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We investigate the existence of ground states for the focusing nonlinear Schrödinger equation on a
prototypical doubly periodic metric graph. When the nonlinearity power is below 4, ground states exist
for every value of the mass, while, for every nonlinearity power between 4 (included) and 6 (excluded),
a mark of L2-criticality arises, as ground states exist if and only if the mass exceeds a threshold value
that depends on the power. This phenomenon can be interpreted as a continuous transition from a
two-dimensional regime, for which the only critical power is 4, to a one-dimensional behavior, in which
criticality corresponds to the power 6. We show that such a dimensional crossover is rooted in the
coexistence of one-dimensional and two-dimensional Sobolev inequalities, leading to a new family of
Gagliardo–Nirenberg inequalities that account for this continuum of critical exponents.

1. Introduction

Since the first appearance of branched structures in the modeling of organic molecules [Ruedenberg and
Scherr 1953], through the development of the mathematical theory of quantum graphs [Berkolaiko and
Kuchment 2013; Post 2012], networks (or metric graphs) have provided a general and flexible tool to
describe dynamics in complex structures like systems of quantum wires, Josephson junctions, propagation
of signals through waveguides, and some related technologies. Pioneering studies about nonlinear systems
on metric graphs appeared in [Ali Mehmeti 1994; Ali Mehmeti et al. 2001], but more recently the research
on such topics has grown rapidly, and several results have been achieved on propagation of solitary waves
[Adami et al. 2011; Caudrelier 2015; Sobirov et al. 2010] and on stationary states [Sabirov et al. 2013;
Cacciapuoti et al. 2015; Noja 2014; Noja et al. 2015; Pelinovsky and Schneider 2017; Gnutzmann and
Waltner 2016].

In a series of recent works [Adami et al. 2015a; 2015b; 2016] we investigated the problem of existence
of ground states for the energy functional associated to the focusing, L2-subcritical and critical nonlinear
Schrödinger (NLS) equation

i ∂t u(t)=−u′′(t)− |u(t)|p−2u(t) (1)

on finite noncompact metric graphs, i.e., branched structures with a finite number of vertices and edges,
and at least one infinite edge (i.e., a half-line).
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Figure 1. The grid G.

Specifically, by ground state on a metric graph G we mean every global minimizer of the energy
functional

E p(u)=
1
2

∫
G
|u′|2 dx − 1

p

∫
G
|u|p dx (2)

in the class of H 1(G) functions with fixed L2-norm (or mass) µ > 0. The constraint is dynamically
meaningful as the mass, as well as the energy, is conserved by the NLS flow, and the problem of the
existence of ground states is particularly relevant in the physics of Bose–Einstein condensates; see, e.g.,
[Adami et al. 2015a; 2015b; 2016; 2017b, Section 1].

In this paper we extend the analysis of the existence of ground states to a prototypical doubly periodic
metric graph G, particularly relevant in the applications, for which the techniques developed in previous
works (where noncompactness was due to one or more unbounded edges) do not apply: a two-dimensional
infinite grid isometrically embedded in R2, with vertices on the lattice Z2 and edges of unit length (see
Figure 1).

Schrödinger equations on periodic metric graphs have received considerable attention in the last few
years. Linear problems have been extensively studied, and a fairly complete spectral analysis is now
available for different types of coupling conditions. We refer for instance to the early papers [Exner
1996; Exner and Gawlista 1996] treating rectangular lattices, as well as to Chapter 4 in [Berkolaiko
and Kuchment 2013] for a more up-to-date overview of several results in a general periodic setting.
Concerning the square grid we focus on, we specifically quote [Exner and Turek 2010] for some results
strictly rooted in the two-dimensional nature of the domain.

More recently, nonlinear problems have been addressed too. For instance, [Pelinovsky and Schneider
2017] considers a specific example of a structure periodic along a single direction, the so-called necklace
graph, via bifurcation techniques. From a variational point of view, the first investigation for very general
periodic graphs can be found in [Pankov 2018], where the approach is based on the Nehari method. We
notice that, for this reason, in that paper the problem of the existence of ground states with prescribed
mass cannot be dealt with.

Let us now discuss our results. We first note, roughly speaking, that macroscopically the grid G has
dimension 2, while microscopically it is of dimension 1. This peculiarity is absent in graphs with a finite
number of half-lines, where the two-dimensional scale is lacking, as well as in other two-dimensional
structures like Z2, where edges are missing and there is of course no microscopic one-dimensional structure
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[Weinstein 1999]. The presence of two scales in G results in a transition from a one-dimensional to
a two-dimensional behavior, which emerges in functional inequalities and influences the existence of
ground states. We shall refer to this phenomenon as dimensional crossover.

Before commenting further on this point, it is convenient to state our main results in a precise form.
We define, for µ > 0, the mass-constrained set

H 1
µ(G)=

{
u ∈ H 1(G) :

∫
G |u|

2 dx = µ
}

(3)

and the corresponding “ground-state energy level”

Ep(µ)= inf
u∈H1

µ(G)
E p(u), (4)

considered as a function Ep : (0,+∞)→ R∪ {−∞} of the mass µ. By a “ground states of mass µ” we
mean a function u ∈ H 1

µ(G) such that
E p(u)= Ep(µ).

When p ∈ (2, 4), ground states exist for every prescribed mass.

Theorem 1.1 (subcritical case). Assume 2< p < 4. Then for every µ > 0 there exists a ground state of
mass µ, and Ep(µ) < 0.

The picture changes as the exponent of the nonlinearity increases.

Theorem 1.2 (dimensional crossover). For every p ∈ [4, 6] there exists a critical mass µp > 0 such that:

(i) If p ∈ (4, 6) then ground states of mass µ exist if and only if µ≥ µp, and

Ep(µ)= 0 if µ≤ µp,

Ep(µ) < 0 if µ > µp.
(5)

(ii) If p = 4 then ground states of mass µ exist if µ > µ4, whereas they do not exist if µ < µ4. Moreover
(5) is valid also when p = 4.

(iii) If p = 6 then there are no ground states, regardless of the value of µ, and

E6(µ)= 0 if µ≤ µ6,

E6(µ)=−∞ if µ > µ6.
(6)

We point out that, when p = 4, the existence of ground states of mass µ= µ4 is still an open problem.
For the sake of completeness, we also mention that when p > 6 one has Ep(µ)≡−∞ for every µ, as
one can easily see by a scaling argument.

In order to interpret Theorems 1.1 and 1.2, let us recall that in Rd, for the minimization of the NLS
energy under a mass constraint, there exists a critical exponent p∗d such that

(1) if p < p∗d , for every mass µ > 0 the ground-state energy level is finite and negative, and is attained
by a ground state;

(2) if p > p∗d , for every mass µ > 0 the ground-state energy level equals −∞.
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It is well known [Cazenave 2003] that p∗d = 4/d+2 for the NLS in Rd, yielding p∗1 = 6 for R and p∗2 = 4
for R2. Furthermore, it has been proved in [Adami et al. 2015b; 2016] that for finite noncompact graphs
(i.e., graphs with finitely many edges, at least one of them being unbounded) the critical exponent is 6,
exactly as for R. Thus the exponents considered in Theorem 1.1 are subcritical both in dimension 1 and
2, which reflects into the typical subcritical flavor of the result.

In fact, the main novelty of the paper emerges in Theorem 1.2 and lies in the “splitting” of the critical
exponent p∗d induced by the twofold nature (one-/two-dimensional) of the grid. Indeed, on the grid G:

(1) p = 4 is the supremum of those exponents p such that Ep(µ) is finite and negative (and attained by
a ground state) for every µ > 0.

(2) p = 6 is the infimum of those exponents p such that Ep(µ)=−∞ for every µ > 0.

Besides, let us stress another remarkable aspect of the dimensional crossover. In Rd, as well as on
noncompact finite graphs, the critical exponent is characterized by the existence of a critical mass in the
following sense: for smaller masses every function has positive energy, while for larger masses there are
functions with negative energy (as already mentioned, on a noncompact finite graph such a critical mass
arises only when p = 6).

On the contrary, on the grid G a similar notion of critical mass (the number µp in Theorem 1.2) arises
for every p ∈ [4, 6], so that, in this respect, every exponent within this range is, in fact, critical (see
Remark 2.5). Beyond this critical mass, however, the energy is still bounded from below and a ground
state exists, as if the problem had kept track of the subcriticality of the exponent p < 6 at the microscopic
scale.

From the point of view of functional analysis, the dimensional crossover is due to the simultaneous
validity, for every function u ∈W 1,1(G), of the two inequalities

‖u‖L∞(G) ≤ ‖u′‖L1(G), ‖u‖L2(G) ≤ ‖u
′
‖L1(G). (7)

Of these, the former is typical of dimension 1, modeled on the well-known inequality

‖v‖L∞(R) ≤
1
2‖v
′
‖L1(R) for all v ∈W 1,1(R), (8)

while the latter is the formal analogue of the Sobolev inequality in R2

‖v‖L2(R2) ≤ C‖∇v‖L1(R2) for all v ∈W 1,1(R2),

and is typical of dimension 2. As discussed in Section 2, either inequality in (7) yields a particular
version of the Gagliardo–Nirenberg inequality in H 1(G) ((12) and (18) respectively). By interpolation,
one obtains the critical Gagliardo–Nirenberg inequalities∫

G
|u|p dx ≤ Kp

(∫
G
|u|2 dx

)(p−2)/2∫
G
|u′|2 dx for all u ∈ H 1(G), (9)
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which, being valid for every exponent p ∈ [4, 6], give rise to a continuum of critical exponents (see also
Remark 2.5). Indeed, using (9), the NLS energy in (2) can be estimated from below as

E p(u)≥
1
2

(
1−

2Kp

p
µ(p−2)/2

)∫
G
|u′|2 dx,

which shows that E p(u)≥ 0 for every u ∈ H 1
µ(G), as soon as

µ≤

(
p

2Kp

)2/(p−2)

=: µp.

The number in the right-hand side of this inequality is thus the critical mass µp of Theorem 1.2.

Finally we would like to point out that we have chosen the grid G to illustrate our results because it is
the simplest doubly periodic metric graph, on which computations and proofs are particularly transparent.
It should be clear however that many other doubly periodic graphs can be treated with the methods
developed in the present work. Among these, we explicitly mention the hexagonal grid, a model for
graphene.

At the core of the results stands the double periodicity of the graph, which is responsible for the
occurrence of phenomena such as the dimensional crossover. To exploit the double periodicity on a
concrete given graph one must of course alter some parts of the proofs presented in this paper (e.g.,
the proof of Theorem 2.2) to adapt them to the particular features of the graph under study. We plan
to illustrate this with the detailed study of some other particular graphs, significantly relevant for the
applications, in forthcoming papers.

2. Inequalities

In this section we establish some fundamental inequalities for functions on the grid.
For notational purposes, it is convenient to describe the grid G as isometrically embedded in R2, with

the lattice Z2 as set of vertices, and an edge of length 1 joining every pair of adjacent vertices. In this
way, it is natural to interpret G as the union of horizontal lines {Hj } and vertical lines {Vk}, which cross
at every vertex (k, j) ∈ Z2.

As on any metric graph, to deal with the energy functional (2), the natural functional framework
is given by the standard spaces L p(G) and H 1(G). With the notation for G introduced above, for the
L p norms we have

‖u‖p
L p(G) =

∑
j∈Z

‖u‖p
L p(Hj )

+

∑
k∈Z

‖u‖p
L p(Vk)

=

∑
j∈Z

∫
Hj

|u(x)|p dx +
∑
k∈Z

∫
Vk

|u(x)|p dx <∞ (10)

and

‖u‖L∞(G) = sup
j,k
{‖u‖L∞(Hj ), ‖u‖L∞(Vk)}, (11)

while

‖u‖2H1(G) = ‖u‖
2
L2(G)+‖u

′
‖

2
L2(G).
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Here, as usual, H 1(G) denotes the space of functions on G whose restriction to every horizontal and
vertical line belongs to H 1(R), and that, in addition, are continuous at every vertex of G. In Theorem 2.2
we shall also need the space W 1,1(G), similarly defined as the space of functions on G whose restriction to
every horizontal and vertical line belongs to W 1,1(R) and that, in addition, are continuous at every vertex.

Remark. In the following, symbols like ‖u‖p stand for ‖u‖L p(G). When the domain of integration is
different from G, it will always be indicated in the norm.

First we recall the standard Gagliardo–Nirenberg inequality, which (up to a multiplicative constant
C > 1 on the right-hand side) is valid on any noncompact metric graph; a proof in the general framework
can be found in [Adami et al. 2016]. Here, for the sake of completeness, we shall give a short proof
tailored to the grid G which, by the way, yields a slightly sharper estimate.

Theorem 2.1 (one-dimensional Gagliardo–Nirenberg inequality). For every p ∈ [2,∞) one has

‖u‖p ≤ ‖u‖
1/2+1/p
2 ‖u′‖1/2−1/p

2 for all u ∈ H 1(G) (12)

and, moreover,
‖u‖∞ ≤ ‖u‖

1/2
2 ‖u

′
‖

1/2
2 for all u ∈ H 1(G). (13)

Proof. Since ‖u‖p ≤ ‖u‖
1−2/p
∞ ‖u‖2/p

2 , it suffices to prove (13). On the other hand, given u ∈ H 1(G), we
have u2

∈W 1,1(Hj ) for every horizontal line Hj of G. Then, applying (8) with v = u2 on Hj yields

‖u‖2L∞(Hj )
≤

∫
Hj

|u(x)u′(x)| dx ≤ ‖u‖L2(Hj )‖u
′
‖L2(Hj ) ≤ ‖u‖L2(G)‖u

′
‖L2(G).

Since clearly this inequality remains true if we replace Hj with any vertical line Vk , (13) follows
immediately from (11). �

As already mentioned, inequalities like (12) and (13) hold for every noncompact graph. On the contrary,
the next inequality, and its consequences below, rely on the two-dimensional web structure of the grid G.

Theorem 2.2 (two-dimensional Sobolev inequality). For every u ∈W 1,1(G),

‖u‖2 ≤ 1
2‖u
′
‖1. (14)

Proof. Given u ∈W 1,1(G), we have

‖u‖22 =
∑
j∈Z

∫
Hj

|u(x)|2 dx +
∑
k∈Z

∫
Vk

|u(y)|2 dy. (15)

First observe that, for each k, using (8) we obtain∫
Vk

|u(y)|2 dy ≤ ‖u‖L∞(Vk)

∫
Vk

|u(y)| dy ≤ 1
2‖u
′
‖L1(Vk)

∫
Vk

|u(y)| dy. (16)

Then, for each j ∈ Z, consider the horizontal lines Hj and H j+1, and denote by Pj the path in G obtained
by joining together the half-line of Hj to the left of Vk , the vertical segment of Vk between Hj and H j+1

(which we denote by Ij ), and the half-line of H j+1 to the right of Vk (see Figure 2).
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Ij

H j

H j+1

Vk

Figure 2. The path Pj (thick in the picture).

Since in particular u ∈W 1,1(Pj ), and the metric graph Pj is isometric to R, we find from (8)

|u(y)| ≤ 1
2

∫
Pj

|u′(x)| dx for all y ∈ Ij

and, since Ij has length 1, integrating this inequality over Ij yields∫
Ij

|u(y)| dy ≤ 1
2

∫
Pj

|u′(x)| dx for all j ∈ Z. (17)

Now observe that
Vk =

⋃
j∈Z

Ij ,
⋃
j∈Z

Pj = Vk ∪
⋃
j∈Z

Hj ,

and moreover, up to a negligible set, the paths {Pj } ( j ∈ Z) are mutually disjoint: therefore, summing
(17) over j ∈ Z yields∫

Vk

|u(y)| dy ≤ 1
2

(∫
Vk

|u′(y)| dy+
∑

j

∫
Hj

|u′(x)| dx
)
=

1
2

(
vk +

∑
j

h j

)
having set, for brevity, vk =

∫
Vk
|u′(y)| dy and h j =

∫
Hj
|u′(x)| dx . Combining with (16), and summing

over k, one obtains ∑
k

∫
Vk

|u(y)|2 dy ≤ 1
4

∑
k

vk

(
vk +

∑
j

h j

)
.

Of course, by the symmetry of G, we also have∑
j

∫
Hj

|u(x)|2 dx ≤ 1
4

∑
j

h j

(
h j +

∑
k

vk

)
,

and summing the last two inequalities we find

‖u‖2L2(G) ≤
1
4

(∑
k

(h2
k + v

2
k )+ 2

∑
j,k

h jvk

)
≤

1
4

(∑
k

hk + vk

)2

=
1
4
‖u′‖2L1(G). �

Theorem 2.3 (two-dimensional Gagliardo–Nirenberg inequality). For every p ∈ [2,∞) one has

‖u‖p ≤ C‖u‖2/p
2 ‖u

′
‖

1−2/p
2 for all u ∈ H 1(G), (18)

where C is an absolute constant.
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Proof. Given p ∈ [2,∞), we have
‖u‖p ≤ ‖u‖1−θ2 ‖u‖

θ
p+2, (19)

where
1− θ

2
+

θ

p+ 2
=

1
p
, i.e., θ = 1−

4
p2 . (20)

Now observe that u ∈ L∞(G) by (13), and hence u1+p/2 belongs to W 1,1(G) since p ≥ 2. Therefore, we
can replace u with u1+p/2 in (14), thus obtaining

‖u‖1+p/2
p+2 ≤

p+ 2
4

∫
G
|u(x)|p/2|u′(x)| dx ≤

p+ 2
4
‖u‖p/2

p ‖u
′
‖2.

Raising to the power 2/(p+ 2) we find

‖u‖p+2 ≤ C‖u‖p/(p+2)
p ‖u′‖2/(p+2)

2 , C = sup
p≥2

(
p+ 2

4

)2/(p+2)

; (21)

one may take, e.g., C = 3
2 . Plugging this inequality into (19) gives

‖u‖p ≤ ‖u‖1−θ2 Cθ
‖u‖θp/(p+2)

p ‖u′‖2θ/(p+2)
2

and (18) follows using (20), after elementary computations. �

Corollary 2.4 (interdimensional Gagliardo–Nirenberg inequality). There exists a universal constant
C > 0 such that, for every p ∈ [2,∞),

‖u‖p ≤ C‖u‖1−α2 ‖u′‖α2 for all α ∈
[

p− 2
2p

,
p− 2

p

]
, for all u ∈ H 1(G). (22)

In particular, for every p ∈ [4, 6] there exists a constant Kp, depending only on p, such that

‖u‖p
p ≤ Kp‖u‖

p−2
2 ‖u′‖22 for all u ∈ H 1(G). (23)

Proof. Observe that (22) reduces to (12) (where C = 1) when α = (p− 2)/(2p), while it reduces to (18),
where C ≤ 3

2 by (21), when α = (p− 2)/p. Then (22) is established also for every intermediate value
of α, since the right-hand side is a convex function of α, with a constant C independent of p and α.

Finally, when p ∈ [4, 6], (23) is obtained letting α = 2/p in (22) (the condition p ∈ [4, 6] guarantees
that this choice of α is admissible). The constant Kp in (23) is the best possible (i.e., the smallest); of
course Kp ≤ C p for every p ∈ [4, 6], where C is the constant appearing in (22). �

Remark 2.5. In Rd, when dealing with the NLS energy

1
2
‖∇u‖2L2(Rd )

−
1
p
‖u‖p

L p(Rd )

in the presence of an L2 mass constraint, the relevant version of the Gagliardo–Nirenberg (G-N) inequality
is

‖u‖L p(Rd ) ≤ C‖u‖1−αL2(Rd )
‖∇u‖αL2(Rd )

, α =
d(p− 2)

2p
, (24)
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valid as soon as α ∈ [0, 1); see [Leoni 2009]. When p = 2+ 4/d, this inequality becomes critical for
the NLS energy because α = 2/p (i.e., the exponents in the inequality become as in (23)), and a critical
mass µp comes into play. Now, while in (24) this critical exponent p = 2+ 4/d is uniquely determined
by the ambient space Rd, on the grid G every p ∈ [4, 6] is critical for the NLS energy, since one can let
α = 2/p in (22) (and obtain (23)) not just for one particular p, but for every p ∈ [4, 6].

Formally, solving for d in (24), for fixed α we can interpret (22) as a G-N inequality in dimension
d = 2αp/(p − 2): we call (22) interdimensional since d ranges over [1, 2] as α varies (this is in
contrast with (24), where the exponent α is uniquely determined by p and the space dimension d). With
this interpretation, (23) (which is just (22) with α = 2/p) can be seen as a critical G-N inequality in
dimension d= 4/(p−2) so that, formally, every p∈ [4, 6] can be seen as the critical exponent p= 2+4/d ,
in a fractal scaling dimension d ∈ [1, 2].

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1.

Remark 3.1. Note that, for every µ> 0 and p < 6, the one-dimensional Gagliardo–Nirenberg inequality
(12) ensures that Ep(µ) is finite and E p is coercive on H 1

µ(G) [Adami et al. 2016].

Recalling (3) and (4), we first prove a dichotomy lemma for minimizing sequences, which is useful in
proving the existence of ground states.

Lemma 3.2 (dichotomy). Given µ> 0 and p ∈ (2, 6), let {un} ⊂ H 1
µ(G) be a minimizing sequence for E p,

i.e.,
lim

n→∞
E p(un)= Ep(µ),

and assume that un ⇀ u weakly in H 1(G) and pointwise a.e. on G. If

m := µ−‖u‖22 ∈ [0, µ] (25)

denotes the loss of mass in the limit, then either m = 0 or m = µ.

Proof. We assume that 0< m <µ and seek a contradiction. According to the Brezis–Lieb lemma [1983],
we can write

E p(un)= E p(un − u)+ E p(u)+ o(1) as n→∞, (26)

and, since un ⇀ u in L2(G),

‖un − u‖22 = ‖un‖
2
2+‖u‖

2
2− 2〈un, u〉2→ µ−‖u‖22 = m (27)

as n→∞. Now, for n large enough,

Ep(µ)≤ E p

( √
µ

‖un − u‖2
(un − u)

)
=

1
2

µ

‖un − u‖22
‖u′n − u′‖22−

1
p

µp/2

‖un − u‖p
2
‖un − u‖p

p <
µ

‖un − u‖22
E p(un − u),
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since ‖un − u‖p 6= 0 and ‖un − u‖22 < µ. Thus,

E p(un − u) >
‖un − u‖22

µ
Ep(µ),

and by (27)
lim inf

n
E p(un − u)≥

m
µ

Ep(µ).

Thus, taking the liminf in (26) we find

Ep(µ)≥
m
µ

Ep(µ)+ E p(u). (28)

Similarly, since u 6≡ 0 we also have

Ep(µ)≤ E p

( √
µ

√
µ−m

u
)
≤

1
2

µ

µ−m
‖u′‖22−

1
p

(
µ

µ−m

)p/2

‖u‖p
p <

µ

µ−m
E p(u) (29)

and, as Ep(µ) >−∞ by Remark 3.1, from (28) we finally obtain

Ep(µ) >
m
µ

Ep(µ)+
µ−m
µ

Ep(µ)= Ep(µ),

a contradiction. �

Proposition 3.3. Assume p < 6 and Ep(µ) is strictly negative. Then there exists u ∈ H 1
µ(G) such that

E p(u)= Ep(µ).

Proof. Let {un} ⊂ H 1
µ(G) be a minimizing sequence for E p. Since p < 6, Remark 3.1 yields that

Ep(µ) >−∞ and un is bounded in H 1(G), and by translating each un (exploiting the periodicity of G)
we can also assume that un attains its L∞-norm on a compact set K ⊂ G independent of n. Therefore, up
to subsequences, un converges weakly in H 1(G), and strongly in L∞loc(G), to some function u ∈ H 1(G).
Setting m := µ−‖u‖22, from Lemma 3.2 one sees that either m = 0 or m = µ. If m = µ then u ≡ 0, but
in this case un→ 0 in L∞(G), since in particular, un→ u ≡ 0 uniformly on K. Therefore we would have

E p(un)≥−
1
p
‖un‖

p−2
∞

∫
G
|un|

2 dx =−
µ

p
‖un‖

p−2
∞
→ 0,

contradicting the fact that Ep(µ) < 0.
Thus it must be that m = 0, so that un → u strongly in L2(G) and therefore u ∈ H 1

µ(G). Moreover,
since un is bounded in L∞(G), un→ u strongly also in L p(G). Then

Ep(µ)≤ E p(u)≤ lim inf
n

E p(un)= Ep(µ)

by weak lower semicontinuity, and the proof is complete. �

Remark 3.4. It is interesting to compare Proposition 3.3 with Theorem 3.3 in [Adami et al. 2016].
According to that result, in a finite noncompact graph the energy threshold under which the existence of a
ground state of a given mass is guaranteed equals the energy of the soliton on R with the same mass. On
the contrary, on the grid G the absence of half-lines and the periodicity pushes the energy threshold up
to zero. This makes some proofs easier, since finding a function with negative energy is far easier than
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finding a function whose energy lies below a particular negative number. In fact, this task is immediately
accomplished when p < 4, as we now show.

Proof of Theorem 1.1. In view of Proposition 3.3, it suffices to construct a function in H 1
µ(G) with negative

energy. Given µ > 0, for ε > 0 let

κε =

(
εµ

2
1− e−2ε

1+ e−2ε

)1/2

(30)

and consider the function of two variables

ϕε(x, y)= κεe−ε(|x |+|y|), (x, y) ∈ R2.

Now, as described in Section 2, we can consider G isometrically embedded in R2, with its vertices on
the lattice Z2, and we can define uε : G→ R as the restriction of ϕε to the grid G. Observe that, on every
horizontal line Hj of G, u takes the form κεe−ε(|x |+| j |), and a similar expression holds on vertical lines.
Since for every λ > 0 ∫

R

e−λε|x | dx =
2
λε

and
∑
j∈Z

e−λε| j | =
1+ e−λε

1− e−λε
,

recalling (30) we obtain∫
G
|uε|2 dx = 2

∑
j∈Z

∫
Hj

|uε|2 dx = 2κ2
ε

∑
j∈Z

e−2ε| j |
∫

R

e−2ε|x | dx = µ

and, since |u′ε(x)| = ε|uε(x)|, ∫
G
|u′ε|

2 dx = ε2µ.

This shows in particular that uε ∈ H 1
µ(G). Similarly, observing that κε ∼ ε

√
µ/2 as ε→ 0, we obtain the

expansion ∫
G
|uε|p dx = 2

∑
j∈Z

∫
Hj

|uε|p dx = 2κ p
ε

2
εp

1+ e−εp

1− e−εp ∼ Cµp/2ε p−2 as ε→ 0,

where C depends only on p. Therefore, as ε→ 0,

E p(uε)∼
1
2
ε2µ−

1
p

Cµp/2ε p−2, (31)

so that E p(uε) < 0 (for ε small enough) when p < 4. This proves that, when p < 4, Ep(µ) < 0 for every
µ > 0. Moreover, since in particular p < 6, Remark 3.1 guarantees that Ep(µ) is finite. The result then
follows from Proposition 3.3. �

4. Proof of Theorem 1.2

In the following we assume that the constants Kp in the Gagliardo–Nirenberg inequality (23) are the
smallest possible. In other words, for p ∈ [4, 6] we let

Kp = sup
u∈H1(G)

u 6≡0

Q p(u), where Q p(u)=
‖u‖p

p

‖u‖p−2
2 ‖u′‖22

. (32)
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The critical masses µp mentioned in Theorem 1.2 are defined in terms of the constants Kp as follows.

Definition 4.1. For every p ∈ [4, 6] we define the critical mass µp as the positive number

µp =

(
p

2Kp

)2/(p−2)

. (33)

This definition is natural due to the identity

E p(u)=
1
2
‖u′‖22

(
1− 2

p
Q p(u)µ(p−2)/2

)
for all u ∈ H 1

µ(G), (34)

which, using Q p(u)≤ Kp and (33), leads to the lower bound

E p(u)≥
1
2
‖u′‖22

(
1−

(
µ

µp

)(p−2)/2)
for all u ∈ H 1

µ(G), (35)

which will be widely used in the sequel.

Remark 4.2. On the real line R, when p = 6 the ground-state level

ER
6 (µ)= inf

{1
2‖w

′
‖

2
L2(R)
−

1
6‖w‖

6
L6(R)

∣∣ w ∈ H 1
µ(R)

}
, µ > 0, (36)

is attained by a ground state if and only if µ= µR
6 , where the number

µR
6 =

π
√

3
2

(37)

is the critical mass of the real line; see [Adami et al. 2017a]. Up to sign and translations, the ground states
(of mass µR

6 ) are the soliton ϕ(x) = sech(2x/
√

3)1/2 together with all its mass-preserving rescalings
ϕλ(x)=

√
λϕ(λx) (λ > 0). There holds

ER
6 (µ)= 0 if µ≤ µR

6 ,

ER
6 (µ)=−∞ if µ < µR

6

(38)

so that in particular ground states have zero energy. Another related quantity is the optimal constant in
the Gagliardo–Nirenberg inequality on R, i.e., the number

K R
6 = sup

w∈H1(R)
w 6≡0

‖w‖6L6(R)

‖w‖4L2(R)
‖w′‖2L2(R)

=
4
π2 (39)

(note that µR
6 = (3/K R

6 )
1/2, which is formally consistent with (33) when p = 6).

The following proposition gives a complete picture of the problem on the grid G when p = 6 and,
moreover, provides the exact values of µ6 and K6.

Proposition 4.3. There hold µ6 = µ
R
6 = π

√
3/2 and K6 = K R

6 = 4/π2. Moreover there holds E6(µ)=

ER
6 (µ) for every µ > 0, but the infimum

E6(µ)= inf
{ 1

2‖u
′
‖

2
L2(G)−

1
6‖u‖

6
L6(G)

∣∣ u ∈ H 1
µ(G)

}
, µ > 0, (40)

is never attained.
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Proof. By a density argument, the infimum in (36) can be restricted to functions w ∈ H 1
µ(R) having

compact support. In fact, by a mass-preserving transformation w(x) 7→ w(x/ε2)/ε, one can restrict to
functions supported in the interval I =

[
−

1
2 ,

1
2

]
. Then, by interpreting this interval as one of the edges

of the grid G, any function w ∈ H 1
µ(R) supported in I can be embedded in H 1

µ(G) by setting w ≡ 0 on
G \ I , thus providing an admissible function in (40). This proves that E6(µ) ≤ ER

6 (µ) for every µ > 0.
Similarly, starting from the supremum in (39), by the same argument one proves that K6 ≥ K R

6 .
To prove the opposite inequalities we argue as follows. Given a nonnegative function u ∈ H 1(G)

(u 6≡ 0), let x0 ∈ G be a point where u achieves its absolute maximum ‖u‖∞, and let P be any path in G
such that x0 ∈ P and P is isometric to the real line R (a natural choice for P is the horizontal/vertical
line of G that contains x0). Since u(x0)= ‖u‖∞ and u(x)→ 0 as x→±∞ along P (in both directions
away from x0), the continuity of u guarantees that N (t)≥ 2 for every t ∈ (0, ‖u‖∞), where

N (t)= #{x ∈ G | u(x)= t} (41)

counts the number of preimages in G. Then, if û ∈ H 1(R) denotes the symmetric rearrangement of u
on R, applying Proposition 3.1 of [Adami et al. 2015b] we obtain

‖(û)′‖L2(R) ≤ ‖u
′
‖L2(G), ‖û‖Lr (R) = ‖u‖Lr (G) for all r (42)

so that, by the definition of K R
6 in (39), we can estimate

‖u‖6L6(G) = ‖û‖
6
L6(R)
≤ K R

6 ‖û‖
4
L2(R)
‖(û)′‖2L2(R)

≤ K R
6 ‖u‖

4
L2(G)‖u

′
‖

2
L2(G).

Therefore, K6 ≤ K R
6 by (32). Similarly, for the NLS energy we have

1
2‖(û)

′
‖

2
L2(R)
−

1
6‖û‖

6
L6(R)
≤

1
2‖u
′
‖

2
L2(G)−

1
6‖u‖

6
L6(G) (43)

and, since û ∈ H 1
µ(R) whenever u ∈ H 1

µ(G), this proves that ER
6 (µ)≤ E6(µ) for every µ > 0.

Now assume that, for some µ, a function u ∈ H 1
µ(G) achieves the infimum E6(µ) in (40). Then, since

ER
6 (µ)= E6(µ), (43) shows that, necessarily (i) û achieves the infimum ER

6 (µ) in (36); (ii) equality must
occur in (43), i.e., in (42). Now, condition (i) gives that û is a soliton on R (necessarily of mass µR

6 ),
while (ii) implies, see Proposition 3.1 of [Adami et al. 2015b], that N (t) = 2 in (41), i.e., that u−1(t)
has exactly two elements for almost every t ∈ (0, ‖u‖∞); then, since every vertex of G has degree 4, u
must vanish at every vertex and is necessarily supported in a single edge of G. So û has compact support
too, which is incompatible with û being a soliton. This contradiction shows the infimum in (40) is not
achieved.

Finally, (33) with p = 6 yields µ6 =
√

3/K6 = π
√

3/2; hence µ6 = µ
R
6 by (37). �

Proof of Theorem 1.2. The case where p = 6 has already been proved through Proposition 4.3. The rest
of the proof is divided into three parts.

Computation of Ep(µ) when p ∈ [4, 6). First observe that, in the proof of Theorem 1.1, no restriction on
p was used to construct uε and obtain (31), which is therefore valid also when p ≥ 4. As a consequence,
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in this case, letting ε→ 0 in (31) we obtain

Ep(µ)≤ lim inf
ε→0

E p(uε)≤ 0 for all p ≥ 4, for all µ > 0. (44)

Moreover, (35) shows that Ep(µ)≥ 0 when µ≤ µp. This, combined with (44), proves the first part of
(5), also when p = 4.

Now fix a mass µ > µp and a number ε > 0. Since the quotient Q p(u) in (32) is unaltered if u is
replaced with λu, there exists u ∈ H 1

µ(G) such that

Q p(u)=
‖u‖p

p

µ(p−2)/2‖u′‖22
≥ Kp − ε. (45)

Plugging this into (34), and then using (33), we can estimate

E p(u)≤
1
2
‖u′‖22

(
1− 2

p
(Kp − ε)µ

(p−2)/2
)
=

1
2
‖u′‖22

(
1−

(
µ

µp

)(p−2)/2

+
2ε
p
µ(p−2)/2

)
.

Since µ > µp, this quantity is strictly negative if ε is small enough. Thus, for µ > µp, Ep(µ) < 0.
Moreover, when p < 6, Ep(µ) > −∞ by Remark 3.1. This proves the second part of (5), also when
p = 4.

Ground states when p ∈ [4, 6) and µ 6= µp. When µ>µp, (5) (valid also when p = 4) shows that Ep(µ)

is finite and negative; hence a ground state exists by Proposition 3.3. When µ < µp, Ep(µ)= 0 by (5),
but (35) reveals that E p(u) > 0 for every u ∈ H 1

µ(G). Therefore, no ground state exists in this case.

Ground states when p ∈ (4, 6) and µ = µp. Since by (5) Ep(µp) = 0, we can no longer rely on
Proposition 3.3, and another argument is needed to show that Ep(µp) is in fact achieved.

Arguing as for (45), let un ∈ H 1
µp
(G) be a sequence of functions such that

lim
n

Q p(un)= lim
n

‖un‖
p
p

µ
(p−2)/2
p ‖u′n‖

2
2

= Kp. (46)

We shall bound Q p(un) in two different ways. First, from the Gagliardo–Nirenberg inequality (12) we
obtain

Q p(un)≤
‖un‖

p/2+1
2 ‖u′n‖

p/2−1
2

µ
(p−2)/2
p ‖u′n‖

2
2

=
µ
(6−p)/4
p

‖u′n‖
(6−p)/2
2

.

Secondly, interpolating and then using (23) with p = 4, we obtain

Q p(un)≤
‖un‖

p−4
∞ ‖un‖

4
4

µ
(p−2)/2
p ‖u′n‖

2
2

≤ ‖un‖
p−4
∞

K4‖un‖
2
2‖u
′
n‖

2
2

µ
(p−2)/2
p ‖u′n‖

2
2

= ‖un‖
p−4
∞

K4

µ
(p−4)/2
p

.

Recalling (46), from these two bounds we infer that ‖u′n‖2 ≤ C (compactness) and ‖un‖∞ ≥ C−1

(nondegeneracy) for some constant C > 0 independent of n. Thus {un} is bounded in H 1(G) and, up
to translations, we can also assume that each un achieves its L∞ norm on some compact set K ⊂ G
independent of n. Then, up to subsequences, un ⇀ u in H 1(G) for some u ∈ H 1(G), and un → u in
L∞loc(G); in particular, un→ u uniformly on K and, since ‖un‖L∞(K) > C−1, u is not identically zero.
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Finally, writing (34) with u = un and µ= µp, since ‖u′n‖2 ≤ C we find

|E p(un)| ≤
C2

2

∣∣∣∣1− 2
p

Q p(un)µ
(p−2)/2
p

∣∣∣∣= C2

2

∣∣∣∣1− Q p(un)

Kp

∣∣∣∣,
having used (33). Therefore, E p(un)→ 0 by (46) and, since Ep(µp)= 0, un is a minimizing sequence
for E p, so that Lemma 3.2 applies: since we already know that u is not identically zero, we obtain that
‖u‖22 = µp, i.e., u ∈ H 1

µp
(G). But then u is the required minimizer: indeed, un→ u strongly in L2(G)

hence also in L p(G), and by weak lower semicontinuity we obtain

Ep(µp)≤ E p(u)≤ lim inf
n

E p(un)= Ep(µp). �
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