
ANALYSIS & PDE

msp

Volume 12 No. 7 2019

DENIS BONHEURE AND ALESSANDRO IACOPETTI

SPACELIKE RADIAL GRAPHS OF PRESCRIBED MEAN
CURVATURE

IN THE LORENTZ–MINKOWSKI SPACE





ANALYSIS AND PDE
Vol. 12, No. 7, 2019

dx.doi.org/10.2140/apde.2019.12.1805 msp

SPACELIKE RADIAL GRAPHS OF PRESCRIBED MEAN CURVATURE
IN THE LORENTZ–MINKOWSKI SPACE

DENIS BONHEURE AND ALESSANDRO IACOPETTI

We investigate the existence and uniqueness of spacelike radial graphs of prescribed mean curvature in
the Lorentz–Minkowski space LnC1, for n� 2, spanning a given boundary datum lying on the hyperbolic
space Hn.

1. Introduction

A radial graph is a hypersurface † such that each ray emanating from the origin intersects † once at
most. In the euclidean context the problem of finding radial graphs of prescribed mean curvature has
been extensively studied over the years. In the first paper on the subject, Radó [1932] proved that for any
given Jordan curve � � R3, with one-to-one radial projection onto a convex subset of the unit sphere S2,
there exists a minimal graph spanning �. Later, Tausch [1981] proved that area-minimizing disk-type
hypersurfaces spanning a boundary datum � which can be expressed as a radial graph over @�, where
� � Sn is a convex subset, have a local representation as a radial graph. The case of variable mean
curvature was investigated by Serrin [1969], and a recent result of radial representation for H -surfaces in
cones was given in [Caldiroli and Iacopetti 2016]. Treibergs and Wei [1983] studied the case of closed
hypersurfaces, i.e., compact hypersurfaces without boundary. Lopez [2003] and de Lira [2002] studied
the case of radial graphs of constant mean curvature.

The Lorentz–Minkowski space, denoted by LnC1, is defined as the vector space RnC1 equipped with
the symmetric bilinear form

hx; yi WD x1y1C � � �C xnyn� xnC1ynC1;

where x D .x1; : : : ; xnC1/; y D .y1; : : : ; ynC1/ 2 RnC1. The bilinear form h � ; � i is a nondegenerate
bilinear form of index 1, see [Spivak 1975, Section A], where the index of a bilinear form on a real vector
space is defined as the largest dimension of a negative definite subspace. The modulus of v 2 LnC1 is
defined as jvj WD

p
jhv; vij.

The interest in finding spacelike hypersurfaces of prescribed mean curvature in the Lorentz–Minkowski
space comes from the theory of relativity, in which maximal and constant-mean-curvature spacelike
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hypersurfaces play an important role, see [Bartnik and Simon 1982], where spacelike means that the
restriction of the Lorentz metric to the tangent plane, at every point, is positive definite. In the literature,
several result are available for spacelike vertical graphs, i.e., hypersurfaces which are expressed as a
cartesian graph. Entire maximal spacelike hypersurfaces were studied by Cheng and Yau [1976] and later
Treibergs [1982] tackled the general case of entire spacelike hypersurfaces of constant mean curvature.
The Dirichlet problem for spacelike vertical graphs in LnC1 was solved by Bartnik and Simon [1982], and
Gerhardt [1983] extended those results to the case of vertical graphs contained in Lorentzian manifolds
which can be expressed as a product of a Riemannian manifold times an interval. Bayard [2003] studied the
more general problem of prescribed scalar curvature. On the contrary, for radial graphs, to our knowledge,
the only available result concerns entire spacelike hypersurfaces with prescribed scalar curvature which
are asymptotic to the light-cone; see [Bayard and Delanoë 2009].

The geometry of Lorentz–Minkowski spaces plays an in important role in the setting of the problem.
A first relevant fact is that there cannot exist spacelike closed hypersurfaces (see Proposition 2.5, or
[López 2014] for the case of surfaces in L3). Therefore Sn-type surfaces are ruled out, and the model
hypersurface in LnC1 for describing spacelike radial graphs is the hyperbolic space Hn (see Definition 2.6).
Another important feature of Lorentz–Minkowski spaces is that, given a domain, there exist spacelike
hypersurfaces of arbitrarily large (in modulus) mean curvature, see [López 2013], while in the euclidean
context this is not true in general. This fact will be crucial in our paper to construct barriers.

We state now the problem. Let � be a smooth bounded domain of Hn. For u W�! R, we define the
associated radial graph over � as the set

†.u/ WD fp D eu.q/q 2 LnC1 W q 2�g:

Let C� be the cone spanned by � (minus the origin), i.e., C� WD fp D �q 2 LnC1 W q 2�; � > 0g, and
let H W C�! R.

Definition 1.1. A H -bump (over �) is a radial graph † whose boundary coincides with @� and such
that the mean curvature of † at every (interior) point equals H.

The Dirichlet problem for spacelike H -bumps is given by8̂̂<̂
:̂

nP
i;jD1

..1� jruj2/ıij Cuiuj /uij D n.1� jruj
2/�n.1� jruj2/3=2euH.euq/ in �;

jruj< 1 in �;

uD 0 on @�;

(1-1)

where ui , uij are the covariant derivatives of u, ru is the gradient with respect to the Levi-Civita
connection of .Hn; g/ (see Section 3), and g D dx1˝ dx1C � � �C dxn˝ dxn� dxnC1˝ dxnC1 is the
induced Riemannian metric on Hn (see Section 2).

Definition 1.2. Let 0 < r1 � 1 � r2, with r1 ¤ r2. The hyperbolic conical cap of radii r1; r2 spanned
by � is the set

C�.r1; r2/ WD fp D �q 2 LnC1 W q 2�; r1 � � � r2g:
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The main result of our paper is the following existence theorem.

Theorem 1.3. Let ˛ 2 .0; 1/, 0 < r1 � 1 � r2, with r1 ¤ r2. Assume � is a bounded domain of Hn of
class C 3;˛ that satisfies a uniform exterior geodesic ball condition. If H 2 C 1;˛.C�.r1; r2// is positive
and satisfies

(i) H.r1q/ > r�11 and H.r2q/ < r�12 for any q 2�,

(ii) .@=@�/.�H.�q//� 0 for all q 2�, � 2 Œr1; r2�,

then there exists a unique solution of problem (1-1) whose associated radial graph is contained in
C�.r1; r2/.

Let �, r1; r2 be in the statement of Theorem 1.3. Let m � 1, let ! W�! RC be a smooth positive
function such that rm�11 < ! < rm�12 and let Hm;! W C�.r1; r2/! RC, defined by

Hm;!.x/ WD
!.x=jxj/

jxjm
: (1-2)

One easily verifies that Hm;! satisfies the hypotheses (i) and (ii) of Theorem 1.3. In particular, this
shows the existence of spacelike radial graphs of prescribed mean curvature even for nonhomogeneous
functions H, a case which is not contemplated for instance in [Bayard and Delanoë 2009], where the k-th
scalar curvature is prescribed just on Hn.

We remark that (1-1) can be put in divergence form, namely8<:
� divHn.ru=

p
1� jruj2/Cn=

p
1� jruj2 D neuH.euq/ in �;

jruj< 1 in �;
uD 0 on @�;

(1-3)

where divHn denotes the divergence operator for .Hn; g/. The principal part of this operator appears in the
Born–Infeld theory of electromagnetism [1934], which is a particular example of what is usually known
as a nonlinear electrodynamics. We therefore stress that Theorem 1.3 provides existence and uniqueness
of solutions for some specific Born–Infeld equations in which appear nontrivial nonlinearities involving
both the gradient and the function; see also [Bonheure et al. 2016; Bonheure and Iacopetti 2019].

The proof of Theorem 1.3 relies on the combination of several tools. For the existence, we apply a
variant of the classical Leray–Schauder fixed point theorem due to Potter [1972]. To this aim, we make
use of suitable comparison theorems and we prove fine a priori estimates for the solutions and their
gradient. Regarding uniqueness, we take advantage of the Hopf maximum principle as in the version
stated by Pucci and Serrin [2004].

We point out that the uniform exterior geodesic ball condition allows us to construct barriers for the
gradient of the solutions at the boundary. Such construction strongly depends on the shape of the mean
curvature operator for spacelike hypersurfaces in the Lorentz–Minkowski space, and we remark that
Theorem 1.3 grants existence of spacelike radial graphs over arbitrarily large and even nonconvex domains
of Hn. We note that it is not possible to mimic this construction in the euclidean framework, and in fact
the problem of finding radial graphs over proper (possibly nonconvex) domains of Sn which are not
contained in a hemisphere is still open.
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Concerning global a priori estimates for the gradient, which is the key step in the proof, we derive a
quite complex technical result, see Proposition 8.1, which is inspired from [Gerhardt 1983] and is based
on the introduction of an ad hoc differential operator, Stampacchia’s truncation method and fine estimates
of the Lp-norm of the quantity �.u/D 1=

p
1� jruj2.

In this paper we also introduce a new definition of admissible couple .�;H/ and triple .�;H; �/,
see Definition 4.4, where � 2 .0; 1/. This notion of admissibility is very general and works even for
nonsmooth domains and just for continuous functions H. However, given a couple .�;H/, it is not
easy in general to verify whether it is admissible or not. In Section 4 we provide trivial examples of
admissible couples and in Proposition 4.7 we exhibit a class of functionsH such that .�;H/ is admissible
whenever � satisfies a uniform exterior geodesic condition. Using the notion of admissible couple, we
can extend Theorem 1.3 to a wider class of domains and mean curvature functions.

Theorem 1.4. Let ˛ 2 .0; 1/, 0 < r1 � 1� r2, with r1 ¤ r2. Assume that � is a bounded domain of Hn

of class C 3;˛ and H 2 C 1;˛.C�.r1; r2// satisfies conditions (i) and (ii) of Theorem 1.3. Assume that
.�;H/ is admissible. Then there exists a unique solution of problem (1-1) whose associated radial graph
is contained in C�.r1; r2/.

A further existence result for problem (1-1), under more restrictive assumptions, is as follows.

Theorem 1.5. Let ˛ 2 .0; 1/ and � be a bounded domain of Hn of class C 3;˛. Assume � 2 .0; 1/,
0 < r1 � 1� r2, with r1 ¤ r2, and H 2 C 1;˛.C�.r1; r2// satisfies

(a) H.r1q/ > r�11 and H.r2q/ < r�12 for any q 2�,

(b) .@=@�/.�H.�q// < �1=.r1.� � �2=4/1=2/ for all q 2�, � 2 Œr1; r2�,

(c) krT0 H.x/knC1 < .1� �/=.n
3=2r22 / for all x 2 C�.r1; r2/, where rT0 H is the euclidean tangential

component of r0H.x/ on Tx=jxjHn (see Definition 6.2), r0H is the gradient of H with respect to
the euclidean flat metric, and k � knC1 is the euclidean norm in RnC1.

Assume at last that .�;H; �/ is admissible according to Definitions 4.4 and 4.10. Then there exists a
unique spacelike H -bump contained in C�.r1; r2/.

We mention this result because the proof quite differs from that of Theorem 1.4 and better shows the
differences and difficulties with respect to the euclidean case. The proof is this time based on the classical
Leray–Schauder theorem; see for instance [Gilbarg and Trudinger 1977, Theorem 11.3]. The first step
is to solve a suitable regularized equation associated to (1-1); see (4-2) and Theorem 5.1. The idea of
solving such a regularized equation is taken from [Treibergs 1982], where the author constructs barriers
for the gradient at the boundary. The way back to the original Dirichlet problem then uses a gradient
maximum principle [Treibergs and Wei 1983, Proposition 6]. In contrast with [Treibergs 1982], we deal
here with equations which do not satisfy, in general, a gradient maximum principle [Gilbarg and Trudinger
1977, Theorem 15.1]. In fact, in our case, when passing to local coordinates, we see that the regularized
operator associated to (1-1) does not satisfy, in general [loc. cit., condition (15.11)], and the principal part
depends both on the gradient and on the domain variables. We refer to Lemma 4.1 below for more details.
In order to overcome this difficulty, and eventually deduce a global a priori C 1 estimate, we perform
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the regularization in a proper way. We then use the admissibility condition to control the gradient at the
boundary, whereas we use two different strategies, see Lemma 4.12, for the interior estimate. The first
one which is based on the properties of harmonic functions, works only in dimension 2. The other proof
works in any dimension and is based on the global gradient bound given by [loc. cit., Theorem 15.2].

Finally, in the spirit of [Treibergs and Wei 1983], we prove a new kind of interior gradient estimate, see
Proposition 6.4, so that, under the hypotheses of Theorem 1.5, the solution of the regularized problem is a
solution of (1-1). It is important to note that, in contrast to [loc. cit.], since Hn has negative Ricci curvature
and since we deal with hypersurfaces with boundary, the mere gradient estimate of Proposition 6.4 is not
sufficient for getting a global a priori C 1-estimate. We refer to Remark 6.5 for more details.

When � satisfies a uniform exterior geodesic condition, thanks to Proposition 4.7, Remark 4.8 and
Remark 4.9, it is possible to show that the functions given by (1-2) satisfy the hypotheses of Theorem 1.5
for suitable choices of r1; r2; m, for ! close to 1 (in the C 1-topology), and for some �� 2 .0; 1/.

As a future goal, it would be natural to investigate if it is possible to remove the monotonicity assumption
on H and to extend Theorem 1.3 also to sign-changing mean curvature functions.

The outline of the paper is the following. In Section 2, we fix the notation and we collect some known
facts which are useful in the remainder of the paper. In Section 3, we derive the equation for spacelike
H -bumps and in Section 4 we prove Proposition 4.7 and some a priori estimates. Section 5 is dedicated
to the proof of existence and uniqueness of solutions for the regularized Dirichlet problem associated to
problem (1-1). In Section 6, we work out an interior gradient estimate, namely Proposition 6.4, and in
Section 7 we prove Theorem 1.5. In Section 8, we prove a global a priori estimate for the gradient. We
finally prove Theorems 1.3 and 1.4 in Section 9.

2. Notation and preliminary results

Let n�2; we denote by LnC1 the .nC1/-dimensional Lorentz–Minkowski space, which is RnC1 equipped
with the symmetric bilinear form

hx; yi WD x1y1C � � �C xnyn� xnC1ynC1:

We classify the vectors of LnC1 in three types.

Definition 2.1. A vector v 2 LnC1 is said to be

� spacelike if hv; vi> 0 or v D 0;

� timelike if hv; vi< 0;

� lightlike if hv; vi D 0 and v ¤ 0.

The modulus of v 2 LnC1 is defined as jvj WD
p
jhv; vij. We also denote by .x; y/nC1 D x1y1 C

� � �C xnC1ynC1 the euclidean scalar product, and by kxknC1 D
p
x21 C � � �C x

2
nC1 the euclidean norm

in RnC1. Given a vector subspace V of LnC1, we consider the induced metric h � ; � iV defined in the
natural way

hv;wiV WD hv;wi; v; w 2 V:
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According to Definition 2.1 we classify the subspaces of LnC1 as follows.

Definition 2.2. A vector subspace V of LnC1 is said to be

� spacelike if the induced metric is positive definite;

� timelike if the induced metric has index 1;

� lightlike if the induced metric is degenerate.

In this paper, we deal only with hypersurfaces in LnC1, and thus we identify the tangent space of
M � LnC1 at p 2M, denoted by TpM, with a vector subspace of dimension n in LnC1. In particular, by
abuse of notation, if � W U !M, where U is an open subset of Rn, is a local parametrization, we still use
the symbol @i to denote the vector @�=@xi .

Definition 2.3. Let M � LnC1 be a hypersurface. We say that M is spacelike (resp. timelike, lightlike)
if, for any p 2M, the vector subspace TpM is spacelike (resp. timelike, lightlike). We say that M is a
nondegenerate hypersurface if M is spacelike or timelike.

Definition 2.4. A timelike vector v 2 LnC1 is said to be future-oriented if hv;EnC1i<0 and past-oriented
if hv;EnC1i> 0, where EnC1 WD .0; : : : ; 0; 1/.

We observe that for a spacelike (resp. timelike) surface M and p 2M, we have the decomposition
LnC1 D TpM ˚ .TpM/?, where .TpM/? is a timelike (resp. spacelike) subspace of dimension 1;
see [López 2014]. A Gauss map is a differentiable map N W M ! LnC1 such that jN.p/j D 1 and
N.p/ 2 .TpM/? for all p 2 M. If M is spacelike, the Gauss map pointing to the future is a map
N WM ! Hn.

We recall now a result which is simple but crucial because it marks a relevant difference between the
euclidean geometry and the geometry of Lorentz–Minkowski spaces.

Proposition 2.5. LetM �LnC1 be a compact spacelike, timelike or lightlike hypersurface. Then @M ¤∅.

Proof. Assume that @M D ∅ and that M is spacelike (resp. timelike or lightlike). Let a 2 LnC1 be a
spacelike (resp. timelike) vector. Since M is compact, there exists a minimum (or a maximum) p0 2M
for the function f .p/D hp; ai. Since @M D ∅, we know p0 is a critical point of the function f and
thus hv; ai D 0 for all v 2 TpM. Hence a 2 .TpM/?, but this gives a contradiction because .TpM/? is
timelike (resp. spacelike or lightlike). �

In other words, the previous result tells us that a closed hypersurface (i.e., compact without boundary)
must be degenerate (see Definition 2.3). Therefore closed surfaces are not relevant in the Lorentz–
Minkowski space, and this is deeply in contrast to euclidean geometry. For the sake of completeness,
we also point out that Proposition 2.5, as well the previous definitions, can be extended to general
hypersurfaces; see, e.g., [López 2014, Section 3].

Definition 2.6. The hyperbolic space of center p0 2 LnC1 and radius r > 0 is the hypersurface defined by

Hn.p0; r/ WD fp 2 LnC1 W hp�p0; p�p0i D �r
2; hp�p0; EnC1i< 0g;

where EnC1 D .0; : : : ; 0; 1/.
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From the euclidean point of view, this hypersurface is the “upper sheet” of a hyperboloid of two sheets.

Remark 2.7. The hyperbolic space is a spacelike hypersurface; see [López 2014; Spivak 1975]. In fact,
let v 2 TpHn.p0; r/ and let � D �.s/ be a curve in Hn.p0; r/ such that � 0.0/D v. Then, differentiating
with respect to s the relation h�.s/�p0; �.s/�p0i D �r2 at s D 0, we obtain hv; p �p0i D 0. This
implies TpHn.p0; r/D Spanfp�p0g?. Since p�p0 is a timelike vector, it follows that Hn.p0; r/ is a
spacelike hypersurface. Moreover N.p/D .p�p0/=r is a Gauss map.

When p0 is the origin of LnC1, and r D 1, the hyperbolic space is denoted by Hn; that is,

Hn WD f.x1; : : : ; xnC1/ 2 LnC1 W x21 C � � �C x
2
n � x

2
nC1 D�1; xnC1 > 0g:

In view of the previous remark, for any p 2 Hn, the induced metric on TpHn is positive definite, and
hence the tensor g D dx1˝ dx1C � � �C dxn˝ dxn� dxnC1˝ dxnC1 is a Riemannian metric for Hn.
Another model for Hn is the Poincaré model in the unit disk Bn WD fy 2 Rn W kykn < 1g, where k � kn is
the euclidean norm in Rn. The hyperbolic metric in Bn is defined by

Qg D
4

.1�kyk2n/
2

nX
iD1

dyi ˝ dyi ;

which is conformally equivalent to the flat metric in Bn. The isometry between .Hn; g/ and .Bn; Qg/ is
given by the map F W Hn! Bn defined by

F.x/ WD x0�
2.x� x0/

hx� x0; x� x0i
D

�
x1

1C xnC1
; : : : ;

xn

1C xnC1

�
; (2-1)

where x0 D .0; : : : ; 0;�1/ 2 RnC1; see [Lee 1997, Proposition 3.5]. The map F is also known as
hyperbolic stereographic projection, and from a geometrical point of view, F sends a point x 2Hn to the
intersection between the line joining x and x0 with the hyperplane fy 2 RnC1 W ynC1 D 0g.

We conclude this section by recalling a variant of the Leray–Schauder fixed point theorem which will
be used in the proof of Theorem 1.3.

Theorem 2.8 (A. J. B. Potter [1972]). Let X be a locally convex linear Hausdorff topological space and
U a closed convex subset of X such that the zero element of X is contained in the interior of U. Let
T W Œ0; 1��U !X be a continuous map such that T .Œ0; 1��U/ is relatively compact in X . Assume that

(a) T .t; x/¤ x for all x 2 @U and t 2 Œ0; 1�;

(b) T .0� @U /� U.

Then, there is an element Nx of U such that Nx D T .1; Nx/.

3. Derivation of the equation

Let � be a proper smooth bounded domain of the hyperbolic space Hn. Let us denote by T .�/ the space
of tangent vector fields to � and denote by r0 the Levi-Civita connection of LnC1. We recall that r0

coincides with the flat connection of RnC1, and we denote by r the induced Levi-Civita connection on �.
Let u be a smooth function defined on �. We denote by du the differential of u and by ru the gradient
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of u, which is the only vector field on � such that

du.X/D hX;rui for any X 2 T .�/:

The second covariant derivative of u is defined as

rX;Y u WD rXrY u�rXY.u/DrXrY u�rrXY u for any X; Y 2 T .�/;

and the Hessian of u, denoted by r2u, is the symmetric 2-tensor given by

r
2u .X; Y / WD rX;Y u for any X; Y 2 T .�/:

The Laplacian of u, denoted by �u, is the trace of the Hessian.
Let fe1; : : : ; eng be a local orthonormal frame field for � and let f!1; : : : ; !ng be the dual coframe

field; i.e., !i .ej /D ıij for any i; j D 1; : : : ; n. The connection forms !ij ’s defined by

!ij .X/ WD hrXej ; ei i; X 2 T .�/; (3-1)

and thus we have

rei ej D

nX
kD1

!kj .ei /ek : (3-2)

We also recall that the connection forms are skew symmetric, i.e., !ij C!j i D 0, for any i; j 2 f1; : : : ; ng.
In terms of the dual coframe field the exterior derivative of u (i.e., the differential) can be written as

duD

nX
iD1

ui!
i ;

where ui denotes the covariant derivative reiu. We will also use the notation ri to denote rei .
For the second covariant derivatives, taking X D ei , Y D ej and using (3-1) we have

rei ;ejuDreiuj �

nX
kD1

!kj .ei /uk : (3-3)

From now on we will use the notation uij to denote rei ;eju. In particular the Hessian of u can be
written as uij!j ˝!i and the Laplacian of u as �uD

Pn
iD1 ui i .

Definition 3.1. Let A� LnC1; we define the cone spanned by A as the set

CA WD f�q 2 LnC1 W q 2 A; � > 0g:

Remark 3.2. Observe that setting enC1.x/ WD x=jxj for x 2 C�, and extending the ei ’s as constant along
radii, i.e., ei .x/D ei .x=jxj/, x 2 C�, for i D 1; : : : ; n, we get that fe1; : : : ; enC1g is a local orthonormal
frame field for C�, where enC1 is the future-oriented unit radial direction, i.e., henC1; enC1i D �1,
henC1; EnC1i<0. We also observe that by direct computation we have r0i enC1D ei for any i D 1; : : : ; n.
We remark that by definition enC1.q/D q for any q 2�, and by abuse of notation when writing r0wq,
where w 2 T .RnC1/, it will be always understood that we are computing r0wenC1 at x D q, and r0qw
will stand for r0enC1w.
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In order to derive the equation of spacelike H -bumps, one can argue as in [Treibergs and Wei 1983,
Section 1] with minor adjustments. Indeed, we only need to take into account the changes due to the
bilinear form h � ; � i, and the definition of mean curvature for spacelike hypersurfaces [López 2014,
Section 3.2]. For the sake of completeness we derive the equation following the scheme of [loc. cit.,
Section 2].

Let u 2 C 0.�/\ C 2.�/, let † be the associated radial graph and let Y W �! RnC1 be the map
defined as Y.q/ WD eu.q/q. From Remark 3.2 it holds that r0i q D ei and thus

r
0
i Y Dr

0
i .e

uq/D euuiqC e
uei : (3-4)

Therefore a local basis for TY.q/† is given by

Ei .q/D e
u.ei Cuiq/; i D 1; : : : ; n;

and the components of the metric are

gij D hEi ; Ej i D e
2u.hei ; ej iCuiuj hq; qi/D e

2u.ıij �uiuj /:

Since we look for a spacelike hypersurface we must have jruj2 < 1, and by elementary computations we
see that the inverse matrix .gij / is given by

gij D e�2u
�
ıij C

uiuj

1� jruj2

�
: (3-5)

For the Gauss map we have

N.Y.q//D
qC

Pn
iD1 ukek

.1� jruj2/1=2
:

Indeed it is elementary to verify that hN.Y.q//; Ei i D 0 for any i D 1; : : : ; n and

hN.Y.q//; N.Y.q//i D
�1Cjruj2

1� jruj2
D�1:

Moreover, as uD 0 on @�, there exists q1 2� such that ru.q1/D 0 and by definition N.Y.q1//D q1
and thus hN.Y.q1//; EnC1i< 0. Therefore, since N ıY 2 C 0.�;RnC1/ and � is connected, it follows
that N.Y.�//� Hn, so that N is future-oriented. The coefficients of the second fundamental form are
given by

�ij D hN;r
0
i r

0
j Yi D

eu.�ıij Cuiuj �uij /

.1� jruj2/1=2
: (3-6)

Indeed, recalling Remark 3.2 and (3-4), by direct computation we have

r
0
i .r

0
j Y/D e

u.uiuj qCr
0
i r

0
j u qCuj ei Cuiej Cr

0
i ej /:

Hence, by using the relations hei ; ej i D ıij , hei ; qi D 0, and regrouping the terms, we deduce that

hN;r0i r
0
j Yi D

eu

.1� jruj2/1=2

�
uiuj �r

0
i r

0
j uChr

0
i ej ; qiC

nX
kD1

ukhr
0
i ej ; eki

�
: (3-7)



1814 DENIS BONHEURE AND ALESSANDRO IACOPETTI

Since hr0i ej ; qi D �hej ;r
0
i qi D �hej ; ei i D �ıij and

r
0
i r

0
j u�

nX
kD1

ukhr
0
i ej ; eki D rirju�

nX
kD1

ukhriej ; eki D uij ;

from (3-7) we finally get (3-6).
At the end, from [López 2014, Definition 3.3], the mean curvature of a spacelike hypersurface at

p D Y.q/ 2† is given by

nH.Y.q//D�
nX

i;jD1

gij�ij :

Therefore, from (3-5) and (3-6), we deduce that u must satisfy the equation
nX

i;jD1

..1� jruj2/ıij Cuiuj /uij D n.1� jruj
2/�neu.1� jruj2/3=2H.Y.q//:

4. A priori estimates

Let � > 0 and let �� 2 C10 .Œ0;C1// be such that r�� 2 C10 .Œ0;C1//, r 7! ��.r/r , is increasing in
.0; 2=�/ and decreasing in .2=�;C1/. Assume moreover that

��.r/r D

8<:
r for r < 1� �;
1� �=2 for 1� �=2 < r < 2=�;
0 for r > 3=�:

We define the regularized equation as
nX

i;jD1

�
.1� �2� .jruj/jruj

2/ıij C �
2
� .jruj/uiuj

�
uij

D n.1� ��.jruj/
2
jruj2/.1�

p
1� ��.jruj/

2
jruj2euH.euq//: (4-1)

To simplify the notation we will write �2� jruj
2 instead of �2� .jruj/jruj

2. The regularized Dirichlet
problem for spacelike H -bumps is8<:

nP
i;jD1

..1��2� jruj
2/ıijC�

2
�uiuj /uij Dn.1��

2
� jruj

2/.1�
p
1��2� jruj

2euH.euq// in �;

uD 0 on @�:
(4-2)

We denote by Q� the operator

Q�.u/ WD

nX
i;jD1

..1� �2� jruj
2/ıij C �

2
�uiuj /uij �n.1� �

2
� jruj

2/Cn.1� �2� jruj
2/3=2euH.euq/:

We claim that, in hyperbolic stereographic coordinates, the operator Q� is uniformly elliptic. This is the
content of the next lemma.

Lemma 4.1. For any � 2 .0; 1/, the operator Q�, in hyperbolic stereographic coordinates, is uniformly
elliptic with ellipticity constants depending only on � and �.
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Proof. Let F W Hn! Bn be the hyperbolic stereographic projection. By definition we have that � is
mapped into a smooth proper domain ƒD F.�/b Bn, � D F�1 Wƒ!� is a global parametrization,
and there exist c1; c2 > 0 depending only on � such that

c1 �
1
4
.1�kyk2n/

2
� c2 for all y 2ƒ: (4-3)

Let us set

�.y/ WD
2

1�kyk2n
; y 2 Bn: (4-4)

We recall that F is an isometry and the hyperbolic metric in Bn is QgD�2
Pn
iD1 dyi˝dyi (see Section 2).

In particular, h@i ; @j i D ıij�2, where @i denotes the vector @�=@yi , and the Christoffel symbols of the
hyperbolic Levi-Civita connection are given by

�kij D
�i

�
ıjkC

�j

�
ıik �

nX
lD1

ıkl
�l

�
ıij ; (4-5)

where �i D @�=@yi . In local coordinates the gradient is given by

ruD

nX
i;jD1

Qgij
@ Qu

@yi
@j D �

�2
nX
iD1

@ Qu

@yi
@i ; (4-6)

and thus
jruj2 D ��2kr0 Quk

2
n; (4-7)

where Qu D u ı F�1 and r0 Qu is the gradient of Qu with respect to the euclidean flat metric. Using the
well-known expression for the Hessian and the Laplacian in local coordinates we have

r
2u.@i ; @j /D

@2 Qu

@yj @yi
�

nX
kD1

�kji
@ Qu

@yk
; (4-8)

�uD

nX
i;jD1

Qgij
�

@2 Qu

@yi @yj
�

nX
kD1

�kij
@ Qu

@yk

�
D ��2

nX
iD1

�
@2 Qu

@y2i
�

nX
kD1

�kii
@ Qu

@yk

�
: (4-9)

By using the previous identities and (4-5) we infer that
nX

i;jD1

uiujuij D �
�4

nX
h;kD1

@ Qu

@yh

@ Qu

@yk

@2 Qu

@yh @yk
Cˆ; (4-10)

where ˆ is a term which does not involve second-order partial derivatives. From (4-4), (4-7), (4-9) and
(4-10) we deduce that the principal part of the operator Q�, in hyperbolic stereographic coordinates, is

��2
� nX
i;jD1

.1� �2��
�2
kr0 Quk

2
n/ıij

@2 Qu

@yi @yj
C �2��

�2 @ Qu

@yi

@ Qu

@yj

@2 Qu

@yi @yj

�
;

where �� D ��.��1kr0 Qukn/. For any i; j D 1; : : : ; n, we define, for y 2ƒ, p D .p1; : : : ; pn/ 2 Rn,

Qaij� .y; p/ WD �
�2Œ.1� �2� .�

�1
kpkn/�

�2
kpk2n/ıij C �

2
� .�
�1
kpkn/�

�2pipj �: (4-11)



1816 DENIS BONHEURE AND ALESSANDRO IACOPETTI

Now, for any � D .�1; : : : ; �n/ 2 Rn, y 2ƒ, p 2 Rn we claim that

c2k�k
2
n �

nX
i;jD1

Qaij� .y; p/�i�j �
1
2
�c1k�k

2
n; (4-12)

where the constants c1; c2 are given by (4-3). Indeed by the definition of �� for any y 2ƒ, p 2 Rn it
holds that

0� �2� .�
�1
kpkn/�

�2
kpk2n �

�
1� 1

2
�
�2

and thus
nX

i;jD1

Qaij� .y; p/�i�j D �
�2

�
.1� �2��

�2
kpk2n/k�k

2
nC �

2
��
�2

� nX
iD1

pi�i

�� nX
jD1

pj �j

��
D ��2Œ.1� �2��

�2
kpk2n/k�k

2
nC �

2
��
�2.p; �/2n�

� ��2.1� �2��
�2
kpk2n/k�k

2
n � �

�2
�
1�

�
1� 1

2
�
�2�
k�k2n �

1
2
c1�k�k

2
n;

where . � ; � /n denotes the euclidean scalar product in Rn. The proof of the other inequality in (4-12) is
similar and we omit the details. �

For t 2 Œ0; 1�, we define the operator

Qt�.u/ WD

nX
i;jD1

..1� �2� jruj
2/ıij C �

2
�uiuj /uij �nt.1� �

2
� jruj

2/Cnt.1� �2� jruj
2/3=2euH.euq/:

For u such that jruj1;� < 1, we also define the operator Qt .u/ as

Qt .u/ WD
nX

i;jD1

..1� jruj2/ıij Cuiuj /uij �nt.1� jruj
2/Cnt.1� jruj2/3=2euH.euq/: (4-13)

Remark 4.2. By definition, for any fixed � 2 .0; 1/, if u is such that jruj1;� � 1 � �, we have
Qt�.u/DQt .u/ for any t 2 Œ0; 1�. Moreover, in view of Lemma 4.1 and since the principal parts of Qt�,
Qt are independent of t , they are uniformly elliptic even with respect to t , when passing to hyperbolic
stereographic coordinates.

Remark 4.3. As seen in the proof of Lemma 4.1 we can write an explicit expression of the operator Qt�
in hyperbolic stereographic coordinates defined in the wholeƒDF.�/. For our purposes we just observe
that the transformed operator is of the form

zQt�. Qu/D

nX
i;jD1

Qaij� .y;r0 Qu/ Quij C
Qb�;t .y; u;r0 Qu/;

where Qaij� D Qa�.y; p/ Wƒ�Rn! R is given by (4-11), and Qb�;t Wƒ�R�Rn! R is given by

Qb�;t .y; z; p/ WD �.1� �
2
��
�2
kpk2n/

nX
kD1

Gk.y/pk � �
2
��
�2

nX
h;k;rD1

Ghkr.y/phpkpr

�nt.1� �2��
�2
kpk2n/Cnt.1� �

2
��
�2
kpk2n/

3=2ezH.ezF.y//;
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where � is defined in (4-4), Gk , Ghkr are smooth functions defined in ƒ, where h; k; r 2 f1; : : : ; ng. We
point out that Qaij� does not depend on z and Qaij� DO.1/, Qb�;t DO.kpkn/, as kpkn!C1, uniformly
for y 2 ƒ, and z in compact subsets of R. In particular, according to the notation of [Gilbarg and
Trudinger 1977], setting E WD

Pn
ijD1 Qa

ij
� pipj , we have that E does not depend on z and E DO.kpk2n/

as kpkn!C1, uniformly for y 2ƒ.
These properties will be useful in the sequel. In addition, since . Qaij� / is symmetric and positive definite,

when applying the results of [loc. cit., Section 15], it will be understood that we take . Qaij� /� D Qa
ij
� and

ci D 0; see [loc. cit., (15.23)].

We define now the class of admissible domains.

Definition 4.4. Let� be a bounded domain of Hn and letH 2C 0.C�/. We say that .�;H/ is admissible
if there exists a constant � 2 .0; 1/ such that for any q0 2 @� and for any t 2 Œ0; 1�, there exist two
functions '1; '2 2 C 2.�/ satisfying

(i) sup� jr'i j � 1� � for i D 1; 2,

(ii) '1.q0/D 0 and '1.q0/� 0 on @�,

(iii) '2.q0/D 0 and '2.q0/� 0 on @�,

(iv) Qt .'1/� 0, Qt .'2/� 0 in �.

We denote by A the set of admissible couples .�;H/. Given � 2 .0; 1/, and given � and H as above,
we say that .�;H; �/ is admissible if .�;H/ is admissible with constant � .

Remark 4.5. We observe that A¤ ∅. In fact for any given domain � � Hn for any fixed m > 0, the
function H.x/D 1=jxjm, x 2 C�, is such that .�;H/2A. In fact it is easy to see that Qt .0/D 0 for any
t 2 Œ0; 1�, so that the functions '1 D 0, '2 D 0 satisfy (i)–(iv) for any � 2 .0; 1/. More generally, for any
domain � and for any function H 2 C 0.C�/ such that H j� D 1, we have .�;H/ 2A, and .�;H; �/ is
admissible for any � 2 .0; 1/.

This condition of admissibility is very general. If we impose some regularity on @�, and if we assume
that H is positive, smooth and not increasing along radii, then every couple .�;H/ is admissible. This
is the content of the next result. We introduce first the following definition.

Definition 4.6. Let � be a bounded domain of Hn. We say that � satisfies a uniform exterior geodesic
ball condition if there exist � > 0 and a map „ W @�! Hn of class C 2 such that for any q0 2 @� there
exists a geodesic ball in Hn of radius � centered at � D„.q0/ 2 Hn n�, and denoted by B� .�/, such
that q0 2 @B� .�/ and B� .�/� Hn n�.

Proposition 4.7. Let � be a bounded domain of Hn satisfying a uniform exterior geodesic ball condition.
Let H 2 C 1.C�/ be such that H > 0 and .@=@�/.�H.�q// � 0 for all q 2 �, � > 0. Then .�;H/ is
admissible.

Proof. Let distHn. � ; � / be the geodesic distance in Hn. Let � > 0 be the number given by Definition 4.6
for �. In particular, by definition, it follows that for any q0 2 @� there exists � D �.q0/ …� such that
distHn.�; @�/D distHn.�; q0/D � .
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Let q0 2 @�, t 2 Œ0; 1� and let � D �.q0/ satisfying the above properties. Since every geodesic ball of
Hn is geodesically convex, see [Papadopoulos 2005, Section 2.5], we can take R > 0 sufficiently large
so that � is contained in the geodesically convex ball BR.�/. We observe that since � is bounded and
distHn.�; @�/D � , up to a new choice of a larger R, we can assume that R is uniform with respect to the
choice of q0 2 @�.

Arguing as in proof of [Gerhardt 1983, Theorem 2.1], we set kjqkj WDdistHn.q; �/ to denote the geodesic
distance from � and we define

ıC.q/ WD

Z kjqkj
kjq0kj

.1C 
.s//�1=2 ds; 
.s/ WD ˛eˇs;

where ˛, ˇ are positive constants to be determined later. By construction it holds that ıC2C 2.BR.�/nf�g/,
ıC 2 C 2.�/, ıC.q0/D 0 and ıC � 0 in � because of the exterior ball condition.

Let us consider the operator

Qtdiv.u/ WD � divHn

�
rup

1� jruj2

�
C

ntp
1� jruj2

�nteuH.euq/

(which is the divergence form of �Qt ). We set

A.u/ WD � divHn

�
rup

1� jruj2

�
; �.u/ WD

1p
1� jruj2

:

We observe that jrkjqkjj D 1 for any q 2 BR.�/ n f�g. This property is known for general manifolds
when R is sufficiently small so that BR.�/ is contained in a normal neighborhood of �; see [Lee 1997,
Corollaries 6.9 and 6.11]. In our case, as a consequence of the Cartan–Hadamard theorem, since Hn has
negative sectional curvature it admits global normal coordinates and we are done.

Therefore, since the covariant derivatives of ıC are given by .ıC/i D .1C 
/�1=2kjqkji , we obtain
that for any q 2�

jrıCj D .1C 
/�1=2 < 1;

and
�.ıC/D 
�1=2.1C 
/1=2:

In addition, by direct computation, see [Gerhardt 1983, (2.14)–(2.16)], it holds that

A.ıC/D .1C 
/�1=2
�
1
2
ˇ��kjqkj

�
�.ıC/:

We observe that �kjqkj is smooth and bounded in compact subsets of BR.�/ n f�g and it is singular as
q! �. Indeed, see [Gerhardt 1983, (2.17)–(2.18)], we have

��kjqkj D �
n� 1

kjqkj
C‰; (4-14)

where ‰ is a bounded term which is given, in normal coordinates centered at �, by

‰ D�

nX
i;j;kD1

gij�kij kjqkjk :
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In particular, in view of the uniform exterior geodesic ball condition, since distHn.q; �.q0//� � for any
q 2�, for any q0 2 @�, from (4-14) we infer that�kjqkj is bounded in� by a constant depending only on
n; �;�; q0. In addition, by definition the map q0 7! � is of class C 2.@�;Hn/ and thus, by compactness
of @�, it follows that �kjqkj is bounded by a constant depending only n; �;�.

Now, by the previous relations we have

A.ıC/C tn�.ıC/D
�
.1C 
/�1=2

�
1
2
ˇ��kjqkj

�
C tn

�
.
�1=2.1C 
/1=2/

�
�
1
2
ˇ��kjqkj

�

�1=2 D

�
1
2
ˇ��kjqkj

�
˛�1=2e�ˇs=2:

Setting H WD maxq2�H.q/ > 0, we can choose ˇ sufficiently large so that 1
2
ˇ ��kjqkj > 0 for any

q 2�. With this choice of ˇ we choose ˛ sufficiently small so that
�
1
2
ˇ��kjqkj

�
˛�1=2eˇs=2 � nH for

any x 2 �, s 2 Œkjq0kj; supq2� kjqkj�. Therefore, since ıC � 0 in �, and in view of the monotonicity
assumption on H, it follows that

A.ıC/Cnt�.ıC/�nteı
C

H.eı
C

q/� A.ıC/Cnt�.ıC/�nte0H.e0q/

� A.ıC/Cnt�.ıC/�ntH

� 0:

Hence, Qtdiv.ı
C/�0 in�, which is equivalent to Qt .ıC/�0 in�, and in addition by construction we have

ıC� 0 on @�, ıC.x0/D 0, and jrıCj D .1C
/�1=2� 1��C for some number �CD �C.˛; ˇ/2 .0; 1/.
As pointed out before, in view of the uniform exterior ball condition, ��kjqkj is uniformly bounded

by a constant depending only on n; �;�, and by construction supq2� kjqkj �R. Therefore, the numbers
˛, ˇ can be chosen in a uniform way with respect to the base point q0 2 @� (and also with respect to
t 2 Œ0; 1�). Hence, there exists �C 2 .0; 1/ such that for any q0 2 @�, t 2 Œ0; 1�, the function '2 WD ıC

(which depends on the choice of q0 but not on t ) satisfies (i)–(iv) of Definition 4.4 with � D �C. For the
other barrier is suffices to take '1 WD ı�, where

ı� WD �

Z kjqkj
kjq0kj

.1C 
.s//�1=2 ds;

and to argue as in the previous case. We observe that in this case the choice of ˛, ˇ has to be made in a
different way but it is still uniform with respect to q0, and t .

In fact
A.ı�/C tn�.ı�/D�
�1=2

�
1
2
ˇ��kjqkj� tn.1C 
/1=2

�
D�˛�1=2e�ˇs=2

�
1
2
ˇ��kjqkj� tn.1C˛eˇs/1=2

�
:

Taking ˛D e�ˇ supq2� kjqkj, it follows that n.1C˛eˇs/1=2�
p
2n for any ˇ>0, s 2 Œkjq0kj; supq2� kjqkj�.

With this choice of ˛, we choose ˇ such that

1
2
ˇ��kjqkj� 2n� 0

for x 2�. At the end, we have A.ı�/C tn�.ı�/� 0, and thus since H > 0 it holds that

A.ı�/C tn�.ı�/� tneı
�

H.eı
�

q/� A.ı�/C tn�.ı�/� 0 in �:
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As before we find a uniform �� 2 .0; 1/ such that for any q0 2 @�, t 2 Œ0; 1�, the function '1 WD ı�

satisfies jr'1j � 1� �� and (ii)–(iv) of Definition 4.4. At the end, choosing � WDminf��; �Cg we have
that for any q0 2 @�, t 2 Œ0; 1�, the functions '1, '2 satisfy (i)–(iv) of Definition 4.4, and hence .�;H/
is admissible. �

Remark 4.8. It is important to note that in the previous proof the choice of � depends only on n; �;�
and depends on H just by the number H WDmaxq2�H.q/ > 0 because of the monotonicity assumption.
In particular � does not depend on the derivatives of H.

If H 2 C 1.C�.r1; r2// we define a canonical extension of H to a mapping on the cone C� in the
following way: set

h1.q/ WD
h
@

@�
�H.�q/

i
�Dr1

; h2.q/ WD
h
@

@�
�H.�q/

i
�Dr2

and

yH.�q/ WD

8<:
.r1=�/H.r1q/C .1� r1=�/h1.q/ for � 2 .0; r1/;
H.�q/ for � 2 Œr1; r2�;
.r2=�/H.r2q/C .1� r2=�/h2.q/ for � 2 .r2;C1/:

(4-15)

Remark 4.9. It is elementary to check that yH 2 C 1.C�/, and if H satisfies .@=@�/.�H.�q//� 0 for all
q 2�, � 2 Œr1; r2�, it follows that

@

@�
.� yH.�q//� 0 for all q 2�; � > 0:

Therefore, since yH.x/DH.x/ for x 2�, by Remark 4.8 if � satisfies the hypotheses of Proposition 4.7
and H is positive, it follows that . yH;�/ is admissible with constant which does not depend on the choice
of r1; r2, and the derivatives of yH.

In view of the previous remark, the following definition makes sense:

Definition 4.10. Let � be a bounded domain of Hn, let 0 < r1 � 1 � r2 and let H 2 C 1.C�.r1; r2//.
We say that .�;H/ is admissible if .�; yH/ is admissible, where yH is the extension of H defined in
(4-15), and for � 2 .0; 1/ we say that .�;H; �/ is admissible if .�; yH; �/ is admissible.

Now we have all the tools to prove the a priori estimates. Let us fix some notation: let k 2N, ˛ 2 .0; 1/,
and we consider the subspaces C k;˛0 .�/ WD fu2C k;˛.�/ Wuj@�D0g, C k0 .�/ WD fu2C

k.�/ Wuj@�D0g,
endowed, respectively, with the usual norms j � jk;˛ , j � jk . We point out that C k;˛0 .�/, C k0 .�/ are closed
subspaces of Banach spaces and thus they are Banach too. When needed we will specify also the domain
in the norms; otherwise it will be understood that the domain is �. Moreover, for the C 0.�/-norm we
will use the notation j � j1, j � j1;�, and k � k1, k � k1;� when working in the euclidean setting.

We define yQt� as the operator obtained from Qt� by replacing H with its extension yH, and in the
class of functions satisfying jruj1;� < 1 we define yQt as

yQt .u/ WD
nX

i;jD1

..1� jruj2/ıij Cuiuj /uij �nt.1� jruj
2/Cnt.1� jruj2/3=2eu yH.euq/: (4-16)
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In order to simplify the notation we set L�;uu WD
Pn
i;jD1..1� �

2
� jruj

2/ıij C �
2
�uiuj /uij . The first

result we prove is about a priori C 0 estimates for solutions of yQt�.u/D 0.

Lemma 4.11 (a priori C 0 estimates). Let� be a bounded domain and let r1¤ r2 such that 0<r1�1� r2.
Assume that H 2 C 1.C�.r1; r2// satisfies

H.r1q/ > r
�1
1 and H.r2q/ < r

�1
2 for any q 2�; (4-17)

and
@

@�
.�H.�q//� 0 for all q 2�; � 2 Œr1; r2�: (4-18)

For � 2 .0; 1/, for every t 2 Œ0; 1�, if u 2 C 20 .�/ is a solution of yQt�.u/D 0 then

log r1 � u.q/� log r2 for every q 2�:

Proof. Let us observe that since we are assuming (4-17), (4-18), it holds that

yH.x/ > jxj�1 if jxj6 r1; x 2 C� and yH.x/ < jxj�1 if jxj> r2; x 2 C�: (4-19)

Let � 2 .0; 1/, let t 2 Œ0; 1� and let u 2 C 20 .�/ such that yQt�.u/ D 0. By definition u is a classical
solution of the Dirichlet problem�

L�;uuD nt.1� �
2
� jruj

2/.1�
p
1� �2� jruj

2eu yH.euq// in �;
uD 0 in @�:

(4-20)

Let q0 2 � such that u.q0/D max� u. Assume by contradiction that u.q0/ > log r2. Then q0 2 �
because r2 � 1 and uD 0 on @�. Hence ru.q0/D 0, and since q0 is a maximum point, it holds that
�u.q0/� 0, and by the definition of Lu;� this reads as

Lu;�u� 0:

On the other hand it must be that t > 0 because otherwise if t D 0 then u� 0. Moreover

Lu;�u.q0/D nte
u.q0/

�
1

eu.q0/
� yH.eu.q0/q0/

�
> 0;

because yH.x/ < jxj�1 as jxj > r2. Thus we reach a contradiction. The same argument holds to show
that min� u� log r1. �

Lemma 4.12 (a priori C 1;˛ estimates). Let � 2 .0; 1/ and let� be a bounded domain of class C 2. Assume
that H satisfies (4-17), (4-18). Then, there exist two positive constants M, C and ˛0 2 .0; 1/ such that for
all t 2 Œ0; 1� if u2C 20 .�/ is such that jruj1;@� � 1�� and is a solution of the equation yQt�.u/D 0, then

jruj1;� �M; juj1;˛0 � C:

Proof. Let us fix � 2 .0; 1/, let t 2 Œ0; 1� and let uD ut be a solution of yQt�.u/D 0. From Lemma 4.11
we have log r1 � u� log r2 and thus by definition u also satisfies Qt�.u/D 0. Therefore, from now on
we can work just with the operator Qt�.
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Let us set b�;t .q; u;ru/ WD nt.1� �2� jruj
2/.1�

p
1� �2� jruj

2euH.euq//. In view of Remark 4.2,
passing to hyperbolic stereographic coordinates, the operator Qt� is uniformly elliptic with constants
independent of t ; moreover, by definition and thanks to Lemma 4.11, the term b�;t .q; u;ru/ is uniformly
bounded with respect to t .

Now there are only two possibilities: there exists a constantM independent of t such that jruj1;��M
for all t 2 Œ0; 1� or there exists a subsequence .tk/� Œ0; 1� such that jrutk j1;�!C1 as k!C1. We
claim that the second case cannot happen. To this end we will give two proofs of this fact; one works
only in dimension 2, the other one works in any dimension.

Case of dimension 2: Assume that jrutk j1;�!C1. Let us set �0
k
WD fx 2� W jrutk j � 3=�g, and

qk 2�
0
k

such that jrutk j1;�D jrutk .qk/j. We observe that �0
k

is closed and hence is a compact subset
of �, and since jrut j1;@� � 1��, we have �0

k
\@�D∅ for all k. Let �00

k
be the connected component

of �0
k

containing qk . Consider now the auxiliary problem�
�vtk D ntk.1� �

2
� jrutk j

2/.1�
p
1� �2� jrutk j

2eutkH.eutk q// in �;
vtk D 0 in @�:

(4-21)

We observe that since utk is uniformly bounded, by construction and standard regularity theory we
get that vtk and its gradient are uniformly bounded with respect to k. By definition wtk WD utk � vtk is
harmonic in �00

k
. Therefore, considering the isometry F WH2! B2, and since harmonicity is preserved

through composition with isometries, see [Hélein and Wood 2008, Section 2.2], we know Qwtk WD F ıwtk
is harmonic in z�00

k
WD F.�00

k
/b B2. Now, since the hyperbolic metric Qg is conformal to the euclidean

metric g0 in B2 (see Section 2), we have that Qwtk is harmonic also in . z�00
k
; g0/. We point out that,

in general, this fact is false in other dimensions. Hence, since Qwtk is harmonic, it follows that also
r0 Qwtk is harmonic in z�00

k
, so kr0 Qwtkkn achieves its maximum on the boundary, and thus kr0 Qwtkk1 D

kr0 Qwtkk1;@z�00
k

!C1 as k!C1. On the other hand, by construction and (4-7) we have that

kr0 Qwtkk1;@z�00
k

D sup
y2@z�00

k

kr0 Qwtk .y/kn D sup
q2@�00

k

4

.1�kF.q/k2n/
2
jrwtk .q/j

� sup
q2@�00

k

4

.1�kF.q/k2n/
2

�
3

�
Cjrvk.q/j

�
is uniformly bounded and thus we get a contradiction.

Case of any dimension n � 2: Consider Qu WDuıF�1, where F WHn!Bn is the hyperbolic stereographic
projection. Then Qu is a solution of a uniformly elliptic equation which satisfies the hypotheses of [Gilbarg
and Trudinger 1977, Theorem 15.2]; see [loc. cit., (i), p. 367]. In fact, thanks to Remark 4.3, writing
Qt� in local coordinates we see by elementary computations that the natural conditions of [loc. cit., (i),
p. 367], are satisfied (uniformly in t ). In particular, introducing the operator

ı D
@

@z
C

nX
kD1

kpk�2n pk
@

@yk
;
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we see that ı Qaij� , ı Qb�;t satisfy, as kpkn!C1 (uniformly for .y; z/2ƒ�Œlog r1; log r2�, and in t 2 Œ0; 1�),
the growth conditions of [loc. cit., (15.36)], and thus the hypotheses of [loc. cit., Theorem 15.2] are
satisfied with c � 0.

Thanks to Lemma 4.11 the oscillation of u is uniformly bounded; moreover, since jruj1;@� � 1� �
and the structural conditions are satisfied uniformly in t , we have that the constant given by [loc. cit.,
Theorem 15.2] is uniformly bounded with respect to t . Hence there exists C independent of t such that
kr0 Quk1;F .�/�C , and hence, in view of (4-7), the same holds for jruj1;�. Therefore, it cannot happen
that there exists a sequence .tk/ such that jrutk j1;�!C1, and we are done.

Conclusion: From the previous discussion the only possibility is that there exists a constant M such that
jruj1;� �M for all t 2 Œ0; 1�. From this fact, up to passing to local coordinates, since Qt� is uniformly
elliptic (with ellipticity constant independent of t ) and b�;t .q; u;ru/ is uniformly bounded in t , thanks to
[loc. cit., Theorem 13.7], there exists ˛0 2 .0; 1/ and a positive constant C , both depending only on n, �,
jruj1;�, �, and the ratio between the uniform bound on b�;t and the lower ellipticity constant, such that

Œru�0;˛0 � C;

where Œ � �0;˛0 denotes the C 0;˛0 seminorm. At the end, from this fact and Lemma 4.11, we conclude that

juj1;˛0 � C1

for some constant C1 not depending on t , and the proof is complete. �

5. Existence and uniqueness of solutions for the regularized problem

The aim of this section is to prove the following:

Theorem 5.1. Let ˛ 2 .0; 1/, 0 < r1 � 1 � r2, with r1 ¤ r2, let � be a bounded domain of Hn, with
boundary of class C 2;˛. Let H 2 C 1.C�.r1; r2// satisfy hypotheses (i), (ii) of Theorem 1.3. Assume
that .�;H/ is admissible. Then, there exists N� 2 .0; 1/ such that for any � 2 .0; N�/ equation (4-2) has a
solution. Moreover such a solution is the unique solution of problem (4-2) whose associated radial graph
is contained in C�.r1; r2/.

Proof. We divide the proof into several steps.

Step 1: Choice of N� 2 .0; 1/.
Let yH be the extension of H defined in (4-15). Since .�; yH/ is admissible we choose N�D � , where �

is given by Definition 4.4.
Let �2 .0; 1/ such that �<� , let ˛02 .0; 1/ be the number given by Lemma 4.12 and set ˇ WDminf˛; ˛0g.

For any fixed w 2 C 1;ˇ .�/ we define the operator Lw;� W C
2;ˇ
0 .�/! C 0;ˇ .�/ as

Lw;�u WD

nX
i;jD1

..1� �2� jrwj
2/ıij C �

2
�wiwj /uij :

Step 2: For every w 2 C 1;ˇ .�/ the operator Lw;� is a bijection of C 2;ˇ0 .�/ onto C 0;ˇ .�/.
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A mapping u 2 C 2;ˇ0 .�/ belongs to the kernel of Lw;� if and only if u solves the Dirichlet problem8<:
nP

i;jD1

..1� �2� jrwj
2/ıij C �

2
�wiwj /uij D 0 in �;

uD 0 on @�:
(5-1)

Since Lw;� is uniformly elliptic (see Lemma 4.1), by the maximum principle, because uD 0 on @�
we obtain that uD 0 in �, and this means that Lw;� is injective. In order to prove that Lw;� is onto we
use the continuity method. Let t 2 Œ0; 1�; we introduce the family of operators

Lt;w;� W C
2;ˇ
0 .�/! C 0;ˇ .�/

defined by
Lt;w;� D .1� t /�C tLw;�:

We observe that L0;w;� D� and for every f 2 C 0;ˇ .�/ the Dirichlet problem�
�uD f in �;
uD 0 on @�

admits a solution C 2;ˇ .�/. That is, L0;w;� sends C 0;ˇ .�/ onto C 2;ˇ0 .�/. Now we claim that there
exists a constant C > 0 such that

juj2;ˇ � C jLt;w;�j0;ˇ (5-2)

for every t 2 Œ0; 1�, for every u 2 C 2;ˇ0 .�/. In view of the method of continuity, this is enough to infer
that L1;w;� D Lw;� is onto. If (5-2) is false then there exist sequences .tk/� Œ0; 1� and .uk/� C

2;ˇ
0 .�/

such that
jLt;w;�j0;ˇ ! 0 and jukj2;ˇ D 1: (5-3)

By compactness, in particular using also the Ascoli–Arzelà theorem, there exist t 2 Œ0; 1� and u2C 2;ˇ0 .�/

such that, up to subsequences,

tk! t and uk! u in C 2.�/:

By continuity we have Lt;w;�uD 0. Since, up to passing to hyperbolic stereographic coordinates, Lt;w;�
is a convex combination of elliptic operators, it follows that uD 0. In particular

uk! 0 in C 0.�/: (5-4)

We observe that

Lt;w;�uD
nX

i;jD1

a
ij
t;�uij ;

where aijt;� D ..1� t�
2
� jrwj

2/ıij C t�
2
�wiwj /, and Lt;w;� is uniformly elliptic; moreover, arguing as in

the proof of Lemma 4.1 we see that the ellipticity constants are independent of t . Since the boundary is
smooth we can apply global Schauder estimates and we get

jukj2;ˇ � C.jukj1CjLt;w;�j0;ˇ /;
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with C independent of k. This yields a contradiction with (5-3), (5-4). Hence (5-2) is true and the proof
of Step 2 is complete.

Step 3: For every C > 0 there exists K > 0 such that if jwj1;ˇ � C then juj2;ˇ �KjLw;�uj0;ˇ for every
u 2 C

2;ˇ
0 .�/.

We argue by contradiction as in the last part of the proof of Step 2. If the result is false then there exist
a bounded sequence .wk/ in C 1;ˇ .�/ and a sequence .uk/ in C 2;ˇ0 .�/ such that

jukj2;ˇ D 1 and jLwk ;�ukj0;ˇ ! 0: (5-5)

By compactness, there exist w 2 C 1.�/ and u 2 C 20 .�/ such that, up to subsequences,

wk! w in C 1.�/ and uk! u in C 2.�/:

By continuity we get Lw;�uD 0. Then uD 0, by Step 2. Taking into account Lemma 4.1 we observe
that the operators Lwk ;� are uniformly elliptic with ellipticity constants independent of k. Using standard
Schauder estimates we obtain that

jukj2;ˇ � C1.jukj1CjLwk ;�ukj0;ˇ /;

where C1 is a constant independent of k. Since uk! 0 in C 0.�/ and by (5-5) we reach a contradiction.
The proof of Step 3 is complete.

Step 4: Let .wk/ be a bounded sequence in C 1;ˇ .�/ and let .fk/ be a bounded sequence in C 0;ˇ .�/.
Then the sequence .uk/ of solutions of�

Lwk ;�uk D fk in �;
uk D 0 on @�:

(5-6)

is bounded in C 2;ˇ .�/.
The existence of a solution uk of (5-6) is given by Step 2, and the thesis follows from Step 3.

Step 5: Let us consider the map T� W C
1;ˇ
0 .�/! C

1;ˇ
0 .�/, defined as follows: for every w 2 C 1;ˇ0 .�/

we set T�.w/ WD u, where uD u.w; �/ is the unique solution of the problem8<:
nP

i;jD1

..1��2� jrwj
2/ıijC�

2
�wiwj /uij Dn.1��

2
� jrwj

2/.1�
p
1��2� jrwj

2ew yH.ewq// in �;

uD 0 on @�:
(5-7)

We claim that T� is a compact operator.
We first observe T� is well-defined; in fact, as proved in Step 2, for a given w 2 C 1;ˇ0 .�/, the operator

Lw;� is a bijection between C 2;ˇ0 .�/ and C 0;ˇ .�/. In addition is T� is a linear map. It remains to prove
that T� maps bounded families of C 1;ˇ0 .�/ into relatively compact subsets of C 1;ˇ0 .�/.

Let .w�/ be a bounded family of C 1;ˇ0 .�/; then .u�/, where u� D Tw�, is a family of solutions of
(5-7). Hence u� 2 C

2;ˇ
0 .�/ and since we assumed that there exists C > 0 such that jw�j1;ˇ � C , by

Step 3 we have

ju�j2;ˇ �K
ˇ̌
n.1� �2� jrw�j

2/.1�
p
1� �2� jrw�j

2ew� yH.ew�q//
ˇ̌
0;ˇ
�K1;
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where K1 is a positive constant not depending on the family. Hence .u�/ is uniformly bounded in
C
2;ˇ
0 .�/, and in particular by Step 4 and the Ascoli–Arzelà theorem, it is relatively compact in C 1;ˇ0 .�/.

This proves that .u�/ is relatively compact in C 1;ˇ0 .�/ and we are done.

Step 6: There exists a constant C > 0 such that juj1;ˇ � C for any u 2 C 1;ˇ0 .�/ satisfying uD tT�u,
where t 2 Œ0; 1�.

We first observe that by definition and standard elliptic regularity theory any u 2 C 1;ˇ0 .�/ satisfying
uD tT�u is of class C 2;ˇ0 .�/ and satisfies yQt�.u/D 0. Thanks to Lemma 4.12, and since ˇ � ˛0, there
exists C > 0 such that juj1;ˇ � C , provided that jruj1;@� � 1� �. Therefore, in order to conclude, it is
sufficient to check this boundary estimate for the gradient.

Let q0 2 @� such that jru.q0/j D jruj1;@�. If ru.q0/D 0, it follows that ruD 0 on @� and hence
there is nothing to prove. Therefore, let us assume that ru.q0/¤ 0.

Since .�; yH/ is admissible, for any t 2 Œ0; 1� there exist '1; '2 2 C 2.�/ satisfying (i)–(iv) of
Definition 4.4 at q0. Hence, taking into account of the choice of � and Remark 4.2, we have

yQt�.'1/�
yQt�.u/�

yQt�.'2/ in �;

and '1 � u� '2 on @�. Let us write

yQt�.u/D

nX
i;jD1

aij� uij C
Ob�;t .q; u;ru/;

where
Ob�;t .q; u;ru/ WD �nt.1� �

2
� jruj

2/Cnt.1� �2� jruj
2/3=2eu yH.euq/:

Notice that thanks to assumption (ii) and Remark 4.9, it follows that for any fixed q 2 � the map
z 7! ez yH.ezq/ is not increasing.

Thanks to Lemma 4.1 and Remark 4.3, under the hyperbolic stereographic projection F WHn! Bn,
the operator yQt� is transformed into a uniformly elliptic operator of the form

zQt� QuD

nX
i;jD1

Qaij� .y;r0 Qu/ Quij C
Qb�;t .y; Qu;r0 Qu/;

where y 2F.�/, r0 Qu is the euclidean gradient, and Quij are the second partial derivatives of QuD uıF�1.
In view of Remark 4.3 and assumption (ii) the principal part Qaij� .y; p/ does not depend on z, and for each
.y; p/ 2 F.�/�Rn the map z 7! Qb�;t .y; z; p/ is nonincreasing. Hence the comparison principle applies,
see [Gilbarg and Trudinger 1977, Theorem 10.1], and thus setting Q'i WD 'i ıF�1, for i D 1; 2, from
zQt�. Q'1/�

zQt�. Qu/�
zQt�. Q'2/ in F.�/, and Q'1 � Qu� Q'2 on @F.�/, it follows that Q'1 � Qu� Q'2 in F.�/.

Therefore we obtain

'1 � u� '2 in �: (5-8)

We observe that since uD 0 on @�, we know ru.q0/ is orthogonal to Tq0@�, where Tq0@� is the
tangent space at q0 for @�, and we have the orthogonal decomposition Spanfru.q0/g˚Tq0@�D Tq0Hn.



SPACELIKE RADIAL GRAPHS OF PRESCRIBED MEAN CURVATURE IN THE LORENTZ–MINKOWSKI SPACE 1827

Let us set Ow WDru.q0/=jru.q0/j and consider a curve W .�ı; ı/!Hn such that .0/Dq0,  .s/2�
for s 2 .0; ı/ and  0.0/D Ow if Ow points towards the interior of � (otherwise we take  0.0/D� Ow). Since
� has a smooth boundary we can always find a curve satisfying these properties. From (5-8), and since
u.q0/D '1.q0/D '2.q0/D 0, we deduce that for all sufficiently small h > 0

'1. .h//�'1. .0//

h
�
u. .h//�u. .0//

h
�
'2. .h//�'2. .0//

h
: (5-9)

Passing to the limit as h! 0C we get

d'1.q0/Œ Ow�� du.q0/Œ Ow�� d'2.q0/Œ Ow�

(if Ow points in the opposite direction, (5-9) holds but with the reversed inequalities). Thus, it follows that

jdu.q0/Œ Ow�j �maxfjd'1.q0/Œ Ow�j; jd'2.q0/Œ Ow�jg:

Since Hn a spacelike hypersurface, for any q 2 Hn the Cauchy–Schwarz inequality holds in TqHn for
h � ; � iTqHn (we point out that, in general, the Cauchy–Schwarz inequality does not hold in LnC1; see
[López 2013]). In particular jd'i .q0/Œ Ow�j D jhr'i .q0/; Owij � j'i .q0/jj Owj D j'i .q0/j.

Hence, by the previous discussion and by Definition 4.4 we have

jru.q0/j D jhru.q0/; Owij D jdu.q0/Œ Ow�j �maxfjd'1Œ Ow�; d'2Œ Ow�g � 1� �:

Finally, since � < � we get that jruj satisfies the desired boundary estimate, and thus from the initial
discussion, the proof of Step 6 is complete.

Step 7: Existence of a solution of problem (4-2). Thanks to Steps 5 and 6 it follows that the operator
T� W C

1;ˇ
0 .�/! C

1;ˇ
0 .�/ satisfies the hypotheses of the Leray–Schauder theorem, see [Gilbarg and

Trudinger 1977, Theorem 11.3], and thus there exists u 2 C 1;ˇ0 .�/ which solves u D T�u. Hence,
u 2C

2;ˇ
0 .�/, and by the definition of yH and Lemma 4.11, u is a solution of problem (4-2). The proof of

Step 7 is complete.

Step 8: Uniqueness.
For the uniqueness of the solution it is sufficient to argue as in [Caldiroli and Gullino 2013, Section 2.3].

For the sake of completeness we give a sketch of the proof.
Let us fix � 2 .0; 1/ and let u1; u2 2 C 2.�/\C 0.�/ be two solutions of problem (4-2) such that the

corresponding radial graphs are contained in C�.r1; r2/. If u1 ¤ u2 then there exists Nq 2 � such that
u1. Nq/¤ u2. Nq/. Without loss of generality we can assume that u1. Nq/ < u2. Nq/. Then there exists � > 0
such that u1.q/C�> u2.q/ for every q 2� and u1.q0/C�D u2.q0/ at some q0 2�. Set Nu1 WD u1C�
and observe that Nu1 satisfies
nX

i;jD1

..1��2� jr Nu1j
2/ıij C�

2
� Nu1i Nu1j / Nu1ij 6 n.1�j�

2
�r Nu1j

2/.1�
p
1� �2� jr Nu1j

2e Nu1 yH.e Nu1q// in �

because of (ii) and � > 0. Notice that the radial graph defined by Nu1 stays over (in the radial direction)
that one corresponding to u2 and they intersect at the point X0 D q0eu2.q0/. Now, in order to conclude,
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it sufficient to compare Nu1 and u2 by means of the Hopf maximum principle. To this end we use the
version stated in [Pucci and Serrin 2004, Theorem 2.3] for the operator

Q�.u/D

nX
i;jD1

..1� �2� jruj
2/ıij Cuiuj /uij �n.1� �

2
� jruj

2/.1�
p
1� �2� jruj

2eu yH.euq//:

It is easy to see that, up to passing to hyperbolic stereographic coordinates, the assumptions of [Pucci and
Serrin 2004, Theorem 2.3] are fulfilled, and applying the theorem as in [Caldiroli and Gullino 2013], we
deduce that Nu1 D u2 in �. But this gives a contradiction since Nu1j@� D � > 0D u2j@�. Hence it must
be that u1 D u2 and we are done. �

6. An interior estimate for the gradient

In this section we prove an estimate for the gradient when the maximum point of its modulus lies in the
interior of the domain �. We begin with a preliminary elementary result of linear algebra.

Lemma 6.1. Let AD .aij /, B D .bij / 2Mn.R/ be two symmetric matrices. Assume that A is positive
semidefinite and B is negative semidefinite. Then

nX
i;jD1

aij bij � 0:

Proof. Since A, B are symmetric we have
Pn
i;jD1aij bij D trace.AB/, and there exist two invertible

matrices P, Q such that P�1AP DDA and Q�1BQ DDB are diagonal. Thanks to the assumptions
we have that DA has nonnegative elements on the diagonal, while DB has nonpositive elements on the
diagonal. Therefore, since the trace is invariant under similitude, and diagonal matrices commute in the
product, we have

trace.AB/D trace.P�1APP�1BP/D trace.DAP�1BP/D trace.P�1DABP/D trace.DAB/:

Now, by the same argument we get

trace.DAB/D trace.Q�1DAQQ�1BQ/D trace.DAQ�1QDB/D trace.DADB/:

Therefore,
Pn
i;jD1 aij bij D trace.AB/D trace.DADB/� 0, and the proof is complete. �

Definition 6.2. Let H 2 C 1.C�/, and let r0H be gradient of H in RnC1 with respect to the flat metric.
We define the (euclidean) tangential component of r0H on Tx=jxjHn as the vector

r
T
0 H.x/ WD r0H.x/� .r0H.x/; Or.x//nC1 Or.x/; x 2 C�;

where

Or.x/ WD
.x1; : : : ; xn;�xnC1/

kxknC1
:

Remark 6.3. We point out that by definition rT0 H.x/Dr0H.x/� hr0H.x/; x=kxknC1iOr.x/, and if
v 2RnC1 is such that . Or.x/; v/nC1D 0 then hx=jxj; viD 0, and vice versa. In particular . Or.x/; v/nC1D 0
for any v 2 Tx=jxjHn, x 2 C�.
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In the sequel we will make use also of the following formulas for the second and third covariant
derivatives of a smooth function u defined over �, see [Yau 1975, Section 2]:

nX
jD1

uij!
j
D dui �

nX
jD1

uj!j i ; (6-1)

nX
kD1

uijk!
k
D duij �

nX
kD1

ukj!ki �

nX
kD1

uik!kj : (6-2)

Proposition 6.4. Let � be a bounded domain of Hn, let H 2 C 1.C�/, � 2 .0; 1/, and let u 2 C 3.�/ be
a solution of

nX
i;jD1

..1� �2� jruj
2/ıij C �

2
�uiuj /uij D n.1� �

2
� jruj

2/.1�
p
1� �2� jruj

2euH.euq//: (6-3)

Then, if the maximum point q0 of jruj lies in the interior of �, we have jru.q0/j D 0 orh
�.n� 1/�n.1� �2� jru.q0/j

2/1=2eu.q0/
@

@�
.�H.�q//

ˇ̌̌
�Deu.q0/

i
jru.q0/j

�n3=2.1� �2� jru.q0/j
2/1=2e2u.q0/krT0 H.e

u.q0/q0/knC1 � 0; (6-4)

where rT0 H is the (euclidean) tangential component of .r0H/.eu.q0/q0/ on Tq0Hn.

Proof. We will prove a more general version of (6-4). Let us fix a smooth positive function f W R! RC

and consider the auxiliary function ' WD f .2Cu/jruj2, where C 2 R is a fixed constant. In order to
simplify the notation we set v WD jruj2; hence ' D f .2Cu/v. Assume that ' has a maximum point at
some q0 lying in the interior of �. Hence r'.q0/D 0 and the Hessian .'ij .q0// is negative semidefinite.

By direct computation we have vi D 2
Pn
jD1 ujuj i and from r'.q0/D 0 we get

nX
hD1

f .2Cu/uhuhi Cf
0.2Cu/Cvui D 0 for all i D 1; : : : ; n; (6-5)

which implies
nX

i;hD1

uiuihuh D�C
f 0

f
v2; (6-6)

where, f , f 0 stand, respectively, for f .2Cu/, f 0.2Cu/. By a simple computation, from (6-6), we get
nX

i;h;kD1

uiuihuhkuk D

�
f 0

f

�2
C 2v3: (6-7)

Let us set
aij� WD ..1� �

2
� jruj

2/ıij C �
2
�uiuj /;

b� WD n.1� �
2
� jruj

2/.1�

q
1� �2� jruj

2euH.euq//:
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Since .aij� / is a positive definite symmetric matrix and .'ij .q0// is symmetric negative semidefinite, from
Lemma 6.1 it follows that

nX
i;jD1

aij� 'ij .q0/� 0: (6-8)

In order to get an estimate for v D jruj2, the idea is to use (6-8). To this end we compute explicitly
'ij .q0/. Recalling that

'i D 2

� nX
hD1

f .2Cu/uhuhi Cf
0.2Cu/Cvui

�
;

and using (6-5), (6-1) we have
nX

jD1

'ij .q0/!
j
D 2

nX
jD1

� nX
hD1

.2Cf 0ujuhuhiCf uhjuhi

Cf uhijuh/C2C
2f 00ujuivCCf

0uij vC

nX
hD1

2Cf 0uiuhuhj

�
!j ;

and thus from (6-8) we infer that

2

� nX
i;hD1

�
4Cf 0.1��2�v/uiuhuhiCf .1��

2
�v/u

2
hiCf .1��

2
�v/uhiiuh

�
C2C 2f 00.1��2�v/v

2
C

nX
iD1

Cf 0.1��2�v/ui iv

C

nX
i;hD1

2Cf 0�2�uiuhuhiC

nX
i;j;hD1

.f �2�uiujuhjuhiCf �
2
�uiujuhuhij /

C2C 2f 00�v3C

nX
i;jD1

Cf 0�2�uiujuij vC

nX
j;hD1

2Cf 0�2�ujuhuhj v

�
�0: (6-9)

Now we estimate and rewrite the terms involving the second and third covariant derivatives. We may
choose a coordinate frame at q0 satisfying ı1iv1=2 D ui . If v.q0/D 0, then max� ' D '.q0/D 0 and
the thesis follows immediately. Otherwise in these coordinates, from (6-5), it follows that

u11 D�
f 0

f
Cv; (6-10)

which implies
nX

i;jD1

uijuij �

�
f 0

f

�2
C 2v2: (6-11)

Since u is a solution of (6-3), computing at q0 in these coordinates we have
nX
iD1

.1� �2�v/ui i C �
2
�vu11 D b�;
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and from (6-10) we obtain
nX
iD1

ui i D

�
b�CC

f 0

f
�2�v

2

�
.1� �2�v/

�1: (6-12)

Recalling that ��.jruj/D ��.v1=2/, by direct computation we infer

rk.�
2
�v/D

nX
hD1

�
2���

0
�v
1=2uhuhkC 2�

2
�uhuhk

�
; (6-13)

where it is understood that �0� stands for �0�.v
1=2/. By differentiating (6-3), taking into account (6-1),(6-2)

and (6-13), after some standard computations we deduce that
nX
kD1

�
�

nX
i;hD1

.2���
0
�v
1=2uhuhkC2�

2
�uhuhk/ui iC

nX
i;j;hD1

2���
0
�v
�1=2uiujuhuhkuij

C

nX
i;jD1

�
�2�ujuikuijC�

2
�uiujkuijC..1��

2
�v/ıijC�

2
�uiuj /uijk

��
!kD

nX
kD1

.b�/k!
k :

Now, contracting the equation with uk , we get
nX

i;h;kD1

.�2���
0
�v
1=2uhukuhkui i � 2�

2
�uhukuhkui i /

C

nX
i;j;h;kD1

2���
0
�v
�1=2uiujukuhuhkuij

C

nX
i;j;kD1

.�2�ujukuikuij C �
2
�uiukujkuij /

C

nX
i;kD1

.1� �2�v/ukui ikC

nX
i;j;kD1

�2�uiujukuijk D

nX
kD1

.b�/kuk : (6-14)

Since the Ricci curvature of the hyperbolic space is Rij D�.n� 1/ıij , the Ricci formula, see formula
(2.11) in [Yau 1975], gives

nX
kD1

ukukii D

nX
kD1

ukui ik � .n� 1/v: (6-15)

Hence, using (6-15), and taking into account (6-6), (6-7),(6-12), we rewrite (6-14) as
nX

i;kD1

.1��2�v/ukukiiC

nX
i;j;kD1

�2�uiujukuijk

D�.n�1/v.1��2�v/�2���
0
�C
f 0

f
v5=2.1��2�v/

�1

�
b�CC

f 0

f
�2�v

2

�
�2�2�Cv

2.1��2�v/
�1.b�CC�

2
�v
2/

�2���
0
�C

2

�
f 0

f

�2
v7=2�2�2�C

2

�
f 0

f

�2
v3C

nX
kD1

.b�/kuk : (6-16)
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Now, from (6-9) and by using (6-6), (6-7), (6-11), (6-12) (6-16), we deduce that

�4C 2.1��2�v/
.f 0/2

f
v2CC 2.1��2�v/

.f 0/2

f
v2

Cf

�
�.n�1/v.1��2�v/�2���

0
�C
f 0

f
v5=2.1��2�v/

�1

�
b�CC

f 0

f
�2�v

2

�
�2C�2�v

2.1��2�v/
�1

�
b�CC

f 0

f
�2�v

2

�
�2C 2���

0
�

�
f 0

f

�2
v7=2�2C 2

�
f 0

f

�2
v3C

nX
kD1

.b�/kuk

�

C2C 2f 00.1��2�v/v
2
CCf 0v

�
b�CC

f 0

f
�2�v

2

�
�2C 2

.f 0/2

f
�2�v

2
CC 2

.f 0/2

f
�2�v

3
C2C 2f 00�2�v

3

�C 2
.f 0/2

f
�2�v

3
�2C 2

.f 0/2

f
�2�v

3
� 0: (6-17)

Now we compute the term
Pn
kD1.b�/kuk . To this end let us observe that

.euH.euq//k.q0/

D eu.q0/ukH.e
u.q0/q0/C e

2u.q0/uk.q0/.r0H/.e
u.q0/q0/ � q0C e

2u.q0/.r0H/.e
u.q0/q0/ � ek.q0/;

where � denotes the standard euclidean product of RnC1 and r0H is the gradient of H with respect to
the flat metric in RnC1. Then, after some computations and taking into account (6-13), we get
nX
kD1

.b�/kuk.q0/D 2nC
f 0

f
���
0
�v
5=2.1�

p
1� �2�v e

u.q0/H.eu.q0/q0//

C 2nC
f 0

f
.�2�v/v.1�

p
1� �2�v e

u.q0/H.eu.q0/q0//

�nC
f 0

f
���
0
�

q
1� �2�v.e

u.q0/H.eu.q0/q0//v
2

�nC
f 0

f
.�2�v/.1� �

2
�v/.e

u.q0/H.eu.q0/q0//v

�n.1� �2�v/
3=2eu.q0/

�
eu.q0/H.eu.q0/q0/C e

2u.q0/r0H.e
u.q0/q0/ � q0

�
v

�n.1� �2�v/
3=2e2u.q0/r0H.e

u.q0/q0/ � ru; (6-18)

Computing .@=@�/.�H.�q0//j�Deu.q0/ and taking into account Remark 6.3, we rewrite the last two terms
of (6-18) as

�n.1� �2�v/
3=2eu.q0/

@

@�
.�H.�q0//

ˇ̌̌
�Deu.q0/

v�n.1� �2�v/
3=2e2u.q0/rT0 H.e

u.q0/q0/ � ru; (6-19)
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where rT0 H is the euclidean tangential component of .r0H/ on Tq0Hn. Hence, from (6-17), (6-18),
(6-19), regrouping and simplifying terms, we get

�2C 2.f 0/2Œ1� �2� C �
0
�.��v

1=2/�v3

�C 2Œ.f 0/2.3� 4�2�vC .�
2
�v//C 2f

0f .�2�v/
2
� 2f 00f .1� �2�v/�v

2

�nC.1� �2�v/
3=2f 0f �0�.��v

1=2/eu.q0/H.eu.q0/q0/v
3=2

C

h
�.n� 1/f 2.1� �2�v/

2
�C 2.f 0/2f .�2�v/.1� �

2
�v/

�nCff 0.1� �2�v/
2.�2�v/e

u.q0/H.eu.q0/q0/

�nf 2.1� �2�v/
5=2eu.q0/

@

@�
.�H.�q//

ˇ̌̌
�Deu.q0/

i
v

�nf 2.1� �2�v/
5=2e2u.q0/rT0 H.e

u.q0/q0/ � ru

CnCf 0f .1� �2�v/
2.1�

p
1� �2�v e

u.q0/H.eu.q0/q0//� 0; (6-20)

and the proof of the general inequality is complete. Now we prove (6-4). Taking f � 1, and dividing
(6-20) by .1� �2�v/

2, we geth
�.n� 1/�n.1� �2�v/

1=2eu.q0/
@

@�
.�H.�q//

ˇ̌̌
�Deu.q0/

i
v

�n.1� �2�v/
1=2e2u.q0/rT0 H.e

u.q0/q0/ � ru � 0: (6-21)

Assume that v.q0/¤ 0 (otherwise v� 0 and there is nothing to prove). To conclude the proof it remains to
estimate the term rT0 H.e

u.q0/q0/ �ru. To this end, recalling the notation used in the proof of Lemma 4.1,
we define Qh 2 Rn as the vector whose i -th component is

Qhi WD r
T
0 H.e

u.q0/q0/ �
@i

k@iknC1
;

i D 1; : : : ; n, where @i D .@�=@yi /.F.q0//. Then, by construction and the Cauchy–Schwarz inequality
we have

k Qhk2n D

nX
iD1

�
r
T
0 H.e

u.q0/q0/ �
@i

k@iknC1

�2
� nkrT0 H.e

u.q0/q0/k
2
nC1: (6-22)

Now, exploiting (4-6) we have

r
T
0 H.e

u.q0/q0/ � ruD �
�2

nX
iD1

@ Qu

@yi
r
T
0 H.e

u.q0/q0/ � @i D �
�1

nX
iD1

@ Qu

@yi
Qhi D �

�1.r0 Qu; Qh/n;

and thus, from (4-7), (6-22) we deduce that

jr
T
0 H.e

u.q0/q0/ �rujD�
�1
j.r0 Qu; Qh/nj ��

�1
kr0 Quknk Qhkn�

p
njrujkrT0 H.e

u.q0/q0/knC1: (6-23)

Finally, combining (6-21), (6-23) and dividing by v1=2, we obtain (6-4). �
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Remark 6.5. Applying the gradient estimate (6-4) to the solutions of Qt�.u/D 0, we obtainh
�.n� 1/�nt.1� �2� jru.q0/j

2/1=2eu.q0/
@

@�
.�H.�q//

ˇ̌̌
�Deu.q0/

i
jru.q0/j

�n3=2t .1� �2� jru.q0/j
2/1=2e2u.q0/krT0 H.e

u.q0/q0/knC1 � 0: (6-24)

Hence, it is not possible, by using only this strategy, to get a uniform bound with respect to t for jruj1
as in [Treibergs and Wei 1983]. In fact here we deal with functions defined on a manifold with negative
Ricci curvature, and thus in (6-24) we have a term �.n� 1/, while in [loc. cit.], for the sphere, this term
has the opposite sign. We also point out that this trouble does not depend on the choice of the auxiliary
function in the proof of Proposition 6.4, as shown by (6-20), where the leading term v3 has a negative
coefficient.

7. Proof of Theorem 1.5

Proof of Theorem 1.5. We first observe that by definition .�;H/ is admissible with constant � , and thus
in the proof of Theorem 5.1 we can take N�D � . Therefore, for any � 2 .0; �/, there exists a solution u� of
the regularized problem (4-2). Let us choose � 2 .0; �/ sufficiently close to � so that

@

@�
.�H.�q// < �

1

r1.�� �2=4/1=2
for all q 2�; � 2 Œr1; r2�; (7-1)

kr
T
0 H.X/knC1 <

1� �

n3=2r22
; X 2 C�.r1; r2/; (7-2)

and let u be the solution of the regularized problem (4-2).
Let q0 2� be the maximum point of jruj, and set v D jru.q0/j2. There are only two possibilities:

v < .1� �/2 or v � .1� �/2. In the first case there is nothing to prove; in fact, by definition of �� we
have that u is a solution of problem (1-1) and we are done. Therefore let us assume that v � .1� �/2. We
point out that in this case q0 cannot belong to @� because by Step 6 of the proof of Theorem 5.1 and
since � < � , we have

sup
@�

jruj2 � .1� �/2 < .1� �/2:

Hence q0 2 �. We also observe that u 2 C 3;ˇ .�/, for some ˇ 2 .0; ˛�. In fact, by Theorem 5.1 we
know that u 2 C 2;ˇ0 .�/. Thanks to Lemma 4.11 we know that †.u/ is contained in C�.r1; r2/ and since
H 2 C 1;˛.C�.r1; r2//, @� 2 C

3;˛ , by standard regularity results, see [Gilbarg and Trudinger 1977], we
get u 2 C 3;ˇ .�/. Therefore, we can apply Proposition 6.4 and recalling that by definition

1� �2�v D 1� �
2
� .jru.q0//jru.q0/j

2;

we haveh
�.n� 1/�n.1� �2�v/

1=2eu.q0/
@

@�
.�H.�q//

ˇ̌̌
�Deu.q0/

i
v1=2

�n3=2.1� �2�v/
1=2e2u.q0/krT0 H.e

u.q0/q0/knC1 � 0; (7-3)
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but on the other hand, since we are assuming that v � .1 � �/2, by the definition of �� we have
1� 1� �2�v � 1�

�
1� 1

2
�
�2, and in view of (7-1), (7-2) we haveh

�.n� 1/�n.1� �2�v/
1=2eu.q0/

@

@�
.�H.�q//

ˇ̌̌
�Deu.q0/

i
v1=2

�n3=2.1� �2�v/
1=2e2u.q0/krTH.eu.q0/q0/knC1

>
h
�.n� 1/Cn

eu.q0/

r1

.1� �2�v/
1=2�

�� 1
4
�2
�1=2 iv1=2� e2u.q0/r22

.1� �/

�

�
�.n� 1/Cn

�
�� 1

4
�2
�1=2�

�� 1
4
�2
�1=2

�
v1=2� .1� �/

� .1� �/� .1� �/D 0

and thus we contradict (7-3). Therefore the only possibility is v < .1��/2, and by the definition of �� this
means that u is a solution of problem (1-1). Moreover, as proved in Theorem 5.1, such a solution is the
unique solution whose associated radial graph is contained in C�.r1; r2/, and this completes the proof. �

8. A finer gradient estimate

In this section we prove an a priori estimate for the gradient of the solutions of8<:
� divHn.ru=

p
1� jruj2/Cnt=

p
1� jruj2 D nteuH.euq/ in �;

jruj< 1 in �;
uD 0 on @�;

(8-1)

where t 2 Œ0; 1�. As in Section 4 we introduce the function � D 1=
p
1� jruj2.

Proposition 8.1. Let � be a bounded domain of Hn, let H 2 C 1.C�/, let r1; r2 2 R be such that
r1 ¤ r2, 0 < r1 � 1 � r2, and let �0 > 0 be a positive number. Then, there exists a constant C D
C.r1; r2; �0; �;H/ > 0 such that for any t 2 Œ0; 1�, for any solution u 2 C 3.�/ of (8-1) satisfying
log r1 � u� log r2 and sup@� � � �0, we have

sup
�

� � C:

Proof. Let u 2 C 3.�/ be a solution of (8-1) satisfying log r1 � u � log r2 and sup@� � � �0. Clearly
� 2 C 0.�/ and we can introduce the differential operator Pu W C 1.�/! C 0.�/ defined by

Puw WD �

nX
kD1

ukwk;

where uk , wk are the covariant derivatives with respect to a orthonormal frame field. Applying Pu to both
sides of the equation in (8-1) and arguing as in Proposition 6.4 we deduce that � satisfies the equation
nX

i;jD1

ri .�
�2fij �j /C �

�2
jr�j2Cjhru;r�ij2

C �

nX
i;j;kD1

fijujkuikC

nX
i;jD1

�2Rijuiuj Cnt�hru;r�i D �nt

nX
kD1

ukrk.e
uH.euq//; (8-2)
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where fij WD�ıijC�3uiuj andRij D�.n�1/ıij is the Ricci curvature tensor of Hn, i; j D1; : : : ; n. This
relation resembles that appearing in [Gerhardt 1983, (4.8)], and it can be proved by direct computation tak-
ing into account of the identities ��2D 1�jruj2, �i D �3

Pn
lD1ululi , hru;r�iD �

3
Pn
l;mD1ulumulm,

jr�j2D �6
Pn
iD1

�Pn
lD1 ululi

�2, and [Yau 1975, (2.6)]. In order to estimate the terms appearing in (8-2)
we first observe that

nX
i;j;kD1

fijujkuik D

nX
i;j;kD1

.�ıij C �
3uiuj /ujkuik

D �

nX
i;kD1

u2ikC �
3

nX
kD1

� nX
iD1

uiuik

�2
� �jD2uj2; (8-3)

where jD2uj2 WD
Pn
i;kD1 u

2
ik

is the square of the matrix norm of the Hessian. For the term nthru;r�i,
we write the equation in (8-1) in nondivergence form as

���u� hru;r�iCnt� D nteuH.euq/: (8-4)

Then, multiplying each side by nt�, recalling that � � 1, euH.euq/ is uniformly bounded with respect
to t , and using the inequality j�uj �

p
njD2uj we deduce that

jnt�hru;r�ij � c1�
2.1Cj�uj/� c2�

2.1CjD2uj/

for some constants c1; c2 > 0 depending on n, r1, r2 and kHk1;C� , but not on t . From now on c3, c4,
etc. will denote positive constants which do not depend on t . Now, if jD2uj< c2.1C

p
1C 1=c2/, we

get jnt�hru;r�ij � c3�2, where c3 depends just on c2, and thus nt�hru;r�i � �c3�2. On the other
hand, if jD2uj � c2.1C

p
1C 1=c2/, by an elementary computation we infer that

�c2�
2.1CjD2uj/C 1

2
�2jD2uj2 � 0:

Hence, in view of (8-3) and the previous inequalities we obtain
nX

i;j;kD1

fijujkuikCnt�hru;r�i � �c4�
2
C
1
2
�2jD2uj2: (8-5)

Therefore, from (8-2), (8-5) we have

�

nX
i;jD1

ri .�
�2fij �j /Cjhru;r�ij

2
C
1
2
�2jD2uj2 � c5�

2
C �nt

nX
kD1

ukrk.e
uH.euq//: (8-6)

Now, writing (8-4) as ���u � hru;r�i D nteuH.euq/ � nt� and squaring, by using elementary
inequalities we get

�2j�uj2� 2�j�ujjhru;r�ijC jhru;r�ij2 � 2n2e2uH 2.euq/C 2n2�2: (8-7)

Multiplying (8-4) by �, and using j�uj �
p
njD2uj, we deduce that

�jhru;r�ij � c5�
2.1CjD2uj/:
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Hence, from this, using again j�uj �
p
njD2uj, and (8-7) we obtain

�n�2jD2uj2� 2
p
nc5�

2.1CjD2uj/Cjhru;r�ij2 � 2n2e2uH 2.euq/C 2n2�2;

and thus by elementary computations we deduce that

�c6�
2
jD2uj2Cjhru;r�ij2 � 2n2e2uH 2.euq/C c7�

2: (8-8)

Therefore, dividing (8-8) by C WD 2c6C 1 and summing with (8-6) we deduce

�

nX
i;jD1

ri .�
�2fij �j /C .1C 2c�/jhru;r�ij

2
C c��

2
jD2uj2

� c8�
2
C c8e

2uH 2.euq/C �nt

nX
kD1

ukrk.e
uH.euq//; (8-9)

where c� D 1
2
� c6=.2c6C 1/ > 0 does not depend on t . From (8-9), by arguing as in [Gerhardt 1983,

Theorem 4.1], we can conclude the proof. In fact, using Stampacchia’s truncation method (for the details
see the Appendix in [loc. cit.]), multiplying (8-9) with

 l WD �maxf� � l; 0g; l � �0;

and integrating by parts we deduce
sup
�

�� �0Cc9.1Cj�j
3
2n;�/; (8-10)

where c9 > 0 is a constant depending on n, �, r1, r2 and kHk1;C� but not on t , and j � jp;� denotes the
standard Lp-norm. Therefore, in order to conclude the proof it suffices to prove a uniform estimate for
the L2n-norm of � with respect to the parameter t . To this end, recalling that � � 1, and that euH.eu/ is
uniformly bounded by a constant depending only on r1; r2; kHk1;C� , we can rewrite the right-hand side
of (8-9) in a simpler way:

�

nX
i;jD1

ri .�
�2fij �j /C .1C 2c�/jhru;r�ij

2
C c��

2
jD2uj2

� c10�
2
C �nt

nX
kD1

ukrk.e
uH.euq//: (8-11)

Now, let p � 2 be any fixed real number, let � > 0 be a real number to be chosen later and multiply
(8-11) by

�l WD �
p

l
e�u;

where �l WDmaxf� � l; 0g and l is any fixed number such that l � �0. Since �p
l
e�u 2H

1;q
0 .�/, for any

q 2 Œ1;C1/, we can integrate by parts and thus we obtain

p

nX
i;jD1

Z
�

��2fij �j �i�
p�1

l
e�uC�

nX
i;jD1

Z
�

��2fij �jui�
p

l
e�u

C .1C 2c�/

Z
�

jhru;r�ij2�
p

l
e�uC c�

Z
�

�2jD2uj2�
p

l
e�u

� c11

Z
�

�2�
p

l
e�uC c11.pC 1/

Z
�

��
p�1

l
jhru;r�ije�uC c11�

Z
�

��
p

l
jD2uje�u: (8-12)
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Now let us observe that
nX

i;jD1

fij �i�j D

nX
i;jD1

.ıij �C �
3uiuj /�i�jD �jr�j

2
C �3jhru;r�ij2 � �3jhru;r�ij2: (8-13)

In addition, by direct computation we have

�

nX
i;jD1

Z
�

��2fij �jui�
p

l
e�u D �

nX
i;jD1

Z
�

.1� jruj2/�.ıij �C �
3uiuj /�jui�

p

l
e�u

D �

Z
�

hru;r�i��
p

l
e�u: (8-14)

Furthermore, fixing a large constant C1 and splitting the domains of the integrals into two parts
jhru;r�ij � C1 and jhru;r�ij> C1, by elementary computations it follows that for a suitable large
constant c12 > 0 it holds that

c�

Z
�

�
p

l
jhru;r�ij2e�u� c11.pC 1/

Z
�

��
p�1

l
jhru;r�ije�u

� �c12

Z
�

�
p

l
e�u� c12

Z
�

��
p�1

l
e�u: (8-15)

Again by elementary considerations we obtain the further estimate

c�

Z
�

�2jD2uj2�
p

l
e�u� c11�

Z
�

�jD2uj�
p

l
e�u � �c13

Z
�

�
p

l
e�u: (8-16)

Indeed, since it is always possible to find a constant c11 > 0 such that c�x2 � c11�xC c13 > 0 for all
x � 0, then, taking x D �jD2uj we obtain the desired inequality. Therefore, from (8-12), and using the
estimates (8-13)–(8-16), we deduce that

.1CpC c�/

Z
�

jhru;r�ij2�
p

l
e�u

� �

Z
�

jhru;r�ij��
p

l
e�uC c14

Z
�

�2�
p

l
e�uC c14

Z
�

�
p

l
e�uC c14

Z
�

��
p�1

l
e�u„ ƒ‚ …

.I /

: (8-17)

Observe that .I / contains only powers of the form �a�b
l

, with a; b � 0 such that aC b � pC 1. From
now on we will denote by I1, I2, etc. terms which are finite sums of integrals of the form c

R
� �

a�b
l
e�u,

where aC b � pC 1, a; b � 0 and c is a constant which does not depend on t . The strategy to conclude
the proof is to obtain an estimate of the kindZ

�

�2�
p

l
e�u � I: (8-18)

To this aim, from (8-17), dividing each side by .p C 1 C c�/ and using the elementary inequality
xy � 1

2
x2C 1

2
y2, we obtain thatZ

�

jhru;r�ij2�
p

l
e�u �

�2

.1CpC c�/2

Z
�

�2�
p

l
e�uC

2c12

1CpC c�

Z
�

�2�
p

l
e�uC I1: (8-19)
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Now, multiplying (8-4) by ' D ��p
l
e�u, integrating by parts, taking into account that r' Dr��p

l
e�uC

p�r��
p�1

l
e�uC���

p

l
ru, and p � 2, we get

�

Z
�

�2�
p

l
jruj2e�u � c15

Z
�

�2�
p

l
e�uC .pC 1/

Z
�

�2�
p�1

l
jhru;r�ije�uC I2: (8-20)

Now, choosing � > c15 and recalling that ��2 D 1� jruj2, from (8-20) we obtain

�

Z
�

�2�
p

l
e�u �

.pC 1/2

.�� c15/2

Z
�

�
p

l
jhru;r�ij2e�uC I3: (8-21)

From the combination of (8-19) and (8-21), for a large � such that

�2.pC 1/2

.pC 1C c�/2.�� c15/2
C

2c12.pC 1/
2

.pC 1C c�/.�� c15/2
< 1

it follows that Z
�

�
p

l
jhru;r�ij2e�u � I4;

and then, from this and (8-21), we conclude thatZ
�

�2�
p

l
e�u � I5;

which gives the desired inequality (8-18). Therefore, from (8-18) and the arbitrariness of p we deduce
that j�j2n;� is uniformly bounded in t and thus from (8-10) we deduce the thesis. �

9. Proofs of Theorems 1.3 and 1.4

The proofs of Theorem 1.3 and Theorem 1.4 are identical except for a small part and thus we give a
unified proof in which at some point we distinguish between the two cases.

Proof. Let ˛, r1; r2, � and H be as in the statement of the theorem. Recalling the definition of the
operators Qt , yQt (see (4-13), (4-16)), by the same proof as that of Lemma 4.11 it follows that, for any
t 2 Œ0; 1�, if u 2 C 20 .�/ is a solution of yQt .u/D 0 and satisfies jruj1;� < 1 then

log r1 � u.q/� log r2 for any q 2�: (9-1)

Hence, by the definition of Qt, we have also a uniform bound with respect to t on the L1 norm of the
solutions of Qt .u/ D 0. In order to get a uniform bound on the gradient we use Proposition 8.1. To
this end, in the case of Theorem 1.3 since � satisfies a uniform exterior geodesic condition and H > 0,
thanks to Proposition 4.7 we have that .�;H/ is admissible, and by arguing as in Step 6 of the proof of
Theorem 5.1 we obtain that there exists � 2 .0; 1/ such that for any t 2 Œ0; 1�, if u 2 C 20 .�/ is a solution
of Qt .u/D 0 and satisfies jruj1;� < 1, then

jru.q/j � 1� � for any q 2 @�:

Indeed, if jruj1;� < 1 and u 2 C 1.�/, then, by the same proof as that of Lemma 4.1 we get that Qt

is uniformly elliptic in � (when passing to hyperbolic stereographic coordinates) and thus, thanks to
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the hypotheses on H, we can apply [Gilbarg and Trudinger 1977, Theorem 10.1] and argue as in Step 6
of the proof of Theorem 5.1. In the case of Theorem 1.4, the proof of this fact is identical and we use
directly the hypothesis that .�;H/ is admissible without invoking Proposition 4.7.

Since � is of class C 3;˛, H 2 C 1;˛.C�.r1; r2// and thanks to (9-1), by standard elliptic regularity
theory, see [Gilbarg and Trudinger 1977], any solution u 2 C 2;˛0 .�/ of Qt .u/D 0 such that jruj < 1
in � turns out to be of class C 3;˛.�/. Hence, setting �0 WD 1=

p
1� �2, by Proposition 8.1, it follows

that there exists �� 2 .0; 1/, depending only on n; r1; r2; �0; �;H but not on t , such that for any solution
u 2 C 3.�/ of Qt .u/D 0 satisfying jruj< 1 in � it holds that

jru.q/j � 1� �� for any q 2�: (9-2)

Let us fix ı > 0 sufficiently small so that 1� ��C ı < 1 and consider the set

U WD fw 2 C
1;˛
0 .�/ W jrwj1;� � 1� ��C ıg:

Clearly U is a convex and closed subset of C 1;˛0 .�/. We define the map T W Œ0; 1� �U ! C
1;˛
0 .�/,

T .t; w/ WD u, where u is the unique solution of8<:
nP

i;jD1

..1� jrwj2/ıij Cwiwj /uij D nt.1� jrwj
2/.1�

p
1� jrwj2ew yH.ewq// in �;

uD 0 on @�:

We observe that T is well-defined. Indeed, for a fixed w 2 U, considering the linear operator Lwu WDPn
i;jD1..1� jrwj

2/ıij Cwiwj /uij , and arguing as in Step 2 of the proof of Theorem 5.1, we see that
Lw;� W C

2;˛
0 .�/! C 0;˛.�/ is a bijection. Hence

T .w/D tL�1w
�
n.1� jrwj2/.1�

p
1� jrwj2ew yH.ewq//

�
is defined and we are done.

It is easy to verify that T is continuous and, arguing as in the proof of Step 5 of Theorem 5.1, we
have that T .Œ0; 1��U/ is a relatively compact subset of C 1;˛0 .�/. Moreover 0 lies in the interior of U
and T .0 � @U / � U. To conclude the proof it suffices to prove that if .t; u/ 2 Œ0; 1� � U satisfies
T .t; u/D u then u 62 @U. Indeed, if T .t; u/D u then u 2 C 2;˛0 .�/ is a solution of yQt .u/D 0 and thus
from (9-1) we have Qt .u/D 0. Then, since u 2 U we have jruj1;� � 1� ��C ı < 1 and thus Qt is
uniformly elliptic. Therefore by elliptic regularity theory u 2 C 3;˛.�/ and thanks to (9-2) it follows that
jruj1;� � 1� �� < 1� ��C ı, thus u cannot belong to @U and we are done.

Finally, from Theorem 2.8 we conclude that there exists Nu 2 U which solves T .1; Nu/D Nu; i.e., Nu is a
solution of (1-1). For the uniqueness it suffices to argue as in Step 8 of the proof of Theorem 5.1. �
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