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TANGENT MEASURES OF ELLIPTIC MEASURE AND APPLICATIONS

JONAS AZZAM AND MIHALIS MOURGOGLOU

Tangent measure and blow-up methods are powerful tools for understanding the relationship between
the infinitesimal structure of the boundary of a domain and the behavior of its harmonic measure. We
introduce a method for studying tangent measures of elliptic measures in arbitrary domains associated
with (possibly nonsymmetric) elliptic operators in divergence form whose coefficients have vanishing
mean oscillation at the boundary. In this setting, we show the following for domains ω ⊂ Rn+1, n ≥ 2:

(1) We extend the results of Kenig, Preiss, and Toro (J. Amer. Math. Soc. 22:3 (2009), 771–796) by
showing mutual absolute continuity of interior and exterior elliptic measures for any domains implies
the tangent measures are a.e. flat and the elliptic measures have dimension n.

(2) We generalize the work of Kenig and Toro (J. Reine Agnew. Math. 596 (2006), 1–44) and show that
VMO equivalence of doubling interior and exterior elliptic measures for general domains implies the
tangent measures are always supported on the zero sets of elliptic polynomials.

(3) In a uniform domain that satisfies the capacity density condition and whose boundary is locally finite
and has a.e. positive lower n-Hausdorff density, we show that if the elliptic measure is absolutely
continuous with respect to n-Hausdorff measure then the boundary is rectifiable. This generalizes the
work of Akman, Badger, Hofmann, and Martell (Trans. Amer. Math. Soc. 369:8 (2017), 5711–5745).

1. Introduction 1891
2. Tangent measures 1900
3. Elliptic measures 1905
4. Harmonic polynomial measures 1917
5. Proof of Theorem I 1921
6. BMO, VMO and vanishing A∞ 1924
7. Proofs of Theorems II and III 1929
8. Proof of Theorem IV 1932
9. Proof of Proposition III 1936
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1. Introduction

1A. Background. In this paper, we study how the relationships between the elliptic measures of two
complementary domains in Rn+1, for n ≥ 2, dictate the geometry of their common boundaries. We
shall denote those domains by �+ and �− and the respective elliptic measures by ω+ and ω−. Bishop,

MSC2010: 31A15, 28A75, 28A78, 28A33.
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continuity, rectifiability.
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Carleson, Garnett and Jones [Bishop et al. 1989] showed that, for disjoint simply connected planar
domains with mutually absolutely continuous harmonic measures, the boundary has tangents on a set of
positive measure. Kenig, Preiss, and Toro [Kenig et al. 2009] showed that if �± are both nontangentially
accessible (or NTA) domains in Rn+1, with n ≥ 2, and the interior and exterior harmonic measures are
mutually absolutely continuous, then at every point of the common boundary except for a set of harmonic
measure zero, ∂�+ looks flatter and flatter as we zoom in. We will not define NTA but refer the reader to
its inception in [Jerison and Kenig 1982]. Recently, the authors of the current paper, along with Tolsa
[Azzam et al. 2017b], as well as with Tolsa and Volberg [Azzam et al. 2016c], showed that additionally
the boundary is n-rectifiable in the sense that, off a set of harmonic measure zero, the boundary is a union
of Lipschitz images of Rn+1, and in fact �+ and �− need not be NTA but just connected.

These are, however, almost everywhere phenomena, so it is interesting to ask what assumptions we need
on ω± to guarantee some nice limiting behavior of our blow-ups at every point. Kenig and Toro [2006]
showed that if �+ is 2-sided NTA and log(dω−/dω+) ∈ VMO(dω+), then as we zoom in on any point
of the boundary for a particular sequence of scales, ∂�+ begins to look more and more like the zero set
of a harmonic polynomial (see Section 6 for the definition of VMO). In [Badger 2011], it is further shown
that these harmonic polynomials are always homogeneous, and [Badger 2013] investigates the topological
properties of sets where the boundary is approximated by zero sets of harmonic polynomials in this way.

To explain these results in more detail, we need to discuss what we mean by “blow-ups” and what it
means for these to look like not necessarily one object but any one of a class of objects as we zoom in
on harmonic measure. There are two ways we can consider this. Firstly, we can look at the Hausdorff
convergence of rescaled copies of the support of a measure as we zoom in. To do this, we follow the
framework of [Badger and Lewis 2015].

Definition 1.1. Let A ⊂ Rn+1 be a set. For x ∈ A, r > 0, and S a collection of sets, define

2S
A (x, r)= inf

S∈S
max

{ ∑
a∈A∩B(x,r)

dist(a, x + S)
r

,
∑

z∈(x+S)∩B(x,r)

dist(z, A)
r

}
.

We say x ∈ A is a S point of A if limr→02
S
A (x, r)= 0. We say A is locally bilaterally well approximated

by S (or simply LBWA(S )) if, for all ε > 0 and all compact sets K ⊂ A, there is rε,K > 0 such that
2S

A (x, r) < ε for all x ∈ K and 0< r < rε,K .

Thus, for x ∈ A to be an S -point means that, as we zoom in on A at the point x , the set A resembles
more and more an element of S (though that element may change as we zoom in).

Secondly, we can look at the weak convergence of rescaled copies of the measure itself. To do this, we
follow the framework of [Preiss 1987]. For a ∈ Rn+1 and r > 0, set

Ta,r (x)=
x − a

r
.

Note that Ta,r (B(a, r))= B(0, 1). Given a Radon measure µ, the notation Ta,r [µ] is the image measure
of µ by Ta,r ; that is,

Ta,r [µ](A)= µ(r A+ a), A ⊂ Rn+1.
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Here and later, for a function f and a measure µ, we write f [µ] to denote the push-forward measure
f [µ](A)= µ( f −1(A)).

Definition 1.2. We say that ν is a tangent measure of µ at a point a ∈ Rn+1 if ν is a nonzero Radon
measure on Rn+1 and there are sequences ci > 0 and ri ↓ 0 so that ci Ta,ri [µ] converges weakly to ν as
i→∞ and write ν ∈ Tan(µ, a).

That is, ν is a tangent measure of µ at a point ξ if, as we zoom in on µ at ξ for a sequence of scales,
the rescaled µ converges weakly to ν.

The collections of measures and sets that we will consider are associated to zero sets of harmonic
functions. Let H denote the set of harmonic functions vanishing at the origin, P(k) denote the set
of harmonic polynomials h of degree k such that h(0) = 0 and F(k) denote the set of homogeneous
polynomials of degree k. For h ∈ H, we define

6h = {h=0}, �h = {h>0},

and
H = {ωh : h ∈ H}, P(k)= {ωh : h ∈ P(k)}, F (k)= {ωh : h ∈ F(k)},

where
ωh =−ν�h · ∇h dσ6h .

Also set
P6(k)= {6h : h ∈ P(1)∪ · · · ∪ P(k)}, F6(k)= {6h : h ∈ F(k)}

and
H6 = {6h : h ∈ H}.

Here ν�h (x) stands for the measure-theoretic unit outward normal of�h at x ∈∂∗�h , the reduced boundary
of�h . Now h is a harmonic function and thus, real analytic, which implies that6h is an n-dimensional real
analytic variety; hence, �h is a set of locally finite perimeter and one can prove that Hn(∂�h \∂

∗�h)= 0,
where Hn stands for the n-Hausdorff measure. Notice now that ν�h (x) is defined at Hn-almost every point
of 6h and σ6h is the usual surface measure. For a detailed proof of this see [Azzam et al. 2017b, p. 21].

In the rest of the paper we will be dealing with unbounded domains, i.e., open and connected sets
in Rn+1, with n ≥ 2.

We summarize the best results to date. We first mention a result by the authors, Tolsa, and Volberg.

Theorem 1.3 [Azzam et al. 2016c; 2017b]. Let �± ⊂ Rn+1 be two disjoint domains and ω± = ωx±
�±

for some x± ∈ �±. If ω± are mutually absolutely continuous on E , then for ω±-a.e. ξ ∈ E we have
Tan(ω±, ξ)⊂F (1) and ω+|E can be covered up to a set of ω+-measure zero by n-dimensional Lipschitz
graphs. Furthermore, if ∂�± are CDC, then limr→02

F6(1)
∂�+

(ξ, r)= 0 for ω+-a.e. ξ ∈ E.

This was originally shown by Bishop, Carleson, Garnett, and Jones [Bishop et al. 1989] for simply
connected planar domains. Later, Kenig, Preiss and Toro showed that, under the same assumptions,
provided that the domain is also 2-sided locally NTA, it holds that dimω+ = n (but not that ω+ is
rectifiable).
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Below we summarize the results so far in the situation when � is 2-sided NTA and the interior and
exterior harmonic measures are VMO equivalent, which brings together results and techniques from
Badger [2011; 2013] and Kenig and Toro [2006].

Theorem 1.4. Let �+ ⊂Rn+1 and �− = ext(�+) be NTA domains, and let ω± be the harmonic measure
in�± with pole x±∈�±. Assume that ω+ and ω− are mutually absolutely continuous and f :=dω−/dω+

satisfies log f ∈ VMO(dω+). Then, there exists d ∈ N (depending on n and the NTA constants) such
that the boundary ∂�+ is LBWA(P6(d)) and may be decomposed into sets 01, . . . , 0d satisfying the
following:

(1) For 1≤ k ≤ d , 0k = {ξ ∈ ∂�
+
: Tan(ω+, ξ)⊂F (k)}.

(2) 01 ∪ · · · ∪0d = ∂�
+.

(3) limr→02
F6(k)
∂�+

(ξ, r)= 0 for ξ ∈ 0k .

The work of [Badger et al. 2017] studies the geometric structure of the set as well as the tangent
measure structure using the conclusions of the results above. We refer to their work for more details.

1B. Blowups of elliptic measures. In this paper, our objective is to recreate some parts of these results
for a class of elliptic measures. Admittedly, there are more results that could be generalized to this setting,
like Tsirelson’s theorem (using the method of [Tolsa and Volberg 2018]), but we content ourselves with
the present results to convey the flexibility of the method.

Let �⊂Rn+1 be open and A= A( · )= (ai j ( · ))1≤i, j≤n+1 be a matrix with real measurable coefficients
in �. We say that A is a uniformly elliptic matrix in � with constant 3≥ 1 and write A ∈A if it satisfies
the following conditions:

3−1
|ξ |2 ≤ 〈A(x)ξ, ξ〉 for a.e. x ∈� and for all ξ ∈ Rn+1, (1-1)

〈A(x)ξ, η〉 ≤3|ξ ||η| for a.e. x ∈� and for all ξ, η ∈ Rn+1. (1-2)

Notice that the matrix is possibly nonsymmetric and has variable coefficients. If A ∈ A , we define a
uniformly elliptic operator associated with A by

LA =− div(A( · )∇).

We will let ωA,x
� denote the LA-harmonic measure in � with pole at x (see Section 11 in [Heinonen

et al. 1993] for the definition), which we also call elliptic measure. It is clear that the transpose matrix
of A, which we denote by AT, is also uniformly elliptic in �. Finally, a function u :�→ R that satisfies
the equation LAu = 0 in the weak sense is called LA-harmonic. We will denote by C the subclass of A

consisting of matrices with constant entries.
To make sense of tangent measures of an elliptic measure at a point ξ in its support, we need to assume

that the coefficients A do not oscillate too much there on small scales.

Definition 1.5. Let �⊂ Rn+1 and let LA be an elliptic operator on �. For a compact set K ⊂ ∂�, we
will say that the coefficients of LA have vanishing mean oscillation on K with respect to � (or just
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LA ∈ VMO(�, K )) if

lim
r→0

sup
ξ∈K

1
rn+1 inf

C∈C

∫
B(ξ,r)∩�

|A(x)−C | dx = 0. (1-3)

We also say the coefficients of LA have VMO at ξ ∈ ∂� if

lim
r→0

1
rn+1 inf

C∈C

∫
B(ξ,r)∩�

|A(x)−C | dx = 0. (1-4)

Much like the harmonic case, the tangent measures we will obtain are supported on zero sets of elliptic
polynomials associated with an elliptic operator with constant coefficients. For a constant-coefficient
matrix A with real entries, we will denote by HA the set of LA-harmonic functions u vanishing at zero,
i.e., those functions u for which∫

A∇u∇ϕ dx = 0 for all ϕ ∈ C∞c (R
n+1) and u(0)= 0.

We also let PA(k) denote the set of LA-harmonic polynomials of degree k vanishing at the origin, and
FA(k)⊂ PA(k) the subset of homogeneous LA-harmonic polynomials of degree k. When A = I, we will
simply write F(k), P(k) and H in place of FA(k), PA(k) and HA.

For h ∈ HA, we will write

dωA
h =−ν�h · A∇h dσ6h ,

where σS stands for the surface measure on a surface S and ν is the outward normal vector at x ∈ ∂∗�h ,
the reduced boundary of �h . Once more, we used that h is real analytic since A has constant coefficients
and LAh = 0; see, e.g., Proposition 11.3 in [Mitrea 2013]. Again, when A is the identity, we will drop
the superscripts and, for example, write ωh in place of ωA

h . For S ⊂ C , we write

HS ={ω
A
h :h∈HA, A∈S }, PS (k)={ωA

h :h∈ PA(k), A∈S }, FS (k)={ωA
h :h∈ FA(k), A∈S },

HA =H{A}, PA =P{A}, FA =F{A},

and define HS ,6,PS ,6 , and FS ,6 as we did before. Observe that FC (1)=FA(1)=F (1) for any A∈C .
Our results also recover some LBWA properties implied in previous results if we consider domains satis-

fying the capacity density condition (CDC), whose complements also satisfy the CDC (see Definition 3.3
below) and whose associated elliptic measures are doubling. Examples of domains satisfying these
conditions are NTA domains and, by [Martio 1979, Theorem 3.1], any uniform domain � for which there
is s > n− 1 such that Hs

∞
(B(ξ, r)∩ ∂�)/r s

≥ c > 0 for all ξ ∈ ∂� and r > 0 is a CDC domain.
Our first result extends the work of [Kenig et al. 2009] to the elliptic case, and for domains beyond

NTA. First, recall the dimension of a measure µ.
For a Borel measure µ in Rn+1, we define the Hausdorff dimension of µ by

dim(µ)= inf{dim(Z) : µ(Rn+1
\ Z)= 0}.
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In practice, it is easier to compute this dimension as follows. Define lower and upper pointwise dimension
at a point x ∈ suppµ to be

dµ(x)= lim inf
r→0

logµ(B(x, r))
log r

and dµ(x)= lim sup
r→0

logµ(B(x, r))
log r

.

We call the common value dµ(x) = dµ(x) = dµ(x), if it exists, the pointwise dimension of µ at
x ∈ suppµ. It is shown in [Barreira and Wolf 2006, Proposition 3] that

dim(µ)= ess sup{dµ(x) : x ∈3}.

Theorem I. Let �± ⊂ Rn+1 be two disjoint domains and let LA be a uniformly elliptic operator on
�+∪�−. Let also ω±=ωLA,x±

�±
for some x± ∈�± be the LA-harmonic measures in the respective domains

and LA be in VMO(�+ ∪�−, ξ) at ω+-almost every ξ ∈ E ⊂ ∂�+ ∩ ∂�− with respect to either �±. If
ω± are mutually absolutely continuous on E , then for ω±-a.e. ξ ∈ E we have Tan(ω±, ξ) ⊂F (1) and
dimω±|E = n. Furthermore, if ∂�± are CDC, then limr→02

F6(1)
∂�+

(ξ, r)= 0 for ω+-a.e. ξ ∈ E.

Kenig, Preiss, and Toro originally showed this if �± were both NTA domains, and the dimension was
computed by estimating the Hausdorff dimension directly from above and then using the monotonicity
formula of Alt, Caffarelli, and Friedman [Alt et al. 1984] to estimate it from below. The latter is not
available for L-harmonic functions when L satisfies the VMO condition above. For this reason, we use
instead the fact that the tangent measures are all flat, which forces ω± to decay like a planar n-dimensional
Hausdorff measure on small scales.

Assuming a VMO condition on the interior and exterior elliptic measures, we can also obtain the
results of [Kenig and Toro 2006] and [Badger 2011] for elliptic measures on domains that do not have to
be NTA. We first state a pointwise version of these.

Theorem II. Let �+ be a domain in Rn+1, let �− := ext(�+) be its exterior, and let LA be a uniformly
elliptic operator in �+ ∪�−. Denote by ω± the LA-harmonic measures of �± with poles at some points
x± ∈ �±, and assume that ω± are mutually absolutely continuous with f = dω−/dω+. If for a fixed
ξ ∈ ∂�+ ∩ ∂�+ it holds that LA ∈ VMO(�+ ∪�−, ξ),

lim
r→0

(
−

∫
B(ξ,r)

f dω+
)

exp
(
−−

∫
B(ξ,r)

log f dω+
)
= 1, (1-5)

and Tan(ω+, ξ) 6=∅, then Tan(ω+, ξ)⊂FC (k) for some k and

lim sup
r→0

ω+(B(ξ, 2r))
ω+(B(ξ, r))

<∞. (1-6)

If �± have the CDC, then additionally

lim
r→0

2
FC ,6(k)
∂�+

(ξ, r)= 0.

It is well known that Tan(ω+, ξ) 6=∅ whenever ω+ satisfies the pointwise doubling condition (1-6). In
our situation, however, we do not assume that, but we get it for free since FC (k) is compact (see [Badger
2011, Lemma 4.10] for the harmonic case and Theorem 2.4 below).
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One might have guessed that a pointwise version of Theorem 1.4 would have assumed instead that

lim
r→0
−

∫
B(ξ,r)

∣∣∣∣ f −−
∫

B(ξ,r)
log f dω+

∣∣∣∣ dω+ = 0,

but we were not able to show that this implies Theorem II. However, under certain conditions they are
equivalent. We will discuss this matter in depth in Section 6 below.

Next, we state a global version.

Theorem III. Let �± ⊂ Rn+1 be two disjoint domains in Rn+1 with common boundary, and let LA be
a uniformly elliptic operator in �+ ∪�− such that LA ∈ VMO(�+ ∪�−, ξ) at every ξ ∈ ∂�+ ∩ ∂�−.
Denote by ω± the LA-harmonic measures of �± with poles at some points x± ∈�±. If ω+ is C-doubling,
ω± are mutually absolutely continuous, and log f = log(dω−/dω+) ∈ VMO(dω+), then there is d
depending on n and the doubling constant so that, for every compact subset K ⊆ ∂�+,

lim
r→0

sup
ξ∈K

d1(Tξ,r [ω+],PC (d))= 0. (1-7)

If additionally �± are CDC domains, then for any compact set K ⊆ ∂�

lim
r→0

sup
ξ∈K

2
PC ,6(d)
∂�+

(ξ, r)= 0.

That is, ∂�+ ∈ LBWA(PC ,6(d)).

See Section 2 for the definition of d1( · ,PC (d)), which is essentially a distance between measures
and the set PC (d).

The proof of Theorem II involves some useful lemmas about tangent measures that may be of indepen-
dent interest. Specifically, we refer the reader to Lemma 2.10.

Over the course of working on this manuscript, we also resolved a question left open in [Badger 2011]
(see the discussion on page 861 of that work).

Proposition I. The d-cone P(k) has compact basis for each k ∈ (0, n].

See Section 2 for the definition of compact bases. A consequence of this result is that we can improve
on the following theorem of Badger.

Theorem 1.6 [Badger 2011, Theorem 1.1]. Let �⊂ Rn+1 be an NTA domain with harmonic measure ω
and let ξ ∈ ∂�. If Tan(ω, ξ)⊂P(d), then Tan(ω, ξ)⊂F (k) for some k ≤ d.

In the proof of this result, Badger relied on the NTA assumption to conclude that Tan(ω, ξ) was
compact. By using Proposition I (whose proof is rather short), the compactness of F (k) (to which much
of the proof of Theorem 1.6 is dedicated), and a connectivity theorem of Preiss, we can improve this by
showing that, to get the same conclusion, no a priori information about the geometry of ω is needed; it
need not have been a harmonic measure, let alone one for an NTA domain:

Proposition II. Let ω be a Radon measure in Rn+1 and ξ ∈ Rn+1 such that Tan(ω, ξ)⊂P(k) for some
integer k. If Tan(ω, ξ)∩F (k) 6=∅ for some integer k, then Tan(ω, ξ)⊂F (k).
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1C. Rectifiability and elliptic measure for uniform domains. The blow-up arguments we use also have
an application to studying the relationship between rectifiability and harmonic measure, a subject in
which there have been a flurry of results in the last few years. For simply connected planar domains,
the problem of when harmonic measure is absolutely continuous with respect to H1 is classical. Bishop
and Jones [1990] showed that, if � is simply connected, ωx

��H1 on the subset of any Lipschitz curve
intersecting ∂�. Conversely, Pommerenke [1986] showed that if ω��H1 on a subset E ⊂ ∂�, then that
set can be covered by Lipschitz graphs up to a set of harmonic measure zero. In fact, a much earlier result
of the Riesz brothers says that any Jordan domain has harmonic measure and is H1 mutually absolutely
continuous if and only if the boundary is rectifiable; see [Riesz and Riesz 1920] or [Garnett and Marshall
2005, Chapter VI.1].

In higher dimensions, the problem is more delicate. There are some examples of simply connected
domains�⊂Rn+1 with n-rectifiable boundaries of finite Hn-measure so that either ω� 6�Hn or Hn

6�ω�;
see [Wu 1986; Ziemer 1974]. David and Jerison [1990] showed that mutual absolute continuity occurs
for NTA domains with Ahlfors–David regular boundaries. Building on that, Badger [2012] showed that
Hn
� ω� if � is an NTA domain whose boundary simply has locally finite Hn-measure, although we

showed with Tolsa that the converse relation ω�� Hn could be false for such domains [Azzam et al.
2017c].

However, in [Azzam et al. 2016b], along with Hofmann, Martell, Mayboroda, Tolsa, and Volberg, we
showed that for any domain �⊂Rn+1 and E ⊂ ∂� with ω�(E) > 0 and Hn(E) <∞, if ω��Hn on E ,
then E may be covered up to ω�-measure zero by Lipschitz graphs. By a theorem of Wolff, harmonic
measure in the plane lies on a set of σ -finite H1-measure, and so the assumption that H1(E) <∞ is
unnecessary in this case (although very necessary in higher dimensions due to the existence of Wolff
snowflakes). With Akman, we developed a converse for domains � ⊂ Rn+1 with big complements,
meaning

Hn
∞
(B(ξ, r)\�)≥ crn for all ξ ∈ ∂� and 0< r < diam ∂�. (1-8)

We showed that, for such domains, ω��Hn on the subset of any n-dimensional Lipschitz graph [Akman
et al. 2019], and hence, for these domains, we know that absolute continuity is equivalent to rectifiability
of harmonic measure (versus rectifiability of the boundary).

There are fewer positive results concerning absolute continuity and rectifiability of elliptic measures.
Even in the case of the half-plane, without some extra assumptions on the behavior of the elliptic
coefficients, elliptic measure can be singular [Caffarelli et al. 1981; Sweezy 1992; Wu 1994], and some
sort of Dini condition on the coefficients near the boundary is needed [Fabes et al. 1984; Fefferman et al.
1991]. For example, Kenig and Pipher [2001], considered the following condition.

Definition 1.7. Let δ(x)= dist(x, ∂�). We will say that an elliptic operator L =− div A∇ satisfies the
Kenig–Pipher condition (or KP-condition) if A = (ai j (x)) is a uniformly elliptic real matrix that has
distributional derivatives such that

εL
�(z) := sup

{
δ(x)|∇ai j (x)|2 : x ∈ 1

2 B(z, δ(z)), 1≤ i, j ≤ n+ 1
}

(1-9)
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is a Carleson measure in �, by which we mean that for all x ∈ ∂� and r ∈ (0, diam ∂�),∫
B(x,r)∩�

εL
�(z) dz ≤ Crn.

In [Kenig and Pipher 2001], they showed that for Lipschitz domains in Rn+1, elliptic operators satisfying
the KP-condition give rise to elliptic measures which are A∞-equivalent to surface measure. In fact,
it was proved in [Hofmann et al. 2017] that the same result can be obtained under the following more
general assumptions on the coefficients:

(K̃P)=


∇ai j ∈ Liploc(�),

‖δ�|∇ai j |‖L∞(�) <∞,

δ(x)|∇ai j (x)|2 is a Carleson measure
(1-10)

for 1≤ i, j ≤ n+1. Akman, Badger, Hofmann, and Martell observed in [Akman et al. 2017, Section 3.2]
that, using the same arguments in [David and Jerison 1990], this result can be extended to NTA domains
with Ahlfors–David regular boundaries. They used this fact to show that, on a uniform domain � (see
Definition 8.1 below) with Ahlfors–David regular boundary, if LA is a symmetric elliptic operator satisfying
a local L1 version of (1-9), i.e., A ∈ Liploc(�) and sup

{
|∇ai j (x)| : x ∈ 1

2 B(z, δ(z)), 1≤ i, j ≤ n+ 1
}

is
a Carleson measure with Carleson constant depending on the ball, then Hn

� ωL
� implies n-rectifiability

of the boundary.

Using our blow-up arguments, we can obtain the following improvement.

Theorem IV. Let � ⊂ Rn+1 be a uniform CDC domain so that Hn
|∂� is locally finite. Let ωLA

� be the
LA-harmonic measure associated to a (possibly nonsymmetric) elliptic operator satisfying (1-1) and (1-2).
Let E ⊆ ∂� be a set with Hn(E) > 0 such that Hn

� ω
LA
� on E and for Hn-a.e. ξ ∈ E

θn
∂�,∗(ξ, r) := lim inf

r→0

Hn(B(ξ, r)∩ ∂�)
(2r)n

> 0

and A has vanishing mean oscillation at ξ . Then E is n-rectifiable.

Surprisingly, to get this improvement requires a very different set of techniques than originally
considered in [Akman et al. 2017]. Let us point out that the argument therein uses the symmetry
hypothesis on the coefficients in a significant way and does not seem easy to extend to the nonsymmetric
case unless one additionally assumes that Hn

� ω
LAT

� .
Having VMO coefficients Hn-a.e. on ∂� is natural as it is implied by the Carleson condition considered

in [Akman et al. 2017; Kenig and Pipher 2001] by the following proposition:

Proposition III. Let �⊂ Rn+1 be a uniform domain and suppose that A is an elliptic matrix satisfying
(1-1) and (1-2) such that A ∈ Liploc(�) and, for some ball B0 centered on ∂�,∫

B0

δ(x)|∇ai j (x)|2 dx <∞. (1-11)

Then LA ∈ VMO(�, ξ) for Hn-a.e. ξ ∈ B0 ∩ ∂�.
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Discussion of related results. Near the completion of this work, we learned that Toro and Zhao [2017]
simultaneously proved that Hn

� ω� implies rectifiability of the boundary if � ⊆ Rn+ is a uniform
domain with Ahlfors–David n-regular boundary and the elliptic coefficients are in W 1,1(�). They also
exploit the vanishing oscillation of the coefficients at almost every boundary point (which they show is
implied by the W 1,1 condition) in the context of uniform domains, though, their proof is distinct by their
use of pseudotangents and stopping-time arguments.

1D. Notation. We will write a . b if there is C > 0 so that a ≤Cb and a .t b if the constant C depends
on the parameter t . We write a ≈ b to mean a . b . a and define a ≈t b similarly.

2. Tangent measures

2A. Cones and compactness. Given two Radon measures µ and σ , we set

FB(µ, σ )= sup
f

∫
f d(µ− σ),

where the supremum is taken over all the nonnegative 1-Lipschitz functions supported on B. For r > 0,
we write

Fr (µ, ν)= FB(0,r), Fr (µ)= Fr (µ, 0)=
∫
(r − |z|)+ dµ.

A set of Radon measures M is a d-cone if cT0,r [µ] ∈M for all µ ∈M , c > 0 and r > 0. We say a
d-cone has closed (resp. compact) basis if its basis {µ ∈M : F1(µ)= 1} is closed (resp. compact) with
respect to the weak topology.

For a d-cone M , r > 0, and µ a Radon measure with 0< Fr (µ) <∞, we define the distance between
µ and M as

dr (µ,M )= inf
{

Fr

(
µ

Fr (µ)
, ν

)
: ν ∈M , Fr (ν)= 1

}
.

Lemma 2.1 [Kenig et al. 2009, Section 2]. Let µ be a Radon measure in Rn+1 and M a d-cone. For
ξ ∈ Rn+1 and r > 0:

(1) Tξ,r [µ](B(0, s))= µ(B(ξ, sr)).

(2)
∫

f dTξ,r [µ] =
∫

f ◦ Tξ,r dµ.

(3) FB(ξ,r)(µ)= r F1(Tξ,r [µ]).

(4) FB(ξ,r)(µ, ν)= r F1(Tξ,r [µ], Tξ,r [ν]).

(5) µi → µ weakly if and only if Fr (µi , µ)→ 0 for all r > 0.

(6) dr (µ,M )≤ 1.

(7) dr (µ,M )= d1(T0,r [µ],M ).

(8) If µi → µ weakly and Fr (µ) > 0, then dr (µi ,M )→ dr (µ,M ).

Lemma 2.2 [Kenig et al. 2009, Remark 2.13]. A d-cone M of Radon measures in Rn+1 has a closed
basis if and only if it is a relatively closed subset of the nonzero Radon measures in Rn+1.



TANGENT MEASURES OF ELLIPTIC MEASURE AND APPLICATIONS 1901

Proof. One direction is obvious, so suppose M has closed basis and µi ∈M converges weakly to some
nonzero Radon measure µ. Then Fr (µ) > 0 for some r > 0. The set {ν ∈M : F1(ν) = 1} is closed
by assumption, and since M is a d-cone, the set {ν ∈ F : Fr (ν) = 1} is also closed. Hence, since
µi/Fr (µi )→ µ/Fr (µ), we know µ/Fr (µ) ∈M , and thus µ ∈M . �

Lemma 2.3. If µ is a nonzero Radon measure and M is a d-cone with closed basis, then µ ∈M if and
only if dr (µ,M )= 0 for all r > 0 for which Fr (µ) > 0.

Proof. Suppose dr (µ,M )= 0 for all r > 0 for which Fr (µ) > 0. For j ∈ N large enough, we can find a
sequence µj,k ∈M such that

Fj (µj,k)= 1 and lim
k→∞

Fj

(
µ

Fj (µ)
, µj,k

)
= 0. (2-1)

In particular, we can pass to a subsequence so that µj,k converges weakly in B(0, j) to a measure µj

supported in B(0, j) with Fj (µj )= 1. In view of (2-1), the latter implies µ= Fj (µ)µj in B(0, j), and thus

Fj (µ)µj ⇀µ.

Since µj,k ⇀µj and Fj (µ) 6= 0 for j large, we can pick kj so that

Fj (µj,kj , µj ) <
1

j Fj (µ)
.

In particular, for any r > 0 and j > r ,

Fr (µj,kj Fj (µ), µ)≤ Fr (µj,kj Fj (µ), µj Fj (µ))+ Fr (µj Fj (µ), µ)

≤ Fj (µj,kj Fj (µ), µj Fj (µ))+ Fr (µj Fj (µ), µ)

<
1
j
+ Fr (µj Fj (µ), µ)→ 0.

Thus, µj,kj Fj (µ)⇀µ. By Lemma 2.2, M is closed, and since we have µj,kj Fj (µ) ∈M for all j , this
implies µ ∈M . The other implication is trivial. �

Theorem 2.4 [Preiss 1987, Corollary 2.7]. Let µ be a Radon measure on Rn+1 and ξ ∈ suppµ. Then
Tan(µ, ξ) has compact basis if and only if

lim sup
r→0

µ(B(ξ, 2r))
µ(B(ξ, r))

<∞. (2-2)

In this case, for any ν ∈ Tan(µ, ξ), it holds that 0 ∈ supp ν and

ν(B(0, 2r))
ν(B(0, r))

≤ lim sup
ρ→0

µ(B(ξ, 2ρ))
µ(B(ξ, ρ))

for all r > 0.

Lemma 2.5 [Mattila 1995, Theorem 14.3]. Let µ be a Radon measure on Rn+1. If ξ ∈ Rn+1 and (2-2)
holds, then every sequence ri ↓ 0 contains a subsequence such that

Tξ,rj [µ]

µ(B(ξ, rj ))
⇀ ν (2-3)

for some measure ν ∈ Tan(µ, ξ).
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Having tangent measures that arise as limits of the form (2-3) is very convenient, but this limit does
not always converge weakly to something. This may happen if µ is not pointwise doubling at the point a.
However, all tangent measures are at least dilations of tangent measures arising in this way.

Lemma 2.6 [Mattila 1995, Remark 14.4(1)]. Let µ be a nonzero Radon measure, ξ ∈ suppµ, and
ν ∈ Tan(µ, ξ). Then there are ρj ↓ 0 and ρ, c > 0 so that

Tξ,ρj [µ]

µ(B(ξ, ρj ))
⇀ cT0,ρ[ν] and cT0,ρ[ν](B) > 0.

Proposition 2.7 [Preiss 1987, Proposition 2.2]. Let M be a d-cone. Then M has compact basis if and
only if for every λ > 1 there is τ > 1 such that

Fτr (9)≤ λFr (9) for every 9 ∈M and r > 0. (2-4)

In this case, 0 ∈ supp9 for all 9 ∈M .

Theorem 2.8 [Mattila 1995, Theorem 14.16]. Let µ be a Radon measure on Rn+1. For µ-almost every
x ∈ Rn+1, if ν ∈ Tan(µ, x), the following hold:

(1) Ty,r [ν] ∈ Tan(µ, x) for all y ∈ supp ν and r > 0.

(2) Tan(ν, y)⊂ Tan(µ, x) for all y ∈ supp ν.

Lemma 2.9 [Badger 2011, Lemma 2.6]. Let µ be a nonzero Radon measure on Rn+1 and x ∈ supp(µ).
If ν ∈ Tan(µ, x), then Tan(ν, 0)⊂ Tan(µ, x).

2B. Connectivity of cones. The main tool from [Kenig et al. 2009; Badger 2011] is the following
“connectivity” lemma, which was originally shown in [Kenig et al. 2009, Corollary 2.16] under the
assumption that M had compact basis. For our purposes, we need to remove this assumption.

Lemma 2.10. Let F and M be d-cones and assume F has compact basis. Furthermore, suppose that
there is ε0 > 0 such that for µ ∈M , if there is r0 > 0 so that dr (µ,F )≤ ε for all r ≥ r0, then µ ∈F. For
a Radon measure η and x ∈ supp η, if Tan(η, x)⊂M and Tan(η, x)∩F 6=∅, then Tan(η, x)⊂F.

We will first require some lemmas.

Lemma 2.11. Let F be a d-cone with compact basis. There is β > 0 depending only on F so that the
following holds. Suppose ω is a Radon measure in Rn+1, ξ ∈ suppω, Tan(ω, ξ)∩F 6=∅ and

lim sup
r→0

dr0(Tξ,r [ω],F )≥ ε0 > 0 for some r0 > 0.

Then for ε < ε0 small enough, we may find µ ∈ Tan(ω, ξ)\F so that

(1) dr0(µ,F )= ε,

(2) dr (µ,F )≤ ε for all r > r0, and

(3) µ(B(0, r))≤ rβµ(B(0, 4r0)) for all r ≥ r0.

This is an adaptation of the proof of [Kenig et al. 2009, Corollary 2.16], but with some extra care.
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Proof. Without loss of generality, we will assume r0 = 1. Let cj > 0 and rj ↓ 0 be such that cj Tξ,rj [ω] →

ν ∈F. Since F is compact, by Proposition 2.7, 0 ∈ supp ν and so ν(B) > 0. Thus, by Lemma 2.1(5),
cj Tξ,rj [ω](B) > 0 for j large. By Lemma 2.1(8), we have that, given ε > 0, for j large enough,

d1(Tξ,rj [ω],F )= d1(cj Tξ,rj [ω],F ) < ε. (2-5)

Note that 0∈ supp Tξ,rj [ω] since ξ ∈ suppω, and so there is no accidental dividing by zero in the definition
of d1. By assumption, there is also sj ↓ 0 so that

d1(Tξ,sj [ω],F ) > ε. (2-6)

We can assume sj < rj by passing to a subsequence. Then by (2-5) and (2-6), let ρj ∈ (sj , rj ) be the
maximal number such that

d1(Tξ,ρj [ω],F )= ε. (2-7)

Then, by the maximality of ρj ,
sup

t∈[ρj ,rj ]

d1(Tξ,t [ω],F )≤ ε. (2-8)

We claim ρj/rj→ 0. If not, then since ρj/rj ≤ 1, we may pass to a subsequence so that ρj/rj→ t ∈ (0, 1),
and so

cj Tξ,ρj [ω] = T0,ρj/rj [cj Tξ,rj [ω]] → T0,t [ν] ∈F ,

which contradicts (2-7). Thus, ρj/rj → 0, and so (2-8) implies that for α ≥ 1, if j is large enough, we
have 1≤ α < rj/ρj . If ωj = Tξ,ρj [ω], then by Lemma 2.1(7), it holds that

dα(ωj ,F )= dα(Tξ,ρj [ω],F )= d1(Tξ,αρj [ω],F )
(2-8)
≤ ε, (2-9)

which by (2-7) implies

d1(ωj ,F )= ε > 0 and lim sup
j→∞

dr (ωj ,F )≤ ε for r > 1. (2-10)

For r ≥ 1, let µj,r ∈F be such that Fτr (µj,r )= 1 and

Fτr

(
ωj

Fτr (ωj )
, µj,r

)
< 3

2 dτr (ωj ,F ).

By (2-10), for j large enough,

Fr

(
ωj

Fτr (ωj )
, µj,r

)
≤ Fτr

(
ωj

Fτr (ωj )
, µj,r

)
< 3

2 dτr (ωj ,F ) < 2ε. (2-11)

Since F has compact basis, by Proposition 2.7 with λ= 2, there is τ > 1 depending only on F so that
(2-4) holds for M =F. Thus, if ε < 1

8 , by the triangle inequality for Fr and (2-11),

Fr (ωj )

Fτr (ωj )
≥ Fr (µj,r )− 2ε ≥ 1

2 Fτr (µj,r )− 2ε = 1
2 − 2ε > 1

4 . (2-12)

Hence, for any r ≥ 1,
Fτr (ωj )≤ 4Fr (ωj ).



1904 JONAS AZZAM AND MIHALIS MOURGOGLOU

Set µj = ωj/F1(ωj ). Then iterating the above inequality and letting j→∞, we get that for all ` ∈ N,

lim sup
j→∞

Fτ `(µj )≤ 4`.

This implies that we can pass to a subsequence so that µj converges weakly to a measure µ ∈ Tan(ω, ξ).
In particular, for r ≥ 1, since F1(µj )= 1, we may compute

d1(µ,F )= lim
j→∞

d1(µj ,F )= lim
j→∞

d1(ωj ,F )
(2-10)
= ε,

dr (µ,F )= lim
j→∞

dr (µj ,F )= lim
j→∞

dr (ωj ,F )
(2-10)
≤ ε,

and
τ `µ(B(0, τ `))≤ F2τ `(µ)≤ 4`F2(µ) for all ` ∈ N. (2-13)

Since τ > 1, for any r ≥ 1, there exists ` > 0 such that τ `−1 < r ≤ τ `. If τ ∈ (1, 4), then (2-13) implies

τ `µ(B(0, τ `))≤ ταrαµ(B(0, 2)),

where α = 1/log4 τ ∈ (1,∞) and we used that 4` = τ `α. Therefore,

µ(B(0, r))≤ τα−`rαµ(B(0, 2)),

and notice that τα−` ≤ 1 whenever τ ` ≥ 4; i.e., the constant is independent of τ . In the case that
1≤ r ≤ τ ` < 4, we simply use that B(0, r)⊂ B(0, 4) to conclude that

µ(B(0, r))≤ µ(B(0, 4)).

If τ ≥ 4, then (2-13) trivially gives

τ `µ(B(0, τ `))≤ 4`µ(B(0, 2))≤ τ `µ(B(0, 2)),

which can only be true if r ≤ τ ` ≤ 2. Thus, B(0, r)⊂ B(0, 2) and (3) readily follows. �

Corollary 2.12. Let F be a d-cone with compact basis. There is β > 0 so that the following holds.
Suppose µ is a Radon measure in Rn+1 so that

(1) Tan(µ, ξ)∩F 6=∅ and

(2) Tan(µ, ξ)\F 6=∅.

Then there is r0 > 0 so that for any ε > 0 sufficiently small, the conclusion of Lemma 2.11 holds.

Proof. Let ν ∈ Tan(µ, ξ)\F. By Lemma 2.3, there exists r0 > 0 so that Fr0(ν) > 0 and dr0(ν,F ) > 0. Let
cj > 0 and rj ↓ 0 be so that cj Tξ,rj [µ]→ ν. Then, for j large enough, dr0(Tξ,rj [µ],F ) >

1
2 dr0(ν,F ) > 0.

The corollary now follows from Lemma 2.11 with ε0 =
1
2 dr0(ν,F ). �

Proof of Lemma 2.10. If Tan(η, x)\F 6=∅, then, by Corollary 2.12, we may find µ ∈ Tan(η, x) \F and
ε, r0 > 0 so that dr0(µ,F ) = ε and dr (µ,F ) ≤ ε for all r > r0. By assumption, this implies µ ∈ F,
which is a contradiction. Thus, Tan(η, x)⊂F. �



TANGENT MEASURES OF ELLIPTIC MEASURE AND APPLICATIONS 1905

3. Elliptic measures

3A. Uniformly elliptic operators in divergence form. Let A be a real matrix with measurable coefficients
that satisfies (1-1) and (1-2). We consider the second-order elliptic operator L =− div A∇ and we say
that a function u ∈W 1,2

loc (�) is a weak solution of the equation Lu = 0 in � (or just L-harmonic) if∫
A∇u · ∇ϕ = 0 for all ϕ ∈ C∞0 (�). (3-1)

We also say that u ∈W 1,2
loc (�) is a supersolution (resp. subsolution) for L in � or just L-superharmonic

(resp. L-subharmonic) if
∫

A∇u∇ϕ ≥ 0 (resp.
∫

A∇u∇ϕ ≤ 0) for all nonnegative ϕ ∈ C∞0 (�).

In this section, we assume n ≥ 2.

3B. Regularity of the domain and Dirichlet problem. We say that a point x0 ∈ ∂� is Sobolev L-regular
if, for each function ϕ ∈W 1,2(�)∩C(�), the L-harmonic function h in � with h−ϕ ∈W 1,2

0 (�) satisfies

lim
x→x0

h(x)= ϕ(x0).

Theorem 3.1 [Heinonen et al. 1993, Theorem 6.27]. If for x0 ∈ ∂� it holds that∫ 1

0

cap(B(x0, r)∩�c, B(x0, 2r))
cap(B(x0, r), B(x0, 2r))

dr
r
=+∞,

then x0 is Sobolev L-regular. Here cap( · , · ) stands for the variational 2-capacity of the condenser ( · , · )
(see, e.g., [Heinonen et al. 1993, p. 27]).

We say that a point x0 ∈ ∂� is Wiener regular if, for each function f ∈ C(∂�;R), the L-harmonic
function H f constructed by the Perron’s method satisfies

lim
x→x0

H f (x)= f (x0).

See [Heinonen et al. 1993, Chapter 9].

Lemma 3.2 [Heinonen et al. 1993, Theorem 9.20]. Suppose that x0 ∈ ∂�. If x0 is Sobolev L-regular then
it is also Wiener regular.

The aforementioned result from [Heinonen et al. 1993] is only stated for � bounded but in fact it holds
for unbounded domains, since the only part of the proof that requires the domain to be bounded is the
existence of a unique solution of the Dirichlet problem with Sobolev Dirichlet data in bounded domains.
This is true though in the unbounded case as well. See, e.g., on p. 11 in [Azzam et al. 2016a] where this
is shown. Moreover,∞ is also a Wiener regular point for each unbounded �⊂ Rn+1, if n ≥ 2; see, e.g.,
Theorem 9.22 in [Heinonen et al. 1993].

We say that � is Sobolev L-regular (resp. Wiener regular) if all the points in ∂� are Sobolev L-regular
(resp. Wiener regular).
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Definition 3.3. A domain �⊂ Rn+1 is called regular if every point of ∂� is regular (i.e., if the classical
Dirichlet problem is solvable in � for the elliptic operator L), where ∂� denotes the boundary of �. For
K ⊂ ∂�, we say that � has the capacity density condition (CDC) if, for all x ∈ ∂� and 0< r < diam ∂�,

cap(B(x, r)∩�c, B(x, 2r))& rn−1.

Note that if n ≥ 2, by Wiener’s criterion, domains satisfying the CDC are both Wiener regular and
L-Sobolev regular.

Let �⊂ Rn+1 be Wiener regular and x ∈�. If f ∈ C(∂�), then the map f 7→ H f (x) is a bounded
linear functional on C(∂�). Therefore, by the Riesz representation theorem and the maximum principle,
there exists a probability measure ωx on ∂� (associated to L and the point x ∈ �) defined on Borel
subsets of ∂� so that

H f (x)=
∫
∂�

f dωx for all x ∈�.

We call ωx the elliptic measure or L-harmonic measure associated to L and x .

3C. Green’s function and PDE estimates.

Lemma 3.4. Let � ⊂ Rn+1, n ≥ 2, be an open, connected set so that ∂� is Sobolev L-regular. There
exists a Green’s function G :�×�\ {(x, y) : x = y}→R associated with L which satisfies the following.
For 0< a < 1, there are positive constants C and c depending on a, n and 3 such that for all x, y ∈�
with x 6= y, it holds that

0≤ G(x, y)≤ C |x − y|1−n,

G(x, y)≥ c|x − y|1−n if |x − y| ≤ aδ�(x),

G(x, · ) ∈ C(� \ {x})∩W 1,2
loc (� \ {x}) and G(x, · )|∂� ≡ 0,

G(x, y)= GT (y, x),

where GT is the Green’s function associated with the operator LAT , and for every ϕ ∈ C∞c (R
n+1)∫

∂�

ϕ dωx
−ϕ(x)=−

∫
�

AT (y)∇yG(x, y) · ∇ϕ(y) dy for a.e. x ∈�. (3-2)

In the statement of (3-2), one should understand that the integral on right-hand side is absolutely
convergent for a.e. x ∈� and a proof of it can be found in Lemma 2.6 in [Azzam et al. 2016a]. The rest
were proved in [Grüter and Widman 1982; Hofmann and Kim 2007].

The lemma below is frequently called Bourgain’s lemma, as he proved a similar estimate for harmonic
measure in [Bourgain 1987].

Lemma 3.5 [Heinonen et al. 1993, Lemma 11.21]. Let � ⊂ Rn+1 be any domain satisfying the CDC
condition, x0 ∈ ∂�, and r > 0 so that �\B(x0, 2r) 6=∅. Then

ω
L ,x
� (B(x0, 2r))≥ c > 0 for all x ∈�∩ B(x0, r), (3-3)

where c depends on d and the constant in the CDC.
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Lemma 3.6. For �⊂ Rn+1, n ≥ 2, and the assumptions of Lemma 3.4, if B is centered on ∂�, then

G(x, y)rn−1
B inf

z∈2B
ωL ,z(4B). ωL ,y(4B) for x ∈ B ∩� and y ∈�\2B. (3-4)

In particular, for a CDC domain, we have

G(x, y)rn−1
B . ωL ,y(4B) for x ∈ B ∩� and y ∈�\2B.

Proof. This was originally shown for harmonic measure in [Azzam et al. 2016b], but we cover the details
here.

By Bourgain’s estimate, ωL ,y(4B)& 1 for y ∈ 2B ∩�, and so for y ∈�\2B and x ∈ B ∩�

inf
z∈2B

ωL ,z(4B)G(x, y)rn−1
B .

infz∈2B ω
L ,z(4B)

|x − y|n−1 rn−1
B . inf

z∈2B
ωL ,z(4B)

and since G(x, · ) vanishes on ∂�, we thus have that, for some constant C > 0,

lim sup
y→ξ

CωL ,y(4B)− inf
z∈2B

ωL ,z(4B)G(x, y)rn−1
B ≥ 0 for all ξ ∈ ∂(�\2B)

and so (3-4) follows from the maximum principle [Heinonen et al. 1993, Theorem 11.9]. �

By an iteration argument using Lemma 3.5, one can obtain the following lemma.

Lemma 3.7. Let�(Rn+1 be open with the CDC. Let x ∈ ∂� and 0< r <diam�. Let u be a nonnegative
L-harmonic function in B(x, 4r)∩� and continuous in B(x, 4r)∩� so that u ≡ 0 in ∂�∩ B(x, 4r).
Then extending u by 0 in B(x, 4r) \�, there exists a constant α > 0 such that

u(y)≤ C
(
δ�(y)

r

)α
sup

B(x,2r)
u for all y ∈ B(x, r), (3-5)

where C and α depend on n, 3 and the CDC constant, and δ�(y) = dist(y, �c). In particular, u is
α-Hölder continuous in B(x, r).

The following lemma is standard but we provide a proof for the sake of completeness.

Lemma 3.8. Let �⊂ Rn+1 be an open set, and assume that A is an elliptic matrix and 8 : Rn+1
→ Rn+1

is a bi-Lipschitz map. Set
Ã := |det D8|D8−1(A◦8)DT

8−1 .

Then u is a weak solution of LAu = 0 in 8(�) if and only if ũ = u ◦8 is a weak solution of L Ãũ = 0 in �.

Proof. Let ϕ ∈ C∞c (R
n+1) and ϕ = ψ ◦8. Then by change of variables and the chain rule∫

8(�)

A∇u · ∇ψ =
∫
�

(A◦8)∇u◦8 · ∇ψ◦8|det D8|

=

∫
�

(A◦8)DT
8−1∇(u◦8) · DT

8−1∇(ψ◦8)|det D8|

=

∫
�

|det D8|D8−1(A◦8)DT
8−1∇(u◦8) · ∇(ψ◦8)=

∫
�

Ã∇ũ · ∇ϕ.

The lemma readily follows. �
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We will usually apply the above lemma when 8(x)= Sx for some matrix S, in which case

Ã = (det S)S−1(A ◦ S)(S−1)T . (3-6)

Lemma 3.9. With the same assumptions as Lemma 3.8, and assuming � is a Wiener regular domain, we
have that for any set E ⊂8(∂�)= ∂8(�) and x ∈�

ω
LA,8(x)
8(�) (E)= ω

L Ã,x
� (8−1(E)). (3-7)

Proof. Let ϕ ∈ C∞c (R
n+1). Since the function

v(x)=
∫
ϕ dωL ,x

8(�)

is LA-harmonic for x ∈8(�), by the previous lemma we know that the function

ṽ(x)=
∫
ϕ dωL ,8(x)

8(�)

is L Ã-harmonic for x ∈�. If ξ ∈ ∂�, then as x→ ξ in �, 8(x)→8(ξ) in 8(�), and so

ṽ(x)=
∫
ϕ dωL ,8(x)

8(�) → ϕ(8(ξ)).

Thus, ṽ is the L Ã-harmonic extension of (ϕ ◦8)|∂� to �, and so∫
∂8(�)

ϕ dωLA,8(x)
8(�) =

∫
∂�

ϕ ◦8 dω
L Ã,x
� for all x ∈�.

Since this holds for all such ϕ, we get that for any set E ⊂ ∂8(�)=8(∂�),

ω
LA,8(x)
8(�) (E)= ω

L Ã,x
� (8−1(E)),

which gives the lemma. �

The following lemma will help us relate measures generated by elliptic polynomials to just measures
generated by harmonic polynomials. In particular, if A is an elliptic matrix with constant and real
coefficients, by the change of variables described below (which is just a linear transformation), if h is
a harmonic polynomial solution in an open set � and S =

√
As (where As is the symmetric part of A),

then h̃ = h ◦ S−1 is a polynomial solution of − div A∇u = 0 in S(�). So, there is a bijection between the
set of harmonic polynomials and the set of polynomial solutions of − div A∇u = 0 in S(�) (for a fixed
constant elliptic matrix A). Recall also that p is a harmonic polynomial in an open set if and only if it
is a harmonic polynomial in Rn+1. So, if A is as above, there is an abundance of nontrivial polynomial
solutions of − div A∇u = 0 in any open subset of Rn+1 (including Rn+1 itself). In fact, Theorem 2 in
[Abramov and Petkovšek 2012] states that for such LA, for any k ∈ N, there exists a polynomial solution
of LAh = 0 of degree k.

Lemma 3.10. Let A be an elliptic constant matrix, As =
1
2(A+ AT ), and S =

√
As . Let h ∈ HA and

h̃ = h ◦ S. Then Ã = (det S)I, h̃ ∈ H and

ωh̃ = (det S)−1S−1
[ωA

h ]. (3-8)
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Proof. Note that since LA has constant coefficients, LAs = LA by the fact that for u ∈ C2

LAu =
∑
i, j

ai j ∂i∂j u =
1
2

∑
i, j

ai j ∂i∂j u+
1
2

∑
i, j

ai j ∂j∂i u

=

∑
i, j

(ai j + aj i )

2
∂i∂j u = LAs u.

Thus, if h is an LA-harmonic function, it is also an LAs-harmonic function. Moreover, for anyψ∈C∞c (R
n+1)∫

ψ dωAs
h =

∫
�h

hLAs (ψ)=

∫
�h

hLA(ψ)=

∫
ψ dωA

h .

In fact, without loss of generality, we may assume that A = As .
Recall now that since As is a symmetric, positive definite and invertible matrix with constant real

entries, then it has a unique real symmetric positive definite square root S =
√

As which is also invertible.
Hence, by Lemma 3.8 and (3-6) with A= As , we have that Ã= (det S)I and h̃ is L(det S)I -harmonic, and
thus just harmonic.

Let now ϕ∈C∞c (R
n+1) andψ◦S=ϕ. By Green’s formula and the fact that S is also symmetric, we have

(det S)
∫
ϕ dωh̃ = (det S)

∫
�h̃

h̃1ϕ =−(det S)
∫
�h̃

∇ h̃ · ∇ϕ

=−(det S)
∫
�h̃

ST
∇h ◦ S · ST

∇ψ ◦ S

=−

∫
S−1(�h)

SST
∇h ◦ S · ∇ψ ◦ S

=−

∫
�h

As∇h · ∇ψ =
∫
�h

hLAs (ψ)

=

∫
�h

hLA(ψ)=

∫
ψ dωA

h =

∫
ϕ d S−1

[ωA
h ]. �

Let us recall some simple facts from linear algebra which help us understand how the geometry of
� is affected by the linear transformation above. Note that S is orthogonally diagonalizable since it is
symmetric, which means that it represents a linear transformation with scaling in mutually perpendicular
directions. Hence S−1 is a special bi-Lipschitz change of variables that takes balls to ellipsoids, where
eigenvectors determine directions of semiaxes, eigenvalues determine lengths of semiaxes and its maximum
eccentricity is given by

√
(λmax/λmin) (where λmax are λmin are the maximal and minimal eigenvalues

of S−1), which is in turn bounded below by
√
3
−1

and above by
√
3. In particular, S−1(∂�)=∂(S−1(�)),

3−1/2
≤ ‖S−1

‖ ≤31/2; i.e., S−1 distorts distances by at most a constant depending on ellipticity.

3D. The main blow-up lemma. We now introduce the main tool of this paper, which is a variant of
previous blow-up arguments, first introduced by Kenig and Toro [2006] for NTA domains, then extended
to CDC domains in [Azzam et al. 2017b]. Both these cases apply to harmonic measure but can be
extended to elliptic measures with a VMO condition on the coefficients.
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Lemma 3.11. Let �+ ⊂ Rn+1 be a CDC domain, K ⊂ ∂�+ a compact set, ξj ∈ K a sequence of points,
and L =− div A∇ a uniformly elliptic operator in �+ such that

lim
r→0

sup
ξ∈K

1
rn+1 inf

C∈C

∫
B(ξ,r)∩�+

|A(x)−C | dx = 0. (3-9)

Let ω+ be the elliptic measure for �+ and cj ≥ 0, and rj → 0 such that ω+j = cj Tξj ,rj [ω
+
]⇀ω+

∞
for

some nonzero measure ω+
∞

. Let �+j = Tξj ,rj (�
+). Then there is a subsequence and a closed set 6 ⊂Rn+1

such that:

(a) For all R > 0 sufficiently large, B(0, R) ∩ ∂�+j 6= ∅ and ∂�+j ∩ B(0, R)→ 6 ∩ B(0, R) in the
Hausdorff metric.

(b) 6c
=�+

∞
∪�−
∞

, where�+
∞

is a nonempty open set and�−
∞

is also open but possibly empty. Further,
they satisfy that for any ball B with B ⊂�±

∞
, a neighborhood of B is contained in �±j for all j large

enough.

(c) suppω+
∞
⊂6.

(d) Let u+(x)= G�+(x, x+) on �+ and u+(x)= 0 on (�+)c. Set

u+j (x)= cj u+(xrj + ξj )rn−1
j .

Then u+j converges locally uniformly in Rn+1 and in W 1,2
loc (R

n+1) to a nonzero function u+
∞

which is
continuous in Rn+1, vanishes in (�+

∞
)c, and satisfies

u+
∞
(y). ω+

∞
(B(x, 4r))r1−n (3-10)

for x ∈6, r > 0, and y ∈ B(x, r)∩�+
∞

. Moreover, there is A+0 a constant elliptic matrix so that if
L+0 =− div A+0 ∇, then∫

ϕ dω+
∞
=

∫
Rn+1

u+
∞

L+0 ϕ for any ϕ ∈ C∞c (R
n+1). (3-11)

Suppose now that �− = Rn+1
\�+, so that ∂�+ = ∂�− and �− is also connected and has the CDC.

Define analogously ω−j , u−, u−j , and u−
∞

. Assume that A is uniformly elliptic in �+ ∪�−, (3-9) holds
for �+ ∪�− in place of �+ and ω−j converges weakly to ω−

∞
= cω+

∞
for some number c ∈ (0,∞).

Then �−
∞
6= ∅ and for a suitable subsequence, (d) holds for u−j , u−

∞
, and �−

∞
. Furthermore, if we set

u∞ = u+
∞
− c−1u−

∞
, then:

(e) u∞ extends to a continuous function on Rn+1 which satisfies L0u∞ = 0 in Rn+1.

(f) 6 = {u∞ = 0}, with u∞ > 0 on �+
∞

and u∞ < 0 on �−
∞

. Further, 6 is a real analytic variety of
dimension n.

(g) dω+
∞
=−(∂u∞/∂νA0) dσ∂�+∞ , where σS stands for the surface measure on a surface S and ∂/∂νA0 =

ν · A0∇ is the outward conormal derivative.

Proof. The proof of this lemma can be found in [Azzam et al. 2017b] for harmonic measure for the case
that K = {ξ} (i.e., so that (1-4) holds). The proof for general K is essentially the same in this setting with
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minor changes. Here we shall only record the required modifications (some of which are quite substantial)
for the K = {ξ} case in order for the same proof to work for any elliptic measure as well. In this case,
ξj = ξ for all j . We set

Aj (x) := A(rj x + ξ), u±j (x) := cjrn−1
j u±(rj x + ξ), ϕj (x) := ϕ

(
x − ξ

rj

)
.

Without loss of generality we can only work with u+ since the results for u− can be proved analogously.
Notice now that for j large enough, the pole x+ is not in supp(ϕj ). In fact, for any ball B centered at

the boundary of �j , we can find j0 ∈ N such that for all j ≥ j0, we have x+ 6∈ Tξ,rj (B). Moreover, for
x ∈ B ∩�j and j large enough,

u+j (x)= cjrn−1
j u+(rj x + ξ)

(3-4)
. cjrn−1

j (rjrB)
1−nω+(4rj B+ ξ)= r1−n

B ω+j (4B). (3-12)

Proof of (b): We only need to prove the existence of B ⊂�+j for large j ∈ N. Suppose there is no such
ball. Let ϕ be any continuous compactly supported nonnegative function for which

∫
ϕ dω+

∞
6= 0, and let

M > 0 be so that suppϕ ⊂ B(0,M). Thus, there must be x0 ∈ B(0,M)∩ suppω+
∞

. We set

δj := sup{dist(x, (�+j )
c) : x ∈ B(0, 2M)},

which goes to zero by assumption. For x ∈ B(0, 2M) and j ∈ N, let ζj (x) ∈ (�
+

j )
c be closest to x so

that |x − ζj (x)| ≤ δj ≤ 2M (the second inequality holds because 0 ∈ ∂�+j ). It also holds that for all
x ∈ B(0, 2M), we have |x − x0| ≤ |x | + |x0|< 3M.

Notice now that for any j big enough, u+j is a solution in B(0, 2M)∩�+j and a subsolution in B(0, 2M).
Moreover, if x ∈�+j , then ζj (x) ∈ ∂�+j . Thus, for j large, by Cauchy–Schwarz, Caccioppoli’s inequality
in B(0,M) (which also holds for subsolutions), and the fact that u+j and ϕ are supported in �+j and
B(0,M) respectively,

0 <

∫
ϕ dω+j =

∫
�+j

Aj∇u+j · ∇ϕ .λ,3,n,M ‖∇ϕ‖∞

(∫
B(0,2M)

|u+j |
2
)1/2

(3-5)
.

(∫
�+j ∩B(0,2M)

(
sup

B(ζj (x),2M)
u+j
)2
(

x − ζj (x)
2M

)2α

dx
)1/2

(3-12)
.

(∫
�+j ∩B(0,2M)

[ω+j (B(ζj (x), 8M))(2M)1−n
]
2 dx

)1/2(
δj

2M

)α
. (2M)(n+1)/2ω+j (B(x0, 13M))(2M)1−n

(
δj

2M

)α
,

and thus

0<
∫
ϕ dω+

∞
.λ,3,n,M,ϕ

(
lim sup

j→∞
ω+j (B(x0, 13M))

)
lim

j
δαj

≤ ω+
∞
(B(x0, 13M)) · 0= 0,

which is a contradiction. Thus, there is B ⊂�j for all large j (after passing to a subsequence).
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Proof of (d): Arguing as in [Azzam et al. 2017b], there exists u+
∞

which is continuous in Rn+1 and
vanishes on (�+

∞
)c such that (after passing to a subsequence) u+j → u+

∞
uniformly on compact sets

of Rn+1. Moreover, it is not hard to see that u+j ∈W 1,2(B) for large j . Indeed, by (3-12), it is clear that

‖u+j ‖
2
L2(B) . r3−n

B [ω
+

j (4B)]2, (3-13)

while by Caccioppoli’s inequality and (3-12),∫
B
|∇u+j |

2 . r−2
B

∫
B
|u+j |

2 . r−2
B [r

1−n
B ω+j (4B)]2rn+1

B = r1−n
B [ω

+

j (4B)]2. (3-14)

In view of (3-13) and (3-14) we have

lim sup
j→∞

‖u+j ‖W 1,2(B) . r (1−n)/2
B (1+ rB) lim sup

j→∞
ω+j (4B)

≤ r (1−n)/2
B (1+ rB)ω

+

∞
(4B) <∞.

Therefore, by [Heinonen et al. 1993, Theorem 1.32], u+
∞
∈ W 1,2

loc (R
n+1) and there exists a further

subsequence of u+j that converges weakly to u+
∞

in W 1,2
loc (R

n+1).
Notice that

−

∫
�+j

Aj∇u+j · ∇ϕ =
∫
ϕ dω+j .

Indeed, by a change of variables, and letting ϕj = ϕ ◦ Tξ,rj and ϕj = ϕ ◦ Tξ,rj ,∫
ϕ dω+j = cj

∫
ϕj dω+ =

∫
�+

A∇u+ · ∇ϕj

= cjrn
j

∫
�+j

A(rj x + ξ)∇u+(rj x + ξ) · ∇ϕ(x) dx

=

∫
�+j

Aj∇u+j · ∇ϕ.

Let C j,k be a constant elliptic matrix so that

lim
j
(krj )

−1−n
∫

B(ξ,krj )∩�+
|A−C j,k | = 0.

By a diagonalization argument and compactness, we may pass to a subsequence so that for each k,
C j,k converges to a uniformly elliptic matrix Ck with constant coefficients. It is not hard to check that we
must in fact have that Ck = A+0 for some fixed matrix A+0 (using the fact that inf δj > 0). Thus, we have

lim
j
(Mrj )

−1−n
∫

B(ξ,Mrj )∩�+
|A− A+0 | = 0 for all M ≥ 1. (3-15)

To see the ellipticity of A+0 is pretty easy but we show the details for completeness. Note that since A is
uniformly elliptic for a.e. x ∈�+, for ξ ∈ Rn+1

3−1
|ξ |2 ≤ A(x)ξ · ξ = (A(x)− A+0 )ξ · ξ + A+0 ξ · ξ.
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Then, if we take averages over B(ξ,Mrj )∩�, use the existence of corkscrew balls in �j for large j
proved in (b), and then take limits as j→∞, by (3-15) we have

3−1
|ξ |2 ≤ A+0 ξ · ξ.

The upper bound follows by a similar argument and the proof is omitted.
We will now estimate the difference∫

�+j

Aj∇u+j · ∇ϕ−
∫
�+∞

A+0 ∇u+
∞
· ∇ϕ (3-16)

for sufficiently large j .
To this end, let supp(ϕ)⊂ B(0,M). Note that

|(3-16)| ≤
∣∣∣∣∫
�+j

(A(rj x + ξ)− A+0 )∇u+j · ∇ϕ
∣∣∣∣+ ∣∣∣∣∫

B(0,M)
(∇u+j 1�j −∇u+

∞
1�∞) · A

+,T
0 ∇ϕ

∣∣∣∣≤ I1+ I2.

Note that u+j , u+
∞
∈W 1,2(Rn+1), u+j > 0 only in �+j , and u+

∞
> 0 only in �+

∞
. Since the extension of the

gradient of a function f ∈W 1,2
0 (�) by zero to Rn+1 (where � is any domain) is the same as the gradient

of the extension of f by zero,1 we have that in W 1,2(B(0,M))

∇u+j 1�+j =∇(u
+

j 1�+j )=∇u+j ⇀ ∇u+
∞
=∇(u+

∞
1�+∞)=∇u+

∞
1�+∞,

so we have I2→ 0. On the other hand, since A and A+0 ∈ L∞(�),

I1 ≤ ‖∇u+j ‖L2(B(0,M))‖∇ϕ‖∞

(∫
B(0,M)∩�+j

|A(rj x + ξ)− A+0 |
2 dx

)1/2

(3-14)
.3 M (1−n)/2ω+

∞
(B(0, 4M))

(
1

r1+n
j

∫
B(0,Mrj )∩�+

|A(x)− A+0 | dx
)1/2

(3-15)
→ 0.

Thus, combining the above estimates and taking j→∞, we infer that

−

∫
�+∞

A+0 ∇u+
∞
· ∇ϕ =

∫
ϕ dω+

∞
.

In particular, u+
∞

is a continuous weak solution of

L+0 w =− div A+0 ∇w = 0 in �+
∞
.

Since L+0 is a second-order elliptic operator with constant coefficients, u+
∞

is real analytic in �+
∞

. Thus,
by the definition of u+

∞
and since the gradient of its extension by zero is the extension by zero of the

gradient, we have ∫
�+∞

A+0 ∇u+
∞
· ∇ϕ =

∫
Rn+1

A+0 ∇u+
∞
· ∇ϕ.

1See Proposition 9.18 in [Brezis 2011]. It is stated for C1-domains, but the direction we need holds for general �.
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We now use the divergence theorem along with the fact that supp(∇ϕ) ⊂ B(0.M) and obtain (writing
L+,T0 = LA+,T0

)∫
ϕ dω+

∞
=−

∫
Rn+1

div[u+
∞

A+,T0 ∇ϕ] +

∫
Rn+1

u+
∞

L+,T0 ϕ =−0+
∫

Rn+1
u+
∞

L+,T0 ϕ,

which finishes the proof of (d). The rest of the proof is almost identical since one only uses that u∞ is
real analytic in Rn+1 and Liouville’s theorem for positive solutions of uniformly elliptic equations; see,
e.g., [Heinonen et al. 1993, Corollary 6.11].

One may argue similarly in the case of u−j . Notice that in this case, we will obtain a constant-coefficient
uniformly elliptic matrix A0 such that

lim
j
(Mrj )

−1−n
∫

B(ξ,Mrj )∩(�+∪�−)

|A− A0| = 0 for all M ≥ 1. �

Now we prove a slightly weaker version of this result in the next two lemmas. Again, this is based
on the details in the proof of [Azzam et al. 2016c, Lemma 5.3], but with some adjustments for elliptic
measure.

Lemma 3.12. Let�⊂Rn+1 be a domain. Let ξj ∈ ∂� and L =− div A∇ be a uniformly elliptic operator
in � such that (1-3) holds with K = {ξj } and, if ω = ωLA,x0

� is its LA-harmonic measure with pole at
x0 ∈�, there is rj → 0 and cj > 0 so that

ωj := cj Tξj ,rj [ω] → ω∞, (3-17)

lim inf
j

|�∩ B(ξj , rj )|

rn+1
j

> 0, (3-18)

ωz(B(ξj , 2rj ))& 1 for all j and z ∈ B(ξj , rj )∩�. (3-19)

Then there is a subsequence such that the following hold: If u(x)= G�(x, x0) on � and u(x)= 0 on �c,
and

u j (x)= cj u(xrj + ξj )rn−1
j ,

then u j converges in L2
loc

( 1
2 B
)

to a nonzero function u∞ which is LA0-harmonic in {x : u∞ > 0} ∩
( 1

2 B
)

for constant uniformly elliptic matrix A0 and such that

‖u∞‖L2(B/2) . ω∞(B(0, 2)), (3-20)
and for any ϕ ∈ C∞c

( 1
2 B
) ∫

ϕ dω∞ =
∫

Rn+1
u∞LA0ϕ. (3-21)

If ξ = ξj and A is continuous at ξ , then A0 is just the value of A at ξ .

Proof. Recall that we let B = B(0, 1). Again, to simplify notation, we’ll just prove the case when
ξj = ξ ∈ ∂�.

By (3-19), without loss of generality, we can scale the cj so that

ω∞
( 1

4 B
)
= 1. (3-22)
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Let �j = Tξ,rj (�). By (3-19) and (3-4),

ω(B(ξ, 2rj ))& rn−1
j u(x) for all x ∈ B(ξ, rj )∩�1, (3-23)

and so,
ωj (2B)& u j (x) for all x ∈ B∩�

j
1, (3-24)

By Caccioppoli’s inequality for L-subharmonic functions and the uniform boundedness of u in B, we
deduce that, for i = 1, 2,

lim sup
j→∞

‖∇u j‖L2(B/2) . lim sup
j→∞

‖u j‖L2(B) . lim sup
j→∞

ωj (2B)≤ ω∞(2B).

By the Rellich–Kondrachov theorem, the unit ball of the Sobolev space W 1,2
( 1

2 B
)

is relatively compact
in L2

( 1
2 B
)
, and thus there exists a subsequence of the functions u j which converges strongly in L2

( 1
2 B
)

to another function u∞ ∈ L2
( 1

2 B
)
. This and the above inequality imply (3-20).

By the same diagonalization argument as in the proof of the previous lemma (although using (3-18)
instead of inf δj > 0 that we used in the previous lemma), we can pass to a subsequence so that, for some
uniformly elliptic matrix A0 with constant coefficients,

lim
j
(Mrj )

−1−n
∫

B(ξ,Mrj )∩�

|A(x)− A0| = 0 for all M ≥ 1. (3-25)

It easy to check that ∫
ϕ dωj =

∫
Aj∇u j · ∇ϕ dx

for any C∞ function ϕ compactly supported in 1
2 B. Then passing to a limit, it follows that∫

ϕ dω∞ =
∫

A0∇u∞ · ∇ϕ dx, for any ϕ ∈ C∞c
( 1

2 B
)
. �

Theorem 3.13. Let �± ⊂ Rn+1 be disjoint domains. Let ξj ∈ ∂�
+
∩ ∂�− and L = − div A∇ be a

uniformly elliptic operator in �+ ∪�− such that (1-3) holds with K = {ξj } with respect to �+ ∪�−. If
ω± = ω

LA,x±
�±

is the LA-harmonic measure with pole at x± ∈�±, and if there is rj → 0 and cj > 0 so that

ω+j : = cj Tξj ,rj [ω
+
] → ω∞,

ω−j : = cj Tξj ,rj [ω
−
] → cω∞

for some constant c> 0, then there is a subsequence such that the following hold. If u±(x)= G�±(x, x±)
on �±, u(x)= 0 on (�±)c and

u±j (x)= cj u±(xrj + ξj )rn−1
j , (3-26)

then u j := u+j − c−1u−j converges in L2
( 1

2 B
)

to a nonzero function u∞, which is LA0-harmonic in 1
2 B for

some constant uniformly elliptic matrix A0, and moreover,

1
2 B∩ suppω∞ = {u∞=0} ∩ 1

2 B (3-27)

and (3-20) and (3-21) hold. If ξj = ξ and A is continuous at ξ , then A0 is just the value of A at ξ .
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By applying this result to the sequences cj Tξj ,arj [ω
±
] for all a > 0, we see that u∞ extends to an

LA0-harmonic function on Rn+1 so that for r > 0

‖u∞‖L2(B(0,r)) . r1−nω∞(B(0, 4r)), (3-28)

and for any ϕ ∈ C∞c (R
n+1) ∫

ϕ dω∞ =
∫

Rn+1
u∞LA0ϕ. (3-29)

Proof. The proof is mostly the same as the proof of [Azzam et al. 2016c, Lemma 5.3], but we provided
some of the details here to show the differences. Again, we assume ξj = ξ . Note that since �+ and �−

are disjoint, we may assume without loss of generality that∣∣B(ξ, 1
8rj
)
\�+

∣∣≥ 1
2

∣∣B(ξ, 1
8rj
)∣∣

and so Bourgain’s estimate implies

ω+,z(B(ξ, 2rj ))& 1 for all z ∈ B(ξ, rj ).

Hence, the conclusions of Lemma 3.12 apply to ω = ω+, �=�+, and u = u+. In particular, (3-24) in
our scenario is

ω+j (2B)& u+j (x) for all x ∈ B∩�
j
1. (3-30)

Again, by rescaling, we can assume that ω∞
( 1

4 B
)
= 1.

Observe now that for any nonnegative ϕ ∈ C∞c
( 1

2 B
)

with ϕ = 1 in 1
4 B, by Cauchy–Schwarz and

Caccioppoli’s inequality (since u±j is positive and LAj -harmonic in B∩�±j and zero in B \�±j ) we have

1 = ω∞
( 1

4 B
)
≤

∫
ϕ dω∞ =

∫
A0∇u+

∞
· ∇ϕ dx

= lim
j

∫
�+j

Aj∇u+j · ∇ϕ dx

≤ ‖A‖L∞‖∇ϕ‖L∞(B) lim
j

∫
�+j ∩B/2

|∇u+j |

. ‖A‖L∞‖∇ϕ‖L∞(B) lim
j

(∫
�+j ∩B

|u+j |
2
)1/2

. lim
j

(∫
B∩�+j ∩{u

+

j >t}
|u+j |

2 dx +
∫

B∩�+j ∩{u
+

j ≤t}
|u+j |

2 dx
)1/2

. lim inf
j
(|{x ∈ B∩�+j : u

+

j > t}|1/2 · ‖u+j ‖L∞(B∩�+j )
)+ t

(3-30)
. lim inf

j
(|{x ∈ B∩�+j : u

+

j > t}|1/2ω∞(2B)+ t),

and so, for t small enough,

|B∩�+j | ≥ |{x ∈ B∩�+j : u
+

j (x) > t}|& ω∞(2B)−2.
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In particular,
|B(ξ, rj )\�

−
| ≥ |B(ξ, rj )∩�

+
|& rn+1

j ω∞(2B)−2. (3-31)

Thus, by the same arguments as earlier in proving (3-24), we have that for j large

ω−j (B(ξ, 2rj ))& u−j (x)ω∞(2B)−2 for all x ∈ B(ξ, rj )∩�
−. (3-32)

Thus, we can apply Lemma 3.12 and can pass to a subsequence so that u−j converges in L2
( 1

2 B
)

to a
function u−

∞
. Hence, u+j − c−1u−j → u+

∞
− c−1u−

∞
=: u∞ and

c
∫
ϕ dω∞ =

∫
LA∗0ϕu−

∞
dx for any ϕ ∈ C∞c

( 1
2 B
)
. (3-33)

In particular, we can show that u∞ is LA0-harmonic in 1
2 B, and the rest of the proof is exactly as in

[Azzam et al. 2016c] starting from equation (5.15). �

4. Harmonic polynomial measures

4A. Preliminaries. We now review and collect some lemmas that will help us work with the quantitiesωA
h .

Lemma 4.1. Let h ∈ HA and r > 0. Then

T0,r [ω
A
h ] = rn−1ωA

h◦T−1
0,r
, (4-1)

Fr (ω
A
h )= rn F1(ω

A
h◦T−1

0,r
). (4-2)

Proof. By Lemma 3.10, it suffices to prove this in the case that h ∈ H. Note that if h is a harmonic
function and ϕ ∈ C∞c (R

n+1), then∫
ϕ dT0,r [ωh] =

∫
ϕ ◦ T0,r dωh

=

∫
h1(ϕ ◦ T0,r ) dx = r−2

∫
h1ϕ ◦ T0,r dx

= rn−1
∫

h ◦ T−1
0,r 1ϕ dx = rn−1

∫
ϕ dωh◦T−1

0,r
, (4-3)

and so (4-1) follows. Moreover, by Lemma 2.1(3),

Fr (ωh)= r F1(T0,r [ωh])
(4-1)
= rn F1(ωh◦T−1

0,r
). �

Lemma 4.2. Let h ∈ FA(k) and r > 0. Then

Fr (ω
A
h )= rn+k F1(ω

A
h ). (4-4)

Proof. Note that since h is homogeneous of degree k,

h ◦ T−1
0,r (x)= h(r x)= r kh(x),

and thus, by (4-2),
Fr (ω

A
h )= rn F1(ω

A
h◦T−1

0,r
)= rn F1(ω

A
r k h)= rn+k F1(ω

A
h ). �
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The following is an immediate consequence of Lemma 4.1.

Lemma 4.3 [Badger 2011, Lemma 4.1]. Since FA(k), PA(k), and HA are d-cones, so are FS (k),PS (k),
and HS for any S ⊂ C .

Lemma 4.4. Let Aj ∈ C converge to a matrix A ∈ C and let h j ∈ HAj converge uniformly on compact
subsets to some h ∈ HA. Then ωAj

h j
→ ωA

h weakly.

Proof. First we will deal with the case that Aj = A = I for all j .
We first claim that, since h and h j are harmonic, 1�hj

→ 1�h a.e. Indeed, if 1�h (x)= 1, then h(x) > 0,
and by uniform convergence, h j (x) > 0 for all large j , and so 1�hj

(x)= 1 for all large j ; similarly, if
1�(x) = 0, then either x ∈ ∂�h (which has measure zero) or h j (x) < 0 for all large j , in which case
1�hj

(x)= 0 for all large j . Thus, 1�hj
→ 1�h pointwise everywhere in (∂�h)

c and thus a.e. in Rn+1. In
particular, h j 1�j → h1� a.e. Hence, for ϕ ∈ C∞c (R

n+1), by the dominated convergence theorem,

lim
j→∞

∫
ϕ dωh j = lim

j→∞

∫
�hj

h j1ϕ =

∫
�h

h1ϕ =
∫
ϕ dωh,

which implies ωh j ⇀ωh as j→∞.
Now we handle the general case. Let Aj,s =

1
2(Aj + AT

j ), and Sj =
√

Aj,s , and define As and S
similarly. Let Ãj and Ã be defined as in (3-6), and let h̃ = h ◦ S and h̃ j = h j ◦ Sj . Since

√
· is continuous

on the set of real symmetric matrices, h̃ j→ h̃ uniformly on compact subsets and both are harmonic. Thus,
ωh̃ j

⇀ωh̃ , and so

lim
j→∞

ωA
h j

(3-8)
= lim

j→∞
(det Sj )Sj [ωh̃ j

] = (det S)S[ωh̃]
(3-8)
= ωA

h . �

Lemma 4.5. If A ∈ C and h ∈ PA(k) for some k ∈ N, then

‖h‖L∞(B) .k,3 F1(ω
A
h ). (4-5)

Proof. Suppose instead that there exist Aj ∈C and h j ∈ PAj (k) for which ‖h j‖L∞(B)> j F1(ω
Aj
h j
). Without

loss of generality, we may assume ‖h j‖L∞(B) = 1, and thus F1(ω
Aj
h j
)→ 0. Using Cauchy estimates (see,

e.g., Proposition 11.3 [Mitrea 2013]), {h j }
∞

j=1 forms a normal family in B, and thus we can pass to a
subsequence so that h j converges uniformly on compact subsets of B and so that Aj converges to some
A ∈ C . Since all h j are polynomials of order k, we know that the coefficients of h j converge, which, in
turn, implies that h j converges to some function h ∈PC (k) uniformly on compact subsets of Rn+1. By
Lemma 4.4, ωAj

h j
→ ωA

h . In particular,

F1(ω
A
h )= lim

j→∞
F1(ω

Aj
h j
)= 0.

Thus, ω(B(0, r)) = 0 for all r < 1, and so 0 6∈ suppωh . We will now show that in fact 0 ∈ suppωA
h in

order to get a contradiction.
First, by Lemma 3.10, we can assume without loss of generality that A = I and ωA

h = ωh . Secondly,
notice that as h j ∈PC (k), we have h ∈P(k) and so h(0)= 0. By Lojasiewicz’s structure theorem for
real analytic varieties (see, e.g., [Krantz and Parks 1992, Theorem 6.3.3, p. 168]), if U is a small enough
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neighborhood of a point 0 ∈6h , we have

U ∩6h = V n
∪ V n−1

∪ · · · ∪ V 0,

where V 0 is either the empty set or the singleton {0} and for each i ∈ {1, . . . , n}, we may write V i as
a finite, disjoint union V i

=
⋃Nk

j=1 0
i
j of i-dimensional real analytic submanifolds. Further, for each

1≤ i ≤ n− 1,

U ∩ V i
⊃ V i−1

∪ · · · ∪ V 0.

Moreover, for 1 ≤ k ≤ n and 1 ≤ j ≤ Nk , U ∩ ∂0i
j is a union of sets of the form 0`m for 1 ≤ ` < i and

1≤ m ≤ N` and possibly V 0.
By the main result in [Cheeger et al. 2015], dim{∇h=0} ≤ n− 1, and thus V n

∩ {∇h=0} is a closed
set of relatively empty interior in V n, so in particular

V n\{∇h=0} ∩U = V n
∩U =6h ∩U 3 0.

For ζ ∈U ∩V n
\{∇h=0}, the derivative of h at ζ tangent to V n is always zero, as h is zero on V n, which

forces ∇h to be perpendicular to V n. Since the normal derivative is nonzero,

U ∩ V n
\{∇h=0} ⊂

{
ζ ∈U ∩ V n

:
∂h
∂ν
6= 0

}
⊂U ∩ V n

∩ suppωh .

Thus, 0 ∈U ∩ V n\{∇h=0} ⊂ suppωh , which gives us the contradiction and concludes the proof. �

4B. Proof of Proposition I. Proposition I is a consequence of the following more general result.

Lemma 4.6. Let S ⊂ C be closed (hence compact). Then PS (k) and FS (k) have compact bases

Proof. Let h j ∈ PAj (k) with Aj ∈S and assume F (ωAj
h j
)= 1. Then by (4-5) and Cauchy estimates, we can

bound each coefficient of the polynomials h j uniformly, and then pass to a subsequence so that Aj→ A∈S

and h j converges on compact subsets of Rn+1 to a function h ∈ PA(k)⊂ PS (k). By Lemma 4.4, we have
ωh j → ωh , which implies that PS (k) has compact basis. The proof for FS (k) is similar. �

As a corollary, we show the following stronger version of (4-5).

Corollary 4.7. For h ∈ PC (k) and r > 0,

‖h‖L∞(rB) ≈k r−n Fr (ωh). (4-6)

Proof. Let h ∈ PC (k) and ϕ ∈ C∞c (R
n+1) be such that 1B/2 ≤ ϕ ≤ 1B. Since PC (k) has compact basis

by Lemma 4.6, we can estimate

F1(ωh)
(2-4)
. F1/2(ωh)≤

∫
ϕ dωh =

∫
�h

h1ϕ ≤ ‖1ϕ‖∞

∫
B

|h|. ‖h‖L∞(B)

(4-5)
. F1(ωh).

For r 6= 1, by the previous inequalities we have

Fr (ωh)
(4-2)
= rn F1(ωh◦T−1

0,r
)≈ rn

‖h ◦ T−1
0,r ‖L∞(B) ≈ rn

‖h‖L∞(rB). �
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4C. Proof of Proposition II.

Lemma 4.8. Let h ∈ HA, A ∈ C , and

h(x)=
∞∑

j=m

∑
|α|= j

Dαh(0)
α!

xα =
∞∑

j=m

h j (x)

be its Taylor series (where m > 0 and hm 6= 0), which converges uniformly to h on compact subsets
of Rn+1. Then Tan(ωA

h , 0)= {cωA
hm
: c > 0}.

Proof. For notational convenience, we will just consider the case A = I ; the general case is identical.
Note that as r→ 0, we have r−mh ◦T−1

0,r → hm uniformly on compact subsets of Rn+1. Indeed, fix R > 0.
Then the series

r−m
∞∑

j=m

∑
|α|= j

Dαh(0)
α!

(r x)α =
∞∑

j=m

∑
|α|= j

Dαh(0)
α!

xαr |α|−m

converges uniformly to r−mh ◦ T−1
0,r on compact subsets of B(0, R), provided r is small enough. In fact,

by Cauchy estimates,
|Dαh(0)|.n |α|

|α|,

and since there exists a constant C > 1 such that kk/k!.Ck, for x ∈ B(0, R) and r ∈ (0, 1/(C R)) we have

|r−mh ◦ T−1
0,r (x)− hm(x)| ≤

∞∑
j=m+1

∑
|α|= j

∣∣∣∣Dαh(0)
α!

∣∣∣∣R|α|r |α|−m

.n,m

∞∑
j=m+1

C j R jr j−m . r−m(C Rr)m+1
= (C R)m+1r

r↓0
−→ 0.

Let now
νr := r−m−n+1T0,r [ωh]

(4-1)
= r−mωh◦T−1

0,r
= ωr−m h◦T−1

0,r
.

By Lemma 4.4, νr ⇀ωhm ∈F (m). In particular, every tangent measure of ωh at zero must be a multiple
of this one. �

We now state an interesting consequence of these results: if a portion of tangent measures of an
arbitrary Radon measure are in P(k), then in fact they are all in F (k) (that is, we did not have to assume
the original measure was special like harmonic measure).

Lemma 4.9. Let ω be a Radon measure, ξ ∈ suppω, and k be the minimal integer such that Tan(ω, ξ)∩
P(k) 6=∅; then Tan(ω, ξ)∩P(k)⊂F (k).

We follow the proof in [Badger 2011, Lemma 5.9], which originally supposed that ω was a harmonic
measure for an NTA domain.

Proof. If k = 1, then P(1)=F (1). Now suppose k > 1 and there is h ∈ P(k) nonhomogeneous such
that ωh ∈ Tan(ω, ξ)∩P(k). Since h ∈P(k), we may write

h(x)=
k∑

j=m

∑
|α|= j

Dαh(0)
α!

xα =
k∑

j=m

hm(x),
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where m < k since h ∈P(k) is not homogeneous. By Lemma 4.8, Tan(ωh, 0)= {cωhm : c> 0} ⊂F (m),
and since Tan(ωh, 0)⊂ Tan(ω, ξ) by Lemma 2.9, Tan(ω, ξ)∩F (m) 6=∅, contradicting the minimality
of k. Thus, Tan(ω, ξ)∩P(k)⊂F (k). �

We will also need the following result.

Lemma 4.10 [Badger 2011, Lemma 4.7]. Suppose h ∈ P(m) for some m. There exist ε = ε(n,m, k) > 0
and r0 > 0 so that if dr (ωh,F (k)) < ε for all r ≥ r0, then m = k.

Proof of Proposition II. Suppose Tan(ω, ξ)⊂P(k). Let m be the minimal integer for which Tan(ω, ξ)∩
P(m) 6= ∅, so m ≤ k. Then, by Lemma 4.9, Tan(ω, ξ) ∩P(m) ⊂ F (m). In particular, Tan(ω, ξ) ∩
F (m) 6= ∅. Since, by Proposition I, P(k) has compact basis, we can use Lemmas 4.10 and 2.10 to
conclude Tan(ω, ξ)⊂F (m). �

5. Proof of Theorem I

Lemma 5.1. Let S ⊂ C be closed and ω = ωA,x
� be an LA-harmonic measure where A ∈ A and

LA ∈VMO(�, ξ) at ξ ∈ suppω. Also assume we have Tan(ω, ξ)⊂HS . Let k be the smallest integer for
which Tan(ω, ξ)∩FS (k) 6=∅. Then Tan(ω, ξ)⊂FS (k). In particular,

lim
r→0

logω(B(ξ, r))
log r

= n+ k− 1; (5-1)

i.e., the pointwise dimension of harmonic measure at the point ξ is n+ k− 1.

Proof. If Tan(ω, ξ) 6⊂FS (k), then by Corollary 2.12, there is r0 > 0 so that for any ε > 0 small we may
find ν ∈ Tan(ω, ξ)\FS (k) so that dr0(ν,FS (k))= ε and dr (ν,FS (k))≤ ε for all r ≥ r0. Without loss
of generality, we can assume r0 = 1. For each r > 1, choose µr ∈FS (k) such that Fr (µr )= 1 and

Fr

(
ν

Fr (ν)
, µr

)
< 2ε.

Then for r ≥ 1,

Fr (ν)

F2r (ν)
=

∫
(r − |x |)+ d

ν

F2r (ν)
< 2ε+

∫
(r − |x |)+ dµ2r = 2ε+ Fr (µ2r )

(4-4)
= 2ε+ 2−n−k F2r (µ2r )= 2ε+ 2−n−k

= 2−n−k+β

for some β > 0 that goes to zero as ε→ 0. Similarly,

Fr (ν)

F2r (ν)
≥ 2−n−k−β .

Hence, for ` ∈ N,

2`(n+k−β)
≤

F2`r (ν)

Fr (ν)
≤ 2`(n+k+β). (5-2)

Note that ν = ωA
h for some h ∈HA by Theorem 3.13 and A ∈S , and so

‖h‖L∞(2`B)

(3-28)
. 2`(1−n)ωh(B(0, 2`+1))≤ 2−`n−1 F2`+2(ωh)

(5-2)
≤ 2`(k+β)−1 F22(ωh). (5-3)
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Let α be a multi-index of length |α|> k. Then we can pick ε > 0 small enough so that β is so small that
|α| − k−β > 0 holds. Thus, by Cauchy estimates,

|∂αh(0)|.α 2−`|α|‖h‖L∞(2`B)

(5-3)
. 2−`(|α|−k−β)F22(ωh)→ 0

as `→∞, and so h ∈PA(k).
Suppose h =

∑k
j=1 h j . If ωh 6∈FA(k), then there exists j < k such that h j 6= 0, and by Lemma 4.8, we

infer that Tan(ωA
h , 0) contains an element of FA( j). Since ωA

h ∈ Tan(ω, ξ), we know that Tan(ωA
h , 0)⊂

Tan(ω, ξ) by Lemma 2.9 and thus, Tan(ω, ξ)∩FA( j) 6=∅. Hence Tan(ω, ξ)∩FS ( j) 6=∅, contradicting
the minimality of k. This proves Tan(ω, ξ)⊂FS (k).

For the final equality, note that Tan(ω, ξ)⊂FS (k) and so Tan(ω, ξ) has compact basis. In particular,
by Lemma 2.11,

lim
r→0

d1(Tξ,r [ω],FS (k))= 0.

Thus, for ε > 0, there is r0> 0 such that for each r ≤ r0 there exists µr ∈FS (k) so that F1(µr )= 1 and

F1

(
Tξ,r [ω]

F1(Tξ,r [ω])
, µr

)
< ε.

Setting νr = r−1T−1
ξ,r [µr ], this gives Fr (νr )= 1 and

Fr

(
ω

Fr (ω)
, νr

)
< ε.

By the same arguments as earlier, we can show that there exists γ > 0, which goes to zero as ε→ 0, so
that for all `≥ 0 and r < 2−`−1r0

2`(n+k−γ )
≤

F2`r (ω)

Fr (ω)
≤ 2`(n+k+γ ). (5-4)

Hence, if we set d = n+ k− 1, we get

ω(B(ξ, 2`r))= Tξ,r [ω](B(0, 2`))≤ 2−`F2`+1(Tξ,r [ω])

≤ 2(`+1)(n+k+γ )−`F1(Tξ,r [ω])

≤ 2`(d+γ )+n+k+γ Tξ,r [ω](B(0, 1))

= 2`(d+γ )+n+k+γω(B(ξ, r)).
Similarly,

ω(B(ξ, r))= Tξ,r [ω](B(0, 1))≤ F2(Tξ,r [ω])

≤ 2−(`−1)(n+k−γ )F2`(Tξ,r [ω])

≤ 2−(`−1)(n+k−γ )+`ω(B(ξ, 2`r))

= 2−`(d−γ )+n+k−γω(B(ξ, 2`r)).

For r < 1
2r0, let ` ∈ N be so that 2−`−1r0 ≤ r ≤ 2−`r0. Then

ω(B(ξ, r))≤ ω(B(ξ, 2−`r0))≤ 2−`(d−γ )+n+k−γω(B(ξ, r0))

≤ 21+(n+k−γ )rd−γω(B(ξ, r0)).
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Hence, recalling that these logs are negative, we conclude

lim inf
r→0

logω(B(ξ, r))
log r

≥ lim inf
r→0

log(21+(n+k−γ )ω(B(ξ, r0)))

log r
+ d − γ = d − γ.

A similar estimate gives

lim sup
r→0

logω(B(ξ, r))
log r

≤ d + γ.

If we let γ → 0, then (5-1) follows. �

Proof of Theorem I. We set

E∗ =
{
ξ ∈ E : lim

r→0

ω+(E ∩ B(ξ, r))
ω+(B(ξ, r))

= lim
r→0

ω−(E ∩ B(ξ, r))
ω−(B(ξ, r))

= 1
}
,

E∗∗ = {ξ ∈ E∗ : (1-4) holds}.

Notice that by [Mattila 1995, Corollary 2.14(1)] and because ω1 and ω2 are mutually absolutely continuous
on E ,

ω+(E\E∗∗)= ω−(E\E∗∗)= 0.

Also, set

31 =

{
ξ ∈ E∗∗: 0< h(ξ) :=

dω−

dω+
(ξ)= lim

r→0

ω−(B(ξ, r))
ω+(B(ξ, r))

= lim
r→0

ω−(E ∩ B(ξ, r))
ω+(E ∩ B(ξ, r))

<∞

}
,

0 = {ξ ∈31 : ξ is a Lebesgue point for h with respect to ω+}.

Again, by Lebesgue differentiation for measures (see [Mattila 1995, Corollary 2.14(2) and Remark 2.15(3)]),
0 has full measure in E∗∗ and hence in E .

Next, we record a lemma which was proven in [Azzam et al. 2017b, Lemma 5.8] (which in turn is
based on the work of [Kenig et al. 2009]) in the case of the harmonic functions in domains that satisfy
the CDC condition, but its proof goes through unchanged for L-harmonic functions in general domains.

Lemma 5.2. Let ξ ∈0, cj ≥ 0, and rj→ 0 be so that ω+j = cj Tξ,rj [ω
+
]→ω∞. Then ω−j = cj Tξ,rj [ω

−
]→

h(ξ)ω∞.

We define
F := {cHn

|V : c > 0, V a d-dimensional plane containing the origin}.

It is not hard to show that F has compact basis.

Lemma 5.3. For ω+-a.e. ξ ∈ 0,
Tan(ω+, ξ)∩F 6=∅.

Proof. We can pick ξ ∈0 so that Tan(ω+, ξ) 6=∅, let ω∞ ∈Tan(ω+, ξ), so there is cj > 0 and rj ↓ 0 so that
cj Tξ,rj [ω

+
]→ω∞. By Lemma 5.2, we also have cj Tξ,rj [ω

−
]→ h(ξ)ω∞. By Theorem 3.13, (3-27) holds.

In particular, 1
2 B∩ suppω∞ is a smooth real analytic variety, and arguing as in [Azzam et al. 2016c],

for example, one deduces that

dω∞|B/2 =−cn(ν�+∞ ·A0∇u∞) dHn
|∂∗�+∞∩B/2,
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where A0 is the matrix from Theorem 3.13, ∂∗�+
∞

is the reduced boundary of �+
∞
= {u∞>0} and ν�+∞ is

the measure-theoretic outer unit normal. Hence, ω∞ is absolutely continuous with respect to surface mea-
sure of ∂�+

∞
in 1

2 B. Thus, since the tangent measure at Hn-almost every point of ∂�+
∞

is contained in F,
we can take another tangent measure of ω∞ that is in F and apply Theorem 2.8 to conclude the proof. �

By Lemmas 5.1 and 5.3, we also have that dimω+|E = n. It remains to show that if �± both have the
CDC, then limr→02

F
∂�+

(ξ, r)= 0 for ω+-a.e. ξ ∈ E . But this follows almost immediately because, for
almost every ξ ∈ 0 and any rj ↓ 0, we may pass to a subsequence so that, by Lemma 3.11(a) and (f),
lim j→∞2

F
∂�+

(ξ, rj )= 0. This concludes the proof of Theorem I. �

6. BMO, VMO and vanishing A∞

In this section, we will prove some estimates relating the logarithm of a Radon–Nikodym derivative to
the mutual absolute continuity properties of two measures. We will apply them to the specific case of
elliptic measure, but we will prove them for general measures.

Definition 6.1. Let µ be a Radon measure on a metric space X . We say that a function f ∈ L1
loc(µ) is of

bounded mean oscillation and write f ∈ BMO(µ) if there exists a constant C > 0 such that

sup
r∈(0,∞)

sup
x∈suppµ

−

∫
B(x,r)

| f − fB(x,r)| dµ≤ C, (6-1)

where f A := −
∫

A f dµ := µ(A)−1
∫

A f dµ for any A ⊂ X with µ(A) > 0. We define the space of
vanishing mean oscillation VMO(µ) to be the closure in the BMO(µ) norm of the set of bounded
uniformly continuous functions defined on X . Equivalently, we say f ∈ VMO(µ) if f ∈ L1

loc(µ) and

lim
r→0

sup
x∈suppµ

−

∫
B(x,r)

| f − fB(x,r)| dµ= 0. (6-2)

Definition 6.2. For two measures µ and ν on a metric space X , we will say ν ∈ A∞(µ) if µ� ν and
there is K = K (µ, ν) so that for any ball B centered on the support of µ

−

∫
B

dν
dµ

dµ exp
(
−−

∫
B

log dν
dµ

dµ
)
≤ K (µ, ν). (6-3)

We will say ν ∈ A′
∞
(µ) if there are ε, δ ∈ (0, 1) so that for all B ⊆ X and E ⊆ B

µ(E)
µ(B)

< δ =⇒
ν(E)
ν(B)

< ε. (6-4)

We will say ν ∈ V A∞(µ) (or vanishing A∞ with respect to µ) if

lim
r→0

sup
ξ∈suppµ

−

∫
B

dν
dµ

dµ exp
(
−−

∫
B

log dν
dµ

dµ
)
= 1 (6-5)

and ν ∈ V A′
∞
(µ) if for all r > 0 there is εr ∈ (0, 1) so that limr→0 εr = 0 and δr > 0 so that for all balls

B ⊂ X with rB < r and E ⊂ B
µ(E)
µ(B)

< δr =⇒
ν(E)
ν(B)

< εr . (6-6)
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In the case that X =Rn+1 and µ is equal to the (n+1)-dimensional Lebesgue measure, A∞-equivalence
is the same as A′

∞
-equivalence, and this is from [Reimann and Rychener 1975], although it was also

shown later in [Khrushchev 1984; García-Cuerva and Rubio de Francia 1985].
We recall a notion introduced in [Korey 1998].

Definition 6.3. A probability space (X, µ) is halving if every subset E ⊂ X of positive measure has a
subset F ⊂ E so that µ(F)= 1

2µ(E).

We will first focus on proving the following after a series of other lemmas.

Lemma 6.4. Let (X, µ) be a metric measure space, ν� µ, and f = dν/dµ:

(1) If ν ∈ A′
∞
(µ) and log f ∈ BMO(µ), then ν ∈ A∞(µ). If X is also halving, then ν ∈ A∞(µ) implies

ν ∈ A′
∞
(µ) and log f ∈ BMO(µ).

(2) If ν ∈ V A′
∞
(µ) and log f ∈ VMO(µ), then ν ∈ V A∞(µ). If X is also halving, then ν ∈ V A∞(µ)

implies ν ∈ V A′
∞
(µ) and log f ∈ VMO(µ).

The first implication of the second half of (1) of the lemma is a consequence of the following theorem.

Theorem 6.5 [Khrushchev 1984, Theorem 1]. Suppose ν� µ, B is a ball centered on suppµ, and

−

∫
B

dν
dµ

dµ exp
(
−−

∫
B

log dν
dµ

dµ
)
≤ C.

Then there are ε, δ > 0 so that, for any F ⊂ B ∩ suppµ,

µ(F)
µ(B)

< δ =⇒
ν(F)
ν(B)

< ε. (6-7)

Moreover, there is δ > 0 so that

µ(F)
µ(B)

< δ =⇒
ν(F)
ν(B)

< 2(C − 1). (6-8)

In particular, if ν ∈ A∞(µ), then ν ∈ A′
∞
(ν), and if ν ∈ V A∞(µ), then ν ∈ V A′

∞
(µ).

Proof. We follow the proof from [Khrushchev 1984, Theorem 1], since he proves (6-7) but not (6-8). Let
δ ∈ (0, 1) to be chosen later, let F ⊆ B and suppose µ(F)= δµ(B); we will pick δ later. Let f = dν/dµ,
E = B\F , and set

t =
ν(E)
ν(F)

.

Let gB = −
∫

B f dµ. Then

log C ≥ (log f −1)B + log fB =
µ(E)
µ(B)

(log f −1)E +
µ(F)
µ(B)

(log f −1)F + log fB . (6-9)

By Jensen’s inequality, for any set S

(log f −1)S =−(log f )S ≥− log fS,
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and applying this to S = E, F , we have

log C ≥−
µ(E)
µ(B)

log fE −
µ(F)
µ(B)

log fF + log fB

≥−
µ(E)
µ(B)

log fE −
µ(F)
µ(B)

log fE +
µ(F)
µ(B)

log
µ(F)
µ(E)

+
µ(F)
µ(B)

log t + log fB

=− log fE +
µ(F)
µ(B)

log
µ(F)
µ(E)

+
µ(F)
µ(B)

log t + log fB .

Now observe that

− log fE = log
(
µ(E)
µ(B)

µ(B)
ν(B)

ν(B)
ν(E)

)
= log

µ(E)
µ(B)

− log fB + log
(

1+
1
t

)
and so we have

log C ≥ log
µ(E)
µ(B)

+ log
(

1+
1
t

)
+
µ(F)
µ(B)

log
µ(F)
µ(E)

+
µ(F)
µ(B)

log t

=
µ(F)
µ(B)

log
µ(F)
µ(B)

+
µ(E)
µ(B)

log
µ(E)
µ(B)

+ log(1+ t)+
µ(E)
µ(B)

log
1
t

= δ log δ+ (1− δ) log(1− δ)︸ ︷︷ ︸
=:ϕ(δ)

+ log(1+ t)+
µ(E)
µ(B)

log
1
t
.

Note that limδ→0 ϕ(δ)= 0. Let α > 0 and pick δ > 0 so that |ϕ(δ)|< α log C . Then

(1+α) log C ≥ log(1+ t)+
µ(E)
µ(B)

log
1
t
. (6-10)

We restrict δ further so that δ < α. If t > 1, then
µ(E)
µ(B)

log
1
t
≥ log

1
t
;

otherwise,
µ(E)
µ(B)

log
1
t
≥ (1−α) log

1
t

since µ(E)/µ(B)= 1− δ > 1−α. Thus, in any case, we have

1+α
1−α

log C > log
1
t
. (6-11)

This implies t ≥ c = C−(1+α)/(1−α), and so

ν(F)=
ν(F)
1+ t

+
tν(F)
1+ t

=
ν(F)+ ν(E)

1+ t
=
ν(B)
1+ t

≤
ν(B)
1+ c

.

This proves (6-7) with ε = (1+ c)−1. To prove (6-8), we go back to (6-10) with the same bound on δ.
Then, since t ≥ c,

(1+α) log C ≥ log(1+ t)+
µ(E)
µ(B)

log
1
t
= log

(
1+

1
t

)
+
µ(F)
µ(B)

log t

≥ log
(

1+
1
t

)
− δ

1+α
1−α

log C.
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Since δ < α, this implies

log
(

1+
1
t

)
<

(
1+α+ δ

1+α
1−α

)
log C = (1+α)

(
1+

δ

1−α

)
log C <

1+α
1−α

log C,

and so

C (1+α)/(1−α)
− 1>

1
t
.

We now pick α so that C (1+α)/(1−α)
− 1= 2(C − 1), and we are done. �

Korey showed that V A∞ implies the logarithm of the density is VMO.

Theorem 6.6 [Korey 1998, Theorem 4 and Section 3.5]. There is a universal constant c > 0 so that the
following holds. Let (X, µ) be a halving probability space, and suppose that(∫

X exp g dµ
)

exp
(∫

X g dµ
) ≤ K . (6-12)

Then ∫
X

∣∣∣∣g− ∫
X

g dµ
∣∣∣∣ dµ≤ log 2K (6-13)

and as K → 1, ∫
X

∣∣∣∣g− ∫
X

g dµ
∣∣∣∣ dµ≤ c

√
K − 1. (6-14)

Lemma 6.7. Let (X, µ) be a metric probability space and suppose ν� µ. Let ε, δ ∈ (0, 1) be so that for
any E ⊂ X

µ(E) < δµ(X) =⇒ ν(E) < εν(X). (6-15)

Set f = dν/dµ and assume

−

∫
X

∣∣∣∣log f −−
∫

X
log f dµ

∣∣∣∣ dµ < η. (6-16)

Then

1≤−
∫

X
f dµ exp

(
−−

∫
X

log f dµ
)
≤

eη/δ

1− ε
. (6-17)

Proof. Without loss of generality, we may assume µ(X)= ν(X)= 1. Let ε > 0 and pick δ so that (6-15)
holds.

Let c =
∫

X log f dµ and

G = {|log f − c|< ρ := ηδ−1
}, F = Gc. (6-18)

Then, by Chebyshev’s inequality and (6-16), we infer that µ(F) < δ, which, in turn, by (6-15), implies

ν(F) < ε. (6-19)

Moreover, on the set G,
η

δ
> |log f − c|

and so
f ≤ ec+η/δ on G. (6-20)
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Then,

1=
ν(X)
µ(X)

=

∫
X

f dµ
(6-20)
≤

(∫
G

ec+η/δ dµ+
∫

F
f dµ

)
≤ ec+η/δ

+ ν(F)
(6-19)
< ec+η/δ

+ ε.

Thus,

(1− ε)
∫

X
f dµ= 1− ε < ec+η/δ

and so ∫
X

f dµ <
ec+η/δ

1− ε
. (6-21)

This and Jensen’s inequality imply

1≤ e−c
∫

X
f dµ < e−c 1

1− ε
ec+η/δ

=
1

1− ε
eη/δ. �

Corollary 6.8. Let (X, µ) be a metric measure space. Set f = dν/dµ and assume that for some sequence
of balls Bj in X

lim
j
−

∫
Bj

∣∣∣∣log f −−
∫

Bj

log f dµ
∣∣∣∣ dµ= 0 (6-22)

and for all ε > 0 there is δ > 0 so that for j sufficiently large

µ(E)
µ(Bj )

< δ =⇒
ν(E)
ν(Bj )

< ε. (6-23)

Then

lim
j→∞
−

∫
Bj

f dµ exp
(
−−

∫
Bj

log f dµ
)
= 1. (6-24)

In particular, if log f ∈ VMO(dµ) and ν ∈ V A′
∞
(µ), then ν ∈ V A∞(µ).

Proof. Let ε, η > 0 and let δ > 0 be so that (6-23) holds for j large enough. Then (6-16) holds (with Bj

in place of X and µ|Bj in place of µ). Then (6-17) must hold. In particular,

lim sup
j→∞

−

∫
Bj

f dµ exp
(
−−

∫
Bj

log f dµ
)
≤

eη/δ

1− ε
.

As ε and δ did not depend on η, we can send η→ 0, and then ε→ 0 since δ now vanishes from the
inequality, and then we obtain (6-24). �

Proof of Lemma 6.4. The second halves of (1) and (2) follow from Theorems 6.5 and 6.6. The first half of
(1) follows from Lemma 6.7, and the first half of (2) is from Corollary 6.8. �

Lemma 6.9. Let�⊂Rn+1 be any connected domain and ω=ωLA,x
� where A ∈A (�). Then ω is halving.

Proof. Suppose there is E ⊂ ∂� with ω(E) > 0 that is not halving. For t ∈ R and v ∈ Sn−1, let
Ht,v = {x ∈ Rn+1

: x · v ≥ t}. Then t 7→ ω(Ht,v ∩ E) is not continuous for any v ∈ Sn, and so there is tv
so that ω(∂Htv,v ∩ E) > 0. Let Vv = ∂Htv,v, which is an n-dimensional plane. Since Sn is uncountable,
there is ε > 0 so that ω(Vv ∩ E) > ε > 0 for all v in some uncountable set A ⊂ Sn. Let A′ ⊂ A be
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countable. Note that for any u, v ∈ A′ distinct, Vu ∩ Vv is an (n−1)-dimensional subspace. This implies
Vu ∩ Vv has 2-capacity zero [Heinonen et al. 1993, Theorem 2.27]; hence it is a polar set for ω [loc. cit.,
Theorem 10.1] and polar sets have LA-harmonic measure zero [loc. cit., Theorem 11.15]. Thus, if we set

Wu := Vu\
⋃
v∈A′
v 6=u

Vv,

we have ω(Wu ∩ E)= ω(Vu ∩ E)≥ ε and Wu are mutually disjoint. But since A′ is infinite, this implies
ω(E)=∞, which is a contradiction. �

Lemma 6.10. Let �+ ⊂ Rn+1 be a connected domain with connected complement �− = ext(�+) and
let LA be a uniformly elliptic operator with real coefficients. If ω± denote the LA-harmonic measures of
�± with fixed poles x± ∈ �±, then ω− ∈ A∞(ω+) if and only if ω− ∈ A′

∞
(ω+) and log(dω−/dω+) ∈

BMO(dω+). Moreover, ω−∈V A∞(ω+) if and only ifω−∈V A′
∞
(ω+) and log(dω−/dω+)∈VMO(dω+).

Proof. This follows from Lemmas 6.4 and 6.9. �

7. Proofs of Theorems II and III

Lemma 7.1. Let ω± be two halving Radon measures with equal supports and set f = log(dω−/dω+).
Suppose there are rj ↓ 0 and ξj ∈ ∂�

+ so that ω+j = Tξj ,rj [ω
+
]/ω(B(ξj , rj )) converges weakly to some

measure ω with ω(B) > 0. Further assume that for all M > 0

lim
j
−

∫
B(ξj ,Mrj )

f dω+ exp
(
−−

∫
B(ξj ,Mrj )

log f dω+
)
= 1. (7-1)

Then ω−j ⇀ω as well.

The proof is similar to that of [Kenig and Toro 2006, Theorem 4.4], though using the techniques of the
previous section, we no longer require the doubling assumption.

Proof. Let Bj = B(ξj , rj ) and for a ball B set cB = −
∫

B log f . By assumption, for each M > 0,

e−cM Bj
ω−(M Bj )

ω+(M Bj )
→ 1 as j→∞. (7-2)

Let ϕ ∈C∞c (R
n+1)with support in B(0,M) for some M>0 and let ϕj =ϕ◦Tξj ,rj . Then suppϕj ⊂M Bj .

Let ε > 0. By (7-2), for j large enough, we have

0≤ e−cBj
ω−(Bj )

ω+(Bj )
− 1< ε and 0≤ e−cM Bj

ω−(M Bj )

ω+(M Bj )
− 1< ε. (7-3)

Let now η= c
√

1− ε, where c is the constant in (6-14). For j large enough, Theorem 6.6 and (7-2) imply

−

∫
Bj

|log f − cBj | dω
+ < η and −

∫
M Bj

|log f − cM Bj | dω
+ < η. (7-4)

Note that ε is independent of η. For fixed δ > 0 and for a ball B, we set

G B = {ξ ∈ B ∩ ∂�+ : |log f (ξ)− cB | ≤ η/δ}, FB = B\G B .
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Then, Chebyshev’s inequality and (7-4) imply

ω+(FBj ) < δω
+(Bj ) and ω+(FM Bj ) < δω

+(M Bj ), (7-5)

and for δ > 0 small enough and j large enough Theorem 6.5 and (7-2) imply

ω−(FBj ) < ε, ω
−(Bj ) and ω−(FM Bj ) < εω

−(M Bj ). (7-6)

Let C = 2ω(MB)/ω(B). Since ω(B) > 0, we know

lim sup
j→∞

ω+(M Bj )

ω+(Bj )
= lim sup

j→∞

ω+j (MB)

ω+j (B)
≤
ω(MB)

ω(B)
=

1
2C,

and so for j large enough,
ω+(M Bj )≤ Cω+(Bj ). (7-7)

Also, note that for j large enough,

|cBj − cM Bj | =

∣∣∣∣−∫
Bj

(cBj − cM Bj )

∣∣∣∣ dω+

≤ −

∫
Bj

|cBj − log f | dω++−
∫

Bj

|log f − cM Bj | dω
+

(7-4)
< η+

ω+(M Bj )

ω+(Bj )
−

∫
M Bj

|log f − cM Bj | dω
+

(7-4)
(7-7)
< (1+C)η. (7-8)

Hence,

ω−(M Bj )
(7-3)
≤ ω+(M Bj )(1+ ε)e

cM Bj

(7-7)
(7-8)
< Cω+(Bj )(1+ ε)e

cBj+(1+C)η

(7-3)
≤ Cω−(Bj )(1+ ε)e(1+C)η

≤ 2Ce(1+C)ω−(Bj ).C ω
−(Bj ). (7-9)

Then∫
ϕ dω−j −

∫
ϕ dω+j =

1
ω−(Bj )

∫
M Bj

ϕj dω−−
1

ω+(Bj )

∫
M Bj

ϕj dω+

=
1

ω−(Bj )

∫
M Bj∩FM Bj

ϕj f dω+︸ ︷︷ ︸
=:I1

+
1

ω−(Bj )

∫
M Bj∩G M Bj

( f − ecM Bj )ϕj dω+︸ ︷︷ ︸
=:I2

−
ecM Bj

ω−(Bj )

∫
M Bj∩FM Bj

ϕj dω+︸ ︷︷ ︸
=:I3

+
ecM Bj

ω−(Bj )

∫
M Bj

ϕj dω+−
1

ω+(Bj )

∫
M Bj

ϕj dω+︸ ︷︷ ︸
=:I4

= I1+ I2− I3+ I4.

We will estimate each of these terms separately, with the understanding that j is large enough (depending
on M and η):

|I1| ≤
‖ϕ‖∞

ω−(Bj )

∫
M Bj

1FM Bj
f dω+ =

‖ϕ‖∞ω
−(FM Bj )

ω−(Bj )
=
ω−(M Bj )

ω−(Bj )

‖ϕ‖∞ω
−(FM Bj )

ω−(M Bj )

(7-6)
(7-9)
. C,M,‖ϕ‖∞ ε.
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Next, for points in G M Bj ,
e−η/δecM Bj ≤ f ≤ eη/δecM Bj

and so
ecM Bj (e−η/δ − 1)≤ f − ecM Bj ≤ ecM Bj (eη/δ − 1).

Thus, for η > 0 small enough (i.e., for j large enough), we can make

| f − ecM Bj |< δecM Bj on G M Bj .

Therefore,

|I2| ≤
δecM Bj ‖ϕ‖∞

ω−(Bj )
ω+(G M Bj )≤

δecM Bj ‖ϕ‖∞

ω−(Bj )
ω+(M Bj )

= ecM Bj
ω+(M Bj )

ω−(M Bj )

δ‖ϕ‖∞ω
−(M Bj )

ω−(Bj )

(7-9)
(7-3)
.
‖ϕ‖∞,C,M δ,

|I3| ≤
ecM Bj ‖ϕ‖∞

ω−(Bj )
ω+(FM Bj )

(7-5)
< δ

ecM Bj ‖ϕ‖∞

ω−(Bj )
ω+(M Bj )

= δ
ecM Bj ‖ϕ‖∞ω

−(M Bj )

ω−(Bj )

ω+(M Bj )

ω−(M Bj )

(7-3)
(7-9)
. C,M,‖ϕ‖∞ δ.

Finally,

|I4| ≤

(
ecM Bj

ω+(Bj )

ω−(Bj )
− 1
)
ω+(M Bj )

ω+(Bj )
−

∫
M Bj

ϕj dω+
(7-3)
(7-7)
. C,‖ϕ‖∞,M ε.

Since these estimates hold for all j large enough, we can conclude

lim sup
j→∞

∣∣∣∣∫ ϕ dω−j −
∫
ϕj dω+j

∣∣∣∣.C,M,‖ϕ‖∞ ε+ δ.

Now send δ to zero since it only had to be small enough depending on ε. Finally, ε was arbitrarily chosen,
which implies that the above limit is zero. Since this holds for all ϕ, we get that ω±j have the same weak
limit. �

Proof of Theorem II. Let ω ∈ Tan(ω+, ξ). We claim that ω ∈HC . By Lemma 2.6, ω= cT0,r (µ) for some
constants c, r > 0 and some measure µ of the form µ= lim j→0 Tξ,rj [ω

+
]/ω+(B(ξ, rj )) for some rj ↓ 0,

where µ(B) > 0. By Lemma 7.1, µ = lim j→0 Tξ,rj [ω
−
]/ω−(B(ξ, rj )) as well. By Theorem 3.13 (or

Lemma 3.11(g) if �± have the CDC), µ ∈HC , and since HC is a d-cone by Lemma 4.3, we also have
that ω ∈HC , which proves the claim.

Hence, ω = ωu for some u ∈ HA and some A ∈ C . By Lemma 4.8, for some k > 0,

Tan(ωu, 0)= {cωuk : c > 0} ⊂FA(k)⊂FC (k),

and since Tan(ωu, 0)⊂ Tan(ω+, ξ) by Lemma 2.9, we now know that Tan(ω+, ξ)∩FC (k) 6=∅ as well.
By Lemma 5.1, Tan(ω+, ξ)⊂FC (k). The proof that 2F6,C (k)

∂�+
(ξ, r)→ 0 if �± have the CDC is similar

to the proof of Theorem I. �
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Proof of Theorem III. Let K be any compact subset of ∂�+. Suppose there is a sequence of radii rj ↓ 0
and ξj ∈ K so that

d1(Tξj ,rj [ω
+
],PC (d))≥ ε > 0, (7-10)

where d will be chosen later, but it will depend only on n and the doubling constant of ω+.
Since ω+ is doubling, we may pass to a subsequence so that ω+j := Tξj ,rj [ω

+
]/ω+(B(ξj , rj )) converges

weakly to some measure ω.
If f = dω−/dω+ satisfies log f ∈VMO(ω−), then doubling also implies that ω− ∈ V A′

∞
(ω+). Indeed,

if ω+ is doubling, then the John–Nirenberg theorem holds, and the VMO condition tells us that on
small enough balls, f is a traditional Ap-weight (see [Garnett 2007, Chapter 6.2]). This easily implies
f dω+ = dω− ∈ V A′

∞
(ω+). Thus, by Corollary 6.8, we know ω− ∈ V A∞(ω+) and that (7-1) holds

for every M > 0. By Lemma 7.1, ω−j ⇀ ω as well. Thus, we can pass to a subsequence so that the
conclusions of Theorem 3.13 hold. In particular, ω= ωh for some L0-harmonic function h, where L0 is a
uniformly elliptic operator with constant coefficients, and also, for any ϕ ∈ C∞c (R

n+1), (3-21) holds.
Now we apply the same standard trick from [Kenig and Toro 2006]. Notice that since ω+ is doubling,

so is ωh , which combined with Cauchy estimates implies that there exists β > 0 such that for any ` ∈N

and any multi-index α

|∂αh(0)|. 2−|α|`‖h‖L∞(2`B)

(3-28)
. 2`(−|α|+1−n)ωh(B(0, 2`+1))

. 2`(−|α|+1−n+β)ωh(B(0, 2)). (7-11)

Hence, if |α|> 1− n+β, letting `→∞ gives |∂αh(0)| = 0, which implies h is a polynomial of degree
at most 1− n+β. Setting d = d1− n+βe gives a contradiction to (7-10). The proof of (1-7) is similar
to the proof of Theorem I, where we use instead Lemma 3.11 instead of Theorem 3.13. �

8. Proof of Theorem IV

All elliptic operators in this section will be assumed to satisfy (1-1) and (1-2). We will require a few
lemmas about elliptic measures in uniform domains as well as some new notation.

Definition 8.1. Let �⊆ Rn+1:

• We say� satisfies the corkscrew condition if, for some uniform constant c> 0 and every ball B centered
on ∂� with 0< rB < diam(∂�), there is a ball B(xB, crB)⊆�∩ B. The point xB is called a corkscrew
point relative to B.

• We say � satisfies the Harnack chain condition if there is a uniform constant C such that for every
ρ > 0, 3≥ 1, and every pair of points x, y ∈� with δ(x), δ(y)≥ ρ and |x − y|<3ρ there is a chain
of open balls B1, . . . , BN ⊂�, N ≤ C(3), with x ∈ B1, y ∈ BN , Bk ∩ Bk+1 6=∅ and C−1 diam(Bk)≤

dist(Bk, ∂�)≤ C diam(Bk). The chain of balls is called a Harnack chain.

Definition 8.2. If � satisfies both the corkscrew and the Harnack chain conditions, then we say that � is
a uniform domain.
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Theorem 8.3. Let�⊂Rn+1 be a uniform domain with the CDC and u a nonnegative LA-elliptic function
vanishing on 2B ∩ ∂�, where B is a ball with rB < diam ∂� and A ∈ A (�). Then

sup
x∈B∩�

u(x). u(xB). (8-1)

This was originally shown in Section 4 of [Jerison and Kenig 1982] for NTA domains, but the proof
only uses the Hölder continuity of u at the boundary and the fact that NTA domains are uniform, and so
the proof of the above result is exactly the same.

Theorem 8.4. Let �⊂ Rn+1 be a uniform domain with the CDC and LA an elliptic operator satisfying
(1-1) and (1-2). Then, for all B centered on ∂�,

ωLA,x(B)≈ rn−1
B G�(x, xB) for all x ∈�\2B. (8-2)

This follows from [Aikawa and Hirata 2008]. Their proof is originally for harmonic measures, but an
inspection of the proof shows that it carries through for elliptic measure as well.

Theorem 8.5. Let �⊂ Rn+1 be a uniform domain with the CDC. If LA is an elliptic operator satisfying
(1-1) and (1-2), B is a ball centered on ∂�, and E ⊂ B ∩ ∂� is Borel, then

ω
LA,xB
� (E)≈

ω
LA,x
� (E)

ω
LA,x
� (B)

. (8-3)

Again, this is [Jerison and Kenig 1982, Lemma 4.11], and since the previous two lemmas are available,
the proof is exactly the same for elliptic measures modulo the proof of [loc. cit., Lemma 4.10]. The latter
can also be proved by building a subuniform domain as in [loc. cit.], and then showing as in [Akman et al.
2019, Lemma 2.26] that the resulting domain is also CDC (all of this instead of a geometric localization
theorem due to Jones, which only works for NTA domains).

Lemma 8.6. Let � ⊂ Rn+1 be a uniform domain with the CDC and LA an elliptic operator satisfying
(1-1) and (1-2), and also (1-4) at ξ . If ξ ∈ ∂� and ωj = ω

LA,x0(B(ξ, rj ))
−1Tξ,rj (ω

LA,x0) converges weakly
to a tangent measure ω∞ ∈ Tan(ωLA,x0, ξ), then there is a uniform domain �∞ and a constant matrix
A0 ∈ C such that, for each x ∈ �∞, ωx

�j
⇀ωx

�∞
and for all balls B ′ ⊂ B centered on ∂�∞, if xB is a

corkscrew point in �∞ ∩ B,

ω
LA0 ,xB

�∞
(B ′)≈

ω∞(B ′)
ω∞(B)

. (8-4)

This was originally shown in [Azzam and Mourgoglou 2018] for harmonic measure. In our situation,
the proof is much shorter, so we provide it here.

Proof. By Lemma 3.11, there is A0 ∈ C so that we can pass to a subsequence so that u j (x) =
cj u(xrj + ξ)rn−1

j converges uniformly in Rn+1 to a nonzero LA0-elliptic function u∞ and also so that, if
�j = Tξ,rj (�), then ∂�j converges in the Hausdorff metric on compact subsets. Let �∞ = {u∞>0}.

Claim. �∞ is uniform. If x, y ∈�∞ with dist({x, y}, ∂�)≥ ε|x− y|, then they are contained in �j and
dist({x, y}, ∂�j )≥

1
2ε|x − y| for sufficiently large j . Since the �j are uniform, for each j we can find a

Harnack chain of length N = N (ε) contained in �j . By passing to a subsequence, we can assume the
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length of this chain is constant and their centers and radii are converging, and hence the chain converges
to a Harnack chain in �∞ of length no more than N. A similar proof shows that �∞ is a corkscrew
domain. Hence, �∞ is uniform.

Suppose B ′ ⊂ B are centered on ∂�∞. Let

ω
Tξ,rj (x)
�j

= Tξ,rj [ω
LA,x ].

If x j = Tξ,rj (x0), then

ω
xB
�j
(B ′)≈

ω
x j
�j
(B ′)

ω
x j
�j
(B)
=

ω
x j
�j
(B)

ω
x j
�j
(B)

ω
x j
�j
(B ′)

ω
x j
�j
(B)
=
ωj (B ′)
ωj (B)

.

Since ωj and ω�j are doubling measures, we have

ω
xB
�∞
(B ′)≤ lim inf

j→∞
ω

xB
�j
(B ′). lim sup

j→∞

ωj (B ′)
ωj (B)

≤
ω∞(B ′)
ω∞(B)

.
ω∞(B ′)
ω∞(B)

.

A similar estimate gives the reverse inequality, and hence proves (8-4). �

We will use the following criterion for uniform rectifiability due to Hofmann, Martell, and Uriarte-
Tuero. See Theorem 1.23, equation 1.22, and Remark 1.25 in [Hofmann et al. 2014]; for a local version
see Corollary 11.2 in [Mourgoglou and Tolsa 2017].

Theorem 8.7. Let �⊂ Rn+1 be a uniform domain with n-regular boundary and let ω� be the harmonic
measure defined in �. Suppose there is q > 1 so that, for any balls B ′ ⊂ B centered on ∂�, if kB =

dωxB
� /(dH

n
|∂�), then (

−

∫
B ′∩∂�

kq
B dHn

)1/q

.−
∫

2B ′∩∂�
kB dHn.

Then ∂� is uniformly rectifiable.

Recall that, by the main result of [Aikawa and Hirata 2008], harmonic measure is doubling in uniform
domains satisfying the CDC, and thus, by (8-3), the right side of this inequality is comparable to
−

∫
B ′∩∂� kB dHn (that is, with B ′ instead of 2B ′), which we will use below.

Remark 8.8. This result still holds for constant coefficients. Indeed, it is easy to see that the A∞-property
is preserved under linear transformations that map balls to ellipsoids, as is the one in Lemma 3.10 (see
the paragraph after the proof of this lemma), using that such weights are doubling.Thus, by Lemma 3.10
and the fact that being a uniformly rectifiable set, by its very definition, is invariant under bi-Lipschitz
maps, ∂�∞ is uniformly rectifiable.

Recall that an Ahlfors n-regular set E is uniformly rectifiable if there are c, L > 0 so that, for every
ball B centered on E with rB < diam E , there is an L-Lipschitz map f : B(0, rB)∩Rn

→ Rn+1 so that

Hn( f (B(0, rB))∩ E)≥ crn
B .

Now we prove Theorem IV. Let �⊂ Rn+1 be a uniform CDC domain so that Hn
|∂� is locally finite.

Let ω = ωLA
� be the LA-harmonic measure associated to a (possibly nonsymmetric) elliptic operator
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satisfying (1-1) and (1-2). Let E ⊆ ∂� be a set with Hn(E) > 0 such that Hn
�ω

LA
� on E and for Hn-a.e.

ξ ∈ E ,

θn
∂�,∗(ξ, r) := lim inf

r→0

Hn(B(ξ, r)∩ ∂�)
(2r)n

> 0

and A has vanishing mean oscillation at ξ .
Assume Hn(E)> 0 (otherwise the theorem is trivial). Then we may find a subset E ′ of full Hn-measure,

where ω and Hn are mutually absolutely continuous (in particular, Hn
= gω for some function g, so we

pick E ′ = {x : g(x) > 0}). For Hn
|∂�-a.e. ξ ∈ E ′, we also have

0< θn
∗
(Hn
|∂�, ξ)≤ θ

n,∗(Hn
|∂�, ξ) <∞. (8-5)

The lower bound is by assumption, and the upper bound is from [Mattila 1995, Theorem 6.2]. By [loc. cit.,
Theorem 14.7], for Hn

|∂�-a.e. ξ ∈ E ′, Tan(Hn
|∂�, ξ) consists of Ahlfors–David n-regular measures. By

[loc. cit., Lemmas 14.5 and 14.6], for Hn
|∂�-a.e. ξ ∈ E ′,

Tan(Hn
|∂�, ξ)= Tan(Hn

|E ′, ξ)= Tan(ω, ξ)

and Tan(ω, ξ) consists only of Ahlfors–David n-regular measures. Let E ′′⊂ E ′ be the set of points where
this holds.

By the Besicovitch decomposition theorem, we can split E ′′ into two sets F1 and F2, where F1 is
n-rectifiable and F2 is purely n-unrectifiable. Suppose Hn(F2) > 0. Let ξ ∈ F2 be a point of density of
F2 with respect to Hn.

Let rj ↓ 0 be so that ωj := ω
LA,x0(B(ξ, rj ))

−1Tξ,rj (ω
LA,x0) converges weakly to some Ahlfors–David

n-regular measure ω∞ ∈Tan(ω, ξ). By Lemma 8.6, we may find a uniform domain�∞ so that suppω∞=
∂�∞ and, for any balls B ′ ⊂ B centered on ∂�,

ω
LA0 ,xB

�∞
(B ′)≈

ω∞(B ′)
ω∞(B)

≈
rn

B ′

rn
B

for some A0 ∈ C . If σ =Hn
|∂�∞ , then σ is Ahlfors–David n-regular and so if we set

kB :=
dω

LA0 ,xB

�∞

dσ
,

then we have that for σ -a.e. x ∈ B ∩ ∂�

kB(x)= lim
r→0

ω
LA0 ,xB

�∞
(B(x, r))

σ (B(x, r))
≈

rn/rn
B

rn = r−n
B .

Hence, if B ′ ⊂ B is centered on ∂�,(
−

∫
B ′

k2
B dσ

)1/2

≈ r−n
B ≈−

∫
B ′

kB dσ.

Thus, in light of Remark 8.8, ∂�∞ is uniformly rectifiable. By the main result of [Azzam et al. 2017a],
�∞ is an NTA domain. In particular, we can find corkscrew balls B1 ⊂ B∩�∞ and B2 ⊆ B\�∞. We
claim that, for all j sufficiently large, 1

2 B1 ⊂ �j ∩B and 1
2 B2 ⊂ B\�j . Indeed, if 1

2 Bi ∩ ∂�j 6= ∅ for
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infinitely many j , then since ωj is doubling, ωj
( 2

3 Bi
)
∼ ωj (B)= 1 for all j , and so ω∞(Bi ) > 0, and in

particular ∂�∞ ∩ Bi 6=∅, which is a contradiction. Thus, B1 and B2 do not intersect ∂�j for sufficiently
large j . They cannot both be in �j for all large j , since otherwise, if they were both in �j for infinitely
many j then in each such �j , they would be connected by a Harnack chain in �j of bounded length;
passing to a subsequence, this implies there is a Harnack chain connecting B1 to B2, and since B1 ⊆�∞,
the whole chain, including B2, must be in �∞, which is a contradiction. Thus, at least one of these balls
is in �c

j for all j large. By the proof of Lemma 8.6, �∞ = {u∞>0}, and since u j → u∞ uniformly on
compact subsets of �∞ and u∞ > 0 on B1, we have B1 ⊂ �j for j large, and so B2 ⊂ �

c
j for j large.

This proves the claim.
Now there is a small angle of directions around the vector parallel to the line between the centers of

B1 and B2 where the orthogonal projection of ∂�j ∩B has Lebesgue measure comparable to 1. By the
Besicovitch–Federer projection theorem, the purely unrectifiable part of ∂�j has zero Lebesgue measure
projection in almost all of these directions, and so ∂�j ∩B contains an n-rectifiable set of Hn-measure & 1
(with constant depending on the sizes of B1 and B2). Thus,

lim inf
j→∞

Hn(B(ξ, rj )∩ ∂�\F2)

Hn(B(ξ, rj )∩ ∂�)
& lim inf

j→∞

rn
j

Hn(B(ξ, rj )∩ ∂�)

(8-5)
> 0.

But this contradicts that ξ is a point of density for F2. Therefore, Hn(F2)= 0, and we have now shown
that Hn-almost all of E ′ is rectifiable, and thus ωx0-almost all of E is contained in a countable union of
Lipschitz graphs. This finishes the proof of Theorem IV.

9. Proof of Proposition III

Assume the conditions of the proposition. We recall the following result.

Theorem 9.1 [Hurri-Syrjänen 1994, Theorem 1.3]. Suppose that � ⊂ Rn+1 is a bounded C-uniform2

domain. If

p ≤ q ≤
(n+ 1)p

n+ 1− p(1− δ)
and p(1− δ) < n+ 1,

then for all u ∈ L1
loc(�) such that ∇u(x)d(x, ∂�)δ ∈ L p(�),

inf
a∈R
‖u(x)− a‖Lq (�) .n,p,q,δ,C |�|

(1−δ)/(n+1)+1/q−1/p
‖∇u dist( · , �c)δ‖L p(�). (9-1)

(The explicit constant in (9-1) is written at the end of the proof on page 218 of [Hurri-Syrjänen 1994].)
We will use this in the case that δ = 1

2 and p = q = 2, so (9-1) becomes

inf
a∈R
‖u(x)− a‖L2(�) .n,p,q,δ,C |�|

1/(2(n+1))
‖∇u dist( · , �c)1/2‖L2(�). (9-2)

Lemma 9.2. Suppose E ⊂ Rn+1 is a closed set and ε : Ec
→ [0,∞] is a function such that for some ball

B0 centered on E ∫
Ec∩B0

ε(z) dz <∞.

2In fact it holds for John domains.
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Then for Hn-a.e. x ∈ E ∩ B0,

lim
r→0

r−n
∫

Ec∩B(x,r)
ε(z) dz = 0.

Proof. Without loss of generality, we can assume E ⊂ B0. Let dµ(z)= ε(z) dz|Ec . For x ∈ E and r > 0, set

a(x, r)=
µ(B(x, r))

rn = r−n
∫

Ec∩B(x,r)
ε(z) dz.

Suppose there is F ⊂ E with Hn(F) > 0 such that

lim sup
r→0

a(x, r) > 0.

Then there is t > 0 and a compact set G ⊂ F with Hn
∞
(G) > 0 and

lim sup
r→0

a(x, r) > t > 0 for all x ∈ G.

For each x ∈ G, pick rx,1 > 0 so that B(x, rx,1) ⊂ B0 and a(x, rx,1) > t . Let B1
j be a Besicovitch

subcovering from G1 := {B(x, r1
x ) : x ∈ G}, that is, a countable collection of balls in G1 so that

1G ≤
∑

j

1B1
j
.n 1.

Since the B1
j come from G , we have that for all j

µ(B1
j )

rn
B1

j

= a(xB1
j
, rB1

j
) > t.

Let
L1 =

⋃
B1

j \E .

Then since the B1
j have bounded overlap and come from G1,

µ(L1)=

∫
L1

dµ&
∫

L1

∑
j

1B1
j

dµ=
∑

j

µ(B1
j ) > t

∑
j

rn
B1

j
≥ tHn

∞
(G).

Since µ(G)= 0, there is δ1 > 0 so that if Gδ1 = {x ∈ Rn
: dist(x,G) < δ1} and L1

= L1\Gδ1 , then

µ(L1) > 1
2µ(L1)≥

1
2 tHn

∞
(G).

Now inductively, suppose we have constructed disjoint sets L1, . . . , Lk
⊂ B0, where

µ(L j )& tHn
∞
(G) for all j = 1, 2, . . . , k,

and there is δk > 0 so that L1
∪ · · · ∪ Lk

∩Gδk =∅.
For each x ∈ G, we may find rx,k+1 ∈ (0, δk) so that B(x, rx,k+1) ⊂ B0 and a(x, rx,k+1) > t . Let
{Bk+1

j } be a Besicovitch subcovering of the collection Gk+1 = {B(x, rx,k+1) : x ∈ G}, so

1G ≤
∑

j

1Bk+1
j
.n 1Lk+1,
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where Lk+1 =
⋃

j Bk+1
j . Since G has µ(G)= 0, there is δk+1 ∈ (0, δk) so that Lk+1

= Lk+1\Gδk+1 has

µ(Lk+1)≥
µ(Lk+1)

2
=

1
2

∫
1Lk+1 dµ&

∫ ∑
j

µ(Bk+1
j )≥ t

∑
j

rn
Bk+1

j
& tHn

∞
(G).

Also note that by our induction hypothesis

Lk+1
⊂ Lk+1 ⊂ Gδk ⊂ (L

1
∪ · · · ∪ Lk)c.

Thus, by induction, we can come up with a sequence of disjoint sets Lk
⊂ B0 so that µ(Lk)& tHn

∞
(G)

for all k, which contradicts the finiteness of µ since ε is locally integrable. �

Now we finish the proof of Proposition III. By the previous lemma, for ε(z)= |∇A(z)|2 dist(z, �c)

and E = ∂�, we have that for Hn-a.e. ξ ∈ B0 ∩ ∂�

lim
r→0

r−n
∫

B(ξ,r)∩�
|∇A|2 dist(z, �c) dz = 0. (9-3)

Let ξ ∈ B0 ∩ ∂� be such a point. There is a universal constant M depending on the uniformity constants
so that, for all r > 0, there is an MC-uniform domain �r such that

�∩ B(ξ, r)⊂�r ⊂�∩ B(ξ,Mr).

This follows from the proof of [Hofmann and Martell 2014, Lemma 3.61]. See also [Azzam 2016,
Lemma 4.1; Jerison and Kenig 1982, Lemma 6.3].

Hence, by Cauchy–Schwarz inequality,

inf
C

r−(n+1)
∫

B(ξ,r)∩�
|A−C | . inf

C

(
r−(n+1)

∫
B(ξ,r)∩�

|A−C |2
)1/2

≤ inf
C

(
r−(n+1)

∫
�r

|A−C |2
)1/2

(9-2)
. |�r |

1/(2(n+1))
(

1
rn+1

∫
�r

|∇A|2 dist(z, �c
r ) dz

)1/2

.

(
r−n

∫
�∩B(ξ,Mr)

|∇A|2 dist(z, �c) dz
)1/2

→ 0 as r→ 0.
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DISCRETELY SELF-SIMILAR SOLUTIONS
TO THE NAVIER–STOKES EQUATIONS WITH DATA IN L2

loc
SATISFYING THE LOCAL ENERGY INEQUALITY

ZACHARY BRADSHAW AND TAI-PENG TSAI

Chae and Wolf recently constructed discretely self-similar solutions to the Navier–Stokes equations for
any discretely self-similar data in L2

loc. Their solutions are in the class of local Leray solutions with
projected pressure and satisfy the “local energy inequality with projected pressure”. In this note, for the
same class of initial data, we construct discretely self-similar suitable weak solutions to the Navier–Stokes
equations that satisfy the classical local energy inequality of Scheffer and Caffarelli–Kohn–Nirenberg.
We also obtain an explicit formula for the pressure in terms of the velocity. Our argument involves a new
purely local energy estimate for discretely self-similar solutions with data in L2

loc and an approximation
of divergence-free, discretely self-similar vector fields in L2

loc by divergence-free, discretely self-similar
elements of L3

w.

1. Introduction

The Navier–Stokes equations describe the evolution of a viscous incompressible fluid’s velocity field v
and associated scalar pressure π . In particular, v and π are required to satisfy

∂tv−1v+ v · ∇v+∇π = 0, (1-1)

∇ · v = 0, (1-2)

in the sense of distributions. For our purposes, (1-1) is applied on R3
× (0,∞) and v evolves from a

prescribed, divergence-free initial data v0 : R
3
→ R3. Solutions to (1-1) exhibit a natural scaling: if v

satisfies (1-1), then for any λ > 0
vλ(x, t)= λv(λx, λ2t) (1-3)

is also a solution with pressure
πλ(x, t)= λ2π(λx, λ2t) (1-4)

and initial data
vλ0 (x)= λv0(λx). (1-5)

A solution is called self-similar (SS) if vλ(x, t)= v(x, t) for all λ > 0 and is discretely self-similar with
factor λ (i.e., v is λ-DSS) if this scaling invariance holds for a given λ > 1. Similarly, v0 is self-similar
(a.k.a. (−1)-homogeneous) if v0(x) = λv0(λx) for all λ > 0 or λ-DSS if this holds for a given λ > 1.
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These solutions can be either forward or backward if they are defined on R3
× (0,∞) or R3

× (−∞, 0)
respectively. In this note we work exclusively with forward solutions and omit the qualifier “forward”.

Self-similar solutions satisfy an ansatz for v in terms of a time-independent profile u, namely,

v(x, t)=
1
√

t
u
(

x
√

t

)
, (1-6)

where u solves the Leray equations

−1u− 1
2 u− 1

2 y · ∇u+ u · ∇u+∇ p = 0,

∇ · u = 0
in R3, (1-7)

in the variable y = x/
√

t . Discretely self-similar solutions are determined by their behavior on the time
interval 1≤ t ≤ λ2 and satisfy the ansatz

v(x, t)=
1
√

t
u(y, s), (1-8)

where
y =

x
√

t
, s = log t. (1-9)

The vector field u is T -periodic with period T = 2 log λ and solves the time-dependent Leray equations

∂su−1u− 1
2 u− 1

2 y · ∇u+ u · ∇u+∇ p = 0,

∇ · u = 0
in R3

×R. (1-10)

Note that the similarity transform (1-8)–(1-9) gives a one-to-one correspondence between solutions to
(1-1) and (1-10). Moreover, when v0 is SS or DSS, the initial condition v|t=0 = v0 corresponds to a
boundary condition for u at spatial infinity; see [Korobkov and Tsai 2016; Bradshaw and Tsai 2017a;
2017b].

Self-similar solutions are interesting in a variety of contexts as candidates for ill-posedness or finite
time blow-up of solutions to the 3-dimensional Navier–Stokes equations; see [Guillod and Šverák 2017;
Jia and Šverák 2014; 2015; Leray 1934; Nečas et al. 1996; Tsai 1998] and the discussion in [Bradshaw
and Tsai 2017a]. Forward self-similar solutions are compelling candidates for nonuniqueness [Jia and
Šverák 2015; Guillod and Šverák 2017]. Until recently, the existence of forward self-similar solutions was
only known for small data [Barraza 1996; Cannone and Planchon 1996; Giga and Miyakawa 1989; Koch
and Tataru 2001; Kato 1992]. Such solutions are necessarily unique. Jia and Šverák [2014] constructed
forward self-similar solutions for large data where the data is assumed to be Hölder continuous away from
the origin. This result has been generalized in a number of directions by a variety of authors [Bradshaw
and Tsai 2017a; 2017b; 2018; Chae and Wolf 2018; Korobkov and Tsai 2016; Lemarié-Rieusset 2016;
Tsai 2014]. This paper can be understood in the context of [Bradshaw and Tsai 2017a; Chae and Wolf
2018; Lemarié-Rieusset 2016] and we briefly recall the main results of these papers.

In [Bradshaw and Tsai 2017a], we generalize [Jia and Šverák 2014] in two ways. First, all smoothness
assumptions on the initial data are removed; we only require v0 ∈ L3

w (and v0 divergence-free and SS
or DSS). Second, we allow the data to be DSS for any λ > 1, in which case we obtain DSS solutions
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as opposed to SS solutions — in contrast, the method of [Jia and Šverák 2014] can be adapted to give
DSS solutions but only when λ is close to 1 [Tsai 2014]. The method of proof in [Bradshaw and Tsai
2017a] has since been extended to the half-space in [Bradshaw and Tsai 2017b] and to initial data in the
Besov spaces Ḃ3/p−1

p,∞ when 3< p < 6 [Bradshaw and Tsai 2018]. Solutions which satisfy a rotationally
corrected scaling invariance are also constructed in [Bradshaw and Tsai 2017b].

The solutions of [Bradshaw and Tsai 2017a] belong to the class of local Leray solutions. This class
was introduced in [Lemarié-Rieusset 2002] to provide a local analogue of Leray’s weak solutions [1934].
We recall the definition of local Leray solutions in full. For q ∈ [1,∞), we say f ∈ Lq

uloc if

‖ f ‖Lq
uloc
= sup

x∈R3
‖ f ‖Lq (B(x,1)) <∞.

Definition 1.1 (local Leray solutions). A vector field v ∈ L2
loc(R

3
×[0,∞)) is a local Leray solution to

(1-1) with divergence-free initial data v0 ∈ L2
uloc if:

(1) For some π ∈ L3/2
loc (R

3
×[0,∞)), the pair (v, π) is a distributional solution to (1-1).

(2) For any R > 0, the vector field v satisfies

ess sup
0≤t<R2

sup
x0∈R3

∫
BR(x0)

1
2 |v(x, t)|2 dx + sup

x0∈R3

∫ R2

0

∫
BR(x0)

|∇v(x, t)|2 dx dt <∞.

(3) For all compact subsets K of R3 we have v(t)→ v0 in L2(K ) as t→ 0+.

(4) v is suitable in the sense of Caffarelli–Kohn–Nirenberg; i.e., for all cylinders Q compactly supported
in R3

× (0,∞) and all nonnegative φ ∈ C∞0 (Q), we have∫
|v(t)|2φ dx+2

∫∫
|∇v|2φ dx dt ≤

∫∫
|v|2(∂tφ+1φ) dx dt +

∫∫
(|v|2+2π)(v·∇φ) dx dt. (1-11)

(5) For every x0 ∈ R3, there exists cx0 ∈ L3/2(0, T ) such that

p(x, t)− cx0(t)=−
1
3
|v(x, t)|2+ 1

4π

∫
B2(x0)

K (x − y) : v(y, t)⊗ v(y, t) dy

+
1

4π

∫
R3\B2(x0)

(K (x − y)− K (x0− y)) : v(y, t)⊗ v(y, t) dy

in L3/2(0, T ; L3/2(B1(x0))), where K (x)=∇2(1/|x |).

Lemarié-Rieusset [2002] constructed global-in-time local Leray solutions if v0 belongs to E2, the
closure of C∞0 in the L2

uloc(R
3) norm. See [Kikuchi and Seregin 2007] for another construction which

treats the pressure carefully. Note that [Lemarié-Rieusset 2002; Kikuchi and Seregin 2007; Jia and Šverák
2014; 2015] contain alternative definitions of local Leray solutions. On one hand, [Kikuchi and Seregin
2007] requires the pressure satisfy a certain formula (we will establish a similar pressure formula for our
solutions; see Theorem 1.2). In [Jia and Šverák 2014; 2015], the explicit pressure formula is replaced by
a decay condition imposed on the solution at spatial infinity, namely, for all R > 0

lim
|x0|→∞

∫ R2

0

∫
B(x0,R)

|v|2 dx dt = 0.
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Jia and Šverák [2014; 2015] claim that, if v exhibits this decay, then the pressure formula from [Kikuchi
and Seregin 2007] is valid. Since the decay property is easier to directly establish for a given solution,
this justifies using it in place of the explicit pressure formula in the definition of local Leray solutions. It
turns out that these properties are equivalent when v0 ∈ E2. This can be proved using ideas contained
in a recent preprint of Maekawa, Miura, and Prange [Maekawa et al. 2019] on the construction of local
energy solutions in the half-space.

Local Leray solutions are known to satisfy a useful a priori bound. Let N (v0) denote the class of local
Leray solutions with initial data v0. The following estimate is well known for local Leray solutions (see
[Jia and Šverák 2014]): for all ṽ ∈N (v0) and r > 0 we have

ess sup
0≤t≤σr2

sup
x0∈R3

∫
Br (x0)

1
2 |ṽ(x, t)|2 dx + sup

x0∈R3

∫ σr2

0

∫
Br (x0)

|∇ṽ|2 dx dt < C A, (1-12)

where

A = sup
x0∈R3

∫
Br (x0)

1
2 |v0|

2 dx, σ (r)= c0 min{r2 A−2, 1}, (1-13)

for a small universal positive constant c0.
Concurrently to the publication of [Bradshaw and Tsai 2017a], the book [Lemarié-Rieusset 2016]

was published, which includes a chapter on the self-similar solutions of [Jia and Šverák 2014]. Here,
Lemarié-Rieusset generalizes the space of initial data to include any L2

loc, divergence-free, self-similar
vector field. The main elements of his argument are as follows. He first uses the Leray–Schauder approach
of [Jia and Šverák 2014] to construct self-similar solutions for initial data v0 satisfying |v0(x)|. |x |−1.
This construction is more general than that in [Jia and Šverák 2014] but less general than that in [Bradshaw
and Tsai 2017a]. But, provided v0 is self-similar, v0 ∈ L2

loc if and only if v0 ∈ L2
uloc. And, furthermore,

if v0 is self-similar and belongs to L2
uloc, then it can be approximated by a sequence v(k)0 where each

|v
(k)
0 (x)|. |x |−1. Then, the first construction gives local Leray solutions for each v(k)0 and, because local

Leray solutions satisfy the a priori bound (1-12) depending only on the L2
uloc norm of their initial data,

these will converge to an SS local Leray solution with L2
loc data. This argument breaks down for DSS

solutions since L2
loc ∩DSS 6= L2

uloc ∩DSS (see (1-15) for an example) and, therefore, we cannot get the
uniform bound (1-12) on a sequence of approximating solutions for free.

Chae and Wolf [2018], on the other hand, introduced an entirely new method to construct λ-DSS
solutions for any λ > 1 and initial data v0 ∈ L2

loc(R
3). These solutions live in the class of “local Leray

solutions with projected pressure”, which means they satisfy a modified local energy inequality instead
of the classical local energy inequality (1-11) of [Caffarelli et al. 1982]. To construct these solutions,
Chae and Wolf use a fixed-point argument to solve the mollified Navier–Stokes equations (this is the
same system studied in [Bradshaw and Tsai 2017a], but written in physical variables as opposed to the
similarity variables, see (3-4) and (3-5)). To apply the fixed-point argument, Chae and Wolf first prove
existence for the (mollified) linearized equations where the given drift velocity is DSS. They then apply
a fixed-point theorem (the space for the fixed-point argument is a bounded set of the DSS subspace
of L18/5(0, T ; L3(B1))— Br denotes the ball of radius r centered at the origin — defined below [Chae
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and Wolf 2018, (3.1)]) to prove that there exists a drift velocity which matches the solution. This gives
existence of a DSS solution to the mollified Navier–Stokes equations. Note that the approximations
satisfy the a priori (energy) bound [Chae and Wolf 2018, (2.35)] and the norm of the mollification term
can be absorbed for T sufficiently small.

In this paper we give a simple, alternative proof of the result in [Chae and Wolf 2018]. The following
theorem is our main result.

Theorem 1.2. Assume v0 ∈ L2
loc(R

3) is a divergence-free λ-DSS vector field for some λ > 1. Then there
exists a λ-DSS distributional solution v to (1-1) and associated pressure π so that v is suitable in the
sense of [Caffarelli et al. 1982] and satisfies

lim
t→0+
‖v(t)− v0‖L2(K ) = 0

for every compact subset K of R3. Moreover, for any T > 0 and compact subset K of R3, we have
v ∈ L∞(0, T ; L2(K ))∩ L2(0, T ; H 1(K )) and π ∈ L3/2(0, T ; L3/2(K )). Furthermore, for any (x, t) ∈
R3
× (0,∞), the pressure satisfies the formula

π(x, t)=− 1
3 |v|

2(x, t)+ lim
δ→0

∫
|y|>δ

Ki j (x − y)vi (y, t)vj (y, t) dy (1-14)

in L3/2
loc (R

3
× (0,∞)).

Comments on Theorem 1.2. (1) In [Chae and Wolf 2018], the data also belongs to L2
loc, but the solution

is not shown to satisfy the local energy inequality of [Caffarelli et al. 1982]. Instead, it satisfies a “local
energy inequality with projected pressure”. Since the solution constructed in Theorem 1.2 satisfies the
traditional local energy inequality, this theorem is a slight refinement of the main result of [Chae and Wolf
2018]. Furthermore, we are careful to give a precise formulation (1-14) of the pressure and its connection
to the velocity. The relationship between v and π is less clear in [loc. cit.].

(2) The integral in (1-14) is not a Calderón–Zygmund singular integral because we do not have a global
bound for v. It is defined in L3/2

loc using the DSS property.

(3) Our method of proof is by approximation and is similar to the argument from [Lemarié-Rieusset 2016].
The main difference is that we need to construct a sequence of approximating solutions and establish a
new a priori bound for these solutions for DSS data — in [loc. cit.] the bound (1-12) is sufficient (and
free). Note that an approximation argument using (1-12) was also used by the authors in [Bradshaw and
Tsai 2017a] to construct SS solutions as a limit of DSS solutions where the scaling factors are converging
to 1.

(4) Generally, the solution v is not necessarily a local Leray solution because v0 may not be in L2
uloc,

and we do not assert the uniform bounds in Definition 1.1(2). Consider the DSS function in L2
loc for

0< a < 3
2

fa(x)=
∑
k∈Z

λk fa,0(λ
k x), fa,0(x)= |x − x0|

−aχ(x − x0), (1-15)
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where 1+ r < |x0|< λ− r for some r > 0, and χ is the characteristic function of the ball Br (0). It is not
in L2

uloc when 1< a < 3
2 for its behavior at infinity. It is in L2

uloc when 0< a ≤ 1. The function f1(x) for
a = 1 is given in Comment 4 after [Bradshaw and Tsai 2017a, Theorem 1.2] as an inapplicable example
since it is not in L3,∞(R3).

(5) If v0 ∈ L2
uloc, then it is not difficult to obtain uniform bounds on v in the sense of Definition 1.1(2).

Furthermore, Definition 1.1(5) can be established whenever v0 ∈ E2; see [Maekawa et al. 2019]. Thus,
our construction yields DSS local Leray solutions whenever the data is DSS, divergence-free, and in E2.

Our strategy for proving Theorem 1.2 is to approximate a solution with data in L2
loc using solu-

tions constructed in [Bradshaw and Tsai 2017a]. There are several steps. First we need to prove
that DSS data in L2

loc can be approximated in L2(B1) by DSS data in L3
w. This is the subject of

Section 4A. Then, [loc. cit.] gives us a sequence of DSS solutions in the local Leray class. To prove
that these solutions converge to a solution with L2

loc data satisfying the desired pressure formula,
we need to establish new a priori bounds for the solutions from [loc. cit.] which are independent
of the L3

w norm of the initial data (this is done in Section 3) and also prove that they satisfy the
pressure formula (see Section 2). In Sections 4B and 4C, we put these ingredients together to prove
Theorem 1.2.

As a last remark, in [Chae and Wolf 2018] it is unclear if the solution is suitable in the classical sense.
The referee for this paper suggested a compelling argument to address this. In particular, the discretely
self-similar ansatz and the boundedness of the solution in L2

loc(R
3
×[0,∞)) should make it possible to

define P∇ · (u⊗ u). Then, starting with a solution of [loc. cit.], a pressure p could be constructed in D ′.
It then could be shown that ∇ p+P(u · ∇u)= 0. This should follow from the slow growth of u at spatial
infinity and using the fact that ∇ p+P(u · ∇u) is spatially harmonic.

2. A limiting pressure formula for DSS solutions

In this section we will prove that, under certain conditions, the limiting pressure distribution of an
approximation scheme for (1-1) inherits the structure of the approximate pressure distributions. This
result will be applied in Sections 3 and 4C.

Lemma 2.1. Fix λ > 1 and T > 0. Let v0 ∈ L2
loc be a given divergence-free, λ-DSS vector field and

assume {v(k)0 } ⊂ L2
loc is a sequence of divergence-free, λ-DSS vector fields so that v(k)0 → v0 in L2(B1).

Assume vk and ṽk are divergence-free, λ-DSS vector fields and that there exists a distribution πk so that
the following conditions are satisfied:

• vk , ṽk , and πk solve the system

∂tvk −1vk + ṽk · ∇vk +∇πk = 0, (x, t) ∈ R3
×[0, T ],

for the initial data v(k)0 and both vk and ṽk converge to v(k)0 in L2
loc.

• vk and ṽk are uniformly bounded in L∞(0, T ; L2(B1))∩ L2(0, T ; H 1(B1)) over all k ∈ N.
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• For all 0< t ≤ T, the distribution πk satisfies the formula

πk(x, t)=− 1
3 [ṽk · vk](x, t)+ lim

δ→0

∫
|y|>δ

Ki j (x − y)(ṽk)i (y, t)(vk)j (y, t) dy. (2-1)

• There exists a λ-DSS solution v in L∞(0,T ;L2(B1))∩L2(0,T ;H 1(B1))with pressure π in L3/2(0,T ;L3/2)

so that
vk and ṽk→ v weakly in L2(0, T ; H 1(B1)),

vk and ṽk→ v in L2(0, T ; L2(B1)),

πk→ π weakly in L3/2(0, T ; L3/2(B1)).

Then, for a.e. 0< t ≤ T and x ∈ Bλ, the pressure π satisfies the formula

π(x, t)=− 1
3 |v|

2(x, t)+ lim
δ→0

∫
|y|>δ

Ki j (x − y)(v)i (y, t)(v)j (y, t) dy (2-2)

in L3/2((0, T )× Bλ).

Remark 2.2. The purpose of this lemma is to establish the pressure formula (2-2), which, ultimately, will
allow us to prove (1-14). It is, however, not needed to establish the other conclusions of Theorem 1.2.

Proof. Note that since vk , ṽk , and v are all uniformly bounded in L∞(0, T ; L2(B1))∩ L2(0, T ; H 1(B1)),
convergence in L2(0, T ; L2(B1)), Hölder’s inequality, Sobolev embedding, using the equation to get
uniform bound of ∂tvk , and rescaling the solution imply

vk and ṽk→ v in L3(0, T ; L3(B1)).

It also shows that vk , ṽk , and v are all uniformly bounded in L3(0, T ; L3(B1)) (at least for k sufficiently
large).

Let
π1

k (x, t)=− 1
3 [ṽk · vk](x, t),

π2
k (x, t)= lim

δ→0

∫
λ2>|y|>δ

Ki j (x − y)(ṽk)i (y, t)(vk)j (y, t) dy,

π3
k (x, t)=

∫
y≥λ2

Ki j (x − y)(ṽk)i (y, t)(vk)j (y, t) dy.

Also let
π1(x, t)=− 1

3 |v|
2(x, t),

π2(x, t)= lim
δ→0

∫
λ2>|y|>δ

Ki j (x − y)vi (y, t)vj (y, t) dy,

π3(x, t)=
∫

y≥λ2
Ki j (x − y)vi (y, t)vj (y, t) dy.

Since vk and ṽk→ v in L3(0, T ; L3(Bλ)), we have

π1
k → π1 in L3/2(0, T ; L3/2(Bλ)).
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Let
hi, j (y, t)= (ṽk)i (vk)j − vivj

= {(ṽk)i [(vk)j − vj ] + [(ṽk)i − vi ]vj }(y, t).

Using the Calderón–Zygmund theory we clearly have∫ T

0

∫
Bλ
|π2

k (x, t)−π
2(x, t)|3/2 dx dt ≤C

∫ T

0

∫
B
λ2

|hi, j (x, t)|3/2 dx dt

≤C
(∫ T

0

∫
B
λ2

ṽ3
k dx dt

)1/2(∫ T

0

∫
B
λ2

(vk−v)
3 dx dt

)1/2

+C
(∫ T

0

∫
B
λ2

v3 dx dt
)1/2(∫ T

0

∫
B
λ2

(ṽk−v)
3 dx dt

)1/2

. (2-3)

Rescaling gives ∫ T

0

∫
B
λ2

(ṽk − v)
3(x, t) dx dt = λ4

∫ Tλ−4

0

∫
B1

(ṽk − v)
3(z, τ ) dz dτ

for the obvious choice of z and τ . Since the right-hand side of the equation above vanishes as
k →∞, as does the identical term but with ṽk replaced by vk , we conclude that π2

k converges to
π2 in L3/2(0, T ; L3/2(B1)).

Establishing the convergence of π3
k to π3 is more difficult. Let

pk(x, t)= π3
k (x, t)−π3(x, t)=

∫
|y|≥λ2

Ki j (x − y)hi, j (y, t) dy.

Fix x ∈ Bλ. Then

|pk(x, t)|3/2 ≤ C
∣∣∣∣∫
|y|≥λ2

1
|y|3
|hi, j (y, t)| dy

∣∣∣∣3/2
≤ C

(∫
|y|≥λ2

1
|y|4

dy
)1/2 ∫

|y|≥λ2

1
|y|5/2

|hi, j (y, t)|3/2 dy

= C
∫
|y|≥λ2

1
|y|5/2

|hi, j (y, t)|3/2 dy.

Let Ak = {x : λk−1
≤ |x |< λk

} for k ∈ Z. Then, using the scaling properties of h,∫
|y|≥λ2

1
|y|5/2

|hi, j (y, t)|3/2 dy =
∞∑

k=3

∫
Ak

1
|y|5/2

|hi, j (y, t)|3/2 dy

≤ C(λ)
∞∑

k=3

1
λ5k/2

∫
Ak

|hi, j (y, t)|3/2 dy

≤ C(λ)
∞∑

k=3

1
λ5k/2

∫
B1

|hi, j (z, tλ−2k)|3/2 dz.
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Thus, ∫ T

0

∫
Bλ
|pk(x, t)|3/2 dt ≤ λ3C(λ)

∫ T

0

∞∑
k=3

1
λ5k/2

∫
B1

|hi, j (z, tλ−2k)|3/2 dz dt

≤ C(λ)
∞∑

k=3

1
λk/2

∫ Tλ−2k

0

∫
B1

|hi, j (z, τ )|3/2 dz dτ

≤ C(λ)
∫ T

0

∫
B1

|hi, j (z, τ )|3/2 dz dτ.

Therefore this term is bounded as (2-3).
We have now shown that πk(x, t) converges weakly to both π1(x, t)+π2(x, t)+π3(x, t) and π(x, t)

in L3/2(0, T ; L3/2(Bλ)), implying that π(x, t)= π1(x, t)+π2(x, t)+π3(x, t) as distributions. In other
words, π(x, t) satisfies (2-2) in L3/2((0, T )× Bλ). �

3. Properties of DSS solutions with data in L3
w

The goal of this section is to obtain a bound on the local evolution of DSS solutions v constructed in
[Bradshaw and Tsai 2017a] that is independent of both the L3

w and L2
uloc norms of v and to establish an

explicit representation formula for the pressure.
Assume v0 ∈ L3

w(R
3) and v is a DSS solution evolving from v0 as constructed in [loc. cit.]. For a

generic solution to (1-1), we cannot close energy estimates for φv solely in terms of v0|Bλ — there is
always some spillover. Proposition 3.1 states that this is possible for DSS solutions as a result of their
scaling properties. In our argument, we must work with a quantity that is continuous in time. This is
not known for

∫
B1
|v(t)|2 dx when v is a local Leray solution. Hence, we need to work at the level of a

mollified approximation scheme [loc. cit., (2.24)] (see (3-4) below). Note that in [loc. cit.], the mollified
scheme is used to approximate a solution to the time-periodic Leray equations and the mollification is
time-independent. Undoing the similarity transformation results in a time-dependent mollification of the
drift component of the nonlinear term of the solution in the physical variables (see (3-5) below); this
matches the mollification used in [Chae and Wolf 2018].

Proposition 3.1. Fix λ > 1. Assume v0 ∈ L3
w(R

3) is λ-DSS and divergence-free, and v is a λ-DSS
local Leray solution evolving from v0 constructed in [Bradshaw and Tsai 2017a] (in particular, it is
the limit of the mollified approximation scheme (2.24) in that paper) and π is its associated pressure.
Let α0 = ‖v0‖

2
L2(Bλ)

. Then, there exist positive T = T (α0, λ) and C(α0, λ) independent of ‖v0‖L2
uloc

and
‖v0‖L3

w
so that

ess sup
0≤t≤T

∫
B1

|v(x, t)|2 dx +
∫ T

0

∫
B1

|∇v|2 dx dt < C(α0, λ), (3-1)

and ∫ T

0

∫
B1

|π(x, t)|3/2 dx dt < C(α0, λ). (3-2)
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Moreover, for x ∈ B1 and t ∈ (0, T ), the pressure satisfies the formula

π(x, t)=− 1
3 |v|

2(x, t)+ lim
δ→0

∫
|y|>δ

Ki j (x − y)vi (y, t)vj (y, t) dy (3-3)

in L3/2(B1× (0, T )).

Typically, the best pressure decompositions we have for local Leray solutions depend on a particular
ball containing the spatial point at which the pressure is being computed. The resulting formula consists
of a local Calderón–Zygmund part and a far-field part with a singular kernel that is decaying faster than
the kernel of K . The formula (3-3) does not involve such a decomposition, and, as is evident in the proof,
the integral in (3-3) is defined using the DSS property.

The proof of [Bradshaw and Tsai 2017a] shows that the left sides of (3-1) and (3-2) are bounded
by constants depending on v0, in particular its L3

w(R
3)-norm. For this application, we need a bound

depending only on ‖v0‖L2(Bλ) and λ.

Proof. Since v is a solution from [Bradshaw and Tsai 2017a], its image under the similarity transform
(1-9) solves the time-periodic Leray equations and is the limit of a mollified approximation scheme
[loc. cit., (2.24)]. In particular, for each ε > 0, there exists a time-periodic solution uε to the problem(

∂suε −1uε − 1
2 uε − 1

2 y · ∇uε + (ηε ∗ uε) · ∇uε +∇ pε
)
(y, s)= 0, (3-4)

where ηε(y)= (1/ε3)η(y/ε) and η is in C∞0 (R
3), is nonnegative, and satisfies

∫
η(y) dy = 1. Applying

(1-8)–(1-9) we obtain a λ-DSS vector field vε satisfying

∂tvε(x, t)−1vε(x, t)+ (ηε√t ∗ vε) · ∇vε(x, t)+∇πε(x, t)= 0. (3-5)

Note the time dependence of the convolution kernel ηε√t in (3-5).
By the convergence properties of uε(y, s) to u(y, s) =

√
tv(x, t) [loc. cit., p. 1108] and discretely

self-similar scaling (to extend the estimates down to t = 0), it follows that for all T > 0 and all compact
sets K ⊂ R3,

vε→ v weakly in L2(0, T ; H 1(K )),

vε→ v strongly in L2(0, T ; L2(K )),

vε(s)→ v(s) weakly in L2(K ) for all s ∈ [0, T ].

Note also that vε(t)→ v0 in L2
loc; i.e., the mollification does not affect the initial data. Furthermore,

because each vε is smooth on R3
× (0,∞) and right continuous in L2

loc at t = 0, it follows that

αε(t)=
∫

B1

|vε(x, t)|2 dx

and

α̃ε(t)= sup
0≤τ≤t

αε(τ )

are continuous as functions of t . This is not clearly true for
∫

B1
|v(x, t)|2 dx .
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Note that, for any k ∈ Z and q ∈ [1,∞), since vε(x, t)= λ−kvε(λ
−k x, λ−2k t),∫

B
λk

|vε(x, t)|q dx = λ(3−q)k
∫

B1

|vε(x̃, λ−2k t)|q dx̃ . (3-6)

Our goal is to establish local-in-time a priori bounds for αε(t) that are independent of ε. Note that vε
satisfies the local energy equality; i.e.,∫
|vε |

2φ(t) dx + 2
∫ t

0

∫
|∇vε |

2φ dx ds

=

∫
|v0|

2φ dx +
∫ t

0

∫
|vε |

2(∂sφ+1φ) dx ds

+

∫ t

0

∫
(|vε |

2((ηε
√

s ∗ vε) · ∇φ) dx ds+
∫ t

0

∫
2πε(vε · ∇φ) dx ds (3-7)

for any nonnegative φ ∈ C∞0 (R
3
×[0,∞)). Fix χ ∈ C∞(R) with χ(t)= 1 if t ≤ 1 and χ(t)= 0 if t ≥ λ.

We now fix φ in (3-7) as

φ(x, t)= χ2(|x |) ·χ(t).

We will estimate the terms on the right-hand side of (3-7) for 0 < t ≤ 1, and we can treat φ as
t-independent from now on. The first term is bounded by α0. For the second, using the scaling properties
(3-6) of vε , we have∫ t

0

∫
|vε |

2(∂sφ+1φ) dx ds ≤ C
∫ t

0

∫
Bλ
|vε |

2 dx ds ≤ Cλ3
∫ t/λ2

0

∫
B1

|vε |
2 dx ds ≤ C(λ)

∫ t

0
α̃ε(s) ds.

For the cubic term, we begin by using Young’s inequality to obtain∫ t

0

∫
|vε |

2((ηε
√

s ∗ vε) · ∇φ) dx ds ≤ C
∫ t

0

∫
Bλ
|vε |

3 dx ds+C
∫ t

0

∫
Bλ
|(ηε
√

s ∗ vε)|
3 dx ds.

Rescaling the unmollified term and making the obvious change of variables results in the estimate∫ t

0

∫
Bλ
|vε |

3 dx ds ≤ C(λ)
∫ t/λ2

0

∫
B1

|vε |
3 dy dτ ≤ C(λ)

∫ t

0

∫
|vε |

3φ3/2 dx ds.

For the term involving the mollifier, note that η ∈ C∞0 and supp η ⊂ Bρ for some ρ > 0. By taking ε
sufficiently small we can ensure that supp ηε√s ⊂ Bλ−1 whenever s < 1. Note λk

+ (λ− 1)≤ λk+1 for all
k ≥ 0. Thus, for x ∈ Bλ,

|(ηε
√

s ∗ vε)(x, s)| ≤
∫
ηε
√

s(y)|vε(x − y, s)| dy

=

∫
ηε
√

s(y)|vε(x − y, s)|χB
λ2 (x − y) dy

= (ηε
√

s ∗ (χB
λ2 |vε |))(x, s)
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whenever ε is sufficiently small and s < 1. Therefore, under the same assumptions and after rescaling we
see that, for any 1< q <∞,

‖(ηε
√

s ∗ vε)(s)‖Lq (Bλ) ≤ C(q,η)‖vε(s)‖Lq (B
λ2 ) ≤ C(q,η, λ)‖vε(λ−4s)‖Lq (B1), (3-8)

where C is independent of s and ε. Note that this estimate is also valid if Bλ is replaced by Bλ2 but with
a different choice of constants, smallness condition on ε, and right-hand side determined at time λ−6s.

Using standard inequalities and (3-8) with q = 3 thus leads to the estimate∫ t

0

∫
|vε |

2((ηε
√

s ∗ vε) · ∇φ) dx ds ≤ C(η, λ)
∫ t

0

∫
|vε |

3φ3/2 dx ds. (3-9)

By the Gagliardo–Nirenberg inequality and rescaling (3-6), we have, for any s > 0, that

‖φ1/2vε(s)‖L3 ≤ C‖∇ ⊗ (φ1/2vε)‖
1/2
L2 ‖φ

1/2vε‖
1/2
L2 (s)

≤ C(λ)(α̃ε(s)1/2+‖φ1/2
∇vε(s)‖L2)1/2(α̃ε(s))1/4.

Hence, for any γ > 0,

‖φ1/2vε(s)‖3L3 ≤ C(λ)(γ−3α̃ε(s)3+ γ α̃ε(s)1+ γ ‖φ1/2
∇vε(s)‖22).

Thus,∫ t

0

∫
|vε |

2((ηε
√

s ∗ vε) · ∇φ) dx ds

≤ C(λ, γ, η)
∫ t

0
(α̃ε(s)3+ α̃ε(s)1) ds+C(λ)γ

∫ t

0

∫
|∇vε |

2φ dx ds. (3-10)

Provided γ is small enough, the gradient term can be absorbed into the left-hand side of (3-7).
We next estimate the pressure term. For this we need a formula for the pressure, which we presently

justify. Let wε = vε − V0, where V0(x, t)= et1v0. We have

∂twε −1wε +∇πε = g, divwε = 0,

where gi =−∂j G j i with
G = (ηε√t ∗ vε)⊗ vε

= (ηε
√

t ∗wε + ηε
√

t ∗ V0)⊗ (wε + V0).

For 0< t1 < t2 <∞, we have

V0 ∈ C([t1, t2]; L4(R3)∩ L∞(R3)),

wε ∈ L∞(t1, t2; L2(R3))∩ L2(t1, t2; L6(R3))⊂ L4(t1, t2; L3(R3)).

By Young’s convolution inequality,

‖G‖L2(t1,t2;L2) . ‖ηε
√

t‖L∞(t1,t2;L6/5∩L1)(‖wε‖L4(t1,t2;L3(R3))+‖V0‖L4(R3×[t1,t2]))
2.

Since g ∈ L2([t1, t2]; H−1), [Caffarelli et al. 1982, Lemma A.2] implies wε ∈ C([t1, t2]; L2) (after
modification on a set of time of measure zero; since the modified vector field still satisfies the above
system distributionally, this does not effect our argument).



DISCRETELY SELF-SIMILAR SOLUTIONS TO THE NAVIER–STOKES EQUATIONS WITH DATA IN L2
loc 1955

Consider the following nonstationary Stokes system with forcing g:

∂t V −1V +∇P = g, div V = 0,

with initial data V0=wε(t1)∈ L2(R3). It is well known that if g ∈ L∞(t1, t2; H−1) and V0 ∈ L2, then there
exists a unique V ∈ Cw([t1, t2]; L2(R3))∩ L2([t1, t2]; H 1(R3)) and unique ∇P solving the nonstationary
stokes system given above; see [Bradshaw and Tsai 2017a, p. 1107–1108]. Letting V = wε and P = πε ,
this implies that wε and ∇πε are unique. Up to a function π∗(t) independent of x ,

πε(x, t)−π∗(t)=− 1
3 [(ηε

√
t∗vε)·vε](x, t)+ lim

δ→0

∫
|y|>δ

Ki j (x−y)(ηε√t∗vε)i (y, t)(vε)j (y, t) dy, (3-11)

where

Ki j (x)= ∂i∂j
1

4π |x |
.

The right-hand side of (3-11) is defined in L2([t1, t2]; L2(R3)). Since the only appearance of πε in (3-5)
is ∇πε , we can redefine πε to equal πε −π∗(t) and, therefore, can drop π∗(t) from (3-11).

The pressure πε given by (3-11) is already bounded in L2([t1, t2]; L2(R3)) for any 0< t1 < t2 <∞
but the bound depends on t1, t2 and ε. We now bound it in L3/2(0, T ; L3/2(Bλ)). Bounding the first term
from (3-11) is simple given Hölder’s inequality, (3-8), and (3-9). In particular, we have for any γ > 0∫ t

0

∥∥1
3 |(ηε

√
s∗vε)( · ,s)||vε( · ,s)|

∥∥3/2
L3/2(Bλ)

ds ≤C(λ,γ,η)
∫ t

0
(α̃ε(s)3+α̃ε(s)1)ds+γ

∫ t

0

∫
|∇vε |

2φ dx ds.

To bound the principal value integral in (3-11), we need to split the integral into local and nonlocal parts
as follows:

lim
δ→0

∫
|y|>δ

K (x−y)(ηε√t∗vε)(y, t)vε(y, t)dy

= lim
δ→0

∫
B
λ2\Bδ

K (x−y)(ηε√t∗vε)(y, t)vε(y, t)χB
λ2 (y)dy+

∫
|y|>λ2

K (x−y)(ηε√t∗vε)(y, t)vε(y, t)dy

=:πnear(x, t)+πfar(x, t).

To bound πnear note that, by the Calderón–Zygmund theory,

‖πnear( · , t)‖L3/2(Bλ) ≤ ‖(ηε
√

t ∗ vε)( · , t)vε( · , t)‖L3/2(B
λ2 ),

and, arguing as above using (3-8) but with Bλ2 in place of Bλ (see the note following (3-8)), it follows that∫ t

0
‖πnear( · , s)‖3/2L3/2(Bλ)

ds ≤ C(λ, γ, η)
∫ t

0
(α̃ε(s)3+ α̃ε(s)1) ds+ γ

∫ t

0

∫
|∇vε |

2φ dx ds.

Bounding the term πfar is more complicated. Let

Ak = {x : λk−1
≤ |x |< λk

}.
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We start with the following pointwise estimate which is valid whenever x ∈ Bλ:

|πfar(x, t)| ≤ C
∞∑

k=3

∫
Ak

1
|x − y|3

|(ηε
√

t ∗ vε)(y, t)||vε(y, t)| dy

≤ C(λ)
∞∑

k=3

1
λ3k

∫
Ak

|(ηε
√

t ∗ vε)(y, t)||vε(y, t)| dy

= C(λ)
∞∑

k=3

1
λ2k

∫
A0

|(η
ε
√

tλ−2k ∗ vε)(z, tλ−2k)||vε(z, tλ−2k)| dz

≤ C(λ)
∞∑

k=3

1
λ2k ‖(ηε

√
tλ−2k ∗ vε)(tλ−2k)‖L2(B1)‖vε(tλ

−2k)‖L2(B1)

≤ C(λ)
∞∑

k=3

1
λ2k ‖vε(tλ

−2k)‖2L2(B
λ2 )
≤ C(λ)α̃ε(t),

where we have used (3-6), (3-8) and rescaled the solution. Therefore,∫ t

0
‖πfar( · , s)‖3/2L3/2(Bλ)

ds ≤ C(λ)
∫ t

0
α̃ε(s)3/2 ds.

After using Hölder’s inequality, (3-9), the bounds above, and α3/2
≤ α+α3 for α > 0, it is clear that∫ t

0
‖πε( · , s)‖3/2L3/2(Bλ)

ds+
∫ t

0

∫
2πε(vε · ∇φ) dx ds

≤ C(λ, γ, η)
∫ t

0
(α̃ε(s)3+ α̃ε(s)1) ds+ γ

∫ t

0

∫
|∇vε |

2φ dx ds.

Combining the estimates above (and taking γ sufficiently small to absorb the gradient terms on the
right-hand side), we obtain

αε(t)+
∫ t

0

∫
B1

|∇vε |
2 dx ds ≤ α0+C(λ, η, γ )

∫ t

0
(α̃ε(s)3+ α̃ε(s)1) ds. (3-12)

Therefore,

α̃ε(t)≤ α0+C
∫ t

0
(α̃ε(s)3+ α̃ε(s)1) ds. (3-13)

By continuity of αε(t), we have
α̃ε(t)≤ 2α0 for all t < T, (3-14)

for some T > 0. By a continuity argument, we may take T = (C(2+ 8α2
0))
−1.

Letting ε→ 0 yields
(v, χB1v)(t)≤ lim inf

ε→0
(vε, χB1vε)L2(t)≤ 2α0

for all t ≤ T. Note that (3-12) gives uniform (in ε) control of∫ T

0

∫
B1

|∇vε |
2 dx dt ≤ C(α0, λ)
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for some constant C(α0, λ). From [Bradshaw and Tsai 2017a] we have that vε converges weakly to v
in L2(1/k, T ; H 1(B1)) for every k ∈ N. Hence,∫ T

1/k

∫
B1

|∇v|2 dx dt ≤ sup
ε>0

∫ T

0

∫
B1

|∇vε |
2 dx dt,

and, letting k→∞, it follows that ∫ T

0

∫
B1

|∇v|2 dx dt ≤ C(α0, λ).

Similarly, since πε ∈ L3/2(0, T ; L3/2(B1)) with uniformly bounded norms, it follows that

π ∈ L3/2(0, T ; L3/2(B1)).

Applying Lemma 2.1 yields the desired pressure representation in L3/2(0, T ; L3/2(B1)) and concludes
the proof. �

4. DSS solutions with data in L2
loc(R

3)

In this section we prove Theorem 1.2. To do this, we need to approximate DSS data in L2
loc by divergence-

free DSS vector fields in L3
w and also characterize discrete self-similarity on R3

× (0,∞) in terms of a
neighborhood of the origin.

4A. Approximation of DSS data in L2
loc.

Lemma 4.1. Let f ∈ L2
loc(R

3
;R3) be a given divergence-free λ-DSS vector field for some λ > 0. There

exists a sequence of divergence-free λ-DSS vector fields φ(k) so that φ(k)∈ L3
w(R

3) and ‖φ(k)− f ‖L2(B1)→0
as k→∞ (B1 is the ball of radius 1 centered at the origin).

The main difficulty in proving this lemma is that each f (k) must be divergence-free. We thus need to
use the Bogovski map [1980], which we presently recall.

Lemma 4.2. Let � be a bounded Lipschitz domain in Rn , 2≤ n <∞. There is a linear map 9 that maps
a scalar f ∈ Lq(�) with

∫
�

f = 0, 1< q <∞, to a vector field v =9 f ∈W 1,q
0 (�;Rn) and

div v = f, ‖v‖W 1,q
0 (�)

≤ c(�, q)‖ f ‖Lq (�).

The map 9 is independent of q for f ∈ C∞c (�).

Proof of Lemma 4.1. Let Z0(x) ∈ C∞(R3) satisfy

Z0(x)=


1, |x |> 1,
radial, increasing, λ−1

≤ |x | ≤ 1,
0, |x |< λ−1.

Note that ∇ · (Z0 f )= f · ∇Z0; i.e., Z0 f is not divergence-free. We can correct this using Lemma 4.2
with q = 2 for the scalar − f · ∇Z0 noting that f is locally square integrable and∫

− f · ∇Z0 dx = 0,
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because f is divergence-free. Denote by 80 the image of − f · ∇Z0 under a Bogovski mapping with
domain {x : λ−1

≤ |x | ≤ 1}. Then, 80 ∈W 1,2
0 (B1 \ Bλ−1) and

∇ · (Z0 f +80)= 0.

Let Zi (x)= Z0(x/λi ) and 8i (x)= λ−i80(λ
−i x) for all i ∈ Z. It follows that

∇ · (Zi f +8i )= 0

for all i ∈ Z. Note that supp(Z j − Z j+2)= {x : λ j−1
≤ |x | ≤ λ j+2

}. Let

fi =
1
2(Zi − Zi+2) f + 1

2(8i −8i+2).

Then each fi is divergence-free and supported on Bλi+2 \ Bλi−1 . Furthermore,

f =
∑
i∈Z

fi ,

where convergence is understood in the pointwise sense for all x 6= 0. To confirm this note that if x
satisfies λi

≤ |x |< λi+1 then x ∈ supp(Z j − Z j+2) if and only if j ∈ {i − 1, i, i + 1}. It follows that∑
j∈Z

(Z j − Z j+2)(x)= 2.

On the other hand, supp8j = {x : λ j−1
≤ |x | ≤ λ j

} and, therefore,∑
j∈Z

(8j (x)−8j+2(x))=8i+1(x)−8i+1(x)= 0.

It follows that f =
∑

i∈Z fi .
Assume φ(k)0 is a sequence of divergence-free vector fields in C∞0 (Bλ2 \ Bλ−1) so that φ(k)0 → f0 in

L2(Bλ2 \ Bλ−1). Let φ(k)i = λ
−iφ

(k)
0 (λ−i x). Then the vector field

φ(k) =
∑
i∈Z

φ
(k)
i

is a divergence-free, λ-DSS vector field, and satisfies

|φ(k)(x)| ≤ ck |x |−1

(where the proportionality constants ck are not uniformly bounded with respect to k). Hence, φ(k) ∈ L3
w.

We finish by arguing that φ(k)→ f in L2(B1). We know that
∫

B
λ2\Bλ−1

(φ
(k)
0 − f )2 dx → 0 as k→∞.

Using the definition of φ(k) and the fact that f is discretely self-similar we have, letting Ai = Bλi \ Bλi−1 ,
that ∫

B1

(φ(k)− f )2 dx =
∑
i≤0

∫
Ai

(φ(k)− f )2 dx

=

∑
i≤0

λi
∫

A0

(φ(k)− f )2 dx =
λ

λ− 1

∫
A0

(φ(k)− f )2 dx .
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In A0, we have φ(k)− f =
∑0

i=−2(φ
(k)
i − fi ). Thus

‖φ(k)− f ‖L2(A0) ≤

0∑
i=−2

‖φ
(k)
i − fi‖L2(A0) =

2∑
k=0

λ−k/2
‖φ

(k)
0 − f0‖L2(Ak) ≤ 3‖φ(k)0 − f0‖L2(B

λ2\Bλ−1 ),

which completes the proof. �

4B. DSS solutions in a neighborhood of the origin. In the Introduction we saw that any time-periodic
solution u to (1-10) corresponds to a DSS solution v after the change of variables (1-9). Distributionally,
u is a time-periodic solution to (1-10) if and only if∫ s′+T

s′

(
(u, ∂s f )− (∇u,∇ f )+

( 1
2 u+ 1

2 y · ∇u− u · ∇u, f
))

ds = 0 (4-1)

holds for all s ′ ∈ R and f ∈ DT , where DT denotes the collection of all smooth divergence-free vector
fields in R3

×R which are time-periodic with period T and whose supports are compact in space. In
[Bradshaw and Tsai 2017a], this definition was used with s ′ = 0 since the goal was to extend a solution
on [0, T ] to R using periodicity. The same modification can be made here based on the observations that
if u satisfies (4-1) then u can be extended to a time-periodic solution on R and if u is a time-periodic
solution on R then u satisfies (4-1).

Since there is a one-to-one correspondence between time-periodic solutions to (1-10) and DSS solutions,
an equivalent characterization of DSS solutions is obtained by reformulating (4-1) in the physical variables.
For f ∈ DT let ζ f (x, t)= t−1 f (y, s). Note ζ f (x, t)= λ2ζ f (λx, λ2t). Then, v is λ-DSS if and only if∫ λ2t

t
((v, ∂tζ f )− (∇v,∇ζ f )− (v · ∇v, ζ f )) dτ = 0 (4-2)

for all t>0 and f ∈DT , since (4-1) is just (4-2) in similarity variables. Note that (v, ζ f )|τ=λ2t= (v, ζ f )|τ=t .
It follows that, if v is a solution to (1-1) that satisfies (4-2) for t = 1, then v|τ∈[1,λ2] can be extended to a
λ-DSS solution for all positive times.

Fix k ∈ Z and let Qk = Bλk (0)× (0, λ2k). Our goal is to give a third characterization of discrete
self-similarity on Qk . Let f ∈ DT be given and ζ f be as above. Let R be large enough so that, for all
t ∈ [1, λ2

], the support of ζ f (t) is a subset of BR(0) and choose m = m( f ) ∈ Z so that R/λm < λk and
λ2−2m < λ2k. It follows that

BR/λm (0)×[λ−2m, λ2−2m
] ⊂ Qk .

Extend ζ f to all t > 0 using the following scaling: for (x, t) ∈ R3
× (0,∞), let

ζ f (x, t)= λ2iζ f (λ
i x, λ2i t),

where i is chosen so that λ2i t ∈ [1, λ2
]. Since ζ f |R3×[1,λ2] is compactly supported in space, its spatial

support shrinks as t→ 0+. In particular, for t ∈ [λ−2m, λ2−2m
], we have supp ζ f ⊂ Qk . For m ∈ Z, let

Dm
Qk
={φ ∈C∞(R3

×(0,∞)) : suppφ|t∈[λ−2m ,λ2−2m ]⊂ Qk

and ∀(x, t)∈R3
×(0,∞),∃ f ∈DT such that φ(x, t)= ζ f (x, t)}. (4-3)
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It is easy to see that ⋃
m∈Z

Dm
Qk
= DT .

Rescaling (4-2) gives ∫ λ2−2m

λ−2m
((v, ∂tζ f )− (∇v,∇ζ f )− (v · ∇v, ζ f )) dt ′ = 0, (4-4)

where t ′ = t/λ2m and the inner products are taken with respect to the rescaled spatial variable x ′ = x/λm.
In particular, the integral is computed over a subset of Qk and is identical to the same integral with ζ f

replaced by φ for some φ ∈Dm
Qm

. Thus, if v is a solution to (1-1), and φ ∈Dm
Qk

for some m ∈Z, then (4-2)
is satisfied if and only if (4-4) is satisfied for the f ∈ DT for which ζ f = φ. This leads to the following
extendability property: if v is a solution to (1-1) on Qk and satisfies (4-4) for every m ∈ Z and φ ∈ Dm

Qk
,

then v can be extended to a discretely self-similar solution on R3
× (0,∞); in other words, if a solution

is DSS in a neighborhood of the origin, then it can be extended to a DSS solution on R3
× (0,∞).

4C. Construction of DSS solutions.

Proof of Theorem 1.2. Fix λ > 1 and assume v0 ∈ L2
loc is a divergence-free λ-DSS vector field. Let

{v
(k)
0 } be the sequence of vector fields {φ(k)} from Lemma 4.1 applied to v0. Then, the values ‖v(k)0 ‖L2(B1)

are uniformly bounded and ‖v(k)0 − v0‖L2(B1) → 0 as k → ∞. Since v(k)0 ∈ L3
w and is λ-DSS, by

[Bradshaw and Tsai 2017a] there exists a λ-DSS local Leray solution vk to (1-1) and an associated
pressure πk having initial data v(k)0 for every k ∈ N. By Proposition 3.1, vk are uniformly bounded in
L∞(0, T ; L2(B1))∩L2(0, T ; H 1(B1)) (hence also in L10/3(0, T ; L10/3(B1))) for some T which depends
only on λ and ‖v(k)0 ‖L2(B1). As usual, see [Bradshaw and Tsai 2017a; Kikuchi and Seregin 2007; Lemarié-
Rieusset 2016], there exists a distribution v and a subsequence of {vk} (still indexed by k for simplicity)
so that vk converges to v in the weak star topology on L∞(0, T ; L2(B1)), in the weak topology on
L2(0, T ; H 1(B1)), and in L2(0, T ; L2(B1)). Since they are uniformly bounded in L10/3(0, T ; L10/3(B1)),
they also converge in Lq(0, T ; Lq(B1)) for any q < 10

3 . By the pressure estimate (3-2) in Proposition 3.1,
πk are uniformly bounded in L3/2(0, T ; L3/2(B1)) by C(λ, ‖v0‖L2(Bλ)) and, therefore, we may extract a
subsequence which converges weakly to a distribution π ∈ L3/2(0, T ; L3/2(B1)).

Fix κ ∈ Z so that λκ < 1 and λ2κ < T. Then, Qκ = Bλκ × (0, λ2κ)⊂ B1× (0, T ). Therefore vk satisfies
(1-1) on Qκ and satisfies (4-4) for every m ∈ Z and φ ∈ Dm

Qκ
. Thus, v can be extended to a DSS solution

on R3
× (0,∞) (which we still denote by v).

For compact subsets K of B1, we automatically have limt→0+ ‖v−v0‖L2(K )= 0. For a general compact
subset K of R3, we have K ′ = λm K ⊂ B1 for some m ∈ Z, and∫

K
|v(x, t)− v0(x)|2 dx = λ−m

∫
K ′
|v(x ′, λ2m t)− v0(x ′)|2 dx ′.

It follows that limt→0+ ‖v(t)−v0‖L2(K ) = 0 for every compact set K ⊂R3. A similar rescaling argument
also implies that v ∈ L∞(0, T ′; L2(K ))∩L2(0, T ′; H 1(K )) and π ∈ L3/2(0, T ′; L3/2(K )) for any T ′> 0
and compact subset K of R3.
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To confirm that v satisfies the local energy inequality, first note that each vk satisfies the local energy
inequality∫
|vk(t)|2φ dx + 2

∫∫
|∇vk |

2φ dx dt

≤

∫
|v
(k)
0 |

2φ dx +
∫∫
|vk |

2(∂tφ+1φ) dx dt +
∫∫

(|vk |
2
+ 2πk)(vk · ∇φ) dx dt

for all nonnegative φ ∈ C∞0 (R
3
×R3

+
). Furthermore, the right-hand sides of the energy inequality for

v(k) converge to the right-hand side of the energy inequality for v as k→∞, while the left-hand sides
are lower semicontinuous; see [Caffarelli et al. 1982, (A.51)]. The local energy inequality for v plainly
follows.

Finally, note that πk satisfies the formula (3-3). Applying Lemma 2.1 to the sequence and limit above
implies that π satisfies the desired pressure formula in L3/2(0, T ; L3/2(B1)). Rescaling establishes the
formula in L3/2

loc (R
3
× (0,∞)). �
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CONTINUITY PROPERTIES FOR DIVERGENCE FORM
BOUNDARY DATA HOMOGENIZATION PROBLEMS

WILLIAM M. FELDMAN AND YUMING PAUL ZHANG

We study the asymptotic behavior at rational directions of the effective boundary condition in periodic
homogenization of oscillating Dirichlet data. We establish a characterization for the directional limits
at a rational direction in terms of a relatively simple two-dimensional boundary layer problem for the
homogenized operator. Using this characterization we show continuity of the effective boundary condition
for divergence form linear systems, and for divergence form nonlinear equations we give an example of
discontinuity.

1. Introduction

In this work we will study the following type of boundary layer problem in dimension d � 2:�
�r � a.y;rvs

n/D 0 in P s
n D fy � n> sg;

vs
n.y/D '.y/ on @P s

n :
(1-1)

Here n 2 Sd�1 is a unit vector, s 2R, ' is continuous and Zd periodic, the operator a is also Zd periodic
in y and will satisfy a uniform ellipticity assumption. This work will consider both nonlinear scalar
equations and linear systems, so, for now, we do not specify the assumptions on a any further.

The boundary layer limit of the system (1-1) is defined by

'�.n; s/ WD lim
R!1

vn.RnCy/ if the limit exists and is independent of y 2 @P s
n .

If, additionally, the boundary layer limit is independent of s then we say that the cell equation (1-1)
homogenizes. Typically '� is independent of s for irrational directions n and we write '�.n/, while for
rational directions n 2 RZd the limits above exist but depend on s.

The focus of this article is on the limiting behavior of '� at rational directions. As a consequence
of this study we will be able to establish continuity or discontinuity of '� on Sd�1. We will see that
continuity of '� is intrinsically linked with linearity of the operator a.x;p/. In the case of a linear system
we show continuity of '�, while in the case of nonlinear scalar equations we give an example where '�
is discontinuous; this indicates generic discontinuity for nonlinear equations.

The main result established in this paper is that the directional limits of '� at a rational direction
are determined by a “second cell problem”, which is a boundary layer problem for the homogenized
operator a0. From this asymptotic formula it becomes relatively straightforward to address questions of

MSC2010: 35B27, 35J57, 35J60.
Keywords: homogenization, boundary layers, oscillating boundary data, nonlinear elliptic equations, elliptic systems.
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continuity or discontinuity of '� at rational directions. Let us take � 2 Zd nf0g to be an irreducible lattice
vector and O� to be the corresponding rational unit vector in the same direction. Then the cell equation
(1-1) solution vs

�
exists for each s 2 R and has a boundary layer limit,

'�.�; s/ WD lim
R!1

vs
�.R�/;

but that limit typically is not independent of the translation s applied to the half-space domain P� . We will
see that '�.�; s/ is a 1=j�j-periodic function on R. Now suppose that we have a sequence of directions
nk !

O� such that
O� � nk

j O� � nk j
! �; where � is a unit vector with �? �:

Call � the approach direction of the sequence nk to � . We will show that the limit of '�.nk/ is determined
by the following boundary layer problem. Call P� D P0

�
D fx � � > 0g and define�

�r � a0.rw�;�/D 0 in P� ;

w�;� D '�.�;x � �/ on @P�
and L.�; �/D lim

R!1
w�;�.R�/: (1-2)

Then it holds
lim

k!1
'�.nk/DL.�; �/: (1-3)

We will see below that L.�; �/ is continuous in � 2 Sd�1. Thus the directional limits of '� at � are
determined by the boundary layer limit of a half-space problem for the homogenized operator. This limit
structure was first observed in [Choi and Kim 2014] and developed further by the first author and Kim
[Feldman and Kim 2017]; both papers studied nondivergence form and possibly nonlinear equations. We
will explain in this paper how the second cell problem follows purely from qualitative features which are
shared by a wide class of elliptic equations, including divergence form linear systems, and both divergence
and nondivergence form nonlinear equations. We are somewhat vague about the hypotheses, which will
be explained in detail in Sections 3 and 4.

Once we have established (1-3), the question of qualitative continuity/discontinuity of '� is reduced
to a much simpler problem. For linear equations the homogenized operator a0 is linear and translation-
invariant and so a straightforward argument, for example by the Riesz representation theorem, shows
that

L.�; �/D lim
R!1

w�;�.R�/D j�j

Z 1=j�j

0

'�.�; s/ dsI

i.e., it is the average over a period of '�.�; � /. Evidently this does not depend on the approach direction �.
Thus qualitative continuity of '� for linear problems follows easily once we establish (1-3).

In the case of nonlinear equations the formula (1-3) allows us to construct examples where discontinuities
do occur; see Theorem 1.3 below. Our conjecture is that discontinuities are generic for the class of
quasilinear equations we consider. Note that when '� is not continuous at � , the asymptotic formula (1-3)
still contains interesting information; it explains the structure of the discontinuity. In particular, the blow
up of '� at a discontinuity is 0-homogeneous and continuous away from the origin.
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Before we state our main theorems we give a brief explanation about where (1-1) arises and why one
should be interested in the continuity/discontinuity of '�. Let ��Rd be a bounded domain and consider
the homogenization problem with oscillating Dirichlet boundary data,�

�r �
�
a
�

x
"
;ru"

��
D 0 in �;

u".x/D g
�
x; x

"

�
on @�;

(1-4)

where " > 0 is a small parameter, g.x;y/ is continuous in x;y and Zd periodic in y. This system
is natural to consider in its own right, but also it arises naturally in the study of homogenization with
nonoscillatory Dirichlet data when one studies the higher-order terms in the asymptotic expansion; see
[Gérard-Varet and Masmoudi 2012] where this is explained.

The interest in studying (1-4) is the asymptotic behavior of the u" solutions as "! 0. This problem
has been studied recently by a number of authors starting with [Gérard-Varet and Masmoudi 2011; 2012]
and followed by [Aleksanyan, Shahgholian, and Sjölin 2015; Aleksanyan 2017; Choi and Kim 2014;
Feldman and Kim 2017; Feldman 2014; Prange 2013; Zhang 2017; Armstrong, Kuusi, Mourrat, and
Prange 2017; Guillen and Schwab 2016]. It has been established that solutions u" converge, at least in
L2.�/, to some u0 which is a unique solution to�

�r � .a0.ru0//D 0 in �;
u0.x/D '0.x/ on @�;

(1-5)

where a0 and '0.x/ are called respectively the homogenized operator and homogenized boundary data.
The identification of the homogenized operator a0 is a classical topic. The homogenized boundary '0 is
determined by the boundary layer equation (1-1),

'0.x/D '�.nx/; when nx is the inward unit normal to � and '.y/D g.x;y/:

That is, (1-1) can be viewed as a kind of cell problem associated with the homogenization of (1-4). At
least for linear equations this definition makes sense as long as the set of boundary points of @� where
(1-1) does not homogenize, i.e., those with rational normal, has zero harmonic measure. The convergence
of u" to u0 has been established rigorously for linear systems by Gérard-Varet and Masmoudi [2012],
and further investigations have yielded optimal rates of convergence; see [Armstrong, Kuusi, Mourrat,
and Prange 2017; Shen and Zhuge 2018]. For nonlinear divergence form equations, to our knowledge,
the problem has not been studied yet. This is the source of our interest in the fine properties of '�:
quantitative continuity estimates for '� lead to quantitative continuity estimates for u0 and u", and are
used to establish rates of convergence u"! u0. Meanwhile, characterizing the type of discontinuities
of '�, when they are present, leads to understanding the qualitative features of u" and u0.

Now we return to state our main results. The first is the validity of the “second cell problem” formula
(1-3) for the directional limits of '�.

Theorem 1.1. The limit characterization (1-3) holds for divergence form linear systems and nonlinear
equations satisfying a uniform ellipticity condition. The 0-homogeneous profile L.�; �/ at direction
� 2 Zd n f0g is continuous in � 2 Sd�1.
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Our arguments to derive (1-3) can be quantified to obtain a modulus of continuity, which we make
explicit below, however so far we cannot push the method to obtain the optimal modulus of continuity. In
a very nice recent work Shen and Zhuge [2017] obtain an almost Lipschitz modulus of continuity by a
different method; we will compare their approach with ours below.

Theorem 1.2. For elliptic linear systems, d � 2, for any 0< ˛ < 1
d

there is a constant C � 1 depending
on ˛ as well as universal parameters associated with the system (see Section 3) such that, for any n1; n2

irrational,
j'�.n1/�'�.n2/j � Ck'kC 5 jn1� n2j

˛:

We note that in the course of proving Theorem 1.2 we actually show Hölder regularity for every 0<˛<1

at each lattice direction � 2 Zd n f0g; the modulus of continuity however depends on the rational direction
and degenerates as j�j !1. This is why we only end up with (almost) Hölder- 1

d
continuity in the end.

For nonlinear problems our conjecture is that '� is discontinuous at rational directions, at least for
generic boundary data and operators. A result of this kind was established for nondivergence form
equations in [Feldman and Kim 2017]. In the divergence form nonlinear case we have constructed an
explicit example showing that discontinuity is possible.

Theorem 1.3. For d � 3 there exist smooth boundary data ' and uniformly elliptic, positively 1-
homogeneous, nonlinear operators a.x;p/ such that '� is discontinuous at some rational direction.

We compare with [Shen and Zhuge 2017], which studies continuity properties of '� for linear divergence
form systems. They show, in the linear systems case, that '� is in W 1;p for every p <1. They establish
Lipschitz estimates on the Diophantine directions which only grow subpolynomially in the Diophantine
parameter, and thereby obtain the W 1;p estimates and extend continuously to the rational directions. As
can be seen, for example, by Theorem 1.3, this type of result would not be possible for quasilinear elliptic
equations. Our approach is to compute the directional limits at each rational direction via the second cell
problem formula (1-3). Although this method does not yet yield an optimal quantitative estimate, it applies
to both linear and nonlinear equations including both divergence form, as established here, and nondiver-
gence form, as in [Feldman and Kim 2017]. We establish (suboptimal) quantitative continuity for linear
systems, and also we can classify the types of discontinuities which are present in the nonlinear setting.

Finally we compare with the work of the first author and Kim [Feldman and Kim 2017] in the nondiver-
gence form case. As we try to emphasize in Section 2, the broad outline of the arguments for Theorems 1.1
and 1.2 are the same in divergence and nondivergence form. However, at the level of the proofs there are
many technical differences; we will try to highlight the most interesting throughout the paper. The idea,
from [Feldman and Kim 2017], for the construction of nonlinear operators with discontinuous '� does not
work at all in the divergence form setting. We needed a completely different construction for Theorem 1.3.

Generally speaking, for linear systems we need to replace arguments with maximum principle by
large-scale estimates on the Poisson kernel in half-spaces and cone-type domains. These estimates come
from [Avellaneda and Lin 1991] or are adapted from the arguments there. For nonlinear equations we do
have a maximum principle, but many new arguments need to be developed since, as far as we are aware,
this is the first paper on the boundary layer problem for quasilinear divergence form equations.
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1A. Notation. We go over some of the notation and terminology used in the paper. We will refer to
constants which depend only on the dimension or fundamental parameters associated with the operator
a.x;p/ (to be made specific below), e.g., ellipticity ratio or smoothness norm, as universal constants.
We will write C or c for universal constants which may change from line to line. Given some quantities
A;B we write A . B if A � CB for a universal constant C . If the constants depend on an additional
nonuniversal parameter ˛ we may write A.˛ B.

We will use various standard Lp and Hölder C k;˛ norms. For Hölder seminorms, which omit the
zeroth-order sup norm term, we write Œf �C k;˛ . Given a measurable set E � Rd we will also use the
L

p
avg.E/ norm, which is defined by

kf kLp
avg.E/

D

�
1

jEj

Z
E

jf jp
�1=p

:

The oscillation is a convenient quantity for us since the solution property for the equations we consider
is preserved under addition of constant functions. This is usually defined for a scalar-valued function
u WE! R on a set E � Rd as oscE uD supE u� infE u. We use a slightly different definition which
also makes sense for vector-valued u WE! RN,

osc
E

u WD inf
˚
r > 0 W there exists u0 2 RN such that ku�u0kL1.E/ �

1
2
r
	
:

2. Explanation of the limit structure at rational directions

We give a high-level description of the asymptotics of the boundary layer limit at rational directions. What
we would like to emphasize throughout this description is that the argument is basically geometric, and
has to do with the way that @Pn intersects the unit periodicity cell in the asymptotic limit as n approaches
a rational direction. This calculation relies only on certain qualitative features of Dirichlet problems
for elliptic equations which are true both for divergence and nondivergence form both linear (including
systems) and nonlinear. To emphasize the level of abstraction we will write the boundary layer problem
in the form �

F Œvn;x�D 0 in Pn WD fx � n> 0g;

vn D ' on @Pn:
(2-1)

Always F and ' will share Zd periodicity in the x-variable. In order to carry out the heuristic argument
we will need the following properties of the class of equations/systems. We emphasize that the following
properties are not stated very precisely, they are merely meant to be illustrative:

(i) (homogenization) There is an elliptic operator F0 in the same class such that if u" is a sequence of
solutions of F

�
u"; x

"

�
D 0 in a domain � converging to some u0 then F Œu0�D 0 in �.

(ii) (continuity with respect to boundary data in L1) There exists C > 0 so that if n 2 Sd�1 and u1, u2

are bounded solutions of (2-1) with respective boundary data '1 and '2 then

sup
Pn

ju1�u2j � C sup
@Pn

j'1�'2j:
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(iii) (large-scale interior and boundary regularity estimates) There is ˛ 2 .0; 1/ such that for any r > 0 if
F Œu;x�D 0 in Br \Pn, where Br is some ball of radius r ,

Œu�C˛.Br=2\Pn/ . r�˛ osc
Br\Pn

uC Œg�C˛.Br\@Pn/:

The heuristic outline below applies to a wide class of elliptic equations; already the arguments were
carried out rigorously for nondivergence nonlinear equations by Choi and Kim [2014] and the first author
and Kim [Feldman and Kim 2017] and similar ideas were used for parabolic equations in moving domains
by the second author in [Zhang 2017]. Here we will be studying divergence form equations, linear systems
and nonlinear scalar equations.

To begin we need to understand the boundary layer limit at a rational direction. Let � 2 Zd n f0g and
consider the solution vs

�
.x/ of, �

F Œvs
�
;x�D 0 in P s

�
D fx � n> sg;

vs
�
D ' on @P s

�
:

(2-2)

Translating the half-space, by changing s, changes the part of the data ' seen by the boundary condition.
Thus the boundary layer limit of vs

�
can depend on the parameter s; we define

'�.�; s/D lim
R!1

vs
�.R�/:

As will become clear, this particular parametrization of the boundary layer limits is naturally associated
with the asymptotic structure of the boundary layer limits for directions n near �.

The next step is to understand the geometry near � . Let n 2 Sd�1 be a direction near � and vn be the
corresponding half-space solution. We can write,

nD .cos "/ O� � .sin "/� for some small angle " and a unit vector �? �:

We obtain an asymptotic for vn at an intermediate length scale.
Let x 2 @Pn, then the hyperplanes @Pn and @Px� O�

�
are close in a large neighborhood, any scale o

�
1
"

�
,

of x. By using the local up-to-the-boundary regularity we see that vn and vs
�
, with s D x � O� , are close on

the boundary of their common domain, at least in this o
�

1
"

�
neighborhood of x. Now vs

�
has a boundary

layer limit '�.�; s/, and the length scale j�j associated with the boundary layer depends on �, but not
on ". Thus for " small and j�j �R� 1

"

vn.xCRn/D '�.�;x � O�/C o".1/D '�.�; tan ".x � �//C o".1/:

Here o".1/ depends only on j�j, ", and universal parameters of the problem. This is one of the main
places where we use the large-scale boundary regularity estimates, property (iii) above. Thus, moving
into the domain by Rn and rescaling to the scale 1= tan ", i.e., letting w".x/� vn..xCRn/= tan "/, we
find that the boundary layer limit is well approximated by the boundary layer limit of�

F Œw";x=tan "�D 0 in P� ;

w" D '�.�;x � �/ on @P�
(2-3)
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in the limit as "! 0. Now taking the limit as "! 0 of in (2-3) we find the “second cell problem”�
F0Œw�;��D 0 in P� ;

w�;� D '�.�;x � �/ on @P� :
(2-4)

Thus we characterize the directional limits at the rational direction � as the boundary layer limits of the
associated second cell problem

lim
k!1

'�.nk/D lim
R!1

w�;�.R�/ if
O� � nk

j O� � nk j
! �:

With this characterization the qualitative continuity and discontinuity of '� can be investigated solely by
studying (2-4).

In the following, Sections 3 and 4, we will explain background regularity results for linear systems
and nonlinear divergence form equations and the well-posedness of Dirichlet problems in half-spaces. In
particular we will prove that properties we used in the heuristic arguments above do hold for the type
of equations/systems we consider. In Section 5 we will go into more detail about the boundary layer
equation (1-1) in rational and irrational half-spaces. In Section 6 we will make rigorous the above outline
obtaining intermediate-scale asymptotics which lead to the second cell equation (2-4). In Section 7 we
show how to derive continuity of '� from the second cell problem for linear problems, and in Section 8
we show how nonlinearity can cause discontinuity of '�.

3. Linear systems background results

In this section we will recall some results about divergence form linear systems. Let � be a domain of
Rd and N � 1; we consider solutions of the elliptic linear system

�r � .A.x/ru/D 0 in �;

where u2H 1.�IRN / is at least a weak solution. Here we use the notation AD .A
˛ˇ
ij .x// for 1�˛; ˇ�d

and 1� i; j �N defined for x 2 Rd, where we mean, using the summation convention,

.r � .A.x/ru"//i D @x˛ .A
˛ˇ
ij .x/@xˇu"j /:

We assume that A satisfies the following hypotheses:

(i) Periodicity:
A.xC z/DA.x/ for all x 2 Rd; z 2 Zd : (3-1)

(ii) Ellipticity: for some � > 0 and all � 2 Rd�N,

��i
˛�

i
˛ �A

˛ˇ
ij �

i
˛�

j

ˇ
� �i

˛�
i
˛: (3-2)

(iii) Regularity: for some M > 0,
kAkC 5.Rd / �M: (3-3)

We remark that the regularity on A is far more than is necessary for most of the results below. When we
say that C is a universal constant below we mean that it depends only on the parameters, d;N; �;M.
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3A. Integral representation. Consider the following boundary layer problem, which will be the main
object of our study: �

�r � .A.x/ru/Dr �f Cg in Pn;

u.x/D '.x/ on @Pn

(3-4)

for f;g smooth vector-valued functions with compact support and ' continuous and bounded. A solution
is given by the Green’s function formula

u.x/D

Z
Pn

rG.x;y/ �f .y/ dyC

Z
Pn

G.x;y/g.y/dyC

Z
@Pn

P .x;y/'.y/ dy:

Here G;P are the Green matrix and Poisson kernel corresponding to our operator. For y 2Pn, G solves�
�rx � .A.x/rxG.x;y//D ı.x�y/IN in Pn;

G.x;y/D 0 on @Pn;
(3-5)

and the Poisson kernel is given, for x 2 Pn and y 2 @Pn, by

P .x;y/D�n � .At .y/ryG.x;y//;

that is,
Pij .x;y/D�n˛A

ˇ˛

ki
.y/@yˇGkj .x;y/:

Following from [Avellaneda and Lin 1991], and exactly stated in [Gérard-Varet and Masmoudi 2012,
Proposition 5], G and P satisfy the same bounds as for a constant coefficient operator:

Theorem 3.1. Call ı.y/ WD dist.y; @Pn/. For all x ¤ y in Pn, one has

jG.x;y/j �
C

jx�yjd�2
for d � 3;

jG.x;y/j � C.j log jx�yjjC 1/ for d D 2;

jG.x;y/j �
Cı.x/ı.y/

jx�yjd
for all d;

jrxG.x;y/j �
C

jx�yjd�1
for all d;

jrxG.x;y/j � C

�
ı.y/

jx�yjd
C

ı.x/ı.y/

jx�yjdC1

�
for all d:

For all x 2 Pn and y 2 @Pn, one has

jP .x;y/j �
Cı.x/

jx�yjd
;

jrP .x;y/j � C

�
1

jx�yjd
C

ı.x/

jx�yjdC1

�
:

Although it is not precisely stated there, the methods of [Avellaneda and Lin 1991] also can achieve
the same bounds for the Green’s function and Poisson kernel associated with the operator �r � .A.x/r/
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in the strip-type domains
…n.0;R/ WD f0< x � n<Rg;

with constants independent of R. This will be useful later.
From the Poisson kernel bounds we can derive the L1 estimate which replaces the maximum principle

for linear systems.

Lemma 3.2. Suppose that u1;u2 are bounded solutions of (3-4) with respective boundary data '1; '2

and zero right-hand side. Then,

sup
Pn

ju1�u2j � Ck'1�'2kL1.@Pn/;

where C is a universal constant. The same holds for solutions in …n.0;R/.

For the solutions given by the Poisson kernel representation formula, the result of Lemma 3.2 follows
from a standard calculation using Theorem 3.1. There is some subtlety in showing uniqueness; see
[Gérard-Varet and Masmoudi 2012, Section 2.2] for a proof.

3B. Large-scale boundary regularity. In this section we consider the large-scale boundary regularity
used in the heuristic argument of Section 2 for linear elliptic systems. We will need a boundary regularity
result [Avellaneda and Lin 1987, Theorem 1]. For the following we assume � is some domain with
0 2 @� and that u" solves

�r �

�
A
�

x

"

�
ru"

�
D 0 in �\B1 and u" D g on @�\B1:

Lemma 3.3. For every 0 < ˛ < 1 there is a constant C depending on ˛ and universal quantities such
that, if �D fxd > 0g\B1 DW B

C

1
,

Œu"�
C˛.B

C

1=2
/
� C.krgkL1.fxdD0g\B1/Cku

"
�g.0/k

L2.B
C

1
/
/;

and for every � > 0

kru"k
L1.B

C

1=2
/
� C.krgkC 0;�.fxdD0g\B1/

Cku"�g.0/k
L2.B

C

1
/
/:

We need the Hölder regularity result in cone-type domains which are the intersection of two half-spaces
with normal directions n1; n2 very close to each other. We will consider the more general class of
domains � which are a Lipschitz graph over Rd�1 with small Lipschitz constant. In particular we assume
that there is an f W Rd�1! R Lipschitz with f .0/D 0 such that

�\B1 D f.x
0;xd / W xN > f .x0/g\B1:

Lemma 3.4. For every 0<˛ < 1 there is a ı.˛/ > 0 universal such that, if � as above with krf k1 � ı,
then

Œu"�C˛.�\B1=2/ � C.krgkL1.@�\B1/Cku
"
�g.0/kL2.�\B1/

/:

The proof is by compactness; we postpone it to Appendix A.
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3C. Poisson kernel in half-space intersection. From the regularity estimates of the previous subsection
we can derive estimates on the Poisson kernel in the intersection of nearby half-space domains. Consider
two unit vectors n1; n2 with jn1� n2j � " small. For simplicity we suppose that

nj D .cos "/ed C .�1/j .sin "/e1:

Set
K D Pn1

\Pn2
:

Define GK .x;y/ to be the Green’s matrix. Although the domain is Lipschitz, GK still satisfies the bound
(via [Avellaneda and Lin 1987]), in d � 3,

jGK .x;y/j.
1

jx�yjd�2
:

We set PK .x;y/, for x 2K and y 2 @K, to be the Poisson kernel for K, which is well-defined as long as
y1 ¤ 0. Call ı.x/D dist.x; @K/.

Lemma 3.5. For any ˛ 2 .0; 1/ and " sufficiently small depending on ˛ and universal quantities,

jPK .x;y/j.˛

8̂<̂
:

ı.x/˛

jx�yjd�1C˛
for jy1j �

1
2
jx�yj;

1

jy1j

ı.x/˛

jx�yjd�2C˛
for jy1j �

1
2
jx�yj:

The proof is postponed to Appendix A; we show how the estimates are used. Suppose  W @K! RN

satisfies
j .x/j �minfjx1j; 1g:

We consider the Poisson kernel solution of the Dirichlet problem,

u.x/D

Z
@K

PK .x;y/ .y/ dy:

In particular we are interested in the continuity at 0; we only consider really x D ted for some t > 0 (or
xD tn1 or tn2 but this is basically the same) so we restrict to that case. Now for y 2 @K, jx�yj � tCjyj

and so jx�yj& jy1j and the first bound in Lemma 3.5 implies the second. Thus we can compute

ju.ted /j.
Z
@K

1

jy1j

t˛

.t Cjyj/d�2C˛
minfjy1j; 1g dy

.
Z
@K

t˛

.t Cjyj/d�2C˛
min

�
1;

1

jy1j

�
dy

.
Z

R

Z
Rd�2

min
�

1;
1

jy1j

�
t˛

.t Cjy1jC jzj/d�2C˛
dz dy1:

Computing the inner integrals, we haveZ
Rd�2

1

.t Cjy1jC jzj/d�2C˛
dz D

1

.t Cjy1j/˛

Z
Rd�2

1

.1Cjwj/d�2C˛
dw . 1

.t Cjy1j/˛
:
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Then

ju.ted /j.
Z

R

min
�

1;
1

jy1j

�
t˛

.t Cjy1j/˛
dy1 . t˛ for t � 1:

We state the result of a slight generalization of this calculation as a lemma.

Lemma 3.6. Suppose that K D Pn1
\Pn2

, ˛ 2 .0; 1/ and "D jn1� n2j is sufficiently small so that the
estimates of Lemma 3.5 hold,  W @K! R smooth and satisfies the bound

j .x/j �minfıˇjx � .n1� n2/j
ˇ; 1g

for some ı > 0 and 1� ˇ > ˛, Then for any bounded solution u of

�r � .A.x/ru/D 0 in K with uD  on @K;

it holds

ju.ted /j. ı˛t˛ for t �
1

ı
:

There is an additional subtlety which is the uniqueness of the bounded solution of the Dirichlet problem
in K; the argument is the same as in the half-space case; see [Gérard-Varet and Masmoudi 2012]. To derive
Lemma 3.6 from the previous calculation just do a rescaling to u

�
�

ı

�
; the domain K is scaling-invariant

and the Poisson kernel associated with A
�
�

ı

�
satisfies the same bounds as for A.

4. Nonlinear equations background results

In this section we consider the boundary layer problem for nonlinear operators. To explain the assumptions
we write out the problem in a general domain�

�r � a
�

x
"
;ru"

�
D 0 in �;

u".x/D g
�
x; x

"

�
on @�:

(4-1)

This type of equation would arise as the Euler–Lagrange equation of a variational problem,

minimize E.u/D

Z
�

F
�

x

"
;ru

�
dx over u 2H 1

0 .�/Cg
�
� ;
�

"

�
:

A natural uniform ellipticity assumption on the functional F is

F is convex with 1�D2F � � > 0:

Then aDDF is 1-Lipschitz continuous in p and has the monotonicity property

.a.x;p/� a.x; q// � .p� q/� �jp� qj2 for all p; q 2 Rd :

Now we consider how to determine the effective boundary conditions for the homogenization equation
(4-1). We zoom in at a boundary point x0 2 @� defining

v".y/D u".x0C "y/; which solves
�
�r � a

�
yC x0

"
; 1
"
rv"

�
D 0 in 1

"
.��x0/;

v".y/D g
�
x0C "y;yC

x0

"

�
on 1

"
@.��x0/:
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Now in order to have a unique equation in the limit "! 0 the following limit needs to exist:

a�.y;p/D lim
t!0

ta.y; t�1p/:

Note that, if said limit exists, it is always 1-homogeneous in p,

a�.y; �p/D lim
t!0

ta.y; .��1t/�1p/D �a�.y;p/:

In other words we need a to be 1-homogeneous in p at1; then the operator a� is this limiting homogeneous
profile of a at x0.

The above discussion motivates our assumption on the operators we study in the half-space problem:

(i) Periodicity:
a.xC z;p/D a.x;p/ for all x 2 Rd ; z 2 Zd ;p 2 Rd : (4-2)

(ii) Ellipticity: for some � > 0 and all p; q 2 Rd

.a.x;p/� a.x; q// � .p� q/� �jp� qj2 and ja.x;p� a.x; q/j � jp� qj: (4-3)

(iii) Positive homogeneity: for all x;p and t > 0,

a.x; tp/D ta.x;p/: (4-4)

For convenience will also assume a.x;p/ is C 1 in x so that, by the De Giorgi regularity theorem, solutions
are locally C 1;˛ for some universal ˛ > 0.

4A. Regularity estimates for nonlinear equations. In this section we explain the regularity estimates
which we use to obtain .1/ existence of boundary layer limits and .2/ the characterization of limits at
rational directions. For both results we need the De Giorgi estimates respectively for the interior and
boundary. As is the usual approach for regularity of nonlinear equations, we can reduce to considering
actually the regularity of linear equations but with only bounded measurable coefficients.

For what follows we will take A W Rd !Md�d to be measurable and elliptic,

��A.x/� 1:

Recall that results for bounded measurable coefficients imply results for solutions of nonlinear uniformly
elliptic equations and for the difference of two solutions. If u1;u2 2H 1

loc.�/ solve

�r � a.x;ruj /D 0 in �

then w D u1�u2 solves

�r � .A.x/rw/D 0 in � with A.x/D

Z 1

0

Dpa.x; sru1C .1� s/ru2/ ds; (4-5)

and one can easily check that ��A.x/� 1.
We remind that, despite the overlap of notation, the results in this section apply to solutions of scalar

equations not systems.
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Theorem 4.1 (De Giorgi–Nash–Moser). There is an ˛ 2 .0; 1/ and C > 0 depending on d; � so that if u

solves
�r � .A.x/ru/D 0 in B1

then,
Œu�C˛.B1=2/ � C inf

c2R
ku� ckL2.B1/

:

A similar result holds up to the boundary for regular domains. We say that � is a regular domain of
Rd if there are r0; � > 0 so that for every x 2 @� and every 0< r < r0,

j�C
\Br .x/j � �jBr j:

Lemma 4.2. Suppose that � is a regular domain, r0 � 1 and 0 2 @�, and ' 2 C ˇ. There is an
˛0.d; �; �/ 2 .0; 1/ such that for 0< ˛ <minf˛0; ˇg there is C.d; �; �; ˛/ > 0 so that if u solves

�r � .A.x/ru/D 0 in B1\�; with uD ' on @�;

then for every r � 1,
osc
Br

u� C
�
Œ'�Cˇ.B1/

C inf
c2R
ku� ckL2.B1/

�
r˛:

The proof is postponed to Appendix A. We make a remark on the optimality of this estimate. Using
these results one can show local C 1;˛ estimates for solutions of nonlinear uniformly elliptic equations.
Large-scale C 1;˛ estimates are not possible due to the x-dependence, but in the spirit of [Avellaneda and
Lin 1991] one can prove large-scale Lipschitz estimates; this was done in [Moser and Struwe 1992]. See
also [Armstrong and Smart 2016] for the stochastic case. These estimates however are for solutions, we
seem to require the result of Lemma 4.2 for differences of solutions (i.e., basically it is a C ˛ estimate of a
derivative). It is not clear, therefore, whether we can do better than Lemma 4.2.

4B. Half-space problem. We consider the basic well-posedness results for nonlinear problems set in
half-spaces. Consider �

�r � a.x;ru/D 0 in Pn;

uD '.x/ on @Pn:
(4-6)

Then the maximum principle holds.

Lemma 4.3. Suppose u1 and u2 are respectively bounded subsolutions and supersolutions of (4-6) with
boundary data '1 � '2 on @Pn; then,

u1 � u2 in Pn:

The result follows from Lemma 4.2 or, more precisely, its proof. The proof is postponed to Appendix A.

4C. Homogenization of nonoscillatory Dirichlet problem. In this section we recall quantitative homog-
enization results for nonlinear divergence form problems in bounded domains with regular Dirichlet
boundary condition. We will refer mainly to [Armstrong and Smart 2016]; they considered the stochastic
case but their arguments also apply to the periodic case. The problem has also been studied in [Cardone,
Pastukhova, and Zhikov 2005; Pastukhova 2008].
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More precisely we study the limit�
�r � a

�
x
"
;ru"

�
D 0 in �;

u".x/D g.x/ on @�
to

�
�r � a0.ru0/D 0 in �;
u0.x/D g.x/ on @�;

(4-7)

where the boundary data g is a trace of g2W 1;p.�/ for some p>2. The following result is a combination
of Proposition 4.1 and Corollary 4.2 in [Armstrong and Smart 2016] adapted to the periodic setting.

Theorem 4.4 [Armstrong and Smart 2016]. Let � � Rd be a bounded Lipschitz domain and p > 2.
Fix " 2 .0; 1� and let u";u0 2 gCH 1

0
.�/ satisfying (4-7). There exist constants C.d; �;p; �/ � 1 and

ˇ.d; �;p/ 2 .0; 1� such that
ku"�u0

kL2
avg.�/

� C "ˇkrgkLp
avg.�/

:

By interpolating the L2 estimate with the interior and boundary regularity, Theorem 4.1 and Lemma 4.2,
there exist constants C 0.d; �;�/� 1 and ˇ0.d; �/ 2 .0; 1� such that

sup
�

ju"�u0
j � C 0"ˇ

0

krgkL1.@�/:

Actually Corollary 4.2 of [Armstrong and Smart 2016] only does the interpolation argument for interior
points; adding in the boundary regularity Lemma 4.2 to get the uniform estimate up to @� is an elementary
argument. There are additional error terms in [Armstrong and Smart 2016] but these can be made zero in
the periodic setting using the existence of periodic correctors.

5. Boundary layers limits

In this section we will discuss the boundary layer problem for divergence form elliptic problems in
rational and irrational half-spaces. The results that we need for this paper are valid for both nonlinear
scalar equations and linear systems and the proofs have only minor differences. For that reason, in this
section and the next, we will discuss both types of equations in a unified way. We use the nonlinear
notation for the PDE. We consider the cell problem�

�r � a.y;rvs
n/D 0 in P s

n ;

vs
n D '.y/ on @P s

n :
(5-1)

We will first consider the case when n 2 Sd�1 nRZd is irrational.

5A. Irrational half-spaces. For linear systems, (5-1) in irrational half-spaces has been much studied
[Gérard-Varet and Masmoudi 2011; 2012; Aleksanyan, Shahgholian, and Sjölin 2015; Aleksanyan 2017;
Armstrong, Kuusi, Mourrat, and Prange 2017; Prange 2013; Shen and Zhuge 2017]. Typically the focus
has been on the Diophantine irrational directions. We do not give the definition, since it is not needed
for our work, but basically the Diophantine condition is a quantification of the irrationality. Under this
assumption strong quantitative results can be derived for the convergence to the boundary layer limit.

For the purposes of this paper we are only interested in the qualitative result, the existence of a boundary
layer limit for (5-1) in a generic irrational half-space (no Diophantine assumption). The existence of a
boundary layer tail in general irrational half-spaces was originally proven by Prange [2013] for divergence
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form linear systems, and for nonlinear nondivergence form equations by the first author in [Feldman and
Kim 2017] (following [Choi and Kim 2014] on the Neumann problem). To our knowledge the case of
nonlinear divergence form equations has not been studied yet.

What we would like to explain here is that the proof of [Feldman and Kim 2017] applies also to the
problems we consider in this paper, careful inspection shows that the proof of [Feldman and Kim 2017]
only required the interior regularity, continuity up to the boundary (small-scale), and the L1 estimate (or
maximum principle) with respect to the boundary data.

Theorem 5.1. Suppose that n 2 Sd�1 nRZd. Then there exists '�.n/ such that

sup
s

sup
y2@Pn

jvs
n.yCRn/�'�.n/j ! 0 as R!1:

One consequence of this theorem is that, for irrational directions, we can just study vn D v
0
n . We give

a sketch of the proof following [Feldman 2014].

Proof .sketch/. The boundary data, and hence the solution vs
n as well by uniqueness (L1 estimate

Lemma 3.2 or maximum principle Lemma 4.3), satisfies an almost periodicity property in the directions
parallel to @Pn. More precisely, given N � 1 there is a modulus !n.N /! 0 as N !1 (uses n irrational)
so that for any y 2 @Pn there is a lattice vector z 2 Zd with jz � yj � N and jz � n� sj � !.N /; see
[Feldman and Kim 2017, Lemma 2.3]. Define z0 to be the projection of z onto @P s

n ; then

j'.xC z0/�'.x/j � j'.xC z/�'.xC z0/j � kr'k1!.N /:

The same estimate, up to a universal constant, holds for jvs
n.xCz0/�vs

n.x/j by Lemma 3.2 or Lemma 4.3.
Since v0

n. � Cz/ solves the same equation in P z�n
n , we can use the up-to-the-boundary Hölder continuity

and the L1 estimate (or maximum principle) to see that

kvs
n. � /� v

0
n. � C z/kL1.P s

n\Pz �n
n / . kr'k1!n.N /˛:

Sending N to1 we see that if v0
n has a boundary layer limit then so does vs

n and they have the same value.
Then we just need to argue for v0

n . Given y 2 @Pn the same argument as above shows there is Nz 2 @Pn

with jNz�yj �N and
jv0

n. � /� v
0
n. � C Nz/j. kr'k1!n.N /˛:

Then using the L1 estimate Lemma 3.2 (or the maximum principle) and the large-scale interior regularity
estimates, Theorem 4.1 above for the nonlinear case or Lemma 9 in [Avellaneda and Lin 1987] for the
linear systems case,

osc
y�n�R

vs
n.y/. osc

y�nDR
vs

n.y/� osc
y2BN .0/\@Pn

vs
n.yCRn/CCkr'k1!n.N /˛

. kr'k1
��

N

R

�̨
C!n.N /˛

�
:

Choosing N large first to make !n.N / small and then R�N gets the existence of a boundary layer
limit. �
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5B. Rational half-spaces. Next we consider the case of a rational half-space. Let � 2 Zd n f0g be an
irreducible lattice direction, and vs

�
be the corresponding half-space problem solution. In this case '

is periodic with respect to a .d�1/-dimensional lattice parallel to @P� . There exist `1; : : : ; `d�1 with

j̀ ? � and j j̀ j � j�j which are periods of '. Then by uniqueness j̀ are also periods of vs
�
. In this special

situation it is possible to show that there is a boundary layer limit with an exponential rate of convergence.
We give a general set-up. We consider the half-space problem�

�r � a.x;rv/Dr �f in Rd
C;

v D  .x0/ on @Rd
C;

(5-2)

where  W @Rd
C!R and f are smooth, and  , f , and a. � ;p/ all share d�1 linearly independent periods

`1; : : : ; `d�1 2 @Rd
C such that

max
1�j�d�1

j j̀ j �M:

The operators a, as always, will also satisfy the assumptions of either Section 3 or Section 4. For now we
will take f D 0; this covers most of the situations we will run into in this paper. Then v has a boundary
layer limit with exponential rate of convergence.

Lemma 5.2. There exists a value c�. / such that

sup
y2@Rd

C

jv.yCRed /� c�j � C.osc /e�cR=M ;

with C; c > 0 depending only on �; d .

The proof of this result is the same as the proof of the analogous result, [Feldman and Kim 2017,
Lemma 3.1], so we only include a sketch. The only tools necessary are the maximum principle (or
L1 estimate Lemma 3.2) and the large-scale interior Hölder estimates via De Giorgi–Nash–Moser for
nonlinear equations (Theorem 4.1) or [Avellaneda and Lin 1987, Lemma 9] for linear systems.

Proof .sketch/. Let L � 1 to be chosen, call Q to be the unit periodicity cell of  which has diameter
at most �M. Apply the De Giorgi interior Hölder estimates or the Avellaneda–Lin large-scale Hölder
estimates to find

osc
@PnCLMn

v D osc
y2Q

v.yCLM n/� CL�˛ osc
Pn

u� CL�˛ osc � 1
2

osc :

The second inequality is by the maximum principle or the L1 estimate Lemma 3.2; for the third inequality
we have chosen L� 1 universal to make CL�˛ � 1

2
. Then iterate the argument with the new boundary

data on @PnCLM n with oscillation decayed by a factor of 1
2

. �

We will also need a slight variant of the above result when the operator a does not share the same
periodicity as the boundary data, but instead has oscillations at a much smaller scale. We assume that  
has periods `1; : : : ; `d�1 as before, and now we also assume that there are e1; : : : ; ed which are periods
of a and

max
1�j�d

jej j � ":
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For example this is the case with a
�

x
"
;p
�

when a. � ;p/ is Zd -periodic. In this situation we do not
quite have a boundary layer limit with exponential rate, but at least there is an exponential decay of the
oscillation down to a scale � "˛.

Lemma 5.3. There exists a value c�. / such that for any ˇ 2 .0; 1�

sup
y2@Rd

C

jv.yCRed /� c�j � C.osc /e�cR=M
CCk kCˇ"

˛

for some universal ˛.ˇ/ 2 .0; 1/ (nonlinear case) or for every ˛ 2 .0; ˇ/ (linear case), with c;C > 0

universal and C depending on ˛ as well.

Again the proof of this result mirrors the proof of Lemma 3.2 in [Feldman and Kim 2017] and we
do not include it. Briefly, the idea is the same as Lemma 5.2 except that the lattice vectors generated by
`1; : : : ; `d�1 are no longer periods of v; instead for each lattice vector there is a nearby vector (distance at
most ") which is a period of the operator. This vector will almost be a period of v, with error of "˛ which
comes from the boundary continuity estimate Lemma 4.2 (nonlinear) or Lemma 3.4 (linear system).

Finally we discuss the boundary layer equation (5-1) with nonzero right-hand side f . We will restrict
to the case of linear systems. We need to put a decay assumption on f to guarantee even the existence of
a solution. We will assume that there are K; b > 0 so that

sup
yd�R

jf .y/j �
K

R
e�bR=M : (5-3)

Such assumption arises naturally; it is exactly the decay obtained for rv when v solves (5-1) with f D 0.
The 1

R
polynomial decay is important since we will care about the dependence on M � 1; the exponential

does not take effect until R�M, while the 1
R

decay begins at the unit scale.

Lemma 5.4. Suppose that f satisfies the bound (5-3) and v is the solution of the half-space equation
(5-1) for a linear system satisfying the standard assumptions of Section 3. Then there exists c�. ; f / such
that

sup
y2@Rd

C

jv.yCRed /� c�j � C..osc /CK log M /e�b0R=M ;

where the constants C and b0 depend on universal parameters as well as b from (5-3).

See the Appendix and [Feldman and Kim 2017, Lemma A.4] for more details.

5C. Interior homogenization of a boundary layer problem. In this section we will consider the interior
homogenization of half-space problems with periodic boundary data; as explained in Section 2 such a
problem arises in the course of computing the directional limits of '� at a rational direction:�

�r � a
�

x
"
;ru"

�
D 0 in Pn;

u" D  .x/ on @Pn

(5-4)

homogenizing to �
�r � a0.ru0/D 0 in Pn;

u0 D  .x/ on @Pn:
(5-5)
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Here  W @Pn ! RN, as in the previous section, will be smooth and periodic with respect to d � 1

linearly independent translations parallel to @Pn, which we call `1; : : : ; `d�1 2 @Pn. As before we call
M Dmaxj j j̀ j and assume that M � ". For convenience we can assume that M D 1; general results
can be derived by scaling.

This problem is quite similar to the standard homogenization problem for Dirichlet boundary data, the
unboundedness of the domain is compensated by the periodicity of the boundary data and by the existence
of a boundary layer limit which is a kind of (free) boundary condition at infinity. The main result of this
section is the uniform convergence of u" to u0, and hence also (importantly for us) the convergence of the
boundary layer limits.

Proposition 5.5. Homogenization holds for (5-4) with estimates:

(i) (nonlinear equations) For every ˇ 2 .0; 1/, there exists 0< ˛.ˇ; �; d/� ˇ such that, for all "� 1
2

,

sup
Pn

ju"�u0
j.ˇ Œ �Cˇ"˛:

(ii) (linear systems) For every "� 1
2

,

sup
Pn

ju"�u0
j. Œ �C 4"

�
log 1

"

�3
:

We will follow the idea of [Feldman and Kim 2017, Lemma 4.5]; there is a slight additional difficulty
since for divergence form nonlinear problems it is not possible to add a linear function n �x and preserve
the solution property, even for the homogenized problem. The C 4 norm we require for  in the linear
systems case is more than necessary.

For convenience we will make some additional assumptions so that u" shares the periods of the
boundary data  . Assume that nD �=j�j for an irreducible lattice direction � 2 Zd n f0g. In that case
a. � ;p/ is periodic with respect to the lattice �?\Zd D fk 2 Zd W k � � D 0g. Then we assume that the
periods of  are also periods of a

�
�
"
;p
�
,

`1; : : : ; `d�1 2 "�
?
\Zd : (5-6)

Then by the uniqueness of bounded solutions to (5-4) the solution u" also has `1; : : : ; `d�1 as periods.
The result of Proposition 5.5 should hold without this assumption, as was proven in the nondivergence
form case in [Feldman and Kim 2017, Lemma 4.5].

The proof will use known results about homogenization of Dirichlet boundary value problems in
bounded domains; specifically we consider the problem in a strip-type domain,�

�r � a
�

x
"
;ru"

R

�
D 0 in …n.0;R/D f0< x � n<Rg;

u"
R
D  .x/ on @…n.0;R/D fx � n 2 f0;Rgg;

(5-7)

where we make some choice to extend  to x � nDR, preserving the regularity and periodic structure.
The solution of the homogenized problem u0

R
is defined analogously. Because of (5-6), u"

R
and u0

R
have

periods `1; : : : ; `d�1, so although the domain …n.0;R/ is unbounded, actually we can consider (5-7) as
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a homogenization problem on the bounded domain Td�1 � Œ0;R�, or rather a rotation/rescaling of this
domain.

For linear systems we have, for R� 1, the rate for convergence

sup
…n.0;R/

ju"R �u0
Rj � CR4

k kC 4.R�1"/; (5-8)

which can be derived from the rate of convergence proved in [Avellaneda and Lin 1991] by scaling. The
C 4 regularity on  is sufficient; we did not state the precise regularity requirement on  which can be
found in [Avellaneda and Lin 1991]. With less regularity on  one can also obtain an algebraic rate of
convergence O."˛/.

For nonlinear equations there is an algebraic rate of convergence, for any ˇ 2 .0; 1/,

sup
…n.0;R/

ju"R �u0
Rj � CRˇ

k kC 0;ˇ .R�1"/˛; (5-9)

with some ˛ D ˛.ˇ/ 2 .0; 1/ universal. This result was recounted above in Section 4C, and can be found
in [Armstrong and Smart 2016; Pastukhova 2008].

Proof of Proposition 5.5. We define the boundary layer limits of, respectively, the "-problem and the
homogenized problem in (5-4). We have not proven that the "-problem has a boundary layer limit;
however Lemma 5.3 gives that the limit values are concentrated in a set of diameter o".1/. So we define,

�" 2 lim
R!1

u".Rn/ and �0
D lim

R!1
u0.Rn/;

where �" can be any subsequential limit and satisfies, again via Lemma 5.3,

j�"�u".Rn/j � Ckr k1."
˛
C e�cR/ (nonlinear case), (5-10)

j�"�u".Rn/j � Ckr kC 0;� ."C e�cR/ (linear system case). (5-11)

Instead of arguing directly with u" and u0 we consider8<:
�r � a

�
x
"
;ru"

R

�
D 0 in …n.0;R/;

u"
R
D  .x/ on x � nD 0;

u"
R
D �" on x � nDR

(5-12)

and, for j 2 f0; "g 8̂<̂
:
�r � a0.ru0

R;j
/D 0 in …n.0;R/;

u0
R;j
D  .x/ on x � nD 0;

u0
R;j
D �j on x � nDR:

(5-13)

We will choose RDR."/ below to balance the various errors. The error in replacing u" by u"
R

is given by

ju".x/�u"R.x/j � Ckr k1."
˛
C e�cR/ for x 2…n.0;R/;

and replacing u0 by u0
R;0

by

ju0.x/�u0
R;0.x/j � C.osc /e�cR for x 2…n.0;R/I
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the estimates hold on @…n.0;R/ by (5-10) (or for linear we use (5-11) instead), and therefore by the
maximum principle (or by Lemma 3.2 for linear systems) they hold on the interior as well. To estimate
the error in replacing u0

R;0
by u0

R;"
we need to estimate the difference �"��0, which is basically the

goal of the proof; this will be achieved below.
By Lemma 4.2 (or Lemma 3.3 in the linear systems case) there exists a universal ı0.�; d/ > 0 so that

if B is uniformly elliptic and q solves8<:
�r � .B.x/rq/D 0 in …n.0; 1/;

q D 0 on x � nD 0;

jqj D 1 on x � nD 1I

(5-14)

then jq.x/j � 1
2

for x � n� ı0. Now set

q" D u0
R;0�u0

R;"; which solves

8<:
�r � .B.x/rq"/D 0 in 0< x � n<R;

q" D 0 on x � nD 0;

q" D �0��" on x � nDR;

with B.x/DA0 in the linear case, or

B.x/D

Z 1

0

Da0.tru0
R;0.x/C .1� t/ru0

R;".x// dt uniformly elliptic,

in the nonlinear case. Now .1=j�0��"j/q.Rx/ solves an equation of the type (5-14) and so,

jq.ı0Rn/j � 1
2
j�0
��"j:

Now we apply the homogenization error estimates (5-9) and (5-8) for the domain …n.0;R/ to (5-12)

ju0
R;"�u"Rj � CRkr k1.R

�1"/

or respectively in the linear system case

ju0
R;"�u"Rj � CR4

k kC 4.R�1"/:

Now we estimate the error in �"��0 for the nonlinear case

j�"��0
j � ju".ı0Rn/�u0.ı0Rn/jCCkr k1."

˛
C e�cR/

� ju"R.ı0Rn/�u0
R;".ı0Rn/jC jq".ı0Rn/jCCkr k1."

˛
C e�cR/

� CRkr k1.R
�1"/ C 1

2
j�"��0

jCCkr k1."
˛
C e�cR/:

Moving the middle term above to the left-hand side we find,

j�"��0
j � Ckr k1.R.R

�1"/ C "˛C e�cR/� Ckr k1"
˛0 ;

where finally we have chosen RD C log 1
"

and ˛0 <minf˛;  g. The same argument in the linear case
yields,

j�"��0
j � C Œ �C 4.R4.R�1"/C "C e�cR/� C Œ �C 4"

�
log 1

"

�3
: �
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6. Asymptotics near a rational direction

We study asymptotic behavior of the cell problems as n2Sd�1 approaches a rational direction � 2Zdnf0g.
We call vs

�
the solution of the cell problem�

�r � a.xC s�;rvs
�
/D 0 in P� ;

vs
�
.x/D '.xC s�/ on @P� :

(6-1)

The boundary layer limit of the above cell problem depends on the parameter s and we define

'�.�; s/ WD lim
R!1

vs
�.xCR�/; (6-2)

which is well-defined and the limit is independent of x; see Lemma 5.2. It follows from Bézout’s identity
that '� is a 1=j�j-periodic function on R; see [Feldman and Kim 2017, Lemma 2.9]. As long as we can
we will combine the arguments for linear systems and nonlinear equations.

6A. Regularity of '�.�; � /. To begin we need to establish some regularity of '�.�; � /. For quantitative
purposes it is important to control the dependence of the regularity on j�j. We just state the results,
postponing the proofs until the end of the section. A modulus of continuity for '�.�; � / which is uniform
in j�j is not difficult to establish. This follows from the continuity up to the boundary Lemma 4.2 (or
Lemma 3.3) and the maximum principle Lemma 4.3 (or the L1 estimate Lemma 3.2).

Lemma 6.1. The boundary layer limits '�.�; s/ are continuous in s:

(i) (nonlinear equations)
Œ'�.�; � /�C˛ � Ckr'k1;

which holds for some universal C � 1 and ˛ 2 .0; 1/.

(ii) (linear systems) Hölder estimates as above hold for all ˛ 2 .0; 1/ and moreover, d

ds
'�.�; � /


1
� Ckr'kC 0;� for any 0< � � 1:

To optimize our estimates, in the linear case we will also need higher regularity of '� which is (almost)
uniform in j�j; this is somewhat harder to establish.

Lemma 6.2 (linear systems). For any � 2 Zd n f0g, suppose '�.�; s/ is defined as above. Then for all
j 2 Nd and any � > 0 there exists some constant Cj universal such that

sup
s

ˇ̌̌̌
dj

dsj
'�.�; s/

ˇ̌̌̌
� Cjk'kC j ;� logj .1Cj�j/:

Note that Lemma 6.2 is a bit weaker than Lemma 6.1 in the case j D 1; this is because we take a
different approach which is suboptimal in the j D 1 case; it is not clear if the logarithmic terms are
necessary when j > 1. The proof is similar to [Feldman and Kim 2017, Lemma 7.2], taking the derivative
of vs

�
with respect to s and estimating based on the PDE. Probably more precise Sobolev estimates are

possible but we did not pursue this.
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6B. Intermediate-scale asymptotics. Consider an irrational direction n close to a lattice direction � 2
Zd n f0g. Let " > 0 small and we write

nD .cos "/ O� � .sin "/� for some � 2 Zd
n f0g and a unit vector �? �:

We will assume below that j"j � �
6

. We consider the cell problem in Pn�
�r � a.y;rvn/D 0 in Pn;

vn D '.y/ on @Pn:
(6-3)

The first step of the argument is to show, with error estimate, that the boundary layer limit of vn is close
to the boundary layer limit of the problem�

�r � a.y=tan ";rvint
n /D 0 in Pn;

vint
n D '�.�;y � �/ on @Pn:

(6-4)

The solution vint
n approximates vn, asymptotically as "! 0, starting at an intermediate scale 1�R� 1

"

away from @Pn. The argument is by direct comparison of vn with vs
�

in their common domain.
Since (6-4) has a boundary layer of size uniform in " we can replace, again with small error, by a

problem in a fixed domain �
�r � a.y=tan ";rw"

�;�
/D 0 in P� ;

w"
�;�
D '�.�;y � �/ on @P� :

(6-5)

We note that there may be some confusion due to similarities in the notation between vs
�

and w"
�;�

. The
boundary value problem for w"

�;�
, or its homogenized version introduced later, will always be set in P� ,

so there will be no need for the translation parameter s.
We remark that for both (6-4) and (6-5) we have not proven the existence of a boundary layer

limit; rather we use Lemma 5.3. For convenience we will state estimates on limR!1 v
int
n .Rn/ or on

limR!1w
"
�;�
.R O�/, but technically we will mean that the estimate holds for every subsequential limit.

Proposition 6.3. Let � 2 Zd n f0g and nD .cos "/ O� � .sin "/� with " > 0 small and a unit vector �? �:

(i) (nonlinear equations) There is universal ˛ 2 .0; 1/ such thatˇ̌
'�.n/� lim

R!1
w"�;�.R

O�/
ˇ̌
. kr'k1j�j˛"˛;

where we mean that the estimate holds for any subsequential limit of w"
�;�
.R O�/ as R!1.

(ii) (linear systems) For every ˛ 2 .0; 1/ and any � > 0ˇ̌
'�.n/� lim

R!1
w"�;�.R

O�/
ˇ̌
.˛;� Œ'�C 1;� j�j˛"˛;

where again we mean that the estimate holds for any subsequential limit of w"
�;�
.R O�/ as R!1.

The first step is to compare the boundary layer limits of (6-3) and (6-4).
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Lemma 6.4. Fix any x 2 @Pn, 1�R� 1
"

and let s D x � � tan ":

(i) (nonlinear equations) There is a universal ˛ 2 .0; 1/ such that

jvn� v
s
� j.xCRn/. kr'k1.R"/˛:

(ii) (linear systems) For every ˛ 2 .0; 1/

jvn� v
s
� j.xCRn/.˛ kr'k1.R"/˛:

Proof. Let us define the cone domains

K.x/ WD .P� Cx/\Pn and KR.x/DK.x/\BR.x/I

we may simply write K;KR if xD0. Let x02@Pn; we compute using n�x0D0 and nD .cos "/ O��.sin "/�
that

x0 �
O� D .x0 � �/ tan ":

Let x 2 @K.x0/; then x 2 @Pn (or x 2 @P�Cx0) and there exists y 2 @P�Cx0 (or respectively @Pn) with

jx�yj � jx�x0j sin "� "jx�x0j:

Nonlinear equations: Applying the De Giorgi boundary continuity estimates Lemma 4.2 for small enough
˛ 2 .0; 1/ universal, for all x 2 @K.x0/,

jvs
�.x/� vn.x/j � jv

s
�.x/�'.y/jC j'.y/� vn.x/j. kr'k1"˛jx�x0j

˛:

Now since vs
�
.x/� vn.x/ is a difference of solutions we can apply the boundary continuity estimate from

Lemma 4.2 again,
jvs
�.x/� vn.x/j. kr'k1"˛jx�x0j

˛ for x 2K.x0/;

with perhaps a slightly smaller ˛.d; �/.

Linear systems: We have, by almost the same argument as above now using instead Lemma 3.3, for any
˛ 2 .0; 1/

jvs
�.x/� vn.x/j. kr'k1"˛jx�x0j

˛ on @K.x0/:

Now by the Poisson kernel bounds in K.x0/, Lemmas 3.5 and 3.6, for a slightly smaller ˛ and " sufficiently
small depending on ˛

jvs
�.x/� vn.x/j. kr'k1"˛jx�x0j

˛ for x 2K.x0/:

The remainder of the proof is the same as the case of scalar equations. �

Now we derive some consequences of Lemma 6.4. Let’s assume that kr'k1 � 1 to simplify the
exposition; the general inequalities can of course be derived by rescaling. Combining Lemma 5.2 with
Lemma 6.4 we find that for any R� 1

jvn.xCRn/�'�.�;x � � tan "/j. Œ.R"/˛C e�cR=j�j� for x 2 @Pn:
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Choosing RD j�j log 1
"

we obtain,

jvn.xCRn/�'�.�;x � � tan "/j. j�j˛"˛ for x 2 @Pn; (6-6)

either for a slightly smaller universal ˛ in the nonlinear case, or again for every ˛ 2 .0; 1/ in the case of
linear systems.

Now consider the rescaling

Qvint
n .y/D vn

�
ŒRn�C

y

tan "

�
defined for y 2 Pn; (6-7)

where ŒRn� 2 Zd is the lattice point such that Rn� ŒRn� 2 Œ0; 1/d .

Lemma 6.5. Let RD j�j log 1
"

and Qvint
n be defined as above in (6-7). Then:

(i) (nonlinear equations) There is universal ˛ 2 .0; 1/ such that

sup
Pn

j Qvint
n � v

int
n j. kr'k1j�j˛"˛:

(ii) (linear systems) For every ˛ 2 .0; 1/

sup
Pn

j Qvint
n � v

int
n j.˛ kr'k1j�j˛"˛:

Proof. Again assume that kr'k1 � 1 to simplify the exposition. Note that

Qvint
n .y/D vn

�
RnC

1

tan "
.yC .ŒRn��Rn/ tan "/

�
so by (6-6)

j Qvint
n .y/�'�.�; .yC .ŒRn��Rn/ tan "/ � �/j.˛ j�j˛"˛:

Then applying the regularity of '� from Lemma 6.1

j Qvint
n .y/�'�.�;y � �/j.˛ j�j˛"˛:

Thus Qvint
n solves �

�r � a.y=tan ";r Qvint
n /D 0 in Pn;

j Qvint
n .y/�'�.�;y � �/j � C j�j˛"˛ on @Pn:

(6-8)

This is almost the same as (6-4) solved by vint
n . The L1-estimate Lemma 3.2 (or the maximum principle)

implies
sup
Pn

jvint
n � Qv

int
n j.˛ j�j˛"˛ (6-9)

either for every ˛ 2 .0; 1/ in the linear systems case, or for some universal ˛ in the nonlinear case. �

To complete the proof of Proposition 6.3 we just need to compare the solutions vint
n of (6-4) and w"

�;�

of (6-5). The width of the boundary layer is now of uniform size in " so this is not a problem; we will
just need to use the boundary continuity estimate (Lemmas 3.4 and 4.2) and the continuity estimate of
'�.�; � / Lemma 6.1.
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Lemma 6.6. The following estimates hold for the boundary layers of vint
n and w"

�;�
:

(i) (nonlinear equations) There is ˛ 2 .0; 1/ universal such thatˇ̌
lim

R!1
vint

n .Rn/� lim
R!1

w"�;�.R
O�/
ˇ̌
. kr'k1j�j˛"˛;

where technically we mean that the estimate holds for any pair of subsequential limits.

(ii) (linear systems) For every ˛ 2 .0; 1/ and any � > 0ˇ̌
lim

R!1
vint

n .Rn/� lim
R!1

w"�;�.R
O�/
ˇ̌
.˛;� Œ'�C 1;� j�j˛"˛;

where technically we mean that the estimate holds for any pair of subsequential limits.

Proof. We compare the two solutions in their common domain. As before let K D Pn\P� and

uD vint
n �w

"
�;�:

Nonlinear equations: We have

�r � .A.x/ru/D 0 in K with some ��A.x/� 1 as in (4-5):

We compute the error on @K in the same way that we did in Lemma 6.4. Using Lemma 4.2 we find for
x 2 @K,

ju.x/j D jvint
n .x/�w

"
�;�.x/j. k'�.�; � /kC˛0 "

˛
jxj˛ . kr'k1"˛jxj˛;

where ˛0 is the universal, continuity modulus from Lemma 6.1 and ˛ < ˛0. Next we use the De Giorgi
boundary continuity estimate, Lemma 4.2 to obtain, again with a slightly smaller ˛,

ju.x/j. kr'k1"˛jxj˛ for x 2K: (6-10)

Next we use that the size of the boundary layers for vint
n and w"

�;�
are uniformly bounded in ", via

Lemma 5.3, to find for all R0 � 1,

sup
y2@Pn

ˇ̌
vint

n .yCR0n/� lim
R!1

vint
n .Rn/

ˇ̌
. k'�.�; � /kC˛0 "

˛
C .osc'�/e�R0=j�j;

where again we mean that the estimate holds for any subsequential limit of vint
n .Rn/. An analogous

estimate holds for w"
�;�

replacing Rn with R O� . Using our assumption that "� �
4

we have n � O� � 1p
2

and
so we have
max

˚ˇ̌
vint

n .R0
O�/� lim

R!1
vint

n .Rn/
ˇ̌
;
ˇ̌
w"�;�.R0

O�/� lim
R!1

w"�;�.R
O�/
ˇ̌	

. k'�.�; � /kC˛0 "
˛
C .osc'�/e�R0=j�j: (6-11)

Finally we combine (6-10) with (6-11), choosing R0 D j�j log 1=.j�j"/, to findˇ̌
lim

R!1
vint

n .Rn/� lim
R!1

w"�;�.R
O�/
ˇ̌
� jvint

n .R0
O�/�w"�;�.R0

O�/jCCkr'k1j�j
˛"˛

. kr'k1"˛R˛
0

. kr'k1j�j˛"˛
�

log 1

j�j"

�˛
:

Making ˛ slightly smaller we can remove the logarithmic term.
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Linear systems: We have

�r � .A.x/ru/D 0 in K:

Using Lemma 3.3 we find, for x 2 @K and any � > 0,

ju.x/j D jvint
n .x/�w

"
�;�.x/j.˛ kr'�.�; � /k1"

˛
jxj˛ .� kr'kC 0;�"˛jxj˛:

By the Poisson kernel bounds in K, Lemmas 3.5 and 3.6, we have for a slightly smaller ˛ 2 .0; 1/ and "
sufficiently small depending on ˛

ju.x/j.˛ Œ'�C 1;�"˛jxj˛ for x 2K:

The remainder of the proof is the same as the case of scalar equations. �

Proposition 6.3 follows combining Lemmas 6.5 and 6.6.

6C. Interior homogenization of the intermediate-scale problem. We take "! 0 in (6-5) and derive the
second cell problem �

�r � a.x=tan ";rw"
�;�
/D 0 in P� ;

w"
�;�
.x/D '�.�;x � �/ on @P� ;

(6-12)

which homogenizes to �
�r � a0.rw�;�/D 0 in P� ;

w�;�.x/D '�.�;x � �/ on @P� ;
(6-13)

where a0 is the homogenized operator associated with a
�

x
"
; �
�
.

We make the definition

L.�; �/D lim
R!1

w�;�.xCR�/:

As we will show below L.�; � / is the limiting 0-homogeneous profile of '� at the direction �,

lim
j!1

'�.nj /DL.�; �/

for any sequence of nj irrational with nj ! � and . O��nj /=j O��nj j ! �. This characterization is the first
main result of the paper Theorem 1.1.

We make a further remark about the second cell problem in (1-2). It is straightforward to see that w�;�
is actually a function only of two variables x � � and x ��. The boundary data '�.�;x ��/ is invariant with
respect to translations which are perpendicular to both � and �, and so by uniqueness the solution w�;�
is invariant in those directions as well. Note that we are using the spatial homogeneity of the operator
here; the same is not true of w"

�;�
. This property was useful in [Feldman and Kim 2017] since solutions

of nonlinear nondivergence form elliptic problems in dimension d D 2 have better regularity properties.
Although we do not use this in a significant way here, we point it out anyway since it could be potentially
useful in the future.

Now we state the quantitative version of Theorem 1.1:
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Theorem 6.7. Let � 2Zd nf0g be irreducible and nD .cos "/ O�� .sin "/� be an irrational direction. Then:

(i) (nonlinear equations) There is a universal ˛ 2 .0; 1/ such that

j'�.n/�L.�; �/j. kr'k1j�j˛"˛:

(ii) (linear systems) For every ˛ 2 .0; 1/

j'�.n/�L.�; �/j.˛ Œ'�C 5 j�j˛"˛:

We will need one more lemma in the proof of Theorem 6.7, which is independently interesting since it
gives the continuity of L.�; �/ in �.

Lemma 6.8. Let � 2 Zd n f0g be irreducible and �; �0 ? �. Thenˇ̌
lim

R!1
w"�;�.R�/� lim

R!1
w"�;�0.R�/

ˇ̌
.˛ k'kC k .j�j�˛j�� �0j˛C "˛/

and

jL.�; �/�L.�; �0/j.˛ k'kC k j�j�˛j�� �0j˛

either for a universal ˛ 2 .0; 1/ and k D 1 (nonlinear case), or for every ˛ 2 .0; 1/ and k D 3 (linear
systems case). For the first estimate we mean that the inequality holds for any pair of subsequential limits
of w"

�;�
.R�/; w"

�;�0
.R�/ as R!1.

Proof of Theorem 6.7. The ingredients have all been established elsewhere, we just need to combine them.
There is some set up to use Proposition 5.5 since the (5-6) does not necessarily hold for (6-12). Recall

that �?\Zd is spanned by d � 1 linearly independent vectors `1; : : : ; `d�1 with norms j j̀ j � j�j. Then
for each " > 0 we can choose a vector �" 2 "�?\Zd , i.e., a period of a. � =tan ";p/ with

j�"� �j � C "j�j: (6-14)

Now Proposition 5.5 will apply to get a quantitative estimate of the difference w"
�;�"
�w�;�" ; we will use

this below.

Nonlinear equations: By Proposition 6.3, there is universal ˛ 2 .0; 1/ such thatˇ̌
'�.n/� lim

R!1
w"�;�.R

O�/
ˇ̌
. kr'k1j�j˛"˛;

where we mean that the estimate holds for any subsequential limit ofw"
�;�
.R O�/ as R!1. Proposition 5.5,

homogenization of problems in half-space-type domains, applies to w"
�;�"

sup
P�

jw"�;�" �w�;�" j. Œ'�.�; � /�Cˇ j�j
˛�ˇ"˛ . kr'k1"˛

for some universal ˇ > ˛ 2 .0; 1/. We have used Lemma 6.1 to estimate the Hölder norm of '�.�; � /.
Then Lemma 6.8 and (6-14) impliesˇ̌

lim
R!1

w"�;�.R
O�/� lim

R!1
w"�;�".R

O�/
ˇ̌
CjL.�; �"/�L.�; �/j. kr'k1.j�j�˛j�"��j˛C"˛/. kr'k1"˛:
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Combining these

j'�.n/�L.�; �/j. kr'k1j�j˛"˛:

Linear systems: By Proposition 6.3, for every ˛ 2 .0; 1/ and any � > 0ˇ̌
'�.n/� lim

R!1
w"�;�.R

O�/
ˇ̌
.˛;� Œ'�C 1;� j�j˛"˛;

where again we mean that the estimate holds for any subsequential limit of w"
�;�
.R O�/ as R!1. Now

Proposition 5.5 (properly rescaled) applies to w"
�;�"

,

sup
P�

jw�;�" �w
"
�;�"
j.˛ Œ'�.�; � /�C 4 j�j˛�1"˛

. k'kC 5 j�j˛�1 log4.1Cj�j/"˛

for every ˛ 2 .0; 1/. We have used Lemma 6.2 to obtain the C 4 regularity of '�.�; � /. We also have
j�j˛�1 log4.1Cj�j/.˛ 1. Then Lemma 6.8 and (6-14) implyˇ̌

lim
R!1

w"�;�.R
O�/� lim

R!1
w"�;�".R

O�/
ˇ̌
CjL.�; �"/�L.�; �/j.˛ Œ'�C 3.j�j�˛j�"� �j

˛
C "˛/. Œ'�C 3"˛:

Combining these, for any ˛ 2 .0; 1/,

j'�.n/�L.�; �/j.˛ Œ'�C 5 j�j˛"˛: �

Proof of Lemma 6.8. We just argue for W D w"
�;�
�w"

�;�0
; the argument for w�;� �w�;�0 is almost the

same and slightly simpler.

Nonlinear equations: Note that W .0/D 0 and the boundary data for W on @P� has

j'�.x � �/�'�.x � �
0/j � k'�kC˛ j�� �

0
j
˛
jxj˛ . kr'k1j�� �0j˛jxj˛

for a universal ˛ 2 .0; 1/ by Lemma 6.1. By the boundary regularity Lemma 4.2 and the maximum
principle,

jW .x/j. kr'k1j�� �0j˛jxj˛ for x 2 P� \BR;

for a, possibly smaller, universal ˛. Now by Lemma 5.3 applied to w"
�;�
; w"

�;�0
separately, there is c� 2 R

such that for all R� 1

sup
x� O��R

jW .x/� c�j. Œ'��C˛
�

1

j�j˛
exp.�cj�jR/C "˛

0

�
;

where ˛ universal is from Lemma 6.1, and ˛0 < ˛ universal. Combining the two estimates with RD

c�1j�j�1j log j�� �0jj we get

jc�j.˛ kr'�k1.j�j�˛j�� �0j˛C "˛/;

again with a possibly different universal ˛ 2 .0; 1/.
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Linear systems: Note that W .0/D 0 and the boundary data for W on @P� has

jr.'�.x � �/�'�.x � �
0//j �

 d

ds
'�


1
j�� �0jC

 d2

ds2
'�


1
j�� �0jjxj:

By the boundary regularity Lemma 3.3, for any ˛ 2 .0; 1/,

jW .x/j.˛
 d

ds
'�


C 2
.1CR/j�� �0jjxj˛ for x 2 P� \BR:

Now by Lemma 5.3 applied to w"
�;�
; w"

�;�0
separately, there is c� 2 R such that for all R� 1

sup
x� O��R

jW .x/� c�j.
 d

ds
'�


1

�
1

j�j
exp.�cj�jR/C "˛

�
:

Combining the two estimates with RD c�1j�j�1j log j�� �0jj, we get

jc�j.˛ k'�kC 2.j�j�˛j�� �0j˛C "˛/:

We are ignoring some negative powers of j�j since they are � 1. �

6D. Proofs of regularity estimates of '�. We return to prove the regularity estimates of '� Lemma 6.1
and Lemma 6.2. The Hölder regularity Lemma 6.1 is relatively straightforward, while the higher regularity
Lemma 6.2 requires some more careful estimates.

Proof of Lemma 6.1. We will show an upper bound for j'�.�; h/�'�.�; 0/j with h< 0; the proof works
also for nonzero s and h 2 R. Consider v0

�
a solution in P� and vh

�
a solution in P� C h O� � P� . By the

boundary continuity estimates for vh
�

, for every y 2 @P� ,

jvh
� .y/� v

0
� .y/j D jv

h
� .y/�'.y/j � jv

h
� .y/�'.y � h O�/jC kr'k1h� Ckr'k1h˛

for some ˛ 2 .0; 1/ by Lemma 4.2. For the case of linear systems we have similarly,

jvh
� .y/� v

0
� .y/j D jv

h
� .y/�'.y/j � C Œ'�C 1;�h

for any � > 0 by the boundary gradient estimates for smooth coefficient linear systems. Then the maximum
principle, or respectively the L1 estimate for systems Lemma 3.2, implies the same bound holds in all
of P� and therefore also for the boundary layer limits. �

Proof of Lemma 6.2. In order to get estimates on higher derivatives of vs
�

in s, the method for Lemma 6.1
doesn’t work; we need to differentiate in the equation. Since we only consider one normal direction
� 2 Zd nf0g we drop the dependence vs D vs

�
on � . We denote derivatives with respect to s by @ and then�

�r � .A.xC s O�/r@kvs/Dr �f in P� ;

@kvs D . O� � r/k'.xC s O�/ on @P� ;
(6-15)

where f involves derivatives @jv for j < k,

f D

k�1X
jD0

�k

j

�
. O� � r/k�j A.xC s O�/r@jvs:
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Let p>d arbitrary but fixed. We will suppose, inductively, that we can prove for any R�0 and every j <k,

sup
y2@P� ;R0�R

kr@jvs
k

L
p
avg.BR0=2.yCR0 O�//

� Cj Œ'�C jC1;�
1

R
logj .1Cj�j/e�cjR=j�j;

where the constants depend on j , ŒA�C j and universal parameters. The case R� 1 corresponds basically
to an L1 bound on P� .

Then by Lemma B.1

k@kvs
kL1.P�/ � Ck. O� � r/k'k1CC logk.1Cj�j/Œ'�C k;� : (6-16)

Furthermore, by Lemma B.2, @kvs has a boundary layer limit

�k D
dk

dsk
'�.�; s/;

with
j@kvs

��k j � C logk.1Cj�j/Œ'�C k;�e�cR=j�j:

Now we aim to establish the inductive hypothesis. The following argument will also establish the base
case when j D 0. First we consider the case R� 1. This follows from (6-16) and the up-to-the-boundary
gradient estimates (Lemma 3.3),

kr@kvs
kL1.P�/ � Ck. O� � r/k'kC 1;� CC logk.1Cj�j/Œ'�C k;� � C logk.1Cj�j/Œ'�C kC1;� :

In the case R� 1, by the Avellaneda–Lin large-scale interior W 1;p estimates and the inductive hypothesis,

kr@kvs
k

L
p
avg.BR=2.yCR O�//

� C
1

R
osc

B3R=4.yCR O�/

@kvs
Ckf k

L
p
avg.B3R=4.yCR O�//

� C
1

R
logk.1Cj�j/Œ'�C k;�e�cR=j�j:

Combining the cases R � 1 and R � 1 establishes the inductive hypothesis for j D k. The bound on
k@kvskL1 and hence on the boundary layer limit �k , which is also a consequence of the induction, is
the desired result. �

7. Continuity estimate for homogenized boundary data associated with linear systems

In this section we use the limiting structure at rational directions established above to prove that the
homogenized boundary condition associated with a linear system is continuous. We recall the second cell
problem; let � 2 Zd n f0g a rational direction and suppose that we have a sequence of directions nk !

O�

such that
O� � nk

j O� � nk j
! �; where � is a unit vector with �? �:

Then the limit of '�.nk/ is determined by the second cell problem�
�r � .A0rw�;�/D 0 in P� ;

w�;� D '�.�;x � �/ on @P� ;
(7-1)
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and thus limk!1 '�.nk/D limR!1w�;�.R�/, where A0, constant, is the homogenized matrix associated
with A

�
�
"

�
and '�.�; � / defined in (6-2) is a 1=j�j periodic function on R (see [Feldman and Kim 2017,

Lemma 2.9] where the period of '� is explained).
First we state the qualitative result, identifying the limit and showing continuity at rational directions.

Continuity of '� at the irrational directions has been established, for example in [Prange 2013]. Combining
those results shows that '� extends to a continuous function on Sd�1.

Lemma 7.1. Let � 2 Zd n f0g; then for any sequence nk !
O�,

lim
k!1

'�.nk/D j�j

Z 1=j�j

0

'�.�; t/ dt:

From this we know that L.�; �/, defined in Section 6C, is independent of � in the linear case. And we
will simply write L.�/DL.�; �/.

Proof. By rotation and rescaling we can reduce to proving that the boundary layer limit associated with
the half-space problem �

�r � .A0rv/D 0 in Rd
C;

v D g.x1; : : : ;xd�1/ on @Rd
C;

(7-2)

where A0 is a constant and uniformly elliptic and g is a Zd�1-periodic continuous function Rd�1!RN, is

lim
R!1

v.Red /D

Z
Œ0;1�d�1

g.x0/ dx0:

We will actually give two proofs of this result, especially since it plays a key role in our main results.

Riesz representation: Consider the (linear) map T WC.Rd�1=Zd�1/!RN mapping g 7! limR!1 v.Red /.
The L1 estimates Lemma 3.2 imply that T is continuous. Since A0 is constant, translating g parallel
to @Rd

C just translates the solution v and so we also get translation invariance, for any y0 2 Td�1,

Tg. � �y0/D Tg:

The Riesz representation theorem implies that Tg D
R

Rd�1=Zd�1 g.x0/ d�.x0/ for some (vector-valued)
measure �. The translation invariance of T implies translation invariance of � which means it is a constant
multiple of the Haar measure, Lebesgue measure in this case. Then T 1D 1 implies that d�D dx0.

Direct method: Consider

�.t/D

Z
Œ0;1�d�1

v.x0; t/ dx0:

If we can show that � is constant we are done. Compute, using a summation convention,

A
0;ij

dd
�00j .t/D

Z
Œ0;1�d�1

A
0;ij

dd
@2

dvj .x
0; t/ dx0

D�

Z
Œ0;1�d�1

X
˛ˇ¤dd

A
0;ij

˛ˇ
@2
˛ˇvj .x

0; t/ dx0 D 0:
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Now note that for each derivative @2
˛ˇ

appearing in the sum either ˛ or ˇ is ¤ d and so we are integrating
the derivative of a periodic function over its unit cell. Thus

A
0;ij

dd
�00j .t/D 0 for all 1� i �N:

Let N� 2 RN ; applying (3-2) with the vector �i
˛ D
N�iı˛d gives

�j N�j2 D ��i
˛�

i
˛ �A

0;ij

˛ˇ
�i
˛�

j

ˇ
DA

0;ij

dd
N�i N�j :

In particular the N �N matrix with coefficients A
0;ij

dd
is invertible and therefore

�00.t/D 0 for all t � 0:

Thus � is linear, since � is bounded it must be constant. �

The next result is quantitative; the argument, which is the same as in [Feldman and Kim 2017], uses
the Dirichlet approximation theorem. We recall that number-theoretic result here.

Theorem 7.2 (Dirichlet approximation). For given real numbers ˛1; : : : ; ˛n and N 2N, there are integers
p1; : : : ;pn; q 2 Z with 1� q �N such that

jq˛i �pi j �
1

N 1=n
:

This is proved by the pigeonhole principle.

Theorem 7.3. Let '�. � / be defined the boundary layer limit associated with (1-1) defined for n 2

Sd�1 nRZd. Then for every ˛ < 1
d

and all n1; n2 2 Sd�1 nRZd,

j'�.n1/�'�.n2/j.˛ k'kC 5 jn1� n2j
˛:

Proof. Let n1; n2 be a pair of irrational unit vectors and set ı D jn1� n2j. Assume ı � 2�dd�d=2. Let
M D ı�s=.sC1/ with s D d � 1. By Dirichlet’s approximation theorem, there exists � 2 Zd n f0g and
k 2 Z with 1� k �M such that ˇ̌̌̌

n1

jn1j1
� k�1�

ˇ̌̌̌
� k�1M�1=s:

Now k�1jn1j1� is not a unit vector, but by the above inequality

k�1
jn1j1j�j � 1�

p
dı1=d

�
1
2
:

Then, since the map x 7! x=jxj is Lipschitz on Rd nB1=2,ˇ̌̌̌
n1�

�

j�j

ˇ̌̌̌
.d k�1M�1=s;

ˇ̌̌̌
n2�

�

j�j

ˇ̌̌̌
� ıCC k�1M�1=s:

Note also that

j�j �
k

jn1j1
CM�1=s

�
p

dkC 1. k:
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Thus, for j D 1; 2,

j�j

ˇ̌̌̌
nj �

�

j�j

ˇ̌̌̌
� j�jjıCC k�1M�1=s

j.M ıCM�1=s
� ı1=.sC1/

D ı1=d ;

where we chose M at the beginning so that the two terms are of the same size.
For appropriate choices of �j ? � ,

nj D .cos "j / O� � .sin "j /�j ;

with "j � jnj � �=j�jj.
Now apply Theorem 6.7, noting that L.�; �1/DL.�; �2/DL.�/ by Lemma 7.1. For any 0< ˛ < 1

we have
j'�.n1/�'�.n2/j � j'�.n1/�L.�/jC jL.�/�'�.n2/j

.˛ k'kC 5

�
j�j˛

ˇ̌̌̌
n1�

�

j�j

ˇ̌̌̌˛
Cj�j˛

ˇ̌̌̌
n2�

�

j�j

ˇ̌̌̌˛�
. k'kC 5ı˛=d :

This completes the proof for jn1�n2j small; for general n1; n2 2Sd�1 just use the boundedness of '�. �

8. A nonlinear equation with discontinuous homogenized boundary data

In this final section we study the second cell equation (1-2) for nonlinear equations. We give an example
of a nonlinear divergence form equation, with smooth boundary condition, for which the boundary layer
limit of (1-2) depends on the approach direction �.

We consider the nonlinear operator

a.p1;p2;p3/D .p1;p2;p3Cf .p1;p3//
t ;

where
f .p1;p3/ WD

1
8
.
p

8p2
1 C 9p2

3 Cp3/:

Here f is a solution of
8f 2
� 2p3f � .p

2
1 Cp2

3/D 0:

It is easy to check that f is positively 1-homogeneous and uniformly elliptic.
We will take � D e3 and � D e1 or e2 and we will set .x1;x2;x3/ D .x;y; z/. For the boundary

condition we choose

'.y/D 1
3
C cos.y � �/ so that '�.�; s/D

1
3
C cos.s/:

It is worthwhile to note that arbitrary '�.�; s/ can be achieved by choosing '.y/D '�.�;y � �/. We aim
to compute L.�; �/.

If �D e1, (1-2) becomes �
�r � .ux;uy ;uzCf .ux;uz//D 0 in R3

C;

u.x;y; 0/D 1
3
C cos x in R3

C:
(8-1)
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The operator and boundary data were chosen to make the solution

u.x;y; z/D
�

1
3
C cos x

�
e�z :

Note that

f .ux;uz/D
1
3
e�z

and so

.ux;uy ;uzCf .ux;uz//D .� sin x e�z; 0; � cos x e�z/;

from which it is easy to verify that u solves (8-1). The boundary layer limit in this case is 0 and so, by its
definition, L.�; e1/D 0.

If �D e2 then the equation becomes�
�r � .ux;uy ;uzCf .ux;uz//D 0 in R3

C;

u.x;y; 0/D 1
3
C cos y in R3

C:
(8-2)

This reduces to the following two-dimensional problem for v.y; z/D u.x;y; z/:(
�r �

�
vy ;

9
8
vzC

3
8
jvzj

�
D 0 in R2

C;

v.y; 0/D 1
3
C cos y on @R2

C:
(8-3)

Let v be the solution of (8-3). Consider w.y; z/ WD
�

1
3
C cos y

�
e�z, the solution from before,

�r �
�
wy ;

9
8
wzC

3
8
jwzj

�
D
��
�

4
9
�

1
3

cos y
�
1fcos y<0gC

1
4
.cos y � 1/1fcos y>0g

�
e�z
� 0: (8-4)

Thus w is a subsolution of (8-3); from Lemma 4.3 we have w � v.
The operator

�
vy ;

9
8
vz C

3
8
jvzj

�
is uniformly elliptic and Lipschitz continuous. We use a strong

maximum principle [Serrin 1970, Theorem 10]; in any bounded domain, we either have w � v or w < v.
Since the inequality in (8-4) is strict, except when y D 0 mod 2� , the case must be w < v. Since both
w; v are 1-periodic in the y-direction, restricting to the set z D 1, w.y; 1/� v.y; 1/� ı for some ı > 0.
Then by comparing w and v�ı on z � 1, again using Lemma 4.3, we deduce that w � v�ı; in particular

lim
z!1

v � lim
z!1

wC ı D ı:

Thus L.�; e2/ < 0DL.�; e1/ and therefore '�.n/ is discontinuous at the direction e3.

Appendix A

Hölder estimate in cone domain. We complete the proof of Lemma 3.4, the Hölder estimate in the flat
cone domain which we used above.

Proof of Lemma 3.4. Suppose that

krgkL1.@�\B1/ � 1 and �

Z
B1\�

ju"�g.0/j2 � 1:
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Let some ˛ < ˛0 < 1; by Lemma 3.3 there is a 1> � > 0 so that if K† D Pn for some n 2 Sd�1 then

sup
B�\Pn

ju"�g.0/j � �˛
0

:

We prove by compactness that there exists ı > 0 sufficiently small such that for any solution u" as above�
�

Z
B�\�

ju"�g.0/j2
�1=2

� �˛: (A-1)

To achieve the Hölder estimate from (A-1) is the standard iteration argument.
Suppose that the previous statement fails; that is, there exists fk and corresponding �k with ık D

krfkk1! 0, Ak satisfying the standard assumptions, "k > 0, gk with Lipschitz norm at most 1 and
corresponding uk solving the equation with boundary data gk on @�k \B1 and�

�

Z
B�\�k

juk �gk.0/j
2

�1=2

> �˛:

By taking subsequences we can assume that Ak !A uniformly, gk ! g uniformly and the uk converge
to some u weakly in H 1 and strongly in L2. Then, assuming that "k ! " > 0, we claim u solves

�r �A
�

x

"

�
ruD 0 in �\B1 with uD g on fxdD0g\B1: (A-2)

If "k ! 0 or "k !1 then we replace A.x="/ by A0 or A.0/ respectively.
The only part which is not the same as in [Avellaneda and Lin 1987] is to check the boundary condition.

Consider the transformations

ˆk.x/D .x
0;xd Cfk.x

0// mapping ˆk W fxd > 0g ! fxd > fk.x
0/g:

Define vk D uk ıˆk . Note that jˆk �xj � ık , rvk Drˆkruk and krˆk � IkL1 � ık . Therefore,
up to taking a subsequence, the vk converge weakly in H 1.BC

1
/ and strongly in H 1=2.BC

1
/ to the same

limit u. Since the trace operator is continuous T WH 1=2.BC
1
/!L2.fxd D 0g\B1/, we have that the

trace of v is the limit of the traces gk of the vk .
Then, once we have established the limit (A-2), from the regularity estimate in the flat domain

�˛ �

�
�

Z
B�\Pn

ju�g.0/j2
�1=2

� �˛
0

;

which is a contradiction since ˛ < ˛0 and � < 1. �

Poisson kernel bounds in half-space intersection. We return to prove the Poisson kernel bounds in the
intersection of nearby half-spaces, Lemma 3.5.

Proof of Lemma 3.5. The proof basically follows the proof of the Poisson kernel bounds in a smooth
domain in [Avellaneda and Lin 1987, Lemma 21] except we need to be careful to deal with the singularity
of the boundary. We do the case d � 3; the d D 2 case is a similar modification of the arguments in
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[Avellaneda and Lin 1987, Lemma 21]. Let x;y 2K and call r D jy �xj. We have the Green’s function
bound holding for x;y 2K (see Theorem 13 in [Avellaneda and Lin 1987] and the remark below)

jGK .x;y/j.
1

rd�2
:

We will first improve the Green’s function bound; the bound on the Poisson kernel will follow.
If ı.x/> 1

3
r then jGK .x;y/j.ı.x/=rd�1. Consider the case ı.x/< 1

3
r . Let Nx2@K with jx� NxjDı.x/.

Then GK . � ;y/ is a solution of the system in B
�
Nx; 1

2
r
�
\K. For " sufficiently small depending on ˛ the

boundary Hölder estimates Lemma 3.4 apply and

G.z;y/. ı.z/˛

rd�2C˛
for all z 2 B

�
Nx; 1

3
r
�
\KI (A-3)

in particular the bound holds at z D x.
Now we make a similar argument in the y-variable starting from (A-3); however Hölder regularity

is not sufficient anymore so we need to deal more directly with the singularity. Since we will send
y! @K nfy1D0g we can just consider the case ı.y/�min

˚
1
3
r; 1

2
jy1j

	
. Let Ny 2 @K with jy� Nyj D ı.y/.

Then GK .x; � / is a solution of the adjoint equation in B
�
Ny; 1

2
r
�
\K. If jy1j �

1
2
r then j Ny1j � jy1j �

1
2
r

and B
�
Ny; 1

2
r
�
\K is the intersection of a half-space with the ball B

�
Ny; 1

2
r
�
. The boundary Lipschitz

estimate of [Avellaneda and Lin 1987] applies and

jG.x; z/j. ı.z/ı.x/
˛

rd�1C˛
for all z 2 B

�
Ny; 1

3
r
�
\KI

since ı.y/� 1
3
r we get the bound at z D y. If jy1j �

1
2
r then we instead apply the boundary Lipschitz

estimate in B. Ny; jy1j/ to find

jG.x; z/j. ı.z/ı.x/˛

jy1jrd�2C˛
for all z 2 B. Ny; jy1j=2/\KI

since ı.y/ � 1
2
jy1j we get the bound at z D y. The bounds for the Poisson kernel follow by taking

appropriate difference quotients. �

Large-scale boundary regularity nonlinear equations. We return to prove the De Giorgi boundary
Hölder estimates, Lemma 4.2, for scalar equations with bounded uniformly elliptic coefficients.

Proof of Lemma 4.2. Without loss we can assume that osc�\B1
uD 1 and 0 � u � 1 in �\B1. Call

M Dmax@�\B1
' and consider

v D .u�M /C; which is a subsolution of �r � .A.x/rv/� 0 in B1:

Now since

jfv � 0g\B1j � �;

we apply the De Giorgi weak Harnack inequality to find

v � .1� ı/
�

max
�\B1

u�M
�

in B1=2
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for some ı > 0 depending on �; d; �. Making the same argument for �u we find

osc
�\B1=2

u� .1� ı/ osc
�\B1

uC ı osc
@�\B1

':

Iterating this argument we obtain,

osc
�\B

1=2k

u� .1� ı/k osc
�\B1

uC

k�1X
jD0

ı.1� ı/k�j�1 osc
@�\B

1=2j

':

Using the Hölder continuity of ',

osc
�\B

1=2k

u� .1� ı/k
�

osc
�\B1

uC Œ'�Cˇ

k�1X
jD0

ı.1� ı/�j�12�jˇ

�
:

Choosing ı smaller if necessary so that
2�ˇ < .1� ı/;

the summation is bounded independent of k and

osc
�\B

1=2k

u� C.˛/
�

osc
�\B1

uC Œ'�Cˇ
�
2�˛k ; with ˛ D�

log.1� ı/
log 2

< ˇ: �

Proof of Lemma 4.3. Set w D u1�u2; then by (4-5) w solves a uniformly elliptic equation in Pn:

�r � .A.x/rw/D 0 in � with A.x/D

Z 1

0

Dpa.x; sru1C .1� s/ru2/ ds;

with w � 0 on @Pn, and w �M for some M > 0. Define

v D wC Dmaxfw; 0g; which is a subsolution of �r � .A.x/rv/� 0 in Rd :

Now since,
jfv � 0g\Br j �

1
2
jBr j

for any r � 1 we apply the De Giorgi weak Harnack inequality to find

max
Br=2\Pn

wC �max
Br=2

v � .1� ı/ max
Br\Pn

w in Br=2:

Iterating this argument we find

max
Br\Pn

wC � .1� ı/
k max

B
2k r
\Pn

wC � .1� ı/
kM:

Sending k!1 and then r !1 we find wC � 0. �

Appendix B

In this section we complete the proof of Lemma 5.4. Recall that we are considering the boundary layer
problem with �

�r � .A.x/rv/Dr �f in Rd
C;

v D  .x0/ on @Rd
C;

(B-1)
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where  W @Rd
C!R and f are smooth, A satisfies the usual assumptions from Section 3 and, furthermore,

 , f , and A all share d �1 linearly independent periods `1; : : : ; `d�1 2 @Rd
C such that, for some M > 2,

max
1�j�d�1

j j̀ j �M:

The following maximal function-type norms turn out to be useful:

Mp.f;R/ WD sup
y�edD0;R0�R

kf kLp
avg.BR0=2.yCR0ed //

; (B-2)

Ip.f / WDMp.f; 0/C
X

N22N

NMp.f;N /: (B-3)

Note that Mp.f; 0/D kf kL1.Rd
C
/.

We write v by the Green’s function formula,

v.x/D

Z
@Rd
C

P .x;y/ .y/ dyC

Z
Rd
C

rxG.x;y/f .y/ dy:

The first result is an L1 estimate:

Lemma B.1. For any p > d ,
osc
Rd
C

v .p osc
@Rd
C

 C Ip.f /:

Proof. The bound for the Poisson integral is already done in Lemma 3.2. For the Green’s function term
we use the Avellaneda–Lin bounds in Theorem 3.1 along with a Whitney-type decomposition.

Let x2Rd
C; without loss of generality xD.0;xd /. If xd �1, let Nx 22N be the unique dyadic such that

Nx�xd<2Nx . Then define ˛2 Œ1;2/ such that ˛NxDxd . If xd�1 define ˛D2. Now we make a cube de-
composition QN;j WD˛N.j ;1/C˛

�
�

1
4
N; 1

2
N
�d for 2�N 22N and j 2Zd�1, with side length comparable

to the distance to xdD0. For N D1 we define Q1;jD˛.j ;1/C˛
�
�1; 1

2

�d. In this set up .0;xd /2QNx ;0.
Now we bound the Green’s function integral byZ

Rd
C

jrxG.x;y/jjf .y/j dy D
X
Q

Z
Q

jrxG.x;y/jjf .y/j dy

�

X
Q

jQjkrxG.x; � /kLp
avg.Q/

kf kLp
avg.Q/

�

X
N

X
j

N d
krxG.x; � /k

L
p0

avg.Q/
Mp.f;N /:

We claim that, for any p > d and any N 2 2N, j 2 Zd�1,

krxG.x; � /k
L

p0

avg.Q/
.p N 1�d .1Cjj j/�d : (B-4)

Taking the bound for granted we can complete the computation,Z
Rd
C

jrxG.x;y/jjf .y/j dy .
X
N

X
j

N.1Cjj j/�dMp.f;N /. Ip.f /;

where for the last inequality we used that .1Cjj j/�d is summable on Zd�1.
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Now we finish by proving (B-4) using the Avellaneda–Lin bounds, Theorem 3.1. When j D 0 and
N DNx we bound�

1

jQj

Z
Q

jrxG.x;y/jp
0

dy

�1=p0

.
�

1

jQj

Z
Q

jx�yj.1�d/p0 dy

�1=p0

.N�d=p0
�Z CN

0

r .1�d/p0rd�1 dr

�1=p0

.N�d=p0N ..1�p0/.d�1/C1/=p0
DN 1�d ;

where we have used p > d so that .p0� 1/.d � 1/ < 1 and the integral in the second line converges.
When j ¤ 0 and/or N ¤Nx we have that jx�yj&maxfN.1Cjj j/;Nxg for y 2QN;j . In this case,

jrxG.x;y/j. yd

jx�yjd
C

xdyd

jx�yjdC1

.N 1�d .1Cjj j/�d
CNNx maxfN.1Cjj j/;Nxg

�.dC1/

.N 1�d .1Cjj j/�d ;

which was the desired estimate. �

Next we prove the existence of a boundary layer limit with convergence rate. We assume the following
exponential-type bounds on f , which are well suited to the boundary layer problem: there are K; b > 0

so that, for all R> 0,

Mp.f;R/�
K

1CR
e�bR=M : (B-5)

From (B-5) one can compute,

Ip.f /.b K log M;

and also

Ip.f;R/ WD
X

2N3N�R

NMp.f;N /.b K log Me�bR=M :

Lemma B.2. Let v, f ,  and A as above in (B-1) with f satisfying the exponential bound (B-5). There
exists c� 2 Rm such that

sup
y�ed�R

jv.y/� c�j.b ..osc /CK log M /e�c0R=M ;

where the rate c0 depends on b and universal constants.

The proof is almost the same as [Feldman and Kim 2017, Lemma A.4] so we omit it.
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DYNAMICS OF ONE-FOLD SYMMETRIC PATCHES
FOR THE AGGREGATION EQUATION AND

COLLAPSE TO SINGULAR MEASURE

TAOUFIK HMIDI AND DONG LI

We are concerned with the dynamics of one-fold symmetric patches for the two-dimensional aggregation
equation associated to the Newtonian potential. We reformulate a suitable graph model and prove a local
well-posedness result in subcritical and critical spaces. The global existence is obtained only for small
initial data using a weak damping property hidden in the velocity terms. This allows us to analyze the
concentration phenomenon of the aggregation patches near the blow-up time. In particular, we prove
that the patch collapses to a collection of disjoint segments and we provide a description of the singular
measure through a careful study of the asymptotic behavior of the graph.
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1. Introduction

This paper is devoted to the study of the two-dimensional aggregation equation with the Newtonian
potential: 8<:

@t�C div.v�/D 0; t � 0; x 2 R2;

v.t; x/D� 1
2�

R
R2
.x�y/=jx�yj2�.t; y/ dy;

�.0; x/D �0.x/:

(1-1)

This model with more general potential interactions, with or without dissipation, is used to explain
some behavior in physics and population dynamics. As a matter of fact, it appears in vortex densities
in superconductors [Ambrosio and Serfaty 2008; Du and Zhang 2003; Keller and Segel 1970], material
sciences [Holm and Putkaradze 2006; Nieto et al. 2001], cooperative controls and biological swarming
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[Bernoff and Topaz 2011; Breder 1954; Boi et al. 2000; Gazi and Passino 2003; Mogilner and Edelstein-
Keshet 1999; Morale et al. 2005; Topaz and Bertozzi 2004], etc. During the last few decades, a lot of
intensive research activity has been devoted to exploring several mathematical and numerical aspects of
this equation. It is known according to [Bertozzi et al. 2012; Nieto et al. 2001] that classical solutions
can be constructed for short times. They develop a finite-time singularity if and only if the initial data is
strictly positive at some points and the blow-up time is explicitly given by T? D 1=max �0. This follows
from the equivalent form

@t�C v � r�D �
2;

which, written with Lagrangian coordinates, gives exactly a Riccati equation. Note that similarly to
Yudovich’s result [1963] for Euler equations, weak unique solutions in L1\L1 can be constructed follow-
ing the same strategy; for more details see [Bertozzi et al. 2009; 2011; 2012; Bertozzi and Laurent 2007;
Bertozzi and Brandman 2010; Fetecau et al. 2011; Fetecau and Huang 2013; Dong 2011; Laurent 2007;
Li and Rodrigo 2009]. Since the L1 norm is conserved at least at the formal level, a lot of effort was made
to extend the classical solutions beyond the first blow-up time. Poupaud [2002] established the existence
of global generalized solutions with defect measure when the initial data is a nonnegative bounded Radon
measure. He also showed that when the second moment of the initial data is bounded, for such solutions
the atomic part appears in finite time. This result is to some extent in contrast with what is established for
Euler equations. Indeed, according to Delort’s result [1991] global weak solutions without defect measure
can be established when the initial vorticity is a nonnegative bounded Radon measure and the associated
velocity has finite local energy. During the time, those solutions do not develop atomic part, contrary to
the aggregation equation. This illustrates somehow the gap between both equations, not only at the level
of classical solutions but also for the weak solutions. The literature dealing with measure-valued solutions
for the aggregation equation with different potentials is very abundant and we refer the reader to [Bodnar
and Velazquez 2006; Carrillo et al. 2006; 2011; Carrillo and Rosado 2010; Masmoudi and Zhang 2005].

Now we shall discuss another subject concerning the aggregation patches. Assume that the initial data
takes the patch form

�0 D 1D0 ;

with D0 a bounded domain; then solutions can be uniquely constructed up to the time T ? D 1 and one
can check that

�.t/D
1

1� t
1Dt ; with .@t C v � r/1Dt D 0:

Note that v is computed from � through the Biot–Savart law. To filter the time factor in the velocity field
and find an analogous equation to the Euler equations, it is more convenient to rescale the time as was
done in [Bertozzi et al. 2012]. Indeed, set

� D� ln.1� t /; u.�; x/D�
1

2�

Z
R2

x�y

jx�yj2
1 zD� .y/ dy;

zD� DDt I

then we get
.@� Cu � r/1 zD� D 0;

zD0 DD0:
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We observe that with this formulation, the blow-up occurs at infinite time and so the solutions do exist
globally in time. To simplify the notation we shall write this latter equation with the initial variables.
Hence the vortex patch problem is reduced to understanding the evolution equation8<:

@t�C v � r�D 0; t � 0;

v.t; x/D� 1
2�

R
Dt
.x�y/=jx�yj2 dy;

�.0/D 1D0 :
(1-2)

Let us point out that the area of the domain Dt shrinks to zero exponentially; that is,

for all t � 0; k�.t/kL1 D e
�t
jD0j: (1-3)

The solution to this problem is global in time and takes the form �.t/D 1Dt , Dt D  .t;D0/, where  
denotes the flow associated to the velocity v. Similarly to the Euler equations [Bertozzi and Constantin
1993; Chemin 1993], Bertozzi, Garnett, Laurent and Verdera [Bertozzi et al. 2016] proved the global-in-
time persistence of the boundary regularity in Hölder spaces C 1Cs, s 2 .0; 1/. However the asymptotic
behavior of the patches for large time is still not well understood despite some interesting numerical
simulations giving some indications on the concentration dynamics. Notice first that the area of the patch
shrinks to zero, which gives that the associated domains will converge in Hausdorff distance to negligible
sets. The geometric structure of such sets is not well explored and hereafter we will give two pedagogic and
interesting simple examples illustrating the concentration, and one can find more details in [Bertozzi et al.
2012]. The first example is the disc which shrinks to its center, leading after a normalization procedure
to the convergence to Dirac mass. The second one is the ellipse patch which collapses to a segment along
the big axis and the normalized patch converges weakly to Wigner’s semicircle law of density

x1 7!
2
p

x0
2� x21

�x02
1Œ�x0;x0�; x0 D a� b:

It seems that the mechanisms governing the concentration are very complex and related in part for some
special class to the initial distribution of the local mass. Indeed, the numerical experiments implemented in
[Bertozzi et al. 2012] for some regular shapes indicate that generically the concentration is organized along
a skeleton structure. The aim of this paper is to investigate this phenomenon and try to give a complete
answer for a special class of initial data where the concentration occurs along disjoint segments lying in
the same line. More precisely, we will deal with a one-fold symmetric patch, and by rotation invariance
we can suppose that its axis of symmetry coincides with the real axis. We assume in addition that the
boundary of the upper part is the graph of a slightly smooth function with small amplitude. Then we will
show that we can track the dynamics of the graph globally in time and prove that the normalized solution
converges weakly towards a probability measure supported in the union of disjoint segments lying in the
real axis. The results will be formulated rigorously in Section 2. The paper is organized as follows. In next
section we formulate the graph equation and state our main results. In Sections 3, 4 and 5 we shall discuss
basic tools that we use frequently throughout the paper. In Section 6 we prove the local well-posedness for
the graph equation. The global existence with small initial data is proved in Section 7, and Section 8 deals
with the asymptotic behavior of the normalized density and its convergence towards a singular measure.
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2. Graph reformulation and main results

The main purpose of this section is to describe the boundary motion of the patch associated to (1-2) under
suitable symmetry structure. One of the basic properties of the aggregation equation that we shall use in
a crucial way concerns its group of symmetry, which is much richer than for Euler equations. Actually, in
addition to rotation and translation invariance, the aggregation equation is in fact invariant by reflection.
To check this property and without loss of generality we can look for the invariance with respect to the
real axis. Set

X D .x; y/ 2 R2 and X D .x;�y/

and introduce
O�.t; X/D �.t; X/; Ov.t; X/D�

1

2�

Z
R2

X �Y

jX �Y j2
O�.t; Y / dY:

Using straightforward change of variables, it is quite easy to get

v.t; X/D Ov.t; X/; div.v �/.t; X/D div. Ov O�/.t; X/:

Therefore we find that O� satisfies also the aggregation equation

@t O�C div. Ov O�/D 0:

Combining this property with the uniqueness of Yudovich’s solutions, it follows that if the initial data
belong to L1\L1 and admit an axis of symmetry then the solution remains invariant with respect to
the same axis. In the framework of the vortex patches this result means that if the initial data are given
by �0 D 1D0 and the domain D0 is symmetric with respect to the real axis, the domain Dt defining the
solution �.t/D 1Dt remains symmetric with respect to the same axis for any positive time. Recall that in
the form (1-2) Yudovich-type solutions are global in time. To be precise about the terminology, here and
contrary to the standard definition in topology, where “domain” means a connected open set, we mean by
“domain” any measurable set of strictly positive measure. In addition, a patch whose domain is symmetric
with respect to the real axis (or any axis) is called one-fold symmetric.

In the current study, we shall focus on the domains D0 such that the boundary part lying in the upper
half-plane is described by the graph of a C 1 positive function f0 W R! RC with compact support. This
is equivalent to

D0 D f.x; y/ 2 R2 W x 2 suppf0; �f0.x/� y � f0.x/g:

We point out that concretely we shall consider the evolution not of D0 but of its extended set defined by

yD0 D f.x; y/ 2 R2 W x 2 R; �f0.x/� y � f0.x/g:

This does not matter since the domain Dt remains symmetric with respect to the real axis and then we
can simply track its evolution by knowing the dynamics of its extended domain: we just remove the extra
lines located on the real axis.

One of the main objectives of this paper is to follow the dynamics of the graph and investigate local and
global well-posedness issues in different function spaces. In the next lines, we shall derive the evolution
equation governing the motion of the initial graph f0. Assume that in a short time interval Œ0; T � the part of
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the boundary in the upper half-plane is described by the graph of a C 1 function ft WR!RC. This forces
the points of the boundary @Dt located on the real axis to be cusp singularities. As a material point located
at the boundary remains on the boundary, any parametrization s 7! t .s/ of the boundary should satisfy

.@tt .s/� v.t; t .s/// � En.t .s//D 0;

with En.t / being a normal unit vector to the boundary at the point t .s/. Now take the parametrization in the
graph form t W x 7! .x; f .t; x//; then the preceding equation reduces to the nonlinear transport equation�

@tf .t; x/Cu1.t; x/ @xf .t; x/D u2.t; x/; t � 0; x 2 R;

f .0; x/D f0.x/;
(2-1)

where .u1; u2/.t; x/ is the velocity .v1; v2/.t; X/ computed at the point X D .x; f .t; x//. Throughout
this paper we use the notation

ft .x/D f .t; x/ and f 0.t; x/D @xf .t; x/:

To reformulate (2-1) in a closed form we shall recover the velocity components with respect to the graph
parametrization. We start with the computation of v1.X/. Here and for the sake of simplicity we drop the
time parameter from the graph and the domain of the patch. One writes according to Fubini’s theorem

�2�v1.X/D

Z
D

x�y1

jX �Y j2
dY D

Z
R

.x�y1/

Z f .y1/

�f .y1/

dy2

.x�y1/2C .f .x/�y2/2
dy1;

where Y D .y1; y2/. Using the change of variables y2�f .x/D .x�y1/Z we find

2�v1.X/D

Z
R

�
arctan

�
f .y/�f .x/

y � x

�
C arctan

�
f .y/Cf .x/

y � x

��
dy

D

Z
R

�
arctan

�
f .xCy/�f .x/

y

�
C arctan

�
f .xCy/Cf .x/

y

��
dy:

To compute v2 in terms of f we proceed as before and we find

�2�v2.X/D

Z
D

f .x/�y2

jX �Y j2
dA.Y /D

Z
R

Z f .y1/

�f .y1/

f .x/�y2

.x�y1/2C .f .x/�y2/2
dy2 dy1:

Therefore we obtain the expression

4�v2.x; f .x//D

Z
R

log
�
y2C .f .xCy/�f .x//2

y2C .f .xCy/Cf .x//2

�
dy:

With the notation adopted before for .u1; u2/ we finally get the formulas

u1.t; x/D
1

2�

Z
R

�
arctan

�
ft .xCy/�ft .x/

y

�
C arctan

�
ft .xCy/Cft .x/

y

��
dy;

u2.t; x/D
1

4�

Z
R

log
�
y2C .ft .xCy/�ft .x//

2

y2C .ft .xCy/Cft .x//2

�
dy:

(2-2)

We emphasize that for the coherence of the model the graph equation (2-1) is supplemented with the
initial condition f0.x/� 0. According to Proposition 6.2, the positivity is preserved for enough smooth
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solutions. Furthermore, and once again according to this proposition we have a maximum principle
estimate:

for all t � 0; for all x 2 R; 0� f .t; x/� kf0kL1 :

Notice that the model remains meaningful even when the function ft changes sign. In this case the
geometric domain of the patch is simply obtained by looking to the region delimited by the curve of
ft and it is symmetric with respect to the real axis. This is also equivalent to dealing with a positive
function ft but its graph will be less regular and belongs only to the Lipschitz class. Another essential
element that will be analyzed later in Proposition 6.2 concerns the support of the solutions, which remains
confined through the time interval. More precisely, if suppf0 � Œa; b� with a < b then provided that the
graph exists for t 2 Œ0; T � one has

suppf .t/� Œa; b�:

This follows from the fact that the flow associated to the horizontal velocity u1 is contractive on the
boundary. It is not clear whether global weak solutions satisfying the maximum principle can be
constructed. However, to deal with classical solutions one should control higher regularity of the graph
and it seems from the transport structure of the equation that the optimal scaling for local well-posedness
theory is Lipschitz class. Thus, in what follows we say that a function space is critical if it scales
as a Lipschitz class and subcritical if it scales above like Hölder spaces C 1Cs, s > 0. Denote by
g.t; x/D @xf .t; x/ the slope of the graph; then it is quite obvious from (2-1) that

@tgCu1@xg D�@xu1gC @xu2: (2-3)

For the computation of the source term we proceed in a classical way using the differentiation under the
integral sign and we get successively

2�@xu1.x/D p.v.
Z

R

f 0.xCy/�f 0.x/

y2C .f .xCy/�f .x//2
y dyC p.v.

Z
R

f 0.xCy/Cf 0.x/

y2C .f .xCy/Cf .x//2
y dy (2-4)

and

2�@xu2.x/D p.v.
Z

R

.f .xCy/�f .x//.f 0.xCy/�f 0.x//

y2C .f .xCy/�f .x//2
dy

�p.v.
Z

R

.f .xCy/Cf .x//.f 0.xCy/Cf 0.x//

y2C .f .xCy/Cf .x//2
dy;

where the notation “p.v.” is the Cauchy principal value. It is worth pointing out that the first two integrals
appearing in the right-hand side of the expressions of @xu1 and @xu2 are in fact connected to the Cauchy
operator associated to the curve f defined in (5-1). This operator is well-studied in the literature and some
details will be given later in Section 5. Next, we shall check that the integrals appearing in the right-hand
side of the preceding formulas can actually be restricted over a compact set related to the support of f .
Let Œ�M;M� be a symmetric segment containing the set K0�K0, with K0 being the convex hull of the
support of f0, which is denoted by suppf0. It is clear that the support of @xu1f 0 is contained in K0 and
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thus for x 2K0 one has

p.v.
Z

R

f 0.xCy/�f 0.x/

y2C .f .xCy/�f .x//2
y dy D p.v.

Z M

�M

f 0.xCy/�f 0.x/

y2C .f .xCy/�f .x//2
y dy:

Consequently, we obtain for x 2 R

2�f 0.x/@xu1.x/D f
0.x/ p.v.

Z M

�M

f 0.xCy/�f 0.x/

y2C .f .xCy/�f .x//2
y dy

Cf 0.x/ p.v.
Z M

�M

f 0.xCy/Cf 0.x/

y2C .f .xCy/Cf .x//2
y dy:

Coming back to the integral representation defining @xu2 one can see, using a cancellation between both
integrals, that the support of @xu2 is contained in K0. Furthermore, for x 2K0 one may write

2�@xu2.x/D p.v.
Z M

�M

.f .xCy/�f .x//.f 0.xCy/�f 0.x//

y2C .f .xCy/�f .x//2
dy

� p.v.
Z M

�M

.f .xCy/Cf .x//.f 0.xCy/Cf 0.x//

y2C .f .xCy/Cf .x//2
dy:

Gathering the preceding identities we deduce that

2�.�@xu1f
0.x/C @xu2/D F.x/�G.x/; (2-5)

with

F.x/, p.v.
Z M

�M

Œf .xCy/�f .x/�yf 0.x/�.f 0.xCy/�f 0.x//

y2C .f .xCy/�f .x//2
dy;

G.x/, p.v.
Z M

�M

Œf .xCy/Cf .x/Cyf 0.x/�.f 0.xCy/Cf 0.x//

y2C .f .xCy/Cf .x//2
dy:

One should keep in mind that the integrals above can also be extended to the full real axis. Sometimes in
order to reduce the size of the integral representation we use the notation

�˙y f .x/D f .xCy/˙f .x/: (2-6)

Thus F and G take the form

F.x/D p.v.
Z M

�M

Œ��y f .x/�yf
0.x/���y f

0.x/

y2C .��y f .x//
2

dy; (2-7)

G.x/D p.v.
Z M

�M

Œ�Cy f .x/Cyf
0.x/��Cy f

0.x/

y2C .�Cy f .x//
2

dy: (2-8)

The first main result of this paper is devoted to the local well-posedness issue. We shall discuss two
results related to subcritical and critical regularities. Denote by X one of the following spaces: Hölder
spaces C s.R/ with s 2 .0; 1/ or the Dini space C ?.R/. For more details about classical properties of
these spaces we refer the reader to Section 4.
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Theorem 2.1. Let f0 be a positive compactly supported function such that f 00 2X. Then, the following
results hold true:

(1) Equation (2-1) admits a unique local solution such that f 02L1.Œ0; T �; X/, where the time existence T
is related to the norm kf 00kX and the size of the support of f0. In addition, the solution satisfies the
maximum principle

for all t 2 Œ0; T �; kf .t/kL1 � kf0kL1 :

(2) There exists a constant " > 0 depending only on s and the size of the support of f0 such that if

kf 00kC s < " (2-9)

then (2-1) admits a unique global solution f 0 2 L1.RCIC s.R//. Moreover,

for all t � 0; k@xf .t/kL1 � C0e�t ;

with C0 a constant depending only on kf 00kC s .

Before outlining the strategy of the proof, some comments are in order.

Remarks. (1) The global existence result is only proved for the subcritical case (C s). The critical case
(Dini case) is more delicate to handle due to the lack of strong damping, which is only proved in the
subcritical case (see Proposition 7.1). Roughly speaking, the damping comes from the linearization of the
nonlinear term. Indeed, one finds that the equation

@tf
0
Cu1 @xf

0
D

1
2�
.F.x/�G.x//D�f 0CL1.x/C nonlinear;

where (see Proposition 7.1) the term “nonlinear” has superlinear C s-type estimates. If the term L1.x/

were identically zero, then one can use the damping term �f 0 to obtain exponentially decaying global
solutions with small initial data. On the other hand, as it turns out, the almost-linear-type term L1.x/

admits estimates of the form

kL1ks � .kf
0
ksC 2kf

0
kL1/CCkf

0
k
s
L1kf

0
ks;

kL1kL1 � C min.kf ksL1kf
0
ks; kf

0
kL1/:

The key improvement here is the first estimate in theL1 estimate ofL1, which is in some sense superlinear.
By using Proposition 6.2 one can obtain an exponential decay estimate of kf k1 through an area argument.
This important estimate together with some interpolation estimates (and an exponential decay estimate
of k@xu1k1) and the strong damping term �f 0 then yields global well-posedness for small data.

(2) Coming back to the patch domain, we see that it admits cusp-like singularities located on the axis
of symmetry. This is not covered by the preceding result [Bertozzi et al. 2016] where the boundary is
assumed to be more regular than C 1. From the proof of Theorem 2.1 we deduce that the graph solutions
generate a Lipschitz velocity. This allows us to easily propagate a weak notion for the order of a cusp.
More precisely, let ˛>0 be the order of a cusp x0; that is, for small r , we have jD\B.x0; r/jDO.r2C˛/,
and then for the solutions constructed in Theorem 2.1 we get jDt \B.xt ; r/j DO.r2C˛/, with xt the
image of x0 by the flow. Notice that this problem was studied for Euler equations in [Danchin 2000].
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(3) From Sobolev embeddings we deduce according to the assumption on f0 listed in Theorem 2.1 that
f0 belongs to the space C 1c .R/ of compactly supported C 1 functions.

(4) The maximum principle holds true globally in time; however, it is not clear whether some suitable
weak global solutions could be constructed in this setting.

Now we shall give some details about the proofs. First we establish local-in-time a priori estimates
based on the transport structure of the equation combined with some refined studies on modified curved
Cauchy operators implemented in Section 5 and essentially based on standard arguments from singular
integrals. The construction of the solutions done in Section 6C is slightly more intricate than the usual
schemes used for transport equations. This is due to the fact that the establishment of the a priori estimates
is not purely energetic. First, at some levels we use some nonlinear rigidity of the equation like in
Theorem 2.1(3), where the factor f 0 behind the operator should be the derivative of the function f that
appears inside the operator. Second, we use at some point the fact that the support is confined in time.
Last we use at different steps the positivity of the solution. Hence it seems quite difficult to find a linear
scheme taking into account all of those constraints. The idea is to implement a nonlinear scheme with
two regularizing parameters " and n. The first one is used to smooth out the singularity of the kernel and
the second to smooth the solution through a nonlinear scheme. We first establish that one has uniform
a priori estimates on n but on some small interval depending on ". We are also able to pass to the limit
on n and get a solution for a modified nonlinear problem. Second we check that the a priori estimates
still be valid uniformly on ". This ensures that the time existence can be in fact pushed up to the time
given by the a priori estimates obtained for the initial equation (2-1). As a consequence we get a uniform
time existence with respect to " and finally we establish the convergence towards a solution of the initial
value problem using standard compactness arguments.

The global existence for small initial data requires much more careful analysis because there is no
apparent dissipation or damping mechanisms in the equation. Notice that the estimate of the source
term G contains some linear parts as it is stated in Proposition 6.1. The basic ingredient to get rid of
those linear parts is to implement a kind of linearization allowing us to capture a weak damping effect
in G that can just absorb the growth of the linear part. We do not know if the damping proved for lower
regularity still happens in the resolution space. As to the nonlinear terms, they are always associated
with some subcritical norms and thus using an interpolation argument with the exponential decay of the
L1 norm we get a global-in-time control that leads to the global existence.

The second result that we shall discuss deals with the asymptotic behavior of the solutions to (1-2) and
(2-1). We shall study the collapse of the support to a collection of disjoint segments located at the axis of
symmetry. Another interesting issue that will be covered by this discussion concerns the characterization
of the limit behavior of the probability measure

dPt , et
1Dt
jD0j

dA; (2-10)

with dA being Lebesgue measure and jD0j denoting the Lebesgue measure of D0. Our result reads as
follows.
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Theorem 2.2. Let f0 be a positive compactly supported function such that f 00 2 C
s.R/, with s 2 .0; 1/.

Assume that suppf0 is the union of n disjoint segments and satisfies the smallness condition (2-9). Then
there exists a compact set D1 � R composed of exactly of n disjoint segments and a constant C > 0 such
that

for all t � 0; dH .Dt ;D1/� Ce
�t ; jD1j �

1
2
jD0j;

with dH being the Hausdorff distance and jD1j the one-dimensional Lebesgue measure of D1. In
addition, the probability measures fdPtgt�0 defined in (2-10) converge weakly as t goes to1 to the
probability measure

dP1 WDˆıD1˝f0g;

with ˆ being a compactly supported function in D1 belonging to C ˛.R/ for any ˛ 2 .0; 1/ and can be
expressed in the form

ˆ.x/D
f0. 

�1
1 .x//

kf0kL1
eg.x/; (2-11)

with g a function that can be implicitly recovered from the full dynamics of solution fft W t � 0g and

 1 D lim
t!1

 .t/:

Note that  .t/ is the one-dimensional flow associated to u1 defined in (6-26) and

Dt D f.x; y/ W x 2 suppft ; �ft .x/� y � ft .x/g:

Remark 2.3. The regularity of the profile ˆ might be improved and we expect that ˆ keeps the same
regularity as the graph.

The proof of the collapse of the support to a disjoint union of segments can be easily derived from the
formula (2-11) which ensures that the support of the limit measure is exactly the image of the support
of f0 by the limit flow  1, which is a homeomorphism of the real axis. To get the convergence with
the Hausdorff distance we just use the exponential damping of the amplitude of the curve. As to the
characterization of the limit measure it is based on the exponential decay of the amplitude of graph
combined with the scattering as t goes to infinity of the normalized solution etf .t/. In fact, we prove
that the density is nothing but the formal quantity

ˆ.x/D 2 lim
t!1

etf .t; x/

whose existence is obtained using the transport structure of the equation through the method of character-
istics combined with the damping effects of the nonlinear source terms.

3. Generalities on the limit shapes

In this short section we shall discuss a simple result dealing with the role of symmetry in the structure
of the limit shape D1. Roughly speaking, we shall prove that thin initial domains along their axis of
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symmetry generate concentration to segments. Notice that

D1 ,
˚

lim
t!1

 .t; x/ W x 2D0
	
;

where  is the flow associated to the velocity v and defined through the ODE�
@t .t; x/D v.t;  .t; x//; t � 0; x 2 R2;

 .0; x/D x:
(3-1)

The existence of the set D1 will be proved below. We intend to prove the following.

Proposition 3.1. The following assertions hold:

(1) If D0 is a bounded domain of R2, then for any x 2 R2 the quantity limt!1  .t; x/ exists.

(2) Let D0 be a simply connected bounded domain symmetric with respect to an axis �. Denote by
d0 D Length.D0\�/. There exists an absolute constant C such that if

d0 > C jD0j
1
2

then the shape D1 contains an interval of the size d0�C jD0j
1
2 .

Proof. (1) Integrating in time the flow equation (3-1) yields

 .t; x/D xC

Z t

0

v.�;  .�; x// d�:

Now observe that pointwisely

jv.t; x/j �
1

2�

�
1

j � j2
? j�.t/j

�
.x/:

Thus interpolation inequalities combined with (1-3) lead to

kv.t/kL1 � Ck�.t/k
1
2

L1
k�.t/k

1
2

L1 � Ce
� t
2 jD0j

1
2 ; (3-2)

with C an absolute constant. This implies that the integral
R1
0 v.�;  .�; x// d� converges absolutely and

therefore limt!1  .t; x/ exists in R2. This allows us to define the limit shape D1 as

D1 D
˚

lim
t!1

 .t; x/ W x 2D0
	
:

(2) Without loss of generality we will suppose that the straight line � coincides with the real axis. Since
D is a simply connected bounded domain, there exist two different points X�0 ; X

C
0 2 R such that

D0\�D ŒX
�
0 ; X

C
0 �:

Then it is clear that Length.D0\�/DXC0 �X
�
0 WD d0. By assumption D0 is symmetric with respect

to �; then the domain Dt remains also symmetric with respect to the same axis and the points X˙0 move
along this axis. Set

X˙.t/D  .t; X˙0 /I

then as the flow is a homeomorphism

D t \�D ŒX
�.t/; XC.t/�:
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Now we wish to follow the evolution of the distance d.t/ WDXC.t/�X�.t/ and find a sufficient condition
such that this distance remains away from zero up to infinity. Notice from the first point that limt!1 d.t/

exists and is equal to some positive number d1. From the triangle inequality, one easily gets

d.t/� d0� 2

Z t

0

kv.�/kL1 d�:

Inequality (3-2) ensures that
d.t/� d0�C jD0j

1
2

and therefore d1 � d0�C jD0j
1
2 . Consequently, if d0 >C jD0j

1
2 then the points fX˙.t/g do not collide

up to infinity and thus the set D1 contains a nontrivial interval as claimed. �

4. Basic properties of Dini and Hölder spaces

We now set up some function spaces that we shall use and review some of their important properties. Let
f W R! R be a continuous function; we define its modulus of continuity !f W RC! RC by

!f .r/D sup
jx�yj�r

jf .x/�f .y/j:

This is a nondecreasing function satisfying !f .0/D 0 and it is subadditive; that is, for r1; r2 � 0 we have

!f .r1C r2/� !f .r1/C!f .r2/: (4-1)

Now we intend to recall Dini and Hölder spaces. The Dini space denoted by C ?.R/ is the set of continuous
bounded functions f such that

kf kL1 Ckf kD <1; with kf kD D
Z 1

0

!f .r/

r
dr:

Another space that we frequently use throughout this paper is the Hölder space. Let s 2 .0; 1/; we denote
by C s.R/ the set of functions f W R! R such that

kf kL1 Ckf ks <1; with kf ks D sup
0<r<1

!f .r/

rs
:

Let K be a compact set of R; we define C ?K as the subspace of C ?.R/ whose elements are supported
in K. Note that C ?K ,! L1.R/, which means that a constant C depending only on the diameter of the
compact K exists such that

for all f 2 C ?K ; kf kL1 � Ckf kD: (4-2)

This follows easily from the observation

for all r 2
�
0; 1
2

�
; !.r/ ln 2� kf kD:

From (4-2) we deduce that for any A� 1Z A

0

!f .r/

r
dr � kf kDC 2kf kL1 lnA� Ckf kD.1C lnA/: (4-3)
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Coming back to the definition of Dini seminorm one deduces the product laws: for f; g 2 C ?K

kfgkD � kf kL1 kgkDCkgkL1 kf kD and kfgkD � Ckf kD kgkD: (4-4)

Another useful space is C sK , which is the subspace of C s.R/ whose functions are supported on compactK.
It is quite obvious that

C sK ,! C ?K ,! L1: (4-5)

We point out that all these spaces are complete. Another property which will be very useful is the following
composition law. If f 2C s.R/with 0<s<1 and WR!R is a Lipschitz function then f ı 2C s.R/ and

kf ı ks � .kf ksC 2kf kL1/kr k
s
L1 : (4-6)

It is worth pointing out that in the case of the Dini space C ?.R/ we get a more precise estimate of
logarithmic type,

kf ı kD � C.kf kDCkf kL1/.1C lnC.kr kL1//; (4-7)

with the notation

lnC x ,
�

ln x if x � 1;
0 otherwise:

Another estimate of great interest is the following product law:

kfgks � kf kL1 kgksCkgkL1 kf ks: (4-8)

In the next task we will be concerned with a pointwise estimate connecting a positive smooth function to
its derivative and explore how this property is affected by the regularity. This kind of property will be
required in Section 5 in studying Cauchy operators with special forms.

Lemma 4.1. Let K be a compact set of R and f W R! RC be a continuous positive function supported
in K such that f 0 2 C ?.R/. Then we have

for all x 2 R; jf 0.x/j � C
kf 0kDCkf

0kL1

1C lnC.kf 0kD=f .x//
:

A weak version of this inequality is

for all x 2 R; jf 0.x/j � C
.kf 0kDCkf

0kL1/.1C lnC.1=kf 0kD//
1C lnC.1=f .x//

;

with C an absolute constant. If in addition f 0 2 C s.R/ with s 2 .0; 1/, then

for all x 2 R; jf 0.x/j � Ckf 0k
1
1Cs
s Œf .x/�

s
1Cs

and the constant C depends only on s.
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Proof. Let x be a given point; without any loss of generality one can assume that f 0.x/ � 0. Now let
h 2 Œ0; 1�; then using the mean value theorem, there exists ch 2 Œx� h; x/ such that

f .x� h/D f .x/� hf 0.ch/

D f .x/� hf 0.x/� hŒf 0.ch/�f
0.x/�

� f .x/� hf 0.x/C h!f 0.h/:

From the positivity of the function f we deduce that for any h 2 Œ0; 1� one gets

f .x/� hf 0.x/C h!f 0.h/� 0:

Then dividing by h2 and integrating in h between " and 1, with " 2 .0; 1�, we get

f .x/
1

"
Cf 0.x/ ln "Ckf 0kD � 0:

Multiplying by " we obtain

for all " 2 .0; 1/; f .x/Cf 0.x/" ln "Ckf 0kD "� 0: (4-9)

By studying the variation with respect to " we find that the suitable value of " is given by

ln "D�1�
kf 0kD

f .x/
:

Inserting this choice into (4-9) we find that

"f 0.x/� f .x/I

that is,
e�1�kf

0kD=f
0.x/f 0.x/� f .x/:

From the inequality te�t � e�1 we deduce that

e�1 �
kf 0kD

f 0.x/
e�kf

0kD=f
0.x/;

which implies in turn that

e�1�kf
0kD=f

0.x/f 0.x/� e�2kf
0kD=f

0.x/
kf 0kD:

Consequently we get
e�2kf

0kD=f
0.x/
kf 0kD � f .x/:

Thus when f .x/=kf 0kD > 1 this estimate does not give any useful information and then we simply write

f 0.x/� kf 0kL1 :

However for f .x/=kf 0kD < 1 we get

f 0.x/� C
kf 0kD

1C lnC.kf 0kD=f .x//
;
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from which we deduce that

f 0.x/� C
kf 0kD.1C lnC.1=kf 0kD/

1C lnC.1=f .x//
:

Indeed, one may use the estimate

for all x > 0;
1C lnC.1=x/
1C lnC.a=x/

� 1C lnC.1=a/;

which can be verified easily by studying the variation of the fractional function.
Now let us move to the proof when f 0 is assumed to belong to the Hölder space C s, with s 2 .0; 1/.

Following the same proof as before one deduces that under the assumption f 0.x/ � 0 one obtains for
any h 2 RC

f .x/� hf 0.x/C h1Cskf 0ks � 0:

By studying the variation of this function with respect to h we find that the best choice of h is given by

hs D
f 0.x/

.1C s/kf 0ks
;

which implies the desired result, that is,

f 0.x/� Ckf 0k
1
1Cs
s Œf .x/�

s
1Cs : �

5. Modified curved Cauchy operators

This section is devoted to the study of some variants of Cauchy operators which are closely connected to
the operators arising in (2-4) and (2-5). Let us first recall the classical Cauchy operator associated to the
graph of a Lipschitz function f W R! R,

Cf g.x/D
Z

R

g.xCy/�g.x/

yC i.f .xCy/�f .x//
dy; (5-1)

which is well-defined at least for a smooth function g. According to a famous theorem of Coifman,
McIntosh and Meyer [Coifman et al. 1982], this operator can be extended as a bounded operator from
Lp to Lp for 1 < p <1. By adapting the proof of [Wittmann 1987], this operator can also be extended
continuously from C sK to C s.R/ for 0 < s < 1, provided that f belongs to C 1Cs.R/. However this
operator fails to be extended continuously from the Dini space C ?K to itself, as can be checked from
Hilbert transform. The structure of the operators that we have to deal with, as one may observe from the
expression of F following (2-5), is slightly different from the Cauchy operators. It can be associated to
the truncated bilinear Cauchy operator defined as follows: for given M > 0, � 2 Œ0; 1�,

C�f .g; h/.x/D
Z M

�M

.g.xC �y/�g.x//.h.xCy/� h.x//

yC i.f .xCy/�f .x//
dy:



2018 TAOUFIK HMIDI AND DONG LI

The real and imaginary parts of this operator are given respectively by

C�;<
f

.g; h/.x/D

Z M

�M

y.g.xC �y/�g.x//.h.xCy/� h.x//

y2C Œf .xCy/�f .x/�2
dy (5-2)

and

C�;=
f

.g; h/.x/D�

Z M

�M

.f .xCy/�f .x//.g.xC �y/�g.x//.h.xCy/� h.x//

y2C Œf .xCy/�f .x/�2
dy:

In what follows we denote by X one of the spaces C sK , with 0 < s < 1, or C ?K . The result that we shall
discuss deals with the continuity of the preceding bilinear operators on the spaces X. This may have been
discussed in the literature, but as we need to control the continuity constant we shall give a detailed proof.

Proposition 5.1. LetK be a compact set of R and f be a compactly supported function such that f 0 2X.
Then the following assertions hold true: The bilinear operator C�

f
W X �X ! X is well-defined and

continuous. More precisely, there exists a constant C independent of � such that for any g; h 2X

kC�;<
f

.g; h/kX � C.1Ckf
0
kL1 kf

0
kX /.kgkD khkX CkhkD kgkX /;

kC�;=
f

.g; h/kX � Ckf
0
kX .1Ckf

0
k
2
L1/.kgkD khkX CkgkX khkD/:

Proof. We shall first establish the result for the real-part operator given by (5-2). First we note that one
may rewrite the expression using the notation (2-6) as follows:

C�;<
f

.g; h/.x/D

Z M

�M

y��yg.x/�yh.x/

y2C .�yf .x//2
dy;

where we simply replace the notation ��y by �y . Using the product laws (4-4) and (4-8) one obtains

kC�;<
f

.g; h/kX �

Z M

�M

k��yg�yhkX
dy

jyj
C

Z M

�M

jyjk��yg�yhkL1

 1

y2C .�yf /2


X

dy:

Using once again the product law, it becomes

k��yg�yhkX � k��ygkL1 k�yhkX Ck��ygkX k�yhkL1

� !g.jyj/khkX C 2kgkX !h.jyj/;

where we have used that for � 2 Œ0; 1�, y 2 R

k�yhkX � 2khkX ; k��yhkL1 � !h.jyj/: (5-3)

Consequently Z M

�M

k��yg�yhkX
dy

jyj
� C.kgkD khkX CkhkD kgkX /: (5-4)

By the definition it is quite easy to check that for any function ' 2X \L1.R/ 1

y2C'2


X

�
2k'kL1

y4
k'kX :
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Hence we get  1

y2C .�yf /2


X

� 2
k�yf kL1

y4
k�yf kX

� Cy�2kf 0kL1 kf
0
kX ; (5-5)

where we have used the inequalities

k�yf kL1 � jyjkf
0
kL1 and !�yf .r/� jyj!f 0.r/:

Therefore we get in view of (5-3),Z M

�M

jyjk��yg�yhkL1

 1

y2C .�yf /2


X

dy � Ckf 0kL1 kf
0
kX khkL1

Z M

�M

!g.jyj/

jyj
dy

� Ckf 0kL1 kf
0
kX khkL1 kgkD:

Combining this last estimate with (5-4) we find that

kC�;<
f

.g; h/kX � C.kgkD khkX CkhkD kgkX Ckf
0
kL1 kf

0
kX khkL1kgkD/:

To deduce the result it is enough to use (4-5).
We are left with the task of estimating the imaginary part, which takes the form

C�;=
f

.g; h/.x/D

Z M

�M

�yf .x/��yg.x/�yh.x/

y2C .�yf .x//2
dy:

Note that we have dropped the minus sign before the integral, which of course has no consequence on the
computations. Using Taylor’s formula we get

�yf .x/D y

Z 1

0

f 0.xC �y/ d�

and thus

C�;=
f

.g; h/.x/D

Z M

�M

Z 1

0

yf 0.xC �y/��yg.x/�yh.x/

y2C .�yf .x//2
dy d�:

It suffices to reproduce the preceding computations using in particular the estimates

kf 0. � C �y/��yg�yhkL1 � kf
0
kL1khkL1!g.jyj/

and

kf 0. � C �y/��yg�yhkX � kf
0
kL1 k��yg�yhkX Ckf

0
kX k��yg�yhkL1

� kf 0kL1
�
!g.jyj/khkX CkgkX !h.jyj/

�
C 2kf 0kX kgkL1!h.jyj/:

This implies, according to the Sobolev embeddings (4-5),Z M

�M

Z 1

0

kf 0. � C �y/��yg�yhkX
dy

jyj
d� � Ckf 0kX .kgkD khkX CkgkX khkD/:
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Using (5-5) one may easily getZ M

�M

jyjkf 0. � C �y/��yg�yhkL1

 1

y2C .�yf /2


X

dy � Ckf 0k2L1 kf
0
kX khkL1 kgkD;

which gives the desired result using the Sobolev embeddings (4-5). �

The second kind of Cauchy integrals that we have to deal with, and that are related to the integral
terms in (2-4) and (2-5), are given by the linear operators

T
˛;ˇ

f
g.x/D p.v.

Z
R

yg.˛xCˇy/

y2C Œf .x/Cf .xCy/�2
dy;

with ˛ and ˇ being two given parameters. The continuity of these operators in classical Banach spaces
is not in general easy to establish and could fail for some special cases. We point out that it is not our
purpose in this exposition to implement a complete study of these operators. A more complete theory
may be achieved but this topic exceeds the scope of this paper and we shall restrict ourselves to some
special configurations that fit with the application to the aggregation equation. Our result in this direction
reads as follows.

Theorem 5.2. Let ˛; ˇ 2 Œ0; 1�, K be a compact set of R and f W R! RC be a compactly supported
continuous positive function such that f 0 2 C ?K . Then the following assertions hold true:

(1) The operator T ˛;ˇ
f
W C ?K ! L1.R/ is well-defined and continuous and

kT
˛;ˇ

f
gkL1 � C.1Ckf

0
k
2
L1 Ckf

0
kL1kf

0
kD/kgkD;

with C a constant depending only on K and not on ˛ and ˇ.

(2) The modified operator f 0T ˛;ˇ
f
W C ?K ! C ?K is continuous. More precisely,

kf 0T
˛;ˇ

f
gkD � Ckf

0
kD.Cˇ lnC.1=kf 0kD/Ckf 0k14D /kgkD;

with C a constant depending only on K and

Cˇ ,
�
.1� lnˇ/; ˇ 2 .0; 1�;

1; ˇ D 0:

(3) Let s 2 .0; 1/ and assume that f 0 2 C sK ; then f 0T ˛;ˇ
f
W C sK ! C sK.R/ is well-defined and continuous.

More precisely, there exists a constant C depending only on the compact K and s such that

kf 0T
˛;ˇ

f
gks � C.Cˇkf

0
k

1
1Cs

L1 Ckf
0
k
14
s /kgks: (5-6)

In addition, one has the refined estimate

kf 0T
˛;ˇ

f
gks � Ckf

0
k

1
2Cs

L1 .kf
0
k

1
2Cs
s Cˇ Ckf

0
k
14
s /kgksCCkgk

1
2Cs

L1 kgk
1Cs
2Cs
s kf 0ks;

with

Cˇ ,
�
ˇ�

1
2 ; ˇ 2 .0; 1�;

1; ˇ D 0:
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Proof. To simplify the notation we shall throughout this proof write Tf g instead of T ˛;ˇ
f

g.

(1) By symmetrizing we get

Tf g.x/D

Z 1
0

y Œg.˛xCˇy/�g.˛x�ˇy/�

y2C Œf .x/Cf .xCy/�2
dy

C lim
"!0

Z 1
"

y g.˛x�ˇy/Œf .x�y/�f .xCy/�Œ�Cy f .x/C�
C
�yf .x/�

.y2C Œ�Cy f .x/�
2/.y2C Œ�C�yf .x/�

2/
dy

, T 1f g.x/CT
2
f g.x/: (5-7)

Without loss of generality we can assume that K D Œ�1; 1� and suppg� Œ�1; 1� and deal only with x � 0.
We shall distinguish two cases 0� ˛x � 2 and ˛x � 2. In the first case, reasoning on the support of g
we simply get

T 1f g.x/D

Z
f0�ˇy�3g

yŒg.˛xCˇy/�g.˛x�ˇy/�

y2C Œf .x/Cf .xCy/�2
dy:

Hence we obtain according to the definition of the modulus of continuity, a change of variables and (4-3)

jT 1f g.x/j �

Z
f0�ˇy�3g

!g.2ˇy/

y
dy � CkgkD: (5-8)

Coming back to the case ˛x � 2 one may write

jT 1f g.x/j �

Z
f˛x�1�ˇy�1C˛xg

!g.2ˇy/

y
dy

� 2kgkL1

Z 1C˛x

˛x�1

1

y
dy

� kgkL1 ln
�
1C 

�1C 

�
;  D ˛x � 2

� CkgkL1 :

Combining this last inequality with (5-8) we deduce that

kT 1f gkL1 � CkgkD: (5-9)

For the second term T 2
f
g we split it into two parts as follows:

T 2f g.x/D lim
"!0

4f .x/

Z 1
"

y g.˛x�ˇy/Œf .x�y/�f .xCy/�

.y2C Œf .x/Cf .xCy/�2/.y2C Œf .x/Cf .x�y/�2/
dy

C

Z 1
0

y g.˛x�ˇy/Œf .x�y/�f .xCy/� .x; y/

.y2C Œf .x/Cf .xCy/�2/.y2C Œf .x/Cf .x�y/�2/
dy

, T 2;1
f

g.x/CT
2;2
f

g.x/; (5-10)

with

 .x; y/D f .xCy/Cf .x�y/� 2f .x/D y

Z 1

0

Œf 0.xC �y/�f 0.x� �y/� d�:
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The first term T
2;1
f

g is easily estimated. Indeed, one can assume that f .x/ > 0; otherwise the integral
vanishes. Thus using the mean value theorem and a change of variables we obtain

jT
2;1
f

g.x/j � 8kgkL1kf
0
kL1f .x/

Z 1
0

y2

.y2C Œf .x/�2/2
dy

� 8kgkL1kf
0
kL1

Z 1
0

y2

.y2C 1/2
dy

� CkgkL1kf
0
kL1 : (5-11)

As for the term T
2;2
f

, straightforward arguments yield

jT
2;2
f

g.x/j � 8kgkL1kf k
2
L1

Z
y� 1

2

1

y3
dyC 2kgkL1kf

0
kL1

Z 1
2

0

j .x; y/j

y2
dy

� CkgkL1

�
kf k2L1 CCkf

0
kL1

Z 1
2

0

!f 0.2y/

y
dy

�
� CkgkL1.kf

0
k
2
L1 CCkf

0
kL1kf

0
kD/;

where we have used the fact
j .x; y/j � 2y!f 0.2y/:

Consequently we obtain

kT 2f gkL1 � CkgkL1.kf
0
k
2
L1 Ckf

0
kL1kf

0
kDCkf

0
kL1/: (5-12)

Putting together this estimate with (5-11) and (4-2) we obtain the desired estimate.

(2) First, recall from part (1) of this proof the decomposition

Tf g.x/D T
1
f g.x/CT

2;1
f

g.x/CT
2;2
f

g.x/: (5-13)

The second term is easier to deal with and one has

kT
2;1
f

gkD � CkgkD kf
0
kD.1Ckf

0
k
13
L1/: (5-14)

This implies in view of the product laws (4-4) and (5-11) that

kT
2;1
f

gkD � CkgkD kf
0
kD.kf

0
kL1 Ckf

0
k
14
L1/: (5-15)

To establish (5-14) we first note that if f .x/D 0 then T 2;1
f

g.x/D 0. However for f .x/ > 0, using the
mean value theorem and the change of variables y! f .x/y we get

T
2;1
f

g.x/D�4

Z 1
0

y2 g.˛x� f̌ .x/y/
R 1
0 Œf

0.xC �f .x/y/Cf 0.x� �f .x/y/� d�

'.x; y/'.x;�y/
dy; (5-16)

with

'.x; y/D y2C

�
2Cy

Z 1

0

f 0.xC �f .x/y/ d�

�2
:
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Observe that the identity (5-16) is meaningful even for f .x/D 0 and we can check easily that it vanishes.
This follows from the fact that owing to the positivity of f when f .x/ D 0 we have f 0.x/ D 0. To
simplify the expressions we introduce the functions

N1.x; y/D g.˛x� f̌ .x/y/

Z 1

0

Œf 0.xC �f .x/y/Cf 0.x� �f .x/y/� d�;

D1.x; y/D '.x; y/'.x;�y/:

Then by (4-4) we obtain for fixed y

kN1. � ; y/kD�2kgı.˛Id�ˇyf /kD kf 0kL1CkgkL1
Z 1

0

Œkf 0ı.IdC�yf /kDCkf 0ı.Id��yf /kD� d�:

Using the composition law (4-7) we get successively

kg ı .˛Id�ˇyf /kD � CkgkD.1C lnC.˛Cˇkf 0kL1y//;

kf 0 ı .IdC �yf /kD � Ckf 0kD.1C ln.1C �kf 0kL1y//:

This implies

kN1. � ; y/kD

� CkgkD.1C lnC.˛Cˇkf 0kL1y//kf 0kL1 CCkgkL1 kf 0kD

Z 1

0

.1C ln.1C �kf 0kL1y// d�:

Since

ln
�
1C

nY
iD1

xi

�
�

nX
iD1

ln.1C xi / for all xi � 0;

we have
kN1. � ; y/kD � CkgkD kf 0kD .1C lnC kf 0kL1 C lnC y/: (5-17)

On the other hand it is clear that

kN1. � ; y/kL1 � CkgkL1kf 0kL1 : (5-18)

To estimate 1=D1. � ; y/ in the Dini space C ?K we come back to the definition, which implies

k1=D1. � ; y/kD � kD1. � ; y/kD k1=D1. � ; y/k2L1 : (5-19)

Now using the product law (4-4) we deduce that

kD1. � ; y/kD � k'. � ; y/kL1 k'. � ;�y/kDCk'. � ; y/kD k'. � ;�y/kL1 :

From simple calculations we get

k'. � ;˙y/kL1 � y
2
C .2Cykf 0kL1/

2
� C.1Ckf 0k2L1/.1Cy

2/:

Applying (4-4) and (4-7) to the expression of ' it is quite easy to check that

k'. � ;˙y/kD � C.1Cykf
0
kL1/y

Z 1

0

kf 0 ı .Id˙ �yf /kD d�

� C.yCy2kf 0kL1/kf
0
kD .1C lnC kf 0kL1 C lnC y/:
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Thus combining the preceding estimates we find

kD1. � ; y//kD � C.yCy2kf 0kL1/kf 0kD .1ClnC kf 0kL1ClnC y/.1Ckf 0k2L1/.1Cy
2/

� C.1Cy4 lnC y/kf 0kD .1ClnC kf 0kL1/.1Ckf 0k3L1/: (5-20)

Now we shall use the following inequalities, which can be proved in a straightforward way: for any
y 2 RC and for any a; b 2 R with jaj � b, one has

y2C .2Cya/2 � y2C .2�ya/2 �
1Cy2

1C a2
�
1Cy2

1C b2
: (5-21)

It follows that

k1='. � ;˙y/kL1 �
1Ckf 0k2L1

1Cy2
: (5-22)

Putting this estimate together with (5-20) and (5-19) yields

k1=D1. � ; y/kD � C
1Cy4 lnC y
1Cy8

kf 0kD.1C lnC kf 0kL1/.1Ckf 0k11L1/

� C
1C lnC y
1Cy4

kf 0kD.1Ckf
0
k
12
L1/:

Therefore we obtain using (5-17), (5-18) and (5-22)

k.N1=D1/. � ; y/kD � k.N1. � ; y/kL1 k1=D1/. � ; y/kDCk.N1. � ; y/kD k1=D1/. � ; y/kL1

� CkgkL1 kf
0
kL1

1C lnC y
1Cy4

kf 0kD.1Ckf
0
k
12
L1/

CCkgkDkf
0
kD

1C lnC kf 0kL1 C lnC y
1Cy4

.1Ckf 0k4L1/

� CkgkD kf
0
kD
1C lnC y
1Cy4

.1Ckf 0k13L1/:

Plugging this estimate into (5-16) we find

kT
2;1
f

gkD � 4

Z 1
0

y2k.N1=D1/. � ; y/kD dy � CkgkD kf 0kD.1Ckf 0k13L1/: (5-23)

This concludes the proof of (5-14).
Now we intend to estimate kT 1

f
gkD , which is trickier. Let r 2 .0; 1/ and x1; x2 2 R such that

jx1� x2j � r . We shall decompose T 1
f
g as follows:

T 1f g D T
r;1
f;int gCT

r;1
f;ext g; (5-24)

with

T
r;1
f;int g.x/D

Z r

0

yŒg.˛xCˇy/�g.˛x�ˇy/�

y2C Œf .x/Cf .xCy/�2
dy;

T
r;1
f;ext g.x/D

Z 1
r

yŒg.˛xCˇy/�g.˛x�ˇy/�

y2C Œf .x/Cf .xCy/�2
dy:
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From the subadditivity of the modulus of continuity we get

jf 0.x/T
r;1
f;int g.x/j � C jf

0.x/j

Z r

0

y!g.y/

y2C Œf .x/�2
dy � C jf 0.x/j

Z r

0

!g.y/

yCf .x/
dy:

Using Lemma 4.1 we find

jf 0.x/T
r;1
f;int g.x/j � C

.f /

1C lnC.1=f .x//

Z r

0

!g.y/

yCf .x/
dy; (5-25)

where

.f /, kf 0kD.1C lnC.1=kf 0kD//: (5-26)

Now we claim that for y 2 .0; 1/

sup
">0

1

1C lnC.1="/
1

yC "
�

C

y.1Cjlnyj/
C

1

1Cy
(5-27)

for some universal constant C > 0. To prove this result it is enough to get

sup
"2.0;1/

1

1C ln.1="/
1

yC "
�

C

y.1Cjlnyj/
:

Indeed, we shall consider the two cases "�
p
y and "�

p
y. In the first case we observe

1

yC "
�

1
p
y

and
1

1C ln.1="/
� 1;

which implies
1

1C ln.1="/
1

yC "
�

1
p
y
�

C

y.1Cjlnyj/
:

However in the second case "�
p
y we write simply that

1

yC "
�
1

y
and

1

1C ln.1="/
�

1

1C 1
2

ln.1=y/
;

which gives the desired result. Coming back to (5-25) and using (5-27) we deduce that

sup
x
jf 0.x/T

r;1
f;int g.x/j � C.f /

Z r

0

sup
x

!g.y/

.1C lnC.1=f .x///.yCf .x//
dy

� C.f /

�Z r

0

!g.y/

y.1Cjlnyj/
dyC

Z r

0

!g.y/

1Cy
dy

�
: (5-28)

Consequently

sup
jx1�x2j�r

ˇ̌
f 0.x1/T

r;1
f;int g.x1/�f

0.x2/T
r;1
f;int g.x2/

ˇ̌
� C.f /

�Z r

0

!g.y/

y.1Cjlnyj/
dyC

Z r

0

!g.y/ dy

�
:
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Therefore we get by using Fubini’s theoremZ 1

0

sup
jx1�x2j�r

jf 0.x1/T
r;1
f;int g.x1/�f

0.x2/T
r;1
f;int g.x2/j

dr

r

� C.f /

Z 1

0

!g.y/

y

jlnyj
.1Cjlnyj/

dyCC.f /

Z 1

0

jlnyj!g.y/ dy

� C.f /kgkD:

As for T r;1
f;extg, we write

f 0.x1/T
r;1
f;extg.x1/�f

0.x2/T
r;1
f;extg.x2/

D .f 0.x1/�f
0.x2//T

r;1
f;extg.x2/Cf

0.x1/.T
r;1
f;extg.x1/�T

r;1
f;extg.x2//

, �1.x1; x2/C�2.x1; x2/: (5-29)

Our current goal is to prove that for j 2 f1; 2gZ 1

0

sup
jx1�x2j�r

�j .x1; x2/

r
dr

is well-estimated. For the first term we use (5-9) leading toZ 1

0

sup
jx1�x2j�r

�1.x1; x2/

r
dr � kT

r;1
f;extgkL1

Z 1

0

!f 0.r/

r
dr � CkgkDkf

0
kD:

The second term is subtler. First note that if jx1� x2j � 1 then the quantity

f 0.x1/T
r;1
f;extg.x1/�f

0.x2/T
r;1
f;extg.x2/

vanishes for x1; x2 outside a compact set related only to the support of f . Therefore the integrals defining
�2.x1; x2/ may be restricted to the set fˇr � ˇy �Bg, with B being some constant related to the size of
the supports of f and g, and without loss of generality we can take B D 1. It follows that

�2.x1; x2/D f
0.x1/

Z
fˇr�ˇy�1g

y Œ Og.x1; y/� Og.x2; y/�

y2C Œf .x1/Cf .x1Cy/�2
dy

Cf 0.x1/

Z
fˇr�ˇy�1g

y Og.x2; y/Œ�
C
y f .x2/��

C
y f .x1/�Œ�

C
y f .x2/C�

C
y f .x1�

.y2C Œ�Cy f .x1/�
2/.y2C Œ�Cy f .x2/�

2/
dy

, �2;1.x1; x2/C�2;2.x1; x2/; (5-30)

with

Og.x; y/, g.˛xCˇy/�g.˛x�ˇy/ and �Cy f .x/D f .xCy/Cf .x/:

To estimate �2;1 we shall use the following inequality, which is a consequence of Lemma 4.1:Z L

0

jf 0.x/j

yCf .x/
dy D jf 0.x/jln

�
1C

L

f .x/

�
� C.f /.1C lnCL/;
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with C an absolute constant. This implies

�2;1.x1; x2/� C!g.˛jx1� x2j/jf
0.x1/j

Z 1
ˇ

0

1

yCf .x1/
dy

� C!g.jx1� x2j/.f /.1Cjlnˇj/:

Consequently, we find that

sup
jx1�x2j�r

j�2;1.x1; x2/j � C!g.r/.f /.1Cjlnˇj/

and therefore Z 1

0

sup
jx1�x2j�r

j�2;1.x1; x2/j
dr

r
� C.f /.1Cjlnˇj/kgkD:

We emphasize that for ˇ D 0 one can still get an estimate since �2;1.x1; x2/D 0 and therefore we get
the desired estimate.

Now we shall move to the estimate of �2;2.x1; x2/. We start with using the estimate

sup
a>0

a

y2C a2
�

1

2jyj
;

which implies

yj Og.x2; y/jj�
C
y f .x2/��

C
y f .x1/jj�

C
y f .x2/C�

C
y f .x1j

.y2C Œ�Cy f .x1/�
2/.y2C Œ�Cy f .x2/�

2/
� C jx2� x1jkf

0
kL1

!g.2ˇy/

y2
:

Thus

sup
jx1�x2j�r

�2;2.x1; x2/� Crkf
0
k
2
L1

Z 1
ˇ

r

!g.2ˇy/

y2
dy;

which yields in view of Fubini’s theoremZ 1

0

sup
jx1�x2j�r

�2;2.x1; x2/
dr

r
� Ckf 0k2L1

Z 1

0

Z
fˇr�ˇy�1g

!g.2ˇy/

y2
dy dr

� Ckf 0k2L1

Z
f0�ˇy�1g

!g.2ˇy/

y
dy

� Ckf 0k2L1

Z 2

0

!g.y/

y
dy

� Ckf 0k2L1kgkD:

Note that the last constant does not depend on ˇ. Putting together the preceding estimates we find that

kf 0T 1f gkD � CkgkD..1Cjlnˇj/.f /Ckf
0
k
2
L1/; (5-31)

where .f / was defined in (5-26). As noted before, the case ˇ D 0 has a special structure and one gets

kf 0T 1f gkD � CkgkD..f /Ckf
0
k
2
L1/:
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Now let us move to the estimate of f 0.x/T 2;2
f

g given by

T
2;2
f

g.x/D

Z 1
0

y g.˛x�ˇy/Œf .x�y/�f .xCy/� .x; y/

.y2C Œf .x/Cf .xCy/�2/.y2C Œf .x/Cf .x�y/�2/
dy

D T
r;2;2
f;int g.x/CT

r;2;2
f;ext g.x/; (5-32)

where

 .x; y/D y

Z 1

0

Œf 0.xC �y/�f 0.x� �y/� d�

and the cut-off operators are given by

T
r;2;2
f;int g.x/,

Z r

0

y g.˛x�ˇy/Œf .x�y/�f .xCy/� .x; y/

.y2C Œ�Cy f .x/�
2/.y2C Œ�C�yf .x/�

2/
dy

and

T
r;2;2
f;ext g.x/D

Z 1

r

y g.˛x�ˇy/Œf .x�y/�f .xCy/� .x; y/

.y2C Œ�Cy f .x/�
2/.y2C Œ�C�yf .x/�

2/
dy ,

Z 1

r

N .x; y/
D.x; y/

dy: (5-33)

We shall proceed in a similar way to T 1
f
g. Let us start with f 0.x/T r;2;2

f;int g. Since

j .x; y/j � 2y!f 0.y/; (5-34)

one has

jf 0.x/T
r;2;2
f;int g.x/j � CkgkL1kf

0
kL1 jf

0.x/j

Z r

0

y3!f 0.y/

.y2C Œf .x/�2/2
dy

� CkgkL1kf
0
kL1 jf

0.x/j

Z r

0

!f 0.y/

yCf .x/
dy:

Thus following the same steps as for (5-28) we obtain

sup
jx1�x2j�r

jf 0.x1/T
r;2;2
f;int g.x1/�f

0.x2/T
r;2;2
f;int g.x2/j

� CkgkL1 kf
0
kL1 .f /

Z r

0

!f 0.y/

y.1Cjlnyj/
dyCCkgkL1kf

0
kL1.f /

Z r

0

j!f 0.y/ dy:

Therefore Fubini’s theorem and (4-2) implyZ 1

0

sup
jx1�x2j�r

jf 0.x1/T
r;2;2
f;int g.x1/�f

0.x2/T
r;2;2
f;int g.x2/j

dr

r
� CkgkL1kf

0
k
2
D.f /:

What is left is to estimate the quantity f 0.x/T r;2;2
f;ext g. First, it is obvious that

f 0.x1/T
r;2;2
f;ext g.x1/�f

0.x2/T
r;2;2
f;ext g.x2/

D .f 0.x1/�f
0.x2//T

r;2;2
f;ext .x2/Cf

0.x1/.T
r;2;2
f;ext .x1/�T

r;2;2
f;ext .x2//: (5-35)

The first term of the right-hand side is easy to estimate. Indeed,

j.f 0.x1/�f
0.x2//T

r;2;2
f;ext .x2/j � !f 0.jx1� x2j/kT

r;2;2
f;ext kL1 :
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It is clear that

jT
r;2;2
f;ext g.x/j � CkgkL1 kf

0
kL1

Z 1

r

!f 0.y/

y
dy � CkgkL1 kf

0
k
2
D:

Hence Z 1

0

sup
jx1�x2j�r

j.f 0.x1/�f
0.x2//T

r;2;2
f;ext .x2/j

dr

r
� CkgkL1 kf

0
k
3
D:

To deal with the second term we proceed as for the term �2.x1; x2/ in (5-30). From (5-33) one has

f 0.x1/.T
r;2;2
f;ext .x1/�T

r;2;2
f;ext .x2//

D f 0.x1/

Z 1

r

N .x1; y/�N .x2; y/
D.x1; y/

dyCf 0.x1/

Z 1

r

N .x2; y/.D.x2; y/�D.x1; y//
D.x1; y/D.x2; y/

dy: (5-36)

It is quite obvious from some straightforward computations using in particular (5-34) that for jx1�x2j � r

jN .x1; y/�N .x2; y/j � Ckf 0kL1y2.!g.˛r/!f 0.y/yCkgkL1!f 0.r/yCkgkL1r !f 0.y//:

Since
1

D.x; y/
�

C

ŒyCf .x/j4
�
C

y4
;

we get

jN .x1; y/�N .x2; y/j
D.x1; y/

� Ckf 0kL1

�
!g.˛r/

!f 0.y/

y
CkgkL1

!f 0.r/

yCf .x1/
CkgkL1r

!f 0.y/

y2

�
:

This gives, in view of (4-2),

jf 0.x1/j

Z 1

r

jN .x1; y/�N .x2; y/j
D.x1; y/

dy

�Ckf 0kD

�
kf 0k2D!g.˛r/CkgkD!f 0.r/

Z 1

0

jf 0.x1/j

yCf .x1/
dy

�
CkgkDkf

0
k
2
D r

Z 1

r

!f 0.y/

y2
dy; (5-37)

which implies according to (5-31)Z 1

0

sup
jx1�x2j�r

jf 0.x1/j

Z 1

r

jN .x1; y/�N .x2; y/j
D.x1; y/

dy
dr

r
� C.kf 0k3DCkf

0
k
2
D.f //kgkD:

Now straightforward computations show that

jN .x2; y/.D.x2; y/�D.x1; y//j
D.x1; y/D.x2; y/

� CkgkL1kf
0
k
2
L1 jx1� x2j

!f 0.y/

y2
: (5-38)

Therefore using Fubini’s theorem we getZ 1

0

sup
jx1�x2j�r

jf 0.x1/j

Z 1

r

jN .x2; y/.D.x2; y/�D.x1; y//j
D.x1; y/D.x2; y/

dy
dr

r
� Ckf 0k4DkgkD:
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Putting together the preceding estimates we find that

kf 0T
2;2
f

gkD � CkgkD.kf
0
k
2
DCkf

0
k
2
D.f /Ckf

0
k
3
D/

� CkgkD.kf
0
k
2
DCkf

0
k
4
D/; (5-39)

with C a constant depending only on the diameter of the compact K. To get the desired estimate it
suffices to put together (5-15), (5-31) and (5-39).

(3) We shall proceed as in the proof of part (2) of Theorem 5.2. We use exactly the same splitting with
similar estimates and to avoid redundancy we shall only give the basic estimates with some details for
the terms that require new treatment. We use the decomposition described in (5-13). To estimate T 2;1

f
g

in C s we use the expression (5-16). Then following the same lines using in particular the product law
(4-8) and the composition law (4-6), one has

kN1. � ; y/ks � Ckgks.˛sCˇskf 0ksL1y
s/kf 0kL1 CCkgkL1kf

0
ks

Z 1

0

.1C �skf 0ksL1y
s/ d�:

Since ˛; ˇ 2 Œ0; 1� we deduce

kN1. � ; y/ks � C.kgkskf 0kL1 CkgkL1kf 0ks/.1Ckf 0ksL1y
s/:

Similarly we get

k'. � ;˙y/ks � C.1Cykf
0
kL1/y

Z 1

0

kf 0 ı .Id˙ �yf /ks d�

� C.yCy2kf 0kL1/kf
0
ks.1Ckf

0
k
s
L1y

s/:

This implies
kD1. � ; y/ks � C.1Cy4Cs/.1Ckf 0k3CsL1 /kf

0
ks

and
k1=D1. � ; y/ks �

C

1Cy4�s
.1Ckf 0k11CsL1 /kf 0ks:

Consequently for s 2 .0; 1/

k.N1=D1/. � ; y/ks � k.N1. � ; y/kL1k1=D1/. � ; y/ksCkN1. � ; y/ks k1=D1. � ; y/kL1

�
C

1Cy4�s
.1Ckf 0k11CsL1 /kf 0ks kgks:

Therefore we get similarly to (5-23)

kT
2;1
f

gks � C.1Ckf
0
k
11Cs
L1 /kf 0ks kgks

Z 1
0

y2

1Cy4�s
ds

� C.1Ckf 0k11CsL1 /kf 0ks kgks:

Combining product laws with Sobolev embeddings and (5-11) we get

kf 0T
2;1
f

gks � kf
0
kL1 kT

2;1
f

gksCkf
0
ks kT

2;1
f

gkL1

� C.1Ckf 0k11CsL1 /kf 0ks kf
0
kL1 kgksCkgkL1 kf

0
kD kf

0
ks

� C.1Ckf 0k11CsL1 /kf 0ks kf
0
kD kgks:



DYNAMICS OF ONE-FOLD SYMMETRIC PATCHES FOR THE AGGREGATION EQUATION 2031

Using once again Sobolev embeddings we get

kf 0T
2;1
f

gks � C.kf
0
ksCkf

0
k
13
s /kf

0
kD kgks: (5-40)

Now to estimate T 1
f
g we come back to the decomposition (5-24) and we easily get

kT
r;1
f;intgkL1 � Ckgks

Z r

0

y�1Cs dy � kgksr
s:

Hence we obtain, since r D jx1� x2j,

jT
r;1
f;intg.x1/�T

r;1
f;intg.x2/j � Ckgks jx1� x2j

s:

and we also get

jf 0.x1/T
r;1
f;intg.x1/�f

0.x2/T
r;1
f;intg.x2/j � Ckf

0
kL1 kgks jx1� x2j

s:

To estimate the term f 0T
r;1
f;extg we come back to (5-29) and (5-30) and following the same estimates one

gets
j�1.x1; x2/j � jx1� x2j

s
kf 0ks kT

r;1
f;extgkL1

� C jx1� x2j
s
kf 0ks kgkD:

Moreover
j�2.x1; x2/j � j�2;1.x1; x2/jC j�2;2.x1; x2/j

and

j�2;2.x1; x2/j � C jx2� x1jkf
0
k
2
L1 kgks

Z
fˇr�ˇy�1g

.ˇy/sy�2 dy

� Ckf 0k2L1 kgks jx1� x2j
s:

To deal with the term �2;1.x1; x2/ in (5-30) one obtains in view of (5-31)

j�2;1.x1; x2/j � jx1� x2j
s
kgks jf

0.x1/j

Z
fˇr�ˇy�1g

y

y2Cf 2.x1/
dy

� jx1� x2j
s
kgks jf

0.x1/j

Z 1
ˇ

0

1

yCf .x1/
dy:

Using the second part of Lemma 4.1 one finds for s0 2 .0; s�

jf 0.x1/j

Z 1
ˇ

0

1

yCf .x1/
dy � Ckf 0k

1
1Cs0

s0 jf .x1/j
s0

1Cs0

Z 1
ˇ

0

1

yCf .x1/
dy:

Combining this inequality with

sup
a>0

a
s0

1Cs0

yC a
� Cy

� 1
1Cs0

we get

sup
x12R

jf 0.x1/j

Z 1
ˇ

0

1

yCf .x1/
dy � Ckf 0k

1
1Cs0

s0 ˇ
� s0

1Cs0 (5-41)
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and therefore

j�2;1.x1; x2/j � jx1� x2j
s
kgks kf

0
k

1
1Cs0

s0 ˇ
� s0

1Cs0 :

Hence

jf 0.x1/T
r;1
f;extg.x1/�f

0.x2/T
r;1
f;extg.x2/j

� CkgkD kf
0
ks jx1� x2j

s
CCkf 0k2L1 kgks jx1� x2j

s
CC jx1� x2j

s
kgks kf

0
k

1
1Cs0

s0 ˇ
� s0

1Cs0 :

It follows that

kf 0T 1f gks � Ckgks.kf
0
k

1
1Cs0

s0 ˇ
� s0

1Cs0 Ckf 0k2L1/CCkgkDkf
0
ks: (5-42)

It remains to estimate f 0T 2;2
f

g described in (5-32) and (5-33). First one may write

jT
r;2;2
f;int g.x/j � CkgkL1 kf

0
kL1 kf

0
ks

Z r

0

ys�1 dy

� CkgkL1 kf
0
kL1 kf

0
ks jx1� x2j

s:

Therefore

jf 0.x1/T
r;2;2
f;int g.x1/�f

0.x2/T
r;2;2
f;int g.x2/j � CkgkL1 kf

0
k
2
L1 kf

0
ks jx1� x2j

s:

By Sobolev embeddings we get

jf 0.x1/T
r;2;2
f;int g.x1/�f

0.x2/T
r;2;2
f;int g.x2/j � Ckgks kf

0
kL1 kf

0
k
2
s jx1� x2j

s: (5-43)

From (5-35) and the analysis following that identity one has

j.f 0.x1/�f
0.x2//T

r;2;2
f;ext .x2/j � kf

0
ks kT

r;2;2
f;ext gkL1 jx1� x2j

s

� CkgkL1 kf
0
k
2
s kf

0
kL1 jx1� x2j

s

Using (5-36), (5-37) and (5-41) (with s0 D s) combined with Sobolev embeddings, one deduces

jf 0.x1/j

Z 1

r

jN .x1; y/�N .x2; y/j
D.x1; y/

dy � Ckf 0kL1 kgks .kf
0
k
2
s Ckf

0
ks/:

From (5-38) we get

jN .x2; y/.D.x2; y/�D.x1; y//j
D.x1; y/D.x2; y/

� CkgkL1 kf
0
kL1 kf

0
ks jx1� x2jy

s�2:

Therefore we get

jf 0.x1/j

Z 1

r

jN .x2; y/.D.x2; y/�D.x1; y//j
D.x1; y/D.x2; y/

dy � CkgkL1 kf
0
k
2
L1 kf

0
ks jx1� x2j

s:
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Hence plugging the preceding estimates into (5-35) and (5-36), we find

jf 0.x1/T
r;2;2
f;ext .x1/�f

0.x2/T
r;2;2
f;ext .x2/j � CkgkL1 kf

0
k
2
s kf

0
kL1 jx1� x2j

s

CCkf 0kL1 kgks .kf
0
k
2
s Ckf

0
ks/jx1� x2j

s

CCkgkL1 kf
0
k
2
L1 kf

0
ks jx1� x2j

s:

Using standard embeddings we get

jf 0.x1/T
r;2;2
f;ext .x1/�f

0.x2/T
r;2;2
f;ext .x2/j � Ckgks kf

0
kL1 jx1� x2j

s.kf 0ksCkf
0
k
2
s /: (5-44)

Putting together (5-43), (5-44) and (5-32) we obtain

kf 0T
2;2
f

gks � Ckgks kf
0
kL1.kf

0
ksCkf

0
k
2
s /: (5-45)

Combining (5-40), (5-42) and (5-45) we get for any s0 2 .0; s�

kf 0Tf gks � Ckgks kf
0
kD.kf

0
ksCkf

0
k
13
s /CCkgks kf

0
k

1
1Cs0

s0 ˇ
� s0

1Cs0 CCkgkD kf
0
ks:

Now using the embedding C s ,! C s
0

,!D we get

kf 0Tf gks � Ckgks.ˇ
� s
1Cs kf 0k

1
1Cs
s Ckf 0k14s /� Ckgks.ˇ

� 1
2 kf 0k

1
1Cs
s Ckf 0k14s /:

Another useful estimate that one can get from taking s0 D s
2

and using the interpolation inequalities

kf 0kD � Ckf
0
k

1Cs
2Cs
s � Ckf 0k

1
2Cs

L1 kf
0
k

1Cs
2Cs
s ; kf 0k s

2
� Ckf 0k

1
2

L1 kf
0
k
1
2
s ; ˇ�

s
2Cs � ˇ�

1
2 ;

is the following:

kf 0Tf gks � Ckgks kf
0
k

1
2Cs

L1 .kf
0
k

1
2Cs
s ˇ�

1
2 Ckf 0k14s /CCkgk

1
2Cs

L1 kgk
1Cs
2Cs
s kf 0ks:

This completes the proof of Theorem 5.2. �

6. Local well-posedness proof

The main objective of this section is to prove the local well-posedness result stated in the first part of
Theorem 2.1. The approach that we shall follow is classical and will be done in several steps. We start
with a priori estimates of smooth solutions in suitable Banach spaces and this will be the main concern of
Sections 6A and 6B. The rigorous construction of classical solutions will be conducted in Section 6C.

6A. Estimates of the source terms. The main goal of this section is to establish the following a priori
estimates for the source terms F and G described in (2-7) and (2-8).

Proposition 6.1. Let K be a compact set of R and s 2 .0; 1/. We denote by X one of the spaces C ?K
or C sK . There exists a constant C > 0 depending only on K such that the following estimates hold true:

(1) For any f 2X we have

kF kL1 � Ckf
0
kL1kf

0
kD; kF kX � Ckf

0
kD.kf

0
kX Ckf

0
k
3
X /:



2034 TAOUFIK HMIDI AND DONG LI

(2) For any f 2X we have

kGkL1 � Ckf
0
kL1.1Ckf

0
k
3
D/; kGkX � C.1Ckf

0
k
1
3

D/.kf
0
kX Ckf

0
k
16
X /:

Proof. For simplicity throughout this proof we denote the operator ��y by �y .

(1) The estimate of F in L1 is quite easy. Indeed, it is obvious according to (4-3) that

kF kL1 � Ckf
0
kL1

Z M

�M

sup
x2R

jf 0.xCy/�f 0.x/j

jyj
dy

� Ckf 0kL1

Z M

�M

!f 0.jyj/

jyj
dy

� Ckf 0kL1kf
0
kD:

Now let us move to the estimate of F in the function space X , which is the Dini space C ?K or the Hölder
space C sK . For this purpose we shall transform slightly F in order to apply Proposition 5.1. In fact from
Taylor’s formula one can write

F.x/D

Z M

�M

Z 1

0

y ��yf
0.x/�yf

0.x/

y2C .�yf .x//2
dy d�:

From the notation (5-2) one has

F.x/D

Z 1

0

C�;<
f

.f 0; f 0/.x/ d�:

At this stage it suffices to apply Proposition 5.1, which implies

kF kX � C.kf
0
kDkf

0
kX Ckf

0
kL1kf

0
kDkf

0
k
2
X /

and gives in turn the desired result according to the embedding X ,! L1.

(2) The expression of G is given in (2-8) and for simplicity we shall assume throughout this part that
M D 1: We shall first split G as follows:

G.x/D p.v.
Z 1

�1

Œ2f .x/C��y f .x/Cyf
0.x/�.f 0.xCy/Cf 0.x//

y2C.f .xCy/Cf .x//2
dy

D 2f .x/ p.v.
Z 1

�1

f 0.xCy/Cf 0.x/

y2C.f .xCy/Cf .x//2
dyCp.v.

Z 1

�1

Œ��y f .x/Cyf
0.x/�.2f 0.x/C��y f

0.x//

y2C.f .xCy/Cf .x//2
dy

,G1.x/CG2.x/: (6-1)

The estimate G1 in L1 is quite easy. To see this we can first assume that f .x/ > 0; otherwise the integral
is vanishing. Thus by change of variables we get

jG1.x/j � 4kf
0
kL1

Z 1

�1

jf .x/j

y2Cf 2.x/
dy � Ckf 0kL1 :
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Note that for x 2 suppf we have f .xCy/D 0 for all y … Œ�1; 1�. Thus

G1.x/D 2f .x/

Z
R

f 0.xCy/Cf 0.x/

y2C .f .xCy/Cf .x//2
dy � 4f .x/f 0.x/

Z 1
1

1

y2C .f .x//2
dy

D 2f .x/

Z
R

f 0.xCy/Cf 0.x/

y2C .f .xCy/Cf .x//2
dy � 4f 0.x/ arctan.f .x//

,G11CG12: (6-2)

The estimate of G12 in L1 is elementary:

kG12kL1 � 4kf
0
kL1 kf kL1 : (6-3)

However, to estimate G12 in X we use the product law (4-3) leading to

kf 0 arctanf kX � k arctanf kL1 kf 0kX Ckf 0kL1 k arctanf kX :

It is easy to check from the mean value theorem that

k arctanf kL1 � kf kL1 and !arctanf .r/� !f .r/;

which implies in view of the embedding Lip ,!X that

k arctanf kX � kf kX � Ckf 0kL1 :

Therefore we obtain from the classical embeddings

kG12kX � C.kf kL1kf
0
kX CCkf

0
k
2
L1/� Ckf

0
kL1 kf

0
kX : (6-4)

We shall now estimate the term G11 in the space X. First we use Taylor’s formula

f .xCy/Cf .x/D 2f .x/Cy

Z 1

0

f 0.xC �y/ d�;

which implies after the change of variables y D f .x/z (assuming that f .x/ > 0)

G11.x/D 2f .x/

Z
R

f 0.x/Cf 0.xCy/

y2C Œ2f .x/Cy
R 1
0 f
0.xC �y/ d��2

dy

D 2

Z
R

f 0.x/Cf 0.xCf .x/z/

'.x; z/
dz; (6-5)

with

'.x; z/D z2C

�
2C z

Z 1

0

f 0.xC �f .x/z/ d�

�2
:

Note that for f .x/D 0 we have from the definition G11.x/D 0, which agrees with the expression (6-5)
because f 0.x/D 0. The estimate in L1 is easy to get in view of (5-22):

kG11kL1 � 4kf
0
kL1

Z
R

k1='. � ; z/kL1 dz � C.kf
0
kL1 Ckf

0
k
3
L1/:
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From the product laws (4-4) and (4-8) we deduce that

kG11kX D 2

Z
R

kf 0Cf 0ı.IdCzf /kX k1='. � ;z/kL1 dzC2
Z

R

kf 0Cf 0ı.IdCzf /kL1 k1='. � ;z/kX dz

, `1C`2:

According to the product laws (4-6) and (4-7), one may write

kf 0Cf 0 ı .IdC zf /kX � kf 0kX .1C�.1Cjzjkf 0kL1//;

with

�.r/,
�

ln r if X D C ?K ;
rs if X D C s:

Observe that we can unify both cases through the estimate

kf 0Cf 0 ı .IdC zf /kX � Ckf 0kX .1C .1Cjzjkf 0kL1/s/

� Ckf 0kX .1Cjzj
s
kf 0ksL1/: (6-6)

Putting together (6-6) and (5-22) we find for any s 2 .0; 1/

`1 � Ckf
0
kX .1Ckf

0
k
2
L1/

Z
R

1Cjzjs kf 0ksL1

1C z2
dz

� Ckf 0kX .1Ckf
0
k
3
L1/: (6-7)

To estimate `2 we use the elementary estimate

kf 0Cf 0 ı .IdC zf /kL1 � 2kf 0kL1 :

Notice from the definition of the spaces X and (5-22) that one can deduce

k1='. � ; z/kX � k1='. � ; z/k
2
L1 k'. � ; z/kX � C

1Ckf 0k4L1

1C z4
k'. � ; z/kX : (6-8)

Moreover by the product laws we find

k'. � ; z/kX � 2jzj.2Cjzjkf
0
kL1/

Z 1

0

kf 0 ı .IdC �zf /kX d�;

and this implies according to (6-6)

k'. � ; z/kX � C jzj.2Cjzjkf
0
kL1/kf

0
kX .1Cjzj

s
kf 0ksL1/

� C.1Cjzj2Cs/.1Ckf 0k1CsL1 /kf
0
kX :

Putting together this estimate with (6-8) we find

k1='. � ; z/kX � C
.1Ckf 0k5CsL1 /kf

0kX

1Cjzj2�s
: (6-9)

Therefore we deduce that

`2 � Ckf
0
kL1.1Ckf

0
k
5Cs
L1 /kf

0
kX � C.1Ckf

0
k
7
L1/kf

0
kX :
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Combining this estimate with (6-7) we obtain

kG11kX � C.1Ckf
0
k
7
L1/kf

0
kX :

It follows from this latter estimate, (6-4) and (6-2) that

kG1kX � C.1Ckf
0
k
7
L1/kf

0
kX : (6-10)

What is left is to estimate G2. For this purpose we write according to Taylor’s formula

G2.x/D p.v.
Z

R

yf 0.x/
�
f 0.x/�.y/C 2

R 1
0 f
0.xC �y/ d� Cf 0.xCy/

�
y2C .f .x/Cf .xCy//2

dy

C p.v.
Z

R

�yf .x/�yf
0.x/

y2C .f .x/Cf .xCy//2
dyC 2f .x/f 0.x/

Z 1
1

dy

y2Cf 2.x/

,G2;1.x/CG2;2.x/C 2f 0.x/ arctan.f .x//;

where � W R! R is an even continuous compactly supported function belonging to X and taking the
value 1 on the neighborhood of Œ�1; 1�. Note that we have used in the first line the identity, for any x 2K,

p.v.
Z 1

�1

y

y2C Œf .xCy/Cf .x/�2
dy D p.v.

Z
R

y�.y/

y2C Œf .xCy/Cf .x/�2
dy;

which follows from the fact that f .xCy/D 0 for all y … Œ�1; 1�. Therefore we may write

G2;1.x/D .f
0.x//2.T

0;1
f

�/.x/C 2

Z 1

0

f 0.x/.T
1;�
f

f 0/.x/ d� Cf 0.x/.T
1;1
f

f 0/.x/;

where we use the notation T ˛;ˇ
f

from Theorem 5.2. The estimate of G2;1 in L1 is quite easy and follows
from Theorem 5.2:

kG2;1kL1 � Ckf
0
kL1 kf

0
kD.1Ckf

0
k
2
D/:

However to estimate G2;2 in L1 it is more convenient to write it in the form

G2;2.x/D p.v.
Z 1

�1

�yf .x/�yf
0.x/

y2C .f .x/Cf .xCy//2
dyC 2f 0.x/ arctan.f .x//:

Thus using the mean value theorem we find

kG2;2kL1 � Ckf
0
kL1 kf

0
kD:

Combining these estimates with (4-2) we obtain

kG2kL1 � Ckf
0
kL1.kf

0
kDCkf

0
k
3
D/: (6-11)

We shall now implement the estimates in X and start with the term G2;1. According to Theorem 5.2 one
can unify the estimates in C ?K and C s and get the weak estimate

kf 0T
˛;ˇ

f
gkX � CkgkX .kf

0
k
1
2

X ˇ
� 1
2 Ckf 0k15X /: (6-12)
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From the product laws (4-4) and (4-8) one has

k.f 0/2.T
0;1
f

�/kX � kf
0
kL1kf

0T
0;1
f

�kX Ckf
0
kX kf

0
kL1kT

0;1
f

�kL1 :

Hence we find

k.f 0/2.T
0;1
f

�/kX � Ckf
0
kL1.kf

0
k
1
2

X Ckf
0
k
15
X /Ckf

0
kX kf

0
kL1.1Ckf

0
k
2
X /

� Ckf 0kL1.kf
0
k
1
2

X Ckf
0
k
15
X /:

Using (6-12) we get successively

kf 0T
0;�
f

f 0kX � Ckf
0
kX .kf

0
k
1
2

X�
� 1
2 Ckf 0k15X / (6-13)

and
kf 0T

1;1
f

f 0kX � Ckf
0
kX .kf

0
k
1
2

X Ckf
0
k
15
X /:

Thus using the inequalities above we deduce that

kG2;1kX � Ckf
0
kL1.kf

0
k
1
2

X Ckf
0
k
15
X /CCkf

0
kX .kf

0
k
1
2

X Ckf
0
k
15
X /

� C.kf 0k
3
2

X Ckf
0
k
16
X /: (6-14)

When X D C s we can give a refined estimate for (6-13) using (5-7),

kf 0T
0;�
f

f 0ks � Ckf
0
k

1
2Cs

L1 .kf
0
k

3C2s
2Cs
s ��

1
2 Ckf 0k15s /;

which implies

kG2;1ks � Ckf
0
kL1.kf

0
k
1
2
s Ckf

0
k
15
s /CCkf

0
k

1
2Cs

L1 .kf
0
k

3C2s
2Cs
s Ckf 0k15s /

� Ckf 0k
1
3

L1.kf
0
ksCkf

0
k
16
s /: (6-15)

Hence one can combine (6-14) and (6-15):

kG2;1kX � Ckf
0
k
1
3

D.kf
0
kX Ckf

0
k
16
X /: (6-16)

As for the term G2;2, we may write

G2;2.x/D 2f
0.x/ arctan.f .x//

C

Z M

�M

Œ�yf .x/�yf
0.x/��yf

0.x/

y2C .f .xCy/Cf .x//2
dyC p.v.

Z
R

yf 0.x/�yf
0.x/

y2C .f .xCy/Cf .x//2
dy

, 2f 0.x/ arctan.f .x//CG12;2.x/CG
2
2;2.x/:

The last term was treated in the preceding estimates and we obtain as in (6-16)

kG22;2kX � Ckf
0
k
1
3

D.kf
0
kX Ckf

0
k
16
X /: (6-17)

It remains to estimate G12;2, which can be split into two terms

G12;2.x/D
yGint;r.x/C yGext;r.x/;
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with
yGint;r.x/D

Z
jyj�r

Œ�yf .x/�yf
0.x/��yf

0.x/

y2C .f .xCy/Cf .x//2
dy;

yGext;r.x/D

Z
M�jyj�r

Œ�yf .x/�yf
0.x/��yf

0.x/

y2C .f .xCy/Cf .x//2
dy:

Now we shall proceed as in the proof of Theorem 5.2. Let r 2 .0; 1/ and x1; x2 2 R such that
jx1� x2j � r . First it is clear that

j�yf
0.x/j � !f 0.jyj/: (6-18)

In addition, using Taylor formula we get

j�yf .x/�yf
0.x/j � jyj!f 0.jyj/: (6-19)

Therefore

j yGint;r.x/j �

Z
jyj�r

Œ!f 0.jyj/�
2

jyj
dy:

It follows that

sup
jx1�x2j�r

j yGint;r.x2/� yGint;r.x1/j � 4

Z r

0

Œ!f 0.y/�
2

y
dy: (6-20)

Hence by Fubini’s theoremZ 1

0

sup
jx1�x2j�r

j yGint;r.x1/� yGint;r.x1/j
dr

r
� 4

Z 1

0

Œ!f 0.y/�
2

y
jlnyj dy:

From the definition and the monotonicity of the modulus of continuity one deduces that for any r 2 .0; 1/

jln r j!f 0.r/�
Z 1

r

!f 0.y/

y
dy � kf 0kD;

which implies Z 1

0

sup
jx1�x2j�r

j yGint;r.x1/� yGint;r.x1/j
dr

r
� 4kf 0k2D: (6-21)

To get the suitable estimate in C s we come back to (6-20), which gives

sup
jx1�x2j�r

j yGint;r.x2/� yGint;r.x1/j � 4kf
0
k
2
s

Z r

0

y2s�1 dy � Ckf 0k2s r
2s;

and thus

sup
jx1�x2j�1

j yGint;r.x2/� yGint;r.x1/j

jx1� x2js
� Ckf 0k2s : (6-22)

As for yGext;r , one writes

yGext;r.x1/� yGext;r.x2/D

Z
M�jyj�r

N .x1;y/�N .x2;y/
K.x1/

dyC

Z
M�jyj�r

N .x2;y/ŒK.x2;y/�K.x1;y/�
K.x1;y/K.x2;y/

dy;
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with

N .x; y/D Œ�yf .x/�yf 0.x/��yf 0.x/ and K.x; y/D y2C .f .x/Cf .xCy//2:

Notice that from (6-18) and (6-19) one gets

jN .x1; y/�N .x2; y/j � C jyj!f 0.r/!f 0.jyj/ and jN .x; y/j � 2jyj!f 0.jyj/kf 0kL1 : (6-23)

In addition, using straightforward calculus we obtain

jK.x1; y/�K.x2; y/j � Crkf 0kL1.
p
K.x1; y/C

p
K.x2; y//:

Thus

sup
jx1�x2j�r

jN .x2; y/jjK.x2; y/�K.x1; y/j
K.x1; y/K.x2; y/

� Crkf 0k2L1
!f 0.jyj/

jyj2
:

Hence we get by Fubini’s theorem and (4-3)Z 1

0

sup
jx1�x2j�r

Z
fM�jyj�rg

jN .x1;y/�N .x2;y/j
K.x1/

dy
dr

r
�

Z 1

0

Z
fM�jyj�rg

!f 0.r/!f 0.jyj/
dy

jyj

dr

r
�Ckf 0k2D

andZ 1

0

sup
jx1�x2j�r

Z
fM�jyj�rg

jN .x2;y/jjK.x2;y/�K.x1;y/j
K.x1;y/K.x2;y/

dy
dr

r
�Ckf 0k2L1

Z 1

0

Z
fM�jyj�rg

!f 0.jyj/

jyj2
dy dr

�Ckf 0k2L1 kf
0
kD:

Finally we obtainZ 1

0

sup
jx1�x2j�r

j yGext;r.x1/� yGext;r.x2/j
dr

r
� Ckf 0k2DCCkf

0
k
2
L1kf

0
kD:

As to the estimate in C s we use (6-23) which impliesZ
fr�jyj�M g

jN .x1; y/�N .x2; y/j
K.x1/

dy � Ckf 0ksr
s

Z
fr�jyj�M g

!f 0.jyj/

jyj
dy

� Ckf 0kskf
0
kDr

s

and Z
fM�jyj�rg

jN .x2; y/jjK.x2; y/�K.x1; y/j
K.x1; y/K.x2; y/

dy � Ckf 0k2L1kf
0
ksr

Z
fM�jyj�rg

dy

jyj2�s

� Ckf 0k2L1kf
0
ksr

s:

It follows from Sobolev embedding C s ,! L1 that

sup
jx1�x2j�r

j yGext;r.x1/� yGext;r.x2/j

jx1� x2js
� Ckf 0kD kf

0
ksCCkf

0
kD kf

0
k
2
s :

Combining the estimates above with (6-21) and (6-22) we deduce

kG12;2kX � Ckf
0
kD.kf

0
kX Ckf

0
k
2
X /:
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Putting together this estimate with (6-16) and (6-17) we get

kG2kX � Ckf
0
k
1
3

D.kf
0
kX Ckf

0
k
16
X /: (6-24)

Now using (6-10) and (6-24) we find

kGkX � Ckf
0
kX .1Ckf

0
k
7
D/CCkf

0
k
1
3

D.kf
0
kX Ckf

0
k
16
X /

� C.1Ckf 0k
1
3

D/.kf
0
kX Ckf

0
k
16
X /;

which ends the proof of Proposition 6.1. �

6B. A priori estimates. The aim of this section is to establish weak and strong a priori estimates for
solutions to (2-1). This part is the cornerstone of the local well-posedness theory. The main result of this
section reads as follows.

Proposition 6.2. Let f W Œ0; T ��R! R be a smooth solution for the graph equation (2-1). Assume that
the initial data is positive and with compact support K0. Then the following assertions hold true:

(1) For any t 2 Œ0; T �, the function ft is positive and

for all t 2 Œ0; T �; kf .t/kL1 � kf0kL1 :

(2) For any t 2 Œ0; T �, we have
kf .t/kL1 D kf0kL1e

�t :

(3) The support suppft is contained in the convex hull of K0; that is,

for all t 2 Œ0; T �; suppf .t/� ConvK0:

(4) Set X D C ?K or X D C sK , with s 2 .0; 1/. If f 00 2 X then there exists T depending only on kf 00kX
such that f 0 2 L1.Œ0; T �IX/.

Proof. (1) To get the first part about the persistence of the positivity of we shall prove that

for all x 2 R; u2.t; x/D f .t; x/U.t; x/; (6-25)

with
kU.t/kL1 � C.1Ckf

0.t/k6D/

and C being a constant depending only on the size of the support of ft . Note from part (3) of the current
proposition that the support of ft is contained in a fixed compact set and therefore the constant C can be
taken independent of the time variable. Assume for a while (6-25) and let us see how to propagate the
positivity. Denote by  the flow associated to the velocity u1, that is, the solution of the ODE

@t .t; x/D u1.t;  .t; x//;  .0; x/D x: (6-26)

Recall that

u1.t; x/D
1

2�

Z
R

�
arctan

�
f .t; xCy/�f .t; x/

y

�
� arctan

�
f .t; xCy/Cf .t; x/

y

��
dy:
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Set
�.t; x/D f .t;  .t; x//I

then
@t�.t; x/D u2.t;  .t; x//D �.t; x/U.t;  .t; x//: (6-27)

Consequently

�.t; x/D f0.x/e
R t
0 U.�; .�;x// d� :

Since the flow  .t/ W R! R is a diffeomorphism we get the representation

f .t; x/D f0. 
�1.t; x//e

R t
0 UŒ�; .�; 

�1.t;x//� d� : (6-28)

As an immediate consequence we get the persistence through the time of the positivity of the solution. Let
us now come back to the proof of the identity (6-25). To simplify the notation we remove the variable t
from the functions. Applying Taylor’s formula to the function

� 2 Œ0; f .x/� 7! g.�/, log
�
y2C .� �f .xCy//2

y2C .� Cf .xCy//2

�
yields

�2�u2.x/

D f .x/

Z 1

0

Z M

�M

f .xCy/� �f .x/

y2C Œf .xCy/� �f .x/�2
d� dyCf .x/

Z 1

0

Z M

�M

f .xCy/C �f .x/

y2C Œf .xCy/C �f .x/�2
d� dy

, f .x/V1.x/Cf .x/V2.x/:

Using once again Taylor’s formula we get the expressions

V1.x/

D

Z 1

0

Z M

�M

.1��/f .x/

y2C
�
.1��/f .x/Cy

R 1
0 f
0.xC�y/d�

�2 d� dyCp.v.
Z 1

0

Z M

�M

y
R 1
0 f
0.xC�y/d�

y2CŒf .xCy/��f .x/�2
d� dy

,V1;1.x/CV1;2.x/

and

V2.x/

D

Z 1

0

Z M

�M

.1C�/f .x/

y2C
�
.1C�/f .x/Cy

R 1
0 f
0.xC�y/d�

�2 d� dyCp.v.
Z 1

0

Z M

�M

y
R 1
0 f
0.xC�y/d�

y2CŒf .xCy/C�f .x/�2
d� dy

,V2;1.x/CV2;2.x/:

To estimate V1;1 and V2;1 we can assume that f .x/ > 0. Then making the change of variables z 7! y D

.1� �/f .x/z leads to

V1;1.x/D

Z 1

0

Z M
.1��/f.x/

� M
.1��/f.x/

d� dz

z2C
�
1C z

R 1
0 f
0.xC �.1� �/f .x/z/ d�

�2 : (6-29)
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Using (5-22) we deduce that
kV1;1kL1 � C.1Ckf

0
k
2
L1/: (6-30)

Similarly we get
kV2;1kL1 � C.1Ckf

0
k
2
L1/: (6-31)

Let us now bound Vj;2; j D 1; 2. First by symmetry we write

V1;2.x/D

Z 1

0

Z M

0

y
R 1
0 f
0.xC �y/ d�Œf .x�y/�f .xCy/� � .x; y/

.y2C Œf .xCy/� �f .x/�2/.y2C Œf .x�y/� �f .x/�2/
dy d�

C

Z 1

0

Z M

0

y
R 1
0 Œf

0.xC �y/�f 0.x� �y/� d�

y2C Œf .x�y/� �f .x/�2
dy d�;

where
 � .x; y/D f .xCy/Cf .x�y/� 2�f .x/

D 2.1� �/f .x/Cy

Z 1

0

Œf 0.xC �y/�f 0.x� �y/� d�:

Thus

kV1;2kL1

� C

Z 1

0

Z M

0

kf 0k2L1y
2Œ.1��/f .x/Cy!f 0.y/�

.y2CŒf .xCy/��f .x/�2/.y2CŒf .x�y/��f .x/�2/
dy d�CC

Z 1

0

Z M

0

!f 0.y/

y
dy d�:

Similarly to V1;1 one getsZ 1

0

Z M

0

y2.1� �/f .x/ dy d�

.y2C Œf .xCy/� �f .x/�2/.y2C Œf .x�y/� �f .x/�2/
� C.1Ckf 0k4L1/:

It follows that

kV1;2kL1 � Ckf
0
k
2
L1.1Ckf

0
k
4
L1 C

Z M

0

!f 0.y/

y
dy/CCkf 0kD

� Ckf 0k2L1.1Ckf
0
k
4
L1 Ckf

0
kD/CCkf

0
kD: (6-32)

The estimate of V2;2 can be done in a similar way and one obtains

kV2;2kL1 D Ckf
0
k
2
L1.1Ckf

0
k
4
L1 Ckf

0
kD/CCkf

0
kD: (6-33)

Combining both last estimates with (6-30) and (6-31) we finally get according to the embedding (4-2)

kU kL1 � C.1Ckf
0
k
6
D/;

where the constant C depends only on the size of the support of f .
Now let us establish the maximum principle. From (2-2) combined with the positivity of ft one gets

for all t 2 Œ0; T �; for all x 2 R; u2.t; x/� 0:

Coming back to (6-27) we deduce that
@t�.t; x/� 0;
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which implies in turn that

for all t 2 Œ0; T �; for all x 2 R; f .t; x/� f0. 
�1.t; x//:

Combined with the positivity of f .t/ we deduce immediately the maximum principle

for all t 2 Œ0; T �; kf .t/kL1 � kf0kL1 :

Now we intend to provide a more refined identity that we shall use later in studying the asymptotic
behavior of the solution. Actually we have

u2.t; x/D�f .t; x/.1CR.t; x//; (6-34)

with
kR.t/kL1 � Ckf

0.t/kD.1Ckf
0.t/k5L1/:

First note that RD
P2
i;jD1 Vi;j . The estimates of V1;2 and V2;2 are done in (6-32) and (6-33). However

to deal with V1;1 and similarly V2;1 we return to the expression (6-29). Set

� 7!K.�/D
1

z2C Œ1C z��2
:

Easy computations using (5-22) show the existence of a positive constant C such that

for all �; z 2 R; jK 0.�/j D
2jzjj1C z� j

.z2C Œ1C zt �2/2
�

1

z2C Œ1C z��2
� C

1C �2

1C z2
:

Applying the mean value theorem yieldsˇ̌̌̌
K.�/�

1

1C z2

ˇ̌̌̌
� C j� j

1C �2

1C z2
:

Therefore we get ˇ̌̌̌
V1;1.x/�

Z 1

0

Z M
.1��/f.x/

� M
.1��/f.x/

dz d�

1C z2

ˇ̌̌̌
� Ckf 0kL1.1Ckf

0
k
2
L1/;

which implies that
jV1;1.x/��j � Ckf

0
kL1.1Ckf

0
k
2
L1/CCkf kL1 : (6-35)

Similarly we obtain

jV2;1.x/��j � Ckf
0
kL1.1Ckf

0
k
2
L1/CCkf kL1 : (6-36)

Putting together (6-32), (6-33), (6-35), (6-36) we get (6-34).

(2) Integrating (1-2) in the space variable we get after integration by parts

d

dt

Z
R

�.t; x/ dx D

Z
R

div v.t; x/�.t; x/ dx D�
Z

R

�2.t; x/ dx D�

Z
R

�.t; x/ dx;

where in the last line we have used that for the characteristic function one has �2 D �. The time decay
follows then easily.
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(3) According to the representation of the solution given by (6-28) we have easily that the support of
f .t/ is the image by the flow  .t/ of the initial support, that is,

Kt D  .t;K0/: (6-37)

We have to check that if K0 � Œa; b�, with a < b, then Kt � Œa; b�. To do so it is enough to prove that

 .t; Œa; b�/� Œa; b�:

This means that the flow is contractive on the boundary of the support. As  .t/ is a homeomorphism, we
have  .t; Œa; b�/D Œ .t; a/;  .t; b/�. Hence to get the desired inclusion it suffices to establish that

at ,  .t; a/� a and bt ,  .t; b/� b:

This reduces to studying the derivative in time of at and bt . First one has

Pat D u1.t; at / and Pbt D u1.t; bt /:

Since f .t; y/D 0, for all y … .at ; bt / and ft positive everywhere,

u1.t; at /D
1

�

Z bt�at

0

arctan
�
ft .at Cy/

y

�
dy � 0:

Hence Pat � 0 and therefore at � a, for any t 2 Œ0; T �.
Similarly we get

u1.t; bt /D�
1

�

Z bt�at

0

arctan
�
ft .bt �y/

y

�
dy � 0;

which implies that bt � b for any t 2 Œ0; T �. This ends the proof of part (3).

(4) Recall from (2-3) and (2-5) that g , f 0 satisfies the equation

@tgCu1@1g D
1

2�
.F �G/:

Set h.t; x/D g.t;  .t; x//, where  is the flow defined in (6-26). Then

@th.t; x/D
1

2�
.F.t;  .t; x//�G.t;  .t; x///:

Thus

g.t; x/D g0. 
�1.t; x//C

1

2�

Z t

0

.F �G/
�
�;  .�;  �1.t; x//

�
d�:

Recall the classical estimate

k@xŒ .�;  
�1.t; � //�kL1 � e

R t
� k@xu1.t

0;� /kL1 dt 0 ; (6-38)

which we may combine with the composition laws (4-6) and (4-7) to get

kg.t/kX � Ce
V.t/

�
kg0kX C

Z t

0

k.F �G/.�/kX d�

�
; V .t/,

Z t

0

k@xu1.�/kL1 d�: (6-39)
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To estimate k@xu1.t/kL1 we come back to (2-4). The first integral term can be restricted to a compact
set Œ�M;M� and thusˇ̌̌̌

p.v.
Z M

�M

f 0.xCy/�f 0.x/

y2C .f .xCy/�f .x//2
y dy

ˇ̌̌̌
� 2

Z M

0

!f 0.y/

y
dy � Ckf 0kD:

As for the second term, the integral can be restricted to Œ�M;M� and we simply write

p.v.
Z

R

f 0.xCy/Cf 0.x/

y2C .f .xCy/Cf .x//2
y dy

D p.v.
Z M

�M

f 0.xCy/�f 0.x/

y2C .f .xCy/Cf .x//2
y dyC p.v.

Z
R

2f 0.x/

y2C .f .xCy/Cf .x//2
y dy:

The first term of the right-hand side is controlled as before:ˇ̌̌̌
p.v.

Z M

�M

f 0.xCy/�f 0.x/

y2C .f .xCy/Cf .x//2
y dy

ˇ̌̌̌
� Ckf 0kD:

However, the last term can be estimated as in the proof of Theorem 5.2(1). One gets in view of (5-7),
(5-10) and (5-11)ˇ̌̌̌

p.v.
Z

R

y

y2C .f .xCy/Cf .x//2
dy

ˇ̌̌̌
� C.kf 0k2L1 Ckf

0
kL1kf

0
kDCkf

0
kL1/:

Hence using the embedding X ,! C ?K ,! L1 we find

k@xu1.t/kL1 � C.kf
0
kDCkf

0
kL1kf

0
kD/

� C.kf 0.t/kX Ckf
0.t/k2X /; (6-40)

which implies
V.t/� Ct.kf 0kL1t X Ckf

0
k
2
L1t X

/: (6-41)

Using Proposition 6.1 we obtain

k.F �G/.t/kX � C.kf
0.t/kX Ckf

0.t/k17X /: (6-42)

Plugging (6-41) and (6-42) into (6-39) we obtain

kf 0kL1T X � e
CT.kf 0kL1

T
XCkf

0k2
L1
T
X
/
.kf 00kX CT .kf

0
kL1T X

Ckf 0k17L1T X
//:

This shows the existence of small T depending only on kf 00kX and such that

kf 0kL1T X � 2kf
0
0kX ;

which ends the proof of the proposition. �

6C. Scheme construction of the solutions. This section is devoted to the construction of the solutions
to (2-3) in short time. Before giving a precise description about the method used here and based on a
double regularization, let us explain the main ideas of the strategy. The a priori estimates developed in
the previous sections require some rigid properties like the confinement of the support, the positivity of
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the solution and some nonlinear effects in order to control some singular terms, as was mentioned in
Theorem 5.2. So it appears hard to find a linear scheme that respects all of those constraints. The idea is
to proceed with a nonlinear double regularization scheme. First, we fix a small parameter " > 0 used to
regularize the singularity of the kernels around the origin, and second we elaborate an iterative nonlinear
scheme giving rise to a family of solutions .f "n /n that may violate some of the mentioned constraints.
With this scheme we are able to derive a priori estimates uniformly with respect to n during a short time
T" > 0, but this time may shrink to zero as " goes to zero. By compactness arguments we prove that
these approximate solutions .f "n /n converge as n goes to infinity to a solution f " living in our function
space during the time interval Œ0; T"�. Now the function f " satisfies a modified nonlinear problem but the
important fact is that all the a priori estimates developed in the preceding sections hold uniformly on ".
This allows us by a classical procedure to implement the bootstrap argument and prove that the family
.f "/" is actually defined on some time interval Œ0; T � independently on ". To conclude it remains to pass
to the limit when " goes to zero and this allows us to construct a solution for our initial problem.

Let us now give more details about this double scheme regularization. Consider the iterative scheme8̂<̂
:
@tf

"
nC1Cu

"
1.f

"
n /@xf

"
nC1 D u

"
2.f

"
nC1/; n 2 N;

f "0 .t; x/D f0.x/;

f "nC1.0; x/D f0.x/;

(6-43)

with

u"1.g/.t;x/,
1

2�
�.x/

Z
jyj�"

�.y/

�
arctan

�
g.t;xCy/�g.t;x/

y

�
Carctan

�
g.t;xCy/Cg.t;x/

y

��
dy;

u"2.g/.t;x/,
1

4�

Z
jyj�"

�.y/ log
�
y2C.g.t;xCy/�g.t;x//2

y2C.g.t;xCy/Cg.t;x//2

�
dy:

(6-44)

The function � is a positive smooth cut-off function taking the value 1 on some interval Œ�M;M� such
that

K0; K0�K0 � Œ�M;M�;

with K0 being the convex hull of suppf0. The function � is introduced in order to guarantee the
convergence of the integrals. We shall see later by using the support structure of the solutions that one
can in fact remove this cut-off function. Define

ET Dff Wf 2L1.Œ0;T ��R/; f 0 2L1.Œ0;T �;X/g

equipped with the norm

kf kET D kf kL1.Œ0;T ��R/Ck@xf kL1.Œ0;T �;X/;

where X denotes the Dini space C ? or Hölder space C s.R/, 0 < s < 1, and for simplicity we shall
during this part work only with the Hölder space. We intend to explain the approach without giving all
the details, because some of them are classical. Using the method of characteristics, one can transform
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(6-43) into a fixed-point problem

fnC1 DN "
n.fnC1/; with N .f /.t; x/D f0. �1n;".t; x//C

Z t

0

u"2.f /.�;  n;".�;  
�1
n;".t; x/// d�;

with  n;" being the one-dimensional flow associated to un1.f
"
n /, that is, the solution of the ODE

 n;".t; x/D xC

Z t

0

un1.f
"
n /.�;  n;".�; x// d�: (6-45)

It is clear that

kN .f /.t/kL1 � kf0kL1 C
Z t

0

ku"2.f /.�/kL1 d�:

Applying the elementary inequality, for a > 0, b; c 2 RC,ˇ̌̌̌
log
�
aC b

aC c

�ˇ̌̌̌
�
bC c

a
;

we get from (6-44) that

ju"2.f /.t; x/j �
1

4�

Z
jyj�"

�.y/
f 2.t; xCy/Cf 2.t; x/

y2
dy � C"�2kf .t/k2L1 :

It follows that
kN .f /kL1T L1 � kf0kL1 CC"

�2T kf k2L1T L1
: (6-46)

We shall move to the estimate of k@xN .f /kL1T X. Let us first start with the estimate of k@xff0. �1n;"/gkL1T X.
By straightforward computations using product laws (4-8), composition laws (4-6) in Hölder spaces and
the classical estimate on the flow

k@x 
˙1
n;"kL1T X

� Ce
Ck@x.u

"
1.f

"
n //kL1

T
L1 .1Ck@x.u

"
1.f

"
n //kL1TX

/;

one gets

k@xff0. 
�1
n;"/gkL1T X � kf@xf0g. 

�1
n;"/kL1T X k@x 

�1
n;"kL1T X

� Ck@xf0kXe
Ck@x.u

"
1.f

"
n //kL1

T
L1 .1Ck@x.u

"
1.f

"
n //kL1TX

/:

Differentiating the expression of u"1.f
"
n / in (6-44) and making standard estimates we get easily

k@xfu
"
1.f

"
n /.t/gkX � C CC"

�1
k@xf

"
n .t/kX CC"

�3
k@xf

"
n .t/kL1 kf

"
n .t/k

2
X

� C CC"�1kf "n kET CC"
�3
kf "n k

3
ET ;

where we have used  1

y2Cf 2


X

� Ckf k2Xy
�4:

Therefore

k@xff0. 
�1
n;"/gkL1T X � Ck@xf0kXe

CTCC"�1T kf "n kETCC"
�3T kf "n k

3
ET ; (6-47)

k@x 
˙1
n;"kL1T X

� Ce
CTCCT"�1kf "n kETCCT"

�3kf "n k
3
ET : (6-48)
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Similarly we get

k@xfu
"
2.f /gkL1T X � C"

�2
k@xf kL1T X kf kL

1
T X
CC"�4k@xf kL1T L1 kf kL

1
T L
1 kf k2L1T X

� C"�2kf k2ET CC"
�4
kf k4ET :

Combining this estimate with product laws and (6-48) we deduce that

k@xfu
"
2.f /.�;  n;".�;  

�1
n;"//gkX � C."

�2
kf k2ET C "

�4
kf k4ET /e

CTCCT"�1kf "n kETCCT"
�3kf "n k

3
ET :

Putting together this estimate with (6-47) we find that

k@xN .f /kL1T X � C.k@xf0kX CT"
�2
kf k2ET CT"

�4
kf k4ET /e

CTCCT"�1kf "n kETCCT"
�3kf "n k

3
ET ;

which yields in view of (6-46)

kN .f /kET �C.kf0kL1Ck@xf0kXCT"
�2
kf k2ET CT"

�4
kf k4ET /e

CTCCT"�1kf "n kETCCT"
�3kf "n k

3
ET :

We can assume that 0 < T � 1 and then

kN .f /kET � C.kf0kL1 Ck@xf0kX CT"
�4
kf k4ET /e

CT"�3kf "n k
3
ET :

Consider now the closed ball

B D ff 2 ET W kf kET � 2C.kf0kL1 Ck@xf0kX /e
CT"�3kf "n k

3
ET gI

if we choose T such that

16C 3"�4T .kf0kL1 Ck@xf0kX /
3e
5CT"�3kf "n k

3
ET � 1 (6-49)

then N WB!B is well-defined and proceeding as before we can show under this condition that it is also
a contraction. This implies the existence in this ball of a unique solution to the fixed-point problem and
so one can construct a solution f "nC1 2 ET to (6-43) and we have the estimates

for all n 2 N; kf "nC1kET � 2C.kf0kL1 Ck@xf0kX /e
CT"�3kf "n k

3
ET :

Now we select T such that it satisfies also

64C 4.kf0kL1 Ck@xf0kX /
3T"�3 � ln 2I (6-50)

then we get the uniform estimates

for all n 2 N; kfnkET � 4C.kf0kL1 Ck@xf0kX /:

In order to satisfy mutually the conditions (6-49) and (6-50) it suffices to take

T" WD C0"
2; (6-51)

with C0 depending only on kf0kL1 Ck@xf0kX such that

for all n 2 N; kfnkET � 4C.kf0kL1 Ck@xf0kX /: (6-52)
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Now we shall check that we can remove the localization in space through the cut-off function �. To do
so, it suffices to get suitable information on the support of .f "n /. We shall prove that

for all n 2 N; suppf "n .t/�K0; (6-53)

where K0 is the convex hull of the support of f0. Before giving the proof let us assume for a while
this property and see how to get rid of the localizations in the velocity fields. From the expression of
u"2.f

"
nC1/ one has

u"2.f
"
nC1/.t; x/D

1

4�

Z
jyj�"

log
�
y2C .f "nC1.t; xCy/�f

"
nC1.t; x//

2

y2C .f "nC1.t; xCy/Cf
"
nC1.t; x//

2

�
dy

�
1

4�

Z
jyj�"

Œ1��.y/� log
�
y2C .f "nC1.t; xCy/�f

"
nC1.t; x//

2

y2C .f "nC1.t; xCy/Cf
"
nC1.t; x//

2

�
dy:

Since for all x…K0 we havefnC1.t;x/D0, it follows that u"2.f
"
nC1/.t;x/D0; hence suppu"2.f

"
nC1/.t/�K0.

Thus for all x 2K0Z
jyj�"

Œ1��.y/� log
�
y2C .f "nC1.t; xCy/�f

"
nC1.t; x//

2

y2C .f "nC1.t; xCy/Cf
"
nC1.t; x//

2

�
dy

D

Z
fjyj�j"g\K0�K0

Œ1��.y/� log
�
y2C .f "nC1.t; xCy/�f

"
nC1.t; x//

2

y2C .f "nC1.t; xCy/Cf
"
nC1.t; x//

2

�
dy D 0

because �D 1 on K0�K0. Now we claim that in the advection term u"1.f
"
nC1/.t; x/@xf

"
nC1 of (6-43)

one can remove the cut-off function. Since @xf "nC1D 0 outside K0, one gets immediately �.x/@xf "nC1D
@xf

"
nC1. Similarly one has

u"1.g/.t; x/,
1

2�

Z
jyj�"

�
arctan

�
g.t; xCy/�g.t; x/

y

�
Carctan

�
g.t; xCy/Cg.t; x/

y

��
dy

�
1

2�

Z
jyj�"

.1��.y//

�
arctan

�
g.t; xCy/�g.t; x/

y

�
Carctan

�
g.t; xCy/Cg.t; x/

y

��
dy;

and for x 2K0 it is clear thatZ
jyj�"

.1��.y//

�
arctan

�
g.t;xCy/�g.t;x/

y

�
Carctan

�
g.t;xCy/Cg.t;x/

y

��
dy

D

Z
fyj�"g\K0�K0

.1��.y//

�
arctan

�
g.t;xCy/�g.t;x/

y

�
Carctan

�
g.t;xCy/Cg.t;x/

y

��
dyD 0:

Now let us come back to the proof of (6-53) and provide further qualitative properties. Similarly to the
identity (6-25) one obtains

u
nC1;"
2 .t; x/D f "nC1.t; x/.1CUnC1;".t; x//; kUnC1;".t/kL1 � C.1CkfnC1.t/k

6
D/:

So following the same lines as in the proof of Proposition 6.2 we get a similar formula to (6-28) which
implies the positivity result

fnC1.t; x/� 0;
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where we have used in particular that the initial data satisfies f "nC1.0; x/D f0.x/� 0. Thus we obtain

for all n 2 N; fn.t; x/� 0:

As u2n;".t; x/� 0, following the same lines as the proof of Proposition 6.2 we get the maximum principle

for all n 2 N; kf "n .t/kL1 � kf0kL1 :

The proof of the confinement of the support (6-53) follows exactly the same lines as the proof of
Proposition 6.2(3). Now we shall study the strong convergence of the sequence .f "n /n. Set

�"n.t; x/ WD fnC1.t; x/�fn.t; x/:

Then

@t�
"
nC1Cu

"
1.f

"
nC1/@x�

"
nC1 D�.u

"
1.f

"
nC1/�u

"
1.f

"
n //@xf

"
nC1Cu

"
2.f

"
nC2/�u

"
2.f

"
nC1/:

According to the mean value theorem one has for a > 0, x; y 2 R,

jarctan.x/� arctan.y/j � jx�yj and jlog.aCjxj/� log.aCjyj/j � jx�yja�1;

which imply

ku"1.f
"
nC1/.t/�u

"
1.f

"
n /.t/kL1 � Ckf

"
nC1.t/�f

"
n .t/kL1

Z
jyj�"

�.y/

jyj
dy

� C"�1kf "nC1.t/�f
"
n .t/kL1 :

Similarly, we obtain

ku"2.f
"
nC1/.t/�u

"
2.f

"
n /.t/kL1 � C"

�2.kf "nC1.t/kL1 Ckf
"
n .t/kL1/kf

"
nC1.t/�f

"
n .t/kL1 :

Using the uniform estimates (6-52) we get for any t 2 Œ0; T"�

ku"2.f
"
nC1/.t/�u

"
2.f

"
n /.t/kL1 � Ckf

0
0kX"

�2
kf "nC1.t/�f

"
n .t/kL1 ; k@xf

"
nC1.t/kL1 � Ckf

0
0kX :

Using the maximum principle for the transport equation allows us to get for any t 2 Œ0; T"�

k�nC1.t/kL1 � C"
�2
kf 00kXk

Z t

0

Œk�nC1.�/kL1 Ck�n.�/kL1 � d�:

By virtue of Gronwall’s lemma one finds that for any t 2 Œ0; T"�

k�nC1.t/kL1 � e
C"�2kf 00kXT"

Z t

0

k�n.�/kL1 d�:

Hence we obtain in view of (6-51)

k�nC1.t/kL1 � C0

Z t

0

k�n.�/kL1 d�:

By induction we find

for all n 2 N; for all t 2 Œ0; T"�; k�nkL1t L1 � C
n
0

tn

nŠ
k�0kL1t L1 :
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This implies the convergence of the seriesX
n2N

k�nC1kL1T"L
1 <1:

Therefore .f "n /n converges strongly in L1T"L
1 to an element f " 2 L1T"L

1. From the uniform estimates
(6-52) we deduce that f " 2 ET" . This allows us to pass to the limit in (6-43) and obtain that f " is a
solution to �

@tf
"Cu"1.f

"/@xf
" D u"2.f

"/;

f "0 .t; x/D f0.x/;
(6-54)

with

u"1.f
"/.t;x/, 1

2�

Z
jyj�"

�
arctan

�
f ".t;xCy/�f ".t;x/

y

�
Carctan

�
f ".t;xCy/Cf ".t;x/

y

��
dy;

u"2.f
"/.t;x/, 1

4�

Z
jyj�"

log
�
y2C.f ".t;xCy/�f ".t;x//2

y2C.f ".t;xCy/Cf ".t;x//2

�
dy:

(6-55)

Now, the proofs used to get the a priori estimates can be adapted to (6-54) supplemented with (6-55).
For instance the a priori estimates obtained in Proposition 6.2 hold for the modified equation (6-54)
independently on vanishing ". In particular one can bound uniformly in " the solution f " in the space XT"
and therefore T" is not maximal and by a standard bootstrap argument we can continue the solution up to
the local time T constructed in Proposition 6.2. It follows that f " belongs to ET uniformly with respect
to small ". This yields according once again to Proposition 6.2 and the inequalities (6-25) and (6-40)

sup
"2Œ0;1�

k@tf
"
kL1T L

1 � ku"1.f
"/kL1T L1 k@xf

"
kL1T L

1 Cku"2.f
"/kL1T L1 � C0;

and C0 is a constant depending on the size of the initial data. Now from the compact embedding C sK!Cb

and Ascoli’s lemma we deduce that up to a subsequence .f "/ converges strongly in L1T L
1 to some

element f which belongs in turn to ET . This allows us to pass to the limit in (6-54) and (6-55) and find
a solution to the initial value problem (6-43). We point out that by working more one may obtain the
strong convergence of the full sequence .f "/ to f . Note finally that the uniqueness follows easily from
the arguments used to prove that .�n/ is a Cauchy sequence.

7. Global well-posedness

We are concerned here with the global existence of strong solutions already constructed in Theorem 2.1.
This will be established under a smallness condition on the initial data and it is probable that for arbitrary
large initial data the graph structure might be destroyed in finite time. The basic ingredient which allows
us to balance the energy amplification during the time evolution is a damping effect generated by the
source terms. Note that this damping effect is plausible from the graph equation (2-1) according to the
identity (6-34). However, as we shall see in the next section, it is quite complicated to extend this behavior
for higher regularity at the level of the resolution space due to the existence of a linear part in the source
term governing the motion of the slope (2-3). This part could in general bring an amplification in time
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of the energy. To circumvent this difficulty we establish a weakly damping property of the linearized
operator associated to the source term that we combine with the time decay of the solution for weak
regularity using an interpolation argument.

7A. Weak and strong damping behavior of the source term. Note from Proposition 6.1 that F does not
contribute at the linear level, which is not the case of the functional G. We shall prove that actually there
is no linear contribution for G. This will be done by establishing a damping property that occurs at least
at the linear level. This is described by the following proposition.

Proposition 7.1. LetK be a compact set of R and s2.0;1/; then for anyf 2C sK we have the decomposition

G.x/D 2�f 0.x/CL.x/CN.x/;

with

kLks � 2�.kf
0
ksC 2kf

0
kL1/CCkf

0
k
s
L1kf

0
ks and kN ks � Ckf

0
k
1
3

D.kf
0
ksCkf

0
k
16
s /;

where C > 0 is a constant depending only on K and s. Moreover,

kLkL1 � C min.kf ksL1kf
0
ks; kf

0
kL1/ and kN kL1 � Ckf

0
kL1.kf

0
kDCkf

0
k
3
D/:

Proof. In view of (6-1), (6-2), (6-4), (6-16), (6-17) and (6-24) one gets

G.x/DG11.x/CH.x/; H DG12CG2;

with
kHks � Ckf

0
k
1
3

D.kf
0
ksCkf

0
k
16
s /: (7-1)

Note also that from (6-3) and (6-11) we get

kHkL1 � Ckf
0
kL1.kf

0
ksCkf

0
k
3
s /: (7-2)

Now from (6-5) we get

G11.x/D 2

Z
R

f 0.x/Cf 0.xCf .x/z/

'.x; z/
dz;

with

'.x; z/D z2C

�
2C z

Z 1

0

f 0.xC �f .x/z/ d�

�2
:

We shall split again G11 as follows:

G11.x/D 2

Z
R

f 0.x/Cf 0.xCf .x/z/

z2C 4
dz� 2

Z
R

Œf 0.x/Cf 0.xCf .x/z/� .x; z/

'.x; z/.z2C 4/
dz

, L.x/CN .x/;
with

 .x; z/, 4z
Z 1

0

f 0.xC �f .x/z/ d� C z2
�Z 1

0

f 0.xC �f .x/z/ d�

�2
:

From (5-22) one gets
kNkL1 � Ckf 0k2L1.1Ckf

0
k
3
L1/: (7-3)
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Using the product law (4-8) we get Œf 0Cf 0 ı .IdC zf /� . � ; z/'. � ; z/


s

� 2kf 0kL1k . � ; z/kL1 k1='. � ; z/ks

C 2kf 0kL1 k . � ; z/ks k1='. � ; z/kL1

C .kf 0ksCkf
0
ı .IdC zf /ks/k . � ; z/kL1 k1='. � ; z/kL1 :

In addition, it is clear that

k . � ; z/kL1 � 4jzjkf
0
kL1 Cjzj

2
kf 0k2L1 :

Performing the composition law (4-6) we deduce that

k . � ; z/ks � C jzjkf
0
ks.1Cjzj

s
kf 0ksL1/CC jzj

2
kf 0kL1 kf

0
ks.1Cjzj

s
kf 0ksL1/:

Combining this latter estimate with (6-9) and (5-22) yields Œf 0Cf 0 ı .IdC zf /� . � ; z/'. � ; z/


s

� Ckf 0kL1 kf
0
ks.1Ckf

0
k
7Cs
L1 /.1Cjzj

s/:

Hence we get according to the embedding C sK ,! L1

kNks � Ckf 0kL1 kf 0ks.1Ckf 0k7CsL1 /

� Ckf 0k
1
3

L1.kf
0
k
5
3
s Ckf

0
k
26
3
Cs

s /

� Ckf 0k
1
3

L1.kf
0
ksCkf

0
k
10
s /:

Setting N D N CH and combining the latter estimate with (7-1) we find the desired estimate for N
stated in the proposition. Putting together (7-2) and (7-3) combined with Sobolev embedding we find

kN kL1 � Ckf
0
kL1.kf

0
ksCkf

0
k
4
s /:

Coming back to L one may write

L.x/D 4f 0.x/
Z

R

1

z2C 4
dzC 2

Z
R

f 0.xCf .x/z/�f 0.x/

z2C 4
dz , 2�f 0.x/CL.x/: (7-4)

To estimate L in C s we simply write

kLks � 2

Z
R

kf 0 ı .IdC zf /ksCkf 0ks
z2C 4

dz:

Combined with (4-6) we find

kf 0 ı .IdC zf /ks � .kf 0ksC 2kf 0kL1/.1Cjzjkf 0kL1/s

� .kf 0ksC 2kf
0
kL1/.1Cjzj

s
kf 0ksL1/;

where in the last line we have used the inequality, for all s 2 .0; 1/, for all x; y � 0 one has

.xCy/s � xsCys:
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Using (4-2), it follows that

kLks � 2�.kf
0
ksC 2kf

0
kL1/CCkf

0
ks kf

0
k
s
L1 :

The estimate of L in L1 is easier and one gets according to (7-4),

jL.x/j � 2jf .x/js kf 0ks

Z
R

jzjs

z2C 4
dz � C jf .x/js kf 0ks:

Therefore we obtain
kLkL1 � Ckf k

s
L1 kf

0
ks:

We point out that we have obviously

kLkL1 � 2�kf
0
kL1 :

It follows that
kLkL1 � C min.kf ksL1kf

0
ks; kf

0
kL1/: (7-5)

This completes the proof of Proposition 7.1. �

7B. Global a priori estimates. The main goal of this section is to show how we may use the weakly
damping effect of the source terms stated in Proposition 7.1 in order to get global a priori estimates when
the initial data is small enough. The basic result reads as follows.

Proposition 7.2. Let K be a compact set of R and s 2 .0; 1/. There exists a constant " > 0 such that if
kf 00ks � " then (2-1) admits a unique global solution

f 0 2 L1.RCIC
s
K/:

Moreover, there exists a constant C0 depending on the initial data such that

for all t � 0; kf 0.t/kL1 � C0e�t :

Proof. According to the decomposition of Proposition 7.1 combined with (2-3) and (2-5) we get that
g D @xf satisfies the equation

@tg.t; x/Cu1.t; x/ @1g.t; x/Cg.t; x/DR.t; x/; R, 1
2�
.F �L�N/: (7-6)

Using Propositions 6.1 and 7.1 combined with the (4-2) we find

kRks �kf 0ksC2kf 0kL1CCkf 0kD.kf 0ksCkf 0k3s /CCkf
0
k
s
L1 kf

0
ksCCkf

0
k
1
3

L1.kf
0
ksCkf

0
k
16
s /:

The embedding C
s
2

K � C
?
K combined with interpolation inequalities in Hölder spaces yields

kf 0kD � Ckf
0
k
1
2

L1 kf
0
k
1
2
s : (7-7)

Set s0 Dmin
�
s; 1
3

�
; then it is easy to get

kRks � kf 0ksC 2kf 0kL1 CCkf 0ks0L1.kf
0
ksCkf

0
k
16
s /: (7-8)
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Let h.t; x/, g.t;  .t; x//, where  is the flow introduced in (6-26). Then it is obvious that

@th.t; x/C h.t; x/DR.t;  .t; x//:

This allows us to deduce the Duhamel integral representation

etg.t; x/D g0. 
�1.t; x//C

Z t

0

e�R.�;  .�;  �1.t; x/// d�:

Thus

etkg.t/ks � kg0. 
�1.t//ksC

Z t

0

e�kR.�;  .�;  �1.t///ks d�:

According to (6-38) and (4-6) we obtain

kg0. 
�1.t//ks � Ckg0kse

V.t/; V .t/D

Z t

0

k@xu1.�/kL1 d�

and
kR.�;  .�;  �1.t///ks � .kR.�/ksC 2kR.�/kL1/eV.t/�V.�/:

Note that the estimate of R in C s has been already stated in (7-8). However to get a suitable estimate in
L1 we use Propositions 6.1 and 7.1 combined with Sobolev embedding,

kR.t/kL1 � Ckf 0.t/kL1.kf 0.t/kDCkf 0.t/k3D/CC min.kf .t/ksL1kf
0.t/ks; kf

0.t/kL1/

� C.kf 0.t/kL1 Ckf
0.t/ksL1/.kf

0.t/ksCkf
0.t/k3s /

� Ckf 0.t/k
s0
L1.kf

0.t/ksCkf
0.t/k4s /: (7-9)

It follows that

kR.�;  .�;  �1.t///ks
� .kf 0.�/ksC 2kf

0.�/kL1/e
V.t/�V.�/

CCkf 0.�/k
s0
L1.kf

0.�/ksCkf
0.�/k16s /e

V.t/�V.�/:

Set K.t/D e�V.t/etkf 0.t/ks and

S.t/D Cete�V.t/.kf 0.t/kL1 Ckf
0.t/k

s0
L1.kf

0.t/ksCkf
0.t/k16s //:

Then

K.t/� CK.0/C

Z t

0

K.�/ d� C

Z t

0

S.�/ d�:

By virtue of Gronwall’s lemma we deduce that

K.t/� CetK.0/C

Z t

0

et��S.�/ d�:

This implies

kf 0.t/ks � Ce
V.t/
kf 00ks

CCeV.t/
Z t

0

kf 0.�/kL1 d� C e
V.t/

Z t

0

kf 0.�/k
s0
L1.kf

0.�/ksCkf
0.�/k16s / d�: (7-10)
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Combining the interpolation inequality

kf 0t kL1 � Ckftk
s
2Cs

L1
kf 0t k

2
2Cs
s ;

with Proposition 6.2(2) we obtain

kf 0.t/kL1 � Ce
� s
2Cs

t
kf0k

s
2Cs

L1
kf 0.t/k

2
2Cs
s : (7-11)

Plugging this estimate into (6-40) we find

k@xu1.t/kL1 � Ce
� s
2Cs

t
kf0k

s
2Cs

L1
.kf 0.t/k

2
2Cs
s Ckf 0.t/k

4Cs
2Cs
s /: (7-12)

It is quite obvious from (4-2) and the compactness of the support that

kf0kL1 � Ckf
0
0ks;

with C a constant depending on the size of the support of f0. Set

�.T /D sup
t2Œ0;T �

kf 0.t/ks:

Then combining (7-10) with (7-11) and (7-12) yields

�.T /� CeCkf
0
0k

s
2Cs
s .Œ�.T /�

2
2CsCŒ�.T /�

4Cs
2Cs /�.T /;

with

�.T /D kf 00ksCkf
0
0k

s
2Cs
s Œ�.T /�

2
2Cs Ckf 00k

ss0
2Cs
s Œ�.T /�

2s0
2Cs .�.T /C Œ�.T /�16/:

This implies the existence of small number " > 0 depending only on C, and thus on the size of the support
of f0, such that

kf 00ks � " D) for all T > 0; �.T /� ı.kf 00ks/; (7-13)

with limx!0 ı.x/D 0. This gives the global a priori estimates.
What is left is to establish the precise time decay of kf 0.t/kL1 stated in Proposition 7.2. From (7-6)

it is easy to establish the following estimate using the method of characteristics:

kg.t/kL1 � e
�t
kg0kL1 C

Z t

0

e�.t��/kR.�/kL1 d�: (7-14)

According to (7-9) we obtain

etkf 0.t/kL1 � kf
0
0kL1 CC

Z t

0

e�kf 0.�/kL1.kf
0.�/kDCkf

0
k
3
D/ d�:

Using Gronwall’s lemma we obtain

etkf 0.t/kL1 � kf
0
0kL1e

W.t/; W.t/D C

Z t

0

.kf 0.�/kDCkf
0
k
3
D/ d�:

Putting together (7-7) with (7-11) we obtain

kf 0.t/kD � Ce
� s
4C2s

t
kf0k

s
4C2s

L1
kf 0.t/k

4Cs
4C2s
s :
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Hence we deduce from (7-13) that

for all t � 0; W.t/� C0;

and therefore
for all t � 0; kf 0.t/kL1 � C0e�t ; kf 0.t/kD � C0e

� s
4C2s

t (7-15)

for a suitable constant C0 depending on the initial data. Inserting these estimates into (7-9) we obtain

for all t � 0; kR.t/kL1 � C0e�t : (7-16)

Since ft is compactly supported in a fixed compact set

for all t � 0; kf .t/kL1 � C1e�t : (7-17)

Finally, we point out that all the constants involved in the preceding estimates are time independent.
Indeed, they are related to the support of ft which is confined in the convex hull of the support of the
initial data, as has been stated in Proposition 6.2(3). �

8. Scattering and collapse to singular measure

The aim of the last section is to analyze and identify the long time behavior of the global solutions stated
in Theorem 2.2. It attempts to investigate the time evolution of the probability measure

dPt .x/,
�.t; x/

k�tkL1
dA.x/D et1Dt .x/ dA.x/;

where dA denotes the usual Lebesgue measure. Note that without loss of generality we have assumed in
the last line that k�0kL1 D 1. As we shall see, this measure converges weakly as t goes to infinity to a
probability measure concentrated on the real line and absolutely continuous with respect to Lebesgue
measure on the real line. The description of the density and the support of this limiting measure will be
the subject of the next two sections.

8A. Structure of the singular measure. In this section we shall prove the part of Theorem 2.2 dealing
with the weak convergence of the measure dPt when t goes to1. First, it is obvious that the probability
measure dPt is absolutely continuous with respect to the Lebesgue measure. The convergence of the
family fdPt W t � 0g will be done in a weak sense as follows. Let ' 2 D.R2/ be a test function; one can
write using Fubini’s theorem

It ,
Z

R2
'.x; y/ dPt D e

t

Z
R

Z ft .x/

�ft .x/

'.x; y/ dy:

According to Taylor expansion in the second variable one gets

for all .x; y/ 2 R2; '.x; y/D '.x; 0/Cy .x; y/ and k kL1 � C:

This implies

It D 2e
t

Z
R

ft .x/'.x; 0/ dxC I
1
t ; I 1t , e

t

Z
R

Z ft .x/

�ft .x/

y .x; y/ dy: (8-1)
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We shall check that the term I 1t does not contribute in the limiting behavior. Actually it vanishes for t
going to infinity. Indeed,

jI 1t j � e
t
k kL1

Z
R

Œft .x/�
2 dx:

Using (7-17) and the localization of the support of ft in the convex hull of the initial support, we deduce
that

jI 1t j � Ce
�t ;

and thus
lim
t!1

I 1t D 0:

Combining (2-1), (6-34), (7-15), (7-17) and (7-13) we deduce that

@tf .t; x/Cu1@xf .t; x/Cf .t; x/D�f .t; x/R.t; x/; (8-2)

with
kR.t/kL1 � kf

0.t/kD.1Ckf
0.t/k51/� Ce

� s
4C2s

t : (8-3)

From the method of characteristics developed in studying (7-6) we get the representation

etf .t;  .t; x//D f0.x/e
R t
0 R.�; .�;x// d� : (8-4)

From the integrability property (8-3) we deduce that fetf .t;  .t//g converges uniformly as t goes to1
to the positive function

x 7! f0.x/e
R1
0 R.�; .�;x// d� ,R2.x/: (8-5)

More precisely, using straightforward computations we easily get

ketft ı .t/�R2kL1 � kR2kL1

Z 1
t

kR.�/kL1 d� � Ce
� s
4C2s

t : (8-6)

The next goal is prove that the flow .t/ converges uniformly as t goes to infinity to some homeomorphism
 1 W R! R which belongs to the bi-Lipschitz class. First, recall from the definition (6-26) that

 .t; x/D xC

Z t

0

u1.�;  .�; x// d�:

Recall from Section 2 that u1.x/D v1.x; f .x// and the velocity is computed from the density � according
to the second equation of (1-2). Hence we get

ku1.t/kL1 � k�
�1
r�kL1 :

Now using the classical interpolation inequality

k��1r�kL1 � Ck�k
1
2

L1
k�k

1
2

L1

combined with the decay rate stated in Proposition 6.2(2) we deduce that

ku1.t/kL1 � Ce
� t
2 : (8-7)
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Consequently, it follows that  .t/ converges uniformly to the function

 1.x/, xC
Z 1
0

u1.�;  .�; x// d�:

More precisely, we have

k .t/� 1kL1 �

Z 1
t

ku1.�/kL1 d� � Ce
� t
2 : (8-8)

It remains to check that  1 is bi-Lipschitz. First we know that

k@x .t/kL1 � e
V.t/; V .t/D

Z t

0

k@xu1.�/kL1 d�:

Using (7-12) and (7-13) we deduce that

for all t � 0; k@x .�/kL1 � C; k@xu1.t/kL1 � C"
s
2Cs e�

s
2Cs

t : (8-9)

Differentiating  1 and using the triangle inequality we get

1�

Z 1
0

k@xu1.�/kL1k@x .�/kL1 d� �  
0
1.x/� 1C

Z 1
0

k@xu1.�/kL1k@x .�/kL1 d�:

Therefore we obtain

for all x 2 R; 1�C"
s
2Cs �  01.x/� 1CC"

s
2Cs :

Taking " small enough, meaning that the initial data is very small, we get

for all x 2 R; 1
2
�  01.x/�

3
2
: (8-10)

This shows that  1 is a bi-Lipschitz function from R to R. Furthermore, it is obvious that

 1.x/D  .t; x/C

Z 1
t

u1.�;  .�; x// d�;

and hence

 1. 
�1.t; x//D xC

Z 1
t

u1.�;  .�;  
�1.t; x/// d�:

Combining this identity with  1 ı �11 D Id and (8-7) yields

j 1. 
�1.t; x//� 1. 

�1
1 x/j �

Z 1
t

ku1.�/kL1 d� � Ce
� t
2 :

Applying (8-10) we deduce that

k �1.t/� �11 kL1 � Ce
� t
2 :

This shows that  �1.t/ converges uniformly to  �11 with an exponential rate. Set

ˆDR2 ı 
�1
1 (8-11)
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and assume for a while that R2 belongs to C ˛ for any ˛ 2 .0; 1/; then we deduce from the preceding
estimates, especially (8-6) and (8-4), that

ketf .t/�ˆkL1 � ke
tf .t/�R2 ı 

�1.t/kL1 CkR2 ı 
�1.t/�R2 ı 

�1
1 kL1

� Ce�
s

4C2s
t
CkR2k˛ k 

�1.t/� �11 k
˛
L1

� Ce�
s

4C2s
t
CCe�˛

t
2 :

Taking ˛ D 2s
4C2s

we get
ketf .t/�ˆkL1 � Ce

� s
4C2s

t : (8-12)

Let us now check that R2 belongs to C ˛ for any ˛ 2 .0; 1/. For this goal we shall express differently
the function R2. Set R1.t; x/D�f .t; x/R.t; x/; then from the method of characteristics the solution to
(8-2) may be recovered as follows:

etf .t;  .t; x//D f0.x/C

Z t

0

e�R1.�;  .�; x// d�:

Putting together (8-3) and (7-17) we deduce that

kR1.�;  .�//kL1 � Ce
�
4C3s
4C2s

t : (8-13)

Therefore we find the identity

R2.x/D f0.x/C

Z 1
0

e�R1.�;  .�; x// d�: (8-14)

We shall now study the regularity of R2 through the use of this representation.
Differentiating (8-2) in x and comparing it to (7-6) we get the identity

@xR1.t; x/DR.t; x/C @xu1.t; x/ @xf .t; x/:

Using (7-15), (7-16) and (8-9) we find

for all t � 0; k@xR1.t/kL1 � Ce�t :

Combining this latter estimate with the Leibniz formula and (8-9) implies

for all t � 0; k@x.R1.t;  .t; � ///kL1 � Ce�t : (8-15)

It suffices now to apply the following classical interpolation inequality: for any ˛ 2 .0; 1/ there exists
C > 0 such that

khk˛ � Ckhk
1�˛
L1 kh

0
k
˛
L1 ;

which implies that according to (8-13) and (8-15)

for all t � 0; kR1.t;  .t; � //k˛ � Ce�te�t.1�˛/
s

4C2s : (8-16)

Returning to the identity (8-14), one obtains in view of (8-16)

kR2k˛ � kf0k˛C

Z 1
0

e�kR1.�;  .�; � //k˛ d� � C
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for any ˛ 2 .0; 1/. As an immediate consequence of (8-11), (8-10) and (4-6) we find that ˆ belongs to
C ˛ for any ˛ 2 .0; 1/. We guess the profile ˆ to keep the same regularity as f0, that is, in C 1Cs, but this
could require much more refined analysis.

Now coming back to (8-1) we find in view of (8-12) and the Lebesgue theorem

lim
t!1

I.t/D 2

Z
R

ˆ.x/'.x; 0/ dx:

This is equivalent to writing in the weak sense

lim
t!1

dPt D 2ˆ ıR˝f0g , dP1: (8-17)

Now we shall discuss some properties of ˆ. From (8-5) and (8-11) we have

suppˆD  1.K0/; K0 D suppf0: (8-18)

According to (8-10), the measure of suppˆ is strictly positive with

j suppˆj � 1
2
jK0j: (8-19)

It remains to check that dP1 is a probability measure on the real axis, which reduces to verifying that

2

Z
R

ˆ.x/ dx D 1:

First note that using Proposition 6.2(2) one obtains for any t � 0

1D 2

Z
R

etf .t; x/ dx:

To exchange the limit and integral it suffices to apply the Lebesgue theorem thanks to the condition (8-12)
and the fact that suppft 2 ConvK0 (recall that for simplicity we have assumed that k�0kL1 D 1):

lim
t!1

Z
R

etf .t; x/ dx D

Z
R

ˆ.x/ dx:

This provides the desired result. We point out that with the normalization k�0kL1 D 1 one gets instead
of (8-17)

dP1 D
ˆ

kf0kL1
ıR˝f0g;

which gives the structure of the limiting measure stated in Theorem 2.2 thanks to (8-5) and (8-11).

8B. Concentration of the support. In this section we shall complete the study of the limiting measure
dP1 and identify its support, denoted by K1. What is left to conclude the proof of Theorem 2.2 is just
to check that the support Dt of the solution �t converges in the Hausdorff sense to K1. Recall that K0
is the support of f0 and is assumed to be a finite collection of increasing segments Œai I bi �, i D 1; : : : ; n,
such that ai < bi < aiC1. According to (8-18) one has

suppˆD  1.K0/,K1:
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Since ‰1 is strictly increasing due to (8-10) one deduces easily that

suppˆD[niD1Œa
1
i ; b

1
i �; a1i ,  1.ai /; b1i ,  1.bi /:

Using once again (8-10) one may easily obtain that

for all i; ja1i � b
1
i j �

1
2
jai � bi j:

Now to establish the convergence in the Hausdorff sense of Dt towards K1 it suffices to prove the result
for each connected component, that is,

for all i D 1; : : : ; n; dH .�
i
t ; Œa

1
i ; b

1
i �/� Ce

�t ;

with
� it , f.x; ft .x// W x 2 Œa

t
i ; b

t
i �g:

By straightforward analysis using (7-17) one obtains

dH .�
i
t ; Œa

1
i ; b

1
i �/� Ce

�t
CC max.jati � a

1
i j; jb

t
i � b

1
i j/:

From (8-8) one gets
max.jati � a

1
i j; jb

t
i � b

1
i j/� Ce

�t

and therefore
for all t � 0; dH .Dt ; K1/� Ce

�t :

The proof of Theorem 2.1 is now complete.
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COUPLED KÄHLER–RICCI SOLITONS ON TORIC FANO MANIFOLDS

JAKOB HULTGREN

We prove a necessary and sufficient condition in terms of the barycenters of a collection of polytopes
for existence of coupled Kähler–Einstein metrics on toric Fano manifolds. This confirms the toric case
of a coupled version of the Yau–Tian–Donaldson conjecture and as a corollary we obtain an example
of a coupled Kähler–Einstein metric on a manifold which does not admit Kähler–Einstein metrics. We
also obtain a necessary and sufficient condition for existence of torus-invariant solutions to a system of
soliton-type equations on toric Fano manifolds.

1. Introduction

Given a compact Kähler manifold (X, ω), an important question in complex geometry is the problem of
finding a metric of constant scalar curvature in the Kähler class [ω]. It has been known for a long time
that there are deep obstructions to existence of these metrics. In the case when [ω] = ±c1(X), constant
scalar curvature metrics coincide with Kähler–Einstein metrics, i.e., metrics that are proportional to their
Ricci tensor. It was recently shown [Chen et al. 2015a; 2015b; 2015c] that existence of such metrics is
equivalent to a certain algebraic stability condition: K-polystability (see also [Tian 2015]). A similar
stability condition for general Kähler classes is conjectured to be equivalent to existence of constant scalar
curvature metrics. However, except for some special classes of manifolds (see [Donaldson 2009]) this is
open. It should also be pointed out that even in light of [Chen et al. 2015a; 2015b; 2015c], determining
if a given manifold admits a Kähler–Einstein metric is not a straightforward task. The condition of
K-polystability is not readily checkable. On the other hand, a large class of manifolds where existence
of Kähler–Einstein metrics reduces to a simple criterion is given by toric Fano manifolds. Here, as was
originally proved in [Wang and Zhu 2004], existence of Kähler–Einstein metrics is equivalent to the
condition that the barycenter of the polytope associated to the anticanonical polarization is the origin. In
addition, Wang and Zhu [2004] proved that any toric Fano manifold admits a Kähler–Ricci soliton, in
other words a metric ω such that

Ricω = LV (ω)+ω (1)

for a holomorphic vector field V. Here LV denotes Lie derivative along V. These appear as natural
long-time solutions to the Kähler–Ricci flow and have attracted great interest over the years; see for
example [Hamilton 1993; 1995; Cao 1997; Tian 1997].

MSC2010: 32Q15, 32Q20, 32Q26, 53C25.
Keywords: coupled Kähler–Einstein metrics, Kähler–Einstein metrics, Monge–Ampère equations, Kähler manifolds.
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In a recent paper Witt Nyström together with the present author introduced the concept of coupled
Kähler–Einstein metrics [Hultgren and Nyström 2018]. These are k-tuples of Kähler metrics (ω1, . . . , ωk)

on a compact Kähler manifold X satisfying

Ricω1 = · · · = Ricωk =±
∑

i

ωi . (2)

These generalize Kähler–Einstein metrics in the sense that for k = 1 this equation reduces to the classical
equation

Ricω1 =±ω1

defining Kähler–Einstein metrics. Moreover, (2) implies a cohomological condition on ω1, . . . , ωk ,
namely ∑

i

[ωi ] = ±c1(X). (3)

We see that, much as for Kähler–Einstein metrics, the theory splits into two cases: c1(X)<0 and c1(X)>0.
Now, as in [Hultgren and Nyström 2018] we will say that a k-tuple of Kähler classes (α1, . . . , αk) such
that

∑
i αi =±c1(X) is a decomposition of ±c1(X) and given a decomposition of c1(X) we will say that

it admits a coupled Kähler–Einstein metric if there is a coupled Kähler–Einstein metric (ω1, . . . , ωk)

such that [ωi ] = αi for all i . In [Hultgren and Nyström 2018] it was shown that fixing a decomposition of
c1(X) imposes the right boundary conditions on (2) in the sense that:

• If c1(X) < 0, then any decomposition of −c1(X) admits a unique coupled Kähler–Einstein metric.

• If c1(X) > 0, then any coupled Kähler–Einstein metric admitted by a given decomposition of c1(X)
is unique up to the flow of holomorphic vector fields.

Moreover, it was shown that if c1(X) > 0 and (ω1, . . . , ωk) is a coupled Kähler–Einstein metric, then
the associated k-tuple of Kähler classes ([ω1], . . . , [ωk]) satisfies a certain algebraic stability condition
which, by analogy, was called K-polystability. It was also conjectured that the converse of this holds,
providing a “coupled” Yau–Tian–Donaldson conjecture:

Conjecture 1 [Hultgren and Nyström 2018]. Assume c1(X) > 0. Then a decomposition of c1(X) admits
a coupled Kähler–Einstein metric if and only if it is K-polystable.

Our main theorem confirms this conjecture in the toric case and provides a simple condition for
K-polystability in terms of the barycenters of a collection of polytopes associated to (α1, . . . , αk). More
precisely, consider the anticanonical line bundle −K X over a toric Fano manifold X . Fixing the action of
(C∗)n on X , this defines a polytope P−K X in the vector space M ⊗R, where M is the character lattice
of (C∗)n. For a general Kähler class that arises as the curvature of a toric line bundle, this correspondence
is well-defined up to translation of the polytope (or equivalently, up to choice of action on the toric line
bundle). Moreover, the correspondence trivially extends to all Kähler classes that can be written as linear
combinations with positive real coefficients of Kähler classes of this type. By general facts (see Lemma 23
and the discussion following it) this holds for any Kähler class on a toric Fano manifold. This means that
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a decomposition of c1(X) determines (up to translations) a set of polytopes P1, . . . , Pk in Rn. Moreover,
the condition

∑
i αi = c1(X) means the polytopes can be chosen so that the Minkowski sum satisfies∑

i

Pi = P−K X . (4)

Enforcing this, we note that the polytopes associated to a decomposition of c1(X) are well-defined up to
translations

(P1, . . . , Pk) 7→ (P1+ c1, . . . , Pk + ck),

where c1, . . . , ck ∈ Rn satisfies
∑

i ci = 0.
Now, given a polytope P in Rn we will let b(P) be the (normalized) barycenter of P,

b(P)=
1

Vol(P)

∫
P

p dp,

where dp is the uniform measure on P and Vol(P) =
∫

P dp. Note that b(P + c) = b(P)+ c; hence,
assuming (4), the quantity

∑
i b(Pi ) is independent of the choices of translation of P1, . . . , Pk . Our main

theorem is:

Theorem 2. Let X be a toric Fano manifold. Assume (αi ) is a decomposition of c1(X) and P1, . . . , Pk

are the associated polytopes. Then the following are equivalent:

(i) (αi ) admits a coupled Kähler–Einstein tuple.

(ii) (αi ) is K-polystable in the sense of [Hultgren and Nyström 2018].

(iii)
∑

i b(Pi )= 0.

Remark 3. One important point is
∑

i b(Pi ) is not in general equal to

b
(∑

i

Pi

)
= b(P−K X );

hence the condition on P1, . . . , Pk in Theorem 2 is not (a priori) equivalent to existence of a classical
Kähler–Einstein metric. In fact, none of these conditions imply the others. By Corollary 4 below,
there is an example of a manifold that doesn’t admit Kähler–Einstein metrics but does admit coupled
Kähler–Einstein metrics. Moreover, by Remark 6 there is an example of a Kähler–Einstein manifold with
decompositions of c1(X) that doesn’t admit coupled Kähler–Einstein metrics.

Corollary 4. Let E be the rank-2 vector bundle

E =OP2(−1)⊕OP1(−1)

over P2
×P1 and consider the toric four-manifold X = P(E). Then X does not admit a Kähler–Einstein

metric. On the other hand, let π : X→ P1 be the natural projection onto P1 and β1, β2 ∈ H (1,1)(X) be
the classes corresponding to the divisors given by π−1(0) and π−1(∞), respectively. Then

α1 =
1
2 c1(X)− 1

4

√
5
7(β1+β2), α2 =

1
2 c1(X)+ 1

4

√
5
7(β1+β2) (5)

are Kähler and the decomposition of c1(X) given by (α1, α2) admits a coupled Kähler–Einstein metric.
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Remark 5. It would be interesting to see if there are simpler examples than the one given in Corollary 4
of manifolds which admit coupled Kähler–Einstein metrics but no Kähler–Einstein metrics. However, by
Corollary 1.6 in [Hultgren and Nyström 2018], the automorphism group of any manifold that admits a
coupled Kähler–Einstein metric is reductive. Among other things, this rules out P2 blown up in one or
two points.

Remark 6. The following is an example of a decomposition of c1(X) on an Einstein manifold that does
not admit a coupled Kähler–Einstein metric. Let X be the toric Fano manifold acquired by blowing up P2

in three points and D be the (S1)n-invariant divisor in X that corresponds to the ray generated by (1, 1)
in the fan of X . Let Dt =−

1
2 K X + t D. We have Dt + D−t =−K X . Computer calculations show that

b(PDt )+ b(PD−t ) 6= 0

for small t ; in other words the decomposition of c1(X) given by (c1(Dt), c1(D−t)) does not admit a
coupled Kähler–Einstein metric for small t .

Remark 7. As discussed in [Hultgren and Nyström 2018], fixing a Kähler class α on X we get a family
of decompositions of c1(X)

{(tα, c1(X)− tα) : t ∈ (0, tα)},

where tα = sup{t : c1(X)− tα > 0}. Assuming they admit coupled Kähler–Einstein metrics (ηt
1, η

t
2) we

get a canonical family of metrics {ωt := η
t
1/t} in α. Now, let X be a toric Fano surface. By Theorem 2,

(tα, α− c1(X)) admits a coupled Kähler–Einstein metric if and only if

tb(PLα )+ b(P−K X−t Lα )= 0, (6)

where Lα is a toric (R-)line bundle such that c1(Lα)= α. On the other hand, it was proven in [Donaldson
2009] that α admits a constant scalar curvature metric if and only if∫

∂PLα
f dσ∫

∂PLα
dσ
−

∫
PLα

f dp∫
PLα

dp
≥ 0 (7)

for every convex function f on the closure of PLα , with equality if and only if f is affine linear. Here dσ
is the measure on ∂PLα defined by the identity

d
dt

(∫
PLα+t P−K X

h dp
)∣∣∣∣

t=0
=

∫
∂PLα

h dσ

for all functions h continuous in a neighborhood of P. In particular, for affine linear functions f , (7)
reduces to the barycenter condition

b(PLα )= b(dσ)=

∫
∂PLα

σ dσ∫
∂PLα

dσ
. (8)

It would be interesting to understand the relationship of (6) with the conditions (7) and (8).
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Our second result considers a more general (soliton-type) version of (2), namely, given holomorphic
vector fields V1, . . . , Vk

Ricω1− LV1(ω1)= · · · = Ricωk − LVk (ωk)=
∑

i

ωi . (9)

We will say that a k-tuple of Kähler metrics satisfying (2) is a coupled Kähler–Ricci soliton. When
k = 1, (9) reduces to (1) and defines classical Kähler–Ricci solitons. As mentioned above these appear as
natural solutions to the Kähler–Ricci flow. In fact, a similar interpretation in terms of natural solutions
to a geometric flow can be given for (9). Given k Kähler metrics ω0

1, . . . , ω
0
k we may consider the flow

defined by
d
dt
ωt

1 = Ricωt
1−

∑
i

ωt
i , . . . ,

d
dt
ωt

k = Ricωt
k −

∑
i

ωt
i (10)

for t ∈ [0,∞). Stationary solutions to (10) are given by coupled Kähler–Einstein metrics, i.e., solutions
to (2). On the other hand, putting V1= · · ·= Vk = V and letting (ωt

i ) be the flow along V of a k-tuple (ω0
i )

satisfying (9) means (ωt
i ) will satisfy (9) for each t . Plugging this into the right-hand side of (10) gives

Ricωt
j −

∑
i

ωt
i = LV (ω

t
j )

for all j . By definition (d/dt)ωt
j = LV (ω

t
j ) for all j ; hence (ωt

i ) satisfies (10).
To state our second result we need some terminology. Note that a point in the vector space that is

dual to M ⊗R, namely N ⊗R where N is the lattice consisting of one-parameter subgroups in (C∗)n,
determines a holomorphic vector field on X . We will call any holomorphic vector field on X that arises
in this manner a toric vector field. These can be given a concrete description in the following way: By
definition, the action of (C∗)n on X admits an open, dense and free orbit. Identifying (C∗)n with this
orbit and letting σ1, . . . , σn be the standard logarithmic coordinates on (C∗)n the toric vector fields are
simply the vector fields that arise as linear combinations of the coordinate vector fields ∂/∂σ1, . . . , ∂/∂σk .
We will often identify a toric vector field with its associated point in N ⊗R.

In this context there is a natural vector-valued invariant AV (P) determined by a polytope P in
Rn
= M⊗R and a point V in the dual vector space N ⊗R. To define it we first introduce the V -weighted

volume of P

VolV (P)=
∫

P
e〈V,p〉 dp.

Then AV (P) is given by

AP(V )=
1

VolV (P)

∫
P

pe〈V,p〉 dp. (11)

With respect to this we have:

Theorem 8. Let V1, . . . , Vk be toric vector fields on a toric Fano manifold X. Assume (α1, . . . , αk) is a
decomposition of c1(X) and P1, . . . , Pk are the associated polytopes. Then there is an (S1)n-invariant
solution (ω1, . . . , ωk) to (9) such that ωi ∈ αi for each i if and only if∑

i

APi (Vi )= 0. (12)
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Remark 9. Much as in Theorem 2, the polytopes P1, . . . , Pk associated to (α1, . . . , αk) are only well-
defined up to translations Pi → Pi + ci for ci ∈ Rn satisfying

∑
i ci = 0. On the other hand, much as the

barycenter, AV (P) satisfies
AP+c(V )=AP(V )+ c,

and hence the left-hand side of (12) is invariant under such translations.

Remark 10. Theorem 8 is a generalization of Wang and Zhu’s theorem [2004] on the existence of
Kähler–Ricci solitons on toric manifolds. See also [Berman and Berndtsson 2013; Delcroix 2017] for
generalizations in other directions.

A straightforward corollary of Theorem 8, using that (11) is the gradient of a strictly convex and proper
function on Rn, is:

Corollary 11. Let (αi ) be a decomposition of c1(X) on a toric Fano manifold. Then there is a unique
toric vector field V such that (αi ) admits an (S1)n-invariant coupled Kähler–Ricci soliton where V1 =

· · · = Vk = V.

Remark 12. Naturally, we expect solutions of the flow (10) to converge to the Kähler–Ricci solitons in
Corollary 11. This parallels the theory in the case k = 1 (see [Tian and Zhu 2007]). On the other hand, it
is interesting to note that by Theorem 8 there exists a large class of solitons that do not appear as natural
solutions to (10) in the sense discussed above (this happens whenever Vi 6= Vj for some i and j). This
suggests that there is a more general flow, which includes (10) as a special case, and where the solitons of
Theorem 8 appear as natural solutions.

A second corollary of Theorem 8 is related to the corresponding real Monge–Ampère equation. Let
f1, . . . , fk be twice differentiable convex functions on Rn. Let ∇ fi denote the gradient of fi . Then, given
a decomposition (α1, . . . , αk) and associated polytopes P1, . . . , Pk , existence of coupled Kähler–Ricci
solitons is equivalent to the solvability of the equation

e〈V1,∇ f1〉

VolV1(P1)
det
(

d2 f1

dxl dxm

)
= · · · =

e〈Vk ,∇ fk〉

VolVk (Pk)
det
(

d2 fk

dxl dxm

)
= e−

∑
i fi (13)

under the boundary conditions
∇ fi (Rn)= Pi , (14)

where the left-hand side of (14) denotes the closure of the image of ∇ fi in Rn. We will say that a k-tuple
of polytopes in Rn is toric Fano if it is defined by a decomposition of c1(X) on a toric Fano manifold.

Corollary 13. Assume P1, . . . , Pk is a toric Fano k-tuple of polytopes and V1, . . . , Vk ∈ Rn. Then (13)
admits a solution satisfying (14) if and only if∑

i

APi (Vi )= 0.

In particular, if V1 = · · · = Vk = 0 then (13) admits a solution satisfying (14) if and only if∑
i

b(Pi )= 0.
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Theorem 2 essentially follows from considering the case V1 = · · · = Vk = 0 in Theorem 8. Doing this
gives that (iii) in Theorem 2 implies (i). As mentioned above, by a previous result [Hultgren and Nyström
2018, Theorem 1.15] (i) implies (ii). Finally, an explicit formula for the (coupled) Donaldson–Futaki
invariant of test configurations induced by toric vector fields shows that (ii) implies (iii). To be more
precise, if V is a toric vector field and (αi ) is a decomposition of c1(X) with associated polytopes
P1, . . . , Pk , then the test configuration for (αi ) induced by V has Donaldson–Futaki invariant〈

V,
∑

i

b(Pi )

〉
.

It follows that if
∑

i b(Pi ) 6= 0, then there is a test configuration for (αi ) with negative Donaldson–Futaki
invariant. By definition, this means (αi ) is not K-polystable (see Section 3.2 for a detailed argument).

The main point in the proof of Theorem 8 is to establish a priori C0-estimates along an associated
continuity path. More precisely, let θ1, . . . , θk be Kähler metrics such that [θi ] = αi . Assume, using the
Calabi–Yau theorem, that ω0 is a Kähler form such that Ricω0 =

∑
i θi and

∫
X ω

n
0 = 1. For each i , let

gi = gθi ,Vi be a θi -plurisubharmonic function on X such that

ddcgi = LVi (θi )

and
∫

X egi θn
i = 1 (see Lemma 17). For t ∈ [0, 1] we will consider the equation

eg1+V1(φ1)(θ1+ ddcφ1)
n
= · · · = egk+Vk(φk)(θk + ddcφk)

n
= e−t

∑
i φiωn

0 . (15)

Moreover, fixing a point x0 ∈ X we will assume solutions to (15) are normalized according to

φ1(x0)= · · · = φk(x0). (16)

The significance of these equations is that for t = 1, a k-tuple of functions φ1, . . . , φk such that each φi is
θi -plurisubharmonic solves (15) if and only if the k-tuple of Kähler metrics (θi + ddcφi ) is a coupled
Kähler–Ricci soliton. We prove:

Theorem 14. Let Vi , αi and Pi be as in Theorem 8 and assume (12) holds. Let x0 be the point in X that,
under the identification of (C∗)n with its open, dense and free orbit, corresponds to the identity element in
(C∗)n. Then, for any t0 > 0 there is a constant C such that any solution (φ1, . . . , φk) of (15) for t ≥ t0,
normalized according to (16), satisfies

sup
X
|φi |< C

for all i .

Pingali [2018] reduced existence of coupled Kähler–Einstein metrics to a priori C0-estimates. This
means that Theorem 8 in the special case when V1 = · · · = Vk = 0, and thus Theorem 2, follows from
Theorem 14 above and Pingali’s work. For the general case we adapt the argument of Pingali to the
soliton setting, essentially following the computations in [Tian and Zhu 2000]. Letting Aut(X) be the
automorphism group of X we prove:
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Theorem 15. Let X be a Fano manifold and V1, . . . , Vk be holomorphic vector fields in the reductive
part of the Lie algebra of Aut(X) such that Im Vi generate a compact one-parameter subgroup in Aut(X)
for each i . Let (αi ) be a decomposition of c1(X) with representatives θ1, . . . , θk such that Im LVi θi = 0
for all i . Assume also C0-estimates hold for (15); in other words, for each t0 > 0, there is a constant C
such that any solution (φi ) to (15) at t > t0 satisfies

sup
X
|φi |< C

for all i . Then (αi ) admits a solution to (9).

We get that the positive part of Theorem 8 follows directly from Theorems 14 and 15. The negative
part of Theorem 8 follows directly from a change of variables in (13) (see Lemma 28).

Remark 16. Berman and Berndtsson [2013] used a variational approach to prove existence of Kähler–
Ricci solitons on toric log Fano varieties. They give a direct argument for coercivity of the associated
Ding functional on (S1)n-invariant metrics. It would be interesting if this coercivity estimate could be
extended to the coupled setting. This would provide a stronger result than this paper in two respects:
First of all, it would cover the singular setting of log Fano varieties. Secondly, since this bypasses the
higher-order a priori estimates from complex geometry it would provide a version of Corollary 13 that is
valid for all k-tuples of polytopes, not only the ones that are defined by decompositions of c1(X) on toric
Fano manifolds.

This paper is organized in the following way: Sections 2.1 and 2.2 are devoted to the proof of
Theorem 15. In Section 2.1 we prove openness along the continuity path and solvability at t = 0. In
Section 2.2 we prove C2,α-estimates assuming C0-estimates, thus finishing the proof of Theorem 15. In
Section 3 we set up the real convex geometric framework and in Section 3.1 we use this to prove the
C0-estimate of Theorem 14. Finally, at the end of Section 3.1 we prove Theorem 8, Corollary 11 and
Corollary 13 and in Section 3.2 we prove Theorem 2.

2. Openness and higher-order estimates

This section is devoted to proving Theorem 15.
The following lemma is well known. However, as a courtesy to the reader we include a proof of it.

Lemma 17. Assume X is a Fano manifold, V a holomorphic vector field on X and θ a Kähler form on X
such that the imaginary part of LV (θ) vanishes. Then there is a smooth real-valued function g on X such
that

ddcg = LV (θ).

Proof. Since V is a holomorphic vector field, the contraction operator iV anticommutes with ∂̄; hence
iV θ is a ∂̄-closed (0, 1)-form. By the Kodaira vanishing theorem, since X is Fano, the sheaf cohomology
group satisfies

H 1(X,O)= H 1(X,−K X + K X )= 0.
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This means the Dolbeault cohomology group satisfies

H (0,1)(X)∼= H 1(X,O)= 0;

hence iV θi is also ∂̄-exact. Let g be a smooth function such that
√
−1∂̄g = iV θ . As LV (θ) is real, so

is g. Moreover,

ddcg = i∂∂̄g = ∂iV θ = LV (θ). �

For each i , let PSH(X, θi ) be the space of θi -plurisubharmonic functions on X , in other words the
space of upper semicontinuous and locally integrable functions φi satisfying ddcφi + θi ≥ 0. Note that if
φi is a smooth function in PSH(X, θi ), then

LVi (ddcφ)= ∂iVi

√
−1∂∂̄φi

=
√
−1∂∂̄iVi ∂φi = ddcVi (φi );

hence ddc(gi + Vi (φi ))= LV (θi + ddcφi ). This means that, much as in [Hultgren and Nyström 2018],
we get:

Lemma 18. Let X be a Fano manifold, V1, . . . , Vk holomorphic vector fields on X and (αi ) a k-tuple
of Kähler classes on X such that

∑
αi = c1(X). Assume each class αi has a representative θi such that

Im LV (θi )= 0 and, for each i , let φi be a smooth function in PSH(X, θi ). Then (φ1, . . . , φk) is a solution
to (15) at t = 1 if and only if the k-tuple of Kähler metrics (θi + ddcφi ) is a coupled Kähler–Ricci soliton.

2.1. Openness. Here we will prove the first part of Theorem 15, namely that the set of t such that (15)
is solvable is open.

We will use the Banach spaces

A = {(φ1, . . . , φk) : φi ∈ C4,α(X)},

B = {(v1, . . . , vk) : vi ∈ C2,α(X)}.

Moreover, let APSH be the open subset of A given by

APSH = {(φ1, . . . , φk) : φi ∈ C4,α(X)∩PSH(X, θi )}.

Let F : R× APSH→ B be defined by

F(t, (φi ))=

log((θ1+ ddcφ1)
n/ωn

0)+ g1+ V1(φ1)+ t
∑
φi

...

log((θk + ddcφk)
n/ωn

0)+ gk + Vk(φk)+ t
∑
φi

 .
Note that F(t, (φi )) = 0 if and only if (φi ) defines a solution to (15) at t . Moreover, in this case the
measure

µ := (θi + ddcφi )
negi+Vi (φi )

is independent of i .
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Lemma 19. The Fréchet derivative of F at (t, (φi )) with respect to the second argument is given by
H : A→ B defined by

H(v1, . . . , vk)=

−1ω1v1+ V1(v1)+ t
∑
vi

...

−1ωkvk + Vk(vk)+ t
∑
vi

 , (17)

where ωi = θi + ddcφi and 1ωi is the associated Laplace–Beltrami operator. Moreover, H is elliptic.
Finally, assume F(t, φ)= 0 and let 〈 · , · 〉 be the inner product on B given by

〈(ui ), (vi )〉 =
∑

i

∫
X

uiviµ.

Then

〈H(u1, . . . , uk), (vi )〉 = 〈(ui ), H(v1, . . . , vk)〉

for any (ui ), (vi ) ∈ B.

Proof. Equation (17) follows from straightforward differentiation and the well-known identity

d
ds

log
(θi + ddc(φi + svi ))

n

θn
i

∣∣∣∣
s=0
= n

ddcv(θi + ddcφi )
n−1

(θi + ddcφi )n
=1ωivi .

Now, H takes the following form in local coordinates:

(ui ) 7→ (vj )=

(∑
i,l,m

alm
i j (x)

∂2ui

∂xl∂xm
+ lower-order terms

)
,

where alm
i j = 0 if i 6= j and {alm

ii }l,m are the coefficients for the Laplace operator 1ωi . Recall that H is
elliptic if the matrix (∑

l,m

alm
i j (x)ξlξm

)
(18)

is invertible for all p ∈ X and all nonzero ξ =
∑
ξl(∂/∂xl) ∈ Tp X , but this follows immediately. To see

this note that ∑
l,m

alm
i j (x)ξlξm

is 0 if i 6= j and, by ellipticity of 1ωi , positive if i = j . This means (18) is a diagonal matrix with positive
entries on the diagonal; hence it is invertible.

We will now prove the last statement in the lemma. It is a consequence of the following identity for
functions u, v ∈ C2,α(X) (see Lemma 2.2 in [Tian and Zhu 2000]):∫

X
(1ωiv+ Vi (v))uµ=−

∫
X
〈dv, du〉ωiµ. (19)
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We get ∑
i

∫
X

(
1ωivi + Vi (vi )+

∑
j

vj

)
uiµ=−

∑
i

∫
X
〈dvi , dui 〉µ+

∑
i, j

∫
X
vj uiµ

=

∑
i

∫
X
vi

(
1ωi ui + Vi (ui )+

∑
j

u j

)
µ,

and the last statement in the lemma follows. �

Lemma 20. Assume t ∈ [0, 1) and (vi ) ∈ A are not all constant and satisfy

1ω1v1+ V1(v1)= · · · =1ωkvk + Vk(vk)= λ
∑

i

vi (20)

for a k-tuple ω1, . . . , ωk satisfying

Ricω1− LV1(ω1)= · · · = Ricωk − LVk (ωk)= t
∑

i

ωi + (1− t)
∑

i

θi . (21)

Then λ > t .

Proof. Let ∂ωiv denote the gradient of v with respect to the metric ωi . Moreover, we will use the notation
Ricωi = Ric(ωi ). The proof is based on the following Weitzenböck identity (see [Tian and Zhu 2000],
equation 2.7, page 277):

−

∫
X
〈d(1ωiv+ Vi (v)), dv〉ωiµ≥

∫
X
(Ricωi −LV (ωi ))(∂ωiv, ∂ωiv)µ.

Combining this with (21) and (20) gives

λ2
∫

X

(∑
j

vj

)2

µ=

∫
X
(1ωivi + Vi (vi ))

2µ=−

∫
X
〈d(1ωivi + Vi (vi )), dv〉ωiµ

≥

∫
X
(Ricωi +LV (ωi ))(∂ωivi , ∂ωivi )µ≥ t

∫
X

∑
j

|∂ωivi |
2
ωj
µ. (22)

Moreover, we claim that (20) implies∫
X
|∂ωivi |

2
ωj
µ≥

∫
X
|dvj |

2
ωj
µ (23)

for any i and j . Assuming that this is true we see that (22) implies

λ2
∫

X

(∑
j

vj

)2

µ≥ t
∫

X

∑
j

|∂ωjvj |
2
ωj
µ= t

∫
X

∑
j

|dvj |
2
ωj
µ

= t
∫

X

∑
j

(1ωjvj + Vi (vj ))vjµ

= tλ
∫

X

∑
j

(∑
i

vi

)
vjµ= tλ

∫
X

(∑
j

vj

)2

µ.
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We conclude that λ ≥ t . Moreover, if λ = t then equality holds in all inequalities above. In particular,
equality holds in the last inequality of (22); hence, by (21),

0=
∫

X
(Ricωi −LV (ωi ))(∂ωivi , ∂ωivi )µ− t

∫
X

∑
j

|∂ωivi |
2
ωj
µ

= (1− t)
∫

X

∑
j

|∂ωivi |
2
θj
µ

from which it follows that vi is constant for every i . This means that to finish the proof of the lemma it
suffices to prove (23). To do this, note that for any i and j , by (20)∫

X
|dvj |

2
ωj
µ=

∫
X
(1ωjvj + Vi (vj ))vjµ

=

∫
X
(1ωivi + Vi (vi ))vjµ=

∫
X
〈dvi , dvj 〉ωiµ.

Moreover, choosing coordinates (z1, . . . , zn) that are normal with respect to ωj and such that ωi is
diagonal with eigenvalues β1, . . . , βn at a point p we get

|〈dvi , dvj 〉ωi | =

∣∣∣∣∑
l

1
βl

∂vi

∂zl

∂vj

∂zl

∣∣∣∣≤
√∑

l

∣∣∣∣ 1
βl

∂vi

∂zl

∣∣∣∣2
√∑

l

∣∣∣∣∂vj

∂zl

∣∣∣∣2 = |∂ωivi |ωj |dvj |ωj .

Combining this with the Cauchy–Schwarz inequality we get∫
X
|dvj |

2
ωj
µ=

∫
X
〈dvi , dvj 〉ωiµ≤

∫
X
|∂ωivi |ωj |dvj |ωjµ≤

√∫
X
|∂ωivi |

2
ωj
µ

√∫
X
|dvj |

2
ωj
µ,

and (23) follows. �

We can now prove the first part of Theorem 15.

Proof of Theorem 15. First part: openness and the case t = 0. The theorem is proved using the continuity
method along the path defined by (15). Here we will prove that the set of t such that (15) is solvable is
nonempty and open in [0, 1]. At the end of Section 2.2 we will prove that it is also closed in [0, 1], hence
that (15) is solvable for all t ∈ [0, 1].

First of all, to see that the set of t such that (15) is solvable is nonempty, note that for t = 0, (15)
reduces to the collection of equations

(θj + ddcφj )
negj+Vj (φj ) = ωn

0 . (24)

This means that for each i we can apply the Main Theorem in [Zhu 2000] to get φi such that

(θj + ddcφj )
negj+Vj (φj )+cj = ωn

0 (25)

for some cj ∈ R. Integrating both sides of this and using the fact that∫
X

egi+Vi (φi )(θi + ddcφi )
n
=

∫
X

egi θn
i = 1=

∫
X
ωn

0 (26)
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for all smooth φi ∈ PSH(X, θi ) we see that cj = 0 for all j ; in other words (φ1, . . . , φk) provides a
solution to (15) at t = 0.

Now, (26) is well known but for completeness we provide an argument for it here. Consider the
variation of the left-hand side of (26) with respect to φi∫

X
(1ωi φ̇i + V (φ̇i ))µi , (27)

where we use the notation µi = egi+Vi (φi )(θi + ddcφi )
n . By (19),∫

X
(1ωi φ̇i + V (φ̇i ))(φ̇i + 1)µi =

∫
X
|dφ̇|2ωi

µi =

∫
X
(1ωi φ̇i + V (φ̇i ))φ̇iµi , (28)

and hence (27) vanishes. This proves (26).
The fact that the set of t such that (15) is solvable is open follows from Lemmas 19 and 20 and

a standard application of the implicit function theorem. More precisely, H is elliptic by Lemma 19.
This means the image of H : (W 2,2(X))k → (L2(X))k is closed (see for example Theorem 10.4.7 in
[Nicolaescu 1996]). Taking (vi ) in the orthogonal complement of the image of H gives

〈(vi ), H(ui )〉 = 0

for all (ui ) ∈ (W 2,2(X))k . In particular, it holds for all (ui ) ∈ (C∞(X))k . By the last point in Lemma 19
this means H(vi ) = 0 as a distribution. By elliptic regularity (see for example Corollary 10.3.10 in
[Nicolaescu 1996]) (vi ) ∈ (C∞(X))k and hence, by Lemma 20, (vi )= (Ci ) for constants C1, . . . ,Ck . As
H(Ci )= 0 we get

∑
Ci = 0. Using this and elliptic regularity again (see for example Theorem 10.3.11(b)

in [Nicolaescu 1996]), we may conclude that the kernel of H is
{
C1, . . . ,Ck :

∑
Ci = 0

}
and the image

of H is

B̂ =
{
(vi ) ∈ B :

∫
X
v1µ= · · · =

∫
X
vkµ

}
. (29)

It follows that H is invertible as a map from

Â = {(vi ) ∈ A : v1(x0)= · · · = vk(x0)}

to B̂. Moreover, the derivative of F with respect to t , (t, (φi )) 7→
(∑

φi , . . . ,
∑
φi
)
, trivially maps to B̂.

Thus, applying the implicit function theorem to F restricted to Â ∩ APSH completes the proof of the
theorem. �

2.2. Higher-order estimates. We begin with:

Lemma 21. Assume (φi ) satisfies (15) for some t ∈ [0, 1]. Then

sup
X
|1θjφj | ≤ C,

where C depends only on supi ‖φi‖C0(X).

We will use the following lemma from [Zhu 2000] (page 768, Corollary 5.3):
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Lemma 22. Let X be a compact Kähler manifold, ω a Kähler form on X and V a holomorphic vector
field on X. Assume φ ∈ PSH(X, ω) is smooth and X (φ) is a real-valued function. Then

sup
X
|V (φ)|< C

for a constant C that is independent of φ.

Proof of Lemma 21. We start with the following inequality originating in [Yau 1978] (see for example
equation 2.3 on page 1587 in [Chen and He 2012]): assume ω is a Kähler form and v is a smooth function
satisfying

(ω+ ddcv)n = eFωn.

Then there are constants C1,C2 and C3, independent of v, such that

1ω+ddcv(e−C1v(n+1ωv))≥ e−C1v1ωF +C2(n+1ωv)n/(n−1)
−C3. (30)

For each j , we have that φj satisfies the equation

(θj + ddcφj )= e−gj−Vi (φj )−t
∑

i φi+log(ωn
0/θ

n
j )θn

j . (31)

Applying (30) to this and letting
u j = e−C1φj (n+1θjφj ),

for all j we get

1ωj u j ≥ e−C1φj1θj

(
−gj − Vj (φj )− t

∑
i

φi + log(ωn
0/θ

n
j )

)
+C2(n+1θjφj )

n/(n−1)
−C3. (32)

Note that ddcφi >−θi ; hence

1θjφj = n
(ddcφj )∧ θ

n−1
j

θn
j

>−n.

This means u j > 0 for all j . Moreover, u j − e−C1φj1θjφj = ne−C1φj . Hence, adjusting C2 and C3 in a
way which only depends on supi ‖φi‖C0(X), we get

1ωj u j ≥−e−C1φj1θj (gj + Vj (φj ))− t
∑

i

ui +C2un/(n−1)
j −C3. (33)

Now, let

Vj =
∑

V j
m
∂

∂zm
and θj =

∑
θ

j
ml̄

dzm dz̄l .

As in [Tian and Zhu 2000], we compute

1θj (gj + Vj (φj ))=
∑
m,l

∂

∂zl

(
V j

m

(
θ

j
ml̄
+

∂φj

∂zm∂ z̄l

))

=

∑
m,l

∂V j
m

∂zl

(
θ

j
ml̄
+

∂2φj

∂zm∂ z̄l

)
+ V j

m

(
∂θ

j
ml̄

∂zl
+

∂3φj

∂zm∂zl∂ z̄l

)
. (34)
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We will be interested in this at a point, p, where u j attains its maximum. Choosing coordinates around p
that are normal with respect to θj and such that ωj = θj + ddcφj is diagonal, (34) reduces to

∑
m

∂V j
m

∂zm

(
1+

∂2φj

∂zm∂ z̄m

)
+ Vj (1φj ).

The first term of this can be bounded by

sup
m

∣∣∣∣∂V j
m

∂zm

∣∣∣∣(1+1θjφj ).

Moreover, as u j is stationary at p we get that

Vj (u j )= C1Vj (φj )u j − e−C1φj Vj (1θjφj )

vanishes at p; hence

(e−C1φj Vj (1θjφj ))|p = (C1Vj (φj )u j )|p.

We conclude that

e−C1φj1θj (gj + Vj (φj ))≤

(
sup

m

∣∣∣∣∂V j
m

∂zm

∣∣∣∣+C1Vj (φj )

)
u j .

By Lemma 22 this is bounded by Cu j for a uniform constant C .
We will now plug this into (33). By the maximum principle 1ωj u j ≤ 0 at p. Letting Mi =maxX ui ≥ 0

we get

0≥−Cu j − t
∑

i

Mi +C2un/(n−1)
j −C3

at p. Summing over j and using Young’s inequality a ≤ εan/(n−1)
+C(n, ε) we get, after adjusting C3,

0≥−C
∑

Mi − kt
∑

Mi +
C2

ε

∑
Mi −C3

=

(
−C − kt +

C2

ε

)∑
Mi −C3.

Choosing ε small enough that the expression in the parentheses is positive gives an upper bound on
∑

Mj .
Since Mi ≥ 0 for all i , this implies a bound on sup Mi = sup |ui |. This proves the lemma. �

Proof of Theorem 15. Second part: C2,α-estimates. Here we will prove that the set of t such that (15) is
solvable is closed.

By Lemma 21, |1θiφi | is bounded by a constant that depends only on ‖φi‖C0(X) for all i . We wish
to apply Theorem 1 in [Wang 2012]. To do this we need uniform bounds on the Hölder norms of φi

and Vi (φi ). These are implied by the uniform bounds on 1θiφi . To see this, choose coordinates that are
normal with respect to θi and such that θi + ddcφi is diagonal at a point p. Since

θi + ddcφi =
∑(

1+
∂2φi

∂zm∂ z̄m

)
dzm dz̄m > 0
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we get that ∂2φi/(∂zm∂ z̄m) >−1 for all m. Together with the bound

1θiφi =
∑

m

∂2φi

∂zm∂ z̄m
≤ C

this gives uniform bounds on |∂2φi/(∂zm∂ z̄l)| for all m and l and the bounds on the Hölder norms follow.
Combining this with the argument at the end of Section 2.1, we conclude that the set of t such that

(15) is solvable is nonempty, open and closed in [0, 1]. It follows that (15) has a solution (φi ) at t = 1.
Consequently, by Lemma 18 (θi + ddcφi ) solves (9). �

3. C0-estimates

In this section X will always be a toric Fano manifold. In other words c1(X) > 0 and, letting n = dim X ,
there is an n-dimensional complex torus (C∗)n acting on X by biholomorphisms such that the action
admits an open, dense and free orbit. The purpose of the section is to prove Theorem 14. We will begin by
recalling the well-known correspondence between metrics on line bundles over toric varieties and convex
functions in Rn. As in the Introduction we fix an action of (C∗)n on X and identify (C∗)n with its open,
dense and free orbit. Let θ be an (S1)n-invariant Kähler form on X that arises as the curvature of a metric
‖ · ‖ on a toric line bundle over X . Let P be the polytope associated to this toric line bundle. Assume s0

is the (C∗)n-invariant section corresponding to the point 0 ∈ P. By the invariance s0 is nonvanishing on
(C∗)n and the metric can be represented by a plurisubharmonic function ψ on (C∗)n by

ψ =− log ‖s0‖
2.

Then ψ satisfies ddcψ = θ . Using toric coordinates

(x1, . . . , xn)= (log |z1|, . . . , log |zn|) ∈ Rn

ψ defines a convex function on Rn

f (x1, . . . , xn) := ψ(ex1, . . . , exn )

which will have the property ∇ f (Rn)= P. Moreover, in logarithmic coordinates σi = log zi we have∑
i j

∂2 f
∂xi∂x j

dσi dσ̄j = ddcψ = θ. (35)

Now, for a convex polytope P, let E(P) be the space of smooth, strictly convex functions f such that

∇ f (Rn)= P.

Then it is well known (see for example Proposition 3.3, page 687 in [Berman and Berndtsson 2013]) that
(35) gives a one-to-one correspondence between the (S1)n-invariant elements in [θ ] and E(P).

As noted in the Introduction, the correspondence above extends trivially to any θ such that [θ ] can be
written as a linear combination with positive real coefficients of Kähler classes that arise as the curvature
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of toric line bundles. On the other hand, we have the following general principle which we record for the
convenience of the reader:

Lemma 23. Let α be a Kähler class on a Fano manifold X. Then there are some ample line bundles
L1, . . . , Lm over X and positive real coefficients λ1, . . . , λm such that

α =
∑

i

λi c1(L i ). (36)

Proof. First of all, any Kähler class α can be written as (36) where the line bundles L i are not necessarily
ample and the constants λi are not necessarily positive. To see this, recall that the map

c1 : H 1(X,O∗)→ H 2(X,Z)

is part of the exact sequence

H 1(X,O∗) c1
−→ H 2(X,Z)→ H 2(X,O).

By the Kodaira vanishing theorem, since X is Fano,

H 2(X,O)= H 2(X, K X − K X )= 0.

It follows that c1 is surjective, and hence any element in H 2
DR(X)∼= H 2(X,R) can be written as a linear

combination over R of elements in the image of c1. Note that this means the set of rational classes, in
other words the set of classes of the form qc1(L) for some rational number q and some line bundle L , is
dense in H (1,1)(X).

Now, the cone of Kähler classes K is open in H (1,1)(X). This means we can take a set of rational
classes η1, . . . , ηj in K that span H (1,1)(X) over R. Moreover, these classes define an open subcone of K ,

C =
{∑

i

λiηi : λi ∈ R+

}
.

For any α ∈ K we may take a rational class η0 in the open set (α−C)∩ K which is nonempty since α is
in the interior of K . This means α = η0+ κ , where κ ∈ C and (36) follows. �

Noting that any divisor on a toric manifold is linearly equivalent to an (S1)n-invariant divisor, Lemma 23
and the discussion preceding it gives:

Lemma 24. Let α be a Kähler class on X and P be the polytope corresponding to α. Then (35) gives a
one-to-one correspondence between the (S1)n-invariant elements in α and E(P). Moreover, if α = c1(L),
where L is a toric line bundle over X , then this correspondence is given by θ 7→ f , where

f (log |z1|, . . . , log |zn|) := − log ‖s0‖
2,

where s0 is the (S1)n-invariant (meromorphic) section corresponding to the point 0 ∈M⊗R and ‖ · ‖ is
the metric on L with curvature θ .
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For each i , let hi : R
n
→ R be defined by

hi (x)= log
1

NP

∑
y

e〈y,x〉,

where the sum is taken over all vertices of the polytope Pi and NP is the number of vertices of the
polytope Pi . These functions are smooth, strictly convex and satisfy ∇hi (Rn)= Pi ; hence hi ∈ E(Pi ).
For each i , let θi be the element in αi corresponding to hi . Then there is a one-to-one correspondence
between E(Pi ) and the smooth (S1)n-invariant elements of PSH(X, θi ) given by

fi (x)− hi (x)= φi (ex). (37)

Moreover, hi (0)= 0 for each i . This means the normalization (16) is equivalent to

f1(0)= · · · = fk(0). (38)

Using the correspondence in (37), it is possible to rewrite (15) as a real Monge–Ampère equation.

Lemma 25. Assume (φi ) and ( fi ) are related as in (37). Then, for t ∈ [0, 1], (φi ) satisfies (15) if and
only if ( fi ) satisfies

e〈V1,∇ f1〉

VolV1(P1)
det
(
∂2 f1

∂xm∂xl

)
= · · · =

e〈Vk ,∇ fk〉

VolVk (Pk)
det
(
∂2 fk

∂xm∂xl

)
= e−t

∑
i fi−(1−t)

∑
i hi . (39)

Proof. First of all, using (35) we see that

(θi + ddcφi )
n
=

(∑
m,l

∂2 fi

∂xm∂xl
dσj dσ̄l

)n

= det
(
∂2 fi

∂xm∂xl

)
dσ dσ̄ , (40)

where dσ dσ̄ = dσ1 · · · dσn dσ̄1 · · · dσ̄n .
Abusing notation, we may think of fi and hi as (S1)n-invariant plurisubharmonic functions on

(C∗)n ⊂ X . We will show that

e−t
∑

i φiωn
0 = e−t

∑
i ( fi−hi )ωn

0 = e−t
∑

i fi−(1−t)
∑

i hi dσ dσ̄ . (41)

This will follow if we show that
e
∑

hiωn
0 = dσ dσ̄ . (42)

To do this, we note that by convexity

∇

(∑
i

hi

)
(Rn)=

∑
i

∇hi (Rn)=
∑

Pi = P−K X .

By Lemma 24,
∑

hi defines a metric on −K X of curvature
∑
θi by the relation

‖s0‖
2∑

hi
= e−

∑
hi ,

where s0 is the unique (C∗)n-invariant section of −K X , in other words

s0 =
∂

∂σ1
∧ · · · ∧

∂

∂σk
= dσ−1.
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Moreover, the volume form ωn
0 defines a metric on −K X by the relation

‖dσ−1
‖

2
ωn

0
=

ωn
0

dσ dσ̄
.

The curvature of ‖ · ‖ωn
0

is Ricω0 =
∑
θi . By uniqueness in the Calabi–Yau theorem ‖ · ‖∑ hk = ‖ · ‖ω

n
0

and (42) follows.
It remains to show that

e〈Vi ,∇ fi 〉

VolVi (Pi )
= egi+Vi (φi ). (43)

We will first show that
〈Vi ,∇ fi 〉+Ci = gi + Vi (φi ) (44)

for some Ci ∈ R. Abusing notation again, and thinking of fi as an (S1)n-invariant plurisubharmonic
function on (C∗)n ⊂ X , we compute

ddc
〈Vi ,∇ fi 〉 = ddc

(∑
m

∂ fi

∂xm
am

)
=

∑
m, j,l

∂3 fi

∂x j∂xl∂xm
am dσj dσ̄l

= ∂iV

(∑
m,l

∂2 fi

∂xm∂xl
dσm dσ̄l

)
= ∂iV (θi + ddcφi )= LV (θi )= ddc(gi + Vi (φi ))

and (44) follows by the maximum principle. To get (43), note that the push forward of dσ dσ̄ under the map
(z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|) is the Euclidean measure dx on Rn. This means, by (40) and (44),∫

X
egi+Vi (φi )(θi + ddcφi )

n
=

∫
Rn

det
(
∂2 fi

∂xm∂xl

)
e〈Vi ,∇ fi 〉+Ci dx . (45)

Performing the change of variables ∇ fi = p we get

(45)= eCi

∫
Pi

e〈Vi ,p〉 dp.

By (26) ∫
X

egi+Vi (φi )(θi + ddcφi )
n
=

∫
X

egi θn
i = 1.

This means C = log VolVi (Pi ) and (43) follows.
Using (40), (41) and (43) we conclude that ( fi ) satisfies (13) if and only if (φi ) satisfies (15) on (C∗)n.

As (φi ) is assumed to be smooth, the lemma follows. �

3.1. Estimates. To prove Theorem 14 we need to prove that for all t0 > 0 there is a constant C such that
any solution ( fi ) to (39) at t > t0, normalized according to (38), satisfies

sup
X
| fi − hi | ≤ C (46)

for all i .
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For each i , let ui be the Legendre transform of fi . Recall that fi is a smooth, strictly convex function
on Rn such that ∇ fi (Rn)= Pi . This means each ui is a smooth, strictly convex function on Pi . Moreover,
a standard property of the Legendre transform is that

sup
Rn
| fi − hi | = sup

Pi

|ui − h∗i |,

where h∗i is the Legendre transform of hi . Since h∗i is bounded on Pi (this is easy to verify) we have that
(46) is equivalent to a uniform bound on supPi

|ui |.
We will use a variant of the method of [Wang and Zhu 2004] (see also [Donaldson 2008]). The first

step is to establish bounds on the function

w = wt =
∑

i

(t fi + (1− t)hi ).

Since w is strictly convex and 0 is in the interior of P−K X = ∇w(R
n) we have that w is bounded from

below and attains its minimal value at a unique point. Let m = infw and let xw be the minimal point of w.

Lemma 26. Assume t0 > 0 and (12) holds. Then there are constants C and ε such that if ( fi ) is a solution
to (39) at t > t0, then

w ≥ ε|x − xw| −C (47)
and

|xw| ≤ C. (48)

The proof of Lemma 26 follows one of the arguments in [Donaldson 2008], which is based on [Wang and
Zhu 2004]. The main point is the following convex geometric fact (see Proposition 2 in [Donaldson 2008]).

Lemma 27. Assume f is a convex function on Rn attaining minimal value 0, and suppose

det
(

∂2 f
∂xm∂xl

)
≥ λ

on K = { f ≤ 1}. Then
Vol(K )≤ Cλ−1/2

for some constant C depending only on the dimension n.

Using Lemma 27 we can prove Lemma 26.

Proof of Lemma 26. The proof proceeds in four steps:

Step 1: m is bounded from below. Let ρ−K X be the support function of P−K X defined by

ρ−K X (x)= sup
p∈P−K X

〈x, p〉.

Since ∇w(Rn)= P−K X we have w ≤ m+ ρ−K X . Moreover, by the change of variables p =∇ fi

1=

∫
Pi

e〈Vi ,p〉 dp

VolVi (Pi )
=

∫
Rn

e〈Vi ,∇ fi 〉

VolVi (Pi )
det
(
∂2 fi

∂xm∂xl

)
dx =

∫
Rn

e−w dx ≥ Ce−m
∫

Rn
e−ρ−K X dx ≥ Ce−m,

possibly changing C in the last inequality. This means m is bounded from below by a uniform constant.
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Step 2: m is bounded from above. By monotonicity of the determinant function and convexity we have

det
(

∂2w

∂xm∂xl

)
= det

[
t
∑

i

(
∂2 fi

∂xm∂xl

)
+ (1− t)

∑
i

(
∂2hi

∂xm∂xl

)]

≥ tn
0 det

(
∂2 f j

∂xm∂xl

)
= tn

0 VolVj (Pj )e−〈Vj ,∇ f j 〉−w ≥ Ce−wdx,

where the last inequality follows from the fact that ∇ f j (Rn)= Pj is bounded. This means

det
(

∂2w

∂xm∂xl

)
≥ Ce−m−1

on K = {w ≤ m+ 1}. By Lemma 27, possibly redefining C ,

Vol(K )≤ Cem/2. (49)

Convexity of w and the coarea formula give

1=
∫

Rn
e−w dx ≤ Ce−m/2.

This means m is bounded from above.

Step 3: w ≥ ε| · −xw| −m + 1 for uniform constants ε and C . Since ∇w(Rn) = P−K X and P−K X is
bounded we have that there is a uniform constant r > 0 such that K contains a small ball centered at xw of
radius r . If there was a point in K far from xw then the volume of K would be very big, contradicting (49).
This means K is contained in a ball centered at xw of radius R for some uniform constant R. Convexity
of w gives

w(x)≥
{

R−1
|x − xw| +m if x /∈ K ,

m if x ∈ K .

Moreover, R−1
|x − xw| ≤ 1 on K . This means putting ε = 1/R finishes Step 3.

Step 4: |xw| is bounded. In this step we will use the assumption (12). By the divergence theorem, since
e−w→ 0 exponentially as |x | →∞,∫

Rn
∇we−w dx =

∫
Rn

div∇(e−w) dx = 0.

Moreover, ∫
Rn
∇

(∑
i

fi

)
e−w dx =

∑
i

∫
Rn
∇ fi e−w dx

=

∑
i

1
VolVi (Pi )

∫
Rn
∇ fi e〈Vi ,∇ fi 〉 det

(
∂2 fi

∂xm∂xl

)
dx

=

∑
i

1
VolVi (Pi )

∫
Pi

pe〈Vi ,p〉 dp = 0,
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where the last two equalities are given by performing the change of variables p=∇ fi (x) in each summand
and (12). This means ∫

Rn
∇

(∑
i

hi

)
e−w dx = 0. (50)

Recall that
∑

hi is convex and hence ∇
(∑

i hi
)

is monotone. Hence, if |xw| is large then, putting
v = xw/|xw|, we get that 〈x, v〉 is positive and bounded away from 0 on some large ball centered at xw.
By (47) the mass of e−w dx is concentrated around xw. This contradicts (50). �

We can now prove Theorem 14.

Proof of Theorem 14. First of all, by the change of variables x =∇ui (p) and (15) we have∫
Pi

|∇ui |
q dp =

∫
Rn
|x |q det

(
∂2 fi

∂xm∂xl

)
dx

≤ VolVi (Pi )

∫
Rn
|x |qe−〈Vi ,∇ fi 〉−w dx

≤ C
∫

Rn
|x |qe−w dx ≤ Cq ,

(51)

where the second inequality follows from the fact that ∇ fi (Rn)= Pi is bounded and the last inequality
follows from Lemma 26. Put q = n+ 1 and

ûi =
1

Vol(Pi )

∫
Pi

ui dp.

By Morrey’s inequality (see [Haškovec and Schmeiser 2009]) we have

‖ui − ûi‖C0,γ (Pi ) ≤ C‖ui − ûi‖W 1,q (Pi )

= C‖ui − ûi‖Lq (Pi )+C‖∇ui‖Lq (Pi ),
(52)

where γ = 1− n/q. By the Poincaré–Wirtinger inequality this can be bounded by

C‖∇ui‖Lq (Pi )

for some C . This is bounded by (51). Since Pi is bounded we may conclude from this that

sup
p1,p2∈Pi

|ui (p1)− ui (p2)| ≤ C‖ui − ûi‖C0,γ (Pi ) ≤ C. (53)

This means it suffices to bound each ui in some point.
To bound each ui in some point, note that by general properties of the Legendre transform fi (0)=
−ui (∇ fi (0)). This means

|ui (∇ fi (0))| = | fi (0)| =
1
k

∣∣∣∣∑
j

f j (0)
∣∣∣∣= 1

k
|w(0)|,

where the last two equalities follow from (38) and the fact that hi (0)= 0 for all i . Since |xw| is bounded
and ∇w ∈ P−K X is bounded we have that |w(0)−w(xw)| is bounded. By Lemma 26, |w(xw)| = |m| is
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bounded. This means |ui (∇ fi (0))| and hence, by (53), supPi
|ui | is bounded for each i . By the discussion

following (46) this proves the theorem. �

Proof of Theorem 8. Assuming (12) holds, existence of coupled Kähler–Ricci solitons follow directly
from Theorem 14 and Theorem 15. Indeed, any toric holomorphic vector field Vi is in the reductive part
of the Lie algebra of Aut(X). Moreover, Im Vi generates a compact one-parameter subgroup of Aut(X)
and, since θi is (S1)n-invariant, Im LV (θi )= 0.

Assume that (αi ) admits a coupled Kähler–Ricci soliton. By Lemmas 18 and 25, (13) admits a solution.
Then (12) follows from Lemma 28 below. �

Lemma 28. Assume (13) admits a solution. Then∑
i

APi (Vi )= 0.

Proof. Let ( fi ) be a solution to (13). As in the proof of Lemma 26, by the divergence theorem, since
e−

∑
fi → 0 exponentially as |x | →∞,∫

Rn

(∑
i

∇ fi

)
e−

∑
i fi dx =

∫
Rn

div∇(e−
∑

i fi ) dx = 0. (54)

On the other hand, by (13)

(54)=
∑

i

∫
Rn
∇ fi e−

∑
i fi dx =

∑
i

∫
Rn
∇ fi

e〈Vi ,∇ fi 〉

VolVi (Pi )
det
(
∂2 fi

∂xm∂xl

)
dx .

Performing the change of variables ∇ fi = p in each summand gives that the right-hand side of this equals∑
i

1
VolVi (Pi )

∫
Pi

pe〈Vi ,p〉 dp =
∑

i

APi (Vi ). �

Proof of Corollary 11. Note that ∑
i

APi (V ) (55)

is the gradient of the function on Rn defined by

V 7→
∑

i

log
∫

Pi

e〈V,p〉 dp.

This is strictly convex and proper (in fact, its gradient image is
∑

i Pi = P−K X , which contains zero as an
interior point); hence it admits a unique minimum. Letting V be this minimum means (12) is fulfilled.
The corollary then follows from Theorem 8. �

Proof of Corollary 13. The corollary follows from Theorem 8 and Lemma 25. �
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3.2. Toric test configurations and proof of Theorem 2. Theorem 2 will follow from Theorem 8 combined
with Theorem 1.15 in [Hultgren and Nyström 2018] and an explicit calculation of the Donaldson–Futaki
invariant of test configurations induced by toric vector fields.

In [Hultgren and Nyström 2018] a type of test configuration for decompositions of c1(X) was defined.
The data defining them is essentially given by k test configurations (X1,L1), . . . , (Xk,Lk), where X1 =

· · · = Xk =: X , such that (X ,
∑

i Li ) defines a test configuration for (X,−K X ). The Donaldson–Futaki
invariant associated to this data is defined as the intersection number

DF(X , (Li ))=−
∑

i

Ln+1

|αi |
− (n+ 1)

(
−KX/P1 −

∑
i Li

)
·
(∑

i Li
)n

(−K X )n
, (56)

where |αi | =
∫

X θ
n for any θ such that [θ ] = α. We point out that the notation here differs from [Hultgren

and Nyström 2018] in that here (X ,Li ) are the (C∗-invariantly) compactified test configurations over P1.
Now, recall that if L is a toric line bundle over a toric manifold X , then a toric vector field V induces a

test configuration (X V,LV ) for (X, L). This can be described in the following way: Let d1, . . . , dk ∈N⊗R

and c1, . . . , ck ∈ R be the data defining the polytope PL , i.e.,

PL = {〈di , · 〉 ≥ −ci }.

Then, the polytope of LV can be arranged to be

PLV = {〈di , · 〉 ≥ −ci } ∩ {〈d0+ V, · 〉 ≥ 0} ∩ {〈−d0, · 〉 ≥ −CLV },

where d0 corresponds to the divisor given by the central fiber of X and CLV is a number that can be
modified without changing the Donaldson–Futaki invariant by adding a multiple OP1(1) to LV. In
particular, as long as CLV is big enough for LV to be ample,

(LV )n+1
= Vol(PLV )= Vol(PL)(CLV +〈V, b(PL)〉).

This also gives

(n+ 1)OP1(1) · (LV )n =
d
dt
(LV
+ t OP1(1))n+1

=
d
dt

Vol(PLV+t O
P1 (1))= Vol(PL). (57)

Finally, we note that if L =−K X then LV is the relative canonical bundle of X V up to a twist determined
by CLV .

LV
=−KX V /P1 +CLV OP1(1). (58)

Proof of Theorem 2. Putting V1 = · · · = Vk = 0 gives∑
i

APi (Vi )=
∑

i

b(Pi );

hence it follows from Theorem 8 that part (iii) of the theorem implies part (i). Moreover, (i) implies (ii)
by Theorem 1.15 in [Hultgren and Nyström 2018]. Thus, to finish the proof of Theorem 2, it suffices to
prove that (ii) implies (iii).



COUPLED KÄHLER–RICCI SOLITONS ON TORIC FANO MANIFOLDS 2091

We will prove the contrapositive. Assume
∑

i b(Pi ) 6= 0; in other words
∑

i 〈V, b(Pi )〉< 0 for some
toric vector field V. Let (X V, (LV

i )) be the associated test configuration. As (X V,
∑

i L
V
i ) is a test

configuration for −K X we get, using (58) and |αi | = Vol(Pi ),

DF(X V , (LV
i ))=

∑
i

(LV
i )

n+1

Vol(Pi )
− (n+ 1)

(∑
i CLV

i

)
OP1(1) ·

(∑
i L

V
i

)n

Vol(P−K X )

=

∑
i

(CLV
i
+〈V, b(PL)〉)−

∑
CLV

i

=

∑
i

〈V, b(Pi )〉< 0, (59)

and hence (αi ) is not K-polystable. �

3.3. Proof of Corollary 4.

Proof of Corollary 4. First of all, by [Futaki et al. 1990] (see also [Futaki 1983; Wang 1991]) the Futaki
invariant of X is nonzero; hence X does not admit a Kähler–Einstein metric. To prove the rest of the
corollary, we fix a (C∗)4-action on X in the following way: Consider the standard embeddings of OP2(−1)
and OP1(−1) in to C3

×P2 and C2
×P1 respectively:

OP2(−1)= {((z0, z1, z2), (a0 : a1 : a2)) : z0a1=z1a0, z1a2=z2a1},

OP1(−1)= {((w0, w1), (b0 : b1)) : w0b1=w1b0}.

We get an embedding of X = P(E) into P4
×P2

×P1 as

X = {((z0 : z1 : z2 : w0 : w1), (a0 : a1 : a2), (b0 : b1)) : z0a1 = z1a0, z1a2 = z2a1, w0b1 = w1b0}.

We define a (C∗)4-action by letting an element (t1, t2, t3, t4) ∈ (C∗)4 act on X by

((z0 : z1 : z2 :w0 :w1), (a0 :a1 :a2), (b0 :b1)) 7→ ((z0 : t1z1 : t2z2 : t4w0 : t4t3w1), (a0 : t1a1 : t2a2), (b0 : t3b1)).

The invariant divisors are

D1 = {z0=a0=0}, D2 = {z1=a1=0}, D3 = {z2=a2=0}, D4 = {w0=b0=0},

D5 = {w1=b1=0}, D6 = {z0=z1=z2=0}, D7 = {w0=w1=0}

corresponding to the following elements in the lattice N ∼= Z4 of one-parameter subgroups of (C∗)4:

d1 = (−1,−1, 0,−1), d2 = (1, 0, 0, 0), d3 = (0, 1, 0, 0), d4 = (0, 0,−1, 1),

d5 = (0, 0, 1, 0), d6 = (0, 0, 0,−1), d7 = (0, 0, 0, 1).

The divisor corresponding to −K X is
∑7

i=1 Di . For c ∈
( 1

4 ,
3
4

)
, we will be interested in divisors of the

form

D(c)= c(D4+ D5)+
∑

i 6=4,5

1
2 Di
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corresponding to polytopes

P(c)=
{

y ∈ R4
: 〈y, di 〉 ≤

1
2 , i 6= 4, 5, 〈y, di 〉 ≤ c, i = 4, 5

}
. (60)

Note that the two classes in (5) are given by D(c) and D(1− c) for

c = 1
2 +

1
4

√
5
7 ∈

( 1
4 ,

3
4

)
. (61)

To prove the corollary we will verify the following two facts:

• As long as c ∈
( 1

4 ,
3
4

)
, none of the conditions in (60) are redundant. (By standard theory for toric

varieties this implies D(c) and D(−c) are ample and hence β1 and β2 are Kähler.)

• We have ∫
P(c) y dy∫
P(c) dy

+

∫
P(1−c) y dy∫
P(1−c) dy

= 0

when c is given by (61).

Note that both these conditions are invariant under linear transformations of Rn. Applying to the generators
d1, . . . , d7 the linear transformation

A =


1 0 0 −2
0 1 0 −2
0 0 1 3
0 0 0 6


gives new generators

d ′1 = (−1,−1, 0,−2), d ′2 = (1, 0, 0,−2), d ′3 = (0, 1, 0,−2), d ′4 = (0, 0,−1, 3),

d ′5 = (0, 0, 1, 3), d ′6 = (0, 0, 0, 6), d ′7 = (0, 0, 0,−6),

and a new polytope

P ′(c)=
{

y ∈ R4
: 〈y, d ′i 〉 ≤

1
2 , i 6= 4, 5, 〈y, d ′i 〉 ≤ c, i = 4, 5

}
. (62)

It is straightforward to check that as long as c ∈
( 1

4 ,
3
4

)
, none of the conditions in (62) are redundant; hence

D(c) is ample for any c ∈
( 1

4 ,
3
4

)
. Moreover, the sets {d ′1, d ′2, d ′3, d ′6, d ′7} and {d ′4, d ′5} are both invariant

under the linear transformation

B =


0 −1 0 0
1 −1 0 0
0 0 −1 0
0 0 0 1

 .
It follows that P ′(c) and hence the barycenter of P ′(c) is invariant under B. As any fixed point of B is
parallel to (0, 0, 0, 1) we conclude that∫

P ′(c)
y1 dy =

∫
P ′(c)

y2 dy =
∫

P ′(c)
y3 dy = 0.
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Moreover, we denote by S2 the two-dimensional simplex corresponding to the anticanonical bundle of P2

S2 = {y ∈ R2
: y1 ≤ 1, y2 ≤ 1, −y1− y2 ≤ 1}

and note that (y1, . . . , y4)∈ P ′(c) if and only if y4 ∈
(
−

1
12 ,

1
12

)
, |y3| ≤ c−3y4 and (y1, y2)∈

( 1
2+2y4

)
S2.

We get ∫
P ′(c)

y4 dy =
∫

1
12 [−1,1]

y4

(∫
( 1

2+2y4)S2

dy1 dy2

)(∫
(c−3y4)[−1,1]

dy3

)
dy4

= 2 Vol(S2)

∫
1
12 [−1,1]

y4
( 1

2 + 2y4
)2
(c− 3y4) dy4 =

5c− 2
720

and similarly ∫
P ′(c)

dy = 2 Vol(S2)

∫
1

12 [−1,1]

( 1
2 + 2y4

)2
(c− 3y4) dy4 =

56c− 3
144

.

It follows that∫
P ′(c) y4 dy∫

P ′(c) dy
+

∫
P ′(1−c) y4 dy∫

P ′(1−c) dy
=

1
5

(
5c− 2
56c− 3

+
5(1− c)− 2
56(1− c)− 3

)
=
(112c2

− 112c+ 23)
(56c− 53)(56c− 3)

, (63)

which vanishes as

c = 1
2 ±

1
4

√
5
7 ∈

( 1
4 ,

3
4

)
. �
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CARLESON MEASURE ESTIMATES AND THE DIRICHLET PROBLEM
FOR DEGENERATE ELLIPTIC EQUATIONS

STEVE HOFMANN, PHI LE AND ANDREW J. MORRIS

We prove that the Dirichlet problem for degenerate elliptic equations div.Aru/D0 in the upper half-space
.x; t/2RnC1C is solvable when n� 2 and the boundary data is inLp�.Rn/ for some p<1. The coefficient
matrix A is only assumed to be measurable, real-valued and t -independent with a degenerate bound and
ellipticity controlled by an A2-weight �. It is not required to be symmetric. The result is achieved by prov-
ing a Carleson measure estimate for all bounded solutions in order to deduce that the degenerate elliptic
measure is inA1 with respect to the�-weighted Lebesgue measure on Rn. The Carleson measure estimate
allows us to avoid applying the method of �-approximability, which simplifies the proof obtained recently
in the case of uniformly elliptic coefficients. The results have natural extensions to Lipschitz domains.
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1. Introduction

We consider the Dirichlet boundary value problem for the degenerate elliptic equation div.Aru/D0 in the
upper half-space RnC1

C
when n� 2 and which we make precise below. The boundary Rn�f0g is identified

with Rn and we adopt the notationX D .x; t/ for pointsX 2RnC1
C

with coordinates x 2Rn and t 2 .0;1/.
The gradient r WD .rx; @t / and divergence div WD divxC@t are with respect to all .nC1/-coordinates. The
coefficient A denotes an .nC1/� .nC1/ matrix of measurable, real-valued and t -independent functions
on RnC1

C
. The matrix A.x/ WD A.x; t/ is not required to be symmetric. We suppose that there exist

constants 0 < ��ƒ<1 and an A2-weight � on Rn such that the degenerate bound and ellipticity

jhA.x/�; �ij �ƒ�.x/j�jj�j and hA.x/�; �i � ��.x/j�j2 (1.1)

hold for all �; � 2 RnC1 and almost every x 2 Rn. We use h � ; � i and j � j to denote the Euclidean
inner product and norm. An A2-weight � on Rn refers to a nonnegative locally integrable function

MSC2010: 35J25, 35J70, 42B20, 42B25.
Keywords: square functions, nontangential maximal functions, harmonic measure, Radon–Nikodym derivative, Carleson

measure, divergence form elliptic equations, Dirichlet problem, A2 Muckenhoupt weights, reverse Hölder inequality.
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� W Rn! Œ0;1� such that

Œ��A2.Rn/ WD sup
Q

�
1

jQj

Z
Q

�.x/ dx

��
1

jQj

Z
Q

1

�.x/
dx

�
<1;

where supQ denotes the supremum over all cubes Q in Rn with volume jQj. We also use � to denote the
measure �.Q/ WD

R
Q �.x/ dx and consider the Lebesgue space Lp�.Rn/ with the norm kf kLp�.Rn/ WD�R

Rn
jf jp d�

�1=p for all p 2 Œ1;1/. There is also the notation /

R
Q f d� WD �.Q/

�1
R
Q f d�, whilst

/

R
Q f WD jQj

�1
R
Q f .x/ dx.

If � is identically 1, then A is called uniformly elliptic. The solvability of the Dirichlet problem for
general nonsymmetric coefficients in that case was obtained only recently by Hofmann, Kenig, Mayboroda
and Pipher [Hofmann et al. 2015a]. The result in dimension nD 1 had been obtained previously by Kenig,
Koch, Pipher and Toro [Kenig et al. 2000]. These results assert that for each uniformly elliptic coefficient
matrix A there exists some p <1 for which the Dirichlet problem is solvable for Lp-boundary data.
Conversely, counterexamples in [Kenig et al. 2000] show that for each p <1, there exists a uniformly
elliptic coefficient matrix A for which the Dirichlet problem is not solvable for Lp-boundary data. In
contrast, solvability of the Dirichlet problem for symmetric coefficients in the uniformly elliptic case is
well understood, and we mention only that it was obtained by Jerison and Kenig [1981] for Lp-boundary
data when 2� p <1.

The solvability of the Dirichlet problem in the uniformly elliptic case has also been established for
a variety of complex coefficient structures; see, for instance, [Auscher and Stahlhut 2014; Hofmann
et al. 2015a; 2015b]. A significant portion of that theory was recently extended to the degenerate elliptic
case by Auscher, Rosén and Rule [Auscher et al. 2015] for L2-boundary data. That extension did not
include, however, the results for general nonsymmetric coefficients in [Hofmann et al. 2015a]. This paper
complements the progress made in [Auscher et al. 2015] by extending the solvability obtained for the
Dirichlet problem in [Hofmann et al. 2015a] to the degenerate elliptic case.

For solvability on the upper half-space RnC1
C

, the A2-weight � on Rn is extended to the t -independent
A2-weight �.x; t/ WD �.x/ on RnC1 (and Œ��A2.RnC1/ D Œ��A2.Rn/). We then say that u is a solution of
the equation div.Aru/D 0 in an open set � � RnC1 when u 2W 1;2

�;loc.�/ and
R

R
nC1
C

hAru;rˆi D 0

for all smooth compactly supported functions ˆ 2 C1c .�/. The solution space is the local �-weighted
Sobolev space W 1;2

�;loc defined in Section 2. The convergence of solutions to boundary data is afforded by
estimates for the nontangential maximal function N�u of solutions u, defined by

.N�u/.x/ WD sup
.y;t/2�.x/

ju.y; t/j for all x 2 Rn;

where �.x/ is the cone f.y; t/ 2 RnC1
C
W jy � xj < tg. If p 2 .1;1/, then the Dirichlet problem for

L
p
�.R

n/-boundary data, or simply .D/p;�, is said to be solvable when for each f 2 Lp�.Rn/ there exists
a solution u such that 8<:

div.Aru/D 0 in RnC1
C

;

N�u 2 L
p
�.R

n/;

limt!0 u. � ; t /D f;

.D/p;�
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where the limit is required to converge in L
p
�.R

n/-norm and in the nontangential sense whereby
lim�.x/3.y;t/!.x;0/ u.y; t/ D f .x/ for almost every x 2 Rn. Note that this definition of solvability
is distinct from well-posedness, which requires that such solutions are unique. We are able to obtain a
uniqueness result for solutions that converge uniformly to 0 at infinity, but the question of well-posedness
more generally remains open (see Theorem 5.34 and the preceding discussion).

A nonnegative Borel measure ! on a cube Q0 in Rn is said to be in the A1-class with respect to �,
written ! 2A1.�/, when there exist constants C; � > 0, which we call the A1.Q0/-constants, such that

!.E/� C

�
�.E/

�.Q/

��
!.Q/

for all cubes Q�Q0 and all Borel sets E �Q. This is a scale-invariant version of the absolute continuity
of ! with respect to �. It is well known, at least in the uniformly elliptic case, that solvability of the
Dirichlet problem for Lp-boundary data for some p <1 is equivalent to the property that an adapted
harmonic measure (elliptic measure) belongs to A1 with respect to the Lebesgue measure on Rn; see
Theorem 1.7.3 in [Kenig 1994]. In the degenerate case, an adapted harmonic measure !X, which we call
degenerate elliptic measure, can also be defined at each X 2 RnC1

C
(see Section 5). We prove that this

degenerate elliptic measure is in A1 with respect to � and then deduce the solvability of .D/p;� stated
in the theorem below. This requires the notation associated with cubes Q in Rn, where xQ and `.Q/
denote the centre and side length of Q, respectively, and XQ WD .xQ; `.Q// denotes the corkscrew point
in RnC1

C
relative to Q.

Theorem 1.2. If n � 2 and the t-independent coefficient matrix A satisfies the degenerate bound and
ellipticity in (1.1) for some constants 0 < � � ƒ < 1 and an A2-weight � on Rn, then there exists
p 2 .1;1/ such that .D/p;� is solvable. Moreover, on each cubeQ in Rn, the degenerate elliptic measure
! WD !XQ bQ satisfies ! 2 A1.�/ with A1.Q/-constants that depend only on n, �, ƒ and Œ��A2 .

In contrast to the proof of solvability in the uniformly elliptic case in [Hofmann et al. 2015a], we avoid
the need to apply the method of �-approximability by first establishing the Carleson measure estimate
in the theorem below. This crucial estimate facilitates the main results of the paper. The connection
between the Carleson measure estimate and solvability was first established in the uniformly elliptic case
by Kenig, Kirchheim, Pipher and Toro [Kenig et al. 2016], and we follow their approach here, adapting it
to the degenerate elliptic setting (see Lemma 5.24 below). In particular, the A1-property of degenerate
elliptic measure is obtained by combining the Carleson measure estimate (1.4) with the notion of good
�-coverings introduced in [Kenig et al. 2000].

Theorem 1.3. If n � 2 and the t-independent coefficient matrix A satisfies the degenerate bound and
ellipticity in (1.1) for some constants 0 < � � ƒ <1 and an A2-weight � on Rn, then any solution
u 2 L1.RnC1

C
/ of div.Aru/D 0 in RnC1

C
satisfies the Carleson measure estimate

sup
Q

1

�.Q/

Z `.Q/

0

Z
Q

jtru.x; t/j2 d�.x/
dt

t
� Ckuk21; (1.4)

where C depends only on n, �, ƒ and Œ��A2 .



2098 STEVE HOFMANN, PHI LE AND ANDREW J. MORRIS

Using the Carleson measure estimate in this way allows us to bypass the need to establish norm-
equivalences between the nontangential maximal function N�u and the square function Su of solutions u,
defined by

.Su/.x/ WD

�“
�.x/

jtru.y; t/j2
d�.y/

�.�.x; t//

dt

t

�1=2
for all x 2 Rn;

where �.x; t/ is the surface ball fy 2 Rn W jy � xj < tg. It was shown by Dahlberg, Jerison and Kenig
[Dahlberg et al. 1984], however, that such estimates are a consequence of the A1-property of degenerate
elliptic measure, which provides the following result.

Theorem 1.5. If n � 2 and the t-independent coefficient matrix A satisfies the degenerate bound and
ellipticity in (1.1) for some constants 0 < � �ƒ <1 and an A2-weight � on Rn, then any solution of
div.Aru/D 0 in RnC1

C
satisfies

kSukLp�.Rn/ � CkN�ukL
p
�.Rn/

for all p 2 .0;1/;

and if , in addition, u.X0/D 0 for some X0 2 RnC1
C

, then

kN�ukLp�.Rn/ � CkSukL
p
�.Rn/

for all p 2 .0;1/;

where C depends only on X0, p, n, �, ƒ and Œ��A2 .

The paper is structured as follows. Technical preliminaries concerning weights and degenerate elliptic
operators are in Section 2, whilst estimates for weighted maximal operators are in Section 3. The Carleson
measure estimate in Theorem 1.3 is obtained in Section 4. The degenerate elliptic measure is constructed
in Section 5 and then the A1-estimates in Theorem 1.2 are deduced as part of Theorem 5.30. The square
function and nontangential maximal function estimates in Theorem 1.5 are included in the more general
result in Theorem 5.31, whilst the solvability of the Dirichlet problem in Theorem 1.2 is finally deduced
in Theorem 5.34, where a uniqueness result is also obtained.

We state and prove our results in the upper half-space, but we note that they extend immediately to
the case that the domain is the region above a Lipschitz graph, by a well-known pull-back technique
which preserves the t -independence of the coefficients. In turn, our results concerning the A1-property
of degenerate elliptic measure may then be extended to the case of a bounded star-like Lipschitz domain,
with radially independent coefficients, by a standard localization argument using the maximum principle.

The convention is adopted whereby C denotes a finite positive constant that may change from one line
to the next. For a; b 2 R, the notation a . b means that a � Cb, whilst aÅ b means that a . b . a. We
write a .p b when a � Cb and we wish to emphasise that C depends on a specified parameter p.

2. Preliminaries

We dispense with some technical preliminaries concerning general Ap-weights � for p 2 .1;1/ and
degenerate elliptic operators on Rn for n 2 N. All cubes Q and balls B in Rn are assumed to be
open (except in Section 5D where the standard dyadic cubes S in D.Rn/ are assumed to be closed
to provide genuine coverings of Rn). For ˛ > 0, let ˛Q and ˛B denote the concentric dilates of Q
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and B respectively. For x 2 Rn and r > 0, define the ball B.x; r/ WD fy 2 Rn W jy � xj < rg. An
Ap-weight refers to a nonnegative locally integrable function � on Rn with the property that Œ��Ap.Rn/ WD
supQ

�

/

R
Q �

��

/

R
Q �
�1=.p�1/

�p�1
<1. The measure associated with such a weight satisfies the doubling

property

�.˛B/� Œ��Ap˛
np�.B/ (2.1)

for all ˛ � 1; see, for instance, Section 1.5 in Chapter V of [Stein 1993].
For an open set � � Rn, the Sobolev space W 1;p

� .�/ is defined as the completion, in the ambient
space Lp�.�/, of the normed space of all f 2 C1.�/ with finite norm

kf k
p

W
1;p
� .�/

WD

Z
�

jf jp d�C

Z
�

jrf jp d� <1: (2.2)

The embedding of the completion W 1;p
� .�/ in Lp�.�/ relies on the Ap-property of the weight (to the

extent that it implies both � and ��1=.p�1/ are in L1loc.�/), which ensures that if .fj /j is a W 1;p
� .�/-

Cauchy sequence in C1.�/ converging to 0 in Lp�.�/, then .fj /j converges to 0 in W 1;p
� .�/-norm;

see Section 2.1 in [Fabes et al. 1982b]. Therefore, since C1.�/ is dense in W 1;p
� .�/, the gradient

extends to a bounded operator r WW 1;p
� .�/!L

p
�.�;R

n/, thereby extending (2.2) to all f 2W 1;p
� .�/.

The Sobolev space W 1;p
0;� .�/ is defined as the closure of C1c .�/ in W 1;p

� .�/. It can be shown that
W
1;p
0;� .R

n/DW
1;p
� .Rn/ by following the proof in the unweighted case from Proposition 1 of Chapter V

in [Stein 1970] but instead using Lemma 2.2 in [Auscher et al. 2015] to deduce the convergence of the
regularization in Lp�.Rn/. The local space W 1;p

�;loc.�/ is then defined as the set of all f 2Lp�;loc.�/ such
that f 2W 1;p

� .�0/ for all open sets �0 with compact closure �0 �� (henceforth denoted by �0 b�).
Finally, the weighted Sobolev and Poincaré inequalities obtained for continuous functions in Theorems 1.2
and 1.5 in [Fabes et al. 1982b] have the following immediate extensions.

Theorem 2.3. Let n� 2 and suppose that B � Rn denotes a ball with radius r.B/. If p 2 .1;1/ and �
is an Ap-weight on Rn, then there exists ı > 0 such that�

/

Z
B

jf jp.
n
n�1
Cı/ d�

�1=.p. n
n�1
Cı//
. r.B/

�

/

Z
B

jrf jp d�

�1=p
(2.4)

for all f 2W 1;p
0;� .B/, and�

/

Z
B

jf .x/� cB j
p d�

�1=p
. r.B/

�

/

Z
B

jrf jp d�

�1=p
(2.5)

for all f 2 W 1;p
� .B/ and cB 2

˚

/

R
B f d�;

/

R
B f

	
, where the implicit constants depend only on n, p

and Œ��Ap . The estimates also hold when the ball B and the radius r.B/ are replaced by a cube Q and
the side length `.Q/.

For n 2 N, constants 0 < � � ƒ <1 and an A2-weight � on Rn, let E.n; �;ƒ;�/ denote the set
of all n�n matrices A of measurable real-valued functions on Rn satisfying the degenerate bound and
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ellipticity
jhA.x/�; �ij �ƒ�.x/j�jj�j and hA.x/�; �i � ��.x/j�j2 (2.6)

for all �; � 2 Rn and almost every x 2 Rn. These properties allow us to define

L�;� W Dom.L�;�/� L2�.�/! L2�.�/

as the maximal accretive operator in L2�.�/ associated with the bilinear form defined by

a�.f; g/ WD

Z
�

hArf;rgi D
Z
�

D
1

�
Arf;rg

E
d� (2.7)

for all f; g 2W 1;2
0;� .�/. The domain of L�;� is dense in L2�.�/, and in particular

Dom.L�;�/D
�
f 2W

1;2
0;� .�/ W sup

g2C1c .�/

ja�.f; g/j

kgkL2�.�/
<1

�
;

with Z
�

.L�;�f /g d�D a�.f; g/ (2.8)

for all f 2 Dom.L�;�/ and g 2 W
1;2
0;� .�/. It is equivalent to define L�;� as the composition

� div�;�..1=�/Ar/ of unbounded operators, where � div�;� is the adjoint r� of the closed densely
defined operator r WW 1;2

0;� .�/� L
2
�.�/! L2�.�;R

n/, that is,Z
�

.� div�;� f /g d�D

Z
�

hf ;rgi d� (2.9)

for all f 2Dom.div�;�/ WDDom.r�/ and g 2W 1;2
0;� .�/. In view of (2.7) and (2.8), we have the formal

identities div�;� D .1=�/ div� � and L�;� D�.1=�/ div�.Ar/.
Now let�DQ for some cubeQ�Rn and denote the space of bounded linear functionals onW 1;2

0;� .Q/

by W �1;20;� .Q/. The inclusions W 1;2
0;� .Q/� L

2
�.Q/�W

�1;2
0;� .Q/ are interpreted in the standard way by

identifying f 2L2�.Q/ with the functional f̀ defined by f̀ .g/ WD
R
Q fg d� for all g 2W 1;2

0;� .Q/. Thus,
setting

L�;Qf .g/ WD aQ.f; g/ and � div�;Q f .g/ WD

Z
Q

hf ;rgi d�

for all f; g 2W 1;2
0;� .Q/ and f 2 L2.Q;Rn/, we obtain an extension of L�;Q from (2.8) to a bounded

invertible operator from W
1;2
0;� .Q/ onto W �1;20;� .Q/, and an extension of div�;Q from (2.9) to a bounded

operator from L2�.Q/ into W �1;20;� .Q/. The surjectivity of L�;Q relies on (2.4) and the Lax–Milgram
theorem. These definitions imply

krL�1�;Q div�;Q f kL2�.Q;Rn/ . kf kL2�.Q;Rn/

for all f 2 L2�.Q;R
n/. The topological direct sum or W 1;2

0;� .Q/-Hodge decomposition

L2�.Q;R
n/D

n
1

�
Arg W g 2W 1;2

0;� .Q/
o
˚fh 2 L2�.Q;R

n/ W div�;Q hD 0g (2.10)
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follows by writing

f D�
1

�
ArL�1�;Q div�;Q f C

�
f C

1

�
ArL�1�;Q div�;Q f

�
DW

1

�
ArgCh;

since then div�;Q h D div�;Q f � L�;QL�1�;Q div�;Q f D 0. This decomposition also extends to
L
p
�.Q;R

n/ for all p 2 Œ2; 2C �/ and some � > 0 by recent work of Le [2015], although we do not need
it here.

Now let � D Rn and consider div� WD div�;Rn as in (2.9) so L� WD � div�..1=�/Ar/ is maximal
accretive, thus having a maximal accretive square root L1=2� , in L2�.R

n/. The solution of the Kato square
root problem in [Auscher et al. 2002] was recently extended to degenerate elliptic equations by Cruz-
Uribe and Rios [2015]. This shows that kL1=2� f kL2�.Rn/ Å krf kL2�.Rn;Rn/ for all f 2W 1;2

� .Rn/; hence
Dom.L1=2� /DW

1;2
� .Rn/.

The operator L� is also injective and type-S!C in L2�.R
n/ for some ! 2

�
0; �
2

�
, so it has a bounded

H1.So
�C
/-functional calculus in L2�.R

n/ for each � 2 .!; �/, where So
�C
WD fz 2 C n f0g W j arg zj< �g.

See Section 2.2 of [Auscher 2007] for the uniformly elliptic case and Theorems F and G in [Albrecht
et al. 1996] for the general theory. An equivalent property is the validity of the quadratic estimateZ 1

0

k .tL�/f k2L2�.Rn/
dt

t
Å kf k2

L2�.Rn/
for all f 2 L2�.R

n/; (2.11)

for each holomorphic  on So
�C

satisfying j .z/j . minfjzj˛; jzj�ˇ g for some ˛; ˇ > 0, where the
bounded operator  .tL�/ on L2�.R

n/ is defined by a Cauchy integral. More generally, the relationship
between bounded holomorphic functional calculi and quadratic estimates is developed in the seminal
articles [McIntosh 1986; Cowling et al. 1996].

The functional calculus then defines a bounded operator '.L�/ on L2�.R
n/ for each bounded holomor-

phic function ' on So
�C

and k'.L�/kL2�.Rn/!L2�.Rn/ .� k'k1. Another consequence is that �L�
generates a holomorphic contraction semigroup .e��L�/�2So

�=2�!
[f0g on L2�.R

n/; thus e�tL�f 2
Dom.L�/ and @t .e�tL�f / D L�e�tL�f for all f 2 L2�.R

n/ and t > 0. The functional calculus
also extends to define an unbounded operator �.L�/ on L2�.R

n/ for each holomorphic function � on So
�C

satisfying j�.z/j.maxfjzj˛; jzj�ˇ g for some ˛; ˇ > 0, but the algebra homomorphism property of the
functional calculus (�1.L�/�2.L�/D .�1�2/.L�/) must then be interpreted in the sense of unbounded
linear operators. This allows us to interpret both the semigroup and the square root of L� in terms of the
functional calculus in order to justify some otherwise formal manipulations, beginning with (2.15) in the
proof of the following corollary of the solution of the Kato problem in [Cruz-Uribe and Rios 2015].

Theorem 2.12. Let n � 1 and suppose that A 2 E.n; �;ƒ;�/ for some constants 0 < � �ƒ <1 and
an A2-weight � on Rn. The operator L� WD � div�..1=�/Ar/ satisfiesZ 1

0

ktL�e�t
2L�f k2

L2�.Rn/

dt

t
Å krf k2

L2�.Rn;Rn/
; (2.13)Z 1

0

kt2rx;tL�e�t
2L�f k2

L2�.Rn;RnC1/

dt

t
. krf k2

L2�.Rn;Rn/
(2.14)

for all f 2W 1;2
� .Rn/, where the implicit constants depend only on n, �, ƒ and Œ��A2 .
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Proof. The functional calculus of L� justifies the identity

L�e�t
2L�f D L1=2� e�t

2L�L1=2� f D e�.t
2=2/L�L�e�.t

2=2/L�f (2.15)

for all f 2 Dom.L1=2� / and t > 0. The first equality in (2.15), the quadratic estimate in (2.11) and the
solution of the Kato problem in [Cruz-Uribe and Rios 2015] implyZ 1

0

ktL�e�t
2L�f k2

L2�.Rn/

dt

t
D

Z 1
0

k.�L�/1=2e��L�L1=2� f k2
L2�.Rn/

d�

�

Å kL1=2� f k2
L2�.Rn/

Å krf k2
L2�.Rn;Rn/

for all f 2 Dom.L1=2� /DW
1;2
� .Rn/, which proves (2.13).

The bounded H1.So
�C
/-functional calculus of L� implies the uniform estimate

ktrx;te
�t2L�gk2

L2�.Rn;RnC1/
D kt@te

�t2L�gk2
L2�.Rn/

Cktrxe
�t2L�k2

L2�.Rn;Rn/

. kt2L�e�t
2L�gk2

L2�.Rn/
C

Z
Rn
t2hArxe�t

2L�g;rxe
�t2L�gi

. kgk2
L2�.Rn/

Ckt2L�e�t
2L�gkL2�.Rn/ke

�t2L�gkL2�.Rn/

. kgk2
L2�.Rn/

for all g 2L2�.R
n/ and t > 0. Thus, the second equality in (2.15) and the vertical square function estimate

in (2.13), which we have already proved, implyZ 1
0

kt2rx;tL�e�t
2L�f k2

L2�.Rn;RnC1/

dt

t
.
Z 1
0

ktL�e�.t
2=2/L�f k2

L2�.Rn/

dt

t
. krf k2

L2�.Rn;Rn/

for all f 2W 1;2
� .Rn/, which proves (2.14). �

Now let us return to the case when � � Rn is an arbitrary open set and suppose that f W �! Rn

is a measurable function for which .1=�/f 2 L1.�/. A solution of the inhomogeneous equation
div.Aru/D div f in��Rn refers to any function u2W 1;2

�;loc.�/ such that
R

Rn
hAru�f ;rˆiD 0 for

all ˆ 2 C1c .�/. All solutions u of the homogeneous equation div.Aru/D 0 in � are locally bounded
and Hölder continuous in the sense that

kukL1.B/ .
�

/

Z
2B

juj2 d�

�1=2
(2.16)

and there exists ˛ > 0 such that

ju.x/�u.y/j.
�
jx�yj

r.B/

�̨ �

/

Z
2B

juj2 d�

�1=2
for all x; y 2 B; (2.17)
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and if, in addition, u� 0 almost everywhere on �, there is the Harnack inequality

sup
B

u. inf
B
u (2.18)

for all balls B of radius r.B/ such that 2B ��, where ˛ and the implicit constants depend only on n, �,
ƒ and Œ��A2 . These properties follow from Corollary 2.3.4, Lemma 2.3.5 and Theorem 2.3.12 in [Fabes
et al. 1982b] by observing that the proofs do not use the assumption therein that A is symmetric. The
estimates also hold when the balls B are replaced by (open) cubes Q, and also when the dilate 2B is
replaced by C0B for any C0 > 1, provided the implicit constants are understood to depend on C0.

The following local boundedness estimate for solutions of the inhomogeneous equation is needed in
Lemma 4.3, although only for pD 2. This is a simpler version of Theorem 8.17 in [Gilbarg and Trudinger
1977], which we have adapted to degenerate elliptic equations. In fact, the result for p � 2 is already
proven in [Fabes et al. 1982b] by combining Corollary 2.3.4 with estimates (2.3.7) and (2.3.13) therein.
The proof is included here for the reader’s convenience and since it implies (2.16) as a special case, which
in turn is the well-known starting point for establishing (2.17).

Theorem 2.19. Let n � 2 and suppose that A 2 E.n; �;ƒ;�/ for some constants 0 < � �ƒ <1 and
an A2-weight � on Rn. Let �� Rn denote an open set and suppose that f W�! Rn is a measurable
function such that .1=�/f 2 L1.�/. If p 2 .1;1/ and div.Aru/D div f in �, then

kukL1.B/ .
�

/

Z
2B

jujp d�

�1=p
C r.B/

 1
�

f


L1.�/

(2.20)

for all balls B of radius r.B/ > 0 such that 2B ��, where the implicit constant depends only on p, n, �,
ƒ and Œ��A2 .

Proof. Suppose that div.Aru/D div f in � and consider a ball B such that 2B ��. First, assume that
u is nonnegative and in L1.2B/. Let � > 0, set k D r.B/k.1=�/f kL1.�/ and Nu� WD uCkC �. Let Br
denote the ball concentric to B with radius r > 0 and recall the index ı > 0 from the Sobolev inequality
in Theorem 2.3. We claim that if  2 Œp;1/ and r.B/� r1 < r2 � 2r.B/, then�

/

Z
Br1

Nu
. n
n�1
Cı/

� d�

�1=.. n
n�1
Cı//
.
�


r1

r2� r1

�2=�

/

Z
Br2

Nu� d�

�1=
; (2.21)

where the implicit constant depends only on p, n, �, ƒ and Œ��A2 . To prove (2.21), fix � 2 C1c .�/ such
that � W �! Œ0; 1�, � � 1 on Br1 , � � 0 on � nBr2 and kr�k1 � 2=.r2 � r1/. Set ˇ WD  � 1 and
� WD �2 Nu

ˇ
� . Note that � 2W 1;2

0;� .�/ with

rv D 2�r� Nuˇ� Cˇ�
2
Nuˇ�1� ru;

since 0 < � � Nu�.x/� kukL1.2B/C kC � <1 for almost every x 2 2B; thusZ
Rn
hAru�f ; 2�r� Nuˇ� i D �

Z
Rn
hAru�f ; ˇ�2 Nuˇ�1� rui:
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We then use this identity and Cauchy’s inequality with � > 0 to obtainZ
Rn
�2 Nuˇ�1� jruj2 d�.�

Z
Rn
�2 Nuˇ�1� hAru;rui

D �2ˇ�1
Z

Rn
� Nuˇ� hAru�f ;r�iC

Z
Rn
�2 Nuˇ�1� hf ;rui

.ƒ .p�1/�1
Z

Rn
� Nuˇ�

�
jrujC

ˇ̌̌
1

�
f

ˇ̌̌�
jr�j d�C

Z
Rn
�2 Nuˇ�1�

ˇ̌̌
1

�
f

ˇ̌̌
jruj d�

.p �
Z

Rn
�2 Nuˇ�1� jruj2 d�C ��1

Z
Rn
NuˇC1� jr�j2 d�

C

Z
Rn
NuˇC1� jr�j2 d�C

Z
Rn

�
�

r.B/

�2
NuˇC1� d�

C �

Z
Rn
�2 Nuˇ�1� jruj2 d�C ��1

Z
Rn

�
�

r.B/

�2
NuˇC1� d�;

where in the second inequality we used the assumption that ˇ WD  �1� p�1 and in the final inequality
we used the fact that j.1=�/f j � k=r.B/� Nu�=r.B/ on �. Next, choose � > 0 small enough, depending
only on p, � and ƒ, to deduce thatZ

Br1

Nuˇ�1� jruj2 d�.p;�;ƒ
Z

Rn
NuˇC1�

�
jr�j2C

�
�

r.B/

�2�
d�.

1

.r2� r1/2

Z
Br2

NuˇC1� d�;

where in the final inequality we used the fact that r.B/� r2� r1. Now combine this estimate with the
Sobolev inequality (2.4) and recall that ˇ WD  � 1 to obtain�

/

Z
Br1

Nu
. n
n�1
Cı/

� d�

�1=. n
n�1
Cı/
. r21 /

Z
Br1

jr. Nu.ˇC1/=2� /j2 d�

. ..ˇC 1/r1/2 /

Z
Br1

Nuˇ�1� jruj2 d�

.
�


r1

r2� r1

�2

/

Z
Br2

Nu� d�;

where the implicit constants depend only on p, n, �, ƒ and Œ��A2 , proving (2.21).
We now apply the Moser iteration technique to prove (2.20). Set � WD n=.n � 1/C ı and define

ˆ.q; r/ WD
�

/

R
Br
Nu
q
� d�

�1=q for q; r > 0. Estimate (2.21) implies

ˆ.�; r1/�

�
C

r1

r2� r1

�2=
ˆ.; r2/;

where C depends only on p, n, �, ƒ and Œ��A2 , and it follows by induction that

ˆ.p�m; .1C 2�m/r.B//� .4Cp/.2=p/
Pm�1
kD0 �

�k

.2�/.2=p/
Pm�1
kD0 k�

�k

ˆ.p; 2r.B//.ˆ.p; 2r.B//
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for all m 2 N. This shows that

k Nu�kL1.B/ D lim
m!1

ˆ.p�m; r.B//.ˆ.p; 2r.B//D
�

/

Z
2B

Nup� d�

�1=p
and therefore

kukL1.B/ � k Nu�kL1.B/ .
�

/

Z
2B

Nup� d�

�1=p
.
�

/

Z
2B

up d�

�1=p
C r.B/

 1
�

f


L1.�/

C �

for all � > 0, which implies (2.20).
Finally, it remains to remove the assumption that u is nonnegative and bounded. This is achieved by

setting Nu� WDmaxfu; 0gC kC � and Nu� WD �minfu; 0gC kC � respectively and in each case adjusting
the proof above to incorporate the truncated test function � WD �2hN . Nu�/ Nu�, where

hN .x/ WD

�
xˇ�1; x �N C kC �;

.N C kC �/ˇ�1; x > N C kC �:

We leave the standard details to the reader. �

The following self-improvement property for Carleson measures will be used in conjunction with the
local Hölder continuity estimate for solutions in (2.17). The result is proved in the unweighted case in
Lemma 2.14 in [Auscher et al. 2001]. In that proof, the Lebesgue measure on Rn can in fact be replaced
by any doubling measure, since the Whitney decomposition of open sets can be adapted to any such
measure; see, for instance, Lemma 2 in Chapter I of [Stein 1993]. The result below then follows.

Lemma 2.22. Let n � 1 and suppose that � is an A2-weight on Rn. Let ˛, ˇ0 > 0 and suppose that
.vt /t>0 is a collection of Hölder continuous functions on a cube Q � Rn satisfying

0� vt .x/� ˇ0 and jvt .x/� vt .y/j � ˇ0

�
jx�yj

t

�̨
for all x; y 2Q. If there exists � 2 .0; 1�, ˇ > 0 and, for each cube Q0 �Q, a measurable set F 0 �Q0

such that

�.F 0/� ��.Q0/ and
1

�.Q0/

Z l.Q0/

0

Z
F 0
vt .x/ d�.x/

dt

t
� ˇ;

then
1

�.Q/

Z `.Q/

0

Z
Q

vt .x/ d�.x/
dt

t
.˛;� ˇCˇ0;

where the implicit constant depends only on ˛, �, n and Œ��A2 .

3. Estimates for maximal operators

We obtain estimates for a variety of maximal operators (M�, D�;�, N �
� and zN �

�;�) adapted to an A2-
weight � and degenerate elliptic operators L� WD � div�..1=�/Ar/ on Rn for n� 2. These will be used
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to prove the Carleson measure estimate from Theorem 1.3 in Section 4. We first define the maximal
operators M� and D�;� by

M�f .x/ WD sup
r>0

/

Z
B.x;r/

jf .y/j d�.y/;

D�;�g.x/ WD sup
r>0

�

/

Z
B.x;r/

�
jg.x/�g.y/j

jx�yj

�2
d�.y/

�1=2
for all f 2L1�;loc.R

n/, g 2W 1;2
�;loc.R

n/ and x 2Rn. The usual unweighted and centred Hardy–Littlewood
maximal operator is abbreviated by M. The maximal operator M� is bounded on Lp�.Rn/ for all
p 2 .1;1/ and satisfies the weak-type estimate

�.fx 2 Rn W jM�f .x/j> �g/. ��1kf kL1�.Rn/ for all � > 0; (3.1)

for all f 2L1�.R
n/; see, for instance, Theorem 1 in Chapter I of [Stein 1993]. There is also the following

weak-type estimate for the maximal operator D�;�.

Lemma 3.2. Let n� 2. If � is an A2-weight on Rn, then

�.fx 2 Rn W jD�;�f .x/j> �g/. ��2krf k2L2�.Rn;Rn/ for all � > 0; (3.3)

for all f 2W 1;2
� .Rn/, where the implicit constant depends only on n and Œ��A2 .

Proof. If f 2 C1c .R
n/, then a version of Morrey’s inequality [1966, Theorem 3.5.2] shows that

jf .x/�f .y/j

jx�yj
.M.rf /.x/CM.rf /.y/

for almost every x; y 2 Rn; hence

D�;�f .x/.M.rf /.x/C
�
M�ŒM.rf /�

2.x/
�1=2

:

Estimate (3.3) then follows from the weak-type bound for M� in (3.1), the fact that M is bounded on
L2�.R

n/ (see, for instance, Theorem 1 in Chapter V of [Stein 1993]) and the density of C1c .R
n/

in W 1;2
� .Rn/. �

We now define the nontangential maximal operators N �
� and zN �

�;�, for � > 0, by

N
�
� u.x/ WD sup

.y;t/2��.x/

ju.y; t/j; zN
�
�;�v.x/ WD sup

.y;t/2��.x/

�

/

Z
B.y;tat/

jv.z; t/j2 d�.z/

�1=2
for all measurable functions u; v on RnC1

C
(such that v. � ; t / 2 L2�;loc.R

n/ for a.e. t > 0) and x 2 Rn,
where ��.x/ WD f.y; t/ 2RnC1

C
W jy�xj< �tg is the conical nontangential approach region in RnC1

C
with

vertex at x and aperture �.
Now suppose that A 2 E.n; �;ƒ;�/, as defined by (2.6). In particular, since A has real-valued

coefficients, there exists an integral kernel Wt .x; y/ such that

e�tL�f .x/D

Z
Rn
Wt .x; y/f .y/ d�.y/ (3.4)
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for all f 2 L2�.R
n/, and there exists constants C1; C2 > 0 such that

jWt .x; y/j �
C1

�.B.x;
p
t //

exp
�
�C2
jx�yj2

t

�
(3.5)

for all t > 0 and x; y 2 Rn. This was proved by Cruz-Uribe and Rios for f 2 C1c .R
n/ under the

assumption that A is symmetric; see Theorem 1 and Remark 3 in [Cruz-Uribe and Rios 2014]. The
symmetry assumption can be removed, however, by following their proof and applying the Harnack
inequality for degenerate parabolic equations obtained by Ishige [1999, Theorem A], which does not
require symmetric coefficients, instead of the version recorded in Proposition 3.8 of [Cruz-Uribe and Rios
2008]. The results also extend to f 2L2�.R

n/ by density, Schur’s lemma and the doubling property of �.
We now consider the semigroup generated by L� WD � div�..1=�/Ar/ with elliptic homogeneity (t

replaced by t2) and denoted by Pt WD e�t
2L� in the estimates below.

Lemma 3.6. Let n� 2 and suppose that A 2 E.n; �;ƒ;�/ for some constants 0 < ��ƒ<1 and an
A2-weight � on Rn. Let p 2 .1;1/ and suppose that � is also an Ap-weight on Rn. If x 2 Rn, � > 0 and
˛ � 1, then

sup
.y;t/2��.x/

j.�t/�1ŒP�t .f � cB.x;˛�t//�.y/j2 .˛ ŒM�.jrf j
p/.x/�2=p (3.7)

for all f 2W 1;p
� .Rn/ and cB.x;˛�t/ 2

˚
/

R
B.x;˛�t/ f d�;

/

R
B.x;˛�t/ f

	
, and

jN
�
� .@tPtf /.x/j2 .� ŒM�.jrf j

p/.x/�2=p; (3.8)

j��1N
�
� .@tP�tf /.x/j2 . ŒM�.jrf j

p/.x/�2=p; (3.9)

j zN
�
�;�.rxP�tf /.x/j2 .M�

�
ŒM�.jrf j

p/�2=p
�
.x/CM�.jrf j

2/.x/ (3.10)

for all f 2W 1;2
� .Rn/\W

1;p
�;loc.R

n/, where the implicit constants depend only on n, �, ƒ, p, Œ��A2 and
Œ��Ap , as well as on ˛ in (3.7) and on � in (3.8).

Proof. Let x 2 Rn, .y; t/ 2 ��.x/, f 2W 1;2
� .Rn/\W

1;p
�;loc.R

n/, fB.x;t/ WD /

R
B.x;t/ f and QfB.x;t/ WD

/

R
B.x;t/f d�. To prove (3.7), it suffices to assume that � D 1 and ˛ � 1. We set C0.t/ WD B.x; ˛t/

and define the dyadic annulus Cj .t/ WD B.x; 2j˛t/ nB.x; 2j�1˛t/ for all j 2 N. The Gaussian kernel
estimates in (3.4) and (3.5) imply

jt�1ŒPt .f �fB.x;˛t//�.y/j D t�1
ˇ̌̌̌Z

Rn
Wt2.y; z/Œf .z/�fB.x;˛t/� d�.z/

ˇ̌̌̌
�

1X
jD0

t�1
C1

�.B.y; t//

Z
Cj .t/

exp
�
�C2
jy � zj2

t2

�
jf .z/�fB.x;˛t/j d�.z/

DW

1X
jD0

Ij :
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To estimate I0, note that B.x; ˛t/� B.y; .1C˛/t/ and apply the doubling property of �, followed by
the Lp�-Poincaré inequality in (2.5) with cB D /

R
B.x;˛t/ f , to obtain

I0 .˛ t�1 /

Z
B.x;˛t/

jf .z/�fB.x;˛t/j d�.z/.
�

/

Z
B.x;˛t/

jrf jp d�

�1=p
. ŒM�.jrf j

p/.x/�1=p:

To estimate Ij , for each j 2 N, expand f .z/�fB.x;˛t/ as a telescoping sum to write

Ij � C1e
�C2.2

j�1˛�1/2�.B.x; 2
j˛t//

�.B.y; t//
t�1

�

�

/

Z
B.x;2j˛t/

jf � QfB.x;2j˛t/j d�C

jX
iD1

j QfB.x;2i˛t/�
QfB.x;2i�1˛t/jC j

QfB.x;˛t/�fB.x;˛t/j

�

. e�C2.2
j�1˛�1/2�.B.y; .1C 2

j˛/t//

�.B.y; t//

jX
iD0

t�1 /

Z
B.x;2i˛t/

jf � QfB.x;2i˛t/j d�

. e�C2.2
j�1˛�1/2.1C 2j˛/2n

jX
iD0

2i˛

�
/

Z
B.x;2i˛t/

jrf jp d�

�1=p
.˛ e�C4

j

4nj ŒM�.jrf j
p/.x/�1=p;

where the second inequality relies on the inclusion B.x; 2j˛t/ � B.y; .1C 2j˛/t/, whilst the third
inequality uses the doubling property of � in (2.1) with p D 2, and the Lp�-Poincaré inequality in (2.5)
with cB D /

R
B.x;2i˛t/ f d�. Altogether, we have

jt�1ŒPt .f �fB.x;˛t//�.y/j.˛
� 1X
jD0

e�C4
j

4nj
�
ŒM�.jrf j

p/.x/�1=p . ŒM�.jrf j
p/.x/�1=p;

which proves (3.7) when cB.x;˛t/ D /

R
B.x;˛t/ f . The proof when cB.x;˛t/ D /

R
B.x;˛t/ f d� follows as

above by replacing fB.x;˛t/ with QfB.x;˛t/, since (2.5) can still be applied.
To prove (3.8) and (3.9), suppose that � > 0. The Gaussian kernel estimate for e�tL� in (3.5) implies

that t@tPtf .y/ has an integral kernel zWt2.y; z/ satisfying

j zWt2.y; z/j �
C1

�.B.y; t//
exp

�
�C2
jy � zj2

t2

�
and the conservation property

R
Rn
zWt2.y; z/ d�.y/ D 0 for all z 2 Rn and t > 0. This follows from

Theorem 5 in [Cruz-Uribe and Rios 2014], where the assumption that A is symmetric can be removed as
per the remarks preceding this lemma. Therefore, we may write

j@tPtf .y/j D t�1
ˇ̌̌̌Z

Rn

zWt2.y; z/Œf .z/�fB.x;�t/� d�.z/

ˇ̌̌̌
and a change of variables implies

sup
.y;t/2��.x/

j@tPtf .y/j D sup
.y;t/2�.x/

t�1
ˇ̌̌̌Z

Rn
� zW.t=�/2.y; z/Œf .z/�fB.x;t/� d�.z/

ˇ̌̌̌
:
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We can then obtain (3.8) by following the proof of (3.7) with ˛ D 1 in order to show that this is bounded
by ŒM�.jrf j

p/.x/�1=p, since the doubling property of � ensures that

j� zW.t=�/2.y; z/j �
C1;�

�.B.y; t//
exp

�
�C2;�

jy � zj2

t2

�
for some positive constants C1;� and C2;� that depend on �. We obtain (3.9) as an immediate consequence
of (3.8) and the fact that ��1@tP�t D .@sPs/jsD�t .

To prove (3.10), let � > 0, set u�t WD P�tf and choose a nonnegative function ˆ 2 C1c .B.y; 2�t//
such that ˆ� 1 on B.y; �t/ and jrxˆj. .�t/�1. Let c > 0 denote a constant that will be chosen later.
The definition of L� implies

/

Z
B.y;�t/

jrxP�tf j2 d�

�
1

�.B.y; �t//

Z
Rn
jrxu�t j

2ˆ2 d�

.
1

�.B.y; �t//

Z
Rn
hArxu�t ;rx.u�t � c/iˆ2

D
1

�.B.y; �t//

Z
Rn
fhArxu�t ;rxŒ.u�t � c/ˆ2�i � 2hArxu�t ;rxˆ.u�t � c/iˆg

.
1

�.B.y; �t//

Z
Rn
f.L�u�t /.u�t � c/ˆ2Cjrxu�t jjrxˆjj.u�t � c/ˆjg d�

�
1

�.B.y; �t//

Z
B.y;2�t/

�
1

2�2t
j@tu�t jju�t � cjˆ

2
Cjrxu�t jjrxˆjju�t � cj

�̂
d�

DW I C II:

Now fix c WD QfB.x;3�t/. To estimate I , we use Cauchy’s inequality and the doubling property of �,
combined with the fact that B.x; �t/� B.y; 2�t/� B.x; 3�t/, to obtain

I . /
Z
B.x;3�t/

�
j��1@tu�t j

2
C .�t/�2ju�t �f j

2
C .�t/�2jf � QfB.x;3�t/j

2
�
d�DW I1C I2C I3:

It is immediate that I1 �M�.j�
�1N

�
� .@tP�tf /j2/.x/, whilst the semigroup property

ju�t .z/�f .z/j D

ˇ̌̌̌Z �t

0

@sus.z/ ds

ˇ̌̌̌
� �tN�.@sus/.z/

implies that I2 . M�.jN�.@sus/j
2/.x/, and the L2�-Poincaré inequality in (2.5) shows that I3 .

M�.jrf j
2/.x/; hence

I �M�.j�
�1N

�
� .@tP�tf /j2/.x/CM�.jN�.@sus/j

2/.x/CM�.jrf j
2/.x/:

To estimate II , we use Cauchy’s inequality with � > 0 to obtain

II .
�

�.B.y; �t//

Z
Rn
jrxu�t j

2ˆ2 d�C ��1.I2C I3/:
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A sufficiently small choice of � > 0 allows the �-term to be subtracted, yielding

/

Z
B.y;�t/

jrxP�tf j2 d�. I C II .M�.j�
�1N

�
� .@tP�tf /j2CjN�.@tPtf /j2Cjrf j2/.x/;

which, combined with (3.8) and (3.9), implies (3.10). �

The pointwise estimates in Lemma 3.6 have the following corollary.

Corollary 3.11. Let n� 2 and suppose that A 2 E.n; �;ƒ;�/ for some constants 0 < ��ƒ<1 and
an A2-weight � on Rn. If � > 0, then

�.fx 2 Rn W jN
�
� .@tPtf /.x/j> �g/.� ��2krf k2L2�.Rn;Rn/; (3.12)

�.fx 2 Rn W j��1N
�
� .@tP�tf /.x/j> �g/. ��2krf k2L2�.Rn;Rn/; (3.13)

�.fx 2 Rn W j zN
�
�;�.rxP�tf /.x/j> �g/. ��2krf k2L2�.Rn;Rn/ (3.14)

for all � > 0 and f 2W 1;2
� .Rn/, where the implicit constants depend only on n, �, ƒ and Œ��A2 , as well

as on � in (3.12).

Proof. Estimates (3.12) and (3.13) follow respectively from (3.8) and (3.9), in the case p D 2, since M�

satisfies the weak-type estimate in (3.1). To prove (3.14), note that there exists 1 < q < 2 such that � is
an Aq-weight on Rn; see, for instance, Section 3 in Chapter V of [Stein 1993]. Therefore, combining
(3.10) in the case p D q with (3.1) and noting that 2=q > 1, we obtain

�.fx 2 Rn W j zN
�
�;�.rxP�tf /.x/j> �g/. ��2.kM�.jrf j

q/k
2=q

L
2=q
� .Rn/

Ckrf k2
L2�.Rn;Rn/

/

. ��2krf k2
L2�.Rn;Rn/

for all � > 0 and f 2W 1;2
� .Rn/ (since W 1;2

� .Rn/�W
1;q
�;loc.R

n/), as required. �

4. The Carleson measure estimate

The purpose of this section is to prove the Carleson measure estimate (1.4) in Theorem 1.3. We adopt
the strategy outlined at the end of Section 3.1 in [Hofmann et al. 2015a], although the crucial technical
estimate, stated here as Theorem 4.10, is not at all an obvious extension of the uniformly elliptic case.
Moreover, establishing the Carleson measure estimate directly allows us to avoid “good-�” inequalities
and thus apply a change of variables based on the W 1;2

0;� -Hodge decomposition in (2.10), instead of the
W
1;2C�
0 -version (for a sufficiently small � > 0) required in [Hofmann et al. 2015a].
The technical result in Theorem 4.10 establishes (1.4) on certain “big pieces” of all cubes. The passage

to the general estimate ultimately follows from the self-improvement property for Carleson measures in
Lemma 2.22. This requires, however, that the Carleson measure estimate on the full gradient ru of a
solution u can be controlled by the same estimate on its transversal derivative @tu, which is the content
of Lemma 4.2. We briefly postpone the statement and proof of Lemma 4.2 and Theorem 4.10, however,
in order to deduce Theorem 1.3 from those results below.
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In contrast to the previous two sections, the results here concern solutions of the equation div.Aru/D 0
in open sets � � RnC1

C
when n � 2 and A is a t-independent coefficient matrix that satisfies (1.1) for

some 0 < ��ƒ<1 and an A2-weight � on Rn. In particular, in Section 2, weighted Sobolev spaces
were defined on open sets in Rd and matrix coefficients A 2 E.d; �;ƒ;�/ were considered for all
d 2N. Those results also hold here on open sets in the upper half-space with the weight �.x; t/ WD �.x/
and the coefficients A.x; t/ WD A.x/ for all .x; t/ 2 RnC1, since then Œ��A2.RnC1/ D Œ��A2.Rn/ and
A 2 E.nC1; �;ƒ;�/. In particular, the solution space W 1;2

�;loc.�/ is defined and the regularity estimates
in (2.16), (2.17) and (2.18) hold when �� RnC1

C
.

We will also use, without reference, the well-known fact that if u is a solution of div.Aru/D 0 in
� � RnC1

C
, then @tu is also a solution in �. In particular, to see that @tu is in W 1;2

�;loc.�/, a Whitney
decomposition of � reduces matters to showing that @tu is in W 1;2

� .R/ for all cubes R �� satisfying
`.R/< 1

2
dist.R; @�/. To this end, define the difference quotientsDhi u.X/ WD .1=h/Œu.XChei /�u.X/�

for all X 2 R and h<dist.R; @�/, where ei is the unit vector in the i-th coordinate direction in RnC1.
The t-independence of the coefficients implies that DhnC1u is a solution in R, so we use the identity
DhnC1.@iu/D @i .D

h
nC1u/ and Caccioppoli’s inequality to obtain“

R

jDhnC1.@iu/j
2 d��

“
R

jr.DhnC1u/j
2 d�. `.R/2

“
2R

jDhnC1uj
2 d�

� `.R/2
“
2R

j@tuj
2 d�DWK for all h < dist.R; @�/;

where the implicit constant depends only on n, �, ƒ and Œ��A2 , and the final bound holds uniformly in h
because u is in W 1;2

� .R/; see Lemma 7.23 in [Gilbarg and Trudinger 1977]. We can then use Lemma 7.24
in the same reference to deduce that @tu is in W 1;2

� .R/ with the estimate

k@i@tuk
2
L2�.R/

D k@t@iuk
2
L2�.R/

�K

for all i 2 f1; : : : ; nC 1g, as required. Note that the proofs of Lemmas 7.23 and 7.24 in [Gilbarg and
Trudinger 1977] extend immediately to the weighted context considered here because C1.R/ is still
dense in W 1;2

� .R/.

Proof of Theorem 1.3 from Lemma 4.2 and Theorem 4.10. Let Q � Rn denote a cube and suppose that
u 2 L1.RnC1

C
/ solves div.Aru/D 0 in RnC1

C
. It follows a fortiori from Theorem 4.10 that there exist

constants C; c0>0 and, for each cubeQ0�Q, a measurable set F 0�Q0 such that �.F 0/� c0�.Q0/ and

1

�.Q0/

Z l.Q0/

0

Z
F 0
jt@tu.x; t/j

2 d�.x/
dt

t
� Ckuk21;

where C and c0 depend only on n, �, ƒ and Œ��A2 .
The coefficient matrix A is t -independent, so @tu is also a solution and thus the degenerate version of

Moser’s estimate in (2.16), followed by Caccioppoli’s inequality, shows that kt@tuk1. kuk1. Moreover,
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the degenerate version of the de Giorgi–Nash Hölder regularity for solutions in (2.17) shows that

jt@tu.x; t/� t@tu.y; t/j.
�
jx�yj

t

�̨
kt@tuk1 . kuk1

�
jx�yj

t

�̨
for all x; y 2Q and t > 0, where all of the implicit constants and the exponent ˛ > 0 depend only on
n, �, ƒ and Œ��A2 . Therefore, we may apply Lemma 2.22 with

fvt ; ˛; ˇ0; �; ˇg WD f.t@tu/
2; ˛; Ckuk21; c0; Ckuk

2
1g

to obtain
1

�.Q/

Z `.Q/

0

Z
Q

jt@tu.x; t/j
2 d�.x/

dt

t
. kuk21; (4.1)

where the implicit constant depends only on n, �, ƒ and Œ��A2 . This estimate holds for all cubes Q, so
by Lemma 4.2, we conclude that (1.4) holds. �

We now dispense with the following lemma, which was used in the proof of Theorem 1.3 above to
reduce to a Carleson measure estimate on the transversal derivative of solutions. The proof is adapted
from Section 3.1 of [Hofmann et al. 2015a].

Lemma 4.2. Let n�2 and consider a cubeQ�Rn. IfA is a t -independent coefficient matrix that satisfies
the degenerate bound and ellipticity in (1.1) for some constants 0 < � � ƒ <1 and an A2-weight �
on Rn, then any solution u 2 L1.4Q� .0; 4`.Q/// of div.Aru/D 0 in 4Q� .0; 4`.Q// satisfiesZ `.Q/

0

Z
Q

jtru.x; t/j2 d�.x/
dt

t
.
Z 4`.Q/

0

Z
4Q

jt@tu.x; t/j
2 d�.x/

dt

t
C�.Q/kuk21;

where the implicit constant depends only on n, �, ƒ and Œ��A2 .

Proof. Let 0 < ı < 1
2

and set ˆQ.t/ WDˆ.t=`.Q//, where ˆ W R! Œ0; 1� denotes a C1-function such
that ˆ.t/D 1 for all 2ı � t � 1, whilst ˆ.t/D 0 for all t � ı and t � 2. Integrating by parts with respect
to the t -variable and noting that k@tˆkL1.Œ1;2�/ . 1, whilst k@tˆkL1.Œı;2ı�/ . 1=ı, we obtain

I WD

Z
Q

Z 2`.Q/

0

jru.x; t/j2ˆQ.t/t dt d�.x/

Å
Z
Q

Z 2`.Q/

0

@t .jru.x; t/j
2ˆQ.t//t

2 dt d�.x/

.
Z
Q

Z 2`.Q/

0

hr@tu.x; t/;ru.x; t/iˆQ.t/t
2 dt d�.x/

C

Z
Q

/

Z 2`.Q/

`.Q/

jru.x; t/j2t2 dt d�.x/C

Z
Q

/

Z 2ı`.Q/

ı`.Q/

jru.x; t/j2t2 dt d�.x/

DW I 0C I 00C I 000:

For the term I 0, we apply Cauchy’s inequality with an arbitrary � > 0 to obtain

I 0 � �I C
1

�

Z
Q

Z 2`.Q/

0

jr@tu.x; t/j
2t3 dt d�.x/:
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For the term I 00, we apply Caccioppoli’s inequality, the doubling property of � and the fact that t � `.Q/
in the domain of the integration to obtain

I 00 Å `.Q/
Z
Q

Z 2`.Q/

`.Q/

jru.x; t/j2 dt d�.x/

.
1

`.Q/

Z
2Q

Z 5`.Q/=2

`.Q/=2

ju.x; t/j2 dt d�.x/. �.Q/kuk21:

For the term I 000, the same reasoning shows that I 000 . �.Q/kuk21. We now fix � > 0, depending only on
allowable constants, such that altogether

I .
Z
Q

Z 2`.Q/

0

jr@tu.x; t/j
2t3 dt d�.x/C�.Q/kuk21;

which is justified since I <1 by Caccioppoli’s inequality and the support of ˆQ.
To complete the estimate, we let fWj W j 2 J g denote a collection of Whitney boxes (from a Whitney

decomposition of RnC1
C

) such thatWj \.Q�.0; 2`.Q///¤¿ and
P
j2J 12Wj .x; t/. 1. The coefficient

matrix A is t -independent, so @tu is also a solution of div.Aru/D 0 in each set Wj ; hence we may apply
Caccioppoli’s inequality in combination with the fact that t Å l.Wj / in Wj to obtainZ `.Q/

2ı`.Q/

Z
Q

jtru.x; t/j2 d�.x/
dt

t
.
X
j2J

“
Wj

jr@tu.x; t/j
2t3 dt d�.x/C�.Q/kuk21

.
X
j2J

l.Wj /

“
2Wj

j@tu.x; t/j
2 dt d�.x/C�.Q/kuk21

.
Z 4`.Q/

0

Z
4Q

jt@tu.x; t/j
2 d�.x/

dt

t
C�.Q/kuk21;

where the implicit constants do not depend on ı. The final result is then obtained by applying Fatou’s
lemma to estimate the limit as ı approaches 0. �

The remainder of this section is dedicated to the proof of the crucial technical estimate, Theorem 4.10,
that was used to prove Theorem 1.3. The proof adapts the change of variables from Section 3.2 of
[Hofmann et al. 2015a] to the degenerate elliptic case. This is used to pull back solutions to certain
sawtooth domains where the Carleson measure estimate can be verified by reducing matters to the vertical
square function estimates in Theorem 2.12, which we recall were obtained from the solution of the Kato
problem in [Cruz-Uribe and Rios 2015]. The following technical lemma, which reprises the notation
Pt WD e�t

2L� for L� WD � div�..1=�/Ar/ and A 2 E.n; �;ƒ;�/ as in (2.6) and Lemma 3.6, will be
used to justify these changes of variables.

Lemma 4.3. Let n� 2 and suppose that A 2 E.n; �;ƒ;�/ for some constants 0 < ��ƒ<1 and an
A2-weight � on Rn. Let Q � Rn denote a cube and suppose that f W 5Q! Rn is a measurable function
such that .1=�/f 2 L1.5Q/. Let � 2W 1;2

0;� .5Q/ and suppose that div.Ar�/D div f in 5Q. If �0 > 0,
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0 < � < 1
2

and x0 2Q satisfy ƒ.�; �;A/.x0/� �0, where

ƒ.�; �;A/ WD ��1N �
� .@tP�t�/CN�.@tPt�/C ŒM�.jrx�j

2/�1=2CD�;��; (4.4)

then
j@tP�t�.x/j � ��0 for all .x; t/ 2 ��.x0/ (4.5)

and

j.I �P�t /�.x/j. �
�
�0C

 1
�

f


1

�
t for all .x; t/ 2 ��.x0/\ .2Q� .0; 4`.Q///; (4.6)

where the implicit constant depends only on n, �, ƒ and Œ��A2 .

Proof. Suppose that �0 > 0, 0 < � < 1
2

and x0 2Q satisfy ƒ.�; �;A/.x0/� �0. It follows a fortiori that
��1N

�
� .@tP�t�/.x0/� �0, so (4.5) holds for all .x; t/ 2 ��.x0/.

To prove (4.6), first note that the properties of the semigroup imply

j.I �P�t /�.x0/j D
ˇ̌̌̌Z �t

0

@sPs�.x0/ ds
ˇ̌̌̌
� �t�0 (4.7)

for all t > 0, since N�.@sPs�/.x0/� �0. Now let .x; t/ 2 ��.x0/\ .2Q� .0; 4`.Q///. We set �x0;�t WD

/

R
B.x0;2�t/

�.y/ dy and apply estimate (3.7) with ˛ D 2 to obtain

jP�t .� ��x0;�t /.x/j. �tŒM�.jrx�j
2/.x0/�

1=2
� �t�0: (4.8)

Next, since div.Ar.� � �.x0/// D div.Ar�/ D div f in 5Q, and since 0 < � < 1
2

ensures that
B.x0; 2�t/� 5Q, we may apply the degenerate version of Moser’s estimate for inhomogeneous equations
in (2.20) to obtain

j�.x/��.x0/j.
�

/

Z
B.x0;2�t/

j�.y/��.x0/j
2 d�.y/

�1=2
C �t

 1
�

f


1

. �t
�
D�;��.x0/C

 1
�

f


1

�
. �t

�
�0C

 1
�

f


1

�
: (4.9)

Combining estimates (4.7), (4.8) and (4.9), we obtain

j.I �P�t /�.x/j � j�.x/��.x0/jC j.I �P�t /�.x0/jC jP�t .� ��x0;�t /.x0/jC jP�t .� ��x0;�t /.x/j

. �
�
�0C

 1
�

f


1

�
t;

which proves (4.6), as the implicit constant depends only on n, �, ƒ and Œ��A2 . �

We now present the main technical result of this section. The proof is adapted from Section 3.2 of
[Hofmann et al. 2015a], although some arguments have been simplified as detailed at the beginning of
this section, and the additional justification required in the degenerate elliptic case has been emphasised.

The strategy of the original proof in [Hofmann et al. 2015a] was motivated in part by the fact that
integration by parts is sufficient to establish the required estimate in the case when A has a certain block
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upper-triangular structure. A key idea in that paper was to account for the presence of lower-triangular
coefficients c (and upper-triangular coefficients) by decomposing them according to a W 1;2C�

0 -Hodge
decomposition. This was done locally on a given cube Q and the idea has been adapted here. First, the
W
1;2
0;� -Hodge decomposition c15QD�h�A�r' is introduced in (4.13), where A is the n�n submatrix

of A shown in (4.12). After integrating by parts, the divergence-free component �h provides valuable
cancellation, whilst the adapted gradient vector field A�r' facilitates a reduction to the square function
estimates in Theorem 2.12, which are implied by the solution to the Kato problem in [Cruz-Uribe and
Rios 2015], for the boundary operator L�;� WD � div�..1=�/A�rx/.

The latter estimates, however, require that L�;� acts on the range of P �t WD e
�t2L�

;� and this is
arranged by initially making the Dahlberg–Kenig–Stein-type pull-back t 7! t � .I �P ��t /'.x/ so that the
lower-triangular coefficients become �h�A�rxP

�
�t'. This change of variables is justified by choosing

� > 0 small enough so that the pull-back is bi-Lipschitz in t . Once this is in place, a set F is introduced
that contains a “big piece” of Q and on which the various maximal functions in Lemma 4.3 are bounded.
The integration on F � .0; `.Q// is then performed by introducing a smooth test function ‰ı that equals 1
on F � .2ı`.Q/; 2`.Q// and is supported on a certain truncated sawtooth domain ��=8;Q;ı over F ,
where ı > 0 is an arbitrary (small) parameter that provides for a smooth truncation in the t -direction near
the boundary of RnC1

C
. The main integration by parts is then performed in (4.32). The two principal terms

S1 and S2 arise from the tangential and transversal integration by parts, respectively, where the former is
taken with respect to the measure � and thus requires additional justification from the uniformly elliptic
case. These and numerous error terms are then shown to be appropriately under control.

Theorem 4.10. Let n � 2 and consider a cube Q � Rn. If A is a t-independent coefficient matrix
that satisfies the degenerate bound and ellipticity in (1.1) for some constants 0 < � � ƒ < 1 and
an A2-weight � on Rn, then for any solution u 2 L1.4Q � .0; 4`.Q/// that solves div.Aru/ D 0 in
4Q� .0; 4`.Q//, there exist constants C; c0 > 0 and a measurable set F �Q such that �.F /� c0�.Q/
and

1

�.Q/

Z `.Q/

0

Z
F

jtru.x; t/j2 d�.x/
dt

t
� Ckuk21; (4.11)

where C and c0 depend only on n, �, ƒ and Œ��A2 .

Proof. We begin by expressing the matrix A and its adjoint A� (which is just the transpose At, since the
matrix coefficients are real-valued) in the form

AD

"
A b

ct d

#
; A� D

"
A� c

bt d

#
; (4.12)

where A denotes the n � n submatrix of A with entries .A /i;j WD Ai;j , 1 � i; j � n, whilst b WD

.Ai;nC1/1�i�n is a column vector, ct WD .AnC1;j /1�j�n is a row vector and d WD AnC1;nC1 is a scalar.
Now consider a cube Q � Rn. The aim is to construct a set F �Q with the required properties. To

this end, we apply the Hodge decomposition from (2.10) to the space L2�.5Q;R
n/ in order to write

1

�
c15Q D�

1

�
A�r'Ch;

1

�
b15Q D�

1

�
A r Q'C Qh; (4.13)
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where '; Q' 2W 1;2
�;0 .5Q/ and h; Qh 2 L2�.5Q;R

n/ are such that div� hD div� QhD 0 and

/

Z
5Q

.jr'.x/j2Cjh.x/j2/ d�.x/. /

Z
5Q

ˇ̌̌̌
c.x/

�

ˇ̌̌̌2
d�.x/. 1; (4.14)

/

Z
5Q

.jr Q'.x/j2Cj Qh.x/j2/ d�.x/. /

Z
5Q

ˇ̌̌̌
b.x/

�

ˇ̌̌̌2
d�.x/. 1: (4.15)

We extend each of '; Q';h; Qh to functions on Rn by setting them equal to 0 on Rn n 5Q.
In Sections 2 and 3, we investigated the operators L� WD � div�..1=�/Ar/ and Pt WD e�t

2L� for
arbitrary coefficient matrices A in E.n; �;ƒ;�/. We now set

L ;� WD � div�
�
1

�
A rx

�
; Pt WD e

�t2L ;� ;

L�;� WD � div�
�
1

�
A�rx

�
; P �t WD e

�t2L�
;�

(4.16)

in order to apply those results in the cases AD A and AD A�.
We now introduce two constants �0; �>0, which will be fixed shortly, and recall the functionƒ.�; �;A/

from (4.4) to define the set F �Q by

F WDfx2Q Wƒ.�; ';A�/.x/Cƒ.�; Q';A /.x/C zN
�
�;�.rxP

�
�t'/.x/C

zN
�
�;�.rxP�t Q'/.x/��0g: (4.17)

Applying the weak-type bounds in (3.1), (3.3), (3.13) and (3.14) followed by the estimates from the
Hodge decomposition in (4.14) and (4.15), we obtain

�.Q nF /. ��20 .kr'k2
L2�.Rn;Rn/

Ckr Q'k2
L2�.Rn;Rn/

/. ��20 �.Q/;

where the implicit constants depend only on n, �, ƒ and Œ��A2 . This allows us to now fix �0>1 and some
constant c0 > 0 such that �.F /� c0�.Q/, where both �0 and c0 depend only on the allowed constants,
and thus are independent of �.

We now fix the value of � as follows. First, for 0� ˛ � 4 and ˇ > 0, let

�ˇ WD
[

x2F
�ˇ .x/; �ˇ;Q;˛ WD�ˇ \ .2Q� .˛`.Q/; 4`.Q/// and �ˇ;Q WD�ˇ;Q;0

denote the sawtooth domains in RnC1
C

spanned by cones centred on F of aperture ˇ. Next, note that the
properties of the Hodge decomposition in (4.13) imply � div.A�r'/D div.c15Q/ and � div.A r Q'/D
div.b15Q/ in 5Q. Therefore, we now fix 0 < � < 1

2
in accordance with (4.5) and (4.6) such that

maxfj@tP ��t'.x/j; j@tP�t Q'.x/jg � ��0 <
1
8

for all .x; t/ 2�� (4.18)

and

maxfj.I �P ��t /'.x/j; j.I �P�t / Q'.x/jg

. �
�
�0Cmax

n 1
�

ck1;
 1
�

b


1

o�
t . ��0t < 1

8
t for all .x; t/ 2��;Q; (4.19)

where � and the implicit constants depend only on n, �, ƒ and Œ��A2 .
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It remains to prove (4.11). We will achieve this by changing variables in the transversal direction using
the mapping t 7! �.x; t/, with x 2 Rn fixed, defined by

�.x; t/ WD t � .I �P ��t /'.x/

and having Jacobian denoted by

J.x; t/ WD @t�.x; t/D 1C @tP
�
�t'.x/: (4.20)

In order to justify such changes of variables, we note from (4.18) and (4.19) that

7
8
t < �.x; t/ < 9

8
t and 7

8
< J.x; t/ < 9

8
for all .x; t/ 2��;Q: (4.21)

In particular, for each x 2 F and 0� ˛ � 1
8

, this implies that the mapping t 7! �.x; t/ is bi-Lipschitz in t
on .2˛`.Q/; 2`.Q// with range

.4˛`.Q/; `.Q//� �.x; � /
�
.2˛`.Q/; 2`.Q//

�
� .˛`.Q/; 4`.Q//: (4.22)

Moreover, for each 0 < ˇ � �, the mapping .x; t/ 7! �.x; t/ defined by

�.x; t/ WD .x; �.x; t//D .x; t CP ��t'.x/�'.x//

is bi-Lipschitz in t on �ˇ;Q with range

�8ˇ=9;Q � �.�ˇ;Q/��8ˇ=7;Q: (4.23)

Now consider a bounded solution u satisfying div.Aru/ D 0 in 4Q � .0; 4`.Q//. The pull-back
u1 WD u ı � is in L1.��;Q/ and div.A1ru1/D 0 in ��;Q, where

A1 WD

"
JA bCA rx' �A rxP

�
�t'

.�h�A�rxP
�
�t'/

t hAp;pi=J

#
and

p.x; t/ WD

�
rx�.x; t/

�1

�
D

�
rxP

�
�t'.x/�rx'.x/

�1

�
: (4.24)

Our statement that div.A1ru1/ D 0 in ��;Q does not mean that A1 satisfies (1.1), only that u1 2
W
1;2
�;loc.��;Q/ and that

R
R
nC1
C

hA1ru1;rˆi D 0 for all ˆ 2 C1c .��;Q/. To prove this, we combine the
pointwise identity

hA..ru/ ı �/; .rv/ ı �iJ D hA1r.u ı �/;r.v ı �/i for all v 2W 1;2
0;� .�.��;Q// (4.25)

with the change of variables .x; t/ 7! �.x; t/ on ��;Q, which is justified because � is bi-Lipschitz
in t on ��;Q with range �.��;Q/ � 4Q � .0; 4`.Q// by (4.23). Also, we note for later use that
k1��;Qu1k1 � kuk1 and, using (4.21), that

jru1j.
ˇ̌̌̌�
rxu1� .rx�/.@tu1/=J

.@tu1/=J

�ˇ̌̌̌
Cjrx� jj@tu1j D j.ru/ ı �jC jrx� jj@tu1j (4.26)

on ��;Q.
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Next, in order to work with the pull-back solution u1, we consider an arbitrary constant 0 < ı � 1
8

and define a smooth cut-off function ‰ı adapted to ��;Q as follows. Let ıF .x/ WD dist.x; F /, fix a
C1-function ˆ W R! Œ0; 1� satisfying ˆ.t/D 1 when t < 1

16
and ˆ.t/D 0 when t � 1

8
, and then define

‰ı.x; t/ WDˆ

�
ıF .x/

�t

�
ˆ

�
t

32`.Q/

��
1�ˆ

�
t

16ı`.Q/

��
for all .x; t/ 2 RnC1

C
:

This function is designed so that ‰ı � 1 on F � .2ı`.Q/; 2`.Q//, and since � < 1
2

, we have supp‰ı �
��=8;Q;ı and

jrx;t‰ı.x; t/j.
1E1.x; t/

t
C

1E2.x; t/

`.Q/
C

1E3.x; t/

ı`.Q/
for all .x; t/ 2��=8;Q;ı ; (4.27)

where
E1 WD

˚
.x; t/ 2 2Q� .0; 4`.Q// W 1

16
�t � ıF .x/�

1
8
�t
	
;

E2 WD 2Q� .2`.Q/; 4`.Q//;

E3 WD 2Q� .ı`.Q/; 2ı`.Q//:

In contrast to Section 3.2 in [Hofmann et al. 2015a], the cut-off function‰ı introduced here incorporates
an additional truncation in the t -direction at the boundary. This is done to simplify subsequent integration-
by-parts arguments, since it ensures that ‰ı vanishes on the boundary of RnC1

C
. For later purposes, it is

also convenient to isolate the following general fact here.

Remark 4.28. For each k 2 Z, let D
�

k
denote the grid of dyadic cubes Q0 � Rn such that

1
64
�2�k � diamQ0 < 1

32
�2�k :

If C0 > 0 and .vt /t>0 is a collection of nonnegative measurable functions such that

sup
t2Œ2�k ;2�kC1�

/

Z
Q0
vt .x/ d�.x/� C0 for all k 2 Z; for all Q0 2 D

�

k
;

then “
R
nC1
C

�
1E1.x; t/

t
C

1E2.x; t/

`.Q/
C

1E3.x; t/

ı`.Q/

�
vt .x/ d�.x/ dt . C0�.Q/; (4.29)

where the implicit constant depends only on n, �, ƒ and Œ��A2 . To see this, first observe that since ıF is
a Lipschitz mapping with constant 1, we have

Q.1/ � Œ2�k; 2�kC1�� zE1 WD

�
.x; t/ 2 4Q� .0; 4`.Q// W

�t

C
� ıF .x/� C�t

�
;

Q.2/ � Œ2�k; 2�kC1�� 4Q� .`.Q/; 8`.Q//;

Q.3/ � Œ2�k; 2�kC1�� 4Q�
�
1
2
ı`.Q/; 4ı`.Q/

�
whenever Ei \ .Q.i/ � Œ2�k; 2�kC1�/ ¤ ¿ and i 2 f1; 2; 3g. The estimate in (4.27) and the doubling
property of � then imply that the left side of (4.29) is bounded by
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C0

�X
k2Z

X
Q02D

�

k

Z 2�kC1

2�k

Z
Q0

1 zE1 d�
dt

t
CC /

Z 8`.Q/

`.Q/

�.Q/ dt CC /

Z 4ı`.Q/

1
2
ı`.Q/

�.Q/ dt

�

. C0
�Z

4Q

Z .C=�/ıF .x/

.1=.C�//ıF .x/

dt

t
d�.x/C�.Q/

�
. C0�.Q/;

as required.

We now proceed to prove (4.11). First, note that it suffices to show that

sup
0<ı�1=8

Z `.Q/

4ı`.Q/

Z
F

jtru.x; t/j2 d�.x/
dt

t
. kuk21�.Q/; (4.30)

since we may then obtain (4.11) by using Fatou’s lemma to pass to the limit as ı approaches 0. To this
end, we use (4.22), followed by the bi-Lipschitz-in-t change of variables t 7! �.x; t/ on .ı`.Q/; 2`.Q//
for each x 2 F , estimate (4.21) and identity (4.25) to obtainZ `.Q/

4ı`.Q/

Z
F

jtru.x; t/j2 d�.x/
dt

t
.
Z
F

Z `.Q/

4ı`.Q/

hAru;rui t dt dx

.
Z
F

Z 2`.Q/

2ı`.Q/

hA1ru1;ru1i t dt dx

�

“
R
nC1
C

hA1ru1;ru1i‰
2
ı t dx dt:

Thus, in order to prove (4.30) and ultimately (4.11), it suffices to show that“
R
nC1
C

hA1ru1;ru1i‰
2
ı t dx dt . kuk

2
1�.Q/ for all 0 < ı � 1

8
; (4.31)

where the implicit constant depends only on n, �, ƒ and Œ��A2 .
Next, we recall that div.A1ru1/D 0 in ��;Q, noting that u1‰2ı t 2W

1;2
0;� .��;Q/, and then integrate

by parts to obtain“
R
nC1
C

hA1ru1;ru1i‰
2
ı t dx dt

D�
1

2

“
R
nC1
C

hA1r.u
2
1/;r.‰

2
ı t /i dx dt

D�
1

2

“
R
nC1
C

D
r.u21/;

1

�
A�1enC1

E
‰2ı d�dt �

1

2

“
R
nC1
C

hA1r.u
2
1/;r.‰

2
ı /i t dx dt

D
1

2

“
R
nC1
C

u21.L
�
;�P

�
�t'/‰

2
ı d�dt C

1

2

“
R
nC1
C

u21@t

�
hAp;pi

J

�
‰2ı dx dt

�
1

2

“
R
nC1
C

hA1r.u
2
1/;r.‰

2
ı /i t dx dt C

1

2

“
R
nC1
C

u21henC1; A1r.‰
2
ı /i dx dt

DW S1CS2CE1CE2; (4.32)
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where enC1 WD .0; : : : ; 0; 1/ denotes the unit vector in the t -direction. In particular, note that the tangential
integration by partsZ

Rn

D
rx.u

2
1/;h�

1

�
A�rxP

�
�t'

E
‰2ı d�D

Z
Rn
u21 div�

h�
h�

1

�
A�rxP

�
�t'

�
‰2ı

i
d�;

with respect to the measure �, is justified by the definition of the operator div�, since P ��t' 2Dom.L�;�/
and div� hD 0 imply .h�.1=�/A�rxP ��t'/‰

2
ı
2Dom.div�/ (recall (2.8), (2.9) and (4.16)). Meanwhile,

the transversal integration by partsZ 1
0

@t .u
2
1/

�
hAp;pi

J

�
‰2ı dt D�

Z 1
0

u21@t

��
hAp;pi

J

�
‰2ı

�
dt

is justified because ‰ı vanishes on the boundary of RnC1
C

.
We proceed to prove that, for all � 2 .0; 1/, each term in (4.32) is controlled by

S1CS2CE1CE2 . �
“

R
nC1
C

hA1ru1;ru1i‰
2
ı t dx dt C �

�1
kuk21�.Q/; (4.33)

where the implicit constant depends only on n, �, ƒ and Œ��A2 . Estimate (4.31) will then follow by fixing
a sufficiently small � 2 .0; 1/, depending only on allowed constants, to move the integral in (4.33) to the
left side of (4.32). This is justified because the integral in (4.33) is finite by Caccioppoli’s inequality and
the fact that ‰ı vanishes in a neighbourhood of the boundary of RnC1

C
(supp‰ı ���=8;Q;ı ).

We now prove (4.33) in three steps to complete the proof.

Step 1: estimates for the error terms E1 and E2 in (4.32).
We first apply Cauchy’s inequality with � to write

E1 �

ˇ̌̌̌
1

2

“
R
nC1
C

hA1r.u
2
1/;r.‰

2
ı /i t dx dt

ˇ̌̌̌

D 2

ˇ̌̌̌“
R
nC1
C

hA1ru1;r‰ıiu1‰ı t dx dt

ˇ̌̌̌

. �
“

R
nC1
C

hA1ru1;ru1i‰
2
ı t dx dt C �

�1

“
R
nC1
C

u21hA1r‰ı ;r‰ıi t dx dt

DW �

“
R
nC1
C

hA1ru1;ru1i‰
2
ı t dx dt C �

�1E 01:

We then use �h D c15Q C A�r' from (4.13), the degenerate bound in (1.1) for A, the bound
k1��;Qu1k1 . kuk1 and the estimate for r‰ı from (4.27) to obtain

E 01CE2 . kuk21
“
��=8;Q

�
1E1
t
C

1E2
`.Q/

C
1E3
ı`.Q/

�
.1Cjrx.I �P

�
�t /'j

2/ d�dt;
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where (4.27) ensures that jr.‰2
ı
/j and jr‰ı j2t can be controlled in the same manner. In order to

apply Remark 4.28 with vt D 1��=8;Q.1C jrx.I �P
�
�t /'j

2/, we observe that if k 2 Z, Q0 2 D
�

k
and

��=8;Q;ı\.Q
0� Œ2�k; 2�kC1�/¤¿, then there exists x0 2F such thatQ0��.x0; �2�k/�CQ0, where

� is used to denote balls in Rn; hence

Q0 � Œ2�k; 2�kC1����;2Q;ı=4 (4.34)

and the doubling property of � implies

/

Z
Q0
jrx.I �P

�
�t /'j

2 d�. /

Z
�.x0;�t/

jrxP
�
�t'j

2 d�C /
Z
�.x0;�2�k/

jrx'j
2 d�

. Œ zN �
�;�.rxP

�
�t'/.x0/�

2
CM�.jrx'j

2/.x0/

. �20 . 1 for all t 2 Œ2�k; 2�kC1�; (4.35)

where in the last line we used the definition of the set F in (4.17) and the weighted maximal operators zN�;�
and M� from Section 3. It thus follows from (4.29) that E 01CE2 . kuk21�.Q/, so altogether we have

E1CE2 . �
“

R
nC1
C

hA1ru1;ru1i‰
2
ı t dx dt C �

�1
kuk21�.Q/ for all � 2 .0; 1/: (4.36)

Step 2: estimates for the term S1 in (4.32).
We note that @tP ��t D�2�

2tL�;�P
�
�t on L2�.R

n/ and integrate by parts in t to write

S1 D
1

2

“
R
nC1
C

u21.L
�
;�P

�
�t'/‰

2
ı d�dt

D�
1

2

“
R
nC1
C

u21@t .L
�
;�P

�
�t'/‰

2
ı t d�dt

C
1

2�2

“
R
nC1
C

.u1@tu1/.@tP
�
�t'/‰

2
ı d�dt C

1

2�2

“
R
nC1
C

u21.@tP
�
�t'/‰ı@t‰ı d�dt

DW S 01CS 001 CS 0001 ;

where there is no boundary term because ‰ı vanishes on the boundary of RnC1
C

.
To estimate S 0001 , we use the definition of the set F in (4.17), the estimate for jr‰ı j from (4.27), and

Remark 4.28 in the case vt � 1, to obtain

S 0001 . kuk
2
1

“
��=8;Q

N
�
� .@tP

�
�t'/ j@t‰ı j d�dt

. ��0kuk21�.Q/. kuk
2
1�.Q/:

To estimate S 01, we observe that @t .L�;�P
�
�t'/D L

�
;�.@tP

�
�t'/, since ' 2W 1;2

�;0 .R
n/ and @tP ��t D

�2�2tP ��tL
�
;� on the dense subset Dom.L�;�/ of W 1;2

0;� .R
n/ (note also that trxP ��t and hence its adjoint

are bounded operators on L2�, as can be seen from the proof of Theorem 2.12). We then apply Cauchy’s
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inequality with � to write

S 01 �

ˇ̌̌̌“
R
nC1
C

L�;�.@tP
�
�t'/u

2
1‰

2
ı t d�dt

ˇ̌̌̌

.
ˇ̌̌̌“

R
nC1
C

D
1

�
A�rx.@tP

�
�t'/;rxu1

E
u1‰

2
ı t d�dt

ˇ̌̌̌
C

ˇ̌̌̌“
R
nC1
C

D
1

�
A�rx.@tP

�
�t'/;rx‰ı

E
u21‰ı t d�dt

ˇ̌̌̌
DW J CK

. �
“

R
nC1
C

jrxu1j
2‰2ı t d�dt C .�

�1
C 1/

“
R
nC1
C

u21jrx@tP
�
�t'j

2‰2ı t d�dt

C

“
R
nC1
C

u21jrx‰ı j
2 t d�dt DW �S 011C .�

�1
C 1/S 012CS 013; (4.37)

where the integration by parts in x, with respect to the measure �, is justified by the definition of the oper-
ator L�;� (recall (2.8), (2.9) and (4.16)). The terms J and K are highlighted above for reference in Step 3.

To estimate S 013, we use the estimate for jr‰ı j from (4.27) and Remark 4.28 in the case vt � 1 to
obtain S 013 . kuk21�.Q/.

To estimate S 012, we observe that rx@tP ��t D�2�
2trxL

�
;�P

�
�t on L2�.R

n/ and then apply the vertical
square function estimate from (2.14) followed by theW 1;2

0;� .5Q/-Hodge estimate for ' from (4.14) to obtain

S 012 .
“

R
nC1
C

u21jrx@tP
�
�t'j

2‰2ı t d�dt . kuk
2
1

“
R
nC1
C

jt2rxL
�
;�P

�
�t'j

2 d�
dt

t

. kuk21kr'k
2
L2�.Rn;Rn/

. kuk21�.Q/:

The terms S 011 and S 001 will now be estimated together. We again apply Cauchy’s inequality with � ,
followed by the vertical square function estimate from (2.13) with L� D L�;� and the W 1;2

0;� .5Q/-Hodge
estimate for ' from (4.14) to obtain

�S 011CS 001 . �
“

R
nC1
C

jrxu1j
2‰2ı t d�dtC

ˇ̌̌̌“
R
nC1
C

.u1@tu1/.@tP
�
�t'/‰

2
ı d�dt

ˇ̌̌̌

. �
“

R
nC1
C

jru1j
2‰2ı t d�dtC�

�1
kuk21

“
R
nC1
C

j@tP
�
�t'j

2d�
dt

t

. �
“

R
nC1
C

hA1ru1;ru1i‰
2
ı t dx dtC�

“
R
nC1
C

jrx� j
2
j@tu1j

2‰2ı t d�dtC�
�1
kuk21�.Q/;

where we combined the pointwise estimates for ru1 and J from (4.26) and (4.21) with identity (4.25)
and the ellipticity of A to deduce the final inequality.

We use the dyadic decomposition from Remark 4.28 to write“
R
nC1
C

jrx� j
2
j@tu1j

2‰2ı t d�dt �
X
k2Z

X
Q02D

�

k

Z 2�kC1

2�k

Z
Q0

1��;Q;ı jrx� j
2
j@tu1j

2 t d�dt: (4.38)
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Observe that if k 2 Z, Q0 2 D
�

k
and ��=8;Q;ı \ .Q0 � Œ2�k; 2�kC1�/¤¿, then, as in (4.34) and (4.35),

it holds that Q0 � Œ2�k; 2�kC1����;2Q;ı=4 and

/

Z
Q0
jrx�.x; t/j

2 d�.x/. �20 for all t 2 Œ2�k; 2�kC1�:

Also, we have 7
8
t < �.x; t/ < 9

8
t and J.x; t/ Å 1 on Q0 � Œ2�k; 2�kC1� by (4.21), so the degenerate

version of Moser’s estimate in (2.16) and t -independence show that

sup
x2Q0

j@tu1.x; t/j
2
D sup
x2Q0

jJ.x; t/@�u.x; �.x; t//j
2 . /

Z
2Q0

/
Z 2t

t=2

j@su.y; s/j
2 ds d�.y/

for all t 2 Œ2�k; 2�kC1�. In particular, note that

2Q0 � Œ2�k�1; 2�kC2���� WD
˚
.y; s/ 2 RnC1

C
W ıF .y/ <

5
8
�s; 1

2
ı`.Q/ < s < 8`.Q/

	
;

since there exists .x0; t0/ 2Q0 � Œ2�k; 2�kC1� satisfying ıF .x0/ < 1
8
�t0, whence

ıF .y/ < diam.2Q0/C 1
8
�t0 �

5
16
�2�k � 5

8
�s for all y 2 2Q0 and s � 2�k�1;

whilst ı`.Q/ < t0 < 4`.Q/ implies Œ2�k; 2�kC1��
�
1
2
ı`.Q/; 8`.Q/

�
.

The observations in the preceding paragraph show that (4.38) is bounded byX
k2Z

X
Q02D

�

k

Z 2�kC1

2�k

�
/

Z
Q0
jrx� j

2 d�

��Z
2Q0

Z 2t

t=2

j@su.y; s/j
21��.y; s/ ds d�.y/

�
dt

.
X
k2Z

X
Q02D

�

k

Z 2�kC2

2�k�1

Z
2Q0
j@su.y; s/j

21��.y; s/ s d�.y/ ds

.
�“

���
j@su.y; s/j

2 s d�.y/ dsC

“
��n���

j@su.y; s/j
2 s d�.y/ ds

�
WDM CE ;

where we used the fact that
P
k2Z

P
Q02D

�

k
12Q0�Œ2�k�1;2�kC2� . 1

R
nC1
C

and introduced

��� WD
˚
.y; s/ 2 RnC1

C
W ıF .y/ <

1
18
�s; 4ı`.Q/ < s < `.Q/

	
:

To estimate the main term M, we use (4.21)–(4.23) to observe that

��1.���/���=16\ .2Q� .2ı`.Q/; 2`.Q///:

Thus, since ‰ı � 1 on these sets, the change of variables .y; s/ 7! �.y; s/ gives

M .
“

R
nC1
C

j.@tu/ ı �j
2J ‰2ı t d�dt .

“
R
nC1
C

hA1ru1;ru1i‰
2
ı t dx dt;

where we used identity (4.25) and the ellipticity of A to deduce the final inequality.
To estimate the error term E , recall that the degenerate version of Moser’s estimate in (2.16), followed

by Caccioppoli’s inequality, ensures that ks@suk1 . kuk1. Thus, by the definition of �� n��� and
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the doubling property of �, we obtain

E . kuk21
Z
2Q

�Z .18=�/ıF .y/

.8=5�/ıF .y/

ds

s
C

Z 8`.Q/

`.Q/

ds

s
C

Z 4ı`.Q/

.ı=2/`.Q/

ds

s

�
d�.y/. kuk21�.Q/:

This shows that

�S 011CS 001 . �
“

R
nC1
C

hA1ru1;ru1i‰
2
ı t dx dt C �

�1
kuk21�.Q/I

hence

S1 . �
“

R
nC1
C

hA1ru1;ru1i‰
2
ı t dx dt C �

�1
kuk21�.Q/ for all � 2 .0; 1/: (4.39)

Step 3: estimates for the term S2 in (4.32).
We observe that since A is t -independent it is possible to write

2S2 D

“
R
nC1
C

u21@t

�
hAp;pi

J

�
‰2ı dx dt

D

“
R
nC1
C

u21@t

�
1

J

�
hAp;pi‰2ı dx dt

C

“
R
nC1
C

�
u21
J

�
h@tp; A

�pi‰2ı dx dt C

“
R
nC1
C

�
u21
J

�
hAp; @tpi‰

2
ı dx dt

DW I C II C III :

To estimate I , we recall the Jacobian J.x; t/D 1C@tP ��t'.x/ from (4.20) and then integrate by parts
in t to write

I D�

“
R
nC1
C

u21
@2tP

�
�t'

J 2
hAp;pi‰2ı dx dt

D

“
R
nC1
C

@t .u
2
1/
@tP

�
�t'

J 2
hAp;pi‰2ı dx dt C

“
R
nC1
C

u21
@tP

�
�t'

J 2
@t .hAp;pi/‰2ı dx dt

C

“
R
nC1
C

u21@tP
�
�t' @t .J

�2/hAp;pi‰2ı dx dt C

“
R
nC1
C

u21
@tP

�
�t'

J 2
hAp;pi@t .‰

2
ı / dx dt

DW I1C I2C I3C I4;

where there is no boundary term because ‰ı vanishes on the boundary of RnC1
C

.
To estimate I1, we recall that J Å 1 on supp‰ı � ��=8;Q;ı by (4.21) and then apply Cauchy’s

inequality with � to obtain

jI1j. �
“

R
nC1
C

j@tu1j
2
jpj2‰2ı t d�dt C �

�1

“
R
nC1
C

u21j@tP�t'j
2
jpj2‰2ı d�

dt

t

DW �I 01C �
�1I 001 : (4.40)
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To estimate I 01, recall that jpj2D 1Cjrx� j2 by the definition of p in (4.24), so we follow the treatment
of (4.38) above to obtain

I 01 .
“

R
nC1
C

hA1ru1;ru1i‰
2
ı t dx dt Ckuk

2
1�.Q/:

To estimate I 001 , recall that k1��;Qu1k1 . kuk1 and use the dyadic decomposition from Remark 4.28
to obtain

I 001 . kuk
2
1

X
k2Z

X
Q02D

�

k

k@tP
�
�t'k

2
L1.Q0�Œ2�k ;2�kC1�/

Z 2�kC1

2�k

Z
Q0
jpj2‰2ı d�

dt

t

. kuk21
X
k2Z

X
Q02D

�

k

�.Q0/k@tP
�
�t'k

2
L1.Q0�Œ2�k ;2�kC1�/

. kuk21
X
k2Z

X
Q02D

�

k

�.Q0/ /

Z 2�kC2

2�k�1
/

Z
2Q0
j@tP

�
�t'j

2 d�dt

. kuk21
X
k2Z

X
Q02D

�

k

Z 2�kC2

2�k�1

Z
2Q0
j@tP

�
�t'j

2 d�
dt

t

. kuk21
“

R
nC1
C

jtL�;�e
�t2L�

;�'j2 d�
dt

t

. kuk21kr'k
2

L2�.Rn;Rn/
. kuk21�.Q/; (4.41)

where the second line uses the pointwise bound jpj2‰2
ı
� 1��=8;Q;ı .1C jrx.I � P

�
�t /'j

2/ and esti-
mate (4.35), the third line uses the parabolic version of the degenerate Moser-type estimate in (2.16)
(see Theorem B in [Fernandes 1991]), noting that v WD @t .e

�tL�
;�'/ solves @tv D �L�;�v, whilst

j@tP
�
�t'.x/j. jt v.x; �2t2/j, and the final line uses the vertical square function estimate from (2.13) with

L� D L�;� and the W 1;2
0;� .5Q/-Hodge estimate for ' from (4.14).

To estimate I2, we again use the bound J Å 1 on supp‰ı ���=8;Q;ı from (4.21), and then recall
the definition p WD .rx.P

�
�t � I /';�1/ from (4.24) to obtain

jI2j.
“

R
nC1
C

u21jrx@tP
�
�t'j

2‰2ı t d�dt C

“
R
nC1
C

u21j@tP
�
�t'j

2
jpj2‰2ı d�

dt

t
: (4.42)

The first integral in (4.42) is the same as S 012 from (4.37), whilst the second integral is the same as I 001
from (4.40); hence jI2j. kuk21�.Q/.

To estimate I3, we use the bound j@tP ��t'j<
1
8

guaranteed by (4.18) to deduce that

j@t .J
�2/j D j@t .1C @tP

�
�t'/

�2
j. j@2tP

�
�t'j

on supp‰ı ���=8;Q;ı and write

jI3j.
“

R
nC1
C

u21j@tP
�
�t'j

2
jpj2‰2ı d�

dt

t
C

“
R
nC1
C

u21j@
2
tP
�
�t'j

2
jpj2‰2ı t d�dt DW I

0
3C I 003 :
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To estimate I 03, we note that it is the same as I 001 from (4.40); thus I 03 . kuk21�.Q/.
To estimate I 003 , we follow the estimates and justification provided for (4.41), noting in addition that

@tv D @
2
t .e
�tL�

;�'/ solves @t .@tv/D�L�;�.@tv/, to obtain

I 003 . kuk
2
1

X
k2Z

X
Q02D

�

k

kt@2tP
�
�t'k

2
L1.Q0�Œ2�k ;2�kC1�/

Z 2�kC1

2�k

Z
Q0
jpj2‰2ı d�

dt

t

. kuk21
X
k2Z

X
Q02D

�

k

�.Q0/kjtL�;�P
�
�t'jC jt

2@t .L
�
;�P

�
�t'/jk

2
L1.Q0�Œ2�k ;2�kC1�/

. kuk21
X
k2Z

X
Q02D

�

k

�.Q0/ /

Z 2�kC2

2�k�1

/

Z
2Q0

.jtL�;�P
�
�t'j

2
Cjt2@t .L

�
;�P

�
�t'/j

2/ d�dt

. kuk21
“

R
nC1
C

jtL�;�P
�
�t'j

2 d�
dt

t
Ckuk21

“
R
nC1
C

jt2rx;t .L
�
;�P

�
�t'/j

2 d�
dt

t

. kuk21kr'k
2
L2�.Rn;Rn/

. kuk21�.Q/;

where the second line uses j@2tP
�
�t'j. j@t .tL�;�P ��t'/j. jL�;�P ��t'jC jt@t .L�;�P ��t'/j, the third line

uses jL�;�P
�
�t'.x/j D jv.x; �

2t2/j and j@t .L�;�P
�
�t'/.x/j . jt .@tv/.x; �2t2/j, and the final line uses

the vertical square function estimates from (2.13) and (2.14) with L� D L�;�; hence jI3j. kuk21�.Q/.
To estimate I4, we use j@tP ��t'j . 1, J Å 1 and jpj2 � .1C jrx.I � P ��t /'j

2/, which hold on
supp‰ı ���=8;Q;ı by (4.18), (4.21) and (4.24), to reduce to the estimate obtained for E 01CE2; hence
jI4j. kuk21�.Q/.

To estimate II , we use the definition p WD .rx.P
�
�t � I /';�1/ from (4.24) to note that @tp D

.rx@tP
�
�t'; 0/ and use the Hodge decomposition from (4.13) to write

h@tp; A
�pi D hrx@tP

�
�t';A

�
rx.P

�
�t�I /' � ci D hrx@tP

�
�t';A

�
rxP

�
�t' ��hi (4.43)

for all x 2 5Q and t > 0. Using this and recalling that div� hD 0, it follows that

II D

“
R
nC1
C

�
u21
J

�
hrx@tP

�
�t';A

�
rxP

�
�t' ��hi‰2ı dx dt

D

“
R
nC1
C

�
u21
J

�
.@tP

�
�t'/.L

�
;�P

�
�t'/‰

2
ı d�dt

�

“
R
nC1
C

@tP
�
�t'hrx

�
u21
J

�
; A�rxP

�
�t' ��hi‰2ı dx dt

�

“
R
nC1
C

�
u21
J

�
@tP

�
�t'hrx.‰

2
ı /; A

�
rxP

�
�t' ��hi dx dt

DW II1C II2C II3; (4.44)

where the integration by parts in x, with respect to the measure �, is justified by the definition of the
operator L�;� (recall (2.8), (2.9) and (4.16)).
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To estimate II1, we use J Å 1 and L�;�P
�
�t' D�.2�

2t /�1@tP
�
�t' to show that it can be treated the

same way as I 001 in (4.40), without jpj2; hence jII1j. kuk21�.Q/.
To estimate II2, we use J Å 1,

jrx.J
�1/j D jrx.1C @tP

�
�t'/

�1
j. jrx@tP ��t'j

and apply Cauchy’s inequality with � to obtain

jII2j. �
“

R
nC1
C

jrxu1j
2‰2ı t d�dt C

“
R
nC1
C

u21jrx@tP
�
�t'j

2‰2ı t d�dt

C .��1C 1/

“
R
nC1
C

u21j@tP
�
�t'j

2.jrxP
�
�t'j

2
Cjhj2/‰2ı d�

dt

t
: (4.45)

The first integral is the same as S 011 from (4.37), whilst the remaining two integrals are the same as those
that bound I2 in (4.42), except .jrxP ��t'j

2Cjhj2/ replaces jpj2. This factor is controlled in the same
way, however, since the Hodge decomposition in (4.13) implies

jhj2 D

ˇ̌̌
1

�
c15QC

1

�
A�rx'

ˇ̌̌2
. 1Cjrx'j2I

hence by (4.35) we obtain

jII2j. �
“

R
nC1
C

hA1ru1;ru1i‰
2
ı t dx dt C �

�1
kuk21�.Q/:

To estimate II3, we use J Å 1 and Cauchy’s inequality to write

jII3j.
“

R
nC1
C

u21jrx‰ı j
2 t d�dt C

“
R
nC1
C

u21j@tP
�
�t'j

2.jrxP
�
�t'j

2
Cjhj2/‰2ı d�

dt

t
:

The first term above is the same as S 013 in (4.37), whilst the remaining term is the same as the last integral
in (4.45); hence jII3j. kuk21�.Q/.

To estimate III , we observe by analogy with (4.43) that

hAp; @tpi D hA rx.P
�
�t � I /' �b;rx@tP

�
�t'i

D hA rx.P
�
�t' �'/CA rx Q' ��

Qh;rx@tP
�
�t'i

D hA rxŒ.P
�
�t' �'/� .P�t Q' � Q'/�CA rxP�t Q' ��

Qh;rx@tP
�
�t'i

for all x 2 5Q and t > 0 and then write

III D

“
R
nC1
C

�
u21
J

�
hrxŒ.P

�
�t' �'/� .P�t Q' � Q'/�; A

�
rx@tP

�
�t'i‰

2
ı dx dt

C

“
R
nC1
C

�
u21
J

�
hA rxP�t Q' �� Qh;rx@tP

�
�t'i‰

2
ı dx dt

DW III1C III2:
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To estimate III1, we integrate by parts in x with respect to the measure � to write

III1 D

“
R
nC1
C

�
u21
J

�
Œ.P ��t' �'/� .P�t Q' � Q'/�.L

�
;�@tP

�
�t'/‰

2
ı d�dt

�

“
R
nC1
C

Œ.P ��t' �'/� .P�t Q' � Q'/�hrx

�
u21‰

2
ı

J

�
; A�rx@tP

�
�t'i dx dt

DW III 01C III 001;

which is justified by the definition of L�;� (recall (2.8), (2.9) and (4.16)).
To estimate III 01, we use Hardy’s inequality (see, for instance, page 272 in [Stein 1970]) to observe,

for the semigroups Pt 2 fe
�t2L�

;� ; e�t
2L ;�g, the estimateZ 1

0

jP�tf �f j2
dt

t3
�

Z 1
0

�Z �t

0

j@sPsf j ds
�2dt
t3
.
Z 1
0

j@tPtf j2
dt

t
for all f 2 L2�.R

n/:

We then recall that k1��;Qu1k1 . kuk1 and J Å 1 on supp‰ı ���=8;Q;ı to obtain

jIII 01j. kuk
2
1

Z
Rn

Z 1
0

.jP ��t' �'jC jP�t Q' � Q'j/ jL
�
;�@tP

�
�t'j dt d�

. kuk21
Z

Rn

�Z 1
0

jP ��t' �'j
2
CjP�t Q' � Q'j

2 dt

t3

�1=2�Z 1
0

jt2L�;�@tP
�
�t'j

2 dt

t

�1=2
d�

. kuk21
�“

R
nC1
C

j@tP
�
t 'j

2
Cj@tPt Q'j

2 d�
dt

t

�1=2�“
R
nC1
C

jt2@tL
�
;�P

�
�t'j

2 d�
dt

t

�1=2
. kuk21.kr'k

2
L2�.Rn;Rn/

Ckr Q'k2
L2�.Rn;Rn/

/1=2kr'kL2�.Rn;Rn/ . kuk
2
1�.Q/;

where the final line uses the vertical square function estimates from (2.13)–(2.14) for L� 2 fL�;�; L ;�g

and the W 1;2
0;� .5Q/-Hodge estimates for ', Q' from (4.14)–(4.15).

To estimate III 001, recall that jP ��t' � 'j . t and jP�t Q' � Q'j . t on supp‰ı � ��=8;Q;ı by (4.19),
whilst J Å 1 and jrx.J�1/j . jrx@tP ��t'j, so distributing rx over u21, ‰2

ı
and 1=J yields terms that

can be controlled in the same way as J , K and S 012 in (4.37).
To estimate III2, note that the estimates used to control ' and P�t' also hold for Q' and P�t Q' by

(4.14)–(4.15) and (4.18)–(4.19), whilst div� hD div� QhD 0 by (4.13); hence III2 can be estimated in
the same way as II in (4.44).

This gives

jIII 001jC jIII2j. �
“

R
nC1
C

hA1ru1;ru1i‰
2
ı t dx dt C �

�1
kuk21�.Q/I

hence

S2 . �
“

R
nC1
C

hA1ru1;ru1i‰
2
ı t dx dt C �

�1
kuk21�.Q/ for all � 2 .0; 1/: (4.46)

We combine (4.36), (4.39) and (4.46) to obtain (4.33), as required. �



CARLESON MEASURE ESTIMATES AND THE DIRICHLET PROBLEM 2129

5. Solvability of the Dirichlet problem

This section is dedicated to the proof of Theorem 1.2. We first consider the construction and properties of
a degenerate elliptic measure !X for degenerate elliptic equations div.Aru/D 0 in the upper half-space,
where X D .x; t/ 2 RnC1

C
and n � 2. The t-independent coefficient matrix A is assumed throughout

to satisfy the degenerate bound and ellipticity in (1.1) for some constants 0 < � � ƒ < 1 and an
A2-weight � on Rn. This is necessary as the literature only seems to treat bounded domains, whilst the
passage to unbounded domains in the uniformly elliptic case (see Section 10 in [Littman et al. 1963] and
[Hofmann and Kim 2007]) relies on a global version of the Sobolev embedding in (2.4), which is not
known for A2-weights in general. The degenerate elliptic measure is then shown to be in the A1-class
with respect to � on the boundary Rn in Theorem 5.30 and the solvability of the Dirichlet problem follows
in Theorem 5.34. These results together prove Theorem 1.2.

5A. Boundary estimates for solutions. We require some estimates for solutions near the boundary @†
of a bounded Lipschitz domain † � Rn (see Section 2 of [Caffarelli et al. 1981] for the standard
definition). These estimates require some regularity on the domain boundary but no attempt is made here
to obtain the minimal such regularity, as the focus is to define and analyse a degenerate elliptic measure
on Rn.

The Lipschitz regularity of the boundary @† ensures that the smooth class C1.†/ and the Lipschitz
class C 0;1.†/ are both dense in W 1;2

� .†/; see Theorem 3.4.1 in [Morrey 1966] and page 29 in [Kinder-
lehrer and Stampacchia 1980]. This allows the usual definition, for E � @† and u 2W 1;2

� .†/, whereby
u � 0 on E in the W 1;2

� .†/-sense means there exists a sequence uj in C 0;1.†/ that converges to u in
W
1;2
� .†/ with uj .x/ � 0 for all x 2 E. This induces definitions for inequalities �, � and D, between

functions and/or constants, on E in the W 1;2
� .†/-sense; see, for instance, Definition 5.1 in [Kinderlehrer

and Stampacchia 1980]. Moreover, with sup@† u WD inffk 2 R W u� k on @† in the W 1;2
� .†/-senseg and

inf@† WD � sup@†.�u/, the weak maximum principle holds [Fabes et al. 1982b, Theorem 2.2.2], and the
strong version follows by the Harnack inequality in (2.18) [Fabes et al. 1982b, Corollary 2.3.10].

We can now state a Hölder continuity estimate and a Harnack inequality for certain solutions near the
boundary. For a cube Q � Rn, recall the corkscrew point XQ WD .xQ; `.Q// and denote the Carleson
box in RnC1

C
by TQ WD Q � .0; `.Q//. Also, recall that �.x; t/ WD �.x/, so d�.x; t/ D �.x/ dx dt ,

for .x; t/ 2 RnC1. If u 2 W 1;2
� .T2Q/ is a solution of div.Aru/ D 0 in T2Q, and u D 0 on 2Q in the

W
1;2
� .T2Q/-sense, then

ju.x; t/j.
�

t

`.Q/

�̨ �

/

Z
T2Q

juj2 d�

�1=2
for all .x; t/ 2 TQ; (5.1)

and if, in addition, u� 0 almost everywhere on T2Q, then

u.X/. u.XQ/ for all X 2 TQ; (5.2)

where ˛ is from (2.17) and the implicit constants depend only on n, �,ƒ and Œ��A2 . Estimate (5.1) follows
from standard reflection arguments and the interior Hölder continuity estimate in (2.17), as observed on
page 102 in [Fabes et al. 1982b]. Estimate (5.2) can then be deduced from (5.1) and the interior Harnack



2130 STEVE HOFMANN, PHI LE AND ANDREW J. MORRIS

inequality in (2.18), as in the uniformly elliptic case; see the proof of Theorem 1.1 in [Caffarelli et al.
1981], which does not use the assumption therein that A is symmetric.

5B. Definition and properties of degenerate elliptic measure. For X 2 RnC1, x 2 Rn and r > 0, we
use B.X; r/ WD fY 2 RnC1 W jY �X j< rg to denote balls in RnC1 and �.x; r/ WD fy 2 Rn W jxj< rg to
denote balls in Rn, where �.x; r/ is identified with the surface ball B..x; 0/; r/\ @RnC1

C
in RnC1. For

each R > 0, consider the bounded Lipschitz domain †R WD B.0;R/\RnC1
C

with Lipschitz constant
at most 1. For each X 2 †R, the degenerate elliptic measure !XR is the measure on @†R, as defined
on page 583 in [Fabes et al. 1983], such that u.X/ D

R
@†R

h d!XR solves the Dirichlet problem for
continuous boundary data h 2 C.@†R/ in the sense that div.Aru/ D 0 in †R and u 2 C.†R/ with
uj@†R D h.

We now define the degenerate elliptic measure on Rn. If f 2 Cc.Rn/, fix R0 > 0 such that suppf �
�.0;R0/ and set f equal to zero on RnC1

C
, so then f ˙ 2 C.@†R/ for all R � R0, where f ˙.X/ WD

maxf˙f .X/; 0g; thus

u˙R.X/ WD

Z
@†R

f ˙ d!XR for all X 2†R

solve the Dirichlet problem as above in †R for all R �R0. The maximum principle then implies that
u˙R1.X/ � u

˙
R2
.X/, whenever R0 � R1 � R2 and X 2 †R1 , and that supR>0 ku

˙
Rk1 � kf k1. This

allows us to define
u.X/ WD lim

R!1
ŒuCR.X/�u

�
R.X/� for all X 2 RnC1

C
; (5.3)

and since the mapping f 7! u.X/ is a positive linear functional on Cc.Rn/, the Riesz representation
theorem implies that there exists a regular Borel probability measure (the degenerate elliptic measure)
!X on Rn such that u.X/D

R
Rn
f d!X.

The function u from (5.3) solves div.Aru/D 0 in RnC1
C

. To prove this, note that kuk1 � kf k1, so
for each compact set K � RnC1

C
, the Hölder continuity of solutions in (2.17) ensures the equicontinuity

required to apply the Arzelà–Ascoli theorem and extract a subsequence uRj that converges to u uniformly
on K. This combined with Caccioppoli’s inequality shows that uRj converges to u in W 1;2

� .K/; hence
u 2W

1;2
�;loc.R

nC1
C

/. Moreover, if ' 2 C1c .R
nC1
C

/ and K D supp' �†R, thenˇ̌̌̌Z
K

hAr.u�uR/;r'i

ˇ̌̌̌
�ƒkr'k1�.K/

1=2
ku�uRkW 1;2

� .K/
; (5.4)

from which it follows that
R

R
nC1
C

hAru;r'i D 0, as required.
We note by (5.3) that, when restricted to any bounded Borel subset of Rn, the measures !XR converge

weakly to !X , so Theorem 1 on page 54 of [Evans and Gariepy 1992] shows that

!X .U /� lim inf
R!1

!XR .U /; !X .K/� lim sup
R!1

!XR .K/; !X .B/D lim
R!1

!XR .B/ (5.5)

for all bounded open sets U � Rn, all compact sets K � Rn, and all bounded Borel sets B � Rn such
that !X .@B/D 0. This construction of the degenerate elliptic measure also provides for the following
expected properties.
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Lemma 5.6. If X0; X1 2 RnC1
C

and E � Rn is a Borel set, then !X0.E/D 0 if and only if !X1.E/D 0.
Moreover, the nonnegative function u.X/ WD !X .E/ is a solution of div.Aru/ D 0 in RnC1

C
and the

boundary Hölder continuity estimate

ju.x; t/j.
�

t

`.Q/

�̨
u.XQ/ for all .x; t/ 2 TQ (5.7)

holds on all cubes Q such that 2Q � Rn nE, where ˛ is from (2.17) and the implicit constants depend
only on n, �, ƒ and Œ��A2 ,

Proof. The proof follows that of Lemma 1.2.7 in [Kenig 1994], except we must account for the fact that
the solution to the Dirichlet problem in RnC1

C
defined by (5.3) requires boundary data to have compact

support, which is easily done as we now show. Suppose that !X0.E/D 0 and that K �E is a compact
set. The regularity of the measure implies that !X0.K/D 0 and, for each � > 0, there exists a bounded
open set U �K such that !X0.U / < �. In particular, we may assume that U is bounded because K is
compact, so by Urysohn’s lemma there exists g 2 Cc.Rn/ such that g.x/D 1 on K, 0� g.x/� 1 on U,
and suppg � U. It follows that u.X/ D

R
Rn
g d!X is the solution to the Dirichlet problem in RnC1

C

defined by (5.3) with boundary data g. Applying the Harnack inequality from (2.18) and connecting X0
with X1 via a Harnack chain then shows that there exists C > 0, depending on X0 and X1, such that

!X1.K/� u.X1/� Cu.X0/� C!
X0.U /� C� for all � > 0I

hence !X1.K/D 0 for all compact sets K �E, and so !X1.E/D 0 by regularity.
The proof that u.X/ WD!X .E/ is a solution of div.Aru/D0 in RnC1

C
also follows that of Lemma 1.2.7

in [Kenig 1994]. It remains to prove that the boundary Hölder continuity estimate holds on all cubes Q
such that 2Q � Rn nE. We first consider when E is bounded. In that case, let Uı denote the open
ı-neighbourhood of E and set ��;ı WD '� � 1Uı for all ı > � > 0, where '�.x/ WD ��n'.x=�/ and
' 2C1c .�.0; 1// is a fixed nonnegative function with

R
Rn
' D 1. In particular, since Uı is open, we have

1E � 1Uı � lim inf�!0 ��;ı . Consequently, if X D .x; t/ 2 RnC1
C

, then

u.X/D !X .E/� !X .Uı/�

Z
Rn

lim inf
�!0

��;ı d!
X
� lim inf

�!0

Z
Rn
��;ı d!

X : (5.8)

The function ��;ı belongs to C1c .R
n/ and thus extends to a function in C1c .R

nC1/. The construction of
the degenerate elliptic measure (see pages 580–583 in [Fabes et al. 1983], which was the starting point for
our extension to the upper half-space above) thus implies v�.X/ WD

R
Rn
��;ı d!

X is in W 1;2.T.3=2/Q/

and vanishes on 3
2
Q whenever 0 < � < ı < 1

4
`.Q/, so estimate (5.8) combined with the boundary Hölder

continuity estimate in (5.1) and the boundary Harnack inequality in (5.2) shows that

u.x; t/� lim inf
�!0

v�.x; t/.
�

t

`.Q/

�̨
lim inf
�!0

v�.XQ/ for all .x; t/ 2 TQ: (5.9)

We now let Uı;� denote the open �-neighbourhood of Uı , in which case ��;ı � 1Uı;� and v�.X/ �
!X .Uı;�/, so by (5.9) and the regularity of the degenerate elliptic measure we have

u.x; t/.
�

t

`.Q/

�̨
lim inf
�!0

!XQ.Uı;�/.
�

t

`.Q/

�̨
!XQ.Uı/ for all .x; t/ 2 TQ:
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This proves (5.7) if E is bounded, since the regularity of the measure also implies that !XQ.Uı/
approaches !XQ.E/ D u.XQ/ as ı approaches 0. If E is not bounded, then applying (5.7) on the
bounded sets Ek WD 12kC1Qn2kQE, for k 2 N, shows that

u.x; t/D

1X
kD1

!X .Ek/.
1X
kD1

�
t

`.Q/

�̨
!XQ.Ek/D

�
t

`.Q/

�̨
!XQ.E/ for all .x; t/ 2 TQ;

as required. �

5C. Preliminary estimates for degenerate elliptic measure. In the uniformly elliptic case, there is a rich
theory for the Green’s function on bounded domains, and specifically, estimates and connections with
elliptic measure; see, for instance, Theorem 1.2.8 and Corollary 1.3.6 in [Kenig 1994]. This theory also
extends to unbounded domains; see Section 10 in [Littman et al. 1963] and [Hofmann and Kim 2007]. In
the degenerate elliptic case, the theory was developed on bounded domains in [Fabes et al. 1982a; 1982b;
1983], but it is not clear if there is always such a Green’s function on unbounded domains. In particular, the
construction in [Hofmann and Kim 2007] for the uniformly elliptic case relies on the (unweighted) global
version of the Sobolev embedding in (2.4), which is not known for a general A2-weight. In what follows,
we combine the properties of the Green’s function on the bounded domain †R WD B.0;R/\RnC1

C
with

the limit properties in (5.5) to deduce estimates for degenerate elliptic measure on Rn. These will be used
to prove Lemma 5.24 and ultimately Theorem 5.30.

For eachR>0, the Green’s function gR W†R�†R 7! Œ0;1� is constructed by following Proposition 2.4
in [Fabes et al. 1982a]. In particular, for each Y 2 †R, the mapping X 7! gR.X; Y / is the Hölder
continuous function in †R n fY g that vanishes on @†R and satisfies

R
†R
hArgR. � ; Y /;rˆi Dˆ.Y / for

all ˆ 2C1c .†R/. As explained on page 583 in [Fabes et al. 1983], these properties are valid on any NTA
domain, hence a fortiori on †R. The proofs do not rely on the assumption therein that A is symmetric,
although the symmetry property gR.X; Y /DgR.Y;X/ is no longer guaranteed, as g�R.X; Y / WDgR.Y;X/
is the Green’s function for the adjoint operator � div.A�r/. We will rely on the following two lemmas,
which are immediate from Theorem 4 and Lemma 3 in [Fabes et al. 1983], respectively, to estimate the
Green’s function gR and the degenerate elliptic measure !R on †R.

Lemma 5.10. If X; Y 2†R and jX �Y j< 1
2

dist.Y; @†R/, then

gR.X; Y /Å
Z dist.Y;@†R/

jX�Y j

s2

�.B.Y; s//

ds

s
;

where the implicit constants depend only on n, �, ƒ and Œ��A2 .

Lemma 5.11. If R > 0 and Q is a cube in Rn such that T2Q �†R, then

gR.XQ; Y /

`.Q/
Å !YR .Q/

`.Q/

�.TQ/
D
!YR .Q/

�.Q/
for all Y 2†R nT2Q;

where the implicit constants depend only on n, �, ƒ and Œ��A2 .
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The degenerate elliptic measure !XR satisfies the doubling property !XR .2Q/� C0!
X
R .Q/ for all

cubes Q in Rn such that T2Q �†R and all X 2†R nT2Q, where the doubling constant C0 > 0 depends
only on n, �, ƒ and Œ��A2 . This is proved in Lemma 1 on page 584 of [Fabes et al. 1983] by using
the estimates in Lemma 5.11, the Harnack inequality in (2.18), and the doubling property of �. The
doubling constant C0 does not depend on R, which allows us to use the inequalities in (5.5) to show that
the degenerate elliptic measure !X is locally doubling on Rn, in the sense that

!X .2Q/� lim inf
R!1

!XR .2Q/. lim inf
R!1

!XR
�
1
2
Q
�
� lim sup

R!1

!XR
�
1
2
Q
�
� !X .Q/ (5.12)

for all cubes Q � Rn and all X 2 RnC1
C
n T2Q, where the implicit constant is C 20 . In particular, the

doubling property implies !X .@Q/D 0 for all cubes Q�Rn (see page 403 in [García-Cuerva and Rubio
de Francia 1985] or Proposition 6.3 in [Hofmann and Martell 2014]), so (5.12) actually improves to
!X .2Q/� C0!

X .Q/, since by the equality in (5.5) we now have

!X .Q/D lim
R!1

!XR .Q/ (5.13)

for all cubes Q � Rn and all X 2 RnC1
C
n T2Q. This provides the following estimate for degenerate

elliptic measure.

Lemma 5.14. If Q is a cube in Rn, then !XQ.Q/& 1, where the implicit constant depends only on n, �,
ƒ and Œ��A2 .

Proof. Let Q denote a cube in Rn and fix R0 > 0 such that T2Q �†R0 . The Hölder continuity at the
boundary in (5.1) and the Harnack inequality in (2.18) imply (see the proof of Lemma 3 on page 585 in
[Fabes et al. 1983]) that

!
XQ
R .Q/& 1 for all R �R0;

where the implicit constant depends only on n, �, ƒ and Œ��A2 , and so does not depend on R. The result
follows by using Harnack’s inequality to shift the pole (from X2Q to XQ) in (5.12)–(5.13) to obtain
!XQ.Q/D limR!1 !

XQ
R .Q/& 1. �

The estimates in Lemma 5.11 also imply the following comparison principle. The result is stated on
page 585 in [Fabes et al. 1983] and the proof is the same as in the uniformly elliptic case; see Theorem 1.4
in [Caffarelli et al. 1981] or Lemma 1.3.7 in [Kenig 1994], neither of which use the assumption therein
that A is symmetric.

Lemma 5.15 (comparison principle). Let Q denote a cube in Rn and suppose that u; v 2W 1;2
� .T2Q/\

C.T 2Q/ with u; v � 0 on T2Q. If div.Aru/D div.Arv/D 0 in T2Q and uD v D 0 on 2Q, then

u.X/

v.X/
Å
u.XQ/

v.XQ/
for all X 2 TQ;

where the implicit constants depend only on n, �, ƒ and Œ��A2 .

The following corollary of these preliminaries will be used in Proposition 5.18 to estimate Radon–
Nikodym derivatives of the degenerate elliptic measure.
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Lemma 5.16. If Q0 and Q are cubes in Rn such that Q �Q0, then

!XQ0 .Q/Å
!X .Q/

!X .Q0/
for all X 2 RnC1

C
nT2Q0 ;

where the implicit constants depend only on n, �, ƒ and Œ��A2 .

Proof. Let Q �Q0 be cubes in Rn, suppose that X 2 RnC1
C
nT2Q0 and consider R > 0 large enough so

that X 2†R and T4Q0 �†R. Lemma 5.11 shows that

!XR .Q0/ `.Q0/Å �.Q0/ gR.XQ0 ; X/;

!XR .Q/ `.Q/Å �.Q/ gR.XQ; X/

!
X3Q0
R .Q/ `.Q/Å �.Q/ gR.XQ; X3Q0/:

If u.Y /DgR.Y;X/ and v.Y /DgR.Y;X3Q0/, then div.Aru/D div.Aru/vD 0 in T2Q0 and uD vD 0
on 2Q0, so the comparison principle in Lemma 5.15 shows that

gR.XQ; X/

gR.XQ; X3Q0/
D
u.XQ/

v.XQ/
Å
u.XQ0/

v.XQ0/
D

gR.XQ0 ; X/

gR.XQ0 ; X3Q0/
:

Also, Lemma 5.10 shows that gR.XQ0 ; X3Q0/Å `.Q0/=�.Q0/, so together we obtain

!XR .Q/

!XR .Q0/
Å
gR.XQ; X/

gR.XQ0 ; X/

�.Q/

`.Q/

`.Q0/

�.Q0/
Å
gR.XQ; X3Q0/

gR.XQ0 ; X3Q0/

�.Q/

`.Q/

`.Q0/

�.Q0/
Å !X3Q0R .Q/:

The Harnack inequality from (2.18) then shows that !XR .Q/Å !
X
R .Q0/!

XQ0
R .Q/ and the result follows

by using (5.13) to estimate the limit as R approaches infinity. �

If X;X0 2 RnC1
C

, then Lemma 5.6 shows that !X and !X0 are mutually absolutely continuous, so the
Lebesgue differentiation theorem for the locally doubling measure !X0 implies that the Radon–Nikodym
derivative of !X satisfies

K.X0; X; y/ WD
d!X

d!X0
.y/D lim

s!0

!X .Q.y; s//

!X0.Q.y; s//
; !X0-a.e. y 2 Rn; (5.17)

where Q.y; s/ denotes the cube in Rn with centre y and side length s. The following decay estimate for
the kernel function K extends Lemma 2 on page 584 in [Fabes et al. 1983]. It is the final property of
degenerate elliptic measure needed to prove Lemma 5.24.

Proposition 5.18. If Q0 and Q are cubes in Rn such that Q �Q0, then

K.XQ0 ; XQ; y/.
1

!XQ0 .Q/
max

�
jy � xQj

`.Q/
; 1

��˛
; !XQ0 -a.e. y 2Q0;

where ˛>0 from (2.17) and the implicit constant depend only on n, �, ƒ and Œ��A2 .
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Proof. Let Q �Q0 denote cubes in Rn and fix J 2 N such that 2J�1Q �Q0 � 2JQ. If y 2Q, then
Lemma 5.16 and the Harnack inequality in (2.18) show that

!XQ.Q.y; s//Å
!X2Q0 .Q.y; s//

!X2Q0 .Q/
Å
!XQ0 .Q.y; s//

!XQ0 .Q/

whenever 0 < s < dist.y;Rn nQ/. If y 2 2jQ n 2j�1Q for some j 2 f1; : : : ; J g, then the boundary
Hölder continuity estimate in (5.7) combined with Lemma 5.16 and the Harnack inequality in (2.18) show
that

!XQ.Q.y; s//.
�

`.Q/

2j�2`.Q/

�̨
!
X
2j�2Q.Q.y; s//Å

�
`.Q/

jy � xQj

�̨
!XQ0 .Q.y; s//

!XQ0 .2jQ/

whenever 0 < s < dist.y;Rn n .2jQ n 2j�2Q//, where ˛ > 0 from (2.17) and the implicit constants
depend only on n, �, ƒ and Œ��A2 . The result follows by using these two estimates to bound the limit
as s approaches zero in (5.17). �

5D. The A1-estimate for degenerate elliptic measure. We now combine the properties of degenerate
elliptic measure with good �0-coverings for sets, as introduced in [Kenig et al. 2000] and defined below
(see also [Kenig et al. 2016]), to construct bounded solutions that satisfy the truncated square function
estimate in Lemma 5.24. This result, combined with the Carleson measure estimate from Theorem 1.3,
allows us to prove the A1-estimate for the degenerate elliptic measure in Theorem 5.30. This avoids the
need to apply the method of �-approximability, as was done in [Hofmann et al. 2015a], and so simplifies
the proof in the uniformly elliptic case.

Let D.Rn/ denote the standard collection f2k.j C Œ0; 1�n/ W k 2Z; j 2Zng of all closed dyadic cubes S
in Rn. For each S 2 D.Rn/ and �D 2�K, where K 2 N, define D.S/ WD fS 0 2 D.Rn/ W S 0 � Sg and

D�.S/ WD fS 0 2 D.S/ W `.S 0/D 2�K`.S/g; (5.19)

so D�.S/ is precisely the set of all dyadic descendants of S at scale 2�K`.S/.

Definition 5.20. Suppose that Q0 is a cube in Rn. If �0 > 0, k 2 N, Q � Q0 is a cube and E � Q,
then a good �0-cover of E of length k in Q is a collection fOlgklD1 of nested open sets that satisfy
E � Ok � Ok�1 � � � � � O1 �Q and each of which has a decomposition Ol D

S1
iD1 S

l
i given by a

collection fS li gi2N � D.Rn/ of dyadic cubes with pairwise disjoint interiors such that

!X2Q0 .Ol \S
l�1
i /� �0 !

X2Q0 .S l�1i / for all i 2 N; for all l 2 f2; : : : ; kg: (5.21)

Let us record a few important consequences of this definition that will be needed. It is proved on
page 243 in [Kenig et al. 2000] that for each i 2 N and l 2 f2; : : : ; kg, there exists a unique j 2 N such
that S li is a proper subset of S l�1j ; thus `.S li /�

1
2
`.S l�1j /. Also, for m 2 f2; : : : ; kg, iterating (5.21) as

in Lemma 2.5 of [Kenig et al. 2000] shows that

!X2Q0 .Ol \S
m
i /� �

l�m
0 !X2Q0 .Smi / for all i 2 N; for all l 2 fm; : : : ; kg: (5.22)
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In the uniformly elliptic case, the following result is Lemma 2.3 from [Kenig et al. 2016]. The proof
extends to the degenerate elliptic case, since it only relies on the fact that the degenerate elliptic measure
!X2Q0 is doubling when restricted to the cube Q0.

Lemma 5.23. Suppose that Q0 is a cube in Rn. If �0 > 0, then there exists ı0 > 0, depending only on �0,
n, �, ƒ and Œ��A2 , such that the following property holds:

If Q �Q0 is a cube and E �Q0 such that !X2Q0 .E/� ı0, then there exists a good �0-cover of E of
length k in Q for some natural number k Å log.!X2Q0 .E//=log �0, where the implicit constants depend
only on n, �, ƒ and Œ��A2 .

We can now prove the following lemma by adapting the proof in [Kenig et al. 2016] to the degenerate
elliptic case. The original argument has also been somewhat modified.

Lemma 5.24. Suppose that Q0 is a cube in Rn. If M � 1, then there exists ıM > 0, depending only on
M, n, �, ƒ and Œ��A2 , such that the following property holds:

If Q �Q0 is a cube and E �Q and !X2Q0 .E/� ıM , then there is a Borel subset B of Rn such that
the solution u.X/ WD !X .B/ of div.Aru/D 0 in RnC1

C
satisfies

M �

Z `.Q/

0

Z
�.x;t/

jtru.y; t/j2
d�.y/

�.�.x; t//

dt

t
for all x 2E;

where  > 0 is a constant that depends only on n, �, ƒ and Œ��A2 .

Proof. We introduce three constants �0; ı; �2 .0; 1/ that will be chosen with ı� ı0, where ı0 is determined
by �0 as in Lemma 5.23, and �D 2�K for some K 2 N. Therefore, if E �Q �Q0 and !X2Q0 .E/� ı,
then there exists a good �0-cover of E of length k in Q such that kÅ log.!X2Q0 .E//= log �0. This cover
is denoted by fOlgklD1 with Ol D

S1
iD1 S

l
i as in Definition 5.20, and for each such cube S li , a dyadic

descendant zS li in D�.S li / that contains the centre of S li is now fixed and

zOl WD

1[
iD1

zS li ; (5.25)

where we note that `. zS li /D �`.S
l
i / in accordance with (5.19).

We claim that there exists a Borel subset B of Rn such that 1B D
Pk
lD2 1 zOl�1nOl . To see this, suppose

that
Pk
lD2 1 zOl�1nOl .x/¤ 0 and let l0 denote the smallest integer l 2 Œ2; k� such that 1 zOl�1nOl.x/D 1.

It must hold that x 2 zOl0�1 nOl0 , so then x …Ol0 , which implies x …Ol and x … zOl for all l � l0; hence
1 zOl�1nOl .x/D 0 for all l > l0 and the claim follows.

We now aim to choose �0; � 2 .0; 1/ such that u.X/ WD !X .B/ on RnC1
C

satisfies

ju.X�S l
i
/�u.X

� yS l
i

/j& 1 for all yS li 2 D�.S li /; for all i 2 N; for all l 2 f1; : : : ; kg; (5.26)

where the implicit constant depends only on the allowed constants n; �;ƒ and Œ��A2 , and if xli and Oxli
denote the centres of S li and yS li , then the relevant corkscrew points are precisely X�S l

i
D .xli ; �`.S

l
i //

and X
� yS l
i

D . Oxli ; �
2`.S li //. To this end, we proceed to obtain estimates for u.X�S l

i
/ and u.X

� yS l
i

/.
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To estimate u.X�S l
i
/, write

u.X�S l
i
/D

Z
RnnS l

i

1B d!
X
�Sl
i C

Z
S l
i

1B d!
X
�Sl
i DW I C II:

The boundary Hölder continuity in (5.7) shows that I �!X�Sl
i
.RnnS li /�C0�

˛ , where C0; ˛ > 0 depend
only on the allowed constants. To estimate II, write

II D

lX
jD2

Z
S l
i

1 zOj�1nOj d!
X
�Sl
i C

kX
jDlC2

Z
S l
i

1 zOj�1nOj d!
X
�Sl
i C

Z
S l
i

1 zOlnOlC1 d!
X
�Sl
i

DW II1C II2C II3:

First, observe that II1 D 0, since if m 2 f2; : : : ; lg, then S li �Ol �Oj and so . zOj�1 nOj /\S li D¿.
To estimate II2, the kernel function representation in (5.17) and estimates in Proposition 5.18, the local
doubling property of the degenerate elliptic measure in (5.12) and property (5.22) of the good �0-covering,
show that

II2 D

kX
jDlC2

Z
. zOj�1nOj /\S

l
i

K.X2Q0 ; X�S l
i
; y/ d!X2Q0 .y/

�
C�

!X2Q0 .S li /

kX
jDlC2

!X2Q0 .. zOj�1 nOj /\S
l
i /

�
C�

!X2Q0 .S li /

kX
jDlC2

!X2Q0 .Oj�1\S
l
i /

�
C�

!X2Q0 .S li /

kX
jDlC2

�
j�1�l
0 !X2Q0 .S li /�

C��0

1� �0
;

where the constant C� > 0 depends only on � and the allowed constants.
To estimate II3, observe that S li \ zOl D zS

l
i by the definition of zOl in (5.25); hence

II3 D

Z
zS l
i

d!X�Sli �

Z
zS l
i
\OlC1

d!X�Sli DW II
0
3� II

00
3 :

The term II 003 is estimated in the same way as II2 above to show that

II 003 �
C�

!X2Q0 .S li /
!X2Q0 .OlC1\ zS

l
i /�

C�

!X2Q0 .S li /
!X2Q0 .OlC1\S

l
i /� C��0:

We estimate II 03 from above and below. First, note thatX�S l
i
D .xli ; �`.S

l
i //, x

l
i 2
zS li and `. zS li /D�`.S

l
i /,

so !X�Sl
i
. zS li /Å !

X
zSl
i
. zS li / by the Harnack inequality in (2.18), whilst !X zSl

i
. zS li /& 1 by Lemma 5.14.

Thus, there exists c0 2 .0; 1/ depending only on the allowed constants such that II 03 D !
X
�Sl
i
. zS li /� c0.

Next, choose a different dyadic descendant
z
S li ¤

zS li in D�.S li / that contains the centre of S li . The
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preceding argument shows that !X�Sl
i
.
z
S li /� c0, whilst !X�Sl

i
.
z
S li \

zS li /� !
X
�Sl
i
.@ zS li /D 0; hence

c0 � II
0
3 D !

X
�Sl
i . zS

l
i /D 1�!

X
�Sl
i .R

n
n zS li /� 1�!

X
�Sl
i .
z
S li /� 1� c0:

The above estimates together show that if �0 2
�
0; 1
2

�
, then

c0 � u.X�S l
i
/� C0�

˛
C 3C��0C 1� c0: (5.27)

To estimate u.X
� yS l
i

/, write

u.X
� yS l
i

/D

Z
Rnn yS l

i

1B d!
X
� ySl
i C

Z
yS l
i

1B d!
X
� ySl
i DW

OI C bII ;
as well as

bII D lX
jD2

Z
yS l
i

1 zOj�1nOj d!
X
� ySl
i C

kX
jDlC2

Z
yS l
i

1 zOj�1nOj d!
X
� ySl
i C

Z
yS l
i

1 zOlnOlC1 d!
X
� ySl
i

DW bII 1C bII 2C bII 3:
The arguments used to estimate I , II1 and II2 show that OI � !X� ySl

i
.Rn n yS li / � C0�

˛, bII 1 D 0 andbII 2 � C��0=.1� �0/. To estimate bII 3, observe that

yS li \ .
zOl nOlC1/D . yS

l
i \
zS li / nOlC1;

where either !X� ySl
i
. yS li \

zS li /D 0 and bII 3 D 0, or yS li D zS
l
i and

bII 3 D Z
yS l
i

d!X� ySli �

Z
yS l
i
\OlC1

d!X� ySli DW bII 03� bII 003:
The boundary Hölder continuity estimate in (5.7) shows thatbII 03 D !X� ySli . yS li /D 1�!X� ySli .Rn n yS li /� 1�C0�˛;
whilst repeating the arguments used to estimate II 003 shows that

bII 003 � C�

!X2Q0 . yS li /
!X2Q0 .OlC1\ yS

l
i /�

C�

!X2Q0 .S li /
!X2Q0 .OlC1\S

l
i /� C��0:

These estimates together show that if �0 2
�
0; 1
2

�
, then either

0� u.X
� yS l
i

/� C0�
˛
C 3C��0 or u.X

� yS l
i

/� 1� .C0�
˛
CC��0/: (5.28)

The estimates (5.27) and (5.28) together imply

ju.X�S l
i
/�u.X

� yS l
i

/j � c0� 2C0�
˛
� 4C��0:

We thus obtain (5.26) by first choosing � 2 .0; 1/ so that 2C0�˛ � 1
4
c0 and then choosing �0 2

�
0; 1
2

�
(depending on �) so that 4C��0 � 1

4
c0. These choices of � and �0, which depend only on the allowed

constants, are now fixed.
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To complete the proof, suppose that M � 1 and x 2E, and recall that ı 2 .0; ı0/ remains to be chosen,
where ı0 is now fixed by our choice of �0 as in Lemma 5.23. First, fix a cube Sk in fSki gi2N such that
x 2 Sk. The remarks after Definition 5.20 then imply that for each l 2 f1; : : : ; k � 1g, there exists a
unique cube S l in fS li gi2N such that x 2 S l and S lC1 � S l ; thus `.S lC1/ � 1

2
`.S l/. Next, for each

l 2 f1; : : : ; kg, fix a dyadic descendant yS l in D�.S l/ such that x 2 yS l.
Observe that, for some � 2 .0; 1/ sufficiently close to 1 and depending only on �, the corkscrew points

X�S l and X
� yS l

both belong to the dilate �Ql� of the cube

Ql� WD
˚
.y; t/ 2 RnC1

C
W jy � xj1 <

�
1
2
C
1
4
�2
�
`.S l/; 1

2
�2`.S l/ < t < .1C �2/`.S l/

	
;

with `.Ql�/D .1C
1
2
�2/`.S l/. Therefore, if cl WD /

R
Ql�
u, then the Moser-type estimate in (2.16), the

Poincaré inequality in (2.5) and the doubling property of � show that

ju.X�S l /�u.X� yS l /j
2 . ju.X�S l /� cl j2Cju.X� yS l /� c

l
j
2 . ku� clk2

L1.�Ql�/

.� /

Z
Ql�

ju� cl j2 d�. `.Ql�/
2 /

Z
Ql�

jruj2 d�

.
`.S l/

�
�
�
�
x;
�
1C 1

2
�2
�
`.S l/

�� Z
Ql�

jruj2 d�

.
“
Ql�

jtru.y; t/j2
d�.y/

�.�.x; t//

dt

t
: (5.29)

Iterating the bound `.S lC1/� 1
2
`.S l/ shows that `.S l

0

/� 2l�l
0

`.S l/ when l 0 � l . This implies that
the collection fQ1�; : : : ;Q

k
�g has the bounded intersection property whereby, for each l 2 f1; : : : ; kg,

there are at most 3C 2 log2.1=�
2C 1// such cubes Ql

0

� satisfying Ql
0

� \Q
l
� ¤¿. This allows us to sum

estimate (5.29) over l 2 f1; : : : ; kg and then apply (5.26) to obtain

k .�
“
Sk
lD1Q

l
�

jtru.y; t/j2
d�.y/

�.�.x; t//

dt

t
.
Z `.Q/

0

Z
�.x;t/

jtru.y; t/j2
d�.y/

�.�.x; t//

dt

t

for some  > 0 that depends only on � > 0 and thus only on the allowed constants.
To conclude, recall that kÅ log.!X2Q0 .E/�1/= log.1=�0/� log.1=ı/= log.1=�0/, since !X2Q0 .E/�

ı < 1. Therefore, the result follows by choosing ı 2 .0; ı0� such that M � log.1=ı/, since ıM WD ı
depends only on M and the allowed constants. �

We now combine the above technical lemma with the Carleson measure estimate from Theorem 1.3 to
prove the main A1-estimate for degenerate elliptic measure.

Theorem 5.30. Suppose that Q0 is a cube in Rn. If X 2 RnC1
C
n TQ0 and ! WD !X bQ0 denotes the

degenerate elliptic measure restricted to Q0, then ! 2 A1.�/ and the following equivalent properties
hold:

(1) For each � 2 .0; 1/, there exists ı 2 .0; 1/, depending only on �, n, �, ƒ and Œ��A2 , such that
the following property holds: if Q � Q0 is a cube and E � Q such that !.E/ � ı!.Q/, then
�.E/� ��.Q/.



2140 STEVE HOFMANN, PHI LE AND ANDREW J. MORRIS

(2) The measure ! is absolutely continuous with respect to � and there exists q 2 .1;1/ such that the
Radon–Nikodym derivative k WD d!=d� satisfies, on all surface balls ��Q0, the reverse Hölder
estimate �

/

Z
�

kq d�

�1=q
. /

Z
�

k d�;

where q and the implicit constant depend only on n, �, ƒ and Œ��A2 .

(3) There exist C; � > 0, depending only on n, �, ƒ and Œ��A2 , such that

!.E/� C

�
�.E/

�.Q/

��
!.Q/

for all cubes Q �Q0 and all Borel sets E �Q.

Proof. It is well known that (1)–(3) are equivalent; see Theorem 1.4.13 in [Kenig 1994]. Moreover, by
Lemma 5.16, it suffices to prove (1) when X DX2Q0 . In that case, by Lemma 5.24, the Carleson measure
estimate in Theorem 1.3, Fubini’s theorem and the doubling property of �, it follows that for each M � 1,
there exists ıM > 0, depending only on M and the allowed constants, such that the following property
holds: if Q �Q0 is a cube and E �Q such that !.E/� ıM!.Q/, then there exists a solution u of the
equation div.Aru/D 0 in RnC1

C
with kuk1 � 1 such that

M�.E/�

Z
E

Z `.Q/

0

Z
�.x;t/

jtru.y; t/j2
d�.y/

�.�.x; t//

dt

t
d�.x/

.
Z Q`.Q/
0

Z
QQ

jtru.y; t/j2 d�.y/
dt

t
. �.Q/;

where the implicit constants and Q >  > 0 depend only on the allowed constants. Therefore, if � 2 .0; 1/,
we choose M.�/� 1 and thus ıM.�/ 2 .0; 1/, depending only on � and the allowed constants, such that
�.E/� ��.Q/, as required. �

5E. The square function and nontangential maximal function estimates. The Lp�.Rn/-norm equiv-
alence between the square function Su and the nontangential maximal function N�u of solutions u
in Theorem 1.5 is now a corollary of the main A1-estimate for the degenerate elliptic measure in
Theorem 5.30. This was proved by Dahlberg, Jerison and Kenig in Theorem 1 of [Dahlberg et al. 1984],
which actually provides the more general result in Theorem 5.31 below. In particular, the degenerate
elliptic case is treated on page 106 of the same paper, noting that the normalisation u.X0/D 0 assumed
therein is actually only required for the so-called N . S -estimate.

Theorem 5.31. Suppose that ˆ W Œ0;1/!Œ0;1/ is an unbounded, nondecreasing, continuous function
with ˆ.0/D 0 and ˆ.2t/� Cˆ.t/ for all t > 0 and some C > 0. If div.Aru/D 0 in RnC1

C
, thenZ

Rn
ˆ.Su/ d�.

Z
Rn
ˆ.N�u/ d�;
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and if , in addition, u.X0/D 0 for some X0 2 RnC1
C

, thenZ
Rn
ˆ.N�u/ d�.

Z
Rn
ˆ.Su/ d�;

where the implicit constants depend only on X0, ˆ, n, �, ƒ and Œ��A2 .

The next result is also a consequence of the main A1-estimate in Theorem 5.30. It will allow us to
construct solutions to the Dirichlet problem .D/p;� as integrals of Lp�.Rn/-boundary data with respect to
degenerate elliptic measure.

Lemma 5.32. Suppose that 1=p C 1=q D 1, where q 2 .1;1/ is the reverse Hölder exponent from
Theorem 5.30. If X D .x; t/ 2 RnC1

C
, then the Radon–Nikodym derivative k.X; � / WD d!X=d� is in

L
q
�.R

n/ and Z
Rn
k..x; t/; y/q d�.y/. �.�.x; t//1�q:

Moreover, if f 2 Lp�.Rn/ and u.X/ WD
R

Rn
f .y/ d!X, then kN�ukLp�.Rn/ . kf kLp�.Rn/: The implicit

constant in each estimate depends only on n, �, ƒ and Œ��A2 .

Proof. Suppose that X D .x; t/ 2 RnC1
C

. The proof of Proposition 5.18 shows that

k..x; t/; y/. 2�j˛
k..x; 2j t /; y/

!.x;2
j t/.�.x; 2j t //

for all y 2�.x; 2j t / n�.x; 2j�1t /; for all j 2 N:

Applying the reverse Hölder estimate from Theorem 5.30 then shows thatZ
Rn
k..x; t/; y/q d�.y/D

Z
�.x;t/

k..x; t/; y/q d�.y/C

1X
jD1

Z
�.x;2j t/n�.x;2j�1t/

k..x; t/; y/q d�.y/

. �.�.x; t//1�qC
1X
jD1

2�j˛q�.�.x; 2j t //1�q . �.�.x; t//1�q:

To obtain the nontangential maximal function estimate, it suffices to consider the case when f � 0,
since in general we may then decompose f D f C� f � into its positive and negative parts f C; f � � 0.
To this end, suppose that x0 2 Rn and that X D .x; t/ 2 RnC1

C
in order to write

f D f 1�.x0;2t/C
1X
jD1

f 1�.x0;2jC1t/n�.x0;2j t/ DW
1X
jD0

fj

and define
uj .X/ WD

Z
Rn
fj .y/ d!

X .y/D

Z
Rn
fj .y/ k.X; y/ d�.y/:

The self-improvement property of the reverse Hölder estimate from Theorem 5.30 (see Theorem 1.4.13
in [Kenig 1994]) implies that there exists an exponent r > q such that�

/

Z
�

k..x; t/; y/r d�.y/

�1=r
. /

Z
�

k..x; t/; y/ d�.y/�
1

�.�/
(5.33)

for all surface balls ���
�
x; 1
2
t
�
.
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Now suppose that X D .x; t/ 2 �.x0/. To estimate u0, we apply the interior Harnack inequality in
(2.18) followed by Hölder’s inequality and (5.33) to obtain

u0.x; t/Å u0.x; 6t/�
Z
�.x0;2t/

f .y/ k..x; 6t/; y/ d�.y/

�

�Z
�.x0;2t/

jk..x; 6t/; y/jr d�.y/

�1=r�Z
�.x0;2t/

f .y/r
0

d�.y/

�1=r 0
. �.�.x0; 2t//�1=r

0

�Z
�.x0;2t/

f .y/r
0

d�.y/

�1=r 0
� ŒM�.f

r 0/.x0/�
1=r 0 :

To estimate uj when j 2 N, we apply the boundary Hölder continuity estimate from (5.7) and then
proceed as in the estimate above to obtain

uj .x; t/.
�
t

2j t

�̨
uj .x0; 2

j t /Å 2�j˛uj .x0; 2jC2t /

� 2�j˛
Z
�.x0;2jC1t/

f .y/ k..x0; 2
jC2t /; y/ d�.y/

� 2�j˛
�Z

�.x0;2jC1t/

k..x0; 2
jC2t /; y/r d�.y/

�1=r�Z
�.x0;2jC1t/

f .y/r
0

d�.y/

�1=r 0
. 2�j˛

�
/

Z
�.x0;2jC1t/

f .y/r
0

d�.y/

�1=r 0
� 2�j˛ŒM�.f

r 0/.x0/�
1=r 0 :

The above estimates together show that

N�u.x0/. ŒM�.f
r 0/.x0/�

1=r 0

for all x0 2 Rn, and since r 0 < q0 D p, it follows that kN�ukLp� . kf kLp� , as required. �

We conclude the paper by using the preceding lemma to obtain solvability of the Dirichlet problem
.D/p;�. A uniqueness result is also obtained but only for solutions that converge uniformly to 0 at infinity.
This restriction does not appear in the uniformly elliptic case; see Theorem 1.7.7 in [Kenig 1994]. It
arises here because of the absence of a Green’s function for degenerate elliptic equations on unbounded
domains (see Section 5C) and it is not clear to us whether this can be improved.

Theorem 5.34. Suppose that 1=p C 1=q D 1, where q 2 .1;1/ is the reverse Hölder exponent from
Theorem 5.30. The Dirichlet problem for Lp�.Rn/-boundary data is solvable in the sense that for each
f 2 L

p
�.R

n/, there exists a solution u such that8<:
div.Aru/D 0 in RnC1

C
;

N�u 2 L
p
�.R

n/;

limt!0 u. � ; t /D f;

.D/p;�
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where the limit converges in Lp�.Rn/-norm and in the nontangential sense whereby

lim
�.x/3.y;t/!.x;0/

u.y; t/D f .x/

for almost every x 2 Rn. Moreover, if f has compact support, then there is a unique solution u of .D/p;�
that converges uniformly to 0 at infinity in the sense that limR!1 kukL1.RnC1

C
nB.0;R//

D 0.

Proof. Suppose that f 2 Lp�.Rn/ and define u.X/ WD
R

Rn
f d!X for all X 2 RnC1

C
. We first prove that

div.Aru/ D 0 in RnC1
C

. Let .fj /j denote a sequence in Cc.Rn/ that converges to f in Lp�.Rn/ and
consider the solutions uj .X/ WD

R
Rn
fj d!

X. The Lq.Rn/-estimate for the Radon–Nikodym derivative
d!X=d� from Lemma 5.32 and the doubling property of � show that

kuj �ukL1.K/ .�;K kfj �f kLp�.Rn/

for all j 2N and any compact setK �RnC1
C

, so uj converges to u in L2�;loc.R
n/. Moreover, Cacioppoli’s

inequality and the arguments preceding (5.4) show that uj converges to a solution v in W 1;2
�;loc.R

n/, so
then uD v is a solution in RnC1

C
as required.

The nontangential maximal function estimate kN�ukLp�.Rn/ . kf kLp�.Rn/ is given by Lemma 5.32.
To prove the nontangential convergence to the boundary datum, first recall that uj 2 C.RnC1C / with
uj jRn WD fj , so lim�.x/3.y;t/!.x;0/ uj .y; t/ D fj .x/ (see Section 5B). We combine this fact with the
bound

ju.y; t/�f .x/j � ju.y; t/�uj .y; t/jC juj .y; t/�fj .x/jC j.fj �f /.x/j

to obtain
lim sup

�.x/3.y;t/!.x;0/

ju.y; t/�f .x/j � jN�.u�uj /.x/jC j.f �fj /.x/j

for all x 2 Rn. For any � > 0, we then apply Chebyshev’s inequality and the nontangential maximal
function estimate from Lemma 5.32 to show that

�
�˚
x 2 Rn W lim sup

�.x/3.y;t/!.x;0/

ju.y; t/�f .x/j> �
	�

� �
�˚
x 2 Rn WN�.u�uj /.x/ >

1
2
�
	�
C�

�˚
x 2 Rn W j.f �fj /.x/j>

1
2
�
	�

. ��p.kN�.u�uj /kpLp�.Rn/Ckf �fj k
p

L
p
�.Rn/

/

. ��pkf �fj kpLp�.Rn/:

It follows, since fj converges to f in Lp�.Rn/, that

lim
�.x/3.y;t/!.x;0/

u.y; t/D f .x/

for almost every x 2 Rn, as required. The norm convergence limt!0 ku. � ; t /�f kLp�.Rn/ then follows
by Lebesgue’s dominated convergence theorem.

It remains to prove that u is the unique solution satisfying limjX j!1 ku.X/k1 D 0 when f has
compact support. In that case, fix R0 > 0 such that f is supported in the surface ball �.0;R0/. If
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X 2 RnC1
C

and jX j> 2R0, then the reverse Hölder estimate in Theorem 5.30 shows that

ju.X/j �

Z
�.0;R0/

jf .y/j k.X; y/ d�.y/

� kf kLp�.Rn/

�Z
�.0;jX j=2/

k.X; y/q d�.y/

�1=q
. kf kLp�.Rn/�

�
�.0; 1

2
jX j/

�1=q /

Z
�.0;jX j=2/

k.X; y/ d�.y/

� kf kLp�.Rn/�
�
�.0; 1

2
jX j/

��1=p
;

whilst limR!1 �.�.0;R//D1, since � is in the A1-class with respect to Lebesgue measure on Rn;
thus limR!1 kukL1.RnC1

C
nB.0;R//

D 0. The maximum principle allows us to conclude that any solution
of .D/p;� with this decay must be unique. �
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