocycle action on a separable C∗-algebra, then (α⊗ idK, w⊗ 1) : G y A⊗K
is cocycle conjugate to a genuine action by the Packer–Raeburn stabilization trick [1989]. Since both
Rokhlin dimension and absorption of a semi-strongly self-absorbing action are invariants under stable
(cocycle) conjugacy, the statement of Theorem 4.4 follows for cocycle actions.

5. Some applications

Let us now discuss some immediate applications of the main result. First we wish to point out that the
following result arises as a special case.

Corollary 5.1. Let G be a second-countable, locally compact group. Let S = (Hn)n be a residually
compact approximation consisting of normal subgroups of G with

asdim(�S H1) <∞.
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Let A be a separable C∗-algebra and D a strongly self-absorbing C∗-algebra with A ∼= A ⊗ D. Let
α : G y A be an action with

dimc
Rok(α,S) <∞.

Then α 'vscc α⊗ γ for all semi-strongly self-absorbing actions γ : G y D.

Proof. Let γ : G y D be a semi-strongly self-absorbing action. Since D ∼= D⊗Z by [Winter 2011], we
may replace γ with γ ⊗ idZ for the purpose of showing the claim, as γ ⊗ idZ is again semi-strongly self-
absorbing and every (γ ⊗ idZ)-absorbing action is γ -absorbing. So let us simply assume γ 'cc γ ⊗ idZ .
By Remark 1.9, we may thus assume that γ is unitarily regular. The claim then follows directly from
Theorem 4.4 applied to the case N = {1}. Note that one automatically has absorption with respect to very
strong cocycle conjugacy by virtue of Theorem 1.8(v). �

Note that the results below in part refer to Rokhlin dimension without commuting towers, as defined in
[Szabó et al. 2017, Section 5]. For the Rokhlin dimension-zero case, the commuting tower assumption is
vacuous.

Example 5.2. Let Q denote the universal UHF algebra. Let 0 be a countable, discrete group and H ⊂ 0
a normal subgroup with finite index. There exists a strongly self-absorbing action γ : G y Q with
dimRok(γ, H)= 0.

Proof. Such an action is constructed as part of [Szabó et al. 2017, Remark 10.8]. Namely, consider the
left-regular representation λG/H

: G/H → U(M|G:H |), consider the quotient map πH : G→ G/H, and
define

γg = idQ⊗
⊗

N

Ad(λG/H (πH (g)))

as an action on Q∼=Q⊗M⊗∞
[G:H ]. As the diagonal embedding C(G/H)⊂ M[G:H ] is equivariant, it follows

that dimRok(γ, H)= 0. By [Szabó 2018c, Proposition 6.3], such an action is strongly self-absorbing. �

This in turn has the following consequence regarding the dimension-reducing effect of strongly
self-absorbing C∗-algebras.

Corollary 5.3. Let 0 be a countable, discrete, residually finite group that has some box space with finite
asymptotic dimension. Let α : 0y A be an action on a separable C∗-algebra with dimc

Rok(α) <∞:

(1) If A ∼= A⊗Q, then dimRok(α)= 0.

(2) If A ∼= A⊗Z , then dimRok(α)≤ 1.

Proof. (1): This follows directly from Example 5.2 and Corollary 5.1.

(2): We have α 'cc α ⊗ idZ , and there exist two c.p.c. order-zero maps ψ0, ψ1 : Q→ Z∞ ∩Z ′ with
ψ0(1)+ψ1(1) = 1; see [Matui and Sato 2014a, Section 5; Sato et al. 2015, Section 6]. Consider two
sequences ψ0,n, ψ1,n :Q→ Z of c.p.c. maps lifting ψ0 and ψ1.

By (1), α⊗ idQ has Rokhlin dimension zero. Given any subgroup H ⊂ 0 with finite index, we can
find c.p.c. order-zero maps C(0/H)→ A⊗Q which are approximately equivariant, have approximately
central image, and are such that the image of the unit acts approximately like a unit on finite sets. Once
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we compose such maps with idA⊗ψi,n for i = 0, 1 and large enough n, we may obtain two c.p.c. maps
κ0, κ1 : C(0/H)→ A⊗Z , which are approximately equivariant, have approximately central image, and
so that the element κ0(1)+ κ1(1) approximately acts like a unit on a given finite set in A⊗Z. But this
is what is required by dimRok(α)= dimRok(α⊗ idZ)≤ 1; we leave the finer details to the reader as the
proof is quite standard. �

Remark 5.4. The reason why the proof of Corollary 5.3(2) does not yield dimc
Rok(α)≤ 1 is due to the

fact that the two order-zero maps ψ0, ψ1 : Q→ Z∞ can never have commuting ranges. Indeed, this
would imply the existence of a unital ∗-homomorphism Q→ Z∞ via Lemma 3.7, so it is impossible.
More concretely, [Hirshberg and Phillips 2017, Example 3.32] exhibits an example of a Z2-action α on a
Kirchberg algebra with dimRok(α)= 1 and dimc

Rok(α)= 2.

Corollary 5.5. Let 0 be a discrete, finitely generated, virtually nilpotent group. Let X be a compact
metrizable space with finite covering dimension, and α : 0y X a free action by homeomorphisms. Then
one has

dimRok(α⊗ idQ : 0y C(X)⊗Q)= 0

and
dimRok(α⊗ idZ : 0y C(X)⊗Z)≤ 1.

Proof. By [Szabó et al. 2017, Corollary 7.5], the action α : 0y C(X) has finite Rokhlin dimension.4

Since the underlying C∗-algebra is abelian, the claim follows from Corollary 5.3. �

6. Multiflows on strongly self-absorbing Kirchberg algebras

In this section, we shall study actions of Rk on certain C∗-algebras satisfying an obvious notion of the
Rokhlin property.

Notation 6.1. For k ≥ 2, we will refer to a continuous action of Rk on a C∗-algebra as a multiflow. Let
(e j )1≤ j≤k be the standard basis of Rk. Given α :Rk y A, we will define the generating flows α( j)

:Ry A,
given by α( j)

t = αte j , for j = 1, . . . , k. We then have

α
( j)
t j
◦α

(i)
ti = α

(i)
ti ◦α

( j)
t j

for all i, j = 1, . . . , k and all ti , t j ∈ R.

We will also denote by α(−j ) : Rk−1 y A the action generated by the flows (α(i))i 6= j . We remark that α( j)

reduces naturally to a flow on the fixed point algebra Aα
(−j )

.

Definition 6.2. Let A be a separable C∗-algebra and α :Rk y A an action. We say that α has the Rokhlin
property if dimRok(α, pZk)= 0 for all p > 0.

Remark 6.3. An obvious question regarding Definition 6.2 is whether this is the same as dimRok(α)= 0
when k ≥ 2, especially because this appears to be (a priori) much more difficult to check. Nevertheless,
this turns out to be case. Instead of giving a detailed proof here, let us just roughly sketch the basic idea.

4Strictly speaking, only the nilpotent case is proved there. The virtually nilpotent case follows from independent work of
Bartels [2017, Section 1].



ROKHLIN DIMENSION: ABSORPTION OF MODEL ACTIONS 1385

The condition dimRok(α)= 0 in the sense of Definition 4.1 amounts to checking dimRok(α, H)= 0 for
every closed cocompact subgroup H ⊂ Rk, or in other words finding approximately equivariant unital
embeddings from C(Rk/H) into the central sequence algebra of A. This only gets easier when we make
H smaller, so we may assume without loss of generality that H is discrete. Since H is a free abelian
group and is cocompact in Rk, it has a Z-basis e1, . . . , ek ∈ H. We may approximate these elements
by f1, . . . , fk ∈ Qk, which are linearly independent over Q and span another subgroup H ′. By using
for example Lemma 2.8 we can then obtain approximately multiplicative and equivariant u.c.p. maps
C(Rk/H)→ C(Rk/H ′). By the properties of central sequence algebras, we may thus assume without loss
of generality that in fact H ⊆Qk. Now the same argument as in [Szabó et al. 2017, Example 3.19] allows
one to see that H contains a finite-index subgroup of the form nZk for some n ∈N. In summary, we obtain
dimRok(α, H)= 0 for arbitrary H when we assume the Rokhlin property in the sense of Definition 6.2.

Remark 6.4. In the case of flows, i.e., the case k = 1 above, Definition 6.2 coincides with the notion of
the Rokhlin property from [Kishimoto 1996a]. Let us for now denote by σ T

: R y C(R/T Z) the action
induced by the R-shift.

Proposition 6.5. Let A be a separable C∗-algebra and α :Rk y A an action. The following are equivalent:

(i) α has the Rokhlin property.

(ii) For every j = 1, . . . , k and every p > 0, there exists a unitary

u ∈ F∞,α(A)α̃
(−j )
∞ such that α̃

( j)
∞,t(u)= ei pt u, t ∈ R.

(iii) For every j = 1, . . . , k and every T > 0, there exists an equivariant and unital ∗-homomorphism

(C(R/T Z), σ T )−→ (F∞,α(A)α̃
(−j )
∞ , α̃( j)

∞
).

Proof. (i)⇔(iii): Let T > 0. One has a canonical equivariant isomorphism

(C(Rk/T Zk),Rk-shift)∼= (C(R/T Z)⊗k, σ T,1
⊗ · · ·⊗ σ T,k),

where σ T, j is the Rk-action on C(R/T Z) where only the j -th component acts by the R-shift. By definition,
α having the Rokhlin property means that for every T > 0 the dynamical system on the left embeds into
(F∞,α(A), α̃∞). So in particular, when (i) holds, one also obtains an embedding of (C(R/T Z), σ T, j ) for
every j = 1, . . . , k, which implies (iii). Conversely, when (iii) holds, for all T > 0 one has an embedding of
(C(R/T Z), σ T, j ) into (F∞,α(A), α̃∞) for all j = 1, . . . , k. By applying a standard reindexing argument
in the central sequence algebra, one may assume that these embeddings have pairwise commuting ranges
for all j = 1, . . . , k. Therefore one obtains an embedding of the C∗-dynamical system given by the
tensor product of all (C(R/T Z), σ T, j ), which we have seen to be the same as the dynamical system
(C(Rk/T Zk),Rk-shift). In particular this implies (i).

(ii)⇔(iii): This follows directly from functional calculus. A unitary u as in (ii) gives rise to a unital
equivariant ∗-homomorphism

ϕu :
(
C
(
R/ 2π

p Z
)
, σ

2π
p
)
−→ (F∞,α(A)α̃

(−j )
∞ , α̃( j)

∞
), ϕu( f )= f (u).
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Conversely, whenever ϕ is an arbitrary homomorphism between these two dynamical systems, u =
ϕ
([

t + 2π
p Z 7→ ei pt

])
yields a unitary as required by (ii). �

Remark 6.6. We note that for G = Rk, the sequence Hn = (n!) · Zk yields a residually compact ap-
proximation in the sense of Definition 2.1. Now it is well known that �(Hn)n Zk has finite asymptotic
dimension k; see either [Szabó et al. 2017, Sections 2–3] or better yet [Delabie and Tointon 2018]. In
particular, Corollary 5.1 is applicable to Rk-actions that have finite Rokhlin dimension with commuting
towers, and more specifically it is applicable to Rk-actions with the Rokhlin property.

The following is the main result of this section.

Theorem 6.7. Let D be a strongly self-absorbing Kirchberg algebra. Let k ≥ 1 be a given natural number.
Then all continuous Rk-actions on D with the Rokhlin property are semi-strongly self-absorbing and are
mutually (very strongly) cocycle conjugate.

The approach for proving this result, at least in the way presented here, uses the theory of semi-strongly
self-absorbing actions in a crucial way. In such dynamical systems, one has a very strong control over
certain (approximately central) unitary paths, which, together with the Rokhlin property, allows one to
obtain a relative cohomology-vanishing-type statement. This will be used to deduce inductively that the
actions in the statement of Theorem 6.7 have approximately Rk-inner flip. The desired uniqueness for
such actions is then achieved by combining this fact with Corollary 5.1, which is a special case of our
main result, in a suitable way.

Example 6.8 (see [Bratteli et al. 2007]). Denote by s1, s2, . . . the generators of the Cuntz algebra O∞.
Define a quasifree flow γ 0

: R yO∞ via

γ 0
t (s1)= e2π i t s1, γ 0

t (s2)= e−2π i
√

2t s2, and γ 0
t (s j )= s j for j ≥ 3.

Then γ 0 has the Rokhlin property by [Bratteli et al. 2007, Theorem 1.1].
In particular, given k ≥ 1 and any strongly self-absorbing Kirchberg algebra D, the action

idD⊗ (γ
0
× · · ·× γ 0︸ ︷︷ ︸

k times

) : Rk y D⊗O⊗k
∞
∼= D

is a (k-)multiflow with the Rokhlin property on D, and is in fact (very strongly) cocycle conjugate to
every other one by Theorem 6.7.

Let us now implement the strategy outlined above step by step. We begin with the aforementioned
cohomology-vanishing-type statement, which involves minimal assumptions about the underlying C∗-
algebras but otherwise very strong assumptions about the existence of certain unitary paths, which will
naturally appear in our intended setup later.

Lemma 6.9. Let A be a separable unital C∗-algebra. Let k ≥ 1 and let α :Rk y A be a continuous action
with the Rokhlin property, and fix some j ∈ {1, . . . , k}.

For every ε > 0, L > 0 and F ⊂⊂ A, there exists a T > 0 and G ⊂⊂ A with the following property:
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If {wt }t∈R ⊂ U(A) is any α( j)-1-cocycle satisfying

max
a∈F

max
0≤t≤T

‖[wt , a]‖ ≤ ε,

max
0≤t≤T

max
Er∈[0,1]k−1

‖wt −α
(−j )
Er (wt)‖ ≤ ε,

and moreover there exists some continuous path of unitaries u : [0, 1] → U(A) with

u(0)= 1, u(1)= w−T , `(u)≤ L ,

max
0≤t≤1

max
Er∈[0,1]k−1

‖u(t)−α(−j )
Er (u(t))‖ ≤ ε,

max
0≤t≤1

max
a∈G
‖[u(t), a]‖ ≤ ε,

then there exists a unitary v ∈ U(A) satisfying

max
0≤t≤1

‖wt − vα
( j)
t (v∗)‖ ≤ 3ε,

max
a∈F
‖[v, a]‖ ≤ 3ε,

max
Er∈[0,1]k−1

‖v−α
(−j )
Er (v)‖ ≤ 3ε.

Proof. Let T > 0 and note that we have fixed j ∈ {1, . . . , k} by assumption. By some abuse of notation, let
us view σ T as the Rk-action on C(R/T Z) such that the j -th coordinate acts as the R-shift and all the other
components act trivially. In this way, any ∗-homomorphism as in Proposition 6.5(iii) can be viewed as an
Rk-equivariant ∗-homomorphism from C(R/T Z) to F∞,α(A). In particular, denote such a homomorphism
by θ . We can then obtain a commutative diagram of Rk-equivariant ∗-homomorphisms via

(A, α) //

d 7→1⊗d
''

(A∞,α, α∞)

(C(R/T Z)⊗ A, σ T
⊗α)

f⊗d 7→θ( f )·d

66

(6-1)

We will keep this in mind for later.
Now let ε > 0, L > 0 and F ⊂⊂ A be as in the statement. Without loss of generality, we assume that F

consists of contractions. We choose T > L/ε and G ⊂⊂ A to be any finite set of contractions containing F
that is ε/2-dense in the compact subset

{α
( j)
−s (a) | a ∈ F, 0≤ s ≤ T }. (6-2)

We claim that these do the trick. We note that the rest of the proof below is almost identical to the proofs
of [Kishimoto 1996a, Theorem 2.1; Szabó 2017a, Lemma 3.4], respectively, except for some obvious
modifications.

Assume that {wt }t∈R ⊂ U(A) is an α( j)-1-cocycle satisfying

max
a∈F

max
0≤t≤T

‖[wt , a]‖ ≤ ε, (6-3)

max
0≤t≤T

max
Er∈[0,1]k−1

‖wt −α
(−j )
Er (wt)‖ ≤ ε, (6-4)
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and moreover that there exists some continuous path of unitaries u : [0, 1] → U(A) with

u(0)= 1, u(1)= w−T , `(u)≤ L , (6-5)

max
0≤t≤1

max
Er∈[0,1]k−1

‖u(t)−α(−j )
Er (u(t))‖ ≤ ε, (6-6)

max
0≤t≤1

max
a∈G
‖[u(t), a]‖ ≤ ε. (6-7)

As `(u)≤ L , we may assume that u is L-Lipschitz by passing to the arc-length parametrization if necessary.
We denote by κ : [0, T ] → U(A) the path given by κs = u(s/T ), which is then Lipschitz with respect to
the constant L/T ≤ ε. Let us define a continuous path of unitaries v : [0, T ]→ U(A) via vs =wsα

( j)
s (κs).

Then by (6-5) it follows that v(0)= v(T )= 1. In particular, we may view v as a unitary in C(R/T Z)⊗ A.
We have

max
a∈F
‖[v, 1⊗ a]‖ = max

a∈F
max

0≤s≤T
‖[wsα

( j)
s (κs), a]‖

≤ max
a∈F

max
0≤s≤T

‖[ws, a]‖+ ‖[κs, α
( j)
−s (a)]‖

(6-3)
≤ ε+max

a∈F
max

0≤s≤T
‖[κs, α

( j)
−s (a)]‖

(6-2)
≤ 3ε/2+max

b∈G
‖[κs, b]‖

(6-7)
≤ 5ε/2.

Moreover, we have

max
Er∈[0,1]k−1

‖v− (σ T
⊗α)

(−j )
Er (v)‖ = max

Er∈[0,1]k−1
‖v− (id⊗α)(−j )

Er (v)‖

= max
Er∈[0,1]k−1

max
0≤s≤T

‖vs −α
(−j )
Er (vs)‖

= max
Er∈[0,1]k−1

max
0≤s≤T

‖wsα
( j)
s (κs)−α

(−j )
Er (wsα

( j)
s (κs))‖

= max
Er∈[0,1]k−1

max
0≤s≤T

‖wsα
( j)
s (κs)−α

(−j )
Er (ws) ·α

( j)
s (α

(−j )
Er (κs))‖

≤ max
Er∈[0,1]k−1

max
0≤s≤T

‖ws −α
(−j )
Er (ws)‖+‖κs −α

(−j )
Er (κs)‖

(6-4),(6-6)
≤ 2ε.

Lastly, let us fix t ∈ [0, 1] and s ∈ [0, T ]. If s ≥ t , then we compute

(v(σ T
⊗α)

( j)
t (v∗))(s)= wsα

( j)
s (κs) ·α

( j)
t (α

( j)
s−t(κ

∗

s−t)w
∗

s−t)

= ws ·α
( j)
s (κsκ

∗

s−t)α
( j)
t (w∗s−t)

(6-5)
=ε wsα

( j)
t (w∗s−t)= wt .
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On the other hand, if s ≤ t , then in particular s ≤ 1 and T − 1≤ T + s− t ≤ T , and we compute

(v(σ T
⊗α)

( j)
t (v∗))(s)= wsα

( j)
s (κs) ·α

( j)
t (α

( j)
T+s−t(κ

∗

T+s−t)w
∗

T+s−t)

= wsα
( j)
s (κs) ·α

( j)
T+s(κ

∗

T+s−t)α
( j)
t (w∗T+s−t)

(6-5)
=2ε ws · 1 ·α

( j)
T+s(w

∗

−T )α
( j)
t (w∗T+s−t)

= wsα
( j)
s (wT )α

( j)
t (w∗T+s−t)

= wT+sα
( j)
t (w∗T+s−t)w

∗

t ·wt = wt .

Let us summarize what we have accomplished so far. Starting from the existence of the α( j)-1-cocycle
{wt }t∈R and the unitary path u with the prescribed properties, we have found a unitary v∈U(C(R/T Z)⊗A)
satisfying

max
a∈F
‖[v, 1⊗ a]‖ ≤ 5ε/2, (6-8)

max
Er∈[0,1]k−1

‖v− (σ T
⊗α)

(−j )
Er (v)‖ ≤ 2ε, (6-9)

max
0≤t≤1

‖wt − v(σ
T
⊗α)

( j)
t (v∗)‖ ≤ 2ε. (6-10)

By using the commutative diagram (6-1), we may send v into the sequence algebra of A, represent the
resulting unitary by a sequence of unitaries in A, and then select a member of this sequence so that it will
satisfy the properties in the claim with respect to the parameter 3ε. �

Now record the following useful technical result about semi-strongly self-absorbing actions, which
arises as a special case of [Szabó 2018c, Lemma 3.12]:

Lemma 6.10. Let G be a second-countable, locally compact group. Let D be a separable, unital C∗-
algebra and γ : G y D a semi-strongly self-absorbing action. For every ε > 0, F ⊂⊂ D and compact set
K ⊂ G, there exist δ > 0 and G ⊂⊂ D with the following property:

Suppose that u : [0, 1] → U(D) is a unitary path satisfying

u(0)= 1, max
0≤t≤1

max
g∈K
‖u(t)− γg(u(t))‖ ≤ δ,

and
max
a∈G
‖[u(1), a]‖ ≤ δ.

Then there exists a unitary path w : [0, 1] → U(D) satisfying

w(0)= 1, w(1)= u(1),

max
g∈K
‖w(t)− γg(w(t))‖ ≤ ε,

max
0≤t≤1

max
a∈F
‖[w(t), a]‖ ≤ ε.

Moreover, we may choose w in such a way that

‖w(t1)−w(t2)‖ ≤ ‖u(t1)− u(t2)‖ for all 0≤ t1, t2 ≤ 1.
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We are now ready to prove the main result of this section:

Proof of Theorem 6.7. We will prove this via induction in k. For this purpose, we will include the case
k = 0, where the claim is true for trivial reasons.

Now let k ≥ 1 and assume that the claim is true for actions of Rk−1. We will then show that the claim
is also true for actions of Rk.

Step 1: Let α : Rk y D be an action with the Rokhlin property. In a similar fashion as in [Kishimoto
2002, Proposition 3.5], we shall show that α has approximately Rk-inner flip.

Set B = D⊗D and β = α⊗α. Denote by 6 the flip automorphism on B, which is equivariant with
regard to β. Note that β is still a Rk-action on a strongly self-absorbing Kirchberg algebra with the
Rokhlin property. The Rk−1-action α(−k ) is semi-strongly self-absorbing by the induction hypothesis.
Applying [Szabó 2018c, Proposition 3.6], we find a sequence of unitaries yn, zn ∈ U(B) satisfying

max
Er∈[0,1]k−1

‖yn −β
(−k )
Er (yn)‖+‖zn −β

(−k )
Er (zn)‖

n→∞
−−−→ 0 (6-11)

and
6(b)= lim

n→∞
Ad(ynzn y∗n z∗n)(b), b ∈ B. (6-12)

Let us set Y = [(yn)n] and Z = [(zn)n] with Y, Z ∈ Bβ
(−k )
∞

∞,β(−k ) . Moreover set X = Y ZY ∗Z∗. Note that
since D is a Kirchberg algebra, Corollary 5.1 implies that β is equivariantly O∞-absorbing. By [Szabó
2018c, Proposition 2.19(iii)], the unitary X is thus homotopic to the unit inside Bβ

(−k )
∞

∞,β(−k ) . Write X =
exp(i H1) · · · exp(i Hr ) for certain self-adjoint elements H1, . . . , Hr ∈ Bβ

(−k )
∞

∞,β(−k ) . Set L ′=‖H1‖+· · ·+‖Hr‖.
For l = 1, . . . , r , represent Hl via a sequence of self-adjoint elements hl,n ∈ B with ‖hl,n‖ ≤ ‖Hl‖. We
define a sequence of continuous paths xn : [0, 1] → U(B) via

xn(t)= exp(i th1,n) · · · exp(i thr,n).

Then each of these paths is L ′-Lipschitz. By slight abuse of notation we write X : [0, 1]→ U(Bβ
(−k )
∞

∞,β(−k )) for
X (t)= [(xn(t))n], which is then continuous and satisfies X (0)= 1 and X (1)= X . Also define xn = xn(1)
for all n.

Since we have 6(b) = XbX∗ for all b ∈ B and β and 6 ◦ β(k)t = β
(k)
t ◦ 6, one has 6(b) =

β
(k)
∞,t(X)bβ

(k)
∞,t(X∗) for all t ∈ R. It follows that for all t ∈ R, one has that the element Xβ(k)∞,t(X∗)

commutes with all elements in B ⊂ B∞.
Let us for the moment fix some number T >0. Define uT

n : [0, 1]→U(B) via uT
n (t)= xn(t)β

(k)
−T (xn(t)∗).

Then uT
n is a unitary path starting at the unit and with Lipschitz constant L ≤ 2L ′. We have

max
0≤t≤1

max
Er∈[0,1]k−1

‖uT
n (t)−β

(−k )
Er (uT

n (t))‖
n→∞
−−−→ 0

as β(k)
−T ◦β

(−k )
Er = β

(−k )
Er ◦β

(k)
−T and the elements xn(t) are approximately β(−k )-invariant by construction, and

‖[uT
n (1), b]‖ = ‖[xnβ

(k)
−T (x

∗

n ), b]‖ n→∞
−−−→ 0 for all b ∈ B.

Due to Lemma 6.10, we may replace the unitary paths uT
n by ones which become approximately central

along the entire path and retain all the other properties. In other words, by changing the path un on (0, 1),
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we may in fact assume

max
0≤t≤1

‖[uT
n (t), b]‖ n→∞

−−−→ 0 for all b ∈ B.

Let us consider the sequence of β(k)-1-cocycles {w(n)t }t∈R given by w(n)t = xnβ
(k)
t (x∗n ). Then by what we

have observed before, we have

max
0≤t≤T

‖[w
(n)
t , b]‖ n→∞

−−−→ 0, b ∈ B,

as well as

max
0≤t≤T

max
Er∈[0,1]k−1

‖w
(n)
t −β

(−k )
Er (w

(n)
t )‖ ≤ 2 · max

Er∈[0,1]k−1
‖xn −β

(−k )
Er (xn)‖

n→∞
−−−→ 0.

This puts us into the position to apply Lemma 6.9. Given some small tolerance ε > 0 and F ⊂⊂ D, we
can choose T > 0 and G ⊂⊂ D with respect to the constant L = 2L ′ and with (B, β) in place of (A, α).
Without loss of generality, we choose F in such a way that

6(F)= F . (6-13)

Then the cocycles {w(n)t }t∈R and the unitary paths uT
n (in place of {wt }t∈R and u in Lemma 6.9) will

eventually satisfy the assumptions in Lemma 6.9 for large enough n. By the conclusion of the statement,
one finds a unitary vn ∈ U(B) such that

max
0≤t≤1

‖w
(n)
t − vnβ

(k)
t (v∗n)‖ = max

0≤t≤1
‖xnβ

(k)
t (xn)

∗
− vnβ

(k)
t (v∗n)‖ ≤ 3ε, (6-14)

max
b∈F
‖[vn, b]‖ ≤ 3ε, (6-15)

max
Er∈[0,1]k−1

‖vn −α
(−k )
Er (vn)‖ ≤ 3ε. (6-16)

We set Un = v
∗
n xn , which is yet another sequence of unitaries in B. Note that (6-14) translates to

max
0≤t≤1

‖Un −β
(k)
t (Un)‖ ≤ 3ε.

Together with (6-16) and X ∈ Bβ
(−k )
∞

∞,β(−k ) this yields

max
Er∈[0,1]k

‖Un −βEr (Un)‖ ≤ 7ε

for large enough n. Finally, if we combine (6-12), (6-13) and (6-15), we obtain

max
b∈F
‖6(b)−UnbU∗n‖ ≤ 4ε

for sufficiently large n. Since ε > 0 was an arbitrary parameter and F ⊂⊂ B was arbitrary as well, we see
that the flip automorphism 6 on B is indeed approximately Rk-inner.

Step 2: Let α : Rk y D be an action with the Rokhlin property. Due to the first step, α has approxi-
mately Rk-inner flip. By [Szabó 2018b, Proposition 3.3], it follows that the infinite tensor power action
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α⊗∞ : Rk y D⊗∞ is strongly self-absorbing. In view of Remark 6.6, we may apply Corollary 5.1 to α
and α⊗∞ in place of γ , and see that

α 'scc α⊗α
⊗∞ ∼= α

⊗∞,

which implies that α is semi-strongly self-absorbing.

Step 3: For i = 0, 1, let α(i) : Rk y D be two actions with the Rokhlin property. By the previous step,
they are semi-strongly self-absorbing. If we apply Corollary 5.1 to α(0) in place of α and α(1) in place
of γ , then it follows that α(0) 'vscc α

(0)
⊗α(1). If we exchange the roles of α(0) and α(1) and repeat this

argument, we conclude α(0) 'vscc α
(1).

This finishes the induction step and the proof. �

We observe the following consequence as a combination of all of our main results for Rk-actions; this
is new even for ordinary flows.

Corollary 6.11. Let A be a separable C∗-algebra with A ∼= A⊗O∞. Suppose that α : Rk y A is a
multiflow. The following are equivalent:

(i) α has the Rokhlin property.

(ii) α has finite Rokhlin dimension with commuting towers.

(iii) α 'vscc α⊗ γ for any multiflow γ : Rk yO∞ with the Rokhlin property.

(iv) α 'vscc α⊗ γ for every multiflow γ : Rk yO∞ with the Rokhlin property.

Proof. This follows directly from Theorem 6.7 and Corollary 5.1. �

Once we combine Corollary 6.11 and Theorem 6.7, we obtain Theorem C as a direct consequence.
The following remains open:

Question 6.12. Let α : Rk y A be a multiflow on a Kirchberg algebra. Suppose that for every Er ∈ Rk the
flow on A given by t 7→ αtEr has the Rokhlin property. Does it follow that α has the Rokhlin property?
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