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ZEROS OF REPEATED DERIVATIVES OF RANDOM POLYNOMIALS

RENJIE FENG AND DONG YAO

It has been shown that zeros of Kac polynomials Kn(z) of degree n cluster asymptotically near the unit
circle as n→∞ under some assumptions. This property remains unchanged for the l-th derivative of
the Kac polynomials K (l)

n (z) for any fixed order l. So it’s natural to study the situation when the number
of the derivatives we take depends on n, i.e., l = Nn . We will show that the limiting behavior of zeros
of K (Nn)

n (z) depends on the limit of the ratio Nn/n. In particular, we prove that when the limit of the
ratio is strictly positive, the property of the uniform clustering around the unit circle fails; when the
ratio is close to 1, the zeros have some rescaling phenomenon. Then we study such problem for random
polynomials with more general coefficients. But things, especially the rescaling phenomenon, become
very complicated for the general case when Nn/n→ 1, where we compute the case of the random elliptic
polynomials to illustrate this.

1. Introduction

There are many well-known results regarding the nontrivial relations between zeros and critical points of
polynomials. The classical Gauss–Lucas theorem states that all the critical points of a polynomial are in
the convex hull of its zeros; in particular, if all the zeros are real, then so are the zeros of the derivative.
Differentiating a polynomial which has only real zeros will even out zero spacings [Farmer and Rhoades
2005]; in the case of random trigonometric polynomials, it’s proved in [Farmer and Yerrington 2006]
that the repeated differentiation causes the roots of the function to approach equal spacing, which can be
viewed as a toy model of crystallization in one dimension. For random polynomials under some mild
assumptions, the distribution of critical points and the distribution of its zeros are asymptotically the same
as the degree tends to infinity. This is because, roughly speaking, the coefficients of the derivative of a
random polynomial are not changed dramatically. Actually, such result holds for any fixed number of
derivatives [Feng ≥ 2019; Kabluchko and Zaporozhets 2014]. In this article, we are primarily interested
in the case when the number of the derivatives we take for the random polynomials is not fixed but grows
to infinity with the degree.

Our starting point is the classical Kac polynomials. Let ξ0, ξ1, . . . be nondegenerate, independent and
identically distributed (i.i.d.) complex random variables. The Kac polynomials are defined as

Kn(z)=
n∑

k=0

ξkzk . (1)
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The Kac polynomials have degree n almost surely by assuming

P(ξ0 = 0)= 0. (2)

The distribution of zeros of Kac polynomials has been studied for decades; we refer to [Bloom and
Shiffman 2007; Hough et al. 2009; Ibragimov and Zeitouni 1997; Ibragimov and Zaporozhets 2013; Kac
1943; Kabluchko and Zaporozhets 2013; 2014; Sodin and Tsirelson 2004; Shepp and Vanderbei 1995].
It’s proved that if

E log(1+ |ξ0|) <∞, (3)

then with probability 1, the empirical measure of zeros of Kac polynomials converges weakly to the uniform
probability measure on the unit circle as n tends to infinity [Ibragimov and Zeitouni 1997; Ibragimov and
Zaporozhets 2013; Kabluchko and Zaporozhets 2013; 2014; Shepp and Vanderbei 1995]. If the assumption
(3) is removed, then zeros of Kn(z) may not concentrate around the unit circle; see [Ibragimov and
Zaporozhets 2013; Kabluchko and Zaporozhets 2013] for the case when |ξ0| has some logarithmic tails.

The property of clustering around the unit circle remains unchanged for the l-th derivative of the Kac
polynomials K (l)

n (z) for any fixed l as n tends to infinity [Feng ≥ 2019; Kabluchko and Zaporozhets
2014]. But things become interesting if the number of the derivatives we take depends on n, e.g., l = Nn .
For the extreme case when Nn = n, there is no zero for K (n)

n almost surely. Hence, some natural questions
are: What is the critical growth order of Nn so that the property of clustering around the unit circle for the
Kac polynomials K (Nn)

n fails? When it fails, what is the distribution of zeros of K (Nn)
n ? And how does the

distribution depend on the growth order of Nn? In this article, we will answer these questions for the Kac
polynomials completely. The estimates we derive for the Kac case can be applied to the general random
polynomials. But there are some issues for the general random polynomials, where we will compute the
case of the random elliptic polynomials to illustrate this.

1.1. Notation. Before we state our main results, we need to introduce some notation. We denote by

pn(z)=
n∑

k=0

ξk pk,nzk (4)

the random polynomials of degree n with general coefficients, where pk,n are deterministic coefficients
and ξk are nondegenerate i.i.d. complex random variables. Throughout the article, we assume the random
variable ξ0 satisfies the conditions (2) and (3).

We denote by p(Nn)
n (z) the Nn-th derivative of pn(z) with the degree

Dn = n− Nn. (5)

Without loss of generality, we may assume the convergence of

Nn

n
→ a ∈ [0, 1]. (6)

The random measure of zeros of pn(z) is denoted by

µn =
∑

z:pn(z)=0

δz, (7)
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and we use the notation
µDn =

∑
z:p(Nn )

n (z)=0

δz (8)

for the random measure of zeros of p(Nn)
n (z) of degree Dn .

Similarly, we denote by µK
n and µK

Dn
the random measures of zeros of Kn(z) and K (Nn)

n (z) for the Kac
polynomials, respectively, and we denote by µE

n and µE
Dn

the random elliptic polynomials. We denote
by Dr the open disk of radius r centered at the origin in the complex plane. The convergence of the
random measures νn to ν in probability (or in distribution) means the convergence in probability (or
in distribution) in the weak sense, i.e.,

∫
X φνn(dx)→

∫
X φν(dx) in probability (or in distribution) for

any smooth test function φ with compact support. Given a measure ν on the complex plane, we define
the scaling operator (Shν)(B) = ν(B/h) for h > 0 where B is any Borel set in C. In the end, we set
a ∧ b =min{a, b} and a ∨ b =max{a, b} and set log 0=−∞.

1.2. Kabluchko–Zaporozhets theorem. There are many well-known results regarding the global distri-
bution of zeros of some special Gaussian random analytic functions where the ensembles are usually
invariant under some group action, such as the Gaussian elliptic polynomials and Gaussian hyperbolic
analytic functions [Hough et al. 2009; Sodin and Tsirelson 2004]. Recently, a remarkable result proved
in [Kabluchko and Zaporozhets 2014] deals with more general random analytic functions. Kabluchko
and Zaporozhets [2014] proved that under certain assumptions on the coefficients of the random analytic
functions, the distribution of zeros will converge to a deterministic rotationally invariant measure on a
domain of the complex plane. Such measure can be explicitly characterized in terms of the coefficients.
To be more precise, let’s consider the random analytic function in the form of

Fn(z)=
∞∑

k=0

ξk pk,nzk, (9)

where ξk are nondegenerate i.i.d. complex random variables satisfying condition (3) and the coefficients
pk,n satisfy the following assumptions.

Assumptions 1. Assume there are a function p : [0,∞)→ [0,∞) and a number T0 ∈ (0,∞] such that

(1) p(t) > 0 for t < T0 and p(t)= 0 for t > T0,

(2) p is continuous on [0, T0), and in the case T0 <∞, left continuous at T0,

(3) limn→∞ supk∈[0,An]||pk,n|
1/n
− p(k/n)| = 0 for every A > 0, and

(4) R0= lim inft→∞ p(t)−1/t
∈ (0,∞], lim infk→∞|pk,n|

−1/k
≥ R0 for every fixed n∈N and additionally,

lim infn,k/n→∞|pk,n|
−1/k
≥ R0.

Roughly speaking, the major assumption is that the coefficients pk,n are approximately en log p(k/n) for
some p, which is positive on some interval [0, T0), continuous in [0, T0], and equal to 0 in (T0,∞).

Theorem 1 [Kabluchko and Zaporozhets 2014]. Under Assumptions 1 and (3), let I (s) be the Legendre–
Fenchel transform of − log p, i.e., I (s) = supt≥0(st + log p(t)); then the random measure (1/n)µFn
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of zeros of Fn(z) converges in probability to a deterministic measure µ in DR0 , which is rotationally
invariant and satisfies

µ(Dr )= I ′(log r), r ∈ (0, R0).

As a convention, I ′ is the left derivative of I . A typical example to which to apply the Kabluchko–
Zaporozhets theorem is the Kac polynomials where we have

pk,n = 1k≤n, p(t)= 1t≤1, T0 = 1. (10)

By some computations, we have I (s)= s ∨ 0 and thus the limiting distribution satisfies

µ(Dr )=

{
0, 0≤ r ≤ 1,
1, r > 1,

(11)

i.e., the uniform probability measure on the unit circle.
But we cannot apply the Kabluchko–Zaporozhets theorem directly in our case to derive the distribution

of zeros of K (Nn)
n or that of the general random polynomials p(Nn)

n . For example, if Nn = n− blog nc,
then the degree of p(Nn)

n is Dn = blog nc; therefore, one cannot find some A so that Assumption 1(3) is
satisfied. We need to modify their theorem to deal with our situation more conveniently. We consider the
random polynomials in the form of

Fn(z)=
(T0−δn)Ln∑

k=0

ξk pk,nzk, (12)

where (T0− δn)Ln is an integer and we assume that Fn(z) satisfies the following assumptions:

Assumptions 2. There exist a function p : [0,∞)→ [0,∞), a positive number T0 ∈ (0,∞), a sequence
of positive integers Ln going to∞ as n→∞, and a sequence of numbers δn ∈ (−T0, T0) (not necessarily
positive) that goes to 0 as n→∞ such that

(1) p(t) > 0 for t ∈ [0, T0) and p(t)= 0 for t > T0,

(2) p is continuous in [0, T0], and

(3) limn→∞ sup0≤k≤(T0−δn)Ln
||pk,n|

1/Ln − p((k/Ln)∧ T0)| = 0.

Then we have the following theorem whose proof is sketched in the Appendix.

Theorem 2. For random polynomials Fn(z) in the form of (12) which satisfy Assumptions 2, let I(s) be
the Legendre–Fenchel transform of − log p; then the random measure (1/Ln)µFn of zeros will converge
in probability to a deterministic rotationally invariant measure µ where

µ(Dr )= I ′(log r), r > 0. (13)

Throughout the article, we often make use of the estimate

lim
n→∞

sup
0≤k≤(T0−δn)Ln

∣∣∣∣ 1
Ln

log|pk,n| − log p
(

k
Ln
∧ T0

)∣∣∣∣= 0. (14)
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This estimate implies the main Assumption 2(3), which is the direct consequence of the inequality

|x − y| ≤ (x ∧ y)e|log x−log y|
|log x − log y|

for any x, y > 0. The main advantage of (14) is the convenience in computations.

1.3. Main results. We first state our main results for the Kac polynomials, which will answer the questions
we raised at the beginning of the article.

Kac polynomials. The main result is that the limiting behavior of the distribution of zeros of K (Nn)
n will

depend on the limit of the ratio Nn/n. We will divide our discussions into two categories: Dn goes to
infinity and Dn remains a fixed number, where Dn=n−Nn is the degree of the random polynomials K (Nn)

n .
Without loss of generality, we consider the four different cases 1© Nn/n→ 0, 2© Nn/n→ a ∈ (0, 1),
3© Nn/n→ 1 and Dn→∞, e.g., Nn = n−blog nc and Dn =blog nc, and 4© Nn/n→ 1 but Dn =m<∞,

i.e., K (Nn)
n has a fixed degree m.

In the cases of 1©– 3© where Dn→∞, we will show that the coefficients of K (Nn)
n or its rescaling will

satisfy Assumptions 2 with different choices of Ln , δn , T0, and p; then we apply Theorem 2 to prove:

Theorem 3. Assume Dn→∞ as n→∞; we have the following results regarding the empirical measure
of zeros of derivatives of Kac polynomials K (Nn)

n :

(1) If limn→∞ Nn/n = 0, then (1/Dn)µ
K
Dn

converges in probability to the uniform probability measure
on the unit circle, i.e., the measure defined in (11).

(2) If limn→∞ Nn/n = a ∈ (0, 1), then (1/Dn)µ
K
Dn

converges in probability to a rotationally invariant
measure µK

a on C defined by

µK
a (Dr )=

{
ar/((1− a)(1− r)), 0< r < 1− a,
1, r ≥ 1− a.

(15)

(3) If limn→∞ Nn/n = 1, then globally we have the convergence in probability

1
Dn
µK

Dn
→ δ0. (16)

If we set Rn = n/Dn as the quotient of the degrees of Kn and K (Nn)
n and consider the rescaling Kac

polynomials K̃n(z) := K (Nn)
n (z/Rn), then the empirical measure (1/Dn)µ

K̃
Dn

which is the same as
(1/Dn)SRn (µ

K
Dn
) converges in probability to a rotationally invariant measure µ̃K where

µ̃K (Dr )=

{
r, r < 1,
1, r ≥ 1.

(17)

In particular, the density for the measure µ̃K is

d̃ K (z)=
1

2π |z|
1|z|≤1. (18)
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In the case 4© when Dn remains a fixed number, we will show that the measure of zeros of the rescaling
polynomials K (Nn)

n (z/n) will converge to some random measure. The main tool to prove this result is
Rouché’s theorem in complex analysis. Our result is as follows.

Theorem 4. Suppose limn→∞ Nn/n = 1 and Dn = m for all n; then globally

1
m
µK

Dn
→ δ0, (19)

where the convergence is in probability. Furthermore, we have the rescaling limit

Sn(µ
K
Dn
)→ µ f K

m
, (20)

where the convergence is in distribution and µ f K
m

is the random measure of zeros of the random polynomial

f K
m (z)=

m∑
k=0

ξk

k!
zk . (21)

Remark. The relationship between the results in Theorems 3(3) and 4 has an intuitive explanation.
Consider the case in Theorem 3(3). We can zoom in zeros of K (Nn)

n (z) in two steps. First we zoom in the
zeros of K (Nn)

n (z) by a factor of n; then by Theorem 4 (treating Dn as fixed for this moment) the scaled
zeros will be close to the zeros of f K

Dn
(z). Here f K

Dn
(z) is just the function in (21) with m replaced by Dn .

If we then zoom out zeros of f K
Dn

by a factor of Dn (which is the degree of the polynomial f K
Dn

), then as
a whole we get something close to zooming in the zeros of K (Nn)

n (z) by a factor of n/Dn . Taking n to
infinity we should get the limit in Theorem 3(3). This is in accordance with the fact that (17) is also the
limit of the empirical measure of zeros of f K

Dn
(Dnz) as m→∞, as shown in Theorem 2.3 of [Kabluchko

and Zaporozhets 2014]. Note that in the zooming out process, we can also replace
∑Dn

k=0(ξk/k!)(Dnz)k

by
∑
∞

k=0(ξk/k!)(Dnz)k since Theorem 2.1 of [Kabluchko and Zaporozhets 2014] shows the empirical
measure of

∑
∞

k=0(ξk/k!)(Dnz)k restricted to unit disk also converges to the measure in (17).

As a summary, we show that the clustering property of zeros around the unit circle for the derivatives of
Kac polynomials holds if and only if Nn/n→ 0; the conclusion (3) in Theorem 3 together with Theorem 4
imply that, if Nn/n→ 1, zeros will converge to the origin with the average decay rate Dn/n which is the
quotient of the degrees of K (Nn)

n and Kn . Thus we will completely answer the questions we proposed at
the beginning of the article.

General random polynomials. We can extend the above results for the Kac polynomials to the general
random polynomials where the coefficients satisfy Assumptions 1 in the Kabluchko–Zaporozhets theorem.

Theorem 5. Suppose the random polynomial pn(z) of (4) satisfies Assumptions 1 with some function p(t);
then regarding the zeros of p(Nn)

n , we have:

(1) If limn→∞ Nn/n = 0, let I (s) be the Legendre–Fenchel transform of − log p; then (1/Dn)µDn

converges in probability to a rotationally invariant measure µ given by

µ(Dr )= I ′(log r), r > 0.

That is, (1/Dn)µDn has the same limit as (1/n)µn .
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(2) If limn→∞ Nn/n=a ∈ (0, 1), let log ua= log p(t+a)+(t+a) log(t+a)−t log t+(1−a) log(1−a)
if 0≤ t ≤ 1−a and −∞ if t > 1−a. Let Ia(s) be the Legendre–Fenchel transform of − log ua; then
(1/Dn)µDn converges in probability to a rotationally invariant measure µa given by

µa(Dr )=
1

1− a
I ′a(log r), r > 0.

Compared with Theorems 3 and 4 for the Kac case, things become complicated for the general random
polynomials when the ratio Nn/n tends to 1. First, one cannot conclude that (1/Dn)µDn converges in
probability to δ0. To see this, let’s consider the following example where the coefficients of the random
polynomials pn are

pk,n =

{
1, 0≤ k < Nn,

n! (k− Nn)!/(k! Dn!), Nn ≤ k ≤ n,
where

Dn = blog nc and Nn = n− Dn.

We let

p(t)= 10≤t≤1.

We claim that pk,n and p satisfy Assumptions 1. Indeed, when 0≤ k < Nn , we have

p1/n
k,n = p

(k
n

)
.

Therefore, it remains to prove

lim
n→∞

sup
Nn≤k≤n

|p1/n
k,n − 1| = 0.

By (14), it’s enough to show

lim
n→∞

sup
Nn≤k≤n

∣∣∣1n log pk,n

∣∣∣= 0. (22)

For Nn ≤ k ≤ n, we have 1≤ n! (k− Nn)!/(k! Dn!)≤ n!/k!; then

sup
Nn≤k≤n

∣∣∣1n log pk,n

∣∣∣≤ sup
Nn≤k≤n

1
n

log
n!
k!
≤

1
n

log nDn ≤
log2 n

n
,

where (22) follows as n→∞, which completes the proof of the claim. But the Nn-th derivative of pn is

p(Nn)
n =

n!
Dn!

Dn∑
k=0

ξk+Nn zk,

which is in the form of Kac polynomials; thus, the empirical measure of zeros will converge to the uniform
probability measure on the circle instead of the delta function at the origin.

Secondly, even if zeros converge to δ0, one cannot easily find the rescaling limit of the empirical
measure of zeros if there exists one. The rescaling property should highly depend on the properties of
coefficients, such as the convergent rate of pn,k to p(t) and the monotonicity of pk,n for each fixed n.
The following results regarding the elliptic polynomials provide such an example.
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Random elliptic polynomials. The random elliptic polynomials are in the form of

En(z)=
n∑

k=0

ξk

√(n
k

)
zk . (23)

If ξk are i.i.d. complex Gaussian random variables, then the random elliptic polynomials are also called
Gaussian SU(2) polynomials. The Gaussian SU(2) polynomials can be viewed as meromorphic functions
defined on the complex projective space CP1 ∼= S2, and a basic fact is that the distribution of its zeros is
invariant under the SU(2) action. The Gaussian SU(2) polynomial is the standard model when one tries
to generalize the random polynomials to random holomorphic sections on the complex manifolds [Bleher
et al. 2000; Hough et al. 2009].

One can show that the coefficients of the random elliptic polynomials satisfy all of Assumptions 1 with
the associated function (see also [Kabluchko and Zaporozhets 2014])

log pE(t)=− 1
2 t log t − 1

2(1− t) log(1− t) for 0≤ t ≤ 1. (24)

Theorem 6. For the random elliptic polynomials En(z) defined in (23), we have:

(1) The conclusions in Theorem 5 hold for (1/Dn)µ
E
Dn

with p replaced by pE defined in (24).

(2) If limn→∞ Nn/n = 1, then we have the global convergence in probability

1
Dn
µE

Dn
→ δ0.

Furthermore, if Dn→∞, then in probability, we have

1
Dn

S√Rn
(µE

Dn
)→ µ,

where Rn = n/Dn as before and µ is the rotationally invariant probability measure defined as

µ(Dr )=
r(
√

4+ r2− r)
2

, r ∈ (0,∞). (25)

If Dn = m <∞, then the following rescaling limit holds in distribution:

S√n(µ
E
Dn
)→ µ f E

m
,

where µ f E
m

is the random measure of zeros of f E
m =

∑m
k=0(ξk/(k!

√
(m− k)!))zk .

1.4. Further remarks. Let’s compare Theorem 6 with Theorems 3(3) and 4 for the case when Nn/n→ 1.
Both the empirical measures of zeros of derivatives tend to the point mass at the origin, but the interesting
result is that they converge with different decay rates. Zeros converge to the origin with the average decay
rate Dn/n for the Kac case and

√
Dn/n for the elliptic case, which indicates that Assumptions 1 is not

enough to extract the complete information about the convergence of zeros of the Nn-th derivative of
general random polynomials; i.e., the main assumption limn→∞ supk∈[0,An]||pk,n|

1/n
− p(k/n)| = 0 for

every A > 0 is not enough. It seems that we need to impose additional assumptions on the rate of the
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convergence of pk,n to p for Nn ≤ k ≤ n and the growth order of pk,n . As in (14), we may alternatively
consider the quantities

ηn := sup
Nn≤k≤n

∣∣∣1n log|pk,n| − log p
(k

n

)∣∣∣ (26)

and
bn := sup

Nn≤k≤n
|pk,n|. (27)

The asymptotic properties of ηn and bn may play important roles in the case when Nn/n→ 1. Note that
ηn is identical to 0 for the Kac polynomials and asymptotic to (log Dn)/(4n)+ O(1/n) for the random
elliptic polynomials. Two questions are raised: What are the asymptotic properties of ηn and bn so that
zeros of p(Nn)

n tend to the origin? And if zeros tend to the origin, how does the decay rate depend on ηn

and bn? We postpone these two problems for further investigation.
Along with Kac polynomials, there is another important type of random polynomial defined via the

orthogonal polynomials. Given a bounded simply connected domain � in the complex plane with analytic
boundary C of length L and a positive weight function w(z), we define the inner product

〈 f, g〉 =
1
L

∫
C

f (z)g(z)w(z)|dz|. (28)

Then we can find an orthonormal basis {pwn (z)} with respect to this inner product, where pwn (z) is a
polynomial of degree n in which the coefficient of zn is real and positive. Shiffman and Zelditch [2003]
prove that the empirical measure of zeros of

Pn(z)=
n∑

k=0

ξk pwk (z), (29)

where ξk are i.i.d. standard complex Gaussian random variables, tends to the equilibrium measure of � as
n tends to infinity. Such result is then generalized by Bloom and Shiffman [2007] to higher dimensions
where they get rid of the analytic assumption and replace it by the Bernstein–Markov condition. In [Feng
≥ 2019], the author further studied zeros of the l-th derivative of P (l)n for any fixed l as n→∞, and
proved that zeros of derivatives of any fixed order also tend to the equilibrium measure. The method used
in [Feng ≥ 2019; Shiffman and Zelditch 2003] is quite different from that of [Kabluchko and Zaporozhets
2014]. One needs to apply the classical Szegő theorem [1975] on orthogonal polynomials together with
the conformal transformation between the bounded domain and the unit disk. Then it’s a natural problem
to study the behavior of zeros of derivatives of P (Nn)

n . As indicated by Theorem 3 for the Kac polynomials,
it seems that zeros will still converge to the equilibrium measure if Nn/n→ 0, but the results for the
case when Nn/n→ a ∈ (0, 1] are quite hard to predict. One may prove the results with the aid of the
conformal transformation, but the strategy is unclear to the authors.

The paper is organized as follows. We will prove Theorems 3 and 4 for the Kac polynomials in
great details in Section 2. The estimates for the Kac case can be applied to prove Theorem 5 for the
general random polynomials in Section 3. In the end, we will prove Theorem 6 for the random elliptic
polynomials. In the Appendix, we will sketch the proof of Theorem 2.
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2. Kac polynomials

In this section, we will prove Theorems 3 and 4 for the Kac polynomials.
Let K (Nn)

n be the Nn-th derivative of the Kac polynomials. Since we want to prove the empirical
measure of zeros converges to a deterministic limit, it suffices to prove the convergence in distribution.
By the fact that ξk are i.i.d., it’s equivalent to consider

K (Nn)
n (z)=

Dn∑
k=0

ξk(k+ 1) · · · (k+ Nn)zk . (30)

Observing that the random measure of zeros is invariant by the dilation, i.e., µc f = µ f for any nonzero c,
we can alternatively consider the following normalized random polynomial so that the leading-order term
is ξDn zDn :

K (Nn)
n (z)=

Dn∑
k=0

ξk fk,nzk, (31)

where throughout the article, we set

fk,n :=
(k+ Nn)! Dn!

k! n!
. (32)

Stirling’s formula reads

k! = ck
√

2πk
(k

e

)k
, (33)

where ck is a sequence of positive numbers tending to 1 as k tends to∞ and hence uniformly bounded.
Then we have

1
Ln

log fk,n =
1

Ln

[
(k+Nn) log(k+Nn)−(k+Nn)+

log(k+Nn)

2
+Dn log Dn−Dn+

log Dn

2

−

(
k logk−k+

logk
2
+n logn−n+

logn
2

)]
+

1
Ln
(logck+Nn+ logcDn− logck− logcn)

=
1

Ln
[(k+Nn) log(k+Nn)+Dn log Dn−n logn−k logk]

+
1

2Ln
(log(k+Nn)+ log Dn− logn− logk)+

1
Ln
(logck+Nn+ logcDn− logck− logcn)

:= I1(k,n)+I2(k,n)+I3(k,n). (34)

When k = 0, we set ck = 1 and set I1(0, n) = (1/Ln)(Nn log Nn + Dn log Dn − n log n), I2(0, n) =
(1/(2Ln))(log Nn + log Dn − log n), and I3(0, n)= (1/Ln)(log cNn + log cDn − log cn) to be consistent
with the definitions. The expressions of I j are different according to the choices of Ln (only differ by the
front factor Ln), but we use the same notation I j for different cases throughout the article to reduce the
notation we use.
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In the following computations, we will let Ln→∞ (although we choose different Ln for different
cases); hence, I3(k, n) will tend to 0 uniformly by the uniform bound of ck , which means the third term
I3(k, n) is always negligible.

2.1. Case 1©. Let’s first consider the case 1© when

lim
n→∞

Nn

n
= 0. (35)

For this case, we need to choose Ln = n in (34). We first simply have

lim
n→∞

sup
0≤k≤Dn

|I2(k, n)| ≤ lim
n→∞

2
n

log n = 0. (36)

For I1(k, n), we observe that for each fixed n, I1(k, n) is increasing with respect to k by considering the
function I (x)= (x+Nn) log(x+Nn)− x log x where I ′(x)= log(x+Nn)− log x ≥ 0. We combine this
with the fact that I1(Dn, n)= (1/n)((Dn + Nn) log(Dn + Nn)+ Dn log Dn − n log n− Dn log Dn)= 0;
we first have

sup
0≤k≤Dn

|I1(k, n)| ≤ |I1(0, n)| ∨ |I1(Dn, n)| = |I1(0, n)|,

which further reads

sup
0≤k≤Dn

|I1(k, n)| ≤
1
n
|n log n− Nn log Nn − Dn log Dn|

=
1
n
|Nn log n+ Dn log n− Nn log Nn − Dn log Dn|

=

∣∣∣∣−Nn

n
log
(

Nn

n

)
−

Dn

n
log
(

Dn

n

)∣∣∣∣.
Thus, we have

lim
n→∞

sup
0≤k≤Dn

|I1(k, n)| = 0, (37)

since Nn/n→ 0 and Dn/n = 1− Nn/n→ 1 as n→∞.
Combining (36)–(37) and the fact that I3 always tends to 0, we get

lim
n→∞

sup
0≤k≤Dn

∣∣∣1n log fk,n

∣∣∣= 0. (38)

Hence, the coefficients fk,n satisfy Assumptions 2 with Ln=n, T0=1, and δn= Nn/n so that (1−δn)Ln=

Dn and log f (t)= 0 for 0 ≤ t ≤ 1 and log f =−∞ for t > 1. Therefore, zeros of K (Nn)
n will have the

same distribution as the Kac polynomials by computations in (10) and (11) as n→∞.

2.2. Case 2©. Let’s consider the case when

lim
n→∞

Nn

n
= a ∈ (0, 1). (39)
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Let’s choose Ln = n in (34) again. By the same arguments as in Case 1©, I2 and I3 converge to 0 uniformly
for 0≤ k ≤ Dn as n→∞. Therefore, it remains to estimate I1. Let’s put Nn/n = a+ δn where δn→ 0.
Assume n is large enough so that

|δn| ≤
1− a

2
∧

a
2
. (40)

For k ≥ 1, we rewrite

I1 =
1
n
[(k+ Nn) log(k+ Nn)+ Dn log Dn − n log n− k log k]

=
1
n
[(n− Dn + k) log(k+ Nn)− n log n− k log k+ Dn log k− Dn log k+ Dn log Dn]

=
1
n

[
n log

(
k
n
+

Nn

n

)
+ (k− Dn) log(k+ Nn)− (k− Dn) log k+ Dn log

(
Dn

k

)]
= log

(
k
n
+

Nn

n

)
+

[(
k
n
−

Dn

n

)
log
(

1+
Nn

k

)
+

Dn

n
log
(

Dn

k

)]
:= I4+ I5.

To estimate I4 and I5, we will make use of the following inequality which is the direct consequence of
the intermediate value theorem:

0≤ log y− log x ≤
1
c
(y− x) for 0< c ≤ x ≤ y. (41)

We can rewrite I4 as log(k/n+ a+ δn); by (40)–(41), we have∣∣∣I4− log
(k

n
+ a

)∣∣∣≤ ∣∣∣∣2δn

a

∣∣∣∣
for all 1≤ k ≤ Dn . So we have

lim
n→∞

sup
1≤k≤Dn

∣∣∣I4− log
(k

n
+ a

)∣∣∣= 0. (42)

For I5, since Nn/n = a+ δn and Dn/n = 1− a− δn , we can rewrite it as

I5 =

(k
n
− (1− a)+ δn

)
log
(

1+
(a+ δn)n

k

)
+ (1− a− δn) log

(1− a− δn)n
k

=
k
n

log
(

1+ a n
k
+ δn

n
k

)
+ (1− a− δn) log

(
−1+

n+ k
k+ (a+ δn)n

)
.

Then we have∣∣∣∣I5−

[
k
n

log
(

1+ a
n
k

)
+(1− a) log

(
−1+

n+ k
k+ an

)]∣∣∣∣
≤

k
n

∣∣∣∣log
(

1+ a
n
k
+ δn

n
k

)
− log

(
1+ a

n
k

)∣∣∣∣
+ (1− a)

∣∣∣∣log
(
−1+

n+ k
k+ (a+ δn)n

)
− log

(
−1+

n+ k
k+ an

)∣∣∣∣+ |δn|

∣∣∣∣log
(
−1+

n+ k
k+ (a+ δn)n

)∣∣∣∣
:= I6+ I7+ I8.
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By (40)–(41) again, we have

I6 ≤
k
n

1
1+ (a/2)(n/k)

|δn|
n
k
≤ |δn| → 0.

For I7, since |δn| ≤ (1− a)/2, we know k+ (a+ δn)n ≤ k+ ((1+ a)/2)n. Therefore,

−1+
n+ k

k+ (a+ δn)n
≥−1+

n+ k
k+ ((1+ a)/2)n

=
(1− a)n/2

((1+ a)/2)n+ k
≥

(1− a)n/2
((1+ a)/2)n+ n

=
1− a
3+ a

. (43)

We also have
−1+

k+ n
k+ an

≥
1− a
3+ a

.

Thus, by (41), we have

I7 = (1− a)
∣∣∣∣log

(
−1+

n+ k
k+ (a+ δn)n

)
− log

(
−1+

n+ k
k+ an

)∣∣∣∣
≤ (1− a)

3+ a
1− a

∣∣∣∣ k+ n
k+ (a+ δn)n

−
k+ n

k+ an

∣∣∣∣
≤ (3+ a)

(k+ n)|δn|n
(k+ an/2)2

≤ (3+ a)
(n+ n)n|δn|

(an/2)2
≤

8(3+ a)|δn|

a2 → 0.

For I8, taking into account (40) and (43), we have

1− a
3+ a

≤−1+
k+ n

k+ (a+ δn)n
=
(1− a− δn)n
k+ (a+ δn)n

≤
[(1− a)+ (1− a)/2]n

(a− a/2)n
≤

3(1− a)
a
;

it follows that

I8 ≤

(∣∣∣∣log
(

3(1− a)
a

)∣∣∣∣∨ ∣∣∣∣log
(

1− a
3+ a

)∣∣∣∣)|δn| → 0.

If we combine the estimates of I6, I7, and I8, we conclude that

lim
n→∞

sup
1≤k≤Dn

∣∣∣∣I5−

[
k
n

log
(

1+ a
n
k

)
+ (1− a) log

(
−1+

n+ k
k+ an

)]∣∣∣∣= 0. (44)

If we set

log f1(t)= log(t + a)+ t log
(

1+
a
t

)
+ (1− a) log

(
1− a
t + a

)
= (t + a) log(t + a)− t log t + (1− a) log(1− a), t > 0, (45)

then the estimates (42) and (44) for I4 and I5 imply

lim
n→∞

sup
1≤k≤Dn

∣∣∣I1− log f1

(k
n

)∣∣∣= 0. (46)

The estimate of I1 in the case k = 0 can be achieved by the same way, and actually (46) holds with the
supremum taken over 0≤ k ≤ Dn .

Let’s set f = f1 for 0≤ t ≤ 1− a and 0 for t > 1− a. Let’s set

1(b)= sup
1−a≤t≤s≤1, s−t≤b

|log f1(t)− log f1(s)|;
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then we have

sup
0≤k≤Dn

∣∣∣I1− log f
(k

n
∧ (1− a)

)∣∣∣≤ sup
0≤k≤Dn

∣∣∣I1− log f1

(k
n

)∣∣∣+1(|δn|).

Observing that log f1 is uniformly continuous on [1− a, 1], combining (46) and the fact that δn → 0,
then we have

lim
n→∞

sup
0≤k≤Dn

∣∣∣I1− log f
(k

n
∧ (1− a)

)∣∣∣= 0.

Therefore, if we combine the estimates of I1, I2, and I3 we derived above for Case 2©, we have

lim
n→∞

sup
0≤k≤Dn

∣∣∣1n fk,n − log f
(k

n
∧ (1− a)

)∣∣∣= 0. (47)

As a summary, in the case when Nn/n→ a ∈ (0, 1), by defining f (t) above, the coefficients fk,n will
satisfy Assumptions 2 with T0 = 1− a, Ln = n, and δn = Nn/n− a (note that Dn = (T0− δn)Ln again).
The Legendre–Fenchel transform of − log f is

I (s)=
{

a log(a/(e−s
− 1)+ a)+ (1− a) log(1− a), s < log(1− a),

s(1− a), s ≥ log(1− a).

Therefore, by Theorem 2, the limiting measure for the sequence of the random measure (1/Ln)µ
K
Dn

(which is (1/n)µK
Dn

) satisfies

µ̂(Dr )=

{
ar/(1− r), 0< r < 1− a,
1− a, r ≥ 1− a.

Since Dn/n→ 1−a, the limit of the empirical measure (1/Dn)µ
K
Dn

will thus be (1/(1−a))µ̂(Dr ), which
is (15).

2.3. Case 3©. In the case when

lim
n→∞

Nn

n
= 1 and Dn→∞, (48)

we only prove (17), which implies (16). To prove (17), we need to consider

K̃n(z) := RDn
n K (Nn)

n

(
z

Rn

)
=

Dn∑
k=0

ξk f̃k,nzk, (49)

where

f̃k,n = fk,n RDn−k
n and Rn =

n
Dn
. (50)

It’s enough to study K̃n(z) since it has the same zeros as K (Nn)
n (z/Rn).

In this case, we need to choose Ln = Dn in (34) with the decomposition

1
Dn

log fk,n := I1(k, n)+ I2(k, n)+ I3(k, n).
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Thus, we have the decomposition

1
Dn

log f̃k,n =

(
1−

k
Dn

)
log Rn +

1
Dn

log fk,n

=

[(
1−

k
Dn

)
log Rn + I1

]
+ I2+ I3.

(51)

As before, I3 goes to 0 uniformly again since Dn→∞ as n→∞.
We note that

I2(k, n)=
1

2Dn
(log(k+ Nn)+ log Dn − log n− log k)

is decreasing with respect to k ≥ 1 for fixed Nn , Dn , and n; thus, we simply have sup0≤k≤Dn
|I2(k, n)| =

|I2(1, n)| ∨ |I2(Dn, n)|. Since I2(Dn, n)= 0, we further have

sup
0≤k≤Dn

|I2(k, n)| = |I2(1, n)| =
1

2Dn
|log(Nn + 1)+ log Dn − log n|.

By assumption (48), we can choose n large enough so that Nn ≥
1
2 n; thus, we have

sup
0≤k≤Dn

|I2(k, n)| ≤
1

2Dn

(
log
(

n
Nn

)
+ log Dn

)
≤

log 2
2Dn
+

log Dn

2Dn
→ 0,

since Dn→∞ as n→∞.
For I1, we rewrite it as

I1 =
1

Dn
((k+ n− Dn) log(k+ Nn)− n log n+ Dn log Dn − k log k)

=
1

Dn

(
n log

k+ Nn

n
+ (k− Dn) log(k+ Nn)+ Dn log Dn − k log k

)
=

1
Dn

(
n log

(
k+Nn

n

)
+(k−Dn) log

(
k+Nn

n

)
+(k−Dn) log n+Dn log Dn−k log Dn−k log

(
k

Dn

))
=

n
Dn

log
(

n+ k− Dn

n

)
−

k
Dn

log
(

k
Dn

)
+

(
k

Dn
− 1

)
(log n− log Dn)+

(
k

Dn
− 1

)
log
(

k+ Nn

n

)
.

Thus, we can rewrite

Ĩ1 : =

(
1−

k
Dn

)
log Rn + I1

=
n

Dn
log
(

n+ k− Dn

n

)
−

k
Dn

log
(

k
Dn

)
+

(
k

Dn
− 1

)
log
(

k+ Nn

n

)
.

Now we put

log f̃ = t − 1− t log t for 0≤ t ≤ 1 and log f̃ =−∞ for t > 1. (52)

Then we can write Ĩ1 as

Ĩ1 = log f̃
(

k
Dn

)
+ I9, (53)
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where

I9 =
n

Dn

[
log
(

1+
k− Dn

n

)
−

k− Dn

n

]
+

(
k

Dn
− 1

)
log
(

k+ Nn

n

)
.

Since |log(1+ x)| ≤ |x | and |log(1+ x)− x | ≤ x2 when |x | is small, then we have the uniform estimate∣∣∣∣log
(

1+
k− Dn

n

)
−

k− Dn

n

∣∣∣∣≤ (k− Dn

n

)2

≤

(
Dn

n

)2

as n becomes large enough, which implies the first term in I9 tends to 0.
Note that 1≥ (k+ Nn)/n ≥ Nn/n; thus, |log((k+ Nn)/n)| ≤ |log(Nn/n)| = |log(1−Dn/n)| ≤ Dn/n.

If we combine this with the fact |k/Dn − 1| ≤ 1, we prove that the second term in I9 also tends to 0.
Hence, I9→ 0 as n→∞. Therefore,

lim
n→∞

sup
0≤k≤Dn

∣∣∣∣ Ĩ1− log f̃
(

k
Dn

)∣∣∣∣= 0.

If we combine the estimates of Ĩ1, I2, and I3 above, we have proved

lim
n→∞

sup
0≤k≤Dn

∣∣∣∣ 1
Dn

log f̃k,n − log f̃
(

k
Dn

)∣∣∣∣= 0. (54)

As a summary, the coefficients f̃k,n satisfy Assumptions 2 with Ln = Dn , T0 = 1, δn = 0, and f̃ . The
Legendre–Fenchel transform I (s)= sup0≤t≤1(st + log f̃ (t)) is

I (s)=
{

es
− 1, s < 0,

s, s ≥ 0.

Thus, the explicit expression (17) of the limiting measure µ̃K follows by Theorem 2.

2.4. Case 4©. Now we prove Theorem 4 for the case where Dn remains a fixed positive integer m. The
proof makes use of Rouché’s theorem. We start with the following proposition regarding the convergence
of zeros of a sequence of deterministic polynomials.

Proposition 7. Let G =
∑m

k=0 gkzk , where {gk} are deterministic constants and gm 6= 0. Let Gn =∑m
k=0 gk,nzk , where {gk,n} are also deterministic. Assume gk,n converges to gk for each fixed k. Then the

measure of zeros µGn will converge to µG in the sense of distribution.

Proof. Let’s choose φ as the smooth test function with compact support and pick ε > 0 small enough. We
first claim that for each zero z0 of G with multiplicity α0, for n large enough, Gn has exactly α0 zeros
in D(z0, ε), the open disc centered at z0 with radius ε. Once this is done, since G has m zeros (m is a finite
number), we can pick a common N0 such that when n > N0, Gn will have exactly αi zeros in D(zi , ε)

for any zi in the zero set of G with multiplicity αi . This means that we can make an appropriate ordering
of the zero set of G (denoted by zi , 1≤ i ≤ m) and the zero set of Gn (denoted by zi,n , 1≤ i ≤ m) such
that |zi − zi,n| ≤ ε for all i . Then we have

|µGn (φ)−µG(φ)| ≤
∑

1≤i≤m

|φ(zi )−φ(zi,n)| ≤ mK ε, (55)
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where K is the sup norm of the derivative of φ. Since ε is arbitrarily small, this implies the weak
convergence of µGn . All the rest is to prove the claim.

Let’s choose ε < 1 small enough such that z0 is the only zero of G with multiplicity α ≥ 1 in the
closure of D(z0, ε). Assume |z0| + 1≤ R for some R. For any z ∈ D(z0, ε), we have

|Gn −G| ≤
m∑

k=0

|gn,k − gk |Rk . (56)

Let’s set

η(ε)= min
z∈∂D(z0,ε)

|G(z)|;

then as n becomes large enough, we have
m∑

k=0

|gn,k − gk |Rk < η(ε),

which implies that

|Gn(z)−G(z)|< |G(z)| for any z ∈ ∂D(z0, ε).

Hence, Gn and G have the same number of zeros in D(z0, ε) by Rouché’s theorem. This completes the
proof of the claim and hence Proposition 7. �

Let’s apply Proposition 7 to prove Theorem 4. In the case of Dn = m and Nn = n−m, (31) reads

K (n−m)
n (z)=

m∑
k=0

ξk fk,nzk .

To study the limiting behavior of zeros of K (n−m)
n (z/n), we may alternatively consider the random

polynomials Gn(z)= nm K (n−m)
n (z/n). The coefficients of Gn are

gk,n = nm−k fk,n =
m!
k!

nm−k

n(n− 1) · · · (n− (m− k)+ 1)
.

Since k and m are both fixed when n→∞, we have

lim
n→∞

gk,n =
m!
k!
.

By Proposition 7, the measure of zeros µGn will converge to µ f K
m

almost surely, where µ f K
m

is the random
measure of zeros of f K

m (z)=
∑m

k=0(ξk/k!)zk . The limit (20) follows from this since K (n−m)
n (z/n) have

the same zeros as Gn . In particular, the empirical measure of zeros of K (n−m)
n will converge to δ0.

3. General random polynomials

In this section, we will apply the estimates we derived for the Kac polynomials in Section 2 to prove
Theorem 5 for the general random polynomials.
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Let pn be the general random polynomials of degree n defined in (4). Let’s assume that the coefficients
pk,n satisfy Assumptions 1 with the associated continuous function p that is positive on [0, 1) and

lim
n→∞

sup
k∈[0,n]

∣∣∣|pk,n|
1/n
− p

(k
n

)∣∣∣= 0. (57)

The Nn-th derivative of pn is

p(Nn)
n =

Dn∑
k=0

ξk+Nn pk+Nn,n fk,nzk, (58)

where fk,n is defined in (32). Since ξk are i.i.d., it’s equivalent to consider the random polynomials

p(Nn)
n =

Dn∑
k=0

ξk pk+Nn,n fk,nzk, (59)

where (58) and (59) have the same distribution of zeros. We set

uk,n = pk+Nn,n fk,n;

then we rewrite

p(Nn)
n =

Dn∑
k=0

ξkuk,nzk .

We now verify that uk,n satisfy Assumptions 2 with some associated function u.

3.1. Case 1. (Nn/n→ 0). As in Case 1© of Kac polynomials, we take Ln = n, δn = Nn/n, and T0 = 1.
For fixed n, fk,n is increasing with k since

fk+1,n

fk,n
=

k+ 1+ Nn

k+ 1
> 1.

Since fDn,n = 1, it follows that fk,n ≤ 1 for all n and 0 ≤ k ≤ Dn . By Assumptions 1, p is continuous
on [0, 1] and therefore is bounded by C . Hence,

sup
0≤k≤Dn

∣∣∣|uk,n|
1/n
− p

(k
n

)∣∣∣
≤ sup

0≤k≤Dn

∣∣∣|pk+Nn,n|
1/n
− p

(k
n

)∣∣∣| fk,n|
1/n
+ sup

0≤k≤Dn

∣∣∣| fk,n|
1/n
− 1

∣∣∣p(k
n

)
≤ sup

0≤k≤Dn

∣∣∣∣|pk+Nn,n|
1/n
− p

(
k+ Nn

n

)∣∣∣∣+ sup
0≤k≤Dn

∣∣∣∣p(k+ Nn

n

)
− p

(k
n

)∣∣∣∣+C sup
0≤k≤Dn

|| fk,n|
1/n
−1|

:= J1+ J2+ J3.

Our assumption (57) implies that J1 converges to 0. J2 converges to 0 since p is uniformly continuous
on [0, 1] and Nn/n converges to 0 under the definition of the case. J3 also converges to 0 by the
estimate (38) which we have already proved for the Kac polynomials. Hence, the coefficients uk,n satisfy
Assumptions 2 with Ln = n, δn = Nn/n, T0 = 1, and the associated function p. The conclusion (1) of
Theorem 5 then follows.
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3.2. Case 2. (Nn/n→ a ∈ (0, 1)). As in Case 2© of Section 2.2, we set Ln = n, δn = Nn/n− a, and
T0= 1−a; then (T0−δn)Ln = Dn . Let’s choose f1 as in (45) and set that f coincides with f1 in [0, 1−a]
and equals 0 in [1− a,∞) as in the Kac case. Proceeding like Case 1 above, we have

sup
0≤k≤Dn

∣∣∣|uk,n|
1/n
− p

((k
n
+ a

)
∧ 1
)

f
(k

n
∧ T0

)∣∣∣
≤ sup

0≤k≤Dn

| fk,n|
1/n
∣∣∣|pk+Nn,n|

1/n
− p

((k
n
+ a

)
∧ 1
)∣∣∣+ sup

0≤k≤Dn

p
((k

n
+ a

)
∧ 1
)∣∣∣| fk,n|

1/n
− f

(k
n
∧ T0

)∣∣∣
≤ sup

0≤k≤Dn

| fk,n|
1/n
∣∣∣∣|pk+Nn,n|

1/n
− p

(
n+ Nn

n

)∣∣∣∣+ sup
0≤k≤Dn

| fk,n|
1/n
∣∣∣∣p(k+ Nn

n

)
− p

((k
n
+ a

)
∧ 1
)∣∣∣∣

+ sup
0≤k≤Dn

p
((k

n
+ a

)
∧ 1
)∣∣∣| fk,n|

1/n
− f

(k
n
∧ T0

)∣∣∣
:= J1+ J2+ J3.

As in Case 1, our assumptions of p imply that J1 converges to 0; J3 converges to 0, which is equivalent
to (47) as in the Kac case. Again using the boundedness of fk,n and the uniform continuity of p together
with the fact that

sup
0≤k≤Dn

∣∣∣∣((k
n
+ a

)
∧ 1
)
−

k+ Nn

n

∣∣∣∣≤ |δn|,

we have J2→0 since δn→0. Hence, the coefficients uk,n satisfy Assumptions 2 with ua(t)= f (t)p(t+a);
this will complete the proof of Theorem 5(2).

4. Random elliptic polynomials

In this section, we will prove Theorem 6 for the random elliptic polynomials En defined in (23). Let’s
denote by

pE
k,n =

√(n
k

)
the coefficients. By Stirling’s formula, one can prove that the coefficients pE

k,n satisfy Assumptions 1 with
the associated function pE given in (24). Thus, Theorem 6(1) is the direct consequence of Theorem 5.
Now let’s prove Theorem 6(2), which is the interesting part, and the nontrivial ingredient is to find the
rescaling factor.

As in (59), the Nn-th derivative of En is equivalent to

E (Nn)
n =

Dn∑
k=0

ξk pE
k+Nn,n fk,nzk

:=

Dn∑
k=0

ξkuE
k,nzk . (60)

Let’s first consider the case when Nn/n→ 1 and Dn→∞. By discarding a negligible lower-order term
and by Stirling’s formula, we have
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1
Dn

log pE
k+Nn,n ∼

1
2Dn

(n log n− (k+ Nn) log(k+ Nn)− (Dn − k) log(Dn − k))

=
1
2

(
k+ Nn

Dn
log
(

n
k+ Nn

)
+

Dn − k
Dn

log
(

n
Dn − k

))
=

1
2

(
−

n+ k− Dn

Dn
log
(

n− Dn + k
n

)
−

Dn − k
Dn

log
(

Dn − k
Dn

)
+

Dn − k
Dn

log
(

n
Dn

))
= I1,1+ I1,2+ I1,3. (61)

By |log(1+ x)− x | ≤ x2 when |x | is small, we can get the uniform estimate∣∣∣∣I1,1−
1
2

(
−

n+ k− Dn

Dn

−Dn + k
n

)∣∣∣∣≤ n
2Dn

(
−Dn + k

n

)2

≤
n

2Dn

(
Dn

n

)2

→ 0.

We also have the uniform estimate∣∣∣∣12
(
−

n+ k− Dn

Dn

−Dn + k
n

)
−

Dn − k
2Dn

∣∣∣∣= (Dn − k)2

2nDn
≤

Dn

2n
→ 0;

it follows that if we define
h1 =

1
2(1− t),

then

lim
n→∞

sup
0≤k≤Dn

∣∣∣∣I1,1− h1

(
k

Dn

)∣∣∣∣= 0. (62)

Let’s put
h2 =−

1
2(1− t) log(1− t);

then we can rewrite

I1,2 = h2

(
k

Dn

)
. (63)

The trick now is to eliminate I1,3 by a rescaling factor. To be more explicit, let’s put Rn = n/Dn again
and put

p̃E
k+Nn,n = pE

k+Nn,n R−(Dn−k)/2
n . (64)

By defining in this way, we note that

1
Dn

log R−(Dn−k)/2
n =−I1,3; (65)

hence, if we combine (61)–(65) and define the function

log p̃E(x)= h1+ h2 =
1
2(1− t)− 1

2(1− t) log(1− t), (66)

then we have proved

lim
n→∞

sup
0≤k≤Dn

∣∣∣∣ 1
Dn

log p̃E
k+Nn,n − log p̃E

(
k

Dn

)∣∣∣∣= 0. (67)

Let’s further recall (50) in the proof of Case 3© for the Kac case where

f̃k,n = fk,n RDn−k
n ; (68)
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then we can rewrite (60) as

E (Nn)
n (z)=

Dn∑
k=0

ξk p̃E
k+Nn,n f̃k,nzk R−(Dn−k)/2

n .

Therefore, the rescaling random polynomials read

E (Nn)
n

(
z
√

Rn

)
= R−Dn/2

n

Dn∑
k=0

ξk p̃E
k+Nn,n f̃k,nzk . (69)

Let’s define

Ẽ (Nn)
n (z) :=

Dn∑
k=0

ξk p̃E
k+Nn,n f̃k,nzk .

Let’s derive the limit of the empirical measure of zeros of E (Nn)
n (z/

√
Rn), which is the same as Ẽ (Nn)

n (z).
To do this, let’s define the coefficients ũE

k,n := p̃E
k+Nn,n f̃k,n; then the estimates (54) and (67) imply that

ũE
k,n satisfy Assumptions 2 with Ln = Dn , δn = 0, and T0 = 1 and the associated function ũE is given

by log ũE
= log p̃E

+ log f̃ . By (52) and (66), we have

log ũE(t)=
{1

2(t − 1)− 1
2(1− t) log(1− t)− t log t, 0≤ t ≤ 1,

−∞, t > 1.

Therefore, (1/Dn)µ
Ẽ
Dn

, or equivalently (1/Dn)S√Rn
(µE

Dn
), converges in probability to a deterministic

measure. To find out the limit, we compute the Legendre–Fenchel transform of − log ũE as

I (s)= sup
0≤t≤1

(st + log ũ(t))= 1
2(ts − 1)− 1

2 log(1− ts),

where ts = (−1+
√

1+ 4e−2s)/(2e−2s). Therefore, (25) follows by Theorem 2.
The analysis for the case when Dn remains a fixed number m follows exactly the same approach as in

Section 2.4 for the Kac case. Recall the definition of uE
k,n in (60); if we replace Dn =m and Nn = n−m,

then we can rewrite

uE
k,n =

(
n!

(k+ n−m)! (m− k)!

)1/2
(k+ n−m)!m!

k! n!
=

m!
k!

(
(n−m+ k)!
n! (m− k)!

)1/2

.

Now we consider the rescaling random polynomials

Ẽm
n (z) := nm/2 E (n−m)

n

(
z
√

n

)
=

m∑
k=0

ũE
k,nξkzk,

where ũE
k,n = uE

k,nn(m−k)/2. Since m and k are both fixed when n→∞, we get

lim
n→∞

ũE
k,n =

m!
k! ((m− k)!)1/2

.

Therefore, since Ẽm
n (z) have the same zeros as E (n−m)

n (z/
√

n), then by Proposition 7, the limiting measure
S√n(µ

E
Dn
) when Dn = m will tend to the random zeros of
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f E
m =

m∑
k=0

1
k! ((m− k)!)1/2

ξkzk

in distribution, which completes the proof of Theorem 6.

Appendix: Proof of Theorem 2

Now we sketch the proof of Theorem 2 by modifying the one in [Kabluchko and Zaporozhets 2014].
Let’s first recall the proof of Theorem 1 in [Kabluchko and Zaporozhets 2014]. For random ana-

lytic functions F(z) defined in (9) where the coefficients satisfy Assumptions 1, if one establishes the
convergence in probability

1
n

log|Fn(z)| → I (log|z|) (70)

as n→∞, then Theorem 1 follows by the classical Poincaré–Lelong formula. Kabluchko and Zaporozhets
proved (70) by establishing some appropriate upper and lower bounds for |Fn(z)|; see estimates (22)
and (27) in [Kabluchko and Zaporozhets 2014].

Under Assumptions 2, the convergence radius is automatically infinity because we are now dealing with
a finite sum for any fixed n. Given random polynomials Fn in the form of (12) satisfying Assumptions 2,
to prove Theorem 2, it’s enough to derive the analogue convergence

1
Ln

log|Fn(z)| → I (log|z|) (71)

as n→∞, where the convergence is also in probability. To prove this, we need the same upper and lower
bounds as in [Kabluchko and Zaporozhets 2014].

For the upper bound, for any ε > 0, we have

|Fn(z)| ≤ MeLn(I (log|z|)+3ε+δ−n (log|z|)+) for n large enough, (72)

where M is an almost surely finite random variable depending on ε. Here we use the convention that
for any real number w, w+ and w− are the positive and negative parts of w, i.e., w+ = w ∨ 0 and
w− = (−w)∨ 0.

We also need to show the lower bound estimate

P(|Fn(z)|< eLn(I (log|z|)−4ε))= O
(

1
√

Ln

)
as n→∞. (73)

Recall Lemma 4.4 in [Kabluchko and Zaporozhets 2014]; we know that for any A > 0, there exists an
almost surely finite random variable M ′ such that |ξk | ≤ M ′eAk for all k with probability 1. If we set
A = ε/(2T0), then for all 0≤ k ≤ (T0− δn)Ln , we have

|ξk | ≤ M ′eεk/(2T0) ≤ M ′eεLn . (74)
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To prove (72), if we apply the bound (74) together with Assumptions 2, for n large enough and δ small
enough, we have

|Fn(z)| =
∣∣∣∣ ∑
0≤k≤(T0−δn)Ln

ξk pk,nzk
∣∣∣∣≤ ∑

0≤k≤(T0−δn)Ln

|ξk ||pk,n||z|k

≤ M ′eεLn

( ∑
0≤k≤(T0−δ

+
n )Ln

|pk,n||z|k +
∑

T0 Ln<k≤(T0+δ
−
n )Ln

|pk,n||z|k
)

≤ M ′eεLn
∑

0≤k≤(T0−δ
+
n )Ln

(e(k/Ln) log|z|+log p(k/Ln)+ δ|z|k/Ln )Ln

+M ′eεLn
∑

T0 Ln<k≤(T0+δ
−
n )Ln

(e(k/Ln−T0) log|z|+(T0 log|z|+log p(T0))+ δ|z|k/Ln )Ln .

By the definition of the Legendre–Fenchel transform, we further have

|Fn(z)| ≤ M ′e2εLn (eI (log|z|)
+ δ(1∨ |z|T0))Ln +M ′e2εLn eδ

−
n (log|z|)+Ln (eI (log|z|)

+ δ(1∨ |z|2T0))Ln

≤ M ′′eLn(I (log|z|)+3ε+δ−n (log|z|)+),

where M ′′ is another almost surely finite random variable, which completes the proof of the upper bound.
For the lower bound (73), if we choose the set J as the one in the proof of (27) in [Kabluchko and

Zaporozhets 2014], then the assumptions Ln→∞ and δn→ 0 imply that the set {k : 0≤ k ≤ (T0− δn)Ln,

k/Ln ∈ J } has cardinality bounded below by (|J |/2)Ln . The rest proof follows the one in [Kabluchko
and Zaporozhets 2014] by replacing n by Ln and hence the lower bound follows.
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