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We define �q.B; S ˝H/, the generalized q-gaussian von Neumann algebras associated to a sequence
of symmetric independent copies .�j ; B;A;D/ and to a subset 1 2 S D S� � A and, under certain
assumptions, prove their strong solidity relative to B. We provide many examples of strongly solid
generalized q-gaussian von Neumann algebras. We also obtain nonisomorphism and nonembedability
results about some of these von Neumann algebras.
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1. Background and statement of results

1A. Normalizers in von Neumann algebras. The study of normalizers in von Neumann algebras is nowa-
days an intensely active area of research within the field of von Neumann algebras. For a von Neumann
algebra M, we denote by U.M/ the group of unitaries in M. Recall that for an inclusion A�M of von
Neumann algebras, the normalizing group of A inM is defined as NM .A/Dfu2U.M/ WuAu�DAg and
the normalizer of A is the von Neumann algebra generated by the normalizing group, i.e., NM .A/00 �M.
When A is a maximal abelian von Neumann subalgebra of a type-II1 factor M, A is called a Cartan
subalgebra if its normalizer is the whole of M. While some results were obtained in the early 80’s, see,
e.g., [Connes and Jones 1982; Jones and Popa 1982] and most notably [Connes, Feldman and Weiss
1981], the first truly significant achievement in this area is Voiculescu’s ground-breaking result [1996]
about the absence of Cartan subalgebras in the free-group factors L.Fn/. After this, in their seminal work,
Ozawa and Popa [2010a] established the following result:
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Theorem 1.1. Let Fn Õ B be a profinite trace-preserving action of a free group on an amenable von
Neumann algebra B. Then for every amenable von Neumann subalgebra A � M D B Ì Fn, either
A�M B, or the normalizer of A is amenable.

The notation A�M B reads “a corner of A embeds into B inside M ”, in the sense of [Popa 2006b,
Theorem 2.1], and it roughly means that A can be conjugated into B by a partial isometry in M. When
B is the scalars, this shows that the normalizer of any amenable diffuse von Neumann subalgebra of
L.Fn/ is itself amenable, not only reproving and strengthening Voiculescu’s result, but also giving a
surprisingly far-reaching classification of normalizer algebras in the free group factors. More than
merely proving the above theorem, [Ozawa and Popa 2010a] introduced an array of innovative ideas and
techniques which remain all-pervasive and highly influential in the field to this day. The results in that
paper were then extended in [Ozawa and Popa 2010b] to profinite actions of weakly amenable groups
having proper 1-cocycles into (a multiple of) their left regular representations. Subsequent generalizations
to the case of profinite actions of groups having quasicocycles or direct products of such have been
obtained in [Chifan and Sinclair 2013; Chifan, Sinclair and Udrea 2013]. Recently, Popa and Vaes
obtained the definitive form of these results, by completely removing any assumption on the action of the
group. Specifically, they proved the following results (see [Popa and Vaes 2014a, Theorem 1.6; 2014b,
Theorem 1.4]):

Theorem 1.2. Let � be a weakly amenable group having either a proper 1-cocycle or a proper 1-
quasicocycle into a (representation which is weakly contained into) a multiple of its left regular repre-
sentation. Let � Õ B be any trace-preserving action of � on the finite von Neumann algebra B, and let
A�M D B Ì� be a von Neumann subalgebra which is amenable relative to B inside M. Then either
A�M B, or the normalizer of A is amenable relative to B inside M.

Theorem 1.3. Let � Õ B be a p.m.p. free ergodic action, where B is abelian diffuse and � is weakly
amenable and admits an unbounded (rather than proper) 1-cocycle into a mixing representation which is
weakly contained into a multiple of the left regular representation of � . Then M D B Ì� has a unique
Cartan subalgebra, up to unitary conjugacy.

Popa and Vaes coined the phrase “relative strong solidity” to describe the situation in which the
dichotomy in Theorem 1.2 holds. Namely, a von Neumann algebra M is strongly solid relative to B , for
B �M a subalgebra, if for every von Neumann subalgebra A �M which is amenable relative to B
inside M, see [Ozawa and Popa 2010a], it is either the case that A �M B or that the normalizer of A
is amenable relative to B inside M. In the case of B abelian diffuse and of p.m.p. free ergodic actions
� Õ B, the strong solidity of the von Neumann algebra M D B Ì� relative to B implies its uniqueness
of Cartan subalgebra, up to unitary conjugacy. Strong solidity relative to the scalars is simply termed
strong solidity. Strong solidity is in turn an enhancement of Ozawa’s concept of solidity [2004]. Ozawa
called a von Neumann algebra M solid if for every diffuse von Neumann subalgebra A �M one has
that A0\M is amenable. It’s easy to see that a nonamenable solid factor M is automatically prime, i.e.,
cannot be written as M DM1˝M2, with Mi an infinite-dimensional factor for i D 1; 2.
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Further results pertaining to the classification of normalizers and relative strong solidity were obtained
in [Sinclair 2011; Ioana 2015; Isono 2015a; 2015b; Avsec 2012; Boutonnet, Houdayer and Vaes 2018;
Houdayer and Vaes 2013; Caspers 2018].

1B. Noncommutative probability. Voiculescu [1985] introduced his highly influential free probability
theory in the early 80’s, in order to tackle some problems related to the free group factors. Since then,
free probability theory has grown into an immense industry with far-reaching ramifications. Very roughly
speaking, in the realm of free probability, classical probability spaces are replaced by C �- or W �-algebras
endowed with distinguished states (normal in the W � case), classical random variables by operators in
those algebras, classical independence by Voiculescu’s free independence, and the classical distribution
function by Voiculescu noncommutative distribution of a noncommutative random variable, or joint
distribution in the case of a system of random variables. In particular, the normal (gaussian) distribution
is replaced by Wigner’s semicircular law.

1B1. Classical gaussian random variables. We briefly recall the construction in Section 1.1 of [Peterson
and Sinclair 2012]. Let H a real Hilbert space and, for � 2 H, let l� be the creation operator on the
symmetric Fock space of HC DH ˚ iH. Then s1.�/D 1

2
.l� C l

�
�
/ is an unbounded self-adjoint operator

in the symmetric Fock space. The operators s1.�/ and s1.�/ commute for all � and � and are independent
with respect to the vacuum state whenever h�; �i D 0. Define �1.H/ to be the abelian von Neumann
algebra generated by the spectral projections of all the s1.�/, � 2H (or equivalently by all the unitaries
!.�1; : : : ; �k/D exp.i�s.�1/ � � � s.�k//), equipped with the trace given by the restriction of the vacuum
state. For k�k D 1, we have the moment formula

�.s.�/m/D ım22N

mŠ

2
m
2

�
m
2

�
Š
D jP2.m/j D

X
�2P2.m/

1cr.�/;

where P2.m/ is the collection of pair partitions on the set f1; : : : ; mg, and for � 2 P2.m/, cr.�/ denotes
the number of crossings of � . These are exactly the moments of a classical gaussian random variable. By
commutativity, independence and multilinearity, the moment formula can be extended to

�.s1.�1/ � � � s1.�m//D
X

�2P2.m/

1cr.�/
Y
fl;rg2�

h�l ; �ri:

One also recalls:

Theorem 1.4 (classical central limit theorem). Let fXngn�1 be a sequence of independent, identically
distributed random variables on a probability space .�;†;P /, all having mean equal to zero and variance
equal to 1. Then the averages SnDn�

1
2

Pn
jD1Xj converge in distribution to a normal (gaussian) random

variable with mean zero and variance 1.

If Xn are chosen such that supn�1 kSnk1 <1, then one can restate the central limit theorem by
saying that the element S D .Sn/n 2 .L1.�;P /! ; �!/ has a gaussian (normal) distribution, where ! is
a free ultrafilter on N and .L1.�/! ; �!/ is the ultraproduct von Neumann algebra. In other words, one
could “simulate” gaussian elements using an ultraproduct model.
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1B2. Voiculescu’s free semicircular random variables. Voiculescu [1985] constructed a functor ˆ from
the category of real Hilbert spaces with contractions to the category of finite von Neumann algebras with
completely positive maps. For h 2H, the element ˆ.h/D s0.h/ is concretely realized as the real part
of the creation operator on the full Fock space of HC. Moreover, he proved that for an orthonormal set
fh1; : : : ; hmg�H, the elements s0.h1/; : : : ; s0.hm/ are freely independent, have semicircular distributions
given by d�.t/D 1

�
�.�1;1/.t/

p
1� t2 dt , and generate a copy of the free group factorL.Fm/. In particular,

for a finite-dimensional Hilbert space H, ˆ.H/ is �-isomorphic to the free group factor L.Fdim.H//. It
is well known that the moments of a semicircular variable are given by

�.s0.h/
m/D ım22N

mŠ�
m
2
C 1

���
m
2

�
Š
�2 D X

�2P2.m/

0cr.�/
D

X
�2NCP2.m/

0cr.�/;

where we denote by NCP2.m/ the collection of noncrossing pair partitions on the set f1; : : : ; mg and
with the convention 00 D 1. By direct computation, the above formula can be extended to

�.s0.h1/ � � � s0.hm//D
X

�2P2.m/

0cr.�/
Y
fl;rg2�

hhl ; hri:

Let’s recall Voiculescu’s central limit theorem [1985]:

Theorem 1.5 (Voiculescu’s central limit theorem). Let fangn�1 be a sequence of freely independent
self-adjoint random variables in a C �-probability space .A; '/. Assume that '.an/ D 0 for all n,
supn�1 kank<1 and limn!1 n�1

Pn
jD1 '.a

2
n/D

1
4

. Then the elements Sn D n�
1
2

Pn
jD1 aj converge

in distribution to a semicircular element; i.e., their limit distribution is the semicircular law.

In particular, this says that, beside the Fock space construction, one could create semicircular random
variables by taking elements of the form

S D .Sn/n D

�
n�

1
2

nX
jD1

aj

�
n

2 .M! ; �!/;

with an as above in a finite W �-probability space .A; '/D .M; �/ and satisfying the additional condition

sup
n�1

n� 12 nX
jD1

aj


1

<1:

Let us also recall an informal statement of Voiculescu’s matrix limit theorem [1991, Theorem 2.2]:

Theorem 1.6 (Voiculescu’s matrix limit theorem). Any family of random matrices with size going to
infinity having independent normalized gaussian entries converges in distribution to a free semicircular
family.

Again, we could interpret this as saying that one can create free semicircular families using elements
of some suitable ultraproduct of matrix algebras over abelian von Neumann algebras.
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1B3. q-gaussian von Neumann algebras. The q-gaussian von Neumann algebras �q.H/, for H a real
Hilbert space, were introduced by Bożejko and Speicher [1991; 1992; 1994; 1996] and further studied
in [Bożejko, Kümmerer and Speicher 1997; Ricard 2005; Śniady 2001; 2004; Królak 2000; 2006; Nou
2004; 2006; Shlyakhtenko 2004; 2009; Dykema and Nica 1993; Avsec 2012; Dabrowski 2014]. For
�1 < q < 1, Bożejko and Speicher constructed a functor �q from the category of real Hilbert spaces with
contractions to the category of finite von Neumann algebras with completely positive maps. �q.H/ is
called the q-gaussian von Neumann algebra associated to H. The generators �q.h/D sq.h/, for h 2H,
admit a concrete representation as the real part of the creation operator by h on the q-Fock space ofH ; for
details, see, e.g., Section 2 of [Bożejko and Speicher 1991]. When q D 0, the functor �q coincides with
Voiculescu’s functor ˆ, so �0.H/D L.Fdim.H//. A direct computation using the concrete realization of
the sq.h/’s gives the moment formula

�.sq.h1/ � � � sq.hm//D
X

�2P2.m/

qcr.�/
Y
fl;rg2�

hhl ; hri;

which is why, in view of the above, the sq.h/’s can be called q-semicircular elements. The central limit
theorem holds in the q-gaussian context as well, see, e.g., [Speicher 1992, Theorem 1; 1993, Theorems 1
and 2; Bożejko 1991; Junge and Zeng 2015, Appendix A], but its statement is very technical and we
omit it. Also, the q-gaussian von Neumann algebras admit random matrix models; see [Śniady 2001,
Theorem 3]. We mention that, originally, the q-gaussian von Neumann algebras were studied as concrete
implementations of the canonical q-commutation relations, or as examples of nonclassical Brownian mo-
tions, see, e.g., [Bożejko and Speicher 1991; 1992; 1994], but we choose to downplay these aspects in the
present work. The central limit theorem suggests that the q-gaussians can be introduced via an ultraproduct
model. In fact, a concrete ultraproduct embedding which holds a great heuristic value for us is given by

�q.H/! .�q.`
2
˝H//! ; sq.h/ 7!

�
n�

1
2

nX
jD1

sq.ej ˝ h/

�
n

;

where fej gj2N is the standard orthonormal basis of `2 D `2.N/.

1C. Generalized q-gaussian von Neumann algebras with coefficients. In this article we introduce a
new class of von Neumann algebras and prove some structural results about them. Specifically, we
introduce the generalized q-gaussian von Neumann algebras with coefficients associated to a sequence of
symmetric copies .�j ; B;A;D/. A 4-tuple .�j ; B;A;D/ is called a sequence of symmetric copies (of A)
if B;A;D are finite tracial von Neumann algebras such that B � A\D and �j W A!D, j 2 N, are
unital trace-preserving normal �-homomorphisms satisfying

(1) �j jB D idB for all j ;

(2) EB.�j1.a1/ � � ��jm.am//D EB.��.j1/.a1/ � � ���.jm/.am// for all finite permutations � on N, all
indices j1; : : : ; jm in N and all a1; : : : ; am in A, whereEB WD!B is the canonical trace-preserving
conditional expectation.
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We mention that our copies satisfy some additional independence conditions (see Definition 3.2). Let
�1 < q < 1 be fixed. For H an infinite-dimensional (real) Hilbert space and S a self-adjoint subset of A
containing 1, the generalized q-gaussian von Neumann algebra

�q.B; S ˝H/� .�q.`
2
˝H/˝D/!

with coefficients in B and associated to the symmetric copies .�j ; B;A;D/ is defined as the von Neumann
subalgebra generated by the elements

sq.a; h/D

�
n�

1
2

nX
jD1

sq.ej ˝ h/˝�j .a/

�
n

; a 2 BSB D fb1ab2 W b1; b2 2 B; a 2 Sg; h 2H:

Here ! is a free ultrafilter on the natural numbers and �q.`2˝H/ is the q-gaussian von Neumann algebra.
When H is finite-dimensional, one needs to further apply a “closure operation” (see Definition 3.4 and
Proposition 3.14 for more details). The crucial observation here is that, since a Fock space model is not
available, we are forced to introduce our generalized gaussians via an ultraproduct model. The generators
sq.a; h/ satisfy the moment formula

�.sq.a1; h1/ � � � sq.am; hm//D ım22N

X
�2P2.m/

qcr.�/
Y
fl;rg2�

hhl ; hri�D.��� .1/.a1/ � � ���� .m/.am//;

as well as the B-valued moment formula

EB.sq.a1; h1/ � � � sq.am; hm//D ım22N

X
�2P2.m/

qcr.�/
Y
fl;rg2�

hhl ; hriEB.��� .1/.a1/ � � ���� .m/.am//;

where for every pair partition � D ffk01; k
00
1g; : : : ; fk

0
p; k
00
pgg 2 P2.m/, the function �� W f1; : : : ; mg !˚

1; : : : ; pD m
2

	
is chosen so that �� .k01/D �� .k

00
1/D 1; : : : ; �� .k

0
p/D �� .k

00
p/D p. In view of all of the

above, the elements sq.a; h/ could thus judiciously be called “B-valued q-semicircular random variables
having symmetric B-moments”.

When compared to pure q-gaussians, the generalized q-gaussian von Neumann algebras with coefficients
can be viewed as an analogue of the cross-product von Neumann algebras BÌ� as opposed to pure group
von Neumann algebras L.�/. This analogy can be given some substance along the lines of [Shlyakhtenko
1999]. However, in the present work we do not pursue this insight and use this analogy merely as a
guideline for the implementation of Popa’s deformation-rigidity strategy. The main result we prove about
our generalized q-gaussian algebras is:

Theorem A. Let .�j ; B;A;D/ be a sequence of symmetric independent copies,H be a finite-dimensional
Hilbert space and A �M D �q.B; S ˝H/ be a diffuse von Neumann subalgebra which is amenable
relative to B inside M. For every s � 0, define Ds.S/ to be the following right B-submodule of L2.D/:

spank�k2fEAf1;:::;sg.��� .1/.x1/ � � ���� .m/.xm// Wm� 1; � 2 P1;2.m/; xi 2 BSBg;

where m D s C 2p, P1;2.m/ is the set of pair-singleton partitions of f1; : : : ; mg, � runs over all
pair-singleton partitions in P1;2.m/ having s singletons and p pairs and for such a partition � D
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ffk1g; : : : ; fksg; fk
0
1; k
00
1g; : : : ; fk

0
p; k
00
pgg, the function �� W f1; : : : ; mg!f1; : : : ; sCpg satisfies �� .k1/D

1; : : : ; �� .ks/ D s and �� .k01/ D �� .k
00
1/ D s C 1; : : : ; �� .k

0
p/ D �� .k

00
p/ D s C p. Assume that there

exist constants d; C > 0 such that dimB.Ds.S//� Cd s for all s � 1. Then at least one of the following
statements is true:

(1) A�M B.

(2) The von Neumann algebra P DNM .A/00 generated by the normalizer of A inM is amenable relative
to B inside M.

The technical condition on the dimension of the B-modules Dk.S/ implies in particular that the
subspace of Wick words of length k is finitely generated over B for all k � 1 (see Theorem 3.16 and
Proposition 3.20). This last condition in turn is the exact analogue of the group cocycle being proper in
the case of cross-product von Neumann algebras.

As a consequence of our Theorem A, we find a number of examples of generalized q-gaussians
which are strongly solid (when B D C or B is finite-dimensional) or strongly solid relative to B for
diffuse B. While the class of generalized q-gaussian von Neumann algebras with coefficients is huge
(roughly speaking such a von Neumann algebra can be constructed starting from any action of the infinite
symmetric group on another finite von Neumann algebra), the range of examples to which our Theorem A
applies is greatly restricted by the technical assumptions we make. The examples in the corollary below
are introduced in more detail in Section 4.

Corollary B. The following von Neumann algebras are strongly solid relative to B:

(1) (see Section 4A) B˝�q.H/ for H a finite-dimensional Hilbert space.

(2) (see Section 4C2) �q.B; S ˝ H/ associated to the symmetric independent copies .�j ; B;A;D/
constructed in the following way: take a trace preserving action ˛ of Z on a finite von Neumann
algebra N. Let HD hgj W j � 0i be the Heisenberg group, take � WH! Z an onto group homomorphism
and define ˇ WHÕN by

ˇg.x/D ˛�.g/.x/; g 2H; x 2N:

Let H1 D hg0; g1i and take B D N Ì Z D N ˝ L.Z/, A D N ÌH1 and S D f1; g1; g�11 g. Define
�j W A!D by

�j .xug1/D ˛�.gj /.x/ugj ; �j .xug0/D xug0 ; x 2N; j; k 2 N:

(3) (see Section 4D1) �q.C; S ˝K/ associated to the symmetric copies .�j ; B D C; AD �q0.H/;D D

�q.`
2˝H//, where �j .sq0.h//D sq.ej ˝ h/ and K is a finite-dimensional Hilbert space.

(4) (see Section 4D2) �q.Bd ; S ˝ H/ associated to the symmetric copies .�j ; Bd ; Ad ;Dd /, where
Bd D L.†Œ�d;0�/, Ad D L.†Œ�d;1�/, Dd D L.†Œ�d;1// D fu� W � 2 †Œ�d;1/g00 and S D f1; u.01/g
for a fixed d 2 N n f0g; here †Z is the group of finite permutations on Z and for a subset F � Z,
†F �†Z is the group of finite permutations on F naturally embedded into †Z. The copies are defined by
�j .a/D u.1j /au.1j /, a 2 Ad .
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(4) (see Section 4B) �q.C; S˝H/ associated to the symmetric copies
�
�j ; BDC; ADL.Z/Dfug00;DD¨

NL.Z/
�
, where u is a Haar unitary, the symmetric copies �j W A! D are defined by the relations

�j .u/D � � � � 1�u� 1� � � � , and S D f1; u; u�g.

It follows that the examples in (3), (4) and (5) are strongly solid and hence solid nonamenable von
Neumann algebras. In particular, they are prime von Neumann algebras. Note that when q D 0 and H is
trivial, the example in (5) is �-isomorphic to L.F1/, thus reproving the strong solidity of the free group
factors.

Using Theorem A we also deduce the following:

Corollary C. Let Mi D �qi .Bi ; Si ˝Hi / be associated with two sequences of symmetric independent
copies .� ij ; Bi ; Ai ;Di / and two subsets Si �Ai , and�1<qi <1, iD1; 2. Assume that 2�dim.Hi /<1,
dimBi .Dk.Si //� Cd

k for fixed constants d; C > 0 and Bi are amenable for i D 1; 2. If M1 �M2, then
B1 �M2 B2. Moreover, if M1 DM2 DM, it follows that B1 �M B2 and B2 �M B1.

This result can be regarded as an analogue of the “uniqueness of Cartan subalgebra” results in the
group measure space construction setting. Note however, that even when B is abelian, it is not a MASA in
M D�q.B; S˝H/. Indeed, B always commutes with a copy of �q.H/ insideM D�q.B; S˝H/; hence
it can never be maximally abelian. Thus, even when B1 and B2 are both abelian diffuse, we cannot avail
ourselves of Popa’s results [2006a, Appendix, Theorem A.1] about unitary conjugacy of Cartan subalgebras
to conclude that B1 is unitarily conjugate to B2, so this double intertwining result is optimal in our case.
Finally, we deduce some nonisomorphism and nonembedability results for generalized q-gaussians.

Corollary D. Under the assumptions of Corollary C, if we moreover assume that

(1) B1 is finite-dimensional and B2 is amenable diffuse, or

(2) B1 is abelian and B2 is the hyperfinite II1 factor,

thenM2D�q2.B2; S2˝H2/ cannot be realized as a von Neumann subalgebra ofM1D�q1.B1; S1˝H1/.
In particular M1 and M2 are not �-isomorphic.

1D. Comments on the proofs and structure of the article. Finally, a couple of words about the main
ideas behind the proof of Theorem A. We mention that actually Theorem A will be derived from the
technical Theorem 7.2 much along the lines of Theorem 3.1 in [Popa and Vaes 2014a], whose statement
and proof can be found in Section 7. We follow the approach of Popa and Vaes [2014a; 2014b], which in
turn is a development of the original ground-breaking insight in [Ozawa and Popa 2010a; 2010b]. Let
A �M D �q.B; S ˝H/ be a diffuse von Neumann subalgebra which is amenable relative to B. The
two main ingredients of the proof are, just as in [Popa and Vaes 2014a]:

(1) The fact that the embedding A � M is weakly compact relative to B. This is the existence of a
sequence of normal states viewed as unit vectors �n 2 L2.N /, where N �M is a suitable (in general
nontracial) von Neumann algebra, which are asymptotically invariant to the action of the “tensor double”
of the normalizer of A in M ; the existence of these states is a consequence of the weak amenability (with
Cowling–Haagerup constant 1) of the pure q-gaussian von Neumann algebras �q.H/.
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(2) The existence of a one-parameter group of �-automorphisms .˛t / of a suitable dilation eN of N
having good properties.

The proof proceeds by applying the deformation ˛t to the vectors �n. Then either the deformation
significantly displaces the vectors, or it does not. The first case yields the amenability of P DNM .A/00

relative to B, while the second implies that A�M B, via the fact that the maps Tt (where t ! Tt is the
canonical semigroup of u.c.p. maps on M ) are compact over B, in the terminology of Popa and Ozawa.

While it’s true that conceptually we follow closely the approach of [Popa and Vaes 2014a], it has to be
strongly emphasized that the technical difficulties of our approach are vastly larger. First of all, since
our objects are much more elusive and complicated than cross-product von Neumann algebras, being
defined as subalgebras of an ultraproduct to begin with, the proof of Theorem 5.1 (the existence of the
invariant states), which is the key ingredient in the proof of the technical theorem, is riddled with daunting
difficulties. Among these, constructing the von Neumann algebras involved in the deformation-rigidity
argument (e.g., N and eN above) and the spaces on which they act was a particularly challenging task.
Also, the complete boundedness of certain maps used in the proof turns out to be surprisingly nontrivial
and requires the use of delicate operator-space techniques; in the pure Hilbert space setting, somewhat
similar techniques have been used in [Avsec 2012; Nou 2004; 2006]. Second, and just as important,
we cannot use the reduction to the “trivial-action case” (i.e., the tensor product case), as Popa and
Vaes do. The reduction step plays a crucial role in their proof, because it is only in the tensor product
setting that they are able to prove the relative weak compactness property and subsequently carry out the
deformation-rigidity arguments. The reduction is essentially based on the use of the comultiplication
map in the cross-product case. Since we have no good substitute for the comultiplication map, we cannot
reduce to the tensor-product case, and hence everything becomes much more complicated and technically
involved, including the standard forms of the von Neumann algebras involved, which are in general
nontracial.

The article contains six sections beside the introduction, and is organized as follows: Section 2
contains some needed technical preliminaries. In Section 3 we introduce the generalized q-gaussian
von Neumann algebras and prove their basic properties; among other things, we exhibit the canonical
generators of �q.B; S ˝H/ (the Wick words), prove that they actually belong to the algebra and prove a
very useful reduction result about them. Section 4 lists a rather wide range of examples of generalized
q-gaussian von Neumann algebras constructed from a variety of symmetric independent copies. We
devote Section 5 to the proof of the relative weak compactness of the embedding A�M ; the second half
of this section contains some technical results about the complete boundedness of certain multipliers used
in the proof. In Section 6 we prove that under the assumption of polynomial growth of the dimensions of
the modules Dk.S/ over B, the natural deformation bimodules used in the technical theorem are weakly
contained in L2.M/˝B L

2.M/, a fact which will be further used in combination with the technical
theorem to derive Theorem A. The proof is based on a novel and “nondeterministic” approach. Indeed,
the calculation of the deformation bimodules in the q-gaussian setting is a real challenge even in the
case of pure �q.H/ von Neumann algebras, see [Avsec 2012], and it becomes even more so when we
allow q-gaussians with coefficients. Section 7 contains the proof of the main technical theorem and its
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applications. Beside many examples of strongly solid generalized q-gaussian von Neumann algebras, we
also obtain some nonisomorphism and nonembedability results.

2. Preliminaries

2A. Popa’s intertwining techniques. We will briefly review the concept of intertwining two subalgebras
inside a finite von Neumann algebra, along with the main technical tools developed by Popa [2006a;
2006b]. Let .M; �/ be a finite von Neumann algebra, let f 2 P.M/ and Q � fMf , B �M be two
von Neumann subalgebras. We say that a corner of Q can be intertwined into B inside M and denote it
by Q �M B (or simply Q � B) if there exist two nonzero projections q 2Q, p 2 B, a nonzero partial
isometry v 2 qMp, and a �-homomorphism  W qQq! pBp such that v .x/D xv for all x 2 qQq.
The partial isometry v is called an intertwiner between Q and B. Popa [2006b] proved the following
intertwining criterion:

Theorem 2.1 [Popa 2006b, Corollary 2.3]. LetM be a von Neumann algebra and letQ� fMf , B �M
be diffuse subalgebras for some projection f 2M. Then the following are equivalent:

(1) Q �M B.

(2) There exists a finite set F � fMf and ı > 0 such that for every unitary v 2 U.Q/ we haveX
x;y2F

kEB.xvy
�/k22 � ı:

Let .M; �/ be a finite von Neumann algebra and ˆ WM !M a normal, completely positive map.
We say that ˆ is subtracial if � ıˆ � � . If ˆ is subtracial, then, due to the Schwarz inequality, we
automatically have

kˆ.x/k22 D �.ˆ.x/
�ˆ.x//� �.ˆ.x�x//� �.x�x/D kxk22I

i.e., ˆ is automatically k � k2-contractive, and hence extends to a bounded operator on L2.M/ defined by

Tˆ W L
2.M/! L2.M/; Tˆ. Ox/D1̂.x/; x 2M:

Let B � .M; �/ be an inclusion of finite von Neumann algebras. The basic construction (of M with B) is
defined by, see, e.g., [Popa 2006a],

hM; eBi D .M [feBg/
00
D .JBJ /0 � B.L2.M//;

where L2.M/ is the standard form of M and J W L2.M/! L2.M/ is the associated conjugation. The
definition of the compact ideal space of the basic construction (more generally of any semifinite von
Neumann algebra) can be found in [Popa 2006a, 1.3.3].

Definition 2.2. Let .M; �/ be a finite von Neumann algebra, B �M a von Neumann subalgebra and
ˆ WM !M a normal, completely positive, B-bimodular, subunital, subtracial map. We say that ˆ is
compact over B if the canonical operator Tˆ W L2.M/! L2.M/ belongs to the compact ideal space of
the basic construction hM; eBi.
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The following result is Proposition 2.7 in [Ozawa and Popa 2010a]; see also [Popa 2006a, 1.3.3].

Proposition 2.3. Let .M; �/ be a finite von Neumann algebra and let B;P �M be two von Neumann
subalgebras. Let ˆ W M ! M be a normal, completely positive, subunital, subtracial map which is
compact over B and assume that

inf
u2U.P /

kˆ.u/k2 > 0:

Then P �M B.

2B. Bimodules over von Neumann algebras and weak containment. Let M;Q be two von Neumann
algebras. An M -Q Hilbert bimodule K is simply a Hilbert space together with a pair of normal
�-representations � WM ! B.K/, � WQop! B.K/ with commuting ranges. To these one can associate
a �-representation � WM ˝binQ

op! B.K/ by

�

�X
k

xk˝y
op
k

�
� D

X
k

�.xk/�.y
op
k
/�; xk 2M; yk 2Q; � 2 K:

Definition 2.4. Let M;Q be two von Neumann algebras and H;K be two M -Q bimodules. We say that
K is weakly contained in H and denote it by K �H if k�K.x/k � k�H.x/k for all x 2M ˝algQ, where
�H; �K are the �-representations canonically associated to the left and right actions on H;K respectively.

Give an M -Q bimodule K and an Q-N bimodule H we will denote by K˝QH their Connes tensor
product, which is an M -N bimodule. For the definition and basic properties of the Connes tensor product,
see Sections 2.3, 2.4 in [Popa and Vaes 2014a]. The Connes tensor product is well-behaved with respect
to weak containment; see [loc. cit.].

Definition 2.5 [Popa and Vaes 2014a, Definition 2.3 and Proposition 2.4]. Let .M; �M / and .Q; �Q/
be finite tracial von Neumann algebras and P �M a von Neumann subalgebra. We say that an M -Q
bimodule K is left P -amenable if one of the following equivalent conditions holds:

(1) There exists a P -central state � on B.K/\ .Qop/0 such that �jM D �M .

(2) L2.M/� K˝Q K as M -P bimodules.

Definition 2.6. Let .M; �/ be a tracial von Neumann algebra, and let B;P �M be two von Neumann
algebras. We say that P is amenable relative to B inside M if one of the following equivalent conditions
holds:

(1) The M -B bimodule L2.M/ is left P -amenable.

(2) L2.M/� L2.M/˝B L
2.M/ as M -P bimodules.

Remark 2.7. Let .M; �/ be a finite von Neumann algebra andB;P �M be two von Neumann subalgebras.
Let K be a left P -amenable M -M bimodule such that K � L2.M/˝B H for some B-M bimodule H.
Then P is amenable relative to B inside M. Indeed, we have that, as M -P bimodules,

L2.M/� K˝M K � .L2.M/˝B H/˝M .H˝B L2.M//� L2.M/˝B L
2.M/:
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2C. Standard forms of nontracial von Neumann algebras. In some instances we will have to consider
nontracial von Neumann algebras M and their standard forms. Let us recall that a (hyper-)standard form
for a von Neumann algebra is given by .M;H; J; P /, where J WH !H is an antilinear unitary, P �H
is a self-dual cone such that

(i) the map M !M 0, x 7! Jx�J, is a �-anti-isomorphism acting trivially on Z.M/;

(ii) J � D � for � 2 P ;

(iii) xJxJ.P /� P for x 2M.

The standard form of M is unique up to �-isomorphism; see, e.g., [Haagerup 1975]. A particularly useful
way of describing the standard form of M is the abstract Haagerup L2.M/ space, which we briefly
describe below. The reader can find more details in [Haagerup 1979; Terp 1982; Haagerup, Junge and
Xu 2010]. Let .M; '/ be a von Neumann algebra endowed with a normal semifinite faithful (n.s.f.)
weight. Consider MDM Ì�' R, the cross-product von Neumann algebra of M with R by the modular
automorphism group �'t . Then M is semifinite and there exists an n.s.f. trace � on M such that

.D O' WD�/t D �.t/; t 2 R;

where O' is the dual weight, .D O' WD�/t is the Connes cocycle and �.t/ is the group of translations on R.
Moreover, � is the unique n.s.f. trace on M which satisfies

� ı O�
'
t D e

�t�; t 2 R:

Given another n.s.f. weight  on M, denote by h the Radon–Nikodym derivative of O with respect
to � , i.e., the unique positive self-adjoint operator affiliated to M such that

O .x/D �.h
1
2

 xh
1
2

 /; x 2MC:

Then the following condition holds:

O�
'
t .h /D e

�th ; t 2 R:

Moreover, the map  7! h is a bijection from the set of n.s.f. weights on M to the set of positive
self-adjoint operators affiliated to M which satisfy the above condition. Let L0.M; �/ be the �-algebra
consisting of all the operators on L2.R;H/ which are measurable with respect to .M; �/. For p > 0, the
Haagerup Lp.M; '/ is defined by

Lp.M; '/D fx 2 L0.M; �/ W O�
'
t .x/D e

� t
p x for all t 2 Rg:

One can define a bicontinuous linear isomorphism from M� to L1.M; '/ as the linear extension of the
map

MC� ! L1.M; '/;  7! h :

The norm k � k1 on L1.M; '/ is defined by requiring that the above isomorphism be isometric. One can
define a norm-1 linear functional tr onL1.M; '/ by tr.h /D .1/, and thus khk1D tr.jhj/, h2L1.M; '/.
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This “trace” is indeed tracial; i.e.,

tr.xy/D tr.yx/ for x; y 2 L2.M/:

Let x D ujxj be the polar decomposition of an element x 2 L0.M; �/. Then we have

x 2 Lp.M; '/() u 2M and jxj 2 Lp.M; '/() u 2M and jxjp 2 L1.M; '/:

This allows one to introduce the k � kp-norm on Lp.M; '/, by kxkp D kjxjpk
1
p

1 for x 2Lp.M; '/. Let’s
also remark that the weight ' can be recovered from the trace. Define

N' D fx 2M W '.x
�x/ <1g; M' DN

�
'N' D spanfy�x W x; y 2N'g:

The dual weight O' has a Radon–Nikodym derivative with respect to � , which will be denoted by d' .
Then for every x 2M' the operator d

1
2
' xd

1
2
' is closable, its closure belongs to L1.M; '/ and we have

the relation

'.x/D tr.d
1
2
' xd

1
2
' /; x 2M' :

If ' is a bounded functional, then d' 2 L1.M; '/ and the above identity becomes

'.x/D tr.d
1
2
' xd

1
2
' /D tr.xd'/; x 2M:

The Haagerup space Lp.M; '/ does not depend on the choice of the n.s.f. weight ' up to isomorphism;
hence it can simply be denoted by Lp.M/. It’s easy to see that M is naturally represented in standard
form on the Haagerup space L2.M/ via the obvious left and right actions. When M is finite and � is a
faithful trace on M, the Haagerup space L2.M/D L2.M; �/ coincides with the usual one.

2D. W �-Hilbert modules. We also have to recall some facts about (right) Hilbert W �-modules. Accord-
ing to [Paschke 1973; 1974], see also [Junge and Sherman 2005], a right Hilbert C �-module X over a von
Neumann algebra M is self-dual if and only if admits a module basis, i.e., a family f�˛g �X such that

X D span
X
˛

�˛M and h�˛; �ˇ i D ı˛ˇe˛ 2 P.M/:

Here, h � ; � i denotes the M -valued inner product. In this situation, there exists an index set I, a projection
e 2B.`2.I //˝M, and a right module isomorphism u WX! e.`2.I /

c˝M/. Indeed, for a basis �˛ with
h�˛; �˛i D e˛, the map u is given by u

�P
˛ �˛m˛

�
D Œe˛m˛�. Here `2.I /c ˝M denotes the space of

strongly convergent columns indexed by I. Then it is easy to see that the C �-algebra L.X/ of adjointable
operators on X is indeed a von Neumann algebra, and isomorphic to e.B.`2.I //˝M/e. Moreover, the
M -compact operators K.X/ spanned by the maps ˆ�;�.�/D �h�; �i are weakly dense in L.X/, because
K.`2.I //˝min M is weakly dense in B.`2.I //˝M. With the help of a normal faithful state, we can
complete X to the Hilbert space L2.X; �/ with inner product .�; �/D �.h�; �i/. Let �� WX ! L2.X; �/

be the inclusion map. Then

� W L.X/! B.L2.X; �//; �.T /.��.x//D ��.T x/;
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defines a normal faithful �-homomorphism such that

�.L.X//D B.L2.X; �//\ .M op/0:

This is indeed very easy to check for L.X/D e.B.`2.I //˝M/e. See [Paschke 1973; 1974; Junge and
Sherman 2005] for more details and references.

3. The generalized gaussian von Neumann algebras with coefficients:
definition and basic properties

Throughout this section we will freely use the basic properties of the pure Hilbert space q-gaussian von
Neumann algebras �q.H/, as they can be found in Section 4 of [Junge, Longfield and Udrea 2014]; see
also [Avsec 2012]. The following result is due to Voiculescu, Dykema and Nica [1992].

Proposition 3.1. Let .M; '/ and .N; / be two von Neumann algebras endowed with faithful normal
tracial states. Let .xi /1iD1 and .yj /1jD1 be countable systems of generators for M and N, respectively.
Assume that for every m� 1, every i1; : : : ; im 2 N and every "i 2 f1;�g we have

'.x
"1
i1
� � � x

"m
im
/D  .y

"1
i1
� � �y

"m
im
/:

Then there exists a �-isomorphism � WM !N such that  ı� D ' and �.xi /D yi for all i � 1.

Definition 3.2. LetA andD be two finite tracial von Neumann algebras andB a von Neumann subalgebra
of A\D. Let �j W A!D, j 2 N, be a countable family of unital, normal, faithful, trace-preserving
�-homomorphisms. The 4-tuple .�j ; B;A;D/ is called a sequence of symmetric independent copies of
A if the following properties hold:

(1) �j jB D idB for all j.

(2) EB.�j1.a1/ � � ��jm.am//D EB.��.j1/.a1/ � � ���.jm/.am// for all finite permutations � on N, all
indices j1; : : : ; jm in N and all a1; : : : ; am in A, whereEB WD!B is the canonical trace-preserving
conditional expectation.

(3) For i 2N set Ai D�i .A/�D and for I �N, set AI D
W
i2I �i .A/D

W
i2I Ai �D (by convention,

set A∅ D B); then, for any finite subsets I � J � N, j … J, d 2 AI and a; a0 2 A, we have

EAI .�j .a/d�j .a
0//DEAJ .�j .a/d�j .a

0//;

where EAI WD! AI is the canonical conditional expectation.

(4) For any finite subsets I; J � N, we have EAIEAJ D EAI\J . Note that this automatically implies
EAIEAJ DEAJEAI DEAI\AJ and in particular AI \AJ D AI\J .

(5) AN DD.

If the 4-tuple .�j ; B;A;D/ only satisfies axioms (1) and (2), we call it a sequence of symmetric copies.

The role played by the copies�j .A/ is analogous to that of tensor copies in a classical product probability
space; in fact such an infinite product probability space over a commutative or noncommutative base



GENERALIZED q-GAUSSIAN VON NEUMANN ALGEBRAS WITH COEFFICIENTS, I 1657

constitutes the first obvious example of symmetric independent copies. To be more precise, let .A; �/
be a tracial von Neumann algebra, let D D

N
i2N.Ai ; �i /, where .Ai ; �i / D .A; �/ for all i 2 N, let

�j be the obvious embedding of A in D as the j -th tensor copy and let B D C. Then all the axioms
(1) to (5) are satisfied. In particular, one could take .A; �/ D

�
L1.X; �/;

R
X d�

�
for a probability

measure space .X; �/. Axiom (2), while convenient because it greatly simplifies some of our technical
computations, doesn’t seem to be indispensable to the development of a general theory of B-valued
q-gaussian von Neumann algebras. Indeed, the generalized q-gaussian von Neumann algebras can still be
introduced in the presence of a weaker “subsymmetry” assumption, but the technicalities become even
more cumbersome, and it is unclear whether some of our results can still be obtained. Axioms (3) and (4)
can both be viewed as describing some sort of independence of the copies over B, with (4) being the
more obvious one, since for example it gives that for I \J D∅, we have EAIEAJ DEB . In the case of
an abelian D and B D C, this amounts to classical probabilistic independence. Axiom (5), while added
for completeness, can always be made redundant by shrinking the algebra D.

In what follows, the expectations EAI will be denoted by EI .

Proposition 3.3. Let .�j ; B;A;D/ be a sequence of symmetric copies. Let †D S.1/ be the group of
finite permutations on N n f0g. Then for every � 2† there exists a trace-preserving automorphism ˛� of
D0 D ANnf0g �D such that

˛� .�j1.x1/ � � ��jm.xm//D ��.j1/.x1/ � � ���.jm/.xm/ for all x1; : : : ; xm 2 A and j1; : : : ; jm 2 N:

Moreover,
†! Aut.D0; �/; � 7! ˛� ;

is an action of † on D0 by trace-preserving automorphisms. Additionally, if the symmetric copies satisfy
axiom (4), then the fixed points algebra of this action is B.

Proof. The map V� W L2.D0/! L2.D0/ defined byX
�j1.x1/ � � ��jm.xm/ 7!

X
��.j1/.x1/ � � ���.jm/.xm/

is easily seen to be a well-defined unitary because of axiom (2). Then ˛� DAd.V� /jD is a trace-preserving
automorphism of D which satisfies the required condition. The verification of the second statement is
straightforward and we leave it to the reader. �

Symmetric copies can also be introduced in the following alternative way, which is a converse to the
previous proposition: assume that ˛ W†! Aut.D; �/ is a trace-preserving action by �-automorphism of
the finite von Neumann algebra D, where † is now the finite permutation group on N[f0g instead of N.
Denote by B DD† the fixed points algebra of this action. Set

†0 D Stab†.0/D f� 2† W �.0/D 0g;

ADD†0 D fd 2D W ˛� .d/D d for all � 2†0g:

Note that †0 � † is a subgroup isomorphic to S.1/ and that B � A � D. For every j � 1, define
�j W A!D by the formula �j .a/D ˛.0j /.a/, a 2 A, where .0j / 2† is the transposition interchanging
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0 and j. Then .�j ; B;A;D/ represents a sequence of symmetric copies. Indeed, for any j � 1 and b 2B
we have �j .b/D ˛.0j /.b/D b because B is the fixed points algebra of the action ˛, so (1) is true. Note
that ˛� .a/D a for every � 2 †0 and a 2 A and EB ı ˛� D EB for all � 2 †, due to (1) and the facts
that ˛ is trace-preserving and the trace-preserving conditional expectation EB WD! B is unique. Then
for every � 2†0 Š S.1/ and for all j1; : : : ; jm � 1 and a1; : : : ; am 2 A we have

EB.��.j1/.a1/ � � ���.jm/.am//DEB.˛.0�.j1//.a1/ � � �˛.0�.jm//.am//

DEB.˛�.0j1/��1.a1/ � � �˛�.0jm/��1.am//

DEB
�
.˛� ı˛.0j1/ ı˛��1/.a1/ � � � .˛� ı˛.0jm/ ı˛��1/.am/

�
DEB.˛� .˛.0j1/.a1/ � � �˛.0jm/.am///

DEB.˛.0j1/.a1/ � � �˛.0jm/.am//

DEB.�j1.a1/ � � ��jm.am//;

so (2) is also true. As noted before, we can also assume without loss of generality that

D D
_
j�1

�j .A/D
_
j�1

Aj ;

by simply replacing D with a von Neumann subalgebra.

Notation. Let .j1; : : : ; jm/ be an m-tuple with 1 � jk � n, 1 � k � m. We denote by P.m/ the set
of partitions of f1; : : : ; mg and by P0; P1 the finest and the coarsest partitions in P.m/, respectively. The
notation P1;2.m/ stands for the collection of all the partitions of f1; : : : ; mg consisting only of singletons
and pairs. For � 2 P.m/, we say that

(1) .j1; : : : ; jm/� � if ji D jk whenever i; k 2 A 2 � ;

(2) .j1; : : : ; jm/� � if ji D jk implies that there exists an A 2 � with i; k 2 A;

(3) .j1; : : : ; jm/D � if ji D jk exactly when there exists an A 2 � such that i; k 2 A.

Given an m-tuple .j1; : : : ; jm/D P0 with 1� jk � n for 1� k �m, we set j̨1;:::;jm D ˛�j1;:::;jm , where
�j1;:::;jm.i/D ji , 1� i �m.

Definition 3.4. Let .�j ; B;A;D/ be a sequence of symmetric independent copies, S a subset of A such
that 12S DS�, H a Hilbert space and ! a free ultrafilter on N. Denote by fej g the canonical orthonormal
basis of `2 D `2.N/. Let �1 < q < 1. Define

�0q .B; S ˝H/D .B [fsq.a; h/ W a 2 S; h 2H g/
00
� .�q.`

2
˝H/˝D/! ;

where

sq.a; h/D

�
n�

1
2

nX
jD1

sq.ej ˝ h/˝�j .a/

�
n

:

Finally define

�q.B; S ˝H/D .E�q.`2n˝H/˝ id/n.�0q .B; S ˝K//;
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where K is an infinite-dimensional Hilbert space containing H, `2n Dspanfe1; : : : ; eng and for each n

E�q.`2n˝H/ W �q.`
2
˝K/! �q.`

2
n˝H/

is the canonical conditional expectation.

As q will be fixed throughout this section, we will simply use the notation s.x; h/ instead of sq.x; h/
from now on.

Remark 3.5. Due to functoriality, the definition of �q.B; S ˝H/ does not depend on the particular
choice of K �H. When H is infinite-dimensional �q.B; S ˝H/D �0q .B; S ˝H/.

Remark 3.6. �0q .B; S ˝H/D .fs.a; h/ W a 2 B [S; h 2H g/00 � .�q.`2˝H/˝D/! .

Remark 3.7. �q.B; S ˝H/ is a von Neumann algebra. Indeed, since the map

E D .E�q.`2n˝H/˝ id/n W .�q.`2˝K/˝D/!! .�q.`
2
˝H/˝D/!

is a normal linear projection (i.e., idempotent map) of norm 1, it follows that�q.B; S˝H/ is an ultraweakly
closed, self-adjoint subspace of .�q.`2˝H/˝D/! containing the identity. It’s straightforward to see
that the map E has the following bimodularity property:

E.x/E.y/E.z/DE.E.x/yE.z// for all x; y; z 2 �0q .B; S ˝K/:

Thus, for x; y 2 �0q .B; S ˝K/ we have

E.x/E.y/DE.E.x/y/ 2 �q.B; S ˝H/:

The canonical generators sq.a; h/ are not easy to work with in a variety of situations. The classical
q-gaussians possess a system of generators, the so-called Wick words, whose linear span is an ultraweakly
dense �-subalgebra. Generalized q-gaussians also have such a well-behaved system of linear generators,
which will be called Wick words by analogy with the classical case. In order to find these Wick words let
us first define, for every n 2 N, x 2 A and h 2H,

un.x; h/D n
� 1
2

� nX
jD1

s.ej ˝ h/˝�j .x/

�
2 �q.`

2
˝H/˝D:

It’s easy to see that s.x; h/ D .un.x; h//n 2 .�q.`2˝H/˝D/! for x 2 A; h 2 H. For x1; : : : ; xm 2
BSB D fb1ab2 W b1; b2 2 B; a 2 Sg and h1; : : : ; hm 2H we will analyze the product

un.x1;h1/ � � �un.xm;hm/Dn
�m
2

X
1�j1;:::;jm�n

s.ej1˝h1/ � � �s.ejm˝hm/˝�j1.x1/�j2.x2/ � � ��jm.xm/

D

X
�2P.m/

�
n�

m
2

X
.j1;:::;jm/D�
1�j1;:::;jm�n

s.ej1˝h1/ � � �s.ejm˝hm/˝�j1.x1/ � � ��jm.xm/

�
:
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For � 2 P.m/ let’s define

xn� .x1; h1; : : : ; xm; hm/D n
�m
2

X
1�j1;:::;jm�n
.j1;:::;jm/D�

s.ej1 ˝ h1/ � � � s.ejm ˝ hm/˝�j1.x1/ � � ��jm.xm/;

and
x� .x1; h1; : : : ; xm; hm/D .x

n
� .x1; h1; : : : ; xm; hm//n 2 .�q.`

2
˝H/˝D/! :

To keep the notation less cumbersome, we will omit the parameters xk; hk whenever they are clearly
understood from the context. Next we see that

un.x1; h1/ � � �un.xm; hm/D
X

�2P.m/

xn� ;

and also
s.x1; h1/ � � � s.xm; hm/D .un.x1; h1/ � � �un.xm; hm//n D

X
�2P.m/

x� :

Lemma 3.8. Let .�j ; B;A;D/ be a sequence of symmetric copies. Then:

(o) supn kx
n
�k1 <1 for all m� 1 and � 2 P1;2.m/.

(i) If � … P1;2.m/ and 0 < p <1 then

lim
n
kxn�kp D 0:

In particular s.x1; h1/ � � � s.xm; hm/D
P
�2P1;2.m/

x� .

Proof. The proof is the same as that of Proposition 4.1 in [Junge, Longfield and Udrea 2014]. �

Proposition 3.9. We have the following convolution formula for the multiplication of Wick words:

x� .x1; h1; : : : ; xm; hm/ x� .y1; k1; : : : ; ym0 ; km0/D
X

2P1;2.mCm
0/

p j1;���;mD�p; p j1;���;m0D�p

x .x1; h1; : : : ; ym0 ; km0/:

Moreover, item (i) in the lemma above shows that in the summation we can restrict ourselves to pair-
singleton partitions whose only additional pairings are between the singletons of � and � . In particular,
the linear span of the Wick words is a �-algebra.

Proof. We have

x� .x1;h1; : : : ;xm;hm/x� .y1;k1; : : : ;ym0 ;km0/

D

�
n�

mCm0

2

X
.j1;:::;jm/D�
.l1;:::;lm0 /D�

s.ej1˝h1/ � � �s.elm0˝km0/˝�j1.x1/ � � ��lm0 .ym0/

�

D

X
2P1;2.mCm

0/
p jf1;:::;mgD�p; p jf1;:::;m0gD�p

�
n�

mCm0

2

X
.j1;:::;lm0 /D

s.ej1˝h1/ � � �s.elm0˝km0/˝�j1.x1/ � � ��lm0 .ym0/

�

D

X
2P1;2.mCm

0/
p jf1;:::;mgD�p; p jf1;:::;m0gD�p

x .x1;h1; : : : ;ym0 ;km0/:
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Now if  2 P1;2.mCm0/ connects a singleton in � with a leg of a pair in � or the leg of pair in � with
either a singleton or a leg of a pair in � , the resulting x is associated to a partition containing a 3-set or a
4-set and hence vanishes according to Lemma 3.8. So in the above sum we may only allow ’s which
preserve the pair sets of both � and � and can only additionally pair singletons “on different sides of the
marker”, which ends the proof. �

Our next result provides a reduction method for the Wick words.

Lemma 3.10. Let �j WA!D be symmetric independent copies, and 1 2 S D S� �A. Let x1; : : : ; xm 2
BSB, � 2P1;2.m/ having s singletons and p pairs and � W f1; : : : ; mg!f1; : : : ; sCpg which encodes � ,
i.e., �.kt / D t for every singleton fktg 2 � , 1 � t � s, and �.k0t / D �.k00t / D t C s for every pair
fk0t ; k

00
t g 2 � , 1� t � p. Consider ."k/ a sequence of Rademacher variables, i.e., Bernoulli independent

random variables on a probability space .X; �/ satisfying "k WX!f˙1g, E."k D 1/D E."k D�1/D
1
2

.
Then X
.l1;:::;lsCp/DP0

"l1 � � � "ls ˝
�
�l�.1/.x1/ � � ��l�.m/.xm/�El1;:::;ls .�l�.1/.x1/ � � ��l�.m/.xm//

�
2

� C.m; xj /n
m�1
2 :

In particular we have�
n�

m
2

X
.l1;:::;ls ;lsC1;:::;lsCp/DP0

"l1 � � � "ls ˝ .�l�.1/.x1/ � � ��l�.m/.xm//

�

D

�
n�

s
2

X
.l1;:::;ls/DP0

"l1 � � � "ls ˝El1;:::;ls .�l�.1/.x1/ � � ��l�.m/.xm//

�

D

�
n�

s
2

X
.l1;:::;ls/DP0

"l1 � � � "ls ˝˛l1;:::;ls .F� .x1; : : : ; xm//

�
;

where F� .x1; : : : ; xm/ D E1;:::;s.��.1/.x1/ � � ���.m/.xm// and the second equality takes place in
.L1.X/˝D/!.

Proof. Throughout the proof we endow L1.X/˝D with the natural trace �˝ � , where � is the faithful
trace on D. The k � k2 in the first statement is the one corresponding to �˝ � . The approach we take is
somewhat similar to the one in [Junge and Zeng 2015].

Step 1. Let x1; : : : ; xm 2 BSB and n be fixed. Consider

�n D f.C1; : : : ; CsCp/ W C1 t � � � tCsCp D f1; : : : ; ng; Ci ¤∅ for all ig:

Make �n into a probability space with the normalized counting measure. For every .sCp/-tuple
.l1; : : : ; lsCp/ D P0, consider the indicator function ıl1;:::;lsCp W �n ! f0; 1g which is 1 if li 2 Ci for
all 1 � i � sC p and 0 otherwise. According to the proof of Lemma 3.6 in [Junge and Zeng 2015],
E.ıl1;:::;lsCp /D .sCp/

�s�p D C . Put

F.l1; : : : ; lsCp/D "l1 � � � "ls ˝ .�l�.1/.x1/ � � ��l�.m/.xm//�El1;:::;ls .�l�.1/.x1/ � � ��l�.m/.xm//:
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Then we have X
.l1;:::;lsCp/DP0

F.l1; : : : ; lsCp/


2

D C�1
C X

.l1;:::;lsCp/DP0

F.l1; : : : ; lsCp/


2

D C�1
 X
.l1;:::;lsCp/DP0

CF.l1; : : : ; lsCp/


2

D C�1
 X
.l1;:::;lsCp/DP0

E.ıl1;:::;lsCp /F.l1; : : : ; lsCp/


2

D C�1
 1

j�nj

X
.l1;:::;lsCp/DP0

X
.C1;:::;CsCp/2�n

ıl1;:::;lsCp ..C1; : : : ; CsCp//F.l1; : : : ; lsCp/


2

D C�1
 1

j�nj

X
.C1;:::;CsCp/2�n

X
l12C1;:::;lsCp2CsCp

F.l1; : : : ; lsCp/


2

D C�1kE.G/k2

� C sup
.C1;:::;CsCp/2�n

kG..C1; : : : ; CsCp//k2

D C sup
.C1;:::;CsCp/2�n

 X
l12C1;:::;lsCp2CsCp

F.l1; : : : ; lsCp/


2

;

where we define G W�n! L1.X/˝D by

G..C1; : : : ; CsCp//D
X

l12C1;:::;lsCp2CsCp

F.l1; : : : ; lsCp/:

Step 2. It suffices thus to estimate
P

l12C1;:::;lsCp2CsCp
F.l1; : : : ; lsCp/


2

for a fixed nondegenerate
partition C1; : : : ; CsCp of f1; : : : ; ng. Fix such an arbitrary partition. We define the sets

Il D C1[ � � � [CsCp�1[ .f1; : : : ; lg\CsCp/

and for l 2 CsCp

dl D
X

l12C1;:::;ls2Cs
lsC12CsC1;:::;lp�12CsCp�1

"l1 � � � "ls ˝
�
�l�.1/.x1/ � � ��l.xk0p / � � ��l.xk00p / � � ��l�.m/.xm/

�EIl�1.�l�.1/.x1/ � � ��l.xk0p / � � ��l.xk00p / � � ��l�.m/.xm//
�
:

Note thatDl DL1.X/˝AIl , l 2CsCp , form an increasing finite sequence of von Neumann subalgebras
of L1.X/˝D. Now dl 2Dl and EDl�1.dl/D 0 for all l 2 CsCp . The orthogonality together with the
Cauchy–Schwarz inequality yields X

l2CsCp

dl


2

� n
1
2 sup
l2CsCp

kdlk2:
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On the other hand, since the products "l1 � � � "ls are mutually orthogonal for different s-tuples .l1; : : : ; ls/,
we see that

kdlk2D

 X
l12C1;:::;ls2Cs

lsC12CsC1;:::;lsCp�12CsCp�1

"l1 � � �"ls˝
�
�l�.1/.x1/ � � ��l.xk0p / � � ��l.xk00p / � � ��l�.m/.xm/

�EIl�1.�l�.1/.x1/ � � ��l.xk0p / � � ��l.xk00p / � � ��l�.m/.xm//
�
2

D

 X
l12C1;:::;ls2Cs

"l1 � � �"ls

˝

� X
lsC12CsC1;:::;lsCp�12CsCp�1

�
�l�.1/.x1/ � � ��l.xk0p / � � ��l.xk00p / � � ��l�.m/.xm/

�EIl�1.�l�.1/.x1/ � � ��l.xk0p / � � ��l.xk00p / � � ��l�.m/.xm//
��

2

�n
s
2

 X
lsC12CsC1;:::;lsCp�12CsCp�1

�
�l�.1/.x1/ � � ��l�.m/.xm/�EIl�1.�l�.1/.x1/ � � ��l�.m/.xm//

�
2

�n
s
2np�1k�l�.1/.x1/ � � ��l�.m/.xm/k1�n

m�2
2 kx1k1 � � � kxmk1:

According to axiom (3) we have

EIl�1.�l�.1/.x1/ � � ��l.xk0p / � � ��l.xk00p / � � ��l�.m/.xm//

DEC1;:::;CsCp�1.�l�.1/.x1/ � � ��l.xk0p / � � ��l.xk00p / � � ��l�.m/.xm//I

hence X
l12C1;:::;lsCp2CsCp

"l1 � � �"ls˝
�
�l�.1/.x1/ � � ��l�.m/.xm/�EC1[���[CsCp�1.�l�.1/.x1/ � � ��l�.m/.xm//

�
2

D

 X
l12C1;:::;lsCp2CsCp

"l1 � � �"ls˝
�
�l�.1/.x1/ � � ��l�.m/.xm/�EIl�1.�l�.1/.x1/ � � ��l�.m/.xm//

�
2

D

 X
l2CsCp

dl


2

�kx1k1 � � � kxmk1n
m�1
2 DC 0.x1; : : : ;xm/n

m�1
2 :

Steps 1 and 2 so far imply that X
l12C1;:::;lsCp2CsCp

"l1 � � � "ls ˝
�
�l�.1/.x1/ � � ��l�.m/.xm/

�EC1[���[CsCp�1.�l�.1/.x1/ � � ��l�.m/.xm//
�
2

� C 0n
m�1
2 :
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Step 3. Now we may proceed inductively. Set y D �l�.1/.x1/ � � ��l�.m/.xm/. Then, using axiom (4) and
because the conditional expectations commute, we see that

y �EC1[���[CsCp�2.y/

D y �EC1[���[CsCp�1.y/CEC1[���[CsCp�1.y/�EC1[���[CsCp�2.y/

D y �EC1[���[CsCp�1.y/CEC1[���[CsCp�1.y/�EC1[���[CsCp�2[CsCp .EC1[���[CsCp�1.y//

D y �EC1[���[CsCp�1.y/CEC1[���[CsCp�1.y �EC1[���[CsCp�2[CsCp .y//:

Using the previous steps and the fact that the conditional expectations are k � k2-contractive, we obtain X
l12C1;:::;lsCp2CsCp

"l1 � � �"ls˝
�
�l�.1/.x1/ � � ��l�.m/.xm/�EC1[���[CsCp�2.�l�.1/.x1/ � � ��l�.m/.xm//

�
2

�

 X
l12C1;:::;lsCp2CsCp

"l1 � � �"ls

˝
�
�l�.1/.x1/ � � ��l�.m/.xm/�EC1[���[CsCp�1.�l�.1/.x1/ � � ��l�.m/.xm//

�
2

C

.id˝EC1[���[CsCp�1/� X
l12C1;:::;lsCp2CsCp

"l1 � � �"ls˝
�
�l�.1/.x1/ � � ��l�.m/.xm/

�EC1[���[CsCp�2[CsCp .�l�.1/.x1/ � � ��l�.m/.xm//
��

2

�

 X
l12C1;:::;lsCp2CsCp

"l1 � � �"ls

˝
�
�l�.1/.x1/ � � ��l�.m/.xm/�EC1[���[CsCp�1.�l�.1/.x1/ � � ��l�.m/.xm//

�
2

C

 X
l12C1;:::;lsCp2CsCp

"l1 � � �"ls˝
�
�l�.1/.x1/ � � ��l�.m/.xm/

�EC1[���[CsCp�2[CsCp .�l�.1/.x1/ � � ��l�.m/.xm//
�
2

� 2C 0n
m�1
2 :

After using the triangle inequality p times, we get X
l12C1;:::;lsCp2CsCp

"l1 � � � "ls ˝
�
�l�.1/.x1/ � � ��l�.m/.xm/

�EC1[���[Cs .�l�.1/.x1/ � � ��l�.m/.xm//
�
2

� pC 0n
m�1
2 D C 00n

m�1
2 :

Now we claim that

EC1[���[Cs .�l�.1/.x1/ � � ��l�.m/.xm//DEfl1;:::;lsg.�l�.1/.x1/ � � ��l�.m/.xm//:

This can be established using axioms (3) and (4). Indeed, since

lsCp … C1[ � � � [CsCp�1 � fl1; : : : ; lsCp�1g;
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by applying axiom (3) we see that

Efl1;:::;lsCp�1g.�l�.1/.x1/ � � ��l�.m/.xm//

D �l�.1/.x1/ � � �Efl1;:::;lsCp�1g.�lsCp .xk0p / � � ��lsCp .xk00p // � � ��l�.m/.xm/

D �l�.1/.x1/ � � �EC1[���[CsCp�1.�lsCp .xk0p / � � ��lsCp .xk00p // � � ��l�.m/.xm/

DEC1[���[CsCp�1.�l�.1/.x1/ � � ��l�.m/.xm//;

and then

EC1[���[Cs .�l�.1/.x1/ � � ��l�.m/.xm//DEC1[���[Cs .EC1[���[CsCp�1.�l�.1/.x1/ � � ��l�.m/.xm///

DEC1[���[Cs .El1;:::;lsCp�1.�l�.1/.x1/ � � ��l�.m/.xm///

DE.C1[���[Cs/\fl1;:::;lsCp�1g.�l�.1/.x1/ � � ��l�.m/.xm//

DEfl1;:::;lsg.�l�.1/.x1/ � � ��l�.m/.xm//;

which proves the claim. Now the claim, together with the last inequality, gives X
l12C1;:::;lsCp2CsCp

"l1 � � � "ls˝
�
�l�.1/.x1/ � � ��l�.m/.xm/�Efl1;:::;lsg.�l�.1/.x1/ � � ��l�.m/.xm//

�
2

� C 00n
m�1
2 :

Step 1 now implies X
.l1;:::;lsCp/DP0

"l1 � � � "ls ˝
�
�l�.1/.x1/ � � ��l�.m/.xm/�Efl1;:::;lsg.�l�.1/.x1/ � � ��l�.m/.xm//

�
2

� CC 00n
m�1
2 ;

which proves the first statement in the lemma. For the second statement, we begin by noting that
Efl1;:::;lsg.�l�.1/.x1/ � � ��l�.m/.xm// only depends on l1; : : : ; ls , and not on lsC1; : : : ; lsCp. Indeed, let
.l1; : : : ; ls; l

0
sC1; : : : ; l

0
sCp/D

P0 be another .sCp/-tuple with the same first s entries. Take a finite permu-
tation � such that �.li /D li , i � s, and �.lsCi /D l 0sCi , i �p. Then ˛� is the identity on Al1;:::;ls ; hence

Efl1;:::;lsg.�l�.1/.x1/ � � ��lsCi .xk0i
/ � � ��lsCi .xk00i

/ � � ��l�.m/.xm//

D .Efl1;:::;lsg ı˛� /.�l�.1/.x1/ � � ��lsCi .xk0i
/ � � ��lsCi .xk00i

/ � � ��l�.m/.xm//

DEfl1;:::;lsg.�l�.1/.x1/ � � ��l 0sCi
.xk0

i
/ � � ��l 0

sCi
.xk00

i
/ � � ��l�.m/.xm//;

which proves the claim. Now the first statement of the lemma together with an easy counting argument
shows that�
n�

m
2

X
.l1;:::;lsCp/DP0

"l1 � � � "ls ˝�l�.1/.x1/ � � ��l�.m/.xm/

�
D

�
n�

m
2

X
.l1;:::;lsCp/DP0

"l1 � � � "ls ˝Efl1;:::;lsg.�l�.1/.x1/ � � ��l�.m/.xm//

�

D

�
n�

s
2

X
.l1;:::;ls/DP0

"l1 � � � "ls ˝Efl1;:::;lsg.�l�.1/.x1/ � � ��l�.m/.xm//

�
:
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Finally, let’s note that

El1;:::;ls ı˛l1;:::;lsCp D ˛l1;:::;ls ıE1;:::;s;

which implies

El1;:::;ls .�l�.1/.x1/ � � ��l�.m/.xm//D .El1;:::;ls ı˛l1;:::;lsCp /.��.1/.x1/ � � ���.m/.xm//

D .˛l1;:::;ls ıE1;:::;s/.��.1/.x1/ � � ���.m/.xm//

D ˛l1;:::;ls .F� .x1; : : : ; xm//: �

Theorem 3.11. Let .�j ; B;A;D/ be a sequence of symmetric independent copies, x1; : : : ; xm 2 A,
� 2P1;2.m/ having s singletons and p pairs and � W f1; : : : ; mg! f1; : : : ; sCpg which encodes � . Then

x� .x1; h1; : : : ; xm; hm/

D

�
n�

m
2

X
.j1;:::;jm/D�

s.ej1 ˝ h1/ � � � s.ejm ˝ hm/˝�j1.x1/ � � ��jm.xm/

�

D f� .h1; : : : ; hm/

�
n�

s
2

X
.l1;:::;ls/DP0

s.el1 ˝ hk1/ � � � s.els ˝ hks /˝˛fl1;:::;lsg.F� .x1; : : : ; xm//

�
D f� .h1; : : : ; hm/W� .x1; h1; : : : ; xm; hm/;

where
F� .x1; : : : ; xm/DEf1;:::;sg.��.1/.x1/ � � ���.m/.xm//;

f� .h1; : : : ; hm/D q
cr.�/

Y
fk;lg2�

hhk; hli

and fk1; : : : ; ksg are the singletons of � . The elements

W� .x1; h1; : : : ; xm; hm/D

�
n�

s
2

X
.l1;:::;ls/DP0

s.el1 ˝ hk1/ � � � s.els ˝ hks /˝˛fl1;:::;lsg.F� .x1; : : : ; xm//

�

will be called reduced Wick words.

Proof. We will use the previous lemma. Let

bB D B; OAD �q.H/˝A; bD D �q.`2˝H/˝D
and O�j W OA! �q.`

2˝H/˝D be the �-homomorphisms given by

O�j .s.h/˝ x/D s.ej ˝ h/˝�j .x/:

Then . O�j ; B; OA; bD/ represents a sequence of independent symmetric copies. Moreover, it is easy to see
that OAI D �q.`2.I /˝H/˝AI . Now according to the previous lemma we have



GENERALIZED q-GAUSSIAN VON NEUMANN ALGEBRAS WITH COEFFICIENTS, I 1667�
n�

m
2

X
.j1;:::;jm/D�

"jk1 � � �"jks˝s.ej1˝h1/ � � �s.ejm˝hm/˝�j1.x1/ � � ��jm.xm/

�

D

�
n�

m
2

X
.l1;:::;lsCp/DP0

"l1 � � �"ls˝s.el�.1/˝h1/ � � �s.el�.m/˝hm/˝�l�.1/.x1/ � � ��l�.m/.xm/

�

D

�
n�

m
2

X
.l1;:::;lsCp/DP0

"l1 � � �"ls˝ O�l�.1/.s.h1/˝x1/ � � � O�l�.m/.s.hm/˝xm/

�

D

�
n�

s
2

X
.l1;:::;ls/DP0

"l1 � � �"ls˝ Ǫ l1;:::;ls .
bF � .s.h1/˝x1; : : : ; s.hm/˝xm//�

D

�
n�

s
2

X
.l1;:::;ls/DP0

"l1 � � �"ls˝ Ǫ l1;:::;ls
�
E OA1;:::;s

. O��.1/.s.h1/˝x1/ � � � O��.m/.s.hm/˝xm//
��

D

�
n�

s
2

X
.l1;:::;ls/DP0

"l1 � � �"ls˝ Ǫ l1;:::;ls
�
E�q.`2s˝H/˝A1;:::;s

�
s.e�.1/˝h1/ � � �s.e�.m/˝hm/

˝��.1/.x1/ � � ���.m/.xm/
���

Df� .h1; : : : ;hm/

�
n�

s
2

X
.l1;:::;ls/DP0

"l1 � � �"ls˝ Ǫ l1;:::;ls
�
s.e1˝hk1/ � � �s.es˝hks /

˝E1;:::;s.��.1/.x1/ � � ���.m/.xm//
��

Df� .h1; : : : ;hm/

�
n�

s
2

X
.l1;:::;ls/DP0

"l1 � � �"ls˝
�
s.el1˝hk1/ � � �s.els˝hks /

˝˛l1;:::;ls .E1;:::;s.��.1/.x1/ � � ���.m/.xm///
��

Df� .h1; : : : ;hm/

�
n�

s
2

X
.l1;:::;ls/DP0

"l1 � � �"ls˝s.el1˝hk1/ � � �s.els˝hks /˝˛l1;:::;ls .F� .x1; : : : ;xm//

�
:

To see why the fifth equality is true, note that

s.e�.1/˝ h1/ � � � s.e�.m/˝ hm/

D

X
�2P1;2.m/

f� .e�.1/˝ h1˝ � � �˝ e�.m/˝ hm/W..e�.1/˝ h1˝ � � �˝ e�.m/˝ hm/� /;

where the notation . � /� means that the pair positions of � have been removed. After the application of
E�q.`2s˝H/, we see that the only surviving partition is � D � and

E�q.`2s˝H/.s.e�.1/˝ h1/ � � � s.e�.m/˝ hm//D f� .h1; : : : ; hm/W.e1˝ hk1 � � � es˝ hks /

D f� .h1; : : : ; hm/s.e1˝ hk1/ � � � s.es˝ hks /:

Now, let’s define

Qs.x; h/D

�
n�

1
2

nX
jD1

"j ˝ s.ej ˝ h/˝�j .x/

�
2 .L1.X/˝�q.`

2
˝H/˝D/! :

We claim that the new Wick words Qx� associated to the variables Qs.x; h/ have the same moments as x�
and hence they generate an isomorphic von Neumann algebra. Indeed, fix � 2 P1;2.m/. Note that for
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.l1; : : : ; ls/D P0, we have �."l1 � � � "ls /D �."l1/ � � ��."ls /D ısD0, due to the fact that "j are mean-zero,
independent random variables. Then

�!. Qx� .x1;h1; : : : ;xm;hm//

D �!

��
n�

m
2

X
.l1;:::;lsCp/DP0

"l1 � � �"ls˝s.el�.1/˝h1/ � � �s.el�.m/˝hm/˝�l�.1/.x1/ � � ��l�.m/.xm/

��

D lim
n

�
n�

m
2

X
.l1;:::;lsCp/DP0

�."l1 � � �"ls /�.s.el�.1/˝h1/ � � �s.el�.m/˝hm//�D.�l�.1/.x1/ � � ��l�.m/.xm//

�

D ısD0 lim
n

�
n�

m
2

X
.l1;:::;lsCp/DP0

�.s.el�.1/˝h1/ � � �s.el�.m/˝hm//�D.�l�.1/.x1/ � � ��l�.m/.xm//

�

D ı�2P2.m/ limn

�
n�

m
2

X
.l1;:::;lsCp/DP0

�.s.el�.1/˝h1/ � � �s.el�.m/˝hm//�D.�l�.1/.x1/ � � ��l�.m/.xm//

�
D �!.x� .x1;h1; : : : ;xm;hm//:

Define M� .�q.`2˝H/˝D/! to be the von Neumann algebra generated by all the Wick words x� .
Also define eM � .L1.X/˝ �q.`

2 ˝H/˝D/! to be the von Neumann algebra generated by the
elements Qx� . Using the claim, the convolution formula and Proposition 3.1 we see that the map

M! eM;
X

x� 7!
X
Qx� ;

is a �-isomorphism. Applying the inverse of this isomorphism to the equality�
n�

m
2

X
.l1;:::;lsCp/DP0

"l1 � � � "ls ˝ s.el�.1/ ˝ h1/ � � � s.el�.m/ ˝ hm/˝�l�.1/.x1/ � � ��l�.m/.xm/

�

D f� .h1; : : : ; hm/

�
n�

s
2

X
.l1;:::;ls/DP0

"l1 � � � "ls˝s.el1˝hk1/ � � � s.els˝hks /˝˛l1;:::;ls .F� .x1; : : : ; xm//

�
;

we obtain the desired identity. �

Proposition 3.12. Let x1; : : : ; xm 2 A and h1; : : : ; hm 2H. Then we have the moment formula

�.s.x1; h1/ � � � s.xm; hm//D ım22N

X
�2P2.m/

qcr.�/
Y
fl;rg2�

hhl ; hri�.�j�1 .x1/ � � ��j
�
m
.xm//;

as well as the B-valued moment formula

EB.s.x1; h1/ � � � s.xm; hm//D ım22N

X
�2P2.m/

qcr.�/
Y
fl;rg2�

hhl ; hriEB.�j�1 .x1/ � � ��j
�
m
.xm//;

where for every � 2 P2.m/, the j �1 ; : : : ; j
�
m are chosen such that .j �1 ; : : : ; j

�
m/D � .

Proof. It’s a straightforward application of the reduction formula. �
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Remark 3.13. Proposition 3.1 shows that M D �0q .B; S ˝H/ could be introduced abstractly as the
tracial von Neumann algebra .M; �/ generated by elements s.x; h/, x 2 BSB , h 2H, which satisfy the
above moment formula.

Proposition 3.14. Let K be infinite-dimensional and x1; : : : ; xm 2 BSB, h1; : : : ; hm 2 K, � 2
P1;2.m/. Then x� .x1; h1; : : : ; xm; hm/ 2 �0q .B; S ˝ K/. For every Hilbert space H, all the Wick
words x� .x1; h1; : : : ; xm; hm/, xi 2 BSB , hi 2H, are in M D �q.B; S ˝H/. In particular, M is the
ultraweakly closed linear span of the (reduced) Wick words and L2.M/ is the k � k2-closed span of the
(reduced) Wick words.

Proof. We need a basic fact about infinite-dimensional Hilbert spaces.

Fact. LetK be an infinite-dimensional Hilbert space and �1; : : : ; �p 2C. Then there exist norm-bounded
sequences �kn ; �

k
n 2K for 1�k�p such that �kn! 0, �kn! 0 weakly and h�kn ; �

k
niD�k for all 1�k�p,

and moreover �kn ; �
k
n ? �

j
n ; �

j
n for k ¤ j. Indeed, let .en/ be an orthonormal infinite sequence in K.

Define

�1n D �1en; �1n D en; �2n D �2enC1; �2n D enC1; : : : ; �pn D �penCp�1; �pn D enCp�1:

To prove the proposition we will use induction on s, the numbers of singletons in � . For s D 0,
x� .x1; h1; : : : ; xm; hm/ 2 B due to the Wick word reduction formula, so the statement is trivial. For a
given � with pairs B1; : : : ; Bp and B D fl; rg we use the fact above to find uniformly norm-bounded
vectors hl;B.k/; hr;B.k/ 2K which converge to 0 weakly and such that hhl;B.k/; hr;B.k/i D hhl ; hri
for all pairs B D fl; rg, and such that the hl=r;B.k/’s are orthogonal for different pairs B. Let us define
Qhi .k/D hi for any singleton fig 2 � and Qhi .k/D hl=r;B.k/ if i 2 B and i D l or i D r . For every other
Wick word x0� 0.y1; f1; : : : ; ym0 ; fm0/, with yj 2 BSB, fj 2K, we have

lim
k!1

�.s.x1; Qh1.k// � � � s.xm; Qhm.k//x
0
� 0/

D lim
k!1

X
�2P1;2.m/

�.x� .x1; Qh1.k/; : : : ; xm; Qhm.k//x
0
� 0/

D �.x�x
0
� 0/C lim

k!1

X
�p��p; j�s j<s

�.x� .x1; Qh1.k/; : : : ; xm; Qhm.k//x
0
� 0/:

Indeed, for every � 2 P1;2.m/ which does not contain all the pairs of � , we use the convolution and the
moment formulas to obtain

�.x�x
0
� 0/D

X
�2P2.mCm0/

�.x�.x1; Qh1.k/; : : : ; ym0 ; fm0//

D

X
�2P2.mCm0/

f�. Qh1.k/; : : : ; Qhm.k/; f1; : : : ; fm0/ �.W�.x1; Qh1.k/; : : : ; ym0 ; fm0//;

where the sum is taken over all � that preserve the pairs of � and � 0 and additionally pair all the singletons
of � and � 0. Now since � does not contain all the pairs of � , there must be a leg l of a pair fl; rg DB 2 �
which is connected by � to something other than its other leg in � . There are three possibilities:
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(1) � connects l to a leg l 0 of another pair B 0 D fl 0; r 0g 2 � . Then h Qhl.k/; Qhl 0.k/i D 0; hence for every
� in the sum above we have f�.h1; : : : ; fm0/D 0.

(2) � connects l to a singleton fig 2 � . Then, since Qhl.k/! 0 weakly, we have h Qhl.k/; hi i ! 0; hence
for every � we also have that f�.h1; : : : ; fm0/! 0 as k!1.

(3) flg is a singleton of � . In this case, every � 2P1;2.mCm0/ which appears in the sum has to connect
l to a singleton j 2 f1; : : : ; m0g. Thus, h Qhl.k/; fj i ! 0 and again f�.h1; : : : ; fm0/! 0 as k!1.

Summing up, we see that for every � such that �p ª �p, we have �.x� .k/x0� 0/! 0 as k!1. Thus,
when letting k!1, only those � ’s containing the pairs of � make a nonzero contribution. Among them,
there is exactly one which has s singletons, namely � ; all the others have more pairs and hence less than
s singletons. We deduce that

x� D w� lim
k!1

�
s.x1; Qh1.k// � � � s.xm; Qhm.k//�

X
�p��p; j�s j<s

x� .x1; Qh1.k/; : : : ; xm; Qhm.k//

�
:

Since by the induction hypothesis all the x� ’s, with j�sj<s, are in �0q .B; S˝K/, this proves the statement.
For the second statement, let H be any Hilbert space and K an infinite-dimensional Hilbert space
containing H. Let xi 2BSB, hi 2H and � 2P1;2.m/. Then, by the first part, x� .x1; h1; : : : ; xm; hm/2
�0q .B; S ˝K/. But x� D .E�q.`2n˝H/˝ id/n.x� /; hence x� 2 �q.B; S ˝H/. �

Remark 3.15. The reader can now better appreciate why we needed the “closure operation” in the
definition of �q.B; S ˝ H/. Indeed, Definition 3.4 ensures that the Wick words belong to M D
�q.B; S ˝H/ for every Hilbert space H, finite- or infinite-dimensional. Also, Proposition 3.14 shows
that M D �q.B; S ˝H/ could have been defined as the ultraweakly closed span of the Wick words.

In the following we use the notation L2
k
.M/ for the k � k2-closed span of the Wick words of degree k

and Wk.M/ for the linear span of the Wick words of degree k.

Theorem 3.16. Let .�j ; B;A;D/ be a sequence of symmetric independent copies, 1 2 S D S� � A, H
be a Hilbert space and M D �q.B; S˝H/. Set eH DH ˚H. Take an infinite-dimensional Hilbert space
K �H and set eK DK˚K:

(1) For every angle � , let o� be the canonical rotation on eK. Then

� 7! ˛� D .�q.id˝ o� /˝ id/n 2 Aut..�q.`2˝ eK/˝D/!/
defines by restriction a one-parameter group of automorphisms of fM D �q.B; S ˝ eH/. Moreover, for
every Wick word x� .x1; Qh1; : : : ; xm; Qhm/ 2fM we have

˛� .x� .x1; Qh1; : : : ; xm; Qhm//D x� .x1; o� . Qh1/; : : : ; xm; o� . Qhm//:

(2) For every Wick word x� .x1; h1; : : : ; xm; hm/ 2M, the following formula holds:

.EM ı˛� /.x� .x1; h1; : : : ; xm; hm//D .cos.�//sx� .x1; h1; : : : ; xm; hm/;

where EM WfM !M is the conditional expectation and s is the number of singletons of � .
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(3) For every � 2
�
0; �
2

�
, let t D �ln.cos.�//. Then t 7! Tt D EM ı ˛� jM defines a one-parameter

semigroup of normal, trace-preserving, u.c.p. maps on M. Moreover, for every Wick word x� 2M we
have Tt .x� /D e�tsx� , where s is the number of singletons of � . Hence, when viewed as a contraction on
L2.M/, we have Tt D

P
s�0 e

�tsPs , where Ps is the orthogonal projection of L2.M/ on L2s .M/ and
the series is k � k1-convergent for every t > 0. In particular, if L2s .M/ is finitely generated as a right
B-module for every s, then Tt is compact over B for every t > 0.

(4) The generatorN of Tt is a positive, self-adjoint, densely defined operator inL2.M/D
L1
kD0L

2
k
.M/,

acting by

N.x� .x1; h1; : : : ; xm; hm//D kx� .x1; h1; : : : ; xm; hm/

for every x� .x1; h1; : : : ; xm; hm/ 2L2k.M/. The spectrum of N is the set of nonnegative integers N, all of
which are eigenvalues. N is called the number operator.

Proof. The formula ˛� .x� .x1; Qh1; : : : ; xm; Qhm// D x� .x1; o� . Qh1/; : : : ; xm; o� . Qhm// for xi 2 BSB ,
Qhi 2 eH is easily checked, due to entrywise functoriality, and it shows that ˛� restricts to a one-parameter
group of automorphisms on fM D �q.B; S ˝ eH/. This proves (1). Then, using the reduction formula and
the functoriality in each entry, we see that

.EMı˛� /.x� .x1;h1; : : : ;xm;hm//

D f� .h1; : : : ;hm/.EMı˛� /

��
n�

s
2

X
.l1;:::;ls/DP0

s.el1˝hk1/ � � �s.els˝hks /˝˛l1;:::;ls .F� .x1; : : : ;xm//

��

D f� .h1; : : : ;hm/.EMı˛� /

��
n�

s
2

X
.l1;:::;ls/DP0

W.el1˝hk1 � � �els˝hks /˝˛l1;:::;ls .F� .x1; : : : ;xm//

��

D f� .h1; : : : ;hm/

�
n�

s
2

X
.l1;:::;ls/DP0

W.el1˝PH˛� .hk1/ � � �els˝PH˛� .hks //˝˛l1;:::;ls .F� .x1; : : : ;xm//

�

D .cos.�//sf� .h1; : : : ;hm/
�
n�

s
2

X
.l1;:::;ls/DP0

s.el1˝hk1/ � � �s.els˝hks /˝˛l1;:::;ls .F� .x1; : : : ;xm//

�
D .cos.�//sx� .x1;h1; : : : ;xm;hm/;

which establishes (2). Part (3) is straightforward using (2). To obtain (4), we calculate

lim
t!0

1

t
.Tt .x� /� x� /D lim

t!0

e�st � 1

t
x� D�sx�

for any Wick word x� of degree s. The rest of the statements are straightforward. �

Remark 3.17. Due to (4), we have that for every x 2M, the function

� 7! k˛� .x/� xk2; � 2
�
0; �
2

�
;

is increasing.
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Definition 3.18. We denote by Dk.S/� L2.D/ the k � k2-closed linear span of the expressions

F� .x1; : : : ; xm/DE1;:::;k.��.1/.x1/ � � ���.m/.xm//

for all m� 1, x1; : : : ; xm 2 BSB, � 2 P1;2.m/ having k singletons and � which encodes � .

Lemma 3.19. Let y.j1; : : : ; jk/ 2 Lp.D/ be such that

sup
j1;:::;jk

ky.j1; : : : ; jk/kp <1

and h1; : : : ; hk 2H. Then

sup
n

n�k2 X
.l1;:::;lk/DP0

sl1.h1/ � � � slk .hk/˝y.l1; : : : ; lk/


p

<1:

Proof. It suffices to consider X
l12C1;:::;lk2Ck

sl1.h1/ � � � slk .h1/˝y.l1; : : : ; lk/

;
with C1[ � � � [Ck D f1; : : : ; ng. Using the martingale decomposition from Lemma 3.10 we deduce X
l12C1;:::;lk2Ck

sl1.h1/ � � � slk .hk/˝y.l1; : : : ; lk/


p

� c.p/
p
n sup
l2Ck

 X
l1;:::;lk�1

sl1.h1/ � � � slk .hk/˝y.l1; : : : ; lk/


p

:

Iterating this procedure we get X
l12C1;:::;lk2Ck

sl1.h1/ � � � slk .hk/˝y.l1; : : : ; lk/


p

� c.p/kn
k
2 sup
l1;:::;lk

ksl1.h1/ � � � slk .hk/kp ky.l1; : : : ; lk/kp:

Since the products sl1.h1/ � � � slk .hk/ are uniformly bounded in the p-norm, we obtain the assertion. �

Proposition 3.20. Let .�j ; B;A;D/ be a sequence of independent symmetric copies, let H be a finite-
dimensional Hilbert space and 1 2 S D S� � A, and assume that Ds.S/ is finitely generated as a right
B-module. Then L2s .M/ is finitely generated as a right B-module. In particular, when Ds.S/ is finitely
generated over B for every s, the maps Tt are compact over B for every t > 0.

Proof. Let N be the dimension of Ds as a right B-module, and let f�1; : : : ; �N g be a basis of Ds over B.
Then, for every � 2 P1;2.m/ having s singletons, and every x1; : : : ; xm 2 BSB, we can find coefficients
bk.�; x1; : : : ; xm/ 2 B such that

F� .x1; : : : ; xm/D

NX
kD1

�kbk.�; x1; : : : ; xm/:
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For every .l1; : : : ; ls/D P0 we have

˛l1;:::;ls .F� .x1; : : : ; xm//D

NX
kD1

˛l1;:::;ls .�k/ bk.�; x1; : : : ; xm/:

Fix a finite basis B of H. Then, for every � having s singletons, every x1; : : : ; xm 2 BSB and every
h1; : : : ; hm 2 B we have, due to the reduction formula,

x� .x1; h1; : : : ; xm; hm/D

�
n�

s
2

X
.l1;:::;ls/DP0

sl1.hi1/ � � � sls .his /˝˛l1;:::;ls .F� .x1; : : : ; xm//

�

D

NX
kD1

�
n�

s
2

X
.l1;:::;ls/DP0

sl1.hi1/ � � � sls .his /˝˛l1;:::;ls .�k/

�
bk.�; x1; : : : ; xm/:

Thus L2s .M/ is spanned over B by at most N jBjs DN.dim.H//s elements, namely�
n�

s
2

X
.l1;:::;ls/DP0

sl1.hi1/ � � � sls .his /˝˛l1;:::;ls .�k/

�
;

with hi 2 B and 1� k �N. These elements belong to L2s .M/ by the previous lemma, and this finishes
the proof. �

Remark 3.21. Since the dimension ofDs.S/ over B is finite, the basis elements �k 2Ds �L2.D/ could
be chosen in fact to be bounded, i.e., �k 2D, due to [Paschke 1973; 1974]. This implies that L2s .M/

admits a basis over B consisting of elements in M.

Corollary 3.22. Assume moreover that the dimension Ns of Ds.S/ over B has polynomial growth; i.e.,
there exist constants d; C > 0 such that Ns � Cd s for all s. Then the dimension of L2s .M/ over B is less
than C.dim.H/d/s for all s; i.e., the dimension of L2s .M/ over B also has polynomial growth.

The following argument is essentially due to Śniady [2004] and Królak [2006].

Proposition 3.23. Let M D �q.B; S ˝H/. There exists d D d.q/ such that for dim.H/ � d we have
Z.M/� Z.B/. In particular, M is a factor whenever B is.

Proof. Let feig1�i�k be an orthonormal set inH. We consider the operator T WL2.M/!L2.M/ given by

T D

kX
iD1

.Ls.1;ei /�Rs.1;ei //
2:

Here Lx and Rx , where x 2M, are the canonical left and right multiplication operators, respectively,
on L2.M/. We see that

T � 2k idD
kX
iD1

.Ls.1;ei /2�1�Rs.1;ei /2�1/� 2

kX
iD1

Ls.1;ei /Rs.1;ei /:
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Since s.1; ei /2� 1 is a mean-zero element, we deduce from [Nou 2004] that kX
iD1

s.1; ei /
2
� 1


1

� cq
p
k:

Let us set V D
Pk
iD1Ls.1;ei /Rs.1;ei / and denote by � W L2.M/! .Fq.`2˝H/˝L2.D//! the natural

embedding given by the definition. Then we see that

�.V �/D .Vn�.�/n/n; � 2 L2.M/;

where
Vn D

1

n

X
1�i�k
1�j;j 0�n

Ls.1;ei˝ej /Rs.1;ei˝ej 0 /:

Now we can easily modify the argument from [Królak 2006] to show that

(1)
P

k;j;j 0 l
C.ei ˝ ej /Rs.1;ei˝ej 0 /

� cqpkn2;

(2) k
P
k;j;j 0 r

C.ei ˝ ej /Ls.1;ei˝ej 0 /
� cqpkn2;

(3)
P

k;j¤j 0 l
�.ei ˝ ej /Rs.1;ei˝ej 0 /

� cqpkn2;

(4)
P

k;j l
�.ei ˝ ej /r

C.ei ˝ ej /jC?
� qC cqpkn.

Here lC; l�; rC; r� are the left and right creation operators on the q-Fock space coming from the
decomposition Ls.h/ D lC.h/C l�.h/, Rs.h/ D rC.h/C r�.h/. The main estimate is derived from

l�.h/rC.k/.�/D qj�j�C l�.h/.�/˝ k:

The second part can then be estimated via the second item above. This yields

k.T � 2k id/..id�EB/.�//k � 2qkk.id�EB/.�/kC 2cq
p
kk.id�EB/.�/k:

Now take z 2 Z.M/ with EB.z/D 0. Thus T .z/D 0 and also

0D kT .z/k D k2kz� .T .z/� 2kz/k � 2kkzk� 2qkkzk�Cq
p
kkzk D .2k.1� q/�Cq

p
k/kzk:

Thus for 2k.1�q/�Cq
p
k > 0, i.e., k >

p
Cq=.2.1� q//, we have that z D 0. This implies z DEB.z/

for all z 2 Z.M/; hence Z.M/� B and also Z.M/� Z.B/. �

3A. H -less generalized q-gaussians. Finally, let us mention that there is an H -less version of the
generalized q-gaussians, which can be described as follows: let .�j ; B;A;D/ be a sequence of symmetric
independent copies. For 12 S D S��A, define the von Neumann algebra �q.B; S/� .�q.`2/˝D/! as
being generated by the elements sq.x/D

�
n�

1
2

Pn
jD1 sq.ej /˝�j .x/

�
n

for x 2BSB. This is equivalent to
taking H to be 1-dimensional in Definition 3.4 above; hence the H -less q-gaussians are a particular case
of Definition 3.4. Surprisingly, the H generalized q-gaussians can also be obtained as a particular case
of this construction. Indeed, let H be a (real) Hilbert space and .�j ; B;A;D/ a sequence of symmetric
independent copies. Let .X; �/ be a standard probability measure space and define a new sequence of
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symmetric independent copies . Q�j ;eB;eA; eD/ by takingeBDB, eADA˝L1.X/, eDDD˝�N11 L1.X/�
and Q�j WeA! eD by

Q�j .a˝f /D �j .a/˝ .1˝ 1˝ � � �˝ f„ƒ‚…
j -th position

˝ � � �˝ 1˝ � � � /; where a 2 A; f 2 L1.X/:

Using Rademacher variables, we see that there exists a dense subspace H0 � H and an isometric
embedding � WH0! L1.X/ � L2.X/. Take eS D S ˝ �.H0/D fa˝ �.h/ W a 2 S; h 2H0g � eA. The
reader can check that

�q.B; S ˝H/D �q.eB;eS/:
4. Examples

We will discuss several types of examples of generalized q-gaussian von Neumann algebras. The
underlying idea in all these cases is that whenever we have a finite von Neumann algebra on which the
symmetric group acts, we can construct a sequence of symmetric copies. In particular, countable tensor or
(amalgamated) free products von Neumann algebras or the pure q-gaussian von Neumann algebras �q.H/,
for an infinite-dimensional H, constitute obvious candidates, since the symmetric group acts naturally on
them.

4A. Tensor products. Let B and C be finite von Neumann algebras. Define A D B ˝ C and D D
B˝CN D B˝

�N
NC

�
. Define �j W A!D by the formula

�j .b˝ a/D b˝ 1˝ 1˝ � � �˝ a„ƒ‚…
j -th position

˝ � � �˝ 1˝ � � � :

Then it’s easy to check that .�j ; B;A;D/ is a sequence of symmetric independent copies. It’s likewise
easy to see that

�q.B;A˝H/D B˝�q.L
2
sa.C /˝H/:

For any finite subset S � L2sa.C /˝H, the space Dk.S/ has finite dimension over B.

4B. Free products with amalgamation. LetB�A be an inclusion of finite tracial von Neumann algebras.
Take D D

¨
B Aj , the amalgamated free product of a countable number of copies Aj , j 2 N, of A.

Define �j W A!D by the formula

�j .a/D 1� 1� � � � � a„ƒ‚…
j -th position

� � � � � 1� � � � :

Then .�j ; B;A;D/ represents a sequence of independent symmetric copies. To see why this is true it
suffices to consider elements ai such that EB.ai /D 0. Then we have to calculate

�� .a1; : : : ; am/D �.�j1.a1/ � � ��jm.am//

such that .j1; : : : ; jm/ D � . If � has no crossings, we can inductively replace neighboring pairs by
EB.�ji .ai /�ji .aiC1//DEB.aiaiC1/ and finally find an element in B. For a noncrossing pair partition
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we can also join all the pairs, but then we find an expression of the form

�.b1�ji1 .ai1/b2�ji2 .ai2/ � � ��jik
.aik //D 0:

Thus in the moment formula we only have to expand over noncrossing pair partitions. Now take
S D f1; u; u�g for u2A a Haar unitary such that EB.un/D 0 for all n¤ 0. It’s easy to see that Dk.S/ is
the closed linear span of all the expressions b1�1.u"1/b2 � � ��k.u"k /bkC1, with bi 2B and "i 2 f0; 1;�g.
In particular, when B D C or is finite-dimensional, we have dimB.Dk.S//� C22k.

4C. Group actions.

4C1. Second quantization. Let G Õ˛ C be a trace-preserving action of the discrete group G on the
finite von Neumann algebra C . Also let � W G ! O.HR/ be an orthogonal representation of G on a
real Hilbert space HR. Let .�;�/ be the gaussian construction associated to �; see, e.g., [Peterson and
Sinclair 2012]. We also denote the corresponding action GÕ L1.�/ by �. Then define B D C Ì˛ G,
A D .C ˝L1.�// Ì� G, D D .C ˝L1.�N// Ì� G, where the action � is given by �g.d ˝ f / D
˛g.d/˝ �g.f /. Define the �-homomorphisms �j W A!D by

�j ..d ˝f /ug/D .d ˝ 1˝ 1˝ � � �˝ f„ƒ‚…
j -th position

˝ � � �˝ 1˝ � � � /ug :

Then it is easy to see that the fixed points algebra is C Ì˛ G. Again the moments only depend on the
inner product. Moreover, the gaussian functor yields a map Br WH ! L2.�/. Then we find

M D �q.C ÌG;Br.H//D .C ˝�q.H//ÌG:

The spacesDk.S/ are finite-dimensional modules over BDC ÌG if L2
k
.H/ÌG has a finite basis over G.

For k D 1 this means that H is finite-dimensional. In a forthcoming paper we will also analyze the case
of profinite actions and/or representations, i.e., when H can be written as H D

S
i Hi such that every

Hi is a finite-dimensional G-invariant Hilbert subspace. However, discrete subgroups of On DO.Rn/
provide a large class of nontrivial, nonamenable examples. The examples in [Junge, Longfield and Udrea
2014] are subalgebras of M.

4C2. Symmetric group action. Throughout this subsection † will denote the group of finite permutations
on N. Let us consider a countable discrete group G on which † acts by automorphisms. Examples for
such a symmetric action are given by the natural action of † on the free group with countably many
generators, or by the natural action of † on the direct product groups

Q
n2NG. More generally, let

R � F1 be a set of generators which is invariant under the action of †, and assume that hRi � F1 is
a normal subgroup. Then G D F1=hRi is a group on which † acts. A perfect example is given by an
amalgamated free product

¨
H Gj , where Gj DG. To make things more concrete, we may consider the

discrete Heisenberg group HD hZ;Z1i with generators fgkgk�0 such that ZD hg0i, Z1D hgk; k � 1i

and the following relations hold:

g�1k gjgk D g0gj ; k ¤ j:
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Then † acts on H by permuting the generators gk for k � 1, and leaving g0 fixed. Now we assume that
such a G, with action †Õˇ G, acts trace-preservingly on a finite von Neumann algebra A and B is the
fixed points algebra of this action ˛. Let g 2G be an arbitrary element and gj D ˇ.1j /.g/. We can then
construct a sequence of symmetric copies .�j ; B;A;D/ by defining �j W A! A, via �j .x/D ˛gj .x/.
Working in the crossed product .AÌ˛ G/Ìˇ † it is easy to see that the �j ’s are symmetric copies, and
that B is the fixed points algebra for these symmetric copies. In fact we may and will always assume that
G is generated by the gj ’s and then �j .x/D x for all j is exactly the fixed points algebra of the action.
In general �j .A/ D A and hence we find an example of symmetric, but not necessarily independent,
copies. In general independent copies are obtained from considering a suitable subalgebra B � A1 � A.
More generally for a subset S � A we may however consider the algebras

Aj .S/D f�j .x/ W x 2 S; j 2 Ag:

This is particularly interesting for a single self-adjoint x. Then independence depends on the mixing
properties of the sequence �j .x/, and has to be analyzed on a case by case basis. A more specific example
can be constructed starting from a trace-preserving action ˛ of Z on a finite von Neumann algebra N.
Take D DN Ìˇ H where the action ˇ is obtained by lifting the action of Z via the group homomorphism
� WH! Z given by �.g0/D 0 and �.gj /D 1 for j � 1. In other words,

ˇg.x/D ˛�.g/.x/; g 2H; x 2N:

Let H1 be the group generated by g0 and g1 and take B DN ÌZDN ˝L.Z/ and ADN ÌH1. Define
�j W A!D by

�j .xug1/D ˛�.gj /.x/ugj ; �j .xug0/D xug0 ; x 2N; j; k 2 N:

Then .�j ; B;A;D/ is a sequence of symmetric independent copies. In full generality the dimensions of
the spaces Dk.S/ or L2

k
.M/, where M D �q.B;A˝H/, cannot be controlled. If we restrict ourselves

to a small set of generators, e.g., S D f1; g1; g�11 g, then we get a more well-behaved example. The space
Dk.S/ is the closed linear span of the expressions of the form

�j1.ug1/ � � ��jk .ugk /u
l.�/
g0

˛n.�/.x/:

Thus dimB.Dk.S//� .2 dim.H//2k . For more general group actions and S �L.G/, we find coefficients
in B D L.ŒG;G�/˝N and finite dimension over B as long as we have finite generating sets. Note
however, that L.ŒG;G�/ is in general not invariant under the action of †, and hence a more detailed case
by case analysis is required. Again a particularly nice class of examples comes from one step nilpotent
groups with commutators in the center, such as the Heisenberg groups.

4D. Colored Brownian motion.

4D1. Top up q-gaussians. Let H be a Hilbert space and q0 2 Œ�1; 1�. Symmetric independent copies
can be obtained from second quantization, or simply by defining �.sq0.h//D sq0.ej ˝h/. This provides
symmetric copies of A D �q0.H/ into D D �q.`2.H//. By looking at Wick words it is easy to
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see that the fixed points algebra is C. Moreover, independence follows from the moment formula
for q0-gaussian random variables. Let S D fx1; : : : ; xpg be a finite, self-adjoint subset, where xi D
sq0.h1.i// � � � sq0.hl.i/.i// for 1� i � p. Then we see that

�.sq.k1; x1/ � � � sq.km; xm//D
X

�2P2.m/

qcr.�/f� .k1; : : : ; km/ �.�j�1 .x1/ � � ��j
�
m
.xm//;

where for every � , we choose an m-tuple .j �1 ; : : : ; j
�
m/ depending on � such that .j �1 ; : : : ; j

�
m/D � . Now

we may use the formula for q0-gaussians and find for LD
Pp
iD1 l.i/ that

�.�j�1 .x1/ � � ��j
�
m
.xm//D

X
� 02P2.L/; � 0��.�/

q
cr.� 0/
0 f� 0.h1.1/; : : : ; hl.1/.1/; : : : ; h1.m/; : : : ; hl.m/.m//:

Here �.�/ is the block partition which gives the same color to the union of two blocks in � connected
via pairs in � 0. This means

�.sq.k1; x1/ � � � sq.km; xm//D
X

�2P2.m/; � 0��.�/

qcr.� 0/q
cr.� 0/
0 f� .k1; : : : ; km/f� 0.h1; : : : ; hL/;

where � 0 runs over the partitions of f1; : : : ; Lg and fh1; : : : ; hLg is a relabeling of fhj .i/ W 1 � i � p;
1 � j � l.i/g. Note that �q.C; �q0.H/˝K/ contains both �q.K/ and �q0.H/ if sq0.H/ � S . Using
a decomposition into minimal links, we deduce that the space Dk.S/ is the closed linear span of the
elements

c.�; x1; : : : ; xr/�ji1 .xi1/ � � ��jir .xir /;

where c.�; x1; : : : ; xr/ is a scalar. This means for a finite set S of generators, the dimension of Dk.S/
over B D C is less than .jS j dim.K//2k. One could call these algebras “mixed” gaussian algebras, but
the reader should not mistake them for the mixed q-gaussian algebras, introduced in [Junge and Zeng
2015], which we use in Section 6.

4D2. Actions of † by conjugation. Let us consider the finite permutations group †Z acting on Z instead
of Nnf0g. For every subset F � Z we can identify †F , the permutations group on F, with a subgroup of
†Z by viewing the elements of †F as acting nontrivially only on F and acting as the identity on Z nF.
For convenience, we use interval notation for the subsets of Z. In particular we have †D†Œ1;1/ �†Z

in this way. Let † act on †Z by conjugation. This gives rise to an action ˛ of † on the von Neumann
algebra L.†Z/ (which is in fact isomorphic to the hyperfinite factor). We denote the canonical unitaries
generating L.†Z/ by u� , � 2 †Z. The fixed points algebra of this action is B D L.†.�1;0�/. Take
AD L.†.�1;1�/D B _ fu.01/g

00, D D L.†Z/ and define �j W A!D by �j .a/D ˛.j1/.a/ for a 2 A
and j � 2, where .j1/ is the transposition interchanging j and 1, and �1 D id. Then .�j ; B;A;D/ is a
sequence of symmetric independent copies. Indeed, we recall that A is generated by transpositions .k1/,
k � 0, and that for j � 2 we have

.j1/.k1/.j1/D .kj /:

This means Aj D B _ fu.0j /g00 and A1;:::;j D L.†.�1;j �/. In particular, we have a coset representation
� D � 0.j1/ with � 0 2†.�1;0�. The algebras AI are generated by†I , †.�1;0� and one generator .j1/ for



GENERALIZED q-GAUSSIAN VON NEUMANN ALGEBRAS WITH COEFFICIENTS, I 1679

j 2 I. This easily implies independence. We take S Df1; u.01/g �A and define M D�q.B; S˝H/. Fix
� 2 P12.m/ having k singletons and p pairs, and take � W f1; : : : ; mg! f1; : : : ; kCpg which encodes � .
This means �.jt /D t , where fjtg, 1� t � k, are the singletons of � , and �.j 0t /D �.j

00
t /D kC t , where

fj 0t ; j
00
t g, 1� t � p, are the pairs of � . Then Dk.S/ is the closed span of elements of the form

E1;:::;k.u.�.1/0/u1u.�.2/0/u2 � � �umu.�.m/0/umC1/

DE1;:::;k
�
u.�.1/0/ad.u1/.u.�.2/0// � � � ad.u1���m/.u.�.m/0//u1���mC1

�
DE1;:::;k.u.�.1/1.0//u.�.2/12.0// � � �u.�.m/.1���m/.0//u1���mC1/

DE1;:::;k.u.�.1/s1/u.�.2/s2/ � � �u.�.m/sm//u1���mC1 ;

where 1; : : : ; mC1 2†.�1;0� are arbitrary. Here s1D 1.0/, s2D 12.0/, : : : , smD 12 � � � m.0/ in
.�1; 0� depend only the i ’s. In full generality the modules Dk.S/ do not have finite dimensions over B.
If we however replace B by Bd D L.†Œ�d;0�/ Š L.SdC1/, A by Ad D L.†Œ�d;1�/ D Bd _ fu.01/g00

and D by Dd D L.†Œ�d;1// for a fixed d 2 N n f0g, then we obtain a new sequence of symmetric
independent copies .�j ; Bd ; Ad ;Dd / and in this case we have at most .d C 1/k different choices for
the sj ’s. After repeated conjugation with the unitaries on the pair positions, the above expression becomes

u.s0
j1
1/ � � �u.s0

jk
k/E1;:::;k.u.s0

jkC1
kC1/ � � �u.s0

jkCp
kCp//

for some new indices s0i 2 .�1; 0�\Z which in general depend on the i ’s and � . Since for an inclusion of
groups H �G and g 2G we have EL.H/.ug/D ıg2Hug , and the product .s0jkC1kC1/ � � � .s

0
jkCp

kCp/

belongs to †.�d;k� only if it’s equal to 1, we see that a spanning set of Dk.S/ over Bd is given by the
elements

u.s0
j1
1/u.s0

j2
2/ � � �u.s0

jk
k/

for all choices of �d � s0i � 0, 1� i � k, which in particular implies that the dimension of Dk.S/ over
Bd is at most .d C 1/2k. Note that Bd and Ad are finite-dimensional von Neumann algebras. Thus, for
the von Neumann algebras M.d/D �q.Bd ; S ˝H/, the spaces Dk.S/ have polynomial growth of their
dimensions over Bd . This remains true for any finite subset 1 2 S D S� � Ad .

4E. Operator-valued gaussians. This example is motivated by Shlyahktenko’s A-valued semicircular
algebras and derived from the tensor product construction. Let xk 2 N be self-adjoint operators and
X D

P
k gkxk . We consider A1 D L1.R/ and the independent symmetric copies over N given by

�j .f /D f

�X
k

gk;jxk

�
;

where gk;j are i.i.d. gaussians (we could also work with q-gaussians). The copies are independent over N.
Let D be the von Neumann algebra generated by the �j .f /’s and B be the tail algebra

B D
\
m�0

_
j�m

�j .L
1.R//:
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One can show that the copies �j are independent symmetric in the sense of our Definition 3.2. Note thatN
is invariant under the shift from the tensor product construction and henceB�N. ThusM D�q.B; S˝H/
is a legitimate example where S D

P
k gkxk is obtained by approximating X with bounded functions.

Since X 2
T
1�p<1L

p.R/, one can actually directly work with one generator x. The dimension of
L2
k
.M/ overB is in general hard to determine. The case ofN DMm.C/ andXD

P
r;s grs..ersCesr/=2/

has been considered by Avsec and Speicher.

Remark 4.1. The examples in Sections 4A, 4B, 4D1, 4D2 (for d D 0) and 4E are all factors if B is a
factor and dim.H/� d.q/.

5. Weak amenability produces approximately invariant states

Let .�; B;A;D/ be a sequence of symmetric independent copies, 1 2 S D S� � A and assume that
Ds.S/ is finitely generated over B for all s� 1. LetM D�q.B; S˝H/ for a finite-dimensional spaceH,
A�M be a von Neumann subalgebra which is amenable relative to B inside M, and let P DNM .A/00.
Define MD .�q.`2˝H/˝D/_M � .�q.`2˝H/˝D/!, where �q.`2˝H/˝D is embedded as
constant sequences. Let

H�
�
.L2.M/˝AL

2.P //˝Fq.`2˝H/
�!

be the k � k-closed span of the sequences�
n�

m
2

X
.j1;:::;jm/D�

.�j1.x1/ � � ��jm.xm/y˝A z/˝ s.ej1 ˝ h1/ � � � s.ejm ˝ hm/

�
for allm� 1, � 2P1;2.m/, xi 2BSB, y 2M , z 2P and h1; : : : ; hm 2H. Define two �-representations
� WM ! B.H/, � W P op! B.H/ by

�.x� 0/

�
n�

m
2

X
.j1;:::;jm/D�

.�j1.x1/ � � ��jm.xm/y˝A z/˝ s.ej1 ˝ h1/ � � � s.ejm ˝ hm/

�

D

�
n�

mCm0

2

X
.ik/D� 0;.jl /D�

.�i1.y1/ � � ��jm.xm/y˝A z/˝ s.ei1 ˝ k1/ � � � s.ejm ˝ hm/

�
and

�.wop/

�
n�

m
2

X
.j1;:::;jm/D�

.�j1.x1/ � � ��jm.xm/y˝A z/˝ s.ej1 ˝ h1/ � � � s.ejm ˝ hm/

�

D

�
n�

m
2

X
.j1;:::;jm/D�

.�j1.x1/ � � ��jm.xm/y˝A zw/˝ s.ej1 ˝ h1/ � � � s.ejm ˝ hm/

�
;

where

x� 0 D

�
n�

m0

2

X
.i1;:::;im0 /D�

0

�i1.y1/ � � ��im0 .ym0/˝ s.ei1 ˝ k1/ � � � s.eim0 ˝ km0/

�
2M

is a Wick word in M and w 2 P. Define N D �.M/_ �.P op/ � B.H/. Note that �.M/ and �.P op/

commute.
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Theorem 5.1. There exists a sequence of normal states !n 2N� satisfying the following properties:

(1) !n.�.x//! �.x/, x 2M.

(2) !n.�.a/�. Na//! 1, a 2 U.A/.

(3) k!n ıAd.�.u/�. Nu//�!nk! 0, u 2NM .A/.

Proof. Throughout the proof mn will be the completely contractive finite-rank multipliers on �q.`2˝H/
given by multiplication with a positive finitely supported function fn constructed in [Avsec 2012] and
'n WD .mn˝ id/ WM !M the corresponding cb map on M. Take

K � .L2.M/˝D L
2.M//!

to be the k � k-closed span of the sequences�
n�

m
2

X
.j1;:::;jm/D�

.�j1.x1/ � � ��jm.xm/˝ s.ej1 ˝ h1/ � � � s.ejm ˝ hm//˝D y

�
D .xn� ˝D y/;

where xi 2 BSB and y 2M. Note that K is naturally an M -M bimodule with the actions

x� 0 �

�
n�

m
2

X
.j1;:::;jm/D�

.�j1.x1/ � � ��jm.xm/˝ s.ej1 ˝ h1/ � � � s.ejm ˝ hm//˝D y

�
� z

D

�
n�

mCm0

2

X
.ik/D� 0;.jl /D�

.�i1.y1/ � � ��jm.xm/˝ s.ei1 ˝ k1/ � � � s.ejm ˝ hm//˝D yz

�
;

where x� 0 D x� 0.y1; k1; : : : ; ym0 ; km0/ 2M and z 2M. Define SA D �.M/_ �.Aop/� B.K/, where �
and � are the representations of M and M op canonically associated to the left and right actions on K,
respectively.

Step 1. There exists a normal, unital, completely positive map E WN ! SA such that

E.�.x/�.yop//D �.x/�.EA.y/
op/; x 2M; y 2 P:

Indeed, define an isometry V W K!H by�
n�

m
2

X
.j1;:::;jm/D�

.�j1.x1/ � � ��jm.xm/˝ s.ej1 ˝ h1/ � � � s.ejm ˝ hm//˝D y

�

7!

�
n�

m
2

X
.j1;:::;jm/D�

.�j1.x1/ � � ��jm.xm/y˝A 1/˝ s.ej1 ˝ h1/ � � � s.ejm ˝ hm/

�
:

Then E can be defined by E.z/D V �zV , z 2N.

Step 2. There exist normal functionals �A
n W SA! C such that

�A
n .�.x/�.a

op//D �.'n.x/a/; x 2M; a 2A:

We need two lemmas. Recall the formulas for Wick words and reduced Wick words introduced in
Theorem 3.11.
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Lemma 5.2. L2.M/˝B L
2.M/ embeds as an M -M bimodule into K.

Proof. The map

L2.M/˝B L
2.M/! K;�

n�
m
2

X
.j1;:::;jm/D�

�j1.x1/ � � ��jm.xm/˝ s.ej1 ˝ h1/ � � � s.ejm ˝ hm/

�
˝B y

7!

�
n�

m
2

X
.j1;:::;jm/D�

.�j1.x1/ � � ��jm.xm/˝ s.ej1 ˝ h1/ � � � s.ejm ˝ hm//˝D y

�
;

or in other words .xn� /˝B y 7! .xn�˝D y/, is an M -M bimodular isometry. The bimodularity is obvious,
so it remains to check that it preserves inner products, in other words that

h.xn/˝B y; .x
0
n/˝B y

0
i D h.xn˝D y/; .x

0
n˝D y

0/i:

Let’s denote by ED WM! D and by ED˝1 W �q.`2 ˝H/˝D ! D ˝ 1 the canonical conditional
expectations. Since D DD˝ 1 �M � .�q.`2˝H/˝D/! is embedded as constant sequences, for
every .xn/ 2M we have

ED..xn//D w� lim
n!!

ED˝1.xn/:

We now claim that for any .xn/ 2M �M we have EB..xn//DED..xn//. It suffices to prove this for
.xn/DW� 2M a reduced Wick word. Let s be the number of singletons in � . Let

W� D

�
n�

s
2

X
.l1;:::;ls/DP0

˛l1;:::;ls .F� .x1; : : : ; xm//˝ s.el1 ˝ hk1/ � � � s.els ˝ hks /

�
:

We have two possibilities. If s D 0, then W� D F� .x1; : : : ; xm/ D EB.��.1/.x1/ � � ���.m/.xm// 2 B;
hence ED.W� / D W� D EB.W� /. If s > 0, then EB.W� / D 0. On the other hand, according to our
previous remark, we have

ED.W� /D w� lim
n
ED˝1

�
n�

s
2

X
.l1;:::;ls/DP0

˛l1;:::;ls .F� .x1; : : : ; xm//˝ s.el1 ˝ hk1/ � � � s.els ˝ hks /

�
D w� lim

n
n�

s
2

X
.l1;:::;ls/DP0

�.s.el1 ˝ hk1/ � � � s.els ˝ hks //˛l1;:::;ls .F� .x1; : : : ; xm//

D w� lim
n
n�

s
2

X
.l1;:::;ls/DP0

�.W.el1 ˝ hk1 � � � els ˝ hks //˛l1;:::;ls .F� .x1; : : : ; xm//D 0:

This proves our claim. Now, for .xn/; .x0n/; y; y
0 2M we have

h.xn/˝B y; .x
0
n/˝B y

0
i D �M .EB..x

0�
n xn//yy

0�/D �M.ED..x
0�
n xn//yy

0�/

D lim
n
�M.E1˝D.x

0�
n xn/yy

0�/D lim
n
hxn˝D y; x

0
n˝D y

0
i

D h.xn˝D y/; .x
0
n˝D y

0/i;

which finishes the proof of the lemma. �
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Lemma 5.3. There exists an orthonormal basis Y˛ of L2.M/ over B such that for every n, fn.Y˛/D 0
for all but finitely many ˛’s, where we denote somewhat abusively fn.Y˛/D fn.s/, s D the degree of Y˛ .

Proof. Since Ds is finitely generated over B for all s, according to Proposition 3.20, for every s � 0 we
can find a finite orthonormal basis .Y s

ˇ
/ of L2s .M/ over B. The union .Y˛/ of all the Y s

ˇ
’s is a basis of

L2.M/ over B. For a fixed n, there exists sD s.n/ such that fn.�/D 0 for all � 2H˝k, for k > s.n/. For
any t � 0 and Y˛ 2 L2t .M/ we have fn.Y˛/D fn.t/ and also for every Y˛ 2

L
k>s.n/L

2
k
.M/ we have

fn.Y˛/D 0, both due to the reduction formula. On the other hand, the set of those Y˛ 2
Ls.n/

kD0
L2
k
.M/

is finite, which finishes the proof. �

Denote by � the M -bimodular embedding in Lemma 5.2 and define

�A
n .T /D

X
˛

fn.Y˛/hT �.1˝B 1/; �.Y
�
˛ ˝B Y

�
˛ /i; T 2 SA:

Then �A
n 2 .SA/� satisfies all the required properties.

Step 3. Set n D�A
n ıE 2N�, and !n D knk�1jnj. We will prove that the !n’s satisfy all the required

properties. First note that, by construction,

n.�.x/�.y
op//D �.'n.x/EA.y//; x 2M; y 2 P:

Toward proving the required properties of the !n’s, we will first establish the following two claims:

Claim 1. lim supn k�
A
n k D 1.

Claim 2. limn k�A
n ıAd.�.u/�. Nu//��A

n k D 0, u 2NM .A/.

Proof of Claim 1. Fix a von Neumann subalgebra Q � P which is amenable over B. Just as in
Step 2 above one can construct normal functionals �Qn on SQ D �.M/ _ �.Qop/ � B.K/ satisfying
�
Q
n .�.x/�.y

op//D �.'n.x/y/ for x 2M , y 2Q. We will show that lim sup k�Qn k D 1, and this will
help us establish both claims. Since �Qn is normal, it suffices to estimate its norm on an ultraweakly dense
C �-subalgebra of SQ. Denote by SQ the ultraweakly dense C �-subalgebra of SQ generated by �.x� /
for x� 2M the Wick words and �.Qop/. First we note that there exist cb maps Q'n W SQ! SQ such that

Q'n.�.x� /�.y
op//D �.'n.x� //�.y

op/; x� 2M; y 2Q;

and k Q'nkcb D k'nkcb. To prove this take eK � L2..M˝ �q.`2˝H//!/ to be the k � k2-closed linear
span of the sequences�

n�
m
2

X
.j1;:::;jm/D�

�j1.x1/ � � ��jm.xm/y˝ s.ej1 ˝ h1/ � � � s.ejm ˝ hm/

�
D .xn� .y˝ 1//

for all xi 2 BSB , hi 2H , y 2M. Now define an unitary operator U W K! eK by

.xn� ˝D y/ 7! .xn� .y˝ 1//:

We can then define
Q'n.z/D U

�.id˝mn/!.UzU �/U; z 2 SQ:
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Then the maps Q'n satisfy all the required properties. The complete boundedness of the Q'n is a delicate
matter and it will be addressed in Section 5A below. On the other hand, since Q is amenable relative
to B, we see that the M -Q bimodule L2.M/ is weakly contained in L2.M/˝B L

2.M/, which in turn
is contained in K. This produces a �-homomorphism ‚ W SQ! B.L2.M// such that ‚.�.x/�.yop//D

�M .x/�M .y
op/, where �M ; �M are the natural actions of M on L2.M/. But then

�Qn .z/D h‚. Q'n.z//1; 1i; z 2 SQ;

and this implies that lim sup k�Qn k D 1. Then by taking QDA we get lim sup k�A
n k D 1, which finishes

the proof of the first claim. �

Proof of Claim 2. Fix a unitary u 2NM .A/. The algebra QD hA; ui � P is amenable relative to B, so
by the proof of Claim 1, lim sup k�Qn k D 1. Now since �Qn .1/D �.�n.1//! 1 and �Qn .�.u/�. Nu//D
�.�n.u/u

�/ ! 1, we see that k�Qn ı Ad.�.u/�. Nu// � �Qn k ! 0; hence by restricting to SA we get
k�A

n ıAd.�.u/�. Nu//��A
n k! 0. Using the fact that Ad.�.u/�. Nu//ıE D E ıAd.�.u/�. Nu// and the fact

that n D �A
n ı E , we see at once that kn ıAd.�.u/�. Nu//� nk! 0. But since n.1/D �.�n.1//! 1

and lim sup knk D 1, we see that kn�!nk! 0. This further implies k!n ıAd.�.u/�. Nu//�!nk! 0,
which establishes the third required property, and the other two follow easily. �

This completes the proof of Theorem 5.1. �

5A. cb-estimates for the multipliers. Here we will prove that some multipliers defined on certain C �-
algebras or von Neumann algebras are completely bounded. The first case is that of the maps Q'n which
were used in the proof of Theorem 5.1 above. In the second case we prove the complete boundedness of
some normal multipliers on the von Neumann algebra N introduced above, which are needed to construct
a concrete standard form for N. We recall some notation.

Notation. MD .�q.`2˝H/˝D/_M � .�q.`2˝H/˝D/!, where we regard �q.`2˝H/ and D
as constant sequences. Let K D L2.M/ or K D L2.M/˝AL

2.P /. We introduce the subspace

L� .K˝Fq.`2˝H//!

as the k � k-closed linear span of the sequences�
n�

m
2

X
.j1;:::;jm/D�

�j1.x1/ � � ��jm.xm/y˝s.ej1˝h1/ � � �s.ejm˝hm/

�
D .xn� .y˝1//2 .K˝�q.`

2
˝H//! ;

for m � 1, � 2 P12.m/, xi 2 BSB, hi 2 H, y 2 M. Let’s define the extended Wick words x� D
x� .x1; h1; : : : ; xm; hm; y

op/ by

x� D

�
n�

m
2

X
.j1;:::;jm/D�

�j1.x1/ � � ��jm.xm/y
op
˝ s.ej1 ˝ h1/ � � � s.ejm ˝ hm/

�
;

wherem� 1, � 2P1;2.m/, xi 2BSB, hi 2H, y 2P, viewed as operators in B.K/, i.e., acting naturally
on sequences in L. The reader can check that:

(a) L is invariant to the natural action of the extended Wick words.
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(b) LD spanf�.x� /�.yop/.1˝ 1/ W x� 2M; y 2M g when K D L2.M/ and

LD spanf�.x� /.1˝y/�.zop/..1˝A 1/˝ 1/ W x� 2M; y 2M; z 2 P g

when K D L2.M/˝AL
2.P /.

(c) L is invariant to the natural action by orthogonal transformations of H given by

O.H/! Aut..M˝�q.`2˝H//!/; o! ˛o D .id˝�q.id˝ o//:

Let C.H/� B.L/ be the C �-algebra generated by the elements�
n�

m
2

X
.j1;:::;jm/D�

�j1.x1/ � � ��jm.xm/y
op
˝ s.ej1 ˝ h1/ � � � s.ejm ˝ hm/

�
D .xn� .y

op
˝ 1//;

where xi 2 BSB, hi 2 H, y 2 M, � 2 P.m/. Also let bC.H/ � .B.K/˝min �q.`
2 ˝H//! be the

C �-algebra generated by the elements�
n�

m
2

X
.j1;:::;jm/D�

�j1.x1/ � � ��jm.xm/y
op
˝ s.ej1 ˝ h1/ � � � s.ejm ˝ hm/

�
D .xn� .y

op
˝ 1//;

where xi 2 BSB, y 2M, hi 2H, � 2 P.m/, the ultraproduct being the C �-algebra ultraproduct.

Remark 5.4. Let m˛ be the multipliers on �q.H/ associated to the nonnegative finite support functions
f˛ W N! R:

(1) One may assume that for every k, f˛.k/D 1 for ˛ large enough and that lim sup˛ km˛kcb D 1.

(2) .id˝m˛/ W bC.H/! .B.K/˝min �q.`
2˝H//! are completely bounded, and are the restrictions

of normal maps.

Lemma 5.5. Let bC.H/, C.H/ and m˛ be defined as above:

(1) Let � W .B.K/˝min �q.`
2˝H//!! B..K˝Fq.`2˝H//!/ be the �-homomorphism defined by

�..Tn//.�n/D .Tn�n/. Then �.bC.H//.L/� L, so Œ�.bC.H//; PL�D 0.

(2) The map ˆ W bC.H/! C.H/ defined by ˆ.T /D �.T /PL is a surjective �-homomorphism.

(3) If � … P1;2.m/, then ˆ.xn� .y
op ˝ 1// D 0. In particular, C.H/ D ˆ.bC.H// is spanned by the

elements ˆ..xn� .y
op˝ 1/// for m� 1, � 2 P1;2.m/.

(4) If .xn/D .x0n/ 2M, then ˆ..xn.yop˝1///Dˆ..x0n.y
op˝1///. In particular, C.H/ is spanned by

the elements ˆ..W� .yop˝ 1///, where W� 2M, � 2 P1;2.m/ are the reduced Wick words.

Proof. Take .xn� .y
op˝ 1// 2 bC.H/, .xn� 0.z˝ 1// 2 L. Due to the convolution rule we have

ˆ..xn� .y
op
˝ 1///.xn� 0.z˝ 1//D .x

n
�x
n
� 0.zy˝ 1//D

X
2P.mCm0/

.xn .zy˝ 1//;

where the summation is taken over all those  ’s which preserve the connections of both � and � 0; i.e., if
some indices are connected by � or � 0, they will remain connected in  . Now for all  … P1;2.mCm0/,



1686 MARIUS JUNGE AND BOGDAN UDREA

the corresponding term vanishes, because kxn .zy˝ 1/k2 � kzyk1kx
n
k2! 0. Thus

ˆ..xn� .y
op
˝ 1///.xn� 0.z˝ 1//D

X
2P1;2.mCm0/

.xn .zy˝ 1// 2 L;

which proves the first statement. Also, if � … P1;2.m/ to begin with, every  in the sum will also not
be in P1;2.mCm0/; hence the whole sum vanishes, which proves the third statement. The second
statement is trivial. If .xn/; .x0n/ 2M such that lim kxn � x0nk2 D 0, then for every .yn� .z˝ 1// 2 K,
we have kxnyn� .zy˝ 1/� x

0
ny
n
� .zy˝ 1/k2 � ky

n
�k1kzyk1kxn� x

0
nk2! 0, i.e., ˆ..xn.yop˝ 1///D

ˆ..x0n.y
op˝ 1///. The last statement then follows from the reduction formula. �

Our goal is to prove that under certain conditions the maps .id˝m˛/ descend to a multiplier on the
quotient algebra, namely C.H/. This is done via a careful analysis of ˆ�.

Lemma 5.6. There exists a complete contraction

 W .K˝L2.�q.`2˝H///
r
˝h .K˝L

2.�q.`
2
˝H///c! L1.B.K/˝�q.`2˝H//

such that
 ..h˝ a/˝ .k˝ b//D .h˝ Nk/˝ ab�

and tr..S ˝T /. ..h˝a/˝ .k˝ b//�/D ..S ˝T /.k˝ b/; h˝a/. Here .k˝h/ is the rank-1 operator
with entries .kihj / in a given basis and˝h denotes the Haagerup tensor product of operator spaces.

Proof. We recall that for a semifinite von Neumann algebra M the space M DL1.M; tr/
�

is the antilinear
dual with respect to the trace hT; �i D tr.T��/. Moreover, for M D B.H/ one usually considers linear
duality with respect to the transposed �t of a density �:

hhT; �iiB.H/;S1.H/ D tr.T�t /D tr.T ��/D hT; N�i
B.H/;S1.H/

:

Using the description of S1.H/ D H r ˝h H
c as a Haagerup tensor product, we find a natural map

! WH r ˝hH
c! B.H/� given by

!.h˝ k/.T /D tr
�
T

�X
ij

hikj eij

�t �
D tr

�
T

�X
ij

hikj ej i

��
D

X
ij

Tijhikj D .T .k/; Nh/:

Let M be a semifinite von Neumann algebra and .�j / be an orthonormal basis. Then we may define the
antilinear map v.a/D

P
j h�j ; ai�j and observe that

.b; v.a//D
X
j

hb; �j ihv.a/; �j i D
X
j

hb; �j ih�j ; ai D �.ba
�/:

Therefore NmD !.v˝ id/ W L2r .M/˝hL
2
c.M/! B.L2.M//� satisfies

m.a˝ b/.T /D .T .b/; v.a//D �.T ba�/D �.T .ab�/�//D hT; .ab�/i

for all T 2M. This shows that m.a˝ b/D ab� is a complete contraction from L2r .M/˝hL
2
c.M/!

L1.M/. Now we repeat the argument for H DK˝L2.M/ and V.h˝b/D Nk˝v.b/. Then we obtain a
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complete contraction  D !.V ˝ id/ W .K˝L2.M//
r
˝hK˝L

2.M/! B.K˝L2.M//� such that
for S 2 B.K/ and T 2M

 ..h˝ a/˝ .k˝ b//.S ˝T /.S.k/; NNh/�.T ba�/D .S.k/; h/.T b; a/D ..S ˝T /.k˝ b/; h˝ a/

D .t r ˝ �/.S ˝T /.k˝ Nh/:

Here .˛˝ ˇ/ D
P
ij eij˛i ǰ is the density of the corresponding rank-1 operator. Therefore the map

 ..k˝ a/˝ .h˝ b//D .h˝ Nk/˝ ab� does the job. �

Corollary 5.7. Let L � .K ˝L2.�q.`2˝H///! be defined as above. Then there exists a completely
contractive map

‰ W Lr ˝h Lc! .L1.B.K/˝�q.`2˝H///
!

and a complete contraction q W .L1.B.K/˝�q.`2˝H///
!
! Œ.B.K/˝�q.`

2˝H//! �� such that

.q ı‰/.k˝ h/.T /D hT .k/; hi:

In particular ‰�jbC.H/ Dˆ.

Proof. For �; � 2 L given by � D .�n/n, �D .�n/n we may define

‰.�˝ �/D . .�n˝ �n//n;

where  is the map from Lemma 5.6. Now ‰ obviously extends by linearity, thanks to the definition of
the Haagerup tensor product and the well-known fact that Mm..Xn/

!/D .Mm.Xn//
! ; see [Pisier 2003].

The map q is given by the limit

q.. N�n/n/.Tn/n D lim
n!!

.tr˝�/.Tn��n/:

Now the assertion follows from Lemma 5.6 and the fact that the duality pairing is given by the limit along
the ultraproduct. �

Remark 5.8. Let H be an infinite Hilbert space and H �H 0. Thanks to the definition of the C �-algebrabC.H/ as a subalgebra of the ultraproduct, we clearly have an isometric inclusion bC.H/� bC.H 0/. The
C �-algebra C.H/�B.L.H// depends on our minimalistic definition of L.H/. Certainly, L.H/�L.H 0/
and hence the tautological map �.x� /D x� , �.yop/D y produces a larger norm on L.H 0/ than on L.H/.
Let us consider a noncommutative polynomial p in a finite number of x� ’s and yop’s, and we may assume
that the x� only contain vectors from a finite-dimensional subspace H0 �H. Then we can find norm
attaining vectors �; � 2 L.H 0/ for p. Then we write H 0 DH0˚H?0 and may also assume that the �
and � are linear combination of elements in L.H0/ and L.H1/, where H1 �H?0 is a finite-dimensional
subspace. Using the moment formula, we see that the inner product remains unchanged after applying an
orthogonal transformation o which sends H1 to a finite-dimensional subspace of H orthogonal to H0
and leaves H0 invariant. This implies

kpkC.H 0/ D sup
k�k�1;k�k�1

jh�; p�ij D sup
k�k�1;k�k�1

jh˛o.�/; p˛o.�/ij � kpkC.H/:
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Let us denote by qH D ˆjbC.H/ W bC.H/! C.H/ the quotient map. Then we obtain a commutative
diagram bC.H/ C.H/

bC.H 0/ C.H 0/

qH

qH 0

where the left-hand downward arrow is the natural ultraproduct inclusion and the right-hand downward
arrow is the tautological inclusion (which is well-defined and injective). This allows us to identify
elements in the kernel of qH by considering qH 0 .

We recall that thanks to Avsec’s result, the orthogonal projection Pk W �q.H/! �q.H/ onto Wick
words of length k is a normal completely bounded map. We use the same notation

Pk W L
1.�q.H//! L1.�q.H//;

id˝Pk W L1.B.K/˝�q.H//! L1.B.K/˝�q.H//:

Let us note that one can take P !
k
W
Q
L1.B.K/˝�q.H//, the extension to the ultraproduct of L1 spaces,

which satisfies

h.id˝Pk/..Tn//; .�n/i D h.Tn/; .id˝Pk/..�n//i

with respect to the antilinear bracket given by the ultraproduct trace; see also [Raynaud 2002].

Lemma 5.9. The kernel of ˆ ıP !
k

contains the kernel of qH .

Proof. The map ˆıP !
k

is normal. According to Remark 5.8 it therefore suffices to show that for �; � 2 L
we have

.id˝P !k /.‰.�˝ �// 2 Im. H 0/

for some potentially larger Hilbert space H 0. Let us now consider Wick words .xn� /n, Qxn� , and yop, Qyop.
We have to consider

‰.. Qx� Qy
op/n˝ .x�y

op/n/D . . Qx
n
�y Qy

op
˝ xn�y

op//n:

For fixed n 2 N we see that

‰.. Qxn
Q�y/˝ .x

n
�y

op//D n�
mC Qm
2

X
. Qjk/DQ�; .jk/D�

.E�.a/yop˝ E� Qj1. Qa/ Qy
op/˝Es Qj .

Qh/Es �j

D

X
� 02P.mCm0/

‰�
0

. QxQ� Qy
op
˝ x�y

op/;

where

‰�
0

. QxQ� Qy
op
˝ x�y

op/D
X

. Qj1;:::; Qj Qm;jm;:::;j1/D� 0

.E�.a/yop˝ E� Qj1. Qa/ Qy
op/˝Es Qj .

Qh/Es �j :
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Note also that � 0 has to be obtained by joining singletons from Q� and � . In this context we observe
again that is enough to consider � 0 2 P1;2. QmCm/. In the following example we see thatX
j1

.�j1.a1/�j1.a2/y
op˝�j1. Qa1/ Qy

op/˝ s2j1sj1


1

�

X
j1

�j1.a1/�j1.a2/y
op
˝ s2j1 ˝ e1;j1

X
j1

�j1. Qa1/ Qy
op
˝ sj1ej1;1


� cq.a; Qa/n� n

3
2

is much smaller than n
3
2 and hence vanishes in the limit. For more complicated configurations, we may

assume that � and Q� are pair/singleton partitions, and that new links in � 0 2 P1;2.mC Qm/ are obtained
from joining pairs or singletons in � with pairs in Q� (or the other way around). All the joint pairings can
be estimated using the definition of the Haagerup tensor product as above which yields the bound X
. Qjk/DQ�; .jk/D�

. Qjk ;jk/D�
0

.E�j .a/yop˝ E�j . Qa/ Qy
op/˝Es Qj .

Qh/�Esj .h/

� cqnf .�;Q�;� 0/ sup
j

kaj k sup
j

k Qaj kky
op
kk Qyop

k:

The function f is obtained as follows. Let ˛ be the number of pairs in � being linked to either a pair or
singleton in Q� , and similarly let ˇ be the number of linked pairs. Then we find

f .�; Q�; � 0/D
j�sj

2
Cj�pj �˛C

˛

2
C
jQ�sj

2
CjQ�pj �ˇC

ˇ

2
D
mC Qm

2
�
˛Cˇ

2

using row and column vectors e1;i1;:::;il , ei1;:::;il ;1 for the number l of links in � 0. Thus for ˛Cˇ > 0 we
obtain 0 in the limit and therefore only those � 0 which link singletons to singletons give a contribution in
the limit. Now we use Pisier’s version [2000, Sublemma 3.3] of the Möbius transform. Let � 0 be a fixed
partition with pairs ffl1; r1g; : : : ; flp; rpgg. Then there are unitaries ��

0

j in a product of free group factors
such that

Sj .h/D sj ˝�
� 0

j

satisfies

a.� 0/ WD
X
� 00�� 0

‰�
0

. QxQ� Qy
op
˝ x�y

op/D
X
Qjk ;jk

.E�j .a/yop˝ E�j . Qa/ Qy
op/˝ .id˝E/. ESj . Qh/� ES.h//

D .id˝E/ .eX� 0
Q� ˝X

� 0

� /:

Here

X�
0

� D

�
n�

m
2

X
.j1;:::;jm/��

�j1.a1/ � � ��jm.am/˝Sj1.h1/ � � �Sjm.hm/

�

and the corresponding expression for eX� 0
Q�

depends on � 0. Moreover, there exists a Möbius function
�. � ; � / such that, see [Pisier 2000, Proposition 1],

‰�
0

. QxQ� Qy
op
˝ x�y

op/D
X
��� 0

�.� 0; �/a.�/:
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The advantage of this representation comes from the fact that we can actually calculate Pk for such a
fixed � 0. Recall that we may assume that � 0 is a pair/singleton partition. For fixed n 2 N and an element
�n D S ˝Wn, Wn a Wick word of length k, we obtain

tr.S..E�j .a/yop˝ E�j . Qa/ Qy
op/// �.Wns Qj1 � � � s Qj Qm

sjm � � � sj1/

such that . Qj1; : : : ; Qj Qm; jm; : : : ; j1/ D � 0. Then we obtain a nonzero term only if j� 0sj D k has exactly
k singletons. Hence we find that

.id˝Pk/. .�˝ �//D
X
j� 0s jDk

‰�
0

. QxQ� Qy
op
˝ x�y

op/D
X
j� 0s jDk

X
��� 0

�.�; �/a.�/:

Therefore we are left to consider

a.�/D .id˝E/.‰.eX�
Q� ˝X

�
� //:

In order to use Remark 5.8 we have to modify the variables X�� . Indeed, for every pair p D fl; rg in �
we introduce a label ep and replace s.ejl ˝hl/ by s.ejl ˝ ep˝hl/, and s.e Qjr ˝

Qhr/ by s.e Qjr ˝ ep˝hr/.
For the remaining singletons we replace s.ej ˝ hj / by Sj D s.ej ˝ e0/ and work in the Hilbert space
H 0 DH ˝ `2. Using the so modified X�� ’s we still have

a.�/D .id˝E�q.`2˝H˝e0//n‰.eX�Q� ˝X�� /D lim
j!1

‰.˛oj .
eX�
Q� /˝˛oj .X

�
� //

for any sequence .oj / of orthogonal transformations such that oj .e0/ D e0, which converges weakly
to e?0 . For elements in bC.H/ the limit for j !1 converges, and hence this remains true for the norm
closure. Thus for an element x 2 bC.H/ in the kernel of qH we find qH 0.x/D 0 and hence

hx; a.�/i D lim
j!1

hx;‰.˛oj .
eX� 0
Q� /˝˛oj .X

� 0

� /i D 0:

Using linear combinations we deduce indeed that hPk.x/;‰. Qx� Qyop˝ x�y
op/i D 0. �

Corollary 5.10. Let m˛ be multipliers given by the cb-approximation property for �q.H/:

(i) Then .id˝m˛/n extend to completely bounded maps on C.H/ with lim sup˛ k.id˝m˛/nkcbD 1, and
lim˛ f˛.k/D 1, where f˛ are the associated scalar finitely supported functions. In particular, the maps
Q'n used in the proof of Theorem 5.1 above are completely bounded with lim supn k Q'nkcb D 1.

(ii) Let L.H/ D C.H/
so
� B.L/ and note that L.H/ is spanned by “extended Wick words” (i.e.,

images of extended Wick words through ˆ) such that L2
k
.L.H// (i.e., the k � k2-closed linear span of

the extended Wick words of degree k) is finitely generated over B. Then there exists a modified family
f˛.N /

� W L.H/�! L.H/� converging in the point-norm topology.

Proof. Since .id˝m˛/.T / D
P
k f˛.k/Pk.T /, we see that kˆH ı .id˝m˛/kcb � 1C "˛ and also

ker.qH /� ker.ˆH ı.id˝m˛//. But that means that there is a unique map Qm˛ WbC.H/= ker.qH /!B.K/
such that

k Qm˛kcb D km˛kcb � 1C "˛:
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However, bC.H/= ker.qH / D C.H/ completely isometrically, and hence Qm˛ D .id˝m˛/ coincides
with the densely defined map .id˝m˛/W.�; �; a; y/ D f˛.j�sj/W.�; �; a; y/. Let us now consider a
finite-dimensional subspace H0 �H. Since L2

k
.L.H// is finitely generated over B, we deduce that the

projection Pd is normal on L.H0/. Hence the maps m˛ are also normal and restricted to the weakly
dense subspace C.H0/ we know that

km˛kcb � .1C "˛/:

Since a weakly dense subspace is norming for L.H0/� we deduce that k.m˛/� WL.H0/�!L.H0/�kcb�

.1C "˛/. Hence the normal map m˛ coincides with the normal map ..m˛/�/� and satisfies the same
cb-norm estimate. Moreover, since we have normal conditional expectations EH0 W L.H/! L.H0/ so
that

S
Hi

EHi .L.Hi //� is norm dense in L.H/�, we deduce that .m˛/� extends to a completely bounded
map of cb-norm at most 1C "˛ and hence m˛ D ..m˛/�/� is indeed a normal extension of the map
m˛ W C.H/! C.H/ with the same cb-norm estimate. This concludes the proof of (ii). �

The remainder of the subsection is devoted to proving some auxiliary results which will help us
construct a standard form for the von Neumann algebra N which was used in the proof of Theorem 5.1.
This standard form will be crucial in the proof of the main technical theorem.

Lemma 5.11. There exists an action by �-automorphisms ˛ WO.H/! Aut.N / such that

˛o.�.x/�.y
op//D �.˛o.x//�.y

op/; o 2O.H/; x 2M; yop
2 P op:

Moreover, let E0 be the orthogonal projection of L onto the closed linear span of the extended Wick words
of degree zero. For T 2N the condition

˛o.T /D T for all o 2O.H/
implies that ŒT; E0�D 0.

Proof. Let us recall that N acts on

HD spanf�.x� /.y˝ 1/�.zop/..1˝A 1/˝ 1/ W x� 2M; y 2M; z 2 P g

�
�
.L2.M/˝AL

2.P //˝L2.�q.`
2
˝H//

�!
:

Recall here that H is infinite-dimensional, and thanks to second quantization, uo D .id˝˛o/n acts on
H as a unitary. By normality, we deduce that ˛o.x/D uoxu�o extends to a �-automorphism of N and
moreover, ˛o.�.yop//D �.yop/. Let oi 2 O.H/ be a family of orthogonal transformations of H such
that oi .h/ goes to 0 weakly in H. Let � D �.x� /.y˝A z˝ 1/ and �D �.x0� 0/.y

0˝A z
0˝ 1/. Then we

obtain

lim
i
.uoi .�/; �/D lim

i
lim
n!!

n�
mCm0

2

X
.jk/D�; .j

0

k0
/D� 0

.E�j .x/.y˝A z/; E�j 0.x
0/.y0˝A z

0/

�.sj1.oi .h1// � � � sjm.oi .hm//sj 0
m0
.h0m0/ � � � sj 01

.h01//

D 0:

Indeed, we expand the sum into the summation over � 00 2P1;2.mCm0/ and execute the limit over n. Then
we observe that the coefficients remain uniformly bounded. However, oi .hk/ is eventually orthogonal to
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every h0
k0

and then the moment formula for the q-gaussian yields 0 in the limit. We have therefore shown
that uoi converges weakly to E0, the projection onto words of length 0 in the second component. By
taking convex combinations we find a net such that

SOT� lim
s

X
i

˛si uoi DE0:

Thus for T 2N with ˛o.T /D T for all o, we deduce that Œuo; T �D 0 and hence

E0.T .�//D lim
s

X
i

˛si uoiT .�//D T

�
lim
s

X
i

˛si uoi .�/

�
D T .E0.�//:

This means E0T D TE0 as desired. �

Lemma 5.12. Let B _P op � B.L2.M/˝AL
2.P //. Then the natural inclusion map

� W B _P op
!N

is normal.

Proof. By density it suffices to consider �n D �.xn� /.y˝A z/ and �n D �. QxnQ� /. Qy˝A Qz/. We may assume
that x� and Qx� is a Wick word. Our goal is to analyze

�.T /D lim
n!!
hT �n; �ni:

Let us first fix n 2 N. Then !n.T /D hT �n; �ni is normal, and hence it suffices to assume T D b�.pop/.
It turns out that we need j� j D j Q� j D k and then

!n.T /D
n � � � .n� kC 1/

nk

X
2Sk

qinv./�
�
Qz�EA. Qy

��.k/. Qxk/ � � ��.1/. Qx1/b�1.x1/ � � ��k.xk/y/zp
�
:

Thanks to Lemma 5.2, we may replace L2.M/ by L2.D/˝B L2.M/ in the definition of H. For fixed 
we may now define

x D ˛1;:::;k.x/˝B y˝A z; Qx D ˛.1/;:::;.k/. Qx/˝B ˝ Qy˝A Qz:

Since !n is normal we deduce that

!n.T /D
X


qinv./n � � � .n� kC 1/

nk
hT .x /; Qx i

for all T 2B _P op. Since the summation is finite and the scalar coefficients converge, the limit exists for
all T 2 B _P op and results in a normal functional �.T / given by the same sum but with coefficient 1
instead of n � � � .n� kC 1/=nk . �

Proposition 5.13. Assume that for every finite-dimensional Hilbert space H, L2
k
.M.H// is finitely

generated as a right B-module (note that in particular this is the case if dimB.Dk.S// <1 for all k).
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Then:

(i) There exists a faithful normal conditional expectation E WN ! BP D �.B/_ �.P
op/.

(ii) The action ˛ is implemented by an sot-continuous family of unitary operators .Vo/o2O.H/ on L2.N /.

(iii) L2.N /D
L
k�0Wk.M/L2.BP / and Vo.�.x� /�/D �.˛o.x� //� for x� 2M , � 2L2.BP /. More-

over, Ej�.M/ DEB , where EB W �.M/! �.B/ is the conditional expectation.

Proof. For a subspace H 0 �H we use the notation

H.H 0/D f�.x� /..y˝A z/˝ 1/ W y 2M; z 2 P; x� D x� .x1; : : : ; xm; h1; : : : ; hm/; hi 2H
0
g

for the subspace generated by H 0-Wick words. Let �H 0 WH.H 0/�H be the canonical inclusion map and
FH 0.T /D �

�
H 0T �H 0 the induced completely positive map. Certainly, we have FH 0.�.yop//D �.yop/ and

FH 0.x� /DEH 0.x� /:

Indeed, if a Wick word x� contains a singleton hi 2 .H 0/?, then FH 0.x� /D 0. Using hi 2H 0[ .H 0/?

we deduce the assertion by linearity. Thus FH 0.N .H// D N .Hi / � B.H.H 0// defines a normal
surjective conditional expectation FH 0 . Let eH 0 be the support of FH 0 . We observe that �.M.H 0//
and �.P op/ belong to the multiplicative domain of FH 0 . Let eN.H 0/ � N .H/ be the von Neumann
algebra generated by �.M.H 0// and �.P op/ inside NP .H/. According to Remark 5.8 and Kaplansky’s
density theorem, we deduce that FH 0 induces the same weak� topology on the unit ball of eN.H 0/.
This means that the tautological embedding �H 0H W N .Hi /! N .H/ given by �H 0H .x� / D x� and
�H 0H .�.y

op//D �.yop/ satisfies FH 0� D idN .Hi / and FH 0 is an isomorphism when restricted to eN.H 0/.
We denote by EH 0 D �HiHFH 0 WN !N the resulting, not necessarily faithful, conditional expectation.
Let Hi be an increasing net of finite-dimensional spaces whose union is dense. Since

S
i H.Hi / is norm

dense, we deduce thatbEHi .x/ converges weakly to x as i goes to infinity along the net of finite-dimensional
subspaces. Recall that the multiplier maps m˛ are normal and commute with every EHi . Adding convex
combination we may find a new completely contractive net, still denoted by m˛ , converging in the strong,
strong� operator topology. Thus we may assume that

lim
i

lim̨.bEHi .m˛x//D x
converges strongly for all x2N. In our next step we considerH 0D0, i.e., the map �WL2.M/˝AL

2.P /!H,
given by �.y ˝A z/ D .y ˝A z/˝ 1. This yields a completely positive map ˆ.T / D ��T � such that
ˆ.�.yop//D �.yop/ and ˆ.�.b//D �.b/. On the other hand, for a Wick word x DW� , we see that

h�.x/�.y˝A z/; �.y
0
˝A z

0/i D lim
n!!

n�
m
2

X
.ij /D�

h E�.x/.y˝A z/; y
0
˝A z

0
i�.sj1.h1/ � � � sjm.hm//D 0:

By normality, we deduce that ˆ.N /DB _P op �B.L2.M/˝AL
2.P //. Let us denote by BP Dˆ.N /

the resulting von Neumann algebra and by eBP the support of E DˆjNP . Since the Wick words of order 0
are obviously invariant under ˛o for all o 2O.H/ and

E˛o.x/D ˛o.E.x//D E.x/;
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we must have ˛o.eBP /D eBP for every o 2O.H/. More precisely, 1� eBP is the projection of the ideal
I D fx W E.x�x/D 0g and we certainly have ˛o.I /D I. This implies ˛o.1� eBP /D 1�˛o.eBP /. We
deduce that for all ˛ we have ˛o.m˛eBP / D m˛eBP and hence, thanks to Lemma 5.11 we know that
ŒE0; m˛.eBP //�D 0. Now, we fix ˛ and consider xi;˛ D FHi .m˛.eBP //Dm˛FHi .eBP /. This means

xi;˛ D
X

k�k.˛/

xk;

where xk D Pk.x/. However, we have a finite basis �k;s of L2
k
.M.H// over B made of elements in

Wk.Hi / and hence for all z D �.x� 0/�.yop/ we find

Pk.z/D
X
s

�.�k;s/EB.�
�
s x� 0/�.y

op/:

Since Pk is normal we deduce that there are coefficients as 2 �.B/_ �.P op/ such that

xk D
X
s

�.�k;s/as;k 2N .Hi /:

Note here that we have rewritten m˛ as normal map, because the maps Tk;s.x/D �.�ks/�.E.��ksx// are
normal, thanks to Lemma 5.12. Note also that due to Lemma 5.12, �.B _P op/D �.B/_ �.P op/�N.
On the other hand the projection PHi onto the range of �Hi contains the range of � and hence

ŒE0; �
�
Hi
Om˛.eBP /�Hi �D �

�
Hi
ŒE0; Om˛.eBP /��Hi D 0:

Thus we have ŒE0; xi;˛�D 0. Let us consider �D .y˝A z/˝ 1. We deduce that

xi;˛.�/D
X

k�k.˛/

X
s

�.�k;s/ak;s.�/:

Moreover, we see that
EB.�

�
s;kxi;˛.�//DEB.�

�
s;k�s;k/ak;s.�/:

We may assume that fk;s DEB.��s;k�s;k/ is a projection in B and ak;s D fksaks . Since the conditional
expectation can be calculated using vectors in the Hilbert space, we deduce that

ak;s.�/DEB.�
�
s;kxi;˛.�//DEB.�

�
s;kE0.xi;˛.�///D 0

for all k > 0. Thus only the coefficient for k D 0 survives and hence xi;˛ 2 �.B _P op/. This remains
true for the limit along ˛; i.e., xi D FHi .eBP / 2 �.B _P

op/. Since
S
i �Hi is norm dense we find that

eBP D w
�
� lim

i
FHi .eBP / 2 �.B _P

op/:

The restriction of the normal map � ı E to �.B _P op/ is the identity. This implies

1� eBP D � ı E.1� eBP /D � ı E.eBP .1� eBP /eBP /D 0:

Thus eBP D 1 and E is indeed a faithful normal expectation. Now it is easy to conclude the proof
of the crucial assertion (iii). Indeed, we may assume that �.B/ and �.P op/ both admit weakly dense
separable C �-subalgebras and hence fix a faithful normal state � on BP . Then  D � ıE satisfies Connes’
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commutativity relation for the modular group E.� t .x//D�
�
t .E.x//. We refer to [Haagerup, Junge and Xu

2010] for the fact that we have a natural embedding of the Haagerup spaces Lp.BP /!Lp.N / given by

�p.xd
1
p

� /D xd
1
p

 

for the densities d� 2 L1.B _P op/, d 2 L1.NP / associated with the states. Moreover, the support
of d is 1. This implies that L2.N /D NL2.BP /. By approximation in the C �-algebra generated by
�.M/ and �.P op/, we see that the span of elements of the form

�.x� /�.y
op/d

1
2

 

is dense in L2.N /. However, we have

tr
�
.�.x� /�.y

op/d
1
2

 /
��.x�/�.z

op/d
1
2

 

�
D tr

�
�.yop/��.x� /

��.x�/�.z
op/d 

�
D tr

�
�.yop/��.zop/�.x� /

��.x�/d 
�

D  
�
�.yop/��.zop/�.x� /

��.x�/
�

D �
�
E.�.yop/��.zop/�.x� /

��.x�//
�

D �
�
�.yop/��.zop/E.�.x� /��.x�//

�
D �

�
�.yop/��.zop/EB�.x� /

��.x�/
�
: (5-1)

For the proof of the last equality, we may assume that x� and x� are reduced Wick words. As in
Lemma 5.12, we see that

h�.x�/.y˝A z/; �.x�/. Qy˝A Qz/i

D lim
n
n�
j�jCj�j
2

X
.jk/D�; . Qj Qk/DQ�

�
�
Qz�EA. Qy

�
E� Qj . Qx/

�
E�j .x/y/z

�
�.s Qjm.

Qhm/ � � � s Qj1.
Qh1/sj1.h1/ � � � sjm.hm//

D ıj� j;j�j
X
2Sk

qinv.�/n�j� j
X

.j1;:::;jk/

�
�
. j̨.1/;:::;j.k/. Qx//

�
j̨1;:::;jk .x/yEA.z Qz

�/ Qy�
�

D ıj� j;j�j
X
2Sk

qinv.�/�.b.x; Qx; /yEA.z Qz
�/ Qy�/:

The limit b.x; Qx; / 2 B only depends on x and Qx and the permutation  . Placing the summation
inside we find indeed EB.x��x� /. Thus we have shown that Ej�.M/ D EB . We deduce that the spaces
Wk.M/L2.BP / are mutually orthogonal. Finally, we have to discuss the action ˛ W O.H/! Aut.N /.
For an arbitrary �-automorphism ˛ of N, we may define the action on L2.N / via

˛.xd
1
2

 /D ˛.x/.d ı˛
�1/

1
2 :

It is easy to show that this action is independent of the choice of a normal faithful density d associated
with state  . Here d ı ˛�1 is the density of  ı ˛�1. Thus we deduce from ˛o.�.y

op//D �.yop/ and
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the fact that  ı˛o D  , that

˛o.�.x� /�.y
op/d

1
2

 /D ˛o.�.x� //�.y
op/d

1
2

 ;

as expected. �

Remark 5.14. A posteriori, we deduce that under the assumptions above, FH 0 is faithful for every
subspace H 0 �H because E D EFH 0 .

6. The deformation bimodules are weakly contained in L2.M/ ˝B L2.M/

for polynomial dimensions of Dk.S / over B

6A. Norm estimates for decomposable maps. Let H be an M -N bimodule over finite von Neumann
algebras M and N. We will introduce some norms which will enable us to show that the M -N bimodules
associated to certain maps ˆ WM !L1.N /DN

op
� are weakly contained in H. To be more precise define

kˆkH D inf
�X
j

k�j kk�j k W �.ˆ.x/y/D
X
j

h.x˝yop/�j ; �j i

�
:

The infimum is taken over elements �j ; �j 2H.

Lemma 6.1. Let K be an M -N bimodule such that for a total set of vectors � 2K the map ˆ� WM !
L1.N / defined by

�.ˆ�.x/.y//D h.x˝y
op/�; �i D hx�y; �i

satisfies kˆ�kH <1. Then K is weakly contained in H.

Proof. Let us recall that K �H if and only if we have the relation between the kernels

ker.�H /� ker.�K/;

where �H WM˝binN
op!B.H/, respectively �K WM˝binN

op!B.K/ are the canonical representations.
Let z D lim zj be a limit of norm-1 elementary tensors which converges to an element z 2 ker.�H / with
respect to the max norm. Let � 2K such that kˆ�kH <1. This means we may assume that

�.ˆ�.x/y/D
X
l

˛lh�l ; x�lyi; k�lkk�lk � 1;

and
P
l j˛l j is finite. Using kzj kbin � 1 and uniform convergence, we may interchange limits and deduce

hz�; z�i D lim
j
h�; z�j zj �i D

X
l

˛l lim
j
h�l ; z

�
j zj�li D

X
l

˛lhz�l ; z�li D 0:

Thus for any linear combination � D
P
k �k of elements such that the ˆ�k ’s have finite H norm, we still

have �K.z/� D 0. By density this holds for all � 2K. �

As an illustration for the norm estimates let us prove the following result.



GENERALIZED q-GAUSSIAN VON NEUMANN ALGEBRAS WITH COEFFICIENTS, I 1697

Lemma 6.2. Let HB D L2.M/˝B L2.M/, and assume that L2
k
.M/ has dimension dk over B. Let

Pk W L
2.M/! L2

k
.M/ be the orthogonal projection. Then

kPkkHB � dk :

Proof. We recall that

hx˝yop.c˝ d/; a˝ bi D �.b�EB.a
�xc/dy/D �.EB.a

�xc/EB.dyb
�//: (6-1)

Assuming that �j is a basis with EB.��j �i /D ıij ei , ei a projection, we see that

�.yPk.x//D
X
j

�.y�jEB.�
�
j x//D

X
j

hx˝yop.1˝ 1/; �j ˝ �
�
j i:

Since h�j ˝ ��j ; �j ˝ �
�
j i D �.E.�

�
j �j /E.�

�
j �j //� �.ej /, we deduce the assertion. �

6B. Configurations. Our main goal here is to analyze the operators ˆ�;� W M ! L1.M/ given by
ˆ�;�.x/DEM .�x�/, where �; � are elements in �q.B;A˝ .H ˚H//. We will start with monomials

� D s.x1; h1/ � � � s.xm; hm/; �D s.x0m0 ; h
0
m0/ � � � s.x

0
1; h
0
1/;

where hi ; h0i 0 2 H � f0g [ f0g �H. Although our goal is to obtain estimates for arbitrary x, we will
first assume that x D � is a reduced Wick word from M and only contains singletons from H � f0g. By
considering the moment formula we can reorganize the trace using configurations

�.�0���/D
X

˛ configuration

�.�0ˆ˛.�//

whenever �0 is another reduced Wick word. Here a configuration ˛ D .�0�H ; �H�0; I�;� ; I�;�/ is given
by

(i) a pair partition �0�H of f1; : : : ; mg P[fm0; : : : ; 1g so that all the pairs fl; rg have indices in 0�H ;

(ii) a pair partition �H�0 of f1; : : : ; mg P[fm0; : : : ; 1g so that all the pairs fl; rg have indices from H �0;

(iii) subsets I�;� � f1; : : : ; mg, I�;� � fm0; : : : ; 1g disjoint from the support
S
�0�H [

S
�H�0 of the

partitions above.

Indeed, using the moment formula for �.�0���/ we know that we have to take the sum over all pair
partitions of length mCm0CkCk0, k D j�j, k0 D j�0j. Every such pair partition has to respect the pairs
of 0�H and that defines our �0�H . Some pairs can combine elements from � and � with coefficients in
H � 0. This defines �H�0. Some partitions connect � and � and some � with �. The left-hand sides of
the pairs between � and � define the set I�;� and the right-hand sides of the pairs from �, � define I�;�.
All the remaining pairs will connect �0 and �. Since � and �0 are themselves Wick words, there are no
pairs connecting elements from � (�0) with itself. We see that indeed, the sum over all partitions can be
regrouped into first summing over all configurations (which only depend on � and �), and then summing
over all partitions supported by these configurations. Let us note that once a configuration ˛ is known we
can determine exactly how many crossings will be produced by pairs in 0�H. Indeed, we know that
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jI�;� jC jI�;�j many singletons will be removed from �. According to the position of the left legs in �0�H
some extra crossing will be produced from the set I�;� . The same applies for I�;� . Here is an example:

a1 a2 b1 a3 b3 c1 c2 a3 d1 c3 c4 d2 b3 d1 a1 b1 :

Here �0�H are given by the positions of b1 and b3. The set I�;� is given by the position of a3 and �H�0
is given by the positions of a1. The b’s are responsible for 8C 1C 1C 1 crossings: eight crossings
with c’s, one crossing among themselves, one crossing coming from a’s and b’s, one crossing from the
b’s and d ’s. Thus k.˛/D 2� .6� 2/C 1C 2.

In our next step we replace the monomials � and � by Wick words. This means we only have to sum
over those configurations such that �0�H and �H�0 connect � and � and no pair � and � with itself. In
addition the reduction procedure produces scalars and new operator-valued expression j̨1;:::;jl .ˇ/ with
ˇ 2Dk.S/. We have proved the following simple combinatorial fact:

Lemma 6.3. Let � and � be Wick words obtained by reduction and � 2 M be a Wick word of length
k D j�j. For a fixed configuration ˛ there is a number k.˛/ such that for all �1� q � 1

ˆ˛.�/D q
k.˛/ Q�;

where Q� is a linear combination of reduced words with smaller length k � jI�;� j � jI�;�j. Moreover, if
k �mCm0 is the length of �, and L is the cardinality of �0�H , then

k.˛/� .k�m�m0/L:

We will give more precise information about Q� in the next paragraph.

6C. Generalized q-gaussians. As a tool we will use a slight generalization of the von Neumann algebra
�q.B;A˝H/. This generalization is based on matrix models of the ordinary q-gaussian von Neumann
algebras. This approach was invented by Speicher [1992; 1993] and has been applied in many situations;
see, e.g., [Biane 1997; Junge 2006; Junge, Palazuelos, Parcet, Perrin and Ricard 2015; Junge and Zeng
2015; Nou 2004; 2006]. Let Br W H !

T
p L

p.�;†;�/ the standard brownian motion so that Br.h/
is a normal random variable and .Br.h/;Br.h0// D .h; h0/. The �-algebra is chosen minimal. This
construction is well known as the gaussian measure space construction. Given a self-adjoint matrix "ij
with values f�1; 1g, there are symmetries vj 2M2n.C/ such that

vivj D "ij vj vi :

Speicher’s important idea is to choose the matrix "ij independently at random for all pairs. We will work
with double indices ".j;t/;.k;s/, which are independent as functions of the pairs f.j; t/; .k; s/g whenever
t ¤ s or j ¤ k and satisfy

P.".jt/;.ks/ D 1/D
1
2
.1�Qs;t /

as long as .j; t/¤ .ks/ for a given matrix Qs;t . This allows us to construct matrix models

u.t; h/D

�
1
p
n

nX
jD1

vj;t ˝gj .h/

�
n

2

Y
n;!

.M2n.C/˝L
1.�//n
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which satisfy

�.u.t1; h1/ � � �u.tm; hm//D
X

�2P2.m/

Y
fa;bg2�; fc;dg2�

a<c<b<d

Qtatc

Y
fa;bg2�

hha; hbi:

In other words the constant term qinv.�/ is replaced by the product of the crossing inversions weighted
according to Q. Indeed, by independenceY

fa;bg2�; fc;dg2�
a<c<b<d

Qtatc D E�.vj1;t1 � � � vjm;tm/

for .j1; : : : ; jm/� � . In particular for a fixed t and khkD 1 the random variable u.t; h/ is just an ordinary
q-gaussian. This central limit theorem is well known and goes back to [Speicher 1992; 1993]; see also
[Junge 2006; Junge and Zeng 2015].

We may easily generalize this to the A-valued situation by considering a sequence of symmetric
independent copies .�j ; B;A;D/ and defining

u.t; h; a/D

�
1
p
n

nX
jD1

vj;t ˝gj .h/˝�j .a/

�
n

2

Y
n;!

.M2n.C/˝L
1.�/˝D/n:

For a subset 1 2 S D S� � A, we denote the von Neumann algebra generated by the elements u.t; h; a/,
t 2Q, h 2H, a 2 S by �0Q.B; S ˝H/. Then define the von Neumann algebra �Q.B; S ˝H/ by the
same procedure as in Definition 3.4. A look at the moment formula allows us to state the following fact.

Lemma 6.4. Let T0 � T be a nonempty subset such that Qst D q for all s; t 2 T0. Then �q.B; S ˝H/
embeds into �Q.B; S ˝H/ in a trace-preserving way.

Remark 6.5. As observed in [Junge and Zeng 2015] the reduction procedure still works in the generalized
q-gaussian setting.

Let us return to a configuration ˛ as in Section 6B above. We replace the Wick words Wq.Ea; Eh/ and
Wq. Ea0; Eh0/ by new Wick words WQ.Ea; Eh/ WQ. Ea0; Eh0/ as follows. For a configuration ˛ with a partition
�0�H of the indices labeled with 0�H, we define a new matrix

Qst . Qq/D

�
Qq if hs and ks are both in 0�H;
q else.

Note that the matrix only depends on the first component �0�H of a configuration. For every pair
p D fl; rg 2 �0�H we introduce a label ep and replace hl and h0r by hl ˝ ep and h0r ˝ ep to avoid
over-counting. We denote by Hs , H 0t the modified vectors. Starting from

�Q. Qq/ D sQ. Qq/.H1; a1/ � � � sQ. Qq/.Hm/; �Q. Qq/ D sQ. Qq/.H
0
m0 ; a

0
m0/ � � � sQ. Qq/.H

0
1; a
0
1/

we apply the same reduction procedure (eliminating all the pairs from the nonreduced words X� .Eh; Ea/)
for the Wq’s and obtain the reduced Wick words WQ. Qq/. EH; Ea/, WQ. Qq/. EH 0; Ea0/.
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Lemma 6.6. Fix �0�H . The function

F. Qq/D
X

˛;˛1D�0�H

EM .WQ. Qq/. EH; Ea/�WQ. Qq/. EH
0; Ea0//

is a polynomial in Qq with lowest degree at least .j�j�mCm0/L and largest degree at most .j�jCmCm0/L.

Proof. Let ˛ be a configuration which contains �0�H . Comparing the terms in the moment formula for

�.�0Wq.Eh; Ea/�Wq. Eh0; Ea0// and �.�0WQ. Qq/.Eh; Ea/�WQ. Qq/. Eh
0; Ea0//

we see that they differ by the factor . Qq=q/k.˛/ number of pairs. Note however, that k.˛/ only depends
on ˛. This implies the assertion. �

6D. Weak containment. We need a simple fact about polynomials:

Lemma 6.7. Let Œa; b� be an interval, Pd .a; b/ the set of polynomials of degree d , and a < t0 < t1 <
� � �< td < b distinct points. Then the map ˆ W Pd .a; b/! CdC1, �.f /D f .tj /, is injective. Moreover,
there exists a matrix ai;j such that for every polynomial

p.t/D
X

0�k�d

˛kt
k

of degree � d we have
˛k D

X
j

ak;jf .tj /:

Proof. For 0 � j � d we define the polynomial pj .t/ D
�Q

i¤j .tj � ti /
��1Q

i¤j .t � ti /, which has
degree d . Then we see that pj .tj /D 1 and pj .ti /D 0 for i ¤ j. In particular, the polynomials .pj /0�j�d
are linearly independent and hence Pd .a; b/D spanfpj W 0� j � dg. This implies

p.t/D
X

0�j�d

p.tj /pj .t/

and in particular ˆ is injective. Since moreover, the monomials are linearly independent in C1.a; b/, we
see that the linear map ‰.˛0; : : : ; ˛d /Dˆ

�P
k ˛kt

k
j

�
is invertible and can be represented by the matrix

Cj;k D t
k
j , the well-known Vandermonde matrix. Then AD C�1 does the job. �

From now on we fix � D �0�H , and Wick words � DWq. EH; Ea/, �DWq. EH 0; Ea0/ which are obtained
after reduction from possible longer terms sq.h1; a1/ � � � sq.hm; am/ and sq.h0m0 ; a

0
m0/ � � � sq.h

0
1; a
0
1/. This

allows us to define
F� .t/DEM

�
WQ.t/. EH; Ea/�WQ.t/. EH; Ea/

�
:

As in Section 6B, we assume that at least L labels of � and � are of the form .0; hi /.

Corollary 6.8. Fix m;m0 and L. Then there exists a degree D D D.m;m0; L/ such that for q 2 Œa; b�
and a � t1 < � � �< tD � b < 1 there are coefficients l such that

EM .���/D
X
�

X
l

�
q

tl

�.k�m�m0/L
lF� .tl/
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holds for k D j�j � 2.mCm0/. Moreover, for some possibly different coefficients Ql

EM .���/D
X
�

X
l

QlF� .tl/

holds for j�j � 2.mCm0/.

Proof. We fix � and k � mC m0. Let Œa; b� � .�1; 1/ be an interval and a D q. The ti ’s are all
chosen bigger than a. We define the polynomial pk.t/D t�.k�m�m

0/LF.t/ which has degree at most
.kCm0Cm� .k�m�m0//L� .2mC 2m0/L and hence

pk.t/D
X

0�j�.2mC2m0/L

aj t
j and aj D

X
i

cijpk.ti /

hold for mutually different points a � t1; : : : ; td � b, where d � .2mC 2m0/LC 1 are independent of k.
Hence we get

F� .q/D q
.k�m�m0/Lpk.q/D q

.k�m�m0/L
X
j;i

cij q
jpk.ti /

D q.k�m�m
0/L
X
j;i

cij q
j t
�.k�m�m0/L
i F� .ti /D

X
i

�X
j

cij q
j

��
q

ti

�.k�m�m0/L
F� .ti /:

This defines the coefficients i . For k � 2.mCm0/ we work directly with the polynomial F.t/ of degree
at most 2.mCm0/L. �

Let M D �q.B; S ˝H/ and fM D �q.B; S ˝ .H ˚H//. Define the M -M bimodule Fm � L2.fM/

as the k � k2-closed linear span of the reduced Wick words W� .x1; : : : ; xt ; h1; : : : ; hN /, N � 1, such that
hi 2H � f0g[ f0g �H for all i and at least m of the vectors hi belong to f0g �H. This bimodule will
play a crucial role in our deformation-rigidity arguments in the next section.

Theorem 6.9. Let M D �q.B; S ˝H/ and let C > 0, d > 0 be two constants such that the dimension
of L2

k
.M/ over B is smaller than Cdk for all k. Let jqj < 1. Then there exists an L0 2 N and a B-M

bimodule K such that Fl is weakly contained in L2.M/˝B K for all l � L0.

Proof. Let us recall that

h�˝ .�0/op.a˝B b/; ˛˝B ˇi D �.ˇ
�EB.˛

��a/b�0/D �.EB.˛
��a/EB.b�

0ˇ�//:

Now we may assume that .�i /i2Ik is a basis of dimension dk over B so that

Pk.�/D
X
i2Ik

�iEB.�
�
i �/ and EB.�

�
i �/� 1:

This implies
�.�0���/D

X
i2Ik

�.�0��iEB.�
�
i �/�/D

X
i2Ik

�.�iEB.�
�
i �/��

0/

D

X
i2Ik

h�˝ .�0/op.1˝B �/; �i ˝B .��i /
�
i:
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Let q0 < 1 so that q=q0 < 1. Then we define the B-M bimodule

KD
M

q=q0�t<1

L2.�Q.t/.B; S ˝H//

with the natural left and right actions. For fixed � , � we choose aD˙q and jqj=q0� t0< � � �< tD <b for
some b < 1. This allows us to define WQ.ti /.Eh; Ea/ and WQ.ti /. Eh

0; Ea0/ in K. With the help of Corollary 6.8
we deduce that the map ˆC.�/D

P
k�2.mCm0/EM .�Pk.�/�/ satisfies

kˆCkL2.M/˝BK

�

X
�

X
l

jl j
X

k�2.mCm0/

q
.k�m�m0/L
0

X
i2Ik

k1˝B WQ.tl /.
EH 0; Ea0/kk�i ˝B .WQ.tl /.

EH; Ea/�i /
�
k:

Now we note that

k1˝B WQ.tl /.
EH 0; Ea0/k D kWQ.tl /.

EH 0; Ea0/kL2.�Q.tl //
� c.tl/

and
k�i ˝B .WQ.tl /.

EH; Ea/�i /
�
k D �.WQ.tl /.

EH; Ea/�iEB.�
�
i �i /.WQ.tl /.

EH; Ea/�i /
�/

� �.�i�
�
i WQ.tl /.

EH; Ea/�WQ.tl /.
EH; Ea//

� kWQ.tl /.
EH; Ea/k2�Q.tl /

� c.tl/:

Thus it suffices to know that
P
k q

.k�m�m0/L
0 Cdk is finite. Note here that m and m0 depend on the Wick

word and that we may assume l � L0. Thus qL00 d < 1 and b < 1 is enough to achieve summability.
Using the second part of Corollary 6.8 we also have summability for k � 2.mCm0/. Lemma 6.1 then
yields the assertion. �

Corollary 6.10. Let M D �q.B; S ˝H/ and assume that H is finite-dimensional and dimB.Dk.S//�
Cdk for some constants C; d > 0. Then there exists an B-M bimodule K such that for m � 1 large
enough we have Fm � L2.M/˝B K. In particular, for m large enough, Fm is weakly contained into
L2.M/˝B L

2.M/.

7. The proof of the main theorem and its applications

We first need some preliminaries. Throughout this section we use the notationM DM.H/D�q.B; S˝H/
and fM D �q.B; S ˝ .H ˚H//DM.H ˚H/. Let

MD .D˝�q.`2˝H//_M � .D˝�q.`2˝H//! :

As in Section 5, let
H�

�
.L2.M/˝AL

2.P //˝Fq.`2˝H/
�!

be the norm-closed linear span of the sequences�
n�

m
2

X
.j1;:::;jm/D�

.�j1.x1/ � � ��jm.xm/y˝A z/˝ sj1.h1/ � � � sjm.hm/

�
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for m� 1, � 2 P1;2.m/, xi 2 BSB, hi 2H, y 2M, z 2 P. Take the representations

� WM ! B.H/; � W P op
! B.H/

introduced in Section 5 and define N D �.M/_ �.P op/ � B.H/. As seen in Section 5, we choose a
normal faithful state � on BP D �.B/_ �.P op/� B.H/ and then define a normal faithful state  on N
by  D � ıEBP , where EBP WN ! BP is the normal faithful conditional expectation. Let d 2L1.N /
be the density of  and �0 D d

1
2

 . Then L2.N / is the norm-closed span of the elements �.x� /�.yop/�0

for x� 2M a Wick word and y 2 P. Let Wk.M/ be the linear span of the Wick words of degree k in M
and L2.BP /D L2.BP ; �/ be the standard form for BP � B.H/. Then N is standardly represented on

L2.N /D
M
k�0

Wk.M/L2.BP /

by the formulas

�.x� /�.y
op/.�.x�/�.z

op/�0/D �.x�x�/�..zy/
op/�0; x� ; x� 2M; y; z 2 P:

The conjugation J W L2.N /! L2.N / associated to the standard representation of N is given by

J .�.x� /�.yop/�0/D �
 

� i
2

.�.x�� /�. Ny//�0; x� 2M; y 2 P;

where � t is the modular group on N associated to  . We will also consider eN DN .eH/ constructed in
the same way as N by using eH DH ˚H instead of H. Thus takeeH� �.L2.M/˝AL

2.P //˝Fq.`2˝ eH/�!
to be the norm-closed linear span of the sequences�

n�
m
2

X
.j1;:::;jm/D�

.�j1.x1/ � � ��jm.xm/y˝A z/˝ sj1.
Qh1/ � � � sjm.

Qhm/

�
for m� 1, � 2 P1;2.m/, xi 2 BSB, Qhi 2 eH. Exactly as in Section 5, define the �-representations

� WfM ! B.eH/; � W P op
! B.eH/

and then define eN D �.fM/_ �.P op/. Then eN is standardly represented on

L2.eN /DM
k�0

Wk.fM/L2.BP /;

and the associated conjugation eJ W L2.eN /! L2.eN / is given by the formulaeJ .�.x� /�.yop/�0/D �
 

� i
2

.�.x�� /�. Ny//�0; x� 2fM; y 2 P;

where � t is the modular automorphism group on eN associated to  . For every angle t define the unitary
Vt on L2.eN / by

�.x� .x1; Qh1; : : : ; xm; Qhm//�.y
op/�0 7! �.x� .x1; ot . Qh1/; : : : ; xm; ot . Qhm///�.y

op/�0:
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Then the one-parameter group of �-automorphisms Ad.Vt / of B.L2.eN // restricts to a group ˛t of
�-automorphisms of eN, acting according to the formula

˛t .�.x� .x1; Qh1; : : : ; xm; Qhm//�.y
op//D �.x� .x1; ot . Qh1/; : : : ; xm; ot . Qhm///�.y

op/:

When further restricted to fM D �q.B; S ˝ eH/ this group of �-automorphisms coincides with the one
introduced in Theorem 3.16 and we have the identity

Tt .x/DEM .˛s.x//; x 2M; 0� s < �
2
;

where Tt is the heat semigroup introduced in Theorem 3.16 and t D�ln.cos.s//. We finally introduce the
bimodules needed in the deformation argument. To do this, recall that fM DM.H˚H/ is the generalized
q-gaussian algebra generated by B, sq.a; h; 0/ and sq.a; 0; h/, where a 2 S runs through the generating
set and h 2H are unit vectors. Let F �H be an orthonormal basis. Then we define an M -M bimodule
FDm � L2.fM/ by

FDm D spank�k2
˚
W� .k1; : : : ; kN ; a1; : : : ; aN 0/ W ki 2 F � f0g[ f0g �F; #fi jki 2 f0g �F g Dm

	
:

Note that we use reduced Wick words. This means N D j�sj and the vectors .k1; : : : ; kN / are the ones
obtained after contracting the pairs. Here � 2P1;2.N 0/ and a1; : : : ; aN 0 are the original coefficients from S .
One can see that FDm is exactly the eigenspace of vectors � 2L2.fM/ such thatEM.0˚H/.˛t .�//D e�tm�
for all (some) t > 0. Likewise we define the M -M bimodule FPDm � L2.eN / as the k � k2-closed span of
the elements

�.W� .x1; h1; : : : ; xm; hm//�.y
op/�0; xi 2 BSB; hi 2 F � f0g[ f0g �F;

such that exactly m of the vectors hi belong to f0g �F. It’s easy to see that FPDm can be described by

FPDm D f� 2 L2.eN / WEN .0˚H/.˛t .�//D e
�tm� for all t > 0g:

Finally, we set
Fm D

M
m0�m

FDm0 � L2.fM/; FPm D
M
m0�m

FPDm0 � L
2.eN /:

Let’s remark that we have the following transversality property, whose proof is virtually the same as that
of Proposition 5.1 in [Avsec 2012].

Lemma 7.1. There exists a constant C D C.m/ > 0 such that for 0 < t < 2�m�1 we have

kVtmC1.�/� �k � Cke
?Vt .�/k for all � 2

M
k�mC1

L2k.N /� L
2.eN /:

Theorem 7.2. Let M D �q.B; S ˝ H/ associated to a sequence of symmetric independent copies
.�j ; B;A;D/ and assume that the dimension of Dk.S/ over B is finite for every k and that H is finite-
dimensional. Let A � M be a von Neumann subalgebra which is amenable relative to B and define
P DNM .A/00. Let m� 1 be fixed. Then at least one of the following statements holds:

(1) The M -M bimodule Fm is left P -amenable.

(2) There exist t; ı > 0 such that infa2U.A/ kTt .a/k2 � ı.
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Proof. The approximately invariant states !n 2N� constructed in Theorem 5.1 are implemented by unit
vectors �n 2 L2.N /� L2.eN /. Using the Powers–Stormer inequalities we see that the vectors �n have
the following properties:

(1) h�.x/�n; �ni ! �.x/, x 2M.

(2) k�.a/�. Na/�n� �nk! 0, a 2 U.A/.

(3) k�.u/�. Nu/J�.u/�. Nu/J �n� �nk! 0, u 2NM .A/.

Let e? W L2.eN /! FPm be the orthogonal projection. We have the following alternative:

Case 1. For every nonzero projection p 2 Z.P / and for every t > 0 we have

lim sup
n
ke?Vt�.p/�nk>

kpk2

8C
:

We will prove that in this case the M -M bimodule Fm is left P -amenable.

Lemma 7.3. Let X be the strong operator topology completion of Fm as a right M -module with respect
to the M -valued inner product hx; yi DEM .x�y/, x; y 2 Fm. Let L.X/ be the von Neumann algebra of
adjointable operators on X . Then there exists a normal �-homomorphism ‰ W L.X/! B.L2.FPm // such
that ‰.L.X//� B.L2.FPm //\ .N op/0\ .�.P op//0.

Proof. The condition 5.13(iii) implies that FPm D X ˝M L2.N /, where the left action on N is that of
�.M/. Therefore the map ‰ W L.X/! B.FPm / given by

T 7! T ˝M id

is a well-defined normal �-homomorphism. Let us consider a rank-1 operator � ˝ N� 2 L.X/ with �; �
Wick words in fM. Then we calculate

‰.�˝ N�/.�.x� /�.y
op/�0/D �.�/�.EM .�

�x� //�.y
op/�0:

Let eN be the orthogonal projection of eN onto the closure of N �0, which exists thanks to the fact that
EeNBP is faithful, see Remark 5.14. Then we note that for QxQ� 2M we have

h�.EM .�
�x� //�.y

op/�0; QxQ� Qy
op�0i D  .�. Qy

op/��.yop/EeNBP . Qx�Q�x� //
D  .�. Qyop/��.yop/.E

�.M/

�.B/
ıEeN�.M//. Qx

�
Q�x� //

D h�.EM .�
�x� //�.y

op/�0; �. QxQ� /�. Qy
op/�0i:

This shows that
�.EM .�

�x� //�.y
op/�0 D eN .�.�

�x� /�.y
op/�0/:

Thus we deduce that for all the rank-1 operators �˝ N� 2 L.X/

‰.�˝ N�/D L�.�/eNL�.��/

is a right N -module map, and hence belongs to B.L2.FPm // \ .N op/0. It’s also trivial to check that
‰.� ˝ N�/ commutes with the operators L�.yop/ for all y 2 P. Since ‰ is normal and the linear span
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of the rank-1 operators is so-dense in L.X/, we have ‰.L.X//� B.L2.FPm //\ .N op/0\ .�.P op//0, as
desired. �

The lemma provides a normal �-homomorphism

‰ W B.Fm/\ .M op/0! B.FPm /\ .�.P
op/_ eJ�.M/eJ _ eJ �.P op/eJ /0

such that ‰.�.x//D �.x/ for x 2M, where � is the natural left action of M on L2.fM/. From this point
on, the proof proceeds verbatim as in [Popa and Vaes 2014a, proof of Case 1 in Theorem 3.1].

Case 2. There exist a nonzero central projection p 2 Z.P / and t > 0 such that

lim sup
n
ke?Vt�.p/�nk �

kpk2

8C
:

In this case we prove that there exist s; ı > 0 such kTs.a/k2� ı for all a2U.A/. Write �.p/�nD �nC�n,
where �n 2

L
k�mL

2
k
.N /, �n 2

L
k�mC1L

2
k
.N /. Note that k�nk � 1, k�nk � 1. Since Vt converges

uniformly on
�L

k�mL
2
k
.N /

�
1
, there exists a t0 > 0 such that for 0 < s < t0 we have

kVs� � �k �min
�
kpk2

8
;
kpk2

8C

�
for � 2

�M
k�m

L2k.N /
�
1

:

Fix 0 < s <minftmC1; t0; tmC10 ; 2�.mC1/
2

g. For every n� 1 we have the estimate

kVs�.p/�n��.p/�nk � kVs�n� �nkCkVs�n� �nk

�
kpk2

8
CkVs�n� �nk �

kpk2

8
CCke?V mC1ps�nk

�
kpk2

8
CCke?V mC1ps�.p/�nkCCke

?V mC1ps�nk

�
kpk2

8
CCke?V mC1ps�.p/�nkCCke

?.V mC1ps�n� �n/kCCke
?�nk

�
kpk2

8
CCke?V mC1ps�.p/�nkCCkV mC1

p
s�n� �nk

�
kpk2

4
CCke?Vt�.p/�nk:

Taking the limsup with respect to n we obtain

lim sup
n
kVs�.p/�n��.p/�nk �

3kpk2

8
:

From this point on, the proof proceeds verbatim as in [Popa and Vaes 2014a, proof of Case 2 in
Theorem 3.1]. �

Proof of Theorem A. For the first alternative, we use the second item in Theorem 7.2, Proposition 3.20
and Proposition 2.3. For the second alternative, we use the first item in Theorem 7.2, Corollary 6.10 and
Remark 2.7. �

Proof of Corollaries B, C, D. These follow immediately from Theorem A. �
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Polish Acad. Sci. Inst. Math., Warsaw, 2006. MR Zbl

[Nou 2004] A. Nou, “Non injectivity of the q-deformed von Neumann algebra”, Math. Ann. 330:1 (2004), 17–38. MR Zbl

[Nou 2006] A. Nou, “Asymptotic matricial models and QWEP property for q-Araki–Woods algebras”, J. Funct. Anal. 232:2
(2006), 295–327. MR Zbl

[Ozawa 2004] N. Ozawa, “Solid von Neumann algebras”, Acta Math. 192:1 (2004), 111–117. MR Zbl

[Ozawa and Popa 2010a] N. Ozawa and S. Popa, “On a class of II1 factors with at most one Cartan subalgebra”, Ann. of Math.
.2/ 172:1 (2010), 713–749. MR Zbl

[Ozawa and Popa 2010b] N. Ozawa and S. Popa, “On a class of II1 factors with at most one Cartan subalgebra, II”, Amer. J.
Math. 132:3 (2010), 841–866. MR Zbl

[Paschke 1973] W. L. Paschke, “Inner product modules over B�-algebras”, Trans. Amer. Math. Soc. 182 (1973), 443–468. MR
Zbl

[Paschke 1974] W. L. Paschke, “The double B-dual of an inner product module over a C�-algebra B”, Canad. J. Math. 26:5
(1974), 1272–1280. MR Zbl

[Peterson and Sinclair 2012] J. Peterson and T. Sinclair, “On cocycle superrigidity for Gaussian actions”, Ergodic Theory Dynam.
Systems 32:1 (2012), 249–272. MR Zbl

[Pisier 2000] G. Pisier, “An inequality for p-orthogonal sums in non-commutative Lp”, Illinois J. Math. 44:4 (2000), 901–923.
MR Zbl

[Pisier 2003] G. Pisier, Introduction to operator space theory, Lond. Math. Soc. Lect. Note Series 294, Cambridge Univ. Press,
2003. MR Zbl

[Popa 2006a] S. Popa, “On a class of type II1 factors with Betti numbers invariants”, Ann. of Math. .2/ 163:3 (2006), 809–899.
MR Zbl

[Popa 2006b] S. Popa, “Strong rigidity of II1 factors arising from malleable actions of w-rigid groups, I”, Invent. Math. 165:2
(2006), 369–408. MR Zbl

[Popa and Vaes 2014a] S. Popa and S. Vaes, “Unique Cartan decomposition for II1 factors arising from arbitrary actions of free
groups”, Acta Math. 212:1 (2014), 141–198. MR Zbl

[Popa and Vaes 2014b] S. Popa and S. Vaes, “Unique Cartan decomposition for II1 factors arising from arbitrary actions of
hyperbolic groups”, J. Reine Angew. Math. 694 (2014), 215–239. MR Zbl

[Raynaud 2002] Y. Raynaud, “On ultrapowers of non commutative Lp spaces”, J. Operator Theory 48:1 (2002), 41–68. MR
Zbl

[Ricard 2005] É. Ricard, “Factoriality of q-Gaussian von Neumann algebras”, Comm. Math. Phys. 257:3 (2005), 659–665. MR
Zbl

http://dx.doi.org/10.1007/978-3-0348-5445-0_8
http://msp.org/idx/mr/685457
http://msp.org/idx/zbl/0508.46041
http://dx.doi.org/10.1155/IMRP/2006/76978
http://msp.org/idx/mr/2268491
http://msp.org/idx/zbl/1218.46039
http://www.mathjournals.org/jot/2005-053-001/2005-053-001-001.html
http://msp.org/idx/mr/2132686
http://msp.org/idx/zbl/1078.46046
http://msp.org/idx/arx/1505.07852
http://msp.org/idx/arx/1410.8199
http://dx.doi.org/10.24033/asens.2260
http://dx.doi.org/10.24033/asens.2260
http://msp.org/idx/mr/3377067
http://msp.org/idx/zbl/1357.46061
http://dx.doi.org/10.1007/s002200050796
http://dx.doi.org/10.1007/s002200050796
http://msp.org/idx/mr/1777345
http://msp.org/idx/zbl/0970.46048
http://dx.doi.org/10.4064/bc73-0-20
http://dx.doi.org/10.4064/bc73-0-20
http://msp.org/idx/mr/2423133
http://msp.org/idx/zbl/1103.81025
http://dx.doi.org/10.1007/s00208-004-0523-4
http://msp.org/idx/mr/2091676
http://msp.org/idx/zbl/1060.46051
http://dx.doi.org/10.1016/j.jfa.2005.05.001
http://msp.org/idx/mr/2200739
http://msp.org/idx/zbl/1139.46038
http://dx.doi.org/10.1007/BF02441087
http://msp.org/idx/mr/2079600
http://msp.org/idx/zbl/1072.46040
http://dx.doi.org/10.4007/annals.2010.172.713
http://msp.org/idx/mr/2680430
http://msp.org/idx/zbl/1201.46054
http://dx.doi.org/10.1353/ajm.0.0121
http://msp.org/idx/mr/2666909
http://msp.org/idx/zbl/1213.46053
http://dx.doi.org/10.2307/1996542
http://msp.org/idx/mr/0355613
http://msp.org/idx/zbl/0239.46062
http://dx.doi.org/10.4153/CJM-1974-121-0
http://msp.org/idx/mr/0470687
http://msp.org/idx/zbl/0288.46058
http://dx.doi.org/10.1017/S0143385710000751
http://msp.org/idx/mr/2873170
http://msp.org/idx/zbl/1243.22005
http://projecteuclid.org/euclid.ijm/1255984700
http://msp.org/idx/mr/1804311
http://msp.org/idx/zbl/0976.60016
http://dx.doi.org/10.1017/CBO9781107360235
http://msp.org/idx/mr/2006539
http://msp.org/idx/zbl/1093.46001
http://dx.doi.org/10.4007/annals.2006.163.809
http://msp.org/idx/mr/2215135
http://msp.org/idx/zbl/1120.46045
http://dx.doi.org/10.1007/s00222-006-0501-4
http://msp.org/idx/mr/2231961
http://msp.org/idx/zbl/1120.46043
http://dx.doi.org/10.1007/s11511-014-0110-9
http://dx.doi.org/10.1007/s11511-014-0110-9
http://msp.org/idx/mr/3179609
http://msp.org/idx/zbl/1307.46047
http://dx.doi.org/10.1515/crelle-2012-0104
http://dx.doi.org/10.1515/crelle-2012-0104
http://msp.org/idx/mr/3259044
http://msp.org/idx/zbl/1307.46047
https://www.jstor.org/stable/24715552
http://msp.org/idx/mr/1926043
http://msp.org/idx/zbl/1029.46102
http://dx.doi.org/10.1007/s00220-004-1266-5
http://msp.org/idx/mr/2164947
http://msp.org/idx/zbl/1079.81038


GENERALIZED q-GAUSSIAN VON NEUMANN ALGEBRAS WITH COEFFICIENTS, I 1709

[Shlyakhtenko 1999] D. Shlyakhtenko, “A-valued semicircular systems”, J. Funct. Anal. 166:1 (1999), 1–47. MR Zbl

[Shlyakhtenko 2004] D. Shlyakhtenko, “Some estimates for non-microstates free entropy dimension with applications to
q-semicircular families”, Int. Math. Res. Not. 2004:51 (2004), 2757–2772. MR Zbl

[Shlyakhtenko 2009] D. Shlyakhtenko, “Lower estimates on microstates free entropy dimension”, Anal. PDE 2:2 (2009),
119–146. MR Zbl

[Sinclair 2011] T. Sinclair, “Strong solidity of group factors from lattices in SO.n; 1/ and SU.n; 1/”, J. Funct. Anal. 260:11
(2011), 3209–3221. MR Zbl
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