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LONG TIME BEHAVIOR OF THE MASTER EQUATION
IN MEAN FIELD GAME THEORY

PIERRE CARDALIAGUET AND ALESSIO PORRETTA

Mean field game (MFG) systems describe equilibrium configurations in games with infinitely many
interacting controllers. We are interested in the behavior of this system as the horizon becomes large, or
as the discount factor tends to 0. We show that, in these two cases, the asymptotic behavior of the mean
field game system is strongly related to the long time behavior of the so-called master equation and to the
vanishing discount limit of the discounted master equation, respectively. Both equations are nonlinear
transport equations in the space of measures. We prove the existence of a solution to an ergodic master
equation, towards which the time-dependent master equation converges as the horizon becomes large, and
towards which the discounted master equation converges as the discount factor tends to 0. The whole
analysis is based on new estimates for the exponential rates of convergence of the time-dependent and the
discounted MFG systems, respectively.
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Given a terminal time T and an initial measure m0, we consider the solution to the mean field game
(MFG) system 

−∂t uT
−1uT

+ H(x, DuT )= F(x,mT ) in (0, T )×Td ,

∂t mT
−1mT

− div(mT Hp(x, DuT ))= 0 in (0, T )×Td ,

mT (0, · )= m0, uT (T, · )= G( · ,mT (T )) in Td ,

(1)

where Td is the d-dimensional flat torus Rd/Zd, F,G are functions defined on Td
×P(Td) (the space

of probability measures on Td ) and H is a function, defined on Td
×Rd, which is convex in the second

variable.
Let us recall that this system appears in mean field games theory, introduced by Lasry and Lions [2006a;

2006b; 2007] and by Huang, Caines and Malhamé [Huang et al. 2006]. Mean field games are dynamic

MSC2010: 35B40, 35F21.
Keywords: mean field games, weak KAM theory, long time behavior.
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games with infinitely many players. The first equation in (1) can be interpreted as the value function
of a small player whose cost depends on the density m(t) of the players, while the second equation
describes the evolution in time of the density of the players. Note that the first equation is backward in
time (and with a terminal condition) while the second one is forward, with the initial condition m(0)=m0,
m0 being the initial repartition of the players.

The study of the long time average of the MFG system was initiated in [Lions 2010] and then discussed
in several different contexts [Cardaliaguet et al. 2012; 2013; Cardaliaguet 2013; Cardaliaguet and Graber
2015; Gomes et al. 2010].

In [Cardaliaguet et al. 2013] the long time average of uT is investigated when H(x, p) = 1
2 |p|

2

and F(x,m),G(x,m) satisfy suitable smoothing conditions with respect to the measure m. Then it is
proved that there exists a constant λ̄ ∈ R such that the scaled function (s, x)→ uT (T s, x)/T locally
uniformly converges to the map (s, x)→−λ̄s as T →∞ on (0, 1)×Td, while the rescaled measure
(s, x)→ mT (sT, x) converges to a time-invariant measure m̄ in L1((0, 1)×Td). The constant λ̄ and the
measure m̄ are characterized as solutions of the ergodic MFG system; namely, there exists a unique triple
(λ̄, ū, m̄) which solves 

λ̄−1ū+ H(x, Dū)= F(x, m̄) in Td ,

−1m̄− div(m̄ Hp(x, Dū))= 0 in Td ,

m̄ ≥ 0,
∫

Td m̄ = 1,
∫

Td ū = 0 in Td ,

(2)

and DuT (sT, x) actually converges to Dū(x). The result holds under a monotonicity condition on F
and G: ∫

Td
(F(x,m)− F(x,m′))(m−m′) dx ≥ 0,

∫
Td
(G(x,m)−G(x,m′))(m−m′) dx ≥ 0

for any m,m′ ∈ P(Td). Moreover it is proved in [Cardaliaguet et al. 2013] that the convergence holds
with an exponential rate. Precisely, under some additional conditions on the smoothing properties of the
coupling terms F and G, one has

‖mT (t)− m̄‖C2+α +‖DuT (t)− Dū‖C2+α ≤ C(e−ωt
+ e−ω(T−t))

for some constants C, ω > 0 and α ∈ (0, 1).
This paper is devoted to the long time behavior of uT, i.e., the convergence, as T →∞, of the map

(t, x)→ uT (t, x)− λ̄(T − t). This question is inspired by results of Fathi [1997a; 1997b], Roquejoffre
[1998], Namah and Roquejoffre [1999] and Barles and Souganidis [2000] for Hamilton–Jacobi equations.
In that framework, it is known that if u solves the (forward) Hamilton–Jacobi equation

∂t u−1u+ H(x, Du)= 0 in (0,+∞)×Td ,

with associated ergodic constant λ̄, then u(t, x)− λ̄t converges, as t → +∞, to a solution ū of the
associated ergodic problem. One may wonder what remains of this result for the MFG system.

The convergence of the difference uT (t, · )− λ̄(T − t), as T →∞, has been an open (and puzzling)
question since [Cardaliaguet et al. 2013]. We prove in this paper that the limit of uT (t, · )− λ̄(T − t)
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indeed exists, although it cannot be described just in terms of the ū-component of the MFG ergodic
system (2). In order to describe this long-time behavior, we have to keep track of the initial measure m0.
To do so, we rely on the master equation, which is the following (backward) transport equation in the
space of measures:

−∂tU −1xU + H(x, DxU )− F(x,m)

−

∫
Td

div(DmU (t, x,m, y)) dm(y)

+

∫
Td

DmU (t, x,m, y) · Hp(y, DxU (t, y,m)) dm(y)= 0 in (−∞, 0)×Td
×P(Td),

U (0, x,m)= G(x,m) in Td
×P(Td).

(3)

In the above equation, the unknown U = U (t, x,m) depends on time, space and the measure on the
space; moreover, the notation DmU denotes a suitable derivative with respect to probability measures,
which will be described in Section 1A. Note that, in contrast with the MFG system, the master equation
is a classical evolution equation, so its long time behavior may be described in a usual form. We recall,
see [Lions 2010; Gangbo and Święch 2015; Chassagneux et al. 2014; Cardaliaguet et al. 2019], that the
master equation is well-posed under the monotonicity condition on F and G and that the MFG system (1)
plays the role of characteristics for this equation. Namely, if (uT ,mT ) solves (1), then

U (−T, x,m0)= uT (0, x) for all x ∈ Td .

Our main result (Theorem 5.1) states that U (t, · , · )+ λ̄t has a limit χ = χ(x,m) as t→−∞. This
limit solves (in a weak sense) the ergodic master equation

λ̄−1xχ(x,m)+H(x, Dxχ(x,m))−
∫

Td
div(Dmχ(x,m, y)) dm(y)

+

∫
Td

Dmχ(x,m, y)·Hp(y, Dxχ(y,m)) dm(y)= F(x,m) in T d
×P(Td). (4)

As a consequence, the limit uT (0, · )− λ̄T exists as T →∞ and is equal to χ( · ,m0). Note that, in
general, uT (0, · )− λ̄T does not converge to ū, since it is not always true that χ( · ,m0)= ū (even up to
an additive constant); this is however the case if m0 = m̄.

We are also interested in the infinite-horizon MFG system
−∂t uδ + δuδ −1uδ + H(x, Duδ)= F(x,mδ(t)) in (0,+∞)×Td ,

∂t mδ
−1mδ

− div(mδHp(x, Duδ))= 0 in (0,+∞)×Td ,

mδ(0, · )= m0 in (0,+∞)×Td , uδ bounded.
(5)

In the first-order stationary Hamilton–Jacobi (HJ) setting, where the equation reads

δuδ + H(x, Duδ)= 0 in Td ,

Gomes [2008] and Davini, Fathi, Iturriaga and Zavidovique [2016] have proved the convergence of
uδ− δ−1λ̄ as δ tends to 0 and characterized the limit. The result has been generalized to the second-order
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HJ setting by Mitake and Tran [2017]; see also [Le et al. 2017; Ishii et al. 2017]. In the viscous case, the
result is that, if uδ solves the infinite-horizon problem

δuδ −1uδ + H(x, Duδ)= 0 in Td ,

then uδ − δ−1λ̄ converges as δ→ 0 to the unique solution ū of the ergodic cell problem

−1ū+ H(x, Dū)= 0 in Td

such that
∫

Td ūm̄ = 0, where m̄ solves

−1m̄− div(m̄ Hp(x, Dū))= 0 in Td , m̄ ≥ 0,
∫

Td
m̄ = 1.

Here again, one may wonder if such a result remains true for the infinite-horizon MFG system (5)
(which, in contrast with the Hamilton–Jacobi case, is time-dependent). As for the time-evolution MFG
problem, we rely on a master equation. Following [Cardaliaguet et al. 2019], this infinite-horizon master
equation takes the form1

δU δ
−1xU δ

+ H(x, DxU δ)−

∫
Td

divy(DmU δ(x,m, y)) dm(y)

+

∫
Td

DmU δ(x,m, y) · Hp(y, DxU δ(y,m)) dm(y)= F(x,m) in Td
×P(Td). (6)

Our second main result (Theorem 6.1) is that U δ
− δ−1λ̄ converges to the unique solution χ of the master

ergodic problem (4) satisfying χ(x, m̄)= ū, where ū is the unique solution of the ergodic MFG system (2)
for which the following (new) linearized ergodic MFG system has a solution (v̄, µ̄):

ū−1v̄+ Hp(x, Dū) · Dv̄ = δF
δm
(x, m̄)(µ̄) in Td ,

−1µ̄− div(µ̄Hp(x, Dū))− div(m̄ Hpp(x, Dū)Dv̄)= 0 in Td ,∫
Td µ̄=

∫
Td v̄ = 0,

(the definition of the derivative δF/δm is explained in Section 1). This implies the convergence of
uδ(0, · )− δ−1λ̄ to χ( · ,m0) as δ tends to 0. Note that if F ≡ 0, i.e., in the Hamilton–Jacobi case, one
recovers the condition

∫
Td ūm̄ = 0 by integrating the v̄-equation against the measure m̄. The MFG setting

is more subtle since it keeps track of the coupling between the equations.
Let us now say a few words about the method of proofs. As in the Hamilton–Jacobi setting, the

argument relies on compactness arguments and, therefore, on the regularity (Lipschitz estimates) for the
solution U of the master equation (3) and for the solution U δ of the infinite-horizon master equation (6).
The main difficulty comes from the fact that these equations do not satisfy a comparison principle (in
contrast to the HJ equation). Moreover, as can be seen plainly from (3) and (6), the equations do not
provide easy bounds on the derivatives with respect to m of U and U δ.

1See in particular the comments in the introduction of [Cardaliaguet et al. 2019], which explain that the approach of that
work also applies to get the existence and uniqueness of solutions to this equation.
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The key Lipschitz estimates come from the fact that the characteristics (1) and (5) of these master equa-
tions stabilize exponentially fast in time to the solution of the ergodic MFG system (2) and, respectively,
to the solution of the time-invariant infinite-horizon problem

δūδ −1ūδ + H(x, Dūδ)= F(x, m̄δ) in Td ,

−1m̄δ
− div(m̄δHp(x, Dūδ))= 0 in Td ,∫

Td m̄δ
= 1;

(7)

see Theorems 2.6 and 3.7 respectively. These exponential convergence rates were only known for system (1)
when H(x, p)= |p|2, see [Cardaliaguet et al. 2013], where the argument relied on some commutation
properties which do not hold for general Hamiltonians. To prove the exponential convergence in our
setting, we use a technique developed by one of us with E. Zuazua [Porretta and Zuazua 2013] to establish
the so-called turnpike property for optimal control problems. The exponential rate for the infinite-horizon
MFG system is new, but uses similar ideas.

The starting point of this analysis consists in studying the linearized MFG systems. For simplicity, let
us explain this idea for the time-dependent problem, i.e., for U. In this framework, the MFG linearized
system reads

−∂tv−1v+ Hp(x, Du) · Dv = δF
δm
(x,m)(µ(t)) in (0, T )×Td ,

∂tµ−1µ− div(µHp(x, Du))− div(m Hpp(x, Du)Dv)= 0 in (0, T )×Td ,

µ(0, · )= µ0, v(T, x)= δG
δm
(x,m)(µ(T )) in Td ,

where (u,m) is the solution of (1) and µ0 is given. When (u,m) = (ū, m̄), the analysis of the above
system (the exponential decay of the solutions) provides an exponential convergence of the solution of
the MFG system to (ū, m̄)— at least, this holds true for the m-component. A very interesting point is
that this linearized system turns out to be also strongly related to the derivative of U with respect to m:
indeed, as explained in [Cardaliaguet et al. 2019], we have∫

Td

δU
δm
(0, x,m0, y)µ0(y) dy = v(0, x) for all x ∈ Td .

Thus controlling v allows us to control the variations of U with respect to m. Once the Lipschitz
estimates for U and for U δ are obtained, the construction of a corrector χ (solution of the ergodic master
equation (4)) follows in a standard way; see Theorem 4.2.

However, the convergence of the solution of the time-dependent master equation (3) requires new ideas
since, in contrast with the Hamilton–Jacobi setting, see [Fathi 2008; Barles and Souganidis 2000], there
is no obvious quantity which is monotone in time; the reason is that the master equation does not satisfy
a comparison principle. To overcome this issue, we rely again on the exponential convergence rate from
which we derive a suitable convergence of the solution of the master equation when evaluated at m̄ as
time tends to −∞ (see Proposition 2.7). Then we obtain the convergence of the map U by a compactness
argument and using again the convergence of the characteristics.
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The convergence of U δ is more subtle: the key point is that two solutions of the ergodic master equation
differ only by a constant. Thus we only have to show that U δ( · ,m)− δ−1λ̄ has a limit for some m. The
good choice turns out to be m = m̄δ, where (ūδ, m̄δ) solves (7); indeed, we have then U δ( · , m̄δ) = ūδ

and we expect (ūδ, m̄δ) to be close to (ū, m̄) in some sense, where (ū, m̄) satisfies (2). Actually a formal
expansion yields (ūδ, m̄δ)= (δ−1λ̄+ ū+ θ̄ + δv̄, m̄+ δµ̄), where (θ̄ , v̄, µ̄) solves

ū+ θ̄ −1v̄+ Hp(x, Dū) · Dv̄ = δF
δm
(x, m̄)(µ̄) in Td ,

−1µ̄− div(µ̄Hp(x, Dū))− div(m̄ Hpp(x, Dū)Dv̄)= 0 in Td ,∫
Td µ̄=

∫
Td v̄ = 0.

The rigorous justification is given in Proposition 6.5.
The paper is organized in the following way. In Section 1 we recall the notion of derivative in the

space of measures and state our main assumptions. We also recall some decay and regularity estimates
which hold separately for the two equations of the system and we provide the basic fundamental estimates
for (1) which are independent of the horizon T. Section 2 is devoted to the exponential convergence
rate, as T →∞, of solutions of (1) towards the pair (ū, m̄), a solution of (2). For this purpose, first we
develop decay estimates in L2 for the linearized system, and then we export the estimates (in stronger
norms) to (uT

− ū,mT
− m̄) by using a fixed-point argument. A similar strategy is used in Section 3

for the infinite-horizon discounted problem (5); in this case we prove the exponential convergence as
t →∞ towards the stationary pair (ūδ, m̄δ), a solution of (7). In both Sections 2 and 3, the analysis
of the linearized systems is a crucial step, and this will also play a key role in the study of the master
equations, both the time-dependent (3) and the stationary one (6), respectively. This is the content of
Sections 4–6. More precisely, in Section 4 we prove the existence of a solution to the ergodic master
equation, obtained as the limit, when δ→ 0, of a subsequence of solutions of (6). The long-time behavior
of the time-dependent master equation (3) is addressed in Section 5. Finally, the limit of the whole
sequence of solutions of (6) is proved in Section 6.

1. Notation, assumptions and preliminary estimates

1A. Notation and assumptions. Throughout the paper we work on the d-dimensional torus Td
:=Rd/Zd ;

this means that all equations are Zd -periodic in space. This assumption is standard in the framework of
the long time behavior. We denote by P(Td) the set of Borel probability measures on Td, endowed with
the Monge–Kantorovich distance d1

d1(m,m′)= sup
φ

∫
Td
φ d(m−m′) for all m,m′ ∈ P(Td),

where the supremum is taken over all 1-Lipschitz continuous maps φ : Td
→ R.

For α ∈ [0, 1], we denote by Cα([0, T ],P(Td)) the set of maps m : [0, T ]→P(Td) which are α-Hölder
continuous if α ∈ (0, 1) and continuous if α = 0.
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Next we recall the notion of derivative of a map U : P(Td)→ R as introduced in [Cardaliaguet et al.
2019]. We say that U is C1 if there exists a continuous map δU/δm : P(Td)×Td

→ R such that

U (m′)−U (m)=
∫ 1

0

∫
Td

δU
δm
((1− t)m+ tm′, y) d(m′−m)(y) dt for all m,m′ ∈ P(Td).

We observe that if U can be extended to L2(Td) then y 7→ (δU/δm)(m, y) is nothing but the representation
in L2 of the Gâteaux derivative of U computed at m. The fact that U is defined on probability measures,
i.e., with the constraint of mass 1, lets (δU/δm)(m, y) be defined up to a constant. We normalize the
derivative by the condition ∫

Td

δU
δm
(m, y) dm(y)= 0 for all m ∈ P(Td). (8)

We write interchangeably (δU/δm)(m)(µ) and
∫

Td (δU/δm)(m, y) dµ(y) for a signed measure µ with
finite mass.

When the map δU/δm = (δU/δm)(m, y) is differentiable with respect to the last variable, we denote
by DmU (m, y) its gradient:

DmU (m, y) := Dy
δU
δm
(m, y).

Let us recall [Cardaliaguet et al. 2019] that DmU can be used to estimate the Lipschitz regularity of U in
the m-variable:

|U (m)−U (m′)| ≤ d1(m,m′)
[

sup
m′′∈P(Td ),y∈Td

|DmU (m′′, y)|
]

for all m,m′ ∈ P(Td).

For p = 1, 2,∞, we denote by ‖ · ‖L p the L p norm of a map on Td (we often use the notation ‖ · ‖∞
for ‖ · ‖L∞). For k ∈ N and α ∈ (0, 1), we denote by ‖ · ‖Ck and ‖ · ‖Ck+α the standard norm on the set of
maps defined on Td and which are, respectively, of class Ck and of class Ck with a k-th derivative which
is α-Hölder continuous. By ‖ · ‖(Ck+α)′ we mean the norm in the dual space:

‖φ‖(Ck+α)′ := sup
{∫

Td
φψ, ‖ψ‖Ck+α ≤ 1

}
.

For a map φ depending of two spatial variables, we denote by ‖φ( · , · )‖k+α,k′+α the supremum of the
α-Hölder norm of the partial derivatives of order l ≤ k and l ′ ≤ k ′ respectively of the map φ.

Finally, if φ = φ(x), we systematically denote by 〈φ〉 :=
∫

Td φ(x) dx the average of φ.
If u : [0, T ] ×Td

→ R is a sufficiently smooth map, we denote by Du(t, x) and 1u(t, x) its spatial
gradient and spatial Laplacian and by ∂t u(t, x) its partial derivative with respect to the time variable. We
will also use the classical parabolic Hölder spaces: for α ∈ (0, 1), we denote by Cα/2,α the set of maps
which are α-Hölder in space and α/2-Hölder in time and by C1+α/2,2+α the set of maps u such that ∂t u
and D2u are in Cα/2,α.

Assumptions. The following assumptions are in force throughout the paper.
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(H) The Hamiltonian H = H(x, p) : Td
×Rd

→ R is of class C2 and the function p 7→ D2
pp H(x, p) is

Lipschitz continuous, uniformly with respect to x , and satisfies the growth condition

C−1 Id ≤ D2
pp H(x, p)≤ C Id for all (x, p) ∈ Td

×Rd . (9)

Moreover we suppose that there exist θ ∈ (0, 1) and C > 0 such that

|Dxx H(x, p)| ≤ C(1+ |p|)1+θ , |Dxp H(x, p)| ≤ C(1+ |p|)θ for all (x, p) ∈ Td
×Rd . (10)

This latter assumption is a little awkward, since it requires the quadratic part of H to be independent of
the space variable, but we actually need it in order to ensure uniform Lipschitz regularity of a solution uT

of (1) and of a solution uδ of (5) independently of T and δ: see Lemmas 1.5 and 3.6. If the same bounds
were available with different arguments, then we could get rid of this condition, since in the rest of the
paper we do not use it at all.

(FG) The coupling functions F,G : Td
× P(Td)→ R are assumed to be of class C1 and their first

derivatives satisfy the following Lipschitz conditions:

(FGa) F,G are twice differentiable in the x-variable and Fxx(x,m),Gxx(x,m) are bounded uniformly
in Td

×P(Td).

(FGb) (δF/δm)(x,m, y), (δG/δm)(x,m, y) are differentiable with respect to (x, y) and Lipschitz con-
tinuous in Td

×P(Td)×Td (i.e., globally Lipschitz in the three variables).

Even if this will not be strictly needed, an extra regularity condition is assumed in order to get to
smooth solutions of the master equation as stated in [Cardaliaguet et al. 2019]. Namely we assume that:

(FGc) For any α ∈ (0, 1), F( · ,m) and (δF/δm)( · ,m, · ) are of class C2+α in all space variables,
uniformly in m, and δF/δm is Lipschitz continuous in m with respect to C2+α in space. The same
holds for G in norm C3+α.

(FGd) The maps F and G are assumed to be monotone: for any m ∈ P(Td) and for any centered Radon
measure µ,∫

Td

∫
Td

δF
δm
(x,m, y)µ(x)µ(y) dx dy ≥ 0,

∫
Td

∫
Td

δG
δm
(x,m, y)µ(x)µ(y) dx dy ≥ 0. (11)

Let us comment upon our assumptions.
The regularity of H as well as the uniform convexity with respect to the second variable are standard

in MFG theory. Here these assumptions are all the more important because we make systematic use of
the duality inequality, see [Lasry and Lions 2007], which provides uniqueness and quantified stability for
the MFG system under this strong convexity assumption.

The regularity assumption on δF/δm (and on δG/δm) allows for instance inequalities of the form∥∥∥δF
δm
( · ,m)(µ)

∥∥∥
C2
≤ C‖µ‖(C2)′

for any m ∈ P(Td) and any distribution µ on Td.
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The monotonicity assumption (11) implies (and, under our regularity assumptions, is equivalent to) the
more standard one∫

Td
(F(x,m)− F(x,m′)) d(m−m′)(x)≥ 0,

∫
Td
(G(x,m)−G(x,m′)) d(m−m′)(x)≥ 0

for any measures m,m′ ∈ P(Td). This condition ensures the well-posedness of the MFG system (1) for
large time intervals and the well-posedness of the ergodic MFG system (2). Without this assumption,
these MFG systems may have several solutions and the long time average (and a fortiori the long time
behavior) of the MFG system (1) is not known.

Let us illustrate our assumptions by examples. The Hamiltonian functions we have in mind are for
instance of the form

H(x, p)= 1
2 |p|

2
+ V (x) · p+ g(x),

where V : Td
→ Rd is a smooth vector field and g : Td

→ R is a smooth map. Typical examples of
coupling maps F and G satisfying our conditions take the form

8(x,m)= [φ( · , (ρ ?m)( · )) ? ρ](x),

where ? denotes the usual convolution product in Rd, φ : R2
→ R is smooth and nondecreasing with

respect to the second variable and ρ : Rd
→ R is a smooth, even function with compact support; see for

instance Example 2.3.1. in [Cardaliaguet et al. 2019].

Let us stress that, in the following, we will denote generically by C possibly different constants
appearing in the estimates which depend on the data F,G and H through the above assumptions. In
particular, those constants will depend on the sup-norm of Fxx ,Gxx (which are bounded uniformly with
respect to x and m from (FGa)), the Lipschitz constants of δF/δm, δG/δm and the conditions (9)–(10),
respectively. Actually, those constants will also depend on the unique solution λ̄, ū, m̄ of (2), but this
triple is also meant as (uniquely) depending on the data F,G and H , so we will not mention this kind of
dependence otherwise.

1B. Preliminary estimates. We will use throughout the text the following estimates on linear equations
which are independent of the time horizon. The first one is about linear equations in divergence form; see
[Cardaliaguet et al. 2013, Lemmas 7.1 and 7.6].

Lemma 1.1. Let V be a bounded vector field on (0, T )×Td, let B ∈ L2((0, T )×Td) and let µ be the
solution to {

∂tµ−1µ+ div(µV )= div(B) in (0, T )×Td ,

µ(0)= µ0 in Td ,
(12)

with
∫

Td µ0 = 0.
There exist constants ω > 0 and C > 0, depending only on ‖V ‖∞, such that

‖µ(t)‖L2 ≤ Ce−ωt
‖µ0‖L2 +C

[∫ t

0
‖B(s)‖2L2 ds

]1/2

.
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If B ≡ 0, we also have, for any τ > 0,

‖µ(t)‖∞ ≤ Cτ e−ωt
‖µ0‖L1 for all t ≥ τ,

where the constant Cτ depends on τ and ‖V ‖∞ only.

The second lemma is about a viscous transport equation; see [Cardaliaguet et al. 2013, Lemmas 7.4
and 7.5].

Lemma 1.2. Let V be a bounded vector field, A ∈ L2((0, T )×Td) and v be the solution to the backward
equation

−∂tv−1v+ V · Dv = A in (0, T )×Td . (13)

There exist constants ω > 0 and C > 0, depending only on ‖V ‖∞, such that

‖v(t)−〈v(t)〉‖L2 ≤ Ce−ω(T−t)
‖v(T )−〈v(T )〉‖L2 +C

∫ T

t
e−ω(s−t)

‖A(s)‖L2 ds

and, if A ∈ L∞((0, T )×Td),

‖v(t)−〈v(t)〉‖L∞ ≤ Ce−ω(T−t)
‖v(T )−〈v(T )〉‖L∞ +C

∫ T

t
e−ω(s−t)

‖A(s)‖L∞ ds,

where 〈φ〉 =
∫

Td φ for any map φ. Moreover, for any 0≤ t < t0 ≤ T,

(t0− t)‖Dv(t)‖L2 ≤ C(t0− t + 1)
(
‖v(t0)−〈v(t0)〉‖L2 +‖A‖L2((t,t0)×Td )+‖v−〈v〉‖L2((t,t0)×Td )

)
.

We note for later use a simple consequence of Lemma 1.1:

Corollary 1.3. Let V and B be (time-independent) vector fields. Then any L2 solution of

−1µ+ div(µV )= div(B) in Td ,

with
∫

Td µ= 0, satisfies
‖µ‖H1 ≤ C‖B‖L2,

where C depends only on ‖V ‖∞.

Proof. It is enough to apply Lemma 1.1:

‖µ‖L2 ≤ Ce−ωt
‖µ‖L2 +C‖B‖L2 t1/2.

Choosing t large enough, this gives
‖µ‖L2 ≤ C‖B‖L2 .

Then, multiplying the equation by µ, the standard energy estimate gives

‖Dµ‖L2 ≤ [‖V ‖∞‖µ‖L2 +‖B‖L2],

which gives the result. �

We conclude this section with a further bound for the solutions of the Fokker–Planck equation.
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Lemma 1.4. Let V be a bounded vector field on (0, T )×Td with bounded space derivatives and µ be a
weak solution to (12) with B ≡ 0. Then, for any τ > 0,

‖µ(t)‖∞ ≤ Cτ e−ωt
‖µ0‖(C2+α)′ for all t ≥ τ,

where ω is given by Lemma 1.1, α ∈ (0, 1) and Cτ > 0 depends on ‖V ‖L∞ , ‖DV ‖L∞ and τ .

Proof. Let τ > 0 and v be the solution to the transport equation{
−∂tv−1v+ V · Dv = 0 in (0, τ )×Td ,

v(τ, x)= vτ (x) in Td ,
(14)

where vτ is in C∞(Td). One easily checks that

sup
t
‖v(t)‖L2 +‖Dv‖L2((0,τ )×Td ) ≤ C‖vτ‖L2,

where C depends on ‖V ‖∞ and τ only. Standard parabolic regularity [Ladyženskaja et al. 1968, Theo-
rem III.11.1] then implies

‖Dv‖Cα/2,α([0,τ/2]×Td ) ≤ C‖vτ‖L2

for some α and C depending on ‖V ‖∞ and τ only. For any i ∈ {1, . . . , d}, the derivative vxi solves

−∂tvxi −1vxi + V · Dvxi + Vxi · Dv = 0 in (0, τ/2)×Td .

By parabolic regularity [Ladyženskaja et al. 1968, Theorem III.11.1], we infer that

‖D2v‖Cα/2,α([0,τ/4]×Td ) ≤ C‖Dv‖L∞((0,τ/2)×Td ) ≤ C‖vτ‖L2

for some α and C depending on ‖V ‖∞, ‖DV ‖∞ and τ only. We have, since (14) is the dual equation
of (13), ∫

Td
vτµ(τ)=

∫
Td
v(0) dµ0(x).

So taking the supremum over vτ such that ‖vτ‖L2 ≤ 1, we infer that

‖µ(τ)‖L2 ≤ Cτ‖µ0‖(C2+α)′ for all τ > 0.

We can then derive the conclusion by Lemma 1.1. �

1C. Regularity of the MFG system. The aim of this section is to provide additional basic estimates on
the solution to the MFG system

−∂t u+ λ̄−1u+ H(x, Du)= F(x,m) in (0, T )×Td ,

∂t m−1m− div(m Hp(x, Du))= 0 in (0, T )×Td ,

m(0, · )= m0, u(T, · )= g in Td ,

(15)

where m0 ∈ P(Td). Let us recall that λ̄ ∈ R is the unique ergodic constant and (ū, m̄) the unique solution
to the ergodic MFG system (2).

The following estimates have been mostly well known since [Cardaliaguet et al. 2013], but we collect
them for the sake of completeness. The whole point is to get estimates which are independent of the
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time horizon or of the discount rate. For this purpose we rely on conditions (9)–(10), as well as on the
smoothing assumption (FGa) for the couplings.

Lemma 1.5. For any M > 0, there exists a constant C > 0 such that for any horizon T > 0, if (u,m) is a
solution to the MFG system (15) and ‖g‖C2(Td ) ≤ M , then

‖Du‖∞ ≤ C.

Proof. As in Lemma 3.2 in [Cardaliaguet et al. 2013], the proof relies on the uniform semiconcavity of
the solution. Let us recall that, for any smooth map φ ∈ C∞(Td), we have

‖Dφ‖∞ ≤ d1/2 sup
x∈Td , |z|≤1

(D2φ(x)z · z)+. (16)

Let ξ with |ξ | ≤ 1 be a direction for which C0 := sup(t,x) D2u(t, x)ξ ·ξ is maximal (and thus nonnegative).
We set w(t, x)= D2u(t, x)ξ · ξ = uξξ (t, x). Then w solves

−∂tw−1w+Hξξ (x, Du)+2Hξp(x, Du)·Duξ+Hpp(x, Du)Duξ ·Duξ+Hp(x, Du)·Dw=Fξξ (x,m(t)).

If the maximum of w is reached at T, then

C0 ≤max
x∈Td

D2g(x)ξ · ξ ≤ M.

Otherwise, one has at the maximum point (t, x) of w:

Hξξ (x, Du)+ 2Hξp(x, Du) · Duξ + Hpp(x, Du)Duξ · Duξ ≤ Fξξ (x,m(t)),

where by our standing assumptions on H we have

Hξξ (x, Du)≥−C(1+ |Du|)1+θ ,

Hpp(x, Du)Duξ · Duξ + 2Hξp(x, Du) · Duξ ≥ C−1
|Duξ |2−C(1+ |Du|)2θ .

Since (16) implies ‖Du‖∞ ≤ d1/2C0, we deduce that

−C(1+C0)
1+θ
−C(1+C0)

2θ
+C−1

|Duξ |2 ≤ C

and since |Duξ | ≥ C0 at the maximum point of w(t, x), because θ < 1 we conclude that C0 is bounded.
By (16), we infer the Lipschitz estimate for u. �

Remark 1.6. Thanks to Lemma 1.5, the drift Hp(x, Du) in the Fokker–Planck equation is uniformly
bounded. As a consequence, as it is well known (see, e.g., in [Cardaliaguet 2010, Lemma 3.4]), the
solution m satisfies the following Hölder continuity estimate in time:

d1(m(t),m(s))≤ C |t − s|1/2 for all t, s ∈ (0, T ) such that |t − s| ≤ 1, (17)

for some constant C independent of T.
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Next result exploits the stability of the system which stems from the monotonicity of F and the convexity
of H ; see [Lasry and Lions 2007]. In particular, whenever H is uniformly convex, as is assumed in (9),
the following estimate holds for any pair of solutions (u1,m1) and (u2,m2) of the system (15):

C−1
∫

Td
(m1+m2)|D(u1− u2)|

2
≤−

d
dt

∫
Td
(u1− u2)(m1−m2). (18)

Lemma 1.7. For any ε > 0 and M > 0, there exist times T̂ > τ > 0 (depending only on ε, M and the data
of the problem) such that, if T ≥ T̂ and if (u,m) is a solution to the MFG system (15) and ‖g‖C2(Td ) ≤ M ,
we have, for some α ∈ (0, 1),

‖m(t)− m̄‖Cα +‖Du(t)− Dū‖Cα ≤ ε for all t ∈ [τ, T − τ ].

Proof. We follow closely the argument of Lemma 3.5 of [Cardaliaguet et al. 2013] (in the case H = |p|2)
and, for this reason, we only sketch the proof. By Lemma 1.5, u is uniformly Lipschitz continuous in
space, with a Lipschitz constant depending only on the regularity of H , F and on ‖Dg‖∞+‖D2g‖∞.
So, by Lemma 1.1, we have

sup
t≥1
‖m(t)‖∞ ≤ C,

where C depends only on ‖Hp( · , Du( · ))‖∞, and thus only on the data. Applying (18) to (u,m) and
(ū, m̄), and using m̄ > 0 in Td, we have

C−1
∫ t2

t1
‖D(u(t)− ū)‖2L2 dt ≤−

[∫
Td
(u(t)− ū)(m(t)− m̄)

]t2

t1

. (19)

Thus ∫ T

0
‖D(u(t)− ū)‖2L2 dt ≤ C,

because u is uniformly Lipschitz continuous in space and m(t) and m̄ are probability measures. In
particular, if T ≥ 3ε−1, there exist times t1 ∈ [1, ε−1

], t2 ∈ [T − ε−1, T ] such that

‖D(u(ti )− ū)‖L2 ≤ Cε1/2 for i = 1, 2. (20)

Coming back to (19), we infer by Poincaré’s inequality that

C−1
∫ T−1/ε

1/ε
‖D(u(t)− ū)‖2L2 dt ≤ C−1

∫ t2

t1
‖D(u(t)− ū)‖2L2 dt

≤ ‖D(u(t1)− ū)‖L2‖m(t1)− m̄‖L2 +‖D(u(t2)− ū)‖L2‖m(t2)− m̄‖L2

≤ Cε1/2.

As µ := m− m̄ satisfies

∂tµ−1µ− div(µHp(x, Du))=− div(m̄(Hp(x, Dū)− Hp(x, Du))), (21)
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and still using the fact that Du is bounded, we have from Lemma 1.1 that, for any t ∈ [1/ε, T − 1/ε],

‖m(t)− m̄‖L2 ≤ Ce−ω(t−1/ε)
‖m(1/ε)− m̄‖L2 +C

[∫ T−1/ε

1/ε
‖D(u(t)− ū)‖2L2 dt

]1/2

≤ C(e−ω(t−1/ε)
+ ε1/4).

So we can choose τ large enough (depending only on ε, on the data and on M) such that the right-hand
side is less than Cε1/4 if t ∈ [τ − 1, T − 1/ε].

Let us now upgrade this inequality into an L∞ estimate for the interval [τ, T −1/ε]. For this, we recall
from (21) that µ solves a parabolic equation of the type

∂tµ−1µ− div(µb+ B)= 0,

where b is bounded in L∞ and B is bounded in L p for any p ≥ 2 since∫ T−1/ε

1/ε
‖B(t)‖p

L p ≤ C
∫ T−1/ε

1/ε

∫
Td
|D(u(t)− ū)|p ≤ C

∫ T−1/ε

1/ε

∫
Td
|D(u(t)− ū)|2 ≤ Cε1/2,

where we used the global bound for Du(t). Since we already know that ‖µ(t)‖L2 ≤ Cε1/4, by choosing
p sufficiently large we deduce (see, e.g., [Ladyženskaja et al. 1968, Theorem III.8.1, p. 196]) that µ is
bounded in Cα/2,α for some α ∈ (0, 1) and

‖µ(t)‖Cα ≤ C
(

sup
s∈(τ−1,T−1/ε)

‖µ(s)‖L2 +‖B‖L p((1/ε,T−1/ε)×Td )

)
≤ C(ε1/4

+ ε1/(2p))

for any t ∈ [τ, T − 1/ε]. This concludes the bound for ‖m(t)− m̄‖Cα . In order to prove the estimate
for u, let us note that v = u− ū satisfies

−∂tv−1v+ V · Dv = F(x,m(t))− F(x, m̄),

where V is the bounded vector field

V (t, x)=
∫ 1

0
Hp(x, λDu(t, x)+ (1− λ)Dū(x)) dλ.

By Lemma 1.2 we have, for t ∈ [1/ε, T − 1/ε],

‖v(t)−〈v(t)〉‖∞

≤ ‖v(T − 1/ε)−〈v(T − 1/ε)〉‖∞e−ω(T−1/ε−t)
+C

∫ T−1/ε

t
e−ω(s−t)

‖F(x,m(t))− F(x, m̄)‖∞ ds

≤ C(e−ω(T−1/ε−t)
+ ε1/(2p)).

Choosing τ > 1/ε large enough then implies

‖v(t)−〈v(t)〉‖∞ ≤ Cε1/(2p) for all t ∈ [τ, T − τ ].

Finally, we can replace the left-hand side by ‖Dv(t)‖Cα by using again Lemma 1.2. Indeed, whenever v
satisfies

−∂tv−1v+ V · Dv = A
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with V, A bounded, we estimate, for any interval [t, t + 1],

‖Dv(t)‖Cα ≤ C sup
s∈(t,t+1/2)

[‖v(s)−〈v(s)〉‖∞+‖A(s)‖∞+‖Dv(s)‖L2]

≤ C sup
s∈(t,t+1)

[‖v(s)−〈v(s)〉‖∞+‖A(s)‖∞].

Since A = F(x,m(t))− F(x, m̄), the previous estimates give the conclusion. �

2. Exponential rate of convergence for the finite-horizon MFG system

In this section we provide several convergence results with an exponential rate of convergence for finite-
horizon MFG systems. The results of this section extend to general Hamiltonians the main results of
[Cardaliaguet et al. 2013] (though requiring slightly stronger assumptions on the coupling F). Although
the results are interesting themselves, they are nevertheless motivated by the rest of the paper, in which
they play a central role.

The method of proof for these exponential rates differs completely from [Cardaliaguet et al. 2013],
where it relied on an algebraic structure of the linearized system. We start with the linearized systems and
first get a crude estimate on the solution. Using the monotonicity assumption, the duality method shows
that a suitable quantity is monotone in time and bounded (thanks to the rough estimate). A compactness
argument, borrowed from [Porretta and Zuazua 2013], then shows that the limit of this quantity must
vanish. We then use the linearity property of the system to get an exponential rate of convergence. The
nonlinear equations are treated as perturbations of the linear ones. Note that the key argument is inspired
by [Porretta and Zuazua 2013], where the long time behavior of optimality systems is analyzed by using
the stabilizing properties of the Riccati feedback operator. However, in contrast with that paper, our
system does not come from an optimal control problem in general, which makes a substantial difference.

2A. Estimates for the linearized system. We now study the linearized MFG system around the stationary
ergodic solution (ū, m̄): namely, given µ0, vT : T

d
→ R smooth with

∫
Td µ0 = 0, we consider a solution

(v, µ) to 
−∂tv−1v+ Hp(x, Dū) · Dv = δF

δm
(x, m̄)(µ(t)) in (0, T )×Td ,

∂tµ−1µ− div(µHp(x, Dū))− div(m̄ Hpp(x, Dū)Dv)= 0 in (0, T )×Td ,

µ(0, · )= µ0, v(T, x)= δG
δm
(x, m̄)(µ(T ))+ vT (x) in Td .

(22)

Thanks to the assumptions made upon δF/δm and δG/δm, and to the smoothness of (ū, m̄), problem
(22) can be considered in a standard framework of weak solutions with finite energy, i.e., v,m ∈
L2((0, T ); H 1(Td)). Solutions will eventually be more regular, but we are not considering this issue
here; our main purpose, which is the following result, is to show the L2 decay estimates for µ and Dv,
assuming the same regularity on the initial-terminal conditions.
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Proposition 2.1. There exist C0 > 0, λ> 0 such that, if (v, µ) is a solution to the MFG linearized system
(22) with

∫
Td µ0 = 0, then we have

‖µ(t)‖L2 +‖Dv(t)‖L2 ≤ C0(e−λt
+ e−λ(T−t))(‖µ0‖L2 +‖DvT ‖L2) for all t ∈ [0, T ].

Let us start the proof with a lemma which explains that the solution is uniformly bounded, with a
bound depending on ‖µ0‖L2 only.

Lemma 2.2. There is a constant C0 > 0, depending only on the data H , F and G, but not on T, such that,
if (v, µ) is a solution of the linearized problem (22), then∫ T

0
‖Dv‖2L2 + sup

t∈[0,T ]
(‖µ(t)‖2L2 +‖Dv(t)‖2L2)≤ C0(‖µ0‖

2
L2 +‖DvT ‖

2
L2). (23)

Proof. Note that
∫

Td µ(t)= 0 for any t . Multiplying the equation for v by µ and the equation for µ by v,
integrating in time and space and adding the resulting relations, we have, for any 0≤ t1 ≤ t2 ≤ T,∫ t2

t1

∫
Td×Td

δF
δm
(x, m̄, y)µ(t, y)µ(t, x) dy dx dt

+

∫ t2

t1

∫
Td

m̄ Hpp(x, Dū(x))Dv(t, x) · Dv(t, x) dx dt =−
[∫

Td
vµ

]t2

t1

, (24)

so, by the monotonicity of F and G, see assumption (11),

C−1
∫ T

0
‖Dv(t)‖2L2 dt ≤

∫
Td
(v(0)−〈v(0)〉)µ0−

∫
Td
(vT −〈vT 〉)µ(T )

≤ C(‖Dv(0)‖L2‖µ0‖L2 +‖DvT ‖L2‖µ(T )‖L2), (25)

thanks to Poincaré’s inequality. Using Lemma 1.1, we have

‖µ(t)‖L2 ≤ Ce−ωt
‖µ0‖L2 +C

[∫ t

0
‖m̄ Hpp( · , Dū)Dv‖2L2

]1/2

≤ Ce−ωt
‖µ0‖L2 +C

[∫ T

0
‖Dv‖2L2

]1/2

≤ Ce−ωt
‖µ0‖L2 +C(‖Dv(0)‖1/2L2 ‖µ0‖

1/2
L2 +‖DvT ‖

1/2
L2 ‖µ(T )‖

1/2
L2 ).

For t = T, we get, after simplification,

‖µ(T )‖L2 ≤ C(‖µ0‖L2 +‖Dv(0)‖1/2L2 ‖µ0‖
1/2
L2 +‖DvT ‖L2),

from which we deduce that

sup
t∈[0,T ]

‖µ(t)‖L2 ≤ C(‖µ0‖L2 +‖Dv(0)‖1/2L2 ‖µ0‖
1/2
L2 +‖DvT ‖L2). (26)

Note that the derivative vxi of v satisfies−∂tvxi −1vxi + Hp · Dvxi + Dxi [Hp] · Dv = Dxi
δF
δm
(x, m̄)(µ(t)) in (0, T )×Td ,

vxi (T, x)= Dxi
δG
δm
(x, m̄)(µ(T ))+ DxivT (x) in Td ,

(27)
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where, to simplify the notation, we have set Hp = Hp(x, Dū), etc. Then Lemma 1.2 gives, in view of
our assumptions on δF/δm and δG/δm,

‖vxi (t)‖L2 ≤ Ce−ω(T−t)
(
‖DvT ‖L2 +

∥∥∥Dxi
δG
δm
( · , m̄)(µ(T ))

∥∥∥
L2

)
+C

∫ T

t
e−ω(s−t)

(
‖Dxi [Hp] · Dv‖L2 +

∥∥∥Dxi
δF
δm
( · , m̄)(µ(t))

∥∥∥
L2

)
ds

≤ Ce−ω(T−t)(‖DvT ‖L2 +‖µ(T )‖L2)+C
∫ T

t
e−ω(s−t)(‖Dv‖L2 +‖µ(t)‖L2) ds

≤ Ce−ω(T−t)
‖DvT ‖L2 +C

(∫ T

t
‖Dv‖2L2

)1/2

+C sup
s≥t
‖µ(s)‖L2 . (28)

Combining this with (25) and with the estimate for µ in (26), we find, for any t ∈ [0, T ],

‖Dv(t)‖L2 ≤ C(‖µ0‖L2 +‖Dv(0)‖1/2L2 ‖µ0‖
1/2
L2 +‖DvT ‖L2).

In particular, for t = 0, we get, after simplification,

‖Dv(0)‖L2 ≤ C(‖µ0‖L2 +‖DvT ‖L2),

which jointly with (25) and (26) gives the desired statement. �

Remark 2.3. The above lemma also provides an argument for proving the existence of a solution (v, µ)
to (22). Indeed, the a priori estimate (23) allows for a standard application of Schaefer’s fixed-point
theorem by freezing µ in the right-hand side as well as in the final value of the equation of v.

Proof of Proposition 2.1. For τ ≥ 0, let us set

ρ(τ)= sup
(T,t,µ0,vT )∈S(τ )

∣∣∣∣∫
Td
µ(t)v(t)

∣∣∣∣,
where the supremum is taken over the set S(τ ) defined as

S(τ ) := {(T, t, µ0, vT ) : T ≥ 2τ, t ∈ [τ, T − τ ], ‖µ0‖L2 ≤ 1 and ‖DvT ‖L2 ≤ 1},

the pair (v, µ) being a solution to (22). According to Lemma 2.2, ρ(τ) is bounded for any τ , since, using
that µ has zero average, one has for any t∣∣∣∣∫

Td
µ(t)v(t)

∣∣∣∣≤ C‖µ(t)‖L2‖Dv(t)‖L2

by Poincaré’s inequality. By definition, the map ρ is nonincreasing, since S(τ )⊆ S(τ ′) if τ > τ ′. Let us
denote by ρ∞ the limit of ρ(τ) as τ →+∞. The key step consists in proving that ρ∞ = 0.

Let τn→+∞, Tn ≥ 2τn , tn ∈ [τn, Tn − τn], µn
0 with ‖µn

0‖L2 ≤ 1 and vn
T with ‖Dvn

T ‖L2 ≤ 1 be such
that ∣∣∣∣∫

Td
µn(tn)vn(tn)

∣∣∣∣≥ ρ∞− 1
n
.
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We set

µ̃n(t, x)= µn(tn + t, x), ṽn(t, x)= vn(tn + t, x)−〈vn(tn)〉 for all t ∈ [−tn, Tn − tn], x ∈ Td .

By the estimates of Lemma 2.2, the (ṽn, µ̃n) are locally bounded in L2. By parabolic regularity (from
[Ladyženskaja et al. 1968, Theorem III.8.1, p. 196] combined with Theorem III.10.1, p. 204, and
Theorem III.11.1, p. 211, of the same work), the ṽn and Dṽn are locally bounded in Cα/2,α, while the
µ̃n are bounded in Cα/2,α for some α ∈ (0, 1). So the pair (ṽn, µ̃n) locally uniformly converges to some
(v, µ) which satisfies the linearized MFG system on R×Td. Moreover, we have∣∣∣∣∫

Td
µ(0)v(0)

∣∣∣∣= lim
n

∣∣∣∣∫
Td
µn(tn)vn(tn)

∣∣∣∣= ρ∞.
On the other hand, for any t ∈R and for n large enough, we have that tn+ t ∈ [τn−|t |, Tn− (τn−|t |)], so∣∣∣∣∫

Td
µ(t)v(t)

∣∣∣∣= lim
n

∣∣∣∣∫
Td
µn(tn + t)vn(tn + t)

∣∣∣∣≤ lim
n
ρ(τn − |t |)= ρ∞.

The duality equality (24) implies that, for any t1 ≤ t2, we have

C−1
∫ t2

t1
‖Dv‖2L2 ≤−

[∫
Td
µv

]t2

t1

. (29)

Therefore the map t→
∫

Td µ(t)v(t) is nonincreasing, with a derivative bounded above by −‖Dv(0)‖2L2

at t = 0, while the map t →
∣∣∫

Td µ(t)v(t)
∣∣ has a maximum ρ∞ at t = 0; this implies Dv(0) = 0. As∫

Td v(0)= 0, we can infer that

ρ∞ =

∣∣∣∣∫
Td
µ(0)v(0)

∣∣∣∣= 0.

We now prove that ρ(t) converges to 0 with an exponential rate. Let T > 0 and (v, µ) be a solution of
the MFG linearized system with ‖µ(0)‖L2 ≤ 1 and ‖DvT ‖L2 ≤ 1. Using Lemma 1.1 and (29), we have,
for τ ≥ 0 and t ∈ [τ, T − τ ]

‖µ(t)‖L2 ≤ Ce−ω(t−τ/2)‖µ(τ/2)‖L2 +C
(
−

[∫
Td
µv

]t

τ/2

)1/2

≤ Ce−ωτ/2+C[2ρ(τ/2)]1/2,

because µ is uniformly bounded in L2 (Lemma 2.2). Thus

sup
t∈[τ,T−τ ]

‖µ(t)‖L2 ≤ C(e−ωτ/2+ (ρ(τ/2))1/2). (30)

Coming back to (28), we have, for all t ∈ [2τ, T − 2τ ],

‖Dv(t)‖L2 ≤ Ce−ω(T−τ−t)
‖Dv(T − τ)‖L2 +C

(∫ T−τ

t
‖Dv‖2L2

)1/2

+C sup
s∈[t,T−τ ]

‖µ(s)‖L2

≤ Ce−ωτ +C
(
−

[∫
Td
µ(s)v(s)

]T−τ

t

)1/2

+C sup
s∈[t,T−τ ]

‖µ(s)‖L2

≤ Ce−ωτ +Cρ1/2(τ )+C(e−ωτ/2+ (ρ(τ/2))1/2), (31)
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because Dv is uniformly bounded in L2 (Lemma 2.2). In view of (30) and (31), we can fix τ > 0 large
enough so that, for any T ≥ 4τ and any (v, µ) as above, one has

sup
t∈[2τ,T−2τ ]

(‖µ(t)‖L2 +‖Dv(t)‖L2)≤ ε,

where ε ∈
(
0, 1

4

)
is to be chosen below. Notice that, by the definition of ρ and by Poincaré’s inequality,

this also implies ρ(2τ)≤ Cε ≤ 1
4 for a suitable choice of ε. Now we can iterate the previous estimate.

Indeed, for T ≥ 4τ , the restriction to [2τ, T−2τ ] of (v, µ) is a solution of the linearized MFG system (22)
on [2τ, T − 2τ ] with boundary conditions ‖µ(2τ)‖L2 ≤

1
2 and ‖Dv(T − 2τ)‖L2 ≤

1
2 . As the problem is

invariant by time translation, we deduce that

sup
t∈[4τ,T−4τ ]

(‖µ(t)‖L2 +‖Dv(t)‖L2)≤ 1
4 ,

(and similarly ρ(4τ)≤ 1/42). By a standard iteration, this shows that there exists λ such that

‖µ(t)‖L2 +‖Dv(t)‖L2 ≤ C(e−λt
+ e−λ(T−t)) for all t ∈ [0, T ]. �

Proposition 2.4. Let λ be as in Proposition 2.1. There exists C1 such that, if B = B(t, x) satisfies

‖B(t)‖L2 ≤ e−λt
+ e−λ(T−t), (32)

and if (v, µ) is a solution to the MFG linearized system
−∂tv−1v+ Hp(x, Dū) · Dv = δF

δm
(x, m̄)(µ(t)) in (0, T )×Td ,

∂tµ−1µ− div(µHp(x, Dū))− div(m̄ Hpp(x, Dū)Dv)= div(B) in (0, T )×Td

µ(0, · )= 0, v(T, x)= 0 in Td ,

(33)

then
‖µ(t)‖L2 +‖Dv(t)‖L2 ≤ C1((1+ t)e−λt

+ (1+ T )e−λ(T−t)) for all t ∈ [0, T ].

Proof. Let us first prove that (v, µ) is bounded. Multiplying the equation for v by µ and the equation for
µ by v, integrating in time and space and adding the resulting relations gives, for any 0≤ t1 ≤ t2 ≤ T,

C−1
∫ t2

t1
‖Dv‖2L2 dt ≤−

[∫
Td
vµ

]t2

t1

−

∫ t2

t1

∫
Td

B · Dv.

Thus, by Young’s inequality,

C−1
∫ t2

t1
‖Dv‖2L2 dt ≤−

[∫
Td
vµ

]t2

t1

+

∫ t2

t1
‖B‖2L2 ds.

Using the homogeneous boundary conditions at t = 0, t = T, we obtain the bound∫ T

0
‖Dv‖2L2 dt ≤ C

∫ T

0
‖B‖2L2 ds.

This implies, with the same arguments as in Lemma 2.2,

sup
t∈[0,T ]

‖µ(t)‖L2 +‖Dv(t)‖L2 ≤ C
[∫ T

0
‖B‖2L2

]1/2

≤ C,
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where the last inequality comes from (32).
For τ ≥ 0, we set

ρ(τ)= sup
T,t,B

(‖µ(t)‖2+‖Dv(t)‖L2), (34)

where the supremum is taken over any T ≥ 2τ , t ∈ [τ, T − τ ] and any B satisfying (32), the pair (v, µ)
being a solution to (33). In view of the previous discussion, ρ(τ) is bounded for any τ .

The restriction (ṽ, µ̃) of (v, µ) to [τ, T − τ ] can be written as

(ṽ, µ̃)= (ṽ1, µ̃1)+ (ṽ2, µ̃2),

where (ṽ1, µ̃1) solves the homogeneous MFG linearized system (22) with boundary conditions ṽ1(T−τ)=
v(T − τ) and µ̃1(τ )= µ(τ), while (ṽ2, µ̃2) solves the linearized MFG system (33) on the time interval
[τ, T − τ ] with homogeneous boundary conditions.

From Proposition 2.1, we have, for any t ∈ [τ, T − τ ],

‖µ̃1(t)‖L2 +‖Dṽ1(t)‖L2 ≤ C0(e−λ(t−τ)+ e−λ(T−τ−t))(‖µ(τ)‖L2 +‖Dv(T − τ)‖L2)

≤ C(e−λ(t−τ)+ e−λ(T−τ−t)).

Note that the restriction of B to [τ, T − τ ] satisfies

‖B(t)‖L2 ≤ e−λτ [e−λ(t−τ)+ e−λ(T−τ−t)
].

So by the linearity and the invariance in time of the equation, we get

‖µ̃2(t)‖2+‖Dṽ2(t)‖L2 ≤ e−λτρ(t − τ) for all t ∈ [τ, T − τ ].

Putting together the estimates of (ṽ1, µ̃1) and (ṽ2, µ̃2), we obtain, for any t ≥ τ ,

sup
s∈[t+τ,T−τ−t]

(‖µ(s)‖L2 +‖Dv(s)‖L2)≤ sup
s∈[t+τ,T−τ−t]

C(e−λ(s−τ)+ e−λ(T−τ−s))+ e−λτρ(s− τ)

≤ Ce−λt
+ e−λτρ(t).

Taking the supremum over (v, µ) and multiplying by eλ(t+τ) gives

eλ(t+τ)ρ(t + τ)≤ Ceλτ + eλtρ(t),

from which we infer that
ρ(t)≤ C(1+ t)e−λt .

By the definition of ρ in (34), this implies the conclusion when choosing τ = t if t ∈ [0, T/2] and
τ = T − t otherwise. �

Collecting the above propositions we finally obtain:

Theorem 2.5. Let λ be as in Proposition 2.1. There exists C0>0 such that, if A= A(t, x) and B= B(t, x)
satisfy

‖A(t)‖L2 +‖B(t)‖L2 ≤ M(e−λt
+ e−λ(T−t)), (35)
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and if (v, µ) is a solution to the MFG linearized system
−∂tv−1v+ Hp(x, Dū) · Dv = δF

δm
(x, m̄)(µ(t))+ A(t, x) in (0, T )×Td ,

∂tµ−1µ− div(µHp(x, Dū))− div(m̄ Hpp(x, Dū)Dv)= div(B) in (0, T )×Td ,

µ(0, · )= µ0, v(T, x)= δG
δm
(x, m̄)(µ(T ))+ vT (x) in Td ,

(36)

with
∫

Td µ0 = 0, we have

‖µ(t)‖L2 +‖Dv(t)‖L2 ≤ C0((1+ t)e−λt
+ (1+ T )e−λ(T−t))(‖DvT ‖L2 +‖µ0‖L2 +M)

for any t ∈ [0, T ].

Proof. Let ṽ be the solution to{
−∂t ṽ−1ṽ+ Hp(x, Dū) · Dṽ = A(t, x) in (0, T )×Td ,

ṽ(T, x)= 0 in Td .

Note for later use that, assuming λ < ω, we have

‖Dṽ(t)‖L2 ≤ C M(e−λt
+ e−λ(T−t)). (37)

Indeed, using Lemma 1.2, we have

‖ṽ(t)−〈ṽ(t)〉‖L2 ≤ C
∫ T

t
e−ω(s−t)

‖A(s)‖L2 ds ≤ C M(e−λt
+ e−λ(T−t)).

Then the regularizing property of the equation leads to (37).
The pair (v1, µ1) := (v− ṽ, µ) solves
−∂tv−1v1+Hp(x,Dū)·Dv1=

δF
δm
(x, m̄)(µ(t)) in (0,T )×Td,

∂tµ1−1µ1−div(µ1 Hp(x,Dū))−div(m̄ Hpp(x,Dū)Dv1)= div(B+m̄ Hpp(x,Dū)Dṽ) in (0,T )×Td,

µ1(0, ·)=µ0, v1(T, x)=
δG
δm
(x, m̄)(µ1(T ))+vT (x) in Td,

where, by (35) and (37),

‖B(t)+ m̄ Hpp(x, Dū)Dṽ(t)‖L2 ≤ C M(e−λt
+ e−λ(T−t)).

Using Propositions 2.1 and 2.4, we get

‖µ1(t)‖L2 +‖Dv1(t)‖L2 ≤ C((1+ t)e−λt
+ (1+ T )e−λ(T−t))(‖DvT ‖L2 +‖µ0‖L2 +M)

for any t ∈ [0, T ]. Recalling the definition of (v1, µ1) and using again inequality (37) gives the result. �

2B. Estimates for the nonlinear system. Now we consider the nonlinear MFG systems. For the finite-
horizon problem, we have:
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Theorem 2.6. There exists γ > 0 and C > 0 such that, if (u,m) is a solution of the MFG system with
initial condition m0 ∈ P(Td)

−∂t u−1u+ H(x, Du)= F(x,m(t)) in (0, T )×Td ,

∂t m−1m− div(m Hp(x, Du))= 0 in (0, T )×Td ,

m(0, · )= m0, u(T, x)= G(x,m(T )) in Td ,

(38)

then, for some α ∈ (0, 1),

‖Du(t)− Dū‖C1+α ≤ C(e−γ t
+ e−γ (T−t)) for all t ∈ [0, T ],

‖m(t)− m̄‖Cα ≤ C(e−γ t
+ e−γ (T−t)) for all t ∈ [1, T ].

In particular,
sup

(t,x)∈[0,T ]×Td
|u(t, x)− ū(x)− λ̄(T − t)| ≤ C.

Proof. We use a fixed-point argument. Let us start with the proof for initial and terminal conditions which
are sufficiently close to m̄ and ū respectively. Let K̂ > 0 be small enough and γ ∈ (λ/2, λ), where λ is
given by Proposition 2.1. Let E be the set of continuous maps (v, µ) on [0, T ]×Td such that Dv is also
continuous and

‖Dv(t)‖L∞ +‖µ(t)‖L∞ ≤ K̂ (e−γ t
+ e−γ (T−t)).

We suppose that K̂ is such that
m̄(x) > K̂ for all x ∈ Td .

We also assume that the initial condition m0 and the terminal condition uT are close to m̄ and ū (plus a
constant) respectively, namely that µ0 := m0− m̄ and vT := uT − ū satisfy

‖µ0‖L∞ +‖DvT ‖∞ ≤ K̂ 2. (39)

We may suppose further that µ0 and DvT belong to Cα(Td) for some α ∈ (0, 1).
For (v, µ) ∈ E , we consider the solution (ṽ, µ̃) to the linearized system

−∂t ṽ−1ṽ+ Hp(x, Dū) · Dṽ = δF
δm
(x, m̄)(µ̃(t))+ A(t, x) in (0, T )×Td ,

∂t µ̃−1µ̃− div(µ̃Hp(x, Dū))− div(m̄ Hpp(x, Dū)Dṽ)= div(B) in (0, T )×Td ,

µ̃(0, · )= µ0, ṽ(T, x)= vT (x) in Td ,

with

A(t, x)=−H(x, D(ū+ v))+ H(x, Dū)+ Hp(x, Dū) · Dv+ F(x, m̄+µ)− F(x, m̄)− δF
δm
(x, m̄)(µ)

and

B(t, x)= (m̄+µ)Hp(x, D(ū+ v))− m̄ Hp(x, Dū)−µHp(x, Dū)− m̄ Hpp(x, Dū)Dv.

We note that m̄+µ≥ 0 on [0, T ]×Td and

‖A(t)‖L∞ +‖B(t)‖L∞ ≤ C K̂ 2(e−2γ t
+ e−2γ (T−t)).
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Here we used that m 7→ (δF/δm)(x,m, y) is Lipschitz (uniformly with respect to (x, y)), and Hpp is
Lipschitz as well.

From Theorem 2.5 we have, as γ ∈ (λ/2, λ),

‖µ̃(t)‖L2 +‖Dṽ(t)‖L2 ≤ C K̂ 2((1+ t)e−λt
+ (1+ T )e−λ(T−t)).

We upgrade the previous estimates to L∞ norms with our usual arguments: from Lemma 1.2 we have

‖ṽ(t)−〈ṽ(t)〉‖L∞

≤ Ce−ω(T−t)
‖v(T )−〈v(T )〉‖L∞ +C

∫ T

t
e−ω(s−t)

(∥∥∥δF
δm
(x, m̄)(µ̃(s))

∥∥∥
L∞
+‖A(s)‖L∞

)
ds

≤ C K̂ 2((1+ t)e−λt
+ (1+ T )e−λ(T−t)).

Then, in any interval [t, t + 1], we have, by using the uniform parabolicity of the equation,

‖Dṽ(t)‖∞ ≤ C sup
s∈(t,t+1)

[
‖ṽ(s)−〈ṽ(s)〉‖∞+

∥∥∥δF
δm
(x, m̄)(µ̃(s))

∥∥∥
L∞
+‖A(s)‖∞

]
,

and this concludes the estimate for ‖Dṽ(t)‖L∞ . Now, using the bound for Dṽ and B, we have

‖µ̃(t)‖∞ ≤ C sup
s∈(t−1,t)

[‖µ̃(s)‖L2 +‖Dṽ(s)‖L∞ +‖B(s)‖∞]

and we conclude the estimate for ‖µ̃(t)‖∞. Notice that the above bounds hold up to t = 0 and t = T by
using the condition (39) assumed on µ0 and vT . Eventually, we obtain that

‖µ̃(t)‖L∞ +‖Dṽ(t)‖L∞ ≤ C K̂ 2((1+ t)e−λt
+ (1+ T )e−λ(T−t)).

Since γ < λ, for K̂ small enough we infer that

‖µ̃(t)‖L∞ +‖Dṽ(t)‖L∞ ≤ K̂ (e−γ t
+ e−γ (T−t))

and (ṽ, µ̃) belongs to E . In addition, µ̃ and ṽ−〈ṽ〉 solve linear parabolic equations with bounded coeffi-
cients, so classical parabolic estimates [Ladyženskaja et al. 1968, Theorems III.8.1, III.10.1 and III.11.1,
p. 196] imply that µ̃ and Dṽ are locally bounded in Cα/2,α for some α ∈ (0, 1), with bounds that only
depend on the L∞ norm of the coefficients. In particular, the map (v, µ)→ (ṽ, µ̃) is compact and it has
a fixed point (v, µ). Then (u,m) := (ū, m̄)+ (v, µ) is a solution to (38) with terminal condition uT and
which satisfies the decay

‖Du(t)− Dū(t)‖Cα +‖m(t)− m̄‖Cα ≤ K̂ (e−γ t
+ e−γ (T−t)).

We now remove the smallness and regularity assumptions on the initial condition m0 and the terminal
condition uT . Let (u,m) be the solution to (38). From Lemma 1.7 there exists 0< τ < T̂ such that, if
T ≥ T̂, then the solution to (38) satisfies, again for some α ∈ (0, 1),

‖m(t)− m̄‖Cα +‖Du(t)− Dū‖Cα ≤ K̂ 2 for all t ∈ [τ, T − τ ]. (40)
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From the first step we conclude that

‖m(t)− m̄‖Cα +‖Du(t)− Dū‖Cα ≤ K̂ (e−γ (t−τ)+ e−γ (T−τ−t)) for all t ∈ [τ, T − τ ].

Using Lemma 1.1 and changing the constant if necessary, we can extend this inequality for m to the
time interval [1, T ]. Moreover, Du(t)− Dū also satisfies a parabolic equation with uniformly bounded
coefficients. Thus it is bounded in C1+α/2,1+α (for some possibly different α, depending on the data only)
and we can improve the above inequality for u into

‖Du(t)− Dū‖C1+α ≤ C(e−γ t
+ e−γ (T−t)) for all t ∈ [0, T ].

We finally prove the last bound on v := u− ū− λ̄(T − t). Note that v satisfies

−∂tv−1v = A(t, x),

where
A(t, x)=−(H(x, Du)− H(x, Dū))+ F(x,m(t))− F(x, m̄),

so
‖A(t)‖L∞ ≤ C(e−γ t

+ e−γ (T−t)) for all t ∈ [0, T ].

Thus, by a standard heat estimate,

‖v(t)‖L∞ ≤ Ce−ω(T−t)
‖v(T )‖L∞ +C

∫ T

t
e−ω(s−t)

‖A(s)‖L∞ ds ≤ C. �

Let us stress that the above proof provides an explicit smallness estimate on D(u − ū) and m − m̄
for initial-terminal data which are correspondingly small. This allows us to derive the convergence of
uT (0, x) as the time horizon tends to infinity, for the special case with initial measure m0 = m̄. This
result is a first key argument in the analysis of the long time behavior of the general MFG system and of
the master equation (Theorem 5.1 and Corollary 5.2).

Proposition 2.7. For any T > 0, let (uT ,mT ) be a solution to
−∂t uT

−1uT
+ H(x, DuT )= F(x,mT (t)) in (0, T )×Td ,

∂t mT
−1mT

− div(mT Hp(x, DuT ))= 0 in (0, T )×Td ,

mT (0, · )= m̄, uT (T, x)= G(x,m(T )) in Td .

(41)

Then there exists a constant c̄ such that

lim
T→+∞

uT (0, x)− λ̄T = ū(x)+ c̄,

where the limit is uniform in x ∈ Td.

Proof. The proof consists in showing that the quantity uT (0, x)− λ̄T − ū(x) is Cauchy in T in the uniform
topology and converges to a constant. In a first step, we show that there exists τ > 0 large enough such
that uT (T − τ) and uT ′(T ′− τ) are close in L∞ for T, T ′ ≥ 2τ . Then we use Theorem 2.6 (and its proof)
to extend this proximity up to time t = 0.
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Let us fix ε > 0 small. Theorem 2.6 states that

‖DuT (t)− Dū‖C1+α +‖mT (t)− m̄‖L∞ ≤ C(e−γ t
+ e−γ (T−t)) for all t ∈ [1, T ], (42)

for some constant C independent of T. Fix τ large enough and let T, T ′ ≥ 2τ . If we consider
(ûT , m̂T )(t, x) := (ûT , m̂T )(t + T, x) and (ûT ′, m̂T ′)(t, x) := (ûT ′, m̂T ′)(t + T ′, x), which are both
solutions of the MFG system in (−τ, 0), the energy inequality gives

C−1
∫ 0

−τ

∫
Td
(m̂T
+ m̂T ′)|D(ûT

− ûT ′)|2 ≤−

[∫
Td
(ûT (t)− ûT ′(t))(m̂T (t)− m̂T ′(t))

]0

−τ

≤

∫
Td
(ûT (−τ)− ûT ′(−τ))(m̂T (−τ)− m̂T ′(−τ)),

where we used that (ûT
− ûT ′)(0)= G(x, m̂T (0))−G(x, m̂T ′(0)) and the monotonicity of G. Using (42)

and the fact that T, T ′ ≥ 2τ we deduce that∫ 0

−τ

∫
Td
(m̂T
+ m̂T ′)|D(ûT

− ûT ′)|2 ≤ Ce−2γ τ ,

where C is independent of T, T ′. Now we apply Lemma 1.1 and (42) to m̂T
− m̂T ′ in the interval (−τ, 0)

and we get

‖m̂T (t)− m̂T ′(t)‖L2 ≤ C‖m̂T (−τ)− m̂T ′(−τ)‖L2 +C
(∫ 0

−τ

∫
Td
(m̂T ′)2|D(ûT

− ûT ′)|2 dt
)1/2

≤ Ce−γ τ .

In particular, by the assumptions on F,G, there exists C > 0 such that

sup
t∈(−τ,0)

‖F(x, m̂T (t))− F(x, m̂T ′(t))‖L∞ +‖G(x, m̂T (0))−G(x, m̂T ′(0))‖L∞ ≤ Ce−γ τ .

By the comparison principle between ûT and ûT ′ in (−τ, 0), we conclude that

‖ûT (−τ)− ûT ′(−τ)‖∞ ≤ C(1+ τ)e−γ τ .

Hence we can choose τ sufficiently large such that

‖uT (T − τ)− uT ′(T ′− τ)‖∞ ≤ ε (43)

for any T, T ′ large enough.
Now we extend the proximity of uT and uT ′ up to time t = 0. Recalling that, by (42),

‖DuT (T − τ)− Dū‖∞ ≤ ε

for any T large enough, there exists c̄0(T ) such that

‖uT (T − τ)− ū− c̄0(T )‖∞ ≤ Cε. (44)

Note that (43) implies that (c̄0(T )) is Cauchy as T →+∞ and thus converges to a limit c̄. Let γ > 0 be
defined in the first step of the proof of Theorem 2.6; since (uT ,mT ) satisfy (39) with K̂ = ε1/2, we can
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choose ε small enough so that the fixed-point argument of Theorem 2.6 applies. Then, the restriction of
(uT ,mT ) to [0, T − τ ] satisfies

‖DuT (t)− Dū‖L∞ +‖mT (t)− m̄‖∞ ≤ ε1/2(e−γ t
+ e−γ (T−τ−t)) for all t ∈ [0, T − τ ]. (45)

Integrating in space the equation satisfied by uT
− ū, we get∣∣∣∣∫

Td
(uT (0)− uT (T − τ))− λ̄(T − τ)

∣∣∣∣
≤

∫ T−τ

0

∫
Td
|H(x, DuT )− H(x, Dū)| + |F(x,mT (t))− F(x, m̄)| dx dt ≤ Cε1/2.

Using (45) (at time t = 0 and at time t = T − τ ) and Poincaré’s inequality, we infer therefore that

‖uT (0)− uT (T − τ)− λ̄(T − τ)‖∞ ≤ Cε1/2. (46)

Combining (43), (44) and (46), we conclude that, for any T, T ′ large enough,

‖uT (0)− ū− c̄0(T )− λ̄(T − τ)‖∞ ≤ Cε1/2.

From this we can deduce that (uT (0, x)− λ̄T ) converges uniformly to ū(x)+ c̄ as T tends to∞. �

We also deduce from Theorem 2.6 crucial estimates for the linearized system around any solution
(u,m) of (38).

Corollary 2.8. There exists γ > 0 and C > 0 such that, if (u,m) is a solution of the MFG system (38),
and if (v, µ) is a solution to the linearized MFG system

−∂tv−1v+ Hp(x, Du) · Dv = δF
δm
(x,m)(µ) in (0, T )×Td ,

∂tµ−1µ− div(µHp(x, Du))− div(m Hpp(x, Du)Dv)= 0 in (0, T )×Td ,

µ(0, · )= µ0, v(T, · )= δG
δm
(x,m(T ))(µ(T )) in Td ,

with
∫

Td µ0 = 0, we have

‖µ(t)‖L2 +‖Dv(t)‖L2 ≤ C(e−γ t
+ e−γ (T−t))‖µ0‖L2 (47)

and, for some α ∈ (0, 1) depending only on the data,

sup
t∈[0,T ]

‖v‖C2+α ≤ C‖µ0‖(C2+α)′ . (48)

Proof. We first need a priori estimates on (v, µ). To this end we assume that µ0 ∈ L2(Td), and we proceed
exactly as in Lemma 2.2 obtaining∫ T

0

∫
Td

m|Dv|2+ sup
t∈[0,T ]

(‖µ(t)‖2L2 +‖Dv(t)‖2L2)≤ C0‖µ0‖
2
L2 . (49)
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Next we note that (v, µ) is the solution to (36) with

A =−(Hp(x, Du)− Hp(x, Dū)) · Dv+ δF
δm
(x,m(t))(µ(t))− δF

δm
(x, m̄)(µ(t)),

B = µ(Hp(x, Du)− Hp(x, Dū))+ (m Hpp(x, Du)− m̄ Hpp(x, Dū))Dv

and
vT (x)=

δG
δm
(x,m(T ))(µ(T ))− δG

δm
(x, m̄)(µ(T )).

Note that
‖A(t)‖L2 ≤ C‖Du− Dū‖∞‖Dv‖L2 +Cd1(m(t), m̄)‖µ(t)‖L2,

while

‖B(t)‖L2 ≤ C‖Du− Dū‖∞‖µ(t)‖L2 +C(d1(m(t), m̄)+‖Du(t)− Dū‖∞)‖Dv(t)‖L2

and
‖vT ‖ ≤ Cd1(m(T ), m̄)‖µ(T )‖L2 .

Here we used once more that m 7→ (δF/δm)(x,m, y), m 7→ (δG/δm)(x,m, y) and p 7→ Hpp(x, p) are
Lipschitz.

Using Theorem 2.6 and (49), we deduce

‖A(t)‖L2 +‖B(t)‖L2 ≤ C‖µ0‖L2(e−γ t
+ e−γ (T−t)).

Then Theorem 2.5 (used with λ= γ ) and the bound (49) imply

‖µ(t)‖L2 +‖Dv(t)‖L2 ≤ C((1+ t)e−γ t
+ (1+ T )e−γ (T−t))‖µ0‖L2 .

So we deduce (47), possibly for a smaller value of γ .
Now we upgrade the above estimate by using weaker norms for µ0 and stronger norms for v. For this,

we use Lemma 2.9 below, which states that

‖µ(1)‖L2 ≤ C‖µ0‖(C2+α)′ .

Applying our previous estimate (47) to the time interval [1, T ], we find that, for any t ≥ 1,

‖µ(t)‖L2 +‖Dv(t)‖L2 ≤ C(e−γ (t−1)
+ e−γ (T−(t−1)))‖µ(1)‖L2

≤ C(e−γ t
+ e−γ (T−t))‖µ0‖(C2+α)′ .

Lemma 2.9 also states that

sup
t∈[0,T ]

‖v(t)−〈v(t)〉‖C2+α + sup
t∈[0,T ]

‖µ(t)‖(C2+α)′ ≤ C‖µ0‖(C2+α)′, (50)

so we also have
sup

t∈[0,1]
‖Dv(t)‖L2 + sup

t∈[0,1]
‖µ(t)‖(C2+α)′ ≤ C‖µ0‖(C2+α)′ .

Integrating in space the equation for v and using the above bounds on Dv and µ then implies

|〈v(t)〉| ≤ C‖µ0‖(C2+α)′ for all t ∈ [0, T ].
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We can then deduce (48) from (50) and the above inequality. �

Lemma 2.9. Under the assumptions of Corollary 2.8, there exists a constant C > 0 (independent of T,
m0 and µ0) such that

sup
t∈[0,T ]

‖v(t)−〈v(t)〉‖C2+α + sup
t∈[0,T ]

‖µ(t)‖(C2+α)′ +‖µ(1)‖L2 ≤ C‖µ0‖(C2+α)′ .

Proof. The estimate (49) gives

c
∫ t

0

∫
Td

m|Dv|2 ≤
∫ T

0

∫
Td

m Hpp(x, Du)Dv · Dv ≤
∫

Td
v(0)µ0, (51)

where we used that (δG/δm)(x,m(T )) is a nonnegative operator. By duality, we also have∫
Td
µ(t)ξ =−

∫ t

0

∫
Td

m Hpp(Du)Dv · Dψ +
∫

Td
ψ(0)µ0,

where ψ solves (for some smooth terminal condition ξ at time t){
−∂tψ −1ψ + Hp(x, Du) · Dψ = 0 in (0, t)×Td ,

ψ(t, · )= ξ in Td .

Since, by Lemma 1.2, ‖ψ(s)−〈ψ(s)〉‖L2 ≤ ce−ω(t−s)
‖ξ‖L2 , we have by standard estimates∫ t

0

∫
Td
|Dψ |2 ≤ ‖ξ‖22+C

∫ t

0

∫
Td
|ψ −〈ψ〉|2 ≤ C‖ξ‖2L2 .

Therefore, ∫
Td
µ(t)ξ ≤ C

(∫ t

0

∫
Td

m|Dv|2
)1/2

‖ξ‖L2 +‖ψ(0)−〈ψ(0)〉‖C2+α‖µ0‖(C2+α)′ .

From (51) we deduce∫
Td
µ(t)ξ ≤ C

(
‖v(0)−〈v(0)〉‖C2+α‖µ0‖(C2+α)′

)1/2
‖ξ‖L2 +‖ψ(0)−〈ψ(0)〉‖C2+α‖µ0‖(C2+α)′ . (52)

To estimate last term, we note that, if t ≤ 1, we have by Schauder estimates that

‖ψ(0)−〈ψ(0)〉‖C2+α ≤ C‖ξ‖C2+α ,

while, if t ≥ 1, we have, by Schauder interior estimates

‖ψ(0)−〈ψ(0)〉‖C2+α ≤ C‖ψ(1)−〈ψ(1)〉‖L2 ≤ C‖ξ‖L2 ≤ C‖ξ‖C2+α . (53)

Coming back to (52) and taking the supremum over the ξ with ‖ξ‖C2+α ≤ 1, this implies

sup
t∈[0,T ]

‖µ(t)‖(C2+α)′ ≤ C
(
‖v(0)−〈v(0)〉‖1/2C2+α‖µ0‖

1/2
(C2+α)′

+‖µ0‖(C2+α)′
)
. (54)

Similarly, from (52) and (53) we also estimate

‖µ(1)‖L2 ≤ C
(
‖v(0)−〈v(0)〉‖1/2C2+α‖µ0‖

1/2
(C2+α)′

+‖µ0‖(C2+α)′
)
. (55)
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We now have to estimate v(0)−〈v(0)〉. First we have, by Lemma 1.2, that for any t ∈ [0, T ]

‖v(t)−〈v(t)〉‖∞ ≤ e−ω(T−t)
∥∥∥δG
δm
(x,m(T ))µ(T )

∥∥∥
∞

+

∫ T

t
e−ω(s−t)

∥∥∥δF
δm
( · ,m(s))(µ(s))

∥∥∥
∞

ds

≤ C sup
[0,T ]
‖µ(t)‖(C2+α)′, (56)

where we used that δF/δm, δG/δm are C2+α with respect to y. We also estimate Dv in L2 in terms
of the same quantity due to Lemma 1.2. Next, the regularizing property of the equation for v − 〈v〉
[Ladyženskaja et al. 1968, Theorem IV.9.1] implies that, for any t ∈

[
0, T − 1

2

]
and any β ∈ (0, 1),

‖v(t)−〈v(t)〉‖C1+β ≤
∥∥v(t + 1

2

)
−
〈
v
(
t + 1

2

)〉∥∥
∞
+C sup

s∈[t,t+1/2]
‖µ(s)‖(C2+α)′

≤ C sup
[0,T ]
‖µ(s)‖(C2+α)′,

(where the constant depends on β). Then considering the equation for vxi (for i ∈ {1, . . . , d}) and using
the uniform C2 regularity of u as well as the C2 regularity of Dx(δF/δm) in the y-variable as in (56),
we obtain in the same way, for any t ∈ [0, T − 1]

‖vxi (t)‖C1+β ≤
∥∥vxi

(
t + 1

2

)∥∥
∞
+C

(
sup

s∈[t,t+1/2]
‖Dv(s)‖∞+ sup

s∈[t,t+1/2]
‖µ(s)‖(C2+α)′

)
≤ C sup

[0,T ]
‖µ(s)‖(C2+α)′ .

Choosing β = α, we have proved therefore that

sup
s∈[0,T−1]

‖v(s)−〈v(s)〉‖C2+α ≤ C sup
s∈[0,T ]

‖µ(s)‖(C2+α)′ .

Using this inequality for ‖v(0)−〈v(0)〉‖C2+α in (54) then gives

sup
t∈[0,T ]

‖µ(t)‖(C2+α)′ ≤ C‖µ0‖(C2+α)′,

which in turn implies

sup
t∈[0,T−1]

‖v(s)−〈v(s)〉‖C2+α ≤ C‖µ0‖(C2+α)′ .

Note that we can extend this inequality to the time interval [T−1, T ] by using the regularity of the equation
satisfied by v on this interval, the regularity of the terminal condition and the bound on ‖µ(t)‖(C2+α)′ .

In the same way, from (55) we obtain

‖µ(1)‖L2 ≤ C‖µ0‖(C2+α)′ . �

Remark 2.10. In order to estimate v in the C2 norm, we have used in Lemma 2.9 the regularity condition
(FGc) on the couplings. However, by only using condition (FGb), we could similarly obtain a milder
estimate as

sup
t∈[0,T ]

‖v(t)−〈v(t)〉‖C1 + sup
t∈[0,T ]

‖µ(t)‖(C1)′ ≤ C‖µ0‖(C1)′ . (57)
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Indeed, an estimate similar to (56) would hold in terms of ‖µ(t)‖(C1)′ by using condition (FGb) since

‖v(t)−〈v(t)〉‖∞ ≤ e−ω(T−t)
∥∥∥δG
δm
(x,m(T ))µ(T )

∥∥∥
∞

+

∫ T

t
e−ω(s−t)

∥∥∥δF
δm
( · ,m(s))(µ(s))

∥∥∥
∞

ds

≤ C sup
[0,T ]
‖µ(t)‖(C1)′,

where we only used that δF/δm, δG/δm are C1 and globally Lipschitz with respect to y. Under the same
condition the estimate for Dv in L∞ would follow. Eventually, with the same strategy as in the above
proof, by using C1 rather than C2+α and using estimates on v, we would get (57).

3. Exponential rate of convergence for the infinite-horizon MFG system

We now study the infinite-horizon discounted problem and show an exponential convergence towards a
stationary solution. The existence of this solution is new, as well as the convergence rate towards this
solution. The method of proof is close to the one employed in the previous section for the finite horizon.

3A. The stationary solution of the infinite-horizon problem.

Proposition 3.1. There exists δ0 > 0 such that, if δ ∈ (0, δ0), there is a unique solution (ūδ, m̄δ) to the
problem (7). Moreover, for any δ ∈ (0, δ0),

‖Dūδ‖∞+ δ‖ūδ‖∞+‖m̄δ
‖∞ ≤ C and m̄δ(x)≥ C−1 for all x ∈ Td ,

for some constant C > 0.

Proof. The existence of a solution can be achieved by a standard fixed-point argument, so we omit it. In
the same way, the regularity of ūδ and m̄δ is standard. The strong maximum principle implies that mδ is
bounded below by a constant independent of δ. For proving the uniqueness, we argue as usual by duality,
see [Lasry and Lions 2007]: Let (u1,m1) and (u2,m2) be two solutions. We multiply the equation for
u1−u2 by m1−m2 and the equation for m1−m2 by u1−u2, we integrate in time and space and add the
resulting quantities to obtain, by Poincaré’s inequality,

C−1
‖D(u1− u2)‖

2
L2 ≤ δ

∫
Td
(u1− u2)(m1−m2)≤ Cδ‖D(u1− u2)‖L2‖m1−m2‖L2 .

Thus

‖D(u1− u2)‖L2 ≤ Cδ‖m1−m2‖L2 . (58)

On another hand, by Corollary 1.3, we have

‖m1−m2‖L2 ≤ C‖Hp( · , Du1)− Hp( · , Du2)‖L2 ≤ C‖D(u1− u2)‖L2 (59)

For δ small enough, we deduce from (58)–(59) that m1 = m2 and Du1 = Du2, whence u1 = u2. �

We now note that the solution (ūδ, m̄δ) is close to (ū, m̄), where (λ̄, ū, m̄) is the solution of the ergodic
problem (2):
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Proposition 3.2. We have

‖δūδ − λ̄‖∞+‖D(ūδ − ū)‖L2 +‖m̄δ
− m̄‖L2 ≤ Cδ1/2.

Proof. We use again the duality argument (consisting in multiplying the equation for uδ − ū by mδ
− m̄

and the equation for mδ
− m̄ by uδ − ū, integrating in space and adding the resulting quantities) to get

C−1
‖D(ūδ − ū)‖2L2 ≤

∫
Td
(δūδ − λ̄)(m̄δ

− m̄)≤ Cδ‖Dūδ‖∞ ≤ Cδ.

Thus
‖D(ūδ − ū)‖L2 ≤ Cδ1/2.

By Corollary 1.3, we have

‖m̄δ
− m̄‖L2 ≤ C‖D(ūδ − ū)‖L2 ≤ Cδ1/2.

The estimate between δūδ and λ̄ then comes from the comparison principle. �

3B. Exponential rate for the linearized system. Let (ūδ, m̄δ) be the solution to (7). We consider the
linearized discounted problem around this solution

−∂tv+ δv−1v+ Hp(x, Dūδ) · Dv = δF
δm
(x, m̄δ)(µ(t)) in (0,+∞)×Td ,

∂tµ−1µ− div(µHp(x, Dūδ))− div(m̄δHpp(x, Dūδ)Dv)= 0 in (0,+∞)×Td ,

µ(0, · )= µ0 in Td , v bounded,

(60)

with
∫

Td µ0 = 0. As in Section 2A, the existence of a solution to (60) can be proved for µ0 ∈ L2(Td)

by using fixed-point arguments and relying on the conditions enjoyed by δF/δm and the smoothness of
(ūδ, m̄δ). In particular, one can first solve the system in a finite horizon t ∈ (0, n) with terminal condition
v(n) = 0, and then obtain a solution to (60) by letting n→∞. Since δ > 0, here ‖δF/δm‖∞δ−1 is a
uniform bound with respect to n and leads to a bounded v in (60).

In the rest of this section, we are going to show that v actually enjoys a bound which is uniform in δ
and that µ, Dv decay exponentially in L2 as t→∞, uniformly with respect to δ.

Lemma 3.3. Let (v, µ) be a solution to (60). Then we have∫
Td
µ(t)v(t)≥ 0 for all t ≥ 0

and there exists a constant C0 > 0, independent of µ0 and δ, such that, for any t ≥ 0,

‖µ(t)‖L2 +‖Dv(t)‖L2 ≤ C0‖µ0‖L2eδt/2.

Proof. We consider the duality between e−δtv and µ (i.e, we multiply the equation for e−δtv by µ and
the equation for µ by e−δtv, we integrate in time and space and we add the resulting quantities); using
properties of (ūδ, m̄δ) from Proposition 3.1 we get

C−1
∫ t2

t1
e−δt‖Dv(t)‖2L2 dt ≤−

[
e−δt

∫
Td
v(t)µ(t)

]t2

t1

. (61)
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Next we claim that

C−1
∫
∞

0
e−δt‖Dv(t)‖2L2 dt ≤

∫
Td
µ0v(0)≤ C‖µ0‖L2‖v(0)−〈v(0)〉‖L2 . (62)

This inequality is obvious from (61) if we know that the limit e−δt
∫

Td v(t)µ(t) vanishes as t →+∞.
For this we need a first rough bound on µ. By Lemma 1.1 we have

‖µ(t)‖L2 ≤ Ce−ωt
‖µ0‖L2 +C

[∫ t

0
‖Dv(s)‖2L2 ds

]1/2

.

By (61), we get

‖µ(t)‖L2 ≤ Ce−ωt
‖µ0‖L2 +Ceδt/2

[∫ t

0
e−δs‖Dv(s)‖2L2 ds

]1/2

≤ Ce−ωt
‖µ0‖L2 +Ceδt/2‖v‖1/2

∞
[‖µ0‖

1/2
L2 + e−δt/2‖µ(t)‖1/2L2 ],

so
‖µ(t)‖L2 ≤ Cδeδt/2,

where Cδ depends on µ0 and δ. This inequality then implies

lim
t→+∞

e−δt
∫

Td
µ(t)v(t)= 0

and (62) holds. Note that (61) implies that the map t→ e−δt
∫

Td µ(t)v(t) is nonincreasing, and we just
proved that it has limit 0 as t→+∞. Thus it is nonnegative.

In light of (62) we revisit the estimate of µ. We have

‖µ(t)‖L2 ≤ Ce−ωt
‖µ0‖L2 +Ceδt/2

[∫ t

0
e−δs‖Dv(s)‖2L2 ds

]1/2

≤ Ce−ωt
‖µ0‖L2 +Ceδt/2‖µ0‖

1/2
L2 ‖v(0)−〈v(0)〉‖

1/2
L2 .

We plug this inequality into the usual estimate for v (Lemma 1.2): for any 0≤ t ≤ t1,

‖v(t)−〈v(t)〉‖L2

≤Ce−ω(t1−t)
‖v(t1)−〈v(t1)〉‖L2+C

∫ t1

t
e−ω(s−t)

‖µ(s)‖L2 ds

≤Ce−ω(t1−t)
‖v(t1)−〈v(t1)〉‖L2+C

∫ t1

t
e−ω(s−t)(e−ωs

‖µ0‖L2+Ceδs/2‖µ0‖
1/2
L2 ‖v(0)−〈v(0)〉‖

1/2
L2

)
ds

≤Ce−ω(t1−t)
‖v(t1)−〈v(t1)〉‖L2+C‖µ0‖L2e−ωt

+C‖µ0‖
1/2
L2 ‖v(0)−〈v(0)〉‖

1/2
L2 eδt/2.

Letting t1→+∞ gives

‖v(t)−〈v(t)〉‖L2 ≤ C‖µ0‖L2e−ωt
+C‖µ0‖

1/2
L2 ‖v(0)−〈v(0)〉‖

1/2
L2 eδt/2.

Choosing t = 0 and rearranging we find

‖v(0)−〈v(0)〉‖L2 ≤ C‖µ0‖L2 .

So we have for any t ≥ 0

‖µ(t)‖L2 +‖v(t)−〈v(t)〉‖L2 ≤ C‖µ0‖L2eδt/2.
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We can then conclude by Lemma 1.2. �

Proposition 3.4. Let (ūδ, m̄δ) be the solution to (7). There exist δ0,C0, λ > 0 such that, if (v, µ) is the
solution to (60) associated with (ūδ, m̄δ) and

∫
Td µ0 = 0, and if δ ∈ (0, δ0), then

‖Dv(t)‖L2 +‖µ(t)‖L2 ≤ C0‖µ0‖L2e−λt for all t ≥ 0.

In particular,

‖v‖L∞ ≤ C.

Proof. Let us set

ρδ(t) := sup
µ0

e−δt
∫

Td
µ(t)v(t),

where the supremum is taken over ‖µ0‖L2 ≤ 1 and where (v, µ) is the solution to (60) with initial
condition µ(0)= µ0. In view of the inequality (61), the map ρδ is nonincreasing. Moreover, Lemma 3.3
states that ρδ(t) is bounded independently of δ and nonnegative. Then we set

ρ(t)= lim sup
δ→0

ρδ(t).

Note that ρ is also nonincreasing, nonnegative and bounded. We denote by ρ∞ its limit as t→+∞. We
claim that ρ∞ = 0.

Indeed, let tn→+∞, δn→ 0, and µn
0 with ‖µn

0‖L2 ≤ 1 be such that

e−δn tn
∫

Td
µn(tn)vn(tn)≥ ρ∞−

1
n
.

We let, for s ∈ [−tn,+∞),

ṽn(s)= e−δn tn/2(vn(tn + s)−〈vn(tn)〉), µ̃n(s)= e−δn tn/2µn(tn + s).

From Lemma 3.3 we know that ṽn, Dṽn and µ̃n are locally bounded in L2. As the pair (ṽn, µ̃n) satisfies an
equation of the form (60), standard regularity estimates for parabolic equations with bounded coefficients
[Ladyženskaja et al. 1968, Theorem III.10.1] imply that ṽn , Dṽn and µ̃n are locally bounded in Cβ/2,β

for some β ∈ (0, 1). Therefore, up to a subsequence, denoted in the same way, (ṽn) converges to ṽ and
(µ̃n) converges to µ̃ locally uniformly, where by linearity (ṽ, µ̃) solves{

−∂t ṽ−1ṽ+ Hp(x, Dūδ) · Dṽ = δF
δm
(x, m̄δ)(µ̃(t)) in (−∞, 0)×Td ,

∂t µ̃−1µ̃− div(µ̃Hp(x, Dūδ))− div(m̄δHpp(x, Dūδ)Dṽ)= 0 in (−∞, 0)×Td .

For any s ≤ 0 and any τ ≥ 0, we have, for n large enough,∫
Td
µ̃n(s)ṽn(s)= e−δn tn

∫
Td
µn(tn + s)vn(tn + s)≤ eδnsρδn (tn + s)≤ eδnsρδn (τ ),

so ∫
Td
µ̃(s)ṽ(s)≤ ρ(τ).
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Letting τ →+∞, we find therefore∫
Td
µ̃(s)ṽ(s)≤ ρ∞ =

∫
Td
µ̃(0)ṽ(0) for all s ≤ 0.

However
∫

Td µ̃(s)ṽ(s) is nonincreasing, so we also have the reverse inequality, and we deduce that this
quantity must be constant in (−∞, 0]. The duality relation (consisting as usual in multiplying the equation
for ṽ by µ̃ and the equation for µ̃ by ṽ, integrating in time and space and adding the resulting quantities)
then implies Dṽ = 0 for any t ≤ 0, which gives ρ∞ = 0.

Next we claim that there exist γ > 0, C > 0 and δ0 > 0 such that, for δ ∈ (0, δ0), one has

ρδ(t)≤ Ce−γ t for all t ≥ 0. (63)

Indeed, let ε > 0 small to be chosen later and let T0 > 0, δ0 > 0 be such that

ρδ(t)≤ ε for all t ≥ T0, δ ∈ (0, δ0). (64)

Fix δ ∈ (0, δ0) and let (v, µ) be a solution to (60). Inequalities (61) (combined with the fact that
∫

Td vµ

is nonnegative) and (64) imply∫ t2

t1
e−δs‖Dv(s)‖2L2 ds ≤ Cε‖µ0‖

2
L2 for all t1, t2 ≥ T0, δ ∈ (0, δ0).

Revisiting the estimate for µ, we have, for any t1 ≥ 0,

‖µ(T0+ t1)‖L2 ≤ Ce−ωt1‖µ(T0)‖L2 +C
[∫ T0+t1

T0

‖Dv(s)‖2L2 ds
]1/2

,

so, using Lemma 3.3 and the above estimate on Dv,

‖µ(T0+ t1)‖L2 ≤ Ce−ωt1+δT0/2‖µ0‖L2 +Ceδ(T0+t1)/2
[∫ T0+t1

T0

e−δs‖Dv(s)‖2L2 ds
]1/2

≤ C‖µ0‖L2eδ(T0+t1)/2(e−(ω+δ/2)t1 + ε1/2).

We choose t1 large enough (independently of ε and δ ∈ (0, ω)) so that Ce−ωt1 ≤ 1
4 and ε so small that

Cε1/2
≤

1
4 . Setting τ := T0+ t1, this yields

‖µ(τ)‖L2 ≤
1
2‖µ0‖L2eδτ/2. (65)

Fix (v, µ) a solution to (60). The pair (ṽ, µ̃) := (v(τ + · ), µ(τ + · )) is also a solution of (60) with initial
condition µ̃(0)= µ(τ). Since the equation is linear in µ0 and the quantity

∫
Td µ(t)v(t)is homogeneous

of degree 2, we have therefore

e−δt
∫

Td
µ̃(t)ṽ(t)≤ ‖µ(τ)‖2L2ρ

δ(t) for all t ≥ 0,

where

e−δt
∫

Td
µ̃(t)ṽ(t)= eδτ e−δ(t+τ)

∫
Td
µ(t + τ)v(t + τ).
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This implies

e−δ(t+τ)
∫

Td
µ(t + τ)v(t + τ)≤ e−δτ‖µ(τ)‖2L2ρ

δ(t).

Recalling estimate (65) and taking the supremum over ‖µ0‖L2 ≤ 1, we find

ρδ(t + τ)≤ 1
2ρ

δ(t) for all t ≥ 0.

This easily implies (63).
We can now come back to the estimates of µ and v for a given solution (v, µ) of (60) with δ ∈ (0, δ0).

For t > 0, we have, using Lemma 3.3, (61) and (63) successively,

‖µ(t)‖L2 ≤ Ce−ωt/2
‖µ(t/2)‖L2 +C

[∫ t

t/2
‖Dv(s)‖2L2 ds

]1/2

≤ Ce−ωt/2+δt/2
‖µ0‖L2 +Ceδt/2

[∫ t

t/2
e−δs‖Dv(s)‖2L2 ds

]1/2

≤ C‖µ0‖L2(e−ωt/2+δt/2
+ eδt/2−γ t/4).

For δ small enough, this implies

‖µ(t)‖L2 ≤ C‖µ0‖L2e−λt for all t ≥ 0,

for some λ ∈ (0, ω). Thus, by Lemma 3.3 applied on the time-interval [t/2,+∞),

‖Dv(t)‖L2 ≤ C‖µ(t/2)‖L2eδt/4 ≤ C‖µ0‖L2e−λt

for some possibly different λ > 0. The bound on ‖v‖∞ follows directly from the equation for v and our
regularity assumption on δF/δm, which implies∥∥∥δF

δm
(x,mδ)(µ(t))

∥∥∥
∞

≤ C‖µ(t)‖L2 ≤ C‖µ0‖L2e−λt for all t ≥ 0. �

In the next step we study a perturbed discounted linearized problem.

Proposition 3.5. Let (v, µ) solve
−∂tv+ δv−1v+ Hp(x, Dūδ) · Dv = δF

δm
(x, m̄δ)(µ(t))+ A(t, x) in (0,+∞)×Td ,

∂tµ−1µ− div(µHp(x, Dūδ))− div(m̄δHpp(x, Dūδ)Dv)= div(B(t, x)) in (0,+∞)×Td ,

µ(0, · )= µ0 in Td , v bounded,

(66)

with
∫

Td µ0 = 0, ‖µ0‖L2 ≤ 1 and assume that, for some γ > 0,

‖A(t)‖L2 +‖B(t)‖L2 ≤ e−γ t for all t ≥ 0. (67)

If δ ∈ (0, δ0), then

‖µ(t)‖L2 +‖Dv(t)‖L2 ≤ C(1+ t)e−θ t , (68)

where θ := γ ∧ λ and δ0, λ > 0 are defined in Proposition 3.4.
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Proof. Using Proposition 3.4 and the linearity of the equation, we can assume, without loss of generality,
that µ0 = 0. We first assume that A ≡ 0. Throughout the proof, the constant C can depend on γ .

Let us start with preliminary estimates. The duality identity (i.e., the equality obtained by multiplying
the equation for e−δtv by µ and the equation for µ by e−δtv, integrating in time and space and adding the
resulting quantities) here implies

C−1
∫ t2

t1
e−δs‖Dv(s)‖2L2 ds ≤−

[
e−δs

∫
Td
v(s)µ(s)

]t2

t1

+C
∫ t2

t1
e−δs‖B(s)‖2L2 ds. (69)

One can check, exactly as for the proof of Lemma 3.3, that

lim
t→+∞

e−δt
∫

Td
µ(t)v(t)= 0.

Then the inequality (69) and our assumption (67) on B imply∫
+∞

0
e−δs‖Dv(s)‖2L2 ds ≤ C.

Arguing as before, we derive for µ that

‖µ(t)‖L2 ≤ C
[∫ t

0
‖Dv(s)‖2L2 +‖B(s)‖2L2 ds

]1/2

≤ Ceδt/2
[∫ t

0
e−δs(‖Dv(s)‖2L2 +‖B(s)‖2L2) ds

]1/2

≤ Ceδt/2.

Thus, applying Lemma 1.2 (with T →∞) to e−δtv, we deduce

e−δt‖v(t)−〈v(t)〉‖L2 ≤ C
∫
+∞

t
e−ω(s−t)

‖µ(s)‖L2e−δs ds ≤ Ce−δt/2,

which gives
‖v(t)−〈v(t)〉‖L2 ≤ Ceδt/2.

We set
ρδ(t)= sup

B
[e−δt(‖µ(t)‖L2 +‖v(t)−〈v(t)〉‖L2)],

where the supremum is taken over the B that satisfy (67) and where (v, µ) solves (66) (with A ≡ 0 and
µ0 = 0). Fix a solution (v, µ) to (66) with A ≡ 0 and µ0 = 0 and let us consider its restriction to a time
interval [τ,+∞). We can write

(v, µ)= (v1, µ1)+ (v2, µ2),

where (v1, µ1) solves on [τ,+∞) the homogeneous equation (60) with initial condition µ1(τ )= µ(τ)

and (v2, µ2) solves on [τ,+∞) the inhomogeneous equation (66) with µ2(τ ) = 0 and A ≡ 0. By
Proposition 3.4 we have, for δ ∈ (0, δ0),

‖µ1(τ + t)‖L2 +‖Dv1(τ + t)‖L2 ≤ C0e−λt
‖µ(τ)‖L2 ≤ C0e−λt eδτ/2 for all t ≥ 0,
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while, as the restriction of B to [τ,+∞) satisfies

‖B(τ + t)‖L2 ≤ e−γ τ e−γ t for all t ≥ 0,

we have
‖µ2(τ + t)‖L2 +‖v2(τ + t)−〈v2(τ + t)〉‖L2 ≤ e−γ τρδ(t)eδt for all t ≥ 0.

So
‖µ(τ + t)‖L2 +‖v(τ + t)−〈v(τ + t)〉‖L2 ≤ Ce−λt eδτ/2+ e−γ τρδ(t)eδt .

Multiplying by e−δ(t+τ) and taking the supremum over B leads to

ρδ(τ + t)≤ Ce−(λ+δ)t + e−(γ+δ)τρδ(t).

Setting θ := γ ∧λ and considering the inequality satisfied by e(θ+δ)tρδ(t), we then obtain the exponential
decay of ρδ

ρδ(t)≤ C(1+ t)e−(θ+δ)t ,

which implies, by the definition of ρδ(t), that

sup
B
(‖µ(t)‖L2 +‖v(t)−〈v(t)〉‖L2)≤ C(1+ t)e−θ t .

Once more we observe that, by Lemma 1.2, we can estimate ‖Dv(t)‖L2 in terms of ‖µ(t)‖L2 and
‖v(t)−〈v(t)〉‖L2 . Hence (68) is proved when A = 0.

It remains to consider the case where A 6≡ 0. Let v1 be the unique bounded solution to

−∂tv1+ δv1−1v1+ Hp(x, Dūδ) · Dv1 = A(t, x) in (0,+∞)×Td .

Using as before Lemma 1.2 for e−δtv1 and with T →∞, we estimate

‖v1(t)−〈v1(t)〉‖L2 ≤ C
∫
∞

t
e−(ω+δ)(s−t)

‖A(s)‖L2 ds ≤ Ce−γ t .

Finally, using again Lemma 1.2 gives

‖Dv1(t)‖L2 ≤ Ce−γ t .

Note that, if (v, µ) is the solution to (66), then (v−v1, µ) solves (66) with A≡ 0 and B ′= B+m̄δHpp Dv1,
so, applying the above estimate gives

‖µ(t)‖L2 +‖Dv(t)‖L2 ≤ C(1+ t)e−θ t ,

where θ := γ ∧ λ. �

3C. Exponential rate for the nonlinear system. We now consider the infinite-horizon discounted non-
linear MFG system (5). Let us recall that this system is well-posed and that we have Lipschitz estimates:

Lemma 3.6. Under our standing assumptions, for any δ ∈ (0, 1) there exists a unique solution (uδ,mδ)

to (5). Moreover, for any α ∈ (0, 1), there exists a constant C > 0, independent of δ, such that

‖Duδ‖C (1+α)/2,1+α + sup
t∈[1,∞)

‖mδ(t)‖∞ ≤ C.
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Proof. Existence and uniqueness of the solution rely on standard arguments, discussed for instance in
[Lions 2010]. In particular, the unique solution can be obtained as limit of solutions in horizons Tn→∞

with the terminal condition u(Tn) = 0; this way one can prove, exactly as in Lemma 1.5, that Duδ is
uniformly bounded, and one also has a uniform bound for ‖δuδ‖∞. As a consequence, mδ is uniformly
bounded in [1,+∞) thanks to Lemma 1.1 and is (uniformly) Hölder continuous in time with values in
P(Td); see estimate (17). Finally, by considering the equation of (uδ)xi , namely

−∂t(uδ)xi + δ(u
δ)xi −1(u

δ)xi + Hxi + Hp · D(uδ)xi = Fxi ,

the parabolic regularity applied in any interval (t, t + 1), jointly with the uniform bound already found
for ‖(uδ)xi‖∞, implies the desired estimate upon Duδ. More precisely, by only using that Fx(x,m) is
uniformly bounded, and the bound on Hx and Hp, we deduce a bound for (uδ)xi in C (1+α)/2,1+α for any
α ∈ (0, 1). �

The main result of this part is the following exponential convergence of the discounted problem.

Theorem 3.7. Let (uδ,mδ) be the solution to the discounted MFG system (5). There exist γ, δ0 > 0 and
C > 0 such that, if δ ∈ (0, δ0), then

‖D(uδ(t)− ūδ)‖L∞ ≤ Ce−γ t for all t ≥ 0, (70)

‖mδ(t)− m̄δ
‖L∞ ≤ Ce−γ t for all t ≥ 1. (71)

Proof. The proof is very close to the proof of Theorem 2.6. Let

E := {(v, µ), ‖Dv(t)‖L∞ +‖µ(t)‖L∞ ≤ K̂ e−γ t
},

where K̂ > 0 and γ > 0 are to be chosen below. We assume that K̂ is small enough so that

m̄δ > K̂ in Td .

We also assume that the initial condition is close to m̄δ, namely µ0 := m0− m̄δ satisfies

‖µ0‖L∞ ≤ K̂ 2.

We consider the solution (ṽ, µ̃) to (66) with initial condition µ̃(0)= µ0,

A(t, x)=−H(x,D(ūδ+v))+H(x,Dūδ)+Hp(x,Dūδ)·Dv+F(x, m̄δ
+µ)−F(x, m̄δ)−

δF
δm
(x, m̄δ)(µ),

B(t, x)= (m̄δ
+µ)Hp(x,D(ūδ+v))−m̄δHp(x,Dūδ)−µHp(x,Dūδ)−m̄δHpp(x,Dūδ)Dv.

We note that

‖A(t)‖L∞ +‖B(t)‖L∞ ≤ C K̂ 2e−2γ t .

From Proposition 3.5 we have

‖µ̃(t)‖L2 +‖Dṽ(t)‖L2 ≤ C K̂ 2(1+ t)e−θ t ,
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where θ := 2γ ∧λ. Using the smoothing properties of δF/δm and the parabolic regularity of the equation
satisfied by ṽ−〈ṽ〉, exactly as in Theorem 2.6 we can upgrade the above estimate to

‖µ̃(t)‖∞+‖Dṽ(t)‖∞ ≤ C K̂ 2(1+ t)e−θ t .

So if one chooses γ ∈ (0, λ), we infer that

‖µ̃(t)‖L∞ +‖Dṽ(t)‖L∞ ≤ C K̂ 2e−γ t .

For K̂ small enough, this implies that (ṽ, µ̃) belongs to E . Note that ṽ, Dṽ and µ̃ are bounded in Cα/2,α

because they solve parabolic equations with bounded coefficients. So the map (v, µ)→ (ṽ, µ̃) is compact
(say in W 1,∞

×L∞) and thus has a fixed point (vδ, µδ). Then (uδ,mδ) := (ūδ, m̄δ)+(vδ, µδ) is a solution
to (5) which satisfies the decay

‖mδ(t)− m̄δ
‖∞+‖D(uδ(t)− ūδ)‖∞ ≤ Ce−γ t for all t ≥ 0.

It remains to remove the assumption on the initial condition m0. For this we only need to show
that there exists a time T > 0 such that, for any m0 ∈ P(Td), the solution (uδ,mδ) of (5) satisfies
‖mδ(T )− m̄δ

‖∞ ≤ K̂ 2. Indeed, we can then apply the previous result to the restriction of (uδ,mδ) to the
time interval [T,+∞).

By the duality relation (consisting here in multiplying the equation for uδ − ūδ by mδ
− m̄δ and the

equation for mδ
− m̄δ by uδ − ūδ, integrating in time and space and adding the resulting quantities), we

have

C−1
∫ t2

t1
e−δt‖D(uδ(t)− ūδ)‖2L2 dt ≤−

[
e−δt

∫
Td
(uδ(t)− ūδ)(mδ(t)− m̄δ)

]t2

t1

. (72)

Thus

C−1
∫
+∞

0
e−δt‖D(uδ(t)− ūδ)‖2L2 dt ≤

∫
Td
(uδ(0)− ūδ)(m0− m̄δ)≤ C (73)

because uδ is uniformly Lipschitz continuous in space (see Lemma 3.6). As µδ := mδ
− m̄δ satisfies

∂tµ
δ
−1µδ − div(µδHp(x, Duδ))= div(m̄δ(Hp(x, Dūδ)− Hp(x, Duδ))),

and still using the fact that Duδ is bounded, Lemma 1.1 implies that, for any t ≥ 1,

‖mδ(t)− m̄δ
‖L2 ≤ Ce−ω(t−1)

‖mδ(1)− m̄δ
‖L2 +Ceδt/2

[∫ t

1
e−δs‖D(uδ(s)− ūδ)‖2L2 ds

]1/2

.

Recalling that mδ is bounded in L∞ (Lemma 1.1), we find

‖mδ(t)− m̄δ
‖L2 ≤ Ceδt/2 for all t ≥ 1.

Let T ≥ 2 to be chosen below. Coming back to (73), there exist t1 ∈ [1, T ] and t2 ∈ [3T +1, 4T ] such that

e−δti‖D(uδ(ti )− ūδ)‖2L2 ≤
C
T
.
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Then from (72) we deduce

C−1
∫ t2

t1
e−δt‖D(uδ(t)− ūδ)‖2L2 dt

≤ e−δt1‖D(uδ(t1)− ūδ)‖L2‖mδ(t1)− m̄δ
‖L2 + e−δt2‖D(uδ(t2)− ūδ)‖L2‖mδ(t2)− m̄δ

‖L2 ≤ CT−1/2.

Then, as t1 ≤ T ≤ 3T + 1≤ t2 ≤ 4T, we have, for any t ∈ [2T, t2],

‖mδ(t)− m̄δ
‖L2 ≤ Ce−ω(2T−t1)‖mδ(t1)− m̄δ

‖L2 +Ceδt2/2
[∫ t2

t1
e−δt‖D(uδ(t)− ūδ)‖2L2 dt

]1/2

≤ Ce−ωT eδT/2
+Ce2δT T−1/4. (74)

Notice that, by choosing T large, and then δ small, the above inequality implies that mδ(t)− m̄δ is
sufficiently small for any t ∈ [2T, 3T ]. In order to conclude, we only need to upgrade this estimate to the
L∞ norm.

To this end, recall that wδ := uδ − ūδ solves the equation

−∂tw
δ
+ δwδ −1wδ + V δ

· Dwδ = F(x,mδ(t))− F(x, m̄δ),

where V δ
=
∫ 1

0 Hp(x, Dūδ + s D(uδ − ūδ)) ds is uniformly bounded. Since we have, by Poincaré’s
inequality,

e−δt2‖wδ(t2)−〈wδ(t2)〉‖2L2 ≤ Ce−δt2‖Dwδ(t2)‖2L2 ≤
C
T
,

applying Lemma 1.2 to e−δtwδ we deduce that, for t ∈ [2T, 2T + 2],

‖wδ(t)−〈wδ(t)〉‖L2 ≤ Ce−ω(t2−t)
‖wδ(t2)−〈wδ(t2)〉‖L2eδ(t−t2)+C

∫ t2

t
e−ω(s−t)

‖mδ(s)−m̄δ
‖L2eδ(t−s) ds

≤ Ce−ω(t2−t) e
δ(t−t2/2)

T 1/2 +C(e−ωT eδT/2
+e2δT T−1/4)

∫ t2

t
e−ω(s−t)eδ(t−s) ds,

where we also used (74). Recalling that t ∈ [2T, 2T + 2] and t2 ∈ [3T + 1, 4T ], we have t − t2/2≥ 0, so
if δ is small enough compared to ω we conclude that

‖wδ(t)−〈wδ(t)〉‖L2 ≤ C(e−ωT/2
+ e2δT T−1/4).

We apply once more Lemma 1.2 to estimate Dwδ(t) in (2T, 2T + 1): we deduce that

‖D(uδ(t)− ūδ)‖L2 ≤ C(e−ωT/2
+ e2δT T−1/4)

for every t ∈ (2T, 2T + 1). In fact, since D(uδ(t)− ūδ) is bounded, a similar estimate actually holds in
L p for all p <∞:

‖D(uδ(t)− ūδ)‖L p ≤ C(e−ωT/p
+ e4δT/pT−1/(2p)).

Recalling the estimate (74), by parabolic regularity used for the equation of µδ in the interval
(2T, 2T+1), we conclude that the L∞ norm of µδ satisfies a similar estimate for, say, t ∈

(
2T+ 1

2 , 2T+1
)
.

In particular, we can fix T large and δ0 > 0 small such that in this interval we have ‖mδ(t)− m̄δ
‖L∞ ≤ K̂ 2
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for any δ ∈ (0, δ0). We notice that the choice of T (and so δ0) only depends on K̂ , which is only dependent
on the data. This means that the estimates (70) and (71) have been proved to hold for t ≥ TK̂ , for some
TK̂ only depending on the data. On the other hand, the global gradient bound implies

‖D(uδ(t)− ūδ)‖L∞ ≤ Ĉe−γ TK̂

for some constant Ĉ > 0 and for every t ∈ [0, TK̂ ] and a similar estimate holds for ‖mδ(t)− m̄δ
‖L∞ for

t ∈ [1, TK̂ ]. Hence (70) and (71) are proved in the whole time range. �

Let us underline the following consequence of our estimates on the solution to the linearized system
−∂tv+ δv−1v+ Hp(x, Duδ) · Dv = δF

δm
(x,mδ(t))(µ(t))in (0,+∞)×Td ,

∂tµ−1µ− div(µHp(x, Duδ))− div(mδHpp(x, Duδ)Dv)= 0 in (0,+∞)×Td ,

µ(0, · )= µ0 in Td , v bounded.

(75)

Notice that the system has been now linearized around the pair (uδ,mδ) which solves the discounted
MFG system (5).

Corollary 3.8. There exist θ, δ0 > 0 and a constant C > 0 such that, if δ ∈ (0, δ0), then the solution
(v, µ) to (75) with

∫
Td µ0 = 0 satisfies

‖Dv(t)‖L2 ≤ Ce−θ t
‖µ0‖L2 for all t ≥ 0,

‖µ(t)‖L2 ≤ Ce−θ t
‖µ0‖L2 for all t ≥ 1.

In addition, for any α ∈ (0, 1), there is a constant C (independent of δ ∈ (0, δ0)) such that

sup
t≥0
‖v(t)‖C2+α ≤ C‖µ0‖(C2+α)′ .

Proof. As in the proof of Lemma 3.3, we have a preliminary estimate:

‖µ(t)‖L2 +‖Dv(t)‖L2 ≤ C0‖µ0‖L2eδt/2.

We rewrite system (75) in the form (66) with

A(t, x) := −(Hp(x, Duδ)− Hp(x, Dūδ)) · Dv+ δF
δm
(x,mδ(t))(µ(t))− δF

δm
(x, m̄δ)(µ(t)),

B(t, x) := −µ(Hp(x, Duδ)− Hp(x, Dūδ))− (mδHpp(x, Duδ)− m̄δHpp(x, Dūδ))Dv.

From Theorem 3.7, we have, for δ small enough,

‖A(t)‖L2 ≤ Ce−γ t(‖Dv‖L2 +‖µ(t)‖L2)≤ Ce−(γ−δ)t‖µ0‖L2 ≤ Ce−γ t/2
‖µ0‖L2 .

In the same way,
‖B(t)‖L2 ≤ Ce−γ t/2

‖µ0‖L2 .

Then Proposition 3.5 implies

‖µ(t)‖L2 +‖Dv(t)‖L2 ≤ C(1+ t)e−γ t/2
‖µ0‖L2 .
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The above estimates combined with the maximum principle imply that v is bounded in L∞ by

sup
t∈[0,T ]

‖v(t)‖∞ ≤ C‖µ0‖L2 .

In order to change the left-hand side ‖v(t)‖∞ into ‖v(t)‖C2+α and the right-hand side ‖µ0‖L2 into
‖µ0‖(C2+α)′ , one can proceed as in Corollary 2.8. �

4. The master cell problem

In this section we study the master cell problem:

λ−1xχ(x,m)+ H(x, Dxχ(x,m))−
∫

Td
divy(Dmχ(x,m, y)) dm(y)

+

∫
Td

Dmχ(x,m, y) · Hp(y, Dxχ(y,m)) dm(y)= F(x,m) in Td
×P(Td). (76)

We prove that this equation is well-defined in a suitable sense: there is a unique constant λ̄ for which the
master cell problem has a “weak” solution in Td

×P(Td). Moreover we prove that λ̄ is also the unique
constant for which the ergodic mean field game system (2) has a solution (λ̄, ū, m̄).

Let us stress that a weak solution of (76), according to our next definition, is not necessarily C1 with
respect to m, so (76) is not formulated classically. Instead, the equation is interpreted as is often done
with transport equations, by requiring somehow that the value of the solution is obtained through the
characteristic curves. By considering weak solutions, we avoid some lengthy and involved estimates
which are needed to achieve the C1 character with respect to m. The reader is referred to [Cardaliaguet
et al. 2019] for this issue. For our purposes, the context of weak solutions is enough to characterize the
ergodic limit.

Definition 4.1. We say that the pair (λ, χ ), with λ∈R and χ :Td
×P(Td)→R a map, is a weak solution

to the master cell problem (76) if χ and Dxχ are globally Lipschitz continuous in Td
×P(Td) and if χ

satisfies the two conditions

(i) χ is monotone, i.e.,∫
Td
(χ(x,m)−χ(x,m′)) d(m−m′)(x)≥ 0 for all m,m′ ∈ P(Td),

(ii) for any m0 ∈ P(Td), and any T > 0, whenever we consider the unique solution (u,m) to
−∂t u+ λ−1u+ H(x, Du)= F(x,m) in (0, T )×Td ,

∂t m−1m− div(m Hp(x, Du))= 0 in (0, T )×Td ,

m(0, · )= m0, u(T, · )= χ(x,m(T )) in Td ,

(77)

then we have χ(x,m0)= u(0, x) for any x ∈ Td.

Let us make some comments about the above definition. Firstly, the monotonicity condition on χ
ensures the uniqueness of the solution (u,m) to (77). Secondly, if χ = χ(x,m) is a weak solution, then
χ is actually C2 in the space variable x because so is the solution u of (77) at time t = 0. Thirdly,



LONG TIME BEHAVIOR OF THE MASTER EQUATION IN MEAN FIELD GAME THEORY 1439

condition (ii) implies that in (77) one actually has χ(x,m(t))= u(t, x) for any (t, x) ∈ [0, T ]×Td, so m
solves the McKean–Vlasov equation

∂t m−1m− div(m Hp(x, Dχ(x,m(t))))= 0, m(0, · )= m0. (78)

The Lipschitz continuity of Dxχ ensures that this equation has a unique solution.

Theorem 4.2. There is a unique constant λ̄ ∈ R for which the master cell problem (76) has a weak
solution. The constant λ̄ is also the unique constant for which the ergodic MFG problem (2) has a solution.
Besides, if χ is a solution to (76), then χ( · ,m) is of class C2 for any m ∈ P(Td) and

Dxχ(x, m̄)= Dū(x) for all x ∈ Td ,

where (ū, m̄) is a solution to (2).

The proof requires several steps. As usual, we build the solution through the discounted problem, for
which we have to show uniform regularity estimates (independent of the discount factor).

4A. Estimates for the discounted master equation. In order to build a solution to the cell problem, we
consider, for δ > 0, the discounted master equation (6). Let us recall, see [Cardaliaguet et al. 2019], that
U δ can be built as follows: for any m0 ∈ P(Td), let (uδ,mδ) be the solution to (5). Then

U δ(x,m0)= uδ(0, x). (79)

The next lemma collects standard estimates on U δ.

Lemma 4.3. Let U δ be the solution to (6). Then, for any α ∈ (0, 1), there is a constant C, independent of
m0 and δ, such that

‖δU δ( · ,m)‖∞+‖DxU δ( · ,m)‖C1+α ≤ C for all m ∈ P(Td).

Proof. Let (uδ,mδ) be a solution to (5). As uδ is a bounded solution to the first equation in (5), it is well
known that

sup
(t,x)∈[0,+∞)×Td

|δuδ(t, x)| ≤ sup
x∈Td
|H(x, 0)| + sup

(x,m)∈Td×P(Td )

|F(x,m)|.

This yields the uniform estimate on ‖δU δ
‖∞. From Lemma 3.6, we know that Duδ is bounded in

C (1+α)/2,1+α for any α ∈ (0, 1); this implies the same bound on DxU δ. �

The next result states that U δ is uniformly Lipschitz continuous with respect to m.

Proposition 4.4. Let U δ be the solution to (6). Then, for any α ∈ (0, 1), there exists a constant C,
depending on α and on the data only, such that

‖DmU δ( · ,m, · )‖2+α,1+α ≤ C. (80)

In particular, U δ( · , · ) and DxU δ( · , · ) are uniformly Lipschitz continuous.
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Proof. Let us fix m0 ∈ P(Td), and let (uδ,mδ) be the solution to (5). We use the following representation
formula, see [Cardaliaguet et al. 2019]: for any smooth map µ0, we have∫

Td

δU δ

δm
(x,m0, y)µ0(y) dy = v(0, x), (81)

where (v, µ) is the unique solution to the linearized system
−∂tv+ δv−1v+ Hp(x, Duδ) · Dv = δF

δm
(x,mδ(t))(µ(t)) in (0,+∞)×Td ,

∂tµ−1µ− div(µHp(x, Duδ))− div(mδHpp(x, Duδ)Dv)= 0 in (0,+∞)×Td ,

µ(0, · )= µ0 in Td , v bounded.

(82)

If we suppose that
∫

Td µ0 = 0, Corollary 3.8 states that

sup
t≥0
‖v(t)‖C2+α ≤ C‖µ0‖(C2+α)′

for any α > 0. By (81) and

Dy
δU δ

δm
(x,m0, y)= DmU δ(x,m0, y),

we infer exactly as in [Cardaliaguet et al. 2019] that

‖DmU δ( · ,m0, · )‖2+α,1+α ≤ C. �

Remark 4.5. We stress that the uniform Lipschitz continuity of U δ( · , · ) and DxU δ( · , · ) would require
milder assumptions than those needed to prove (80). Indeed, by only using condition (FGb) on the
couplings, we can replace the conclusion of Corollary 3.8 with the estimate

sup
t≥0
‖v(t)‖C1 ≤ C‖µ0‖(C1)′,

which would follow as explained in Remark 2.10. With this latter estimate in hand, using (81) with
µ0 = Dyψ(y) (for ψ smooth), it follows that∫

Td
Dy Dx

δU δ

δm
(x,m0, y)ψ(y) dy ≤ C‖µ0‖(C1)′ ≤ C‖ψ‖L1,

which yields

‖Dm DxU δ(x,m0)‖∞ ≤ C.

Since D2
xxU δ(x,m) is estimated from Lemma 4.3, this would imply the Lipschitz uniform bound for

DxU δ( · , · ).
In the following, we actually only use this information in order to prove the existence of a weak

solution to the master equation and the convergence of the ergodic limit.

We finally establish that U δ is monotone:

Lemma 4.6. For any δ > 0 the map U δ is monotone.



LONG TIME BEHAVIOR OF THE MASTER EQUATION IN MEAN FIELD GAME THEORY 1441

Proof. Fix m0,m′0 ∈ P(T
d). Let us recall that U δ(x,m0)= uδ(0, x), where the pair (uδ,mδ) solves (5)

with initial condition m0. We denote by (u′,m′) the solution of (5) with initial condition m′0. Then by
duality (consisting here in multiplying the equation for uδ − u′ by mδ

−m′ and the equation by mδ
−m′

by uδ − u′, integrating in time and space and adding the resulting quantities), we have

d
dt

e−δt
∫

Td
(uδ(t, x)− u′(t, x))(mδ(t, x)−m′(t, x)) dx ≤ 0,

where, as uδ and u′ are bounded and mδ and m′ are probability measures,

lim
t→+∞

e−δt
∫

Td
(uδ(t, x)− u′(t, x))(mδ(t, x)−m′(t, x)) dx = 0.

This proves that∫
Td
(U δ(x,m0)−U δ(x,m′0)) d(m0−m′0)(x)=

∫
Td
(uδ(0, x)− u′(0, x)) d(m0−m′0)(x)≥ 0. �

4B. Existence of a solution for the master cell problem.

Proof of Theorem 4.2. Let us start with the proof of the existence of the solution to the master cell problem.
The proof of the uniqueness of the ergodic constant is given in Proposition 4.7 below.

For δ > 0, let U δ be the solution to the discounted master equation (6). We have seen in Lemma 4.3
and Proposition 4.4 that U δ and DxU δ are uniformly Lipschitz continuous and that δU δ is bounded.
We set W δ(x,m) = U δ(x,m)−U δ(0, m̄). Then W δ is bounded and uniformly Lipschitz continuous
on the compact space Td

× P(Td), so it converges, up to a subsequence, to a continuous map χ :
Td
×P(Td)→ R. Since Dx W δ is also bounded in Lipschitz norm, we deduce that Dxχ is Lipschitz

continuous (in Td
×P(Td)). Moreover (δU δ(0, m̄)) converges (along the same subsequence, without

loss of generality) to some constant λ.
Next we prove that χ is a weak solution to (76). We already know that χ and Dxχ are Lipschitz

continuous with respect to both variables. In addition, χ is monotone thanks to Lemma 4.6. Let T > 0,
m0 ∈ P(Td) with a smooth density and (wδ,mδ) be the solution to

−∂tw
δ
+ δwδ + δU δ(0, m̄)−1wδ + H(x, Dwδ)= F(x,mδ) on (0, T )×Td ,

∂t mδ
−1mδ

− div(mδHp(x, Dwδ))= 0 on (0, T )×Td ,

mδ(0, · )= m0, wδ(T, · )=W δ(x,mδ(T )) on Td .

By definition we have W δ(x,mδ(T )) = U δ(x,mδ(T ))−U δ(0, m̄) and we know that U δ(x,mδ(t)) =
uδ(t, x) for all t , where uδ is the solution to (5). Hence we deduce that

wδ(t, x)= uδ(t, x)−U δ(0, m̄)=W δ(x,mδ(t))

for all (t, x) ∈ (0, T )×Td. In particular, by Lemma 3.6, wδ is uniformly bounded in C1+α/2,2+α for some
α ∈ (0, 1), while mδ is uniformly bounded and uniformly continuous on [0, T ] with values in P(Td). So
there exists a subsequence, still denoted for simplicity by (wδ,mδ), such that wδ converges in C1,2 to a
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map w and mδ converges in C0([0, T ],P(Td)) to a map m. The pair (w,m) is a solution to
−∂tw+ λ−1w+ H(x, Dw)= F(x,m) in (0, T )×Td ,

∂t m−1m− div(m Hp(x, Dw))= 0 in (0, T )×Td ,

m(0, · )= m0, w(T, · )= χ(x,m(T )) in Td .

As the solution to this equation is unique (because χ is monotone), we derive that (w,m) is the unique
solution to (77). Moreover, as wδ(0, x)=W δ(x,m0), we also have at the limit w(0, x)= χ(x,m0). This
proves that χ is a weak solution to (76). �

Let us now come back to the ergodic MFG problem (2). We denote by (λ̄, ū, m̄) the solution to this
equation.

Proposition 4.7. Let (λ, χ) be a solution of the ergodic master equation. Then we have λ = λ̄ and
Dxχ(x, m̄)= Dū(x).

Proof. Let us fix T > 0 and let (u,m) be the solution to
−∂t u+ λ−1u+ H(x, Du)= F(x,m) in (0, T )×Td ,

∂t m−1m− div(m Hp(x, Du))= 0 in (0, T )×Td ,

m(0, · )= m̄, u(T, · )= χ(x,m(T )) in Td .

(83)

We have already noticed that m is the solution to the McKean–Vlasov equation

∂t m−1m− div(m Hp(x, Dxχ(x,m(t))))= 0, m(0, · )= m̄,

which has a unique solution because Dxχ is Lipschitz continuous. This means that m is defined indepen-
dently of the horizon T. As we know that u(t, x) = χ(x,m(t)), the same holds for u. Then, from the
usual energy inequality applied to (u− ū,m− m̄), we have, for any 0≤ t1 ≤ t2 ≤ T,∫ t2

t1

∫
Td

m+ m̄
2
|Du− Dū|2 ≤−C

[∫
Td
(u− ū)(m− m̄)

]t2

t1

. (84)

The right-hand side is bounded because u(t, · )= χ( · ,m(t)) and ū are bounded, so∫ T

0

∫
Td

m̄|Du− Dū|2 ≤ C. (85)

By Lemma 1.4 we have
sup

t∈[0,T ]
‖m(t)− m̄‖L2 ≤ C. (86)

As m̄ is bounded below, (85) implies that there exists tT ∈ [T/2, T ] such that
∫

Td |Du(tT )−Dū|2≤ 2C/T.
In particular, for T large enough, we have, by (84) applied with t1 = 0 and t2 = tT ,∫ 1

0

∫
Td
|Du− Dū|2 ≤

∫ tT

0

∫
Td
|Du− Dū|2 ≤−C

∫
Td
(u(tT )− ū)(m(tT )− m̄)

≤−C
∫

Td
(u(tT )− ū−〈u(tT )− ū〉)(m(tT )− m̄)

≤ C‖Du(tT )− Dū‖L2 ≤ CT−1/2,
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by Poincaré’s inequality, (86) and our choice of tT . Letting T →∞ we can conclude that Du = Dū on
[0, 1]×Td. Therefore, m satisfies

∂t m−1m− div(m Hp(x, Dū(x)))= 0 on (0, 1)×Td , m(0, · )= m̄.

But this equation has m̄ as a unique solution, which shows that m(t, x)= m̄(x) on [0, 1]×Td. Since the
McKean–Vlasov equation (78) is autonomous, we finally have m(t)= m̄ and Du(t, x)= Dxχ(x, m̄)=
Dū(x) for any (t, x) ∈ [0, T ]×Td and, as a consequence, λ= λ̄. �

5. The long time behavior

We now fix a solution χ to the master cell problem and, given a terminal condition G : Td
×P(Td)→ R

satisfying our standing assumptions (see Section 1A), we consider the solution to the backward equation

−∂tU (t, x,m)−1xU (t, x,m)+H(x,DxU (t, x,m))

−

∫
Td

div(DmU (t, x,m, y))dm(y)

+

∫
Td

DmU (t, x,m, y)·Hp(y,DxU (t, y,m))dm(y)= F(x,m) in (−∞,0)×Td
×P(Td),

U (0, x,m)=G(x,m) in Td
×P(Td).

(87)

We recall that the existence of a unique classical solution to (87) was proved in [Cardaliaguet et al. 2019].
Here is our main convergence result.

Theorem 5.1. Let χ be a weak solution to the master cell problem (76). Then, there exists a constant
c ∈ R such that

lim
t→−∞

U (t, x,m)+ λ̄t = χ(x,m)+ c,

uniformly with respect to (x,m) ∈ Td
×P(Td).

Moreover, we also have that DxU (t, x,m)→ Dxχ(x,m) as T →∞, uniformly with respect to (x,m).

Theorem 5.1 implies the convergence of the solution of the MFG system as T →+∞.

Corollary 5.2. Let c be the constant given in Theorem 5.1. For T > 0 and m0 ∈ P(Td), let (uT ,mT ) be
the solution to (1). Then, for any t ≥ 0,

lim
T→+∞

uT (t, x)− λ̄(T − t)= χ(x,m(t))+ c,

where the convergence is uniform in x and m solves

∂t m−1m− div(m Hp(x, Dxχ(x,m)))= 0, m(0)= m0. (88)

Moreover, for any δ ∈ (0, 1),

lim
T→+∞

uT (δT, x)− (1− δ)λ̄T = χ(x, m̄)+ c,

where (ū, m̄) solves (2) and where the convergence is uniform in x.
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In particular, when t = 0, we get

lim
T→+∞

uT (0, x)− λ̄T = χ(x,m0)+ c.

Proof of Corollary 5.2. We know that uT (t, x)= U (t − T, x,mT (t)) and that mT solves the McKean–
Vlasov equation

∂t mT
−1mT

− div(mT Hp(x, DxU (t − T, x,m)))= 0, mT (0)= m0.

As x→ DxU (t, x,m) is bounded in C1 (see Proposition 5.3 below), we know from Theorem 5.1 that,
as T → +∞, (DxU (t − T, · , · )) converges uniformly to Dxχ . So, for any t ≥ 0, mT converges in
C0([0, t],P(Td)) towards a solution m of (88). Then again by Theorem 5.1, we have

lim
T→+∞

uT (t, x)+ λ̄(t − T )= lim
T→+∞

U (t − T, x,mT (t))+ λ̄(t − T )= χ(x,m(t))+ c.

Let us now fix δ > 0. From Theorem 2.6, we have that mT (δT ) converges (exponentially fast) to m̄.
Hence, by Theorem 5.1 again, we have

lim
T→+∞

uT (δT, x)− (1− δ)λ̄T = lim
T→+∞

U (−(1− δ)T, x,mT (δT ))− (1− δ)λ̄T = χ(x, m̄)+ c. �

The proof of Theorem 5.1 relies on estimates on U (t, · , · ) (independent of t) developed in the next
section.

5A. Lipschitz estimates of the solution U. We collect here the main estimates satisfied by the solution
of (87). They actually follow from the estimates developed in Section 2B for the solution (u,m) of the
MFG system.

Proposition 5.3. Let U be the solution to the master equation (87). Then there exists a constant C such
that

sup
t≤0, m∈P(Td )

‖U (t, · ,m)+ λ̄t‖C2+α +‖DmU (t, · ,m, · )‖2+α,1+α ≤ C, (89)

while

sup
(x,m)∈Td×P(Td )

|U (t, x,m)−U (s, x,m)| ≤ C |t − s|1/2 for all s, t ≤ 0, |s− t | ≤ 1.

Proof. Let us recall that, for any t0 ≤ 0 and m0 ∈ P(Td), one has U (t0, x,m0)= u(t0, x), where (u,m) is
the solution to the MFG system

−∂t u−1u+ H(x, Du)= F(x,m) in (t0, 0)×Td ,

∂t m−1m− div(m Hp(x, Du))= 0 in (t0, 0)×Td ,

m(t0, · )= m0, u(0, · )= G(x,m(0)) in Td .

By Lemma 1.5, we have the Lipschitz bound ‖Du‖∞ ≤ C, uniform with respect to the horizon t0. This
proves that ‖DxU‖∞ ≤ C and, in turn, that m is uniformly Hölder continuous in time with values in
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P(Td); see (17). Furthermore, from Theorem 2.6 we get an estimate for U (t − T, x,m) at time t = 0;
namely, that there exists a constant C, independent of T, such that

‖DxU (−T, · ,m0)‖C1+α ≤ C,

‖U (−T, x,m0)− λ̄T ‖∞ ≤ C.

Therefore, we deduce that

sup
t≤0, m∈P(Td )

‖U (t, · ,m)+ λ̄t‖C2+α ≤ C.

Following [Cardaliaguet et al. 2019], the derivative of U with respect to m can be represented as∫
Td

δU
δm
(t0, x,m0, y)µ0(y) dy = v(t0, x), (90)

where, for any smooth map µ0 : T
d
→ R, (v, µ) solves the linearized problem

−∂tv−1v+ Hp(x, Du) · Dv = δF
δm
(x,m)(µ) in (t0, 0)×Td ,

∂tµ−1µ− div(µHp(x, Du))− div(m Hpp(x, Du)Dv)= 0 in (t0, 0)×Td ,

µ(t0, · )= µ0, v(0, · )= δG
δm
(x,m(0))(µ(0)) in Td .

Our aim is to provide estimates on v in order to show the uniform Lipschitz regularity of U with respect
to m. We assume that

∫
Td µ0= 0 since we are only interested in DmU = Dy(δU/δm). Then Corollary 2.8

states that

sup
t∈[0,T ]

‖v(t)‖C2+α ≤ C‖µ0‖(C2+α)′ .

This proves that ∥∥∥∥∫
Td

δU
δm
(t0, · ,m0, y)µ0(y) dy

∥∥∥∥
C2+α
≤ C‖µ0‖(C2+α)′

for any smooth map µ0 with
∫

Td µ0 = 0. Therefore, as in [Cardaliaguet et al. 2019], we obtain

‖DmU (t0, · ,m0, · )‖2+α,1+α ≤ C. (91)

It remains to check the time regularity of U. For this, let us first check that u is globally 1
2 -Holder in

time. Let us recall that u is globally Lipschitz continuous in space. So, integrating in space the equation
for u, the map t → 〈u(t)〉 is globally Lipschitz continuous. Then the map (t, x)→ u(t, x)− 〈u(t)〉
is globally bounded in L∞, is globally Lipschitz continuous in space and solves a heat equation with
bounded right-hand side; therefore it is 1

2 -Holder continuous in time. This implies the global Holder
continuity in time for u. As U (t, x,m(t))= u(t, x) and U is uniformly Lipschitz continuous in m, we
have, for t0 ≤ s ≤ t0+ 1,

|U (s, x,m0)−U (t0, x,m0)| ≤ |U (s, x,m0)−U (s, x,m(s))| + |U (s, x,m(s))−U (t0, x,m0)|

≤ Cd1(m0,m(s))+ |u(s, x)− u(t0, x)|

≤ C |s− t0|1/2+ |u(s, x)− u(t0, x)| ≤ C |s− t0|1/2,
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where we used the uniform regularity of m in time (since Hp( · , Du) is bounded, see Remark 1.6) for the
second inequality, and the uniform Holder regularity in time of u in the last one. �

Remark 5.4. We stress that if we only use the regularity condition (FGb) on the couplings, then we can
replace the conclusion of Corollary 2.8 with the first-order estimate (57) and obtain, rather than (91),
the milder estimate ‖Dm DxU (t, x,m)‖∞ ≤ C. This is actually enough to conclude with the uniform
Lipschitz bound for U and DxU, which is what is only needed in the proof of Theorem 5.1.

5B. Proof of Theorem 5.1. We are now ready to prove our main result.

Proof of Theorem 5.1. Let χ be a weak solution to the master cell problem (76). For T > 0, let us consider

U T (t, x,m)=U (t − T, x,m) for (t, x,m) ∈ (−∞, T ]×Td
×P(Td).

Then U T solves

−∂tU T
−1xU T

+H(x, DxU )

−

∫
Td

div(DmU T (t, x,m, y)) dm(y)

+

∫
Td

DmU T (t, x,m, y)·Hp(DxU (t, y,m, y)) dm(y)= F(x,m) in (−∞, T )×Td
×P(Td),

U T (T, x,m)= G(x,m) in Td
×P(Td).

By the Lipschitz regularity of U and DxU and the bound in (89) (Proposition 5.3), the family {U T ( · , · , · )+

λ̄( · − T )}T is relatively compact in C0(R× T× P(Td)). Let Tn → +∞ be any sequence such that
(t, x,m)→U Tn (t, x,m)+ λ̄(t − Tn) locally uniformly converges to some V (t, x,m). Then V is a weak
solution to

−∂t V+λ̄−1x V+H(x, Dx V )−
∫

Td
div(Dm V (t, x,m, y)) dm(y)

+

∫
Td

Dm V (t, x,m, y)·Hp(y, DxU (t, y,m, y)) dm(y)= F(x,m) in R×Td
×P(Td) (92)

in the sense that V satisfies similar requirements to those in Definition 4.1. Namely, V and Dx V are
uniformly Lipschitz continuous in x and m and 1

2 -Hölder continuous in the time variable, V is monotone
in m and satisfies that, for any t1 ≤ t2 and if (u,m) solves the MFG system

−∂t u+ λ̄−1u+ H(x, Du)= F(x,m) in (t1, t2)×Td ,

∂t m−1m− div(m Hp(x, Du))= 0 in (t1, t2)×Td ,

m(t1, · )= m0, u(t2, · )= V (t2, x,m(t2)) in Td ,

(93)

we have V (t1, x,m0)= u(t1, x) (and so V (t, x,m(t))= u(t, x) for any t ∈ [t1, t2]).
Our goal is to show that V (t, x,m)−χ(x,m) is constant. Let us recall that Proposition 2.7 implies

that U T (0, x, m̄)− λ̄T − ū converges to a constant c̄ as T →+∞. Hence V (0, x, m̄)= ū(x)+ c̄. Since
χ(x, m̄)= ū, this shows that, if V (t, x,m)−χ(x,m) is proved to be constant, then this constant will be
equal to c̄, and independent of the subsequence (Tn).
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Let us fix m0 ∈ P(Td). Let T > 0 be large and (u,m) be the solution to the MFG system (93) with
t1 = 0 and t2 = T. We note that m is the unique solution to the McKean–Vlasov equation{

∂t m−1m− div(m Hp(x, Dx V (t, x,m)))= 0 on [0, T ]×Td ,

m(0)= m0 in Td .
(94)

In particular, since V and Dx V are globally Lipschitz in m, this implies that m and u are defined
independently of the horizon T (meaning that, for t ∈ [0, T ], u(t, · ) := V (t, · ,m(t)) and m(t, · ) do not
depend on T ).

In the same way we define (ũ, m̃) to be the solution to the MFG system
−∂t ũ+ λ̄−1ũ+ H(x, Dũ)= F(x, m̃) in (0, T )×Td ,

∂t m̃−1m̃− div(m̃ Hp(x, Dũ))= 0 in (0, T )×Td ,

m̃(0, · )= m0, ũ(T, · )= χ(x, m̃(T )) in Td .

As before we note that (ũ, m̃) does not depend on the horizon T, that ũ(t, x) = χ(x, m̃(t)) for any
t ∈ [0, T ] and that m̃ is the unique solution to the McKean–Vlasov equation

∂t m̃−1m̃− div(m Hp(x, Dxχ(x, m̃))= 0 on [0, T ], m̃(0)= m0. (95)

Using the result of Theorem 2.6 with both G(x, · )= V (T, x, · ) and G = χ(x, · ), we have (changing u
into u+ λ̄(T − t) and ũ into ũ+ λ̄(T − t)),

‖m(t)− m̄‖∞+‖m̃(t)− m̄‖∞ ≤ C(e−γ t
+ e−γ (T−t)), t ∈ [1, T ],

where (ū, m̄) is the solution to the ergodic MFG system (2). But since m and m̃ do not depend on the
horizon T, here we can let first T →∞, and then t →∞, so we conclude that both m(t) and m̃(t)
converge to m̄ as t→+∞.

Applying once more the standard estimates on the MFG systems, we have∫ T

0

∫
Td
(m+ m̃)|Du− Dũ|2 ≤−C

[∫
Td
(u− ũ)(m− m̃)

]T

0
=−C

∫
Td
(u(T )− ũ(T ))(m(T )− m̃(T ))

since m(0)= m̃(0)= m0. As u and ũ are uniformly Lipschitz continuous in space and m(T ) and m̃(T )
have the same limit m̄ as T →+∞, we deduce that

lim
T→+∞

∫ T

0

∫
Td
(m+ m̃)|Du− Dũ|2 = 0.

In particular, as m (and m̃) are regular and bounded below by a positive constant on intervals of the form
[ε, T ] with ε > 0, we deduce that Du = Dũ on [ε, T ] and thus on [0, T ]. Therefore m and m̃ solve the
same equation, which implies m(t)= m̃(t) for any t ≥ 0. Coming back to the equations satisfied by u
and ũ gives ∂t u = ∂t ũ, so there is a constant c such that u(t, x)= ũ(t, x)+ c. In other words

V (t, x,m(t))= χ(x,m(t))+ c for all t ≥ 0.

Notice that the above conclusion holds for any given m0 ∈ P(Td) and the constant c could depend on m0

at this stage. But we are going to show that this is actually not the case.
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Indeed, let us choose m0 = m̄. Then Proposition 4.7 says that m(t)= m̃(t)= m̄. We denote by c̄ the
constant found above, i.e., u(t, x) = ũ(t, x)+ c̄. By definition, this implies V (t, x, m̄) = χ(x, m̄)+ c̄.
Now, for any m0 ∈ P(Td), we recall that the solution m(t)= m̃(t) converges to m̄ as t→+∞. By the
uniform Lipschitz continuity of χ and V with respect to m (uniform in (t, x)), this implies

|V (t, x,m(t))− V (t, x, m̄)| + |χ(x,m(t))−χ(x, m̄)| → 0 as t→∞.

Since
|c− c̄| = |V (t, x,m(t))−χ(x,m(t))− (V (t, x, m̄)−χ(x, m̄))|,

by letting t→∞ we deduce that c = c̄. In particular, we have proved that

V (0, x,m0)= χ(x,m0)+ c̄ for all m0 ∈ P(Td).

Finally, we can apply the above reasoning to the translation V ( · + t0, x,m) for any t0 ∈ R. It turns
out that c̄ = limt→∞ V (t + t0, x,m(t))−χ(x,m(t)), which is clearly independent of t0. Therefore we
conclude that

V (t0, x,m0)= χ(x,m0)+ c̄ for all (t0, x,m0) ∈ R×Td
×P(Td). �

Let us point out that any weak solution of the ergodic master equation solves (92). So the above proof
actually shows that two solutions of the ergodic master equation differ only by a constant:

Corollary 5.5. If χ1 and χ2 are weak solutions of the ergodic master equation (76), then there exists a
constant c̄ such that

χ2(x,m)= χ1(x,m)+ c̄ for all (x,m) ∈ Td
×P(Td).

6. The discounted problem

We now investigate the behavior, as δ→ 0+, of the solution U δ of the discounted master equation (6).
Our main result is:

Theorem 6.1. Let U δ be the solution to the discounted master equation (6) and (λ̄, ū, m̄) the solution of
the ergodic problem (2). Then, as δ→ 0+, U δ

− λ̄/δ converges uniformly to the solution χ to the master
cell problem (76) such that χ(x, m̄)= ū(x)+ θ̄ , where θ̄ is the unique constant for which the following
linearized ergodic problem has a solution (v̄, µ̄):

ū+ θ̄ −1v̄+ Hp(x, Dū) · Dv̄ = δF
δm
(x, m̄)(µ̄) in Td ,

−1µ̄− div(µ̄Hp(x, Dū))− div(m̄ Hpp(x, Dū)Dv̄)= 0 in Td ,∫
Td µ̄=

∫
Td v̄ = 0.

(96)

Let us comment a bit more on the normalization condition χ(x, m̄)= ū(x)+ θ̄ which selects the unique
limit of the discounted master equation (6), according to the above result. As we shall see in the next
section, given any (not necessarily normalized with zero average) solution ū to

λ̄−1ū+ H(x, Dū)= F(x, m̄)in Td , (97)
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there is a unique constant θ̄ for which (96) admits a solution. However, since ū is unique up to addition
of a constant, the sum ū+ θ̄ will be uniquely determined. Indeed, by changing ū through the addition
of a constant, the value θ̄ will be translated accordingly. In other words, one can say that the limit of
U δ
− λ̄/δ is the solution χ of the master cell problem (76) such that χ(x, m̄) coincides with the unique

solution of (97) for which the constant θ̄ vanishes.
Exactly as for the time-dependent problem, we can infer from Theorem 6.1 the limit behavior of the

solution of the discounted MFG system:

Corollary 6.2. Let m0 ∈ P(Td) and, for δ > 0, let (uδ,mδ) be the solution to the discounted MFG
system (5). Then

lim
δ→0

uδ(0, x)− λ̄/δ = χ(x,m0),

uniformly with respect to x , where χ is the solution of the ergodic cell problem (76) given in Theorem 6.1.

6A. An additional ergodic system. Given a solution ū of the MFG ergodic problem (2), we investigate
the ergodic problem (96). The heuristic justification of (96) is that we expect the solution (ūδ, m̄δ) of (7)
to be of the form

ūδ ∼ λ̄
δ
+ ū+ θ̄ + δv̄, m̄δ

∼ m̄+ δµ̄, (98)

and, in view of (7), the equation satisfied by (θ̄ , v̄, µ̄) should be (96).
We start the proof of the existence for (96) as usual, by a discounted problem:

Lemma 6.3. Let A, B ∈ L∞(Td). For δ > 0 small, there is a unique solution (vδ, µδ) ∈ W 1,∞(Td)×

L∞(Td) to the discounted system{
ū+ δvδ −1vδ + Hp(x, Dū) · Dvδ = δF

δm
(x, m̄)(µδ)+ A in Td ,

−1µδ − div(µδHp(x, Dū))− div(m̄ Hpp(x, Dū)Dvδ)= div(B) in Td ,

(99)

with
∫

Td µ
δ
= 0. Moreover, there is a constant C > 0 (independent of δ, A and B) such that

‖δvδ‖∞+‖Dvδ‖∞+‖µδ‖∞ ≤ C(1+‖A‖∞+‖B‖∞).

Proof. Existence of a solution runs with a standard fixed point, so we omit it. The duality relation (here
between vδ and µδ) gives (using Poincaré’s inequality)

C−1
‖Dvδ‖2L2 ≤

∫
Td
(ū+ δvδ − A)µδ + B · Dvδ

≤ (‖Dū‖L2 + δ‖Dvδ‖L2 +‖A‖L2)‖µδ‖L2 +‖B‖L2‖Dvδ‖L2,

so
‖Dvδ‖L2 ≤ C

(
(‖Dū‖1/2L2 +‖A‖1/2L2 )‖µ

δ
‖

1/2
L2 + δ‖µ

δ
‖L2 +‖B‖L2

)
.

By Corollary 1.3, we have

‖µδ‖L2 ≤ C(‖Dvδ‖L2 +‖B‖L2)≤ C
(
(‖Dū‖1/2L2 +‖A‖1/2L2 )‖µ

δ
‖

1/2
L2 + δ‖µ

δ
‖L2 +‖B‖L2

)
.
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So, for δ > 0 small enough, we obtain

‖µδ‖L2 ≤ C(‖Dū‖L2 +‖A‖L2 +‖B‖L2).

This implies the same bound for Dvδ and, by the maximum principle, the estimate

‖δvδ‖∞ ≤ C(‖ū‖L∞ +‖Dū‖L2 +‖B‖L2 +‖A‖L∞).

Moreover, considering the equation satisfied by w := vδ − 〈vδ〉, we have by local regularity for weak
solutions [Gilbarg and Trudinger 1977, Theorem 8.17] and Poincaré’s inequality

‖vδ −〈vδ〉‖∞ ≤ C(1+‖vδ −〈vδ〉‖L2)≤ C(1+‖Dvδ‖L2)≤ C(1+‖ū‖W 1,∞ +‖A‖L∞ +‖B‖L2).

Then by classical elliptic regularity [Gilbarg and Trudinger 1977, Theorem 8.32], we have, for any
α ∈ (0, 1),

‖vδ −〈vδ〉‖C1+α ≤ C(1+‖ū‖W 1,∞ +‖A‖L∞ +‖B‖L2).

We can now apply the local regularity for weak solutions to µδ [Gilbarg and Trudinger 1977, Theo-
rem 8.17]) and infer that

‖µδ‖Cα ≤ C(‖Dvδ‖∞+‖B‖∞)≤ C(‖ū‖W 1,∞ +‖A‖L∞ +‖B‖L∞). �

Proposition 6.4. Let (λ̄, ū, m̄) be a solution of the ergodic system (2) and (vδ, µδ) be the solution to (99)
for A and B satisfying

‖A‖∞+‖B‖∞ ≤ Cδ

for some constant C. Then, as δ→ 0+,

δ〈vδ〉 −→ θ̄ , (vδ −〈vδ〉) L∞
−→ v̄, µδ L∞

−→ µ̄,

where (θ̄ , v̄, µ̄) is the unique solution to (96).

Proof of Proposition 6.4. Passing to the limit in (99) (up to a subsequence) provides a constant θ̄ (limit
of δ〈vδ〉), a map v̄ ∈ W 1,∞ (limit of vδ −〈vδ〉) and a map µ̄ ∈ L∞ (limit of µδ) which solve (96). The
uniqueness of Dv̄ (and hence of v̄) and of µ̄ can be established by the standard duality argument of [Lasry
and Lions 2007]. Then θ̄ is unique by the equation. The full convergence of (δ〈vδ〉, vδ −〈vδ〉, µδ) holds
by uniqueness of the limit. �

6B. Proof of Theorem 6.1. The proof of Theorem 6.1 consists mostly in showing that the heuristic
relation (98) holds.

Proposition 6.5. Let (λ̄, ū, m̄), (ūδ, m̄δ) and (θ̄ , v̄, µ̄) be respectively solutions to (2), (7) and (96). Then

lim
δ→0+

∥∥∥∥ūδ − λ̄
δ
− ū− θ̄

∥∥∥∥
∞

+‖m̄δ
− m̄‖∞ = 0.

Proof. The argument is very close to the proof of the exponential rate (see Theorem 2.6). Let

E =
{
(v, µ) ∈W 1,∞(Td)× L∞(Td) : ‖δv‖∞+‖Dv‖∞+‖µ‖∞ ≤ Ĉ

}
,
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where Ĉ is to be chosen below. For (v, µ) ∈ E , we consider the solution (v̂, µ̂) to (99) with

A(x) := δ−1
(
−(H(x, D(ū+ δv))− H(x, Dū)− δHp(x, Dū) · Dv)

+ F(x, m̄+ δµ)− F(x, m̄)− δ δF
δm
(x, m̄)(µ)

)
,

B(x) := δ−1((m̄+ δµ)Hp(x, D(ū+ δv))− m̄ Hp(x, Dū)− δµHp(x, Dū)− δm̄ Hpp(x, m̄)Dv
)
.

As

‖A‖∞+‖B‖∞ ≤ CĈ 2δ,

we have, by Lemma 6.3 (and for δ small enough),

‖δv̂‖∞+‖Dv̂‖∞+‖µ̂‖∞ ≤ C(1+‖A‖∞+‖B‖∞)≤ C(1+ Ĉ 2δ).

We can choose Ĉ such that, for δ small enough, the right-hand side is less than Ĉ. Then we can easily
conclude that the map (v, µ)→ (v̂, µ̂) has a fixed point (vδ, µδ). Note that (λ̄/δ+ ū+ δvδ, m̄ + δµδ)
solves (7) and therefore is equal to (ūδ, m̄δ). Hence, by Proposition 6.4, we deduce∥∥∥ūδ − λ̄

δ
− ū− θ̄

∥∥∥
∞

= ‖δvδ − θ̄‖∞ ≤ ‖δ(v
δ
−〈vδ〉)‖∞+ |δ〈v

δ
〉− θ̄ | → 0 as δ→ 0,

which completes the proof. �

Proof of Theorem 6.1. Recall that we have uniform Lipschitz estimates on U δ and on DxU δ (Lemma 4.3
and Proposition 4.4) and that any converging subsequence is a weak solution of the ergodic master
equation (proof of Theorem 4.2). Therefore, we only need to show that U δ

− δ−1λ̄ has a limit when
evaluated at some value. For this, let (ūδ, m̄δ) be the solution to (7). As (ūδ, m̄δ) is also a stationary
solution to (5), we have

U δ(x, m̄δ)= ūδ(x) for all x ∈ Td .

We have seen in Proposition 6.5 that, as δ→ 0, m̄δ converges to m̄, while ūδ−δ−1λ̄ converges to ū+ θ̄ . �
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ON THE COST OF OBSERVABILITY IN SMALL TIMES FOR
THE ONE-DIMENSIONAL HEAT EQUATION

JÉRÉMI DARDÉ AND SYLVAIN ERVEDOZA

We aim at presenting a new estimate on the cost of observability in small times of the one-dimensional
heat equation, which also provides a new proof of observability for the one-dimensional heat equation.
Our proof combines several tools. First, it uses a Carleman-type estimate borrowed from our previous
work (SIAM J. Control Optim. 56:3 (2018), 1692–1715), in which the weight function is derived from
the heat kernel and which is therefore particularly easy. We also use explicit computations in the Fourier
domain to compute the high-frequency part of the solution in terms of the observations. Finally, we use
the Phragmén–Lindelöf principle to estimate the low-frequency part of the solution. This last step is done
carefully with precise estimations coming from conformal mappings.

1. Introduction

Setting. The goal of this work is to analyze the cost of observability in small times of the one-dimensional
heat equation. To fix the ideas, let L; T > 0 and consider the following heat equation, set in the bounded
interval .�L;L/ and among some time interval .0; T /:8<:

@tu� @
2
xuD 0 in .0; T /� .�L;L/;

u.t;�L/D u.t; L/D 0 in .0; T /;
u.0; x/D u0.x/ in .�L;L/:

(1-1)

In (1-1), the state uD u.t; x/ satisfies a heat equation, with initial datum u0 2H
1
0 .�L;L/.

Our main goal is to study the cost of observability in small times T of the problem (1-1) observed
from both sides x D�L and x DCL. To be more precise, let us recall that it is by now well known that
there exists C0.T; L/ such that all solutions u of (1-1) with initial datum u0 2H

1
0 .�L;L/ satisfy

ku.T /kL2.�L;L/ 6 C0.T; L/
�
k@xu.t;�L/kL2.0;T /Ck@xu.t; L/kL2.0;T /

�
: (1-2)

In fact, the existence of the constant C0.T; L/ is a consequence of the null controllability results in small
times obtained by [Egorov 1963; Fattorini and Russell 1971] in the one-dimensional case. From now on,
we denote by C0.T; L/ the best constant in the observability inequality (1-2).

A precise description of the constant C0.T; L/ as T ! 0 is still missing, despite several contributions
in this direction, which we would like to briefly recall here. First, [Seidman 1984] showed that

lim sup
T!0

T logC0.T; L/ <1; (1-3)
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while [Güichal 1985] proved that

lim inf
T!0

T logC0.T; L/ > 0: (1-4)

Besides, due to the scaling of the equation, C0.T; L/ depends only on the ratio L2=T. Therefore, the
quantity T logC0.T; L/ should be compared to L2. We list below several contributions:

lim inf
T!0

T logC0.T; L/> 1
4
L2 [Miller 2004];

lim inf
T!0

T logC0.T; L/> 1
2
L2 [Lissy 2015];

lim sup
T!0

T logC0.T; L/6 2
�
36
37

�2
L2 [Miller 2006];

lim sup
T!0

T logC0.T; L/6 3
4
L2 [Tenenbaum and Tucsnak 2007]:

Main result. Our contribution comes in this context. Namely we prove the following result:

Theorem 1.1. Setting

K0 D
1

4
C
�
�
1
4

�2
8
p
2�2

X
n2N

.�1/n

.2nC 1/

�
�
nC 1

4

�
�
�
nC 7

4

� .K0 ' 0:6966/; (1-5)

where � denotes the gamma function, we have

lim sup
T!0

T logC0.T; L/6K0L2: (1-6)

In fact, for all K >K0, there exists a constant C > 0 such that for all T 2 .0; 1�, for all solutions u of
(1-1) with initial datum u0 2H

1
0 .�L;L/,u.T / exp

�
x2

4T

�
L2.�L;L/

6 C exp
�
KL2

T

��
k@xu.t;�L/kL2.0;T /Ck@xu.t; L/kL2.0;T /

�
: (1-7)

Remark 1.2. The constant K0 in (1-5) can alternatively be written as

K0 D
1

4
C
2

�

R �
2

0 ln
�
cot
�
t
2

��p
cos.t/ dtR �

2

0

p
cos.t/ dt

I (1-8)

see Proposition 2.3 in Section 2.

Theorem 1.1 slightly improves the cost of observability in small times when compared to [Tenenbaum
and Tucsnak 2007]. However, we do not claim that this bound is sharp, and this remains, to our knowledge,
an open problem. In particular, we shall comment in Section 4F a possible path to improve the estimates
given in Theorem 1.1.

In fact, we believe that Theorem 1.1 is interesting mostly by its proof, presented in Section 2, which
combines several arguments. In particular, it uses a Carleman-type estimate, which was already used in
[Dardé and Ervedoza 2018] to derive a good description of the reachable set for the one-dimensional heat
equation in terms of domains of holomorphic extension of the states. This Carleman-type estimate is
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used to reduce the problem of observability to an estimate of the low-frequency part of the solution of
(1-1). Then, we shall use Fourier analysis on the conjugated heat equation to get an exact formula for the
high-frequency part of the solution of (1-1) in terms of the observations. The last part of the argument is
a complex analysis argument based on the Phragmén–Lindelöf principle. We refer to Sections 2 and 3 for
the detailed proof of Theorem 1.1.

Let us also mention that Theorem 1.1 is strongly connected to control theory. Indeed, let us consider
the following null-controllability problem: given T > 0 and y0 2 L2.�L;L/, find control functions
v�; vC 2 L

2.0; T / such that the solution y of8̂̂̂<̂
ˆ̂:
@ty � @

2
xy D 0 in .0; T /� .�L;L/;

y.t;�L/D v�.t/ in .0; T /;
y.t;CL/D vC.t/ in .0; T /;
y.0; x/D y0.x/ in .�L;L/;

(1-9)

satisfies

y.T; x/D 0 in .�L;L/: (1-10)

It is well known, see, e.g., [Egorov 1963; Fattorini and Russell 1971], that for any T > 0, one can find
controls v�; vC of minimal .L2.0; T //2 norm, depending linearly on y0 2 L2.�L;L/, such that the
controlled trajectory, i.e., the solution of (1-9), satisfies (1-10). Besides, the L .L2.�L;L/I .L2.0; T //2/-
norm of the linear map y0 7! .v�; vC/ is precisely C0.T; L/. In other words, C0.T; L/ also characterizes
the cost of controllability for the one-dimensional heat equation.

We emphasize that Theorem 1.1 also allows us to tackle some multidimensional settings. Namely, as
a consequence of Theorem 1.1 and the control transmutation method, see [Miller 2006], one gets the
following corollary:

Corollary 1.3. Let � be a smooth bounded domain of Rd, and let �0 be an open subset of @�. Let
aD a.x/ 2 L1.�IMd .R// and � 2 L1.�IR/ be such that there exist strictly positive numbers ��, �C,
a� and aC such that for all x 2� and � 2 Rd,

a�j�j
2 6 a.x/� � � 6 aCj�j2; �� 6 �.x/6 �C:

Further assume that there exist a time S0 > 0 and a constant C > 0 such that, for any .w0; w1/ 2
H 1
0 .�/�L

2.�/, the solution w of8<:
�.x/ @ssw� div.a.x/rw/D 0 in .0; S/��;
w.s; x/D 0 on .0; S/� @�;
.w.0; x/; @sw.0; x//D .w0.x/; w1.x// in �

(1-11)

satisfies a.x/rw �n 2 L2..0; S0/��0/ and

k.w0; w1/kH1
0 .�/�L

2.�/ 6 Cka.x/rw �nkL2..0;S0/��0/: (1-12)
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We define C0.T;�; �0/ as the best constant in the following observability inequality: for all u0 2H 1
0 .M/,

the solution u of 8<:
�.x/ @tu� div.a.x/ru/D 0 in .0; T /��;
u.t; x/D 0 on .0; T /� @�;
u.0; x/D u0.x/ in �

(1-13)

satisfies

ku.T /kL2.M/ 6 C0.T;�; �0/ka.x/ru �nkL2..0;T /��0/: (1-14)

Then we have

lim sup
T!0

T logC0.T;�; �0/6K0S20 : (1-15)

Corollary 1.3 uses the transmutation method and therefore the observability of the corresponding wave
equation (1-11), which has been well-studied in the literature. In particular, if the coefficients � and a
are C 2.�/, according to [Bardos et al. 1988; 1992; Burq and Gérard 1997], the wave equation (1-11)
satisfies the observability inequality (1-12) if and only if all the rays of geometric optics meet �0 in a
nondiffractive point in time less than S0. In the case of coefficients � and a which are less regular, let
us quote [Fanelli and Zuazua 2015] in the one-dimensional case with � and a in the Zygmund class,
and [Dehman and Ervedoza 2017] in the multidimensional case for coefficients � 2 C 0.�/ and aD 1,
with � satisfying a multiplier-type condition similar to the one in [Ho 1986; Lions 1988] in the sense of
distributions (and � locally C 1 close to the boundary, see [Dehman and Ervedoza 2017, Section 4.2]).

Let us emphasize that Corollary 1.3 can be applied in the one-dimensional case as well for coefficients
in the Zygmund class [Fanelli and Zuazua 2015], thus allowing a more general class of coefficients than
in the analysis of [Miller 2004; Tenenbaum and Tucsnak 2007], which is done for � D 1 and a 2 C 2

(and, possibly, a continuous potential). But even in the case �D .�L;L/, �0 D f�L;Lg, �.x/D 1,
a.x/D 1, we get S0 D 2L and thus we obtain an estimate on the cost of observability of the form

lim sup
T!0

T logC0.T; .�L;L/; f�L;Lg/6 4K0L2;

instead of (1-6). In other words, we have a loss of a factor 4, so that the results in [Miller 2004; Tenenbaum
and Tucsnak 2007] are better than ours in the one-dimensional case for a coefficient a in (1-13) which
belongs to C 2. Therefore, we shall also explain how Theorem 1.1 can be extended to a multidimensional
case directly when the observation is performed on the whole boundary; see Theorems 4.1–4.2.

Let us mention that the proofs of the observability inequality of the heat equation for general smooth
bounded domains � and observation in an open subset �0 of the boundary in [Fursikov and Imanuvilov
1996; Lebeau and Robbiano 1995] yield that

lim sup
T!0

T logC0.T;�; �0/ <1;

while on the other hand, [Miller 2004] proves

lim inf
T!0

T logC0.T;�; �0/> 1
4

sup
�

d.x; �0/
2:
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To our knowledge, getting more intrinsic geometric upper estimates on the cost of observability in small
times in such general settings is still out of reach. In fact [Laurent and Léautaud 2018] shows that upper
estimates on the cost of observability in small times cannot be linked only to the maximal distance to
the control set and are deeply related to the geometry of the domain and of the observation set; see
Remark 4.3. However, in geometrical cases which can be obtained by tensorization, some estimates can
be obtained; see [Miller 2005] and Section 4B for more details.

We shall also mention that estimating the observability constant in small times for the heat equation
in the one-dimensional case is related to the uniform controllability of viscous approximations of the
transport equation; see [Coron and Guerrero 2005; Glass 2010; Lissy 2012; 2015]. We refer in particular
to Section 4G for a more precise discussion on this problem. In particular, the proof in [Lissy 2012],
when combined with Theorem 1.1, easily yields an improvement of the results known on this problem;
see Section 4G and Theorem 4.10 for more details.

As we have seen in the above discussion, there are still some open questions on the observability of
the one-dimensional constant-coefficient parabolic equations, despite the efficiency and robustness of the
approach based on Carleman estimates [Fursikov and Imanuvilov 1996; Lebeau and Robbiano 1995].
This has justified the development of new manners to derive controllability of parabolic equations, and
we shall in particular quote the flatness method developed in [Martin et al. 2014; 2016], a heat packet
decomposition [Gimperlein and Waters 2017] and the backstepping approach [Coron and Nguyen 2017].
Our method comes in this context and provides what seems to be another approach to obtain observability
results for the heat equation.

Outline. Section 2 presents the main strategy of the proof of Theorem 1.1 using several technical results
that will be proved afterwards, in Section 3 for the ones using new arguments and in the Appendix for a
Carleman-type estimate (Theorem 2.1) which can be found also in [Dardé and Ervedoza 2018] in a slightly
different form. Section 4 provides several comments on Theorem 2.1 and its generalization, including a
discussion on what can be done in the multidimensional setting (Section 4A), when the geometry has a
tensorized form (Section 4B), or when the observation is on one side of the domain (Section 4C) or on
some distributed open subset (Section 4D). We also present in Section 4E an alternative proof of a weaker
version of Theorem 1.1 based on the uncertainty principles of [Landau and Pollak 1961] and the result in
[Fuchs 1964], recovering the result of [Tenenbaum and Tucsnak 2007]. This will lead us to discuss the
possibility of improving the estimate of the cost of observability in small times in Theorem 1.1 by using
a better bound than the one provided by the use of Phragmén–Lindelöf principle for entire functions;
see Section 4F for more details. We end up in Section 4G by giving a consequence of our result on the
problem of uniform controllability of viscous approximations of transport equations. The Appendix gives
the detailed proof of a rather easy Carleman estimate which is one of the building blocks of our analysis.

2. Proof of Theorem 1.1: main steps

As said in the Introduction, the proof of Theorem 1.1 relies on several steps.

The first step is the following Carleman-type estimate.
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Theorem 2.1. For any smooth solution u of (1-1), setting

z.t; x/D u.t; x/ exp
�
x2�L2

4t

�
; .t; x/ 2 .0; T /� .�L;L/; (2-1)

we have the inequalityZ L

�L

j@xz.T; x/j
2 dx�

L2

4T 2

Z L

�L

jz.T; x/j2 dx 6
L

T 2

Z T

0

t .j@xu.t;�L/j
2
Cj@xu.t; L/j

2/ dt: (2-2)

Theorem 2.1 is based on the study of the equation satisfied by z in (2-1). As u satisfies the heat
equation (1-1), the function z in (2-1) satisfies8̂̂̂<̂

ˆ̂:
@tzC

x

t
@xzC

1

2t
z� @2xz�

L2

4t2
z D 0; .t; x/ 2 .0;1/� .�L;L/;

z.t;�L/D z.t; L/D 0; t 2 .0;1/;

z.0; x/D 0; x 2 .�L;L/:

(2-3)

One can therefore perform energy estimates on (2-3), which will eventually lead to (2-2). In the
Appendix, we prove a slightly more general result, encompassing also some multidimensional settings,
see Proposition A.1, from which one immediately derives Theorem 2.1 by setting � D .�L;L/ and
g � 0.

Note that Theorem 2.1 was used in [Dardé and Ervedoza 2018] in time T > L2=� in order to describe
the reachable set of the one-dimensional heat equation. Estimate (2-2) is somehow a Carleman estimate
even if here no parameter appears in the proof. In fact, it rather corresponds to a limiting Carleman
estimate as the conjugated operator (2-3) does not satisfy the usual strict pseudoconvexity conditions
of [Hörmander 1985]. We refer in particular to [Dos Santos Ferreira et al. 2009] for other instances of
limiting Carleman weights in another context, namely elliptic operators.

The second step of our analysis amounts to realizing that the solutions z of (2-3) could be explicitly
solved using Fourier analysis if one extends the solution z of (2-3) by zero outside the space interval
.�L;L/. We therefore introduce, for t 2 .0; T �,

w.t; x/D

8<:z.t; x/
�
D u.t; x/ exp

�
x2�L2

4t

��
for x 2 .�L;L/;

0 for x … .�L;L/:
(2-4)

In view of the above definition, it is then natural to set w.0; � /D 0, since it is consistent with the above
definition when taking the limit t ! 0. This function w satisfies8<:@twC

x

t
@xwC

1

2t
w� @2xw�

L2

4t2
w D @xu.t; L/ıL� @xu.t;�L/ı�L; .t; x/ 2 .0;1/�R;

w.0; x/D 0; x 2 R:

(2-5)

Using Fourier transform, one can then compute explicitly

Ow.T; �/D

Z
R

w.T; x/e�{�x dx;

at least for some frequency � 2 C:
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Proposition 2.2. For ˛ > 0, define the sets (see Figure 1)

C˛ D f� D aC {b 2 C W .a; b/ 2 R2 with jaj> jbjC˛g: (2-6)

Let w be given by (2-4) corresponding to some smooth solution u of (1-1).
Then, for any � 2 CL=.2T /,

Ow.T; �/D

Z T

0

r
T

t

�
�@xu.t;�L/e

{ �LT
t C @xu.t; L/e

�{ �LT
t

�
e�.�

2T 2�L
2

4
/. 1
t
� 1
T
/ dt: (2-7)

In particular, for any ˛ > L=.2T /, setting

C˛.T /D
1p

L.˛�L=.2T //
; (2-8)

for all � 2 C˛, we have

j Ow.T; �/j6 C˛.T /
p
T ej=.�/jL

�
k@xu. � ; L/kL2.0;T /Ck@xu. � ;�L/kL2.0;T /

�
: (2-9)

The proof of Proposition 2.2 is done in Section 3A and relies on explicit computations. In particular, it
gives a precise L1 bound on the high-frequency component of w.T / given by (2-4) corresponding to a
smooth solution u of (1-1).

The third step of our analysis consists in the recovery of the low-frequency part of w given by (2-4).
In order to do that, we recall that Ow.T; � / is the Fourier transform of a function supported in Œ�L;L�.
Therefore, its growth as j=.�/j ! 1 is known, while Ow.T; � / is holomorphic in the whole complex
plane C. Combined with the fact that we have nice estimates on Ow.T; � / in C˛ for ˛ > L2=.2T /, we are
in the position to use Phragmén–Lindelöf principles to estimate Ow.T; � / everywhere in the complex plane,
but more importantly on the real axis R.

Proposition 2.3. Let L> 0, ˛ > 0 and f be a holomorphic function on O˛ D CnC˛ (see Figure 1) such
that:

� There exists a constant C0 such that

for all � 2 @O˛; jf .�/j6 C0 exp.j=.�/jL/: (2-10)

� There exists a constant C1 such that

for all � 2 O˛; jf .�/j6 C1 exp.j=.�/jL/: (2-11)

Defining
zO1 D f.a; b/ 2 R2 W jaj< jbjC 1g;

there exists a unique function Q' satisfying8<:
� Q' D�2ı.�1;1/�f0g in zO1;
Q' D 0 on @ zO1;
limjbj!1 supa2.�jbj�1;jbjC1/ j Q'.a; b/j D 0,

(2-12)
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Figure 1. The complex plane, with domains C˛ and O˛.

and we define the function ' on O1 by

'.�/D Q'.<.�/;=.�//; � 2 O1: (2-13)

Then we have the bound

for all � 2 O˛; jf .�/j6 C0 exp.j=.�/jL/ exp
�
L˛'

�
�

˛

��
: (2-14)

Besides, the maximum of ' on O1 is attained in 0:

sup
O1

' D '.0/D
�
�
1
4

�2
4
p
2�2

X
n2N

.�1/n

.2nC 1/

�
�
nC 1

4

�
�
�
nC 7

4

� .' 0:893204/; (2-15)

which can be alternatively written as

'.0/D
2

�

R �
2

0 ln
�
cot
�
t
2

��p
cos.t/ dtR �

2

0

p
cos.t/ dt

: (2-16)

Proposition 2.3 mainly reduces to the application of Phragmén–Lindelöf principle for holomorphic
functions. In fact, the main point in Proposition 2.3 is that the maximum of the harmonic function Q' can
be explicitly computed. This is done using conformal maps to link the solution of the Laplace equation in
the domain zO1 with solutions of the Laplace operator in the half-strip, in which explicit solutions can be
computed using Fourier decomposition techniques. We refer to Section 3B for the proof of Proposition 2.3.

Of course, we shall apply Proposition 2.3 to the function f D Ow.T; � /, which, according to (2-9),
satisfies (2-10) for any ˛ > L=.2T / with

C0 D C˛.T /
p
T
�
k@xu. � ; L/kL2.0;T /Ck@xu. � ;�L/kL2.0;T /

�
;

while (2-11) holds with

C1 D kw.T /kL1.�L;L/ 6
p
2Lku.T /kL2.�L;L/ 6

p
2Lku0kL2.�L;L/:

We then immediately deduce the following corollary.
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Corollary 2.4. Let w be given by (2-4) corresponding to some smooth solution u of (1-1). Then, for any
˛ > L=.2T /,

for all �2O˛\R; j Ow.T;�/j6C˛.T /
p
T eL˛'.0/

�
k@xu. � ;L/kL2.0;T /Ck@xu. � ;�L/kL2.0;T /

�
; (2-17)

where C˛.T / denotes the constant in (2-8).

End of the proof of Theorem 1.1. Let " > 0, and choose ˛ D .1C "/L=.2T /. Combining (2-17) and (2-9),
we see that

for all � 2 R; j Ow.T; �/j6
r
2

"

T

L
exp

�
.1C "/

L2

2T
'.0/

��
k@xu. � ; L/kL2.0;T /Ck@xu. � ;�L/kL2.0;T /

�
:

(2-18)
Then, using Theorem 2.1 and the identityZ L

�L

j@xz.T; x/j
2 dx�

L2

4T 2

Z L

�L

jz.T; x/j2 dx D

Z
R

�
j�j2�

L2

4T 2

�
j Ow.T; �/j2 d�

we have

3L2

4T 2

Z
j�j>L=T

j Ow.T; �/j2 d�

6
L

T

�
k@xu. � ; L/k

2
L2.0;T /

Ck@xu. � ;�L/k
2
L2.0;T /

�
C
L2

4T 2

Z
j�j<L=.2T /

j Ow.T; �/j2 d�:

Combined with (2-18), we obtainZ
j�j>L=T

j Ow.T; �/j2 d�

6
�
4T

3L
C
4T

3L"
exp

�
.1C "/

L2

T
'.0/

���
k@xu. � ; L/k

2
L2.0;T /

Ck@xu. � ;�L/k
2
L2.0;T /

�
(2-19)

andZ
j�j<L=T

j Ow.T;�/j2d�6
8T

"L
exp

�
.1C"/

L2

T
'.0/

��
k@xu. � ;L/k

2
L2.0;T /

Ck@xu. � ;�L/k
2
L2.0;T /

�
: (2-20)

Using Parseval’s identity and the explicit form of w in (2-4), we easily get, for some constant C".T / that
goes to zero as T ! 0, thatu.T; x/ exp

�
x2�L2

4T

�
L2.�L;L/

6 C".T / exp
�
L2

2T
.1C "/'.0/

��
k@xu. � ; L/kL2.0;T /Ck@xu. � ;�L/kL2.0;T /

�
;



1464 JÉRÉMI DARDÉ AND SYLVAIN ERVEDOZA

which we rewrite asu.T; x/ exp
�
x2

4T

�
L2.�L;L/

6 C".T / exp
�
L2

T

�
1
4
C
1
2
.1C "/'.0/

���
k@xu. � ; L/kL2.0;T /Ck@xu. � ;�L/kL2.0;T /

�
: (2-21)

This concludes the proof of Theorem 1.1, as C".T / 6 C".1/ D C" for T small enough, for some C"
independent of T. �

Remark 2.5. Note that the constant C" in the above proof blows up as " goes to zero. If it were not the
case, one could pass to the limit "! 0 in (2-21), so that one could choose K DK0 in the observability
inequality (1-7). So far, we do not know if this choice is allowed in the observability inequality (1-7) or not.

We have thus reduced the proof of Theorem 1.1 to the proofs of Theorem 2.1 and Propositions 2.2
and 2.3. The proof of Theorem 2.1 is postponed to the Appendix in which a slightly more general result
is proved (Proposition A.1), while the proofs of Propositions 2.2 and 2.3 are detailed in Section 3.

Remark 2.6. The above approach allows us in fact to recover an explicit formula to compute Ow.T / in
terms of the observations. Namely, for � 2 R with j�j> L=.2T /, formula (2-7) yields

Ow.T; �/D

Z T

0

r
T

t

�
�@xu.t;�L/e

{ �LT
t C @xu.t; L/e

�{ �LT
t

�
e�.�

2T 2�L
2

4
/. 1
t
� 1
T
/ dt: (2-22)

On the other hand, combining the formula (2-7) and Remark 3.2 allowing us to get an explicit expression
under the assumptions of Proposition 2.3, we get: for all ˛�>˛>L=.2T /, for all � 2R with j�j<L=.2T /,

Ow.T;�/D�

Z T

0

r
T

t
@xu.t;�L/

1

2{�

Z
˛

eL˛�.�.�=˛/��.�=˛//

���
e{
�LT
t e�.�

2T 2�L
2

4
/. 1
t
� 1
T
/ d� dt

C

Z T

0

r
T

t
@xu.t;L/

1

2{�

Z
˛

eL˛�.�.�=˛/��.�=˛//

���
e�{

�LT
t e�.�

2T 2�L
2

4
/. 1
t
� 1
T
/ d� dt; (2-23)

where � is a holomorphic function on O1 such that<.�.�//D'.�/Cj=.�/j for all � 2O1 (see Section 3B2
for the existence of such function �), and ˛ is the union of the two connected components of @O˛
oriented counterclockwise. But this formula does not seem easy to deal with as the kernels

K�.t; �/D
1

2{�

Z
˛

eL˛�.�.�=˛/��.�=˛//

���
e˙{

�LT
t e�.�

2T 2�L
2

4
/. 1
t
� 1
T
/ d�; .t; �/2.0;T /�

�
�
L

2T
;
L

2T

�
;

are difficult to estimate directly.

3. Proof of Theorem 1.1: intermediate results

3A. Proof of Proposition 2.2. Let w be as in Proposition 2.2. Then w satisfies (2-5). When taking its
Fourier transform in the space variable, we easily check that

Ow.t; �/D

Z
R

w.t; x/e�{�x dx; .t; �/ 2 Œ0; T ��R;
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solves the equation8<:@t Ow�
�

t
@� Ow�

1

2t
wC�2 Ow�

L2

4t2
Ow D @xu.t; L/e

�{�L�@xu.t;�L/e
{�L; .t; �/ 2 .0;1/�R;

Ow.0; �/D 0; � 2 R:

(3-1)

We are thus back to the study of a transport equation. For each �0 2 R, we therefore introduce the
characteristics �.t; �0/ reaching �0 at time T ,

d�

dt
.t; �0/D�

�.t; �0/

t
; t 2 .0; T �; �.T; �0/D �0; (3-2)

which is explicitly given by

�.t; �0/D
�0T

t
; t 2 .0; T �:

We can thus write, for all t 2 .0; T �,

d

dt

�
Ow

�
t;
�0T

t

��
C

�
1

t2

�
�20T

2
�
L2

4

�
�
1

2t

�
Ow

�
t;
�0T

t

�
D @xu.t; L/e

�{
�0LT

t � @xu.t;�L/e
{
�0LT

t :

This yields the formula

d

dt

�
Ow

�
t;
�0T

t

�
t�

1
2 e�.�

2
0T

2�L
2

4
/=t
�
D
�
@xu.t; L/e

�{
�0LT

t � @xu.t;�L/e
{
�0LT

t

�
t�

1
2 e�.�

2
0T

2�L
2

4
/=t :

For any � > 0, we can integrate this formula between � and T to get

Ow.T; �0/T
1
2 e�.�

2
0T

2�L
2

4
/=T
� Ow.�; �0/�

1
2 e�.�

2
0T

2�L
2

4
/=�

D

Z T

�

t�
1
2

�
@xu.t; L/e

�{
�0LT

t � @xu.t;�L/e
{
�0LT

t

�
e�.�

2
0T

2�L
2

4
/=t dt:

It is not difficult to check that for �0 2R with j�0j>L=.2T /, the integral on the right-hand side converges
when � goes to zero, and

lim
�!0

Ow.�; �0/�
� 1
2 e�.�

2
0T

2�L
2

4
/=�
D 0:

Therefore, provided �0 2 R satisfies j�0j>L=.2T /, one gets the formula

Ow.T; �0/D

Z T

0

r
T

t

�
@xu.t; L/e

�{
L�0T

t � @xu.t;�L/e
{
L�0T

t

�
e�.�

2
0T

2�L
2

4
/. 1
t
� 1
T
/ dt: (3-3)

This formula coincides with the one in (2-7) for �0 2 CLC=2T \R (here, we use the notation LC to denote
any constant strictly larger than L). As Ow.T; � / is holomorphic on C, we only have to check that the
right-hand side of formula (3-3) can be extended holomorphically to CLC=2T . In fact, writing � D aC {b
with .a; b/ 2 R2, the right-hand side of (3-3) can be extended holomorphically in the domain in which8̂<̂

:
<

�
C{�LT �

�
�2T 2�

L2

4

��
D�bLT �

�
.a2� b2/T 2�

L2

4

�
< 0;

<

�
�{�LT �

�
�2T 2�

L2

4

��
DCbLT �

�
.a2� b2/T 2�

L2

4

�
< 0;
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which is equivalent to

jaj> jbjC
L

2T
;

i.e., � 2 CLC=.2T /. We have thus proved that for all � 2 CLC=.2T /, Ow.T; �/ is given by the formula (2-7).
In fact, by continuity, this formula also holds for � 2 CL=2T .

In order to deduce (2-9), we start from the formula (2-7) and we use a Cauchy–Schwarz estimate: for
� 2 C˛ with ˛ > L=.2T /,

j Ow.T;�/j6
p
T k@xu.t;L/kL2.0;T /

t� 12 exp
�
�
i�LT

t
�

�
�2T 2�

L2

4

��
1

t
�
1

T

��
L2.0;T /

C
p
T k@xu.t;�L/kL2.0;T /

t� 12 exp
�
C
i�LT

t
�

�
�2T 2�

L2

4

��
1

t
�
1

T

��
L2.0;T /

: (3-4)

Writing � 2 C˛ for ˛ > L=.2T / as � D aC {b with .a; b/ 2 R2 and using the fact that

<

�
�{�LT �

�
�2T 2�

L2

4

��
6 jbjLT �

�
.a2� b2/T 2�

L2

4

�
6 �T 2

�
a2�

�
jbjC

L

2T

�2�
6 �T 2

�
jaj �

�
jbjC

L

2T

���
jajC jbjC

L

2T

�
6 �

LT

2

�
˛�

L

2T

�
;

we have the estimates, for s 2 f�1; 1g,t� 12 exp
�
s
{�LT

t
�

�
�2T 2�

L2

4

��
1

t
�
1

T

��
L2.0;T /

6
t� 12 exp

�
jbjLC

�
jbjLT �

�
.a2� b2/T 2�

L2

4

��
1

t
�
1

T

���
L2.0;T /

6 ejbjL
t� 12 exp

�
�
LT

2

�̨
�
L

2T

��
1

t
�
1

T

��
L2.0;T /

:

Now, doing the change of variable �D LT
�
˛� L

2T

��
1
t
�
1
T

�
, we easily get, for all � 2 C˛,t� 12 exp

�
�
LT

2

�
˛�

L

2T

��
1

t
�
1

T

��2
L2.0;T /

D

Z 1
0

e��
d�

�CL.˛�L=.2T //

6
1

L.˛�L=.2T //
:

Combining (3-4) and this last estimate, we easily conclude estimate (2-9).

3B. Proof of Proposition 2.3. We shall start the proof of Proposition 2.3 by proving the existence of a
function Q' satisfying (2-12), and we will then explain how it can be used to derive the bound in (2-14).
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Figure 2. Approximation of Q' solving (3-5), obtained by a finite-element approach
(using FreeFem++ [Hecht 2012]).

Notation. In the following arguments, to avoid ambiguities, we will write differently complex sets and
their identification as a part of R2; for instance we write O1 D f� 2 C W j<.�/j< j=.�/jC 1g and zO1 D
f.a; b/2R2 W jaj< jbjC1g as in Proposition 2.3. To be consistent with this notation, we will also distinguish
functions of the complex variable � from the corresponding ones considered as functions of the real
variables .a; b/ using a tilde notation for the function viewed as depending on real variables, as in (2-13).

3B1. Existence and uniqueness of a function Q' satisfying (2-12). The first remark is that the uniqueness
of a function Q' satisfying (2-12) is rather easy to prove. Indeed, if two functions Q'1 and Q'2 satisfy (2-12),
then their difference Q'2� Q'1 is harmonic in O1 and vanishes on @ zO1 as well as at infinity. Therefore, the
minimum and maximum of Q'2� Q'1 is zero, and Q'1 and Q'2 coincide.

Thus, we will focus on the existence of a function Q' as in (2-12). In fact, by uniqueness, we see
that necessarily Q'.a; b/ D Q'.a; jbj/ for all .a; b/ 2 O1. We will thus only look for a solution Q' in
zOC1 D

zO1\ .R�R�
C
/ of the problem8<:

� Q' D 0 in zOC1 ;
Q' D 0 on @ zOC1 n .�1; 1/;
@b Q'.a; 0/D�1 for a 2 .�1; 1/;

(3-5)

with the condition at infinity

lim
b!1

sup
a2.�jbj�1;jbjC1/

j Q'.a; b/j D 0: (3-6)

Let us introduce
�` D f� 2 C W =.�/ > 0 and �<.�/D 1C=.�/g;

�r WD f� 2 C W =.�/ > 0 and <.�/D 1C=.�/g;

�b WD f� 2 C W .<.�/;=.�// 2 Œ�1; 1�� f0gg;

the three components of the boundary of OC1 D O1\f=.�/ > 0g.
Our goal is to show the existence of a function Q' satisfying (3-5). In order to do so, we will rely on

two Schwarz–Christoffel conformal mappings [Henrici 1974, Chapter 5.12].
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The first one, F 3
4

, is defined for all � 2 CC D f� 2 C W =.�/> 0g by

F 3
4
.�/D

2

K 3
4

Z �

�1

.1� z2/�
1
4 dz� 1; with K 3

4
D

Z 1

�1

.1� x2/�
1
4 dx D

p
�
�
�
3
4

�
�
�
5
4

� ;
where the path integration is arbitrary in CC.

The map F 3
4

conformally maps CC into OC1 , and satisfies the properties

F 3
4
.�1/D�1; F 3

4
.0/D 0; F 3

4
.1/D 1;

and
F 3
4
..�1;�1//D �`; F 3

4
..�1; 1//D �b; F 3

4
..1;1//D �r ; F 3

4
.{RC/D {RC:

The second conformal mapping we will use is defined, for any � 2 CC, by

F 1
2
.�/D

2

�
arcsin.�/D 2

�

Z �

�1

.1� z2/�
1
2 dz� 1;

which conformally maps CC into the closure of the half strip SC1 D f„DAC {B WA 2 .�1; 1/; B > 0g

with the properties
F 1
2
.�1/D�1; F 1

2
.0/D 0; F 1

2
.1/D 1;

and

F 1
2
..�1;�1�/D�1C {RC; F 1

2
..�1; 1//D .�1; 1/; F 1

2
.Œ1;1//D 1C {RC; F 1

2
.{RC/D {RC:

Finally, we define the conformal mapping

F D F 1
2
ıF�13

4

;

which maps OC1 into SC1 .
For any � D aC {b 2 OC1 , we define „ D AC {B D F.�/. Using a standard computation from

conformal transplantation [Henrici 1974, Chapter 5.6], we see that Q' solves (3-5) in zOC1 if and only
if ẑ given by ẑ .A;B/ D Q'.a; b/ for AC {B D F.aC {b/ solves the following problem posed in the
half-strip zSC1 : 8̂̂<̂

:̂
�A;B ẑ D 0 for A 2 .�1; 1/; B > 0;
ẑ .�1; B/D ẑ .1; B/D 0 for B > 0;

@B ẑ .A; 0/D�
�

K 3
4

p
cos
�
�
2
A
�

for A 2 .�1; 1/:

(3-7)

If the first two equations are standard, the last one deserves additional details. In fact, it comes from the
identity [Henrici 1974, Theorem 5.6a]

grd� '.�/D grd„ˆ.F.�//F 0.�/; (3-8)

applied to � D a 2 .�1; 1/, (implying F.�/ D A 2 .�1; 1/), where grd is the complex gradient: for
� D aC {b, grd� '.�/ D @a Q'.a; b/C { @b Q'.a; b/ and for „ D AC {B , grd„ˆ.„/ D @A ẑ .A;B/C
{ @B ẑ .A;B/.
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We therefore have to compute F 0.�/D .F 1
2
ıF�13

4

/0.�/D F 01
2

.F�13
4

.�//.F�13
4

/0.�/. To do so, let us
define � D F�13

4

.�/ 2 CC. By definition,

F 01
2

.F�13
4

.�//D F 01
2

.�/D
2

�

1p
1� �2

;

whereas

.F�13
4

/0.�/D .F�13
4

/0.F 3
4
.�//D

1

F 03
4

.�/
D

K 3
4

2

4

q
1� �2:

Therefore,

F 0.�/D
K 3
4

�

1
4
p
1� �2

;

with � D F�13
4

.�/. In particular, for � D a 2 .�1; 1/, we have � 2 .�1; 1/ and therefore F 0.�/ 2 R and

@B ẑ .A; 0/D @b Q'.a; 0/
1

F 0.a/
D�

�

K 3
4

4
p
1� �2; with � D F�13

4

.a/:

To conclude, we just note that � D F�11
2

.A/ if and only if � D sin.A�=2/, and the third identity in (3-7)
follows.

Problem (3-7) has the advantage of being explicitly solvable. Indeed, as ẑ is harmonic in .�1; 1/�
.0;1/, and satisfies ẑ .�1; B/D ẑ .1; B/D 0 for all B > 0, it necessarily has the decomposition

ẑ .A;B/D
X
k>1

.˛ke
�k �

2
B
C ake

k �
2
B/ sin

�
k �
2
.AC 1/

�
; .A;B/ 2 zSC1 :

Recalling condition (3-6) on Q', we wish to have ẑ going to zero as B!1. We thus choose ak D 0 for
all k > 1, so that ẑ can be written as

ẑ .A;B/D
X
k>1

˛ke
�k �

2
B sin

�
k �
2
.AC 1/

�
; .A;B/ 2 zSC1 :

But the boundary condition on B D 0 is equivalent to

�

2

X
k>1

k˛k sin
�
k �
2
.AC 1/

�
D

�

K 3
4

p
cos
�
�
2
A
�
;

which explicitly yields the coefficients ˛k:

for all k 2 N; ˛k D
2

k

1

K 3
4

Z 1

�1

sin
�
k �
2
.AC 1/

�p
cos
�
�
2
A
�
dA:

As
p

cos.A�=2/ is an even function and sin.k�.AC 1/=2/ is an odd function for all even k, we have
˛k D 0 for all even k. On the other hand, we have for any n 2 N, see [Gradshteyn and Ryzhik 2007,
equation 3.631.9],Z 1

�1

sin
�
.2nC1/�

2
.AC1/

�p
cos
�
�
2
A
�
dAD .�1/n

Z 1

�1

cos
�
.2nC1/�

2
A
�p

cos
�
�
2
A
�
dA

D .�1/n
4

�

Z �
2

0

cos..2nC1/t/
p

cos.t/ dt D
1

2
p
�

�
�
nC1

4

�
�
�
nC7

4

� ;
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where �. � / stands for the Gamma function, so in the end we obtain

˛2nC1 D
1

�

1

2nC 1

�
�
5
4

�
�
�
3
4

� ��nC 1
4

�
�
�
nC 7

4

� ;
which can be slightly simplified using that �

�
5
4

�
D �

�
1
4

�
=4 and �

�
3
4

�
D
p
2�=�

�
1
4

�
, giving

˛2nC1 D
�
�
1
4

�2
4
p
2�2

1

.2nC 1/

�
�
nC 1

4

�
�
�
nC 7

4

� :
So finally, we have

ẑ .A;B/D
�
�
1
4

�2
4
p
2�2

X
n2N

1

.2nC 1/

�
�
nC 1

4

�
�
�
nC 7

4

�e�.2nC1/�2 B sin
�
.2nC1/�

2
.AC1/

�
; .A;B/2SC1 ; (3-9)

and

ẑ .0; 0/D
�
�
1
4

�2
4
p
2�2

X
n2N

.�1/n

.2nC 1/

�
�
nC 1

4

�
�
�
nC 7

4

� : (3-10)

Note that, according to [Lebedev 1972, (1.4.25)],

1

2nC 1

�
�
nC 1

4

�
�
�
nC 7

4

� '
n!1

1

2n
5
2

I

hence the above series are well-defined. In particular, the identity (3-9) can be understood pointwise and
ẑ . � ; B/ goes to zero as B!1:

sup
A2.�1;1/

fj ẑ .A;B/jC j@A ẑ .A;B/jg6 C exp
�
�
�B

2

�
; B > 0: (3-11)

Let us also note that, because ẑ .0; 0/ is defined through a converging alternating series, we have

ẑ .0; 0/ <
�
�
1
4

�2
4
p
2�2

2X
nD0

.�1/n

.2nC 1/

�
�
nC 1

4

�
�
�
nC 7

4

� < 9
10
:

Computing the 100th partial sum of the series using Octave [Eaton et al. 2014], we obtain

ẑ .0; 0/� 0:893204:

A different expression for ẑ .0; 0/ is

ẑ .0; 0/D
2

�

R �
2

0 ln
�
cot
�
t
2

��p
cos.t/ dtR �

2

0

p
cos.t/ dt

; (3-12)

which easily comes from the equality ẑ .0; 0/D
P
n2N.�1/

n˛2nC1, the fact that

˛2nC1 D .�1/
n 8

.2nC 1/�

1

K 3
4

Z �
2

0

cos..2nC 1/t/
p

cos.t/ dt;
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the definition of K 3
4

and the identity, see [Gradshteyn and Ryzhik 2007, identity 1.442.2 p. 46],X
n2N

cos..2nC 1/t/
2nC 1

D
1
2

ln
�
cot
�
t
2

��
:

Note in particular that under the form (3-12), one immediately checks that

ẑ .0; 0/ > 0: (3-13)

In agreement with Figure 2, we then show that the maximum of ẑ is attained at .A;B/D .0; 0/. We first
note that the function ẑ given by (3-9) is positive in the strip zSC1 . Indeed, since ẑ is harmonic in the
half strip zSC1 and is not constant, its minimum is attained at the boundary zSC1 or at infinity [Gilbarg and
Trudinger 1998, Lemma 3.4, Theorem 3.5]. The boundary conditions on @ zSC1 and the behavior of ẑ

as B!1 in (3-11) implies that the minimum value of ẑ is 0 and is attained on the lateral boundaries
f�1; 1g�RC of the half strip. Consequently, the function ẑ is positive in zSC1 , and its minimal value is 0.

Besides, as ẑ vanishes on the lateral boundaries f�1; 1g �RC of the half strip, @A ẑ .1; � / is strictly
negative by the Hopf maximum principle [Protter and Weinberger 1984, Chapter 2, Theorem 7]. We then
consider the function ẑA D @A ẑ . Formula (3-9) easily yields that ẑA.0; B/D 0 for B > 0, so that ẑA
satisfies 8̂̂̂̂

<̂̂
ˆ̂̂̂:

� ẑA D 0 in zSC1 \fA > 0g;
ẑ
A.0; B/D 0 for B > 0;
ẑ
A.1; B/ < 0 for B > 0;
@B ẑA.A; 0/> 0 for A 2 .0; 1/;
limjBj!1 supA2.0;1/ j ẑA.A;B/j D 0:

It easily follows that the maximum of ẑA is necessarily nonpositive in zSC1 \fA > 0g by the application
of the maximum principle.

Finally, as ẑ is harmonic in the half-strip zSC1 and is strictly positive in .0; 0/, see (3-13), the maximum
of ẑ on the half strip zSC1 is necessarily attained on the boundary of the half-strip or at infinity, and therefore
on .�1; 1/� f0g according to the boundary conditions satisfied by ẑ in (3-7) and the conditions (3-11)
as B!1. Now, @A ẑ is nonpositive in zSC1 \fA > 0g and ẑ .A;B/D ẑ .jAj; B/ in the half-strip zSC1
according to (3-9), so the maximum of ẑ is necessarily attained in .A;B/D .0; 0/.

We then come back to the problem (3-5)–(3-6) and check that the function Q' given by

Q'.a; b/D ẑ .A;B/ for AC {B D F.aC {b/; .a; b/ 2 zOC1 ; (3-14)

with ẑ as in (3-9), satisfies (3-5)–(3-6).
By construction, Q' automatically satisfies (3-5) and its maximum is attained in .a; b/ D .0; 0/ and

takes value Q'.0; 0/D ẑ .0; 0/. We thus only have to check the condition (3-6). In order to do that, let us
introduce the real functions zAD zA.a; b/ and zB D zB.a; b/ given for .a; b/ 2 zOC1 by

F.aC {b/D zA.a; b/C { zB.a; b/; (3-15)
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and let us check that
lim
b!1

inf
jaj<bC1

zB.a; b/DC1: (3-16)

Indeed, if it were not the case, we could find real sequences .an; bn/n2N with

lim
n!1

bn DC1; for all n 2 N; janj6 bnC 1; and sup
n

zB.an; bn/ <1: (3-17)

Then, if we set �n D F�13
4

.anC {bn/, by construction,

F 1
2
.�n/D zA.an; bn/C { zB.an; bn/:

Therefore, according to the definition of F 1
2

,

�n D sin
�
�
2
. zA.an; bn/C { zB.an; bn//

�
;

so that the sequence .�n/ is uniformly bounded in C as n!1. Then the sequence .an; bn/ is given by
anC {bn D F 3

4
.�n/. But F 3

4
maps bounded sets of C into bounded sets of C, so this is in contradiction

with (3-17), and the property (3-16) holds.
We can thus use (3-11) to get that for all b > 0,

sup
jaj<bC1

fj Q'.a; b/jg6 C exp
�
�
�
2

inf
jaj<bC1

zB.a; b/
�
;

which, according to (3-16), implies (3-6).

Remark 3.1. Another approach to obtain information on Q', the solution of (3-5), is through integral
equations. More precisely, for ..a; b/; .a0; b0// 2 . zOC1 /

2, we define G as

zG.a; b; a0; b0/D
1

4�
ln
� �

.a� a0/
2C .b� b0/

2
��
.aC a0/

2C .bC b0C 2/
2
��

.aC b0C 1/2C .bC a0C 1/2
��
.a� b0� 1/2C .a0� b� 1/2

��:
It is readily verified that for any .a0; b0/ 2 zOC1 , zG. � ; � ; a0; b0/ satisfies�

�a;b zG. � ; � ; a0; b0/D ı.a0;b0/ in zOC1 ;
zG.a; b; a0; b0/D 0 for .a; b/ such that jaj D jbjC 1:

Indeed, this comes from the fact that zG is the suitable combination of the fundamental solution of the
Laplace operator in the sectors f.a; b/ 2 R2 W b D jaj � 1g and f.a; b/ 2 R2 W b D 1� jajg.

Then, standard computations show that Q' is a solution of (3-5) if and only if it satisfies the integral
equation

Q'.a0; b0/D�

Z 1

�1

@b zG.a; 0; a0; b0/ Q'.a; 0/ daC
Z 1

�1

zG.a; 0; a0; b0/ da for all .a0; b0/2 zOC1 : (3-18)

We then introduce zG defined by

zG .a; a0; b0/D�@b zG.a; 0; a0; b0/�
1

2�

b0

b20 C .a� a0/
2
:
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-1 -0.5 0 0.5 1
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1

Figure 3. The solid line shows Q'.a0; 0/ for a0 2 .�1; 1/, obtained by discretization of
(3-19). The dashed line shows ẑ .0; 0/D Q'.0; 0/.

It is easily seen that for any a0 2 .�1; 1/,

lim
b0!0

Z 1

�1

zG .a; a0; b0/ Q'.a; 0/ daD

Z 1

�1

zG .a; a0; 0/ Q'.a; 0/ da;

lim
b0!0

Z 1

�1

zG.a; 0; a0; b0/ daD
Z 1

�1

zG.a; 0; a0; 0/ da;

whereas

lim
b0!0

1

2�

Z 1

�1

b0

b20 C .a� a0/
2
Q'.a; 0/ daD 1

2
Q'.a0; 0/:

Therefore, choosing a0 2 .�1; 1/ and taking the limit b0! 0 in (3-18) leads to the integral equation

1
2
Q'.a0; 0/D

Z 1

�1

zG .a; a0; 0/ Q'.a; 0/ daC

Z 1

�1

zG.a; 0; a0; 0/ da: (3-19)

Discretizing (3-19), we can obtain a good approximation of Q'.a0; 0/ for a0 2 .�1; 1/ (see Figure 3).

3B2. Phragmén–Lindelöf principle. With Q' as in (2-12), the function .a; b/ 7! Q'.a; b/Cjbj is harmonic
in zO1, and it is therefore the real part of some holomorphic function � in O1:

for all .a; b/ 2 zO1; <.�.aC {b//D Q'.a; b/Cjbj;

or, equivalently, for all � 2 O1, <.�.�//D '.�/Cj=.�/j.
For each ˛� > ˛, we consider the function g˛� defined for � 2 O˛ by

g˛�.�/D f .�/ exp
�
�L˛��

�
�

˛

��
: (3-20)

By construction, g˛� is holomorphic in O˛ and satisfies

for all � 2 @O˛; jg˛�.�/j6 C0; and lim
j=.�/j!1

�
sup

j<.�/j<j=.�/jC˛

jg˛�.�/j
�
D 0:
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Therefore, g˛� attains its maximum on @O˛, so that

for all � 2 O˛; jf .�/j6 C0 exp
�
˛�

˛
j=.�/jL

�
exp

�
L˛�'

�
�

˛

��
:

Taking the limit ˛�! ˛, we immediately have

for all � 2 O˛; jf .�/j6 C0 exp.j=.�/jL/ exp
�
L˛'

�
�

˛

��
; (3-21)

that is, (2-14).

Remark 3.2. Let us remark that we can obtain from the above proof an explicit formula for f . Indeed, for
˛� > ˛> L=.2T /, we can use the Cauchy formula for the function g˛� in (3-20) on the contour given by

˛;R D @.O˛ \f=.�/ < Rg/ .with R > 0/

oriented in a counterclockwise manner, which yields, for all � 2 R with j�j<L=.2T /,

g˛�.�/D
1

2{�

Z
˛;R

g˛�.�/

� � �
d�:

Now, due to the decay of g˛� at infinity, one can pass to the limit in the above formula as R!1: for
all � 2 R with j�j<L=.2T /,

g˛�.�/D
1

2{�

Z
˛

g˛�.�/

� � �
d�;

where ˛ is the union of the two connected components of @O˛ oriented counterclockwise. Recalling
the definition of g˛� , we end up with the following formula: for all � 2 R with j�j<L=.2T /,

f .�/D
1

2{�

Z
˛

eL˛�.�.�=˛/��.�=˛//
f .�/

� � �
d�: (3-22)

4. Further comments

4A. Higher-dimensional settings. The method developed above applies also to the cost of observability
of the heat equation in multidimensional balls. More precisely, we consider the following heat equation, set
in the ball of radius L> 0 of Rd (d > 1), denoted by BL in the following, and in the time interval .0; T /:8<:

@tu��xuD 0 in .0; T /�BL;
u.t; x/D 0 in .0; T /� @BL;
u.0; x/D u0.x/ in BL;

(4-1)

where the initial datum u0 belongs to H 1
0 .BL/. In that setting, we have the following result:

Theorem 4.1. Setting K0 as in Theorem 1.1, for any K >K0, there exists a constant C > 0 such that for
all T 2 .0; 1�, for all solutions u of (4-1) with initial datum u0 2H

1
0 .BL/,u.T / exp

�
jxj2

4T

�
L2.BL/

6 C exp
�
KL2

T

�
k@�ukL2..0;T /�@BL/: (4-2)
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Here and in the following, j � j denotes the euclidean norm in Rd. The proof of Theorem 4.1 closely
follows the one of Theorem 1.1; therefore we only sketch its proof, explaining the main differences with
the proof of Theorem 1.1.

Sketch of the proof of Theorem 4.1. We start by considering a smooth solution u of (4-1), and define

z.t; x/D u.t; x/ exp
�
jxj2�L2

4t

�
; .t; x/ 2 .0; T /�BL;

which satisfies 8̂̂<̂
:̂
@tzC

x

t
� rxzC

d

2t
z��xz�

L2

4t2
z D 0 in .0;1/�BL;

z.t; x/D 0 in .0; T /� @BL;

z.0; x/D 0 in BL;

Proposition A.1 with �D BL and g � 0 implies directly the following estimate for z:Z
BL
jrxz.T; x/j

2 dx�
L2

4T 2

Z
BL
jz.T; x/j2 dx 6

L

T 2

Z T

0

Z
@BL

t jrxz.t; x/ � �j
2 ds.x/ ds: (4-3)

We define w as the extension of z by 0 outside BL: w satisfies the equations(
@twC

x

t
� rxwC

d

2t
w��xw�

L2

4t
w Drxu.t; x/ � �ı@BL in .0;1/�Rd ;

w.0; x/D 0; x 2 Rd :

Thus, its Fourier transform, defined for .t; �/ 2 .0; T /�Cd by

Ow.t; �/D

Z
Rd
w.t; x/e�{��x dx

satisfies8<:@t Ow�
�

t
�r� Ow�

d

2t
OwC�2 Ow�

L2

4t2
Ow D

Z
@BL
rxu.t; x/��e

�{��x ds.x/; .t; �/ 2 .0;1/�Rd ;

Ow.0; �/D 0; � 2 Rd :

(4-4)

As in the one-dimensional case, (4-3) gives a high-frequency (j�j > L=.2T /) L2-estimate of w.T; � /
depending on the observation and the low-frequency (j�j6 L=.2T /) L2-norm of w.T; � /, on which we
focus from now. To do so, much as in Section 3A, we solve the transport equation (4-4), and obtain, for
�0 2 Rd such that j�0j>L=.2T /,

Ow.T; �0/D

Z T

0

�
T

t

�d
2
Z
@BL
rxu.t; x/ � �e

�{
x��0T

t
�.�20T

2�L
2

4
/. 1
t
� 1
T
/ ds.x/ dt; (4-5)

with �20 D �0 � �0.
Once here, we consider �0 D .�1; Q�/, with Q� 2 Rd�1 fixed, and �1 D aC {b, a; b 2 R, and define

f .�1/D Ow.T; �1; Q�/, which is an entire function satisfying (2-11). Besides, with computations similar to
those in Section 3A, it is easy to obtain that for all ˛ > L2=.2T /, there exists C˛.T / > 0, which may
blow up polynomially in T as T ! 0 (contrarily to what happens in the one-dimensional setting, the
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constant C˛.T / may now blow up as T ! 0, but only polynomially in T, so that it will not significantly
affect the cost of observability in small times in (4-2), which blows up as an exponential of 1=T as
T ! 0), such that for all �1 2 C˛ as in (2-6), we have

jf .�1/j6 C˛ej=.�1/jLk@�ukL2..0;T /�@BL/:

From that, we end the proof of Theorem 4.1 exactly as in the one-dimensional case, with the use of
Proposition 2.3. �

Actually, the method developed above works not only for balls, but also for any bounded domain
�� Rd. More precisely:

Theorem 4.2. Let � be a smooth bounded domain of Rd. If we set

L� D inf
x2�

sup
y2@�

jx�yj;

and we choose Nx 2� such that
sup
y2@�

j Nx�yj D L�;

then for any K >K0, there exists C > 0 such that any smooth solution u of8<:
@tu��xuD 0 in .0; T /��;
u.t; x/D 0 in .0; T /� @�;
u.0; x/D u0.x/ in �;

(4-6)

satisfying u.T / exp
�
jx� Nxj2

4T

�
L2.�/

6 C exp
�
KL2�
T

�
k@�ukL2..0;T /�@�/:

Note that this is a geometrical setting in which Corollary 1.3 applies but yields a different estimate on
the cost of observability. Indeed, when the observation is done on the whole boundary, one easily checks
that the choice S0 D SC� , where

S� D supflength of segments included in �g;

is suitable for the application of Corollary 1.3. In particular, when � is convex, L� 6 S� 6 2L� and
Theorem 4.2 always yields at least the estimate given by Corollary 1.3 when the observation is done on
the whole boundary of �, and a better one in general (as in the case of a ball discussed in Theorem 4.1).

Remark 4.3. The above discussion, and Theorem 4.2 in particular, might suggest that the cost of
observability in small times is linked only to the maximal distance to the control set. This is not the case,
as it is strongly underlined by [Laurent and Léautaud 2018]. There, among other results, an analysis
of the observability constant C0.T;B.0; 1/;B.0; r// for the heat equation is done when the domain of
interest is �D B.0; 1/ � R2, the unit ball of the plane, and the observation set is B.0; r/. To be more
precise, C0.T;B.0; 1/;B.0; r// is the best constant in the following estimate: for any solution u of (4-6)
with �D B.0; 1/ with initial datum u0 2H

1
0 .�/,

ku.T /kL2.�/ 6 C0.T;B.0; 1/;B.0; r//kukL2..0;T /�B.0;r///:
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The work [Laurent and Léautaud 2018] then shows the following result: there exist C > 0 and r0 < 1
such that for all r 2 .0; r0/

lim inf
T!0

T log.C0.T;B.0; 1/;B.0; r///> C log.r/2: (4-7)

This shows that the behavior of the cost of observability in small times is in fact strongly linked to
the geometry under consideration. Indeed, Theorem 4.2 in fact corresponds to a geometrical setting
in which the wave equation is observable in small times, while the result (4-7) proved in [Laurent and
Léautaud 2018] focuses on a case in which the geometric control condition for the observability of the
wave equation fails due to whispering gallery phenomena.

4B. Tensorized equations. Another application of our method concerns the cost of observability of the
heat equation on a tensorized domain. More precisely, we consider the heat equation set in a tensorized
spatial domain �D�x ��y , and want to know the cost of observability in small time when the solution
is observed on @�x ��y . Note that the answer is already known: the cost is the same as the one for the
heat equation set on �x only, when the observation is done on the whole boundary @�x [Miller 2005,
Theorem 1.5]. Our purpose is therefore just to underline that our approach also applies in that context
and allows us to retrieve easily this result.

To fix ideas, we focus on the case �x D .�L;L/ (when �x is a multidimensional domain, similar
arguments can be developed, under appropriate geometric conditions, by using Theorem 4.2 instead of
Theorem 1.1). Hence we are interested in the following heat equation, set in the domain�D .�L;L/��y ,
with L> 0 and �y a smooth bounded domain of Rdy, in some time interval .0; T /, T > 0:8̂̂̂<̂

ˆ̂:
@tu� @

2
xu��yuD 0 for .t; x; y/ 2 .0; T /� .�L;L/��y ;

u.t; L; y/D u.t;�L; y/D 0 for .t; y/ 2 .0; T /��y ;
u.t; x; y/D 0 for .t; x; y/ 2 .0; T /� .�L;L/� @�y ;
u.0; x; y/D u0.x; y/ in .�L;L/��y :

(4-8)

As usual, the initial datum u0 belongs to H 1
0 ..�L;L/��y/. We have the following:

Theorem 4.4. Setting K0 as in Theorem 1.1, for any K >K0, there exists a constant C > 0 such that for
all T 2 .0; 1�, for all solutions u of (4-8),u.T; x; y/ exp

�
x2

4T

�
L2..�L;L/��y/

6 C exp
�
KL2

T

��
k@xu.t;�L; y/kL2..0;T /��y/Ck@xu.t; L; y/kL2..0;T /��y/

�
: (4-9)

Sketch of the proof of Theorem 4.4. Let us denote by .vn; �2n/ the family of normalized eigenfunctions
and eigenvalues of the Dirichlet–Laplace operator set in �y , that is,8<:

��yvn D �
2
nvn in �y ;

vn D 0 on @�y ;
kvnkL2.�y/ D 1:
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Expanding u, a solution of (4-8), on the L2.�y) Hilbert basis .vn/, that is,

u.t; x; y/D
X
n2N

un.t; x/vn.y/;

we see that each un solves a one-dimensional heat equation with potential �2n set in .0; T /� .�L;L/:8<:
@tun� @

2
xunC�

2
nun D 0 in .0; T /� .�L;L/;

un.t;�L/D un.t; L/D 0 in .0; T /;
un.0; x/D un;0.x/ in .�L;L/;

(4-10)

with

un;0.x/D

Z
�

u0.x; y/ vn.y/ dy:

To prove Theorem 4.4, it is sufficient to prove that each un satisfies the observability inequalityun.T;x/exp
�
x2

4T

�
L2.�L;L/

6C exp
�
KL2

T

��
k@xun.t;�L/kL2.0;T /Ck@xun.t;L/kL2.0;T /

�
; (4-11)

with a constant C independent of n. To do so, we consider Qun D une�
2
nt, which satisfies8<:

@t Qun� @
2
x Qun D 0 in .0; T /� .�L;L/;

Qun.t;�L/D Qun.t; L/D 0 in .0; T /;
Qun.0; x/D un;0.x/ in .�L;L/:

Applying Theorem 1.1, we get Qun.T; x/ exp
�
x2

4T

�
L2.�L;L/

6 C exp
�
KL2

T

��
k@x Qun.t;�L/kL2.0;T /Ck@x Qun.t; L/kL2.0;T /

�
;

which directly gives (4-11) as e�
2
n.t�T / 6 1 for all t 2 .0; T /, and therefore ends the proof. �

4C. Observation from one side of the domain: symmetrization argument. In this section, we are inter-
ested in the cost of observability for the one-dimensional heat equation when observed on one side of the
domain. In other words, for L; T > 0 and u0 2H 1

0 .0; L/, we consider the system8<:
@tu� @

2
xuD 0 in .0; T /� .0; L/;

u.t; 0/D u.t; L/D 0 in .0; T /;
u.0; x/D u0.x/ in .0; L/:

(4-12)

We have the following:

Theorem 4.5. Setting K0 as in Theorem 1.1, for any K >K0, there exists a constant C > 0 such that for
all T 2 .0; 1�, for all solutions u of (4-12) with u0 2H 1

0 .0; L/,u.T / exp
�
x2

4T

�
L2.0;L/

6 C exp
�
KL2

T

�
k@xu.t; L/kL2.0;T /: (4-13)
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Proof. The proof is based on a classical symmetrization argument: for u a solution of (4-12), we define

us.t; x/D

�
u.t; x/ for .t; x/ 2 .0; T /� .0; L/;
�u.t;�x/ for .t; x/ 2 .0; T /� .�L; 0/:

It is readily seen that us satisfies system (1-1). Therefore, Theorem 1.1 givesus.T / exp
�
x2

4T

�
L2.�L;L/

6 C exp
�
KL2

T

��
k@xus.t;�L/kL2.0;T /Ck@xus.t; L/kL2.0;T /

�
:

The result follows easily, as @xus.t;�L/D @xus.t; L/D @xu.t; L/ for all t 2 .0; T /. �

4D. Distributed observations. One is sometimes interested in distributed observations, in which case
the corresponding observability inequality reads

ku.T /kL2.0;L/ 6 C.T;L; a; b/kukL2..0;T /�.a;b// (4-14)

for smooth solutions u of (4-12), where a; b 2 R are such that .a; b/� .0; L/ and a < b.
We claim the following:

Theorem 4.6. Let 06 a < b 6L. Setting K0 as in Theorem 1.1, for any K >K0, there exists a constant
C > 0 such that for all T 2 .0; 1�, for all solutions u of (4-12),

ku.T /kL2.0;L/ 6 C exp
�
K minfa2; .L� b/2g

T

�
kukL2.0;T IH1.a;b//: (4-15)

Proof. As in the proof of Theorem 4.5, we start by symmetrizing the function u, and we call us its
symmetric extension. We then take " > 0 small enough to have aC2" < b and we choose an even cut-off
function � taking value 1 on .�a� "; aC "/ and vanishing for jxj> aC 2". Then the function

z.t; x/D

8<:�.x/ us.t; x/ exp
�
x2� .aC 2"/2

4t

�
for jxj< aC 2";

0 for jxj> aC 2"

satisfies, much as in (2-3),8̂̂̂<̂
ˆ̂:
@tzC

x

t
@xzC

1

2t
z� @2xz�

.aC2"/2

4t2
z D g; .t; x/ 2 .0;1/� .�a� 2"; aC 2"/;

z.t;�a� 2"/D z.t; aC 2"/D 0; t 2 .0;1/;

z.0; x/D 0; x 2 .�a� 2"; aC 2"/;

(4-16)

where

g.t; x/D exp
�
x2� .aC 2"/2

4t

�
.2@x� @xu.t; x/C @xx�u.t; x//:

One can then follow the approach developed in Section 2 (using Proposition A.1 instead of Theorem 2.1
and the fact that @xz.t;�a�2"/D @xz.t; aC2"/D 0) to show that for all K1 >K0, there exists C such



1480 JÉRÉMI DARDÉ AND SYLVAIN ERVEDOZA

that for all T 2 .0; 1�,us.T / exp
�
x2

4T

�
L2.�a�2";aC2"/

6 C exp
�
K1.aC 2"/

2

T

�
kgkL2..0;T /�.�a�2";aC2"//:

Using the definition of g, one easily gets

ku.T /kL2.0;aC"/ 6 C exp
�
K1.aC 2"/

2

T

�
kukL2.0;T IH1.a;aC2"//:

Similarly, one can obtain

ku.T /kL2.b�";L/ 6 C exp
�
K1.L� bC 2"/

2

T

�
kukL2.0;T IH1.b�2";b//:

It is straightforward to show that

ku.T /kL2.aC";b�"/ 6 CkukL2.0;T IH1.a;b//;

for instance by looking at v.t; x/ D �.t/ u.t; x/ �0.x/, where � D �.t/ is a smooth function of time
taking value 0 at t D 0 and 1 at t D T , and �0 D �0.x/ taking value 1 on .aC "; b� "/ and vanishing for
x … .a; b/, and doing energy estimates.

Combining the three above estimates, we easily conclude (4-15) by taking K1 2 .K0; K/ and " > 0
small enough. �

Note that the above argument is only based on suitable cut-off arguments. It can therefore be applied
as well in multidimensional settings, provided some geometric assumptions compatible with Theorem 4.2
are satisfied, namely if the distributed observation set is a neighborhood of the whole boundary.

4E. Related uncertainty principles. One key point to obtain Theorem 1.1 is the complex analysis argu-
ment developed in Section 3B, based principally on the Schwarz–Christoffel conformal mapping and the
Phragmén–Lindelöf principle. It is nevertheless possible to develop a purely real analysis argument, but
it only allows us to retrieve the cost of observability for the one-dimensional heat equation known since
[Tenenbaum and Tucsnak 2007]:

Theorem 4.7. For all K > 3
4

, there exists a constant C > 0 such that for all T 2 .0; 1�, all solutions u of
(1-1) with initial datum u0 2H

1
0 .�L;L/ satisfy (1-2).

The proof of Theorem 4.7 is based on the following uncertainty principle result.

Proposition 4.8 [Landau and Pollak 1961; Fuchs 1964]. Let A;B > 0. Let f 2 L2.R/ be supported in
Œ�A;A� and Of its Fourier transform. ThenZ B

�B

j Of .�/j2 d� 6 �0
Z

R

j Of .�/j2 d�; (4-17)

where �0 D �0.AB/ satisfies 0 < �0 < 1 and

�0 D 1� 4
p
�
p
ABe�2AB.1C "AB/; (4-18)

where "AB ! 0 as AB!1.
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Relation (4-17) is a particular case of [Landau and Pollak 1961, Theorem p. 68], whereas the proof of
the asymptotic behavior of �0 can be found in [Fuchs 1964, Theorem 1, p. 319].

Proof of Theorem 4.7. We start from formula (2-7), which we recall: for any �02R such that j�0j>L=.2T /,
we have

Ow.T; �0/D�

Z T

0

r
T

t
@xu.t;�L/e

{
L�0T

t
�.�20T

2�L
2

4
/. 1
t
� 1
T
/ dt

C

Z T

0

r
T

t
@xu.t; L/e

�{
L�0T

t
�.�20T

2�L
2

4
/. 1
t
� 1
T
/ dt:

Therefore, we directly obtain, for �0 2 R with j�0j>L=.2T /,

j Ow.T; �0/j
2 6 T

�
k@xu.t;�L/k

2
L2.0;T /

Ck@xu.t; L/k
2
L2.0;T /

� Z T

0

e
�2T 2.�20�

L2

4T2
/. 1
t
� 1
T
/ dt

t
:

For � > 1, we choose �0 2 R with j�0j> �L=.2T /, which implies

�20 �
L2

4T 2
>
�2� 1

�2
�20

and Z T

0

e
�2T 2.�20�

L2

4T2
/. 1
t
� 1
T
/ dt

t
6
Z T

0

e
�2T 2 �

2�1

�2
�20.

1
t
� 1
T
/ dt

t
6

�2

2T .�2� 1/�20
:

Hence we obtain, for �0 2 R with j�0j> �L=.2T /,

j Ow.T; �0/j
2 6

�2

2.�2� 1/�20

�
k@xu.t;�L/k

2
L2.0;T /

Ck@xu.t; L/k
2
L2.0;T /

�
and Z

j�0j>�
L
2T

j Ow.T; �0/j
2 d�0 6

2T �

.�2� 1/L

�
k@xu.t;�L/k

2
L2.0;T /

Ck@xu.t; L/k
2
L2.0;T /

�
:

Now, from (4-17) applied to f D Ow.T / with AD L, B D �L=.2T / and �0 D �0.�L2=.2T //, we haveZ
R

j Ow.T; �0/j
2 d�0 D

Z
j�0j<�

L
2T

j Ow.T; �0/j
2 d�0C

Z
j�0j>�

L
2T

j Ow.T; �0/j
2 d�0

6 �0
Z

R

j Ow.T; �0/j
2 d�0C

Z
j�0j>�

L
2T

j Ow.T; �0/j
2 d�0;

and thus Z
R

j Ow.T; �0/j
2 d�0 6

1

1��0

Z
j�0j>�

L
2T

j Ow.T; �0/j
2 d�0:

We have therefore obtainedZ L

�L

jw.T;x/j2dxD

Z
R

j Ow.T;�0/j
2d�06

1

1��0

2T �

.�2�1/L

�
k@xu.t;�L/k

2
L2.0;T /

Ck@xu.t;L/k
2
L2.0;T /

�
;

which implies from Proposition 4.8 and (4-18) the existence of a constant C such that for T small enough

kw.T /kL2.�L;L/ 6 Ce�
L2

2T

�
k@xu.t;�L/kL2.0;T /Ck@xu.t; L/kL2.0;T /

�
:

The result of Theorem 4.7 follows from the definition of w. �
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4F. On a possible improvement of Theorem 1.1. As we said in the Introduction, we do not know if the
estimate on the cost of observability in small times given by Theorem 1.1 is sharp or not. In fact, when
looking at the main steps of the proof of Theorem 1.1 given in Section 2, it seems that one step in which
our estimates are not sharp may be the one using Phragmén–Lindelöf principles, i.e., Proposition 2.3.

Indeed, introducing the class

E˛ D ff 2 Hol.O˛/ W f .�/e�j=.�/j 2 L1.O˛/ and for all � 2 @O˛; jf .�/j6 ej=.�/jg;

Proposition 2.3 shows that for all ˛ 2 R�
C

,

sup
f 2E˛

�
sup

x2Œ�˛;˛�

fjf .x/jg
�
6 exp.˛'.0//; (4-19)

where '.0/ is given by (2-15). Besides, this estimate is sharp as we can construct a holomorphic
function � in O1 whose real part coincides with '.�/C j=.�/j given by (2-12)–(2-13) and check that
f�.�/D exp.˛�.�=˛// belongs to E˛ and saturates the estimate (4-19), so that for all ˛ 2 R�

C
,

max
f 2E˛

�
max

x2Œ�˛;˛�
fjf .x/jg

�
D exp.˛'.0//: (4-20)

Now, in our approach (in the case LD 1, which can always be assumed by a scaling argument), we apply
estimate (4-19) to the function f D Ow.T; � /=k Ow.T; �/e�j=.�/jkL1.C˛/, which in fact belongs to a smaller
class

E �˛ D ff 2 Hol.C/ W f .�/e�j=.�/j 2 L1.C/ and for all � 2 C˛; jf .�/j6 ej=.�/jg:

Therefore, our proof requires an estimate on the constant

C �.˛/D sup
f 2E �˛

�
sup

x2Œ�˛;˛�

fjf .x/jg
�

(4-21)

in the asymptotics ˛!1. It is clear that

C �.˛/6 exp.˛'.0//; (4-22)

which is precisely the estimate we use, but there is no evidence to support the idea that this estimate gives
the good asymptotics as ˛!1.

Let us in particular point out that:

� The function f� given above to show that estimate (4-19) is sharp does not belong to the class E �˛ .

� The constant C �.˛/ in (4-21) blows up at least like exp.˛=2/ as ˛!1, as otherwise the proof given
in Section 2 would yield a cost of observability smaller than exp.L2=2T / in small times, which is known
to be false due to [Lissy 2015].

� Looking at the 2-parameter family of functions of the form

fA; .�/D cos.A
p
�2� 2/
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for parameters A 2 Œ0; 1� and  2 Œ0; ˛�, we find that

sup
f 2ffA; g\E �˛

�
sup

x2Œ�˛;˛�

fjf .x/jg
�
D cosh

�
˛

2

�
;

and is achieved when taking AD 1=
p
2 and  D ˛=

p
2, i.e.,

f .�/D cos
�
1
p
2

r
�2�

˛2

2

�
:

This function yields evidence of the fact that

lim inf
˛!1

1

˛
log.C �.˛//> 1

2
:

Let us finally emphasize that if we were able to show that

lim sup
˛!1

1

˛
log.C �.˛//6 1

2
;

the proof given in Section 2 would yield a cost of observability in small times C0.T; L/ satisfying

lim sup
T!0

T log.C0.T; L//6
L2

2
:

Combined with [Lissy 2015], this would give that

lim
T!0

T log.C0.T; L//D
L2

2
:

4G. Uniform controllability of viscous approximations of the transport equation. The problem we
considered in this article is intimately related to the question of uniform controllability of viscous
approximations of the transport equation raised in [Coron and Guerrero 2005]. Namely, for all " > 0, one
considers the following viscous approximation of the transport equation at velocity M 2 R:8̂̂̂<̂

ˆ̂:
@ty"� " @

2
xy"CM @xy" D 0; .t; x/ 2 .0; T /� .0; L/;

y".t; 0/D v".t/; t 2 .0; T /;

y".t; L/D 0; t 2 .0; T /;

y".0; � /D y0.x/; x 2 .0; L/:

(4-23)

For each " > 0, the equation (4-23) is null-controllable in any time T > 0, and the map V";T W y0! v"

which to any y0 2 L2.0; L/ associates the control v" of minimal L2.0; T /-norm is linear. The problem
raised in [Coron and Guerrero 2005] is the following one: give conditions on the time T guaranteeing
that

lim sup
"!0

kV";T kL .L2.0;L/IL2.0;T // <1: (4-24)

It is clear that if jM jT < L, (4-24) cannot happen, as otherwise the convergence of (4-23) as "! 0

would imply the null-controllability of the transport equation in a time which is not enough to make the
characteristics go out of the domain.
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Several conditions on the time T ensuring (4-24) were then proposed in the literature, namely in [Coron
and Guerrero 2005; Glass 2010; Lissy 2012]. In fact, to our knowledge, the best results are the ones
obtained in [Lissy 2012], which we recall now:

Theorem 4.9 [Lissy 2012]. If M ¤ 0 and

jM jT > L.2
p
3C 1� sign.M// .2

p
3� 3:4641/;

where sign.M/D 1 if M > 0 andD�1 if M < 0, we have

lim sup
"!0

kV";T kL .L2.0;L/IL2.0;T // D 0:

These results are based on the knowledge of the cost of observability of the one-dimensional heat
equation in small time obtained in [Tenenbaum and Tucsnak 2007]. Therefore, as Theorem 4.5 improves
the one in that paper, following the proof of [Lissy 2012] immediately improves the known result on the
uniform controllability of the viscous approximations (4-23) of the transport equation:

Theorem 4.10. Let K0 as in (1-5). Then, if M ¤ 0 and

jM jT > L.4
p
K0C 1� sign.M// .4

p
K0 � 3:3385/;

we have
lim sup
"!0

kV";T kL .L2.0;L/IL2.0;T // D 0: (4-25)

As the proof of Theorem 4.10 follows line to line the one of [Lissy 2012], as it is explained in Section 3,
item (i) of that paper, it is left to the reader.

We are currently investigating if one can do better than the combination of the cost of observability of
the one-dimensional heat equation in small times and of the arguments in [Lissy 2012] to obtain better
sufficient conditions on the ratio jM jT=L to guarantee (4-25). We believe that a direct approach following
the strategy in Section 2 could help in improving Theorem 4.10.

Appendix: Carleman-type estimate

We consider the equation8̂̂̂̂
<̂̂
ˆ̂̂̂:
@tz��xzC

1

2t
.2x � rxzC dz/�

L2

4t2
z D g in .0; T /��;

z.t; x/D 0 on .0; T /� @�;

limt!0 kz.t/kL2.�/ D 0;

limt!0 tkrz.t/kL2.�/ D 0;

(A-1)

with T > 0, � a bounded domain of Rd, d > 1,

LD sup
x2�

jxj (A-2)

and
g 2 L2..0; T /��/:
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We then have the following result:

Proposition A.1. Any smooth solution z of (A-1) with g 2 L2..0; T /��/ satisfies the estimateZ
�

�
jrxz.T /j

2
�
L2

4T 2
jz.T /j2

�
dx6

L

T 2

Z T

0

�
t

Z
�C

jrxz.t; x/��j
2 ds.x/

�
dtC

1

T 2

Z T

0

Z
�

t2jgj2 dx dt;

(A-3)
with �C D fx 2 @� W x � � > 0g, and L is given by (A-2).

Proof. We define the spatial operators

Sz D��xz�
L2

4t2
z; Az D

1

2t
.2x � rxzC d z/;

so that z is a solution of (A-1) satisfying

@tzCSzCAz D g in .0; T /��:

Note that S and A respectively correspond to the symmetric and skew-symmetric parts of the operator in
(A-1).

We then consider

D.t/ WD

Z
�

�
jrxz.t; x/j

2
�
L2

4t2
jz.t; x/j2

�
dx D

Z
�

.Sz/.t; x/z.t; x/ dx:

A direct calculation shows that

D0.t/D
L2

2t3

Z
�

jzj2 dxC 2

Z
�

Sz @tz dx

D
L2

2t3

Z
�

jzj2 dx� 2

Z
�

jSzj2 dx� 2

Z
�

SzAz dxC 2

Z
�

Sz g dx:

Furthermore, as A is a skew-symmetric operator, we have

�2

Z
�

Sz Az dx D 2

Z
�

�xz Az dx D
1

t

Z
�

�xz.2x � rxzC d z/ dx:

On one hand, we obviously have Z
�

�xz d z dx D�d

Z
�

jrxzj
2 dx:

On the other hand, we note thatZ
�

�xz 2x � rxz dx D 2

Z
@�

.rxz � �/.x � rxz/ ds.x/� 2

Z
�

rxz � rx.x � rxz/ dx

D 2

Z
@�

.x � �/jrxz � �j
2 ds.x/� 2

Z
�

rxz � rx.x � rxz/ dx:

Here, we have used that as z D 0 on @�, rxz D .rxz � �/� on @�. As

rxz � rx.x � rxz/D jrxzj
2
C
x

2
� rx.jrxzj

2/;
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we haveZ
�

rxz � rx.x � rxz/ dx D

Z
�

jrxzj
2 dxC

Z
�

x

2
� rx.jrxzj

2/ dx

D

Z
�

jrxzj
2 dxC

1

2

Z
@�

.x � �/jrxzj
2 ds.x/�

d

2

Z
�

jrxzj
2 dx

D

Z
�

jrxzj
2 dxC

1

2

Z
@�

.x � �/jrxz � �j
2 ds.x/�

d

2

Z
�

jrxzj
2 dx:

Gathering the above computations, we get

D0.t/C2

Z
�

jSzj2 dx D
L2

2t3

Z
�

jzj2 dx�
2

t

Z
�

jrxzj
2 dxC

1

t

Z
@�

.x��/jrxz��j
2 ds.x/C2

Z
�

Sz g dx

6 �2
t
D.t/C

1

t

Z
@�

.x��/jrxz��j
2 ds.x/C

Z
�

jSzj2 dxC

Z
�

jgj2 dx;

which implies in particular

.t2D.t//0 6 t
Z
�C

.x � �/jrxz � �j
2 ds.x/C t2

Z
�

jgj2 dx: (A-4)

Using the assumption on z in the third and fourth lines of (A-1), one easily checks limt!0 t
2D.t/D 0;

hence we can integrate (A-4) between 0 and T, which gives (A-3), as j.x � �/j6 L for all x 2�. �
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ZEROS OF REPEATED DERIVATIVES OF RANDOM POLYNOMIALS

RENJIE FENG AND DONG YAO

It has been shown that zeros of Kac polynomials Kn(z) of degree n cluster asymptotically near the unit
circle as n→∞ under some assumptions. This property remains unchanged for the l-th derivative of
the Kac polynomials K (l)

n (z) for any fixed order l. So it’s natural to study the situation when the number
of the derivatives we take depends on n, i.e., l = Nn . We will show that the limiting behavior of zeros
of K (Nn)

n (z) depends on the limit of the ratio Nn/n. In particular, we prove that when the limit of the
ratio is strictly positive, the property of the uniform clustering around the unit circle fails; when the
ratio is close to 1, the zeros have some rescaling phenomenon. Then we study such problem for random
polynomials with more general coefficients. But things, especially the rescaling phenomenon, become
very complicated for the general case when Nn/n→ 1, where we compute the case of the random elliptic
polynomials to illustrate this.

1. Introduction

There are many well-known results regarding the nontrivial relations between zeros and critical points of
polynomials. The classical Gauss–Lucas theorem states that all the critical points of a polynomial are in
the convex hull of its zeros; in particular, if all the zeros are real, then so are the zeros of the derivative.
Differentiating a polynomial which has only real zeros will even out zero spacings [Farmer and Rhoades
2005]; in the case of random trigonometric polynomials, it’s proved in [Farmer and Yerrington 2006]
that the repeated differentiation causes the roots of the function to approach equal spacing, which can be
viewed as a toy model of crystallization in one dimension. For random polynomials under some mild
assumptions, the distribution of critical points and the distribution of its zeros are asymptotically the same
as the degree tends to infinity. This is because, roughly speaking, the coefficients of the derivative of a
random polynomial are not changed dramatically. Actually, such result holds for any fixed number of
derivatives [Feng ≥ 2019; Kabluchko and Zaporozhets 2014]. In this article, we are primarily interested
in the case when the number of the derivatives we take for the random polynomials is not fixed but grows
to infinity with the degree.

Our starting point is the classical Kac polynomials. Let ξ0, ξ1, . . . be nondegenerate, independent and
identically distributed (i.i.d.) complex random variables. The Kac polynomials are defined as

Kn(z)=
n∑

k=0

ξkzk . (1)

MSC2010: 60E05.
Keywords: derivatives of random polynomials, empirical measure.
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The Kac polynomials have degree n almost surely by assuming

P(ξ0 = 0)= 0. (2)

The distribution of zeros of Kac polynomials has been studied for decades; we refer to [Bloom and
Shiffman 2007; Hough et al. 2009; Ibragimov and Zeitouni 1997; Ibragimov and Zaporozhets 2013; Kac
1943; Kabluchko and Zaporozhets 2013; 2014; Sodin and Tsirelson 2004; Shepp and Vanderbei 1995].
It’s proved that if

E log(1+ |ξ0|) <∞, (3)

then with probability 1, the empirical measure of zeros of Kac polynomials converges weakly to the uniform
probability measure on the unit circle as n tends to infinity [Ibragimov and Zeitouni 1997; Ibragimov and
Zaporozhets 2013; Kabluchko and Zaporozhets 2013; 2014; Shepp and Vanderbei 1995]. If the assumption
(3) is removed, then zeros of Kn(z) may not concentrate around the unit circle; see [Ibragimov and
Zaporozhets 2013; Kabluchko and Zaporozhets 2013] for the case when |ξ0| has some logarithmic tails.

The property of clustering around the unit circle remains unchanged for the l-th derivative of the Kac
polynomials K (l)

n (z) for any fixed l as n tends to infinity [Feng ≥ 2019; Kabluchko and Zaporozhets
2014]. But things become interesting if the number of the derivatives we take depends on n, e.g., l = Nn .
For the extreme case when Nn = n, there is no zero for K (n)

n almost surely. Hence, some natural questions
are: What is the critical growth order of Nn so that the property of clustering around the unit circle for the
Kac polynomials K (Nn)

n fails? When it fails, what is the distribution of zeros of K (Nn)
n ? And how does the

distribution depend on the growth order of Nn? In this article, we will answer these questions for the Kac
polynomials completely. The estimates we derive for the Kac case can be applied to the general random
polynomials. But there are some issues for the general random polynomials, where we will compute the
case of the random elliptic polynomials to illustrate this.

1.1. Notation. Before we state our main results, we need to introduce some notation. We denote by

pn(z)=
n∑

k=0

ξk pk,nzk (4)

the random polynomials of degree n with general coefficients, where pk,n are deterministic coefficients
and ξk are nondegenerate i.i.d. complex random variables. Throughout the article, we assume the random
variable ξ0 satisfies the conditions (2) and (3).

We denote by p(Nn)
n (z) the Nn-th derivative of pn(z) with the degree

Dn = n− Nn. (5)

Without loss of generality, we may assume the convergence of

Nn

n
→ a ∈ [0, 1]. (6)

The random measure of zeros of pn(z) is denoted by

µn =
∑

z:pn(z)=0

δz, (7)
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and we use the notation
µDn =

∑
z:p(Nn )

n (z)=0

δz (8)

for the random measure of zeros of p(Nn)
n (z) of degree Dn .

Similarly, we denote by µK
n and µK

Dn
the random measures of zeros of Kn(z) and K (Nn)

n (z) for the Kac
polynomials, respectively, and we denote by µE

n and µE
Dn

the random elliptic polynomials. We denote
by Dr the open disk of radius r centered at the origin in the complex plane. The convergence of the
random measures νn to ν in probability (or in distribution) means the convergence in probability (or
in distribution) in the weak sense, i.e.,

∫
X φνn(dx)→

∫
X φν(dx) in probability (or in distribution) for

any smooth test function φ with compact support. Given a measure ν on the complex plane, we define
the scaling operator (Shν)(B) = ν(B/h) for h > 0 where B is any Borel set in C. In the end, we set
a ∧ b =min{a, b} and a ∨ b =max{a, b} and set log 0=−∞.

1.2. Kabluchko–Zaporozhets theorem. There are many well-known results regarding the global distri-
bution of zeros of some special Gaussian random analytic functions where the ensembles are usually
invariant under some group action, such as the Gaussian elliptic polynomials and Gaussian hyperbolic
analytic functions [Hough et al. 2009; Sodin and Tsirelson 2004]. Recently, a remarkable result proved
in [Kabluchko and Zaporozhets 2014] deals with more general random analytic functions. Kabluchko
and Zaporozhets [2014] proved that under certain assumptions on the coefficients of the random analytic
functions, the distribution of zeros will converge to a deterministic rotationally invariant measure on a
domain of the complex plane. Such measure can be explicitly characterized in terms of the coefficients.
To be more precise, let’s consider the random analytic function in the form of

Fn(z)=
∞∑

k=0

ξk pk,nzk, (9)

where ξk are nondegenerate i.i.d. complex random variables satisfying condition (3) and the coefficients
pk,n satisfy the following assumptions.

Assumptions 1. Assume there are a function p : [0,∞)→ [0,∞) and a number T0 ∈ (0,∞] such that

(1) p(t) > 0 for t < T0 and p(t)= 0 for t > T0,

(2) p is continuous on [0, T0), and in the case T0 <∞, left continuous at T0,

(3) limn→∞ supk∈[0,An]||pk,n|
1/n
− p(k/n)| = 0 for every A > 0, and

(4) R0= lim inft→∞ p(t)−1/t
∈ (0,∞], lim infk→∞|pk,n|

−1/k
≥ R0 for every fixed n∈N and additionally,

lim infn,k/n→∞|pk,n|
−1/k
≥ R0.

Roughly speaking, the major assumption is that the coefficients pk,n are approximately en log p(k/n) for
some p, which is positive on some interval [0, T0), continuous in [0, T0], and equal to 0 in (T0,∞).

Theorem 1 [Kabluchko and Zaporozhets 2014]. Under Assumptions 1 and (3), let I (s) be the Legendre–
Fenchel transform of − log p, i.e., I (s) = supt≥0(st + log p(t)); then the random measure (1/n)µFn



1492 RENJIE FENG AND DONG YAO

of zeros of Fn(z) converges in probability to a deterministic measure µ in DR0 , which is rotationally
invariant and satisfies

µ(Dr )= I ′(log r), r ∈ (0, R0).

As a convention, I ′ is the left derivative of I . A typical example to which to apply the Kabluchko–
Zaporozhets theorem is the Kac polynomials where we have

pk,n = 1k≤n, p(t)= 1t≤1, T0 = 1. (10)

By some computations, we have I (s)= s ∨ 0 and thus the limiting distribution satisfies

µ(Dr )=

{
0, 0≤ r ≤ 1,
1, r > 1,

(11)

i.e., the uniform probability measure on the unit circle.
But we cannot apply the Kabluchko–Zaporozhets theorem directly in our case to derive the distribution

of zeros of K (Nn)
n or that of the general random polynomials p(Nn)

n . For example, if Nn = n− blog nc,
then the degree of p(Nn)

n is Dn = blog nc; therefore, one cannot find some A so that Assumption 1(3) is
satisfied. We need to modify their theorem to deal with our situation more conveniently. We consider the
random polynomials in the form of

Fn(z)=
(T0−δn)Ln∑

k=0

ξk pk,nzk, (12)

where (T0− δn)Ln is an integer and we assume that Fn(z) satisfies the following assumptions:

Assumptions 2. There exist a function p : [0,∞)→ [0,∞), a positive number T0 ∈ (0,∞), a sequence
of positive integers Ln going to∞ as n→∞, and a sequence of numbers δn ∈ (−T0, T0) (not necessarily
positive) that goes to 0 as n→∞ such that

(1) p(t) > 0 for t ∈ [0, T0) and p(t)= 0 for t > T0,

(2) p is continuous in [0, T0], and

(3) limn→∞ sup0≤k≤(T0−δn)Ln
||pk,n|

1/Ln − p((k/Ln)∧ T0)| = 0.

Then we have the following theorem whose proof is sketched in the Appendix.

Theorem 2. For random polynomials Fn(z) in the form of (12) which satisfy Assumptions 2, let I(s) be
the Legendre–Fenchel transform of − log p; then the random measure (1/Ln)µFn of zeros will converge
in probability to a deterministic rotationally invariant measure µ where

µ(Dr )= I ′(log r), r > 0. (13)

Throughout the article, we often make use of the estimate

lim
n→∞

sup
0≤k≤(T0−δn)Ln

∣∣∣∣ 1
Ln

log|pk,n| − log p
(

k
Ln
∧ T0

)∣∣∣∣= 0. (14)
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This estimate implies the main Assumption 2(3), which is the direct consequence of the inequality

|x − y| ≤ (x ∧ y)e|log x−log y|
|log x − log y|

for any x, y > 0. The main advantage of (14) is the convenience in computations.

1.3. Main results. We first state our main results for the Kac polynomials, which will answer the questions
we raised at the beginning of the article.

Kac polynomials. The main result is that the limiting behavior of the distribution of zeros of K (Nn)
n will

depend on the limit of the ratio Nn/n. We will divide our discussions into two categories: Dn goes to
infinity and Dn remains a fixed number, where Dn=n−Nn is the degree of the random polynomials K (Nn)

n .
Without loss of generality, we consider the four different cases 1© Nn/n→ 0, 2© Nn/n→ a ∈ (0, 1),
3© Nn/n→ 1 and Dn→∞, e.g., Nn = n−blog nc and Dn =blog nc, and 4© Nn/n→ 1 but Dn =m<∞,

i.e., K (Nn)
n has a fixed degree m.

In the cases of 1©– 3© where Dn→∞, we will show that the coefficients of K (Nn)
n or its rescaling will

satisfy Assumptions 2 with different choices of Ln , δn , T0, and p; then we apply Theorem 2 to prove:

Theorem 3. Assume Dn→∞ as n→∞; we have the following results regarding the empirical measure
of zeros of derivatives of Kac polynomials K (Nn)

n :

(1) If limn→∞ Nn/n = 0, then (1/Dn)µ
K
Dn

converges in probability to the uniform probability measure
on the unit circle, i.e., the measure defined in (11).

(2) If limn→∞ Nn/n = a ∈ (0, 1), then (1/Dn)µ
K
Dn

converges in probability to a rotationally invariant
measure µK

a on C defined by

µK
a (Dr )=

{
ar/((1− a)(1− r)), 0< r < 1− a,
1, r ≥ 1− a.

(15)

(3) If limn→∞ Nn/n = 1, then globally we have the convergence in probability

1
Dn
µK

Dn
→ δ0. (16)

If we set Rn = n/Dn as the quotient of the degrees of Kn and K (Nn)
n and consider the rescaling Kac

polynomials K̃n(z) := K (Nn)
n (z/Rn), then the empirical measure (1/Dn)µ

K̃
Dn

which is the same as
(1/Dn)SRn (µ

K
Dn
) converges in probability to a rotationally invariant measure µ̃K where

µ̃K (Dr )=

{
r, r < 1,
1, r ≥ 1.

(17)

In particular, the density for the measure µ̃K is

d̃ K (z)=
1

2π |z|
1|z|≤1. (18)
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In the case 4© when Dn remains a fixed number, we will show that the measure of zeros of the rescaling
polynomials K (Nn)

n (z/n) will converge to some random measure. The main tool to prove this result is
Rouché’s theorem in complex analysis. Our result is as follows.

Theorem 4. Suppose limn→∞ Nn/n = 1 and Dn = m for all n; then globally

1
m
µK

Dn
→ δ0, (19)

where the convergence is in probability. Furthermore, we have the rescaling limit

Sn(µ
K
Dn
)→ µ f K

m
, (20)

where the convergence is in distribution and µ f K
m

is the random measure of zeros of the random polynomial

f K
m (z)=

m∑
k=0

ξk

k!
zk . (21)

Remark. The relationship between the results in Theorems 3(3) and 4 has an intuitive explanation.
Consider the case in Theorem 3(3). We can zoom in zeros of K (Nn)

n (z) in two steps. First we zoom in the
zeros of K (Nn)

n (z) by a factor of n; then by Theorem 4 (treating Dn as fixed for this moment) the scaled
zeros will be close to the zeros of f K

Dn
(z). Here f K

Dn
(z) is just the function in (21) with m replaced by Dn .

If we then zoom out zeros of f K
Dn

by a factor of Dn (which is the degree of the polynomial f K
Dn

), then as
a whole we get something close to zooming in the zeros of K (Nn)

n (z) by a factor of n/Dn . Taking n to
infinity we should get the limit in Theorem 3(3). This is in accordance with the fact that (17) is also the
limit of the empirical measure of zeros of f K

Dn
(Dnz) as m→∞, as shown in Theorem 2.3 of [Kabluchko

and Zaporozhets 2014]. Note that in the zooming out process, we can also replace
∑Dn

k=0(ξk/k!)(Dnz)k

by
∑
∞

k=0(ξk/k!)(Dnz)k since Theorem 2.1 of [Kabluchko and Zaporozhets 2014] shows the empirical
measure of

∑
∞

k=0(ξk/k!)(Dnz)k restricted to unit disk also converges to the measure in (17).

As a summary, we show that the clustering property of zeros around the unit circle for the derivatives of
Kac polynomials holds if and only if Nn/n→ 0; the conclusion (3) in Theorem 3 together with Theorem 4
imply that, if Nn/n→ 1, zeros will converge to the origin with the average decay rate Dn/n which is the
quotient of the degrees of K (Nn)

n and Kn . Thus we will completely answer the questions we proposed at
the beginning of the article.

General random polynomials. We can extend the above results for the Kac polynomials to the general
random polynomials where the coefficients satisfy Assumptions 1 in the Kabluchko–Zaporozhets theorem.

Theorem 5. Suppose the random polynomial pn(z) of (4) satisfies Assumptions 1 with some function p(t);
then regarding the zeros of p(Nn)

n , we have:

(1) If limn→∞ Nn/n = 0, let I (s) be the Legendre–Fenchel transform of − log p; then (1/Dn)µDn

converges in probability to a rotationally invariant measure µ given by

µ(Dr )= I ′(log r), r > 0.

That is, (1/Dn)µDn has the same limit as (1/n)µn .
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(2) If limn→∞ Nn/n=a ∈ (0, 1), let log ua= log p(t+a)+(t+a) log(t+a)−t log t+(1−a) log(1−a)
if 0≤ t ≤ 1−a and −∞ if t > 1−a. Let Ia(s) be the Legendre–Fenchel transform of − log ua; then
(1/Dn)µDn converges in probability to a rotationally invariant measure µa given by

µa(Dr )=
1

1− a
I ′a(log r), r > 0.

Compared with Theorems 3 and 4 for the Kac case, things become complicated for the general random
polynomials when the ratio Nn/n tends to 1. First, one cannot conclude that (1/Dn)µDn converges in
probability to δ0. To see this, let’s consider the following example where the coefficients of the random
polynomials pn are

pk,n =

{
1, 0≤ k < Nn,

n! (k− Nn)!/(k! Dn!), Nn ≤ k ≤ n,
where

Dn = blog nc and Nn = n− Dn.

We let

p(t)= 10≤t≤1.

We claim that pk,n and p satisfy Assumptions 1. Indeed, when 0≤ k < Nn , we have

p1/n
k,n = p

(k
n

)
.

Therefore, it remains to prove

lim
n→∞

sup
Nn≤k≤n

|p1/n
k,n − 1| = 0.

By (14), it’s enough to show

lim
n→∞

sup
Nn≤k≤n

∣∣∣1n log pk,n

∣∣∣= 0. (22)

For Nn ≤ k ≤ n, we have 1≤ n! (k− Nn)!/(k! Dn!)≤ n!/k!; then

sup
Nn≤k≤n

∣∣∣1n log pk,n

∣∣∣≤ sup
Nn≤k≤n

1
n

log
n!
k!
≤

1
n

log nDn ≤
log2 n

n
,

where (22) follows as n→∞, which completes the proof of the claim. But the Nn-th derivative of pn is

p(Nn)
n =

n!
Dn!

Dn∑
k=0

ξk+Nn zk,

which is in the form of Kac polynomials; thus, the empirical measure of zeros will converge to the uniform
probability measure on the circle instead of the delta function at the origin.

Secondly, even if zeros converge to δ0, one cannot easily find the rescaling limit of the empirical
measure of zeros if there exists one. The rescaling property should highly depend on the properties of
coefficients, such as the convergent rate of pn,k to p(t) and the monotonicity of pk,n for each fixed n.
The following results regarding the elliptic polynomials provide such an example.
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Random elliptic polynomials. The random elliptic polynomials are in the form of

En(z)=
n∑

k=0

ξk

√(n
k

)
zk . (23)

If ξk are i.i.d. complex Gaussian random variables, then the random elliptic polynomials are also called
Gaussian SU(2) polynomials. The Gaussian SU(2) polynomials can be viewed as meromorphic functions
defined on the complex projective space CP1 ∼= S2, and a basic fact is that the distribution of its zeros is
invariant under the SU(2) action. The Gaussian SU(2) polynomial is the standard model when one tries
to generalize the random polynomials to random holomorphic sections on the complex manifolds [Bleher
et al. 2000; Hough et al. 2009].

One can show that the coefficients of the random elliptic polynomials satisfy all of Assumptions 1 with
the associated function (see also [Kabluchko and Zaporozhets 2014])

log pE(t)=− 1
2 t log t − 1

2(1− t) log(1− t) for 0≤ t ≤ 1. (24)

Theorem 6. For the random elliptic polynomials En(z) defined in (23), we have:

(1) The conclusions in Theorem 5 hold for (1/Dn)µ
E
Dn

with p replaced by pE defined in (24).

(2) If limn→∞ Nn/n = 1, then we have the global convergence in probability

1
Dn
µE

Dn
→ δ0.

Furthermore, if Dn→∞, then in probability, we have

1
Dn

S√Rn
(µE

Dn
)→ µ,

where Rn = n/Dn as before and µ is the rotationally invariant probability measure defined as

µ(Dr )=
r(
√

4+ r2− r)
2

, r ∈ (0,∞). (25)

If Dn = m <∞, then the following rescaling limit holds in distribution:

S√n(µ
E
Dn
)→ µ f E

m
,

where µ f E
m

is the random measure of zeros of f E
m =

∑m
k=0(ξk/(k!

√
(m− k)!))zk .

1.4. Further remarks. Let’s compare Theorem 6 with Theorems 3(3) and 4 for the case when Nn/n→ 1.
Both the empirical measures of zeros of derivatives tend to the point mass at the origin, but the interesting
result is that they converge with different decay rates. Zeros converge to the origin with the average decay
rate Dn/n for the Kac case and

√
Dn/n for the elliptic case, which indicates that Assumptions 1 is not

enough to extract the complete information about the convergence of zeros of the Nn-th derivative of
general random polynomials; i.e., the main assumption limn→∞ supk∈[0,An]||pk,n|

1/n
− p(k/n)| = 0 for

every A > 0 is not enough. It seems that we need to impose additional assumptions on the rate of the
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convergence of pk,n to p for Nn ≤ k ≤ n and the growth order of pk,n . As in (14), we may alternatively
consider the quantities

ηn := sup
Nn≤k≤n

∣∣∣1n log|pk,n| − log p
(k

n

)∣∣∣ (26)

and
bn := sup

Nn≤k≤n
|pk,n|. (27)

The asymptotic properties of ηn and bn may play important roles in the case when Nn/n→ 1. Note that
ηn is identical to 0 for the Kac polynomials and asymptotic to (log Dn)/(4n)+ O(1/n) for the random
elliptic polynomials. Two questions are raised: What are the asymptotic properties of ηn and bn so that
zeros of p(Nn)

n tend to the origin? And if zeros tend to the origin, how does the decay rate depend on ηn

and bn? We postpone these two problems for further investigation.
Along with Kac polynomials, there is another important type of random polynomial defined via the

orthogonal polynomials. Given a bounded simply connected domain � in the complex plane with analytic
boundary C of length L and a positive weight function w(z), we define the inner product

〈 f, g〉 =
1
L

∫
C

f (z)g(z)w(z)|dz|. (28)

Then we can find an orthonormal basis {pwn (z)} with respect to this inner product, where pwn (z) is a
polynomial of degree n in which the coefficient of zn is real and positive. Shiffman and Zelditch [2003]
prove that the empirical measure of zeros of

Pn(z)=
n∑

k=0

ξk pwk (z), (29)

where ξk are i.i.d. standard complex Gaussian random variables, tends to the equilibrium measure of � as
n tends to infinity. Such result is then generalized by Bloom and Shiffman [2007] to higher dimensions
where they get rid of the analytic assumption and replace it by the Bernstein–Markov condition. In [Feng
≥ 2019], the author further studied zeros of the l-th derivative of P (l)n for any fixed l as n→∞, and
proved that zeros of derivatives of any fixed order also tend to the equilibrium measure. The method used
in [Feng ≥ 2019; Shiffman and Zelditch 2003] is quite different from that of [Kabluchko and Zaporozhets
2014]. One needs to apply the classical Szegő theorem [1975] on orthogonal polynomials together with
the conformal transformation between the bounded domain and the unit disk. Then it’s a natural problem
to study the behavior of zeros of derivatives of P (Nn)

n . As indicated by Theorem 3 for the Kac polynomials,
it seems that zeros will still converge to the equilibrium measure if Nn/n→ 0, but the results for the
case when Nn/n→ a ∈ (0, 1] are quite hard to predict. One may prove the results with the aid of the
conformal transformation, but the strategy is unclear to the authors.

The paper is organized as follows. We will prove Theorems 3 and 4 for the Kac polynomials in
great details in Section 2. The estimates for the Kac case can be applied to prove Theorem 5 for the
general random polynomials in Section 3. In the end, we will prove Theorem 6 for the random elliptic
polynomials. In the Appendix, we will sketch the proof of Theorem 2.
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2. Kac polynomials

In this section, we will prove Theorems 3 and 4 for the Kac polynomials.
Let K (Nn)

n be the Nn-th derivative of the Kac polynomials. Since we want to prove the empirical
measure of zeros converges to a deterministic limit, it suffices to prove the convergence in distribution.
By the fact that ξk are i.i.d., it’s equivalent to consider

K (Nn)
n (z)=

Dn∑
k=0

ξk(k+ 1) · · · (k+ Nn)zk . (30)

Observing that the random measure of zeros is invariant by the dilation, i.e., µc f = µ f for any nonzero c,
we can alternatively consider the following normalized random polynomial so that the leading-order term
is ξDn zDn :

K (Nn)
n (z)=

Dn∑
k=0

ξk fk,nzk, (31)

where throughout the article, we set

fk,n :=
(k+ Nn)! Dn!

k! n!
. (32)

Stirling’s formula reads

k! = ck
√

2πk
(k

e

)k
, (33)

where ck is a sequence of positive numbers tending to 1 as k tends to∞ and hence uniformly bounded.
Then we have

1
Ln

log fk,n =
1

Ln

[
(k+Nn) log(k+Nn)−(k+Nn)+

log(k+Nn)

2
+Dn log Dn−Dn+

log Dn

2

−

(
k logk−k+

logk
2
+n logn−n+

logn
2

)]
+

1
Ln
(logck+Nn+ logcDn− logck− logcn)

=
1

Ln
[(k+Nn) log(k+Nn)+Dn log Dn−n logn−k logk]

+
1

2Ln
(log(k+Nn)+ log Dn− logn− logk)+

1
Ln
(logck+Nn+ logcDn− logck− logcn)

:= I1(k,n)+I2(k,n)+I3(k,n). (34)

When k = 0, we set ck = 1 and set I1(0, n) = (1/Ln)(Nn log Nn + Dn log Dn − n log n), I2(0, n) =
(1/(2Ln))(log Nn + log Dn − log n), and I3(0, n)= (1/Ln)(log cNn + log cDn − log cn) to be consistent
with the definitions. The expressions of I j are different according to the choices of Ln (only differ by the
front factor Ln), but we use the same notation I j for different cases throughout the article to reduce the
notation we use.
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In the following computations, we will let Ln→∞ (although we choose different Ln for different
cases); hence, I3(k, n) will tend to 0 uniformly by the uniform bound of ck , which means the third term
I3(k, n) is always negligible.

2.1. Case 1©. Let’s first consider the case 1© when

lim
n→∞

Nn

n
= 0. (35)

For this case, we need to choose Ln = n in (34). We first simply have

lim
n→∞

sup
0≤k≤Dn

|I2(k, n)| ≤ lim
n→∞

2
n

log n = 0. (36)

For I1(k, n), we observe that for each fixed n, I1(k, n) is increasing with respect to k by considering the
function I (x)= (x+Nn) log(x+Nn)− x log x where I ′(x)= log(x+Nn)− log x ≥ 0. We combine this
with the fact that I1(Dn, n)= (1/n)((Dn + Nn) log(Dn + Nn)+ Dn log Dn − n log n− Dn log Dn)= 0;
we first have

sup
0≤k≤Dn

|I1(k, n)| ≤ |I1(0, n)| ∨ |I1(Dn, n)| = |I1(0, n)|,

which further reads

sup
0≤k≤Dn

|I1(k, n)| ≤
1
n
|n log n− Nn log Nn − Dn log Dn|

=
1
n
|Nn log n+ Dn log n− Nn log Nn − Dn log Dn|

=

∣∣∣∣−Nn

n
log
(

Nn

n

)
−

Dn

n
log
(

Dn

n

)∣∣∣∣.
Thus, we have

lim
n→∞

sup
0≤k≤Dn

|I1(k, n)| = 0, (37)

since Nn/n→ 0 and Dn/n = 1− Nn/n→ 1 as n→∞.
Combining (36)–(37) and the fact that I3 always tends to 0, we get

lim
n→∞

sup
0≤k≤Dn

∣∣∣1n log fk,n

∣∣∣= 0. (38)

Hence, the coefficients fk,n satisfy Assumptions 2 with Ln=n, T0=1, and δn= Nn/n so that (1−δn)Ln=

Dn and log f (t)= 0 for 0 ≤ t ≤ 1 and log f =−∞ for t > 1. Therefore, zeros of K (Nn)
n will have the

same distribution as the Kac polynomials by computations in (10) and (11) as n→∞.

2.2. Case 2©. Let’s consider the case when

lim
n→∞

Nn

n
= a ∈ (0, 1). (39)
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Let’s choose Ln = n in (34) again. By the same arguments as in Case 1©, I2 and I3 converge to 0 uniformly
for 0≤ k ≤ Dn as n→∞. Therefore, it remains to estimate I1. Let’s put Nn/n = a+ δn where δn→ 0.
Assume n is large enough so that

|δn| ≤
1− a

2
∧

a
2
. (40)

For k ≥ 1, we rewrite

I1 =
1
n
[(k+ Nn) log(k+ Nn)+ Dn log Dn − n log n− k log k]

=
1
n
[(n− Dn + k) log(k+ Nn)− n log n− k log k+ Dn log k− Dn log k+ Dn log Dn]

=
1
n

[
n log

(
k
n
+

Nn

n

)
+ (k− Dn) log(k+ Nn)− (k− Dn) log k+ Dn log

(
Dn

k

)]
= log

(
k
n
+

Nn

n

)
+

[(
k
n
−

Dn

n

)
log
(

1+
Nn

k

)
+

Dn

n
log
(

Dn

k

)]
:= I4+ I5.

To estimate I4 and I5, we will make use of the following inequality which is the direct consequence of
the intermediate value theorem:

0≤ log y− log x ≤
1
c
(y− x) for 0< c ≤ x ≤ y. (41)

We can rewrite I4 as log(k/n+ a+ δn); by (40)–(41), we have∣∣∣I4− log
(k

n
+ a

)∣∣∣≤ ∣∣∣∣2δn

a

∣∣∣∣
for all 1≤ k ≤ Dn . So we have

lim
n→∞

sup
1≤k≤Dn

∣∣∣I4− log
(k

n
+ a

)∣∣∣= 0. (42)

For I5, since Nn/n = a+ δn and Dn/n = 1− a− δn , we can rewrite it as

I5 =

(k
n
− (1− a)+ δn

)
log
(

1+
(a+ δn)n

k

)
+ (1− a− δn) log

(1− a− δn)n
k

=
k
n

log
(

1+ a n
k
+ δn

n
k

)
+ (1− a− δn) log

(
−1+

n+ k
k+ (a+ δn)n

)
.

Then we have∣∣∣∣I5−

[
k
n

log
(

1+ a
n
k

)
+(1− a) log

(
−1+

n+ k
k+ an

)]∣∣∣∣
≤

k
n

∣∣∣∣log
(

1+ a
n
k
+ δn

n
k

)
− log

(
1+ a

n
k

)∣∣∣∣
+ (1− a)

∣∣∣∣log
(
−1+

n+ k
k+ (a+ δn)n

)
− log

(
−1+

n+ k
k+ an

)∣∣∣∣+ |δn|

∣∣∣∣log
(
−1+

n+ k
k+ (a+ δn)n

)∣∣∣∣
:= I6+ I7+ I8.
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By (40)–(41) again, we have

I6 ≤
k
n

1
1+ (a/2)(n/k)

|δn|
n
k
≤ |δn| → 0.

For I7, since |δn| ≤ (1− a)/2, we know k+ (a+ δn)n ≤ k+ ((1+ a)/2)n. Therefore,

−1+
n+ k

k+ (a+ δn)n
≥−1+

n+ k
k+ ((1+ a)/2)n

=
(1− a)n/2

((1+ a)/2)n+ k
≥

(1− a)n/2
((1+ a)/2)n+ n

=
1− a
3+ a

. (43)

We also have
−1+

k+ n
k+ an

≥
1− a
3+ a

.

Thus, by (41), we have

I7 = (1− a)
∣∣∣∣log

(
−1+

n+ k
k+ (a+ δn)n

)
− log

(
−1+

n+ k
k+ an

)∣∣∣∣
≤ (1− a)

3+ a
1− a

∣∣∣∣ k+ n
k+ (a+ δn)n

−
k+ n

k+ an

∣∣∣∣
≤ (3+ a)

(k+ n)|δn|n
(k+ an/2)2

≤ (3+ a)
(n+ n)n|δn|

(an/2)2
≤

8(3+ a)|δn|

a2 → 0.

For I8, taking into account (40) and (43), we have

1− a
3+ a

≤−1+
k+ n

k+ (a+ δn)n
=
(1− a− δn)n
k+ (a+ δn)n

≤
[(1− a)+ (1− a)/2]n

(a− a/2)n
≤

3(1− a)
a
;

it follows that

I8 ≤

(∣∣∣∣log
(

3(1− a)
a

)∣∣∣∣∨ ∣∣∣∣log
(

1− a
3+ a

)∣∣∣∣)|δn| → 0.

If we combine the estimates of I6, I7, and I8, we conclude that

lim
n→∞

sup
1≤k≤Dn

∣∣∣∣I5−

[
k
n

log
(

1+ a
n
k

)
+ (1− a) log

(
−1+

n+ k
k+ an

)]∣∣∣∣= 0. (44)

If we set

log f1(t)= log(t + a)+ t log
(

1+
a
t

)
+ (1− a) log

(
1− a
t + a

)
= (t + a) log(t + a)− t log t + (1− a) log(1− a), t > 0, (45)

then the estimates (42) and (44) for I4 and I5 imply

lim
n→∞

sup
1≤k≤Dn

∣∣∣I1− log f1

(k
n

)∣∣∣= 0. (46)

The estimate of I1 in the case k = 0 can be achieved by the same way, and actually (46) holds with the
supremum taken over 0≤ k ≤ Dn .

Let’s set f = f1 for 0≤ t ≤ 1− a and 0 for t > 1− a. Let’s set

1(b)= sup
1−a≤t≤s≤1, s−t≤b

|log f1(t)− log f1(s)|;
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then we have

sup
0≤k≤Dn

∣∣∣I1− log f
(k

n
∧ (1− a)

)∣∣∣≤ sup
0≤k≤Dn

∣∣∣I1− log f1

(k
n

)∣∣∣+1(|δn|).

Observing that log f1 is uniformly continuous on [1− a, 1], combining (46) and the fact that δn → 0,
then we have

lim
n→∞

sup
0≤k≤Dn

∣∣∣I1− log f
(k

n
∧ (1− a)

)∣∣∣= 0.

Therefore, if we combine the estimates of I1, I2, and I3 we derived above for Case 2©, we have

lim
n→∞

sup
0≤k≤Dn

∣∣∣1n fk,n − log f
(k

n
∧ (1− a)

)∣∣∣= 0. (47)

As a summary, in the case when Nn/n→ a ∈ (0, 1), by defining f (t) above, the coefficients fk,n will
satisfy Assumptions 2 with T0 = 1− a, Ln = n, and δn = Nn/n− a (note that Dn = (T0− δn)Ln again).
The Legendre–Fenchel transform of − log f is

I (s)=
{

a log(a/(e−s
− 1)+ a)+ (1− a) log(1− a), s < log(1− a),

s(1− a), s ≥ log(1− a).

Therefore, by Theorem 2, the limiting measure for the sequence of the random measure (1/Ln)µ
K
Dn

(which is (1/n)µK
Dn

) satisfies

µ̂(Dr )=

{
ar/(1− r), 0< r < 1− a,
1− a, r ≥ 1− a.

Since Dn/n→ 1−a, the limit of the empirical measure (1/Dn)µ
K
Dn

will thus be (1/(1−a))µ̂(Dr ), which
is (15).

2.3. Case 3©. In the case when

lim
n→∞

Nn

n
= 1 and Dn→∞, (48)

we only prove (17), which implies (16). To prove (17), we need to consider

K̃n(z) := RDn
n K (Nn)

n

(
z

Rn

)
=

Dn∑
k=0

ξk f̃k,nzk, (49)

where

f̃k,n = fk,n RDn−k
n and Rn =

n
Dn
. (50)

It’s enough to study K̃n(z) since it has the same zeros as K (Nn)
n (z/Rn).

In this case, we need to choose Ln = Dn in (34) with the decomposition

1
Dn

log fk,n := I1(k, n)+ I2(k, n)+ I3(k, n).
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Thus, we have the decomposition

1
Dn

log f̃k,n =

(
1−

k
Dn

)
log Rn +

1
Dn

log fk,n

=

[(
1−

k
Dn

)
log Rn + I1

]
+ I2+ I3.

(51)

As before, I3 goes to 0 uniformly again since Dn→∞ as n→∞.
We note that

I2(k, n)=
1

2Dn
(log(k+ Nn)+ log Dn − log n− log k)

is decreasing with respect to k ≥ 1 for fixed Nn , Dn , and n; thus, we simply have sup0≤k≤Dn
|I2(k, n)| =

|I2(1, n)| ∨ |I2(Dn, n)|. Since I2(Dn, n)= 0, we further have

sup
0≤k≤Dn

|I2(k, n)| = |I2(1, n)| =
1

2Dn
|log(Nn + 1)+ log Dn − log n|.

By assumption (48), we can choose n large enough so that Nn ≥
1
2 n; thus, we have

sup
0≤k≤Dn

|I2(k, n)| ≤
1

2Dn

(
log
(

n
Nn

)
+ log Dn

)
≤

log 2
2Dn
+

log Dn

2Dn
→ 0,

since Dn→∞ as n→∞.
For I1, we rewrite it as

I1 =
1

Dn
((k+ n− Dn) log(k+ Nn)− n log n+ Dn log Dn − k log k)

=
1

Dn

(
n log

k+ Nn

n
+ (k− Dn) log(k+ Nn)+ Dn log Dn − k log k

)
=

1
Dn

(
n log

(
k+Nn

n

)
+(k−Dn) log

(
k+Nn

n

)
+(k−Dn) log n+Dn log Dn−k log Dn−k log

(
k

Dn

))
=

n
Dn

log
(

n+ k− Dn

n

)
−

k
Dn

log
(

k
Dn

)
+

(
k

Dn
− 1

)
(log n− log Dn)+

(
k

Dn
− 1

)
log
(

k+ Nn

n

)
.

Thus, we can rewrite

Ĩ1 : =

(
1−

k
Dn

)
log Rn + I1

=
n

Dn
log
(

n+ k− Dn

n

)
−

k
Dn

log
(

k
Dn

)
+

(
k

Dn
− 1

)
log
(

k+ Nn

n

)
.

Now we put

log f̃ = t − 1− t log t for 0≤ t ≤ 1 and log f̃ =−∞ for t > 1. (52)

Then we can write Ĩ1 as

Ĩ1 = log f̃
(

k
Dn

)
+ I9, (53)
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where

I9 =
n

Dn

[
log
(

1+
k− Dn

n

)
−

k− Dn

n

]
+

(
k

Dn
− 1

)
log
(

k+ Nn

n

)
.

Since |log(1+ x)| ≤ |x | and |log(1+ x)− x | ≤ x2 when |x | is small, then we have the uniform estimate∣∣∣∣log
(

1+
k− Dn

n

)
−

k− Dn

n

∣∣∣∣≤ (k− Dn

n

)2

≤

(
Dn

n

)2

as n becomes large enough, which implies the first term in I9 tends to 0.
Note that 1≥ (k+ Nn)/n ≥ Nn/n; thus, |log((k+ Nn)/n)| ≤ |log(Nn/n)| = |log(1−Dn/n)| ≤ Dn/n.

If we combine this with the fact |k/Dn − 1| ≤ 1, we prove that the second term in I9 also tends to 0.
Hence, I9→ 0 as n→∞. Therefore,

lim
n→∞

sup
0≤k≤Dn

∣∣∣∣ Ĩ1− log f̃
(

k
Dn

)∣∣∣∣= 0.

If we combine the estimates of Ĩ1, I2, and I3 above, we have proved

lim
n→∞

sup
0≤k≤Dn

∣∣∣∣ 1
Dn

log f̃k,n − log f̃
(

k
Dn

)∣∣∣∣= 0. (54)

As a summary, the coefficients f̃k,n satisfy Assumptions 2 with Ln = Dn , T0 = 1, δn = 0, and f̃ . The
Legendre–Fenchel transform I (s)= sup0≤t≤1(st + log f̃ (t)) is

I (s)=
{

es
− 1, s < 0,

s, s ≥ 0.

Thus, the explicit expression (17) of the limiting measure µ̃K follows by Theorem 2.

2.4. Case 4©. Now we prove Theorem 4 for the case where Dn remains a fixed positive integer m. The
proof makes use of Rouché’s theorem. We start with the following proposition regarding the convergence
of zeros of a sequence of deterministic polynomials.

Proposition 7. Let G =
∑m

k=0 gkzk , where {gk} are deterministic constants and gm 6= 0. Let Gn =∑m
k=0 gk,nzk , where {gk,n} are also deterministic. Assume gk,n converges to gk for each fixed k. Then the

measure of zeros µGn will converge to µG in the sense of distribution.

Proof. Let’s choose φ as the smooth test function with compact support and pick ε > 0 small enough. We
first claim that for each zero z0 of G with multiplicity α0, for n large enough, Gn has exactly α0 zeros
in D(z0, ε), the open disc centered at z0 with radius ε. Once this is done, since G has m zeros (m is a finite
number), we can pick a common N0 such that when n > N0, Gn will have exactly αi zeros in D(zi , ε)

for any zi in the zero set of G with multiplicity αi . This means that we can make an appropriate ordering
of the zero set of G (denoted by zi , 1≤ i ≤ m) and the zero set of Gn (denoted by zi,n , 1≤ i ≤ m) such
that |zi − zi,n| ≤ ε for all i . Then we have

|µGn (φ)−µG(φ)| ≤
∑

1≤i≤m

|φ(zi )−φ(zi,n)| ≤ mK ε, (55)
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where K is the sup norm of the derivative of φ. Since ε is arbitrarily small, this implies the weak
convergence of µGn . All the rest is to prove the claim.

Let’s choose ε < 1 small enough such that z0 is the only zero of G with multiplicity α ≥ 1 in the
closure of D(z0, ε). Assume |z0| + 1≤ R for some R. For any z ∈ D(z0, ε), we have

|Gn −G| ≤
m∑

k=0

|gn,k − gk |Rk . (56)

Let’s set

η(ε)= min
z∈∂D(z0,ε)

|G(z)|;

then as n becomes large enough, we have
m∑

k=0

|gn,k − gk |Rk < η(ε),

which implies that

|Gn(z)−G(z)|< |G(z)| for any z ∈ ∂D(z0, ε).

Hence, Gn and G have the same number of zeros in D(z0, ε) by Rouché’s theorem. This completes the
proof of the claim and hence Proposition 7. �

Let’s apply Proposition 7 to prove Theorem 4. In the case of Dn = m and Nn = n−m, (31) reads

K (n−m)
n (z)=

m∑
k=0

ξk fk,nzk .

To study the limiting behavior of zeros of K (n−m)
n (z/n), we may alternatively consider the random

polynomials Gn(z)= nm K (n−m)
n (z/n). The coefficients of Gn are

gk,n = nm−k fk,n =
m!
k!

nm−k

n(n− 1) · · · (n− (m− k)+ 1)
.

Since k and m are both fixed when n→∞, we have

lim
n→∞

gk,n =
m!
k!
.

By Proposition 7, the measure of zeros µGn will converge to µ f K
m

almost surely, where µ f K
m

is the random
measure of zeros of f K

m (z)=
∑m

k=0(ξk/k!)zk . The limit (20) follows from this since K (n−m)
n (z/n) have

the same zeros as Gn . In particular, the empirical measure of zeros of K (n−m)
n will converge to δ0.

3. General random polynomials

In this section, we will apply the estimates we derived for the Kac polynomials in Section 2 to prove
Theorem 5 for the general random polynomials.
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Let pn be the general random polynomials of degree n defined in (4). Let’s assume that the coefficients
pk,n satisfy Assumptions 1 with the associated continuous function p that is positive on [0, 1) and

lim
n→∞

sup
k∈[0,n]

∣∣∣|pk,n|
1/n
− p

(k
n

)∣∣∣= 0. (57)

The Nn-th derivative of pn is

p(Nn)
n =

Dn∑
k=0

ξk+Nn pk+Nn,n fk,nzk, (58)

where fk,n is defined in (32). Since ξk are i.i.d., it’s equivalent to consider the random polynomials

p(Nn)
n =

Dn∑
k=0

ξk pk+Nn,n fk,nzk, (59)

where (58) and (59) have the same distribution of zeros. We set

uk,n = pk+Nn,n fk,n;

then we rewrite

p(Nn)
n =

Dn∑
k=0

ξkuk,nzk .

We now verify that uk,n satisfy Assumptions 2 with some associated function u.

3.1. Case 1. (Nn/n→ 0). As in Case 1© of Kac polynomials, we take Ln = n, δn = Nn/n, and T0 = 1.
For fixed n, fk,n is increasing with k since

fk+1,n

fk,n
=

k+ 1+ Nn

k+ 1
> 1.

Since fDn,n = 1, it follows that fk,n ≤ 1 for all n and 0 ≤ k ≤ Dn . By Assumptions 1, p is continuous
on [0, 1] and therefore is bounded by C . Hence,

sup
0≤k≤Dn

∣∣∣|uk,n|
1/n
− p

(k
n

)∣∣∣
≤ sup

0≤k≤Dn

∣∣∣|pk+Nn,n|
1/n
− p

(k
n

)∣∣∣| fk,n|
1/n
+ sup

0≤k≤Dn

∣∣∣| fk,n|
1/n
− 1

∣∣∣p(k
n

)
≤ sup

0≤k≤Dn

∣∣∣∣|pk+Nn,n|
1/n
− p

(
k+ Nn

n

)∣∣∣∣+ sup
0≤k≤Dn

∣∣∣∣p(k+ Nn

n

)
− p

(k
n

)∣∣∣∣+C sup
0≤k≤Dn

|| fk,n|
1/n
−1|

:= J1+ J2+ J3.

Our assumption (57) implies that J1 converges to 0. J2 converges to 0 since p is uniformly continuous
on [0, 1] and Nn/n converges to 0 under the definition of the case. J3 also converges to 0 by the
estimate (38) which we have already proved for the Kac polynomials. Hence, the coefficients uk,n satisfy
Assumptions 2 with Ln = n, δn = Nn/n, T0 = 1, and the associated function p. The conclusion (1) of
Theorem 5 then follows.
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3.2. Case 2. (Nn/n→ a ∈ (0, 1)). As in Case 2© of Section 2.2, we set Ln = n, δn = Nn/n− a, and
T0= 1−a; then (T0−δn)Ln = Dn . Let’s choose f1 as in (45) and set that f coincides with f1 in [0, 1−a]
and equals 0 in [1− a,∞) as in the Kac case. Proceeding like Case 1 above, we have

sup
0≤k≤Dn

∣∣∣|uk,n|
1/n
− p

((k
n
+ a

)
∧ 1
)

f
(k

n
∧ T0

)∣∣∣
≤ sup

0≤k≤Dn

| fk,n|
1/n
∣∣∣|pk+Nn,n|

1/n
− p

((k
n
+ a

)
∧ 1
)∣∣∣+ sup

0≤k≤Dn

p
((k

n
+ a

)
∧ 1
)∣∣∣| fk,n|

1/n
− f

(k
n
∧ T0

)∣∣∣
≤ sup

0≤k≤Dn

| fk,n|
1/n
∣∣∣∣|pk+Nn,n|

1/n
− p

(
n+ Nn

n

)∣∣∣∣+ sup
0≤k≤Dn

| fk,n|
1/n
∣∣∣∣p(k+ Nn

n

)
− p

((k
n
+ a

)
∧ 1
)∣∣∣∣

+ sup
0≤k≤Dn

p
((k

n
+ a

)
∧ 1
)∣∣∣| fk,n|

1/n
− f

(k
n
∧ T0

)∣∣∣
:= J1+ J2+ J3.

As in Case 1, our assumptions of p imply that J1 converges to 0; J3 converges to 0, which is equivalent
to (47) as in the Kac case. Again using the boundedness of fk,n and the uniform continuity of p together
with the fact that

sup
0≤k≤Dn

∣∣∣∣((k
n
+ a

)
∧ 1
)
−

k+ Nn

n

∣∣∣∣≤ |δn|,

we have J2→0 since δn→0. Hence, the coefficients uk,n satisfy Assumptions 2 with ua(t)= f (t)p(t+a);
this will complete the proof of Theorem 5(2).

4. Random elliptic polynomials

In this section, we will prove Theorem 6 for the random elliptic polynomials En defined in (23). Let’s
denote by

pE
k,n =

√(n
k

)
the coefficients. By Stirling’s formula, one can prove that the coefficients pE

k,n satisfy Assumptions 1 with
the associated function pE given in (24). Thus, Theorem 6(1) is the direct consequence of Theorem 5.
Now let’s prove Theorem 6(2), which is the interesting part, and the nontrivial ingredient is to find the
rescaling factor.

As in (59), the Nn-th derivative of En is equivalent to

E (Nn)
n =

Dn∑
k=0

ξk pE
k+Nn,n fk,nzk

:=

Dn∑
k=0

ξkuE
k,nzk . (60)

Let’s first consider the case when Nn/n→ 1 and Dn→∞. By discarding a negligible lower-order term
and by Stirling’s formula, we have
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1
Dn

log pE
k+Nn,n ∼

1
2Dn

(n log n− (k+ Nn) log(k+ Nn)− (Dn − k) log(Dn − k))

=
1
2

(
k+ Nn

Dn
log
(

n
k+ Nn

)
+

Dn − k
Dn

log
(

n
Dn − k

))
=

1
2

(
−

n+ k− Dn

Dn
log
(

n− Dn + k
n

)
−

Dn − k
Dn

log
(

Dn − k
Dn

)
+

Dn − k
Dn

log
(

n
Dn

))
= I1,1+ I1,2+ I1,3. (61)

By |log(1+ x)− x | ≤ x2 when |x | is small, we can get the uniform estimate∣∣∣∣I1,1−
1
2

(
−

n+ k− Dn

Dn

−Dn + k
n

)∣∣∣∣≤ n
2Dn

(
−Dn + k

n

)2

≤
n

2Dn

(
Dn

n

)2

→ 0.

We also have the uniform estimate∣∣∣∣12
(
−

n+ k− Dn

Dn

−Dn + k
n

)
−

Dn − k
2Dn

∣∣∣∣= (Dn − k)2

2nDn
≤

Dn

2n
→ 0;

it follows that if we define
h1 =

1
2(1− t),

then

lim
n→∞

sup
0≤k≤Dn

∣∣∣∣I1,1− h1

(
k

Dn

)∣∣∣∣= 0. (62)

Let’s put
h2 =−

1
2(1− t) log(1− t);

then we can rewrite

I1,2 = h2

(
k

Dn

)
. (63)

The trick now is to eliminate I1,3 by a rescaling factor. To be more explicit, let’s put Rn = n/Dn again
and put

p̃E
k+Nn,n = pE

k+Nn,n R−(Dn−k)/2
n . (64)

By defining in this way, we note that

1
Dn

log R−(Dn−k)/2
n =−I1,3; (65)

hence, if we combine (61)–(65) and define the function

log p̃E(x)= h1+ h2 =
1
2(1− t)− 1

2(1− t) log(1− t), (66)

then we have proved

lim
n→∞

sup
0≤k≤Dn

∣∣∣∣ 1
Dn

log p̃E
k+Nn,n − log p̃E

(
k

Dn

)∣∣∣∣= 0. (67)

Let’s further recall (50) in the proof of Case 3© for the Kac case where

f̃k,n = fk,n RDn−k
n ; (68)
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then we can rewrite (60) as

E (Nn)
n (z)=

Dn∑
k=0

ξk p̃E
k+Nn,n f̃k,nzk R−(Dn−k)/2

n .

Therefore, the rescaling random polynomials read

E (Nn)
n

(
z
√

Rn

)
= R−Dn/2

n

Dn∑
k=0

ξk p̃E
k+Nn,n f̃k,nzk . (69)

Let’s define

Ẽ (Nn)
n (z) :=

Dn∑
k=0

ξk p̃E
k+Nn,n f̃k,nzk .

Let’s derive the limit of the empirical measure of zeros of E (Nn)
n (z/

√
Rn), which is the same as Ẽ (Nn)

n (z).
To do this, let’s define the coefficients ũE

k,n := p̃E
k+Nn,n f̃k,n; then the estimates (54) and (67) imply that

ũE
k,n satisfy Assumptions 2 with Ln = Dn , δn = 0, and T0 = 1 and the associated function ũE is given

by log ũE
= log p̃E

+ log f̃ . By (52) and (66), we have

log ũE(t)=
{1

2(t − 1)− 1
2(1− t) log(1− t)− t log t, 0≤ t ≤ 1,

−∞, t > 1.

Therefore, (1/Dn)µ
Ẽ
Dn

, or equivalently (1/Dn)S√Rn
(µE

Dn
), converges in probability to a deterministic

measure. To find out the limit, we compute the Legendre–Fenchel transform of − log ũE as

I (s)= sup
0≤t≤1

(st + log ũ(t))= 1
2(ts − 1)− 1

2 log(1− ts),

where ts = (−1+
√

1+ 4e−2s)/(2e−2s). Therefore, (25) follows by Theorem 2.
The analysis for the case when Dn remains a fixed number m follows exactly the same approach as in

Section 2.4 for the Kac case. Recall the definition of uE
k,n in (60); if we replace Dn =m and Nn = n−m,

then we can rewrite

uE
k,n =

(
n!

(k+ n−m)! (m− k)!

)1/2
(k+ n−m)!m!

k! n!
=

m!
k!

(
(n−m+ k)!
n! (m− k)!

)1/2

.

Now we consider the rescaling random polynomials

Ẽm
n (z) := nm/2 E (n−m)

n

(
z
√

n

)
=

m∑
k=0

ũE
k,nξkzk,

where ũE
k,n = uE

k,nn(m−k)/2. Since m and k are both fixed when n→∞, we get

lim
n→∞

ũE
k,n =

m!
k! ((m− k)!)1/2

.

Therefore, since Ẽm
n (z) have the same zeros as E (n−m)

n (z/
√

n), then by Proposition 7, the limiting measure
S√n(µ

E
Dn
) when Dn = m will tend to the random zeros of
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f E
m =

m∑
k=0

1
k! ((m− k)!)1/2

ξkzk

in distribution, which completes the proof of Theorem 6.

Appendix: Proof of Theorem 2

Now we sketch the proof of Theorem 2 by modifying the one in [Kabluchko and Zaporozhets 2014].
Let’s first recall the proof of Theorem 1 in [Kabluchko and Zaporozhets 2014]. For random ana-

lytic functions F(z) defined in (9) where the coefficients satisfy Assumptions 1, if one establishes the
convergence in probability

1
n

log|Fn(z)| → I (log|z|) (70)

as n→∞, then Theorem 1 follows by the classical Poincaré–Lelong formula. Kabluchko and Zaporozhets
proved (70) by establishing some appropriate upper and lower bounds for |Fn(z)|; see estimates (22)
and (27) in [Kabluchko and Zaporozhets 2014].

Under Assumptions 2, the convergence radius is automatically infinity because we are now dealing with
a finite sum for any fixed n. Given random polynomials Fn in the form of (12) satisfying Assumptions 2,
to prove Theorem 2, it’s enough to derive the analogue convergence

1
Ln

log|Fn(z)| → I (log|z|) (71)

as n→∞, where the convergence is also in probability. To prove this, we need the same upper and lower
bounds as in [Kabluchko and Zaporozhets 2014].

For the upper bound, for any ε > 0, we have

|Fn(z)| ≤ MeLn(I (log|z|)+3ε+δ−n (log|z|)+) for n large enough, (72)

where M is an almost surely finite random variable depending on ε. Here we use the convention that
for any real number w, w+ and w− are the positive and negative parts of w, i.e., w+ = w ∨ 0 and
w− = (−w)∨ 0.

We also need to show the lower bound estimate

P(|Fn(z)|< eLn(I (log|z|)−4ε))= O
(

1
√

Ln

)
as n→∞. (73)

Recall Lemma 4.4 in [Kabluchko and Zaporozhets 2014]; we know that for any A > 0, there exists an
almost surely finite random variable M ′ such that |ξk | ≤ M ′eAk for all k with probability 1. If we set
A = ε/(2T0), then for all 0≤ k ≤ (T0− δn)Ln , we have

|ξk | ≤ M ′eεk/(2T0) ≤ M ′eεLn . (74)
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To prove (72), if we apply the bound (74) together with Assumptions 2, for n large enough and δ small
enough, we have

|Fn(z)| =
∣∣∣∣ ∑
0≤k≤(T0−δn)Ln

ξk pk,nzk
∣∣∣∣≤ ∑

0≤k≤(T0−δn)Ln

|ξk ||pk,n||z|k

≤ M ′eεLn

( ∑
0≤k≤(T0−δ

+
n )Ln

|pk,n||z|k +
∑

T0 Ln<k≤(T0+δ
−
n )Ln

|pk,n||z|k
)

≤ M ′eεLn
∑

0≤k≤(T0−δ
+
n )Ln

(e(k/Ln) log|z|+log p(k/Ln)+ δ|z|k/Ln )Ln

+M ′eεLn
∑

T0 Ln<k≤(T0+δ
−
n )Ln

(e(k/Ln−T0) log|z|+(T0 log|z|+log p(T0))+ δ|z|k/Ln )Ln .

By the definition of the Legendre–Fenchel transform, we further have

|Fn(z)| ≤ M ′e2εLn (eI (log|z|)
+ δ(1∨ |z|T0))Ln +M ′e2εLn eδ

−
n (log|z|)+Ln (eI (log|z|)

+ δ(1∨ |z|2T0))Ln

≤ M ′′eLn(I (log|z|)+3ε+δ−n (log|z|)+),

where M ′′ is another almost surely finite random variable, which completes the proof of the upper bound.
For the lower bound (73), if we choose the set J as the one in the proof of (27) in [Kabluchko and

Zaporozhets 2014], then the assumptions Ln→∞ and δn→ 0 imply that the set {k : 0≤ k ≤ (T0− δn)Ln,

k/Ln ∈ J } has cardinality bounded below by (|J |/2)Ln . The rest proof follows the one in [Kabluchko
and Zaporozhets 2014] by replacing n by Ln and hence the lower bound follows.
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GROSS–PITAEVSKII DYNAMICS FOR BOSE–EINSTEIN CONDENSATES

CHRISTIAN BRENNECKE AND BENJAMIN SCHLEIN

We study the time-evolution of initially trapped Bose–Einstein condensates in the Gross–Pitaevskii
regime. We show that condensation is preserved by the many-body evolution and that the dynamics of
the condensate wave function can be described by the time-dependent Gross–Pitaevskii equation. With
respect to previous works, we provide optimal bounds on the rate of condensation (i.e., on the number of
excitations of the Bose–Einstein condensate). To reach this goal, we combine the method of Lewin, Nam
and Schlein (2015), who analyzed fluctuations around the Hartree dynamics for N -particle initial data
in the mean-field regime, with ideas of Benedikter, de Oliveira and Schlein (2015), who considered the
evolution of Fock-space initial data in the Gross–Pitaevskii regime.

1. Introduction and main results

Trapped gases of N bosons in the Gross–Pitaevskii regime can be described by the Hamilton operator

H trap
N =

N∑
j=1

[−1x j + Vext(x j )] +

N∑
i< j

N 2V (N (xi − x j )) (1-1)

acting on the Hilbert space L2
s (R

3N ), the subspace of L2(R3N ) consisting of functions that are symmetric
with respect to permutations of the N particles. Here, Vext is a confining external potential. As for the
interaction potential V, we assume it to be pointwise nonnegative, spherically symmetric and compactly
supported (but our results could be easily extended to potentials decaying sufficiently fast at infinity).

Characteristically for the Gross–Pitaevskii regime, the interaction N 2V (N · ) appearing in (1-9) scales
with N so that its scattering length is of the order N−1. The scattering length a0 of the unscaled potential V
is defined by the condition that the solution of the zero-energy scattering equation[

−1+ 1
2 V (x)

]
f (x)= 0, (1-2)

with the boundary condition f (x)→ 1 for |x | →∞, has the form

f (x)= 1−
a0

|x |
(1-3)

outside the support of V. Equivalently, a0 is determined by

8πa0 =

∫
V (x) f (x) dx . (1-4)

MSC2010: 35Q40, 81V70.
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By scaling, (1-2) also implies that [
−1+ 1

2 N 2V (N x)
]

f (N x)= 0,

with f (N x)→ 1 for |x | →∞. In particular, this means that the rescaled potential N 2V (N · ) in (1-9)
has scattering length a0/N.

It was shown in [Lieb et al. 2000], and more recently in [Nam et al. 2016], that the ground state
energy EN of the Hamilton operator (1-1) is such that

lim
N→∞

EN

N
= min
ϕ∈L2(R3)
‖ϕ‖2=1

E trap
GP (ϕ), (1-5)

with the Gross–Pitaevskii energy functional

E trap
GP (ϕ)=

∫ [
|∇ϕ(x)|2+ Vext(x)|ϕ(x)|2+ 4πa0|ϕ(x)|4

]
dx . (1-6)

Furthermore, Bose–Einstein condensation in the ground state of (1-1) was established in [Lieb and
Seiringer 2002]. More precisely, it was also shown in that paper that if γ (1)N = tr2,...,N |ψN 〉〈ψN | denotes
the one-particle reduced density associated with the ground state of (1-1), then

γ
(1)
N → |φGP〉〈φGP|, (1-7)

where φGP ∈ L2(R3) is the unique nonnegative minimizer of (1-6), among all ϕ ∈ L2(R3) with ‖ϕ‖2 = 1.
The interpretation of (1-7) is straightforward: in the ground state of (1-1), all particles, up to a fraction
vanishing in the limit of large N, are in the same one-particle state φGP.

In typical experiments, one observes the time-evolution of trapped Bose gases prepared in (or close to)
their ground state, resulting from a change of the external fields. As an example, consider the situation in
which the trapping potential is switched off at time t = 0. In this case, the dynamics is described, at the
microscopic level, by the many-body Schrödinger equation

i∂tψN, t = HNψN, t , (1-8)

with the translation-invariant Hamilton operator

HN =

N∑
j=1

−1x j +

N∑
i< j

N 2V (N (xi − x j )) (1-9)

and with the ground state of (1-1) as initial data. The next theorem shows how the solution of (1-8) can
be described in terms of the time-dependent Gross–Pitaevskii equation.

Theorem 1.1. Let Vext : R
3
→ R be locally bounded with Vext(x)→∞ as |x | →∞. Let V ∈ L3(R3) be

nonnegative (V (x)≥ 0 for almost every x ∈ R3), compactly supported and spherically symmetric. Let
ψN be a sequence in L2

s (R
3N ), with one-particle reduced density γ (1)N = tr2,...,N |ψN 〉〈ψN |. We assume

that, as N →∞,
aN = 1−〈φGP, γ

(1)
N φGP〉 → 0,

bN = |N−1
〈ψN , H trap

N ψN 〉− E trap
GP (φGP)| → 0,

(1-10)
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where φGP ∈ H 4(R3) is the unique nonnegative minimizer of the Gross–Pitaevskii energy functional (1-6).
Let ψN, t = e−i HN tψN be the solution of (1-8) with initial data ψN and let γ (1)N, t be the one-particle reduced
density associated with ψN, t . Then there are constants C, c > 0 such that

1−〈ϕt , γ
(1)
N, tϕt 〉 ≤ C[aN + bN + N−1

] exp(c exp(c|t |)) (1-11)

for all t ∈ R. Here ϕt is the solution of the time-dependent Gross–Pitaevskii equation

i∂tϕt =−1ϕt + 8πa0|ϕt |
2ϕt , (1-12)

with the initial data ϕt=0 = φGP.

Remarks. (1) The condition aN = 1−〈φGP, γ
(1)
N φGP〉→ 0 is equivalent to γ (1)N →|φGP〉〈φGP|. Similarly,

the bound (1-11) implies that γ (1)N, t → |ϕt 〉〈ϕt |. More precisely, using the fact that |ϕt 〉〈ϕt | is a rank-one
projection, it follows from (1-11) that

tr |γ (1)N, t − |ϕt 〉〈ϕt || ≤ 2‖γ (1)N, t − |ϕt 〉〈ϕt |‖HS

≤ 23/2
[1−〈ϕt , γ

(1)
N, tϕt 〉]

1/2

≤ C[aN + bN + N−1
]
1/2 exp(c exp(c|t |)).

Hence, (1-11) is a statement about the stability of Bose–Einstein condensation with respect to the
many-body Schrödinger equation (1-8).

(2) Existence, uniqueness and decay of the minimizer φGP of the Gross–Pitaevskii energy functional
(1-6) were established in [Lieb et al. 2000]. In Theorem 1.1 we additionally assume that φGP ∈ H 4(R3).
This condition follows from elliptic regularity and from the results of [Gagelman and Yserentant 2012]
(establishing decay of the derivatives of φGP), under suitable assumptions on Vext (for example, if
Vext ∈ C2(R3) and its derivatives grow at most exponentially at infinity).

(3) As discussed above, it follows from [Lieb et al. 2000; Lieb and Seiringer 2002] that the assumptions
(1-10) are satisfied if we take ψN as the ground state of (1-1). In this case, we expect both aN and bN to
be of the order N−1; indeed, aN , bN ' N−1 was recently shown in [Boccato et al. 2018b] for systems
of bosons trapped in a box with volume 1 (with periodic boundary conditions), interacting through a
sufficiently small potential; in fact, the limit of NaN , NbN was computed precisely in [Boccato et al.
2018a]. In this case, (1-11) implies that

1−〈ϕt , γ
(1)
N, tϕt 〉 ≤ C N−1 exp(c exp(c|t |)) (1-13)

and therefore that, for every fixed time t ∈R, Bose–Einstein condensation holds with the optimal rate N−1

(meaning that the number of excitations of the condensate remains bounded, uniformly in N †).

(4) To keep the notation as simple as possible, we consider the time-evolution (1-8) generated by the
translation-invariant Hamiltonian (1-9). With the same techniques we use to prove Theorem 1.1, we could
also have included in (1-9) an external potential Wext, at least if the difference Wext− Vext is bounded

†If N [1−〈ϕt , γ
(1)
N, tϕt 〉] → 0, as N →∞, the expectation of the number of excitations of the condensate would tend to zero

and thus ψN, t could be approximated, in norm, by the factorized wave function ϕ⊗N
t ; this cannot be true.
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below. Under this assumption, the convergence (1-11) remains true, of course provided we introduce
the external potential Wext also in the time-dependent Gross–Pitaevskii equation (1-12). The external
potential may also depend on time, under reasonable assumptions on the time-dependence (for example,
if the time-derivative of Wext is bounded). Physically, this would describe experiments where the system
prepared at equilibrium (in the ground state) is perturbed by a change of the external potential, rather than
by switching it off (we could also consider the situation where the external potential depends on time).

Theorem 1.1 is meant to describe the time-evolution of data prepared in the ground state of the trapped
Hamilton operator (1-1). This is the reason why, in (1-10), we assumed ψN to exhibit Bose–Einstein
condensation in the minimizer of the Gross–Pitaevskii energy functional (1-6). From the mathematical
point of view, one may ask more generally whether it is possible to show that the evolution of an initial
data exhibiting Bose–Einstein condensate in an arbitrary one-particle wave function ϕ ∈ H 1(R3) (not
necessarily minimizing the Gross–Pitaevskii functional (1-6)) continues to exhibit condensation in the
solution of (1-12) with initial data ϕt=0 = ϕ, also for t 6= 0. In the next theorem we show that the answer
to this question is positive; the only difference with respect to (1-11) is the fact that, to get the same rate
of convergence at time t , we need a stronger bound on the condensation of the initial data.

Theorem 1.2. Assume that V ∈ L3(R3) is nonnegative (V (x)≥ 0 for almost every x ∈ R3), compactly
supported and spherically symmetric. Let ψN be a sequence in L2

s (R
3N ), with one-particle reduced

density γ (1)N = tr2,...,N |ψN 〉〈ψN |. Assume that, for a ϕ ∈ H 4(R3),

ãN = tr |γ (1)N − |ϕ〉〈ϕ|| → 0,

b̃N = |N−1
〈ψN , HNψN 〉− EGP(ϕ)| → 0

(1-14)

as N →∞. Here EGP is the translation-invariant Gross–Pitaevskii functional

EGP(ϕ)=

∫
[|∇ϕ|2+ 4πa0|ϕ|

4
] dx . (1-15)

Let ψN, t = e−i HN tψN be the solution of the Schrödinger equation (1-8) with initial data ψN and let
γ
(1)
N, t denote the one-particle reduced density associated with ψN, t . Then

1−〈ϕt , γ
(1)
N, tϕt 〉 ≤ C[ãN + b̃N + N−1

] exp(c exp(c|t |)), (1-16)

where ϕt denotes the solution of the time-dependent Gross–Pitaevskii equation (1-12), with initial data
ϕ0 = ϕ.

A first proof of the convergence of the reduced density associated with the solution of the Schrödinger
equation (1-8) towards the orthogonal projection onto the solution of the time-dependent Gross–Pitaevskii
equation (1-12) was obtained in [Erdős et al. 2002; 2007; 2009b; 2010]; part of the proof was later
simplified in [Chen et al. 2015], using also ideas from [Klainerman and Machedon 2008]. In these works,
convergence was established with no control on its rate. A new proof of the convergence towards the
Gross–Pitaevskii dynamics was later given in [Pickl 2015]; in this case, convergence was shown to hold
with a rate N−η, for a nonoptimal η > 0, whose value could be explicitly determined following the
proof; this approach was adapted to two-dimensional systems in [Jeblick et al. 2016], to systems with
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magnetic fields in [Olgiati 2017] and to pseudospinor condensates in [Michelangeli and Olgiati 2017].
More recently, convergence with a rate similar to (1-11), (1-16) was proven to hold in [Benedikter et al.
2015] for a class of Fock space initial data. The novelty of (1-11), (1-16) is the fact that convergence is
shown with an optimal rate determined by the properties of the N -particle initial data.

More results are available about quantum dynamics in the mean-field regime. In this case, the evolution
of the Bose gas is generated by a Hamilton operator of the form

H mf
N =

N∑
j=1

−1x j +
1
N

N∑
i< j

V (xi − x j ). (1-17)

In the limit N →∞, the solution of the Schrödinger equation ψN, t = e−i Hmf
N tψN , for initial data ψN

exhibiting Bose–Einstein condensation in a one-particle wave function ϕ ∈ L2(R3), can be approximated
by products of the solution of the nonlinear Hartree equation

i∂tϕt =−1ϕt + (V ∗ |ϕt |
2)ϕt . (1-18)

Convergence towards Hartree dynamics has been established in different settings, using different methods
in several works, including [Adami et al. 2007; Ammari and Breteaux 2012; Ammari et al. 2016;
Anapolitanos and Hott 2016; Ammari and Nier 2009; Bardos et al. 2000; Chen and Holmer 2017; Elgart
and Schlein 2007; Erdős and Yau 2001; Fröhlich et al. 2007; 2009; Ginibre and Velo 1979a; 1979b;
Hepp 1974; Knowles and Pickl 2010; Rodnianski and Schlein 2009; Spohn 1980]. In the mean-field
regime, it is also possible to find a norm approximation of the many-body evolution by taking into account
fluctuations around the Hartree dynamics (1-18); see, for example, [Ben Arous et al. 2013; Chen 2012;
Grillakis et al. 2010; 2011; Kirkpatrick et al. 2011; Lewin et al. 2015a; Mitrouskas et al. 2016].

It is also interesting to consider the many-body evolution in scaling limits interpolating between the
mean-field regime described by the Hamilton operator (1-17) and the Gross–Pitaevskii regime described
by (1-9). A norm-approximation of the time-evolution in these intermediate regimes was recently obtained
in [Boccato et al. 2017; Grillakis and Machedon 2013; Kuz 2017; Nam and Napiórkowski 2016; 2017].

To prove Theorem 1.1 and Theorem 1.2 we will combine the strategies used in [Benedikter et al. 2015]
and [Lewin et al. 2015a]. Let us briefly recall the main ideas of these papers. In [Benedikter et al. 2015],
the Bose gas was described on the Fock space F =

⊕
n≥0 L2

s (R
3n) by the Hamilton operator

HN =

∫
∇xa∗x∇xax dx + 1

2

∫
N 2V (N (x − y))a∗x a∗yayax dx dy,

where a∗x , ax are the usual operator-valued distributions, creating and, respectively, annihilating a particle
at the point x ∈ R3. Notice that HN commutes with the number of particles operator N =

∫
a∗x ax dx , and

that its restriction to the sector of F with exactly N particles coincides with (1-9).
On the Fock space F , a Bose–Einstein condensate can be described by a coherent state of the form

W (
√

Nϕ)�, where � = {1, 0, 0, . . . } is the vacuum vector, ϕ ∈ L2(R3) is a normalized one-particle
orbital, and where, for every f ∈ L2(R3),

W ( f )= exp(a∗( f )− a( f ))
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is a Weyl operator with wave function f . Here, we denoted by

a∗( f )=
∫

f (x)a∗x dx and a( f )=
∫

f̄ (x)ax dx

the usual creation and annihilation operators on F , creating and annihilating a particle with wave function f .
A simple computation shows that

W (
√

Nϕ)�= e−N/2
{

1, N 1/2ϕ, . . . ,
N n/2ϕ⊗n
√

n!
, . . .

}
.

In the coherent state W (
√

Nϕ)�, the number of particles is Poisson distributed, with mean and variance
equal to N.

On the Fock space F , it is interesting to study the dynamics of approximately coherent initial states.
In the Gross–Pitaevskii regime, however (in contrast with the mean-field limit), we cannot expect the
evolution of approximately coherent initial data to remain approximately coherent. On every sector of
F with a fixed number of particles, the coherent state W (

√
Nϕ)� is factorized; it describes therefore

uncorrelated particles. On the other hand, already from [Erdős et al. 2009a; 2010] and more recently
also from [Chen and Holmer 2016], we know that, in the Gross–Pitaevskii regime, particles develop
substantial correlations. To provide a better approximation of the many-body dynamics, Weyl operators
were combined in [Benedikter et al. 2015] with appropriate Bogoliubov transformations, leading to
so-called squeezed coherent states. To be more precise, let f denote the solution of the zero-energy
scattering equation (1-2) and w = 1− f (keep in mind that, for |x | � 1, w(x)= a0/|x |). Using w, we
define

kN, t(x; y)=−Nw(N (x − y))ϕt(x)ϕt(y), (1-19)

where ϕt is the solution of the time-dependent Gross–Pitaevskii equation (1-12). In fact, in [Benedikter
et al. 2015] and also later in the present paper, it is more convenient to replace ϕt with the solution of
the slightly modified, N -dependent, Gross–Pitaevskii equation (4-8); to simplify the presentation, we
neglect these technical details in this introduction. With (1-19), it is easy to check that kN, t ∈ L2(R3

×R3),
with ‖kN, t‖2 bounded, uniformly in N and in t . This implies that (1-19) is the integral kernel of a
Hilbert–Schmidt operator. Hence, we can define, on F , the unitary Bogoliubov transformation

Tt = exp
[

1
2

∫
dx dy (kN, t(x; y)a∗x a∗y − h.c.)

]
, (1-20)

whose action on creation and annihilation operators is explicitly given by

T ∗t a∗(g)Tt = a∗(coshkN, t (g))+ a(sinhkN, t (ḡ)) (1-21)

for all g ∈ L2(R3). Here coshkN, t and sinhkN, t are the bounded operators (sinhkN, t is even Hilbert–Schmidt)
defined by the convergent series

coshkN, t =

∞∑
n=0

(kN, t k̄N, t)
n

(2n)!
and sinhkN, t =

∞∑
n=0

(kN, t k̄N, t)
nkN, t

(2n+ 1)!
. (1-22)
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Using the Bogoliubov transformation Tt to generate correlations at time t , it makes sense to study the
time-evolution of initial data close to the squeezed coherent state W (

√
Nϕ)T0�, and to approximate it

with a Fock-space vector of the same form. More precisely, for ξN ∈ F close to the vacuum (in a sense to
be made precise later), we may consider the time-evolution

e−iHN t W (
√

Nϕ)T0ξN =W (
√

Nϕt)TtξN, t , (1-23)

where we defined ξN, t = UN (t)ξN and the fluctuation dynamics

UN (t)= T ∗t W ∗(
√

Nϕt)e−iHN t W (
√

Nϕ0)T0. (1-24)

In order to show that the one-particle reduced density γ (1)N, t associated with the left-hand side of (1-23) is
close to the orthogonal projection onto the solution of the Gross–Pitaevskii equation (4-8), it is enough to
prove that the expectation of the number of particles in ξN, t is small, compared with the total number of
particles N (assuming this is true for ξN , at time t=0). In other words, the problem of proving convergence
towards the Gross–Pitaevskii dynamics reduces to the problem of showing that the expectation of the
number of particles remains approximately preserved by the fluctuation dynamics (1-24). In [Benedikter
et al. 2015], this strategy was used to show that the one-particle reduced density γ (1)N, t associated with
9N, t = e−iHN t W (

√
Nϕ)T0ξN is such that

‖γ
(1)
N, t − |ϕt 〉〈ϕt |‖HS ≤ C N−1/2 exp(c exp(c|t |))

for any ξN ∈ F with ‖ξN‖ = 1 and such that

〈ξN , [N +N 2/N +HN ]ξN 〉 ≤ C

uniformly in N.
While the method of [Benedikter et al. 2015] works well to show convergence towards the Gross–

Pitaevskii dynamics for the evolution of Fock-space data of the form W (
√

Nϕ)T0ξN , it is difficult to
apply it to N -particle initial data in L2

s (R
3N ) (a special class of N -particle states for which this is indeed

possible is discussed in Appendix C of that paper). An alternative approach, tailored on N -particle initial
data, was proposed in [Lewin et al. 2015a] for bosons in the mean-field limit. An important observation
in that paper (and already in [Lewin et al. 2015b]) is the fact that, for a fixed normalized ϕ ∈ L2(R3),
every ψN ∈ L2

s (R
3N ) can be uniquely represented as

ψN =

N∑
n=0

ψ
(n)
N ⊗s ϕ

⊗(N−n) (1-25)

for a sequence {ψ (n)N }
N
n=0 with ψ (n)N ∈ L2

⊥ϕ(R
3)⊗sn, the symmetric tensor product of n copies of the

orthogonal complement of ϕ in L2(R3).
This remark allows us to define a unitary map

U (ϕ) : L2
s (R

3N )→ F≤N
⊥ϕ through U (ϕ)ψN = {ψ

(0)
N , ψ

(1)
N , . . . , ψ

(N )
N }. (1-26)

Here F≤N
⊥ϕ =

⊕N
n=0 L2

⊥
(R3)⊗sn is the Fock space constructed on the orthogonal complement L2

⊥ϕ(R
3)

of ϕ, truncated to have at most N particles. The map U (ϕ) factors out the condensate described by the



1520 CHRISTIAN BRENNECKE AND BENJAMIN SCHLEIN

one-particle wave function ϕ and allows us to focus on its orthogonal excitations. Notice that a similar idea
(but with no second quantization) was used in [Pickl 2015; Mitrouskas et al. 2016] to identify excitations
of the condensate. Using the unitary map (1-26), we can introduce, for the mean-field dynamics generated
by (1-17), a fluctuation dynamics

Wmf
N, t =U (ϕt)e−i Hmf

N tU∗(ϕ) : F≤N
⊥ϕ → F≤N

⊥ϕt
, (1-27)

where ϕt is the solution of the time-dependent Hartree equation (1-18). Much as above, to prove
convergence towards Hartree dynamics, it is enough to control the growth of the expectation of the
number of particles operator with respect to Wmf

N, t . This strategy was used in [Lewin et al. 2015a] to find
a norm-approximation for the many-body evolution in the mean-field regime.

It is natural to ask whether the techniques developed in [Lewin et al. 2015a] to study the time-evolution
of bosonic systems in the mean-field regime can also be used to study the dynamics in the Gross–Pitaevskii
limit. Much as above, where we argued that coherent states are not a good ansatz to describe the evolution
of Fock space initial data, we cannot expect here that factorized N -particles states of the form U∗ϕt

�=ϕ⊗N
t

provide a good approximation for the solution of the Schrödinger equation (1-8) in the Gross–Pitaevskii
regime. Instead, much as in [Benedikter et al. 2015], we need to modify the ansatz to take into account
correlations developed by the many-body evolution. As explained above, in that paper correlations were
modeled by means of Bogoliubov transformations of the form (1-20). Unfortunately, since they do
not preserve the number of particles, these Bogoliubov transformations do not leave the space F≤N

⊥ϕt
,

where excitations of the Bose–Einstein condensate are described, invariant. For this reason, to adapt the
techniques of [Lewin et al. 2015a] to the Gross–Pitaevskii regime that we are considering here, we are
going to introduce on F≤N

+ modified creation and annihilation operators, defined by

b∗( f )= a∗( f )

√
N −N

N
and b( f )=

√
N −N

N
a( f ) (1-28)

for all f ∈ L2
⊥ϕt
(R3). As we will discuss in the next section, these new fields create and, respectively,

annihilate excitations of the Bose–Einstein condensate leaving, at the same time, the total number of
particles invariant. We will use the modified creation and annihilation operators to define a generalized
Bogoliubov transformation having the form

St = exp
[

1
2

∫
dx dy (ηt(x; y)b∗x b∗y − h.c.)

]
(1-29)

for a kernel ηt ∈ L2(R3
× R3), orthogonal to ϕt in both its variables. Compared with the standard

Bogoliubov transformations in (1-20), (1-29) has an important advantage: it maps F≤N
⊥ϕt

back into itself.
With (1-29), we can therefore define the modified fluctuation dynamics

WN, t = S∗t U (ϕt)e−i HN tU∗(ϕ0)S0 : F≤N
+ → F≤N

+ , (1-30)

which plays a role similar to that played by (1-24) in [Benedikter et al. 2015], describing the time-evolution
of excitations of the Bose–Einstein condensate. To prove Theorems 1.1 and 1.2 it will then be enough
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to show a bound for the growth of the expectation of the number of particles with respect to WN, t . To
achieve this goal, we will establish several properties of the generator

GN, t = (i∂t S∗t )St + S∗t [(i∂tU (ϕt))U∗(ϕt)+U (ϕt)HN U∗(ϕt)]St

of (1-30), which is defined so that

i∂tWN, t = GN, tWN, t .

Technically, the main challenge we will have to face is the fact that, in contrast with (1-21), there is
no explicit formula for the action of the generalized Bogoliubov transformation (1-29) on creation and
annihilation operators. For this reason, we will have to expand expressions like S∗t b(g)St in absolutely
convergent infinite series, and we will have to control the contribution of several different terms. The
main tool to control these expansions is Lemma 3.2 below.

2. Fock space

In this section, we introduce some notation and we discuss some basic properties of operators on Fock
spaces. Let

F =
⊕
n≥0

L2
s (R

3n)=
⊕
n≥0

L2(R3)⊗sn

denote the bosonic Fock space over the one-particle space L2(R3). Here L2
s (R

3n) is the subspace of
L2(R3n) consisting of all ψ ∈ L2(R3n) with

ψ(xπ1, xπ2, . . . , xπn)= ψ(x1, . . . , xn)

for all permutations π ∈ Sn . We use the notation �= {1, 0, . . . } ∈ F for the vacuum vector, describing a
state with no particles.

On F , it is convenient to introduce creation and annihilation operators. For g ∈ L2(R3), we define the
creation operator a∗(g) and the annihilation operator a(g) by

(a∗(g)9)(n)(x1, . . . , xn)=
1
√

n

n∑
j=1

g(x j )9
(n−1)(x1, . . . , x j−1, x j+1, . . . , xn),

(a(g)9)(n)(x1, . . . , xn)=
√

n+ 1
∫

ḡ(x)9(n+1)(x, x1, . . . , xn).

Notice that creation operators are linear in their argument, and annihilation operators are antilinear.
Creation and annihilation operators can be extended to closed unbounded operators on F ; a∗(g) is the
adjoint of a(g). They satisfy canonical commutation relations

[a(g), a∗(h)] = 〈g, h〉, [a(g), a(h)] = [a∗(g), a∗(h)] = 0 (2-1)

for all g, h ∈ L2(R3) (here 〈g, h〉 denotes the usual inner product on L2(R3)). It is also convenient to
introduce operator-valued distributions ax , a∗x , formally creating and annihilating a particle at x ∈R. They
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are such that

a( f )=
∫

f̄ (x)ax dx, a∗( f )=
∫

f (x)a∗x dx

and satisfy the commutation relations

[ax , a∗y ] = δ(x − y), [ax , ay] = [a∗x , a∗y ] = 0.

It is also useful to introduce on F the number of particles operator, defined by (N9)(n) = n9(n). In
terms of operator-valued distributions, N can be written as

N =
∫

a∗x ax dx .

Creation and annihilation operators are bounded by the square root of the number of particles operator;
i.e., we have

‖a( f )9‖ ≤ ‖ f ‖2‖N 1/29‖, ‖a∗( f )9‖ ≤ ‖ f ‖2‖(N + 1)1/29‖ (2-2)

for every f ∈ L2(R3).
For a one-particle operator B : L2(R3)→ L2(R3) we define d0(B) : F→ F through (d0(B)9)(n) =∑n
j=1 Bjψ

(n) for any 9 = {ψ (n)}n∈N ∈F . Here Bj = 1⊗· · ·⊗ B⊗· · ·⊗1 acts as B on the j -th particles
and as the identity on all other particles. If B has the integral kernel B(x; y), we can write

d0(B)=
∫

B(x; y)a∗x ay dx dy.

If B is a bounded operator on the one-particle space L2(R3), then d0(B) can be bounded with respect to
the number of particles operator, i.e., we have the operator inequality

±d0(B)≤ ‖B‖op N (2-3)

and (since d0(B) commutes with N ) also

‖d0(B)9‖ ≤ ‖B‖op‖N9‖.

We will also need bounds for operators on the Fock space, quadratic in creation and annihilation
operators, that do not necessarily preserve the number of particles. For j ∈ L2(R3

×R3), we introduce
the notation

A]1,]2( j)=
∫

a]1( jx)a]2
x dx =

∫
j ]̄1(x; y)a]1

y a]2
x dx dy, (2-4)

where jx(y) := j (x; y), ]1, ]2 ∈ { · , ∗}, ]̄1 = · if ]1 = ∗ and ]̄1 = ∗ if ]1 = · , and where we use the
notation a] = a if ]= · , a] = a∗ if ]= ∗ and, similarly, j ] = j if ]= · and j ] = j̄ if ]= ∗. If ]1 = ·

and ]2 = ∗ (i.e., if a creation operator lies on the right of an annihilation operator), in order to define
A]1,]2( j) we also require that x→ j (x; x) is integrable. In the next lemma, which follows easily from
(2-2), we show how to bound these operators through the number of particles operator N.
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Lemma 2.1. Let j ∈ L2(R3
×R3). Then for any 9 ∈ F ,

‖A[]1,]2
( j)9‖ ≤

√
2‖(N + 1)9‖

{
‖ j‖2+

∫
| j (x; x)| dx if ]1 = · , ]2 = ∗,

‖ j‖2 otherwise.

We will work on certain subspaces of F . For a fixed ϕ ∈ L2(R3) (ϕ will later be the condensate wave
function), we use the notation L2

⊥ϕ(R
3) for the orthogonal complement of the one-dimensional space

spanned by ϕ in L2(R3). We denote by

F⊥ϕ =
⊕
n≥0

L2
⊥ϕ(R

3)⊗sn

the Fock space constructed over L2
⊥ϕ(R

3). A vector 9 = {ψ (0), ψ (1), . . . } ∈ F lies in F⊥ϕ if ψ (n) is
orthogonal to ϕ, in each of its coordinates, for all n ≥ 1, i.e., if∫

ϕ̄(x) ψ (n)(x, y1, . . . , yn−1) dx = 0

for all n ≥ 1. We will also need Fock spaces with a truncated number of particles. For N ∈N\{0}, we
define

F≤N
=

N⊕
n=0

L2(R3)⊗sn and F≤N
⊥ϕ =

N⊕
n=0

L2
⊥ϕ(R

3)⊗sn

as the Fock spaces over L2(R3) and over L2
⊥ϕ(R

3) consisting of states with at most N particles. As
already explained in the Introduction (but see Section 4 for more details), on the space F≤N

⊥ϕ we will
describe orthogonal fluctuations around a condensate with wave function ϕ ∈ L2(R3).

On F≤N and F≤N
⊥ϕ , we introduce modified creation and annihilation operators. For f ∈ L2(R3), we

define

b( f )=

√
N −N

N
a( f ) and b∗( f )= a∗( f )

√
N −N

N
. (2-5)

We clearly have b( f ), b∗( f ) :F≤N
→F≤N. If moreover f ⊥ ϕ we also have b( f ), b∗( f ) :F≤N

⊥ϕ →F≤N
⊥ϕ .

As we will discuss in the next section, the importance of these fields arises from the application of the
map U (ϕ), defined in (1-25), since

U (ϕ)a∗( f )a(ϕ)U∗(ϕ)= a∗( f )
√

N −N =
√

Nb∗( f ),

U (ϕ)a∗(ϕ)a( f )U∗(ϕ)=
√

N −N a( f )=
√

N b( f ).
(2-6)

If ϕ is the condensate wave function and f ⊥ ϕ, the operator b∗( f ) excites a particle from the condensate
to its orthogonal complement, while b( f ) annihilates an excitation back into the condensate. On states
exhibiting Bose–Einstein condensation, we expect a(ϕ), a∗(ϕ)'

√
N and thus that the action of modified

b∗- and b-fields is close to the action of the original creation and annihilation operators.
It is also convenient to introduce operator-valued distributions

bx =

√
N −N

N
ax and b∗x = a∗x

√
N −N

N
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so that

b( f )=
∫

f̄ (x) bx dx and b∗( f )=
∫

f (x)b∗x dx .

We find the modified canonical commutation relations

[bx , b∗y] =
(

1−
N
N

)
δ(x − y)−

1
N

a∗yax , [bx , by] = [b∗x , b∗y] = 0. (2-7)

Furthermore

[bx , a∗yaz] = δ(x − y)bz, [b∗x , a∗yaz] = −δ(x − z)b∗y, (2-8)

which leads to [bx ,N ]= bx and [b∗x ,N ]=−b∗x . From (2-2), we immediately obtain the following bounds
for the b-fields.

Lemma 2.2. Let f ∈ L2(R3). For any ξ ∈ F≤N, we have

‖b( f )ξ‖ ≤ ‖ f ‖2

∥∥∥∥N 1/2
(

N −N + 1
N

)1/2

ξ

∥∥∥∥≤ ‖ f ‖2‖N 1/2ξ‖,

‖b∗( f )ξ‖ ≤ ‖ f ‖2

∥∥∥∥(N + 1)1/2
(

N −N
N

)1/2

ξ

∥∥∥∥≤ ‖ f ‖2‖(N + 1)1/2ξ‖.

Notice, moreover, that since N ≤ N on F≤N, the operators b( f ), b∗( f ) : F≤N
→ F≤N are bounded with

‖b( f )‖, ‖b∗( f )‖ ≤ (N + 1)1/2‖ f ‖2.

We will also consider quadratic expressions in the b-fields. For an integral kernel j ∈ L2(R3
×R3), we

define, similarly to (2-4),

B]1,]2( j)=
∫

b]1( jx)b]2
x dx =

∫
j ]̄1(x; y)b]1

y b]2
x dx dy. (2-9)

If ]1 = · and ]2 = ∗, we also require that x→ j (x; x) is integrable. From Lemma 2.1, we obtain the
following bounds.

Lemma 2.3. Let j ∈ L2(R3
×R3). Then

‖B]1,]2( j)9‖
‖(N + 1)((N −N + 2)/N )9‖

≤
√

2
{
‖ j‖2+

∫
| j (x; x)| dx if ]1 = · , ]2 = ∗,

‖ j‖2 otherwise

for all 9 ∈ F≤N. Since N ≤ N on F≤N, the operator B]1,]2( j) is bounded, with

‖B]1,]2( j)‖ ≤
√

2N
{
‖ j‖2+

∫
| j (x; x)| dx if ]1 = · , ]2 = ∗,

‖ j‖2 otherwise.

Remark. For ϕ ∈ L2(R3), let qϕ = 1 − |ϕ〉〈ϕ| be the orthogonal projection onto L2
⊥ϕ(R

3). If j ∈
(q
ϕ]̄1
⊗q

ϕ]̄2
)(L2(R3

×R3)), we have B]1,]2( j) :F≤N
⊥ϕ →F≤N

⊥ϕ (here we use the notation ]̄=∗ if ]= · and
]̄= · if ]= ∗, and ϕ] = ϕ if ]= ∗, ϕ] = ϕ̄ if ]= · ).
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We will consider products of several creation and annihilation operators, as well. In particular, two
types of monomials in creation and annihilation operators will play an important role in our analysis. We
define

5
(2)
],[( j1, . . . , jn)=

∫
b[0

x1
a]1

y1
a[1

x2
a]2

y2
a[2

x3
· · · a]n−1

yn−1
a[n−1

xn
b]n

yn

n∏
`=1

j`(x`; y`) dx` dy`, (2-10)

where jk ∈ L2(R3
×R3) for k = 1, . . . , n and where ] = (]1, . . . , ]n), [ = ([0, . . . , [n−1) ∈ { · , ∗}

n . In
other words, for every index i ∈ {1, . . . , n}, we have either ]i = · (meaning that a]i = a or b]i = b) or
]i = ∗ (meaning that a]i = a∗ or b]i = b∗) and analogously for [i , if i ∈ {0, . . . , n− 1}. Furthermore, for
`= 1, . . . , n− 1, we impose the condition that either ]` = · and [` = ∗ or ]` = ∗ and [` = · (so that the
product a]`y`a

[`
x`+1 always preserves the number of particles). If [i−1 = · and ]i = ∗ (i.e., if the product

a[i−1
xi a]i

yi for i = 2, . . . , n, or the product b[0
x1a]1

y1 for i = 1, is not normally ordered) we require additionally
x→ ji (x; x) to be integrable. An operator of the form (2-10), with all the properties listed above, will be
called a 5(2)-operator of order n.

Next, we define

5
(1)
],[( j1, . . . , jn; f )=

∫
b[0

x1
a]1

y1
a[1

x2
a]2

y2
a[2

x3
· · · a]n−1

yn−1
a[n−1

xn
a]n

yn
a[n( f )

n∏
`=1

j`(x`; y`) dx` dy`, (2-11)

where f ∈ L2(R3), jk ∈ L2(R3
×R3) for all k = 1, . . . , n, ]= (]1, . . . , ]n) ∈ { · , ∗}

n , [= ([0, . . . , [n) ∈

{ · , ∗}n+1 with the condition that, for all ` = 1, . . . , n, we either have ]` = · and [` = ∗ or ]` = ∗ and
[`= · . Additionally, we assume that x→ ji (x; x) is integrable if [i−1= · and ]i =∗ for an i = 1, . . . , n.
An operator of the form (2-11) will be called a 5(1)-operator of order n. Operators of the form b( f ),
b∗( f ), for an f ∈ L2(R3), will be called 5(1)-operators of order zero. It will also be useful to consider

5̃
(1)
],[( j1, . . . , jn; f )=

∫
a[0( f )a]0

x1
a[1

y1
a]1

x2
a[2

y2
a]2

x3
· · · a[n−1

yn−1
a]n−1

xn
b[n

yn

n∏
`=1

j`(x`; y`) dx` dy`, (2-12)

where f ∈ L2(R3), jk ∈ L2(R3
×R3) for all k= 1, . . . , n, ]= (]0, . . . , ]n−1)∈ { · , ∗}

n , [= ([0, . . . , [n)∈

{ · , ∗}n+1 with the condition that, for every ` ∈ {0, . . . , n− 1}, either ]` = · and [` = ∗ or ]` = ∗ and
[` = · . As above, we also assume that x→ ji (x; x) is integrable if [i−1 = · and ]i = ∗ for i = 1, . . . , n.
Observe that

5
(1)
],[( j1, . . . , jn; f )∗ = 5̃(1)

]′,[′( jn, . . . , j1; f ),

with [′ = ([̄n, . . . , [̄0), ]′ = (]̄n, . . . , ]̄1), where [̄= · if [= ∗ and [̄= ∗ if [= · (and similarly for ]̄).
Notice that 5(2)-operators involve two b-operators and therefore may create or annihilate up to two

excitations of the condensate (depending on the choice of [0 and ]n , they may also leave the number
of excitations invariant). 5(1)- and 5̃(1)-operators, on the other hand, create or annihilate exactly one
excitation. The conditions on the number of creation and annihilation operators guarantee that 5(2)-,
5(1)- and 5̃(1)-operators always map F≤N back into itself. In the next lemma we collect bounds that we
are going to use to control these operators.
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Lemma 2.4. Let n∈N, f ∈ L2(R3), j1, . . . , jn ∈ L2(R3
×R3). We assume the operators5(2)

],[( j1, . . . , jn)
and 5(1)

],[( j1, . . . , jn; f ) are defined as in (2-10), (2-11). Then we have the bounds

‖5
(2)
],[( j1, . . . , jn)ξ‖ ≤ 6n

n∏
`=1

K [`−1,]`
`

∥∥∥∥(N + 1)n
(

1−
N − 2

N

)
ξ

∥∥∥∥,
‖5

(1)
],[( j1, . . . , jn; f )ξ‖ ≤ 6n

‖ f ‖
n∏
`=1

K [`−1,]`
`

∥∥∥∥(N + 1)n+1/2
(

1−
N − 2

N

)1/2

ξ

∥∥∥∥,
(2-13)

where

K [`−1,]`
` =

{
‖ j`‖2+

∫
| j`(x; x)| dx if [`−1 = · and ]` = ∗,

‖ j`‖2 otherwise.

Since N ≤ N on F≤N, it follows that5(2)
],[( j1, . . . , jn),5

(1)
],[( j1, . . . , jn; f ) are bounded operators on F≤N,

with

‖5
(2)
],[( j1, . . . , jn)‖ ≤ (12N )n

n∏
`=1

K [`−1,]`
` ,

‖5
(1)
],[( j1, . . . , jn; f )‖ ≤ (12N )n

√
N‖ f ‖2

n∏
`=1

K [`−1,]`
` .

Remark. If ji ∈ (qϕ [̄i−1⊗q
ϕ]̄i
)L2(R3

×R3) for all i = 1, . . . , , n and if f ∈ L2
⊥
(R3), then5(2)

],[( j1, . . . , jn)
and 5(1)

],[( j1, . . . , jn; f ) map F≤N
⊥ϕ into itself.

Proof. We consider operators of the form (2-10). Let us assume, for example, that [0 = · and ]n = · .
Then we have, writing bx1 = ax1(1−N/N )1/2 and byn = ayn (1−N/N )1/2 and using the pull-through
formula g(N )ax = ax g(N − 1),

5
(2)
],[( j1, . . . , jn)=

∫
ax1

(
N −N

N

)1/2

a]1
y1
· · · a]n−1

yn−1
a[n−1

xn
ayn

(
N −N

N

)1/2 n∏
`=1

j`(x`; y`) dx` dy`

=

∫
ax1a]1

y1
· · · a]n−1

yn−1
a[n−1

xn
ayn

(
N −N + 1

N

)1/2(N −N
N

)1/2 n∏
`=1

j`(x`; y`) dx` dy`

=

n∏
`=1

A[`−1,]`( j`)
(

N −N + 1
N

)1/2(N −N
N

)1/2

,

where we used the definition (2-4). The first bound in (2-13) follows therefore from Lemma 2.1. The
other estimates can be shown similarly. �

3. Generalized Bogoliubov transformations

For a kernel η ∈ L2(R3
×R3) with η(x; y)= η(y; x), we define

B(η)= 1
2

∫
[η(x; y)b∗x b∗y − η̄(x; y)bx by] dx dy. (3-1)
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Observe that, with the notation introduced in (2-9),

B(η)= 1
2 [B∗,∗(η)− B∗

∗,∗(η)] = −
1
2 [B · ,·(η)− B∗

· ,·(η)].

Generalized Bogoliubov transformations are unitary operators having the form

eB(η)
= exp

[
1
2

∫
(η(x; y)b∗x b∗y − η̄(x; y)bx by)

]
. (3-2)

It is clear that B(η), eB(η)
: F≤N

→ F≤N. Furthermore, if η ∈ (qϕ ⊗ qϕ)L2(R3
× R3) then we have

B(η), eB(η)
: F≤N
⊥ϕ → F≤N

⊥ϕ for any normalized ϕ ∈ L2(R3) (as above, qϕ = 1− |ϕ〉〈ϕ| is the projection
into the orthogonal complement of ϕ). It may be helpful to observe that, with the unitary operator U (ϕ)
defined in (1-26), we can write, according to (2-6),

B(η)= 1
2

U (ϕ)
∫

dx dy
[
η(x; y)a∗x a∗y

a(ϕ)a(ϕ)
N

− η̄(x; y)
a∗(ϕ)a∗(ϕ)

N
axay

]
U∗(ϕ). (3-3)

On states exhibiting Bose–Einstein condensation in ϕ (so that a(ϕ), a∗(ϕ)'
√

N ), we can therefore expect
the generalized Bogoliubov transformation (3-2) to be close to the standard Bogoliubov transformation

e B̃(η)
= exp

[
1
2

∫
(η(x; y)a∗x a∗y − η̄(x; y)axay)

]
, (3-4)

whose action on creation and annihilation operators is explicitly given by

e−B̃(η)a( f )e B̃(η)
= a(coshη( f ))+ a∗(sinhη( f̄ )), (3-5)

with the operators coshη, sinhη defined as in (1-22). Standard Bogoliubov transformations of the form
(3-4) were used in [Benedikter et al. 2015] to model correlations in the Gross–Pitaevskii regime for
approximately coherent Fock space initial data. In the present paper, since (3-4) does not map F≤N

⊥ϕ

into itself (it does not respect the truncation N ≤ N ), we prefer to work with generalized Bogoliubov
transformations of the form (3-2). The price that we have to pay is the fact that, in contrast to (3-5),
the action of exp(B(η)) on creation and annihilation operators is not explicit. Let us remark here that
generalized Bogoliubov transformations of the form exp(B(η)) were already used in [Seiringer 2011;
Grech and Seiringer 2013] to study the excitation spectrum in the mean-field regime. Here we will need
more detailed information on the action of these operators; the rest of this section is therefore devoted to
the study of the properties of generalized Bogoliubov transformations.

First of all, we need the following generalization of Lemma 4.3 of [Benedikter et al. 2015]; a similar
result was also proven in [Seiringer 2011].

Lemma 3.1. Let η ∈ L2(R3
×R3). Let B(η) be the antisymmetric operator defined in (3-1). For every

n1, n2 ∈ Z there exists a constant C = C(n1, n2, ‖η‖2) such that

e−B(η)(N + 1)n1(N + 1−N )n2eB(ϕ)
≤ C(N + 1)n1(N + 1−N )n2

as operator inequality on F≤N.
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Proof. We use Gronwall’s inequality. For a fixed ξ ∈ F≤N and s ∈ [0; 1], let

f (s)= 〈ξ, e−s B(η)(N + 1)n1(N + 1−N )n2es B(η)ξ〉.

We compute

f ′(s)= 〈ξ, e−s B(η)
[(N +1)n1(N+1−N )n2, B(η)]es B(η)ξ〉

= 〈es B(η)ξ, {(N +1)n1[(N+1−N )n2, B(η)]+[(N +1)n1, B(η)](N+1−N )n2}es B(η)ξ〉. (3-6)

From the pull-through formula Nb∗ = b∗(N + 1), we conclude that

[(N + 1−N )n2, B(η)] = 1
2 B∗,∗(η)[(N − 1−N )n2 − (N + 1−N )n2] + h.c.,

[(N + 1)n1, B(η)] = 1
2 B∗,∗(η)[(N + 3)n1 − (N + 1)n1] + h.c.

By the mean value theorem, we can find functions θ1, θ2 :N→ (0; 2) (depending also on N , n1, n2) such
that

(N − j + 1)n2 − (N − j − 1)n2 = 2n2(N + 1− j − θ1( j))n2−1,

( j + 3)n1 − ( j + 1)n1 = 2n1( j + 1+ θ2( j)).

Hence, the first term on the right-hand side of (3-6) can be written as

〈es B(η)ξ,(N+1)n1[(N+1−N )n2, B(η)]es B(η)ξ〉

=
1
2

〈
(N+1)n1es B(η)ξ,

(
B∗,∗(η)(N+1−N−θ1(N ))n2−1

+h.c.
)
es B(η)ξ

〉
=

1
2

〈
(N+1)n1/2(N+3−N−θ1(N−2))n2/2es B(η)ξ, B∗,∗(η)(N+3)n1/2(N+1−N−θ1(N ))n2/2−1es B(η)ξ

〉
+

1
2

〈
(N+1)n1/2(N+1−N−θ1(N ))n2/2es B(η)ξ, B · ,·(η)(N−1)n1/2(N+3−N−θ1(N−2))n2/2−1es B(η)ξ

〉
.

The Cauchy–Schwarz inequality implies with Lemma 2.3

|〈es B(η)ξ, (N + 1)n1[(N + 1−N )n2, B(η)]es B(η)ξ〉|

≤C‖(N+1)n1/2(N+3−N−θ1(N−2))n2/2es B(η)ξ‖‖(N+3)n1/2+1(N+1−N−θ1(N ))n2 N−1es B(η)ξ‖,

with a constant C depending on ‖η‖2. Since on F≤N we have N ≤ N and since 0 ≤ θ1(n) ≤ 2 for all
n ∈ N, we conclude that

|〈es B(η)ξ, (N + 1)n1[(N + 1−N )n2, B(η)]es B(η)ξ〉| ≤ C f (s)

for a constant C depending on ‖η‖2, n1, n2. The second term on the right-hand side of (3-6) can be
bounded similarly. We infer that f ′(s) ≤ C f (s). Gronwall’s inequality implies that f (s) ≤ eCs f (0).
Hence, taking s = 1, and renaming the constant C , we obtain

〈ξ, e−B(η)(N + 1)n1(N + 1−N )n2eB(η)ξ〉 ≤ C〈ξ, (N + 1)n1(N + 1−N )n2ξ〉,

which concludes the proof of the lemma. �
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We will need to express the action of the generalized Bogoliubov transformation eB(η) on the b-fields
by means of a convergent series of nested commutators. To this end, we start by noticing that, for
f ∈ L2(R3),

e−B(η)b( f )eB(η)
= b( f )+

∫ 1

0
ds d

ds
e−s B(η)b( f )es B(η)

= b( f )−
∫ 1

0
ds e−s B(η)

[B(η), b( f )]es B(η)

= b( f )− [B(η), b( f )] +
∫ 1

0
ds1

∫ s1

0
ds2 e−s2 B(η)

[B(η), [B(η), b( f )]]es2 B(η).

Iterating m times, we obtain

e−B(η)b( f )eB(η)

=

m−1∑
n=1

(−1)n
ad(n)B(η)(b( f ))

n!
+

∫ 1

0
ds1

∫ s1

0
ds2 · · ·

∫ sm−1

0
dsm e−sm B(η)ad(m)B(η)(b( f ))esm B(η), (3-7)

where we introduced the notation ad(n)B(η)(A) defined recursively by

ad(0)B(η)(A)= A and ad(n)B(η)(A)= [B(η), ad(n−1)
B(η) (A)].

We will show later that, under suitable assumptions on η, the error term on the right-hand side of
(3-7) is negligible in the limit m → ∞. This means that the action of the generalized Bogoliubov
transformation B(η) on b( f ) and similarly on b∗( f ) can be described in terms of the nested commutators
adB(η)(A) for A = b( f ) or A = b∗( f ). In the next lemma, we give a detailed analysis of these terms.

For a kernel η ∈ L2(R3
×R3), we will use the notation

η(n) =


1 for n = 0,
(ηη̄)` if n = 2`, ` ∈ N\{0},
(ηη̄)`η if n = 2`+ 1, ` ∈ N.

(3-8)

Here we, identify η ∈ L2(R3
×R3) with the Hilbert–Schmidt operator acting on L2(R3), having integral

kernel η. To avoid keeping track of complex conjugations of η-kernels, we also introduce the following
notation. For \ ∈ { · , ∗} we write η\ = η if \ = · and η\ = η̄ if \ = ∗. More generally, for n ∈ N, and
(\1, . . . , \n) ∈ { · , ∗}

n , we will use the notation η(n)\ = η\1η\2 · · · η\n , in the sense of products of operators.
Also for a function f ∈ L2(R3), we use the notation f\ = f if \= · and f\ = f̄ if \= ∗.

Lemma 3.2. Let η ∈ L2(R3
×R3) be such that η(x; y)= η(y; x) for all x, y ∈ R3. Let B(η) be defined

as in (3-1). Let n ∈ N and f ∈ L2(R3). Then the nested commutators ad(n)B(η)(b( f )) can be written as the
sum of exactly 2nn! terms, with the following properties:

(i) Possibly up to a sign, each term has the form

3132 · · ·3i
1

N k5
(1)
],[(η

( j1)
\1
, . . . , η

( jk)
\k
; η

(s)
\ ( f♦)) (3-9)
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for some i, k, s ∈ N, j1, . . . , jk ∈ N\{0}, ♦ ∈ { · , ∗}, ] ∈ { · , ∗}k , [ ∈ { · , ∗}k+1, \v ∈ { · , ∗} jv for all
v = 1, . . . , k and \ ∈ { · , ∗}s . In (3-9), each operator 3w : F≤N

→ F≤N is a factor (N −N )/N, a factor
(N + 1−N )/N or an operator of the form

1
N p5

(2)
],[(η

(m1)
\1

, η
(m2)
\2

, . . . , η
(m p)

\p
) (3-10)

for some p,m1, . . . ,m p ∈ N\{0}, ], [ ∈ { · , ∗}p, \v ∈ { · , ∗}mv for all v = 1, . . . , p.

(ii) If a term of the form (3-9) contains m ∈N factors (N −N )/N or (N + 1−N )/N and j ∈N factors
of the form (3-10) with 5(2)-operators of order p1, . . . , pj ∈ N\{0}, then we have

m+ (p1+ 1)+ · · ·+ (pj + 1)+ (k+ 1)= n+ 1. (3-11)

(iii) If a term of the form (3-9) contains (considering all 3-operators and the 5(1)-operator) the kernels
η
(i1)
\1
, . . . , η

(im)
\m

and the wave function η(s)\ ( f♦) for some m, s ∈ N, i1, . . . , im ∈ N\{0}, \r ∈ { · , ∗}ir for
all r = 1, . . . ,m, \ ∈ { · , ∗}s then

i1+ · · ·+ im + s = n.

(iv) There is exactly one term having the form(
N −N

N

)n/2(N + 1−N
N

)n/2

b(η(n)( f )) (3-12)

if n is even, and

−

(
N −N

N

)(n+1)/2(N −N + 1
N

)(n−1)/2

b∗(η(n)( f̄ )) (3-13)

if n is odd.

(v) If the 5(1)-operator in (3-9) is of order k ∈ N\{0}, it has either the form∫
b[0

x1

k−1∏
i=1

a]i
yi

a[i
xi+1

a∗yk
a(η(2r)( f ))

k∏
i=1

η
( ji )
\i
(xi ; yi ) dxi dyi

or the form ∫
b[0

x1

k−1∏
i=1

a]i
yi

a[i
xi+1

ayk a∗(η(2r+1)( f̄ ))
k∏

i=1

η
( ji )
\i
(xi ; yi ) dxi dyi

for some r ∈ N, j1, . . . , jk ∈ N\{0}. If it is of order k = 0, then it is either given by b(η(2r)
\ ( f♦)) or by

b∗(η(2r+1)
\ ( f♦)), for some r ∈ N.

(vi) For every nonnormally ordered term of the form∫
dx dy η(i)\ (x; y)axa∗y ,

∫
dx dy η(i)\ (x; y)bxa∗y ,

∫
dx dy η(i)\ (x; y)ax b∗y, or

∫
dx dy η(i)\ (x; y)bx b∗y

appearing either in the 3-operators or in the 5(1)-operator in (3-9), we have i ≥ 2.
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Remark. Similarly, the nested commutator ad(n)(b∗( f )) can be written as the sum of 2nn! terms of the
form

1
N k 5̃

(1)
],[(η

( j1)
\1
, . . . , η

( jk)
\k
; η

(`)
\k+1
( f♦))3132 · · ·3i

satisfying properties analogous to those listed in (i)–(vi).

Proof. We prove the lemma by induction. For n = 0 all claims are trivially satisfied. For the induction
step from n to n+ 1 we first compute, using (2-7) and (2-8), the commutators

[B(η), bz] = −
N −N

N
b∗(ηz)+

1
N

∫
dx dy η(x; y)b∗xa∗yaz

=−b∗(ηz)
N + 1−N

N
+

1
N

∫
dx dy η(x; y)aza∗yb∗x ,

[B(η), b∗z ] = −b(ηz)
N −N

N
+

1
N

∫
dx dy η̄(x; y)a∗z aybx

=−
N + 1−N

N
b(ηz)+

1
N

∫
dx dy η̄(x; y)bxaya∗z ,

[B(η), a∗z aw] = [B(η), awa∗z ] = −b∗z b∗(ηw)− b(ηz)bw,

[B(η), N −N ] = [B(η), N + 1−N ] =
∫

dx dy (η(x, y)b∗x b∗y + η̄(x; y)bx by).

(3-14)

From ad(n+1)
B(η) (b( f ))= [B(η), ad(n)B(η)(b( f ))] and by linearity, it is enough to analyze

[B(η),3132 · · ·3i N−k5
(1)
],[(η

( j1)
\1
, . . . , η

( jk)
\k
; η

(`)
\k+1
( f♦))], (3-15)

with the operator 3132 · · ·3i N−k5
(1)
],[(η

( j1)
\1
, . . . , η

( jk)
\k
; η

(s)
\ ( f♦)) satisfying properties (i)–(vi). Applying

the Leibniz rule [A, BC] = [A, B]C+ B[A,C], the commutator (3-15) is given by a sum of terms, where
B(η) is either commuted with a 3-operator, or with the 5(1)-operator.

Let’s consider first the case that B(η) is commuted with a 3-operator, assuming further that 3 is either
the operator (N −N )/N or the operator (N + 1−N )/N. The last line in (3-14) implies that such an
operator 3 is replaced, after commutation with B(η), by the sum

N−15(2)
∗,∗(η)+ N−15(2)

· ,·(η̄). (3-16)

With this replacement, we generate two terms contributing to ad(n+1)
B(η) (b( f )). Let us check that these new

terms satisfy the properties (i)–(vi) (of course, with n replaced by (n+ 1)). Property (i) is obviously true.
Also (ii) remains valid, because replacing a factor (N −N )/N or (N +1−N )/N by one of the two sum-
mands in (3-16), the index m will decrease by 1, but there will be an additional factor of 2 because we added
a 5(2)-operator of order 1. Since exactly one additional kernel η\ is inserted, also (iii) continues to hold
true. The factor 5(1) is not affected by the replacement; hence the new terms will continue to satisfy (v).
Furthermore, since both terms in (3-16) are normally ordered, also (vi) remains valid, by the induction as-
sumption. We observe, finally, that the two terms we generated here do not have the form appearing in (iv).
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Next, we consider the commutator of B(η)with a3-operator of the form3=N−p5
(2)
],[(η

(m1)
\1

, . . . ,η
(m p)

\p
)

for a p ∈ N (p ≤ n by (ii)). By definition,

3= N−p
∫

b[0
x1

p−1∏
i=1

a]i
yi

a[i
xi+1

b]p
yp

p∏
i=1

η
(mi )
\i

(xi ; yi ) dxi dyi . (3-17)

If [B(η), · ] hits b[0
x1 , the first two relations in (3-14) imply that 3 is replaced by a sum of two operators,

the first one being either

−
N −N

N
N−p5

(2)
],[̃
(η
(m1+1)
\1

, η
(m2)
\2

, . . . , η
(m p)

\p
) or

−
N + 1−N

N
N−p5

(2)
],[̃
(η
(m1+1)
\1

, η
(m2)
\2

, . . . , η
(m p)

\p
)

(3-18)

depending on whether [0 = · or [0 = ∗ (here [̃= ([̄0, [1, . . . , [p−1) with [̄0 = · if [0 = ∗ and [̄0 = ∗ if
[0 = · ). The second operator emerging when [B(η), · ] hits b[0

x1 is a 5(2)-operator of order p+1 given by

N−(p+1)5
(2)
]̃,[̃
(η\0, η

(m1)
\1

, . . . , η
(m p)

\p
), (3-19)

where ]̃= ([̄0, ]1, . . . , ]p), [̃= ([̄0, [0, . . . , [p−1) and \0 = [0.
For both terms (3-18) and (3-19), (i) is clearly correct and also (ii) remains true (when we replace (3-17)

with (3-18), the number of (N −N )/N - or (N −N + 1)/N -operators increases by 1, while everything
else remains unchanged; similarly, when we replace (3-17) with (3-19), the order of the 5(2)-operator
increases by 1, while the rest remains unchanged). Property (iii) remains true as well, since, in (3-18), the
power m1+ 1 of the first η-kernel is increased by one unit and, in (3-19), there is one additional factor
η, compared with (3-17). Property (v) remains valid, since the 5(1)-operator on the right is not affected
by this commutator. Property (vi) remains true in (3-18), because m1+ 1 ≥ 2. It remains true also in
(3-19). In fact, according to (3-14), when switching from (3-17) to (3-19), we are effectively replacing
b→ b∗a∗a or b∗→ baa∗. Hence, the first pair of operators in (3-19) is always normally ordered. As for
the second pair of creation and annihilation operators (the one associated with the kernel η(m1)

\1
in (3-19)),

the first field is of the same type as the original b-field appearing in (3-17); hence nonnormally ordered
pairs cannot be created. Finally, we remark that the terms we generated here are certainly not of the form
in (iv) (because for terms as in (iv) all 3-factors must be either (N −N )/N or (N + 1−N )/N, and this
is not the case, for terms containing (3-18) or (3-19)).

The same arguments can be applied if B(η) hits the factor b]p
yp on the right of (3-17) (in this case,

we use the identities for the first two commutators in (3-14) having the b-field to the left of the factors
(N + 1−N )/N and (N −N )/N and to the right of the aza∗y and a∗z ay-operators).

If now B(η) hits a term a∗yr
axr+1 or ayr a∗xr+1

in (3-17), for an r=1, . . . , p−1, then (3-14) implies that3=
N−p5

(2)
],[(η

(m1)
\1

, . . . , η
(m p)

\p
) is replaced by the sum of the two terms, given by

−[N−r5
(2)
]′,[′(η

(m1)
\1

, . . . , η
(mr+1)
\′r

)][N−(p−r)5
(2)
]
′′
,[
′′ (η

(mr+1)
\r+1

, . . . , η
(m p)

\p
)] (3-20)



GROSS–PITAEVSKII DYNAMICS FOR BOSE–EINSTEIN CONDENSATES 1533

and by

−[N−r5
(2)
]
′′′
,[
′ (η

(m1)
\1

, . . . , η
(mr )
\′r

)][N−(p−r)5
(2)
]
′′
,[
′′′ (η

(mr+1+1)
\
′

r+1
, . . . , η

(m p)

\p
)], (3-21)

with [′ = ([0, . . . , [r−1), [′′ = ([r , . . . , [p−1), [
′′′

= ([̄r , [r+1, . . . , [p−1) and with ]′ = (]1, . . . , ]r−1, ]̄r ),
]
′′

= (]r+1, . . . , ]p), ]
′′′

= (]1, . . . , ]r ) (here, we set ]̄r = ∗ if ]r = · and ]̄r = · if ]r = ∗, and similarly
for [̄r−1). The precise forms of \′r and \′r+1 do not play an important role (they are given by \′r = (\r , ]r )

and \′r+1 = (\r+1, [r )). The new terms containing (3-20) and (3-21) clearly satisfy (i). Furthermore, (ii)
remains true because the contribution of the original 3 to the sum in (3-11), which was given by p+ 1 is
now replaced by (r+1)+(p−r+1)= p+2. Clearly, (iii) remains true as well, since, for both terms (3-20)
and (3-21), the total powers of the η-kernels is increased exactly by 1. As before, the terms we generated
do not have the form (iv). Property (v) continues to hold true, because the 5(1)-term is unaffected. As for
(vi), we observe that nonnormally ordered pairs can only be created where ]r is changed to ]̄r (in the term
where ]′ appears) or where [r is changed to [̄r (in the term where [′′′ appears). In both cases, however, the
change ]r → ]̄r and [r → [̄r comes together with an increase in the power of the corresponding η-kernel
(i.e., η(mr )

\r
is changed to η(mr+1)

\′r
in the first case, while η(mr+1)

\r+1
is changed to η(mr+1+1)

\′r+1
in the second case).

Since mr + 1,mr+1+ 1≥ 2, even if nonnormally ordered terms are created, they still satisfy (vi).
Next, let us consider the terms arising from commuting B(η) with the operator

N−k5
(1)
],[(η

( j1)
\1
, . . . , η

( jk)
\k
; η

(s)
\ ( f♦))

= N−k
∫

b[0
x1

k−1∏
i=1

a]i
yi

a[i
xi+1

a]k
yk

a[k (η
(s)
\ ( f♦))

k∏
i=1

η
( ji )
\i
(xi ; yi ) dxi dyi . (3-22)

We argue similarly to the case in which B(η) hits a 5(2)-operator like (3-17). In particular, if B(η) hits
the operator b[0

x1 , the operator (3-22) is replaced by the sum of two terms, the first one being

−
N −N

N
N−p5

(1)
],[̃
(η
(m1+1)
\′1

, η
(m2)
\2

, . . . , η
(mk)
\k
; η

(s)
\ ( f♦)) or

−
N + 1−N

N
N−p5

(1)
],[̃
(η
(m1+1)
\′1

, η
(m2)
\2

, . . . , η
(mk)
\k
; η

(s)
\ ( f♦)),

depending on whether [0 = · or [0 = ∗ (with [̃= ([̄0, [1, . . . , [k−1)) and the second one being

N−(k+1)5
(1)
]̃,[̃
(η, η

(m1)
\1

, . . . , η
(mk)
\k

, η
(s)
\ ( f♦)),

with ]̃= ([̄0, ]1, . . . , ]k) and [̃= ([̄0, [1, . . . , [k). As we did in the analysis of (3-18) and (3-19), one can
show that both these terms satisfy all properties (i), (ii), (iii), (v), (vi) (we will discuss (iv) below).

If instead B(η) hits one of the factors a]r
yr a[rxr+1 for an r = 1, . . . , k − 1, the resulting two terms will

have the form

−[N−r5
(2)
]′,[′(η

(m1)
\1

, . . . , η
(mr+1)
\′r

)][N−(k−r)5
(1)
]
′′
,[
′′ (η

(mr+1)
\r+1

, . . . , η
(mk)
\k
; η

(s)
\ ( f♦))] (3-23)

or

−[N−r5
(2)
]
′′′
,[
′ (η

(m1)
\1

, . . . , η
(mr )
\′r

)][N−(k−r)5
(1)
]
′′
,[
′′′ (η

(mr+1+1)
\
′

r+1
, . . . , η

(mk)
\k
; η

(s)
\ ( f♦))], (3-24)
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with ]′, ]
′′

, ]
′′′

and [′, [
′′

, [
′′′

as defined after (3-21). Proceeding much as we did in (3-21), we can show
that these terms satisfy (i), (ii), (iii), (v) and (vi).

Let us now consider the case that (3-22) is commuted with the last pair of operators appearing in (3-22).
From the induction assumption, we know that this pair can only be a∗yk

a(η(2r)( f )) or ayk a∗(η(2r+1)( f̄ )).
In the first case, (3-22) is replaced by

−5
(2)
],[′(η

( j1)
\1
, . . . , η

( jk)
\k
) b∗(η(2r+1)( f̄ ))−5(2)

]′,[′(η
( j1)
\1
, . . . , η

( jk−1)
\k−1

, η
( jk+1)
\′k

) b(η(2r)( f )). (3-25)

In the second case, it is replaced by

−5
(2)
]′,[′(η

( j1)
\1
, . . . , η

( jk−1)
\k−1

, η
( jk+1)
\′k

)b∗(η(2r+1)( f̄ ))−5(2)
]′,[′(η

( j1)
\1
, . . . , η

( jk)
\k
)b(η(2r+2)( f )). (3-26)

In (3-25), (3-26), we used the notation [′ = ([0, . . . , [k−1), ]′ = (]1, . . . , ]̄k) (as usual, the precise form
of \′k is not important). From the expressions (3-25), (3-26), we see that also in this case, (i), (ii), (iii),
(v) and (vi) are satisfied.

As for (iv), from the induction assumption we know that there is exactly one term in the expansion
for ad(n)B(η)(b( f )) given by (3-12) if n is even and by (3-13) if n is odd. Let us take, for example, (3-12).
If we commute the zero-order 5(1)-operator b(η(n)( f )) in (3-12) with B(η), we obtain exactly the term
in (3-13), with n replaced by n+ 1 (together with a second term, containing a 5(1)-operator of order 1).
Similarly, if we take (3-13) and we commute the 5(1)-operator b∗(η(n)( f̄ )) with B(η), we get (3-12),
with n replaced by n+ 1. Looking at the terms above, it is clear that there can be only one term with
this form. This shows that also in the expansion for ad(n+1)

B(η) (b( f )), there is exactly one term of the form
given in (iv).

Finally, let us count the number of terms in the expansion for ad(n+1)
B(η) (b( f )). By the inductive

assumption, the expansion for ad(n)B(η)(b( f )) contains exactly 2nn! terms. By (ii), each of these terms is
a product of exactly n+ 1 operators, each of them being (N −N ), (N + 1−N ), a field operator b]x or
a quadratic factor a]ya[x commuting with the number of particles operator. By (3-14), the commutator
of B(η) with each such factor gives a sum of two terms. Therefore, by the product rule, ad(n+1)

B(η) (b( f ))
contains 2n(n!)× 2(n+ 1)= 2(n+1)(n+ 1)! summands. This concludes the proof of the lemma. �

From Lemma 3.2, we immediately obtain a convergent series expansion for the conjugation of the
fields b( f ) and b∗( f ) with the unitary operator exp(B(η)).

Lemma 3.3. Let η ∈ L2(R3
×R3) be symmetric, with ‖η‖2 sufficiently small. Then we have

e−B(η)b( f )eB(η)
=

∞∑
n=0

(−1)n

n!
ad(n)B(η)(b( f )),

e−B(η)b∗( f )eB(η)
=

∞∑
n=0

(−1)n

n!
ad(n)B(η)(b

∗( f )),

(3-27)

where the series on the right-hand sides are absolutely convergent.
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Proof. From (3-7) we have

e−B(η)b( f )eB(η)

=

m−1∑
n=1

(−1)n
ad(n)B(η)(b( f ))

n!
+

∫ 1

0
ds1

∫ s1

0
ds2 · · ·

∫ sm−1

0
dsm e−sm B(η)ad(m)B(η)(b( f ))esm B(η). (3-28)

To prove (3-27), we show that the norm of the error term converges to zero as m→∞. By Lemma 3.2,
ad(n)B(η)(b( f ) is given by a sum of 2nn! terms of the form

31 · · ·3i
1

N k5
(1)
],[(η

( j1)
\1
, . . . , η

( jk)
\k
; η(`)( f♦)), (3-29)

with i, k, ` ∈ N, j1, . . . , jk ∈ N\{0} and where each 3r is (N −N )/N, (N + 1−N )/N or an operator
of the form

1
N p5

(2)
],[(η

(m1)
\1

, . . . , η
(m p)

\p
).

On F≤N, we have the bounds ‖(N −N )/N‖ ≤ 1 and ‖(N + 1−N )/N‖ ≤ 2. Lemma 2.4 implies that

N−p
‖5

(2)
],[(η

(m1)
\1

, . . . , η
(m p)

\p
)‖ ≤ (12)p(2‖η‖2)m1+···+m p

and that
N−k
‖5

(1)
],[(η

( j1)
\1
, . . . , η

( jk)
\k
; η(`)( f♦))‖ ≤ (12)k

√
N‖ f ‖2(2‖η‖2)`+ j1+···+ jk .

Here we used the fact that, if a kernel η( j) is associated with a normally ordered pair of creation and
annihilation operators, then ‖η( j)

‖HS ≤ ‖η‖
j
HS. If instead η( j) is associated with a nonnormally ordered

pair, then point (vi) in Lemma 3.2 implies that j ≥ 2. Hence,∫ ∣∣∣∣η( j)(x; x)
∣∣∣∣ dx =

∫ ∣∣∣∣∫ η(x; y)η( j−1)(y; x) dy
∣∣∣∣ dx

≤

(∫
|η(x; y)|2 dx dy

)1/2(∫
|η( j−1)(x; y)|2 dx dy

)1/2

≤ ‖η‖2‖η
( j−1)
‖2 ≤ ‖η‖

j
2.

Therefore, if the term (3-29) contains 5(2)-operators of order p1, . . . , pj ∈ N\{0}, we can bound∥∥∥∥31 · · ·3i
1

N k5
(1)
],[(η

( j1)
\1
, . . . , η

( jk)
\k
; η(`)( f♦))

∥∥∥∥≤ 12p1+···+pj+k
√

N (2‖η‖2)m ≤
√

N‖ f ‖2Cm
‖η‖m

and therefore, since ad(m)B(η)(b( f )) is the sum of 2mm! terms,

‖ad(m)B(η)(b( f ))‖ ≤
√

N‖ f ‖2(2C‖η‖2)mm! . (3-30)

This proves, first of all, that the series on the right-hand side of (3-27) converges absolutely, if ‖η‖2 ≤
(4C)−1. Under this condition, (3-30) also implies that the error term on the right-hand side of (3-28)
converges to zero, as m→∞, since∥∥∥∥∫ 1

0
ds1 · · ·

∫ sm−1

0
dsm e−sm B(η)adB(η)(b( f ))esm B(η)

∥∥∥∥≤√N‖ f ‖2(2C‖η‖)m . �
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4. Fluctuation dynamics

In this section, we are going to define the fluctuation dynamics describing the evolution of orthogonal
excitations of the Bose–Einstein condensate.

Instead of comparing the solution of the many-body Schrödinger equation (1-8) directly with the solution
of the Gross–Pitaevskii equation (1-12), it is convenient to introduce a modified, N -dependent, Gross–
Pitaevskii equation. To this end, we fix `> 0 and we consider the ground state f` of the Neumann problem(

−1+ 1
2 V
)

f` = λ` f` (4-1)

on the ball |x |≤ N`, such that the radial derivative ∂r f`(x) is zero for |x |= N` (we omit the N -dependence
in the notation for f` and for λ`; notice that λ` scales as N−3). The solution f` is radial, and we can nor-
malize it so that f`(x)= 1 for |x | = N`. We extend f` to R3 by setting f`(x)= 1 for all |x |> N`. We also
definew`=1− f` (so thatw`(x)=0 if |x |>N`). By scaling, we observe that f`(N · ) satisfies the equation(

−1+ 1
2 N 2V (N · )

)
f`(N · )= N 2λ` f`(N · ) (4-2)

on the ball |x | ≤ ` (` > 0 will be kept fixed, independent of N ). With this choice, we expect that f`
will be close, in the limit of large N, to the solution of the zero-energy scattering equation (1-2). This
is confirmed by the next lemma, where we collect some important properties of f`. Most of the these
results are taken from Lemma A.1 of [Erdős et al. 2006].

Lemma 4.1. Let V ∈ L3(R3) be a nonnegative, spherically symmetric potential with V (x) = 0 for all
|x |> R. Fix ` > 0 and let f` denote the solution of (4-1):

(i) We have

λ` =
3a0

N 3`3

(
1+O

(
a0

N`

))
.

(ii) We have 0≤ f`, w` ≤ 1 and ∫
dx V (x) f`(x)= 8πa0+O(N−1). (4-3)

(iii) There exists a constant C > 0, depending on the potential V, such that

w`(x)≤
C
|x | + 1

and |∇w`(x)| ≤
C

|x |2+ 1
(4-4)

for all |x | ≤ N`.

Proof. Statement (i), the fact that 0≤ f`, w` ≤ 1, and statement (iii) follow from Lemma A.1 in [Erdős
et al. 2006]. We have to show (4-3). To this end, we adapt the proof of Lemma 5.1(iv) of [Erdős et al.
2010]. With r = |x |, we may write m(r)= r f`(r). We find that, for all r ∈ (R, N`],

m(r)= λ−1/2
` sin(λ1/2

` (r − N`))+ N` cos(λ1/2
` (r − N`)). (4-5)

By expanding up to the order O(λ2
`) we obtain

m(r)= r − a0+O(N−1), m′(r)= 1+O(N−1). (4-6)



GROSS–PITAEVSKII DYNAMICS FOR BOSE–EINSTEIN CONDENSATES 1537

Hence ∫
dx V (x) f`(x)= 4π

∫ R

0
dr r V (r)m(r)

= 8π
∫ R

0
dr (rm′′(r)+ λ`r2 f`(r))

= 8π
∫ R

0
dr rm′′(r)+ O(N−3)

= 8π(Rm′(R)−m(R))+O(N−1)= 8πa0+O(N−1), (4-7)

completing the proof. �

Next, we introduce the modified Gross–Pitaevskii equation†

i∂t ϕ̃t =−1ϕ̃t + (N 3V (N · ) f`(N · ) ∗ |ϕ̃t |
2)ϕ̃t , (4-8)

with initial data ϕ̃t=0 = ϕ describing the Bose–Einstein condensate at time t = 0. While in Theorem 1.2
the notation ϕ is already used to indicate the initial condensate wave function, in the proof of Theorem 1.1
we will choose ϕ = φGP to be the minimizer of the Gross–Pitaevskii functional (1-6). In both cases, we
assume that ϕ ∈ H 4(R3).

Notice that, in contrast with the initial data ϕ, the solution ϕ̃t depends on N. With (4-3), one can
show that ϕ̃t converges towards the solution of the original Gross–Pitaevskii equation (1-12) as N →∞.
This fact and some other important properties of the solutions of (1-12) and (4-8) are listed in the next
proposition, whose proof can be found in Theorem 3.1 of [Benedikter et al. 2015], with the only difference
that, in that paper, the modified Gross–Pitaevskii equation was defined through the solution f of the
zero-energy scattering equation, while here we work with the Neumann ground state f`. The only relevant
consequence is the fact that, here, the integral of f` against V is not exactly equal to 8πa0; the error,
however, is of order N−1 by (4-3).

Proposition 4.2. Let V ∈ L3(R3) be a nonnegative, spherically symmetric, compactly supported potential.
Let ϕ ∈ H 1(R3) with ‖ϕ‖2 = 1:

(i) Well-posedness: For any ϕ ∈ H 1(R3), with ‖ϕ‖2 = 1, there exist unique global solutions t→ ϕt and
t→ ϕ̃t in C(R, H 1(R3)) of the Gross–Pitaevskii equation (1-12) and, respectively, of the modified Gross–
Pitaevskii equation (4-8) with initial datum ϕ. We have ‖ϕt‖2 = ‖ϕ̃t‖2 = 1 for all t ∈ R. Furthermore,
there exists a constant C > 0 such that

‖ϕt‖H1, ‖ϕ̃t‖H1 ≤ C.

(ii) Propagation of higher regularity: If ϕ ∈ H m(R3) for some m ≥ 2, then ϕt , ϕ̃t ∈ H m(R3) for every
t ∈ R. Moreover, there exist constants C > 0, depending on m and on ‖ϕ‖Hm , and c > 0, depending on m

†It is convenient to work with this modified equation, rather than directly with the Gross–Pitaevskii equation (1-12), to obtain
a cleaner cancellation between the contributions (5-47) and (5-100) to the generator of the fluctuation dynamics (4-24).



1538 CHRISTIAN BRENNECKE AND BENJAMIN SCHLEIN

and on ‖ϕ‖H1 , such that, for all t ∈ R,

‖ϕt‖Hm , ‖ϕ̃‖Hm ≤ Cec|t |. (4-9)

(iii) Regularity of time-derivatives: Suppose ϕ ∈ H 4(R3). Then there exist C > 0, depending on ‖ϕ‖H4 ,
and c > 0, depending on ‖ϕ‖H1 , such that, for all t ∈ R,

‖ ˙̃ϕ‖H2, ‖ ¨̃ϕ‖H2 ≤ Cec|t |.

(iv) Comparison of dynamics: Suppose ϕ ∈ H 2(R3). Then there exists a constant c > 0, depending on
‖ϕ‖H2 , such that, for all t ∈ R,

‖ϕt − ϕ̃t‖2 ≤ C N−1 exp(c exp(c|t |). (4-10)

To compare the many-body evolution ψN, t with products of the solution ϕ̃t of the modified Gross–
Pitaevskii equation (1-12), we are going to define a unitary map (already discussed in Section 1, after
(1-25)) that was first introduced in [Lewin et al. 2015a; 2015b] in the mean-field setting. To this end, we
remark that every ψN ∈ L2

s (R
3N ) has a unique representation of the form

ψN =

N∑
n=0

ψ
(n)
N ⊗s ϕ̃

⊗(N−n)
t , (4-11)

where ψ (n)N ∈ L2
⊥ϕ̃t
(R3)⊗sn is symmetric with respect to permutations and orthogonal to ϕ̃t , in each

of its coordinates, and where, for ψ (n)N ∈ L2
⊥
(R3)⊗sn and ψ (k)N ∈ L2

⊥
(R3)⊗sk , ψ (n)N ⊗s ψ

(k)
N denotes the

symmetrized product defined by

ψ
(k)
N ⊗sψ

(n)
N (x1, . . . , xk+n)=

1
√

k!n!(k+n)!

∑
σ∈Sk+n

ψ
(k)
N (xσ(1), . . . , xσ(k))ψ

(n)
N (xσ(k+1), . . . , xσ(k+n)). (4-12)

Using the representation (4-11), we define UN, t : L2
s (R

3N )→ F≤N
⊥ϕ̃t

by setting

UN, tψN = {ψ
(0)
N , ψ

(1)
N , . . . , ψ

(N )
N }. (4-13)

In terms of creation and annihilation operators, the map UN, t is given by

UN, tψN =

N⊕
n=0

(1− |ϕ̃t 〉〈ϕ̃t |)
⊗n a(ϕ̃t)

N−n
√
(N − n)!

ψN .

Here, and frequently in the sequel, we identify the wave function ψN ∈ L2
s (R

3N ) with the Fock-space
vector {0, . . . , 0, ψN , 0, . . . } ∈ F . From (4-11) and by the requirement of orthogonality, it is easy to
check that ‖ψN‖

2
=
∑N

n=0 ‖ψ
(n)
N ‖

2. Hence, UN, t : L2
s (R

3N )→ F≤N
⊥ϕ̃t

is a unitary map, with inverse

U∗N, t {ψ
(0)
N , ψ

(1)
N , . . . , ψ

(N )
N } =

N∑
n=0

a∗(ϕ̃t)
N−n

√
(N − n)!

ψ
(n)
N .



GROSS–PITAEVSKII DYNAMICS FOR BOSE–EINSTEIN CONDENSATES 1539

The action of UN, t on creation and annihilation operators is determined by the following rules, see [Lewin
et al. 2015a; 2015b]:

UN, t a∗(ϕ̃t)a(ϕ̃t)U∗N, t = N −N ,

UN, t a∗( f )a(ϕ̃t)U∗N, t = a∗( f )
√

N −N =
√

N b∗( f ),

UN, t a∗(ϕ̃t)a(g)U∗N, t =
√

N −Na(g)=
√

N b(g),

UN, t a∗( f )a(g)U∗N, t = a∗( f )a(g)

(4-14)

for all f, g ∈ L2
⊥ϕ̃t
(R3). Here we used modified creation and annihilation operators, as defined in (2-5).

With UN, t we factor out the condensate and we focus on its orthogonal excitations. Observe, however,
that UN, t does not remove correlations, which are known to play a crucial role in the Gross–Pitaevskii
regime; see, for example, [Erdős et al. 2009a; 2010; 2016]. To remove correlations from the excitation
vectors, we are going to use a generalized Bogoliubov transformation, as introduced in Section 3. We
define

kt(x; y)=−Nw`(N (x − y))ϕ̃t(x)ϕ̃t(y). (4-15)

From Lemma 4.1, it follows that kt ∈ L2(R3
×R3), with L2-norm bounded uniformly in N. Hence, kt is

the integral kernel of a Hilbert–Schmidt operator on L2(R3), which we denote again with kt . We define a
new Hilbert–Schmidt operator setting

ηt = (1− |ϕ̃t 〉〈ϕ̃t |) kt (1− | ¯̃ϕt 〉〈 ¯̃ϕt |). (4-16)

Also in this case, we will denote by ηt both the Hilbert–Schmidt operator defined in (4-16) and its integral
kernel. Note that ηt ∈ (qϕ̃t ⊗ qϕ̃t )L

2(R3
×R3), where qϕ̃t = 1− |ϕ̃t 〉〈ϕ̃t |. Let us write ηt = kt +µt , with

the Hilbert–Schmidt operator

µt = |ϕ̃t 〉〈ϕ̃t | kt | ¯̃ϕt 〉〈 ¯̃ϕt | − |ϕ̃t 〉〈ϕ̃t | kt − kt | ¯̃ϕt 〉〈 ¯̃ϕt |. (4-17)

In the next lemma we collect some important properties of the operators ηt , kt , µt .

Lemma 4.3. Let ϕ̃t be the solution of (4-8) with initial datum ϕ ∈ H 4(R). Let w` = 1− f`, with f` the
ground state solution of the Neumann problem (4-1). Let kt , ηt , µt be defined as in (4-15), (4-16), (4-17).
Then there exist constants C, c > 0 depending only on ‖ϕ‖H4 (in many cases, these constants actually
depend only on lower Sobolev norms of ϕ) and on V such that the following bounds hold true for all t ∈R:

(i) We have
‖ηt‖2 ≤ C, ‖η(n)t ‖2 ≤ ‖ηt‖

n
2 ≤ Cn and lim

`→0
sup

t∈R, N∈N

‖ηt‖2 = 0 (4-18)

and also

‖∇jηt‖2 ≤ C
√

N , ‖∇jµt‖2 ≤ C, ‖∇jη
(n)
t ‖2 ≤ C‖ηt‖

n−2
2 , ‖1jη

(n)
t ‖2 ≤ C‖ηt‖

n−2
2

for j = 1, 2 and for all n ≥ 2. Here ∇1ηt and ∇2ηt denote the kernels ∇xηt(x; y) and ∇yηt(x; y) (11ηt

and 12ηt are defined similarly). Decomposing coshηt = 1+ pηt and sinhηt = ηt + rηt , we obtain

‖ sinhηt ‖2, ‖pηt‖2, ‖rηt‖2, ‖∇j pηt‖2, ‖∇jrηt‖2 ≤ C. (4-19)
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(ii) For a.e. x, y ∈ R3 and n ∈ N, n ≥ 2, we have the pointwise bounds

|ηt(x; y)| ≤
C

|x − y| + N−1 |ϕ̃t(x)||ϕ̃t(y)|,

|η
(n)
t (x; y)| ≤ C‖ηt‖

n−2
2 |ϕ̃t(x)||ϕ̃t(y)|,

|µt(x; y)|, |pηt (x; y)|, |rηt (x; y)| ≤ C |ϕ̃t(x)||ϕ̃t(y)|.

(4-20)

(iii) We have

sup
x

∫
|ηt(x; y)|2 dy, sup

x

∫
|kt(x; y)|2 dy, sup

x

∫
|µt(x; y)|2 dy ≤ C‖ϕ̃t‖H2 ≤ Cec|t |

and
sup

x

∫
|η
(n)
t (x; y)|2 dy ≤ C‖ηt‖

n−2
2 ‖ϕ̃t‖H2 ≤ C‖ηt‖

n−2
2 ec|t |

for all n ≥ 2. Therefore

sup
x

∫
|pηt (x; y)|2 dy, sup

x

∫
|rηt (x; y)|2 dy, sup

x

∫
| sinhηt (x; y)|2 dy ≤ Cec|t |.

(iv) For j = 1, 2 and n ≥ 2, we have

‖∂tηt‖2, ‖∂
2
t ηt‖2 ≤ Cec|t |, ‖∂tη

(n)
t ‖2 ≤ Cnec|t |

‖ηt‖
n−1
2

and also

‖∂t∇jηt‖2 ≤ C
√

Nec|t |, ‖∂t∇jµt‖2 ≤ Cec|t |, ‖∂t∇jη
(n)
t ‖2 ≤ Cn‖ηt‖

n−2ec|t |.

Therefore
‖∂t pηt‖2, ‖∂trηt‖2, ‖∂t sinhηt ‖2, ‖∇j∂t pηt‖2, ‖∇j∂trηt‖2 ≤ Cec|t |.

(v) For a.e. x, y ∈ R3, we have the pointwise bounds

|∂tηt(x; y)| ≤ C
[

1+
1

|x − y| + N−1

][
| ˙̃ϕt(x)||ϕ̃t(y)| + |ϕ̃t(x)|| ˙̃ϕt(y)| + |ϕ̃t(x)||ϕ̃t(y)|

]
.

Moreover, for n ≥ 2, we have

|∂tη
(n)
t (x; y)| ≤ Cnec|t |

‖ηt‖
n−2
2

[
| ˙̃ϕt(x)||ϕ̃t(y)| + |ϕ̃t(x)|| ˙̃ϕt(y)| + |ϕ̃t(x)||ϕ̃t(y)|

]
.

Therefore

|∂tµt(x; y)|, |∂trηt (x; y)|, |∂t pηt (x; y)| ≤ Cec|t |[
| ˙̃ϕt(x)||ϕ̃t(y)| + |ϕ̃t(x)|| ˙̃ϕt(y)| + |ϕ̃t(x)||ϕ̃t(y)|

]
.

(vi) Finally, we find

sup
x

∫
|∂tηt(x; y)|2 dy, sup

x

∫
|∂t kt(x; y)|2 dy, sup

x

∫
|∂µt(x; y)|2 dy ≤ Cec|t |.

Furthermore, for all n ≥ 2,

sup
x

∫
|∂tη

(n)
t (x; y)| dy ≤ Cnec|t |

‖ηt‖
n−2
2
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and therefore

sup
x

∫
|∂t pηt (x; y)|2 dy, sup

x

∫
|∂trηt (x; y)|2 dy, sup

x

∫
|∂t sinhηt (x; y)|2 dy ≤ Cec|t |.

Proof. To prove (4-18) observe that, using Lemma 4.1 and Young’s inequality,

‖ηt‖
2
2 ≤ ‖kt‖

2
2 ≤ C

∫
χ(|x − y| ≤ `)
|x − y|2

|ϕ̃t(x)|2 |ϕ̃t(y)|2 dx dy ≤ C`‖ϕ̃t‖
2
4 ≤ C`‖ϕ̃t‖

2
H1 ≤ C`

uniformly in N ∈N and in t ∈ R. The proof of the other bounds is a simple generalization of the proof of
Lemmas 3.3 and 3.4 in [Benedikter et al. 2015]; we omit the details. �

We model correlations in the solution ψN, t of the many-body Schrödinger equation (1-8) by means
of the generalized Bogoliubov transformation exp(B(ηt)) : F≤N

⊥ϕ̃t
→ F≤N

⊥ϕ̃t
with the integral kernel ηt ∈

(qϕ̃t ⊗ qϕ̃t )L
2(R3
×R3) defined in (4-16). We define therefore the fluctuation dynamics

WN, t = e−B(ηt ) UN, t e−i HN t U∗N ,0 eB(η0). (4-21)

Then WN, t : F≤N
⊥ϕ → F≤N

⊥ϕ̃t
is a unitary operator. Clearly, WN, t depends on the length parameter ` (the

radius of the ball in (4-1)), through the modified Gross–Pitaevskii equation (4-8) and also through the
kernel ηt defined in (4-15), (4-16). While WN, t is well-defined for any value of ` > 0, we will have to
choose ` > 0 small to make sure that ‖ηt‖2 is sufficiently small; this will allow us to expand the action of
the generalized Bogoliubov transformation exp(B(ηt)) appearing in (4-21) using the series expansion
(3-27) (because, by (4-18), smallness of ` implies that ‖ηt‖2 is small, uniformly in t).

For ξ ∈ F≤N
⊥ϕ , the operator WN, t is defined so that

e−i HN t U∗N ,0 eB(η0)ξ =U∗N, t eB(ηt )WN, tξ.

It allows us to describe the many-body evolution of initial data of the form

ψN =U∗N ,0eB(η0)ξ, (4-22)

and to express the evolved state again in the form

ψN, t = e−i HN tψN =U∗N, t e
B(ηt )ξt , (4-23)

where ξt =WN, t ξ . As we will see below, a vector of the form (4-22) exhibits Bose–Einstein condensation
in the one-particle state ϕ if and only if the expectation of the number of particles operator 〈ξ,N ξ〉 is
small, compared with the total number of particles N. Hence, to prove Theorems 1.1 and 1.2, we will
have to show first that every initial ψN ∈ L2

s (R
3N ) satisfying (1-10) can be written in the form (4-22) for

a ξ ∈ F≤N
⊥ϕ with 〈ξ,N ξ〉 � N and then that the bound on the expectation of the number of particles is

approximately preserved by WN, t . In fact, it turns out that to control the growth of the expectation of N
along the fluctuation dynamics, it is not enough to have a bound on 〈ξ,N ξ〉; instead, we will also need a
bound on the energy of ξ (this is why we need to assume bN → 0 in (1-10)).
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To control the growth of the number of particles with respect to the fluctuation dynamics it is important
to compute the generator of WN, t . A simple computation shows that

i∂tWN, t = GN, tWN, t ,

with the time-dependent generator

GN, t = (i∂t e−B(ηt ))eB(ηt )+ e−B(ηt )[(i∂tUN, t)U∗N, t +UN, t HN U∗N, t ]e
B(ηt ). (4-24)

Notice, that GN, t maps F≤N
⊥ϕ̃t

into F≤N, but not into F≤N
⊥ϕ̃t

. This is due to the fact that the space F≤N
⊥ϕ̃t

depends on time (and thus GN, t must have a component which allows WN, t to move to different spaces).
We will mostly be interested in the expectation of GN, t for states in F≤N

⊥ϕ̃t
, but at some point (when we

will consider the variation of the expectation of GN, t ) it will be important to remember the component of
GN, t mapping out of F≤N

⊥ϕ̃t
.

In the next proposition, we collect important properties of the generator GN, t .

Theorem 4.4. Let V ∈ L3(R3) be nonnegative, spherically symmetric and compactly supported. Let
WN, t be defined as in (4-21) with the length parameter ` > 0 sufficiently small and using the solution of
the modified Gross–Pitaevskii equation (4-8), with an initial data ϕ ∈ H 4(R3). Let

CN ,t =
1
2
〈
ϕ̃t ,
(
[N 3V (N · )(N − 1− 2N f`(N · ))] ∗ |ϕ̃t |

2)ϕ̃t
〉

+

∫
dx dy |∇x kt(x; y)|2+ 1

2

∫
dx dy N 2V (N (x − y))|kt(x; y)|2

+Re
∫

dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)kt(x; y). (4-25)

Then there exist constants C, c > 0 such that, in the sense of quadratic forms on F≤N
⊥ϕ̃t

,

1
2HN −Cec|t |(N + 1)≤ (GN, t −CN ,t)≤ 2HN +Cec|t |(N + 1),

±i[N ,GN, t ] ≤HN +Cec|t |(N + 1),

±∂t(GN, t −CN ,t)≤HN +Cec|t |(N + 1),

±Re[a∗(∂t ϕ̃t)a(ϕ̃t),GN, t ] ≤HN +Cec|t |(N + 1),

(4-26)

where HN is the Fock-space Hamiltonian

HN =

∫
dx ∇xa∗x∇xax +

1
2

∫
dx dy N 2V (N (x − y))a∗x a∗yayax . (4-27)

Note that, on F≤N
⊥ϕ̃t

, we have

[a∗(∂t ϕ̃t)a(ϕ̃t),GN, t ] = a∗(∂t ϕ̃t)a(ϕ̃t)GN, t .

The proof of Theorem 4.4 is given in the next section. From the technical point of view, it represents
the main part of our paper. In Section 6, we show then how to use the properties of GN, t established in
Theorem 4.4 to complete the proof of Theorems 1.1 and 1.2.
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5. Analysis of the generator of fluctuation dynamics

In this section we study the properties of the generator

GN, t = (i∂t e−B(ηt ))eB(ηt )+ e−B(ηt )[(i∂tUN, t)U∗N, t +UN, t HN U∗N, t ]e
B(ηt ) (5-1)

of the fluctuation dynamics (4-21); the goal is to prove Theorem 4.4.
As forms on F≤N

⊥ϕ̃t
×F≤N

⊥ϕ̃t
, we find, see Lemma 6 in [Lewin et al. 2015a],

(i∂tUN, t)U∗N, t =−〈i∂t ϕ̃t , ϕ̃t 〉(N −N )−
√

N [b(i∂t ϕ̃t)+ b∗(i∂t ϕ̃t)]. (5-2)

Using (4-14) to compute UN, t HN U∗N, t , a lengthy but straightforward computation, see Appendix B of
[Lewin et al. 2015a], shows that

(i∂tUN, t)U∗N, t +UN, t HN U∗N, t =

4∑
j=0

L( j)
N, t ,

where

L(0)N, t =
1
2

〈
ϕ̃t , [N 3V (N · )(1−2 f`(N · ))∗|ϕ̃t |

2
]ϕ̃t
〉
(N−N )− 1

2

〈
ϕ̃t , [N 3V (N · )∗|ϕ̃t |

2
]ϕ̃t
〉
(N+1)

(N−N )
N

,

L(1)N, t =
√

N b([N 3V (N · )w`(N · )∗|ϕ̃t |
2
]ϕ̃t)−

N+1
√

N
b([N 3V (N · )∗|ϕ̃t |

2
]ϕ̃t)+h.c.,

L(2)N, t =

∫
dx ∇xa∗x∇xax+

∫
dx dy N 3V (N (x−y))|ϕ̃t(y)|2

(
b∗x bx−

1
N

a∗x ax

)
+

∫
dx dy N 3V (N (x−y))ϕ̃t(x) ¯̃ϕt(y)

(
b∗x by−

1
N

a∗x ay

)
+

1
2

[∫
dx dy N 3V (N (x−y))ϕ̃t(x)ϕ̃t(y)b∗x b∗y+h.c.

]
,

L(3)N, t =

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)b∗xa∗yax+h.c.,

L(4)N, t =
1
2

∫
dx dy N 2V (N (x−y))a∗x a∗yayax .

(5-3)
The generator (5-1) of the fluctuation dynamics is therefore given by

GN, t = (i∂t e−B(ηt ))eB(ηt )+

4∑
j=0

e−B(ηt )L( j)
N, t e

B(ηt ).

In the next subsections, we will study separately the six terms contributing to GN, t . Before doing so,
however, we collect some preliminary results, which will be useful for our analysis.

Notation and conventions. For the rest of this section we employ the short-hand notation ηx , kx , µx for
the wave functions ηx(y) = ηt(x; y), kx(y) = kt(x; y) and µx(y) = µt(x; y). We will always assume
that supt∈R ‖ηt‖2 is sufficiently small, so that we can use the expansions obtained in Lemma 3.3. Finally,
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by C and c we denote generic constants which only depend on fixed parameters, but not on N or t , and
which may vary from one line to the next.

5A. Preliminary results. In this subsection we show some simple but important auxiliary results which
will be used throughout the rest of Section 5. Recall the operators

5
(2)
],[( j1, . . . , jn)=

∫
b[0

x1

n−1∏
i=1

a]i
yi

a[i
xi+1

b]n
yn

n∏
i=1

ji (xi ; yi ) dxi dyi ,

5
(1)
],[( j1, . . . , jn; f )=

∫
b[0

x1

n−1∏
i=1

a]i
yi

a[i
xi+1

a]n
yn

a[n ( f )
n∏

i=1

ji (xi ; yi ) dxi dyi

introduced in Section 2. For each i ∈ {1, . . . , n}, we recall in particular the condition that either ]i = ∗

and [i = · or ]i = · and [i = ∗.
In the next lemma, we consider commutators of these operators with the number of particles operator N

and with operators of the form a∗(g1)a(g2).

Lemma 5.1. Let n ∈ N, f, g1, g2 ∈ L2(R3), j1, . . . , jn ∈ L2(R3
×R3):

(i) We have

[N ,5(2)
],[( j1, . . . , jn)] = κ[0,]n5

(2)
],[( j1, . . . , jn) for all ], [ ∈ { · , ∗}n,

[N ,5(1)
],[( j1, . . . , jn; f )] = ν[05

(1)
],[( j1, . . . , jn; f ) for all ] ∈ { · , ∗}n, [ ∈ { · , ∗}n+1.

Here κ[0,]n = 2 if [0 = ]n = ∗, κ[0,]n = −2 if [0 = ]n = · , and κ[0,]n = 0 otherwise, while ν[0 = 1 if
[0 = ∗ and ν[0 =−1 if [0 = · .

(ii) The commutator
[a∗(g1)a(g2),5

(2)
],[( j1, . . . , jn)]

can be written as the sum of 2n terms, all having the form

5
(2)
],[( j1, . . . , ji−1, hi , ji+1, . . . , jn)

for some i ∈ {1, . . . , n}. Here hi ∈ L2(R3
×R3) has (up to a possible sign) one of the forms

hi (x; y)= g1(x) ji (ḡ2)(y), hi (x; y)= g1(y) ji (ḡ2)(y) (5-4)

or one of those forms with g1 and ḡ2 exchanged. Here ji (g)(x)=
∫

ji (x; z)g(z) dz. Notice that

‖hi‖2 ≤ ‖g1‖2‖g2‖2‖ ji‖2 (5-5)

and

|hi (x; y)| ≤max
{
|g1(x)|‖ ji ( · ; y)‖2‖g2‖2, |g1(y)|‖ ji (x; .)‖2‖g2‖2,

|g2(x)|‖ ji ( · ; y)‖2‖g1‖2, |g2(y)|‖ ji (x; .)‖2‖g1‖2
}
. (5-6)

(iii) The commutator
[a∗(g1)a(g2),5

(1)
],[( j1, . . . , jn; f )] (5-7)
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can be written as the sum of 2n+ 1 terms; 2n of them have the form

5
(1)
],[( j1, . . . , ji−1, hi , ji+1, . . . , jn; f ),

where hi is (up to a possible sign) one of the kernels appearing in (5-4) (or the same with g1 and ḡ2

exchanged), and satisfying the bounds in (5-5), (5-6). The remaining term in the expansion for (5-7) has
the form

5
(1)
],[( j1, . . . , jn; k), (5-8)

where k ∈ L2(R3) is (up to a possible sign) one of the functions

k(x)= 〈g1, f 〉 g2(x), k(x)= 〈g2, f 〉 g1(x) (5-9)

or one of their complex conjugated functions. In any event, we have

‖k‖2 ≤ ‖g1‖2‖g2‖2‖ f ‖2

and

|k(x)| ≤ ‖ f ‖2 max{‖g1‖2 |g2(x)|, ‖g2‖2 |g1(x)|}.

(iv) If f ∈ L2(R3) and/or j1, . . . , jn ∈ L2(R3
×R3) depend on time t ∈ R, we have

∂t5
(2)
],[( j1, . . . , jn)=

n∑
i=1

5
(2)
],[( j1, . . . , ji−1, ∂t ji , ji+1, . . . , jn),

∂t5
(1)
],[( j1, . . . , jn; f )=5(1)

],[( j1, . . . , jn; ∂t f )+
n∑

i=1

5
(1)
],[( j1, . . . , ji−1, ∂t ji , ji+1, . . . , jn; f ).

Proof. Part (i) follows from (N + 1)bx = bxN and Nb∗x = b∗x(N + 1). Part (iv) follows easily from the
Leibniz rule. To prove part (ii), we apply the Leibniz rule:

[a∗(g1)a(g2),5
(2)
],[( j1, . . . , jn)]

=

∫
[a∗(g1)a(g2), b[0

x1
]

n∏
i=1

a]i
yi

a[i
xi+1

b]n
yn

n∏
i=1

ji (xi ; yi ) dxi dyi

+

n−1∑
m=1

∫
b[0

x1

m−1∏
i=1

a]i
yi

a[i
xi+1
[a∗(g1)a(g2), a]m

ym
a[m

xm+1
]

n−1∏
i=m+1

a]i
yi

a[i
xi+1

b]n
yn

n∏
i=1

ji (xi ; yi ) dxi dyi

+

∫
b[0

x1

n∏
i=1

a]i
yi

a[i
xi+1
[a∗(g1)a(g2), b]n

yn
]

n∏
i=1

ji (xi ; yi ) dxi dyi . (5-10)

Using the commutation relations

[a∗(g1)a(g2), bx ] = −g1(x)b(g2),

[a∗(g1)a(g2), b∗x ] = ḡ2(x)b∗(g1),

[a∗(g1)a(g2), a∗x ay] = [a∗(g1)a(g2), aya∗x ] = ḡ2(x)a∗(g1)ay − g1(y)a∗x a(g2),

(5-11)
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we conclude that on the right-hand side of (5-10) we have 2n terms, each of them a 5(2)-operator (with
the same indices ], [ as the 5(2)-operator on the left-hand side of (5-10)). Furthermore, from (5-11) it
is clear that for each 5(2)-operator on the right-hand side of (5-10), only one j-kernel will differ from
the j-kernels of the 5(2)-operator on the left-hand side of (5-10). In the first term on the right-hand side
of (5-10), we only have to replace the j1-kernel (either with g1(x1) j1(ḡ2)(y1) or with ḡ2(x1) j1(g1)(y1),
depending on [0 ∈ { · , ∗}). Similarly, in the last term on the right-hand side of (5-10), only the jn-kernel
has to be changed. In the m-th term in the sum, on the other hand, the commutator leads to the sum of
two 5(2)-operators, one where the kernel jm is changed and one where the kernel jm+1 is replaced. From
(5-11), it is easy to check that the new kernel can only have one of the forms listed in (5-4). The bounds
(5-5), (5-6) follow easily from the explicit formula in (5-4). Part (iii) can be shown similarly; the only
difference is that, in this case, the commutator can hit the last pair a]n

yn a[n ( f ) instead of the b]n
yn appearing

in the 5(2)-operator. �

It follows from Lemma 5.1 that

[N , e−B(η)b( f )eB(η)
] =

∞∑
n=0

(−1)n

n!
[N , ad(n)B(η)(b( f ))],

[a∗(g1)a(g2), e−B(η)b( f )eB(η)
] =

∞∑
n=0

(−1)n

n!
[a∗(g1)a(g2), ad(n)B(η)(b( f ))],

∂t(e−B(η)b( f )eB(η))=

∞∑
n=0

(−1)n

n!
∂t ad(n)B(η)(b( f )),

(5-12)

where the series on the right-hand sides are absolutely convergent.
In the next subsections we are going to study what happens to the operators L( j)

N, t defined in (5-3) when
they are conjugated with the generalized Bogoliubov transformation eB(ηt ). The general strategy is to
expand e−B(ηt )L( j)

N, t e
B(ηt ) using (3-27), and then use Lemma 3.2 to express all nested commutators. For

this reason, we will have to bound the action of operators of the form

31 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η(s)(g)). (5-13)

To this end, we will use the next lemma.

Lemma 5.2. Let g ∈ L2(R3), n, i1, i2, k1, k2, `1, `2 ∈ N and j1, . . . , jk1,m1, . . . ,mk2 ∈ N\{0}. For
s= 1, . . . , i1, s ′= 1, . . . , i2, we denote by each of3s ,3′s′ a factor (N−N )/N or a factor (N−N+1)/N
or an operator of the form

N−p 5
(2)
],[(η

(q1)
t,\1
, . . . , η

(qp)

t,\p
). (5-14)

(i) Assume that the operator

31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(`1)
t,♦ (g))

appears in the expansion of ad(n)B(ηt )
(b(g)) discussed in Lemma 3.2. Then

‖(N + 1)−1/231 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(`1)
t,♦ (g))ξ‖ ≤ Cn

‖ηt‖
n
‖g‖‖ξ‖.
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If at least one of the 3s-operators has the form (5-14) or if k ≥ 1, we also have

‖(N+1)−1/231 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
;η

(`1)
t,♦ (g))ξ‖≤Cn N−1/2

‖ηt‖
n
‖g‖‖(N+1)1/2ξ‖. (5-15)

(ii) Let r : L2(R3)→ L2(R3) be a bounded linear operator. We use the notation

(η(s)r)x(y) := (η(s)r)(x; y)

(if s = 0, (η(s)r)x(y)= rx(y)= r(x; y) as a distribution). Assume that the operator

31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1)
t,♦ r)x)

appears in the expansion of ad(n)B(ηt )
(b(rx)) discussed in Lemma 3.2. Then

‖31 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; (η

(`1)
t,♦ r)x)ξ‖

≤

{
Cn
‖ηt‖

n−1
‖(ηtr)x‖‖(N + 1)1/2ξ‖ if `1 ≥ 1,

Cn
‖ηt‖

n
‖a(rx)ξ‖ if `1 = 0.

(5-16)

Proof. Let us start with part (i). If 31 is either the operator (N −N )/N or (N −N +1)/N, then, on F≤N,

‖(N + 1)−1/231 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(`1)
t,♦ (g))ξ‖

≤ 2‖(N + 1)−1/232 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(`1)
t,♦ (g))ξ‖. (5-17)

If instead 31 has the form (5-14) for a p ≥ 1, we apply Lemma 2.4 and we find, using Lemma 3.2(vi),

‖(N + 1)−1/231 · · ·3i1 N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(`1)
t,♦ (g))ξ‖

≤ C p
‖ηt‖

p̄
‖(N + 1)−1/232 · · ·3i N−k5

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(`1)
t,♦ (g))ξ‖, (5-18)

where we used the notation p̄ = q1 + · · · + qp for the total number of ηt -kernels appearing in (5-14).
Iterating the bounds (5-17) and (5-18), we conclude that

‖(N + 1)−1/231 · · ·3i1 N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(`1)
t,♦ (g))ξ‖

≤ Cr+p1+···+ps‖ηt‖
p̄1+···+ p̄s‖(N + 1)1/2 N−k5

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(`1)
t,♦ (g))ξ‖ (5-19)

if r of the operators 31, . . . , 3i1 have either the form (N −N )/N or the form (N −N + 1)/N, and
the other s = i1 − r are 5(2)-operators of the form (5-14) of order p1, . . . , ps , containing p̄1, . . . , p̄s

ηt -kernels. Again with Lemma 2.4, we obtain

‖(N + 1)−1/231 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
t,♦ (g))ξ‖

≤ Cr+p1+···+ps+ j1+···+ jk1+l1‖ηt‖
p̄1+···+ p̄s+ j1+···+ jk1+l1‖g‖‖ξ‖

≤ Cn
‖ηt‖

n
‖g‖‖ξ‖. (5-20)



1548 CHRISTIAN BRENNECKE AND BENJAMIN SCHLEIN

This shows the first bound in part (i). Now, assume that at least one of the3m-operators, for m∈{1, . . . , i1},
has the form (5-14). Since, for 9 ∈ F≤N,

‖(N + 1)−1/2 N−p5
(2)
],[(η

(q1)
t,\1
, . . . , η

(qp)

t,\p
)9‖ ≤ C p

‖ηt‖
q1+···+qp N−p

‖(N + 1)p−1/29‖

≤ C p
‖ηt‖

q1+···+qp N−1/2
‖9‖

for any p ≥ 1, in this case we can improve (5-20) to

‖(N + 1)−1/231 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
t,♦ (g))ξ‖ ≤ Cn N−1/2

‖ηt‖
n
‖g‖‖(N + 1)1/2ξ‖.

Similarly, if k1 ≥ 1, we have by Lemma 2.4,

N−k1‖(N+1)−1/25
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k
; η

(`1)
t,\k+1

(g))ξ‖ ≤ N−k1Ck1‖ηt‖
j1+···+ jk1+`1‖g‖‖(N+1)k1−1/2ξ‖

≤ Ck N−1/2
‖ηt‖

j1+···+ jk1+`1‖g‖‖(N+1)1/2ξ‖.

Hence, also in this case, the bound (5-15) holds true. If `1 ≥ 1, part (ii) can be proven similarly to part (i),
noticing that

‖(η
(`1)
t,♦ r)x‖ ≤ ‖ηt‖

`1−1
‖(ηtr)x‖.

If instead `1 = 0, it follows from Lemma 3.2(v) that the field operator associated with (η(`1)
t,♦ r)x = rx (the

one appearing on the right of 5(1)) is an annihilation operator (acting directly on ξ ). Hence, (5-16) holds
true also in this case. �

Often, we will also have to bound the action of products of operators of the form (5-13). In this case,
the next lemma will be useful.

Lemma 5.3. Let g ∈ L2(R3), n, i1, i2, k1, k2, `1, `2 ∈ N and j1, . . . , jk1,m1, . . . ,mk2 ∈ N\{0}. For
s= 1, . . . , i1, s ′= 1, . . . , i2, we denote by each of3s ,3′s′ a factor (N−N )/N or a factor (N−N+1)/N
or an operator of the form (5-14). Assume that the operators

31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1+1)
t,♦ r)x),

3′1 · · ·3
′

i2
N−k25

(1)
],[(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)

(5-21)

appear in the expansions of ad(n)B(ηt )
(b((ηtr)x)) and ad(k)B(ηt )

(bx) respectively for some n, k ∈ N, x ∈ R3.
Then∥∥(N + 1)−1/231 · · ·3i1 N−k15

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1+1)
t,♦ r)x)

×3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)ξ

∥∥
≤

{
Cn+k
‖ηt‖

n+k−1
‖(ηtr)x‖‖ηx‖‖(N + 1)1/2ξ‖ if `2 > 0,

Cn+k
‖ηt‖

n+k
‖(ηtr)x‖‖axξ‖ if `2 = 0. (5-22)
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Similarly, if the operators

31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1)
t,♦ ∂tηt,♦̃)x),

3′1 · · ·3
′

i2
N−k25

(1)
],[(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)

appear in the expansions of ad(n)B(ηt )
(b(∂tηt)) and ad(k)B(ηt )

(bx) respectively for some n, k ∈ N, x ∈ R3, we
have∥∥(N + 1)−1/231 · · ·3i1 N−k15

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1)
t,♦ ∂tηt,♦̃)x)

××3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)ξ

∥∥
≤

{
Cn+k
‖ηt‖

n+k−1
‖(∂tηt)x‖‖ηx‖‖(N + 1)1/2ξ‖ if `2 > 0,

Cn+k
‖ηt‖

n+k
‖(∂tηt)x‖‖axξ‖ if `2 = 0.

(5-23)

Proof. We can bound, first of all

‖(N + 1)−1/231 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1+1)
t r)x)9‖ ≤ Cn

‖ηt‖
n
‖(ηtr)x‖‖9‖

and

‖(N + 1)−1/231 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1)
t,♦ ∂tηt,♦̃)x)9‖ ≤ Cn

‖ηt‖
n
‖(∂tηt)x‖‖9‖.

Choosing now

9 =3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)ξ,

and proceeding as in Lemma 5.2(ii), distinguishing the cases `2 ≥ 1 and `2 = 0, we obtain (5-22) and
(5-23). �

Finally, the next lemma will be important to bound products of operators of the form (5-13), with
arguments labeled by different positions x, y ∈R3 (as opposed to (5-21), where both operators are labeled
by the same x ∈ R3).

Lemma 5.4. Let g ∈ L2(R3), n, i1, i2, k1, k2, `1, `2 ∈ N and j1, . . . , jk1,m1, . . . ,mk2 ∈ N\{0}. For
s = 1, . . . , i1, s ′ = 1, . . . , i2, we denote by 3s , 3′s′ a factor (N −N )/N or a factor (N −N + 1)/N or
an operator of the form (5-14). Assume that the operators

31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
y,♦ ),

3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)

appear in the expansions of ad(k)B(ηt )
(by) and ad(n)B(ηt )

(bx) respectively for some n, k ∈ N. For α ∈ N, t ∈ R,
we define

Dx,y =
∥∥(N + 1)(α−1)/231 · · ·3i1 N−k15

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
y,♦ )

×3′1 · · ·3
′

i2
N−k25

(1)
],[(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k1
; η

(`2)
x,♦′)ξ

∥∥
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for all x, y ∈ R3. Then, if `1 > 0, we have

Dx,y ≤

{
Cn+k
‖ηt‖

n+k−2
‖ηx‖‖ηy‖‖(N + 1)(α+1)/2ξ‖ if `2 ≥ 1,

Cn+k
‖ηt‖

n+k−1
‖ηy‖‖ax(N + 1)α/2ξ‖ if `2 = 0

(5-24)

for all x, y ∈ R3, t ∈ R. If instead `1 = 0, we distinguish three cases. For `2 > 1, we obtain

Dx,y ≤ Cn+k
‖ηt‖

n+k−2{
‖ηy‖‖ηx‖(‖(N + 1)(α−1)/2ξ‖+ n/N‖(N + 1)(α+1)/2ξ‖)

+‖ηt‖‖ηx‖‖ay(N + 1)α/2ξ‖
}

(5-25)

for all x, y ∈ R3, t ∈ R. If `1 = 0 and `2 = 1, we find

Dx,y ≤ Cn+k
‖ηt‖

n+k−2{[n‖ηx‖‖ηy‖+‖ηt‖|ηt(x; y)|
]
‖(N + 1)(α−1)/2ξ‖

+‖ηt‖‖ηx‖‖ay(N + 1)α/2ξ‖
}

(5-26)

for all x, y ∈ R3, t ∈ R. If `1 = 0 and `2 = 1 and we additionally assume that k + n ≥ 2 (since `1 ≤ k,
`2 ≤ n from Lemma 3.2, this assumption only excludes the case k = `1 = 0, n = `2 = 1), we find the
improved estimate

Dx,y ≤ Cn+k
‖ηt‖

n+k−2{N−1[n‖ηx‖‖ηy‖+‖ηt‖|ηt(x; y)|
]
‖(N + 1)(α+1)/2ξ‖

+‖ηt‖‖ηx‖‖ay(N + 1)α/2ξ‖
}

(5-27)

for all x, y ∈ R3, t ∈ R. Finally, let `1 = `2 = 0. Then

Dx,y ≤ Cn+k
‖ηt‖

n+k−1
{nN−1

‖ηy‖‖ax(N + 1)α/2ξ‖+‖ηt‖‖axay(N + 1)(α−1)/2ξ‖} (5-28)

for all x, y ∈ R3, t ∈ R. If , however, `1 = `2 = 0 and, additionally, k + n ≥ 1 (excluding the case
n = `1 = k = `2 = 0), we find the improved bound

Dx,y ≤ Cn+k
‖ηt‖

n+k−1
{nN−1

‖ηy‖‖axξ‖+ N−1/2
‖ηt‖‖axay(N + 1)α/2ξ‖} (5-29)

again for all x, y ∈ R3, t ∈ R.

Proof. If `1 > 0, we can proceed as in the proof of Lemma 5.3 to show (5-24). So, let us focus on the
case `1 = 0. In this case, the field operator on the right of the first 5(1)-operator (the one on the left) is
an annihilation operator, ay . To estimate Dx,y , we need to commute ay to the right, until it hits ξ . To
commute ay through factors of N, we just use the pull-through formula ay N = (N + 1)ay . When we
commute ay through a pair of creation and/or annihilation operators associated with a kernel η( j)

t for a
j ≥ 1 (as the ones appearing in the 5(2)-operators of the form (5-14) or in the operator 5(1)-operator), we
generate a creation or an annihilation operator with argument η( j)

y whose L2-norm is uniformly bounded.
At the same time, we spare a factor N−1. For example, we have[

ay,

∫
a∗xi

ayiη
( j)(xi ; yi ) dxi dyi

]
= a(η̄( j)

y ).

At the end, we have to commute ay through the field operator with argument η(`2)
x,♦′ . The commutator

is trivial if `2 is even (because then the corresponding field operator is an annihilation operator; see
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Lemma 3.2(v)). It is given by
[ay, a∗(η(`2)

x,♦′)] = η
(`2)
t,♦′ (x; y) (5-30)

if `2 is odd. If `2 ≥ 2, we can bound

|η
(`2)
t,♦′ (x; y)| ≤ ‖ηt‖

`2−2
‖ηx‖‖ηy‖

and we obtain (taking into account the fact that there are at most n pairs of fields with which ay has to be
commuted)

Dx,y ≤ Ck+n
‖ηt‖

k+n−2{nN−1
‖ηy‖‖ηx‖‖(N + 1)(α+1)/2ξ‖

+‖ηx‖‖ηy‖‖(N + 1)(α−1)/2ξ‖+‖ηt‖‖ηx‖‖ay(N + 1)α/2ξ‖
}
.

If instead `2 = 1, the right-hand side of (5-30) blows up as N →∞. To make up for this singularity, we
use the additional assumption k+ n ≥ 2. Combining this information with `1 = 0, `2 = 1, we conclude
that either k1 > 0 or k2 > 0 or there exists i ∈ N such that either 3i or 3′i is a 5(2)-operator of the form
(5-14) with p ≥ 1. This factor allows us to gain a factor (N + 1)/N in the estimate for the term arising
from the commutator (5-30). We conclude that, in this case,

Dx,y ≤ Ck+n
‖ηt‖

k+n−2{nN−1
‖ηy‖‖ηx‖‖(N + 1)(α+1)/2ξ‖+ N−1

|ηt(x; y)|‖(N + 1)(α+1)/2ξ‖

+‖ηt‖‖ηx‖‖ay(N + 1)α/2ξ‖
}
.

Finally, let us consider the case `2 = 0. Here we proceed as before, commuting ay to the right. The
commutator produces at most n factors, whose norm can be bounded much as before. We easily conclude
that

Dx,y ≤ Ck+n
‖ηt‖

k+n−1
{nN−1

‖ηx‖‖ay(N + 1)α/2ξ‖+‖ηt‖‖axay(N + 1)(α−1)/2ξ‖}.

If we impose the additional condition k+ n ≥ 1, we deduce that either k1 > 0 or k2 > 0 or there exists
i ∈ N such that either 3i or 3′i is a 5(2)-operator of the form (5-14) with p ≥ 1. Much as we argued in
the case `2 = 1, when estimating the contribution with the two annihilation operators ax , ay acting on ξ ,
we can therefore extract an additional factor (N + 1)/N. Under this additional condition, we obtain

Dx,y ≤ Ck+n
‖ηt‖

k+n−1
{nN−1

‖ηx‖‖ayξ‖+ N−1/2
‖ηt‖‖axay(N + 1)(α−1)/2ξ‖},

which proves (5-29). �

5B. Analysis of e−B(ηt )L(0)N, t e
B(ηt ). From the definition (5-3), we can write

L(0)N, t = CN ,t −〈ϕ̃t , [N 3V (N · )w`(N · ) ∗ |ϕ̃t |
2
]ϕ̃t 〉N

+
1

2N
〈ϕ̃t , [N 3V (N · ) ∗ |ϕ̃t |

2
]ϕ̃t 〉N +

1
2N
〈ϕ̃t , [N 3V (N · ) ∗ |ϕ̃t |

2
]ϕ̃t 〉N 2,

with
CN ,t =

N
2
〈ϕ̃t , [N 3V (N · )w`(N · ) ∗ |ϕ̃t |

2
]ϕ̃t 〉−

1
2
〈ϕ̃t , [N 3V (N · ) ∗ |ϕ̃t |

2
]ϕ̃t 〉.

The properties of the other terms are described in the next proposition.
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Proposition 5.5. Under the same assumptions as in Theorem 4.4, there exist constants C, c> 0 such that

|〈ξ, e−B(ηt )(L(0)N, t −CN ,t)eB(ηt )ξ〉| ≤ C〈ξ, (N + 1)ξ〉,

|〈ξ, [N , e−B(ηt )(L(0)N, t −CN ,t)eB(ηt )]ξ〉| ≤ C〈ξ, (N + 1)ξ〉,

|〈ξ, [a∗(g1)a(g2), e−B(ηt )(L(0)N, t −CN ,t)eB(ηt )]ξ〉| ≤ C‖g1‖‖g2‖〈ξ, (N + 1)ξ〉,

|∂t 〈ξ, e−B(ηt )(L(0)N, t −CN ,t)eB(ηt )ξ〉| ≤ Cec|t |
〈ξ, (N + 1)ξ〉

(5-31)

for all t ∈ R, g1, g2 ∈ L2(R3), ξ ∈ F≤N.

In order to show Proposition 5.5, we need to conjugate the number of particles operator N with the
generalized Bogoliubov transformation e−B(ηt ). To this end, we make use of the following lemma, where,
for later convenience, we consider conjugation of more general quadratic operators.

Lemma 5.6. Let r : L2(R3)→ L2(R3) be a bounded linear operator. Consider the Fock-space operators

R1 =

∫
dx dy r(y; x)b∗x by and R2 =

∫
dx dy r(y; x)a∗x ay

mapping F≤N in itself. Then we have the bounds

|〈ξ1, e−B(ηt )Ri eB(ηt )ξ2〉| ≤ C‖r‖op‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖,

|〈ξ1, [N , e−B(ηt )Ri eB(ηt )]ξ2〉| ≤ C‖r‖op ‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖,

|〈ξ1, [a∗(g1)a(g2), e−B(ηt )Ri eB(ηt )]ξ2〉| ≤ C‖r‖op‖g1‖‖g2‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖

(5-32)

for i = 1, 2 and all ξ1, ξ2 ∈ F≤N. Furthermore, if r = rt is differentiable in t , we find

|∂t 〈ξ1, e−B(ηt )Ri eB(ηt )ξ2〉| ≤ Cec|t |(‖r‖op+‖ṙ‖op) ‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖ (5-33)

for i = 1, 2 and all ξ1, ξ2 ∈ F≤N.

Proof. We consider first the operator R1. By Lemma 3.3, we expand

e−B(ηt )R1eB(ηt )=

∫
dx e−B(ηt )b∗(rx)bx eB(ηt )=

∑
k,n≥0

(−1)k+n

k! n!

∫
dx ad(n)B(ηt )

(b∗(rx))ad(k)B(ηt )
(bx), (5-34)

with the notation rx(y)= r(x; y). According to Lemma 3.2 the operator∫
dx ad(n)B(ηt )

(b∗(rx)) ad(k)B(ηt )
(bx)

is given by the sum of 2n+kn! k! terms having the form

E :=
∫

dx N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1)
t,♦ r)x)∗

×3∗i1
· · ·3∗13

′

1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′), (5-35)
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where i1, i2, k1, k2, `1, `2 ≥ 0, j1, . . . , jk1,m1, . . . ,mk2 ≥ 1, and where each operator 3i , 3′i is a factor
(N −N )/N, a factor (N + 1−N )/N or a 5(2)-operator of the form

N−p5
(2)
],[(η

(q1)
t,\

1
, . . . , η

(qp)

t,\
p
) (5-36)

for a p ≥ 1 and powers q1, . . . , qp ≥ 1. With Cauchy–Schwarz we find

|〈ξ1,Eξ2〉| ≤

∫
dx ‖31 · · ·3i1 N−k15

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1)
t,♦ r)x)ξ1‖

×‖3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)ξ2‖ (5-37)

for every ξ1, ξ2 ∈ F≤N. With Lemma 5.2(ii), we find that

|〈ξ1,Eξ2〉| ≤ Ck+n
‖r‖op‖ηt‖

n+k
‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖, (5-38)

where we used the fact that∫
dx ‖a(rx)ξ1‖

2
= 〈ξ1, d0(r2)ξ1〉 ≤ ‖r2

‖op‖N 1/2ξ1‖
2
≤ ‖r‖2op‖N

1/2ξ1‖
2.

From (5-34), we conclude that, if supt ‖ηt‖ is small enough,

|〈ξ1, e−B(ηt )R1eB(ηt )ξ2〉| ≤ C‖r‖op‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖. (5-39)

This proves the first bound in (5-32), if i = 1. The other two bounds in (5-32) and the bound in (5-33)
for i = 1 can be proven similarly. To be more precise, we first expand the operator e−B(ηt )R1eB(ηt ) as in
(5-34), where the (n, k)-th term can be written as the sum of 2n+kk! n! terms of the form (5-35). Then we
use Lemma 5.1 to express the commutator of (5-35) with N or with a∗(g1)a(g2) or its time-derivative
as a sum of at most 2(k + n + 1) terms having again the form (5-35), with just one of the ηt -kernels
appropriately replaced. Finally, we proceed as above to show that the matrix elements of such a term can
be bounded as in (5-38). We omit further details.

Let us now consider the operator R2. We start by writing

e−B(ηt )R2eB(ηt ) = R2+

∫ 1

0
ds e−s B(ηt )[R2, B(ηt)]es B(ηt )

= R2+

∫ 1

0
ds
∫

dx dy r(y; x)e−s B(ηt )[a∗x ay, B(ηt)]es B(ηt )

= R2+

∫ 1

0
ds
∫

dx e−s B(ηt )[b((ηtr)x)bx + h.c.]es B(ηt ).

Expanding as in Lemma 3.3 and then integrating over s, we find

e−B(ηt )R2eB(ηt ) = R2+
∑

k,n≥0

(−1)k+n

k! n! (k+ n+ 1)

∫
dx [ad(n)B(ηt )

(b((ηtr)x))ad(k)B(ηt )
(bx)+ h.c.]. (5-40)
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With Lemma 3.2, we can write the operator∫
dx ad(n)B(ηt )

(b((ηtr)x))ad(k)B(ηt )
(bx) (5-41)

as a sum of 2n+kk! n! contributions of the form

E=
∫

dx 31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1+1)
t,♦ r)x)

×3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′), (5-42)

where each 3i and 3′i is (N −N )/N, (N + 1−N )/N or an operator of the form

N−p 5
(2)
],[(η

(q1)
t,\

1
, . . . , η

(qp)

t,\
p
). (5-43)

From Lemma 5.3, we obtain that

|〈ξ1,Eξ2〉| ≤ ‖(N + 1)1/2ξ1‖

∫
dx
∥∥(N + 1)−1/231 · · ·3i1 N−k15

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1+1)
t,♦ r)x)

×3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)ξ2

∥∥
≤ Cn+k

‖r‖op ‖ηt‖
k+n+1

‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖.

This implies that, if supt ‖ηt‖ is small enough,

|〈ξ1, e−B(ηt )R2eB(ηt )ξ2〉| ≤ C‖r‖op‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖.

As in the analysis of R1 above, also here one can show the other bounds in (5-32) for the commutators of
e−B(ηt )R1eB(ηt ) with N and with a∗(g1)a(g2) and for its time-derivative. �

Next, we use Lemma 5.6 to show Proposition 5.5.

Proof of Proposition 5.5. To control L(0)N, t we start by noticing that, with Young’s inequality,

|〈ϕ̃t , [N 3V (N · ) ∗ |ϕ̃t |
2
]ϕ̃t 〉| ≤

∫
N 3V (N (x − y))|ϕ̃t(x)|2 |ϕ̃t(y)|2 dx dy

≤ C‖ϕ̃t‖
4
4 ≤ C‖ϕ̃t‖

4
H1 ≤ C (5-44)

and

|∂t 〈ϕ̃t , [N 3V (N · ) ∗ |ϕ̃t |
2
]ϕ̃t 〉| ≤ C‖ϕ̃t‖

3
4‖
˙̃ϕt‖4 ≤ C‖ϕ̃t‖

3
H1‖ϕ̃t‖H3 ≤ Cec|t | (5-45)

for constants C, c > 0. Similarly, we also have

|〈ϕ̃t , [N 3V (N · )w`(N · ) ∗ |ϕ̃t |
2
]ϕ̃t 〉| ≤ C,

|∂t 〈ϕ̃t , [N 3V (N · )w`(N · ) ∗ |ϕ̃t |
2
]ϕ̃t 〉| ≤ Cec|t |.

(5-46)

By (5-44), (5-45), (5-46), it is enough to show the four bounds in (5-31) with L(0)N, t −CN ,t replaced by
N and by N 2/N. If we replace L(0)N, t −CN ,t with N, the bounds in (5-31) follow from Lemma 5.6. To
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prove that these bounds also hold for N 2/N, we use again Lemma 5.6. Setting ξ2= e−B(ηt )(N/N )eB(ηt )ξ ,
we have

|〈ξ, e−B(ηt )(N 2/N )eB(ηt )ξ〉| = |〈ξ, e−B(ηt )N eB(ηt )ξ2〉| ≤ C‖(N + 1)1/2ξ‖‖(N + 1)1/2ξ2‖.

Since, by Lemma 3.1,

‖(N + 1)1/2ξ2‖
2
= N−2

〈ξ, e−B(ηt )N eB(ηt )(N + 1)e−B(ηt )N eB(ηt )ξ〉

≤ N−2
〈ξ, (N + 1)3ξ〉 ≤ C〈ξ, (N + 1)ξ〉

for all ξ ∈ F≤N, we have

|〈ξ, e−B(ηt )(N 2/N )eB(ηt )ξ〉| ≤ C‖(N + 1)1/2ξ‖2.

Using Lemma 5.6 and the Leibniz rule, we also find

|〈ξ, [N , e−B(ηt )(N 2/N )eB(ηt )]ξ〉| ≤ C‖(N + 1)1/2ξ‖2,

|〈ξ, [a∗(g1)a(g2), e−B(ηt )(N 2/N )eB(ηt )]ξ〉| ≤ C‖g1‖‖g2‖‖(N + 1)1/2ξ‖2,

|〈ξ, ∂t(e−B(ηt )(N 2/N )eB(ηt ))ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖2. �

5C. Analysis of e−B(ηt )L(1)N, t e
B(ηt ). We recall that

L(1)N, t =
√

Nb(hN, t)−
N + 1
√

N
b(h̃N, t)+ h.c.,

where we used the notation
hN, t = (N 3V (N · )w`(N · ) ∗ |ϕ̃t |

2)ϕ̃t ,

h̃N, t = (N 3V (N · ) ∗ |ϕ̃t |
2)ϕ̃t .

We write

e−B(ηt )L(1)N, t e
B(ηt ) =

√
N [b(coshηt (hN, t))+ b∗(sinhηt (h̄N, t))+ h.c.] + E (1)N, t . (5-47)

In the next proposition we show that the operator E (1)N, t , defined in (5-47), its commutator with N and its
time-derivative can all be controlled by the number of particles operator N (while the first term on the
right-hand side of (5-47) will cancel with contributions arising from conjugation of L(3)N, t ).

Proposition 5.7. Under the same assumptions as in Theorem 4.4, there exist constants C, c> 0 such that

|〈ξ, E (1)N, tξ〉| ≤ C〈ξ, (N + 1)ξ〉,

|〈ξ, [N , E (1)N, t ]ξ〉| ≤ C〈ξ, (N + 1)ξ〉,

|〈ξ, [a∗(g1)a(g2), E (1)N, t ]ξ〉| ≤ C‖g1‖‖g2‖〈ξ, (N + 1)ξ〉,

|∂t 〈ξ, E (1)N, tξ〉| ≤ Cec|t |
〈ξ, (N + 1)ξ〉

(5-48)

for all ξ ∈ F≤N.
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Proof. We start with the observation that

‖hN, t‖, ‖h̃N, t‖ ≤ C‖ϕ̃t‖
3
H1 ≤ C,

‖∂t hN, t‖, ‖∂t h̃N, t‖ ≤ ‖ϕ̃t‖
2
H1‖ϕ̃t‖H3 ≤ Cec|t |

(5-49)

uniformly in N and for all t ∈ R. Recall that, by (5-47),

E (1)N, t =
[
e−B(ηt )L(1)N, t e

B(ηt )−
√

N
(
b(coshηt (hN, t))+ b∗(sinhηt (hN, t))+ h.c.

)]
=
√

N
[
e−B(ηt )b(hN, t)eB(ηt )−

(
b(coshηt (hN, t))+ b∗(sinhηt (hN, t))

)]
+ h.c.

+ N−1/2e−B(ηt )(N + 1)b(h̃N, t)eB(ηt ). (5-50)

Set

D(g)= e−B(ηt )b(g)eB(ηt )− b(coshηt (g))− b∗(sinhηt (g)).

We observe that Proposition 5.7 follows if we prove that

|〈ξ1, D(g)ξ2〉| ≤ C N−1/2
‖g‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖,

|〈ξ1, [N , D(g)]ξ2〉| ≤ C N−1/2
‖g‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖,

|〈ξ1, [a∗(g1)a(g2), D(g)]ξ2〉| ≤ C N−1/2
‖g‖‖g1‖‖g2‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖,

|〈ξ1, ∂t D(g)ξ2〉| ≤ C N−1/2(‖g‖+‖ġ‖)‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖

(5-51)

for every, possibly time-dependent, g ∈ L2(R3). In fact, applying (5-51) with g = hN, t , we obtain the
desired bounds for the first line on the right-hand side of (5-50). To bound the expectation of the operator
on the second line on the right-hand side of (5-50), on the other hand, we apply (5-51) with g = h̃N, t ,
ξ1 = ξ and ξ2 = e−B(ηt )(N + 1)eB(ηt )ξ . We find

N−1/2
|〈ξ, e−B(ηt )(N + 1)b(h̃N, t)eB(ηt )ξ〉|

= N−1/2
|〈ξ2, e−B(ηt )b(h̃N, t)eB(ηt )ξ〉|

≤ N−1/2
|〈ξ2, [b(coshηt (h̃N, t))+ b∗(sinhηt (h̃N, t))]ξ〉| +C N−1

‖h̃N, t‖‖(N + 1)1/2ξ‖‖(N + 1)1/2ξ2‖

≤ C N−1/2
‖(N + 1)1/2ξ‖‖ξ2‖+C N−1

‖(N + 1)1/2ξ‖‖(N + 1)1/2ξ2‖, (5-52)

where we used Lemma 2.2, the fact that coshηt , sinhηt are bounded operators (uniformly in t and N ), and
(5-49). From Lemma 3.1, we obtain

‖ξ2‖
2
= 〈ξ, e−B(ηt )(N + 1)2eB(ηt )ξ〉 ≤ C〈ξ, (N + 1)2ξ〉 = C‖(N + 1)ξ‖2

and, similarly,

‖(N + 1)1/2ξ2‖
2
= 〈ξ, e−B(ηt )(N + 1)eB(ηt )(N + 1)e−B(ηt )(N + 1)eB(ηt )ξ〉

≤ C〈ξ, e−B(ηt )(N + 1)3eB(ηt )ξ〉

≤ C〈ξ, (N + 1)3ξ〉 = C‖(N + 1)3/2ξ‖2.
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Inserting the last two bounds in the right-hand side of (5-52), we conclude that

N−1/2
|〈ξ, e−B(ηt )(N + 1)b(h̃N, t)eB(ηt )ξ〉| ≤ C‖(N + 1)1/2ξ‖2

for all ξ ∈ F≤N. Similarly, we can control the commutators of the second line on the right-hand side of
(5-50) with N and with a∗(g1)a(g2) and its time-derivative.

We still have to show (5-51). To this end, we use Lemma 3.3 to expand

e−B(ηt )b(g)eB(ηt ) =

∑
n≥0

(−1)n

n!
ad(n)B(ηt )

(b(g)). (5-53)

According to Lemma 3.2, the nested commutator ad(n)B(ηt )
(b(g)) can be written as a sum of 2nn! terms,

having the form

31 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(s)
t,\k+1

(g�)), (5-54)

where each 3m is (N −N )/N, (N −N + 1)/N or a 5(2)-operator of the form

N−p5
(2)
]′,[′(η

(m1)

t,\′1
, . . . , η

(m p)

t,\′p
). (5-55)

Exactly one of these 2nn! terms has the form
(N−N )r

N r
(N+1−N )r

N r b(η(2r)
t (g)) if n = 2r is even,

−
(N−N )r+1

N r+1
(N+1−N )r

N r b∗(η(2r+1)
t (ḡ)) if n = 2r + 1 is odd.

(5-56)

All other terms are of the form (5-54), with either k > 0 or with at least one factor 3i being of the form
(5-55). Let us suppose that n = 2r is even. Then we write (5-56) as

(N−N )r

N r

(N+1−N )r

N r b(η(2r)
t (g))= b(η(2r)

t (g))+
[
(N−N )r

N r

(N+1−N )r

N r −1
]

b(η(2r)
t (g)). (5-57)

Inserting the term b(η(2r)
t (g)) on the right-hand side of (5-53) and summing over all r ∈N, we reconstruct∑

r≥0

1
(2r)!

b(η(2r)
t (g))= b(coshηt (g)).

On the other hand, the contribution of the second term on the right-hand side of (5-57) has matrix elements
bounded by∣∣∣∣〈ξ1,

[
(N −N )r

N r

(N + 1−N )r

N r − 1
]

b(η(2r)
t (g))ξ2

〉∣∣∣∣
≤

∥∥∥∥[(N −N )r

N r

(N + 1−N )r

N r − 1
]
ξ1

∥∥∥∥‖b(η(2r)
t (g))ξ2‖

≤ 2r N−1/2
‖ηt‖

2r
‖g‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖ (5-58)



1558 CHRISTIAN BRENNECKE AND BENJAMIN SCHLEIN

since 1− (1− x)r ≤ r x for all 0≤ x ≤ 1. Similarly, the contribution (5-56) with n = 2r + 1 odd can be
shown to reconstruct the operator b∗(sinhηt (ḡ)), up to an error that can be estimated as in (5-58).

As for the other terms of the form (5-54), excluding (5-56), we can bound their matrix elements using
part (i) of Lemma 5.2. We obtain

|〈ξ1,31 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(s)
t,\k+1

)ξ2〉|

≤ ‖(N + 1)1/2ξ1‖ ‖(N + 1)−1/231 · · ·3i N−k5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(s)
t,\k+1

(g�))ξ2‖

≤ Cn
‖ηt‖

n N−1/2
‖g‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖. (5-59)

We conclude that

|〈ξ1, {e−B(ηt )b(g)eB(ηt )− b(coshηt (g))− b∗(sinhηt (ḡ))}ξ2〉|

≤ N−1/2
‖g‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖

∑
n≥2

nCn
‖ηt‖

n

≤ C N−1/2
‖g‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖ (5-60)

if the parameter ` > 0 in the definition (4-16) of the kernel ηt is small enough.
Since, by Lemma 5.1(i), the commutator of every term of the form (5-54) with N is again a term of

the same form, just multiplied with a constant κ ∈ {0,±1,±2}, we conclude that

|〈ξ1, [N , {e−B(ηt )b(g)eB(ηt )− b(coshηt (g))− b∗(sinhηt (ḡ))}]ξ2〉|

≤ C N−1/2
‖g‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖. (5-61)

Since, again by Lemma 5.1, parts (ii) and (iii), the commutator of every term of the form (5-54) with
a∗(g1)a(g2) can be written as a sum of at most 2n terms having again the form (5-54), just with one of
the ηt -kernels or with the function η(s)t,\k+1

(g�) appearing in the 5(1)-operator replaced according to (5-4)
and (5-9), we also find that

|〈ξ1, [a∗(g1)a(g2), {e−B(ηt )b(g)eB(ηt )− b(coshηt (g))− b∗(sinhηt (ḡ))}]ξ2〉|

≤ C N−1/2
‖g‖‖g1‖‖g2‖‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖. (5-62)

Finally, since by Lemma 5.1(iv) the time-derivative of each term of the form (5-54) can be written as a
sum of at most n+ 1 terms having again the form (5-54), but with one of the ηt -kernels or the function
η
(s)
t,\k+1

(g�) appearing in the 5(1)-operator replaced by their time-derivative, we get (since ‖η̇t‖ ≤ Cec|t |)

|∂t 〈ξ1, [e−B(ηt )b(g)eB(ηt )− b(coshηt (g))− b∗(sinhηt (ḡ))]ξ2〉|

≤ C N−1/2ec|t |(‖g‖+‖ġ‖)‖(N + 1)1/2ξ1‖‖(N + 1)1/2ξ2‖, (5-63)

completing the proof. �
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5D. Analysis of e−B(ηt )L(2)N, t e
B(ηt ). Recall that

L(2)N, t = K+
∫

dx dy N 3V (N (x − y))|ϕ̃t(y)|2
[
b∗x bx −

1
N

a∗x ax

]
+

∫
dx dy N 3V (N (x − y))ϕ̃t(x) ¯̃ϕt(y)

[
b∗x by −

1
N

a∗x ay

]
+

1
2

∫
dx dy N 3V (N (x − y))[ϕ̃t(x)ϕ̃t(y)b∗x b∗y + h.c.], (5-64)

with the notation

K =
∫

dx ∇xa∗x∇xax

for the kinetic energy operator.
In the next two subsections we consider first the conjugation of the kinetic energy operator and then of

the rest of L(2)N, t with eB(ηt ).

5D1. Analysis of e−B(ηt )KeB(ηt ). We write

e−B(ηt )KeB(ηt )

= K+
∫
|∇x kt(x; y)|2 dx dy+

∫
dx dy (1w`)(N (x − y))[ϕ̃t(x)ϕ̃t(y)b∗x b∗y + h.c.] + E (K )N, t . (5-65)

In the next proposition, we collect important properties of the error term E (K )N, t defined in (5-65).

Proposition 5.8. Under the same assumptions as in Theorem 4.4, there exist constants C, c> 0 such that

|〈ξ, E (K )N, t ξ〉| ≤ Cec|t |
‖(HN +N + 1)1/2ξ‖‖(N + 1)1/2ξ‖,

|〈ξ, [N , E (K )N, t ]ξ〉| ≤ Cec|t |
‖(HN +N + 1)1/2ξ‖‖(N + 1)1/2ξ‖,

|〈ξ, [a∗(g1)a(g2), E (K )N, t ]ξ〉| ≤ Cec|t |
‖g1‖H1‖g2‖H1‖(HN +N + 1)1/2ξ‖‖(N + 1)1/2ξ‖,

|∂t 〈ξ, E (K )N, t ξ〉| ≤ Cec|t |
‖(HN +N + 1)1/2ξ‖‖(N + 1)1/2ξ‖,

(5-66)

where we used the notation HN = K+VN , with

VN =
1
2

∫
dx dy N 2V (N (x − y))a∗x a∗yayax . (5-67)

Proof. We write

e−B(ηt )KeB(ηt )−K =
∫ 1

0
e−s B(ηt )[K, B(ηt)]es B(ηt ) =

∫ 1

0
ds
∫

dx e−s B(ηt )[∇xa∗x∇xax , B(ηt)]es B(ηt ).

From (3-14), we find

e−B(ηt )KeB(ηt )−K =
∫ 1

0
ds
∫

dx [e−s B(ηt )b(∇xηx)∇x bx es B(ηt )+ h.c.]

=

∑
k,n≥0

(−1)k+n

k! n! (k+ n+ 1)

∫
dx [ad(n)B(ηt )

(b(∇xηx))ad(k)B(ηt )
(∇x bx)+ h.c.].
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From the sum on the right-hand side we extract the term with k = n = 0 and also the term with n = 0,
k = 1. We obtain

e−B(ηt )KeB(ηt )−K =
∫

dx [b(∇xηx)∇x bx+h.c.]

+

∫
dx b(∇xηx)b∗(∇xηx)−

1
N

∫
dx b(∇xηx)Nb∗(∇xηx)

−
1

2N

∫
dx dz dy[ηt(z, y)b(∇xηx)b∗ya∗z∇xax+h.c.]

+

∗∑
k,n

(−1)k+n

k! n! (k+n+1)

∫
dx[ad(n)B(ηt )

(b(∇xηx))ad(k)B(ηt )
(∇x bx)+h.c.], (5-68)

where
∗∑

denotes the sum over all indices k, n ≥ 0, excluding the two pairs (k, n)= (0, 0) and (k, n)=
(1, 0). We discuss now the terms on the right-hand side of (5-68) separately.

The first term on the right-hand side of (5-68) can be decomposed as in (4-17), giving∫
dx b(∇xηx)∇x bx =

∫
dx b(∇x kx)∇x bx +

∫
dx b(∇xµx)∇x bx . (5-69)

The second term on the right-hand side of (5-69) contributes to the error E (K )N, t . Its expectation is bounded
by ∣∣∣∣∫ dx 〈ξ, b(∇xµx)∇x bxξ〉

∣∣∣∣≤ ‖(N + 1)1/2ξ‖
∫

dx ‖∇xµx‖‖∇x bxξ‖

≤ ‖∇xµ‖‖(N + 1)1/2ξ‖‖K1/2ξ‖ ≤ C‖(N + 1)1/2ξ‖‖K1/2ξ‖.

The expectation of the commutators of this term with N and with a∗(g1)a(g2) and also its time-derivative
can be bounded similarly, using the formula

[a∗(g1)a(g2), b(∇xµx)∇x bx ] = 〈g1,∇xµx 〉b(g2)∇x bx + b(∇xµx)∇g1(x)b(g2)

and the fact that ‖∂t∇xµt‖< Cec|t |, uniformly in N.
As for the first term on the right-hand side of (5-69), we integrate by parts and we use the definition

(4-15), to write∫
dx b(∇x kx)∇x bx =

∫
dx dy N 3(1w`)(N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y) bx by

+ 2
∫

dx dy N 2(∇w`)(N (x − y))(∇ϕ̃t)(x)ϕ̃t(y) bx by

+

∫
dx dy Nw`(N (x − y))(1ϕ̃t)(x)ϕ̃t(y)bx by . (5-70)

The first term on the right-hand side of (5-70) is exactly the (hermitian conjugate of the) contribution that
we isolated on the second line of (5-65); it does not enter the error term E (K )N, t . The second and third terms
on the right-hand side of (5-70), on the other hand, are included in E (K )N, t . The expectation of the third
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term is bounded by∣∣∣∣∫ dx dy Nw`(N (x − y))(1ϕ̃t)(x)ϕ̃t(y) 〈ξ, bx byξ〉

∣∣∣∣
≤

∫
dx |1ϕ̃t(x)|‖b∗(Nw`(N (x − · ))ϕ̃t)ξ‖ ‖bxξ‖

≤ sup
x
‖Nw`(N (x − · ))ϕ̃t‖‖1ϕ̃t‖‖(N + 1)1/2ξ‖2 ≤ Cec|t |

‖(N + 1)1/2ξ‖2. (5-71)

To bound the expectation of the second term on the right-hand side of (5-70), we integrate by parts. We find∫
dx dy N 2(∇w`)(N (x − y))(∇ϕ̃t)(x)ϕ̃t(y) 〈ξ, bx byξ〉

= −

∫
dx dy Nw`(N (x − y))(1ϕ̃t)(x)ϕ̃t(y)〈ξ, bx byξ〉

−

∫
dx dy Nw`(N (x − y))(∇ϕ̃t)(x)ϕ̃t(y)〈ξ, by∇x bxξ〉.

Proceeding as in (5-71), we conclude that∣∣∣∣∫ dx dy N 2(∇w`)(N (x − y))(∇ϕ̃t)(x)ϕ̃t(y) 〈ξ, bx byξ〉

∣∣∣∣
≤ sup

x
‖Nw`(N (x − · ))ϕ̃t‖

[
‖1ϕ̃t‖‖(N + 1)1/2ξ‖2+‖∇ϕ̃t‖‖(N + 1)1/2ξ‖‖K1/2ξ‖

]
≤ Cec|t |[

‖(N + 1)1/2ξ‖2+‖(N + 1)1/2ξ‖‖K1/2ξ‖
]
.

Notice that the last estimate and the estimate (5-71) for the third term on the right-hand side of (5-70)
continue to hold, if we replace the operator whose expectation we are bounding with its commutator with
N or with a∗(g1)a(g2) or with its time-derivative.

Now, let us consider the second term on the right-hand side of (5-68). We observe that∫
dx b(∇xηx)b∗(∇xηx)

= ‖∇xηx‖
2
−

N
N
‖∇xηx‖

2
+

∫
dx dy dz ∇xηt(x; z)∇x η̄t(y; x)

(
b∗z by −

1
N

a∗z ay

)
. (5-72)

Denoting by D the operator with the integral kernel

D(z; y)=
∫

dx ∇xηt(z; x)∇x η̄t(x; y), (5-73)

we have∣∣∣∣∫ dx dy dz ∇xηt(x; z)∇x η̄t(y; x)〈ξ, b∗z byξ〉

∣∣∣∣≤ |〈ξ, d0(D)ξ〉| ≤ ‖D‖2‖N 1/2ξ‖2. (5-74)

Since, by Lemma 4.3, ‖D‖2 ≤ C , we obtain∣∣∣∣∫ dx dy dz ∇xηt(x; z)∇x η̄t(y; x)〈ξ, b∗z byξ〉

∣∣∣∣≤ C‖N 1/2ξ‖2
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and similarly for the a∗z ay term. As for the first term on the right-hand side of (5-72), we use the
decomposition ηt = kt +µt . Since ‖∇xµt‖ is finite, uniformly in N and in t , we find∣∣∣∣∫ dx‖∇xηx‖

2
−

∫
dx dy |∇x kt(x; y)|2

∣∣∣∣≤ C.

The second term on the right-hand side of (5-72) can be controlled using N−1
‖∇xηx‖

2
≤C . Furthermore,

one can show that ∫
dx 〈ξ, [N , b(∇xηx)b∗(∇xηx)]ξ〉 = 0,∣∣∣∣∫ dx 〈ξ, [a∗(g1)a(g2), b(∇xηx)b∗(∇xηx)]ξ〉

∣∣∣∣≤ C‖g1‖‖g2‖‖(N + 1)1/2ξ‖2

and ∣∣∣∣∂t

[∫
dx 〈ξ, [b(∇xηx)b∗(∇xηx)]ξ〉−

∫
dx dy|∇x kt(x; y)|2

]∣∣∣∣≤ CeK |t |
‖(N + 1)1/2ξ‖2.

Here we used the formula[
a∗(g1)a(g2),

∫
dx b(∇xηx)b∗(∇xηx)

]
=

∫
dx 〈∇xηx , g1〉b(g2)b∗(∇xηx)+

∫
dx 〈g2,∇xηx 〉b(∇xηx)b∗(g1)

for the commutator with a∗(g1)a(g2) and the bounds in Proposition 4.2 for ∂t ϕ̃t .
The third term on the right-hand side of (5-68) can be controlled similarly.
To control the fourth term on the right-hand side of (5-68) we proceed as follows. First of all, we com-

mute the annihilation operator b(∇xηx) to the right of the two creation operators b∗ya∗z . Using (2-7), we find

1
2N

∫
dx dy dz ηt(z; y)b(∇xηx)b∗ya∗z∇xax =

1
2N

∫
dx dy dz ηt(z; y)b∗ya∗z a(∇xηx)∇x bx

+
1
N

∫
dx dy dz ηt(z; y)∇xηt(x; y)

(
1−

N
N
−

1
2N

)
a∗z∇xax

−
1

2N 2

∫
dx dy dz ηt(z; y)a∗ya(∇xηx)a∗z∇xax . (5-75)

To bound the expectation of the last term, we use the additional N−1 factor to compensate for‖∇xηt‖'N 1/2.
We find∣∣∣∣ 1
2N 2

∫
dx dy dz ηt(z; y)〈ξ, a∗ya(∇xηx)a∗z∇xaxξ〉

∣∣∣∣
≤

1
2N 2

[∫
dx dy dz |ηt(y; z)|2‖∇xaxξ‖

2
]1/2[∫

dx dy dz ‖aza∗(∇xηx)ayξ‖
2
]1/2

≤
‖ηt‖‖∇xηt‖

2N 2 ‖K1/2ξ‖‖(N + 1)3/2ξ‖

≤ C N−1/2
‖K1/2ξ‖‖(N + 1)1/2ξ‖.
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Similarly, the expectation of the second term on the right-hand side of (5-75) is bounded by∣∣∣∣ 1
N

∫
dx dy dz ηt(z; y)∇xηt(x; y)

〈
ξ,

(
1−

N
N
−

1
2N

)
a∗z∇xaxξ

〉∣∣∣∣
≤

1
N

[∫
dx dy dz |ηt(z; y)|2‖∇xaxξ‖

2
]1/2[∫

dx dy dz |∇xηt(x; y)||2‖azξ‖
2
]1/2

≤
‖ηt‖‖∇xηt‖

N
‖(N + 1)1/2ξ‖‖K1/2ξ‖

≤ C N−1/2
‖(N + 1)1/2ξ‖‖K1/2ξ‖.

We are left with the first term on the right-hand side of (5-75). Here, we consider the decomposition

1
2N

∫
dx dy dz ηt(z; y)b∗ya∗z a(∇xηx)∇x bx

=
1

2N

∫
dx dy dz ηt(z; y)b∗ya∗z a(∇x kx)∇x bx

+
1

2N

∫
dx dy dz ηt(z; y)b∗ya∗z a(∇xµx)∇x bx =:M1+M2. (5-76)

Since ∇xµt ∈ L2(R3
×R3), with norm bounded uniformly in N and t , we easily find

|〈ξ,M2ξ〉| ≤ C N−1/2
‖(N + 1)1/2ξ‖‖K1/2ξ‖.

To control the term M1, on the other hand, we integrate by parts. We obtain

M1 =
1

2N

∫
dx dy dz dw ηt(z; y)(−1x kt)(x;w)b∗ya∗z awbx

=
N 2

2

∫
dx dy dz dw ηt(z; y)(1w`)(N (x −w))ϕ̃t(x)ϕ̃t(w)b∗ya∗z awbx

+
N
2

∫
dx dy dz dw ηt(z; y)(∇w`)(N (x −w))∇ϕ̃t(x)ϕ̃t(w)b∗ya∗z awbx

+
1
2

∫
dx dy dz dw ηt(z; y)w`(N (x −w))1ϕ̃t(x)ϕ̃t(w)b∗ya∗z awbx

=M11+M12+M13. (5-77)

Since |(∇w`)(N x)| ≤ C/(N 2
|x |2), we have

|〈ξ,M12ξ〉|

≤ C N−1
∫

dx dy dz dw |ηt(z; y)|
|∇ϕ̃t(x)||ϕ̃t(w)|

|x −w|2
‖azbyξ‖‖awbxξ‖

≤ C N−1
[∫

dx dy dz dw
|∇ϕ̃t(x)|2 |ϕ̃t(w)|

2

|x −w|2
‖azbyξ‖

2
]1/2[∫

dx dy dz dw
|ηt(y; z)|2

|x −w|2
‖awbxξ‖

2
]1/2

≤ C N−1
‖ηt‖‖(N + 1)ξ‖‖(N + 1)1/2(K+N )1/2ξ‖

≤ C‖(N + 1)1/2ξ‖‖(K+N )1/2ξ‖,
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where we used Hardy’s inequality |x |−2
≤C(1−1). The expectation of M13 can be bounded analogously.

Let us focus now on the term M11. Here we use the fact that f` = 1−w` solves the Neumann problem
(4-1) to write

M11 =−
N 2

2

∫
dx dy dz dw ηt(z; y)V (N (x −w)) f`(N (x −w))ϕ̃t(x)ϕ̃t(w)b∗ya∗z awbx

+ N 2λ`

∫
dx dy dz dw ηt(z; y) f`(N (x −w))χ(|x −w| ≤ `)ϕ̃t(x)ϕ̃t(w)b∗ya∗z awbx

=:M111+M112. (5-78)

Since, by Lemma 4.1, λ` ≤ C N−3 and 0≤ f` ≤ 1, it is easy to check that

|〈ξ,M112ξ〉| ≤ C‖(N + 1)1/2ξ‖2.

As for the first term on the right-hand side of (5-78), it can be estimated by

|〈ξ,M111ξ〉| ≤

∫
dx dy dz dw |ηt(z; y)|N 2V (N (x −w))|ϕ̃t(w)||ϕ̃t(x)|‖azbyξ‖‖awbxξ‖

≤

[∫
dx dy dz dw |ηt(z; y)|2 N 2V (N (x −w))‖awbxξ‖

2
]1/2

×

[∫
dx dy dz dw N 2V (N (x −w))|ϕ̃t(w)|

2
|ϕ̃t(x)|2‖azbyξ‖

2
]1/2

≤ C N−1/2
‖ηt‖‖V

1/2
N ξ‖‖(N + 1)ξ‖ ≤ C‖V1/2

N ξ‖‖(N + 1)1/2ξ‖,

where we used the fact that 0≤ f` ≤ 1 and the notation (5-67).
Summarizing, we have shown that the expectation of the fourth term on the right-hand side of (5-68)

can be bounded by∣∣∣∣ 1
2N

∫
dx dy dz ηt(y; z)〈ξ, b(∇xηx)b∗ya∗z∇xaxξ〉

∣∣∣∣≤C‖(N +1)1/2ξ‖‖(K+N +VN +1)1/2ξ‖. (5-79)

Also in this case, it is easy to check that the same estimate holds true for the expectations of the
commutators of this term with N and with a∗(g1)a(g2) and for the expectation of its time-derivative.

Finally, we have to deal with the last term on the right-hand side of (5-68). According to Lemma 3.2,
the operator ∫

dx ad(n)B(ηt )
(b(∇xηx))ad(k)B(ηt )

(∇x bx)

is given by the sum of 2n+kn! k! terms, all having the form

E :=
∫

dx 31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; ∇xη

(`1+1)
x,♦ )

×3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; ∇xη

(`2)
x,♦′), (5-80)
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with k1, k2, `1, `2 ≥ 0, j1, . . . , jk1,m1, . . . ,mk2 ≥ 1, and where each operator 3i , 3′i is a factor
(N −N )/N, a factor (N + 1−N )/N or a 5(2)-operator of the form

N−p5
(2)
],[(η

(q1)
t,\

1
, . . . , η

(qp)

t,\
p
), (5-81)

with p, q1, . . . , qp ≥ 1. Here we used the fact that η(`1)
\ (∇xηx,♦)= ∇xη

(`1+1)
x,♦′ for an appropriate choice

of ♦′ ∈ { · , ∗}`1+1.
We study the expectation of a term of the form (5-80), distinguishing several cases, depending on the

values of `1, `2 ∈ N.

Case 1: `1 ≥ 1, `2 ≥ 2. In this case, ∇xη
(`1+1)
t,♦ ,∇xη

(`2)
t,♦ ∈ L2(R3

×R3), with norm bounded uniformly
in N and t . Hence, with Lemma 2.4, we can bound

|〈ξ,Eξ〉| ≤ Ck+n
‖ηt‖

k+n−`1−`2‖∇xη
(`1+1)
t ‖‖∇xη

(`2)
t ‖‖(N + 1)1/2ξ‖2.

Now we observe that, for example,

‖∇xη
(`2)
t ‖ ≤ ‖∇xη

(2)
t ‖‖η

(`2−2)
t ‖ ≤ ‖∇xη

(2)
t ‖‖ηt‖

`2−2
≤ C‖ηt‖

`2−2.

Similarly, ‖∇xη
(`1+1)
t ‖ ≤ C‖ηt‖

`1−1. Hence, in this case,

|〈ξ,Eξ〉| ≤ Ck+n
‖ηt‖

k+n−3
‖(N + 1)1/2ξ‖2.

Case 2: `1 ≥ 1, `2 = 1. In this case we integrate by parts, writing

〈ξ,Eξ〉 =
∫

dx
〈
ξ,31 · · ·3i1 N−k5

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
;−1xη

(`1+1)
x,♦ )

×3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; ηx,♦′)ξ

〉
.

Since, by Lemma 4.3, ‖1xη
(2)
t ‖ ≤ Cec|t |, we conclude by Lemma 2.4 that, in this case,

|〈ξ,Eξ〉| ≤ Ck+n
‖ηt‖

k+n−1
‖1xη

(2)
t ‖‖(N + 1)1/2ξ‖2 ≤ Ck+nec|t |

‖ηt‖
k+n−1

‖(N + 1)1/2ξ‖2.

Case 3: `1 ≥ 1, `2 = 0. In this case, the second 5(1)-operator in (5-80) has the form

N−k25
(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; ∇xδx)= N−k2

∫
b[0

x1

k2−1∏
j=1

a]j
yj a

[j
x j+1a

]k2
yk2
∇xax

k2∏
j=1

η
(m j )

t,\′j
(x j ; yj ) dx j dyj .

Here we used part (v) of Lemma 3.2 to conclude that the last field on the right, the one carrying the deriva-
tive, must be an annihilation operator (or possibly a b-operator). Repeatedly applying Lemma 2.1 on pairs
of creation and annihilation operators, but leaving the last annihilation operator ∇xax untouched, we find

|〈ξ,Eξ〉| ≤ Ck+n
‖ηt‖

k+n−`1‖(N + 1)1/2ξ‖
∫

dx ‖∇xη
(`1+1)
x ‖‖∇xaxξ‖

≤ Ck+n
‖ηt‖

k+n−`1‖∇xη
(`1+1)
t ‖‖(N + 1)1/2ξ‖‖K1/2ξ‖

≤ Ck+n
‖ηt‖

k+n−1
‖(N + 1)1/2ξ‖‖K1/2ξ‖.
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Case 4: `1 = 0, `2 ≥ 2. Here we proceed as in Case 2, integrating by parts and moving the derivative
over x from ∇xηx,♦ (whose L2 norm blows up) to ∇xη

(`2)
x,♦′ (using the fact that ‖1xη

(2)
t ‖<∞).

Case 5: `1 = 0, `2 = 1. In this case, by part (v) of Lemma 3.2, the two 5(1)-operators in (5-80) have
the form

5
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; ∇xη

(`1+1)
x,♦ )=

∫
b[0

x1

k1∏
i=1

a]j
yj a

[j
x j+1a]n

yn
a(∇xηx)

k1∏
i=1

η
( ji )
t,\i (xi ; yi ) dxi dyi (5-82)

and

5
(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; ∇xη

(`2)
x,♦′)=

∫
b
[′0
x1

k2∏
j=1

a
]′j
yj a

[′j
x j+1a]

′
n

yn a∗(∇xηx)

k2∏
i=1

η
(mi )
t,\i (xi ; yi ) dxi dyi . (5-83)

Since ‖∇xηt‖ ' N 1/2 blows up as N →∞, to estimate (5-80) in this case we first have to commute the
annihilation operator a(∇xηx,♦) in (5-82) with the creation operator a∗(∇xηx,♦′) in (5-83). We proceed
much as we did to bound the second term on the right-hand side of (5-68) in the case n = 0, k = 1,
starting in (5-72). Here, however, we first have to commute the annihilation operator a(∇xηx,♦) through
the 3′i -operators and through the creation operators in (5-83).

If 3′i = (N−N )/N or 3′i = (N+1−N )/N, we just pull the annihilation operator a(∇xηx,♦) through,
using the fact that a(∇xηx,♦)N = (N + 1)a(∇xηx,♦). On the other hand, to commute a(∇xηx,♦) through
the 3′i -operators having the form (5-81) and through the creation operators in (5-83) (excluding the very
last one on the right), we use the canonical commutation relations (2-1). The important observation here
is the fact that every creation operator appearing in (5-81) and in (5-83) is associated with an ηt -kernel;
the commutator produces a new creation or annihilation operator, this time with a wave function whose
L2-norm remains bounded, uniformly in N. For example, we have[

a(∇xηx),

∫
a∗xi

ayiη
(mi )(xi ; yi ) dxi dyi

]
= a(∇xη

(mi+1)
x ). (5-84)

Since mi + 1 ≥ 2, we have ‖∇xη
(mi+1)

‖ ≤ C , uniformly in N. Similar formulas hold for commutators
of a(∇xηx) with a pair of not normally ordered creation and annihilation operators or with the product of
two creation operators. In fact, not only the L2-norm but even the H 1-norm of the wave function of the
annihilation operator on the right-hand side of (5-84) is bounded, uniformly in N. This means that terms
resulting from commutators like (5-84) can be bounded integrating by parts and moving the derivative
in (5-83) to the argument of the annihilation operator in (5-84). We conclude that E= F1+F2, where

F1 =

∫
dx 31 · · ·3i1 N−k1

∫
b[0

x1

k1∏
i=1

a]j
yj a

[j
x j+1a]n

yn

k1∏
i=1

η
( ji )
t,\i (xi ; yi ) dxi dyi

×3′1 · · ·3
′

i2
N−k2

∫
b
[′0
x ′1

k1∏
i=1

a
]′j

y′j
a
[′j

x ′j+1
a]
′
n

y′n

k1∏
i=1

η
( ji )
t,\i (x

′

i ; y′i ) dx ′i dy′i a(∇xηx,♦)a∗(∇xηx,♦′),

while F2, which contains the contribution of all commutators, is bounded by

|〈ξ,F2ξ〉| ≤ nCk+n
‖ηt‖

k+n−1
‖(N + 1)1/2ξ‖2.
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To estimate F1, we write it as F1 = F11+F12, with

F11 = ‖∇xηt‖
231 · · ·3i1 N−k1

∫
b[0

x1

k1∏
i=1

a]j
yj a

[j
x j+1a]n

yn

k1∏
i=1

η
( ji )
t,\i (xi ; yi ) dxi dyi

×3′1 · · ·3
′

i2
N−k2

∫
b
[′0
x ′1

k1∏
i=1

a
]′j

y′j
a
[′j

x ′j+1
a]
′
n

y′n

k1∏
i=1

η
( ji )
t,\i (x

′

i ; y′i ) dx ′i dy′i (5-85)

and

F12 =

∫
dx 31 · · ·3i1 N−k1

∫
b[0

x1

k1∏
i=1

a]j
yj a

[j
x j+1a]n

yn

k1∏
i=1

η
( ji )
t,\i (xi ; yi ) dxi dyi

×3′1 · · ·3
′

i2
N−k2

∫
b
[′0
x ′1

k1∏
i=1

a
]′j

y′j
a
[′j

x ′j+1
a]
′
n

y′n

k1∏
i=1

η
( ji )
t,\i (x

′

i ; y′i ) dx ′i dy′i a∗(∇xηx,♦′)a(∇xηx,♦). (5-86)

The contribution F11 can be estimated by

|F11| ≤ Ck+n
‖ηt‖

k+n−1
‖∇xηt‖

2 N−α‖(N + 1)α/2ξ‖2, (5-87)

where α = k1 + p1 + · · · + pr + k2 + p′1 + · · · + p′r ′ if r of the operators 31, . . . , 3i1 and r ′ of the
operators 3′1, . . . , 3

′

i2
are 5(2)-operators of the form (5-81), with orders p1, . . . , pr > 0 and, respectively,

p′1, . . . , p′r ′ > 0. Now observe that, since `2 = 1, we must have k ≥ 1. Since we are excluding here the
case n = 0, k = 1, we must either have n ≥ 1 and k = 1, or k ≥ 2. In both cases k+ n ≥ 2. According
to Lemma 3.2, the total number of ηt -kernels in every term of the form (5-80) is equal to k+ n+ 1≥ 3.
This implies that there is at least one ηt -kernel, in addition to the two ηt -kernels which produced the
commutator ‖∇xηt‖

2 in (5-85). We conclude that, in (5-87), we have α ≥ 1, and therefore, on F≤N,

|F11| ≤ Ck+n
‖ηt‖

k+n−1
‖∇xηt‖

2 N−1
‖(N + 1)1/2ξ‖2 ≤ Ck+n

‖ηt‖
k+n−1

‖(N + 1)1/2ξ‖2

since ‖∇xηt‖
2
≤C N by Lemma 4.3. To control F12 we notice that, with the operator D defined in (5-73),

0≤
∫

dx a∗(∇xηx,♦′)a(∇xηx,♦)= d0(D)≤ ‖D‖2N ≤ CN .

This easily implies that
|〈ξ,F12ξ〉| ≤ Ck+n

‖ηt‖
k+n−1

‖(N + 1)1/2ξ‖2.

We conclude that, in this case,

|〈ξ,Eξ〉| ≤ nCk+n
‖ηt‖

k+n−1
‖(N + 1)1/2ξ‖2.

Case 6: `1 = 0, `2 = 0. In this case, the term (5-80) has the form

E=
∫

dx 31 · · ·3i1 N−k1

∫
b[0

x1

k1∏
i=1

a]i
yi

a[i
xi+1

a]n
yn

a(∇xηx,♦)

k1∏
i=1

η( ji )(xi ; yi ) dxi dyi

×3′1 · · ·3
′

i2
N−k2

∫
b
[′0
x ′1

k1∏
i=1

a
]′i
y′i

a
[′i
x ′i+1

a]
′
n

y′n
∇xax

k2∏
i=1

η(mi )(x ′i ; y′i ) dx ′i dy′i . (5-88)
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Notice that a term of this form (with n = 0 and k = 1) already appears in the fourth line of (5-68) and was
studied starting in (5-75) (to be more precise, in this case the first 5(1)-operator in (5-80) is of order zero
(for n = 0, there is no other choice), and therefore the operator a(∇xηx,♦) appearing in (5-88) is replaced
by b(∇xηx,♦)). We will bound (5-88) following the same strategy used in (5-75). First we have to commute
the operator a(∇xηx,♦) in (5-88) to the right, close to the ∇xax -operator. As already explained in Case 5,
the annihilation and creation operators produced while commuting a(∇xηx,♦) to the right will have wave
function with H 1-norm bounded, uniformly in N. Integrating by parts over x , we obtain E=G1+G2, with

G1 =

∫
dx 31 · · ·3i1 N−k1

∫
b[0

x1

k1∏
i=1

a]j
yj a

[j
x j+1a]n

yn

k1∏
i=1

η
( ji )
t,\i (xi ; yi ) dxi dyi

×3′1 · · ·3
′

i2
N−k2

∫
b
[′0
x ′1

k1∏
i=1

a
]′j

y′j
a
[′j

x ′j+1
a]
′
n

y′n

k1∏
i=1

η
( ji )
t,\i (x

′

i ; y′i ) dx ′i dy′i a(∇xηx,♦)∇xax

and

|〈ξ,G2ξ〉| ≤ nCk+n
‖ηt‖

k+n−1
‖(N + 1)1/2ξ‖2.

To bound G1, we proceed exactly as we did starting in (5-76). Using the decomposition ηt = µt + kt

and the fact that ∇xµt has bounded L2-norm, uniformly in N, we conclude that G1 = G11+G12, with

G11 =31 · · ·3i1 N−k1

∫
b[0

x1

k1∏
i=1

a]j
yj a

[j
x j+1a]n

yn

k1∏
i=1

η
( ji )
t,\i (xi ; yi ) dxi dyi

×3′1 · · ·3
′

i2
N−k2

∫
b
[′0
x ′1

k1∏
i=1

a
]′j

y′j
a
[′j

x ′j+1
a]
′
n

y′n

k1∏
i=1

η
( ji )
t,\i (x

′

i ; y′i ) dx ′i dy′i

∫
dx (−1x kt)(x; y)axay

and

|〈ξ,G12ξ〉| ≤ Ck+n
‖ηt‖

k+n−1
‖(N + 1)1/2ξ‖‖K1/2ξ‖.

By Cauchy–Schwarz, the term G11 is bounded by

|〈ξ,G11ξ〉| ≤ Ck+n
‖ηt‖

k+n−1 N−α‖(N + 1)αξ‖
∫

dx dy |1x kt(x; y)|‖axayξ‖, (5-89)

where α = k1 + p1 + · · · + pr + k2 + p′1 + · · · + p′r ′ if r of the operators 31, . . . , 3i1 and r ′ of the
operators 3′1, . . . , 3

′

i2
are 5(2)-operators of the form (5-81), with orders p1, . . . , pr > 0 and, respectively,

p′1, . . . , p′r > 0. The important observation now is that, since we excluded the case k = n = 0, we have
k+n ≥ 1, and therefore every term of the form (5-80) must have at least two ηt -kernels in it. This implies
that, in (5-89), α ≥ 1, and therefore that

|G11| ≤ Ck+n
‖ηt‖

k+n−1 N−1/2
‖(N + 1)1/2ξ‖

∫
dx dy |1x kt(x; y)|‖axayξ‖.

Proceeding as we did from (5-77) to (5-79), we conclude that

|G11| ≤ Ck+n
‖ηt‖

k+n−1
‖(N + 1)1/2ξ‖‖(HN +N + 1)1/2ξ‖.
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Summarizing, we proved that the last term on the right-hand side of (5-68) is a sum over all
(k, n) 6= (0, 0), (1, 0) of 2n+kn! k! terms of the form (5-80), each of them having expectation bounded by

|〈ξ,Eξ〉| ≤ Ck+nec|t |
‖ηt‖

max(0,k+n−3)
‖(N + 1)1/2ξ‖‖(HN +N + 1)1/2ξ‖.

Similarly, one can show that

|〈ξ, [N ,E]ξ〉| ≤ Ck+nec|t |
‖ηt‖

max(0,k+n−3)
‖(N+1)1/2ξ‖‖(HN+N+1)1/2ξ‖,

|〈ξ, [a∗(g1)a(g2),E]ξ〉| ≤ Ck+nec|t |
‖ηt‖

max(0,k+n−3)
‖g1‖H1‖g2‖H1‖(N+1)1/2ξ‖‖(HN+N+1)1/2ξ‖,

|〈ξ, ∂t [E]ξ〉| ≤ Ck+nec|t |
‖ηt‖

max(0,k+n−3)
‖(N+1)1/2ξ‖‖(HN+N+1)1/2ξ‖.

Inserting in (5-68) we conclude that, if supt∈R ‖ηt‖ is small enough, the operator E (K )N, t defined in (5-65)
satisfies the bounds in (5-66). �

5D2. Analysis of e−B(ηt )(L(2)N, t −K)eB(ηt ). Recall that

L(2)N, t −K =
∫

dx (N 3V (N · ) ∗ |ϕ̃t |
2)(x)[b∗x bx − N−1a∗x ax ]

+

∫
dx dy N 3V (N (x − y))ϕ̃t(x) ¯̃ϕt(y)[b∗x by − N−1a∗x ay]

+
1
2

∫
dx dy N 3V (N (x − y))[ϕ̃t(x)ϕ̃t(y)b∗x b∗y + h.c.]. (5-90)

We define the error term E (2)N, t through the equation

e−B(ηt )(L(2)N, t −K)eB(ηt ) = Re
∫

dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)kt(y; x)

+
1
2

∫
dx dy N 3V (N (x − y))[ϕ̃t(x)ϕ̃t(y)b∗x b∗y + h.c.] + E (2)N, t . (5-91)

The properties of the error term E (2)N, t are described in the next proposition.

Proposition 5.9. Under the same assumptions as in Theorem 4.4, there exist constants C, c> 0 such that

|〈ξ, E (2)N, tξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖,

|〈ξ, [N , E (2)N, t ]ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖,

|〈ξ, [a∗(g1)a(g2), E (2)N, t ]ξ 〉| ≤ Cec|t |
‖g1‖H2‖g2‖H2‖(N + 1)1/2ξ‖‖(V1/2

N +N + 1)1/2ξ‖,

|∂t 〈ξ, E (2)N, tξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(V1/2

N +N + 1)1/2ξ‖

(5-92)

for all ξ ∈ F≤N.

Proof. The conjugation of the first two terms on the right-hand side of (5-90) can be controlled with
Lemma 5.6, taking r to be the multiplication operator with the convolution N 3V (N · ) ∗ |ϕ̃t |

2 in the
first case (so that ‖r‖op = ‖N 3V (N · ) ∗ |ϕ̃t |

2
‖∞ ≤ C‖ϕ̃t‖

2
∞
≤ Cec|t |) and the operator with integral

kernel r(x; y)= N 3V (N (x− y))ϕ̃t(x)ϕ̃t(y) in the second case (then ‖r‖op≤ supx
∫
|r(x; y)| dy≤Cec|t |,



1570 CHRISTIAN BRENNECKE AND BENJAMIN SCHLEIN

uniformly in N ). Hence, to show Proposition 5.9 it is enough to prove the bounds (5-92), with E (2)N, t
replaced by

Ẽ (2)N, t =
1
2

∫
dx dy N 3V (N (x − y))[ ¯̃ϕt(x) ¯̃ϕt(y)e−B(ηt )bx byeB(ηt )+ h.c.]

−Re
∫

dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)kt(x; y)

−
1
2

∫
dx dy N 3V (N (x − y))[ ¯̃ϕt(x) ¯̃ϕt(y)bx by + h.c.]. (5-93)

By Lemma 3.3, we can write∫
dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)e−B(ηt )bx byeB(ηt )

=

∑
n,k≥0

(−1)k+n

k! n!

∫
dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)ad(n)B(ηt )

(bx)ad(k)B(ηt )
(by)

=

∫
dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)bx by

−

∫
dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)bx [B(ηt), by]

+

∗∑
n,k

(−1)k+n

k! n!

∫
dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)ad(n)B(ηt )

(bx)ad(k)B(ηt )
(by), (5-94)

where we isolated the terms with (n, k)= (0, 0) and (n, k)= (0, 1) and the sum
∗∑

runs over all other pairs
(n, k) ∈N×N. The first term on the right-hand side of (5-94) (the one associated with (k, n)= (0, 0)) is
subtracted in (5-93) and does not enter the error term Ẽ (2)N, t . The second term on the right-hand side of
(5-94), on the other hand, is given by

P := −
∫

dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)bx [B(ηt), by]

=
N − 1−N

N

∫
dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y) bx b∗(ηy)

−
1
N

∫
dx dy dw dz N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y) ηt(z;w) bx b∗z a∗way .

Commuting in both terms the annihilation field bx to the right, we find

P=
N − 1−N

N
N −N

N

∫
dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y) ηt(x; y)

+
N − 1−N

N

∫
dx dy dz N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)

[
b∗(ηy)bx −

1
N

a∗(ηy)ax

]
− 2

N −N
N 2

∫
dx dy dz N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)a∗(ηy)ax

−
N −N

N 2

∫
dx dy dz dw N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y) ηt(z;w)a∗wa∗z axay

=: P1+P2+P3+P4. (5-95)
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Writing ηt = kt + µt , and using the pointwise bounds |µt(x; y)| ≤ C |ϕ̃t(x)||ϕ̃t(y)| and |kt(x; y)| ≤
C N |ϕ̃t(x)||ϕ̃t(y)| from Lemma 4.3, we obtain that∣∣∣∣〈ξ,P1ξ〉−

∫
dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)kt(x; y)

∣∣∣∣≤ C‖(N + 1)1/2ξ‖2.

The expectation of the operator P2, and analogously the expectation of the operator P3, can be bounded by

|〈ξ,P2ξ〉|

≤ ‖(N + 1)1/2ξ‖
∫

dx dy N 3V (N (x − y))|ϕ̃t(x)||ϕ̃t(y)|‖ηy‖‖bxξ‖

≤ ‖ϕ̃t‖
2
∞
‖(N + 1)1/2ξ‖

[∫
dx dy N 3V (N (x − y))‖ηy‖

2
]1/2[∫

dx dy N 3V (N (x − y))‖bxξ‖
2
]1/2

≤ Cec|t |
‖ηt‖‖(N + 1)1/2ξ‖2.

As for the last term on the right-hand side of (5-95), its expectation is estimated by

|〈ξ,P3ξ〉|

≤ ‖ηt‖‖(N+1)ξ‖
∫

dx dy N 2V (N (x−y))|ϕ̃t(x)||ϕ̃t(y)|‖axayξ‖

≤‖ηt‖‖(N+1)ξ‖
[∫

dx dy N 2V (N (x−y))‖axayξ‖
2
]1/2[∫

dx dy N 2V (N (x−y))|ϕ̃t(x)|2 |ϕ̃t(y)|2
]1/2

≤C‖ηt‖‖(N+1)1/2ξ‖‖V1/2
N ξ‖.

We conclude that∣∣∣∣〈ξ,Pξ〉−
∫

dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)kt(x; y)
∣∣∣∣

≤ Cec|t |
‖ηt‖‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖. (5-96)

Let us now consider the terms in the sum on the last line of (5-94), where we excluded the pairs
(k, n)= (0, 0) and (k, n)= (0, 1). By Lemma 3.2, the operator∫

dx dy N 3V (N (x − y))ϕ̃t(x)ϕ̃t(y)ad(n)B(ηt )
(bx)ad(k)B(ηt )

(by) (5-97)

can be expressed as the sum of 2n+kn! k! terms having the form

E=
∫

dx dy N 3V (N (x − y))ϕ̃t(x)ϕ̃t(y)31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
x,♦ )

×3′1 · · ·3
′

i2
N−k25

(2)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
y,♦′), (5-98)

where k1, k2, i1, i2 ≥ 0, j1, . . . , jk1,m1, . . . ,mk2 > 0 and where each 3i , 3′i is a factor (N −N )/N or
(N + 1−N )/N or a 5(2)-operator of the form

N−p 5
(2)
],[(η

(q1)
t,\

1
, . . . , η

(qp)

t,\
p
). (5-99)
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With Lemma 5.4, we obtain

|〈ξ,Eξ〉|

≤ ‖(N + 1)1/2ξ‖
∫

dx dy N 3V (N (x − y))|ϕ̃t(x)||ϕ̃t(y)|

× ‖(N + 1)−1/231 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
x,♦ )

×3′1 · · ·3
′

i2
N−k25

(1)
],[(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
y,♦′)ξ‖

≤ Ck+n
‖ηt‖

n+k−2
‖(N + 1)1/2ξ‖

∫
dx dy N 3V (N (x − y))|ϕ̃t(x)||ϕ̃t(y)|

×
{
n‖ηx‖‖ηy‖‖(N + 1)1/2ξ‖+‖ηt‖‖ηy‖‖axξ‖

+Cec|t |
‖ηt‖‖(N + 1)1/2ξ‖+ N−1/2

‖ηt‖
2
‖axayξ‖

}
,

where (in the last term in the braces) we used the pointwise bound

N−1
|ηt(x; y)| ≤ Cec|t |

from Lemma 4.3. The contribution of the first three terms in the braces can be bounded by Cauchy–
Schwarz, since ‖ϕ̃t‖∞ ≤ Cec|t |. We find

|〈ξ,Eξ〉| ≤ Ck+nnec|t |
‖ηt‖

k+n−1
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖.

Since the expectation of (5-97) is the sum of 2n+kk! n! such contributions, inserting in (5-94) and
taking into account also (5-96), we conclude that

|〈ξ, Ẽ (2)N, tξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖

if supt ‖ηt‖ is small enough. As usual, we can prove similarly that the same bounds hold true for the
expectation of the commutators of Ẽ (2)N, t with the number of particles operator N and with a∗(g1)a(g2),
for arbitrary g1, g2 ∈ H 2(R3) (this assumption allows us to extract ‖gj‖∞ ≤ C‖gj‖H2) and also for the
time-derivative of Ẽ (2)N, t . �

5E. Analysis of e−B(ηt )L(3)N, t e
B(ηt ). Recall from (5-3) that

L(3)N, t =

∫
dx dy N 5/2V (N (x − y))ϕ̃t(y)[b∗xa∗yax + h.c.].

We conjugate L(3)N, t with the unitary operator eB(ηt ). We define the error term E (3)N, t through the equation

e−B(ηt )L(3)N, t e
B(ηt ) =−

√
N [b(coshηt (hN, t))+ b∗(sinhηt (h̄N, t))+ h.c.] + E (3)N, t , (5-100)

where we recall, from (5-47) that,

hN, t = (N 3V (N · )w`(N · ) ∗ |ϕ̃t |
2)ϕ̃t .

In the next proposition we collect the important properties of the error term E (3)N, t .
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Proposition 5.10. Under the same assumptions as in Theorem 4.4, there exist constants C, c > 0 such
that

|〈ξ, E (3)N, tξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖,

|〈ξ, [N , E (3)N, t ]ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖,

|〈ξ, [a∗(g1)a(g2), E (3)N, t ]ξ〉| ≤ Cec|t |
‖g1‖H2‖g2‖H2‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖,

|∂t 〈ξ, E (3)N, tξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖

(5-101)

for all ξ ∈ F≤N.

Proof. We start by writing

e−B(ηt )a∗yax eB(ηt ) = a∗yax +

∫ 1

0
ds e−s B(ηt )[a∗yax , B(ηt)]es B(ηt )

= a∗yax +

∫ 1

0
e−s B(ηt )[b∗yb∗(ηx)+ b(ηy)bx ]es B(ηt ).

From Lemma 3.3, we conclude that

e−B(ηt )a∗yax eB(ηt )=a∗yax+
∑

k,r≥0

(−1)k+r

k! r ! (k+ r + 1)
[ad(k)B(ηt )

(b∗y)ad(r)B(ηt )
(b∗(ηx))+ad(k)B(ηt )

(b(ηy))ad(r)B(ηt )
(bx)].

Inserting in the expression for L(3)N, t , we conclude that

e−B(ηt )L(3)N, t e
B(ηt )

=

∑
n≥0

(−1)n

n!

∫
dx dy N 5/2V (N (x − y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)a
∗

yax

+

∑
n,k,r≥0

(−1)n+k+r

n! k! r ! (k+ r + 1)

∫
dx dy N 5/2V (N (x − y))ϕ̃t(y) ad(n)B(ηt )

(b∗x)

×[ad(k)B(ηt )
(b∗y)ad(r)B(ηt )

(b∗(ηx))+ ad(k)B(ηt )
(b(ηy))ad(r)B(ηt )

(bx)] + h.c.

We divide the triple sum into several parts. We find

e−B(ηt )L(3)N, t e
B(ηt )

=

∑
n≥0

(−1)n

n!

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)a
∗

yax

+

∑
n,r≥0

(−1)n+r

n!(r+1)!

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)b
∗

yad(r)B(ηt )
(b∗(ηx))

+

∑
n,r≥0,k≥1

(−1)n+k+r

n!k!r !(k+r+1)

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)ad(k)(b∗y)ad(r)B(ηt )
(b∗(ηx))

+

∑
n,r≥0,k≥1

(−1)n+k+r

n!k!r !(k+r+1)

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b(ηy))ad(r)B(ηt )

(bx)

+h.c.
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In the terms with k = 0, we distinguish furthermore the case n = 1 from n 6= 1. We find

e−B(ηt )L(3)N, t e
B(ηt )

=−

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)[B(ηt),b∗x ]a

∗

yax

−

∑
r≥0

(−1)r

(r+1)!

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)[B(ηt),b∗x ]b

∗

y ad(r)B(ηt )
(b∗(ηx))

+

∑
n 6=1

(−1)n

n!

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)a
∗

yax

+

∑
n 6=1,r≥0

(−1)n+r

n!(r+1)!

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)b
∗

yad(r)B(ηt )
(b∗(ηx))

+

∑
n,r≥0,k≥1

(−1)n+k+r

n!k!r !(k+r+1)

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b∗y)ad(r)B(ηt )

(b∗(ηx))

+

∑
n,r≥0,k≥1

(−1)n+k+r

n!k!r !(k+r+1)

∫
dx dy N 5/2V (N (x−y))ϕ̃t(y)ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b(ηy))ad(r)B(ηt )

(bx)

+h.c. (5-102)

We start by estimating the contribution of the last term on the right-hand side of (5-102). We are
interested in the expectation∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y) 〈ξ, ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b(ηy))ad(r)B(ηt )

(bx)ξ〉

∣∣∣∣
≤

∫
dx dy N 5/2V (N (x − y))|ϕ̃t(y)|‖ad(n)B(ηt )

(bx)ξ‖‖ad(k)B(ηt )
(b(ηy))ad(r)B(ηt )

(bx)ξ‖

for n, r ≥ 0 and k ≥ 1. According to Lemma 3.3, the norm ‖ad(n)B(ηt )
(bx)ξ‖ is bounded by the sum of 2nn!

terms of the form
P1,x = ‖31 · · ·3i N−k5

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk)
t,\k
; η

(s)
x,♦)ξ‖

for i, k, s≥ 0, j1, . . . , jk ≥ 1, where each3i is a factor (N−N )/N or (N+1−N )/N or a5(2)-operator
of the form

N−p5
(2)
]′,[′(η

(q1)

t,\′1
, . . . , η

(qp)

t,\′p
). (5-103)

From Lemma 5.2, we find

P1,x ≤

{
Cn
‖ηt‖

n−1
‖ηx‖‖(N + 1)1/2ξ‖ if s ≥ 1,

Cn
‖ηt‖

n
‖axξ‖ if s = 0

(5-104)

for all x ∈R3. Similarly, the norm ‖ad(k)B(ηt )
(b(ηy))ad(r)B(ηt )

(bx)ξ‖ is bounded by the sum of 2k+r k! r ! terms
having the form

P2,x,y = ‖31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . ,η

( jk1 )

t,\k1
;η
(`1+1)
y,♦ )×3′1 · · ·3

′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . ,η

(mk2 )

t,\′k2
;η
(`2)
x,♦′)ξ‖,
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which can be estimated (with Lemma 5.4) by

P2,x,y ≤

{
Ck+r
‖ηt‖

k+r−2
‖ηx‖‖ηy‖‖(N + 1)ξ‖ if `2 ≥ 1,

Ck+r
‖ηt‖

k+r−1
‖ηy‖‖ax(N + 1)1/2ξ‖ if `2 = 0

for all x, y ∈ R3. Combining this estimate with (5-104) we find that∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y) 〈ξ, ad(n)B(ηt )
(b∗x)ad(k)B(ηt )

(b(ηy))ad(r)B(ηt )
(bx)ξ〉

∣∣∣∣
≤ n! k! r !Cn+k+r

‖ηt‖
n+k+r−3

∫
dx dyN 5/2V (N (x − y))|ϕ̃t(y)|‖ηy‖

×
[
‖ηx‖‖(N + 1)1/2ξ‖+‖ηt‖‖axξ‖

]
×
[
‖ηx‖‖(N + 1)ξ‖+‖ηt‖‖ax(N + 1)1/2ξ‖

]
≤ n! k! r !Cn+k+r ec|t |N−1/2

‖ηt‖
n+k+r−3

×

∫
dx
[
‖ηx‖‖(N + 1)1/2ξ‖+‖ηt‖‖axξ‖

][
‖ηx‖‖(N + 1)ξ‖+‖ηt‖‖ax(N + 1)1/2ξ‖

]
,

where we first used the bounds ‖ϕ̃t‖∞ ≤ Cec|t | from Proposition 4.2 and supy ‖ηy‖ ≤ Cec|t | from
Lemma 4.3, and then we integrated over y to obtain the N−1/2 factor. Applying Cauchy–Schwarz in the
x-integral, we conclude that∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y) 〈ξ, ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b(ηy))ad(r)B(ηt )

(bx)ξ〉

∣∣∣∣
≤ n! k! r !Cn+k+r ec|t |N−1/2

‖ηt‖
n+k+r−1

‖(N + 1)1/2ξ‖‖(N + 1)ξ‖

≤ n! k! r !Cn+k+r ec|t |
‖ηt‖

n+k+r−1
‖(N + 1)1/2ξ‖2 (5-105)

for all ξ ∈ F≤N.
Let us now consider the fifth sum on the right-hand side of (5-102). The expectation of every term in

this sum is bounded by∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y)〈ξ, ad(n)B(ηt )
(b∗x)ad(k)B(ηt )

(b∗y)ad(r)B(ηt )
(b∗(ηx))ξ〉

∣∣∣∣
≤

∫
dx dy N 5/2V (N (x − y))|ϕ̃t(y)| ‖ad(k)B(ηt )

(by) ad(n)B(ηt )
(bx)ξ‖ ‖ad(r)B(ηt )

(b∗(ηx))ξ‖, (5-106)

where we assume k ≥ 1, n, r ≥ 0. According to Lemma 3.2, ‖ad(r)B(ηt )
(b∗(ηx))ξ‖ is bounded by the sum

of 2rr ! terms of the form

Q1,x = ‖31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η(`1+1)

x ) ξ‖

for a i1, k1, `1 ≥ 0 and j1, . . . , jk1 ≥ 1. Each 3i is a factor (N −N )/N, a factor (N + 1−N )/N or a
5(2)-operator of the form (5-103). From Lemma 5.2, we have

Q1,x ≤ Cr
‖ηt‖

r
‖ηx‖‖(N + 1)1/2ξ‖
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for all x ∈R3. On the other hand, using again Lemma 3.2, we can bound the norm ‖ad(k)B(ηt )
(by)ad(n)B(ηt )

(bx)ξ‖

by the sum of 2n+kk! n! terms having the form

Q2,x,y = ‖31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k2
; η

(`1)
y,♦ )3

′

1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)ξ‖,

where i1, i2, k1, k2, `1, `2 ≥ 0 and j1, . . . , jk1,m1, . . . ,mk2 ≥ 1 and where each 3i - and 3′i -operator is a
factor (N −N )/N, a factor (N −N + 1)/N or a 5(2)-operator of the form (5-103). Using Lemma 5.4,
we obtain (using the assumption k ≥ 1 to apply (5-27) and using (5-28) with α = 1)

Q2,x,y ≤ Cn+k
‖ηt‖

n+k−2{[(n+ 1)‖ηx‖‖ηy‖+‖ηt‖N−1
|ηt(x; y)|

]
‖(N + 1)ξ‖

+‖ηy‖‖ηt‖‖ax(N + 1)1/2ξ‖+‖ηt‖
2
‖axayξ‖

}
for all x, y ∈R3. With the bound supx ‖ηx‖, supx,y N−1

|ηt(x; y)| ≤Cec|t | from Lemma 4.3, we conclude
that∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y)〈ξ, ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b∗y)ad(r)B(ηt )

(ηx)ξ〉

∣∣∣∣
≤ n! k! r !Cn+k+r ec|t |

‖ηt‖
n+k+r

‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖ (5-107)

for all ξ ∈ F≤N.
Let us now study the fourth term on the right-hand side of (5-102). As we did for the other terms, we

bound the expectation∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y)〈ξ, ad(n)B(ηt )
(b∗x)b

∗

yad(r)B(ηt )
(b∗(ηx))ξ〉

∣∣∣∣
≤

∫
dx dy N 5/2V (N (x − y))|ϕ̃t(y)|‖byad(n)B(ηt )

(bx)ξ‖‖ad(r)B(ηt )
(b∗(ηx))ξ‖, (5-108)

where we assume that n 6= 1, r ≥ 0. According to Lemma 3.2, ‖ad(r)B(ηt )
(b∗(ηx))ξ‖ can be bounded by

the sum of 2rr ! terms of the form

R1,x = ‖31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1+1)
x,♦ )ξ‖

for i1, k1, `1 ≥ 0 and j1, . . . , jk1 ≥ 1. According to Lemma 5.2, such a term can always be estimated by

R1,x ≤ Cr
‖ηt‖

r
‖ηx‖‖(N + 1)1/2ξ‖ (5-109)

for all x ∈ R3. On the other hand, the norm ‖byad(n)B(ηt )
(bx)ξ‖ can be bounded by the sum of 2nn!

contributions having the form

R2,x,y = ‖by31 · · ·3i15
(k1)
],[ (η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
x,♦ )ξ‖ (5-110)

for i1, k1, `1 ≥ 0 and j1, . . . , jk1 ≥ 1. With Lemma 5.4, we find that

R2,x,y ≤ Cn
‖ηt‖

n−2{[(1+ n/N )‖ηx‖‖ηy‖+‖ηt‖N−1
|ηt(x; y)|

]
‖(N + 1)ξ‖

+‖ηt‖‖ηx‖‖ay(N + 1)1/2ξ‖+ (n/N )‖ηt‖‖ηy‖‖ax(N + 1)1/2ξ‖+‖ηt‖
2
‖axayξ‖

}
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for all x, y ∈R3. With ‖ϕ̃t‖∞≤Cec|t | and supx,y N−1
|ηt(x; y)|≤Cec|t | we conclude, similarly to (5-107),

that∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y)〈ξ, ad(n)B(ηt )
(b∗x)b

∗

yad(r)B(ηt )
(b∗(ηx))ξ〉

∣∣∣∣
≤ (n+ 1)! r !Cn+r ec|t |

‖ηt‖
r+n
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖. (5-111)

The expectation of terms in the third sum on the right-hand side of (5-102) is bounded by∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y)〈ξ, ad(n)B(ηt )
(b∗x)a

∗

yaxξ〉

∣∣∣∣
≤

∫
dx dy N 5/2V (N (x − y))|ϕ̃t(y)|‖ayad(n)B(ηt )

ξ‖‖axξ‖,

which is similar to the right-hand side of (5-108), the only difference being that instead of the norm
‖ad(r)B(ηt )

(b∗(ηx))ξ‖ we have ‖axξ‖ (and the fact that in the other norm, we have the field ay instead of by ;
it is clear, however, that both fields can be treated similarly). Analogously to (5-111), we conclude that∣∣∣∣∫ dx dy N 5/2V (N (x − y))ϕ̃t(y)〈ξ, ad(n)B(ηt )

(b∗x)a
∗

yaxξ〉

∣∣∣∣
≤ (n+ 1)!Cnec|t |

‖ηt‖
n−1
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖. (5-112)

Let us now switch to the second term on the right-hand side of (5-102) (the sum over r ≥ 0). First of
all, we compute the commutator

[B(ηt), b∗x ] = −b(ηx)

(
1−

N
N

)
+

1
N

∫
dz dw η̄(z;w)a∗x awbz.

Hence the r -th term in the sum is proportional to

−

∫
dx dy N 5/2V (N (x − y))ϕ̃t(y)

(N − 1−N )

N
b(ηx)b∗yad(r)B(ηt )

(b∗(ηx))

+

∫
dx dy N 5/2V (N (x − y))ϕ̃t(y)N−15

(1)
(∗,· ),∗(ηt , δx)

∗b∗yad(r)B(ηt )
(b∗(ηx))

=: S1+S2. (5-113)

The expectation of S2 can be bounded as follows:

|〈ξ,S2ξ〉| ≤

∫
dx dy N 5/2V (N (x − y))|ϕ̃t(y)|‖by N−15

(1)
(∗,· ),∗(ηt , δx)ξ‖‖ad(r)B(ηt )

(b∗(ηx))ξ‖.

As in (5-109), we find

‖ad(r)B(ηt )
(b∗(ηx))ξ‖ ≤ Crr !‖ηt‖

r
‖ηx‖‖(N + 1)1/2ξ‖.

Since, on the other hand,

‖by N−15
(1)
(∗,· ),∗(ηt , δx)ξ‖ ≤ C N−1

‖ηy‖‖ax(N + 1)1/2ξ‖+C‖ηt‖‖axayξ‖,
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we conclude that

|〈ξ,S2ξ〉| ≤ Cr ec|t |
‖ηt‖

r+1
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖

for all ξ ∈ F≤N. We are left with the operator S1 defined in (5-113). Commuting b(ηx) with b∗y we write
it as

S1 =−

∫
dx dy N 5/2V (N (x − y))ηt(x; y)ϕ̃t(y)

(N −N )(N −N − 1)
N 2 ad(r)B(ηt )

(b∗(ηx))

−

∫
dx dy N 5/2V (N (x − y))ϕ̃t(y)

(N −N − 1)
N

[
b∗yb(ηx)−

1
N

a∗ya(ηx)

]
ad(r)B(ηt )

(b∗(ηx))

=: S11+S12.

The expectation of S12 is estimated by

|〈ξ,S12ξ〉| ≤ Cr ec|t |
‖ηt‖

r+1
‖(N + 1)1/2ξ‖2.

As for S11, we decompose it as

S11 =−

∫
dx dy N 5/2V (N (x − y))kt(x; y)ϕ̃t(y)

(N −N )(N −N − 1)
N 2 ad(r)B(ηt )

(b∗(ηx))

−

∫
dx dy N 5/2V (N (x − y))µt(x; y)ϕ̃t(y)

(N −N )(N −N − 1)
N 2 ad(r)B(ηt )

(b∗(ηx)),

=: S111+S112.

Since |µt(x; y)| ≤ Cec|t | from Lemma 4.3, it is easy to estimate the expectation of the term S112 by

|〈ξ,S112ξ〉| ≤ Cr ec|t |
‖ηt‖

r+1
‖(N + 1)1/2ξ‖2.

As for the term S111, we use the fact that, by Lemma 3.2, the nested commutator ad(r)B(ηt )
(b∗(ηx)) is given

by (
1−

N − 1
N

)m(
1−

N − 2
N

)m

b∗((ηt η̄t)
mηx)

if r = 2m is even and by

−

(
1−

N + 1
N

)m+1(
1−

N
N

)m

b((ηt η̄t)
m+1
x )

if r = 2m+ 1 is odd, up to terms (2rr ! − 1 of them) having the form

31 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1+1)
x,♦ ),

where either k1 ≥ 1 or at least one of the 3-operators is a 5(2)-operator of the form (5-103). We conclude
that, if r = 2m is even,

S111 =
√

N
∫

dx dy N 3V (N (x − y))w`(N (x − y))|ϕ̃t(y)|2ϕ̃t(x)b∗((ηt η̄t)
mηx)+S1112, (5-114)
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while, if r = 2m+ 1 is odd,

S111 =−
√

N
∫

dx dy N 3V (N (x − y))w`(N (x − y))|ϕ̃t(y)|2ϕ̃t(x)b∗((ηt η̄t)
m+1
x )+S1112, (5-115)

where, in both cases, the expectation of the error term S1112 is bounded by

|〈ξ,S1112ξ〉| ≤ Cr
‖ηt‖

r
∫

dx dy N 3/2V (N (x − y)) |kt(x; y)|‖ηx‖‖(N + 1)1/2ξ‖‖(N + 1)ξ‖

≤ Cr
‖ηt‖

r+1
‖(N + 1)1/2ξ‖2

for all ξ ∈ F≤N. Here, once again, we used the fact that N−1
|ηt(x; y)| ≤ C . Summing over all r ≥ 0, we

conclude that

−

∑
r≥0

(−1)r

(r + 1)!

∫
dx dy N 5/2V (N (x − y))ϕ̃t(y)[B(ηt), b∗x ]b

∗

yad(r)B(ηt )
(b∗(ηx))

=−
√

N [b((coshηt −1)(hN, t))+ b∗(sinhηt (hN, t))] +S,

where
|〈ξ, Sξ〉| ≤ ec|t |

∑
r≥0

(C‖ηt‖)
r
‖(N + 1)1/2ξ‖2 ≤ Cec|t |

‖(N + 1)1/2ξ‖2 (5-116)

for all ξ ∈ F≤N.
Finally, we consider the first term on the right-hand side of (5-102). This term can be handled much as

we did with the second term (the sum over r ≥ 0). We obtain that

−

∫
dx dy N 5/2V (N (x − y))ϕ̃t(y)[B(ηt), b∗x ]a

∗

yax =−
√

Nb(hN, t)+ S̃,

where the expectation of S̃ can be bounded as we did with the expectation of S in (5-116).
Recalling the definition of E (3)N, t in (5-100), it follows from (5-105), (5-107), (5-111), (5-112) and

(5-116) that
|〈ξ, E (3)N, tξ〉| ≤ Cec|t |

‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖.

The bounds in (5-101) for the expectations of [N , E (3)N, t ], [a
∗(g1)a(g2), E (3)N, t ] and of the time-derivative

∂tE (3)N, t can be proven analogously. We omit the details. �

5F. Analysis of e−B(ηt )L(4)N, t e
B(ηt ). Recall from (5-3) that

L(4)N, t = VN =
1
2

∫
dx dy N 2V (N (x − y))a∗x a∗yayax .

We conjugate L(4)N, t with the unitary operator eB(ηt ). We define the error term E (4)N, t through the equation

e−B(ηt )L(4)N, t e
B(ηt ) = VN +

1
2

∫
dx dy N 2V (N (x − y))|kt(x; y)|2

+
1
2

∫
dx dy N 2V (N (x − y))[kt(x; y)b∗x b∗y + h.c.] + E (4)N, t . (5-117)

In the next proposition we collect some important properties of the operator E (4)N, t .
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Proposition 5.11. Under the same assumptions as in Theorem 4.4, there exist constants C, c > 0 such
that

|〈ξ, E (4)N, tξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖,

|〈ξ, [N , E (4)N, t ]ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖,

|〈ξ, [a∗(g1)a(g2), E (4)N, t ]ξ〉| ≤ Cec|t |
‖g1‖H2‖g2‖H2‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖,

|∂t 〈ξ, E (4)N, tξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖

(5-118)

for all ξ ∈ F≤N.

Proof. We start by writing

e−B(ηt )a∗x a∗yayax eB(ηt ) = a∗x a∗yayax +

∫ 1

0
ds e−s B(ηt )[a∗x a∗yayax , B(ηt)]es B(ηt ).

A straightforward computation gives

e−B(ηt )a∗x a∗yayax eB(ηt )= a∗x a∗yayax+

∫ 1

0
ds e−s B(ηt )[b∗x b∗y(axa∗(ηy)+a∗(ηx)ay)+h.c.]es B(ηt ). (5-119)

Now we observe that

e−s B(ηt )[axa∗(ηy)+ a∗(ηx)ay]es B(ηt )

= axa∗(ηy)+ a∗(ηx)ay +

∫ s

0
dτ e−τ B(ηt )[axa∗(ηy)+ a∗(ηx)ay, B(ηt)]eτ B(ηt )

= ηt(x; y)+ a∗(ηy)ax + a∗(ηx)ay +

∫ s

0
dτ e−τ B(ηt )[2b∗(ηx)b∗(ηy)+ b(η(2)y )bx + b(η(2)x )by]eτ B(ηt ).

Inserting in (5-119), expanding as in Lemma 3.3, and integrating over s, τ , we obtain

e−B(ηt )L(4)N, t e
B(ηt ) = VN +W1+W2+W3+W4, (5-120)

where

W1 =
1
2

∑
n,k≥0

(−1)n+k

n! k! (n+ k+ 1)

∫
dx dy N 2V (N (x − y))ηt(x; y) ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b∗y),

W2 =
∑

n,k≥0

(−1)n+k

n! k! (n+ k+ 1)

∫
dx dy N 2V (N (x − y)) ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b∗y)a

∗(ηx)ay,

W3 =
∑

n,k,m,r≥0

(−1)n+k+m+r

n! k!m! r ! (m+ r + 1)(n+ k+m+ r + 2)

×

∫
dx dy N 2V (N (x − y)) ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b∗y)ad(m)B(ηt )

(b(η(2)x ))ad(r)B(ηt )
(by),

W4 =
∑

n,k,m,r≥0

(−1)n+k+m+r

n! k!m! r ! (m+ r + 1)(m+ r + n+ k+ 2)

×

∫
dx dy N 2V (N (x − y)) ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b∗y)ad(m)B(ηt )

(b∗(ηx))ad(r)B(ηt )
(b∗(ηy)).
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Let us now estimate the expectation of W2. By Cauchy–Schwarz, we have∣∣∣∣∫ dx dy N 2V (N (x − y))〈ξ, ad(n)B(ηt )
(b∗x)ad(k)B(ηt )

(b∗y)a
∗(ηx)ayξ〉

∣∣∣∣
≤

∫
dx dy N 2V (N (x − y))‖(N + 1)1/2ad(k)B(ηt )

(by)ad(n)B(ηt )
(bx)ξ‖‖(N + 1)−1/2a∗(ηx)ayξ‖.

We bound

‖(N + 1)−1/2a∗(ηx)ayξ‖ ≤ ‖ηx‖‖ayξ‖ (5-121)

On the other hand, according to Lemma 3.3, ‖(N + 1)1/2ad(k)B(ηt )
(by)ad(n)B(ηt )

(bx)ξ‖ is bounded by the sum
of 2n+kn! k! contributions having the form

Tx,y =
∥∥(N + 1)1/231 · · ·3i1 N−k15

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
y,t,♦)

×3′1 · · ·3
′

i2
N−k25

(1)
],[(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)ξ

∥∥, (5-122)

with i1, i2, k1, k2, `1, `2 ≥ 0, j1, . . . , jk1,m1, . . . ,mk2 ≥ 0 and where each 3i - or 3′i -operator is a factor
(N −N )/N, a factor (N −N + 1)/N or a 5(2)-operator of the form

N−p5
(2)
],[(η

(q1)
t,\

1
, . . . , η

(qp)

t,\
p
). (5-123)

According to Lemma 5.4, we have

Tx,y ≤ (n+ 1)Ck+n
‖ηt‖

k+n−2{
‖ηx‖‖ηy‖‖(N + 1)3/2ξ‖

+‖ηt‖‖ηx‖‖ay(N + 1)ξ‖+‖ηt‖‖ηy‖‖ax(N + 1)ξ‖

+‖ηt‖|ηt(x; y)|‖(N + 1)1/2ξ‖+‖ηt‖
2
√

N‖axayξ‖
}

(5-124)

for all x, y ∈ R3. For ξ ∈ F≤N, we obtain∣∣∣∣∫ dx dy N 2V (N (x−y))ηt(x; y)〈ξ,ad(n)B(ηt )
(b∗x)ad(k)B(ηt )

(b∗y)a
∗(ηx)ayξ〉

∣∣∣∣
≤ (n+1)!k!Cn+k

‖ηt‖
n+k−2

∫
dx dy N 2V (N (x−y))‖ηx‖‖ayξ‖

×
{[

N‖ηx‖‖ηy‖+‖ηt‖|ηt(x; y)|
]
‖(N+1)1/2ξ‖

+N‖ηt‖‖ηy‖‖axξ‖+N‖ηt‖‖ηx‖‖ayξ‖+N 1/2
‖axayξ‖

}
≤ (n+1)!k!Cn+k

‖ηt‖
n+k
‖(N+1)1/2ξ‖‖(VN+N+1)1/2ξ‖

and therefore

|〈ξ,W2ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖

if supt ‖ηt‖ is small enough.
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Now, let us consider the expectation of the term W3. By Cauchy–Schwarz, we have∣∣∣∣∫ dx dy N 2V (N (x − y))〈ξ, ad(n)B(ηt )
(b∗x)ad(k)B(ηt )

(b∗y)ad(m)B(ηt )
(b(η(2)x ))ad(r)(by)ξ〉

∣∣∣∣
≤

∫
N 2V (N (x − y)) ‖(N + 1)1/2ad(k)B(ηt )

(by)ad(n)B(ηt )
(bx)ξ‖‖(N + 1)−1/2ad(m)B(ηt )

(b(η(2)x ))ad(r)(by)ξ‖.

Expanding ad(m)B(ηt )
(b(η(2)x ))ad(r)B(ηt )

(by) as in Lemma 3.2 and using Lemma 5.4, we obtain

‖(N + 1)−1/2ad(m)B(ηt )
(b(η(2)x ))ad(r)B(ηt )

(by)ξ‖

≤ m! r !Cm+r
‖ηt‖

m+r
[‖ηx‖‖ηy‖‖(N + 1)1/2ξ‖+‖ηt‖‖ηx‖‖ayξ‖]. (5-125)

As for the norm ‖(N + 1)1/2ad(k)B(ηt )
(by)ad(n)B(ηt )

(bx)ξ‖, we can estimate it as the sum of 2n+kn! k! contri-
butions of the form (5-122). Using (5-124) and integrating over x, y, we conclude

|〈ξ,W3ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖

if supt ‖ηt‖ is small enough.
Let us now switch to W4. We proceed analogously as we did for W3. The only difference is that,

instead of (5-125), we need to bound

‖(N + 1)−1/2ad(m)B(ηt )
(b(ηx))ad(r)B(ηt )

(b(ηy))ξ‖ ≤ m! r !Cm+r
‖ηt‖

m+r
‖ηx‖‖ηy‖‖(N + 1)1/2ξ‖.

We find

|〈ξ,W4ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖

if supt ‖ηt‖ is small enough.
Finally, we consider the term W1 in (5-120). We extract from the sum over n, k ≥ 0 the terms with

(n, k)= (0, 0) and (n, k)= (0, 1). We obtain that

W1 =
1
2

∫
dx dy N 2V (N (x − y))ηt(x; y)b∗x b∗y

−
1
4

∫
dx dy N 2V (N (x − y))ηt(x; y)[B(ηt), b∗x ]b

∗

y + W̃1, (5-126)

with

W̃1 =
1
2

∗∑
n,k

(−1)n+k

n! k! (n+ k+ 1)

∫
dx dy N 2V (N (x − y))ηt(x; y)ad(n)B(ηt )

(b∗x)ad(k)B(ηt )
(b∗y), (5-127)

where
∗∑

excludes the terms (n, k)= (0, 0), (1, 0). We bound the expectation of W̃1 by∣∣∣∣∫ dx dy N 2V (N (x − y))ηt(x; y)〈ξ, ad(n)B(ηt )
(b∗x)ad(k)B(ηt )

(b∗y)ξ〉
∣∣∣∣

≤

∫
dx dy N 2V (N (x − y))|ηt(x; y)|‖(N + 1)−1/2ad(k)B(ηt )

(by)ad(n)B(ηt )
(bx)ξ‖‖(N + 1)1/2ξ‖.
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Following Lemma 3.3, we can bound the norm ‖(N + 1)−1/2ad(k)B(ηt )
(by)ad(n)B(ηt )

(bx)ξ‖ by the sum of
2n+kn! k! terms of the form

T̃x,y =
∥∥(N + 1)−1/231 · · ·3i1 N−k15

(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; η

(`1)
y,t,♦)

×3′1 · · ·3
′

i2
N−k25

(1)
],[(η

(m1)
t,\1

, . . . , η
(mk2 )

t,\k2
; η

(`2)
x,♦′)ξ

∥∥, (5-128)

with i1, i2, k1, k2, `1, `2 ≥ 0, j1, . . . , jk1,m1, . . . ,mk2 ≥ 0 and where each 3i - or 3′i -operator is a factor
(N −N )/N, a factor (N −N + 1)/N or a 5(2)-operator of the form (5-123). With Lemma 5.4 we find

T̃x,y ≤ (n+ 1)Ck+n
‖ηt‖

k+n−2{
‖ηx‖‖ηy‖‖(N + 1)1/2ξ‖+‖ηt‖‖ηx‖‖ayξ‖+‖ηt‖ηy‖‖axξ‖

+‖ηt‖N−1
|ηt(x; y)|‖(N + 1)1/2ξ‖+‖ηt‖

2
‖axayξ‖

}
for all x, y ∈R3. The important difference with respect to (5-124) is that here, when we consider the cases
`1 = `2 = 0 and `1 = 0, `2 = 1 we can apply (5-27) and (5-29), rather than (5-26) and (5-28), because the
assumption (n, k) 6= (0, 0), (1, 0) implies that k+ n ≥ 2 (the case (n, k)= (0, 1) is not compatible with
`2 = 1). Using supx,y N−1

|ηt(x; y)| ≤ Cec|t | from Lemma 4.3, we conclude that

|〈ξ, W̃1ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖

if supt ‖ηt‖ is small enough.
As for the second term on the right-hand side of (5-126), we have

[B(ηt), b∗x ] = −b(ηx)
N −N

N
+

1
N

∫
dz dw a∗x azbw ηt(z;w).

Hence

−

∫
dx dy N 2V (N (x − y))ηt(x; y)[B(ηt), b∗x ]b

∗

y

=

∫
dx dy N 2V (N (x − y))ηt(x; y)b(ηx)b∗y

N −N + 1
N

− N−1
∫

dx dy dz dw N 2V (N (x − y))ηt(x; y)ηt(z;w)a∗x azbwb∗y

=

∫
dx dy N 2V (N (x − y))ηt(x; y)b∗yb(ηx)

N −N + 1
N

+

∫
dx dy N 2V (N (x − y))|ηt(x; y)|2

N −N
N

N −N + 1
N

− N−1
∫

dx dy dz N 2V (N (x − y))ηt(x; y)ηt(x; z)a∗yaz
N −N + 1

N

− N−1
∫

dx dy dz dw N 2V (N (x − y))ηt(x; y)ηt(z;w)a∗x azbwb∗y .

We conclude that

−

∫
dx dy N 2V (N (x − y))ηt(x; y)[B(ηt), b∗x ]b

∗

y =

∫
dx dy N 2V (N (x − y))|kt(x; y)|2+W12,
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where
|〈ξ,W12ξ〉| ≤ Cec|t |

‖(N + 1)1/2ξ‖‖(VN +N + 1)1/2ξ‖.

Similarly, the first term on the right-hand side of (5-126) can be decomposed as∫
dx dy N 2V (N (x − y))ηt(x; y)b∗x b∗y =

∫
dx dy N 2V (N (x − y))kt(x; y)b∗x b∗y +W11,

where
W11 =

∫
dx dy N 2V (N (x − y))µt(x; y)b∗x b∗y

is such that
|〈ξ,W11ξ〉| ≤ Cec|t |

‖(N + 1)1/2ξ‖‖V1/2
N ξ‖

since |µ(x; y)| ≤ Cec|t | uniformly in N. �

5G. Analysis of (i∂t e−B(ηt ))eB(ηt ). This subsection is devoted to the study of the first term in the
generator GN, t in (5-1). The properties of (i∂t e−B(ηt ))eB(ηt ) are collected in the next proposition.

Proposition 5.12. Under the same assumptions as in Theorem 4.4, there exist constants C, c > 0 such
that

|〈ξ, (i∂t e−B(ηt ))eB(ηt )ξ〉| ≤ C‖(N + 1)1/2ξ‖2,

|〈ξ, [N , (i∂t e−B(ηt ))eB(ηt )]ξ〉| ≤ C‖(N + 1)1/2ξ‖2,

|〈ξ, [a∗(g1)a(g2), (i∂t e−B(ηt ))eB(ηt )]ξ〉| ≤ C‖g1‖‖g2‖‖(N + 1)1/2ξ‖2,

|〈ξ, [∂t(i∂t e−B(ηt ))eB(ηt )]ξ〉| ≤ Cec|t |
‖(N + 1)1/2ξ‖2

(5-129)

for all ξ ∈ F≤N.

Proof. As in Section 6.5 of [Benedikter et al. 2015], we expand (i∂t e−B(ηt ))eB(ηt ) as

(i∂t e−B(ηt ))eB(ηt ) =−

∫ 1

0
ds e−s B(ηt )[i∂t B(ηt)]es B(ηt )

=
i
2

∑
k,n≥0

(−1)n+k

k! n! (n+ k+ 1)

∫
dx ad(k)B(ηt )

(b((∂tηt)x))ad(n)B(ηt )
(bx)+ h.c. (5-130)

We bound the expectations∣∣∣∣∫ dx 〈ξ, ad(k)B(ηt )
(b((∂tηt)x))ad(n)B(ηt )

(bx)ξ〉

∣∣∣∣
≤ ‖(N + 1)1/2ξ‖

∫
dx ‖(N + 1)−1/2ad(k)B(ηt )

(b((∂tηt)x))ad(n)B(ηt )
(bx)ξ‖.

According to Lemma 3.3, the norm ‖(N +1)−1/2ad(k)B(ηt )
(b((∂tηt)x))ad(n)B(ηt )

(bx)ξ‖ is bounded by the sum
of 2n+kn! k! terms of the form

Zx = ‖(N + 1)−1/231 · · ·3i1 N−k15
(1)
],[(η

( j1)
t,\1
, . . . , η

( jk1 )

t,\k1
; (η

(`1)
t,♦ ∂tηt)x)

×3′1 · · ·3
′

i2
N−k25

(1)
]′,[′(η

(m1)

t,\′1
, . . . , η

(mk2 )

t,\′k2
; η

(`2)
x,♦′)ξ‖, (5-131)
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with integers i1, k1, `1, i2, k2, `2 ≥ 0, j1, . . . , jk1,m1, . . . ,mk2 ≥ 1 and where each 3i , 3′i is a factor
(N −N )/N or (N + 1−N )/N or a 5(2)-operator of the form

N−p5
(2)
],[(η

(q1)
t,\

1
, . . . , η

(qp)

t,\
p
).

From Lemma 5.3, we conclude that

Zx ≤

{
Cn+k
‖ηt‖

n+k−1
‖(∂tηt)x‖‖ηx‖‖(N + 1)1/2ξ‖ if `2 > 0,

Cn+k
‖ηt‖

n+k
‖(∂tηt)x‖‖axξ‖ if `2 = 0

for all x ∈ R3. With Cauchy–Schwarz, we obtain∣∣∣∣∫ dx 〈ξ, ad(k)B(ηt )
(b((∂tηt)x))ad(n)B(ηt )

(bx)ξ〉

∣∣∣∣≤ n! k!Cn+k
‖ηt‖

n+k
‖∂tηt‖‖(N + 1)1/2ξ‖2.

From (5-130), we conclude that, if supt ‖ηt‖ is sufficiently small,

|〈ξ, (i∂t e−B(ηt ))eB(ηt )ξ〉| ≤ C‖(N + 1)1/2ξ‖2.

The other bounds in (5-129) can be proven analogously, first expanding (i∂t e−B(ηt ))eB(ηt ) as in (5-130),
then using Lemmas 3.3 and 3.2 to write the nested commutators on the right-hand side of (5-130) as sums
of factors like in (5-131), and then commuting each of these factors with N, with a∗(g1)a(g2), or taking
its time-derivative; we omit the details. �

5H. Proof of Theorem 4.4. Recall from (5-1) that

GN, t = (i∂t e−B(ηt ))eB(ηt )+

4∑
j=0

e−B(ηt )L( j)
N, t e

B(ηt ),

with L( j)
N, t defined as in (5-3), for j = 0, . . . , 4. It follows from Propositions 5.5 and 5.7–5.12 that

e−B(ηt )L(0)N, t e
B(ηt ) =N, t +Ẽ (0)N, t ,

e−B(ηt )L(1)N, t e
B(ηt ) =

√
N [b(coshηt (hN, t))+ b∗(sinhηt (h̄N, t))+ h.c.] + Ẽ (1)N, t ,

e−B(ηt )L(2)N, t e
B(ηt ) = K+

∫
|∇x kt(x; y)|2 dx dy

+

∫
dx dy (1w`)(N (x − y))[ϕ̃t(x)ϕ̃t(y)b∗x b∗y + h.c.]

+Re
∫

dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)kt(y; x)

+
1
2

∫
dx dy N 3V (N (x − y))[ϕ̃t(x)ϕ̃t(y)b∗x b∗y + h.c.] + Ẽ (2)N, t ,

e−B(ηt )L(3)N, t e
B(ηt ) =−

√
N [b(coshηt (hN, t))+ b∗(sinhηt (h̄N, t))+ h.c.] + Ẽ (3)N, t ,

e−B(ηt )L(4)N, t e
B(ηt ) = VN +

1
2

∫
dx dy N 2V (N (x − y))|kt(x; y)|2

+
1
2

∫
dx dy N 2V (N (x − y))[kt(x; y)b∗x b∗y + h.c.] + Ẽ (4)N, t ,

(i∂t e−B(ηt ))eB(ηt ) = Ẽ (5)N, t ,

(5-132)
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where the error terms Ẽ ( j)
N, t are such that

|〈ξ, Ẽ ( j)
N, tξ〉| ≤ Cec|t |

‖(HN +N + 1)1/2ξ‖‖(N + 1)1/2ξ‖,

|〈ξ, [N , Ẽ ( j)
N, t ]ξ〉| ≤ Cec|t |

‖(HN +N + 1)1/2ξ‖‖(N + 1)1/2ξ‖,

|〈ξ, [a∗(g1)a(g2), Ẽ
( j)
N, t ]ξ〉| ≤ Cec|t |

‖g1‖H2‖g2‖H2‖(HN +N + 1)1/2ξ‖‖(N + 1)1/2ξ‖,

|∂t 〈ξ, Ẽ
( j)
N, tξ〉| ≤ Cec|t |

‖(HN +N + 1)1/2ξ‖‖(N + 1)1/2ξ‖

(5-133)

for all j = 0, 1, . . . , 5. With the scattering equation (4-2), we conclude that

GN, t =CN ,t+HN+Ẽ N, t+N
∫

dx dy
[
−1+ 1

2 N 2V (N (x−y))
]
(1−w`(N (x−y)))ϕ̃t(x)ϕ̃t(y)b∗x b∗y+h.c.

=CN ,t+HN+A+Ẽ N, t , (5-134)

with
A= N 3λ`

∫
dx dy f`(N (x − y))χ(|x − y| ≤ `)[ϕ̃t(x)ϕ̃t(y)b∗x b∗y + h.c.]

and where Ẽ N, t satisfies the same estimates (5-133) as all error terms Ẽ ( j)
N, t , j = 0, . . . , 5. Since N 3λ`≤C

(see Lemma 4.1) and f`(N (x − y))≤ 1 we have, with Lemma 2.2,

|〈ξ,Aξ〉| ≤ C‖(N + 1)1/2ξ‖2

and similarly,±[N ,A], ±[a∗(g1)a(g2),A], ±∂t A≤C(N+1). Setting EN, t =A+Ẽ N, t , we conclude that

GN, t = CN ,t +HN + EN, t ,

where EN, t satisfies again the same bounds (5-133) as Ẽ N, t . This immediately implies that, in the sense
of forms on F≤N

⊥ϕ̃t
×F≤N

⊥ϕ̃t
,

1
2HN −Cec|t |(N + 1)≤ GN, t −CN ,t ≤ 2HN +Cec|t |(N + 1),

±i[GN, t ,N ] ≤HN +Cec|t |(N + 1),

∂t [GN, t −CN ,t ] ≤HN +Cec|t |(N + 1).
Moreover, since

[HN , a∗(g1)a(g2)] =

∫
dx ∇g1(x)∇xa∗x a(g2)−

∫
dx a∗(g1)∇ ḡ2(x)∇xax

+

∫
dx dy N 2V (N (x − y))g1(y)a∗x a∗yaxa(g2)

−

∫
dx dy N 2V (N (x − y)) ḡ2(x)a∗(g1)a∗yayax ,

we obtain that

|〈ξ, [HN , a∗(g1)a(g2)]ξ〉|

≤
[
‖∇g1‖‖g2‖+‖g1‖‖∇g2‖

]
‖K1/2ξ‖‖N 1/2ξ‖+

[
‖g2‖‖g1‖∞+‖g1‖‖g2‖∞

]
×

[∫
dx dy N 2V (N (x − y))‖axayξ‖

2
]1/2[∫

dx dy N 2V (N (x − y))‖ay(N + 1)1/2ξ‖2
]1/2

≤ ‖g1‖H2‖g2‖H2‖H1/2
N ξ‖‖(N + 1)1/2ξ‖
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for all ξ ∈ F≤N. Combining with the bounds (5-133) for the error operator EN, t , and choosing g1 = ∂t ϕ̃t

and g2 = ϕ̃t , we find that

±Re[GN, t , a∗(∂t ϕ̃t)a(ϕ̃t)] ≤HN +CeK |t |(N + 1).

This concludes the proof of Theorem 4.4.

6. Bounds on the growth of fluctuations

In this section, we are going to complete the proofs of Theorems 1.1 and 1.2. The main ingredient to
reach this goal is a bound on the growth of the expectation of the number of particles operator with
respect to the fluctuation dynamics WN, t , which we prove in the next proposition using the properties of
the generator GN, t established in Theorem 4.4.

Proposition 6.1. Under the same assumptions as in Theorem 4.4, there exist constants C, c> 0 such that

〈WN, t ξ,NWN, tξ〉 ≤ C 〈ξ, ((GN ,0−CN ,0)+ (N + 1))ξ〉 exp(c exp(c|t |)),

〈WN, t ξ,HNWN, tξ〉 ≤ C 〈ξ, ((GN ,0−CN ,0)+ (N + 1))ξ〉 exp(c exp(c|t |))
(6-1)

for all ξ ∈ F≤N
⊥ϕ . Here HN is the Hamilton operator defined in (4-27).

Remark. From (4-26), we also have

〈WN, t ξ,NWN, tξ〉 ≤ C 〈ξ, (HN +N + 1)ξ〉 exp(c exp(c|t |)),

〈WN, t ξ,HNWN, tξ〉 ≤ C 〈ξ, (HN +N + 1)ξ〉 exp(c exp(c|t |)).

Proof. First of all, we observe that, from the first bound in (4-26),

1
2HN +N ≤ (GN, t −CN ,t)+CeK |t |(N + 1). (6-2)

Hence, it is enough to control the growth of the expectation of the operator on the right-hand side. We
follow here the approach of [Lewin et al. 2015a]. We define qt = 1−|ϕ̃t 〉〈ϕ̃t | as the orthogonal projection
onto L2

⊥ϕ̃t
(R3). We define moreover 0t :F≤N

→F≤N
⊥ϕt

by imposing that 0t |Fj = q⊗ j
t for all j = 1, . . . , N

(Fj is the sector of F≤N with exactly j particles). We have, restricting our attention to t ≥ 0 (the case
t < 0 can be handled very similarly),

〈WN, t ξ, [(GN, t −CN ,t)+CeK t(N +1)]WN, t ξ〉 = 〈WN, t ξ, [(0tGN, t0t −CN ,t)+CeK t(N +1)]WN, t ξ〉.

Hence, since N commutes with 0t ,

i∂t 〈WN, t ξ, [(GN, t −CN ,t)+CeK t(N + 1)]WN, t ξ〉

= 〈WN, t ξ, [0tGN, t0t , (0tGN, t0t −CN ,t)+CeK t(N + 1)]WN, t ξ〉

+ 〈WN, t ξ, ∂t [(0tGN, t0t −CN ,t)+CeK t(N + 1)]WN, t ξ〉

=CeK t
〈WN, t ξ, [GN, t ,N ]WN, t ξ〉+〈WN, t ξ, ∂t [(0tGN, t0t−CN ,t)+CeK t(N+1)]WN, t ξ〉. (6-3)

We observe that
0= ∂t‖ϕ̃t‖

2
2 = 〈

˙̃ϕt , ϕ̃t 〉+ 〈ϕ̃t , ˙̃ϕt 〉.
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This implies that
q̇t =−|ϕ̃t 〉〈 ˙̃ϕt | − | ˙̃ϕt 〉〈ϕ̃t | = −|ϕ̃t 〉〈qt ˙̃ϕt | − |qt ˙̃ϕt 〉〈ϕ̃t |.

Therefore

∂t0
( j)
t =−

j∑
i=1

qt ⊗ · · ·⊗ [|ϕ̃t 〉〈qt ˙̃ϕt |qt + qt |qt ˙̃ϕt 〉〈ϕ̃t |] ⊗ · · ·⊗ qt

=−

j∑
i=1

[|ϕ̃t 〉〈qt ˙̃ϕt |i0
( j)
t −0

( j)
t |qt ˙̃ϕt 〉〈ϕ̃t |i ].

We conclude that
∂t0t =−a∗(ϕ̃t)a(qt ˙̃ϕt)0t −0t a∗(qt ˙̃ϕt)a(ϕ̃t).

Thus

〈WN, t ξ, ∂t [(0tGN, t0t −CN ,t)+CeK t(N + 1)]WN, t ξ〉

= 〈WN, t ξ, [(∂t0t)(GN, t −CN ,t)+ (GN, t −CN ,t)(∂t0t)]WN, t ξ〉

+〈WN, t ξ, [∂t(GN, t −CN ,t)+C K eK t(N + 1)]WN, t ξ〉

=2 Re〈WN, t ξ, [a∗(qt ˙̃ϕt)a(ϕ̃t),GN, t ]WN, t ξ〉+〈WN, t ξ, [∂t(GN, t−CN ,t)+C K eK t(N+1)]WN, t ξ〉,

where we used the fact that a(ϕ̃t)WN, tξ = 0 for all t ∈ R. Together with (6-3), we find

i∂t 〈WN, t ξ, [(GN, t −CN ,t)+CeK t(N + 1)]WN, t ξ〉

= CeK t
〈WN, t ξ, [GN, t ,N ]WN, t ξ〉+ 〈WN, t ξ, [∂t(GN, t −CN ,t)+C K eK t(N + 1)]WN, t ξ〉

+ 2 Re〈WN, t ξ, [a∗(qt ˙̃ϕt)a(ϕ̃t),GN, t ]WN, t ξ〉.

From Theorem 4.4, we obtain that

|∂t 〈WN, t ξ, [(GN, t−CN ,t)+CeK t(N+1)]WN, t ξ〉|≤ C̃eK |t |
〈WN, t ξ, [HN+CeK t(N+1)]WN, tξ〉

≤ C̃eK |t |
〈WN, t ξ, [(GN, t−CN ,t)+CeK |t |(N+1)]WN, tξ〉.

Applying Gronwall’s inequality, we find a constant c > 0 such that

〈WN, t ξ, [(GN, t −CN ,t)+CeK |t |(N + 1)]WN, tξ〉 ≤ 〈ξ, [(GN ,0−CN ,0)+C(N + 1)]ξ〉 exp(c exp(c|t |)),

With (6-2), we conclude that

〈WN, tξ,NWN, tξ〉 ≤ C〈ξ, [(GN ,0−CN ,0)+ (N + 1)]ξ〉 exp(c exp(c|t |)),

〈WN, tξ,HNWN, tξ〉 ≤ C〈ξ, [(GN ,0−CN ,0)+ (N + 1)]ξ〉 exp(c exp(c|t |))
as claimed. �

To apply Proposition 6.1 to the proof of Theorems 1.1 and 1.2, we need to control the expectation on
the right-hand side of (6-1) for vectors ξ ∈ F≤N

⊥ϕ describing orthogonal excitations around the condensate
wave function ϕ for initial N -particle wave functions ψN satisfying (1-10). To this end, we use the next
lemma.
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Lemma 6.2. As in (4-25), let

CN ,t =
1
2
〈
ϕ̃t ,
(
[N 3V (N · )(N − 1− 2N f`(N · ))] ∗ |ϕ̃t |

2)ϕ̃t
〉

+

∫
dx dy |∇x kt(x; y)|2+ 1

2

∫
dx dy N 2V (N (x − y))|kt(x; y)|2

+Re
∫

dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)kt(x; y),

where ϕ̃t is the solution of the modified Gross–Pitaevskii equation (4-8), with initial data ϕ̃t=0 = ϕ (we
assumed in the construction of the fluctuation dynamics that ϕ ∈ H 4(R3); in this lemma, we only need
ϕ ∈ H 1(R3)). Then there is a constant C > 0, independent of N and t , such that

|[CN ,t + N 〈i∂t ϕ̃t , ϕ̃t 〉]− NEGP(ϕ)| ≤ C,

with the translation-invariant Gross–Pitaevskii energy functional EGP defined in (1-15).

Proof. We have

N 〈i∂t ϕ̃t , ϕ̃t 〉 = N 〈ϕ̃t ,−1ϕ̃t 〉+ N 〈ϕ̃t , (N 3V (N · ) f`(N · ) ∗ |ϕ̃t |
2)ϕ̃t 〉.

Therefore

CN ,t + N 〈i∂t ϕ̃t , ϕ̃t 〉 = N‖∇ϕ̃t‖
2
+
(N − 1)

2
〈ϕ̃t , [N 3V (N · ) ∗ |ϕ̃t |

2
]ϕ̃t 〉

+

∫
dx dy |∇x kt(x; y)|2+ 1

2

∫
dx dy N 2V (N (x − y))|kt(x; y)|2

+Re
∫

dx dy N 3V (N (x − y)) ¯̃ϕt(x) ¯̃ϕt(y)kt(x; y). (6-4)

Obviously,

(N − 1)
2
〈ϕ̃t , [N 3V (N · ) ∗ |ϕ̃t |

2
]ϕ̃t 〉 =

N
2
〈ϕ̃t , [N 3V (N · ) ∗ |ϕ̃t |

2
]ϕ̃t 〉+O(1), (6-5)

where O(1) denotes a quantity with absolute value bounded by a constant, independent of N and of t .
Furthermore

1
2

∫
dx dy N 2V (N (x − y))|kt(x, y)|2

=
N
2

∫
dx dy N 3V (N (x − y))w`(N (x − y))2|ϕ̃t(x)|2 |ϕ̃t(y)|2. (6-6)

Finally, we consider the third term on the right-hand side of (6-4), the one with ∇x kt . We recall that
kt(x; y)=−Nw`(N (x − y))ϕ̃t(x)ϕ̃t(y). Hence, we find

−1x kt(x; y)= N 3(1w`)(N (x − y))ϕ̃t(x)ϕ̃t(y)+ Nw`(N (x − y))1ϕ̃t(x)ϕ̃t(y)
+2N 2(∇w`)(N (x − y)) · ∇ϕ̃t(x)ϕ̃t(y). (6-7)
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Since, by (4-1), 1w` =−1 f` =− 1
2 V f`+ λ` f` we have∫

dx dy k̄t(x; y)(−1x kt)(x; y)

=−
N
2

∫
dx dy N 3V (N (y− x))(w`(N (x − y))− 1)w`(N (x − y))|ϕ̃t(x)|2 |ϕ̃t(y)|2

− N 3λ`

∫
dx dy f`(N (x − y))Nw`(N (x − y)) |ϕ̃t(x)|2 |ϕ̃t(y)|2

+ 2
∫

dx dy Nw`(N (y− x))N 2(∇w`)(N (y− x)) · ∇ ¯̃ϕt(x)ϕ̃t(x)|ϕ̃t(y)|2

−

∫
dx dy N 2w2

`(N (x − y))(1ϕ̃t)(x)ϕ̃t(x)|ϕ̃t(y)|2

=
N
2

∫
dx dy N 3V (N (y− x))(1−w`(N (x − y)))w`(N (x − y))|ϕ̃t(x)|2 |ϕ̃t(y)|2

+ 2
∫

dx dy Nw`(N (y− x))N 2(∇w`)(N (y− x)) · ∇ ¯̃ϕt(x)ϕ̃t(x)|ϕ̃t(y)|2+O(1). (6-8)

In the last step, we used the bounds N 3λ`=O(1), Nw`(N (x−y))≤C |x−y|−1 and 0≤ f`(N (x−y))≤1.
Integrating by parts in the last term, we find

2
∫

dx dy N 2(∇w`)(N (y−x))·∇ ¯̃ϕt(x)Nw`(N (y−x))ϕ̃t(x)|ϕ̃t(y)|2

=−

∫
dx dy ∇x(N 2w`(N (y−x))2)·∇ ¯̃ϕt(x)ϕ̃t(x)|ϕ̃t(y)|2

=

∫
dx dy N 2w`(N (x−y))21 ¯̃ϕt(x)ϕ̃t(x)|ϕ̃t(y)|2+

∫
dx dy N 2w`(N (x−y))2∇ ¯̃ϕt(x)·∇ϕ̃t(x)|ϕ̃t(y)|2.

With (6-8), this leads us (using again the bound Nw`(N (x − y))≤ C |x − y|−1) to∫
dx dy k̄t(x; y)(−1x kt)(x; y)

=
N
2

∫
dx dy N 3V (N (y− x))(1−w`(N (x − y)))w`(N (x − y))|ϕ̃t(x)|2 |ϕ̃t(y)|2+O(1).

Combining this bound with (6-5) and (6-6), we find

CN ,t + N 〈i∂t ϕ̃t , ϕ̃t 〉

= N
[∫
|∇ϕ̃t(x)|2 dx + 1

2

∫
dx dy N 3V (N (x − y)) f`(N (x − y))|ϕ̃t(x)|2 |ϕ̃t(y)|2

]
+O(1).

The expression in the brackets on the right-hand side is exactly the energy functional associated with the
time-dependent modified Gross–Pitaevskii equation (4-8). By energy conservation, we conclude that

CN ,t + N 〈i∂t ϕ̃t , ϕ̃t 〉

= N
[∫
|∇ϕ(x)|2 dx + 1

2

∫
dx dy N 3V (N (x − y)) f`(N (x − y))|ϕ(x)|2 |ϕ(y)|2

]
+O(1). (6-9)
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Observe that, with (4-3),∫
dx dy N 3V (N (x − y)) f`(N (x − y))|ϕ(x)|2 |ϕ(y)|2

=

∫
dx dyV (y) f`(y)|ϕ(x)|2 |ϕ(x + y/N )|2

= [8πa0+O(N−1)]

∫
|ϕ(x)|4 dx +

∫
dx dy V (y) f`(y)|ϕ(x)|2 [|ϕ(x + y/N )|2− |ϕ(x)|2], (6-10)

where∣∣∣∣∫ dx dy V (y) f (y)|ϕ(x)|2[|ϕ(x + y/N )|2− |ϕ(x)|2]
∣∣∣∣

≤ N−1
∫ 1

0
ds
∫

dx dy V (y) f (y)|ϕ(x)|2 |∇ϕ(x + sy/N )||ϕ(x + y/N )||y|

≤ C N−1

for a constant C > 0 depending only on the H 1-norm of ϕ. Inserting the last bound and (6-10) in (6-9),
we conclude that

CN ,t + N 〈i∂t ϕ̃t , ϕ̃t 〉 = NEG P(ϕ)+O(1),

as claimed. �

With Proposition 6.1 and Lemma 6.2, we can now conclude the proof of our main theorems.

Proof of Theorems 1.1 and 1.2. We observe, first of all, that, by Proposition 4.2,

|〈ϕt , γ
(1)
N, tϕt 〉− 〈ϕ̃t , γ

(1)
N, t ϕ̃t 〉| ≤ 2‖ϕt − ϕ̃t‖ ≤ C N−1 exp(c exp(c|t |)). (6-11)

Hence, it is enough to compute

〈ϕ̃t , γ
(1)
N, t ϕ̃t 〉 =

1
N
〈e−i HN tψN , a∗(ϕ̃t)a(ϕ̃t)e−i HN tψN 〉

=
1
N
〈UN, t e−i HN tψN , (N −N )UN, t e−i HN tψN 〉

= 1−
1
N
〈UN, t e−i HN tψN ,NUN, t e−i HN tψN 〉.

We define ξ = e−B(η0)UN ,0ψN ∈ F≤N
⊥ϕ . Then we have ψN =U∗N ,0eB(η0)ξ and therefore

1−〈ϕ̃t , γ
(1)
N, t ϕ̃t 〉 =

1
N
〈WN, tξ, e−B(ηt )N eB(ηt )WN, tξ〉 ≤

C
N
〈WN, tξ,NWN, tξ〉,

where we applied Lemma 3.1. By Proposition 6.1, we conclude that

1−〈ϕ̃t , γ
(1)
N, t ϕ̃t 〉 ≤ N−1 exp(c exp(c|t |)) 〈ξ, [(GN ,0−CN ,0)+C(N + 1)]ξ〉. (6-12)

In order to apply Proposition 6.1, we used here the assumption (valid in the proofs of both Theorem 1.1
and Theorem 1.2) that ϕ̃t=0 = ϕ ∈ H 4(R3).
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Recalling from (1-10) the definition aN = 1−〈ϕ, γ (1)N ϕ〉, we bound, with the above definition of ξ ,

〈ξ,N ξ〉 = 〈UN ,0ψN , eB(η0)N e−B(η0)UN ,0ψN 〉

≤ C〈UN ,0ψN ,NUN ,0ψN 〉

= C〈ψN , (N − a∗(ϕ)a(ϕ))ψN 〉

= C N (1−〈ϕ, γ (1)N ϕ〉)= C NaN .

We still have to bound the expectation of (GN ,0−CN ,0) in the state ξ . We have

GN ,0 = i∂t e−B(ηt )|t=0eB(η0)+ e−B(η0)[(i∂tUN, t)|t=0U∗N ,0+UN ,0 HN U∗N ,0]e
B(η0).

With Proposition 5.12, we find

|〈ξ, i∂t e−B(ηt )|t=0eB(η0)ξ〉| ≤ C〈ξ, (N + 1)ξ〉 ≤ C NaN +C. (6-13)

From (5-2), we obtain

〈eB(η0)ξ, (i∂tUN, t)|t=0 U∗N ,0 eB(η0)ξ〉

= −〈(i∂t ϕ̃t)|t=0, ϕ〉〈UN ,0ψN , (N −N )UN ,0ψN 〉− 2 Re〈UN ,0ψN ,
√

N −Na(q0(i∂t ϕ̃t)|t=0)UN ,0ψN 〉

= −N 〈(i∂t ϕ̃t)|t=0, ϕ〉+ N 〈(i∂t ϕ̃t)|t=0, ϕ〉(1−〈ϕ, γ
(1)
N ϕ〉)− 2N Re〈ϕ, γ (1)N q0(i∂t ϕ̃t)|t=0〉.

Combining this identity with the bound (6-13) and with the observation that, by the definition of ξ ,

〈ξ, e−B(η0)UN ,0 HN U∗N ,0eB(η0)ξ〉 = 〈ψN , HNψN 〉,

we conclude that

〈ξ, (GN ,0−CN ,0)ξ〉

≤ [〈ψN , HNψN 〉− (CN ,0+ N 〈(i∂t ϕ̃t)|t=0, ϕ〉)] − 2N Re〈ϕ, γ (1)N q0(i∂t ϕ̃t)|t=0〉+C NaN +C.

Hence, with Lemma 6.2, we get

〈ξ, (GN ,0−CN ,0)ξ〉 ≤ [〈ψN , HNψN 〉− NEGP(ϕ)]−2N Re〈ϕ, γ (1)N q0(i∂t ϕ̃t)|t=0〉+C NaN +C, (6-14)

where EGP denotes the translation-invariant Gross–Pitaevskii functional defined in (1-15).
To bound the second term on the right-hand side of the last equation, we proceed differently depending

on whether we want to show Theorem 1.1 or Theorem 1.2. To prove Theorem 1.2, we notice that

〈ϕ, γ
(1)
N q0(i∂t ϕ̃t)|t=0〉 = 〈ϕ, γ

(1)
N (i∂t ϕ̃t)|t=0〉− 〈ϕ, γ

(1)
N ϕ〉〈ϕ, (i∂t ϕ̃t)|t=0〉

= 〈ϕ, (i∂t ϕ̃t)|t=0〉(1−〈ϕ, γ
(1)
N ϕ〉)+〈ϕ, (γ (1)− |ϕ〉〈ϕ|)(i∂t ϕ̃t)|t=0〉.

With ãN = tr |γ (1)N − |ϕ〉〈ϕ||, we obtain that

|〈ϕ, γ
(1)
N q0(i∂t ϕ̃t)|t=0〉| ≤ C(aN + ãN ).

Since aN ≤ ãN , we conclude from (6-14) that

〈ξ, (GN ,0−CN ,0)ξ〉 ≤ C[NãN + Nb̃N + 1].
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Inserting in (6-12) and using (6-11), we arrive at

1−〈ϕt , γ
(1)
N ϕt 〉 ≤ C[ãN + b̃N + N−1

] exp(c exp(c|t |)).

This concludes the proof of Theorem 1.2.
To show Theorem 1.1, we use instead the fact that

i∂t ϕ̃t |t=0 =−1ϕ+ (N 3V (N · ) f`(N · ) ∗ |ϕ|2)ϕ.

Since here we assume that the initial data ϕ = φGP is the minimizer of the Gross–Pitaevskii energy
functional (1-6), it must satisfy the Euler–Lagrange equation

−1ϕ+ Vextϕ+ 8πa0|ϕ|
2ϕ = µϕ

for some µ ∈ R. We find

i∂t ϕ̃t |t=0 = µϕ− Vextϕ+ [(N 3V (N · ) f`(N · ) ∗ |ϕ|2)− 8πa0|ϕ|
2
]ϕ.

Using (4-3), the fact that the minimizer ϕ of (1-6) is continuously differentiable and vanishes at infinity,
see [Lieb et al. 2000, Theorem 2.1], we obtain

‖[(N 3V (N · ) f`(N · ) ∗ |ϕ|2)− 8πa0|ϕ|
2
]ϕ‖2 ≤ C N−1

and therefore

−2N Re〈ϕ, γ (1)N q0(i∂t ϕ̃t)|t=0〉 ≤ 2N Re〈ϕ, γ (1)N q0(Vext+ κ)ϕ〉+C

for any constant κ ∈ R. Choosing κ ≥ 0 so that Vext + κ ≥ 0 (from the assumptions, Vext is bounded
below), we find

−2N Re〈ϕ, γ (1)N q0(i∂t ϕ̃t)|t=0〉 ≤ 2N Re〈ϕ, γ (1)N (Vext+ κ)ϕ〉− 2N 〈ϕ, γ (1)N ϕ〉〈ϕ, (Vext+ κ)ϕ〉+C

≤ 2N Re〈ϕ, γ (1)N (Vext+ κ)ϕ〉− 2N 〈ϕ, (Vext+ κ)ϕ〉+C(NaN + 1).

With Cauchy–Schwarz and since 0≤ γ (1)N ≤ 1 implies that (γ (1)N )2 ≤ γ
(1)
N , we get

−2N Re〈ϕ, γ (1)N q0(i∂t ϕ̃t)|t=0〉 ≤ N 〈ϕ, γ (1)N (Vext+ κ)γ
(1)
N ϕ〉− N 〈ϕ, (Vext+ κ)ϕ〉+C(NaN + 1)

≤ N tr γ (1)N Vext− N 〈ϕ, Vextϕ〉+C(NaN + 1).

Inserting back in (6-14) we conclude that, under the assumptions of Theorem 1.1,

〈ξ, (GN ,0−CN ,0)ξ〉 ≤ [〈ψN , H trap
N ψN 〉− NE trap

GP (ϕ)] +C NaN +C ≤ C[NaN + NbN + 1].

With (6-12) and (6-11), we find now

1−〈ϕt , γ
(1)
N, tϕt 〉 ≤ C[aN + bN + N−1

] exp(c exp(c|t |)).

This concludes the proof of Theorem 1.1. �
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DIMENSIONAL CROSSOVER WITH
A CONTINUUM OF CRITICAL EXPONENTS FOR
NLS ON DOUBLY PERIODIC METRIC GRAPHS

RICCARDO ADAMI, SIMONE DOVETTA, ENRICO SERRA AND PAOLO TILLI

We investigate the existence of ground states for the focusing nonlinear Schrödinger equation on a
prototypical doubly periodic metric graph. When the nonlinearity power is below 4, ground states exist
for every value of the mass, while, for every nonlinearity power between 4 (included) and 6 (excluded),
a mark of L2-criticality arises, as ground states exist if and only if the mass exceeds a threshold value
that depends on the power. This phenomenon can be interpreted as a continuous transition from a
two-dimensional regime, for which the only critical power is 4, to a one-dimensional behavior, in which
criticality corresponds to the power 6. We show that such a dimensional crossover is rooted in the
coexistence of one-dimensional and two-dimensional Sobolev inequalities, leading to a new family of
Gagliardo–Nirenberg inequalities that account for this continuum of critical exponents.

1. Introduction

Since the first appearance of branched structures in the modeling of organic molecules [Ruedenberg and
Scherr 1953], through the development of the mathematical theory of quantum graphs [Berkolaiko and
Kuchment 2013; Post 2012], networks (or metric graphs) have provided a general and flexible tool to
describe dynamics in complex structures like systems of quantum wires, Josephson junctions, propagation
of signals through waveguides, and some related technologies. Pioneering studies about nonlinear systems
on metric graphs appeared in [Ali Mehmeti 1994; Ali Mehmeti et al. 2001], but more recently the research
on such topics has grown rapidly, and several results have been achieved on propagation of solitary waves
[Adami et al. 2011; Caudrelier 2015; Sobirov et al. 2010] and on stationary states [Sabirov et al. 2013;
Cacciapuoti et al. 2015; Noja 2014; Noja et al. 2015; Pelinovsky and Schneider 2017; Gnutzmann and
Waltner 2016].

In a series of recent works [Adami et al. 2015a; 2015b; 2016] we investigated the problem of existence
of ground states for the energy functional associated to the focusing, L2-subcritical and critical nonlinear
Schrödinger (NLS) equation

i ∂t u(t)=−u′′(t)− |u(t)|p−2u(t) (1)

on finite noncompact metric graphs, i.e., branched structures with a finite number of vertices and edges,
and at least one infinite edge (i.e., a half-line).

MSC2010: 35Q55, 35R02.
Keywords: metric graphs, Sobolev inequalities, threshold phenomena, nonlinear Schrödinger equation.
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Figure 1. The grid G.

Specifically, by ground state on a metric graph G we mean every global minimizer of the energy
functional

E p(u)=
1
2

∫
G
|u′|2 dx − 1

p

∫
G
|u|p dx (2)

in the class of H 1(G) functions with fixed L2-norm (or mass) µ > 0. The constraint is dynamically
meaningful as the mass, as well as the energy, is conserved by the NLS flow, and the problem of the
existence of ground states is particularly relevant in the physics of Bose–Einstein condensates; see, e.g.,
[Adami et al. 2015a; 2015b; 2016; 2017b, Section 1].

In this paper we extend the analysis of the existence of ground states to a prototypical doubly periodic
metric graph G, particularly relevant in the applications, for which the techniques developed in previous
works (where noncompactness was due to one or more unbounded edges) do not apply: a two-dimensional
infinite grid isometrically embedded in R2, with vertices on the lattice Z2 and edges of unit length (see
Figure 1).

Schrödinger equations on periodic metric graphs have received considerable attention in the last few
years. Linear problems have been extensively studied, and a fairly complete spectral analysis is now
available for different types of coupling conditions. We refer for instance to the early papers [Exner
1996; Exner and Gawlista 1996] treating rectangular lattices, as well as to Chapter 4 in [Berkolaiko
and Kuchment 2013] for a more up-to-date overview of several results in a general periodic setting.
Concerning the square grid we focus on, we specifically quote [Exner and Turek 2010] for some results
strictly rooted in the two-dimensional nature of the domain.

More recently, nonlinear problems have been addressed too. For instance, [Pelinovsky and Schneider
2017] considers a specific example of a structure periodic along a single direction, the so-called necklace
graph, via bifurcation techniques. From a variational point of view, the first investigation for very general
periodic graphs can be found in [Pankov 2018], where the approach is based on the Nehari method. We
notice that, for this reason, in that paper the problem of the existence of ground states with prescribed
mass cannot be dealt with.

Let us now discuss our results. We first note, roughly speaking, that macroscopically the grid G has
dimension 2, while microscopically it is of dimension 1. This peculiarity is absent in graphs with a finite
number of half-lines, where the two-dimensional scale is lacking, as well as in other two-dimensional
structures like Z2, where edges are missing and there is of course no microscopic one-dimensional structure
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[Weinstein 1999]. The presence of two scales in G results in a transition from a one-dimensional to
a two-dimensional behavior, which emerges in functional inequalities and influences the existence of
ground states. We shall refer to this phenomenon as dimensional crossover.

Before commenting further on this point, it is convenient to state our main results in a precise form.
We define, for µ > 0, the mass-constrained set

H 1
µ(G)=

{
u ∈ H 1(G) :

∫
G |u|

2 dx = µ
}

(3)

and the corresponding “ground-state energy level”

Ep(µ)= inf
u∈H1

µ(G)
E p(u), (4)

considered as a function Ep : (0,+∞)→ R∪ {−∞} of the mass µ. By a “ground states of mass µ” we
mean a function u ∈ H 1

µ(G) such that
E p(u)= Ep(µ).

When p ∈ (2, 4), ground states exist for every prescribed mass.

Theorem 1.1 (subcritical case). Assume 2< p < 4. Then for every µ > 0 there exists a ground state of
mass µ, and Ep(µ) < 0.

The picture changes as the exponent of the nonlinearity increases.

Theorem 1.2 (dimensional crossover). For every p ∈ [4, 6] there exists a critical mass µp > 0 such that:

(i) If p ∈ (4, 6) then ground states of mass µ exist if and only if µ≥ µp, and

Ep(µ)= 0 if µ≤ µp,

Ep(µ) < 0 if µ > µp.
(5)

(ii) If p = 4 then ground states of mass µ exist if µ > µ4, whereas they do not exist if µ < µ4. Moreover
(5) is valid also when p = 4.

(iii) If p = 6 then there are no ground states, regardless of the value of µ, and

E6(µ)= 0 if µ≤ µ6,

E6(µ)=−∞ if µ > µ6.
(6)

We point out that, when p = 4, the existence of ground states of mass µ= µ4 is still an open problem.
For the sake of completeness, we also mention that when p > 6 one has Ep(µ)≡−∞ for every µ, as
one can easily see by a scaling argument.

In order to interpret Theorems 1.1 and 1.2, let us recall that in Rd, for the minimization of the NLS
energy under a mass constraint, there exists a critical exponent p∗d such that

(1) if p < p∗d , for every mass µ > 0 the ground-state energy level is finite and negative, and is attained
by a ground state;

(2) if p > p∗d , for every mass µ > 0 the ground-state energy level equals −∞.
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It is well known [Cazenave 2003] that p∗d = 4/d+2 for the NLS in Rd, yielding p∗1 = 6 for R and p∗2 = 4
for R2. Furthermore, it has been proved in [Adami et al. 2015b; 2016] that for finite noncompact graphs
(i.e., graphs with finitely many edges, at least one of them being unbounded) the critical exponent is 6,
exactly as for R. Thus the exponents considered in Theorem 1.1 are subcritical both in dimension 1 and
2, which reflects into the typical subcritical flavor of the result.

In fact, the main novelty of the paper emerges in Theorem 1.2 and lies in the “splitting” of the critical
exponent p∗d induced by the twofold nature (one-/two-dimensional) of the grid. Indeed, on the grid G:

(1) p = 4 is the supremum of those exponents p such that Ep(µ) is finite and negative (and attained by
a ground state) for every µ > 0.

(2) p = 6 is the infimum of those exponents p such that Ep(µ)=−∞ for every µ > 0.

Besides, let us stress another remarkable aspect of the dimensional crossover. In Rd, as well as on
noncompact finite graphs, the critical exponent is characterized by the existence of a critical mass in the
following sense: for smaller masses every function has positive energy, while for larger masses there are
functions with negative energy (as already mentioned, on a noncompact finite graph such a critical mass
arises only when p = 6).

On the contrary, on the grid G a similar notion of critical mass (the number µp in Theorem 1.2) arises
for every p ∈ [4, 6], so that, in this respect, every exponent within this range is, in fact, critical (see
Remark 2.5). Beyond this critical mass, however, the energy is still bounded from below and a ground
state exists, as if the problem had kept track of the subcriticality of the exponent p < 6 at the microscopic
scale.

From the point of view of functional analysis, the dimensional crossover is due to the simultaneous
validity, for every function u ∈W 1,1(G), of the two inequalities

‖u‖L∞(G) ≤ ‖u′‖L1(G), ‖u‖L2(G) ≤ ‖u
′
‖L1(G). (7)

Of these, the former is typical of dimension 1, modeled on the well-known inequality

‖v‖L∞(R) ≤
1
2‖v
′
‖L1(R) for all v ∈W 1,1(R), (8)

while the latter is the formal analogue of the Sobolev inequality in R2

‖v‖L2(R2) ≤ C‖∇v‖L1(R2) for all v ∈W 1,1(R2),

and is typical of dimension 2. As discussed in Section 2, either inequality in (7) yields a particular
version of the Gagliardo–Nirenberg inequality in H 1(G) ((12) and (18) respectively). By interpolation,
one obtains the critical Gagliardo–Nirenberg inequalities∫

G
|u|p dx ≤ Kp

(∫
G
|u|2 dx

)(p−2)/2∫
G
|u′|2 dx for all u ∈ H 1(G), (9)
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which, being valid for every exponent p ∈ [4, 6], give rise to a continuum of critical exponents (see also
Remark 2.5). Indeed, using (9), the NLS energy in (2) can be estimated from below as

E p(u)≥
1
2

(
1−

2Kp

p
µ(p−2)/2

)∫
G
|u′|2 dx,

which shows that E p(u)≥ 0 for every u ∈ H 1
µ(G), as soon as

µ≤

(
p

2Kp

)2/(p−2)

=: µp.

The number in the right-hand side of this inequality is thus the critical mass µp of Theorem 1.2.

Finally we would like to point out that we have chosen the grid G to illustrate our results because it is
the simplest doubly periodic metric graph, on which computations and proofs are particularly transparent.
It should be clear however that many other doubly periodic graphs can be treated with the methods
developed in the present work. Among these, we explicitly mention the hexagonal grid, a model for
graphene.

At the core of the results stands the double periodicity of the graph, which is responsible for the
occurrence of phenomena such as the dimensional crossover. To exploit the double periodicity on a
concrete given graph one must of course alter some parts of the proofs presented in this paper (e.g.,
the proof of Theorem 2.2) to adapt them to the particular features of the graph under study. We plan
to illustrate this with the detailed study of some other particular graphs, significantly relevant for the
applications, in forthcoming papers.

2. Inequalities

In this section we establish some fundamental inequalities for functions on the grid.
For notational purposes, it is convenient to describe the grid G as isometrically embedded in R2, with

the lattice Z2 as set of vertices, and an edge of length 1 joining every pair of adjacent vertices. In this
way, it is natural to interpret G as the union of horizontal lines {Hj } and vertical lines {Vk}, which cross
at every vertex (k, j) ∈ Z2.

As on any metric graph, to deal with the energy functional (2), the natural functional framework
is given by the standard spaces L p(G) and H 1(G). With the notation for G introduced above, for the
L p norms we have

‖u‖p
L p(G) =

∑
j∈Z

‖u‖p
L p(Hj )

+

∑
k∈Z

‖u‖p
L p(Vk)

=

∑
j∈Z

∫
Hj

|u(x)|p dx +
∑
k∈Z

∫
Vk

|u(x)|p dx <∞ (10)

and

‖u‖L∞(G) = sup
j,k
{‖u‖L∞(Hj ), ‖u‖L∞(Vk)}, (11)

while

‖u‖2H1(G) = ‖u‖
2
L2(G)+‖u

′
‖

2
L2(G).
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Here, as usual, H 1(G) denotes the space of functions on G whose restriction to every horizontal and
vertical line belongs to H 1(R), and that, in addition, are continuous at every vertex of G. In Theorem 2.2
we shall also need the space W 1,1(G), similarly defined as the space of functions on G whose restriction to
every horizontal and vertical line belongs to W 1,1(R) and that, in addition, are continuous at every vertex.

Remark. In the following, symbols like ‖u‖p stand for ‖u‖L p(G). When the domain of integration is
different from G, it will always be indicated in the norm.

First we recall the standard Gagliardo–Nirenberg inequality, which (up to a multiplicative constant
C > 1 on the right-hand side) is valid on any noncompact metric graph; a proof in the general framework
can be found in [Adami et al. 2016]. Here, for the sake of completeness, we shall give a short proof
tailored to the grid G which, by the way, yields a slightly sharper estimate.

Theorem 2.1 (one-dimensional Gagliardo–Nirenberg inequality). For every p ∈ [2,∞) one has

‖u‖p ≤ ‖u‖
1/2+1/p
2 ‖u′‖1/2−1/p

2 for all u ∈ H 1(G) (12)

and, moreover,
‖u‖∞ ≤ ‖u‖

1/2
2 ‖u

′
‖

1/2
2 for all u ∈ H 1(G). (13)

Proof. Since ‖u‖p ≤ ‖u‖
1−2/p
∞ ‖u‖2/p

2 , it suffices to prove (13). On the other hand, given u ∈ H 1(G), we
have u2

∈W 1,1(Hj ) for every horizontal line Hj of G. Then, applying (8) with v = u2 on Hj yields

‖u‖2L∞(Hj )
≤

∫
Hj

|u(x)u′(x)| dx ≤ ‖u‖L2(Hj )‖u
′
‖L2(Hj ) ≤ ‖u‖L2(G)‖u

′
‖L2(G).

Since clearly this inequality remains true if we replace Hj with any vertical line Vk , (13) follows
immediately from (11). �

As already mentioned, inequalities like (12) and (13) hold for every noncompact graph. On the contrary,
the next inequality, and its consequences below, rely on the two-dimensional web structure of the grid G.

Theorem 2.2 (two-dimensional Sobolev inequality). For every u ∈W 1,1(G),

‖u‖2 ≤ 1
2‖u
′
‖1. (14)

Proof. Given u ∈W 1,1(G), we have

‖u‖22 =
∑
j∈Z

∫
Hj

|u(x)|2 dx +
∑
k∈Z

∫
Vk

|u(y)|2 dy. (15)

First observe that, for each k, using (8) we obtain∫
Vk

|u(y)|2 dy ≤ ‖u‖L∞(Vk)

∫
Vk

|u(y)| dy ≤ 1
2‖u
′
‖L1(Vk)

∫
Vk

|u(y)| dy. (16)

Then, for each j ∈ Z, consider the horizontal lines Hj and H j+1, and denote by Pj the path in G obtained
by joining together the half-line of Hj to the left of Vk , the vertical segment of Vk between Hj and H j+1

(which we denote by Ij ), and the half-line of H j+1 to the right of Vk (see Figure 2).
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Ij

H j

H j+1

Vk

Figure 2. The path Pj (thick in the picture).

Since in particular u ∈W 1,1(Pj ), and the metric graph Pj is isometric to R, we find from (8)

|u(y)| ≤ 1
2

∫
Pj

|u′(x)| dx for all y ∈ Ij

and, since Ij has length 1, integrating this inequality over Ij yields∫
Ij

|u(y)| dy ≤ 1
2

∫
Pj

|u′(x)| dx for all j ∈ Z. (17)

Now observe that
Vk =

⋃
j∈Z

Ij ,
⋃
j∈Z

Pj = Vk ∪
⋃
j∈Z

Hj ,

and moreover, up to a negligible set, the paths {Pj } ( j ∈ Z) are mutually disjoint: therefore, summing
(17) over j ∈ Z yields∫

Vk

|u(y)| dy ≤ 1
2

(∫
Vk

|u′(y)| dy+
∑

j

∫
Hj

|u′(x)| dx
)
=

1
2

(
vk +

∑
j

h j

)
having set, for brevity, vk =

∫
Vk
|u′(y)| dy and h j =

∫
Hj
|u′(x)| dx . Combining with (16), and summing

over k, one obtains ∑
k

∫
Vk

|u(y)|2 dy ≤ 1
4

∑
k

vk

(
vk +

∑
j

h j

)
.

Of course, by the symmetry of G, we also have∑
j

∫
Hj

|u(x)|2 dx ≤ 1
4

∑
j

h j

(
h j +

∑
k

vk

)
,

and summing the last two inequalities we find

‖u‖2L2(G) ≤
1
4

(∑
k

(h2
k + v

2
k )+ 2

∑
j,k

h jvk

)
≤

1
4

(∑
k

hk + vk

)2

=
1
4
‖u′‖2L1(G). �

Theorem 2.3 (two-dimensional Gagliardo–Nirenberg inequality). For every p ∈ [2,∞) one has

‖u‖p ≤ C‖u‖2/p
2 ‖u

′
‖

1−2/p
2 for all u ∈ H 1(G), (18)

where C is an absolute constant.
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Proof. Given p ∈ [2,∞), we have
‖u‖p ≤ ‖u‖1−θ2 ‖u‖

θ
p+2, (19)

where
1− θ

2
+

θ

p+ 2
=

1
p
, i.e., θ = 1−

4
p2 . (20)

Now observe that u ∈ L∞(G) by (13), and hence u1+p/2 belongs to W 1,1(G) since p ≥ 2. Therefore, we
can replace u with u1+p/2 in (14), thus obtaining

‖u‖1+p/2
p+2 ≤

p+ 2
4

∫
G
|u(x)|p/2|u′(x)| dx ≤

p+ 2
4
‖u‖p/2

p ‖u
′
‖2.

Raising to the power 2/(p+ 2) we find

‖u‖p+2 ≤ C‖u‖p/(p+2)
p ‖u′‖2/(p+2)

2 , C = sup
p≥2

(
p+ 2

4

)2/(p+2)

; (21)

one may take, e.g., C = 3
2 . Plugging this inequality into (19) gives

‖u‖p ≤ ‖u‖1−θ2 Cθ
‖u‖θp/(p+2)

p ‖u′‖2θ/(p+2)
2

and (18) follows using (20), after elementary computations. �

Corollary 2.4 (interdimensional Gagliardo–Nirenberg inequality). There exists a universal constant
C > 0 such that, for every p ∈ [2,∞),

‖u‖p ≤ C‖u‖1−α2 ‖u′‖α2 for all α ∈
[

p− 2
2p

,
p− 2

p

]
, for all u ∈ H 1(G). (22)

In particular, for every p ∈ [4, 6] there exists a constant Kp, depending only on p, such that

‖u‖p
p ≤ Kp‖u‖

p−2
2 ‖u′‖22 for all u ∈ H 1(G). (23)

Proof. Observe that (22) reduces to (12) (where C = 1) when α = (p− 2)/(2p), while it reduces to (18),
where C ≤ 3

2 by (21), when α = (p− 2)/p. Then (22) is established also for every intermediate value
of α, since the right-hand side is a convex function of α, with a constant C independent of p and α.

Finally, when p ∈ [4, 6], (23) is obtained letting α = 2/p in (22) (the condition p ∈ [4, 6] guarantees
that this choice of α is admissible). The constant Kp in (23) is the best possible (i.e., the smallest); of
course Kp ≤ C p for every p ∈ [4, 6], where C is the constant appearing in (22). �

Remark 2.5. In Rd, when dealing with the NLS energy

1
2
‖∇u‖2L2(Rd )

−
1
p
‖u‖p

L p(Rd )

in the presence of an L2 mass constraint, the relevant version of the Gagliardo–Nirenberg (G-N) inequality
is

‖u‖L p(Rd ) ≤ C‖u‖1−αL2(Rd )
‖∇u‖αL2(Rd )

, α =
d(p− 2)

2p
, (24)
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valid as soon as α ∈ [0, 1); see [Leoni 2009]. When p = 2+ 4/d, this inequality becomes critical for
the NLS energy because α = 2/p (i.e., the exponents in the inequality become as in (23)), and a critical
mass µp comes into play. Now, while in (24) this critical exponent p = 2+ 4/d is uniquely determined
by the ambient space Rd, on the grid G every p ∈ [4, 6] is critical for the NLS energy, since one can let
α = 2/p in (22) (and obtain (23)) not just for one particular p, but for every p ∈ [4, 6].

Formally, solving for d in (24), for fixed α we can interpret (22) as a G-N inequality in dimension
d = 2αp/(p − 2): we call (22) interdimensional since d ranges over [1, 2] as α varies (this is in
contrast with (24), where the exponent α is uniquely determined by p and the space dimension d). With
this interpretation, (23) (which is just (22) with α = 2/p) can be seen as a critical G-N inequality in
dimension d= 4/(p−2) so that, formally, every p∈ [4, 6] can be seen as the critical exponent p= 2+4/d ,
in a fractal scaling dimension d ∈ [1, 2].

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1.

Remark 3.1. Note that, for every µ> 0 and p < 6, the one-dimensional Gagliardo–Nirenberg inequality
(12) ensures that Ep(µ) is finite and E p is coercive on H 1

µ(G) [Adami et al. 2016].

Recalling (3) and (4), we first prove a dichotomy lemma for minimizing sequences, which is useful in
proving the existence of ground states.

Lemma 3.2 (dichotomy). Given µ> 0 and p ∈ (2, 6), let {un} ⊂ H 1
µ(G) be a minimizing sequence for E p,

i.e.,
lim

n→∞
E p(un)= Ep(µ),

and assume that un ⇀ u weakly in H 1(G) and pointwise a.e. on G. If

m := µ−‖u‖22 ∈ [0, µ] (25)

denotes the loss of mass in the limit, then either m = 0 or m = µ.

Proof. We assume that 0< m <µ and seek a contradiction. According to the Brezis–Lieb lemma [1983],
we can write

E p(un)= E p(un − u)+ E p(u)+ o(1) as n→∞, (26)

and, since un ⇀ u in L2(G),

‖un − u‖22 = ‖un‖
2
2+‖u‖

2
2− 2〈un, u〉2→ µ−‖u‖22 = m (27)

as n→∞. Now, for n large enough,

Ep(µ)≤ E p

( √
µ

‖un − u‖2
(un − u)

)
=

1
2

µ

‖un − u‖22
‖u′n − u′‖22−

1
p

µp/2

‖un − u‖p
2
‖un − u‖p

p <
µ

‖un − u‖22
E p(un − u),
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since ‖un − u‖p 6= 0 and ‖un − u‖22 < µ. Thus,

E p(un − u) >
‖un − u‖22

µ
Ep(µ),

and by (27)
lim inf

n
E p(un − u)≥

m
µ

Ep(µ).

Thus, taking the liminf in (26) we find

Ep(µ)≥
m
µ

Ep(µ)+ E p(u). (28)

Similarly, since u 6≡ 0 we also have

Ep(µ)≤ E p

( √
µ

√
µ−m

u
)
≤

1
2

µ

µ−m
‖u′‖22−

1
p

(
µ

µ−m

)p/2

‖u‖p
p <

µ

µ−m
E p(u) (29)

and, as Ep(µ) >−∞ by Remark 3.1, from (28) we finally obtain

Ep(µ) >
m
µ

Ep(µ)+
µ−m
µ

Ep(µ)= Ep(µ),

a contradiction. �

Proposition 3.3. Assume p < 6 and Ep(µ) is strictly negative. Then there exists u ∈ H 1
µ(G) such that

E p(u)= Ep(µ).

Proof. Let {un} ⊂ H 1
µ(G) be a minimizing sequence for E p. Since p < 6, Remark 3.1 yields that

Ep(µ) >−∞ and un is bounded in H 1(G), and by translating each un (exploiting the periodicity of G)
we can also assume that un attains its L∞-norm on a compact set K ⊂ G independent of n. Therefore, up
to subsequences, un converges weakly in H 1(G), and strongly in L∞loc(G), to some function u ∈ H 1(G).
Setting m := µ−‖u‖22, from Lemma 3.2 one sees that either m = 0 or m = µ. If m = µ then u ≡ 0, but
in this case un→ 0 in L∞(G), since in particular, un→ u ≡ 0 uniformly on K. Therefore we would have

E p(un)≥−
1
p
‖un‖

p−2
∞

∫
G
|un|

2 dx =−
µ

p
‖un‖

p−2
∞
→ 0,

contradicting the fact that Ep(µ) < 0.
Thus it must be that m = 0, so that un → u strongly in L2(G) and therefore u ∈ H 1

µ(G). Moreover,
since un is bounded in L∞(G), un→ u strongly also in L p(G). Then

Ep(µ)≤ E p(u)≤ lim inf
n

E p(un)= Ep(µ)

by weak lower semicontinuity, and the proof is complete. �

Remark 3.4. It is interesting to compare Proposition 3.3 with Theorem 3.3 in [Adami et al. 2016].
According to that result, in a finite noncompact graph the energy threshold under which the existence of a
ground state of a given mass is guaranteed equals the energy of the soliton on R with the same mass. On
the contrary, on the grid G the absence of half-lines and the periodicity pushes the energy threshold up
to zero. This makes some proofs easier, since finding a function with negative energy is far easier than
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finding a function whose energy lies below a particular negative number. In fact, this task is immediately
accomplished when p < 4, as we now show.

Proof of Theorem 1.1. In view of Proposition 3.3, it suffices to construct a function in H 1
µ(G) with negative

energy. Given µ > 0, for ε > 0 let

κε =

(
εµ

2
1− e−2ε

1+ e−2ε

)1/2

(30)

and consider the function of two variables

ϕε(x, y)= κεe−ε(|x |+|y|), (x, y) ∈ R2.

Now, as described in Section 2, we can consider G isometrically embedded in R2, with its vertices on
the lattice Z2, and we can define uε : G→ R as the restriction of ϕε to the grid G. Observe that, on every
horizontal line Hj of G, u takes the form κεe−ε(|x |+| j |), and a similar expression holds on vertical lines.
Since for every λ > 0 ∫

R

e−λε|x | dx =
2
λε

and
∑
j∈Z

e−λε| j | =
1+ e−λε

1− e−λε
,

recalling (30) we obtain∫
G
|uε|2 dx = 2

∑
j∈Z

∫
Hj

|uε|2 dx = 2κ2
ε

∑
j∈Z

e−2ε| j |
∫

R

e−2ε|x | dx = µ

and, since |u′ε(x)| = ε|uε(x)|, ∫
G
|u′ε|

2 dx = ε2µ.

This shows in particular that uε ∈ H 1
µ(G). Similarly, observing that κε ∼ ε

√
µ/2 as ε→ 0, we obtain the

expansion ∫
G
|uε|p dx = 2

∑
j∈Z

∫
Hj

|uε|p dx = 2κ p
ε

2
εp

1+ e−εp

1− e−εp ∼ Cµp/2ε p−2 as ε→ 0,

where C depends only on p. Therefore, as ε→ 0,

E p(uε)∼
1
2
ε2µ−

1
p

Cµp/2ε p−2, (31)

so that E p(uε) < 0 (for ε small enough) when p < 4. This proves that, when p < 4, Ep(µ) < 0 for every
µ > 0. Moreover, since in particular p < 6, Remark 3.1 guarantees that Ep(µ) is finite. The result then
follows from Proposition 3.3. �

4. Proof of Theorem 1.2

In the following we assume that the constants Kp in the Gagliardo–Nirenberg inequality (23) are the
smallest possible. In other words, for p ∈ [4, 6] we let

Kp = sup
u∈H1(G)

u 6≡0

Q p(u), where Q p(u)=
‖u‖p

p

‖u‖p−2
2 ‖u′‖22

. (32)
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The critical masses µp mentioned in Theorem 1.2 are defined in terms of the constants Kp as follows.

Definition 4.1. For every p ∈ [4, 6] we define the critical mass µp as the positive number

µp =

(
p

2Kp

)2/(p−2)

. (33)

This definition is natural due to the identity

E p(u)=
1
2
‖u′‖22

(
1− 2

p
Q p(u)µ(p−2)/2

)
for all u ∈ H 1

µ(G), (34)

which, using Q p(u)≤ Kp and (33), leads to the lower bound

E p(u)≥
1
2
‖u′‖22

(
1−

(
µ

µp

)(p−2)/2)
for all u ∈ H 1

µ(G), (35)

which will be widely used in the sequel.

Remark 4.2. On the real line R, when p = 6 the ground-state level

ER
6 (µ)= inf

{1
2‖w

′
‖

2
L2(R)
−

1
6‖w‖

6
L6(R)

∣∣ w ∈ H 1
µ(R)

}
, µ > 0, (36)

is attained by a ground state if and only if µ= µR
6 , where the number

µR
6 =

π
√

3
2

(37)

is the critical mass of the real line; see [Adami et al. 2017a]. Up to sign and translations, the ground states
(of mass µR

6 ) are the soliton ϕ(x) = sech(2x/
√

3)1/2 together with all its mass-preserving rescalings
ϕλ(x)=

√
λϕ(λx) (λ > 0). There holds

ER
6 (µ)= 0 if µ≤ µR

6 ,

ER
6 (µ)=−∞ if µ < µR

6

(38)

so that in particular ground states have zero energy. Another related quantity is the optimal constant in
the Gagliardo–Nirenberg inequality on R, i.e., the number

K R
6 = sup

w∈H1(R)
w 6≡0

‖w‖6L6(R)

‖w‖4L2(R)
‖w′‖2L2(R)

=
4
π2 (39)

(note that µR
6 = (3/K R

6 )
1/2, which is formally consistent with (33) when p = 6).

The following proposition gives a complete picture of the problem on the grid G when p = 6 and,
moreover, provides the exact values of µ6 and K6.

Proposition 4.3. There hold µ6 = µ
R
6 = π

√
3/2 and K6 = K R

6 = 4/π2. Moreover there holds E6(µ)=

ER
6 (µ) for every µ > 0, but the infimum

E6(µ)= inf
{ 1

2‖u
′
‖

2
L2(G)−

1
6‖u‖

6
L6(G)

∣∣ u ∈ H 1
µ(G)

}
, µ > 0, (40)

is never attained.
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Proof. By a density argument, the infimum in (36) can be restricted to functions w ∈ H 1
µ(R) having

compact support. In fact, by a mass-preserving transformation w(x) 7→ w(x/ε2)/ε, one can restrict to
functions supported in the interval I =

[
−

1
2 ,

1
2

]
. Then, by interpreting this interval as one of the edges

of the grid G, any function w ∈ H 1
µ(R) supported in I can be embedded in H 1

µ(G) by setting w ≡ 0 on
G \ I , thus providing an admissible function in (40). This proves that E6(µ) ≤ ER

6 (µ) for every µ > 0.
Similarly, starting from the supremum in (39), by the same argument one proves that K6 ≥ K R

6 .
To prove the opposite inequalities we argue as follows. Given a nonnegative function u ∈ H 1(G)

(u 6≡ 0), let x0 ∈ G be a point where u achieves its absolute maximum ‖u‖∞, and let P be any path in G
such that x0 ∈ P and P is isometric to the real line R (a natural choice for P is the horizontal/vertical
line of G that contains x0). Since u(x0)= ‖u‖∞ and u(x)→ 0 as x→±∞ along P (in both directions
away from x0), the continuity of u guarantees that N (t)≥ 2 for every t ∈ (0, ‖u‖∞), where

N (t)= #{x ∈ G | u(x)= t} (41)

counts the number of preimages in G. Then, if û ∈ H 1(R) denotes the symmetric rearrangement of u
on R, applying Proposition 3.1 of [Adami et al. 2015b] we obtain

‖(û)′‖L2(R) ≤ ‖u
′
‖L2(G), ‖û‖Lr (R) = ‖u‖Lr (G) for all r (42)

so that, by the definition of K R
6 in (39), we can estimate

‖u‖6L6(G) = ‖û‖
6
L6(R)
≤ K R

6 ‖û‖
4
L2(R)
‖(û)′‖2L2(R)

≤ K R
6 ‖u‖

4
L2(G)‖u

′
‖

2
L2(G).

Therefore, K6 ≤ K R
6 by (32). Similarly, for the NLS energy we have

1
2‖(û)

′
‖

2
L2(R)
−

1
6‖û‖

6
L6(R)
≤

1
2‖u
′
‖

2
L2(G)−

1
6‖u‖

6
L6(G) (43)

and, since û ∈ H 1
µ(R) whenever u ∈ H 1

µ(G), this proves that ER
6 (µ)≤ E6(µ) for every µ > 0.

Now assume that, for some µ, a function u ∈ H 1
µ(G) achieves the infimum E6(µ) in (40). Then, since

ER
6 (µ)= E6(µ), (43) shows that, necessarily (i) û achieves the infimum ER

6 (µ) in (36); (ii) equality must
occur in (43), i.e., in (42). Now, condition (i) gives that û is a soliton on R (necessarily of mass µR

6 ),
while (ii) implies, see Proposition 3.1 of [Adami et al. 2015b], that N (t) = 2 in (41), i.e., that u−1(t)
has exactly two elements for almost every t ∈ (0, ‖u‖∞); then, since every vertex of G has degree 4, u
must vanish at every vertex and is necessarily supported in a single edge of G. So û has compact support
too, which is incompatible with û being a soliton. This contradiction shows the infimum in (40) is not
achieved.

Finally, (33) with p = 6 yields µ6 =
√

3/K6 = π
√

3/2; hence µ6 = µ
R
6 by (37). �

Proof of Theorem 1.2. The case where p = 6 has already been proved through Proposition 4.3. The rest
of the proof is divided into three parts.

Computation of Ep(µ) when p ∈ [4, 6). First observe that, in the proof of Theorem 1.1, no restriction on
p was used to construct uε and obtain (31), which is therefore valid also when p ≥ 4. As a consequence,
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in this case, letting ε→ 0 in (31) we obtain

Ep(µ)≤ lim inf
ε→0

E p(uε)≤ 0 for all p ≥ 4, for all µ > 0. (44)

Moreover, (35) shows that Ep(µ)≥ 0 when µ≤ µp. This, combined with (44), proves the first part of
(5), also when p = 4.

Now fix a mass µ > µp and a number ε > 0. Since the quotient Q p(u) in (32) is unaltered if u is
replaced with λu, there exists u ∈ H 1

µ(G) such that

Q p(u)=
‖u‖p

p

µ(p−2)/2‖u′‖22
≥ Kp − ε. (45)

Plugging this into (34), and then using (33), we can estimate

E p(u)≤
1
2
‖u′‖22

(
1− 2

p
(Kp − ε)µ

(p−2)/2
)
=

1
2
‖u′‖22

(
1−

(
µ

µp

)(p−2)/2

+
2ε
p
µ(p−2)/2

)
.

Since µ > µp, this quantity is strictly negative if ε is small enough. Thus, for µ > µp, Ep(µ) < 0.
Moreover, when p < 6, Ep(µ) > −∞ by Remark 3.1. This proves the second part of (5), also when
p = 4.

Ground states when p ∈ [4, 6) and µ 6= µp. When µ>µp, (5) (valid also when p = 4) shows that Ep(µ)

is finite and negative; hence a ground state exists by Proposition 3.3. When µ < µp, Ep(µ)= 0 by (5),
but (35) reveals that E p(u) > 0 for every u ∈ H 1

µ(G). Therefore, no ground state exists in this case.

Ground states when p ∈ (4, 6) and µ = µp. Since by (5) Ep(µp) = 0, we can no longer rely on
Proposition 3.3, and another argument is needed to show that Ep(µp) is in fact achieved.

Arguing as for (45), let un ∈ H 1
µp
(G) be a sequence of functions such that

lim
n

Q p(un)= lim
n

‖un‖
p
p

µ
(p−2)/2
p ‖u′n‖

2
2

= Kp. (46)

We shall bound Q p(un) in two different ways. First, from the Gagliardo–Nirenberg inequality (12) we
obtain

Q p(un)≤
‖un‖

p/2+1
2 ‖u′n‖

p/2−1
2

µ
(p−2)/2
p ‖u′n‖

2
2

=
µ
(6−p)/4
p

‖u′n‖
(6−p)/2
2

.

Secondly, interpolating and then using (23) with p = 4, we obtain

Q p(un)≤
‖un‖

p−4
∞ ‖un‖

4
4

µ
(p−2)/2
p ‖u′n‖

2
2

≤ ‖un‖
p−4
∞

K4‖un‖
2
2‖u
′
n‖

2
2

µ
(p−2)/2
p ‖u′n‖

2
2

= ‖un‖
p−4
∞

K4

µ
(p−4)/2
p

.

Recalling (46), from these two bounds we infer that ‖u′n‖2 ≤ C (compactness) and ‖un‖∞ ≥ C−1

(nondegeneracy) for some constant C > 0 independent of n. Thus {un} is bounded in H 1(G) and, up
to translations, we can also assume that each un achieves its L∞ norm on some compact set K ⊂ G
independent of n. Then, up to subsequences, un ⇀ u in H 1(G) for some u ∈ H 1(G), and un → u in
L∞loc(G); in particular, un→ u uniformly on K and, since ‖un‖L∞(K) > C−1, u is not identically zero.
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Finally, writing (34) with u = un and µ= µp, since ‖u′n‖2 ≤ C we find

|E p(un)| ≤
C2

2

∣∣∣∣1− 2
p

Q p(un)µ
(p−2)/2
p

∣∣∣∣= C2

2

∣∣∣∣1− Q p(un)

Kp

∣∣∣∣,
having used (33). Therefore, E p(un)→ 0 by (46) and, since Ep(µp)= 0, un is a minimizing sequence
for E p, so that Lemma 3.2 applies: since we already know that u is not identically zero, we obtain that
‖u‖22 = µp, i.e., u ∈ H 1

µp
(G). But then u is the required minimizer: indeed, un→ u strongly in L2(G)

hence also in L p(G), and by weak lower semicontinuity we obtain

Ep(µp)≤ E p(u)≤ lim inf
n

E p(un)= Ep(µp). �
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ALEXANDROV’S THEOREM REVISITED

MATIAS GONZALO DELGADINO AND FRANCESCO MAGGI

We show that among sets of finite perimeter balls are the only volume-constrained critical points of the
perimeter functional.

1. Introduction

1.1. Sets of finite perimeter and the isoperimetric problem. The Euclidean isoperimetric theorem is
probably the most basic result in the calculus of variations. There are many different proofs of the
isoperimetry of balls in different classes of competitors, thus motivating the question: which is the natural
competition class in which the isoperimetric theorem can be formulated? From the perspective of the
modern calculus of variations, the answer is found by looking at the relaxation of the perimeter functional.
Following the seminal work of De Giorgi [1954; 1955] we consider as particularly natural his formulation
of the Euclidean isoperimetric problem in the class of sets of finite perimeter. The characterization of
Euclidean balls as the only isoperimetric sets among sets of finite perimeter was achieved in [De Giorgi
1958]. By using the compactness properties of sets of finite perimeter, De Giorgi shows the existence of
global minimizers (isoperimetric sets). Next, he shows that distributional perimeter is decreased under
Steiner symmetrization, thus deducing that Steiner symmetrization applied to an isoperimetric set leads to
an equality case in the Steiner perimeter inequality. He finally derives some necessary conditions for being
an equality case in the Steiner perimeter inequality, in order to deduce the sphericity of isoperimetric sets.

Despite the intimate connection between sets of finite perimeter and the isoperimetric problem, a
characterization of balls as the only critical points in the isoperimetric problem among sets of finite
perimeter is currently missing. The main result of this paper is showing the validity of this characterization.

The problem is already subtle in the case of local minimizers. By a local minimizer we mean a set of
finite perimeter which minimizes perimeter among variations compactly supported in a fixed neighborhood
of its own boundary. In particular, local minimality does not allow for perimeter comparison with sets
obtained by symmetrization, thus ruling out the use of De Giorgi’s original argument. In Euclidean
spaces of dimension less than or equal to 7 the problem can be settled by the means of the regularity
theory for local perimeter minimizers. In fact, in these dimensions any local minimizer is a bounded
smooth set with constant mean curvature. One can then combine the strong maximum principle with the
geometric construction known as the moving planes method (Alexandrov’s theorem [1962]) to deduce
the sphericity of the boundary. But this strategy fails in dimension 8 or larger, as boundaries of local

MSC2010: 35J93, 49Q15, 49Q20, 53C21, 53C45.
Keywords: constant mean curvature, geometric measure theory, isoperimetric problem, sets of finite perimeter, varifolds, mean

curvature flow.
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perimeter minimizers could have, in principle, singular points, where local graphicality fails [Simons
1968]. Actually, it has been recently shown that local volume-constrained perimeter minimizers in
nonconvex perturbations of the unit ball may indeed have singularities [Sternberg and Zumbrun 2018].

The problem is open in every dimension for critical points, that is, sets of finite perimeter and finite
volume such that the first variation of perimeter under volume-fixing flows vanishes. These sets have
constant mean curvature in a very natural (distributional) sense. However, at variance with the case
of local minimizers, there seems to be no obvious way, even in low dimensions, to exploit regularity
theorems and the moving planes method to conclude their sphericity.

Here we approach this problem by combining regularity theorems and maximum principles with
various geometric constructions inspired by the proof of Alexandrov’s theorem in [Montiel and Ros 1991].
We thus extend De Giorgi’s isoperimetric theorem from the case of global minimizers to that of critical
points in the isoperimetric problem.

Theorem 1. Among sets of finite perimeter and finite volume, finite unions of balls with equal radii are
the unique critical points of the Euclidean isoperimetric problem.

Remark. Theorem 1 is stated in terms of finite unions of balls. By assuming indecomposability (the
measure-theoretic analogue of connectedness) of our critical points, we can change “finite unions of
balls” to “a single ball”. However, it seems natural to consider finite unions of mutually tangent balls as
genuinely distinct critical points of the perimeter functional. Indeed, as proved in [Ciraolo and Maggi
2017; Delgadino et al. 2018] (and as it has been known for a much longer time in the case of parametrized
surfaces [Brezis and Coron 1984; Struwe 1984]), finite unions of mutually tangent balls are the unique
limits of sequences of bounded connected smooth sets with bounded perimeters and scalar mean curvatures
which converge to a constant. In short, finite unions of mutually tangent balls are the limit points of
Palais–Smale sequences for the isoperimetric problem among connected open sets with smooth boundary.

Remark. Wente’s torus [1986] provides an example of an integer rectifiable varifold with multiplicity 1
in R3 which has constant distributional mean curvature and is not a sphere. Clearly, Wente’s torus is not
the boundary of a set of finite perimeter. From this point of view, Theorem 1 seems to identify the most
general family of surfaces such that constant distributional mean curvature implies sphericity.

While uniqueness and symmetry results for global minimizers can be obtained by a wealth of methods
(symmetrization, mass transportation, etc.), the methods employed in the case of critical points/solutions
to geometric PDEs, that we are aware of, require a sufficient degree of smoothness (e.g., the classical
Alexandrov theorem [1962]). Addressing this kind of issue without assuming smoothness seems a novel
aspect of Theorem 1. This point could be particularly useful in proving convergence of geometric flows
to unions of balls. Indeed, without strong assumptions like convexity or star-shapedness, global-in-
time existence results for geometric flows hold only in a weak (either distributional or viscous) sense.
Corollary 2 below should be useful in this context. To better illustrate this point, and to state the corollary
itself, we introduce some terminology. In Theorem 1 we consider Borel sets � in Rn+1 with the following
properties:
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(i) Finite perimeter: There exists a Borel set ∂∗� which is covered, up to an Hn-negligible set, by
countably many graphs of C1 functions from Rn to Rn+1, and a Borel vector field ν� : ∂∗�→ Sn such
that a generalized version of the divergence theorem holds:∫

�

div X =
∫
∂∗�

X · ν� dHn for all X ∈ C1
c (R

n+1
;Rn+1). (1-1)

Here Hn denotes the n-dimensional Hausdorff measure on Rn+1.

(ii) Constant distributional mean curvature: There exists λ ∈ R such that∫
∂∗�

div∂
∗� X dHn

= λ

∫
∂∗�

X · ν� dHn for all X ∈ C1
c (R

n+1
;Rn+1). (1-2)

Here div∂
∗� X = div X − ν� · (∇X)[ν�] is the tangential divergence of X along ∂∗�. Condition (1-2) is

equivalent to asking that � be a critical point in the Euclidean isoperimetric problem, that is,

d
dt

∣∣∣
t=0

P( ft(�))= 0 (1-3)

whenever { ft }|t |<1 is a volume-preserving variation of �. Namely, each ft is a diffeomorphism with
ft = Id outside of a compact set, f0 ≡ Id, and | ft(�)| = |�| for every |t | < 1, where |�| denotes
the Lebesgue measure, or volume, of �. When � is an open bounded set with C2-boundary, as in
Alexandrov’s theorem, one simply has ∂∗�= ∂� and (1-3) is equivalent to asking that ∂� have constant
mean curvature.

With this terminology in place, we can state the following corollary of Theorem 1.

Corollary 2. If {�j } j∈N and � are sets of finite perimeter in Rn+1 such that

lim
j→∞
|�j1�| = 0, lim

j→∞
P(�j )= P(�), (1-4)

and if the distributional mean curvatures of the �j converge to a constant λ ∈ R, i.e.,

lim
j→∞

∫
∂∗�j

(div∂
∗�j X − λX · ν�j ) dHn

= 0 for all X ∈ C1
c (R

n+1
;Rn+1), (1-5)

then λ= n P(�)/(n+ 1)|�| and � is a finite union of balls of radius n/λ.

Remark. Notice that (1-5) holds whenever each�j has distributional mean curvature H�j ∈ L p(Hnx∂∗�j )

for some p ≥ 1 (see (2-7) and (2-16) below) and

lim
j→∞

∫
∂∗�j

|H�j − λ|
p dHn

= 0. (1-6)

Remark. Global-in-time weak solutions of the volume-preserving mean curvature flow have been con-
structed in [Mugnai et al. 2016] following the method proposed by Almgren, Taylor and Wang [Almgren
et al. 1993] and Luckhaus and Sturzenhecker [1995]. Considering [Mugnai et al. 2016, Theorem 2.3.2] and
(1-5), it seems reasonable to conjecture that, for a large class of initial data and along time subsequences
tj →∞, the evolution {�(t) : t ≥ 0} should converge to finite union of balls. This is indeed the case,
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with a single ball as the limit for t→∞, when the initial data is uniformly smooth and convex, as proved
in a classical theorem of [Huisken 1987]. As geometric evolutions unavoidably produce singularities,
Theorem 1 should turn out to be a fundamental ingredient in attacking such questions.

1.2. The Montiel–Ros argument. Our starting point is the beautiful proof of Alexandrov’s theorem in
[Montiel and Ros 1991], which we now recall. Assume that � is a bounded open set with smooth
boundary and positive mean curvature H� with respect to its outer unit normal ν�. Denote by {κi }

n
i=1 the

principal curvatures of ∂�, indexed in increasing order so that κn ≥ H�/n > 0, set u(y)= dist(y, ∂�)
for each y ∈�, and define

Z =
{
(x, t) ∈ ∂�×R : 0< t ≤ 1

κn(x)

}
, ζ(x, t)= x − tν�(x), (x, t) ∈ Z . (1-7)

Let us denote by Bρ(x) the Euclidean ball in Rn+1 with center at x and radius ρ. If y ∈�, then Bu(y)(y)
touches � from inside at a point x ∈ ∂�, where κn(x)≤ 1/u(y), i.e., u(y)≤ 1/κn(x). In particular,

�⊂ ζ(Z) (1-8)

and by the area formula, with J Zζ denoting the tangential Jacobian of ζ along Z ,

|�| ≤ |ζ(Z)| ≤
∫
ζ(Z)

H0(ζ−1(y)) dy =
∫

Z
J Zζ dHn+1

=

∫
∂�

dHn
x

∫ 1/κn(x)

0

n∏
i=1

(1− tκi (x)) dt.

By the arithmetic-geometric mean inequality and by κn ≥ H�/n,

|�| ≤

∫
∂�

dHn
x

∫ 1/κn(x)

0

(
1
n

n∑
i=1

(1− tκi (x))
)n

dt

≤

∫
∂�

dHn
x

∫ n/H�(x)

0

(
1− t

H�(x)
n

)n

dt =
n

n+ 1

∫
∂�

dHn

H�
, (1-9)

so that we have proved the Heintze–Karcher inequality

|�| ≤
n

n+ 1

∫
∂�

dHn

H�
. (1-10)

If H� is constantly equal to some λ ∈ R, then, by combining the divergence theorems (1-1) and (1-2)
(see (2-24) below), we find λ= nHn(∂�)/(n+ 1)|�|. Hence equality holds throughout the argument,
∂� is umbilical, and thus is a sphere. In this way the Montiel–Ros argument provides a very effective
proof of Alexandrov’s theorem.

1.3. The Montiel–Ros argument revisited. As the Montiel–Ros argument heavily relies on the smooth-
ness of ∂�, it does not seem obvious how to adapt it to the case when � is a set with finite volume, finite
perimeter and constant distributional mean curvature.

From the point of view of regularity of ∂�, the starting point is given by the regularity theory of [Allard
1972]; see [Simon 1983; De Lellis 2008]. Up to modifying � on a set of volume zero, we can assume that
� is open and that its topological boundary ∂� can be split into a closed subset 6 with Hn(6)= 0, and
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a relatively open subset ∂∗�= ∂�\6 which is locally an analytic constant mean curvature hypersurface,
characterized by the property that for every x ∈ ∂�

x ∈ ∂∗� if and only if lim
ρ→0+

Hn(Bρ(x)∩ ∂�)
ρn = ωn,

where ωn is the volume of the unit ball in Rn. It is thus natural to redefine Z by replacing ∂� with ∂∗�
in (1-7); i.e.,

Z =
{
(x, t) ∈ ∂∗�×R : 0< t ≤ 1

κn(x)

}
, (1-11)

where it is still true that the largest principal curvature κn is positive along ∂∗�.
Given this choice of Z , in order to obtain (1-8) we would need to show that, for every y ∈�, Bu(y)(y)

touches ∂� at a point x ∈ ∂∗�. This is not obvious as we just know that 6 = ∂� \ ∂∗� is Hn-negligible.
Actually, this is false for an arbitrary point y ∈ �: this is the case when � is a union of two mutually
tangent balls, x is a tangency point between two balls, and y is any point between x and the center of
one of the balls. A cheap argument (see Lemma 3) shows that at each touching point x , ∂� blows up a
hyperplane with integer multiplicity possibly larger than 1. So, near a touching point x , ∂� consists of
finitely many sheets that are mutually tangent at x . The union of these sheets has constant mean curvature
in the distributional sense defined by (1-2), although it is not immediate to extract information on the
mean curvature of each separate sheet. A deep result of [Schätzle 2004] implies that the lower and upper
sheets (with respect to any given direction) satisfy a measure-theoretic version of the strong maximum
principle. This is crucial information, which is delicate to exploit, but fundamental to our argument.

We now describe our argument by referring to the main steps of the proof of Theorem 1, which is
contained in detail in Section 3. We start by identifying a large subset�? of good points of�, meaning that

|�? \ ζ(Z)| = 0, |� \�?| = 0. (1-12)

In other words, the projection of almost every point in �? onto ∂� is contained in ∂∗�, and �? is
equivalent to �. The definition of �? is as follows. First, for every s > 0, we set

�s = {y ∈� : u(y) > s}, ∂�s = {y ∈� : u(y)= s}. (1-13)

Clearly �s satisfies an exterior ball condition of radius s at each point of ∂�s , but otherwise �s is just a
set of finite perimeter (for a.e. s > 0). We can also obtain an interior ball condition, restricting ourselves
to the following subset. Setting t > s > 0, we define

0t
s =

{
y ∈ ∂�s : y =

(
1− s

t

)
x + s

t
z for some z ∈ ∂�t , x ∈ ∂�

}
. (1-14)

Notice that 0t
s is just a compact subset of ∂�s , which could be very porous inside ∂�s . Some technical

effort (see Step 1) is put into showing that 0t
s can be covered by countably many C1,1-images of Rn

into Rn+1, and that ∇u is tangentially differentiable along 0t
s (with bounds on the tangential derivatives

corresponding to the exterior/interior ball conditions). Once these technical aspects are settled, we are
allowed to use Id− r∇u to change variables between 0t

s and 0t
s−r and we can prove that |� \�?| = 0,
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where �? is defined by

0+s =
⋃
t>s

0t
s, �? =

⋃
s>0

0+s . (1-15)

This is done in Step 2 of the proof.
Showing that |�? \ζ(Z)| = 0, see Steps 3 and 4, is considerably more delicate. We have to exclude that

the points in a given 0t
s that are projected into the singular set 6 = ∂� \ ∂∗� have positive Hn-measure;

in other words, we want

Hn((Id− s∇u)−1(6)∩0t
s)= 0.

This may seem obvious, as Id−s∇u is almost injective on 0t
s (see (3-43)) and it is Lipschitz on each piece

of a countable decomposition of 0t
s (see (3-16)), while at the same time Hn(6)= 0. However we cannot

derive a straightforward contradiction from the area formula, as the tangential Jacobian of Id− s∇u along
0t

s may be zero Hn-a.e. In fact, this is the information that we obtain from the area formula; namely,
the least principal curvature of 0t

s is equal to −1/s along points in (Id− s∇u)−1(6)∩0t
s . Heuristically,

this curvature for 0t
s can only be obtained when ∂� has a inward corner, which is ruled out by absolute

continuity of the mean curvature. Following this guiding example, we change variable to show that the
least principal curvature of 0t

s−r at corresponding points is thus as negative as we wish. This indicates
that ∂�s−r has negative mean curvature on a set of positive Hn-measure for any r close enough to s.
By the almost-everywhere second-order differentiability of u, swiping r over an interval we can find a
paraboloid with negative mean curvature, locally contained inside ∂�s−r . By translating this object until
it touches ∂� (at 6) we can apply Schätzle’s maximum principle and derive a contradiction.

As pointed out to us by a referee, our argument up to this point shares some similarities with the strategy
adopted by Almgren [1986] in proving the isoperimetric inequality in higher codimension. Almgren’s goal
in that paper is showing that an upper bound on the length of the mean curvature vector implies a lower
bound on the area, which is saturated by spheres. His arguments are also based on a viscosity approach,
where sliding constructions and the maximum principle are combined to infer regularity properties. The
referee’s insight is that Almgren’s argument could be adapted to our setting by updating some technical
aspects along the lines of the recent work [Santilli 2017], or, better said, of a possible generalization of
that paper to the bounded mean curvature case. This approach could provide a proof of (1-12) independent
of Schätzle’s maximum principle.

Having proved (1-12), we are ready to argue as Montiel and Ros. We thus find, from the equality case
in their argument, that

|ζ(Z) \�| = 0, (1-16)

H0(ζ−1(y))= 1, for a.e. y ∈�, (1-17)

κi (x)=
H�
n

for every x ∈ ∂∗�, i = 1, . . . , n. (1-18)

Condition (1-18) implies that ∂∗� is umbilical, in addition to having constant mean curvature. In particular,
∂∗� consists of at most countably many open pieces of spheres with same curvature. Should these pieces
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be finitely many, one could conclude from the distributional constant mean curvature condition, in a
rather direct way, that each piece is equal to a complete sphere. But as the number of the pieces could
indeed be infinite, the pieces may have smaller and smaller areas and combine themselves in particular
ways to achieve constant distributional mean curvature, creating at the same time a large singular set
∂� \ ∂∗�. To rule out this possibility, we exploit the information contained in (1-16) and (1-17) through
a geometric argument. In this last step, we make once again use of Schätzle’s strong maximum principle;
see in particular (3-56).

We conclude with two remarks. First, as a by-product of this analysis, we obtain a Heintze–Karcher
inequality for sets of finite perimeter which are mean convex in a viscous sense; see Theorem 8 below. This
result is actually not needed to prove Theorem 1, but it is included as it may be considered of independent
interest. Second, as recently shown by Brendle [2013], the Montiel–Ros approach to Alexandrov’s theorem
is quite flexible, as it allows one to show that constant mean curvature implies umbilicality in many warped
product manifolds of physical and geometric interest. The methods of this paper should be naturally
adaptable to these more general contexts. In this direction, in a preliminary version of this manuscript
[Delgadino and Maggi 2017, Section 5], we prove that Wulff shapes are the only volume-constrained
local minimizers of smooth uniformly elliptic surface tension energies. Of course the assumption of local
minimality is considerably stronger than criticality.

1.4. Organization of the paper. The paper is organized as follows. In Section 2 we gather some back-
ground material from geometric measure theory. In Section 3 we prove Theorem 1 and Corollary 2. The
generalized Heintze–Karcher inequality for sets of finite perimeter is stated and proved in Section 4.

2. Background material from geometric measure theory

In this section we review some preliminaries from the theory of rectifiable sets (Section 2.1), rectifiable
varifolds (Section 2.2) and sets of finite perimeter (Section 2.3). We refer to [Simon 1983; Ambrosio et al.
2000; Maggi 2012; Evans and Gariepy 1992] for detailed accounts. Finally, in Section 2.4, we discuss
some basic properties of volume-constrained critical points of the perimeter functional.

2.1. Rectifiable sets. Denote by Hn the Hausdorff measure on Rn+1. A Borel set M ⊂ Rn+1 is a locally
Hn-rectifiable set if M can be covered, up to a Hn-negligible set, by countably many Lipschitz images
of Rn into Rn+1, and if Hn xM is locally finite on Rn+1. We say that M is Hn-rectifiable if in addition
Hn(M) <∞, and that M is normalized if M = sptHn xM , i.e.,

x ∈ M if and only if Hn(Bρ(x)∩M) > 0 for all ρ > 0.

Basic properties of rectifiable sets needed in the sequel are:

(i) For Hn-a.e. x ∈ M there exists Tx M ∈ G(n, n+ 1) (the space of n-dimensional planes in Rn+1) such
that

lim
ρ→0+

∫
(M−x)/ρ

ϕ dHn
=

∫
Tx M

ϕ dHn for all ϕ ∈ C0
c (R

n+1); (2-1)

see [Maggi 2012, Theorem 10.2]. The plane Tx M is called the approximate tangent plane to M at x .
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(ii) If M1 and M2 are locally Hn-rectifiable sets, then

Tx M1 = Tx M2 Hn-a.e. on M1 ∩M2; (2-2)

see [Maggi 2012, Proposition 10.5].

(iii) Lipschitz functions are differentiable along approximate tangent planes; that is, if f : Rn+1
→ Rn+1

is a Lipschitz function, then, for Hn-a.e. x ∈ M such that Tx M exists, the restriction of f to x + Tx M is
differentiable at x , and the limit

(∇M f )x [τ ] = lim
h→0+

f (x + hτ)− f (x)
h

for all τ ∈ Tx M

defines the tangential gradient ∇M f (x)= (∇M f )x of f along M at x ; see [Maggi 2012, Theorem 11.4].

(iv) The tangential gradient just depends on the restriction of f to M . In other words, if f : M→ Rn+1

is a Lipschitz function, and F,G : Rn+1
→ R are Lipschitz functions such that F = G = f on M , then

∇
M F =∇M G Hn-a.e. on M . (2-3)

(v) Finally, given a Lipschitz function f : M→ Rn+1, the tangential Jacobian of f along M is defined at
Hn-a.e. x ∈ M by

J M f (x)=
√

det(∇M f (x)∗∇M f (x))=
∣∣∣∣ n∧
i=1

(∇M f )x [τi (x)]
∣∣∣∣

provided {τi (x)}ni=1 is an orthonormal basis of Tx M , and the area formula∫
f (M)

H0( f −1(y)) dHn
y =

∫
M

J M f (x) dHn
x (2-4)

holds [Maggi 2012, Theorem 11.6].
For the lack of precise reference we justify property (iv). If ψ : Rn

→ Rn+1 is a Lipschitz map and
E ⊂ Rn is a Borel set, then by [Maggi 2012, Lemmas 10.4 and 11.5] we have Tx M = (∇ψ)ψ−1(x)[R

n
]

for Hn-a.e. x ∈ M ∩ψ(E), with

(∇M F)x [τ ] = ∇(F ◦ψ)ψ−1(x)[(∇ψ)
−1
x [τ ]] for all τ ∈ Tx M. (2-5)

Since F = G on M implies ∇(F ◦ψ)=∇(G ◦ψ) Hn-a.e. on E ∩ψ−1(M) [Maggi 2012, Lemma 7.6]
we deduce (2-3) from (2-5).

2.2. Integer rectifiable varifolds. If M is a C2-hypersurface without boundary in Rn+1, then the mean
curvature vector HM ∈ C0(M;Rn+1) of M is such that∫

M
divM X dHn

=

∫
M

HM · X dHn for all X ∈ C1
c (R

n+1
;Rn+1), (2-6)

with HM(x) · τ = 0 for every τ ∈ Tx M . This basic fact motivates the following definitions.
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Let M be a locally Hn-rectifiable set, and consider a Borel measurable function θ ∈ L1
loc(H

n xM;N).
The integer rectifiable varifold var(M, θ) defined by M and θ is the Radon measure on Rn+1

×G(n, n+1)
defined as ∫

Rn+1×G(n,n+1)
8 d var(M, θ)=

∫
M
8(x, Tx M)θ(x) dHn

x

for every bounded, compactly supported Borel function 8 on Rn+1
× G(n, n + 1). To each X ∈

C1
c (R

n+1
;Rn+1) we associate the test function

8X (x, T )= (divT X)(x), (x, T ) ∈ Rn+1
×G(n, n+ 1),

where divT X is the divergence of X with respect to T. Motivated by (2-6), we say that var(M, θ) has
distributional mean curvature vector HM ∈ L1

loc(θH
n xM;Rn+1) if∫

M
divM Xθ dHn

=

∫
M

HM · Xθ dHn for all X ∈ C1
c (R

n+1
;Rn+1). (2-7)

(The dependency of HM from θ is omitted.) When |HM | is constant (Hn-a.e. on M) we say that var(M, θ)
has constant distributional mean curvature on Rn+1; when HM = 0 we say that var(M, θ) is stationary
on Rn+1. For example, if M is a union of finitely many possibly intersecting spheres with same radius,
then M has constant distributional mean curvature in Rn+1. Similarly, a finite union of hyperplanes is
stationary in Rn+1.

In the proof of Theorem 1 we will exploit two forms of the maximum principle for integer rectifiable
varifolds. The first one is a simple fact, well-known to experts, whose proof is included for the sake of
clarity.

Lemma 3. Let M be a normalized locally Hn-rectifiable set such that var(M, θ) is stationary on Rn+1. If
M is a cone (that is, M = t M for every t > 0), and M is contained in a closed half-space H with 0 ∈ ∂H,
then M = ∂H and θ is constant. In particular, M cannot be contained in the convex intersection of two
distinct, nonopposite half-spaces containing the origin.

Proof. Let H = {z ∈ Rn+1
: z · ν < 0}, where ν ∈ Sn. Given ϕ ∈ C∞c ([0,∞)) with 0 ≤ ϕ ≤ 1, ϕ(r)= 1

on [0, ε) for some ε > 0, and ϕ′(r) < 0 on {0 < ϕ < 1}, let us set X (x) = ϕ(|x |)ν for x ∈ Rn+1. Then
X ∈ C∞c (R

n+1
;Rn+1) and ∇X = ϕ′(|x |)ν⊗ x̂ , where x̂ = x/|x | if x 6= 0. Let νM : M→ Sn be a Borel

vector field such that Tx M = νM(x)⊥ for Hn-a.e. x ∈ M . Since M is a cone, we have x̂ · νM(x)= 0 for
Hn-a.e. x ∈ M , and hence

divM X = div X − νM · ∇X [νM ] = ϕ
′(|x |)(ν · x̂ − (νM · ν)(νM · x̂))= ϕ′(|x |)(ν · x̂),

and thus, by the stationarity of M ,

0=
∫

M
divM Xθ dHn

=

∫
M
ϕ′(|x |)(ν · x̂)θ(x) dHn(x).

Since M ⊂ H implies x̂ · ν ≤ 0 for every x ∈ M , x 6= 0, thanks to the arbitrariness of ϕ we find ν · x̂ = 0
for Hn-a.e. x ∈ M . The lemma is proved. �
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ν⊥

U

ν

z0

M

{h = h0}

z+ϕ(z)ν

h

z+η(z)ν

Figure 1. The strong maximum principle for integer varifolds. The rectifiable set M
may consist of multiple sheets which, combined with the multiplicity function θ , have
distributional mean curvature HM in some L p. The sheets may overlap in complicated
ways along sets of positive area, so there is a nontrivial relation between the mean curvature
vector HM of the whole configuration and that of a single sheet. The function ϕ describes
the lower sheet of M above height h0 with respect to the direction ν and projecting over
an open set U ⊂ ν⊥. This lower sheet is shown to satisfy a strong maximum principle.
Notice that the role of h0 is that of localizing the part of the varifold we are looking at.
For example, in this picture, M could have many more points of the form z + hν with
h < h0 and z ∈U, but these points will not contribute to the definition of ϕ.

The second tool we shall use is a much deeper result, namely, Schätzle’s strong maximum principle
[2004] for integer rectifiable varifolds with sufficiently summable distributional mean curvature. The
statement we adopt here is a slightly simplified version, still sufficient for our purposes, of [Schätzle
2004, Theorem 6.2].

Theorem 4. Let M be a normalized locally Hn-rectifiable set with distributional mean curvature vector
HM ∈ L p(θHn xM;Rn+1) for some p >max{2, n}.

Pick ν ∈ Sn, h0 ∈ R, and consider a connected open set U ⊂ ν⊥ such that

ϕ(z)= inf{h > h0 : z+ hν ∈ M}, z ∈U, (2-8)

satisfies ϕ(z) ∈ (h0,∞) for every z ∈U.
If η ∈W 2,p(U ; (h0,∞)) is such that η≤ ϕ on U and η(z0)= ϕ(z0) for some z0 ∈U, then it cannot be

that

− div
(

∇η√
1+ |∇η|2

)
(z)≤ HM(z+ϕ(z)ν) ·

−∇ϕ(z)+ ν√
1+ |∇ϕ(z)|2

(2-9)

for Hn-a.e. z ∈U, unless η = ϕ on U.

The signs in (2-9) and the geometric intuition behind Theorem 4 are illustrated in Figure 1. The left-hand
side is the mean curvature of the subgraph of η with respect to its outer unit normal (−∇η+ν)/

√
1+ |∇η|2,

and, similarly, the right-hand side is the mean curvature of the subgraph of ϕ with respect to its outer
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unit normal. So, if η touches ϕ from below at z0, it cannot be that the subgraph of η is in average bent
upwards at least as much as the subgraph of η, unless η = ϕ. The considerable difficulty of the theorem
lies in the fact that HM does not come into play as the mean curvature of the graph of ϕ, but rather as the
mean curvature of a more complex structure (the integer rectifiable varifold var(M, θ)), of which ϕ only
represents a sort of lower envelope localized in the cylinder {z+ tν : z ∈U, t > h0}.

2.3. Sets of finite perimeter. A Borel set � ⊂ Rn+1 has locally finite perimeter if there exists an
Rn+1-valued Radon measure µ� on Rn+1 such that∫

�

div X =
∫

Rn+1
X · dµ� for all X ∈ C1

c (R
n+1
;Rn+1). (2-10)

The perimeter of � relative to an open set A is defined as P(�; A)= |µ�|(A), where |µ�| is the total
variation of µ�, and � has finite perimeter if P(�) = P(�;Rn+1) <∞. In this case, either � or its
complement has finite volume. By exploiting (2-10), the support of µ� is seen to satisfy

sptµ� = {x ∈ Rn+1
: 0< |Bρ(x)∩�|< ωnρ

n for all ρ > 0} ⊂ ∂�; (2-11)

see [Maggi 2012, Proposition 12.19]. Notice that sptµ� is invariant by zero-volume modifications of �,
while of course ∂� is not. The reduced boundary of a set of locally finite perimeter � is defined as the
set of points such that

ν�(x)= lim
ρ→0+

µ�(Bρ(x))
|µ�|(Bρ(x))

exists and belongs to Sn. (2-12)

The Borel vector field ν� : ∂∗�→ Sn is called the measure-theoretic outer unit normal to �, and we
always have

∂∗�= sptµ�. (2-13)

Moreover by [Maggi 2012, Theorem 15.9], the reduced boundary is locally Hn-rectifiable, with

µ� = ν�Hn x ∂∗�, P(�; A)=Hn(A∩ ∂∗�)

for every open set A ⊂ Rn+1, and thus (2-10) takes the form∫
�

div X =
∫
∂∗�

X · ν� dHn for all X ∈ C1
c (R

n+1
;Rn+1). (2-14)

In addition, for every x ∈ ∂∗�, ν�(x)⊥ = Tx(∂
∗�) is the approximate tangent plane to ∂∗� at x and in

particular we have

lim
ρ→0+

Hn(Bρ(x)∩ ∂∗�)
ρn = ωn for all x ∈ ∂∗�. (2-15)

To every set � of locally finite perimeter we can always associate in a natural way an integer rectifi-
able varifold var(∂∗�, 1). If var(∂∗�, 1) admits a distributional mean curvature vector H∂∗�, then the
distributional mean curvature of � is defined by setting

H� = H∂∗� · ν�. (2-16)
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The subscript � on H� is a reminder that we have used the outer orientation of � to specify the scalar
curvature. With this notation, HBr = n/r for every r > 0.

2.4. Basic properties of critical points. Here we prove some properties of critical points in the isoperi-
metric problem which descend from generally known facts about integer varifolds and sets of finite
perimeter. A set of finite perimeter and finite volume � is a critical point for the isoperimetric problem if

d
dt

∣∣∣
t=0

P( ft(�))= 0 (2-17)

whenever { ft }|t |<1 is a one-parameter family of diffeomorphisms with f0 = Id, | ft(�)| = |�| and
spt( ft − Id) b Rn+1 for every |t | < 1. By [Maggi 2012, Theorem 17.20], (2-17) is equivalent to the
existence of a constant λ ∈ R such that∫

∂∗�

div∂
∗� X dHn

= λ

∫
∂∗�

X · ν� dHn for all X ∈ C1
c (R

n+1
;Rn+1). (2-18)

Lemma 5. If �⊂ Rn+1 is a critical point for the isoperimetric problem, then � is (equivalent modulo
sets of volume zero to) a bounded open set such that ∂�= sptµ� and Hn(∂� \ ∂∗�)= 0. Moreover, the
constant λ in (2-18) is equal to

H 0
� =

n P(�)
(n+ 1)|�|

; (2-19)

that is, H� ≡ H 0
�. Finally,

∂∗�=

{
x ∈ ∂� : lim

ρ→0+

Hn(Bρ(x)∩ ∂�)
ρn = ωn

}
is locally an analytic hypersurface with constant mean curvature, relatively open in ∂�.

Proof. By [Simon 1983, Theorem 17.6], condition (2-18) implies that for every x ∈ Rn+1,

e|λ|ρ
Hn(Bρ(x)∩ ∂∗�)

ρn is increasing on ρ > 0, (2-20)

which combined with (2-15) and (2-13) gives

Hn(Bρ(x)∩ ∂∗�)≥ ωne−|λ|ρn for all ρ ∈ (0, 1), x ∈ sptµ�. (2-21)

A first consequence of the lower bound (2-21) is that

Hn(sptµ� \ ∂∗�)= 0; (2-22)

see, e.g., [Maggi 2012, Exercise 17.19]. Moreover, by combining (2-21) with P(�) <∞ and a covering
argument, we see that sptµ� is bounded.

Let us now consider the open set �1 of those x ∈ Rn+1 such that |�∩ Bρ(x)| = |Bρ(x)| for every ρ
small enough, and the open set �0 of those x ∈Rn+1 such that |�∩ Bρ(x)| = 0 for every ρ small enough,
so that

sptµ� = Rn+1
\ (�0 ∪�1), (2-23)
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thanks to (2-11). If �(1) denotes the set of points of density 1 of �, then �1 ⊂�
(1), while

|�(1) \�1| = |�
(1)
∩�0| + |�

(1)
∩ sptµ�| = |�(1) ∩ sptµ�| = 0

as Hn(sptµ�) < ∞ thanks to (2-22). Thus |�(1)1�1| = 0, and then |�1�1| = 0 by the Lebesgue
density theorem. Since �0 and �1 are disjoint open sets, (2-23) implies ∂�1 ⊂ sptµ�. At the same
time, |�1�1| = 0 and the inclusion in (2-11) imply sptµ� ⊂ ∂�1. Hence sptµ� = ∂�1, and since
sptµ� = ∂�1 is bounded and |�1|<∞, we have that �1 is bounded. The first part of the statement is
proved.

We show that λ in (2-18) satisfies λ= H 0
� with H 0

� defined in (2-19). Since � is bounded we can test
both (2-14) and (2-18) with X ∈C1

c (R
n+1
;Rn+1), where X (x)= x for x in a neighborhood of �. Hence,

(n+ 1)|�| =
∫
�

div(x) dx =
∫
�

div X =
∫
∂∗�

X · ν� dHn
=

1
λ

∫
∂∗�

div∂
∗� X dHn

=
1
λ

∫
∂∗�

div∂
∗�(x) dHn

x =
n P(�)
λ

, (2-24)

and thus λ= H 0
�.

Finally, by applying Allard’s regularity theorem (see [Simon 1983, Theorem 24.2] or [De Lellis 2008])
to var(∂�, 1), we see that ∂� is an analytic constant mean curvature hypersurface in a neighborhood of
every x ∈ ∂� such that

lim
ρ→0+

Hn(Bρ(x)∩ ∂�)
ρn = ωn. (2-25)

In particular, if x ∈ ∂� satisfies (2-25) then there exists ρ > 0 such that Bρ(x)∩� is the epigraph of an
analytic function, and thus x ∈ ∂∗�. Vice versa, (2-25) holds everywhere on ∂∗� thanks to (2-15). �

We also notice a simple consequence of Lemma 3.

Lemma 6. If �⊂Rn+1 is a critical point for the isoperimetric problem, x ∈ ∂�, and y1, y2 ∈� are such
that |yi − x | = dist(yi , ∂�) and |x − y1| = |x − y2|, then x − y1 = y2− x.

Proof. Since var(∂�, 1) is an integer varifold of constant distributional mean curvature, it admits at least
one blow-up limit in the weak convergence of varifolds at x , and each such limit varifold is stationary and
supported on a cone M ; see [Simon 1983, Chapter 46]. By construction, M is contained in the half-spaces
{z · νi ≤ 0} defined by νi = (x − yi )/|x − yi |, i = 1, 2. If y1 6= y2, then ν1 6= ν2, and Lemma 3 implies
that ν1 =−ν2. �

3. Critical points of the isoperimetric problem

Referring to the Introduction for the general strategy, we now present the proof of Theorem 1. At the end
of the section we also prove Corollary 2.

Proof of Theorem 1. Let � be a set with finite perimeter and finite volume which is a critical point for
the isoperimetric problem. The conclusion of Lemma 5 is the starting point of our analysis, aimed at
showing that � is a finite union of disjoint balls of radius n/H 0

�. We rescale � so that H 0
� = n.
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Properties of the distance function: We set u(y)= dist(y, ∂�) for y ∈ Rn+1 so that

N (y)=∇u(y) ∈ Sn exists for a.e. y ∈�, (3-1)

thanks to Rademacher’s theorem. For s > 0 we set

�s = {y ∈� : u(y) > s}, ∂�s = {y ∈� : u(y)= s},

and recall that, by the coarea formula [Maggi 2012, Theorems 13.1 and 18.1],�s is a set of finite perimeter
for a.e. s > 0, and for every Borel set E ⊂ Rn+1,

|E | =
∫
∞

0
Hn(E ∩ ∂∗�s) ds =

∫
∞

0
Hn(E ∩ ∂�s) ds. (3-2)

In particular,

Hn(∂�s \ ∂
∗�s)= 0 for a.e. s > 0. (3-3)

We recall that for a.e. y ∈�, u admits a second-order Taylor expansion at y. Indeed, given A ⊂� and
y ∈�, denote by 2(u, A)(y) the infimum of the constants c > 0 such that for a ∈ R and b ∈ Rn+1 we
have

a+ b · z+ c
|z|2

2
≥ u(z) for all z ∈ A,

with equality at y. For any y ∈� we can pick x ∈ ∂� such that |x − y| = u(y),

u(z)= dist(z, ∂�)≤ dist(z, {x})= |z− x | for all z ∈�, (3-4)

that is, z 7→ |z− x | touches u from above at y over �. At the same time we can construct a second-order
polynomial that touches z 7→ |z− x | from above at y over Rn+1. Indeed, it holds

|z− x | ≤ |y− x | +
y− x
|y− x |

· (z− y)+
|z− y|2

2|y− x |
for all z ∈ Rn+1. (3-5)

To check this set y = x + tv for t > 0 and |v| = 1, and set w = z− y, so that (3-5) becomes

|tv+w| ≤ t + v ·w+
|w|2

2t
for all w ∈ Rn+1.

Taking squares this is equivalent to

t2
+ 2tv ·w+ |w|2 ≤ t2

+ 2tv ·w+ |w|2+ (v ·w)2+
(v ·w)|w|2

t
+
|w|4

4t2

= t2
+ 2tv ·w+ |w|2+

(
v ·w+

|w|2

2t

)2

,

which clearly holds for every w ∈ Rn+1. Thanks to (3-5) there exists a, b ∈ R such that

|z− x | ≤ a+ b · z+
|z|2

2|y− x |
for all z ∈ Rn+1,
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with equality if z = y, so that, by the definition of 2 and by (3-4)

2(u, �)(y)≤
1

u(y)
for all y ∈�. (3-6)

Arguing as in [Caffarelli and Cabré 1995, Proposition 1.6], we see that u is twice differentiable a.e. in �.

Preliminary properties of the sets 0t
s : For every t > s > 0, we consider the compact set

0t
s =

{
y ∈ ∂�s : y =

(
1− s

t

)
x + s

t
z for some z ∈ ∂�t , x ∈ ∂�

}
. (3-7)

By definition, if y ∈ 0t
s , then there exist x ∈ ∂� and z ∈ ∂�t such that

Bt−s(z)⊂�s ⊂ Rn+1
\ Bs(x), {y} = ∂Bt−s(z)∩ ∂Bs(x). (3-8)

In particular x and z are uniquely determined by the uniqueness of limits in L1
loc. Indeed, when ρ→ 0+,

�s − y
ρ
→ [x − z]− as characteristic functions in L1

loc(R
n+1), (3-9)

where [v]− denotes the negative half-space defined by, v 6= 0,

[v]− = {w ∈ Rn+1
: w · v < 0}.

Notice also that Lip(u;Rn+1) ≤ 1 and the inclusion Bs+ε(y − ε(x − z)/|x − z|) ⊂ � (which holds for
ε > 0 small since t > s) imply that y has a unique projection onto ∂�. This shows that u is differentiable
at y ∈ 0t

s with

N (y)=−
x − z
|x − z|

for all y =
(
1− s

t

)
x + s

t
z ∈ 0t

s . (3-10)

In turn, (3-10) gives

y+ r N (y) ∈ ∂�s−r for all r ∈ [−s, t − s], y ∈ 0t
s . (3-11)

By (3-11), if y, y′ ∈ 0t
s then

s2
≤ |y− s N (y)− y′|2 = s2

− 2s N (y) · (y− y′)+ |y− y′|2,

(t − s)2 ≤ |y+ (t − s)N (y)− y′|2 = (t − s)2+ 2(t − s)N (y) · (y− y′)+ |y− y′|2;
that is

|N (y) · (y− y′)| ≤max
{1

s
,

1
t−s

}
|y− y′|2

2
for all y, y′ ∈ 0t

s . (3-12)

Using (3-10) we easily see that N is continuous on 0t
s so that (u, N ) ∈ C0(0t

s;R×Rn+1) and satisfies
(3-12). By Whitney’s extension theorem, there exists φ ∈ C1(Rn+1) such that (φ,∇φ)= (u, N ) on 0t

s .
In particular, this implies the Hn-rectifiability of 0t

s .

Decomposition of � and covering by ζ(Z): We define

0+s =
⋃
t>s

0t
s, �? =

⋃
s>0

0+s ⊂�, Z =
{
(x, t) ∈ ∂∗�×R : 0< t ≤

1
κn(x)

}
, (3-13)
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and set ζ(x, t)= x − tν�(x). We claim that

|� \�?| = 0, |�? \ ζ(Z)| = 0. (3-14)

We divide the proof of (3-14) into four steps.

Step 1: We prove that N is tangentially differentiable along 0t
s at Hn-a.e. y ∈ 0t

s , with
∇
0t

s N (y)=−
n∑

i=1

(κ t
s)i (y)τi (y)⊗ τi (y),

−
1
s
≤ (κ t

s)i (y)≤ (κ
t
s)i+1(y)≤

1
t−s

,

(3-15)

where {τi (y)}ni=1 is an orthonormal basis of Ty0
t
s . To this end, we first prove that 0t

s can be covered by
compact sets {U j } j∈N in such a way that the restriction of N to U j is a Lipschitz map, that is,

|N (y1)− N (y2)| ≤ C j |y1− y2| for all y1, y2 ∈ U j . (3-16)

(In passing we notice that (3-16) implies the C1,1-rectifiability of 0+s , that is to say, the possibility of
covering 0+s by graphs of C1,1 functions from Rn to Rn+1.)

We start by defining the sets U j . Let us denote by

C(N , ρ)= {z+ hN : z ∈ N⊥, |z|< ρ, |h|< ρ}

the open cylinder centered at the origin with axis along N ∈ Sn, radius ρ > 0, and height 2ρ. Notice that,
by the interior/exterior ball condition, 0t

s admits an approximate tangent plane at Hn-a.e. of its points,
and this plane is then necessarily equal to N (y)⊥; that is,

Ty0
t
s = N (y)⊥ for Hn-a.e. y ∈ 0t

s .

In particular (2-1) implies

lim
ρ→0+

Hn
(
0t

s ∩ (y+C(N (y), ρ))
)

ρn = ωn for Hn-a.e. y ∈ 0t
s .

By Egoroff’s theorem, we can find compact sets U j covering 0t
s such that

µ∗j (ρ)= sup
y∈U j

∣∣∣∣1− Hn
(
0t

s ∩ (y+C(N (y), ρ))
)

ωnρn

∣∣∣∣→ 0 as ρ→ 0+. (3-17)

Consider the function φ constructed in proving the Hn-rectifiability of 0t
s . Since ∇φ(y)= N (y) 6= 0 at

each y ∈ 0t
s , we can apply the implicit function theorem at y and find that 0t

s is a C1-graph over a disk of
radius ρy in a neighborhood of y. We can thus pick any sequence ρj → 0+, and up to further subdivision
of U j and relabeling the resulting pieces, we can assume that each U j has the following property: for each
y ∈ U j there exists

ψj ∈ C1(N (y)⊥), ψj (0)= 0, ∇ψj (0)= 0, ‖∇ψj‖C0(N (y)⊥) ≤ 1 (3-18)

such that, if
U ′j = projection of U j on N (y)⊥ ∩ {|z|< ρj }, (3-19)
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then

U j ∩ (y+C(N (y), ρj ))= 0
t
s ∩ (y+C(N (y), ρj ))= y+{z+ψj (z)N (y) : z ∈ U ′j }. (3-20)

(Notice that both ψj and U ′j depend on the point y ∈ U j at which we are considering the “graphicality”
property of U j , but that this dependency is not stressed to simplify the notation.) If we set

µj (ρ)=max
{
µ∗j (ρ),max

|z|≤ρ
|∇ψj (z)|

}
, ρ ∈ (0, ρj ], (3-21)

then µj (ρ)→ 0 as ρ→ 0+ by (3-17) and continuity of ∇ψj . This completes the definition of the sets U j .

We now prove (3-16). Fix y1, y2 ∈ U j . Let ρj and ψj be the functions associated to U j and y2 ∈ U j as
we have just described. For rj < ρj/3 to be chosen, we can directly assume that

y1 ∈ y2+C(N (y2), rj ) (3-22)

for otherwise |y1− y2| ≥ c(n)rj and, trivially, |N (y1)− N (y2)| ≤ 2≤ C j |y1− y2|. Next we assume, as
we can do without loss of generality up to a rigid motion, that

y2 = (0, 0) ∈ Rn
×R, N (y2)= (0, 1) ∈ Rn

×R, N (y2)
⊥
= Rn.

In this way (3-20) takes the form

{(z, h) ∈ 0t
s : |z|< ρj , |h|< ρj } = {(z, ψj (z)) : z ∈ U ′j }, (3-23)

with

ψj ∈ C1(Rn), ψj (0)= 0, ∇ψj (0)= 0, ‖∇ψj‖C0(Rn) ≤ 1. (3-24)

By (3-22), y1 = (z1, ψj (z1)) for some z1 ∈ U ′j with |z1| < rj . By continuity of N along 0t
s and since

N (0)= (0, 1), we find

N (y1)=
(−∇ψj (z1), 1)√
1+ |∇ψj (z1)|2

.

In particular,
|N (y1)− N (y2)|

2

2
= 1−

1√
1+ |∇ψj (z1)|2

≤
|∇ψj (z1)|

2

2
,

while at the same time |y1− y2|
2
= |z1|

2
+ψj (z1)

2
≥ |z1|

2. We are thus left to show

|∇ψj (z1)| ≤ C j |z1|. (3-25)

To this end we would like to exploit (3-12) with y = y1 and y′ = y0 where y0 = (z0, h0) is defined, in
terms of a suitable e0 ∈ Sn (see (3-30) below), as

z0 = z1− |z1|e0, h0 = ψj (z0). (3-26)

Since 0t
s may be very “porous”, that is, its projection over {|z|< ρj } could have lots of holes, it is not

generally true that y0 ∈ 0
t
s and thus that y′ = y0 is an admissible choice in (3-12). But when this is the
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case, by (3-12)

C |y1− y0|
2
≥ N (y1) · (y1− y0)= |z1|

∇ψj (z1) · (−e0)√
1+ |∇ψj (z1)|2

+
ψj (z1)−ψj (z0)√

1+ |∇ψj (z1)|2
. (3-27)

Now, in order to exploit (3-27), we notice that

|ψj (z)| ≤ C |z|2 for all |z|< ρj such that (z, ψj (z)) ∈ 0t
s, (3-28)

which is an immediate consequence of the fact that, around (0, 0)= (0, ψj (0)), 0t
s is trapped between two

tangent balls (notice that we do not know this about the graph of ψj , and so we can apply (3-28) only to
the points of this graph that lie in 0t

s). Since |z0| ≤ 2|z1|< 2rj <ρj , still assuming that y0= (z0, h0)∈0
t
s ,

by (3-28) we find that

|y1− y0|
2
= |z1|

2
+ (ψj (z1)−ψj (z0))

2
≤ C |z1|

2,∣∣∣∣ ψj (z1)−ψj (z0)√
1+ |∇ψj (z1)|2

∣∣∣∣≤ |ψj (z1)| + |ψj (z0)| ≤ C |z1|
2,

and thus (3-27) takes the form

C |z1|
2
≥ |z1|

∇ψj (z1) · (−e0)√
1+ |∇ψj (z1)|2

. (3-29)

Our choice of e0 is thus clear; we want

e0 =−
∇ψj (z1)

|∇ψj (z1)|
(3-30)

to have a chance of proving (3-25).
We are now ready to prove (3-25). Set y0 = (z0, h0) for e0 as in (3-30) and z0 and h0 as in (3-26). If

z0 ∈ U ′j , and thus y0 ∈ 0
t
s , then, as explained, we are done. Otherwise, let ε0 be the largest ε > 0 such that

{|z− z0|< ε} ∩U ′j =∅.

Since z1 ∈U ′j and |z0−z1| = |z1|, we have ε0≤ |z1|. In particular, since |z0| ≤ 2|z1|, the ball {|z−z0|<ε0}

is contained in {|z|< 3|z1|} ⊂ {|z|< ρj } thanks to 3rj < ρj . By the definition of ε0, there exists z∗ ∈ U ′j
with |z∗− z0| = ε0 and

ωn|z0− z∗|n =Hn({|z− z0|< ε0})

≤Hn({|z|< 3|z1|} \U ′j )= ωn(3|z1|)
n
−Hn(U ′j ∩ {|z|< 3|z1|}). (3-31)

On the one hand, since U j is the graph of the Lipschitz function ψj over U ′j ,

Hn(U ′j ∩ {|z|< 3|z1|})≤

∫
U ′j∩{|z|<3|z1|}

√
1+ |∇ψj |

2
=Hn(U j ∩C(N (y2), 3|z1|))

=Hn(0t
s ∩C(N (y2), 3|z1|))

≤ ωn(3|z1|)
n(1+µj (3|z1|))
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thanks to (3-21); on the other hand, again by the definition (3-21) of µj ,

Hn(U ′j ∩ {|z|< 3|z1|})=

∫
U ′j∩{|z|<3|z1|}

√
1+ |∇ψj |

2√
1+ |∇ψj |

2

≥
Hn(0t

s ∩C(N (y2), 3|z1|))√
1+µh(3|z1|)2

≥
1−µj (3|z1|)√
1+µh(3|z1|)2

ωn(3|z1|)
n.

Combining the last two estimates into (3-31) we find

ωn|z0− z∗|n ≤ Cµj (3|z1|)ωn(3|z1|)
n
;

that is,
|z0− z∗| ≤ Cµj (3|z1|)

1/n
|z1|. (3-32)

In other words, after scaling out |z1|, the best point we can use, z∗, is as close as we want to the point
we would like to use, z0. We conclude the argument setting y∗ = (z∗, ψj (z∗)). Since z∗ ∈ U ′j , we have
y∗ ∈ 0t

s . We can apply (3-12) with y = y1 = (z1, ψj (z1)) and y′ = y∗ to find

C |y1− y∗|2 ≥ N (y1) · (y1− y∗)

≥
(−∇ψj (z1)) · (z1− z∗)√

1+ |∇ψj (z1)|2
+
ψj (z1)−ψj (z∗)√

1+ |∇ψj (z1)|2

≥
(−∇ψj (z1)) · (z1− z∗)√

1+ |∇ψj (z1)|2
−C(|z1|

2
+ |z∗|2)

≥ |∇ψj (z1)|(1−Cµj (3|z1|)
1/n)
|z1|

C
−C(|z1|

2
+ |z∗|2), (3-33)

where we have first applied (3-28) to z1 and z∗, and then have decomposed z1 − z∗ as the sum of
z1− z0 = e0|z1| and of z0− z∗, have recalled the definition of e0, and have used (3-32). Similarly,

|y1− y∗| ≤ |z1− z∗| + |ψj (z1)−ψj (z∗)|

≤ |z1− z0| + |z0− z∗| +C(|z1|
2
+ |z∗|2)≤ C |z1|,

and thus (3-33) implies (3-25). This concludes the proof of (3-16). We now prove (3-15).

As noticed in Section 2.2, since N is a Lipschitz function on each U j , and since the U j are covering 0t
s ,

we deduce that N is tangentially differentiable along 0t
s , and that its tangential gradient along 0t

s can be
computed by looking at any Lipschitz extension of N to Rn+1. Moreover, by (2-2), it is enough to work
with U j in place of 0t

s .

To construct a convenient extension of N we go back to the proof of the Hn-rectifiability of 0t
s , and

this time we construct φ ∈C1,1(Rn+1) such that (u, N )= (φ,∇φ) on U j by taking (3-12) and (3-16) into
account. Then we can go back to the construction of the sets U j , and apply the C1,1-implicit function
theorem to deduce that for each y ∈ U j there exists

ψj ∈ C1,1(N (y)⊥),
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satisfying (3-18) and (3-20). In particular, we can consider the Lipschitz extension N∗ of N from
U j ∩ (y+C(N (y), ρj )) to y+C(N (y), ρj ) given by

N∗(y+ z+ hN (y))=
−∇ψj (z)+ N (y)√

1+ |∇ψj (z)|2
for all z ∈ N (y)⊥, |z|< ρj , |h|< ρj .

Setting 9j (z)= y+ z+ψj (z)N (y) for |z|< ρj , by (2-5) we have that for Hn-a.e. y′ ∈ U j ,

(∇U j N )y′[τ ] = ∇(N∗ ◦9j )9−1
j (y′)[e],

where τ ∈ Ty′U j and e = (∇9j )9−1
j (y′)[τ ] ∈ Rn. When ψj ∈ C2(N (y)⊥), a classical computation shows

that
∇(N∗ ◦9j )z[e] = Aj (9j (z))[τ ],

where Aj denotes the second fundamental form to the graph of ψj , which is symmetric thanks to the
commutativity property of the second derivatives of ψj , and where the eigenvalues of Aj are bounded
from below by −1/s and from above by 1/(t − s) thanks to U j ⊂ 0

t
s . In our case the same computations

hold for a.e. |z|< ρj by the chain rule for Lipschitz functions, where the symmetry of Aj is guaranteed
by the fact that ∇2ψj is both a distributional gradient and an a.e. classical differential of ∇ψj . Finally,
the a.e.-pointwise estimates on the eigenvalues are deduced a.e. on U ′j thanks to the fact that ∇2ψj is an
a.e. classical differential. This proves (3-15).

Step 2: We claim that for every t > s > 0 we have

Hn(∂�t)≤ (t/s)nHn(0t
s), (3-34)

and then use (3-34) to prove
|�1�?| = 0. (3-35)

Indeed, for r ∈ [−s, t − s] let us consider the map

fr : 0
t
s→ ∂�s+r , fr (y)= y+ r N (y), y ∈ 0t

s . (3-36)

The fact that fr (y)∈ ∂�s+r is immediate as every y ∈0t
s has the form y= (1−(s/t))x+(s/t)z for x ∈ ∂�,

z ∈ ∂�t . Notice that, again by the definition of 0t
s , the map ft−s is surjective; that is, ∂�t = ft−s(0

t
s).

Thus

Hn(∂�t)=Hn( ft−s(0
t
s))≤

∫
ft−s(0t

s)

H0( f −1
t−s(z)) dHn

z =

∫
0t

s

J0
t
s ft−s dHn,

where by (3-15), and in particular by the lower bound on (κ t
s)i ,

J0
t
s ft−s =

n∏
i=1

(1− (t − s)(κ t
s)i )≤

(
1+ t−s

s

)n
Hn-a.e. on 0t

s .

This proves (3-34). To prove (3-35), we first apply the coarea formula (3-2) to find

|�1�?| =

∫
∞

0
Hn((�1�?)∩ ∂�s) ds =

∫
∞

0
Hn(∂�s \0

+

s ) ds, (3-37)
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where 0+s ⊂ ∂�s . Again by the coarea formula, for a.e. s > 0,

Hn(∂�s)= lim
ε→0

|�s | − |�s+ε|

ε
= lim
ε→0+

1
ε

∫ ε

0
Hn(∂�s+r ) dr.

where by (3-34)

1
ε

∫ ε

0
Hn(∂�s+r ) dr ≤ 1

ε

∫ ε

0

(
1+ r

s

)n
Hn(0s+r

s ) dr ≤
(
1+ ε

s

)n
Hn(0+s ).

Since 0+s ⊂ ∂�s , this proves

Hn(0+s )=Hn(∂�s) for a.e. s > 0, (3-38)

which, combined with (3-37) gives in turn (3-35).

Step 3: For r ∈ (0, s), let us consider the map

gr : 0
+

s → 0+s−r , gr (y)= y− r N (y), y ∈ 0+s ,

which is (clearly) a bijection between 0t
s and 0t

s−r for each t > 0. We claim that if y is a point of tangential
differentiability of N along 0t

s , then gr (y) is a point of tangential differentiability of N along 0t
s−r , and

(κ t
s−r )i (gr (y))=

(κ t
s)i (y)

1+ r(κ t
s)i (y)

for all i = 1, . . . , n. (3-39)

Indeed, it is easily seen that

N (y)= N (gr (y))= N (y− r N (y)) for all y ∈ 0t
s, (3-40)

so that if y is a point of tangential differentiability of N along 0t
s and τ ∈ Ty0

t
s , then τ ∈ Tgr (y)0

t
s and

(∇0
t
s N )y[τ ] = (∇

0t
s−r N )gr (y)[τ − r(∇0

t
s N )y[τ ]].

Plugging in τ = τi (y) as in (3-15) we find

−(κ t
s)i (y)τi (y)= (1+ r(κ t

s)i (y))(∇
0t

s−r N )gr (y)[τi (y)];

that is,

−τi (y) · (∇0
t
s−r N )gr (y)[τi (y)] =

(κ t
s)i (y)

1+ r(κ t
s)i (y)

.

Thus {τi (y)}ni=1 is an orthonormal basis for Tgr (y)0
t
s−r = Ty0

t
s made up of eigenvalues of ∇0

t
s−r N (gr (y)),

and the last formula is just (3-39).

Step 4: We prove that
|�? \ ζ(Z)| = 0. (3-41)

By the coarea formula (3-2) and by (3-38)

|�? \ ζ(Z)| =
∫
∞

0
Hn((�? \ ζ(Z))∩ ∂�s) ds =

∫
∞

0
Hn((�? \ ζ(Z))∩0+s ) ds

=

∫
∞

0
Hn(0+s \ ζ(Z)) ds.
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Since x ∈ ∂∗� and y ∈ 0+s are such that y = x − sν�(x) if and only if x = y− s N (y)= gs(y), with gs

as in Step 3, we have

ζ(Z)∩0+s = g−1
s (∂∗�) for all s > 0.

Taking into account that ∂� \ ∂∗� = 6 (recall Lemma 5) and that g−1
s (∂�) ⊂ 0+s , in order to prove

(3-41) we are left to show that for a.e. s > 0

Hn(g−1
s (6))= 0. (3-42)

In other words, the points in 0+s that, projected over ∂�, end up on the singular set, have negligible
Hn-measure. We are actually going to show that (3-42) holds for every s>0 such that Hn(0+s )=Hn(∂�s).
We shall argue by contradiction, assuming that Hn(0+s )=Hn(∂�s) and

Hn(g−1
s (6)) > 0.

In particular, there exists t > s, such that Hn(0t
s ∩ g−1

s (6)) > 0.
As a preliminary step to derive a contradiction we first notice that

H0(g−1
s (x))≤ 2 for all x ∈ ∂�. (3-43)

Otherwise, g−1
s (x) would contain at least two points y1, y2 such that (x−y1)/|x−y1| and (x−y2)/|x−y2|

are not antipodal. Any blow-up of var(∂�, x) would then be a stationary varifold contained in the
intersection of two nonopposite half-spaces, a contradiction to Lemma 3. By (3-43) and by Hn(6)= 0
(recall (3-3)) we find that

0= 2Hn(6)≥

∫
6

H0(g−1
s (x)) dHn

=

∫
g−1

s (6)

J0
t
s gs dHn,

where

J0
t
s gs =

n∏
i=1

(1+ s(κ t
s)i )≥ 0 on 0t

s

thanks to −1/s ≤ (κ t
s)i ; see (3-15). Having assumed Hn(g−1

s (6)) > 0, and since {(κ t
s)i }i are ordered

increasingly on i , we deduce in particular that

Hn
({

y ∈ 0t
s : (κ

t
s)1(y)=−

1
s

})
≥Hn(0t

s ∩ g−1
s (6)) > 0. (3-44)

By (3-39) we see that{
ỹ ∈ 0t

s−r : (κ
t
s−r )1(ỹ)=−

1
s−r

}
= gr

({
y ∈ 0t

s : (κ
t
s)1(y)=−

1
s

})
.

Since gr : 0
t
s→ 0t

s−r is injective, by the area formula

Hn
({

ỹ ∈ 0t
s−r : (κ

t
s−r )1(ỹ)=−

1
s−r

})
=

∫
{y∈0t

s :(κ
t
s )1(y)=−1/s}

J0
t
s gr dHn.
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Using again that (κ t
s)i ≥−1/s on 0t

s , we have

J0
t
s gr =

n∏
i=1

(1+ r(κ t
s)i )≥

(
1− r

s

)n
> 0 for all r ∈ (0, s),

so that (3-44) implies that for every r ∈ (0, s)

Hn(3t
s−r ) > 0 for 3t

s−r =

{
ỹ ∈ 0t

s−r : (κ
t
s−r )1(ỹ)=−

1
s−r

}
. (3-45)

By using (3-39) and the fact that a 7→ a/(1+ ra) is increasing on a ≥ 0, we see that for every ỹ ∈3t
s−r ,

ỹ = gr (y), we have
n∑

i=1

(κ t
s−r )i (ỹ)=−

1
s− r

+

n∑
i=2

(κ t
s)i (y)

1+ r(κ t
s)i (y)

≤−
1

s− r
+ (n− 1)

1/(t − s)
1+ (r/(t − s))

≤ 0, (3-46)

provided r ∈ (r0, s) for r0 = r0(s, t) suitably close to s, depending on s and t . Here the choice of 0 on
the right-hand side of (3-46) is arbitrary. Any constant strictly less than n would suffice for the rest of the
argument.

Now consider the set
3=

⋃
r0<r<s

3t
s−r

so that by the coarea formula and (3-45)

|3| =

∫ s

r0

Hn(3∩ ∂�s−r ) dr =
∫ s

r0

Hn(3t
s−r ) dr > 0.

By the a.e. second-order differentiability of u, there exists y0 ∈3 such that u admits a second-order Taylor
expansion at y0. Moreover there exists r ∈ (r0, s) such that y0 ∈3

t
s−r ⊂0

t
s−r , so that ∇2u(y0)[N (y0)] = 0

by (3-40), and thus

∇
2u(y0)=∇

0t
s−r N (y0)=−

n∑
i=1

(κ t
s−r )i (y0)τi (y0)⊗ τi (y0), (3-47)

thanks to (3-15). Moreover, by (3-46), we definitely have
n∑

i=1

(κ t
s−r )i (y0)≤ 0. (3-48)

Let us now set ν =−N (y0) and

Dρ = {z ∈ ν⊥ : |z|< ρ}, Cρ = {z+ hν : z ∈ Dρ, |h|< ρ}, ρ > 0.

For every ε > 0, the second-order differentiability of u at y0, (3-48) and (3-47) imply the existence of
ρ > 0 and of a second-order polynomial η : ν⊥ ≡ Rn

→ R such that η(0)= 0, ∇η(0)= 0,

− div
(

∇η√
1+ |∇η|2

)
(z)≤− div

(
∇η√

1+ |∇η|2

)
(0)+ ε ≤

n∑
i=1

(κ t
s−r )i (y0)+ 2ε ≤ 2ε (3-49)
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for every z ∈ Dρ and

y0+{z+ hν : z ∈ Dρ,−ρ < h < η(z)} ⊂ (y0+Cρ)∩�s−r . (3-50)

If we translate � by (s− r)N (y0), then

�s−r ⊂ (�+ (s− r)N (y0)) with y0 ∈ ∂�s−r ∩ ∂(�+ (s− r)N (y0)).

We are now in the position to apply Theorem 4 with

M = ∂(�+ (s− r)N (y0)− y0),

ν =−N (y0), U = Dρ , z0 = 0, h0 = ν · y0−ρ and η as in (3-49). Indeed by (3-50) we have that if we set

ϕ(z)= inf{h ∈ (h0,∞) : z+ hν ∈ M}, z ∈ Dρ,

then∞> ϕ ≥ η > h0 on Dρ , as well as ϕ(0)= η(0)= 0. However, by (3-49),

2ε ≥− div
(

∇η√
1+ |∇η|2

)
(z) for all z ∈ Dρ,

while by the constant mean curvature condition n = H 0
� = H∂� · ν� on ∂∗� we have

n = HM(z+ϕ(z)ν) ·
−∇ϕ(z)+ ν√
1+ |∇ϕ(z)|2

for a.e. z ∈ Dρ .

This is a contradiction to Theorem 4; hence we obtain (3-41).

Conclusion of the proof : Having proved (3-41), we can now apply the Montiel–Ros argument. By (3-35)
and (3-41),

|�| = |�?| ≤ |ζ(Z)| ≤
∫

Z
H0(ζ−1(y)) dy =

∫
∂∗�

dHn
x

∫ 1/κn(x)

0

n∏
i=1

(1− tκi (x)) dt,

where Z = {(x, t) ∈ ∂∗�×R : 0< t ≤ 1/κn(x)} and ζ(x, t)= x − tν�(x). Here we have used the fact
that Z is a locally Hn−1-rectifiable set in Rn+1

×R with

Hn+1 x ((∂∗�)×R)= (Hn x ∂∗�)×H1, (3-51)

see [Maggi 2012, Exercise 18.10], and that J Zζ =
∏n

i=1(1− tκi ). By the arithmetic-geometric mean
inequality and by κn ≥ H 0

�/n, arguing as in (1-9) we thus find∫
∂∗�

dHn
x

∫ 1/κn(x)

0

n∏
i=1

(1− tκi (x)) dt ≤
∫
∂�

dHn
x

∫ 1/κn(x)

0

(
1
n

n∑
i=1

(1− tκi (x))
)n

dt

≤

∫
∂�

dHn
x

∫ n/H0
�

0
(1− t H 0

�)
n dt

=
n

n+ 1

∫
∂�

dHn

H 0
�

= |�|,
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so that equalities hold everywhere and

|ζ(Z) \�| = 0, (3-52)

H0(ζ−1(y))= 1 for a.e. y ∈�, (3-53)

κi (x)=
H 0
�

n
for every x ∈ ∂∗�, i = 1, . . . , n. (3-54)

Recall that we have rescaled � so that H 0
� = n. By (3-54), since ∂∗� is relatively open in ∂�, we can

find a family {Si }i∈I , I ⊂ N, of mutually disjoint subsets of ∂∗� with Si ⊂ ∂B1(xi ) for points xi ∈ Rn+1

such that

∂∗�=
⋃
i∈I

Si , Si is relatively open in ∂�, Si is connected. (3-55)

Because Si ⊂ ∂�, we know that u(xi )≤ 1.
We claim that u(xi )= 1 for every i ∈ I. Indeed if δ > 0 and i ∈ I are such that u(xi )= 1− 4δ, then

Bδ(xi )∩ Ai ⊂�, where Ai = ζ(Si × (0, 1)) is an open subset of �. For any y ∈ Bδ(xi )∩ Ai , the triangle
inequality implies u(y) < 1− 3δ, while clearly d(y, Si )≥ d(y, ∂B1(xi ))≥ 1− δ. In particular, if x ∈ ∂�
is such that |x − y| = u(y), then x 6∈ Si . Since (3-35) and (3-41) imply that for a.e. y ∈ � there exists
x ∈ ∂∗� such that |x − y| = u(y), we conclude from (3-55) that for a.e. y ∈ Bδ(xi )∩ Ai there exist j 6= i
and x ∈ Sj such that |x − y| = u(y); in particular, Bδ(xi )∩ Ai ∩ Aj is nonempty, and since it is an open
set, we have

0< |Bδ(xi )∩ Ai ∩ Aj |, where, if i 6= j , Ai ∩ Aj ⊂ {y ∈� :H0(ζ−1(y))≥ 2}.

This is a contradiction to (3-53). Thus u(xi )= 1 for every i ∈ I.
Now let Ti denote the closure of Si in ∂B1(xi ). Since u(xi )= 1 for every i ∈ I, we can apply Theorem 4

to M = ∂� at each x ∈ Ti to find ρx > 0 such that

∂�∩ Bρx (x)= ∂B1(xi )∩ Bρx (x). (3-56)

This in turn proves that Ti = ∂B1(xi ), and thus that ∂B1(xi )⊂ ∂� for every i ∈ I.
Since Hn(∂B1(x) ∩ ∂B1(y)) = 0 unless x = y, P(�) < ∞ implies that I is finite. Since ∂∗� is

covered by the Si , � is the finite union of the balls B1(xi ), and owing to ∂B1(xi )⊂ ∂�, these balls must
be disjoint (their closures can of course intersect). This completes the proof of Theorem 1. �

Proof of Corollary 2. Condition (1-4) implies that the vector-valued Radon measures

µ�j = ν�jH
n x ∂∗�j

converge in weak-star sense to µ� with |µ�j |
∗⇀ |µ�| on Rn+1. By Reshetnyak’s continuity theorem

[Ambrosio et al. 2000, Theorem 2.39]

lim
j→∞

∫
Rn+1

8

(
x,

dµ�j

d|µ�j |
(x)
)

d|µ�j | =

∫
Rn+1

8

(
x,

dµ�
d|µ�|

(x)
)

d|µ�|
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whenever 8 ∈ C0
c (R

n+1
×Sn). Given X ∈ C1

c (R
n+1
;Rn+1),

8(x, ν)= div X (x)− ν · ∇X (x)[ν], (x, ν) ∈ Rn+1
×Sn,

belongs to C0
c (R

n+1
×Sn) and thus we find

lim
j→∞

∫
∂∗�j

div∂
∗�j X dHn

=

∫
∂∗�

div∂
∗� X dHn.

By (1-5) and by µ�j
∗⇀µ�

lim
j→∞

∫
∂∗�j

div∂
∗�j X dHn

= λ lim
j→∞

∫
∂∗�j

X · ν�j dHn
= λ

∫
∂∗�

X · ν� dHn.

We have thus proved that � is a set of finite perimeter, finite volume and constant distributional mean
curvature. We conclude by Theorem 1. �

4. The Heintze–Karcher inequality for sets of finite perimeter

The proof of Theorem 1 also shows that the Heintze–Karcher inequality can be generalized to sets of
finite perimeter. In this section we explain how this is done. As usual, set u(y)= dist(y, ∂�) for y ∈�.

Lemma 7. If � is an open set with finite perimeter and finite volume in Rn+1, then�s ={y ∈� : u(y)> s}
is an open set of finite perimeter with Hn(∂�s \0

+
s )= 0 for a.e. s > 0, where 0+s =

⋃
t>0 0

t
s and 0t

s is
defined as in (1-14). Moreover:

(i) For every s > 0, 0+s can be covered by countably many graphs of C1,1-functions from Rn to Rn+1.

(ii) For every s > 0, the principal curvatures (κs)i of 0+s are defined Hn-a.e. on 0+s by setting

(κs)i = (κ
t
s)i on 0t

s for each t > s,

for (κ t
s)i as in (3-15). Correspondingly, Hn-a.e. on 0+s we can define

H�s =

n∑
i=1

(κs)i , |A�s |
2
=

n∑
i=1

(κs)
2
i

as natural generalizations of the mean curvature and of the length of the second fundamental form of ∂�s

with respect to ν�s at points in 0+s ⊂ ∂�s .

(iii) For every r < s < t , the map gr : 0
t
s→ 0t

s−r , defined by g(y)= y−r∇u(y) for y ∈ 0t
s , is a Lipschitz

bijection from 0t
s to 0t

s−r , with

J0
t
s gr (y)=

n∏
i=1

(1+ r(κs)i (y)), (κs−r )i (gr (y))=
(κs)i (y)

1+ r(κs)i (y)
(4-1)

for Hn-a.e. y ∈ 0t
s .

Proof. All these conclusions are contained in Steps 1, 2 and 3 of the proof of Theorem 1, where at no
stage the constant distributional mean curvature condition, or the regularity of ∂∗� implied by it, have
been used. �
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As a consequence of Lemma 7, we see that for every x ∈ gs(0
+
s )⊂ ∂�, the limit

κi (x)= lim
r→s−

(κs−r )i (x) ∈ [−∞,∞) (4-2)

exists by monotonicity; see (4-1). We thus give the following definitions: given an open set of finite
perimeter and finite volume �⊂ Rn+1 we define the viscosity boundary of � as

∂v�=
⋃
s>0

gs(0
+

s )

and the viscosity mean curvature of � by

H v
�(x)=

n∑
i=1

κi (x) for all x ∈ ∂v�. (4-3)

Notice that ∂v� is covered by countably many Hn-rectifiable sets, although it may contain points of
sptµ� that are outside the reduced boundary, or that have density 1 for �. It is not obvious if, at this level
of generality, ∂v� is Hn-finite. In any case, our only reason for introducing these concepts is to formulate
the following definition: a set of finite perimeter and finite volume � is mean convex in the viscosity
sense if H v

� defined in (4-3) is positive along ∂v�. It is easy to see that if ∂� is C2, then ∂v� = ∂�
and H v

�(x)= H�(x) for any x ∈ ∂�. Hence, the viscosity notion generalizes the mean convexity in the
classical sense.

This said, following Brendle’s point of view [2013] on the Montiel–Ros argument, we have the
following generalized form of the Heintze–Karcher inequality; see (4-4) below.

Theorem 8 (Heintze–Karcher inequality for sets of finite perimeter). If �⊂ Rn+1 is an open set of finite
perimeter and finite volume which is mean convex in the viscosity sense, then for every s > 0

|�s | ≤
n

n+ 1

∫
0+s

dHn

H�s

. (4-4)

Moreover, the limit of the right-hand side of (4-4) as s→ 0+ always exists in (0,∞].

Proof. The mean convexity assumption on � and the monotonicity property behind the definition (4-2)
of κi imply that

∑n
i=1(κs)i > 0 on 0+s . We define for every s > 0

Q(s)=
∫
0+s

dHn

H�s

> 0.

Moreover, for every t > 0 we define Qt
: (0, t)→ (0,∞) by setting

Qt(s)=
∫
0t

s

dHn

H�s

, s ∈ (0, t).

Notice that
Q(s)≥ Qt(s)≥ Qt+ε(s) for all t > s, ε > 0, (4-5)

and recall that Hn(0t
s) converges monotonically to Hn(0+s ) as t→ s+, so that

Q(s)= lim
t→s+

Qt(s)= sup
t>s

Qt(s) for every s > 0. (4-6)
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For r ∈ (0, s) by Lemma 7(iii) we have

Qt(s− r)− Qt(s)=
∫
0t

s

( ∏n
i=1(1+ r(κs)i )∑n

i=1(κs)i/(1+ r(κs)i )
−

1
H�s

)
dHn

=

∫
0t

s

(
1+ r H�s + Ot(r2)

H�s − r |A�s |
2+ Ot(r2)

−
1

H�s

)
dHn,

where Ot(r2)/r→ 0 uniformly on 0t
s as r→ 0. We thus find that Qt is differentiable on (0, t) with

(Qt)′(s)=−
∫
0t

s

1+
|A�s |

2

H 2
�s

dHn for all s ∈ (0, t).

By the Cauchy–Schwarz inequality, H 2
�s
≤ n|A�s |

2. Hence,

(Qt)′(s)≤−
n+ 1

n
Hn(0t

s) for all s ∈ (0, t). (4-7)

If 0< s1 < s2, then by (4-6), (4-5) and (4-7) respectively, we have

Q(s1)− Q(s2)= lim
ε→0+

Qs1+ε(s1)− Qs2+ε(s2)

≥ lim
ε→0+

Qs2+ε(s1)− Qs2+ε(s2)= Qs2(s1)− Qs2(s2)

≥
n+ 1

n

∫ s2

s1

Hn(0s2
s ) ds, (4-8)

and, in particular, Q is decreasing on (0,∞). Again by Lemma 7(iii)

Hn(0t
s−r )=

∫
0t

s

n∏
i=1

(1+ r(κi )s) dHn,

where 1+r(κi )s→ 1 uniformly on 0t
s as r→ 0 thanks to 1/(t−s)≥ (κs)i ≥−1/s for every i = 1, . . . , n.

Thus Hn(0t
s) is continuous on s ∈ (0, t), and∫ s2

s1

Hn(0s2
s ) ds = (s2− s1)Hn(0

s2
s∗)

for a suitable s∗ ∈ (s1, s2). But (3-34) implies

lim inf
s→(s2)−

Hn(0s2
s )≥Hn(∂�s2)

so that, in conclusion,

lim inf
s1→(s2)−

1
s2− s1

∫ s2

s1

Hn(0s2
s ) ds ≥Hn(∂�s2) for all s2 > 0.

Coming back to (4-8), and noticing that Q′(s) exists for a.e. s > 0 by monotonicity, we conclude that

−Q′(s)≥
n+ 1

n
Hn(∂�s) for a.e. s > 0.

We integrate this inequality over (s,∞) to complete the proof of (4-4). �
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