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COMPLEX INTERPOLATION AND
CALDERÓN–MITYAGIN COUPLES OF MORREY SPACES

MIECZYSŁAW MASTYŁO AND YOSHIHIRO SAWANO

We study interpolation spaces between global Morrey spaces and between local Morrey spaces. We
prove that for a wide class of couples of these spaces the upper complex Calderón spaces are not
described by the K-method of interpolation. A by-product of our results is that couples of Morrey spaces
belonging to this class are not Calderón–Mityagin couples. A Banach couple .X0; X1/ is said to have the
universal K-property if all relative interpolation spaces from any Banach couple to .X0; X1/ are relatively
K-monotone. A couple of local Morrey spaces is proved to have the universal K-property once it is
a Calderón–Mityagin couple.

1. Introduction

The theory of Calderón–Mityagin couples is a central topic in abstract interpolation theory, since the
interpolation spaces relative to such couples are isomorphic to generalized real interpolation spaces.
We are interested in unifying this collection of results on Calderón–Mityagin couples. This attempt at
unification forms an important component in the general program of describing all interpolation spaces
with respect to a given compatible couple of Banach spaces. There is a simple characterization of Calderón–
Mityagin couples in terms of the so-called submajorization of the K-functional and orbits. Besides the
fundamental example of the couple .L1; L1/, which was independently discovered by Calderón [1966]
and Mityagin [1965], many other examples were found out later by many mathematicians in interpolation
theory, like couples of weighted Lp or of certain types of rearrangement invariant spaces. Unfortunately,
it is still difficult to prove or disprove that a given couple of Banach spaces is a Calderón–Mityagin
couple. Nevertheless, many Calderón–Mityagin couples have been discovered; we refer, e.g., to [Cwikel
and Nilsson 2003; Kalton 1993; Mastyło and Sinnamon 2017] for more about this topic. In this paper
we handle couples of Morrey spaces and local Morrey spaces as examples and counterexamples of
Calderón–Mityagin couples. Based on the results, we consider the interpolation of Morrey spaces.

Cwikel [1981] conjectured that all interpolation spaces with respect to a given Banach couple are
described by K-method whenever all complex interpolation spaces have this property. However, in
[Mastyło and Ovchinnikov 1997] the authors disproved this conjecture. This motivates us to study classes
of Banach couples for which Cwikel’s conjecture is true.
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Grant-in-Aid for Scientific Research (C) (16K05209), the Japan Society for the Promotion of Science.
MSC2010: primary 46B70; secondary 42A45, 42B30.
Keywords: interpolation spaces, complex method, K-method, Morrey spaces.

1711

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2019.12-7
http://dx.doi.org/10.2140/apde.2019.12.1711
http://msp.org


1712 MIECZYSŁAW MASTYŁO AND YOSHIHIRO SAWANO

The main purpose of the present paper is to study Cwikel’s conjecture for the class of Morrey spaces,
which play an important role in nonlinear potential analysis and harmonic analysis; see [Adams and Xiao
2004; 2012]. These Banach spaces were used for the first time by Morrey [1938] to prove that certain
systems of partial differential equations have Hölder continuous solutions. Morrey spaces are widely used
to investigate the local behavior of solutions of partial differential equations, including the Navier–Stokes
equations; see, e.g., [Lemarié-Rieusset 2012; Mazzucato 2003; Taylor 1997].

Before we state the main results of the present paper, we introduce some fundamental definitions.
For 1 � q � p �1 the (global) Morrey space Mp

q over Rn is defined to be the space of all q-locally
integrable functions f on Rn (f 2 Lqloc for short) such that

kf kMp
q
WD sup
.x;r/2Rn�RC

jB.x; r/j1=p�1=q
�Z
B.x;r/

jf .y/jq dy

�1=q
<1:

Here and below we write RCD .0;1/. The symbol jAj stands for the Lebesgue measure of any Lebesgue
measurable set A in Rn, and B.x; r/ is the open ball in Rn centered at x of radius r > 0. In particular, by
the Lebesgue differentiation theorem M1q D L1 with identical norms. For simplicity of notation, we
abbreviate B.0; r/ to B.r/.

Note that for these spaces sometimes other symbols, such as Lq;� [Peetre 1969] and Lq;� [Nakai
2008], are used. Apart from the choice of a different letter L, the second parameter � is also introduced
into the norm in a way different from the above; namely for a measurable function f we define

kf kLq;� D kf kLq;� D sup
x2Rn�RC

�
1

r�

Z
B.x;r/

jf .y/jq dy

�1=q
;

where 1� q <1, 0� � < n. Among various function spaces above, we note the following relation:

Mp
q D L

q;�
D Lq;�; �D n�

nq

p
:

We point out that for technical reasons it is convenient to use a norm equivalent to the original norm of
the Morrey space Mp

q given by

kf k�Mp
q
D sup

Q

jQj1=p�1=q
�Z

Q

jf .y/jq dy

�1=q
; f 2Mp

q ;

where the supremum is taken over all cubes Q in Rn with sides parallel to coordinate axes.
It seems worth investigating its local counterpart, which is related to the Beurling algebra Bq and

Wiener spaces. The local version of Morrey spaces, where only balls centered at the origin are taken
into account, has a connection with studies of N. Wiener [1930; 1932], who considered the spaces of all
measurable functions f such that for given q 2 f1; 2g

1

T

Z T

0

jf .y/jq dy

is bounded in T or tends to 0 as T !1.
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In the multidimensional case, a variant of these spaces defined by the norm

kf kBq D sup
r>0

�
1

jB.r/j

Z
B.r/

jf .y/jq dy

�1=q
appeared in [Beurling 1964] as the dual of the so-called Beurling algebra.

A local variant of Morrey spaces appeared in [García-Cuerva and Herrero 1994]. The local Morrey
space LMp

q is defined to be the set of all f 2 Lqloc such that

kf kLMp
q
WD sup

r>0

jB.r/j1=p�1=q
�Z
B.r/

jf .y/jq dy

�1=q
<1:

We note that

kf k�
LMp

q
WD sup

r>0

jQ.r/j1=p�1=q
�Z

Q.r/

jf .y/jq dy

�1=q
is an equivalent norm in LMp

q , where Q.r/ WD Œ�r; r�n.
Interpolation properties of classical Morrey spaces were obtained in [Campanato and Murthy 1965;

Peetre 1969; Stampacchia 1964]. More and more attention is now being paid to the interpolation of
Morrey spaces due to certain properties of Morrey spaces that have become clear recently. For example, as
the function jxj�n=p shows, Mp

q does not contain L1c densely. Complex interpolation of Morrey spaces
has been studied in [Lemarié-Rieusset 2012; 2013; Yuan et al. 2015]. We mention that Lemarié–Rieusset
[2013, case (a), p. 750] proved that if

1� qj < pj <1; j 2 f0; 1g;
1

p
D
1� �

p0
C
�

p1
;

1

q
D
1� �

q0
C
�

q1
; (1-1)

then for every � 2 .0; 1/,
ŒMp0

q0
;Mp1

q1
�� ¤Mp

q

whenever q0=p0 ¤ q1=p1. For the case when q0=p0 D q1=p1, Lemarié–Rieusset [2013] proved that

ŒMp0
q0
;Mp1

q1
�� DMp

q :

Here and below Œ � �� and Œ � �� denote the lower and the upper (Calderón) complex methods of interpolation
defined in [Calderón 1964], respectively. Lemarié–Rieusset also studied real interpolation of Morrey
spaces. In particular under conditions (1-1) we have

.Lq0 ; Lq1/�;q D L
q;

and hence
.Mp0

q0
;Mp1

q1
/�;q ,!Mp

q

in the sense of continuous embedding. Meanwhile,

Mp
q ,! .Mp0

q0
;Mp1

q1
/�;1

if and only if q0=p0 D q1=p1. We refer to [Lemarié-Rieusset 2013; Yuan et al. 2015] for more details.
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In addition to Morrey spaces and local Morrey spaces, we will also consider in our paper the “weak”
Morrey space wMp

q and the “weak” local Morrey space wLMp
q . For given 1 � q � p <1 the weak

Morrey space wMp
q is defined to be the quasi-Banach space of all Lebesgue measurable functions f

endowed with the quasinorm

kf kwMp
q
D sup
�>0

�k�fjf j>�gkMp
q
I

Nakai [2008] used the norm

kf kwLq;� D sup
�>0

�k�fjf j>�gkLq;�

to define weak Morrey spaces, while the weak local Morrey space wLMp
q is defined to be the quasi-Banach

space of all Lebesgue measurable functions f for which

kf kwLMp
q
D sup
�>0

�k�fjf j>�gkLMp
q
<1:

When ˆ.r/D rq and �.r/D r�1C�=n and �=nD 1�q=p, this space wMp
q is the same as Nakai’s space

L
.ˆ;'/
weak [Nakai 2008, Definition 6.1, p. 207]. In particular, for every s 2 Œ1;1/, L.1;n�n=s/weak coincides

with wMs
1.

We add some comments on difficulties related to interpolation of Morrey spaces. First we notice
that until now there is no complete description of all complex or real interpolation spaces of all couples
.Mp0

q0 ;M
p1
q1 / of Morrey spaces with 1� q0�p0<1 and 1� q1�p1<1. Regarding real interpolation,

it should be pointed out that a general formula remains unknown, even within equivalence for the K-
functional of these couples. It is apparently very difficult to find such a formula, and this indeed is one of
the nontrivial difficulties of dealing with Morrey couples, especially in the description of interpolation
spaces with respect these couples, and in particular real interpolation spaces which just involve the
K-functional. Interestingly the situation is completely different in the setting of local Morrey spaces (see
Section 5).

In this paper we provide a solution to Cwikel’s conjecture in the Morrey space setting. Our new results
show that Cwikel’s conjecture is still valid for a wide class of global and local Morrey spaces. In particular,
because of the fact that a wide class of these couples are not Calderón–Mityagin couples, we have to
declare that the problem related to the description of all interpolation spaces for all couples of Morrey
spaces is extremely difficult in general.

Let us now describe more precisely the contents of the present paper. In Section 2 we introduce some
fundamental definitions and notation used in the paper. In Section 3 we study the upper complex method
of interpolation Œ � �� for any � 2 .0; 1/. We prove that for any couple .X0; X1/ of complex Banach lattices
on an arbitrary measure space .�;†;�/ the Gagliardo completion of ŒX0; X1�� with respect to X0CX1
coincides isometrically with the Gagliardo completion of the Calderón product X1��0 X�1 with respect to
X0CX1. In particular we show that if .�;†;�/ is a � -finite measure space, then ŒX0; X1�� DX1��0 X�1
with equality of norms whenever each of X0 and X1 has the Fatou property. Applying this result to
Morrey spaces, we recover the results above due to [Lemarié-Rieusset 2013].



COMPLEX INTERPOLATION AND CALDERÓN–MITYAGIN COUPLES OF MORREY SPACES 1715

In Sections 4 and 5 we provide a general sufficient condition on a Banach couple .A0; A1/, which
guarantees that .A0; A1/ is not a Calderón–Mityagin couple. As a by-product, we prove in Section 4 that
both couples .Mp0

q0 ;M
p1
q1 / and .Mp0

q0 ; L
1/ are not Calderón–Mityagin couples provided that q0 ¤ q1,

p0 ¤ q0 and p1 ¤ q1.
Finally, in Section 5, we describe real interpolation of local Morrey spaces by the upper complex

method Œ � �� and the classical real method . � /�;1 for all � 2 .0; 1/. These results are applied to prove that
.LMp0

q0 ; LM
q1
p1/ is a Calderón–Mityagin couple if and only if q0 D q1, and in this case this couple has

the universal K-property, i.e., .A0; A1/ and .LMp0
q0 ; LM

q1
p1/ are relative Calderón–Mityagin couples for

any Banach couple .A0; A1/. We stress that the key point here is that fact the inclusion LMp
q ,!wLMp

q

is proper for every 1 � q � p < 1; see Lemma 4.7(ii) for the proof, where we use the maximal
Hardy–Littlewood operator.

We will use standard notation; in particular given two nonnegative functions f and g defined on the
same set A, we write f � g or g � f if there is a constant c > 0 such that f .x/� cg.x/ for all x 2 A,
while f � g means that both f � g and g � f hold. If X and Y are topological linear spaces, then
X ,! Y means that X � Y and the inclusion map is continuous. In the case when X and Y are Banach
spaces, we write X Š Y whenever X D Y , with equality of norms. Throughout the entire paper, C will
denote a constant which may have a different value in different appearances.

2. Preliminaries

We will use the standard notation in the theory of Banach spaces and the theory of integration. If X is
a Banach space, we denote its (closed) unit ball by BX . For any measure space .�;†;�/, the space
of all �-equivalence classes of real-valued †-measurable �-almost everywhere finite functions will be
denoted by L0.�/ WD L0.�;†;�/. This space is a vector lattice under the natural order: f � g if and
only if f .s/� g.s/ for �-almost everywhere s 2�.

A linear subspace E of L0.�;†;�/ is called an ideal if it is solid, i.e., jf j � jgj for some g 2 E
implies f 2E. We will consider Banach lattices on an arbitrary measure space (in general we do not need
to assume that the measure is � -finite, which is usually found in the literature). We recall that a Banach
space X � L0.�/, which is an ideal with a monotone norm (meaning kf kX � kgkX for all f , g 2 X
satisfying jf j � jgj) is said to be a Banach lattice on .�;†;�/. It is well known that in the theory of
Banach lattices on measure spaces we may assume without loss of generality that the measure spaces are
complete. A Banach lattice X is called � -order continuous if xn # 0 implies kxnkX ! 0.

We note that for all choices of two Banach lattices X0 and X1 on an arbitrary measure space, EX WD
.X0; X1/ forms a Banach couple in the sense of interpolation theory; see, e.g., [Krein et al. 1982,
Corollary 1, p. 42] in the case of �-finite measures, and for an arbitrary measure space, [Cwikel and
Nilsson 2003, Remark 1.41, pp. 34–35].

Let .�;†;�/ be a measure space, and let 1 � p < 1. We recall that the weak Lebesgue or the
Marcinkiewicz space Lp;1.�/ is made up of all functions f 2 L0.�/ such that

kf kp;1 WD sup
�>0

��.fx 2� W jf .x/j> �g/1=p <1:
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If p > 1, then the quasinorm k � kp;1 is equivalent to the norm

kf k�p;1 WD sup
A��

�.A/1=p�1
Z
A

jf j d�;

where the supremum is taken over all measurable subsets A of � with �.A/ > 0.
If X �L0.�/ is a Banach lattice and p 2 .1;1/, then its p-convexification X .p/ is the Banach lattice

of all elements f 2 L0.�/ such that jf jp 2X with a norm kf kX.p/ D kjf j
pk
1=p
X .

Most of our notation and terminology from interpolation theory is standard and can be found in [Bergh
and Löfström 1976; Brudnyi and Krugljak 1991]. For the reader’s convenience, we recall some of them.

Let EX D .X0; X1/ and EY D .Y0; Y1/ be Banach couples and let L. EX; EY / be the Banach space of all
linear operators T W EX ! EY (meaning, as usual, that T WX0CX1! Y0CY1 is linear and T WXj ! Yj

boundedly for j D 0; 1), where the norm is given by kT k EX!EY DmaxjD0;1 kT kXj!Yj .
Let X be an intermediate space with respect to a Banach couple EX D .X0; X1/. The Gagliardo

completion or relative completion of X with respect to EX is the Banach space X c of all limits in X0CX1
of sequences that are bounded in X and endowed with the norm kxkX c D inffsupk�1 kxkkXg, where the
infimum is taken over all bounded sequences fxkg1kD1 in X whose limit in X0CX1 equals x.

For every Banach couple EX D .X0; X1/ and � 2 .0; 1/ the Peetre K-functional of x 2 X0CX1 is
defined by

K.t; xI EX/DK.t; xIX0; X1/ WD inffkx0kX0 C tkx1kX1 W x D x0C x1g; t > 0;

and the real interpolation space EX�;1 is defined to be the collection of all x 2X0CX1 such that

kxk�;1 WD sup
t>0

t��K.t; xI EX/ <1:

Let X and Y be intermediate spaces with respect to EX and EY respectively. We say that they are
relative interpolation spaces with respect to EX and EY if every T 2 L. EX; EY / maps X into Y . The
relative interpolation spaces X and Y are said to be relative K-monotone spaces with respect to EX
and EY if, whenever x 2X and y 2 Y0CY1 satisfy K.t; yI EY /�K.t; xI EX/ for all t > 0, it follows that
y 2 Y . If EX D EY and X D Y , then X is said to be a K-monotone space with respect to EX . Note that
K.t; T xI EY /� kT k EX!EYK.t; xI EX/ for x 2 EX . So, if X and Y are relative K-monotone, then they are
relative interpolation spaces. If all relative interpolation spaces for EX and EY are relative K-monotone,
then we say that EX and EY are relative Calderón–Mityagin couples. In particular, if also EX D EY , then EX is
said to be a Calderón–Mityagin couple. We remark here that in a number of papers, various alternative
terminologies, such as C -couple or K-adequate couple, are used for the notion of Calderón–Mityagin
couples. It is well known and easy to prove, see, e.g., [Cwikel and Nilsson 2003, Remark 1.31], that EX
and EY are relative Calderón–Mityagin couples if and only if, for every x 2X0CX1 and y 2 Y0CY1, the
inequality

K.t; yI EY /�K.t; xI EX/; t > 0;

implies that there exists an operator T W EX ! EY such that T x D y.



COMPLEX INTERPOLATION AND CALDERÓN–MITYAGIN COUPLES OF MORREY SPACES 1717

Let �� 1 be a fixed constant. If we can arrange that kT k EX!EY � � for all x and y above, then we say
that EX and EY are �-relatively uniform Calderón–Mityagin couples. An interpolation couple EX is said to
be a uniform Calderón–Mityagin couple if EX and EX are �-relatively uniform Calderón–Mityagin couples
for some �.

If ˆ is a Banach lattice of Lebesgue measurable functions on RC that contain the function minf1; tg,
then we can define the Banach space .X0; X1/ˆ of all x 2X0CX1 such thatK. � ; xI EX/2ˆwith the norm

kxk D kK. � ; xI EX/kˆ:

The space .X0; X1/ˆ is called the K-space generated by .̂ It is a fundamental result of Brudnyi and
Krugljak [1991, Theorem 3.3.20, p. 355] that if .X0; X1/ is a uniform Calderón–Mityagin couple, then
every interpolation space X with respect to .X0; X1/ is (up to equivalence of norm) aK-space for some .̂
The key ingredient of this result is the K-divisibility theorem first proved by Brudnyi and Krugljak [1981;
1991] and later refined in [Cwikel 1984].

Let .�;†;�/ be a �-finite measure space. It is well known that .L1.�/; L1.�/) is a 1-uniform C -
couple; see [Calderón 1966]. Several years later, Sedaev and Semenov [1971] proved that every weighted
couple .L1.w0/; L1.w1// is a uniform C -couple. For more examples of uniform Calderón–Mityagin
couples of Banach lattices we refer to [Cwikel 1981; Cwikel and Nilsson 2003; Kalton 1993; Mastyło
and Sinnamon 2017].

3. Upper complex interpolation between Banach lattices

We will use complex methods of interpolation introduced in the fundamental paper [Calderón 1964] to
prove isometric relationships between Banach lattices generated by standard operations applied to the
Calderón product in the setting of couples of complex Banach lattices on an arbitrary measure space. We
will apply these results to couples of Banach lattices enjoying the Fatou property and so in particular to
Morrey spaces later.

Let S WD fz 2 C W 0 < Re z < 1g be an open strip on the plane. For a given � 2 .0; 1/ and any couple
EXD .X0; X1/we denote by F. EX/ the Banach space of all bounded continuous functions f WS!X0CX1

on the closure S that are analytic on S, and R 3 t 7! f .j C i t/ 2Xj is a bounded continuous function,
for each j D 0; 1, and endowed with the norm

kf kF. EX/ D max
jD0;1

sup
t2R

kf .j C i t/kXj :

The lower/first complex interpolation space is defined by

ŒX0; X1�� WD ff .�/ W f 2 F. EX/g

and is endowed with the quotient norm. This definition is slightly different from those in [Bergh and
Löfström 1976; Calderón 1964], however it gives the same interpolation spaces; see, e.g., [Krein et al.
1982]. We recall that in the original definition it is required in addition that f 2 F. EX/ satisfies

lim
jt j!1

kf .j C i t/kXj D 0; j 2 f0; 1g:
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Calderón defined a different interpolation method as follows. Let G. EX/ be the Banach space of all
continuous functions g W S !X0CX1 that are analytic on S, for which there exists C D C.g/ > 0 such
that kg.z/kX0CX1 � C.1Cjzj/ for all z 2 S, and that are endowed with the norm

kgkG. EX/ WD max
jD0;1

�
sup
s¤t

kg.j C is/�g.j C i t/kXj

js� t j

�
:

The upper/second complex interpolation space is defined by

ŒX0; X1�
�
WD fg0.�/ W g 2 G. EX/g

and is endowed with the quotient norm.
Throughout the paper, when the complex methods are applied to a couple .X0; X1/ of Banach lattices,

we mean that Xj WDXj .C/ is a complexification of Xj for each j D 0; 1.
We need the following lemma:

Lemma 3.1. Let EX D .X0; X1/ be a complex Banach couple, and let � 2 .0; 1/:

(i) .ŒX0; X1�� /c Š .ŒX0; X1�� /c.

(ii) ŒX0; X1�� Š .ŒX0; X1�� /c if and only if the unit ball of ŒX0; X1�� is closed in X0CX1.

Proof. We claim that ŒX0; X1�� ,! .ŒX0; X1�� /
c with norm of continuous inclusion less than or equal

to 1. Fix x 2 ŒX0; X1��. For " > 0 there exists g 2 G. EX/ such that x D g0.�/ and

kgkG. EX/ � kxkŒX0;X1�� C ": (3-1)

Consider the sequence fgmg1mD1 given by

gm.z/D
g.zC i=m/�g.z/

i=m
; z 2 S:

Observe that for each m 2 N we have

max
jD0;1

sup
t2R

kgm.j C i t/kX0CX1 � max
jD0;1

sup
t2R

kgm.j C i t/kXj � kgkG. EX/:

Thus it follows by the Phragmén–Lindelöf principle for Banach spaces that

kgm.z/kX0CX1 � kgkG. EX/; z 2 S:

We clearly have that each function gm W S!X0CX1 is continuous and analytic on the strip S. Thus we
conclude that gm 2 F. EX/ with kgmkF. EX/ � kgkG. EX/. Hence gm.�/ 2 ŒX0; X1�� and

kgm.�/kŒX0;X1�� � kgkG. EX/; m 2 N:

Since
lim
m!1

gm.�/D g
0.�/D x (convergence in X0CX1/;

x 2 ŒX0; X1�
c
�

and so we deduce by (3-1) that

kxkŒX0;X1�c� � kxkŒX0;X1�� C ":
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Letting " tend to 0, this estimate completes the proof of claim. Applying the well-known continuous
inclusion map with norm less than or equal to 1, see [Bergh and Löfström 1976, Theorem 4.3.1], we learn

ŒX0; X1�� ,! ŒX0; X1�
�

which completes the proof of (i).
The proof of (ii) is obvious by (i) and the fact that the unit ball of .ŒX0; X1�� /c is closed in X0CX1. �

We will also need results on relationships between the upper complex space ŒX0; X1�� and the Calderón
product X1��0 X�1 defined for any couple .X0; X1/ of Banach lattices over a measure space .�;†;�/,
which consists of all f 2 L0.�/ such that jf j � � jf0j1�� jf1j� �-a.e. for some � > 0 and fj 2 BXj ,
j 2 f0; 1g. It is well known, see [Calderón 1964, 13.5, p. 123], that X1��0 X�1 is a Banach lattice endowed
with the norm

kf kX1��0 X�1
D inff� > 0 W jf j � � jf0j1�� jf1j� ; f0 2 BX0 ; f1 2 BX1g

and that X1��0 X�1 is continuously embedded into X0CX1, which is also a Banach lattice.
We come now to the first theorem of this section.

Theorem 3.2. For any couple of Banach lattices EX D .X0; X1/ over a measure space .�;†;�/, the
following continuous inclusion relation holds with norm less than or equal to 1:

X1��0 X�1 ,! ŒX0; X1�
� :

Before we turn to the proof of this theorem, some comments seem called for. First, in the case of
� -finite measure, this result follows from the vector-valued inclusion proved in [Calderón 1964, p. 125]
by taking B D B0 D B1 D C. For the reader’s convenience, we include a different and transparent proof
without assuming the � -finiteness of the underlying measure space.

Proof of Theorem 3:2. Let f 2X1��0 X�1 , so that the estimate jf j � jf0j1�� jf1j� holds for some f0 2X0
and f1 2 X1. Note that the support of f is contained in the intersection of the supports of f0 and f1.
Hence without loss of generality we may suppose that f0 and f1 are not equal to zero on �.

We define functions

F.z/ WD jf0j
1�z
jf1j

z; G.z/ WD

Z z

�

F.w/ dw; z 2 S:

We claim that G 2 G. EX/. To show this we fix s; t 2 R and j 2 f0; 1g. We observe that

G.j C is/�G.j C i t/D

Z jCis

jCit

jf0j
1�w
jf1j

w dw

yields jG.j C is/�G.j C i t/j � js� t jjfj j. This implies

max
jD0;1

sup
�1<s<t<1

kG.j C is/�G.j C i t/kXj

js� t j
� max
jD0;1

kfj kXj : (3-2)
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We will show that G W S!X0CX1 is analytic. To see this, consider the functions F0 and F1 defined by

F0.z/D �fjf0j�jf1jgjf0j
1�z
jf1j

z; F1.z/D F.z/�F0.z/; z 2 S:

We estimate
jF0.z/j D �fjf0j�jf1jgjf0j

1�Re z
jf1j

Re z
� jf0j:

Likewise we have
jF1.z/j � jf1j:

We define functions

G0.z/D

Z z

�

F0.w/ dw; G1.z/D

Z z

�

F1.w/ dw z 2 S:

Since jG0.zCh/�G0.z/j � jhjjf0j for all z; h 2 C such that zCh; z 2 S, it follows that G0 W S !X0

is a continuous function. Similarly, we can establish that G1 W S !X1 is also continuous.
We now show that the mapping G0 W S !X0 is analytic. To this end we fix 0 < " < 1

2
and consider

the open strip S" D fz 2 S W " < Re z < 1� "g. We note that Fj .z/ 2Xj for z 2 S".
Since

�fjf0j�jf1jg

ˇ̌̌̌�
jf1j

jf0j

�"
exp

�
h log

�
jf1j

jf0j

��
�

�
jf1j

jf0j

�"�
1C h log

�
jf1j

jf0j

��ˇ̌̌̌
� jhj2;

we conclude that
G0.zC h/�G0.z/� hF0.z/D O.jhj2/ as h! 0;

in X0 uniformly over z 2 S". Similarly, we can show that

G1.zC h/�G1.z/� hF1.z/D O.jhj2/ as h! 0;

inX1 uniformly over z2S". Combining these calculations, we see thatGjSDG0jSCG1jS WS!X0CX1

is analytic.
To finish the proof of the claim, we need only to observe that

kGj .z/kXj � kGj .z/�Gj .Re.z//kXj CkGj .Re.z//�Gj .�/kXj D O.jzjC 1/

for j 2 f0; 1g keeping in mind that Gj .�/D 0.
Now observe that G0.�/D jf0j1�� jf1j� and by (3-2) kGkG. EX/ �maxjD0;1 kfj kXj . Thus we deduce

that jf j 2 ŒX0; X1��. Since ŒX0; X1�� is a Banach lattice and f0 and f1 are arbitrary, we conclude that

X1��0 X�1 ,! ŒX0; X1�
� ;

with norm of the continuous inclusion map less than or equal to 1. �

Remark 3.3. The inclusion in the above theorem is proper in general. To see this we recall that
Lozanovskii [1972] constructed a closed Banach sublattice Y0 of a weighted Banach lattice L1.w/ on
..0; 1/;m/ with Lebesgue measure m, where

L1.w/D ff 2 L1.0; 1/ W wf 2 L1.0; 1/g
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with w.t/ D t for all t 2 .0; 1/ and endowed with the norm kf kL1.w/ D kwf kL1 , such that
.L1.w//1�� .L1/� and Y 1��0 .L1/� are not relative interpolation spaces with respect to .L1.w/; L1/
and .Y0; L1/ for any � 2 .0; 1/. We complexify these spaces. Since Œ � �� is an interpolation functor in the
class of complex Banach spaces, it follows that for the couple .X0; X1/D .Y0.C/; L1.C// the inclusion

X1��0 X�1 � ŒX0; X1�
�

is proper for an arbitrary � 2 .0; 1/.

The following result shows isometric relationships between Banach lattices generated by standard
operations and Calderón’s constructions in the setting of couples of complex Banach lattices on an
arbitrary measure space:

Theorem 3.4. Let EX D .X0; X1/ be a couple of complex Banach lattices on an arbitrary measure space
.�;†;�/. Then the following statements are true for all � 2 .0; 1/:

(i) ŒX0; X1�� Š .X1��0 X�1 /
ı.

(ii) .ŒX0; X1�� /c Š .X1��0 X�1 /
c.

(iii) ŒX0; X1�� ŠX1��0 X�1 whenever the unit ball of X1��0 X�1 is closed in X0CX1.

Proof. We begin with (i). Since Œ EX�� Š .ŒX0; X1�� /ı is a closed subspace of Œ EX�� and the norm in Œ EX��
is the restriction of the norm in Œ EX��, see [Bergh 1979], if follows from Theorem 3.2 that

.X1��0 X�1 /
ı ,! .ŒX0; X1�

� /ı Š ŒX0; X1�� ;

with norm of the continuous inclusion map less or equal to 1.
To obtain the reverse inclusion, we recall that Calderón proved

ŒX0; X1�� ,! .X1��0 X�1 /
ı

for any � -finite measure space. The proof of the following continuous inclusion map with norm less than
or equal to 1 given in [Calderón 1964, (i), p. 125], see also [Krein et al. 1982, pp. 240–241], works for
any measure space: combining two the above continuous inclusions, we obtain the statement (i).

To finish the proofs of (ii) and (iii) at the same time, we observe that the above inclusion, combined
with Lemma 3.1 and Theorem 3.2, yields continuous inclusion maps with norm less than or equal to 1,

X1��0 X�1 ,! ŒX0; X1�
� ,! .ŒX0; X1�� /

c ,! ..X1��0 X�1 /
ı/c ,! .X1��0 X�1 /

c:

Clearly these inclusions complete the proofs of statements (ii) and (iii). �

Remark 3.5. We note that in the case of � -finite measure spaces the above statement (i) was proved by
Shestakov [1974], who extended Calderón’s result [1964] proved under the assumption that X1��0 X�1 is
� -order continuous.

We will apply Theorem 3.4 to some class of Banach lattices. In what follows we assume that a measure
space .�;†;�/ is such that L0.�;†;�/ is a Dedekind complete vector lattice (i.e., every subset of
L0.�/ order bounded from above has a supremum). We refer to [Fremlin 1974, Theorem 64 B, p. 170]
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for a description and general examples of such measure spaces. Let us just notice here that such measure
spaces are semifinite (i.e., for anyA2†with�.A/>0, there isB 2† such thatB�A and 0<�.B/<1).
Since L0.�;†;�/ is a Dedekind complete vector lattice, it follows that for any subset E �L0.�;†;�/,
the set f�supp x W x 2Eg is order bounded in L0.�/. If we put x0 WD supf�supp x W x 2Eg, then supp.E/
exists and is given by supp.E/D supp x0.

We shall need to use some results on Köthe duality. We recall that the Köthe dual space X 0 of any
Banach lattice X on .�;†;�/ is defined to be the space of all x0 2 L0.�/ with supp x � supp.X/ such
that xx0 2 L1.�/ for all x 2X . It is well known that X 0 is a Banach lattice on .�;†;�/ equipped with
the norm

kx0kX 0 WD sup
�Z

�

jxx0j d� W kxkX � 1

�
; x0 2X 0:

As usual, the Köthe dual space of X 0 is denoted by X 00. If a Banach lattice X is such that X ŠX 00, then
X is said to be maximal.

We note that if X is a Banach lattice on a � -finite measure space .�;†;�/, then X ŠX 00 if and only
if X has the Fatou property; see, [Kantorovich and Akilov 1982, Theorem 7, p. 191]. We recall that X is
said to have the Fatou property if for any sequence ffmg1mD1 of nonnegative elements from X such that
fm " f for f 2 L0.�/ and supm�1 kfmkX <1, one has f 2X and kfmkX " kf kX .

We will need the following lemma.

Lemma 3.6. LetX0, X1 andX be Banach lattices on a measure space .�;†;�/. IfX is an intermediate
space with respect to .X0; X1/, then X c ,!X 00 with the norm inclusion less than or equal to 1.

Proof. Fix x 2 X c. Then in a similar fashion to the proof of [Cwikel and Nilsson 2003, Lemma 1.16],
we claim that for a given " > 0, there exists a sequence fymg in X such that 0 � ym " jxj �-a.e.,
kymkX � .1C "/kxkX c for each m 2 N and ym! y in X0CX1. In fact, it follows by the definition of
X c that we can find a sequence fzmg in X such that kzmkX � .1C "/kxkX c for each m 2N and zm! z

in X0CX1. If we set ym Dminfmaxf0; zmg; jxjg for each m 2 N, then we obtain the desired sequence.
We conclude by Lebesgue’s monotone convergence theorem that for any x0 2X 0,Z

�

jxx0j d�D lim
m!1

Z
�

ymjx
0
j d�� .1C "/kxkX ckx0kX 0 :

Since " > 0 is arbitrary, the desired continuous inclusion follows. �

We are now ready to state the following result.

Theorem 3.7. Assume that a measure space .�;†;�/ is such that L0.�;†;�/ is a Dedekind complete
vector lattice and it satisfies the following condition: if A � � is such that A\ B 2 † for every set
B 2†, �.B/ <1, then A 2†. Let EX D .X0; X1/ be an arbitrary couple of complex Banach lattices on
.�;†;�/. If X0 and X1 are both maximal and supp.X0/D supp.X1/D�, then

ŒX0; X1�
�
ŠX1��0 X�1 :
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Proof. Since both X0 and X1 are maximal, it follows by the original Lozanovskii duality formula [1978]

.X1��0 X�1 /
0
Š .X 00/

1�� .X 01/
�

that X1��0 X�1 is also a maximal Banach lattice. Thus, we deduce from Lemma 3.6 that

X1��0 X�1 ,! .X1��0 X�1 /
c ,! .X1��0 X�1 /

00
ŠX1��0 X�1

with the norm of the inclusion maps less than or equal to 1. �

Corollary 3.8. Let EX D .X0; X1/ be an arbitrary couple of complex Banach lattices with the Fatou
property on a � -finite measure space .�;†;�/. If supp.X0/D supp.X1/D�, then

ŒX0; X1�
�
ŠX1��0 X�1 :

Proof. Clearly any �-finite measure space .�;†;�/ satisfies the desired condition from Theorem 3.7.
Moreover, it is well known that L0.�;†;�/ is a Dedekind complete vector lattice, see [Kantorovich and
Akilov 1982], and so the desired statement follows from Theorem 3.7. �

Remark 3.9. Lozanovskii proved that for all � 2 .0; 1/ we have

.X1��0 X�1 /
0
D .X 00/

1�� .X 01/
�

with equality of norms; see [Lozanovskii 1969, Theorem 2]. Using this result for � D 1
2

, Lozanovskii
[1969] showed X1=2.X 0/1=2 'L2 for any Banach lattice on a given � -finite measure space. Thus taking
X which does not enjoy the Fatou property, we conclude that the Fatou property of X1��0 X�1 does not
always imply that the Fatou property holds for X0 and X1. For further examples refer to [Reisner 1993],
where among others it is shown (see Example 2) that there exist �-order continuous Banach sequence
lattices X and Y that do not enjoy the Fatou property such that X1��Y � is �-order continuous and has
the Fatou property.

Simple calculation shows that for any Banach latticeX and every 1<r <1we haveX1=r.L1/1�1=rŠ
X .r/; thus by Theorem 3.7 we obtain the following useful formula:

Corollary 3.10. Let X be a Banach lattice with the Fatou property on a �-finite measure space. Then,
for any � 2 .0; 1/,

ŒX;L1�� ŠX1�� .L1/� ŠX .r/;

where r D .1� �/�1.

An immediate application of our results is the following variant of the Riesz–Thorin interpolation
theorem:

Theorem 3.11. Let .X0; X1/ and .Y0; Y1/ be couples of complex Banach lattices on measure spaces.
Then for every linear operator T W .X0; X1/! .Y0; Y1/ and all � 2 .0; 1/, T is bounded from X1��0 X�1
into .Y 1��0 Y �1 /

c and satisfies

kT kX1��0 X�1!.Y
1��
0 Y �1 /

c � kT k
1��
X0!Y0

kT k�X1!Y1 :
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In particular if Y0 and Y1 are Banach lattices on a �-finite measure space .�;†;�/ with supp.Y0/D
supp.Y1/D� and both enjoy the Fatou property, then T is bounded from X1��0 X�1 into Y 1��0 Y �1 with
the norm estimate

kT kX1��0 X�1!Y
1��
0 Y �1

� kT k1��X0!Y0
kT k�X1!Y1 :

Proof. We have kT kŒX0;X1��!ŒX0;X1�� � kT k
1��
X0!Y0

kT k�X1!Y1 according to [Bergh and Löfström 1976,
Theorem 4.1.4]. Since X1��0 X�1 ,! ŒX0; X1�

� by Theorem 3.2 with the inclusion constant less than or
equal to 1 and ŒY0; Y1�� ,! .Y 1��0 Y �1 /

c by Lemma 3.1 again with the inclusion constant less than or
equal to 1, the first required estimate follows. This estimate combined with the continuous inclusions
shown in the proof of Theorem 3.7 yields the second estimate. �

The following lemma is surely well known to specialists, but we include a proof for the sake of
completeness.

Lemma 3.12. If 0 < � < 1 then for any couple EX D .X0; X1/ of complex Banach spaces, we have
ŒX0; X1�

� ,! .X0; X1/�;1 with the norm of the inclusion map less or equal to 1.

Proof. It is well known that for any Banach couples EX D .X0; X1/ and EY D .Y0; Y1/ and any operator
T W EX ! EY , we have the following estimate for restrictions of T (see [Bergh and Löfström 1976,
Theorem 4.1.4]):

kT kŒ EX��!Œ EY �� � kT k
1��
X0!Y0

kT k�X1!Y1 : (3-3)

We fix t > 0 and x 2 ŒX0; X1��. By the Hahn–Banach theorem, there exists a continuous linear functional
x� 2 .X0CX1/

� such that x�.x/DK.t; xI EX/ and

jx�.y/j �K.t; yI EX/; y 2X0CX1:

This implies that the linear operator T W X0CX1! C defined by T .y/D x�.y/ for all y 2 X0CX1
satisfies T W .X0; X1/! .C;C/ with kT kX0!C � 1 and kT kX1!C � t .

Now we apply the estimate (3-3) to .Y0; Y1/D .C;C/ and the obvious equality ŒC;C�� Š C to get that

K.t; xI EX/D x�.x/D T .x/� t�kxkŒ EX�� :

Since t > 0 and x 2 ŒX0; X1�� are arbitrary, the proof is complete. �

We conclude with the remark that if .X0; X1/ is a couple of complex Banach lattices which enjoy the
Fatou property, then the formula ŒX0; X1�� DX1��0 X�1 (up to equivalence of norms) is a consequence of
abstract interpolation results, combined with relationships between the Köthe duality results and the orbital
descriptions of the upper complex method and of other interpolation constructions; see [Ovchinnikov
1984, pp. 474–492] for more details.

4. On Calderón–Mityagin couples of Morrey spaces

As is mentioned in the Introduction, one of the fundamental problems in the theory of interpolation spaces
is the description of all interpolation spaces X with respect to a given compatible couple of Banach spaces
EX D .X0; X1/. Cwikel [1981] posed the question of whether in fact all Calderón–Mityagin couples can
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be identified by checking whether their complex interpolation spaces are K-spaces. In [Mastyło and
Ovchinnikov 1997] the authors provided counterexamples, which give a negative answer to this question.

Also as is mentioned in the Introduction there is no complete description of the complex interpolation
spaces between Morrey spaces in the general case. We show in this section that the complex spaces with
respect to any couple of Morrey spaces which are not Lp-spaces cannot be described by the K-method
of interpolation. In particular this implies that these couples are not Calderón–Mityagin couples.

Before we state and prove the main results of this section we need some technical observations. Suppose
that we have a nonnegative measurable function on Rn which is rotationally symmetric, so that it can be
expressed as f .jxj/, where f W Œ0;1/! RC is a measurable function. Recall that jB.x; r/j D vnrn for
all x 2 Rn, where vn WD �n=2=�.1Cn=2/ is the measure of the unit ball B.1/.

Then a standard calculation via applying spherical coordinates givesZ
Rn
f .jxj/ dx D

2�n=2

�.n=2/

Z
RC

f .t/tn�1 dt:

Since the ball B.x; r/ has the same measure as B.0; r/ for every r > 0, by choosing f D �.0;r/, we
obtain

jB.x; r/j D jB.0; r/j D

Z
Rn
�.0;r/.jyj/ dy D

2�n=2

�.n=2/

Z r

0

tn�1 dt D vnr
n:

Combining these formulas we conclude that if 1 < s <1 and f .t/D t�n=s�.0;r/ for all t � 0, thenZ
B.0;r/

jxj�n=s dx D vn
s

s� 1
rn�n=s:

This shows that the function x 7! jxj�n=s belongs to LMs
1 and its norm is equal to vn1=ss=.s� 1/. In

what follows we will use that this function belongs to the Morrey space Ms
1. For the sake of completeness

we include a proof of this fact.

Proposition 4.1. If 1 < s < n, then the function x 7! jxj�n=s belongs to Ms
1 and its norm is equal to

vn
1=ss=.s� 1/.

Proof. Let g.x/D jxj�n=s for all x 2 Rn (we put g.0/ WD 0). We observe that

jfy 2 Rn W jg.y/j> �gj D jB.0; ��s=n/j D vn�
�s; � > 0:

Hence, for any x 2 Rn and any r > 0, we haveZ
B.x;r/

jg.y/j dy D

Z 1
0

jfy 2 Rn W �B.x;r/.y/g.y/ > �gj d�

�

Z 1
0

min
˚
jB.x; r/j; jfy 2 Rn W g.y/ > �gj

	
d� D vn

Z 1
0

minfrn; ��sg d�

D vnr
n.1�1=s/

C vn

Z 1
r�n=s

��s d� D vn
s

s� 1
rn.1�1=s/

D vn
1=s s

s� 1
jB.x; r/j1�1=s:

The above estimate combined with previous calculation completes the proof. �
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According to Lemma 3.12, for a Banach couple .A0; A1/, ŒA0; A1�� is a subspace of .A0; A1/�;1 for
any � 2 .0; 1/. More precisely, ŒA0; A1�� ,! .A0; A1/�;1 with the norm of the inclusion map less than
or equal to 1. Concerning this inclusion, we will also need the following useful Proposition 4.2:

Here and below in this paper we let 1� q0 � p0 �1 and 1� q1 � p1 �1 satisfy min.p0; p1/ <1.
We will apply Proposition 4.2 below to Morrey spaces. Again according to Lemma 3.12,

ŒMp0
q0
;Mp1

q1
�� ,! .Mp0

q0
;Mp1

q1
/�;1:

We have the following result.

Proposition 4.2. Let EAD .A0; A1/ be a Banach couple, and let A be any interpolation space with respect
to EA that is a proper subspace of EA�;1 for some � 2 .0; 1/. If there exists a1 2 A such that one of the
following conditions is satisfied, then EA is not a Calderón–Mityagin couple:

(i) K.t; a1I EA/� t� for all t 2 .0;1/.

(ii) A1 ,! A0 and there exists t0 > 0 such that K.t; a1I EA/� t� for all t 2 .0; t0�.

Proof. (i) For every a 2 EA�;1 we set xa D kak EA�;1a1 2 A. Our hypothesis gives that

K.t; xaI EA/� t
�
kak EA�;1 �K.t; aI

EA/; t > 0:

Suppose that A is a proper subset of EA�;1. If EA were a Calderón–Mityagin couple, then we would get
a D T .xa/ for some operator T W EA! EA, and therefore, by interpolation, a 2 A. Since a 2 EA�;1 is
arbitrary, this would imply that EA�;1 � A and

AD EA�;1;

which is a contradiction with our hypothesis.

(ii) There is no loss of generality in assuming that t0 is equal to kidkA1!A0 , the operator norm of the
embedding of A1 into A0. It is clear that K.t; xI EA/D kakA0 for every a 2 A0 and t � t0. In this case
our hypothesis implies that for each a 2 EA�;1 there exists an element xa 2 A which is a suitable scalar
multiple of a1 which satisfies

K.t; aI EA/�K.t; xaI EA/; t 2 .0; t0�;

and also kakA0 �kxakA0 . Therefore,K.t; aI EA/�K.t; xaI EA/ for all t >0 and this enables us to complete
the proof via the same reasoning as in part (i). �

Theorem 4.3. Let 1 � q0 < p0 <1 and 1 � q1 � p1 �1 with q0 ¤ q1. Then for any � 2 .0; 1/ the
inclusion ŒMp0

q0 ;M
p1
q1 �

� � .Mp0
q0 ;M

p1
q1 /�;1 is proper.

Proof. Define p and q by
1

p
D
1� �

p0
C
�

p1
;

1

q
D
1� �

q0
C
�

q1
:
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We distinguish two cases: (1) p1 <1 and (2) p1 D1.

Case (1): p1 <1. Since p0 <1 and q0 ¤ q1, the proof of [Lemarié-Rieusset 2013, case (b), p. 751]
shows that .Mp0

q0 ;M
p1
q1 /�;1 is not embedded into Mp

q . Meanwhile, if we go through an argument
similar to the one to prove .Mp0

q0 ;M
p1
q1 /�;q ,!Mp

q using the result .Lq0 ; Lq1/�;q DLq by Calderón, we
have ŒMp0

q0 ;M
p1
q1 �

� ,!Mp
q . Combining these observations, we conclude that ŒMp0

q0 ;M
p1
q1 �

� is a proper
subspace of .Mp0

q0 ;M
p1
q1 /�;1.

Case (2): p1D1. We have Mp1
q1 DL

1 isometrically for all choices of q1 in the permitted range Œ1;1�.
We apply [Cwikel and Gulisashvili 2000, Theorem 4] again to see that .X;L1/�;1 is the space of all

f 2 L0 in a quasi-Banach lattice X� endowed with the quasinorm

kf kX� WD sup
�>0

� k�fjf j>�gk
1��
X <1;

whenever X is a Banach function lattice on a � -finite complete nonatomic measure space .�;†;�/. By
Corollary 3.10, we have ŒMp0

q0 ; L
1�� D .Mp0

q0 /
.r/ DMrp0

rq0 . Furthermore, the inclusion Mp
q � wMp

q is
proper for every 1� q < p <1 (see Lemma 4.7(ii)), we conclude that the inclusion

ŒMp0
q0
; L1�� DMrp0

rq0
,! .Mp0

q0
; L1/�;1 D wMrp0

rq0

is also proper, and so the proof is complete. �

We also will need the following results: the first one is motivated by [Brudnyi and Krugljak 1991,
Theorem 4.5.5].

Theorem 4.4. Let EX D .X0; X1/ be a Banach couple, and let r 2 .0; 1/, � 2 .0; 1/ and  2 .1;1/ be
fixed. Assume that for each j 2 JD Z .resp. j 2 JD ZC/ there exists vj 2X0CX1 such that

minf1; r�j tg �K.t; vj I EX/�  minf1; r�j tg; t > 0 (resp. t 2 .0; 1�):

Then, for a certain positive integer N which depends on r , � and  , the element x� 2X0CX1 defined by

x� D
X

j2J\NZ

rj�vj

satisfies

K.t; x� ; EX/� t
� for all t > 0 .resp. for all t 2 .0; 1�/:

Proof. Fix � 2 .0; 1/ and r 2 .0; 1/. It is easy to check that there is a constant C D C.r; �/ > 1 such that
for each positive integer N we haveX

j2J\NZ

rj� minf1; r�j tg � Ct� ; t > 0: (4-1)

Thus, we conclude by our hypothesis that for JD Z (resp. JD ZC) the series

x� WD
X

j2J\NZ

rj�vj

converges in X0CX1.
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Combining (4-1) with the right-hand inequality of our hypothesis yields that for x� we have, for all
t 2 .0;1/ (resp. t 2 .0; 1�),

K.t; x� I EX/�
X
j2J

rj�K.t; vj I EX/� 
X
j2J

rj� minf1; r�j tg � C t� :

The sums
P1
mD1 r

N�m and
P�1
mD�1 r

�N.1��/m can be made arbitrarily small by choosing N 2N large
enough. So it is clear that we can choose a positive integer N which depends only on r , � and  and
which is large enough to satisfy


X

m2Znf0g

minfrN�m; r�N.1��/mg � 1
2
:

For this N and for each j 2 J\NZ, setting j0 D j=N, we consequently have


X

k2J\NZnfj g

rk� minf1; rj�kg � rj�
X

k2NZnfj g

minfr.k�j /� ; r.j�k/.1��/g

� rj�
X

m2Znfj0g

minfrN.m�j0/� ; rN.j0�m/.1��/g

D rj�
X

m2Znf0g

minfrNm� ; r�Nm.1��/g � 1
2
rj� :

So, we get that for each j 2 J\NZ,

K.rj ; x� I EX/�K.r
j ; rj�vj I EX/�K

�
rj ;

X
k2J\NZnfj g

rk�vkI EX

�
� rj� �

X
k2J\NZnfj g

rk�K.rj ; vkI EX/

� rj� � 
X

k2J\NZnfj g

rk� minf1; rj�kg � 1
2
rj� :

To conclude the proof, observe that for a given t > 0 (resp. t 2 .0; 1�) there is an integer j 2NZ (resp.
j 2 ZC\NZ) such that rj � t � rj�N. Then the above estimate yields

K.t; x� I EX/�K.r
j ; x� I EX/�

1
2
rj� � 1

2
rN� t� :

Thus K.t; x� I EX/� t� for all t > 0 (resp. t 2 .0; 1�), as required. �

As an application we obtain the following result:

Lemma 4.5. Let the set J be either Z or ZC. Let T be the interval .0;1/ if JD Z or .0; 1� if JD ZC.
Let .X0; X1/ be a couple of Banach lattices on a complete �-finite measure space .�;†;�/, and let
r 2 .0; 1/, � 2 .0; 1/ be fixed. Assume that there exists a sequence fFj gj2J in † with positive measures
such that k�Fj kX1 � r

�j k�Fj kX0 and that K.t; �Fj I EX/ � minfk�Fj kX0 ; tk�Fj kX1g for each j 2 J
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and all t 2 T . Then there exists a positive integer N for which the function f� defined by

f� D
X

j2J\NZ

rj�
�Fj

k�Fj kX0

has the following two properties:

(i) f� 2X0CX1 and K.t; f� I EX/� t� for all t 2 T .

(ii) If furthermore fFj gj2J is a nondecreasing sequence and if �S
j2J\NZ Fj

2X0 and if f 1=�
�
2X1, then

f� 2X0
1��X1

� .

Proof. (i) If we let vj WD �Fj =k�Fj kX0 we have, for each j 2 J,

K.t; vj I EX/�minf1; r�j tg; t 2 T :

Thus the statement (i) follows from Theorem 4.4.

(ii) This is a direct consequence of the decomposition:

f� D .�
S
j2J\NZ Fj

/1�� .f
1=�

�
/� 2X1��0 X�1 : �

For s > 1, we write s0 D s=.s� 1/. We will need the following useful lemma:

Lemma 4.6. For a given s>1we put ˛D2�s
0

. For each "2f0;1gn, we define an affine map f" WRn!Rn by

f".x/D ˛xC .1�˛/"; x 2 Rn:

We also define two sequences fFj g1jD0 and fEj g1jD0 of subsets of Rn by Fj D ˛�jEj for each j � 0,
where E0 WD Œ0; 1�n and Ej are given by

Ej WD
[

"2f0;1gn

f".Ej�1/; j 2 N:

Then the following statements are true:

(i) Fj � FjC1 for each j � 0.

(ii) Fj is made up of 2jn pairwise disjoint cubes of volume 1 for each j 2 N.

(iii) For all 1 < u <1 and each j � 0 we have

k�Fj kMu
1
�maxf1; ˛jn=u�jn2�jng Dmaxf1; ˛jn=u�jn=sg;

where the constants of equivalence do not depend on j .

(iv) Let 1� q0 � p <1 satisfy s D p=q0. Then �S
j2ZC

Fj 2M
p
q0 .

(v) For every x 2 Rn and each j 2 N, we have

M�Fj .x/�

jX
kD1

�Fk .˛
j�kx/

k�Fk .˛
j�k � /k�

LMs
1

;
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where k � k�
LMs

1

is the local Morrey norm generated by cubes:

kf k�LMs
1
WD sup

r>0

rn=p�n
Z
Œ�r;r�n

jf .y/j dy <1:

Proof. The statements (i) and (ii) are obvious. So we concentrate on other parts.

(iii) The statement follows from the equivalence below obtained via standard calculations using an
equivalent norm in Morrey spaces generated by cubes, and the fact that ˛ satisfies 2˛ D ˛1=s:

k�Ej k
�
Mu
1
�maxf˛jn=u; 2jn˛jng D 2jn˛jn maxf1; ˛jn=u�jn2�jng; j � 0:

We include the proof of the equivalence k�Ej k
�
Mu
1

�maxf˛jn=u; 2jn˛jng for the reader’s convenience.
From the definition of k � k�Mu

1

, we have

k�Ej k
�
Mu
1
D sup

Q

jQj1=u�1
�Z

Q

�Ej .y/ dy

�
D sup

Q

jQj1=u�1jQ\Ej j;

where the supremum is taken over all cubes Q in Rn with sides parallel to coordinate axes. Since
Ej � Œ0; 1�

n, we get

k�Ej k
�
Mu
1
D sup

Q

jQj1=u�1jQ\ Œ0; 1�n\Ej j:

Thus it follows that we may suppose that Q intersects Œ0; 1�n. Assume that Q is such a cube. Translate Q
to have a cube R of the same volume as Q so that Q\ Œ0; 1�n �R and R\ Œ0; 1�n is a cube. Then

jQj1=u�1jQ\ Œ0; 1�n\Ej j � jRj
1=u�1

jR\ Œ0; 1�n\Ej j

� jR\ Œ0; 1�nj1=u�1jR\ Œ0; 1�n\Ej j:

So, we arrive at

k�Ej k
�
Mu
1
D sup

Q

jQj1=u�1jQ\Ej j;

where the supremum is taken over all cubes Q in Œ0; 1�n with sides parallel to coordinate axes.
Using the cubes Œ0; 1�n and Œ0; ˛j �n, we have

k�Ej k
�
Mu
1
�maxf˛jn=u; 2jn˛jng:

To show the opposite estimate, we notice that if jQj � ˛jn, then we have

jQj1=u�1jQ\Ej j � jQj
1=u
� ˛jn=u:

Assume that ˛kn� jQj �˛.k�1/n for some k 2 f1; : : : ; j g. We first observe that it follows by Ek�1�Ej
that

jQ\Ej j D jQ\Ek�1\Ej j:
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Now note that Ek�1 is made up of 2n.k�1/ disjoint compact cubes of volume ˛.k�1/n. In view of the
size of Q, we know Q can intersect at most 2n of them, say, Q1; : : : ;QL with L� 2n. Then we have

jQ\Ej j D jQ\Ek�1\Ej j �

LX
lD1

jQl \Ej j D L2
n.j�kC1/˛jn � 2nCn.j�kC1/˛jn;

since Ql \Ej is made up of 2n.j�l/ disjoint cubes of volume ˛jn. As a consequence,

jQj1=u�1jQ\Ej j � ˛
kn=u�kn2nCn.j�kC1/˛jn � 4n maxf˛jn=u; 2jn˛jng;

as required.

(iv) Since Mu
w D .M

u=w
1 /.w/ for every 1� u < w <1, (iii) yields that for all integers j � 0, we have

the equivalence
k�Fj kMp

q0
�maxf1; ˛�jn=sCjn=sg D 1:

(v) Fix j 2 N. Let
Gk D fx 2 Rn W ˛j�kx 2 Fkg; k 2 f0; : : : ; j g:

Then G0 D Œ0; ˛�j �n � G1 � � � � � Gj D Fj . If x 2 Gj , then the conclusion is clear since Fj D Gj .
If x 2 Rn nG0, then the conclusion is again clear since the right-hand side is zero. Assume otherwise;
x 2Gk nGkC1 for some k 2 f0; : : : ; j �1g. Let Hk.x/ be the connected component of Gk containing x.
By translation we may assume that x 2 Œ0; ˛�jCk�n DHk.x/. Then

M�Fj .x/�
jFj \ Œ0; ˛

�jCk�nj

jHk.x/j
D 2.j�k/n˛.j�k/n

�
�Fk .˛

j�kx/

k�Fk .˛
j�k � /k�

LMs
1

�

jX
mD1

�Fm.˛
j�mx/

k�Fm.˛
j�m � /k�

LMs
1

: �

Lemma 4.7 below is somewhat known. However we include a proof for completeness since we will
use it later. In the proof we will use the Hardy–Littlewood maximal operator M W L1loc! L0, which is
defined by

Mf.x/D sup
r>0

1

jB.x; r/j

Z
B.x;r/

jf .y/j dy; x 2 Rn:

Lemma 4.7. The following statements are true:

(i) The Hardy–Littlewood maximal operator M is unbounded both on Ms
1 and on LMs

1 for every
s 2 Œ1;1/.

(ii) The inclusions LMp
q ,! wLMp

q and Mp
q ,! wMp

q are proper for all 1� q � p <1.

Proof. (i) Let s D 1. It is a classical fact that if Mf is in L1 for f 2 L1loc, then f D 0 a.e. and M
cannot be bounded on L1. Let 1 < s <1. The statement that M is not bounded in Ms

1 is an immediate
consequence of Nakai’s result [2008, Corollary 2.5, p. 205] on necessary and sufficient conditions for
the boundedness of M on generalized Orlicz–Morrey spaces L.ˆ;�/. In fact the Morrey space Ms

1 is the
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Orlicz–Morrey space generated by the Young function ˆ.t/D t and the function �.t/D t�1=s for all
t � 0. Recall that Ms

1 D L
.1;�/ and wMs

1 D L
.1;�/
weak if �D n�n=s.

The necessary condition ˆ 2r2 (i.e., that there exists k � 1 such that ˆ.t/� 1
2k
ˆ.kt/ for all t > 0) is

not satisfied. A careful analysis of the proof of the mentioned result of Nakai based on a key observation
in [Nakai 2008, Lemma 4.10] also gives that the operator M is not bounded in LMs

1. We point out here
that by using the sequence fFj g1jD1 defined in the proof of Theorem 4.8 below, we can also disprove
that M is bounded on LMs

1 for all s > 1. We include a short and transparent proof of our own, for the
reader’s convenience. Let fFj g1jD0 be the sequence constructed in the proof of Lemma 4.6. Let j 2N be
arbitrary. Then from Lemma 4.6(v), we get

jŒ�˛�j ; ˛�j �nk1=s�1
Z
Œ�˛�j ;˛�j �n

M�Fj .x/ dx �

jX
kD1

k�Fk .˛
j�k � /k�Ms

1

k�Fk .˛
j�k � /k�Ms

1

D j:

This proves that M is not bounded on LMs
1.

(ii) We apply the fact that M is bounded from Ms
1 to wMs

1, see, e.g,. [Nakai 2008, Corollary 6.3, p. 207],
and also that M is bounded from LMs

1 to wLMs
1. The second fact easily follows from [Burenkov and

Guliyev 2004, Lemma 10], which yields that there exists a positive constant C such that for all f 2 L1loc
and r > 0,

sup
�>0

�jfx 2 B.r/ WMf.x/ > �gj � Crn
Z 1
r

�
1

tnC1

Z
B.t/

jf .x/j dx

�
dt:

If f 2 LMs
1, then simple calculus yields that

sup
�>0

�jfx 2 B.r/ WMf.x/ > �gj � Crn
Z 1
r

t�n=s�1kf kLMs
1
dt D Crn�n=skf kLMs

1
:

As a result we get

kMf kwMs
1
D sup
�;r>0

jB.r/j1=s�1jfx 2 B.r/ WMf.x/ > �gj � Ckf kLMs
1
;

as required. Let f0 D limj!1 �Fj 2 LM
s
1, where each Fj is as in Lemma 4.6. From the proof

of (i), Lemma 4.6(iv) and (v), Mf0 2 wLMs
1 n LM

s
1. If 1 < q < p < 1, then we let s WD p=q

and define g0 D .Mf0/1=q. Combining these observations, we get g0 2 .wLMs
1/
.q/ D wLMp

q and
g0 … .LMs

1/
.q/ D LMp

q and so LMp
q ¤ wLMp

q . Similarly we can show that Mp
q ¤ wMp

q .
Since the case p D q reduces to the well-known fact that Lp ¤ Lp;1, the proof is complete. �

With all these preliminary results, we are now ready to state our main result of this section, which
shows that Cwikel’s conjecture is valid in a wide class of Morrey spaces.

Theorem 4.8. Let 1� q0<p0<1 and 1� q1<p1�1 with q0¤ q1. Then for any � 2 .0; 1/ the upper
complex interpolation space ŒMp0

q0 ;M
p1
q1 �

� is not a K-monotone couple with respect to .Mp0
q0 ;M

p1
q1 /,

and so .Mp0
q0 ;M

p1
q1 / is not a Calderón–Mityagin couple.

Proof. It follows from Proposition 4.2 and Theorem 4.3 that it is suffices to prove that for every � 2 .0; 1/
there exists f 2 ŒMp0

q0 ;M
p1
q1 �

� such that t� �K.t; f IMp0
q0 ;M

p1
q1 /.
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We will distinguish three cases:

Case 1: p0; p1<1 with p0¤p1. Let 1=pD .1��/=p0C�=p1 and 1=qD .1��/=q0C�=q1. Consider
the functions f , g0 and g1 given by f .x/Djxj�n=p and gj .x/Djxj�n=pj for all x2Rnnf0g, for j 2f0; 1g.
By the preceding discussion in introduction of this section, it follows that g0 2M

p0
q0 and g1 2M

p1
q1 .

Since Morrey spaces enjoy the Fatou property, it follows from Theorem 3.7 that

.Mp0
q0
/1�� .Mp1

q1
/� Š ŒMp0

q0
;Mp1

q1
�� :

Combining the above facts with f D g1��0 g�1 , we get f 2 ŒMp0
q0 ;M

p1
q1 �

� .
We claim that

t� �K.t; f IMp0
q0
;Mp1

q1
/; t > 0:

First we notice that Mpj
qj ,!Mpj

1 with the norm of the inclusion map 1 for j 2 f0; 1g:

K.t;f IMp0
q0
;Mp1

q1
/�K.t;f IMp0

1 ;M
p1
1 /D inffkf0kMp0

1

Ct kf1kMp1
1

Wf0Cf1Df g

� inf
f0Cf1Df

sup
x2Rn;r>0

Z
B.x;r/

�
jB.x;r/j1=p0�1jf0.y/jCt jB.x;r/j

1=p1�1jf1.y/j
�
dy:

Thus applying the formula which was explained at the beginning of this section,

jB.0; r/j1=s�1
Z
B.0;r/

jxj�n=s dx D C.s/;

we obtain the following estimates for all t > 0:

K.t; f IMp0
q0
;Mp1

q1
/

� inf
f0Cf1Df

sup
x2Rn;r>0

minfjB.x; r/j1=p0�1; t jB.x; r/j1=p1�1g
Z
B.x;r/

.jf0.y/jC jf1.y/j/ dy

� sup
x2Rn;r>0

minfjB.x; r/j1=p0�1; t jB.x; r/j1=p1�1g
Z
B.x;r/

jf .y/j dy

� sup
r>0

minfjB.r/j1=p0�1; t jB.r/j1=p1�1g
Z
B.r/

jf .y/j dy

� sup
r>0

minfjB.r/j1=p0�1=p; t jB.r/j1=p1�1=pg:

If we calculate the last expression, we obtain

K.t; f IMp0
q0
;Mp1

q1
/� sup

r>0

min
�
1;

t

jB.r/j1=p0�1=p1

�
jB.r/j�=p0��=p1 D sup

s>0

min
�
1;
t

s

�
s� D t� :

Case 2: p1 D1. We will use [Cwikel and Gulisashvili 2000, Lemma 6] from which it follows that if
X is a Banach function lattice on a �-finite complete measure space .�;†;�/ and f is a nonnegative
function in .X;L1/�;1 for some � 2 .0; 1/, then for each y > 0 we have �E.y;f / 2X and

kf�E.y;f /kX �K.k�E.y;f /kX ; f IX;L
1/; (4-2)

where �E.y;f / D fx 2� W f .x/ > yg.
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At this stage we observe that it follows from Corollary 3.10 and Proposition 4.1 that for the function
f given by f .x/D jxj�n.1��/=p0 for all x 2 Rn n f0g with f .0/ WD 0 we have

f 2 .Mp0
q0
/1=.1��/ D ŒMp0

q0
; L1�� ,! .Mp0

q0
; L1/�;1:

Now we apply the above estimate (4-2) of the K-functional for the couple .Mp0
q0 ; L

1/. First notice that
it is easy to check that

k�B.r/kMp0
q0

D jB.r/j1=p0 D .vnr/
n=p0 ; r > 0;

and that, for function f shown above, we have

E.y; f /D fx 2 Rn W f .x/ > yg D B.1=yp0=n.1��//:

For t > 0 let us take y WD y.t/D .vn=p0n t�1/1�� . Then we get k�E.y;f /kMp0
q0

D t . Hence, we obtain

K.t; f IMp0
q0
; L1/� kf�E.y;f /kMp0

q0

� yk�E.y;f /kMp0
q0

D .vn=p0n t�1/1�� t D vn.1��/=p0n t� :

Case 3: 1� q0 < q1 < p WD p0 D p1 <1. First observe that if EX D .X0; X1/ is a Banach couple such
that the norm of the inclusion map X1 ,!X0 is less than or equal to 1, then K.t; xI EX/DkxkX0 for every
t � 1. We learn from Hölder’s inequality that the couple .X0; X1/ WD .M

p
q0 ;M

p
q1/ enjoys this property.

To finish we will apply Lemmas 4.5(ii) and 4.6. To do this we will use a sequence fFj gj�0 of Lebesgue
measurable subsets in Rn, constructed in the proof of Lemma 4.6, which satisfies the conditions of the
Lemma 4.5(ii). As a result,

g� WD

1X
jD0

rj��Fj 2 .M
p
q0
/1�� .Mp

q1
/�

and

K.t; g� IMp
q0
;Mp

q1
/� t� ; t 2 .0; 1�: �

We conclude this section with the following result:

Proposition 4.9. Assume there exists � 2 .0; 1/ such that the inclusion ŒMs0
1 ;M

s1
1 �
� ,! .Ms0

1 ;M
s1
1 /�;1

is proper for every s0; s1 2 .1;1/ with s0 ¤ s1. Then .Mp0
q ;M

p1
q / is not a Calderón–Mityagin couple

for all p0, p1 2 .1;1/ with p0 ¤ p1 and all 1� q <minfp0; p1g.

Proof. It is easy to verify that for any couple .X0; X1/ of Banach lattices and every 1 < q <1, we have

.X
.q/
0 /1�� .X

.q/
1 /� Š .X1��0 X�1 /

.q/:

Thus thanks to the well-known equivalence

K.t; f IX
.q/
0 ; X

.q/
1 /�K.tq; jf jqIX0; X1/

1=q; f 2X
.q/
0 CX

.q/
1 ;

up to equivalence of norms, we get

.X
.q/
0 ; X

.q/
1 /�;1 D .X0; X1/

.q/

�;1
:
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These formulas combined with the Fatou property of Mpj
q D .Mpj =q/.q/ imply for .X0; X1/ WD

.Mp0=q
1 ;Mp1=q

1 / that the inclusion

ŒMp0
q ;M

p1
q �

� ,! .Mp0
q ;M

p1
q /�;1

is proper. Since p0 ¤ p1, it follows from the proof of Theorem 4.8 that there exists f 2 ŒMp0
q ;M

p1
q �

�

such that
K.t; f IMp0

q ;M
p1
q /� t

� :

The required statement now follows from Proposition 4.2. �

To conclude this section, we note that it is natural to ask whether ŒMp0
1 ;M

p1
1 �

� ¤ .Mp0
1 ;M

p1
1 /�;1

in the set-theoretical sense for all � 2 .0; 1/ and p0; p1 2 .1;1/ with p0 ¤ p1.

5. On Calderón–Mityagin couples of local Morrey spaces

We now study Calderón–Mityagin couples of local Morrey spaces. The following interpolation results will
play a key role. We proceed in a couple of simple steps, which seem independently interesting themselves.

Lemma 5.1. If 1 � q0 < p0 <1 and 1=p D .1� �/=p0 and 1=q D .1� �/=q0 for � 2 .0; 1/, then the
following formulas are true:

(i) ŒLMp0
q0 ; L

1�� Š .LMp0
q0 /

1�� .L1/� Š LMp
q .

(ii) .LMp0
q0 ; L

1/�;1 D wLMp
q .

If we reexamine the proof of Theorem 5.2, we obtain the proof of Lemma 5.1 as a special case of
Theorem 5.2. However, we give a proof using what we have shown.

Proof. Since LMp0
q0 has the Fatou property, statement (i) follows from Corollary 3.10. In a similar

fashion to the proof of Theorem 4.3, we explain that (ii) follows by [Cwikel and Gulisashvili 2000,
Theorem 4]. �

We now handle the case q1 < p1 <1 by a different method.

Theorem 5.2. Let 1 � qj < pj <1 for j 2 f0; 1g and � 2 .0; 1/. If 1=p D .1� �/=p0 C �=p1 and
1=q D .1� �/=q0C �=q1, then we have the following properties:

(i) ŒLMp0
q0 ; LM

p1
q1 �

� D LMp
q .

(ii) If q D q0 D q1, then .LMp0
q0 ; LM

p1
q1 /�;1 D LM

p
q .

(iii) If q0 ¤ q1, then .LMp0
q0 ; LM

p1
q1 /�;1 D wLMp

q .

Proof. We will use an equivalent norm on local Morrey spaces. It is obvious that for any 1� q � p <1
the functional k � k0 defined on LMp

q by

kf k0 D sup
k2Z

jB.2k/j1=p�1=q
�Z
B.2k/

jf .y/jq dy

�1=q
; f 2 LMp

q ;

is a norm equivalent to the original norm on LMp
q .
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We claim that if in addition q ¤ p, then the formula

kf k� WD sup
k2Z

jB.2k/j1=p�1=q
�Z
B.2k/nB.2k�1/

jf .y/jq dy

�1=q
also gives an equivalent norm on LMp

q .
From the definition it is clear that k � k� � k � k

0

. To prove the converse inequality, we observe that�Z
B.2j /nB.2j�1/

jf .y/jq dy

�1=q
� jB.2j /j�1=pC1=qkf k�; j 2 Z:

If we use the triangle inequality, we get that for each k 2 Z�Z
B.2k/

jf .y/jq dy

�1=q
D

 kX
jD�1

f�B.2j /nB.2j�1/


q

�

� 1X
jD0

2jn=p�jn=q
�
jB.2k/j�1=pC1=qkf k�

D cp;qjB.2
k/j�1=pC1=qkf k�:

This implies that kf k
0

� cp;qkf k
� for all f 2 LMp

q .
In what follows we will need some general interpolation formulas. In order to state them we introduce

some additional notation. For a given sequence f EAkgk2Z of Banach couples, where EAk D .Ak0 ; A
k
1/, we

define a Banach couple

`1.f EAkg/ WD .`1.fA
k
0gk2Z/; `1.fA

k
1gk2Z//;

where `1.fAkj gk2Z/ for each j 2 f0; 1g is a Banach space of all bounded sequences fakj gk2Z 2
Q
k2ZA

k
j

endowed with the uniform norm.
We omit the standard proofs of the following formulas:

Œ`1.fA
k
0gk2Z/; `1.fA

k
1gk2Z/�

�
D `1.fŒA

k
0 ; A

k
1 �
�
gk2Z/;

.`1.fA
k
0gk2Z/; `1.fA

k
1gk2Z//�;1 D `1.f.A

k
0 ; A

k
1/�;1gk2Z/:

We consider a sequence f.Ak0 ; A
k
1/gk2Z given by Akj WD wkj L

qj, with wkj D jB.2
k/j1=pj�1=qj for

each k 2 Z and j 2 f0; 1g, and endowed with norms kf kAk
j
D wkj kf kLqj .

Since ŒLq0 ; Lq1 �� D Lq if q0 ¤ q1, .Lq0 ; Lq1/�;1 D Lq;1 and .Lq; Lq/�;1 D Lq , then the above
vector-valued formulas easily yield

Œ`1.fA
k
0gk2Z/; `1.fA

k
1gk2Z/�

�
D `1.fŒw

k
0L

q0 ; wk1L
q1 ��gk2Z/D `1.fw

kLqgk2Z/;

.`1.fA
k
0gk2Z/; `1.fA

k
1gk2Z//�;1 D `1.f.w

k
0L

q; wk1L
q/�;1gk2Z/D `1.fw

kLq;1gk2Z/;

.`1.fA
k
0gk2Z/; `1.fA

k
1gk2Z//�;1 D `1.f.w

k
0L

q0 ; wk1L
q1/�;1gk2Z/D `1.fw

kLq;1gk2Z/;
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where fwkgk2Z D fjB.2
k/j1=p�1=qg for each k 2 Z and

1

p
D
1� �

p0
C
�

p1
;

1

q
D
1� �

q0
C
�

q1
:

It is easy to check that wLMp
q D `1.fw

kLq;1g/ with equality of quasinorms and so the last formula
can take the form

.`1.fA
k
0gk2Z/; `1.fA

k
1gk2Z//�;1 D wLMp

q ; q0 ¤ q1:

Now by the discussion before about equivalent norms on Morrey spaces, it follows that

kf kLMp
q
� sup
k2Z

jB.2k/j1=p�1=q
�Z
B.2k/nB.2k�1/

jf .y/jq dy

�1=q
; f 2 LMp

q :

This equivalence implies that operators U and V given by

Uf D ff�B.2k/nB.2k�1/gk2Z; f 2 LMp0
q0
CLMp1

q1
;

V .ffkgk2Z/D
X
k2Z

fk�B.2k/nB.2k�1/; ffkgk2Z 2 `1.fA
k
0gk2Z/C `1.fA

k
1gk2Z/

are bounded between the Banach couples

U W .LMp0
q0
; LMp1

q1
/! .`1.fA

k
0gk2Z/; `1.fA

k
1gk2Z//;

V W .`1.fA
k
0gk2Z/; `1.fA

k
1gk2Z//! .LMp0

q0
; LMp1

q1
/:

We conclude by the vector-valued interpolation formulas shown above that

U W ŒLMp0
q0
; LMp1

q1
�� ! `1.fjB.2

k/j1=p�1=qLqg/

is bounded. In particular this yields the continuous inclusion

ŒLMp0
q0
; LMp1

q1
�� ,! LMp

q :

The boundedness of an operator V from `1.fjB.2
k/j1=p�1=qLqgk2Z/ into ŒLMp0

q0 ; LM
p1
q1 �

� yields the
reverse continuous inclusion

LMp
q ,! ŒLMp0

q0
; LMp1

q1
��

and so ŒLMp0
q0 ; LM

p1
q1 �

� D LMp
q , as required.

Similarly we obtain the remaining formulas and this completes the proof. �

Remark 5.3. We notice that using maps U and V defined in the proof of Theorem 5.2 we easily conclude
the following equivalence for theK-functional of local Morrey couples: if 1� qj <pj <1 for j 2 f0; 1g,
then for all f 2 LMp0

q0 CLM
p1
q1 and t > 0,

K.t; f ILMp0
q0
; LMp1

q1
/�K

�
t; ff�B.2k/nB.2k�1/gk2ZI `1.fw

k
0L

q0gk2Z/; `1.fw
k
1L

q1gk2Z/
�

� sup
k2Z

K.t; f�B.2k/nB.2k�1/Iw
k
0L

q0 ; wk1L
q1/;

where wkj D jB.2
k/j1=pj�1=qj for each k 2 Z and j 2 f0; 1g.
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We apply the above results to study Calderón–Mityagin couples of local Morrey spaces. Our main
result of this section shows that Cwikel’s conjecture is valid in the class of local Morrey spaces.

Theorem 5.4. Let 1� q0 < p0 <1 and 1� q1 < p1 <1. The following are equivalent:

(i) q0 D q1.

(ii) .LMp0
q0 ; LM

p1
q1 / has the universal K-property.

(iii) .LMp0
q0 ; LM

p1
q1 / is a Calderón–Mityagin couple.

Proof. (i)) (ii). We invoke the following result from [Cwikel and Peetre 1981]: for any Banach couple
.A0; A1/ and any numbers �0; �12 .0; 1/ the couple of interpolation spaces ..A0; A1/�0;1; .A0; A1/�1;1/
has the universal K-property. To establish that the couple .LMp0

q ; LM
p1
q / falls under this scope, we fix

0 < " <minfp0�q; p1�qg and set u0 D p0� ", u1 D p0C ", v0 D p1� " and v1 D p1C ". Then for
�0; �1 2 .0; 1/ given by �0 D 1

2
.1C "=p0/ and �1 D 1

2
.1C "=p1/ we have

1

p0
D
1� �0

u0
C
�0

u1
;

1

p1
D
1� �1

v0
C
�1

v1
:

If q D q0 D q1, then it follows from Theorem 5.2 that

.LMu0
q ; LM

u1
q /�0;1 D LM

p0
q ; .LMv0

q ; LM
v1
q /�1;1 D LM

p1
q :

(ii)) (iii). This is obvious.

(iii)) (i). We consider the contrapositive. Suppose that q0 ¤ q1. We have two cases:

Case 1: p0 ¤ p1. Then as before the function f defined by f .x/D jxj�n=p for almost all x 2 Rn is in
LMp

q , and
K.t; f ILMp0

q0
; LMp1

q1
/� t� ; t > 0:

Meanwhile, we conclude from Theorem 5.2 that

f 2 ŒLMp0
q0
; LMp1

q1
�� D LMp

q

and so it follows from Lemma 4.7 and Theorem 5.2 that the inclusion

ŒLMp0
q0
; LMp1

q1
�� ,! .LMp0

q0
; LMp1

q1
/�;1

is proper. Applying Proposition 4.2(i), we deduce that .LMp0
q0 ; LM

p1
q1 / is not a Calderón–Mityagin

couple and so we get a contradiction.

Case 2: p WD p0 D p1. Since the cube Œ0; 1�n appears in the definition of the sequence fEj g1jD0
constructed in the proof of Lemma 4.6, the same conclusion as in the case of Morrey spaces yields that
for fFj gj�0 WD f˛�jEj gj�0 with the same ˛ 2

�
0; 1
2

�
, we get

k�Fj kLMu
1
�maxf1; ˛�jn=uCjn2�jng Dmaxf1; ˛�jn=uCjn=sg; j � 0:

Then as we did in the proof of Theorem 4.8, we apply Lemma 4.5 for the couple .X0; X1/ WD
.LMp

q0 ; LM
p
q1/ to find f 2 ŒLMp0

q0 ; LM
p1
q1 �

� D LMp
q such that

K.t; f ILMp0
q0
; LMp1

q1
/� t� ; t 2 .0; 1�:
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Then similar to the above proof of Case 1, applying Proposition 4.2(ii), we deduce that .LMp0
q0 ; LM

p1
q1 /

is not a Calderón–Mityagin couple. But this is a contradiction. �
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