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CONTINUITY PROPERTIES FOR DIVERGENCE FORM
BOUNDARY DATA HOMOGENIZATION PROBLEMS

WILLIAM M. FELDMAN AND YUMING PAUL ZHANG

We study the asymptotic behavior at rational directions of the effective boundary condition in periodic
homogenization of oscillating Dirichlet data. We establish a characterization for the directional limits
at a rational direction in terms of a relatively simple two-dimensional boundary layer problem for the
homogenized operator. Using this characterization we show continuity of the effective boundary condition
for divergence form linear systems, and for divergence form nonlinear equations we give an example of
discontinuity.

1. Introduction

In this work we will study the following type of boundary layer problem in dimension d � 2:�
�r � a.y;rvs

n/D 0 in P s
n D fy � n> sg;

vs
n.y/D '.y/ on @P s

n :
(1-1)

Here n 2 Sd�1 is a unit vector, s 2R, ' is continuous and Zd periodic, the operator a is also Zd periodic
in y and will satisfy a uniform ellipticity assumption. This work will consider both nonlinear scalar
equations and linear systems, so, for now, we do not specify the assumptions on a any further.

The boundary layer limit of the system (1-1) is defined by

'�.n; s/ WD lim
R!1

vn.RnCy/ if the limit exists and is independent of y 2 @P s
n .

If, additionally, the boundary layer limit is independent of s then we say that the cell equation (1-1)
homogenizes. Typically '� is independent of s for irrational directions n and we write '�.n/, while for
rational directions n 2 RZd the limits above exist but depend on s.

The focus of this article is on the limiting behavior of '� at rational directions. As a consequence
of this study we will be able to establish continuity or discontinuity of '� on Sd�1. We will see that
continuity of '� is intrinsically linked with linearity of the operator a.x;p/. In the case of a linear system
we show continuity of '�, while in the case of nonlinear scalar equations we give an example where '�
is discontinuous; this indicates generic discontinuity for nonlinear equations.

The main result established in this paper is that the directional limits of '� at a rational direction
are determined by a “second cell problem”, which is a boundary layer problem for the homogenized
operator a0. From this asymptotic formula it becomes relatively straightforward to address questions of
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continuity or discontinuity of '� at rational directions. Let us take � 2 Zd nf0g to be an irreducible lattice
vector and O� to be the corresponding rational unit vector in the same direction. Then the cell equation
(1-1) solution vs

�
exists for each s 2 R and has a boundary layer limit,

'�.�; s/ WD lim
R!1

vs
�.R�/;

but that limit typically is not independent of the translation s applied to the half-space domain P� . We will
see that '�.�; s/ is a 1=j�j-periodic function on R. Now suppose that we have a sequence of directions
nk !

O� such that
O� � nk

j O� � nk j
! �; where � is a unit vector with �? �:

Call � the approach direction of the sequence nk to � . We will show that the limit of '�.nk/ is determined
by the following boundary layer problem. Call P� D P0

�
D fx � � > 0g and define�

�r � a0.rw�;�/D 0 in P� ;

w�;� D '�.�;x � �/ on @P�
and L.�; �/D lim

R!1
w�;�.R�/: (1-2)

Then it holds
lim

k!1
'�.nk/DL.�; �/: (1-3)

We will see below that L.�; �/ is continuous in � 2 Sd�1. Thus the directional limits of '� at � are
determined by the boundary layer limit of a half-space problem for the homogenized operator. This limit
structure was first observed in [Choi and Kim 2014] and developed further by the first author and Kim
[Feldman and Kim 2017]; both papers studied nondivergence form and possibly nonlinear equations. We
will explain in this paper how the second cell problem follows purely from qualitative features which are
shared by a wide class of elliptic equations, including divergence form linear systems, and both divergence
and nondivergence form nonlinear equations. We are somewhat vague about the hypotheses, which will
be explained in detail in Sections 3 and 4.

Once we have established (1-3), the question of qualitative continuity/discontinuity of '� is reduced
to a much simpler problem. For linear equations the homogenized operator a0 is linear and translation-
invariant and so a straightforward argument, for example by the Riesz representation theorem, shows
that

L.�; �/D lim
R!1

w�;�.R�/D j�j

Z 1=j�j

0

'�.�; s/ dsI

i.e., it is the average over a period of '�.�; � /. Evidently this does not depend on the approach direction �.
Thus qualitative continuity of '� for linear problems follows easily once we establish (1-3).

In the case of nonlinear equations the formula (1-3) allows us to construct examples where discontinuities
do occur; see Theorem 1.3 below. Our conjecture is that discontinuities are generic for the class of
quasilinear equations we consider. Note that when '� is not continuous at � , the asymptotic formula (1-3)
still contains interesting information; it explains the structure of the discontinuity. In particular, the blow
up of '� at a discontinuity is 0-homogeneous and continuous away from the origin.
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Before we state our main theorems we give a brief explanation about where (1-1) arises and why one
should be interested in the continuity/discontinuity of '�. Let ��Rd be a bounded domain and consider
the homogenization problem with oscillating Dirichlet boundary data,�

�r �
�
a
�

x
"
;ru"

��
D 0 in �;

u".x/D g
�
x; x

"

�
on @�;

(1-4)

where " > 0 is a small parameter, g.x;y/ is continuous in x;y and Zd periodic in y. This system
is natural to consider in its own right, but also it arises naturally in the study of homogenization with
nonoscillatory Dirichlet data when one studies the higher-order terms in the asymptotic expansion; see
[Gérard-Varet and Masmoudi 2012] where this is explained.

The interest in studying (1-4) is the asymptotic behavior of the u" solutions as "! 0. This problem
has been studied recently by a number of authors starting with [Gérard-Varet and Masmoudi 2011; 2012]
and followed by [Aleksanyan, Shahgholian, and Sjölin 2015; Aleksanyan 2017; Choi and Kim 2014;
Feldman and Kim 2017; Feldman 2014; Prange 2013; Zhang 2017; Armstrong, Kuusi, Mourrat, and
Prange 2017; Guillen and Schwab 2016]. It has been established that solutions u" converge, at least in
L2.�/, to some u0 which is a unique solution to�

�r � .a0.ru0//D 0 in �;
u0.x/D '0.x/ on @�;

(1-5)

where a0 and '0.x/ are called respectively the homogenized operator and homogenized boundary data.
The identification of the homogenized operator a0 is a classical topic. The homogenized boundary '0 is
determined by the boundary layer equation (1-1),

'0.x/D '�.nx/; when nx is the inward unit normal to � and '.y/D g.x;y/:

That is, (1-1) can be viewed as a kind of cell problem associated with the homogenization of (1-4). At
least for linear equations this definition makes sense as long as the set of boundary points of @� where
(1-1) does not homogenize, i.e., those with rational normal, has zero harmonic measure. The convergence
of u" to u0 has been established rigorously for linear systems by Gérard-Varet and Masmoudi [2012],
and further investigations have yielded optimal rates of convergence; see [Armstrong, Kuusi, Mourrat,
and Prange 2017; Shen and Zhuge 2018]. For nonlinear divergence form equations, to our knowledge,
the problem has not been studied yet. This is the source of our interest in the fine properties of '�:
quantitative continuity estimates for '� lead to quantitative continuity estimates for u0 and u", and are
used to establish rates of convergence u"! u0. Meanwhile, characterizing the type of discontinuities
of '�, when they are present, leads to understanding the qualitative features of u" and u0.

Now we return to state our main results. The first is the validity of the “second cell problem” formula
(1-3) for the directional limits of '�.

Theorem 1.1. The limit characterization (1-3) holds for divergence form linear systems and nonlinear
equations satisfying a uniform ellipticity condition. The 0-homogeneous profile L.�; �/ at direction
� 2 Zd n f0g is continuous in � 2 Sd�1.
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Our arguments to derive (1-3) can be quantified to obtain a modulus of continuity, which we make
explicit below, however so far we cannot push the method to obtain the optimal modulus of continuity. In
a very nice recent work Shen and Zhuge [2017] obtain an almost Lipschitz modulus of continuity by a
different method; we will compare their approach with ours below.

Theorem 1.2. For elliptic linear systems, d � 2, for any 0< ˛ < 1
d

there is a constant C � 1 depending
on ˛ as well as universal parameters associated with the system (see Section 3) such that, for any n1; n2

irrational,
j'�.n1/�'�.n2/j � Ck'kC 5 jn1� n2j

˛:

We note that in the course of proving Theorem 1.2 we actually show Hölder regularity for every 0<˛<1

at each lattice direction � 2 Zd n f0g; the modulus of continuity however depends on the rational direction
and degenerates as j�j !1. This is why we only end up with (almost) Hölder- 1

d
continuity in the end.

For nonlinear problems our conjecture is that '� is discontinuous at rational directions, at least for
generic boundary data and operators. A result of this kind was established for nondivergence form
equations in [Feldman and Kim 2017]. In the divergence form nonlinear case we have constructed an
explicit example showing that discontinuity is possible.

Theorem 1.3. For d � 3 there exist smooth boundary data ' and uniformly elliptic, positively 1-
homogeneous, nonlinear operators a.x;p/ such that '� is discontinuous at some rational direction.

We compare with [Shen and Zhuge 2017], which studies continuity properties of '� for linear divergence
form systems. They show, in the linear systems case, that '� is in W 1;p for every p <1. They establish
Lipschitz estimates on the Diophantine directions which only grow subpolynomially in the Diophantine
parameter, and thereby obtain the W 1;p estimates and extend continuously to the rational directions. As
can be seen, for example, by Theorem 1.3, this type of result would not be possible for quasilinear elliptic
equations. Our approach is to compute the directional limits at each rational direction via the second cell
problem formula (1-3). Although this method does not yet yield an optimal quantitative estimate, it applies
to both linear and nonlinear equations including both divergence form, as established here, and nondiver-
gence form, as in [Feldman and Kim 2017]. We establish (suboptimal) quantitative continuity for linear
systems, and also we can classify the types of discontinuities which are present in the nonlinear setting.

Finally we compare with the work of the first author and Kim [Feldman and Kim 2017] in the nondiver-
gence form case. As we try to emphasize in Section 2, the broad outline of the arguments for Theorems 1.1
and 1.2 are the same in divergence and nondivergence form. However, at the level of the proofs there are
many technical differences; we will try to highlight the most interesting throughout the paper. The idea,
from [Feldman and Kim 2017], for the construction of nonlinear operators with discontinuous '� does not
work at all in the divergence form setting. We needed a completely different construction for Theorem 1.3.

Generally speaking, for linear systems we need to replace arguments with maximum principle by
large-scale estimates on the Poisson kernel in half-spaces and cone-type domains. These estimates come
from [Avellaneda and Lin 1991] or are adapted from the arguments there. For nonlinear equations we do
have a maximum principle, but many new arguments need to be developed since, as far as we are aware,
this is the first paper on the boundary layer problem for quasilinear divergence form equations.
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1A. Notation. We go over some of the notation and terminology used in the paper. We will refer to
constants which depend only on the dimension or fundamental parameters associated with the operator
a.x;p/ (to be made specific below), e.g., ellipticity ratio or smoothness norm, as universal constants.
We will write C or c for universal constants which may change from line to line. Given some quantities
A;B we write A . B if A � CB for a universal constant C . If the constants depend on an additional
nonuniversal parameter ˛ we may write A.˛ B.

We will use various standard Lp and Hölder C k;˛ norms. For Hölder seminorms, which omit the
zeroth-order sup norm term, we write Œf �C k;˛ . Given a measurable set E � Rd we will also use the
L

p
avg.E/ norm, which is defined by

kf kLp
avg.E/

D

�
1

jEj

Z
E

jf jp
�1=p

:

The oscillation is a convenient quantity for us since the solution property for the equations we consider
is preserved under addition of constant functions. This is usually defined for a scalar-valued function
u WE! R on a set E � Rd as oscE uD supE u� infE u. We use a slightly different definition which
also makes sense for vector-valued u WE! RN,

osc
E

u WD inf
˚
r > 0 W there exists u0 2 RN such that ku�u0kL1.E/ �

1
2
r
	
:

2. Explanation of the limit structure at rational directions

We give a high-level description of the asymptotics of the boundary layer limit at rational directions. What
we would like to emphasize throughout this description is that the argument is basically geometric, and
has to do with the way that @Pn intersects the unit periodicity cell in the asymptotic limit as n approaches
a rational direction. This calculation relies only on certain qualitative features of Dirichlet problems
for elliptic equations which are true both for divergence and nondivergence form both linear (including
systems) and nonlinear. To emphasize the level of abstraction we will write the boundary layer problem
in the form �

F Œvn;x�D 0 in Pn WD fx � n> 0g;

vn D ' on @Pn:
(2-1)

Always F and ' will share Zd periodicity in the x-variable. In order to carry out the heuristic argument
we will need the following properties of the class of equations/systems. We emphasize that the following
properties are not stated very precisely, they are merely meant to be illustrative:

(i) (homogenization) There is an elliptic operator F0 in the same class such that if u" is a sequence of
solutions of F

�
u"; x

"

�
D 0 in a domain � converging to some u0 then F Œu0�D 0 in �.

(ii) (continuity with respect to boundary data in L1) There exists C > 0 so that if n 2 Sd�1 and u1, u2

are bounded solutions of (2-1) with respective boundary data '1 and '2 then

sup
Pn

ju1�u2j � C sup
@Pn

j'1�'2j:
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(iii) (large-scale interior and boundary regularity estimates) There is ˛ 2 .0; 1/ such that for any r > 0 if
F Œu;x�D 0 in Br \Pn, where Br is some ball of radius r ,

Œu�C˛.Br=2\Pn/ . r�˛ osc
Br\Pn

uC Œg�C˛.Br\@Pn/:

The heuristic outline below applies to a wide class of elliptic equations; already the arguments were
carried out rigorously for nondivergence nonlinear equations by Choi and Kim [2014] and the first author
and Kim [Feldman and Kim 2017] and similar ideas were used for parabolic equations in moving domains
by the second author in [Zhang 2017]. Here we will be studying divergence form equations, linear systems
and nonlinear scalar equations.

To begin we need to understand the boundary layer limit at a rational direction. Let � 2 Zd n f0g and
consider the solution vs

�
.x/ of, �

F Œvs
�
;x�D 0 in P s

�
D fx � n> sg;

vs
�
D ' on @P s

�
:

(2-2)

Translating the half-space, by changing s, changes the part of the data ' seen by the boundary condition.
Thus the boundary layer limit of vs

�
can depend on the parameter s; we define

'�.�; s/D lim
R!1

vs
�.R�/:

As will become clear, this particular parametrization of the boundary layer limits is naturally associated
with the asymptotic structure of the boundary layer limits for directions n near �.

The next step is to understand the geometry near � . Let n 2 Sd�1 be a direction near � and vn be the
corresponding half-space solution. We can write,

nD .cos "/ O� � .sin "/� for some small angle " and a unit vector �? �:

We obtain an asymptotic for vn at an intermediate length scale.
Let x 2 @Pn, then the hyperplanes @Pn and @Px� O�

�
are close in a large neighborhood, any scale o

�
1
"

�
,

of x. By using the local up-to-the-boundary regularity we see that vn and vs
�
, with s D x � O� , are close on

the boundary of their common domain, at least in this o
�

1
"

�
neighborhood of x. Now vs

�
has a boundary

layer limit '�.�; s/, and the length scale j�j associated with the boundary layer depends on �, but not
on ". Thus for " small and j�j �R� 1

"

vn.xCRn/D '�.�;x � O�/C o".1/D '�.�; tan ".x � �//C o".1/:

Here o".1/ depends only on j�j, ", and universal parameters of the problem. This is one of the main
places where we use the large-scale boundary regularity estimates, property (iii) above. Thus, moving
into the domain by Rn and rescaling to the scale 1= tan ", i.e., letting w".x/� vn..xCRn/= tan "/, we
find that the boundary layer limit is well approximated by the boundary layer limit of�

F Œw";x=tan "�D 0 in P� ;

w" D '�.�;x � �/ on @P�
(2-3)
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in the limit as "! 0. Now taking the limit as "! 0 of in (2-3) we find the “second cell problem”�
F0Œw�;��D 0 in P� ;

w�;� D '�.�;x � �/ on @P� :
(2-4)

Thus we characterize the directional limits at the rational direction � as the boundary layer limits of the
associated second cell problem

lim
k!1

'�.nk/D lim
R!1

w�;�.R�/ if
O� � nk

j O� � nk j
! �:

With this characterization the qualitative continuity and discontinuity of '� can be investigated solely by
studying (2-4).

In the following, Sections 3 and 4, we will explain background regularity results for linear systems
and nonlinear divergence form equations and the well-posedness of Dirichlet problems in half-spaces. In
particular we will prove that properties we used in the heuristic arguments above do hold for the type
of equations/systems we consider. In Section 5 we will go into more detail about the boundary layer
equation (1-1) in rational and irrational half-spaces. In Section 6 we will make rigorous the above outline
obtaining intermediate-scale asymptotics which lead to the second cell equation (2-4). In Section 7 we
show how to derive continuity of '� from the second cell problem for linear problems, and in Section 8
we show how nonlinearity can cause discontinuity of '�.

3. Linear systems background results

In this section we will recall some results about divergence form linear systems. Let � be a domain of
Rd and N � 1; we consider solutions of the elliptic linear system

�r � .A.x/ru/D 0 in �;

where u2H 1.�IRN / is at least a weak solution. Here we use the notation AD .A
˛ˇ
ij .x// for 1�˛; ˇ�d

and 1� i; j �N defined for x 2 Rd, where we mean, using the summation convention,

.r � .A.x/ru"//i D @x˛ .A
˛ˇ
ij .x/@xˇu"j /:

We assume that A satisfies the following hypotheses:

(i) Periodicity:
A.xC z/DA.x/ for all x 2 Rd; z 2 Zd : (3-1)

(ii) Ellipticity: for some � > 0 and all � 2 Rd�N,

��i
˛�

i
˛ �A

˛ˇ
ij �

i
˛�

j

ˇ
� �i

˛�
i
˛: (3-2)

(iii) Regularity: for some M > 0,
kAkC 5.Rd / �M: (3-3)

We remark that the regularity on A is far more than is necessary for most of the results below. When we
say that C is a universal constant below we mean that it depends only on the parameters, d;N; �;M.
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3A. Integral representation. Consider the following boundary layer problem, which will be the main
object of our study: �

�r � .A.x/ru/Dr �f Cg in Pn;

u.x/D '.x/ on @Pn

(3-4)

for f;g smooth vector-valued functions with compact support and ' continuous and bounded. A solution
is given by the Green’s function formula

u.x/D

Z
Pn

rG.x;y/ �f .y/ dyC

Z
Pn

G.x;y/g.y/dyC

Z
@Pn

P .x;y/'.y/ dy:

Here G;P are the Green matrix and Poisson kernel corresponding to our operator. For y 2Pn, G solves�
�rx � .A.x/rxG.x;y//D ı.x�y/IN in Pn;

G.x;y/D 0 on @Pn;
(3-5)

and the Poisson kernel is given, for x 2 Pn and y 2 @Pn, by

P .x;y/D�n � .At .y/ryG.x;y//;

that is,
Pij .x;y/D�n˛A

ˇ˛

ki
.y/@yˇGkj .x;y/:

Following from [Avellaneda and Lin 1991], and exactly stated in [Gérard-Varet and Masmoudi 2012,
Proposition 5], G and P satisfy the same bounds as for a constant coefficient operator:

Theorem 3.1. Call ı.y/ WD dist.y; @Pn/. For all x ¤ y in Pn, one has

jG.x;y/j �
C

jx�yjd�2
for d � 3;

jG.x;y/j � C.j log jx�yjjC 1/ for d D 2;

jG.x;y/j �
Cı.x/ı.y/

jx�yjd
for all d;

jrxG.x;y/j �
C

jx�yjd�1
for all d;

jrxG.x;y/j � C

�
ı.y/

jx�yjd
C

ı.x/ı.y/

jx�yjdC1

�
for all d:

For all x 2 Pn and y 2 @Pn, one has

jP .x;y/j �
Cı.x/

jx�yjd
;

jrP .x;y/j � C

�
1

jx�yjd
C

ı.x/

jx�yjdC1

�
:

Although it is not precisely stated there, the methods of [Avellaneda and Lin 1991] also can achieve
the same bounds for the Green’s function and Poisson kernel associated with the operator �r � .A.x/r/
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in the strip-type domains
…n.0;R/ WD f0< x � n<Rg;

with constants independent of R. This will be useful later.
From the Poisson kernel bounds we can derive the L1 estimate which replaces the maximum principle

for linear systems.

Lemma 3.2. Suppose that u1;u2 are bounded solutions of (3-4) with respective boundary data '1; '2

and zero right-hand side. Then,

sup
Pn

ju1�u2j � Ck'1�'2kL1.@Pn/;

where C is a universal constant. The same holds for solutions in …n.0;R/.

For the solutions given by the Poisson kernel representation formula, the result of Lemma 3.2 follows
from a standard calculation using Theorem 3.1. There is some subtlety in showing uniqueness; see
[Gérard-Varet and Masmoudi 2012, Section 2.2] for a proof.

3B. Large-scale boundary regularity. In this section we consider the large-scale boundary regularity
used in the heuristic argument of Section 2 for linear elliptic systems. We will need a boundary regularity
result [Avellaneda and Lin 1987, Theorem 1]. For the following we assume � is some domain with
0 2 @� and that u" solves

�r �

�
A
�

x

"

�
ru"

�
D 0 in �\B1 and u" D g on @�\B1:

Lemma 3.3. For every 0 < ˛ < 1 there is a constant C depending on ˛ and universal quantities such
that, if �D fxd > 0g\B1 DW B

C

1
,

Œu"�
C˛.B

C

1=2
/
� C.krgkL1.fxdD0g\B1/Cku

"
�g.0/k

L2.B
C

1
/
/;

and for every � > 0

kru"k
L1.B

C

1=2
/
� C.krgkC 0;�.fxdD0g\B1/

Cku"�g.0/k
L2.B

C

1
/
/:

We need the Hölder regularity result in cone-type domains which are the intersection of two half-spaces
with normal directions n1; n2 very close to each other. We will consider the more general class of
domains � which are a Lipschitz graph over Rd�1 with small Lipschitz constant. In particular we assume
that there is an f W Rd�1! R Lipschitz with f .0/D 0 such that

�\B1 D f.x
0;xd / W xN > f .x0/g\B1:

Lemma 3.4. For every 0<˛ < 1 there is a ı.˛/ > 0 universal such that, if � as above with krf k1 � ı,
then

Œu"�C˛.�\B1=2/ � C.krgkL1.@�\B1/Cku
"
�g.0/kL2.�\B1/

/:

The proof is by compactness; we postpone it to Appendix A.
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3C. Poisson kernel in half-space intersection. From the regularity estimates of the previous subsection
we can derive estimates on the Poisson kernel in the intersection of nearby half-space domains. Consider
two unit vectors n1; n2 with jn1� n2j � " small. For simplicity we suppose that

nj D .cos "/ed C .�1/j .sin "/e1:

Set
K D Pn1

\Pn2
:

Define GK .x;y/ to be the Green’s matrix. Although the domain is Lipschitz, GK still satisfies the bound
(via [Avellaneda and Lin 1987]), in d � 3,

jGK .x;y/j.
1

jx�yjd�2
:

We set PK .x;y/, for x 2K and y 2 @K, to be the Poisson kernel for K, which is well-defined as long as
y1 ¤ 0. Call ı.x/D dist.x; @K/.

Lemma 3.5. For any ˛ 2 .0; 1/ and " sufficiently small depending on ˛ and universal quantities,

jPK .x;y/j.˛

8̂<̂
:

ı.x/˛

jx�yjd�1C˛
for jy1j �

1
2
jx�yj;

1

jy1j

ı.x/˛

jx�yjd�2C˛
for jy1j �

1
2
jx�yj:

The proof is postponed to Appendix A; we show how the estimates are used. Suppose  W @K! RN

satisfies
j .x/j �minfjx1j; 1g:

We consider the Poisson kernel solution of the Dirichlet problem,

u.x/D

Z
@K

PK .x;y/ .y/ dy:

In particular we are interested in the continuity at 0; we only consider really x D ted for some t > 0 (or
xD tn1 or tn2 but this is basically the same) so we restrict to that case. Now for y 2 @K, jx�yj � tCjyj

and so jx�yj& jy1j and the first bound in Lemma 3.5 implies the second. Thus we can compute

ju.ted /j.
Z
@K

1

jy1j

t˛

.t Cjyj/d�2C˛
minfjy1j; 1g dy

.
Z
@K

t˛

.t Cjyj/d�2C˛
min

�
1;

1

jy1j

�
dy

.
Z

R

Z
Rd�2

min
�

1;
1

jy1j

�
t˛

.t Cjy1jC jzj/d�2C˛
dz dy1:

Computing the inner integrals, we haveZ
Rd�2

1

.t Cjy1jC jzj/d�2C˛
dz D

1

.t Cjy1j/˛

Z
Rd�2

1

.1Cjwj/d�2C˛
dw . 1

.t Cjy1j/˛
:
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Then

ju.ted /j.
Z

R

min
�

1;
1

jy1j

�
t˛

.t Cjy1j/˛
dy1 . t˛ for t � 1:

We state the result of a slight generalization of this calculation as a lemma.

Lemma 3.6. Suppose that K D Pn1
\Pn2

, ˛ 2 .0; 1/ and "D jn1� n2j is sufficiently small so that the
estimates of Lemma 3.5 hold,  W @K! R smooth and satisfies the bound

j .x/j �minfıˇjx � .n1� n2/j
ˇ; 1g

for some ı > 0 and 1� ˇ > ˛, Then for any bounded solution u of

�r � .A.x/ru/D 0 in K with uD  on @K;

it holds

ju.ted /j. ı˛t˛ for t �
1

ı
:

There is an additional subtlety which is the uniqueness of the bounded solution of the Dirichlet problem
in K; the argument is the same as in the half-space case; see [Gérard-Varet and Masmoudi 2012]. To derive
Lemma 3.6 from the previous calculation just do a rescaling to u

�
�

ı

�
; the domain K is scaling-invariant

and the Poisson kernel associated with A
�
�

ı

�
satisfies the same bounds as for A.

4. Nonlinear equations background results

In this section we consider the boundary layer problem for nonlinear operators. To explain the assumptions
we write out the problem in a general domain�

�r � a
�

x
"
;ru"

�
D 0 in �;

u".x/D g
�
x; x

"

�
on @�:

(4-1)

This type of equation would arise as the Euler–Lagrange equation of a variational problem,

minimize E.u/D

Z
�

F
�

x

"
;ru

�
dx over u 2H 1

0 .�/Cg
�
� ;
�

"

�
:

A natural uniform ellipticity assumption on the functional F is

F is convex with 1�D2F � � > 0:

Then aDDF is 1-Lipschitz continuous in p and has the monotonicity property

.a.x;p/� a.x; q// � .p� q/� �jp� qj2 for all p; q 2 Rd :

Now we consider how to determine the effective boundary conditions for the homogenization equation
(4-1). We zoom in at a boundary point x0 2 @� defining

v".y/D u".x0C "y/; which solves
�
�r � a

�
yC x0

"
; 1
"
rv"

�
D 0 in 1

"
.��x0/;

v".y/D g
�
x0C "y;yC

x0

"

�
on 1

"
@.��x0/:
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Now in order to have a unique equation in the limit "! 0 the following limit needs to exist:

a�.y;p/D lim
t!0

ta.y; t�1p/:

Note that, if said limit exists, it is always 1-homogeneous in p,

a�.y; �p/D lim
t!0

ta.y; .��1t/�1p/D �a�.y;p/:

In other words we need a to be 1-homogeneous in p at1; then the operator a� is this limiting homogeneous
profile of a at x0.

The above discussion motivates our assumption on the operators we study in the half-space problem:

(i) Periodicity:
a.xC z;p/D a.x;p/ for all x 2 Rd ; z 2 Zd ;p 2 Rd : (4-2)

(ii) Ellipticity: for some � > 0 and all p; q 2 Rd

.a.x;p/� a.x; q// � .p� q/� �jp� qj2 and ja.x;p� a.x; q/j � jp� qj: (4-3)

(iii) Positive homogeneity: for all x;p and t > 0,

a.x; tp/D ta.x;p/: (4-4)

For convenience will also assume a.x;p/ is C 1 in x so that, by the De Giorgi regularity theorem, solutions
are locally C 1;˛ for some universal ˛ > 0.

4A. Regularity estimates for nonlinear equations. In this section we explain the regularity estimates
which we use to obtain .1/ existence of boundary layer limits and .2/ the characterization of limits at
rational directions. For both results we need the De Giorgi estimates respectively for the interior and
boundary. As is the usual approach for regularity of nonlinear equations, we can reduce to considering
actually the regularity of linear equations but with only bounded measurable coefficients.

For what follows we will take A W Rd !Md�d to be measurable and elliptic,

��A.x/� 1:

Recall that results for bounded measurable coefficients imply results for solutions of nonlinear uniformly
elliptic equations and for the difference of two solutions. If u1;u2 2H 1

loc.�/ solve

�r � a.x;ruj /D 0 in �

then w D u1�u2 solves

�r � .A.x/rw/D 0 in � with A.x/D

Z 1

0

Dpa.x; sru1C .1� s/ru2/ ds; (4-5)

and one can easily check that ��A.x/� 1.
We remind that, despite the overlap of notation, the results in this section apply to solutions of scalar

equations not systems.
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Theorem 4.1 (De Giorgi–Nash–Moser). There is an ˛ 2 .0; 1/ and C > 0 depending on d; � so that if u

solves
�r � .A.x/ru/D 0 in B1

then,
Œu�C˛.B1=2/ � C inf

c2R
ku� ckL2.B1/

:

A similar result holds up to the boundary for regular domains. We say that � is a regular domain of
Rd if there are r0; � > 0 so that for every x 2 @� and every 0< r < r0,

j�C
\Br .x/j � �jBr j:

Lemma 4.2. Suppose that � is a regular domain, r0 � 1 and 0 2 @�, and ' 2 C ˇ. There is an
˛0.d; �; �/ 2 .0; 1/ such that for 0< ˛ <minf˛0; ˇg there is C.d; �; �; ˛/ > 0 so that if u solves

�r � .A.x/ru/D 0 in B1\�; with uD ' on @�;

then for every r � 1,
osc
Br

u� C
�
Œ'�Cˇ.B1/

C inf
c2R
ku� ckL2.B1/

�
r˛:

The proof is postponed to Appendix A. We make a remark on the optimality of this estimate. Using
these results one can show local C 1;˛ estimates for solutions of nonlinear uniformly elliptic equations.
Large-scale C 1;˛ estimates are not possible due to the x-dependence, but in the spirit of [Avellaneda and
Lin 1991] one can prove large-scale Lipschitz estimates; this was done in [Moser and Struwe 1992]. See
also [Armstrong and Smart 2016] for the stochastic case. These estimates however are for solutions, we
seem to require the result of Lemma 4.2 for differences of solutions (i.e., basically it is a C ˛ estimate of a
derivative). It is not clear, therefore, whether we can do better than Lemma 4.2.

4B. Half-space problem. We consider the basic well-posedness results for nonlinear problems set in
half-spaces. Consider �

�r � a.x;ru/D 0 in Pn;

uD '.x/ on @Pn:
(4-6)

Then the maximum principle holds.

Lemma 4.3. Suppose u1 and u2 are respectively bounded subsolutions and supersolutions of (4-6) with
boundary data '1 � '2 on @Pn; then,

u1 � u2 in Pn:

The result follows from Lemma 4.2 or, more precisely, its proof. The proof is postponed to Appendix A.

4C. Homogenization of nonoscillatory Dirichlet problem. In this section we recall quantitative homog-
enization results for nonlinear divergence form problems in bounded domains with regular Dirichlet
boundary condition. We will refer mainly to [Armstrong and Smart 2016]; they considered the stochastic
case but their arguments also apply to the periodic case. The problem has also been studied in [Cardone,
Pastukhova, and Zhikov 2005; Pastukhova 2008].
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More precisely we study the limit�
�r � a

�
x
"
;ru"

�
D 0 in �;

u".x/D g.x/ on @�
to

�
�r � a0.ru0/D 0 in �;
u0.x/D g.x/ on @�;

(4-7)

where the boundary data g is a trace of g2W 1;p.�/ for some p>2. The following result is a combination
of Proposition 4.1 and Corollary 4.2 in [Armstrong and Smart 2016] adapted to the periodic setting.

Theorem 4.4 [Armstrong and Smart 2016]. Let � � Rd be a bounded Lipschitz domain and p > 2.
Fix " 2 .0; 1� and let u";u0 2 gCH 1

0
.�/ satisfying (4-7). There exist constants C.d; �;p; �/ � 1 and

ˇ.d; �;p/ 2 .0; 1� such that
ku"�u0

kL2
avg.�/

� C "ˇkrgkLp
avg.�/

:

By interpolating the L2 estimate with the interior and boundary regularity, Theorem 4.1 and Lemma 4.2,
there exist constants C 0.d; �;�/� 1 and ˇ0.d; �/ 2 .0; 1� such that

sup
�

ju"�u0
j � C 0"ˇ

0

krgkL1.@�/:

Actually Corollary 4.2 of [Armstrong and Smart 2016] only does the interpolation argument for interior
points; adding in the boundary regularity Lemma 4.2 to get the uniform estimate up to @� is an elementary
argument. There are additional error terms in [Armstrong and Smart 2016] but these can be made zero in
the periodic setting using the existence of periodic correctors.

5. Boundary layers limits

In this section we will discuss the boundary layer problem for divergence form elliptic problems in
rational and irrational half-spaces. The results that we need for this paper are valid for both nonlinear
scalar equations and linear systems and the proofs have only minor differences. For that reason, in this
section and the next, we will discuss both types of equations in a unified way. We use the nonlinear
notation for the PDE. We consider the cell problem�

�r � a.y;rvs
n/D 0 in P s

n ;

vs
n D '.y/ on @P s

n :
(5-1)

We will first consider the case when n 2 Sd�1 nRZd is irrational.

5A. Irrational half-spaces. For linear systems, (5-1) in irrational half-spaces has been much studied
[Gérard-Varet and Masmoudi 2011; 2012; Aleksanyan, Shahgholian, and Sjölin 2015; Aleksanyan 2017;
Armstrong, Kuusi, Mourrat, and Prange 2017; Prange 2013; Shen and Zhuge 2017]. Typically the focus
has been on the Diophantine irrational directions. We do not give the definition, since it is not needed
for our work, but basically the Diophantine condition is a quantification of the irrationality. Under this
assumption strong quantitative results can be derived for the convergence to the boundary layer limit.

For the purposes of this paper we are only interested in the qualitative result, the existence of a boundary
layer limit for (5-1) in a generic irrational half-space (no Diophantine assumption). The existence of a
boundary layer tail in general irrational half-spaces was originally proven by Prange [2013] for divergence
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form linear systems, and for nonlinear nondivergence form equations by the first author in [Feldman and
Kim 2017] (following [Choi and Kim 2014] on the Neumann problem). To our knowledge the case of
nonlinear divergence form equations has not been studied yet.

What we would like to explain here is that the proof of [Feldman and Kim 2017] applies also to the
problems we consider in this paper, careful inspection shows that the proof of [Feldman and Kim 2017]
only required the interior regularity, continuity up to the boundary (small-scale), and the L1 estimate (or
maximum principle) with respect to the boundary data.

Theorem 5.1. Suppose that n 2 Sd�1 nRZd. Then there exists '�.n/ such that

sup
s

sup
y2@Pn

jvs
n.yCRn/�'�.n/j ! 0 as R!1:

One consequence of this theorem is that, for irrational directions, we can just study vn D v
0
n . We give

a sketch of the proof following [Feldman 2014].

Proof .sketch/. The boundary data, and hence the solution vs
n as well by uniqueness (L1 estimate

Lemma 3.2 or maximum principle Lemma 4.3), satisfies an almost periodicity property in the directions
parallel to @Pn. More precisely, given N � 1 there is a modulus !n.N /! 0 as N !1 (uses n irrational)
so that for any y 2 @Pn there is a lattice vector z 2 Zd with jz � yj � N and jz � n� sj � !.N /; see
[Feldman and Kim 2017, Lemma 2.3]. Define z0 to be the projection of z onto @P s

n ; then

j'.xC z0/�'.x/j � j'.xC z/�'.xC z0/j � kr'k1!.N /:

The same estimate, up to a universal constant, holds for jvs
n.xCz0/�vs

n.x/j by Lemma 3.2 or Lemma 4.3.
Since v0

n. � Cz/ solves the same equation in P z�n
n , we can use the up-to-the-boundary Hölder continuity

and the L1 estimate (or maximum principle) to see that

kvs
n. � /� v

0
n. � C z/kL1.P s

n\Pz �n
n / . kr'k1!n.N /˛:

Sending N to1 we see that if v0
n has a boundary layer limit then so does vs

n and they have the same value.
Then we just need to argue for v0

n . Given y 2 @Pn the same argument as above shows there is Nz 2 @Pn

with jNz�yj �N and
jv0

n. � /� v
0
n. � C Nz/j. kr'k1!n.N /˛:

Then using the L1 estimate Lemma 3.2 (or the maximum principle) and the large-scale interior regularity
estimates, Theorem 4.1 above for the nonlinear case or Lemma 9 in [Avellaneda and Lin 1987] for the
linear systems case,

osc
y�n�R

vs
n.y/. osc

y�nDR
vs

n.y/� osc
y2BN .0/\@Pn

vs
n.yCRn/CCkr'k1!n.N /˛

. kr'k1
��

N

R

�̨
C!n.N /˛

�
:

Choosing N large first to make !n.N / small and then R�N gets the existence of a boundary layer
limit. �
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5B. Rational half-spaces. Next we consider the case of a rational half-space. Let � 2 Zd n f0g be an
irreducible lattice direction, and vs

�
be the corresponding half-space problem solution. In this case '

is periodic with respect to a .d�1/-dimensional lattice parallel to @P� . There exist `1; : : : ; `d�1 with

j̀ ? � and j j̀ j � j�j which are periods of '. Then by uniqueness j̀ are also periods of vs
�
. In this special

situation it is possible to show that there is a boundary layer limit with an exponential rate of convergence.
We give a general set-up. We consider the half-space problem�

�r � a.x;rv/Dr �f in Rd
C;

v D  .x0/ on @Rd
C;

(5-2)

where  W @Rd
C!R and f are smooth, and  , f , and a. � ;p/ all share d�1 linearly independent periods

`1; : : : ; `d�1 2 @Rd
C such that

max
1�j�d�1

j j̀ j �M:

The operators a, as always, will also satisfy the assumptions of either Section 3 or Section 4. For now we
will take f D 0; this covers most of the situations we will run into in this paper. Then v has a boundary
layer limit with exponential rate of convergence.

Lemma 5.2. There exists a value c�. / such that

sup
y2@Rd

C

jv.yCRed /� c�j � C.osc /e�cR=M ;

with C; c > 0 depending only on �; d .

The proof of this result is the same as the proof of the analogous result, [Feldman and Kim 2017,
Lemma 3.1], so we only include a sketch. The only tools necessary are the maximum principle (or
L1 estimate Lemma 3.2) and the large-scale interior Hölder estimates via De Giorgi–Nash–Moser for
nonlinear equations (Theorem 4.1) or [Avellaneda and Lin 1987, Lemma 9] for linear systems.

Proof .sketch/. Let L � 1 to be chosen, call Q to be the unit periodicity cell of  which has diameter
at most �M. Apply the De Giorgi interior Hölder estimates or the Avellaneda–Lin large-scale Hölder
estimates to find

osc
@PnCLMn

v D osc
y2Q

v.yCLM n/� CL�˛ osc
Pn

u� CL�˛ osc � 1
2

osc :

The second inequality is by the maximum principle or the L1 estimate Lemma 3.2; for the third inequality
we have chosen L� 1 universal to make CL�˛ � 1

2
. Then iterate the argument with the new boundary

data on @PnCLM n with oscillation decayed by a factor of 1
2

. �

We will also need a slight variant of the above result when the operator a does not share the same
periodicity as the boundary data, but instead has oscillations at a much smaller scale. We assume that  
has periods `1; : : : ; `d�1 as before, and now we also assume that there are e1; : : : ; ed which are periods
of a and

max
1�j�d

jej j � ":
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For example this is the case with a
�

x
"
;p
�

when a. � ;p/ is Zd -periodic. In this situation we do not
quite have a boundary layer limit with exponential rate, but at least there is an exponential decay of the
oscillation down to a scale � "˛.

Lemma 5.3. There exists a value c�. / such that for any ˇ 2 .0; 1�

sup
y2@Rd

C

jv.yCRed /� c�j � C.osc /e�cR=M
CCk kCˇ"

˛

for some universal ˛.ˇ/ 2 .0; 1/ (nonlinear case) or for every ˛ 2 .0; ˇ/ (linear case), with c;C > 0

universal and C depending on ˛ as well.

Again the proof of this result mirrors the proof of Lemma 3.2 in [Feldman and Kim 2017] and we
do not include it. Briefly, the idea is the same as Lemma 5.2 except that the lattice vectors generated by
`1; : : : ; `d�1 are no longer periods of v; instead for each lattice vector there is a nearby vector (distance at
most ") which is a period of the operator. This vector will almost be a period of v, with error of "˛ which
comes from the boundary continuity estimate Lemma 4.2 (nonlinear) or Lemma 3.4 (linear system).

Finally we discuss the boundary layer equation (5-1) with nonzero right-hand side f . We will restrict
to the case of linear systems. We need to put a decay assumption on f to guarantee even the existence of
a solution. We will assume that there are K; b > 0 so that

sup
yd�R

jf .y/j �
K

R
e�bR=M : (5-3)

Such assumption arises naturally; it is exactly the decay obtained for rv when v solves (5-1) with f D 0.
The 1

R
polynomial decay is important since we will care about the dependence on M � 1; the exponential

does not take effect until R�M, while the 1
R

decay begins at the unit scale.

Lemma 5.4. Suppose that f satisfies the bound (5-3) and v is the solution of the half-space equation
(5-1) for a linear system satisfying the standard assumptions of Section 3. Then there exists c�. ; f / such
that

sup
y2@Rd

C

jv.yCRed /� c�j � C..osc /CK log M /e�b0R=M ;

where the constants C and b0 depend on universal parameters as well as b from (5-3).

See the Appendix and [Feldman and Kim 2017, Lemma A.4] for more details.

5C. Interior homogenization of a boundary layer problem. In this section we will consider the interior
homogenization of half-space problems with periodic boundary data; as explained in Section 2 such a
problem arises in the course of computing the directional limits of '� at a rational direction:�

�r � a
�

x
"
;ru"

�
D 0 in Pn;

u" D  .x/ on @Pn

(5-4)

homogenizing to �
�r � a0.ru0/D 0 in Pn;

u0 D  .x/ on @Pn:
(5-5)
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Here  W @Pn ! RN, as in the previous section, will be smooth and periodic with respect to d � 1

linearly independent translations parallel to @Pn, which we call `1; : : : ; `d�1 2 @Pn. As before we call
M Dmaxj j j̀ j and assume that M � ". For convenience we can assume that M D 1; general results
can be derived by scaling.

This problem is quite similar to the standard homogenization problem for Dirichlet boundary data, the
unboundedness of the domain is compensated by the periodicity of the boundary data and by the existence
of a boundary layer limit which is a kind of (free) boundary condition at infinity. The main result of this
section is the uniform convergence of u" to u0, and hence also (importantly for us) the convergence of the
boundary layer limits.

Proposition 5.5. Homogenization holds for (5-4) with estimates:

(i) (nonlinear equations) For every ˇ 2 .0; 1/, there exists 0< ˛.ˇ; �; d/� ˇ such that, for all "� 1
2

,

sup
Pn

ju"�u0
j.ˇ Œ �Cˇ"˛:

(ii) (linear systems) For every "� 1
2

,

sup
Pn

ju"�u0
j. Œ �C 4"

�
log 1

"

�3
:

We will follow the idea of [Feldman and Kim 2017, Lemma 4.5]; there is a slight additional difficulty
since for divergence form nonlinear problems it is not possible to add a linear function n �x and preserve
the solution property, even for the homogenized problem. The C 4 norm we require for  in the linear
systems case is more than necessary.

For convenience we will make some additional assumptions so that u" shares the periods of the
boundary data  . Assume that nD �=j�j for an irreducible lattice direction � 2 Zd n f0g. In that case
a. � ;p/ is periodic with respect to the lattice �?\Zd D fk 2 Zd W k � � D 0g. Then we assume that the
periods of  are also periods of a

�
�
"
;p
�
,

`1; : : : ; `d�1 2 "�
?
\Zd : (5-6)

Then by the uniqueness of bounded solutions to (5-4) the solution u" also has `1; : : : ; `d�1 as periods.
The result of Proposition 5.5 should hold without this assumption, as was proven in the nondivergence
form case in [Feldman and Kim 2017, Lemma 4.5].

The proof will use known results about homogenization of Dirichlet boundary value problems in
bounded domains; specifically we consider the problem in a strip-type domain,�

�r � a
�

x
"
;ru"

R

�
D 0 in …n.0;R/D f0< x � n<Rg;

u"
R
D  .x/ on @…n.0;R/D fx � n 2 f0;Rgg;

(5-7)

where we make some choice to extend  to x � nDR, preserving the regularity and periodic structure.
The solution of the homogenized problem u0

R
is defined analogously. Because of (5-6), u"

R
and u0

R
have

periods `1; : : : ; `d�1, so although the domain …n.0;R/ is unbounded, actually we can consider (5-7) as
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a homogenization problem on the bounded domain Td�1 � Œ0;R�, or rather a rotation/rescaling of this
domain.

For linear systems we have, for R� 1, the rate for convergence

sup
…n.0;R/

ju"R �u0
Rj � CR4

k kC 4.R�1"/; (5-8)

which can be derived from the rate of convergence proved in [Avellaneda and Lin 1991] by scaling. The
C 4 regularity on  is sufficient; we did not state the precise regularity requirement on  which can be
found in [Avellaneda and Lin 1991]. With less regularity on  one can also obtain an algebraic rate of
convergence O."˛/.

For nonlinear equations there is an algebraic rate of convergence, for any ˇ 2 .0; 1/,

sup
…n.0;R/

ju"R �u0
Rj � CRˇ

k kC 0;ˇ .R�1"/˛; (5-9)

with some ˛ D ˛.ˇ/ 2 .0; 1/ universal. This result was recounted above in Section 4C, and can be found
in [Armstrong and Smart 2016; Pastukhova 2008].

Proof of Proposition 5.5. We define the boundary layer limits of, respectively, the "-problem and the
homogenized problem in (5-4). We have not proven that the "-problem has a boundary layer limit;
however Lemma 5.3 gives that the limit values are concentrated in a set of diameter o".1/. So we define,

�" 2 lim
R!1

u".Rn/ and �0
D lim

R!1
u0.Rn/;

where �" can be any subsequential limit and satisfies, again via Lemma 5.3,

j�"�u".Rn/j � Ckr k1."
˛
C e�cR/ (nonlinear case), (5-10)

j�"�u".Rn/j � Ckr kC 0;� ."C e�cR/ (linear system case). (5-11)

Instead of arguing directly with u" and u0 we consider8<:
�r � a

�
x
"
;ru"

R

�
D 0 in …n.0;R/;

u"
R
D  .x/ on x � nD 0;

u"
R
D �" on x � nDR

(5-12)

and, for j 2 f0; "g 8̂<̂
:
�r � a0.ru0

R;j
/D 0 in …n.0;R/;

u0
R;j
D  .x/ on x � nD 0;

u0
R;j
D �j on x � nDR:

(5-13)

We will choose RDR."/ below to balance the various errors. The error in replacing u" by u"
R

is given by

ju".x/�u"R.x/j � Ckr k1."
˛
C e�cR/ for x 2…n.0;R/;

and replacing u0 by u0
R;0

by

ju0.x/�u0
R;0.x/j � C.osc /e�cR for x 2…n.0;R/I
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the estimates hold on @…n.0;R/ by (5-10) (or for linear we use (5-11) instead), and therefore by the
maximum principle (or by Lemma 3.2 for linear systems) they hold on the interior as well. To estimate
the error in replacing u0

R;0
by u0

R;"
we need to estimate the difference �"��0, which is basically the

goal of the proof; this will be achieved below.
By Lemma 4.2 (or Lemma 3.3 in the linear systems case) there exists a universal ı0.�; d/ > 0 so that

if B is uniformly elliptic and q solves8<:
�r � .B.x/rq/D 0 in …n.0; 1/;

q D 0 on x � nD 0;

jqj D 1 on x � nD 1I

(5-14)

then jq.x/j � 1
2

for x � n� ı0. Now set

q" D u0
R;0�u0

R;"; which solves

8<:
�r � .B.x/rq"/D 0 in 0< x � n<R;

q" D 0 on x � nD 0;

q" D �0��" on x � nDR;

with B.x/DA0 in the linear case, or

B.x/D

Z 1

0

Da0.tru0
R;0.x/C .1� t/ru0

R;".x// dt uniformly elliptic,

in the nonlinear case. Now .1=j�0��"j/q.Rx/ solves an equation of the type (5-14) and so,

jq.ı0Rn/j � 1
2
j�0
��"j:

Now we apply the homogenization error estimates (5-9) and (5-8) for the domain …n.0;R/ to (5-12)

ju0
R;"�u"Rj � CRkr k1.R

�1"/

or respectively in the linear system case

ju0
R;"�u"Rj � CR4

k kC 4.R�1"/:

Now we estimate the error in �"��0 for the nonlinear case

j�"��0
j � ju".ı0Rn/�u0.ı0Rn/jCCkr k1."

˛
C e�cR/

� ju"R.ı0Rn/�u0
R;".ı0Rn/jC jq".ı0Rn/jCCkr k1."

˛
C e�cR/

� CRkr k1.R
�1"/ C 1

2
j�"��0

jCCkr k1."
˛
C e�cR/:

Moving the middle term above to the left-hand side we find,

j�"��0
j � Ckr k1.R.R

�1"/ C "˛C e�cR/� Ckr k1"
˛0 ;

where finally we have chosen RD C log 1
"

and ˛0 <minf˛;  g. The same argument in the linear case
yields,

j�"��0
j � C Œ �C 4.R4.R�1"/C "C e�cR/� C Œ �C 4"

�
log 1

"

�3
: �
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6. Asymptotics near a rational direction

We study asymptotic behavior of the cell problems as n2Sd�1 approaches a rational direction � 2Zdnf0g.
We call vs

�
the solution of the cell problem�

�r � a.xC s�;rvs
�
/D 0 in P� ;

vs
�
.x/D '.xC s�/ on @P� :

(6-1)

The boundary layer limit of the above cell problem depends on the parameter s and we define

'�.�; s/ WD lim
R!1

vs
�.xCR�/; (6-2)

which is well-defined and the limit is independent of x; see Lemma 5.2. It follows from Bézout’s identity
that '� is a 1=j�j-periodic function on R; see [Feldman and Kim 2017, Lemma 2.9]. As long as we can
we will combine the arguments for linear systems and nonlinear equations.

6A. Regularity of '�.�; � /. To begin we need to establish some regularity of '�.�; � /. For quantitative
purposes it is important to control the dependence of the regularity on j�j. We just state the results,
postponing the proofs until the end of the section. A modulus of continuity for '�.�; � / which is uniform
in j�j is not difficult to establish. This follows from the continuity up to the boundary Lemma 4.2 (or
Lemma 3.3) and the maximum principle Lemma 4.3 (or the L1 estimate Lemma 3.2).

Lemma 6.1. The boundary layer limits '�.�; s/ are continuous in s:

(i) (nonlinear equations)
Œ'�.�; � /�C˛ � Ckr'k1;

which holds for some universal C � 1 and ˛ 2 .0; 1/.

(ii) (linear systems) Hölder estimates as above hold for all ˛ 2 .0; 1/ and moreover, d

ds
'�.�; � /


1
� Ckr'kC 0;� for any 0< � � 1:

To optimize our estimates, in the linear case we will also need higher regularity of '� which is (almost)
uniform in j�j; this is somewhat harder to establish.

Lemma 6.2 (linear systems). For any � 2 Zd n f0g, suppose '�.�; s/ is defined as above. Then for all
j 2 Nd and any � > 0 there exists some constant Cj universal such that

sup
s

ˇ̌̌̌
dj

dsj
'�.�; s/

ˇ̌̌̌
� Cjk'kC j ;� logj .1Cj�j/:

Note that Lemma 6.2 is a bit weaker than Lemma 6.1 in the case j D 1; this is because we take a
different approach which is suboptimal in the j D 1 case; it is not clear if the logarithmic terms are
necessary when j > 1. The proof is similar to [Feldman and Kim 2017, Lemma 7.2], taking the derivative
of vs

�
with respect to s and estimating based on the PDE. Probably more precise Sobolev estimates are

possible but we did not pursue this.
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6B. Intermediate-scale asymptotics. Consider an irrational direction n close to a lattice direction � 2
Zd n f0g. Let " > 0 small and we write

nD .cos "/ O� � .sin "/� for some � 2 Zd
n f0g and a unit vector �? �:

We will assume below that j"j � �
6

. We consider the cell problem in Pn�
�r � a.y;rvn/D 0 in Pn;

vn D '.y/ on @Pn:
(6-3)

The first step of the argument is to show, with error estimate, that the boundary layer limit of vn is close
to the boundary layer limit of the problem�

�r � a.y=tan ";rvint
n /D 0 in Pn;

vint
n D '�.�;y � �/ on @Pn:

(6-4)

The solution vint
n approximates vn, asymptotically as "! 0, starting at an intermediate scale 1�R� 1

"

away from @Pn. The argument is by direct comparison of vn with vs
�

in their common domain.
Since (6-4) has a boundary layer of size uniform in " we can replace, again with small error, by a

problem in a fixed domain �
�r � a.y=tan ";rw"

�;�
/D 0 in P� ;

w"
�;�
D '�.�;y � �/ on @P� :

(6-5)

We note that there may be some confusion due to similarities in the notation between vs
�

and w"
�;�

. The
boundary value problem for w"

�;�
, or its homogenized version introduced later, will always be set in P� ,

so there will be no need for the translation parameter s.
We remark that for both (6-4) and (6-5) we have not proven the existence of a boundary layer

limit; rather we use Lemma 5.3. For convenience we will state estimates on limR!1 v
int
n .Rn/ or on

limR!1w
"
�;�
.R O�/, but technically we will mean that the estimate holds for every subsequential limit.

Proposition 6.3. Let � 2 Zd n f0g and nD .cos "/ O� � .sin "/� with " > 0 small and a unit vector �? �:

(i) (nonlinear equations) There is universal ˛ 2 .0; 1/ such thatˇ̌
'�.n/� lim

R!1
w"�;�.R

O�/
ˇ̌
. kr'k1j�j˛"˛;

where we mean that the estimate holds for any subsequential limit of w"
�;�
.R O�/ as R!1.

(ii) (linear systems) For every ˛ 2 .0; 1/ and any � > 0ˇ̌
'�.n/� lim

R!1
w"�;�.R

O�/
ˇ̌
.˛;� Œ'�C 1;� j�j˛"˛;

where again we mean that the estimate holds for any subsequential limit of w"
�;�
.R O�/ as R!1.

The first step is to compare the boundary layer limits of (6-3) and (6-4).
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Lemma 6.4. Fix any x 2 @Pn, 1�R� 1
"

and let s D x � � tan ":

(i) (nonlinear equations) There is a universal ˛ 2 .0; 1/ such that

jvn� v
s
� j.xCRn/. kr'k1.R"/˛:

(ii) (linear systems) For every ˛ 2 .0; 1/

jvn� v
s
� j.xCRn/.˛ kr'k1.R"/˛:

Proof. Let us define the cone domains

K.x/ WD .P� Cx/\Pn and KR.x/DK.x/\BR.x/I

we may simply write K;KR if xD0. Let x02@Pn; we compute using n�x0D0 and nD .cos "/ O��.sin "/�
that

x0 �
O� D .x0 � �/ tan ":

Let x 2 @K.x0/; then x 2 @Pn (or x 2 @P�Cx0) and there exists y 2 @P�Cx0 (or respectively @Pn) with

jx�yj � jx�x0j sin "� "jx�x0j:

Nonlinear equations: Applying the De Giorgi boundary continuity estimates Lemma 4.2 for small enough
˛ 2 .0; 1/ universal, for all x 2 @K.x0/,

jvs
�.x/� vn.x/j � jv

s
�.x/�'.y/jC j'.y/� vn.x/j. kr'k1"˛jx�x0j

˛:

Now since vs
�
.x/� vn.x/ is a difference of solutions we can apply the boundary continuity estimate from

Lemma 4.2 again,
jvs
�.x/� vn.x/j. kr'k1"˛jx�x0j

˛ for x 2K.x0/;

with perhaps a slightly smaller ˛.d; �/.

Linear systems: We have, by almost the same argument as above now using instead Lemma 3.3, for any
˛ 2 .0; 1/

jvs
�.x/� vn.x/j. kr'k1"˛jx�x0j

˛ on @K.x0/:

Now by the Poisson kernel bounds in K.x0/, Lemmas 3.5 and 3.6, for a slightly smaller ˛ and " sufficiently
small depending on ˛

jvs
�.x/� vn.x/j. kr'k1"˛jx�x0j

˛ for x 2K.x0/:

The remainder of the proof is the same as the case of scalar equations. �

Now we derive some consequences of Lemma 6.4. Let’s assume that kr'k1 � 1 to simplify the
exposition; the general inequalities can of course be derived by rescaling. Combining Lemma 5.2 with
Lemma 6.4 we find that for any R� 1

jvn.xCRn/�'�.�;x � � tan "/j. Œ.R"/˛C e�cR=j�j� for x 2 @Pn:
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Choosing RD j�j log 1
"

we obtain,

jvn.xCRn/�'�.�;x � � tan "/j. j�j˛"˛ for x 2 @Pn; (6-6)

either for a slightly smaller universal ˛ in the nonlinear case, or again for every ˛ 2 .0; 1/ in the case of
linear systems.

Now consider the rescaling

Qvint
n .y/D vn

�
ŒRn�C

y

tan "

�
defined for y 2 Pn; (6-7)

where ŒRn� 2 Zd is the lattice point such that Rn� ŒRn� 2 Œ0; 1/d .

Lemma 6.5. Let RD j�j log 1
"

and Qvint
n be defined as above in (6-7). Then:

(i) (nonlinear equations) There is universal ˛ 2 .0; 1/ such that

sup
Pn

j Qvint
n � v

int
n j. kr'k1j�j˛"˛:

(ii) (linear systems) For every ˛ 2 .0; 1/

sup
Pn

j Qvint
n � v

int
n j.˛ kr'k1j�j˛"˛:

Proof. Again assume that kr'k1 � 1 to simplify the exposition. Note that

Qvint
n .y/D vn

�
RnC

1

tan "
.yC .ŒRn��Rn/ tan "/

�
so by (6-6)

j Qvint
n .y/�'�.�; .yC .ŒRn��Rn/ tan "/ � �/j.˛ j�j˛"˛:

Then applying the regularity of '� from Lemma 6.1

j Qvint
n .y/�'�.�;y � �/j.˛ j�j˛"˛:

Thus Qvint
n solves �

�r � a.y=tan ";r Qvint
n /D 0 in Pn;

j Qvint
n .y/�'�.�;y � �/j � C j�j˛"˛ on @Pn:

(6-8)

This is almost the same as (6-4) solved by vint
n . The L1-estimate Lemma 3.2 (or the maximum principle)

implies
sup
Pn

jvint
n � Qv

int
n j.˛ j�j˛"˛ (6-9)

either for every ˛ 2 .0; 1/ in the linear systems case, or for some universal ˛ in the nonlinear case. �

To complete the proof of Proposition 6.3 we just need to compare the solutions vint
n of (6-4) and w"

�;�

of (6-5). The width of the boundary layer is now of uniform size in " so this is not a problem; we will
just need to use the boundary continuity estimate (Lemmas 3.4 and 4.2) and the continuity estimate of
'�.�; � / Lemma 6.1.
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Lemma 6.6. The following estimates hold for the boundary layers of vint
n and w"

�;�
:

(i) (nonlinear equations) There is ˛ 2 .0; 1/ universal such thatˇ̌
lim

R!1
vint

n .Rn/� lim
R!1

w"�;�.R
O�/
ˇ̌
. kr'k1j�j˛"˛;

where technically we mean that the estimate holds for any pair of subsequential limits.

(ii) (linear systems) For every ˛ 2 .0; 1/ and any � > 0ˇ̌
lim

R!1
vint

n .Rn/� lim
R!1

w"�;�.R
O�/
ˇ̌
.˛;� Œ'�C 1;� j�j˛"˛;

where technically we mean that the estimate holds for any pair of subsequential limits.

Proof. We compare the two solutions in their common domain. As before let K D Pn\P� and

uD vint
n �w

"
�;�:

Nonlinear equations: We have

�r � .A.x/ru/D 0 in K with some ��A.x/� 1 as in (4-5):

We compute the error on @K in the same way that we did in Lemma 6.4. Using Lemma 4.2 we find for
x 2 @K,

ju.x/j D jvint
n .x/�w

"
�;�.x/j. k'�.�; � /kC˛0 "

˛
jxj˛ . kr'k1"˛jxj˛;

where ˛0 is the universal, continuity modulus from Lemma 6.1 and ˛ < ˛0. Next we use the De Giorgi
boundary continuity estimate, Lemma 4.2 to obtain, again with a slightly smaller ˛,

ju.x/j. kr'k1"˛jxj˛ for x 2K: (6-10)

Next we use that the size of the boundary layers for vint
n and w"

�;�
are uniformly bounded in ", via

Lemma 5.3, to find for all R0 � 1,

sup
y2@Pn

ˇ̌
vint

n .yCR0n/� lim
R!1

vint
n .Rn/

ˇ̌
. k'�.�; � /kC˛0 "

˛
C .osc'�/e�R0=j�j;

where again we mean that the estimate holds for any subsequential limit of vint
n .Rn/. An analogous

estimate holds for w"
�;�

replacing Rn with R O� . Using our assumption that "� �
4

we have n � O� � 1p
2

and
so we have
max

˚ˇ̌
vint

n .R0
O�/� lim

R!1
vint

n .Rn/
ˇ̌
;
ˇ̌
w"�;�.R0

O�/� lim
R!1

w"�;�.R
O�/
ˇ̌	

. k'�.�; � /kC˛0 "
˛
C .osc'�/e�R0=j�j: (6-11)

Finally we combine (6-10) with (6-11), choosing R0 D j�j log 1=.j�j"/, to findˇ̌
lim

R!1
vint

n .Rn/� lim
R!1

w"�;�.R
O�/
ˇ̌
� jvint

n .R0
O�/�w"�;�.R0

O�/jCCkr'k1j�j
˛"˛

. kr'k1"˛R˛
0

. kr'k1j�j˛"˛
�

log 1

j�j"

�˛
:

Making ˛ slightly smaller we can remove the logarithmic term.
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Linear systems: We have

�r � .A.x/ru/D 0 in K:

Using Lemma 3.3 we find, for x 2 @K and any � > 0,

ju.x/j D jvint
n .x/�w

"
�;�.x/j.˛ kr'�.�; � /k1"

˛
jxj˛ .� kr'kC 0;�"˛jxj˛:

By the Poisson kernel bounds in K, Lemmas 3.5 and 3.6, we have for a slightly smaller ˛ 2 .0; 1/ and "
sufficiently small depending on ˛

ju.x/j.˛ Œ'�C 1;�"˛jxj˛ for x 2K:

The remainder of the proof is the same as the case of scalar equations. �

Proposition 6.3 follows combining Lemmas 6.5 and 6.6.

6C. Interior homogenization of the intermediate-scale problem. We take "! 0 in (6-5) and derive the
second cell problem �

�r � a.x=tan ";rw"
�;�
/D 0 in P� ;

w"
�;�
.x/D '�.�;x � �/ on @P� ;

(6-12)

which homogenizes to �
�r � a0.rw�;�/D 0 in P� ;

w�;�.x/D '�.�;x � �/ on @P� ;
(6-13)

where a0 is the homogenized operator associated with a
�

x
"
; �
�
.

We make the definition

L.�; �/D lim
R!1

w�;�.xCR�/:

As we will show below L.�; � / is the limiting 0-homogeneous profile of '� at the direction �,

lim
j!1

'�.nj /DL.�; �/

for any sequence of nj irrational with nj ! � and . O��nj /=j O��nj j ! �. This characterization is the first
main result of the paper Theorem 1.1.

We make a further remark about the second cell problem in (1-2). It is straightforward to see that w�;�
is actually a function only of two variables x � � and x ��. The boundary data '�.�;x ��/ is invariant with
respect to translations which are perpendicular to both � and �, and so by uniqueness the solution w�;�
is invariant in those directions as well. Note that we are using the spatial homogeneity of the operator
here; the same is not true of w"

�;�
. This property was useful in [Feldman and Kim 2017] since solutions

of nonlinear nondivergence form elliptic problems in dimension d D 2 have better regularity properties.
Although we do not use this in a significant way here, we point it out anyway since it could be potentially
useful in the future.

Now we state the quantitative version of Theorem 1.1:
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Theorem 6.7. Let � 2Zd nf0g be irreducible and nD .cos "/ O�� .sin "/� be an irrational direction. Then:

(i) (nonlinear equations) There is a universal ˛ 2 .0; 1/ such that

j'�.n/�L.�; �/j. kr'k1j�j˛"˛:

(ii) (linear systems) For every ˛ 2 .0; 1/

j'�.n/�L.�; �/j.˛ Œ'�C 5 j�j˛"˛:

We will need one more lemma in the proof of Theorem 6.7, which is independently interesting since it
gives the continuity of L.�; �/ in �.

Lemma 6.8. Let � 2 Zd n f0g be irreducible and �; �0 ? �. Thenˇ̌
lim

R!1
w"�;�.R�/� lim

R!1
w"�;�0.R�/

ˇ̌
.˛ k'kC k .j�j�˛j�� �0j˛C "˛/

and

jL.�; �/�L.�; �0/j.˛ k'kC k j�j�˛j�� �0j˛

either for a universal ˛ 2 .0; 1/ and k D 1 (nonlinear case), or for every ˛ 2 .0; 1/ and k D 3 (linear
systems case). For the first estimate we mean that the inequality holds for any pair of subsequential limits
of w"

�;�
.R�/; w"

�;�0
.R�/ as R!1.

Proof of Theorem 6.7. The ingredients have all been established elsewhere, we just need to combine them.
There is some set up to use Proposition 5.5 since the (5-6) does not necessarily hold for (6-12). Recall

that �?\Zd is spanned by d � 1 linearly independent vectors `1; : : : ; `d�1 with norms j j̀ j � j�j. Then
for each " > 0 we can choose a vector �" 2 "�?\Zd , i.e., a period of a. � =tan ";p/ with

j�"� �j � C "j�j: (6-14)

Now Proposition 5.5 will apply to get a quantitative estimate of the difference w"
�;�"
�w�;�" ; we will use

this below.

Nonlinear equations: By Proposition 6.3, there is universal ˛ 2 .0; 1/ such thatˇ̌
'�.n/� lim

R!1
w"�;�.R

O�/
ˇ̌
. kr'k1j�j˛"˛;

where we mean that the estimate holds for any subsequential limit ofw"
�;�
.R O�/ as R!1. Proposition 5.5,

homogenization of problems in half-space-type domains, applies to w"
�;�"

sup
P�

jw"�;�" �w�;�" j. Œ'�.�; � /�Cˇ j�j
˛�ˇ"˛ . kr'k1"˛

for some universal ˇ > ˛ 2 .0; 1/. We have used Lemma 6.1 to estimate the Hölder norm of '�.�; � /.
Then Lemma 6.8 and (6-14) impliesˇ̌

lim
R!1

w"�;�.R
O�/� lim

R!1
w"�;�".R

O�/
ˇ̌
CjL.�; �"/�L.�; �/j. kr'k1.j�j�˛j�"��j˛C"˛/. kr'k1"˛:
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Combining these

j'�.n/�L.�; �/j. kr'k1j�j˛"˛:

Linear systems: By Proposition 6.3, for every ˛ 2 .0; 1/ and any � > 0ˇ̌
'�.n/� lim

R!1
w"�;�.R

O�/
ˇ̌
.˛;� Œ'�C 1;� j�j˛"˛;

where again we mean that the estimate holds for any subsequential limit of w"
�;�
.R O�/ as R!1. Now

Proposition 5.5 (properly rescaled) applies to w"
�;�"

,

sup
P�

jw�;�" �w
"
�;�"
j.˛ Œ'�.�; � /�C 4 j�j˛�1"˛

. k'kC 5 j�j˛�1 log4.1Cj�j/"˛

for every ˛ 2 .0; 1/. We have used Lemma 6.2 to obtain the C 4 regularity of '�.�; � /. We also have
j�j˛�1 log4.1Cj�j/.˛ 1. Then Lemma 6.8 and (6-14) implyˇ̌

lim
R!1

w"�;�.R
O�/� lim

R!1
w"�;�".R

O�/
ˇ̌
CjL.�; �"/�L.�; �/j.˛ Œ'�C 3.j�j�˛j�"� �j

˛
C "˛/. Œ'�C 3"˛:

Combining these, for any ˛ 2 .0; 1/,

j'�.n/�L.�; �/j.˛ Œ'�C 5 j�j˛"˛: �

Proof of Lemma 6.8. We just argue for W D w"
�;�
�w"

�;�0
; the argument for w�;� �w�;�0 is almost the

same and slightly simpler.

Nonlinear equations: Note that W .0/D 0 and the boundary data for W on @P� has

j'�.x � �/�'�.x � �
0/j � k'�kC˛ j�� �

0
j
˛
jxj˛ . kr'k1j�� �0j˛jxj˛

for a universal ˛ 2 .0; 1/ by Lemma 6.1. By the boundary regularity Lemma 4.2 and the maximum
principle,

jW .x/j. kr'k1j�� �0j˛jxj˛ for x 2 P� \BR;

for a, possibly smaller, universal ˛. Now by Lemma 5.3 applied to w"
�;�
; w"

�;�0
separately, there is c� 2 R

such that for all R� 1

sup
x� O��R

jW .x/� c�j. Œ'��C˛
�

1

j�j˛
exp.�cj�jR/C "˛

0

�
;

where ˛ universal is from Lemma 6.1, and ˛0 < ˛ universal. Combining the two estimates with RD

c�1j�j�1j log j�� �0jj we get

jc�j.˛ kr'�k1.j�j�˛j�� �0j˛C "˛/;

again with a possibly different universal ˛ 2 .0; 1/.
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Linear systems: Note that W .0/D 0 and the boundary data for W on @P� has

jr.'�.x � �/�'�.x � �
0//j �

 d

ds
'�


1
j�� �0jC

 d2

ds2
'�


1
j�� �0jjxj:

By the boundary regularity Lemma 3.3, for any ˛ 2 .0; 1/,

jW .x/j.˛
 d

ds
'�


C 2
.1CR/j�� �0jjxj˛ for x 2 P� \BR:

Now by Lemma 5.3 applied to w"
�;�
; w"

�;�0
separately, there is c� 2 R such that for all R� 1

sup
x� O��R

jW .x/� c�j.
 d

ds
'�


1

�
1

j�j
exp.�cj�jR/C "˛

�
:

Combining the two estimates with RD c�1j�j�1j log j�� �0jj, we get

jc�j.˛ k'�kC 2.j�j�˛j�� �0j˛C "˛/:

We are ignoring some negative powers of j�j since they are � 1. �

6D. Proofs of regularity estimates of '�. We return to prove the regularity estimates of '� Lemma 6.1
and Lemma 6.2. The Hölder regularity Lemma 6.1 is relatively straightforward, while the higher regularity
Lemma 6.2 requires some more careful estimates.

Proof of Lemma 6.1. We will show an upper bound for j'�.�; h/�'�.�; 0/j with h< 0; the proof works
also for nonzero s and h 2 R. Consider v0

�
a solution in P� and vh

�
a solution in P� C h O� � P� . By the

boundary continuity estimates for vh
�

, for every y 2 @P� ,

jvh
� .y/� v

0
� .y/j D jv

h
� .y/�'.y/j � jv

h
� .y/�'.y � h O�/jC kr'k1h� Ckr'k1h˛

for some ˛ 2 .0; 1/ by Lemma 4.2. For the case of linear systems we have similarly,

jvh
� .y/� v

0
� .y/j D jv

h
� .y/�'.y/j � C Œ'�C 1;�h

for any � > 0 by the boundary gradient estimates for smooth coefficient linear systems. Then the maximum
principle, or respectively the L1 estimate for systems Lemma 3.2, implies the same bound holds in all
of P� and therefore also for the boundary layer limits. �

Proof of Lemma 6.2. In order to get estimates on higher derivatives of vs
�

in s, the method for Lemma 6.1
doesn’t work; we need to differentiate in the equation. Since we only consider one normal direction
� 2 Zd nf0g we drop the dependence vs D vs

�
on � . We denote derivatives with respect to s by @ and then�

�r � .A.xC s O�/r@kvs/Dr �f in P� ;

@kvs D . O� � r/k'.xC s O�/ on @P� ;
(6-15)

where f involves derivatives @jv for j < k,

f D

k�1X
jD0

�k

j

�
. O� � r/k�j A.xC s O�/r@jvs:
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Let p>d arbitrary but fixed. We will suppose, inductively, that we can prove for any R�0 and every j <k,

sup
y2@P� ;R0�R

kr@jvs
k

L
p
avg.BR0=2.yCR0 O�//

� Cj Œ'�C jC1;�
1

R
logj .1Cj�j/e�cjR=j�j;

where the constants depend on j , ŒA�C j and universal parameters. The case R� 1 corresponds basically
to an L1 bound on P� .

Then by Lemma B.1

k@kvs
kL1.P�/ � Ck. O� � r/k'k1CC logk.1Cj�j/Œ'�C k;� : (6-16)

Furthermore, by Lemma B.2, @kvs has a boundary layer limit

�k D
dk

dsk
'�.�; s/;

with
j@kvs

��k j � C logk.1Cj�j/Œ'�C k;�e�cR=j�j:

Now we aim to establish the inductive hypothesis. The following argument will also establish the base
case when j D 0. First we consider the case R� 1. This follows from (6-16) and the up-to-the-boundary
gradient estimates (Lemma 3.3),

kr@kvs
kL1.P�/ � Ck. O� � r/k'kC 1;� CC logk.1Cj�j/Œ'�C k;� � C logk.1Cj�j/Œ'�C kC1;� :

In the case R� 1, by the Avellaneda–Lin large-scale interior W 1;p estimates and the inductive hypothesis,

kr@kvs
k

L
p
avg.BR=2.yCR O�//

� C
1

R
osc

B3R=4.yCR O�/

@kvs
Ckf k

L
p
avg.B3R=4.yCR O�//

� C
1

R
logk.1Cj�j/Œ'�C k;�e�cR=j�j:

Combining the cases R � 1 and R � 1 establishes the inductive hypothesis for j D k. The bound on
k@kvskL1 and hence on the boundary layer limit �k , which is also a consequence of the induction, is
the desired result. �

7. Continuity estimate for homogenized boundary data associated with linear systems

In this section we use the limiting structure at rational directions established above to prove that the
homogenized boundary condition associated with a linear system is continuous. We recall the second cell
problem; let � 2 Zd n f0g a rational direction and suppose that we have a sequence of directions nk !

O�

such that
O� � nk

j O� � nk j
! �; where � is a unit vector with �? �:

Then the limit of '�.nk/ is determined by the second cell problem�
�r � .A0rw�;�/D 0 in P� ;

w�;� D '�.�;x � �/ on @P� ;
(7-1)
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and thus limk!1 '�.nk/D limR!1w�;�.R�/, where A0, constant, is the homogenized matrix associated
with A

�
�
"

�
and '�.�; � / defined in (6-2) is a 1=j�j periodic function on R (see [Feldman and Kim 2017,

Lemma 2.9] where the period of '� is explained).
First we state the qualitative result, identifying the limit and showing continuity at rational directions.

Continuity of '� at the irrational directions has been established, for example in [Prange 2013]. Combining
those results shows that '� extends to a continuous function on Sd�1.

Lemma 7.1. Let � 2 Zd n f0g; then for any sequence nk !
O�,

lim
k!1

'�.nk/D j�j

Z 1=j�j

0

'�.�; t/ dt:

From this we know that L.�; �/, defined in Section 6C, is independent of � in the linear case. And we
will simply write L.�/DL.�; �/.

Proof. By rotation and rescaling we can reduce to proving that the boundary layer limit associated with
the half-space problem �

�r � .A0rv/D 0 in Rd
C;

v D g.x1; : : : ;xd�1/ on @Rd
C;

(7-2)

where A0 is a constant and uniformly elliptic and g is a Zd�1-periodic continuous function Rd�1!RN, is

lim
R!1

v.Red /D

Z
Œ0;1�d�1

g.x0/ dx0:

We will actually give two proofs of this result, especially since it plays a key role in our main results.

Riesz representation: Consider the (linear) map T WC.Rd�1=Zd�1/!RN mapping g 7! limR!1 v.Red /.
The L1 estimates Lemma 3.2 imply that T is continuous. Since A0 is constant, translating g parallel
to @Rd

C just translates the solution v and so we also get translation invariance, for any y0 2 Td�1,

Tg. � �y0/D Tg:

The Riesz representation theorem implies that Tg D
R

Rd�1=Zd�1 g.x0/ d�.x0/ for some (vector-valued)
measure �. The translation invariance of T implies translation invariance of � which means it is a constant
multiple of the Haar measure, Lebesgue measure in this case. Then T 1D 1 implies that d�D dx0.

Direct method: Consider

�.t/D

Z
Œ0;1�d�1

v.x0; t/ dx0:

If we can show that � is constant we are done. Compute, using a summation convention,

A
0;ij

dd
�00j .t/D

Z
Œ0;1�d�1

A
0;ij

dd
@2

dvj .x
0; t/ dx0

D�

Z
Œ0;1�d�1

X
˛ˇ¤dd

A
0;ij

˛ˇ
@2
˛ˇvj .x

0; t/ dx0 D 0:
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Now note that for each derivative @2
˛ˇ

appearing in the sum either ˛ or ˇ is ¤ d and so we are integrating
the derivative of a periodic function over its unit cell. Thus

A
0;ij

dd
�00j .t/D 0 for all 1� i �N:

Let N� 2 RN ; applying (3-2) with the vector �i
˛ D
N�iı˛d gives

�j N�j2 D ��i
˛�

i
˛ �A

0;ij

˛ˇ
�i
˛�

j

ˇ
DA

0;ij

dd
N�i N�j :

In particular the N �N matrix with coefficients A
0;ij

dd
is invertible and therefore

�00.t/D 0 for all t � 0:

Thus � is linear, since � is bounded it must be constant. �

The next result is quantitative; the argument, which is the same as in [Feldman and Kim 2017], uses
the Dirichlet approximation theorem. We recall that number-theoretic result here.

Theorem 7.2 (Dirichlet approximation). For given real numbers ˛1; : : : ; ˛n and N 2N, there are integers
p1; : : : ;pn; q 2 Z with 1� q �N such that

jq˛i �pi j �
1

N 1=n
:

This is proved by the pigeonhole principle.

Theorem 7.3. Let '�. � / be defined the boundary layer limit associated with (1-1) defined for n 2

Sd�1 nRZd. Then for every ˛ < 1
d

and all n1; n2 2 Sd�1 nRZd,

j'�.n1/�'�.n2/j.˛ k'kC 5 jn1� n2j
˛:

Proof. Let n1; n2 be a pair of irrational unit vectors and set ı D jn1� n2j. Assume ı � 2�dd�d=2. Let
M D ı�s=.sC1/ with s D d � 1. By Dirichlet’s approximation theorem, there exists � 2 Zd n f0g and
k 2 Z with 1� k �M such that ˇ̌̌̌

n1

jn1j1
� k�1�

ˇ̌̌̌
� k�1M�1=s:

Now k�1jn1j1� is not a unit vector, but by the above inequality

k�1
jn1j1j�j � 1�

p
dı1=d

�
1
2
:

Then, since the map x 7! x=jxj is Lipschitz on Rd nB1=2,ˇ̌̌̌
n1�

�

j�j

ˇ̌̌̌
.d k�1M�1=s;

ˇ̌̌̌
n2�

�

j�j

ˇ̌̌̌
� ıCC k�1M�1=s:

Note also that

j�j �
k

jn1j1
CM�1=s

�
p

dkC 1. k:
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Thus, for j D 1; 2,

j�j

ˇ̌̌̌
nj �

�

j�j

ˇ̌̌̌
� j�jjıCC k�1M�1=s

j.M ıCM�1=s
� ı1=.sC1/

D ı1=d ;

where we chose M at the beginning so that the two terms are of the same size.
For appropriate choices of �j ? � ,

nj D .cos "j / O� � .sin "j /�j ;

with "j � jnj � �=j�jj.
Now apply Theorem 6.7, noting that L.�; �1/DL.�; �2/DL.�/ by Lemma 7.1. For any 0< ˛ < 1

we have
j'�.n1/�'�.n2/j � j'�.n1/�L.�/jC jL.�/�'�.n2/j

.˛ k'kC 5

�
j�j˛

ˇ̌̌̌
n1�

�

j�j

ˇ̌̌̌˛
Cj�j˛

ˇ̌̌̌
n2�

�

j�j

ˇ̌̌̌˛�
. k'kC 5ı˛=d :

This completes the proof for jn1�n2j small; for general n1; n2 2Sd�1 just use the boundedness of '�. �

8. A nonlinear equation with discontinuous homogenized boundary data

In this final section we study the second cell equation (1-2) for nonlinear equations. We give an example
of a nonlinear divergence form equation, with smooth boundary condition, for which the boundary layer
limit of (1-2) depends on the approach direction �.

We consider the nonlinear operator

a.p1;p2;p3/D .p1;p2;p3Cf .p1;p3//
t ;

where
f .p1;p3/ WD

1
8
.
p

8p2
1 C 9p2

3 Cp3/:

Here f is a solution of
8f 2
� 2p3f � .p

2
1 Cp2

3/D 0:

It is easy to check that f is positively 1-homogeneous and uniformly elliptic.
We will take � D e3 and � D e1 or e2 and we will set .x1;x2;x3/ D .x;y; z/. For the boundary

condition we choose

'.y/D 1
3
C cos.y � �/ so that '�.�; s/D

1
3
C cos.s/:

It is worthwhile to note that arbitrary '�.�; s/ can be achieved by choosing '.y/D '�.�;y � �/. We aim
to compute L.�; �/.

If �D e1, (1-2) becomes �
�r � .ux;uy ;uzCf .ux;uz//D 0 in R3

C;

u.x;y; 0/D 1
3
C cos x in R3

C:
(8-1)
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The operator and boundary data were chosen to make the solution

u.x;y; z/D
�

1
3
C cos x

�
e�z :

Note that

f .ux;uz/D
1
3
e�z

and so

.ux;uy ;uzCf .ux;uz//D .� sin x e�z; 0; � cos x e�z/;

from which it is easy to verify that u solves (8-1). The boundary layer limit in this case is 0 and so, by its
definition, L.�; e1/D 0.

If �D e2 then the equation becomes�
�r � .ux;uy ;uzCf .ux;uz//D 0 in R3

C;

u.x;y; 0/D 1
3
C cos y in R3

C:
(8-2)

This reduces to the following two-dimensional problem for v.y; z/D u.x;y; z/:(
�r �

�
vy ;

9
8
vzC

3
8
jvzj

�
D 0 in R2

C;

v.y; 0/D 1
3
C cos y on @R2

C:
(8-3)

Let v be the solution of (8-3). Consider w.y; z/ WD
�

1
3
C cos y

�
e�z, the solution from before,

�r �
�
wy ;

9
8
wzC

3
8
jwzj

�
D
��
�

4
9
�

1
3

cos y
�
1fcos y<0gC

1
4
.cos y � 1/1fcos y>0g

�
e�z
� 0: (8-4)

Thus w is a subsolution of (8-3); from Lemma 4.3 we have w � v.
The operator

�
vy ;

9
8
vz C

3
8
jvzj

�
is uniformly elliptic and Lipschitz continuous. We use a strong

maximum principle [Serrin 1970, Theorem 10]; in any bounded domain, we either have w � v or w < v.
Since the inequality in (8-4) is strict, except when y D 0 mod 2� , the case must be w < v. Since both
w; v are 1-periodic in the y-direction, restricting to the set z D 1, w.y; 1/� v.y; 1/� ı for some ı > 0.
Then by comparing w and v�ı on z � 1, again using Lemma 4.3, we deduce that w � v�ı; in particular

lim
z!1

v � lim
z!1

wC ı D ı:

Thus L.�; e2/ < 0DL.�; e1/ and therefore '�.n/ is discontinuous at the direction e3.

Appendix A

Hölder estimate in cone domain. We complete the proof of Lemma 3.4, the Hölder estimate in the flat
cone domain which we used above.

Proof of Lemma 3.4. Suppose that

krgkL1.@�\B1/ � 1 and �

Z
B1\�

ju"�g.0/j2 � 1:
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Let some ˛ < ˛0 < 1; by Lemma 3.3 there is a 1> � > 0 so that if K† D Pn for some n 2 Sd�1 then

sup
B�\Pn

ju"�g.0/j � �˛
0

:

We prove by compactness that there exists ı > 0 sufficiently small such that for any solution u" as above�
�

Z
B�\�

ju"�g.0/j2
�1=2

� �˛: (A-1)

To achieve the Hölder estimate from (A-1) is the standard iteration argument.
Suppose that the previous statement fails; that is, there exists fk and corresponding �k with ık D

krfkk1! 0, Ak satisfying the standard assumptions, "k > 0, gk with Lipschitz norm at most 1 and
corresponding uk solving the equation with boundary data gk on @�k \B1 and�

�

Z
B�\�k

juk �gk.0/j
2

�1=2

> �˛:

By taking subsequences we can assume that Ak !A uniformly, gk ! g uniformly and the uk converge
to some u weakly in H 1 and strongly in L2. Then, assuming that "k ! " > 0, we claim u solves

�r �A
�

x

"

�
ruD 0 in �\B1 with uD g on fxdD0g\B1: (A-2)

If "k ! 0 or "k !1 then we replace A.x="/ by A0 or A.0/ respectively.
The only part which is not the same as in [Avellaneda and Lin 1987] is to check the boundary condition.

Consider the transformations

ˆk.x/D .x
0;xd Cfk.x

0// mapping ˆk W fxd > 0g ! fxd > fk.x
0/g:

Define vk D uk ıˆk . Note that jˆk �xj � ık , rvk Drˆkruk and krˆk � IkL1 � ık . Therefore,
up to taking a subsequence, the vk converge weakly in H 1.BC

1
/ and strongly in H 1=2.BC

1
/ to the same

limit u. Since the trace operator is continuous T WH 1=2.BC
1
/!L2.fxd D 0g\B1/, we have that the

trace of v is the limit of the traces gk of the vk .
Then, once we have established the limit (A-2), from the regularity estimate in the flat domain

�˛ �

�
�

Z
B�\Pn

ju�g.0/j2
�1=2

� �˛
0

;

which is a contradiction since ˛ < ˛0 and � < 1. �

Poisson kernel bounds in half-space intersection. We return to prove the Poisson kernel bounds in the
intersection of nearby half-spaces, Lemma 3.5.

Proof of Lemma 3.5. The proof basically follows the proof of the Poisson kernel bounds in a smooth
domain in [Avellaneda and Lin 1987, Lemma 21] except we need to be careful to deal with the singularity
of the boundary. We do the case d � 3; the d D 2 case is a similar modification of the arguments in
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[Avellaneda and Lin 1987, Lemma 21]. Let x;y 2K and call r D jy �xj. We have the Green’s function
bound holding for x;y 2K (see Theorem 13 in [Avellaneda and Lin 1987] and the remark below)

jGK .x;y/j.
1

rd�2
:

We will first improve the Green’s function bound; the bound on the Poisson kernel will follow.
If ı.x/> 1

3
r then jGK .x;y/j.ı.x/=rd�1. Consider the case ı.x/< 1

3
r . Let Nx2@K with jx� NxjDı.x/.

Then GK . � ;y/ is a solution of the system in B
�
Nx; 1

2
r
�
\K. For " sufficiently small depending on ˛ the

boundary Hölder estimates Lemma 3.4 apply and

G.z;y/. ı.z/˛

rd�2C˛
for all z 2 B

�
Nx; 1

3
r
�
\KI (A-3)

in particular the bound holds at z D x.
Now we make a similar argument in the y-variable starting from (A-3); however Hölder regularity

is not sufficient anymore so we need to deal more directly with the singularity. Since we will send
y! @K nfy1D0g we can just consider the case ı.y/�min

˚
1
3
r; 1

2
jy1j

	
. Let Ny 2 @K with jy� Nyj D ı.y/.

Then GK .x; � / is a solution of the adjoint equation in B
�
Ny; 1

2
r
�
\K. If jy1j �

1
2
r then j Ny1j � jy1j �

1
2
r

and B
�
Ny; 1

2
r
�
\K is the intersection of a half-space with the ball B

�
Ny; 1

2
r
�
. The boundary Lipschitz

estimate of [Avellaneda and Lin 1987] applies and

jG.x; z/j. ı.z/ı.x/
˛

rd�1C˛
for all z 2 B

�
Ny; 1

3
r
�
\KI

since ı.y/� 1
3
r we get the bound at z D y. If jy1j �

1
2
r then we instead apply the boundary Lipschitz

estimate in B. Ny; jy1j/ to find

jG.x; z/j. ı.z/ı.x/˛

jy1jrd�2C˛
for all z 2 B. Ny; jy1j=2/\KI

since ı.y/ � 1
2
jy1j we get the bound at z D y. The bounds for the Poisson kernel follow by taking

appropriate difference quotients. �

Large-scale boundary regularity nonlinear equations. We return to prove the De Giorgi boundary
Hölder estimates, Lemma 4.2, for scalar equations with bounded uniformly elliptic coefficients.

Proof of Lemma 4.2. Without loss we can assume that osc�\B1
uD 1 and 0 � u � 1 in �\B1. Call

M Dmax@�\B1
' and consider

v D .u�M /C; which is a subsolution of �r � .A.x/rv/� 0 in B1:

Now since

jfv � 0g\B1j � �;

we apply the De Giorgi weak Harnack inequality to find

v � .1� ı/
�

max
�\B1

u�M
�

in B1=2
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for some ı > 0 depending on �; d; �. Making the same argument for �u we find

osc
�\B1=2

u� .1� ı/ osc
�\B1

uC ı osc
@�\B1

':

Iterating this argument we obtain,

osc
�\B

1=2k

u� .1� ı/k osc
�\B1

uC

k�1X
jD0

ı.1� ı/k�j�1 osc
@�\B

1=2j

':

Using the Hölder continuity of ',

osc
�\B

1=2k

u� .1� ı/k
�

osc
�\B1

uC Œ'�Cˇ

k�1X
jD0

ı.1� ı/�j�12�jˇ

�
:

Choosing ı smaller if necessary so that
2�ˇ < .1� ı/;

the summation is bounded independent of k and

osc
�\B

1=2k

u� C.˛/
�

osc
�\B1

uC Œ'�Cˇ
�
2�˛k ; with ˛ D�

log.1� ı/
log 2

< ˇ: �

Proof of Lemma 4.3. Set w D u1�u2; then by (4-5) w solves a uniformly elliptic equation in Pn:

�r � .A.x/rw/D 0 in � with A.x/D

Z 1

0

Dpa.x; sru1C .1� s/ru2/ ds;

with w � 0 on @Pn, and w �M for some M > 0. Define

v D wC Dmaxfw; 0g; which is a subsolution of �r � .A.x/rv/� 0 in Rd :

Now since,
jfv � 0g\Br j �

1
2
jBr j

for any r � 1 we apply the De Giorgi weak Harnack inequality to find

max
Br=2\Pn

wC �max
Br=2

v � .1� ı/ max
Br\Pn

w in Br=2:

Iterating this argument we find

max
Br\Pn

wC � .1� ı/
k max

B
2k r
\Pn

wC � .1� ı/
kM:

Sending k!1 and then r !1 we find wC � 0. �

Appendix B

In this section we complete the proof of Lemma 5.4. Recall that we are considering the boundary layer
problem with �

�r � .A.x/rv/Dr �f in Rd
C;

v D  .x0/ on @Rd
C;

(B-1)
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where  W @Rd
C!R and f are smooth, A satisfies the usual assumptions from Section 3 and, furthermore,

 , f , and A all share d �1 linearly independent periods `1; : : : ; `d�1 2 @Rd
C such that, for some M > 2,

max
1�j�d�1

j j̀ j �M:

The following maximal function-type norms turn out to be useful:

Mp.f;R/ WD sup
y�edD0;R0�R

kf kLp
avg.BR0=2.yCR0ed //

; (B-2)

Ip.f / WDMp.f; 0/C
X

N22N

NMp.f;N /: (B-3)

Note that Mp.f; 0/D kf kL1.Rd
C
/.

We write v by the Green’s function formula,

v.x/D

Z
@Rd
C

P .x;y/ .y/ dyC

Z
Rd
C

rxG.x;y/f .y/ dy:

The first result is an L1 estimate:

Lemma B.1. For any p > d ,
osc
Rd
C

v .p osc
@Rd
C

 C Ip.f /:

Proof. The bound for the Poisson integral is already done in Lemma 3.2. For the Green’s function term
we use the Avellaneda–Lin bounds in Theorem 3.1 along with a Whitney-type decomposition.

Let x2Rd
C; without loss of generality xD.0;xd /. If xd �1, let Nx 22N be the unique dyadic such that

Nx�xd<2Nx . Then define ˛2 Œ1;2/ such that ˛NxDxd . If xd�1 define ˛D2. Now we make a cube de-
composition QN;j WD˛N.j ;1/C˛

�
�

1
4
N; 1

2
N
�d for 2�N 22N and j 2Zd�1, with side length comparable

to the distance to xdD0. For N D1 we define Q1;jD˛.j ;1/C˛
�
�1; 1

2

�d. In this set up .0;xd /2QNx ;0.
Now we bound the Green’s function integral byZ

Rd
C

jrxG.x;y/jjf .y/j dy D
X
Q

Z
Q

jrxG.x;y/jjf .y/j dy

�

X
Q

jQjkrxG.x; � /kLp
avg.Q/

kf kLp
avg.Q/

�

X
N

X
j

N d
krxG.x; � /k

L
p0

avg.Q/
Mp.f;N /:

We claim that, for any p > d and any N 2 2N, j 2 Zd�1,

krxG.x; � /k
L

p0

avg.Q/
.p N 1�d .1Cjj j/�d : (B-4)

Taking the bound for granted we can complete the computation,Z
Rd
C

jrxG.x;y/jjf .y/j dy .
X
N

X
j

N.1Cjj j/�dMp.f;N /. Ip.f /;

where for the last inequality we used that .1Cjj j/�d is summable on Zd�1.
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Now we finish by proving (B-4) using the Avellaneda–Lin bounds, Theorem 3.1. When j D 0 and
N DNx we bound�

1

jQj

Z
Q

jrxG.x;y/jp
0

dy

�1=p0

.
�

1

jQj

Z
Q

jx�yj.1�d/p0 dy

�1=p0

.N�d=p0
�Z CN

0

r .1�d/p0rd�1 dr

�1=p0

.N�d=p0N ..1�p0/.d�1/C1/=p0
DN 1�d ;

where we have used p > d so that .p0� 1/.d � 1/ < 1 and the integral in the second line converges.
When j ¤ 0 and/or N ¤Nx we have that jx�yj&maxfN.1Cjj j/;Nxg for y 2QN;j . In this case,

jrxG.x;y/j. yd

jx�yjd
C

xdyd

jx�yjdC1

.N 1�d .1Cjj j/�d
CNNx maxfN.1Cjj j/;Nxg

�.dC1/

.N 1�d .1Cjj j/�d ;

which was the desired estimate. �

Next we prove the existence of a boundary layer limit with convergence rate. We assume the following
exponential-type bounds on f , which are well suited to the boundary layer problem: there are K; b > 0

so that, for all R> 0,

Mp.f;R/�
K

1CR
e�bR=M : (B-5)

From (B-5) one can compute,

Ip.f /.b K log M;

and also

Ip.f;R/ WD
X

2N3N�R

NMp.f;N /.b K log Me�bR=M :

Lemma B.2. Let v, f ,  and A as above in (B-1) with f satisfying the exponential bound (B-5). There
exists c� 2 Rm such that

sup
y�ed�R

jv.y/� c�j.b ..osc /CK log M /e�c0R=M ;

where the rate c0 depends on b and universal constants.

The proof is almost the same as [Feldman and Kim 2017, Lemma A.4] so we omit it.
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