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ON THE COST OF OBSERVABILITY IN SMALL TIMES FOR
THE ONE-DIMENSIONAL HEAT EQUATION

JÉRÉMI DARDÉ AND SYLVAIN ERVEDOZA

We aim at presenting a new estimate on the cost of observability in small times of the one-dimensional
heat equation, which also provides a new proof of observability for the one-dimensional heat equation.
Our proof combines several tools. First, it uses a Carleman-type estimate borrowed from our previous
work (SIAM J. Control Optim. 56:3 (2018), 1692–1715), in which the weight function is derived from
the heat kernel and which is therefore particularly easy. We also use explicit computations in the Fourier
domain to compute the high-frequency part of the solution in terms of the observations. Finally, we use
the Phragmén–Lindelöf principle to estimate the low-frequency part of the solution. This last step is done
carefully with precise estimations coming from conformal mappings.

1. Introduction

Setting. The goal of this work is to analyze the cost of observability in small times of the one-dimensional
heat equation. To fix the ideas, let L; T > 0 and consider the following heat equation, set in the bounded
interval .�L;L/ and among some time interval .0; T /:8<:

@tu� @
2
xuD 0 in .0; T /� .�L;L/;

u.t;�L/D u.t; L/D 0 in .0; T /;
u.0; x/D u0.x/ in .�L;L/:

(1-1)

In (1-1), the state uD u.t; x/ satisfies a heat equation, with initial datum u0 2H
1
0 .�L;L/.

Our main goal is to study the cost of observability in small times T of the problem (1-1) observed
from both sides x D�L and x DCL. To be more precise, let us recall that it is by now well known that
there exists C0.T; L/ such that all solutions u of (1-1) with initial datum u0 2H

1
0 .�L;L/ satisfy

ku.T /kL2.�L;L/ 6 C0.T; L/
�
k@xu.t;�L/kL2.0;T /Ck@xu.t; L/kL2.0;T /

�
: (1-2)

In fact, the existence of the constant C0.T; L/ is a consequence of the null controllability results in small
times obtained by [Egorov 1963; Fattorini and Russell 1971] in the one-dimensional case. From now on,
we denote by C0.T; L/ the best constant in the observability inequality (1-2).

A precise description of the constant C0.T; L/ as T ! 0 is still missing, despite several contributions
in this direction, which we would like to briefly recall here. First, [Seidman 1984] showed that

lim sup
T!0

T logC0.T; L/ <1; (1-3)
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while [Güichal 1985] proved that

lim inf
T!0

T logC0.T; L/ > 0: (1-4)

Besides, due to the scaling of the equation, C0.T; L/ depends only on the ratio L2=T. Therefore, the
quantity T logC0.T; L/ should be compared to L2. We list below several contributions:

lim inf
T!0

T logC0.T; L/> 1
4
L2 [Miller 2004];

lim inf
T!0

T logC0.T; L/> 1
2
L2 [Lissy 2015];

lim sup
T!0

T logC0.T; L/6 2
�
36
37

�2
L2 [Miller 2006];

lim sup
T!0

T logC0.T; L/6 3
4
L2 [Tenenbaum and Tucsnak 2007]:

Main result. Our contribution comes in this context. Namely we prove the following result:

Theorem 1.1. Setting

K0 D
1

4
C
�
�
1
4

�2
8
p
2�2

X
n2N

.�1/n

.2nC 1/

�
�
nC 1

4

�
�
�
nC 7

4

� .K0 ' 0:6966/; (1-5)

where � denotes the gamma function, we have

lim sup
T!0

T logC0.T; L/6K0L2: (1-6)

In fact, for all K >K0, there exists a constant C > 0 such that for all T 2 .0; 1�, for all solutions u of
(1-1) with initial datum u0 2H

1
0 .�L;L/,u.T / exp

�
x2

4T

�
L2.�L;L/

6 C exp
�
KL2

T

��
k@xu.t;�L/kL2.0;T /Ck@xu.t; L/kL2.0;T /

�
: (1-7)

Remark 1.2. The constant K0 in (1-5) can alternatively be written as

K0 D
1

4
C
2

�

R �
2

0 ln
�
cot
�
t
2

��p
cos.t/ dtR �

2

0

p
cos.t/ dt

I (1-8)

see Proposition 2.3 in Section 2.

Theorem 1.1 slightly improves the cost of observability in small times when compared to [Tenenbaum
and Tucsnak 2007]. However, we do not claim that this bound is sharp, and this remains, to our knowledge,
an open problem. In particular, we shall comment in Section 4F a possible path to improve the estimates
given in Theorem 1.1.

In fact, we believe that Theorem 1.1 is interesting mostly by its proof, presented in Section 2, which
combines several arguments. In particular, it uses a Carleman-type estimate, which was already used in
[Dardé and Ervedoza 2018] to derive a good description of the reachable set for the one-dimensional heat
equation in terms of domains of holomorphic extension of the states. This Carleman-type estimate is
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used to reduce the problem of observability to an estimate of the low-frequency part of the solution of
(1-1). Then, we shall use Fourier analysis on the conjugated heat equation to get an exact formula for the
high-frequency part of the solution of (1-1) in terms of the observations. The last part of the argument is
a complex analysis argument based on the Phragmén–Lindelöf principle. We refer to Sections 2 and 3 for
the detailed proof of Theorem 1.1.

Let us also mention that Theorem 1.1 is strongly connected to control theory. Indeed, let us consider
the following null-controllability problem: given T > 0 and y0 2 L2.�L;L/, find control functions
v�; vC 2 L

2.0; T / such that the solution y of8̂̂̂<̂
ˆ̂:
@ty � @

2
xy D 0 in .0; T /� .�L;L/;

y.t;�L/D v�.t/ in .0; T /;
y.t;CL/D vC.t/ in .0; T /;
y.0; x/D y0.x/ in .�L;L/;

(1-9)

satisfies

y.T; x/D 0 in .�L;L/: (1-10)

It is well known, see, e.g., [Egorov 1963; Fattorini and Russell 1971], that for any T > 0, one can find
controls v�; vC of minimal .L2.0; T //2 norm, depending linearly on y0 2 L2.�L;L/, such that the
controlled trajectory, i.e., the solution of (1-9), satisfies (1-10). Besides, the L .L2.�L;L/I .L2.0; T //2/-
norm of the linear map y0 7! .v�; vC/ is precisely C0.T; L/. In other words, C0.T; L/ also characterizes
the cost of controllability for the one-dimensional heat equation.

We emphasize that Theorem 1.1 also allows us to tackle some multidimensional settings. Namely, as
a consequence of Theorem 1.1 and the control transmutation method, see [Miller 2006], one gets the
following corollary:

Corollary 1.3. Let � be a smooth bounded domain of Rd, and let �0 be an open subset of @�. Let
aD a.x/ 2 L1.�IMd .R// and � 2 L1.�IR/ be such that there exist strictly positive numbers ��, �C,
a� and aC such that for all x 2� and � 2 Rd,

a�j�j
2 6 a.x/� � � 6 aCj�j2; �� 6 �.x/6 �C:

Further assume that there exist a time S0 > 0 and a constant C > 0 such that, for any .w0; w1/ 2
H 1
0 .�/�L

2.�/, the solution w of8<:
�.x/ @ssw� div.a.x/rw/D 0 in .0; S/��;
w.s; x/D 0 on .0; S/� @�;
.w.0; x/; @sw.0; x//D .w0.x/; w1.x// in �

(1-11)

satisfies a.x/rw �n 2 L2..0; S0/��0/ and

k.w0; w1/kH1
0 .�/�L

2.�/ 6 Cka.x/rw �nkL2..0;S0/��0/: (1-12)



1458 JÉRÉMI DARDÉ AND SYLVAIN ERVEDOZA

We define C0.T;�; �0/ as the best constant in the following observability inequality: for all u0 2H 1
0 .M/,

the solution u of 8<:
�.x/ @tu� div.a.x/ru/D 0 in .0; T /��;
u.t; x/D 0 on .0; T /� @�;
u.0; x/D u0.x/ in �

(1-13)

satisfies

ku.T /kL2.M/ 6 C0.T;�; �0/ka.x/ru �nkL2..0;T /��0/: (1-14)

Then we have

lim sup
T!0

T logC0.T;�; �0/6K0S20 : (1-15)

Corollary 1.3 uses the transmutation method and therefore the observability of the corresponding wave
equation (1-11), which has been well-studied in the literature. In particular, if the coefficients � and a
are C 2.�/, according to [Bardos et al. 1988; 1992; Burq and Gérard 1997], the wave equation (1-11)
satisfies the observability inequality (1-12) if and only if all the rays of geometric optics meet �0 in a
nondiffractive point in time less than S0. In the case of coefficients � and a which are less regular, let
us quote [Fanelli and Zuazua 2015] in the one-dimensional case with � and a in the Zygmund class,
and [Dehman and Ervedoza 2017] in the multidimensional case for coefficients � 2 C 0.�/ and aD 1,
with � satisfying a multiplier-type condition similar to the one in [Ho 1986; Lions 1988] in the sense of
distributions (and � locally C 1 close to the boundary, see [Dehman and Ervedoza 2017, Section 4.2]).

Let us emphasize that Corollary 1.3 can be applied in the one-dimensional case as well for coefficients
in the Zygmund class [Fanelli and Zuazua 2015], thus allowing a more general class of coefficients than
in the analysis of [Miller 2004; Tenenbaum and Tucsnak 2007], which is done for � D 1 and a 2 C 2

(and, possibly, a continuous potential). But even in the case �D .�L;L/, �0 D f�L;Lg, �.x/D 1,
a.x/D 1, we get S0 D 2L and thus we obtain an estimate on the cost of observability of the form

lim sup
T!0

T logC0.T; .�L;L/; f�L;Lg/6 4K0L2;

instead of (1-6). In other words, we have a loss of a factor 4, so that the results in [Miller 2004; Tenenbaum
and Tucsnak 2007] are better than ours in the one-dimensional case for a coefficient a in (1-13) which
belongs to C 2. Therefore, we shall also explain how Theorem 1.1 can be extended to a multidimensional
case directly when the observation is performed on the whole boundary; see Theorems 4.1–4.2.

Let us mention that the proofs of the observability inequality of the heat equation for general smooth
bounded domains � and observation in an open subset �0 of the boundary in [Fursikov and Imanuvilov
1996; Lebeau and Robbiano 1995] yield that

lim sup
T!0

T logC0.T;�; �0/ <1;

while on the other hand, [Miller 2004] proves

lim inf
T!0

T logC0.T;�; �0/> 1
4

sup
�

d.x; �0/
2:
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To our knowledge, getting more intrinsic geometric upper estimates on the cost of observability in small
times in such general settings is still out of reach. In fact [Laurent and Léautaud 2018] shows that upper
estimates on the cost of observability in small times cannot be linked only to the maximal distance to
the control set and are deeply related to the geometry of the domain and of the observation set; see
Remark 4.3. However, in geometrical cases which can be obtained by tensorization, some estimates can
be obtained; see [Miller 2005] and Section 4B for more details.

We shall also mention that estimating the observability constant in small times for the heat equation
in the one-dimensional case is related to the uniform controllability of viscous approximations of the
transport equation; see [Coron and Guerrero 2005; Glass 2010; Lissy 2012; 2015]. We refer in particular
to Section 4G for a more precise discussion on this problem. In particular, the proof in [Lissy 2012],
when combined with Theorem 1.1, easily yields an improvement of the results known on this problem;
see Section 4G and Theorem 4.10 for more details.

As we have seen in the above discussion, there are still some open questions on the observability of
the one-dimensional constant-coefficient parabolic equations, despite the efficiency and robustness of the
approach based on Carleman estimates [Fursikov and Imanuvilov 1996; Lebeau and Robbiano 1995].
This has justified the development of new manners to derive controllability of parabolic equations, and
we shall in particular quote the flatness method developed in [Martin et al. 2014; 2016], a heat packet
decomposition [Gimperlein and Waters 2017] and the backstepping approach [Coron and Nguyen 2017].
Our method comes in this context and provides what seems to be another approach to obtain observability
results for the heat equation.

Outline. Section 2 presents the main strategy of the proof of Theorem 1.1 using several technical results
that will be proved afterwards, in Section 3 for the ones using new arguments and in the Appendix for a
Carleman-type estimate (Theorem 2.1) which can be found also in [Dardé and Ervedoza 2018] in a slightly
different form. Section 4 provides several comments on Theorem 2.1 and its generalization, including a
discussion on what can be done in the multidimensional setting (Section 4A), when the geometry has a
tensorized form (Section 4B), or when the observation is on one side of the domain (Section 4C) or on
some distributed open subset (Section 4D). We also present in Section 4E an alternative proof of a weaker
version of Theorem 1.1 based on the uncertainty principles of [Landau and Pollak 1961] and the result in
[Fuchs 1964], recovering the result of [Tenenbaum and Tucsnak 2007]. This will lead us to discuss the
possibility of improving the estimate of the cost of observability in small times in Theorem 1.1 by using
a better bound than the one provided by the use of Phragmén–Lindelöf principle for entire functions;
see Section 4F for more details. We end up in Section 4G by giving a consequence of our result on the
problem of uniform controllability of viscous approximations of transport equations. The Appendix gives
the detailed proof of a rather easy Carleman estimate which is one of the building blocks of our analysis.

2. Proof of Theorem 1.1: main steps

As said in the Introduction, the proof of Theorem 1.1 relies on several steps.

The first step is the following Carleman-type estimate.
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Theorem 2.1. For any smooth solution u of (1-1), setting

z.t; x/D u.t; x/ exp
�
x2�L2

4t

�
; .t; x/ 2 .0; T /� .�L;L/; (2-1)

we have the inequalityZ L

�L

j@xz.T; x/j
2 dx�

L2

4T 2

Z L

�L

jz.T; x/j2 dx 6
L

T 2

Z T

0

t .j@xu.t;�L/j
2
Cj@xu.t; L/j

2/ dt: (2-2)

Theorem 2.1 is based on the study of the equation satisfied by z in (2-1). As u satisfies the heat
equation (1-1), the function z in (2-1) satisfies8̂̂̂<̂

ˆ̂:
@tzC

x

t
@xzC

1

2t
z� @2xz�

L2

4t2
z D 0; .t; x/ 2 .0;1/� .�L;L/;

z.t;�L/D z.t; L/D 0; t 2 .0;1/;

z.0; x/D 0; x 2 .�L;L/:

(2-3)

One can therefore perform energy estimates on (2-3), which will eventually lead to (2-2). In the
Appendix, we prove a slightly more general result, encompassing also some multidimensional settings,
see Proposition A.1, from which one immediately derives Theorem 2.1 by setting � D .�L;L/ and
g � 0.

Note that Theorem 2.1 was used in [Dardé and Ervedoza 2018] in time T > L2=� in order to describe
the reachable set of the one-dimensional heat equation. Estimate (2-2) is somehow a Carleman estimate
even if here no parameter appears in the proof. In fact, it rather corresponds to a limiting Carleman
estimate as the conjugated operator (2-3) does not satisfy the usual strict pseudoconvexity conditions
of [Hörmander 1985]. We refer in particular to [Dos Santos Ferreira et al. 2009] for other instances of
limiting Carleman weights in another context, namely elliptic operators.

The second step of our analysis amounts to realizing that the solutions z of (2-3) could be explicitly
solved using Fourier analysis if one extends the solution z of (2-3) by zero outside the space interval
.�L;L/. We therefore introduce, for t 2 .0; T �,

w.t; x/D

8<:z.t; x/
�
D u.t; x/ exp

�
x2�L2

4t

��
for x 2 .�L;L/;

0 for x … .�L;L/:
(2-4)

In view of the above definition, it is then natural to set w.0; � /D 0, since it is consistent with the above
definition when taking the limit t ! 0. This function w satisfies8<:@twC

x

t
@xwC

1

2t
w� @2xw�

L2

4t2
w D @xu.t; L/ıL� @xu.t;�L/ı�L; .t; x/ 2 .0;1/�R;

w.0; x/D 0; x 2 R:

(2-5)

Using Fourier transform, one can then compute explicitly

Ow.T; �/D

Z
R

w.T; x/e�{�x dx;

at least for some frequency � 2 C:
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Proposition 2.2. For ˛ > 0, define the sets (see Figure 1)

C˛ D f� D aC {b 2 C W .a; b/ 2 R2 with jaj> jbjC˛g: (2-6)

Let w be given by (2-4) corresponding to some smooth solution u of (1-1).
Then, for any � 2 CL=.2T /,

Ow.T; �/D

Z T

0

r
T

t

�
�@xu.t;�L/e

{ �LT
t C @xu.t; L/e

�{ �LT
t

�
e�.�

2T 2�L
2

4
/. 1
t
� 1
T
/ dt: (2-7)

In particular, for any ˛ > L=.2T /, setting

C˛.T /D
1p

L.˛�L=.2T //
; (2-8)

for all � 2 C˛, we have

j Ow.T; �/j6 C˛.T /
p
T ej=.�/jL

�
k@xu. � ; L/kL2.0;T /Ck@xu. � ;�L/kL2.0;T /

�
: (2-9)

The proof of Proposition 2.2 is done in Section 3A and relies on explicit computations. In particular, it
gives a precise L1 bound on the high-frequency component of w.T / given by (2-4) corresponding to a
smooth solution u of (1-1).

The third step of our analysis consists in the recovery of the low-frequency part of w given by (2-4).
In order to do that, we recall that Ow.T; � / is the Fourier transform of a function supported in Œ�L;L�.
Therefore, its growth as j=.�/j ! 1 is known, while Ow.T; � / is holomorphic in the whole complex
plane C. Combined with the fact that we have nice estimates on Ow.T; � / in C˛ for ˛ > L2=.2T /, we are
in the position to use Phragmén–Lindelöf principles to estimate Ow.T; � / everywhere in the complex plane,
but more importantly on the real axis R.

Proposition 2.3. Let L> 0, ˛ > 0 and f be a holomorphic function on O˛ D CnC˛ (see Figure 1) such
that:

� There exists a constant C0 such that

for all � 2 @O˛; jf .�/j6 C0 exp.j=.�/jL/: (2-10)

� There exists a constant C1 such that

for all � 2 O˛; jf .�/j6 C1 exp.j=.�/jL/: (2-11)

Defining
zO1 D f.a; b/ 2 R2 W jaj< jbjC 1g;

there exists a unique function Q' satisfying8<:
� Q' D�2ı.�1;1/�f0g in zO1;
Q' D 0 on @ zO1;
limjbj!1 supa2.�jbj�1;jbjC1/ j Q'.a; b/j D 0,

(2-12)



1462 JÉRÉMI DARDÉ AND SYLVAIN ERVEDOZA

Figure 1. The complex plane, with domains C˛ and O˛.

and we define the function ' on O1 by

'.�/D Q'.<.�/;=.�//; � 2 O1: (2-13)

Then we have the bound

for all � 2 O˛; jf .�/j6 C0 exp.j=.�/jL/ exp
�
L˛'

�
�

˛

��
: (2-14)

Besides, the maximum of ' on O1 is attained in 0:

sup
O1

' D '.0/D
�
�
1
4

�2
4
p
2�2

X
n2N

.�1/n

.2nC 1/

�
�
nC 1

4

�
�
�
nC 7

4

� .' 0:893204/; (2-15)

which can be alternatively written as

'.0/D
2

�

R �
2

0 ln
�
cot
�
t
2

��p
cos.t/ dtR �

2

0

p
cos.t/ dt

: (2-16)

Proposition 2.3 mainly reduces to the application of Phragmén–Lindelöf principle for holomorphic
functions. In fact, the main point in Proposition 2.3 is that the maximum of the harmonic function Q' can
be explicitly computed. This is done using conformal maps to link the solution of the Laplace equation in
the domain zO1 with solutions of the Laplace operator in the half-strip, in which explicit solutions can be
computed using Fourier decomposition techniques. We refer to Section 3B for the proof of Proposition 2.3.

Of course, we shall apply Proposition 2.3 to the function f D Ow.T; � /, which, according to (2-9),
satisfies (2-10) for any ˛ > L=.2T / with

C0 D C˛.T /
p
T
�
k@xu. � ; L/kL2.0;T /Ck@xu. � ;�L/kL2.0;T /

�
;

while (2-11) holds with

C1 D kw.T /kL1.�L;L/ 6
p
2Lku.T /kL2.�L;L/ 6

p
2Lku0kL2.�L;L/:

We then immediately deduce the following corollary.
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Corollary 2.4. Let w be given by (2-4) corresponding to some smooth solution u of (1-1). Then, for any
˛ > L=.2T /,

for all �2O˛\R; j Ow.T;�/j6C˛.T /
p
T eL˛'.0/

�
k@xu. � ;L/kL2.0;T /Ck@xu. � ;�L/kL2.0;T /

�
; (2-17)

where C˛.T / denotes the constant in (2-8).

End of the proof of Theorem 1.1. Let " > 0, and choose ˛ D .1C "/L=.2T /. Combining (2-17) and (2-9),
we see that

for all � 2 R; j Ow.T; �/j6
r
2

"

T

L
exp

�
.1C "/

L2

2T
'.0/

��
k@xu. � ; L/kL2.0;T /Ck@xu. � ;�L/kL2.0;T /

�
:

(2-18)
Then, using Theorem 2.1 and the identityZ L

�L

j@xz.T; x/j
2 dx�

L2

4T 2

Z L

�L

jz.T; x/j2 dx D

Z
R

�
j�j2�

L2

4T 2

�
j Ow.T; �/j2 d�

we have

3L2

4T 2

Z
j�j>L=T

j Ow.T; �/j2 d�

6
L

T

�
k@xu. � ; L/k

2
L2.0;T /

Ck@xu. � ;�L/k
2
L2.0;T /

�
C
L2

4T 2

Z
j�j<L=.2T /

j Ow.T; �/j2 d�:

Combined with (2-18), we obtainZ
j�j>L=T

j Ow.T; �/j2 d�

6
�
4T

3L
C
4T

3L"
exp

�
.1C "/

L2

T
'.0/

���
k@xu. � ; L/k

2
L2.0;T /

Ck@xu. � ;�L/k
2
L2.0;T /

�
(2-19)

andZ
j�j<L=T

j Ow.T;�/j2d�6
8T

"L
exp

�
.1C"/

L2

T
'.0/

��
k@xu. � ;L/k

2
L2.0;T /

Ck@xu. � ;�L/k
2
L2.0;T /

�
: (2-20)

Using Parseval’s identity and the explicit form of w in (2-4), we easily get, for some constant C".T / that
goes to zero as T ! 0, thatu.T; x/ exp

�
x2�L2

4T

�
L2.�L;L/

6 C".T / exp
�
L2

2T
.1C "/'.0/

��
k@xu. � ; L/kL2.0;T /Ck@xu. � ;�L/kL2.0;T /

�
;
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which we rewrite asu.T; x/ exp
�
x2

4T

�
L2.�L;L/

6 C".T / exp
�
L2

T

�
1
4
C
1
2
.1C "/'.0/

���
k@xu. � ; L/kL2.0;T /Ck@xu. � ;�L/kL2.0;T /

�
: (2-21)

This concludes the proof of Theorem 1.1, as C".T / 6 C".1/ D C" for T small enough, for some C"
independent of T. �

Remark 2.5. Note that the constant C" in the above proof blows up as " goes to zero. If it were not the
case, one could pass to the limit "! 0 in (2-21), so that one could choose K DK0 in the observability
inequality (1-7). So far, we do not know if this choice is allowed in the observability inequality (1-7) or not.

We have thus reduced the proof of Theorem 1.1 to the proofs of Theorem 2.1 and Propositions 2.2
and 2.3. The proof of Theorem 2.1 is postponed to the Appendix in which a slightly more general result
is proved (Proposition A.1), while the proofs of Propositions 2.2 and 2.3 are detailed in Section 3.

Remark 2.6. The above approach allows us in fact to recover an explicit formula to compute Ow.T / in
terms of the observations. Namely, for � 2 R with j�j> L=.2T /, formula (2-7) yields

Ow.T; �/D

Z T

0

r
T

t

�
�@xu.t;�L/e

{ �LT
t C @xu.t; L/e

�{ �LT
t

�
e�.�

2T 2�L
2

4
/. 1
t
� 1
T
/ dt: (2-22)

On the other hand, combining the formula (2-7) and Remark 3.2 allowing us to get an explicit expression
under the assumptions of Proposition 2.3, we get: for all ˛�>˛>L=.2T /, for all � 2R with j�j<L=.2T /,

Ow.T;�/D�

Z T

0

r
T

t
@xu.t;�L/

1

2{�

Z
˛

eL˛�.�.�=˛/��.�=˛//

���
e{
�LT
t e�.�

2T 2�L
2

4
/. 1
t
� 1
T
/ d� dt

C

Z T

0

r
T

t
@xu.t;L/

1

2{�

Z
˛

eL˛�.�.�=˛/��.�=˛//

���
e�{

�LT
t e�.�

2T 2�L
2

4
/. 1
t
� 1
T
/ d� dt; (2-23)

where � is a holomorphic function on O1 such that<.�.�//D'.�/Cj=.�/j for all � 2O1 (see Section 3B2
for the existence of such function �), and ˛ is the union of the two connected components of @O˛
oriented counterclockwise. But this formula does not seem easy to deal with as the kernels

K�.t; �/D
1

2{�

Z
˛

eL˛�.�.�=˛/��.�=˛//

���
e˙{

�LT
t e�.�

2T 2�L
2

4
/. 1
t
� 1
T
/ d�; .t; �/2.0;T /�

�
�
L

2T
;
L

2T

�
;

are difficult to estimate directly.

3. Proof of Theorem 1.1: intermediate results

3A. Proof of Proposition 2.2. Let w be as in Proposition 2.2. Then w satisfies (2-5). When taking its
Fourier transform in the space variable, we easily check that

Ow.t; �/D

Z
R

w.t; x/e�{�x dx; .t; �/ 2 Œ0; T ��R;
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solves the equation8<:@t Ow�
�

t
@� Ow�

1

2t
wC�2 Ow�

L2

4t2
Ow D @xu.t; L/e

�{�L�@xu.t;�L/e
{�L; .t; �/ 2 .0;1/�R;

Ow.0; �/D 0; � 2 R:

(3-1)

We are thus back to the study of a transport equation. For each �0 2 R, we therefore introduce the
characteristics �.t; �0/ reaching �0 at time T ,

d�

dt
.t; �0/D�

�.t; �0/

t
; t 2 .0; T �; �.T; �0/D �0; (3-2)

which is explicitly given by

�.t; �0/D
�0T

t
; t 2 .0; T �:

We can thus write, for all t 2 .0; T �,

d

dt

�
Ow

�
t;
�0T

t

��
C

�
1

t2

�
�20T

2
�
L2

4

�
�
1

2t

�
Ow

�
t;
�0T

t

�
D @xu.t; L/e

�{
�0LT

t � @xu.t;�L/e
{
�0LT

t :

This yields the formula

d

dt

�
Ow

�
t;
�0T

t

�
t�

1
2 e�.�

2
0T

2�L
2

4
/=t
�
D
�
@xu.t; L/e

�{
�0LT

t � @xu.t;�L/e
{
�0LT

t

�
t�

1
2 e�.�

2
0T

2�L
2

4
/=t :

For any � > 0, we can integrate this formula between � and T to get

Ow.T; �0/T
1
2 e�.�

2
0T

2�L
2

4
/=T
� Ow.�; �0/�

1
2 e�.�

2
0T

2�L
2

4
/=�

D

Z T

�

t�
1
2

�
@xu.t; L/e

�{
�0LT

t � @xu.t;�L/e
{
�0LT

t

�
e�.�

2
0T

2�L
2

4
/=t dt:

It is not difficult to check that for �0 2R with j�0j>L=.2T /, the integral on the right-hand side converges
when � goes to zero, and

lim
�!0

Ow.�; �0/�
� 1
2 e�.�

2
0T

2�L
2

4
/=�
D 0:

Therefore, provided �0 2 R satisfies j�0j>L=.2T /, one gets the formula

Ow.T; �0/D

Z T

0

r
T

t

�
@xu.t; L/e

�{
L�0T

t � @xu.t;�L/e
{
L�0T

t

�
e�.�

2
0T

2�L
2

4
/. 1
t
� 1
T
/ dt: (3-3)

This formula coincides with the one in (2-7) for �0 2 CLC=2T \R (here, we use the notation LC to denote
any constant strictly larger than L). As Ow.T; � / is holomorphic on C, we only have to check that the
right-hand side of formula (3-3) can be extended holomorphically to CLC=2T . In fact, writing � D aC {b
with .a; b/ 2 R2, the right-hand side of (3-3) can be extended holomorphically in the domain in which8̂<̂

:
<

�
C{�LT �

�
�2T 2�

L2

4

��
D�bLT �

�
.a2� b2/T 2�

L2

4

�
< 0;

<

�
�{�LT �

�
�2T 2�

L2

4

��
DCbLT �

�
.a2� b2/T 2�

L2

4

�
< 0;
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which is equivalent to

jaj> jbjC
L

2T
;

i.e., � 2 CLC=.2T /. We have thus proved that for all � 2 CLC=.2T /, Ow.T; �/ is given by the formula (2-7).
In fact, by continuity, this formula also holds for � 2 CL=2T .

In order to deduce (2-9), we start from the formula (2-7) and we use a Cauchy–Schwarz estimate: for
� 2 C˛ with ˛ > L=.2T /,

j Ow.T;�/j6
p
T k@xu.t;L/kL2.0;T /

t� 12 exp
�
�
i�LT

t
�

�
�2T 2�

L2

4

��
1

t
�
1

T

��
L2.0;T /

C
p
T k@xu.t;�L/kL2.0;T /

t� 12 exp
�
C
i�LT

t
�

�
�2T 2�

L2

4

��
1

t
�
1

T

��
L2.0;T /

: (3-4)

Writing � 2 C˛ for ˛ > L=.2T / as � D aC {b with .a; b/ 2 R2 and using the fact that

<

�
�{�LT �

�
�2T 2�

L2

4

��
6 jbjLT �

�
.a2� b2/T 2�

L2

4

�
6 �T 2

�
a2�

�
jbjC

L

2T

�2�
6 �T 2

�
jaj �

�
jbjC

L

2T

���
jajC jbjC

L

2T

�
6 �

LT

2

�
˛�

L

2T

�
;

we have the estimates, for s 2 f�1; 1g,t� 12 exp
�
s
{�LT

t
�

�
�2T 2�

L2

4

��
1

t
�
1

T

��
L2.0;T /

6
t� 12 exp

�
jbjLC

�
jbjLT �

�
.a2� b2/T 2�

L2

4

��
1

t
�
1

T

���
L2.0;T /

6 ejbjL
t� 12 exp

�
�
LT

2

�̨
�
L

2T

��
1

t
�
1

T

��
L2.0;T /

:

Now, doing the change of variable �D LT
�
˛� L

2T

��
1
t
�
1
T

�
, we easily get, for all � 2 C˛,t� 12 exp

�
�
LT

2

�
˛�

L

2T

��
1

t
�
1

T

��2
L2.0;T /

D

Z 1
0

e��
d�

�CL.˛�L=.2T //

6
1

L.˛�L=.2T //
:

Combining (3-4) and this last estimate, we easily conclude estimate (2-9).

3B. Proof of Proposition 2.3. We shall start the proof of Proposition 2.3 by proving the existence of a
function Q' satisfying (2-12), and we will then explain how it can be used to derive the bound in (2-14).
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Figure 2. Approximation of Q' solving (3-5), obtained by a finite-element approach
(using FreeFem++ [Hecht 2012]).

Notation. In the following arguments, to avoid ambiguities, we will write differently complex sets and
their identification as a part of R2; for instance we write O1 D f� 2 C W j<.�/j< j=.�/jC 1g and zO1 D
f.a; b/2R2 W jaj< jbjC1g as in Proposition 2.3. To be consistent with this notation, we will also distinguish
functions of the complex variable � from the corresponding ones considered as functions of the real
variables .a; b/ using a tilde notation for the function viewed as depending on real variables, as in (2-13).

3B1. Existence and uniqueness of a function Q' satisfying (2-12). The first remark is that the uniqueness
of a function Q' satisfying (2-12) is rather easy to prove. Indeed, if two functions Q'1 and Q'2 satisfy (2-12),
then their difference Q'2� Q'1 is harmonic in O1 and vanishes on @ zO1 as well as at infinity. Therefore, the
minimum and maximum of Q'2� Q'1 is zero, and Q'1 and Q'2 coincide.

Thus, we will focus on the existence of a function Q' as in (2-12). In fact, by uniqueness, we see
that necessarily Q'.a; b/ D Q'.a; jbj/ for all .a; b/ 2 O1. We will thus only look for a solution Q' in
zOC1 D

zO1\ .R�R�
C
/ of the problem8<:

� Q' D 0 in zOC1 ;
Q' D 0 on @ zOC1 n .�1; 1/;
@b Q'.a; 0/D�1 for a 2 .�1; 1/;

(3-5)

with the condition at infinity

lim
b!1

sup
a2.�jbj�1;jbjC1/

j Q'.a; b/j D 0: (3-6)

Let us introduce
�` D f� 2 C W =.�/ > 0 and �<.�/D 1C=.�/g;

�r WD f� 2 C W =.�/ > 0 and <.�/D 1C=.�/g;

�b WD f� 2 C W .<.�/;=.�// 2 Œ�1; 1�� f0gg;

the three components of the boundary of OC1 D O1\f=.�/ > 0g.
Our goal is to show the existence of a function Q' satisfying (3-5). In order to do so, we will rely on

two Schwarz–Christoffel conformal mappings [Henrici 1974, Chapter 5.12].
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The first one, F 3
4

, is defined for all � 2 CC D f� 2 C W =.�/> 0g by

F 3
4
.�/D

2

K 3
4

Z �

�1

.1� z2/�
1
4 dz� 1; with K 3

4
D

Z 1

�1

.1� x2/�
1
4 dx D

p
�
�
�
3
4

�
�
�
5
4

� ;
where the path integration is arbitrary in CC.

The map F 3
4

conformally maps CC into OC1 , and satisfies the properties

F 3
4
.�1/D�1; F 3

4
.0/D 0; F 3

4
.1/D 1;

and
F 3
4
..�1;�1//D �`; F 3

4
..�1; 1//D �b; F 3

4
..1;1//D �r ; F 3

4
.{RC/D {RC:

The second conformal mapping we will use is defined, for any � 2 CC, by

F 1
2
.�/D

2

�
arcsin.�/D 2

�

Z �

�1

.1� z2/�
1
2 dz� 1;

which conformally maps CC into the closure of the half strip SC1 D f„DAC {B WA 2 .�1; 1/; B > 0g

with the properties
F 1
2
.�1/D�1; F 1

2
.0/D 0; F 1

2
.1/D 1;

and

F 1
2
..�1;�1�/D�1C {RC; F 1

2
..�1; 1//D .�1; 1/; F 1

2
.Œ1;1//D 1C {RC; F 1

2
.{RC/D {RC:

Finally, we define the conformal mapping

F D F 1
2
ıF�13

4

;

which maps OC1 into SC1 .
For any � D aC {b 2 OC1 , we define „ D AC {B D F.�/. Using a standard computation from

conformal transplantation [Henrici 1974, Chapter 5.6], we see that Q' solves (3-5) in zOC1 if and only
if ẑ given by ẑ .A;B/ D Q'.a; b/ for AC {B D F.aC {b/ solves the following problem posed in the
half-strip zSC1 : 8̂̂<̂

:̂
�A;B ẑ D 0 for A 2 .�1; 1/; B > 0;
ẑ .�1; B/D ẑ .1; B/D 0 for B > 0;

@B ẑ .A; 0/D�
�

K 3
4

p
cos
�
�
2
A
�

for A 2 .�1; 1/:

(3-7)

If the first two equations are standard, the last one deserves additional details. In fact, it comes from the
identity [Henrici 1974, Theorem 5.6a]

grd� '.�/D grd„ˆ.F.�//F 0.�/; (3-8)

applied to � D a 2 .�1; 1/, (implying F.�/ D A 2 .�1; 1/), where grd is the complex gradient: for
� D aC {b, grd� '.�/ D @a Q'.a; b/C { @b Q'.a; b/ and for „ D AC {B , grd„ˆ.„/ D @A ẑ .A;B/C
{ @B ẑ .A;B/.
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We therefore have to compute F 0.�/D .F 1
2
ıF�13

4

/0.�/D F 01
2

.F�13
4

.�//.F�13
4

/0.�/. To do so, let us
define � D F�13

4

.�/ 2 CC. By definition,

F 01
2

.F�13
4

.�//D F 01
2

.�/D
2

�

1p
1� �2

;

whereas

.F�13
4

/0.�/D .F�13
4

/0.F 3
4
.�//D

1

F 03
4

.�/
D

K 3
4

2

4

q
1� �2:

Therefore,

F 0.�/D
K 3
4

�

1
4
p
1� �2

;

with � D F�13
4

.�/. In particular, for � D a 2 .�1; 1/, we have � 2 .�1; 1/ and therefore F 0.�/ 2 R and

@B ẑ .A; 0/D @b Q'.a; 0/
1

F 0.a/
D�

�

K 3
4

4
p
1� �2; with � D F�13

4

.a/:

To conclude, we just note that � D F�11
2

.A/ if and only if � D sin.A�=2/, and the third identity in (3-7)
follows.

Problem (3-7) has the advantage of being explicitly solvable. Indeed, as ẑ is harmonic in .�1; 1/�
.0;1/, and satisfies ẑ .�1; B/D ẑ .1; B/D 0 for all B > 0, it necessarily has the decomposition

ẑ .A;B/D
X
k>1

.˛ke
�k �

2
B
C ake

k �
2
B/ sin

�
k �
2
.AC 1/

�
; .A;B/ 2 zSC1 :

Recalling condition (3-6) on Q', we wish to have ẑ going to zero as B!1. We thus choose ak D 0 for
all k > 1, so that ẑ can be written as

ẑ .A;B/D
X
k>1

˛ke
�k �

2
B sin

�
k �
2
.AC 1/

�
; .A;B/ 2 zSC1 :

But the boundary condition on B D 0 is equivalent to

�

2

X
k>1

k˛k sin
�
k �
2
.AC 1/

�
D

�

K 3
4

p
cos
�
�
2
A
�
;

which explicitly yields the coefficients ˛k:

for all k 2 N; ˛k D
2

k

1

K 3
4

Z 1

�1

sin
�
k �
2
.AC 1/

�p
cos
�
�
2
A
�
dA:

As
p

cos.A�=2/ is an even function and sin.k�.AC 1/=2/ is an odd function for all even k, we have
˛k D 0 for all even k. On the other hand, we have for any n 2 N, see [Gradshteyn and Ryzhik 2007,
equation 3.631.9],Z 1

�1

sin
�
.2nC1/�

2
.AC1/

�p
cos
�
�
2
A
�
dAD .�1/n

Z 1

�1

cos
�
.2nC1/�

2
A
�p

cos
�
�
2
A
�
dA

D .�1/n
4

�

Z �
2

0

cos..2nC1/t/
p

cos.t/ dt D
1

2
p
�

�
�
nC1

4

�
�
�
nC7

4

� ;
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where �. � / stands for the Gamma function, so in the end we obtain

˛2nC1 D
1

�

1

2nC 1

�
�
5
4

�
�
�
3
4

� ��nC 1
4

�
�
�
nC 7

4

� ;
which can be slightly simplified using that �

�
5
4

�
D �

�
1
4

�
=4 and �

�
3
4

�
D
p
2�=�

�
1
4

�
, giving

˛2nC1 D
�
�
1
4

�2
4
p
2�2

1

.2nC 1/

�
�
nC 1

4

�
�
�
nC 7

4

� :
So finally, we have

ẑ .A;B/D
�
�
1
4

�2
4
p
2�2

X
n2N

1

.2nC 1/

�
�
nC 1

4

�
�
�
nC 7

4

�e�.2nC1/�2 B sin
�
.2nC1/�

2
.AC1/

�
; .A;B/2SC1 ; (3-9)

and

ẑ .0; 0/D
�
�
1
4

�2
4
p
2�2

X
n2N

.�1/n

.2nC 1/

�
�
nC 1

4

�
�
�
nC 7

4

� : (3-10)

Note that, according to [Lebedev 1972, (1.4.25)],

1

2nC 1

�
�
nC 1

4

�
�
�
nC 7

4

� '
n!1

1

2n
5
2

I

hence the above series are well-defined. In particular, the identity (3-9) can be understood pointwise and
ẑ . � ; B/ goes to zero as B!1:

sup
A2.�1;1/

fj ẑ .A;B/jC j@A ẑ .A;B/jg6 C exp
�
�
�B

2

�
; B > 0: (3-11)

Let us also note that, because ẑ .0; 0/ is defined through a converging alternating series, we have

ẑ .0; 0/ <
�
�
1
4

�2
4
p
2�2

2X
nD0

.�1/n

.2nC 1/

�
�
nC 1

4

�
�
�
nC 7

4

� < 9
10
:

Computing the 100th partial sum of the series using Octave [Eaton et al. 2014], we obtain

ẑ .0; 0/� 0:893204:

A different expression for ẑ .0; 0/ is

ẑ .0; 0/D
2

�

R �
2

0 ln
�
cot
�
t
2

��p
cos.t/ dtR �

2

0

p
cos.t/ dt

; (3-12)

which easily comes from the equality ẑ .0; 0/D
P
n2N.�1/

n˛2nC1, the fact that

˛2nC1 D .�1/
n 8

.2nC 1/�

1

K 3
4

Z �
2

0

cos..2nC 1/t/
p

cos.t/ dt;
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the definition of K 3
4

and the identity, see [Gradshteyn and Ryzhik 2007, identity 1.442.2 p. 46],X
n2N

cos..2nC 1/t/
2nC 1

D
1
2

ln
�
cot
�
t
2

��
:

Note in particular that under the form (3-12), one immediately checks that

ẑ .0; 0/ > 0: (3-13)

In agreement with Figure 2, we then show that the maximum of ẑ is attained at .A;B/D .0; 0/. We first
note that the function ẑ given by (3-9) is positive in the strip zSC1 . Indeed, since ẑ is harmonic in the
half strip zSC1 and is not constant, its minimum is attained at the boundary zSC1 or at infinity [Gilbarg and
Trudinger 1998, Lemma 3.4, Theorem 3.5]. The boundary conditions on @ zSC1 and the behavior of ẑ

as B!1 in (3-11) implies that the minimum value of ẑ is 0 and is attained on the lateral boundaries
f�1; 1g�RC of the half strip. Consequently, the function ẑ is positive in zSC1 , and its minimal value is 0.

Besides, as ẑ vanishes on the lateral boundaries f�1; 1g �RC of the half strip, @A ẑ .1; � / is strictly
negative by the Hopf maximum principle [Protter and Weinberger 1984, Chapter 2, Theorem 7]. We then
consider the function ẑA D @A ẑ . Formula (3-9) easily yields that ẑA.0; B/D 0 for B > 0, so that ẑA
satisfies 8̂̂̂̂

<̂̂
ˆ̂̂̂:

� ẑA D 0 in zSC1 \fA > 0g;
ẑ
A.0; B/D 0 for B > 0;
ẑ
A.1; B/ < 0 for B > 0;
@B ẑA.A; 0/> 0 for A 2 .0; 1/;
limjBj!1 supA2.0;1/ j ẑA.A;B/j D 0:

It easily follows that the maximum of ẑA is necessarily nonpositive in zSC1 \fA > 0g by the application
of the maximum principle.

Finally, as ẑ is harmonic in the half-strip zSC1 and is strictly positive in .0; 0/, see (3-13), the maximum
of ẑ on the half strip zSC1 is necessarily attained on the boundary of the half-strip or at infinity, and therefore
on .�1; 1/� f0g according to the boundary conditions satisfied by ẑ in (3-7) and the conditions (3-11)
as B!1. Now, @A ẑ is nonpositive in zSC1 \fA > 0g and ẑ .A;B/D ẑ .jAj; B/ in the half-strip zSC1
according to (3-9), so the maximum of ẑ is necessarily attained in .A;B/D .0; 0/.

We then come back to the problem (3-5)–(3-6) and check that the function Q' given by

Q'.a; b/D ẑ .A;B/ for AC {B D F.aC {b/; .a; b/ 2 zOC1 ; (3-14)

with ẑ as in (3-9), satisfies (3-5)–(3-6).
By construction, Q' automatically satisfies (3-5) and its maximum is attained in .a; b/ D .0; 0/ and

takes value Q'.0; 0/D ẑ .0; 0/. We thus only have to check the condition (3-6). In order to do that, let us
introduce the real functions zAD zA.a; b/ and zB D zB.a; b/ given for .a; b/ 2 zOC1 by

F.aC {b/D zA.a; b/C { zB.a; b/; (3-15)
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and let us check that
lim
b!1

inf
jaj<bC1

zB.a; b/DC1: (3-16)

Indeed, if it were not the case, we could find real sequences .an; bn/n2N with

lim
n!1

bn DC1; for all n 2 N; janj6 bnC 1; and sup
n

zB.an; bn/ <1: (3-17)

Then, if we set �n D F�13
4

.anC {bn/, by construction,

F 1
2
.�n/D zA.an; bn/C { zB.an; bn/:

Therefore, according to the definition of F 1
2

,

�n D sin
�
�
2
. zA.an; bn/C { zB.an; bn//

�
;

so that the sequence .�n/ is uniformly bounded in C as n!1. Then the sequence .an; bn/ is given by
anC {bn D F 3

4
.�n/. But F 3

4
maps bounded sets of C into bounded sets of C, so this is in contradiction

with (3-17), and the property (3-16) holds.
We can thus use (3-11) to get that for all b > 0,

sup
jaj<bC1

fj Q'.a; b/jg6 C exp
�
�
�
2

inf
jaj<bC1

zB.a; b/
�
;

which, according to (3-16), implies (3-6).

Remark 3.1. Another approach to obtain information on Q', the solution of (3-5), is through integral
equations. More precisely, for ..a; b/; .a0; b0// 2 . zOC1 /

2, we define G as

zG.a; b; a0; b0/D
1

4�
ln
� �

.a� a0/
2C .b� b0/

2
��
.aC a0/

2C .bC b0C 2/
2
��

.aC b0C 1/2C .bC a0C 1/2
��
.a� b0� 1/2C .a0� b� 1/2

��:
It is readily verified that for any .a0; b0/ 2 zOC1 , zG. � ; � ; a0; b0/ satisfies�

�a;b zG. � ; � ; a0; b0/D ı.a0;b0/ in zOC1 ;
zG.a; b; a0; b0/D 0 for .a; b/ such that jaj D jbjC 1:

Indeed, this comes from the fact that zG is the suitable combination of the fundamental solution of the
Laplace operator in the sectors f.a; b/ 2 R2 W b D jaj � 1g and f.a; b/ 2 R2 W b D 1� jajg.

Then, standard computations show that Q' is a solution of (3-5) if and only if it satisfies the integral
equation

Q'.a0; b0/D�

Z 1

�1

@b zG.a; 0; a0; b0/ Q'.a; 0/ daC
Z 1

�1

zG.a; 0; a0; b0/ da for all .a0; b0/2 zOC1 : (3-18)

We then introduce zG defined by

zG .a; a0; b0/D�@b zG.a; 0; a0; b0/�
1

2�

b0

b20 C .a� a0/
2
:
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Figure 3. The solid line shows Q'.a0; 0/ for a0 2 .�1; 1/, obtained by discretization of
(3-19). The dashed line shows ẑ .0; 0/D Q'.0; 0/.

It is easily seen that for any a0 2 .�1; 1/,

lim
b0!0

Z 1

�1

zG .a; a0; b0/ Q'.a; 0/ daD

Z 1

�1

zG .a; a0; 0/ Q'.a; 0/ da;

lim
b0!0

Z 1

�1

zG.a; 0; a0; b0/ daD
Z 1

�1

zG.a; 0; a0; 0/ da;

whereas

lim
b0!0

1

2�

Z 1

�1

b0

b20 C .a� a0/
2
Q'.a; 0/ daD 1

2
Q'.a0; 0/:

Therefore, choosing a0 2 .�1; 1/ and taking the limit b0! 0 in (3-18) leads to the integral equation

1
2
Q'.a0; 0/D

Z 1

�1

zG .a; a0; 0/ Q'.a; 0/ daC

Z 1

�1

zG.a; 0; a0; 0/ da: (3-19)

Discretizing (3-19), we can obtain a good approximation of Q'.a0; 0/ for a0 2 .�1; 1/ (see Figure 3).

3B2. Phragmén–Lindelöf principle. With Q' as in (2-12), the function .a; b/ 7! Q'.a; b/Cjbj is harmonic
in zO1, and it is therefore the real part of some holomorphic function � in O1:

for all .a; b/ 2 zO1; <.�.aC {b//D Q'.a; b/Cjbj;

or, equivalently, for all � 2 O1, <.�.�//D '.�/Cj=.�/j.
For each ˛� > ˛, we consider the function g˛� defined for � 2 O˛ by

g˛�.�/D f .�/ exp
�
�L˛��

�
�

˛

��
: (3-20)

By construction, g˛� is holomorphic in O˛ and satisfies

for all � 2 @O˛; jg˛�.�/j6 C0; and lim
j=.�/j!1

�
sup

j<.�/j<j=.�/jC˛

jg˛�.�/j
�
D 0:
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Therefore, g˛� attains its maximum on @O˛, so that

for all � 2 O˛; jf .�/j6 C0 exp
�
˛�

˛
j=.�/jL

�
exp

�
L˛�'

�
�

˛

��
:

Taking the limit ˛�! ˛, we immediately have

for all � 2 O˛; jf .�/j6 C0 exp.j=.�/jL/ exp
�
L˛'

�
�

˛

��
; (3-21)

that is, (2-14).

Remark 3.2. Let us remark that we can obtain from the above proof an explicit formula for f . Indeed, for
˛� > ˛> L=.2T /, we can use the Cauchy formula for the function g˛� in (3-20) on the contour given by

˛;R D @.O˛ \f=.�/ < Rg/ .with R > 0/

oriented in a counterclockwise manner, which yields, for all � 2 R with j�j<L=.2T /,

g˛�.�/D
1

2{�

Z
˛;R

g˛�.�/

� � �
d�:

Now, due to the decay of g˛� at infinity, one can pass to the limit in the above formula as R!1: for
all � 2 R with j�j<L=.2T /,

g˛�.�/D
1

2{�

Z
˛

g˛�.�/

� � �
d�;

where ˛ is the union of the two connected components of @O˛ oriented counterclockwise. Recalling
the definition of g˛� , we end up with the following formula: for all � 2 R with j�j<L=.2T /,

f .�/D
1

2{�

Z
˛

eL˛�.�.�=˛/��.�=˛//
f .�/

� � �
d�: (3-22)

4. Further comments

4A. Higher-dimensional settings. The method developed above applies also to the cost of observability
of the heat equation in multidimensional balls. More precisely, we consider the following heat equation, set
in the ball of radius L> 0 of Rd (d > 1), denoted by BL in the following, and in the time interval .0; T /:8<:

@tu��xuD 0 in .0; T /�BL;
u.t; x/D 0 in .0; T /� @BL;
u.0; x/D u0.x/ in BL;

(4-1)

where the initial datum u0 belongs to H 1
0 .BL/. In that setting, we have the following result:

Theorem 4.1. Setting K0 as in Theorem 1.1, for any K >K0, there exists a constant C > 0 such that for
all T 2 .0; 1�, for all solutions u of (4-1) with initial datum u0 2H

1
0 .BL/,u.T / exp

�
jxj2

4T

�
L2.BL/

6 C exp
�
KL2

T

�
k@�ukL2..0;T /�@BL/: (4-2)
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Here and in the following, j � j denotes the euclidean norm in Rd. The proof of Theorem 4.1 closely
follows the one of Theorem 1.1; therefore we only sketch its proof, explaining the main differences with
the proof of Theorem 1.1.

Sketch of the proof of Theorem 4.1. We start by considering a smooth solution u of (4-1), and define

z.t; x/D u.t; x/ exp
�
jxj2�L2

4t

�
; .t; x/ 2 .0; T /�BL;

which satisfies 8̂̂<̂
:̂
@tzC

x

t
� rxzC

d

2t
z��xz�

L2

4t2
z D 0 in .0;1/�BL;

z.t; x/D 0 in .0; T /� @BL;

z.0; x/D 0 in BL;

Proposition A.1 with �D BL and g � 0 implies directly the following estimate for z:Z
BL
jrxz.T; x/j

2 dx�
L2

4T 2

Z
BL
jz.T; x/j2 dx 6

L

T 2

Z T

0

Z
@BL

t jrxz.t; x/ � �j
2 ds.x/ ds: (4-3)

We define w as the extension of z by 0 outside BL: w satisfies the equations(
@twC

x

t
� rxwC

d

2t
w��xw�

L2

4t
w Drxu.t; x/ � �ı@BL in .0;1/�Rd ;

w.0; x/D 0; x 2 Rd :

Thus, its Fourier transform, defined for .t; �/ 2 .0; T /�Cd by

Ow.t; �/D

Z
Rd
w.t; x/e�{��x dx

satisfies8<:@t Ow�
�

t
�r� Ow�

d

2t
OwC�2 Ow�

L2

4t2
Ow D

Z
@BL
rxu.t; x/��e

�{��x ds.x/; .t; �/ 2 .0;1/�Rd ;

Ow.0; �/D 0; � 2 Rd :

(4-4)

As in the one-dimensional case, (4-3) gives a high-frequency (j�j > L=.2T /) L2-estimate of w.T; � /
depending on the observation and the low-frequency (j�j6 L=.2T /) L2-norm of w.T; � /, on which we
focus from now. To do so, much as in Section 3A, we solve the transport equation (4-4), and obtain, for
�0 2 Rd such that j�0j>L=.2T /,

Ow.T; �0/D

Z T

0

�
T

t

�d
2
Z
@BL
rxu.t; x/ � �e

�{
x��0T

t
�.�20T

2�L
2

4
/. 1
t
� 1
T
/ ds.x/ dt; (4-5)

with �20 D �0 � �0.
Once here, we consider �0 D .�1; Q�/, with Q� 2 Rd�1 fixed, and �1 D aC {b, a; b 2 R, and define

f .�1/D Ow.T; �1; Q�/, which is an entire function satisfying (2-11). Besides, with computations similar to
those in Section 3A, it is easy to obtain that for all ˛ > L2=.2T /, there exists C˛.T / > 0, which may
blow up polynomially in T as T ! 0 (contrarily to what happens in the one-dimensional setting, the
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constant C˛.T / may now blow up as T ! 0, but only polynomially in T, so that it will not significantly
affect the cost of observability in small times in (4-2), which blows up as an exponential of 1=T as
T ! 0), such that for all �1 2 C˛ as in (2-6), we have

jf .�1/j6 C˛ej=.�1/jLk@�ukL2..0;T /�@BL/:

From that, we end the proof of Theorem 4.1 exactly as in the one-dimensional case, with the use of
Proposition 2.3. �

Actually, the method developed above works not only for balls, but also for any bounded domain
�� Rd. More precisely:

Theorem 4.2. Let � be a smooth bounded domain of Rd. If we set

L� D inf
x2�

sup
y2@�

jx�yj;

and we choose Nx 2� such that
sup
y2@�

j Nx�yj D L�;

then for any K >K0, there exists C > 0 such that any smooth solution u of8<:
@tu��xuD 0 in .0; T /��;
u.t; x/D 0 in .0; T /� @�;
u.0; x/D u0.x/ in �;

(4-6)

satisfying u.T / exp
�
jx� Nxj2

4T

�
L2.�/

6 C exp
�
KL2�
T

�
k@�ukL2..0;T /�@�/:

Note that this is a geometrical setting in which Corollary 1.3 applies but yields a different estimate on
the cost of observability. Indeed, when the observation is done on the whole boundary, one easily checks
that the choice S0 D SC� , where

S� D supflength of segments included in �g;

is suitable for the application of Corollary 1.3. In particular, when � is convex, L� 6 S� 6 2L� and
Theorem 4.2 always yields at least the estimate given by Corollary 1.3 when the observation is done on
the whole boundary of �, and a better one in general (as in the case of a ball discussed in Theorem 4.1).

Remark 4.3. The above discussion, and Theorem 4.2 in particular, might suggest that the cost of
observability in small times is linked only to the maximal distance to the control set. This is not the case,
as it is strongly underlined by [Laurent and Léautaud 2018]. There, among other results, an analysis
of the observability constant C0.T;B.0; 1/;B.0; r// for the heat equation is done when the domain of
interest is �D B.0; 1/ � R2, the unit ball of the plane, and the observation set is B.0; r/. To be more
precise, C0.T;B.0; 1/;B.0; r// is the best constant in the following estimate: for any solution u of (4-6)
with �D B.0; 1/ with initial datum u0 2H

1
0 .�/,

ku.T /kL2.�/ 6 C0.T;B.0; 1/;B.0; r//kukL2..0;T /�B.0;r///:
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The work [Laurent and Léautaud 2018] then shows the following result: there exist C > 0 and r0 < 1
such that for all r 2 .0; r0/

lim inf
T!0

T log.C0.T;B.0; 1/;B.0; r///> C log.r/2: (4-7)

This shows that the behavior of the cost of observability in small times is in fact strongly linked to
the geometry under consideration. Indeed, Theorem 4.2 in fact corresponds to a geometrical setting
in which the wave equation is observable in small times, while the result (4-7) proved in [Laurent and
Léautaud 2018] focuses on a case in which the geometric control condition for the observability of the
wave equation fails due to whispering gallery phenomena.

4B. Tensorized equations. Another application of our method concerns the cost of observability of the
heat equation on a tensorized domain. More precisely, we consider the heat equation set in a tensorized
spatial domain �D�x ��y , and want to know the cost of observability in small time when the solution
is observed on @�x ��y . Note that the answer is already known: the cost is the same as the one for the
heat equation set on �x only, when the observation is done on the whole boundary @�x [Miller 2005,
Theorem 1.5]. Our purpose is therefore just to underline that our approach also applies in that context
and allows us to retrieve easily this result.

To fix ideas, we focus on the case �x D .�L;L/ (when �x is a multidimensional domain, similar
arguments can be developed, under appropriate geometric conditions, by using Theorem 4.2 instead of
Theorem 1.1). Hence we are interested in the following heat equation, set in the domain�D .�L;L/��y ,
with L> 0 and �y a smooth bounded domain of Rdy, in some time interval .0; T /, T > 0:8̂̂̂<̂

ˆ̂:
@tu� @

2
xu��yuD 0 for .t; x; y/ 2 .0; T /� .�L;L/��y ;

u.t; L; y/D u.t;�L; y/D 0 for .t; y/ 2 .0; T /��y ;
u.t; x; y/D 0 for .t; x; y/ 2 .0; T /� .�L;L/� @�y ;
u.0; x; y/D u0.x; y/ in .�L;L/��y :

(4-8)

As usual, the initial datum u0 belongs to H 1
0 ..�L;L/��y/. We have the following:

Theorem 4.4. Setting K0 as in Theorem 1.1, for any K >K0, there exists a constant C > 0 such that for
all T 2 .0; 1�, for all solutions u of (4-8),u.T; x; y/ exp

�
x2

4T

�
L2..�L;L/��y/

6 C exp
�
KL2

T

��
k@xu.t;�L; y/kL2..0;T /��y/Ck@xu.t; L; y/kL2..0;T /��y/

�
: (4-9)

Sketch of the proof of Theorem 4.4. Let us denote by .vn; �2n/ the family of normalized eigenfunctions
and eigenvalues of the Dirichlet–Laplace operator set in �y , that is,8<:

��yvn D �
2
nvn in �y ;

vn D 0 on @�y ;
kvnkL2.�y/ D 1:
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Expanding u, a solution of (4-8), on the L2.�y) Hilbert basis .vn/, that is,

u.t; x; y/D
X
n2N

un.t; x/vn.y/;

we see that each un solves a one-dimensional heat equation with potential �2n set in .0; T /� .�L;L/:8<:
@tun� @

2
xunC�

2
nun D 0 in .0; T /� .�L;L/;

un.t;�L/D un.t; L/D 0 in .0; T /;
un.0; x/D un;0.x/ in .�L;L/;

(4-10)

with

un;0.x/D

Z
�

u0.x; y/ vn.y/ dy:

To prove Theorem 4.4, it is sufficient to prove that each un satisfies the observability inequalityun.T;x/exp
�
x2

4T

�
L2.�L;L/

6C exp
�
KL2

T

��
k@xun.t;�L/kL2.0;T /Ck@xun.t;L/kL2.0;T /

�
; (4-11)

with a constant C independent of n. To do so, we consider Qun D une�
2
nt, which satisfies8<:

@t Qun� @
2
x Qun D 0 in .0; T /� .�L;L/;

Qun.t;�L/D Qun.t; L/D 0 in .0; T /;
Qun.0; x/D un;0.x/ in .�L;L/:

Applying Theorem 1.1, we get Qun.T; x/ exp
�
x2

4T

�
L2.�L;L/

6 C exp
�
KL2

T

��
k@x Qun.t;�L/kL2.0;T /Ck@x Qun.t; L/kL2.0;T /

�
;

which directly gives (4-11) as e�
2
n.t�T / 6 1 for all t 2 .0; T /, and therefore ends the proof. �

4C. Observation from one side of the domain: symmetrization argument. In this section, we are inter-
ested in the cost of observability for the one-dimensional heat equation when observed on one side of the
domain. In other words, for L; T > 0 and u0 2H 1

0 .0; L/, we consider the system8<:
@tu� @

2
xuD 0 in .0; T /� .0; L/;

u.t; 0/D u.t; L/D 0 in .0; T /;
u.0; x/D u0.x/ in .0; L/:

(4-12)

We have the following:

Theorem 4.5. Setting K0 as in Theorem 1.1, for any K >K0, there exists a constant C > 0 such that for
all T 2 .0; 1�, for all solutions u of (4-12) with u0 2H 1

0 .0; L/,u.T / exp
�
x2

4T

�
L2.0;L/

6 C exp
�
KL2

T

�
k@xu.t; L/kL2.0;T /: (4-13)
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Proof. The proof is based on a classical symmetrization argument: for u a solution of (4-12), we define

us.t; x/D

�
u.t; x/ for .t; x/ 2 .0; T /� .0; L/;
�u.t;�x/ for .t; x/ 2 .0; T /� .�L; 0/:

It is readily seen that us satisfies system (1-1). Therefore, Theorem 1.1 givesus.T / exp
�
x2

4T

�
L2.�L;L/

6 C exp
�
KL2

T

��
k@xus.t;�L/kL2.0;T /Ck@xus.t; L/kL2.0;T /

�
:

The result follows easily, as @xus.t;�L/D @xus.t; L/D @xu.t; L/ for all t 2 .0; T /. �

4D. Distributed observations. One is sometimes interested in distributed observations, in which case
the corresponding observability inequality reads

ku.T /kL2.0;L/ 6 C.T;L; a; b/kukL2..0;T /�.a;b// (4-14)

for smooth solutions u of (4-12), where a; b 2 R are such that .a; b/� .0; L/ and a < b.
We claim the following:

Theorem 4.6. Let 06 a < b 6L. Setting K0 as in Theorem 1.1, for any K >K0, there exists a constant
C > 0 such that for all T 2 .0; 1�, for all solutions u of (4-12),

ku.T /kL2.0;L/ 6 C exp
�
K minfa2; .L� b/2g

T

�
kukL2.0;T IH1.a;b//: (4-15)

Proof. As in the proof of Theorem 4.5, we start by symmetrizing the function u, and we call us its
symmetric extension. We then take " > 0 small enough to have aC2" < b and we choose an even cut-off
function � taking value 1 on .�a� "; aC "/ and vanishing for jxj> aC 2". Then the function

z.t; x/D

8<:�.x/ us.t; x/ exp
�
x2� .aC 2"/2

4t

�
for jxj< aC 2";

0 for jxj> aC 2"

satisfies, much as in (2-3),8̂̂̂<̂
ˆ̂:
@tzC

x

t
@xzC

1

2t
z� @2xz�

.aC2"/2

4t2
z D g; .t; x/ 2 .0;1/� .�a� 2"; aC 2"/;

z.t;�a� 2"/D z.t; aC 2"/D 0; t 2 .0;1/;

z.0; x/D 0; x 2 .�a� 2"; aC 2"/;

(4-16)

where

g.t; x/D exp
�
x2� .aC 2"/2

4t

�
.2@x� @xu.t; x/C @xx�u.t; x//:

One can then follow the approach developed in Section 2 (using Proposition A.1 instead of Theorem 2.1
and the fact that @xz.t;�a�2"/D @xz.t; aC2"/D 0) to show that for all K1 >K0, there exists C such
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that for all T 2 .0; 1�,us.T / exp
�
x2

4T

�
L2.�a�2";aC2"/

6 C exp
�
K1.aC 2"/

2

T

�
kgkL2..0;T /�.�a�2";aC2"//:

Using the definition of g, one easily gets

ku.T /kL2.0;aC"/ 6 C exp
�
K1.aC 2"/

2

T

�
kukL2.0;T IH1.a;aC2"//:

Similarly, one can obtain

ku.T /kL2.b�";L/ 6 C exp
�
K1.L� bC 2"/

2

T

�
kukL2.0;T IH1.b�2";b//:

It is straightforward to show that

ku.T /kL2.aC";b�"/ 6 CkukL2.0;T IH1.a;b//;

for instance by looking at v.t; x/ D �.t/ u.t; x/ �0.x/, where � D �.t/ is a smooth function of time
taking value 0 at t D 0 and 1 at t D T , and �0 D �0.x/ taking value 1 on .aC "; b� "/ and vanishing for
x … .a; b/, and doing energy estimates.

Combining the three above estimates, we easily conclude (4-15) by taking K1 2 .K0; K/ and " > 0
small enough. �

Note that the above argument is only based on suitable cut-off arguments. It can therefore be applied
as well in multidimensional settings, provided some geometric assumptions compatible with Theorem 4.2
are satisfied, namely if the distributed observation set is a neighborhood of the whole boundary.

4E. Related uncertainty principles. One key point to obtain Theorem 1.1 is the complex analysis argu-
ment developed in Section 3B, based principally on the Schwarz–Christoffel conformal mapping and the
Phragmén–Lindelöf principle. It is nevertheless possible to develop a purely real analysis argument, but
it only allows us to retrieve the cost of observability for the one-dimensional heat equation known since
[Tenenbaum and Tucsnak 2007]:

Theorem 4.7. For all K > 3
4

, there exists a constant C > 0 such that for all T 2 .0; 1�, all solutions u of
(1-1) with initial datum u0 2H

1
0 .�L;L/ satisfy (1-2).

The proof of Theorem 4.7 is based on the following uncertainty principle result.

Proposition 4.8 [Landau and Pollak 1961; Fuchs 1964]. Let A;B > 0. Let f 2 L2.R/ be supported in
Œ�A;A� and Of its Fourier transform. ThenZ B

�B

j Of .�/j2 d� 6 �0
Z

R

j Of .�/j2 d�; (4-17)

where �0 D �0.AB/ satisfies 0 < �0 < 1 and

�0 D 1� 4
p
�
p
ABe�2AB.1C "AB/; (4-18)

where "AB ! 0 as AB!1.



ON THE COST OF OBSERVABILITY IN SMALL TIMES FOR THE ONE-DIMENSIONAL HEAT EQUATION 1481

Relation (4-17) is a particular case of [Landau and Pollak 1961, Theorem p. 68], whereas the proof of
the asymptotic behavior of �0 can be found in [Fuchs 1964, Theorem 1, p. 319].

Proof of Theorem 4.7. We start from formula (2-7), which we recall: for any �02R such that j�0j>L=.2T /,
we have

Ow.T; �0/D�

Z T

0

r
T

t
@xu.t;�L/e

{
L�0T

t
�.�20T

2�L
2

4
/. 1
t
� 1
T
/ dt

C

Z T

0

r
T

t
@xu.t; L/e

�{
L�0T

t
�.�20T

2�L
2

4
/. 1
t
� 1
T
/ dt:

Therefore, we directly obtain, for �0 2 R with j�0j>L=.2T /,

j Ow.T; �0/j
2 6 T

�
k@xu.t;�L/k

2
L2.0;T /

Ck@xu.t; L/k
2
L2.0;T /

� Z T

0

e
�2T 2.�20�

L2

4T2
/. 1
t
� 1
T
/ dt

t
:

For � > 1, we choose �0 2 R with j�0j> �L=.2T /, which implies

�20 �
L2

4T 2
>
�2� 1

�2
�20

and Z T

0

e
�2T 2.�20�

L2

4T2
/. 1
t
� 1
T
/ dt

t
6
Z T

0

e
�2T 2 �

2�1

�2
�20.

1
t
� 1
T
/ dt

t
6

�2

2T .�2� 1/�20
:

Hence we obtain, for �0 2 R with j�0j> �L=.2T /,

j Ow.T; �0/j
2 6

�2

2.�2� 1/�20

�
k@xu.t;�L/k

2
L2.0;T /

Ck@xu.t; L/k
2
L2.0;T /

�
and Z

j�0j>�
L
2T

j Ow.T; �0/j
2 d�0 6

2T �

.�2� 1/L

�
k@xu.t;�L/k

2
L2.0;T /

Ck@xu.t; L/k
2
L2.0;T /

�
:

Now, from (4-17) applied to f D Ow.T / with AD L, B D �L=.2T / and �0 D �0.�L2=.2T //, we haveZ
R

j Ow.T; �0/j
2 d�0 D

Z
j�0j<�

L
2T

j Ow.T; �0/j
2 d�0C

Z
j�0j>�

L
2T

j Ow.T; �0/j
2 d�0

6 �0
Z

R

j Ow.T; �0/j
2 d�0C

Z
j�0j>�

L
2T

j Ow.T; �0/j
2 d�0;

and thus Z
R

j Ow.T; �0/j
2 d�0 6

1

1��0

Z
j�0j>�

L
2T

j Ow.T; �0/j
2 d�0:

We have therefore obtainedZ L

�L

jw.T;x/j2dxD

Z
R

j Ow.T;�0/j
2d�06

1

1��0

2T �

.�2�1/L

�
k@xu.t;�L/k

2
L2.0;T /

Ck@xu.t;L/k
2
L2.0;T /

�
;

which implies from Proposition 4.8 and (4-18) the existence of a constant C such that for T small enough

kw.T /kL2.�L;L/ 6 Ce�
L2

2T

�
k@xu.t;�L/kL2.0;T /Ck@xu.t; L/kL2.0;T /

�
:

The result of Theorem 4.7 follows from the definition of w. �
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4F. On a possible improvement of Theorem 1.1. As we said in the Introduction, we do not know if the
estimate on the cost of observability in small times given by Theorem 1.1 is sharp or not. In fact, when
looking at the main steps of the proof of Theorem 1.1 given in Section 2, it seems that one step in which
our estimates are not sharp may be the one using Phragmén–Lindelöf principles, i.e., Proposition 2.3.

Indeed, introducing the class

E˛ D ff 2 Hol.O˛/ W f .�/e�j=.�/j 2 L1.O˛/ and for all � 2 @O˛; jf .�/j6 ej=.�/jg;

Proposition 2.3 shows that for all ˛ 2 R�
C

,

sup
f 2E˛

�
sup

x2Œ�˛;˛�

fjf .x/jg
�
6 exp.˛'.0//; (4-19)

where '.0/ is given by (2-15). Besides, this estimate is sharp as we can construct a holomorphic
function � in O1 whose real part coincides with '.�/C j=.�/j given by (2-12)–(2-13) and check that
f�.�/D exp.˛�.�=˛// belongs to E˛ and saturates the estimate (4-19), so that for all ˛ 2 R�

C
,

max
f 2E˛

�
max

x2Œ�˛;˛�
fjf .x/jg

�
D exp.˛'.0//: (4-20)

Now, in our approach (in the case LD 1, which can always be assumed by a scaling argument), we apply
estimate (4-19) to the function f D Ow.T; � /=k Ow.T; �/e�j=.�/jkL1.C˛/, which in fact belongs to a smaller
class

E �˛ D ff 2 Hol.C/ W f .�/e�j=.�/j 2 L1.C/ and for all � 2 C˛; jf .�/j6 ej=.�/jg:

Therefore, our proof requires an estimate on the constant

C �.˛/D sup
f 2E �˛

�
sup

x2Œ�˛;˛�

fjf .x/jg
�

(4-21)

in the asymptotics ˛!1. It is clear that

C �.˛/6 exp.˛'.0//; (4-22)

which is precisely the estimate we use, but there is no evidence to support the idea that this estimate gives
the good asymptotics as ˛!1.

Let us in particular point out that:

� The function f� given above to show that estimate (4-19) is sharp does not belong to the class E �˛ .

� The constant C �.˛/ in (4-21) blows up at least like exp.˛=2/ as ˛!1, as otherwise the proof given
in Section 2 would yield a cost of observability smaller than exp.L2=2T / in small times, which is known
to be false due to [Lissy 2015].

� Looking at the 2-parameter family of functions of the form

fA; .�/D cos.A
p
�2� 2/
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for parameters A 2 Œ0; 1� and  2 Œ0; ˛�, we find that

sup
f 2ffA; g\E �˛

�
sup

x2Œ�˛;˛�

fjf .x/jg
�
D cosh

�
˛

2

�
;

and is achieved when taking AD 1=
p
2 and  D ˛=

p
2, i.e.,

f .�/D cos
�
1
p
2

r
�2�

˛2

2

�
:

This function yields evidence of the fact that

lim inf
˛!1

1

˛
log.C �.˛//> 1

2
:

Let us finally emphasize that if we were able to show that

lim sup
˛!1

1

˛
log.C �.˛//6 1

2
;

the proof given in Section 2 would yield a cost of observability in small times C0.T; L/ satisfying

lim sup
T!0

T log.C0.T; L//6
L2

2
:

Combined with [Lissy 2015], this would give that

lim
T!0

T log.C0.T; L//D
L2

2
:

4G. Uniform controllability of viscous approximations of the transport equation. The problem we
considered in this article is intimately related to the question of uniform controllability of viscous
approximations of the transport equation raised in [Coron and Guerrero 2005]. Namely, for all " > 0, one
considers the following viscous approximation of the transport equation at velocity M 2 R:8̂̂̂<̂

ˆ̂:
@ty"� " @

2
xy"CM @xy" D 0; .t; x/ 2 .0; T /� .0; L/;

y".t; 0/D v".t/; t 2 .0; T /;

y".t; L/D 0; t 2 .0; T /;

y".0; � /D y0.x/; x 2 .0; L/:

(4-23)

For each " > 0, the equation (4-23) is null-controllable in any time T > 0, and the map V";T W y0! v"

which to any y0 2 L2.0; L/ associates the control v" of minimal L2.0; T /-norm is linear. The problem
raised in [Coron and Guerrero 2005] is the following one: give conditions on the time T guaranteeing
that

lim sup
"!0

kV";T kL .L2.0;L/IL2.0;T // <1: (4-24)

It is clear that if jM jT < L, (4-24) cannot happen, as otherwise the convergence of (4-23) as "! 0

would imply the null-controllability of the transport equation in a time which is not enough to make the
characteristics go out of the domain.
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Several conditions on the time T ensuring (4-24) were then proposed in the literature, namely in [Coron
and Guerrero 2005; Glass 2010; Lissy 2012]. In fact, to our knowledge, the best results are the ones
obtained in [Lissy 2012], which we recall now:

Theorem 4.9 [Lissy 2012]. If M ¤ 0 and

jM jT > L.2
p
3C 1� sign.M// .2

p
3� 3:4641/;

where sign.M/D 1 if M > 0 andD�1 if M < 0, we have

lim sup
"!0

kV";T kL .L2.0;L/IL2.0;T // D 0:

These results are based on the knowledge of the cost of observability of the one-dimensional heat
equation in small time obtained in [Tenenbaum and Tucsnak 2007]. Therefore, as Theorem 4.5 improves
the one in that paper, following the proof of [Lissy 2012] immediately improves the known result on the
uniform controllability of the viscous approximations (4-23) of the transport equation:

Theorem 4.10. Let K0 as in (1-5). Then, if M ¤ 0 and

jM jT > L.4
p
K0C 1� sign.M// .4

p
K0 � 3:3385/;

we have
lim sup
"!0

kV";T kL .L2.0;L/IL2.0;T // D 0: (4-25)

As the proof of Theorem 4.10 follows line to line the one of [Lissy 2012], as it is explained in Section 3,
item (i) of that paper, it is left to the reader.

We are currently investigating if one can do better than the combination of the cost of observability of
the one-dimensional heat equation in small times and of the arguments in [Lissy 2012] to obtain better
sufficient conditions on the ratio jM jT=L to guarantee (4-25). We believe that a direct approach following
the strategy in Section 2 could help in improving Theorem 4.10.

Appendix: Carleman-type estimate

We consider the equation8̂̂̂̂
<̂̂
ˆ̂̂̂:
@tz��xzC

1

2t
.2x � rxzC dz/�

L2

4t2
z D g in .0; T /��;

z.t; x/D 0 on .0; T /� @�;

limt!0 kz.t/kL2.�/ D 0;

limt!0 tkrz.t/kL2.�/ D 0;

(A-1)

with T > 0, � a bounded domain of Rd, d > 1,

LD sup
x2�

jxj (A-2)

and
g 2 L2..0; T /��/:
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We then have the following result:

Proposition A.1. Any smooth solution z of (A-1) with g 2 L2..0; T /��/ satisfies the estimateZ
�

�
jrxz.T /j

2
�
L2

4T 2
jz.T /j2

�
dx6

L

T 2

Z T

0

�
t

Z
�C

jrxz.t; x/��j
2 ds.x/

�
dtC

1

T 2

Z T

0

Z
�

t2jgj2 dx dt;

(A-3)
with �C D fx 2 @� W x � � > 0g, and L is given by (A-2).

Proof. We define the spatial operators

Sz D��xz�
L2

4t2
z; Az D

1

2t
.2x � rxzC d z/;

so that z is a solution of (A-1) satisfying

@tzCSzCAz D g in .0; T /��:

Note that S and A respectively correspond to the symmetric and skew-symmetric parts of the operator in
(A-1).

We then consider

D.t/ WD

Z
�

�
jrxz.t; x/j

2
�
L2

4t2
jz.t; x/j2

�
dx D

Z
�

.Sz/.t; x/z.t; x/ dx:

A direct calculation shows that

D0.t/D
L2

2t3

Z
�

jzj2 dxC 2

Z
�

Sz @tz dx

D
L2

2t3

Z
�

jzj2 dx� 2

Z
�

jSzj2 dx� 2

Z
�

SzAz dxC 2

Z
�

Sz g dx:

Furthermore, as A is a skew-symmetric operator, we have

�2

Z
�

Sz Az dx D 2

Z
�

�xz Az dx D
1

t

Z
�

�xz.2x � rxzC d z/ dx:

On one hand, we obviously have Z
�

�xz d z dx D�d

Z
�

jrxzj
2 dx:

On the other hand, we note thatZ
�

�xz 2x � rxz dx D 2

Z
@�

.rxz � �/.x � rxz/ ds.x/� 2

Z
�

rxz � rx.x � rxz/ dx

D 2

Z
@�

.x � �/jrxz � �j
2 ds.x/� 2

Z
�

rxz � rx.x � rxz/ dx:

Here, we have used that as z D 0 on @�, rxz D .rxz � �/� on @�. As

rxz � rx.x � rxz/D jrxzj
2
C
x

2
� rx.jrxzj

2/;
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we haveZ
�

rxz � rx.x � rxz/ dx D

Z
�

jrxzj
2 dxC

Z
�

x

2
� rx.jrxzj

2/ dx

D

Z
�

jrxzj
2 dxC

1

2

Z
@�

.x � �/jrxzj
2 ds.x/�

d

2

Z
�

jrxzj
2 dx

D

Z
�

jrxzj
2 dxC

1

2

Z
@�

.x � �/jrxz � �j
2 ds.x/�

d

2

Z
�

jrxzj
2 dx:

Gathering the above computations, we get

D0.t/C2

Z
�

jSzj2 dx D
L2

2t3

Z
�

jzj2 dx�
2

t

Z
�

jrxzj
2 dxC

1

t

Z
@�

.x��/jrxz��j
2 ds.x/C2

Z
�

Sz g dx

6 �2
t
D.t/C

1

t

Z
@�

.x��/jrxz��j
2 ds.x/C

Z
�

jSzj2 dxC

Z
�

jgj2 dx;

which implies in particular

.t2D.t//0 6 t
Z
�C

.x � �/jrxz � �j
2 ds.x/C t2

Z
�

jgj2 dx: (A-4)

Using the assumption on z in the third and fourth lines of (A-1), one easily checks limt!0 t
2D.t/D 0;

hence we can integrate (A-4) between 0 and T, which gives (A-3), as j.x � �/j6 L for all x 2�. �
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