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We are concerned with the dynamics of one-fold symmetric patches for the two-dimensional aggregation
equation associated to the Newtonian potential. We reformulate a suitable graph model and prove a local
well-posedness result in subcritical and critical spaces. The global existence is obtained only for small
initial data using a weak damping property hidden in the velocity terms. This allows us to analyze the
concentration phenomenon of the aggregation patches near the blow-up time. In particular, we prove
that the patch collapses to a collection of disjoint segments and we provide a description of the singular
measure through a careful study of the asymptotic behavior of the graph.
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1. Introduction

This paper is devoted to the study of the two-dimensional aggregation equation with the Newtonian
potential: 8<:

@t�C div.v�/D 0; t � 0; x 2 R2;

v.t; x/D� 1
2�

R
R2
.x�y/=jx�yj2�.t; y/ dy;

�.0; x/D �0.x/:

(1-1)

This model with more general potential interactions, with or without dissipation, is used to explain
some behavior in physics and population dynamics. As a matter of fact, it appears in vortex densities
in superconductors [Ambrosio and Serfaty 2008; Du and Zhang 2003; Keller and Segel 1970], material
sciences [Holm and Putkaradze 2006; Nieto et al. 2001], cooperative controls and biological swarming
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[Bernoff and Topaz 2011; Breder 1954; Boi et al. 2000; Gazi and Passino 2003; Mogilner and Edelstein-
Keshet 1999; Morale et al. 2005; Topaz and Bertozzi 2004], etc. During the last few decades, a lot of
intensive research activity has been devoted to exploring several mathematical and numerical aspects of
this equation. It is known according to [Bertozzi et al. 2012; Nieto et al. 2001] that classical solutions
can be constructed for short times. They develop a finite-time singularity if and only if the initial data is
strictly positive at some points and the blow-up time is explicitly given by T? D 1=max �0. This follows
from the equivalent form

@t�C v � r�D �
2;

which, written with Lagrangian coordinates, gives exactly a Riccati equation. Note that similarly to
Yudovich’s result [1963] for Euler equations, weak unique solutions in L1\L1 can be constructed follow-
ing the same strategy; for more details see [Bertozzi et al. 2009; 2011; 2012; Bertozzi and Laurent 2007;
Bertozzi and Brandman 2010; Fetecau et al. 2011; Fetecau and Huang 2013; Dong 2011; Laurent 2007;
Li and Rodrigo 2009]. Since the L1 norm is conserved at least at the formal level, a lot of effort was made
to extend the classical solutions beyond the first blow-up time. Poupaud [2002] established the existence
of global generalized solutions with defect measure when the initial data is a nonnegative bounded Radon
measure. He also showed that when the second moment of the initial data is bounded, for such solutions
the atomic part appears in finite time. This result is to some extent in contrast with what is established for
Euler equations. Indeed, according to Delort’s result [1991] global weak solutions without defect measure
can be established when the initial vorticity is a nonnegative bounded Radon measure and the associated
velocity has finite local energy. During the time, those solutions do not develop atomic part, contrary to
the aggregation equation. This illustrates somehow the gap between both equations, not only at the level
of classical solutions but also for the weak solutions. The literature dealing with measure-valued solutions
for the aggregation equation with different potentials is very abundant and we refer the reader to [Bodnar
and Velazquez 2006; Carrillo et al. 2006; 2011; Carrillo and Rosado 2010; Masmoudi and Zhang 2005].

Now we shall discuss another subject concerning the aggregation patches. Assume that the initial data
takes the patch form

�0 D 1D0 ;

with D0 a bounded domain; then solutions can be uniquely constructed up to the time T ? D 1 and one
can check that

�.t/D
1

1� t
1Dt ; with .@t C v � r/1Dt D 0:

Note that v is computed from � through the Biot–Savart law. To filter the time factor in the velocity field
and find an analogous equation to the Euler equations, it is more convenient to rescale the time as was
done in [Bertozzi et al. 2012]. Indeed, set

� D� ln.1� t /; u.�; x/D�
1

2�

Z
R2

x�y

jx�yj2
1 zD� .y/ dy;

zD� DDt I

then we get
.@� Cu � r/1 zD� D 0;

zD0 DD0:



DYNAMICS OF ONE-FOLD SYMMETRIC PATCHES FOR THE AGGREGATION EQUATION 2005

We observe that with this formulation, the blow-up occurs at infinite time and so the solutions do exist
globally in time. To simplify the notation we shall write this latter equation with the initial variables.
Hence the vortex patch problem is reduced to understanding the evolution equation8<:

@t�C v � r�D 0; t � 0;

v.t; x/D� 1
2�

R
Dt
.x�y/=jx�yj2 dy;

�.0/D 1D0 :
(1-2)

Let us point out that the area of the domain Dt shrinks to zero exponentially; that is,

for all t � 0; k�.t/kL1 D e
�t
jD0j: (1-3)

The solution to this problem is global in time and takes the form �.t/D 1Dt , Dt D  .t;D0/, where  
denotes the flow associated to the velocity v. Similarly to the Euler equations [Bertozzi and Constantin
1993; Chemin 1993], Bertozzi, Garnett, Laurent and Verdera [Bertozzi et al. 2016] proved the global-in-
time persistence of the boundary regularity in Hölder spaces C 1Cs, s 2 .0; 1/. However the asymptotic
behavior of the patches for large time is still not well understood despite some interesting numerical
simulations giving some indications on the concentration dynamics. Notice first that the area of the patch
shrinks to zero, which gives that the associated domains will converge in Hausdorff distance to negligible
sets. The geometric structure of such sets is not well explored and hereafter we will give two pedagogic and
interesting simple examples illustrating the concentration, and one can find more details in [Bertozzi et al.
2012]. The first example is the disc which shrinks to its center, leading after a normalization procedure
to the convergence to Dirac mass. The second one is the ellipse patch which collapses to a segment along
the big axis and the normalized patch converges weakly to Wigner’s semicircle law of density

x1 7!
2
p

x0
2� x21

�x02
1Œ�x0;x0�; x0 D a� b:

It seems that the mechanisms governing the concentration are very complex and related in part for some
special class to the initial distribution of the local mass. Indeed, the numerical experiments implemented in
[Bertozzi et al. 2012] for some regular shapes indicate that generically the concentration is organized along
a skeleton structure. The aim of this paper is to investigate this phenomenon and try to give a complete
answer for a special class of initial data where the concentration occurs along disjoint segments lying in
the same line. More precisely, we will deal with a one-fold symmetric patch, and by rotation invariance
we can suppose that its axis of symmetry coincides with the real axis. We assume in addition that the
boundary of the upper part is the graph of a slightly smooth function with small amplitude. Then we will
show that we can track the dynamics of the graph globally in time and prove that the normalized solution
converges weakly towards a probability measure supported in the union of disjoint segments lying in the
real axis. The results will be formulated rigorously in Section 2. The paper is organized as follows. In next
section we formulate the graph equation and state our main results. In Sections 3, 4 and 5 we shall discuss
basic tools that we use frequently throughout the paper. In Section 6 we prove the local well-posedness for
the graph equation. The global existence with small initial data is proved in Section 7, and Section 8 deals
with the asymptotic behavior of the normalized density and its convergence towards a singular measure.
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2. Graph reformulation and main results

The main purpose of this section is to describe the boundary motion of the patch associated to (1-2) under
suitable symmetry structure. One of the basic properties of the aggregation equation that we shall use in
a crucial way concerns its group of symmetry, which is much richer than for Euler equations. Actually, in
addition to rotation and translation invariance, the aggregation equation is in fact invariant by reflection.
To check this property and without loss of generality we can look for the invariance with respect to the
real axis. Set

X D .x; y/ 2 R2 and X D .x;�y/

and introduce
O�.t; X/D �.t; X/; Ov.t; X/D�

1

2�

Z
R2

X �Y

jX �Y j2
O�.t; Y / dY:

Using straightforward change of variables, it is quite easy to get

v.t; X/D Ov.t; X/; div.v �/.t; X/D div. Ov O�/.t; X/:

Therefore we find that O� satisfies also the aggregation equation

@t O�C div. Ov O�/D 0:

Combining this property with the uniqueness of Yudovich’s solutions, it follows that if the initial data
belong to L1\L1 and admit an axis of symmetry then the solution remains invariant with respect to
the same axis. In the framework of the vortex patches this result means that if the initial data are given
by �0 D 1D0 and the domain D0 is symmetric with respect to the real axis, the domain Dt defining the
solution �.t/D 1Dt remains symmetric with respect to the same axis for any positive time. Recall that in
the form (1-2) Yudovich-type solutions are global in time. To be precise about the terminology, here and
contrary to the standard definition in topology, where “domain” means a connected open set, we mean by
“domain” any measurable set of strictly positive measure. In addition, a patch whose domain is symmetric
with respect to the real axis (or any axis) is called one-fold symmetric.

In the current study, we shall focus on the domains D0 such that the boundary part lying in the upper
half-plane is described by the graph of a C 1 positive function f0 W R! RC with compact support. This
is equivalent to

D0 D f.x; y/ 2 R2 W x 2 suppf0; �f0.x/� y � f0.x/g:

We point out that concretely we shall consider the evolution not of D0 but of its extended set defined by

yD0 D f.x; y/ 2 R2 W x 2 R; �f0.x/� y � f0.x/g:

This does not matter since the domain Dt remains symmetric with respect to the real axis and then we
can simply track its evolution by knowing the dynamics of its extended domain: we just remove the extra
lines located on the real axis.

One of the main objectives of this paper is to follow the dynamics of the graph and investigate local and
global well-posedness issues in different function spaces. In the next lines, we shall derive the evolution
equation governing the motion of the initial graph f0. Assume that in a short time interval Œ0; T � the part of
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the boundary in the upper half-plane is described by the graph of a C 1 function ft WR!RC. This forces
the points of the boundary @Dt located on the real axis to be cusp singularities. As a material point located
at the boundary remains on the boundary, any parametrization s 7! t .s/ of the boundary should satisfy

.@tt .s/� v.t; t .s/// � En.t .s//D 0;

with En.t / being a normal unit vector to the boundary at the point t .s/. Now take the parametrization in the
graph form t W x 7! .x; f .t; x//; then the preceding equation reduces to the nonlinear transport equation�

@tf .t; x/Cu1.t; x/ @xf .t; x/D u2.t; x/; t � 0; x 2 R;

f .0; x/D f0.x/;
(2-1)

where .u1; u2/.t; x/ is the velocity .v1; v2/.t; X/ computed at the point X D .x; f .t; x//. Throughout
this paper we use the notation

ft .x/D f .t; x/ and f 0.t; x/D @xf .t; x/:

To reformulate (2-1) in a closed form we shall recover the velocity components with respect to the graph
parametrization. We start with the computation of v1.X/. Here and for the sake of simplicity we drop the
time parameter from the graph and the domain of the patch. One writes according to Fubini’s theorem

�2�v1.X/D

Z
D

x�y1

jX �Y j2
dY D

Z
R

.x�y1/

Z f .y1/

�f .y1/

dy2

.x�y1/2C .f .x/�y2/2
dy1;

where Y D .y1; y2/. Using the change of variables y2�f .x/D .x�y1/Z we find

2�v1.X/D

Z
R

�
arctan

�
f .y/�f .x/

y � x

�
C arctan

�
f .y/Cf .x/

y � x

��
dy

D

Z
R

�
arctan

�
f .xCy/�f .x/

y

�
C arctan

�
f .xCy/Cf .x/

y

��
dy:

To compute v2 in terms of f we proceed as before and we find

�2�v2.X/D

Z
D

f .x/�y2

jX �Y j2
dA.Y /D

Z
R

Z f .y1/

�f .y1/

f .x/�y2

.x�y1/2C .f .x/�y2/2
dy2 dy1:

Therefore we obtain the expression

4�v2.x; f .x//D

Z
R

log
�
y2C .f .xCy/�f .x//2

y2C .f .xCy/Cf .x//2

�
dy:

With the notation adopted before for .u1; u2/ we finally get the formulas

u1.t; x/D
1

2�

Z
R

�
arctan

�
ft .xCy/�ft .x/

y

�
C arctan

�
ft .xCy/Cft .x/

y

��
dy;

u2.t; x/D
1

4�

Z
R

log
�
y2C .ft .xCy/�ft .x//

2

y2C .ft .xCy/Cft .x//2

�
dy:

(2-2)

We emphasize that for the coherence of the model the graph equation (2-1) is supplemented with the
initial condition f0.x/� 0. According to Proposition 6.2, the positivity is preserved for enough smooth
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solutions. Furthermore, and once again according to this proposition we have a maximum principle
estimate:

for all t � 0; for all x 2 R; 0� f .t; x/� kf0kL1 :

Notice that the model remains meaningful even when the function ft changes sign. In this case the
geometric domain of the patch is simply obtained by looking to the region delimited by the curve of
ft and it is symmetric with respect to the real axis. This is also equivalent to dealing with a positive
function ft but its graph will be less regular and belongs only to the Lipschitz class. Another essential
element that will be analyzed later in Proposition 6.2 concerns the support of the solutions, which remains
confined through the time interval. More precisely, if suppf0 � Œa; b� with a < b then provided that the
graph exists for t 2 Œ0; T � one has

suppf .t/� Œa; b�:

This follows from the fact that the flow associated to the horizontal velocity u1 is contractive on the
boundary. It is not clear whether global weak solutions satisfying the maximum principle can be
constructed. However, to deal with classical solutions one should control higher regularity of the graph
and it seems from the transport structure of the equation that the optimal scaling for local well-posedness
theory is Lipschitz class. Thus, in what follows we say that a function space is critical if it scales
as a Lipschitz class and subcritical if it scales above like Hölder spaces C 1Cs, s > 0. Denote by
g.t; x/D @xf .t; x/ the slope of the graph; then it is quite obvious from (2-1) that

@tgCu1@xg D�@xu1gC @xu2: (2-3)

For the computation of the source term we proceed in a classical way using the differentiation under the
integral sign and we get successively

2�@xu1.x/D p.v.
Z

R

f 0.xCy/�f 0.x/

y2C .f .xCy/�f .x//2
y dyC p.v.

Z
R

f 0.xCy/Cf 0.x/

y2C .f .xCy/Cf .x//2
y dy (2-4)

and

2�@xu2.x/D p.v.
Z

R

.f .xCy/�f .x//.f 0.xCy/�f 0.x//

y2C .f .xCy/�f .x//2
dy

�p.v.
Z

R

.f .xCy/Cf .x//.f 0.xCy/Cf 0.x//

y2C .f .xCy/Cf .x//2
dy;

where the notation “p.v.” is the Cauchy principal value. It is worth pointing out that the first two integrals
appearing in the right-hand side of the expressions of @xu1 and @xu2 are in fact connected to the Cauchy
operator associated to the curve f defined in (5-1). This operator is well-studied in the literature and some
details will be given later in Section 5. Next, we shall check that the integrals appearing in the right-hand
side of the preceding formulas can actually be restricted over a compact set related to the support of f .
Let Œ�M;M� be a symmetric segment containing the set K0�K0, with K0 being the convex hull of the
support of f0, which is denoted by suppf0. It is clear that the support of @xu1f 0 is contained in K0 and
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thus for x 2K0 one has

p.v.
Z

R

f 0.xCy/�f 0.x/

y2C .f .xCy/�f .x//2
y dy D p.v.

Z M

�M

f 0.xCy/�f 0.x/

y2C .f .xCy/�f .x//2
y dy:

Consequently, we obtain for x 2 R

2�f 0.x/@xu1.x/D f
0.x/ p.v.

Z M

�M

f 0.xCy/�f 0.x/

y2C .f .xCy/�f .x//2
y dy

Cf 0.x/ p.v.
Z M

�M

f 0.xCy/Cf 0.x/

y2C .f .xCy/Cf .x//2
y dy:

Coming back to the integral representation defining @xu2 one can see, using a cancellation between both
integrals, that the support of @xu2 is contained in K0. Furthermore, for x 2K0 one may write

2�@xu2.x/D p.v.
Z M

�M

.f .xCy/�f .x//.f 0.xCy/�f 0.x//

y2C .f .xCy/�f .x//2
dy

� p.v.
Z M

�M

.f .xCy/Cf .x//.f 0.xCy/Cf 0.x//

y2C .f .xCy/Cf .x//2
dy:

Gathering the preceding identities we deduce that

2�.�@xu1f
0.x/C @xu2/D F.x/�G.x/; (2-5)

with

F.x/, p.v.
Z M

�M

Œf .xCy/�f .x/�yf 0.x/�.f 0.xCy/�f 0.x//

y2C .f .xCy/�f .x//2
dy;

G.x/, p.v.
Z M

�M

Œf .xCy/Cf .x/Cyf 0.x/�.f 0.xCy/Cf 0.x//

y2C .f .xCy/Cf .x//2
dy:

One should keep in mind that the integrals above can also be extended to the full real axis. Sometimes in
order to reduce the size of the integral representation we use the notation

�˙y f .x/D f .xCy/˙f .x/: (2-6)

Thus F and G take the form

F.x/D p.v.
Z M

�M

Œ��y f .x/�yf
0.x/���y f

0.x/

y2C .��y f .x//
2

dy; (2-7)

G.x/D p.v.
Z M

�M

Œ�Cy f .x/Cyf
0.x/��Cy f

0.x/

y2C .�Cy f .x//
2

dy: (2-8)

The first main result of this paper is devoted to the local well-posedness issue. We shall discuss two
results related to subcritical and critical regularities. Denote by X one of the following spaces: Hölder
spaces C s.R/ with s 2 .0; 1/ or the Dini space C ?.R/. For more details about classical properties of
these spaces we refer the reader to Section 4.
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Theorem 2.1. Let f0 be a positive compactly supported function such that f 00 2X. Then, the following
results hold true:

(1) Equation (2-1) admits a unique local solution such that f 02L1.Œ0; T �; X/, where the time existence T
is related to the norm kf 00kX and the size of the support of f0. In addition, the solution satisfies the
maximum principle

for all t 2 Œ0; T �; kf .t/kL1 � kf0kL1 :

(2) There exists a constant " > 0 depending only on s and the size of the support of f0 such that if

kf 00kC s < " (2-9)

then (2-1) admits a unique global solution f 0 2 L1.RCIC s.R//. Moreover,

for all t � 0; k@xf .t/kL1 � C0e�t ;

with C0 a constant depending only on kf 00kC s .

Before outlining the strategy of the proof, some comments are in order.

Remarks. (1) The global existence result is only proved for the subcritical case (C s). The critical case
(Dini case) is more delicate to handle due to the lack of strong damping, which is only proved in the
subcritical case (see Proposition 7.1). Roughly speaking, the damping comes from the linearization of the
nonlinear term. Indeed, one finds that the equation

@tf
0
Cu1 @xf

0
D

1
2�
.F.x/�G.x//D�f 0CL1.x/C nonlinear;

where (see Proposition 7.1) the term “nonlinear” has superlinear C s-type estimates. If the term L1.x/

were identically zero, then one can use the damping term �f 0 to obtain exponentially decaying global
solutions with small initial data. On the other hand, as it turns out, the almost-linear-type term L1.x/

admits estimates of the form

kL1ks � .kf
0
ksC 2kf

0
kL1/CCkf

0
k
s
L1kf

0
ks;

kL1kL1 � C min.kf ksL1kf
0
ks; kf

0
kL1/:

The key improvement here is the first estimate in theL1 estimate ofL1, which is in some sense superlinear.
By using Proposition 6.2 one can obtain an exponential decay estimate of kf k1 through an area argument.
This important estimate together with some interpolation estimates (and an exponential decay estimate
of k@xu1k1) and the strong damping term �f 0 then yields global well-posedness for small data.

(2) Coming back to the patch domain, we see that it admits cusp-like singularities located on the axis
of symmetry. This is not covered by the preceding result [Bertozzi et al. 2016] where the boundary is
assumed to be more regular than C 1. From the proof of Theorem 2.1 we deduce that the graph solutions
generate a Lipschitz velocity. This allows us to easily propagate a weak notion for the order of a cusp.
More precisely, let ˛>0 be the order of a cusp x0; that is, for small r , we have jD\B.x0; r/jDO.r2C˛/,
and then for the solutions constructed in Theorem 2.1 we get jDt \B.xt ; r/j DO.r2C˛/, with xt the
image of x0 by the flow. Notice that this problem was studied for Euler equations in [Danchin 2000].
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(3) From Sobolev embeddings we deduce according to the assumption on f0 listed in Theorem 2.1 that
f0 belongs to the space C 1c .R/ of compactly supported C 1 functions.

(4) The maximum principle holds true globally in time; however, it is not clear whether some suitable
weak global solutions could be constructed in this setting.

Now we shall give some details about the proofs. First we establish local-in-time a priori estimates
based on the transport structure of the equation combined with some refined studies on modified curved
Cauchy operators implemented in Section 5 and essentially based on standard arguments from singular
integrals. The construction of the solutions done in Section 6C is slightly more intricate than the usual
schemes used for transport equations. This is due to the fact that the establishment of the a priori estimates
is not purely energetic. First, at some levels we use some nonlinear rigidity of the equation like in
Theorem 2.1(3), where the factor f 0 behind the operator should be the derivative of the function f that
appears inside the operator. Second, we use at some point the fact that the support is confined in time.
Last we use at different steps the positivity of the solution. Hence it seems quite difficult to find a linear
scheme taking into account all of those constraints. The idea is to implement a nonlinear scheme with
two regularizing parameters " and n. The first one is used to smooth out the singularity of the kernel and
the second to smooth the solution through a nonlinear scheme. We first establish that one has uniform
a priori estimates on n but on some small interval depending on ". We are also able to pass to the limit
on n and get a solution for a modified nonlinear problem. Second we check that the a priori estimates
still be valid uniformly on ". This ensures that the time existence can be in fact pushed up to the time
given by the a priori estimates obtained for the initial equation (2-1). As a consequence we get a uniform
time existence with respect to " and finally we establish the convergence towards a solution of the initial
value problem using standard compactness arguments.

The global existence for small initial data requires much more careful analysis because there is no
apparent dissipation or damping mechanisms in the equation. Notice that the estimate of the source
term G contains some linear parts as it is stated in Proposition 6.1. The basic ingredient to get rid of
those linear parts is to implement a kind of linearization allowing us to capture a weak damping effect
in G that can just absorb the growth of the linear part. We do not know if the damping proved for lower
regularity still happens in the resolution space. As to the nonlinear terms, they are always associated
with some subcritical norms and thus using an interpolation argument with the exponential decay of the
L1 norm we get a global-in-time control that leads to the global existence.

The second result that we shall discuss deals with the asymptotic behavior of the solutions to (1-2) and
(2-1). We shall study the collapse of the support to a collection of disjoint segments located at the axis of
symmetry. Another interesting issue that will be covered by this discussion concerns the characterization
of the limit behavior of the probability measure

dPt , et
1Dt
jD0j

dA; (2-10)

with dA being Lebesgue measure and jD0j denoting the Lebesgue measure of D0. Our result reads as
follows.
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Theorem 2.2. Let f0 be a positive compactly supported function such that f 00 2 C
s.R/, with s 2 .0; 1/.

Assume that suppf0 is the union of n disjoint segments and satisfies the smallness condition (2-9). Then
there exists a compact set D1 � R composed of exactly of n disjoint segments and a constant C > 0 such
that

for all t � 0; dH .Dt ;D1/� Ce
�t ; jD1j �

1
2
jD0j;

with dH being the Hausdorff distance and jD1j the one-dimensional Lebesgue measure of D1. In
addition, the probability measures fdPtgt�0 defined in (2-10) converge weakly as t goes to1 to the
probability measure

dP1 WDˆıD1˝f0g;

with ˆ being a compactly supported function in D1 belonging to C ˛.R/ for any ˛ 2 .0; 1/ and can be
expressed in the form

ˆ.x/D
f0. 

�1
1 .x//

kf0kL1
eg.x/; (2-11)

with g a function that can be implicitly recovered from the full dynamics of solution fft W t � 0g and

 1 D lim
t!1

 .t/:

Note that  .t/ is the one-dimensional flow associated to u1 defined in (6-26) and

Dt D f.x; y/ W x 2 suppft ; �ft .x/� y � ft .x/g:

Remark 2.3. The regularity of the profile ˆ might be improved and we expect that ˆ keeps the same
regularity as the graph.

The proof of the collapse of the support to a disjoint union of segments can be easily derived from the
formula (2-11) which ensures that the support of the limit measure is exactly the image of the support
of f0 by the limit flow  1, which is a homeomorphism of the real axis. To get the convergence with
the Hausdorff distance we just use the exponential damping of the amplitude of the curve. As to the
characterization of the limit measure it is based on the exponential decay of the amplitude of graph
combined with the scattering as t goes to infinity of the normalized solution etf .t/. In fact, we prove
that the density is nothing but the formal quantity

ˆ.x/D 2 lim
t!1

etf .t; x/

whose existence is obtained using the transport structure of the equation through the method of character-
istics combined with the damping effects of the nonlinear source terms.

3. Generalities on the limit shapes

In this short section we shall discuss a simple result dealing with the role of symmetry in the structure
of the limit shape D1. Roughly speaking, we shall prove that thin initial domains along their axis of
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symmetry generate concentration to segments. Notice that

D1 ,
˚

lim
t!1

 .t; x/ W x 2D0
	
;

where  is the flow associated to the velocity v and defined through the ODE�
@t .t; x/D v.t;  .t; x//; t � 0; x 2 R2;

 .0; x/D x:
(3-1)

The existence of the set D1 will be proved below. We intend to prove the following.

Proposition 3.1. The following assertions hold:

(1) If D0 is a bounded domain of R2, then for any x 2 R2 the quantity limt!1  .t; x/ exists.

(2) Let D0 be a simply connected bounded domain symmetric with respect to an axis �. Denote by
d0 D Length.D0\�/. There exists an absolute constant C such that if

d0 > C jD0j
1
2

then the shape D1 contains an interval of the size d0�C jD0j
1
2 .

Proof. (1) Integrating in time the flow equation (3-1) yields

 .t; x/D xC

Z t

0

v.�;  .�; x// d�:

Now observe that pointwisely

jv.t; x/j �
1

2�

�
1

j � j2
? j�.t/j

�
.x/:

Thus interpolation inequalities combined with (1-3) lead to

kv.t/kL1 � Ck�.t/k
1
2

L1
k�.t/k

1
2

L1 � Ce
� t
2 jD0j

1
2 ; (3-2)

with C an absolute constant. This implies that the integral
R1
0 v.�;  .�; x// d� converges absolutely and

therefore limt!1  .t; x/ exists in R2. This allows us to define the limit shape D1 as

D1 D
˚

lim
t!1

 .t; x/ W x 2D0
	
:

(2) Without loss of generality we will suppose that the straight line � coincides with the real axis. Since
D is a simply connected bounded domain, there exist two different points X�0 ; X

C
0 2 R such that

D0\�D ŒX
�
0 ; X

C
0 �:

Then it is clear that Length.D0\�/DXC0 �X
�
0 WD d0. By assumption D0 is symmetric with respect

to �; then the domain Dt remains also symmetric with respect to the same axis and the points X˙0 move
along this axis. Set

X˙.t/D  .t; X˙0 /I

then as the flow is a homeomorphism

D t \�D ŒX
�.t/; XC.t/�:
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Now we wish to follow the evolution of the distance d.t/ WDXC.t/�X�.t/ and find a sufficient condition
such that this distance remains away from zero up to infinity. Notice from the first point that limt!1 d.t/

exists and is equal to some positive number d1. From the triangle inequality, one easily gets

d.t/� d0� 2

Z t

0

kv.�/kL1 d�:

Inequality (3-2) ensures that
d.t/� d0�C jD0j

1
2

and therefore d1 � d0�C jD0j
1
2 . Consequently, if d0 >C jD0j

1
2 then the points fX˙.t/g do not collide

up to infinity and thus the set D1 contains a nontrivial interval as claimed. �

4. Basic properties of Dini and Hölder spaces

We now set up some function spaces that we shall use and review some of their important properties. Let
f W R! R be a continuous function; we define its modulus of continuity !f W RC! RC by

!f .r/D sup
jx�yj�r

jf .x/�f .y/j:

This is a nondecreasing function satisfying !f .0/D 0 and it is subadditive; that is, for r1; r2 � 0 we have

!f .r1C r2/� !f .r1/C!f .r2/: (4-1)

Now we intend to recall Dini and Hölder spaces. The Dini space denoted by C ?.R/ is the set of continuous
bounded functions f such that

kf kL1 Ckf kD <1; with kf kD D
Z 1

0

!f .r/

r
dr:

Another space that we frequently use throughout this paper is the Hölder space. Let s 2 .0; 1/; we denote
by C s.R/ the set of functions f W R! R such that

kf kL1 Ckf ks <1; with kf ks D sup
0<r<1

!f .r/

rs
:

Let K be a compact set of R; we define C ?K as the subspace of C ?.R/ whose elements are supported
in K. Note that C ?K ,! L1.R/, which means that a constant C depending only on the diameter of the
compact K exists such that

for all f 2 C ?K ; kf kL1 � Ckf kD: (4-2)

This follows easily from the observation

for all r 2
�
0; 1
2

�
; !.r/ ln 2� kf kD:

From (4-2) we deduce that for any A� 1Z A

0

!f .r/

r
dr � kf kDC 2kf kL1 lnA� Ckf kD.1C lnA/: (4-3)
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Coming back to the definition of Dini seminorm one deduces the product laws: for f; g 2 C ?K

kfgkD � kf kL1 kgkDCkgkL1 kf kD and kfgkD � Ckf kD kgkD: (4-4)

Another useful space is C sK , which is the subspace of C s.R/ whose functions are supported on compactK.
It is quite obvious that

C sK ,! C ?K ,! L1: (4-5)

We point out that all these spaces are complete. Another property which will be very useful is the following
composition law. If f 2C s.R/with 0<s<1 and WR!R is a Lipschitz function then f ı 2C s.R/ and

kf ı ks � .kf ksC 2kf kL1/kr k
s
L1 : (4-6)

It is worth pointing out that in the case of the Dini space C ?.R/ we get a more precise estimate of
logarithmic type,

kf ı kD � C.kf kDCkf kL1/.1C lnC.kr kL1//; (4-7)

with the notation

lnC x ,
�

ln x if x � 1;
0 otherwise:

Another estimate of great interest is the following product law:

kfgks � kf kL1 kgksCkgkL1 kf ks: (4-8)

In the next task we will be concerned with a pointwise estimate connecting a positive smooth function to
its derivative and explore how this property is affected by the regularity. This kind of property will be
required in Section 5 in studying Cauchy operators with special forms.

Lemma 4.1. Let K be a compact set of R and f W R! RC be a continuous positive function supported
in K such that f 0 2 C ?.R/. Then we have

for all x 2 R; jf 0.x/j � C
kf 0kDCkf

0kL1

1C lnC.kf 0kD=f .x//
:

A weak version of this inequality is

for all x 2 R; jf 0.x/j � C
.kf 0kDCkf

0kL1/.1C lnC.1=kf 0kD//
1C lnC.1=f .x//

;

with C an absolute constant. If in addition f 0 2 C s.R/ with s 2 .0; 1/, then

for all x 2 R; jf 0.x/j � Ckf 0k
1
1Cs
s Œf .x/�

s
1Cs

and the constant C depends only on s.
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Proof. Let x be a given point; without any loss of generality one can assume that f 0.x/ � 0. Now let
h 2 Œ0; 1�; then using the mean value theorem, there exists ch 2 Œx� h; x/ such that

f .x� h/D f .x/� hf 0.ch/

D f .x/� hf 0.x/� hŒf 0.ch/�f
0.x/�

� f .x/� hf 0.x/C h!f 0.h/:

From the positivity of the function f we deduce that for any h 2 Œ0; 1� one gets

f .x/� hf 0.x/C h!f 0.h/� 0:

Then dividing by h2 and integrating in h between " and 1, with " 2 .0; 1�, we get

f .x/
1

"
Cf 0.x/ ln "Ckf 0kD � 0:

Multiplying by " we obtain

for all " 2 .0; 1/; f .x/Cf 0.x/" ln "Ckf 0kD "� 0: (4-9)

By studying the variation with respect to " we find that the suitable value of " is given by

ln "D�1�
kf 0kD

f .x/
:

Inserting this choice into (4-9) we find that

"f 0.x/� f .x/I

that is,
e�1�kf

0kD=f
0.x/f 0.x/� f .x/:

From the inequality te�t � e�1 we deduce that

e�1 �
kf 0kD

f 0.x/
e�kf

0kD=f
0.x/;

which implies in turn that

e�1�kf
0kD=f

0.x/f 0.x/� e�2kf
0kD=f

0.x/
kf 0kD:

Consequently we get
e�2kf

0kD=f
0.x/
kf 0kD � f .x/:

Thus when f .x/=kf 0kD > 1 this estimate does not give any useful information and then we simply write

f 0.x/� kf 0kL1 :

However for f .x/=kf 0kD < 1 we get

f 0.x/� C
kf 0kD

1C lnC.kf 0kD=f .x//
;
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from which we deduce that

f 0.x/� C
kf 0kD.1C lnC.1=kf 0kD/

1C lnC.1=f .x//
:

Indeed, one may use the estimate

for all x > 0;
1C lnC.1=x/
1C lnC.a=x/

� 1C lnC.1=a/;

which can be verified easily by studying the variation of the fractional function.
Now let us move to the proof when f 0 is assumed to belong to the Hölder space C s, with s 2 .0; 1/.

Following the same proof as before one deduces that under the assumption f 0.x/ � 0 one obtains for
any h 2 RC

f .x/� hf 0.x/C h1Cskf 0ks � 0:

By studying the variation of this function with respect to h we find that the best choice of h is given by

hs D
f 0.x/

.1C s/kf 0ks
;

which implies the desired result, that is,

f 0.x/� Ckf 0k
1
1Cs
s Œf .x/�

s
1Cs : �

5. Modified curved Cauchy operators

This section is devoted to the study of some variants of Cauchy operators which are closely connected to
the operators arising in (2-4) and (2-5). Let us first recall the classical Cauchy operator associated to the
graph of a Lipschitz function f W R! R,

Cf g.x/D
Z

R

g.xCy/�g.x/

yC i.f .xCy/�f .x//
dy; (5-1)

which is well-defined at least for a smooth function g. According to a famous theorem of Coifman,
McIntosh and Meyer [Coifman et al. 1982], this operator can be extended as a bounded operator from
Lp to Lp for 1 < p <1. By adapting the proof of [Wittmann 1987], this operator can also be extended
continuously from C sK to C s.R/ for 0 < s < 1, provided that f belongs to C 1Cs.R/. However this
operator fails to be extended continuously from the Dini space C ?K to itself, as can be checked from
Hilbert transform. The structure of the operators that we have to deal with, as one may observe from the
expression of F following (2-5), is slightly different from the Cauchy operators. It can be associated to
the truncated bilinear Cauchy operator defined as follows: for given M > 0, � 2 Œ0; 1�,

C�f .g; h/.x/D
Z M

�M

.g.xC �y/�g.x//.h.xCy/� h.x//

yC i.f .xCy/�f .x//
dy:
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The real and imaginary parts of this operator are given respectively by

C�;<
f

.g; h/.x/D

Z M

�M

y.g.xC �y/�g.x//.h.xCy/� h.x//

y2C Œf .xCy/�f .x/�2
dy (5-2)

and

C�;=
f

.g; h/.x/D�

Z M

�M

.f .xCy/�f .x//.g.xC �y/�g.x//.h.xCy/� h.x//

y2C Œf .xCy/�f .x/�2
dy:

In what follows we denote by X one of the spaces C sK , with 0 < s < 1, or C ?K . The result that we shall
discuss deals with the continuity of the preceding bilinear operators on the spaces X. This may have been
discussed in the literature, but as we need to control the continuity constant we shall give a detailed proof.

Proposition 5.1. LetK be a compact set of R and f be a compactly supported function such that f 0 2X.
Then the following assertions hold true: The bilinear operator C�

f
W X �X ! X is well-defined and

continuous. More precisely, there exists a constant C independent of � such that for any g; h 2X

kC�;<
f

.g; h/kX � C.1Ckf
0
kL1 kf

0
kX /.kgkD khkX CkhkD kgkX /;

kC�;=
f

.g; h/kX � Ckf
0
kX .1Ckf

0
k
2
L1/.kgkD khkX CkgkX khkD/:

Proof. We shall first establish the result for the real-part operator given by (5-2). First we note that one
may rewrite the expression using the notation (2-6) as follows:

C�;<
f

.g; h/.x/D

Z M

�M

y��yg.x/�yh.x/

y2C .�yf .x//2
dy;

where we simply replace the notation ��y by �y . Using the product laws (4-4) and (4-8) one obtains

kC�;<
f

.g; h/kX �

Z M

�M

k��yg�yhkX
dy

jyj
C

Z M

�M

jyjk��yg�yhkL1

 1

y2C .�yf /2


X

dy:

Using once again the product law, it becomes

k��yg�yhkX � k��ygkL1 k�yhkX Ck��ygkX k�yhkL1

� !g.jyj/khkX C 2kgkX !h.jyj/;

where we have used that for � 2 Œ0; 1�, y 2 R

k�yhkX � 2khkX ; k��yhkL1 � !h.jyj/: (5-3)

Consequently Z M

�M

k��yg�yhkX
dy

jyj
� C.kgkD khkX CkhkD kgkX /: (5-4)

By the definition it is quite easy to check that for any function ' 2X \L1.R/ 1

y2C'2


X

�
2k'kL1

y4
k'kX :
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Hence we get  1

y2C .�yf /2


X

� 2
k�yf kL1

y4
k�yf kX

� Cy�2kf 0kL1 kf
0
kX ; (5-5)

where we have used the inequalities

k�yf kL1 � jyjkf
0
kL1 and !�yf .r/� jyj!f 0.r/:

Therefore we get in view of (5-3),Z M

�M

jyjk��yg�yhkL1

 1

y2C .�yf /2


X

dy � Ckf 0kL1 kf
0
kX khkL1

Z M

�M

!g.jyj/

jyj
dy

� Ckf 0kL1 kf
0
kX khkL1 kgkD:

Combining this last estimate with (5-4) we find that

kC�;<
f

.g; h/kX � C.kgkD khkX CkhkD kgkX Ckf
0
kL1 kf

0
kX khkL1kgkD/:

To deduce the result it is enough to use (4-5).
We are left with the task of estimating the imaginary part, which takes the form

C�;=
f

.g; h/.x/D

Z M

�M

�yf .x/��yg.x/�yh.x/

y2C .�yf .x//2
dy:

Note that we have dropped the minus sign before the integral, which of course has no consequence on the
computations. Using Taylor’s formula we get

�yf .x/D y

Z 1

0

f 0.xC �y/ d�

and thus

C�;=
f

.g; h/.x/D

Z M

�M

Z 1

0

yf 0.xC �y/��yg.x/�yh.x/

y2C .�yf .x//2
dy d�:

It suffices to reproduce the preceding computations using in particular the estimates

kf 0. � C �y/��yg�yhkL1 � kf
0
kL1khkL1!g.jyj/

and

kf 0. � C �y/��yg�yhkX � kf
0
kL1 k��yg�yhkX Ckf

0
kX k��yg�yhkL1

� kf 0kL1
�
!g.jyj/khkX CkgkX !h.jyj/

�
C 2kf 0kX kgkL1!h.jyj/:

This implies, according to the Sobolev embeddings (4-5),Z M

�M

Z 1

0

kf 0. � C �y/��yg�yhkX
dy

jyj
d� � Ckf 0kX .kgkD khkX CkgkX khkD/:
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Using (5-5) one may easily getZ M

�M

jyjkf 0. � C �y/��yg�yhkL1

 1

y2C .�yf /2


X

dy � Ckf 0k2L1 kf
0
kX khkL1 kgkD;

which gives the desired result using the Sobolev embeddings (4-5). �

The second kind of Cauchy integrals that we have to deal with, and that are related to the integral
terms in (2-4) and (2-5), are given by the linear operators

T
˛;ˇ

f
g.x/D p.v.

Z
R

yg.˛xCˇy/

y2C Œf .x/Cf .xCy/�2
dy;

with ˛ and ˇ being two given parameters. The continuity of these operators in classical Banach spaces
is not in general easy to establish and could fail for some special cases. We point out that it is not our
purpose in this exposition to implement a complete study of these operators. A more complete theory
may be achieved but this topic exceeds the scope of this paper and we shall restrict ourselves to some
special configurations that fit with the application to the aggregation equation. Our result in this direction
reads as follows.

Theorem 5.2. Let ˛; ˇ 2 Œ0; 1�, K be a compact set of R and f W R! RC be a compactly supported
continuous positive function such that f 0 2 C ?K . Then the following assertions hold true:

(1) The operator T ˛;ˇ
f
W C ?K ! L1.R/ is well-defined and continuous and

kT
˛;ˇ

f
gkL1 � C.1Ckf

0
k
2
L1 Ckf

0
kL1kf

0
kD/kgkD;

with C a constant depending only on K and not on ˛ and ˇ.

(2) The modified operator f 0T ˛;ˇ
f
W C ?K ! C ?K is continuous. More precisely,

kf 0T
˛;ˇ

f
gkD � Ckf

0
kD.Cˇ lnC.1=kf 0kD/Ckf 0k14D /kgkD;

with C a constant depending only on K and

Cˇ ,
�
.1� lnˇ/; ˇ 2 .0; 1�;

1; ˇ D 0:

(3) Let s 2 .0; 1/ and assume that f 0 2 C sK ; then f 0T ˛;ˇ
f
W C sK ! C sK.R/ is well-defined and continuous.

More precisely, there exists a constant C depending only on the compact K and s such that

kf 0T
˛;ˇ

f
gks � C.Cˇkf

0
k

1
1Cs

L1 Ckf
0
k
14
s /kgks: (5-6)

In addition, one has the refined estimate

kf 0T
˛;ˇ

f
gks � Ckf

0
k

1
2Cs

L1 .kf
0
k

1
2Cs
s Cˇ Ckf

0
k
14
s /kgksCCkgk

1
2Cs

L1 kgk
1Cs
2Cs
s kf 0ks;

with

Cˇ ,
�
ˇ�

1
2 ; ˇ 2 .0; 1�;

1; ˇ D 0:
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Proof. To simplify the notation we shall throughout this proof write Tf g instead of T ˛;ˇ
f

g.

(1) By symmetrizing we get

Tf g.x/D

Z 1
0

y Œg.˛xCˇy/�g.˛x�ˇy/�

y2C Œf .x/Cf .xCy/�2
dy

C lim
"!0

Z 1
"

y g.˛x�ˇy/Œf .x�y/�f .xCy/�Œ�Cy f .x/C�
C
�yf .x/�

.y2C Œ�Cy f .x/�
2/.y2C Œ�C�yf .x/�

2/
dy

, T 1f g.x/CT
2
f g.x/: (5-7)

Without loss of generality we can assume that K D Œ�1; 1� and suppg� Œ�1; 1� and deal only with x � 0.
We shall distinguish two cases 0� ˛x � 2 and ˛x � 2. In the first case, reasoning on the support of g
we simply get

T 1f g.x/D

Z
f0�ˇy�3g

yŒg.˛xCˇy/�g.˛x�ˇy/�

y2C Œf .x/Cf .xCy/�2
dy:

Hence we obtain according to the definition of the modulus of continuity, a change of variables and (4-3)

jT 1f g.x/j �

Z
f0�ˇy�3g

!g.2ˇy/

y
dy � CkgkD: (5-8)

Coming back to the case ˛x � 2 one may write

jT 1f g.x/j �

Z
f˛x�1�ˇy�1C˛xg

!g.2ˇy/

y
dy

� 2kgkL1

Z 1C˛x

˛x�1

1

y
dy

� kgkL1 ln
�
1C 

�1C 

�
;  D ˛x � 2

� CkgkL1 :

Combining this last inequality with (5-8) we deduce that

kT 1f gkL1 � CkgkD: (5-9)

For the second term T 2
f
g we split it into two parts as follows:

T 2f g.x/D lim
"!0

4f .x/

Z 1
"

y g.˛x�ˇy/Œf .x�y/�f .xCy/�

.y2C Œf .x/Cf .xCy/�2/.y2C Œf .x/Cf .x�y/�2/
dy

C

Z 1
0

y g.˛x�ˇy/Œf .x�y/�f .xCy/� .x; y/

.y2C Œf .x/Cf .xCy/�2/.y2C Œf .x/Cf .x�y/�2/
dy

, T 2;1
f

g.x/CT
2;2
f

g.x/; (5-10)

with

 .x; y/D f .xCy/Cf .x�y/� 2f .x/D y

Z 1

0

Œf 0.xC �y/�f 0.x� �y/� d�:
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The first term T
2;1
f

g is easily estimated. Indeed, one can assume that f .x/ > 0; otherwise the integral
vanishes. Thus using the mean value theorem and a change of variables we obtain

jT
2;1
f

g.x/j � 8kgkL1kf
0
kL1f .x/

Z 1
0

y2

.y2C Œf .x/�2/2
dy

� 8kgkL1kf
0
kL1

Z 1
0

y2

.y2C 1/2
dy

� CkgkL1kf
0
kL1 : (5-11)

As for the term T
2;2
f

, straightforward arguments yield

jT
2;2
f

g.x/j � 8kgkL1kf k
2
L1

Z
y� 1

2

1

y3
dyC 2kgkL1kf

0
kL1

Z 1
2

0

j .x; y/j

y2
dy

� CkgkL1

�
kf k2L1 CCkf

0
kL1

Z 1
2

0

!f 0.2y/

y
dy

�
� CkgkL1.kf

0
k
2
L1 CCkf

0
kL1kf

0
kD/;

where we have used the fact
j .x; y/j � 2y!f 0.2y/:

Consequently we obtain

kT 2f gkL1 � CkgkL1.kf
0
k
2
L1 Ckf

0
kL1kf

0
kDCkf

0
kL1/: (5-12)

Putting together this estimate with (5-11) and (4-2) we obtain the desired estimate.

(2) First, recall from part (1) of this proof the decomposition

Tf g.x/D T
1
f g.x/CT

2;1
f

g.x/CT
2;2
f

g.x/: (5-13)

The second term is easier to deal with and one has

kT
2;1
f

gkD � CkgkD kf
0
kD.1Ckf

0
k
13
L1/: (5-14)

This implies in view of the product laws (4-4) and (5-11) that

kT
2;1
f

gkD � CkgkD kf
0
kD.kf

0
kL1 Ckf

0
k
14
L1/: (5-15)

To establish (5-14) we first note that if f .x/D 0 then T 2;1
f

g.x/D 0. However for f .x/ > 0, using the
mean value theorem and the change of variables y! f .x/y we get

T
2;1
f

g.x/D�4

Z 1
0

y2 g.˛x� f̌ .x/y/
R 1
0 Œf

0.xC �f .x/y/Cf 0.x� �f .x/y/� d�

'.x; y/'.x;�y/
dy; (5-16)

with

'.x; y/D y2C

�
2Cy

Z 1

0

f 0.xC �f .x/y/ d�

�2
:
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Observe that the identity (5-16) is meaningful even for f .x/D 0 and we can check easily that it vanishes.
This follows from the fact that owing to the positivity of f when f .x/ D 0 we have f 0.x/ D 0. To
simplify the expressions we introduce the functions

N1.x; y/D g.˛x� f̌ .x/y/

Z 1

0

Œf 0.xC �f .x/y/Cf 0.x� �f .x/y/� d�;

D1.x; y/D '.x; y/'.x;�y/:

Then by (4-4) we obtain for fixed y

kN1. � ; y/kD�2kgı.˛Id�ˇyf /kD kf 0kL1CkgkL1
Z 1

0

Œkf 0ı.IdC�yf /kDCkf 0ı.Id��yf /kD� d�:

Using the composition law (4-7) we get successively

kg ı .˛Id�ˇyf /kD � CkgkD.1C lnC.˛Cˇkf 0kL1y//;

kf 0 ı .IdC �yf /kD � Ckf 0kD.1C ln.1C �kf 0kL1y//:

This implies

kN1. � ; y/kD

� CkgkD.1C lnC.˛Cˇkf 0kL1y//kf 0kL1 CCkgkL1 kf 0kD

Z 1

0

.1C ln.1C �kf 0kL1y// d�:

Since

ln
�
1C

nY
iD1

xi

�
�

nX
iD1

ln.1C xi / for all xi � 0;

we have
kN1. � ; y/kD � CkgkD kf 0kD .1C lnC kf 0kL1 C lnC y/: (5-17)

On the other hand it is clear that

kN1. � ; y/kL1 � CkgkL1kf 0kL1 : (5-18)

To estimate 1=D1. � ; y/ in the Dini space C ?K we come back to the definition, which implies

k1=D1. � ; y/kD � kD1. � ; y/kD k1=D1. � ; y/k2L1 : (5-19)

Now using the product law (4-4) we deduce that

kD1. � ; y/kD � k'. � ; y/kL1 k'. � ;�y/kDCk'. � ; y/kD k'. � ;�y/kL1 :

From simple calculations we get

k'. � ;˙y/kL1 � y
2
C .2Cykf 0kL1/

2
� C.1Ckf 0k2L1/.1Cy

2/:

Applying (4-4) and (4-7) to the expression of ' it is quite easy to check that

k'. � ;˙y/kD � C.1Cykf
0
kL1/y

Z 1

0

kf 0 ı .Id˙ �yf /kD d�

� C.yCy2kf 0kL1/kf
0
kD .1C lnC kf 0kL1 C lnC y/:
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Thus combining the preceding estimates we find

kD1. � ; y//kD � C.yCy2kf 0kL1/kf 0kD .1ClnC kf 0kL1ClnC y/.1Ckf 0k2L1/.1Cy
2/

� C.1Cy4 lnC y/kf 0kD .1ClnC kf 0kL1/.1Ckf 0k3L1/: (5-20)

Now we shall use the following inequalities, which can be proved in a straightforward way: for any
y 2 RC and for any a; b 2 R with jaj � b, one has

y2C .2Cya/2 � y2C .2�ya/2 �
1Cy2

1C a2
�
1Cy2

1C b2
: (5-21)

It follows that

k1='. � ;˙y/kL1 �
1Ckf 0k2L1

1Cy2
: (5-22)

Putting this estimate together with (5-20) and (5-19) yields

k1=D1. � ; y/kD � C
1Cy4 lnC y
1Cy8

kf 0kD.1C lnC kf 0kL1/.1Ckf 0k11L1/

� C
1C lnC y
1Cy4

kf 0kD.1Ckf
0
k
12
L1/:

Therefore we obtain using (5-17), (5-18) and (5-22)

k.N1=D1/. � ; y/kD � k.N1. � ; y/kL1 k1=D1/. � ; y/kDCk.N1. � ; y/kD k1=D1/. � ; y/kL1

� CkgkL1 kf
0
kL1

1C lnC y
1Cy4

kf 0kD.1Ckf
0
k
12
L1/

CCkgkDkf
0
kD

1C lnC kf 0kL1 C lnC y
1Cy4

.1Ckf 0k4L1/

� CkgkD kf
0
kD
1C lnC y
1Cy4

.1Ckf 0k13L1/:

Plugging this estimate into (5-16) we find

kT
2;1
f

gkD � 4

Z 1
0

y2k.N1=D1/. � ; y/kD dy � CkgkD kf 0kD.1Ckf 0k13L1/: (5-23)

This concludes the proof of (5-14).
Now we intend to estimate kT 1

f
gkD , which is trickier. Let r 2 .0; 1/ and x1; x2 2 R such that

jx1� x2j � r . We shall decompose T 1
f
g as follows:

T 1f g D T
r;1
f;int gCT

r;1
f;ext g; (5-24)

with

T
r;1
f;int g.x/D

Z r

0

yŒg.˛xCˇy/�g.˛x�ˇy/�

y2C Œf .x/Cf .xCy/�2
dy;

T
r;1
f;ext g.x/D

Z 1
r

yŒg.˛xCˇy/�g.˛x�ˇy/�

y2C Œf .x/Cf .xCy/�2
dy:
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From the subadditivity of the modulus of continuity we get

jf 0.x/T
r;1
f;int g.x/j � C jf

0.x/j

Z r

0

y!g.y/

y2C Œf .x/�2
dy � C jf 0.x/j

Z r

0

!g.y/

yCf .x/
dy:

Using Lemma 4.1 we find

jf 0.x/T
r;1
f;int g.x/j � C

.f /

1C lnC.1=f .x//

Z r

0

!g.y/

yCf .x/
dy; (5-25)

where

.f /, kf 0kD.1C lnC.1=kf 0kD//: (5-26)

Now we claim that for y 2 .0; 1/

sup
">0

1

1C lnC.1="/
1

yC "
�

C

y.1Cjlnyj/
C

1

1Cy
(5-27)

for some universal constant C > 0. To prove this result it is enough to get

sup
"2.0;1/

1

1C ln.1="/
1

yC "
�

C

y.1Cjlnyj/
:

Indeed, we shall consider the two cases "�
p
y and "�

p
y. In the first case we observe

1

yC "
�

1
p
y

and
1

1C ln.1="/
� 1;

which implies
1

1C ln.1="/
1

yC "
�

1
p
y
�

C

y.1Cjlnyj/
:

However in the second case "�
p
y we write simply that

1

yC "
�
1

y
and

1

1C ln.1="/
�

1

1C 1
2

ln.1=y/
;

which gives the desired result. Coming back to (5-25) and using (5-27) we deduce that

sup
x
jf 0.x/T

r;1
f;int g.x/j � C.f /

Z r

0

sup
x

!g.y/

.1C lnC.1=f .x///.yCf .x//
dy

� C.f /

�Z r

0

!g.y/

y.1Cjlnyj/
dyC

Z r

0

!g.y/

1Cy
dy

�
: (5-28)

Consequently

sup
jx1�x2j�r

ˇ̌
f 0.x1/T

r;1
f;int g.x1/�f

0.x2/T
r;1
f;int g.x2/

ˇ̌
� C.f /

�Z r

0

!g.y/

y.1Cjlnyj/
dyC

Z r

0

!g.y/ dy

�
:
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Therefore we get by using Fubini’s theoremZ 1

0

sup
jx1�x2j�r

jf 0.x1/T
r;1
f;int g.x1/�f

0.x2/T
r;1
f;int g.x2/j

dr

r

� C.f /

Z 1

0

!g.y/

y

jlnyj
.1Cjlnyj/

dyCC.f /

Z 1

0

jlnyj!g.y/ dy

� C.f /kgkD:

As for T r;1
f;extg, we write

f 0.x1/T
r;1
f;extg.x1/�f

0.x2/T
r;1
f;extg.x2/

D .f 0.x1/�f
0.x2//T

r;1
f;extg.x2/Cf

0.x1/.T
r;1
f;extg.x1/�T

r;1
f;extg.x2//

, �1.x1; x2/C�2.x1; x2/: (5-29)

Our current goal is to prove that for j 2 f1; 2gZ 1

0

sup
jx1�x2j�r

�j .x1; x2/

r
dr

is well-estimated. For the first term we use (5-9) leading toZ 1

0

sup
jx1�x2j�r

�1.x1; x2/

r
dr � kT

r;1
f;extgkL1

Z 1

0

!f 0.r/

r
dr � CkgkDkf

0
kD:

The second term is subtler. First note that if jx1� x2j � 1 then the quantity

f 0.x1/T
r;1
f;extg.x1/�f

0.x2/T
r;1
f;extg.x2/

vanishes for x1; x2 outside a compact set related only to the support of f . Therefore the integrals defining
�2.x1; x2/ may be restricted to the set fˇr � ˇy �Bg, with B being some constant related to the size of
the supports of f and g, and without loss of generality we can take B D 1. It follows that

�2.x1; x2/D f
0.x1/

Z
fˇr�ˇy�1g

y Œ Og.x1; y/� Og.x2; y/�

y2C Œf .x1/Cf .x1Cy/�2
dy

Cf 0.x1/

Z
fˇr�ˇy�1g

y Og.x2; y/Œ�
C
y f .x2/��

C
y f .x1/�Œ�

C
y f .x2/C�

C
y f .x1�

.y2C Œ�Cy f .x1/�
2/.y2C Œ�Cy f .x2/�

2/
dy

, �2;1.x1; x2/C�2;2.x1; x2/; (5-30)

with

Og.x; y/, g.˛xCˇy/�g.˛x�ˇy/ and �Cy f .x/D f .xCy/Cf .x/:

To estimate �2;1 we shall use the following inequality, which is a consequence of Lemma 4.1:Z L

0

jf 0.x/j

yCf .x/
dy D jf 0.x/jln

�
1C

L

f .x/

�
� C.f /.1C lnCL/;
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with C an absolute constant. This implies

�2;1.x1; x2/� C!g.˛jx1� x2j/jf
0.x1/j

Z 1
ˇ

0

1

yCf .x1/
dy

� C!g.jx1� x2j/.f /.1Cjlnˇj/:

Consequently, we find that

sup
jx1�x2j�r

j�2;1.x1; x2/j � C!g.r/.f /.1Cjlnˇj/

and therefore Z 1

0

sup
jx1�x2j�r

j�2;1.x1; x2/j
dr

r
� C.f /.1Cjlnˇj/kgkD:

We emphasize that for ˇ D 0 one can still get an estimate since �2;1.x1; x2/D 0 and therefore we get
the desired estimate.

Now we shall move to the estimate of �2;2.x1; x2/. We start with using the estimate

sup
a>0

a

y2C a2
�

1

2jyj
;

which implies

yj Og.x2; y/jj�
C
y f .x2/��

C
y f .x1/jj�

C
y f .x2/C�

C
y f .x1j

.y2C Œ�Cy f .x1/�
2/.y2C Œ�Cy f .x2/�

2/
� C jx2� x1jkf

0
kL1

!g.2ˇy/

y2
:

Thus

sup
jx1�x2j�r

�2;2.x1; x2/� Crkf
0
k
2
L1

Z 1
ˇ

r

!g.2ˇy/

y2
dy;

which yields in view of Fubini’s theoremZ 1

0

sup
jx1�x2j�r

�2;2.x1; x2/
dr

r
� Ckf 0k2L1

Z 1

0

Z
fˇr�ˇy�1g

!g.2ˇy/

y2
dy dr

� Ckf 0k2L1

Z
f0�ˇy�1g

!g.2ˇy/

y
dy

� Ckf 0k2L1

Z 2

0

!g.y/

y
dy

� Ckf 0k2L1kgkD:

Note that the last constant does not depend on ˇ. Putting together the preceding estimates we find that

kf 0T 1f gkD � CkgkD..1Cjlnˇj/.f /Ckf
0
k
2
L1/; (5-31)

where .f / was defined in (5-26). As noted before, the case ˇ D 0 has a special structure and one gets

kf 0T 1f gkD � CkgkD..f /Ckf
0
k
2
L1/:
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Now let us move to the estimate of f 0.x/T 2;2
f

g given by

T
2;2
f

g.x/D

Z 1
0

y g.˛x�ˇy/Œf .x�y/�f .xCy/� .x; y/

.y2C Œf .x/Cf .xCy/�2/.y2C Œf .x/Cf .x�y/�2/
dy

D T
r;2;2
f;int g.x/CT

r;2;2
f;ext g.x/; (5-32)

where

 .x; y/D y

Z 1

0

Œf 0.xC �y/�f 0.x� �y/� d�

and the cut-off operators are given by

T
r;2;2
f;int g.x/,

Z r

0

y g.˛x�ˇy/Œf .x�y/�f .xCy/� .x; y/

.y2C Œ�Cy f .x/�
2/.y2C Œ�C�yf .x/�

2/
dy

and

T
r;2;2
f;ext g.x/D

Z 1

r

y g.˛x�ˇy/Œf .x�y/�f .xCy/� .x; y/

.y2C Œ�Cy f .x/�
2/.y2C Œ�C�yf .x/�

2/
dy ,

Z 1

r

N .x; y/
D.x; y/

dy: (5-33)

We shall proceed in a similar way to T 1
f
g. Let us start with f 0.x/T r;2;2

f;int g. Since

j .x; y/j � 2y!f 0.y/; (5-34)

one has

jf 0.x/T
r;2;2
f;int g.x/j � CkgkL1kf

0
kL1 jf

0.x/j

Z r

0

y3!f 0.y/

.y2C Œf .x/�2/2
dy

� CkgkL1kf
0
kL1 jf

0.x/j

Z r

0

!f 0.y/

yCf .x/
dy:

Thus following the same steps as for (5-28) we obtain

sup
jx1�x2j�r

jf 0.x1/T
r;2;2
f;int g.x1/�f

0.x2/T
r;2;2
f;int g.x2/j

� CkgkL1 kf
0
kL1 .f /

Z r

0

!f 0.y/

y.1Cjlnyj/
dyCCkgkL1kf

0
kL1.f /

Z r

0

j!f 0.y/ dy:

Therefore Fubini’s theorem and (4-2) implyZ 1

0

sup
jx1�x2j�r

jf 0.x1/T
r;2;2
f;int g.x1/�f

0.x2/T
r;2;2
f;int g.x2/j

dr

r
� CkgkL1kf

0
k
2
D.f /:

What is left is to estimate the quantity f 0.x/T r;2;2
f;ext g. First, it is obvious that

f 0.x1/T
r;2;2
f;ext g.x1/�f

0.x2/T
r;2;2
f;ext g.x2/

D .f 0.x1/�f
0.x2//T

r;2;2
f;ext .x2/Cf

0.x1/.T
r;2;2
f;ext .x1/�T

r;2;2
f;ext .x2//: (5-35)

The first term of the right-hand side is easy to estimate. Indeed,

j.f 0.x1/�f
0.x2//T

r;2;2
f;ext .x2/j � !f 0.jx1� x2j/kT

r;2;2
f;ext kL1 :
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It is clear that

jT
r;2;2
f;ext g.x/j � CkgkL1 kf

0
kL1

Z 1

r

!f 0.y/

y
dy � CkgkL1 kf

0
k
2
D:

Hence Z 1

0

sup
jx1�x2j�r

j.f 0.x1/�f
0.x2//T

r;2;2
f;ext .x2/j

dr

r
� CkgkL1 kf

0
k
3
D:

To deal with the second term we proceed as for the term �2.x1; x2/ in (5-30). From (5-33) one has

f 0.x1/.T
r;2;2
f;ext .x1/�T

r;2;2
f;ext .x2//

D f 0.x1/

Z 1

r

N .x1; y/�N .x2; y/
D.x1; y/

dyCf 0.x1/

Z 1

r

N .x2; y/.D.x2; y/�D.x1; y//
D.x1; y/D.x2; y/

dy: (5-36)

It is quite obvious from some straightforward computations using in particular (5-34) that for jx1�x2j � r

jN .x1; y/�N .x2; y/j � Ckf 0kL1y2.!g.˛r/!f 0.y/yCkgkL1!f 0.r/yCkgkL1r !f 0.y//:

Since
1

D.x; y/
�

C

ŒyCf .x/j4
�
C

y4
;

we get

jN .x1; y/�N .x2; y/j
D.x1; y/

� Ckf 0kL1

�
!g.˛r/

!f 0.y/

y
CkgkL1

!f 0.r/

yCf .x1/
CkgkL1r

!f 0.y/

y2

�
:

This gives, in view of (4-2),

jf 0.x1/j

Z 1

r

jN .x1; y/�N .x2; y/j
D.x1; y/

dy

�Ckf 0kD

�
kf 0k2D!g.˛r/CkgkD!f 0.r/

Z 1

0

jf 0.x1/j

yCf .x1/
dy

�
CkgkDkf

0
k
2
D r

Z 1

r

!f 0.y/

y2
dy; (5-37)

which implies according to (5-31)Z 1

0

sup
jx1�x2j�r

jf 0.x1/j

Z 1

r

jN .x1; y/�N .x2; y/j
D.x1; y/

dy
dr

r
� C.kf 0k3DCkf

0
k
2
D.f //kgkD:

Now straightforward computations show that

jN .x2; y/.D.x2; y/�D.x1; y//j
D.x1; y/D.x2; y/

� CkgkL1kf
0
k
2
L1 jx1� x2j

!f 0.y/

y2
: (5-38)

Therefore using Fubini’s theorem we getZ 1

0

sup
jx1�x2j�r

jf 0.x1/j

Z 1

r

jN .x2; y/.D.x2; y/�D.x1; y//j
D.x1; y/D.x2; y/

dy
dr

r
� Ckf 0k4DkgkD:
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Putting together the preceding estimates we find that

kf 0T
2;2
f

gkD � CkgkD.kf
0
k
2
DCkf

0
k
2
D.f /Ckf

0
k
3
D/

� CkgkD.kf
0
k
2
DCkf

0
k
4
D/; (5-39)

with C a constant depending only on the diameter of the compact K. To get the desired estimate it
suffices to put together (5-15), (5-31) and (5-39).

(3) We shall proceed as in the proof of part (2) of Theorem 5.2. We use exactly the same splitting with
similar estimates and to avoid redundancy we shall only give the basic estimates with some details for
the terms that require new treatment. We use the decomposition described in (5-13). To estimate T 2;1

f
g

in C s we use the expression (5-16). Then following the same lines using in particular the product law
(4-8) and the composition law (4-6), one has

kN1. � ; y/ks � Ckgks.˛sCˇskf 0ksL1y
s/kf 0kL1 CCkgkL1kf

0
ks

Z 1

0

.1C �skf 0ksL1y
s/ d�:

Since ˛; ˇ 2 Œ0; 1� we deduce

kN1. � ; y/ks � C.kgkskf 0kL1 CkgkL1kf 0ks/.1Ckf 0ksL1y
s/:

Similarly we get

k'. � ;˙y/ks � C.1Cykf
0
kL1/y

Z 1

0

kf 0 ı .Id˙ �yf /ks d�

� C.yCy2kf 0kL1/kf
0
ks.1Ckf

0
k
s
L1y

s/:

This implies
kD1. � ; y/ks � C.1Cy4Cs/.1Ckf 0k3CsL1 /kf

0
ks

and
k1=D1. � ; y/ks �

C

1Cy4�s
.1Ckf 0k11CsL1 /kf 0ks:

Consequently for s 2 .0; 1/

k.N1=D1/. � ; y/ks � k.N1. � ; y/kL1k1=D1/. � ; y/ksCkN1. � ; y/ks k1=D1. � ; y/kL1

�
C

1Cy4�s
.1Ckf 0k11CsL1 /kf 0ks kgks:

Therefore we get similarly to (5-23)

kT
2;1
f

gks � C.1Ckf
0
k
11Cs
L1 /kf 0ks kgks

Z 1
0

y2

1Cy4�s
ds

� C.1Ckf 0k11CsL1 /kf 0ks kgks:

Combining product laws with Sobolev embeddings and (5-11) we get

kf 0T
2;1
f

gks � kf
0
kL1 kT

2;1
f

gksCkf
0
ks kT

2;1
f

gkL1

� C.1Ckf 0k11CsL1 /kf 0ks kf
0
kL1 kgksCkgkL1 kf

0
kD kf

0
ks

� C.1Ckf 0k11CsL1 /kf 0ks kf
0
kD kgks:
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Using once again Sobolev embeddings we get

kf 0T
2;1
f

gks � C.kf
0
ksCkf

0
k
13
s /kf

0
kD kgks: (5-40)

Now to estimate T 1
f
g we come back to the decomposition (5-24) and we easily get

kT
r;1
f;intgkL1 � Ckgks

Z r

0

y�1Cs dy � kgksr
s:

Hence we obtain, since r D jx1� x2j,

jT
r;1
f;intg.x1/�T

r;1
f;intg.x2/j � Ckgks jx1� x2j

s:

and we also get

jf 0.x1/T
r;1
f;intg.x1/�f

0.x2/T
r;1
f;intg.x2/j � Ckf

0
kL1 kgks jx1� x2j

s:

To estimate the term f 0T
r;1
f;extg we come back to (5-29) and (5-30) and following the same estimates one

gets
j�1.x1; x2/j � jx1� x2j

s
kf 0ks kT

r;1
f;extgkL1

� C jx1� x2j
s
kf 0ks kgkD:

Moreover
j�2.x1; x2/j � j�2;1.x1; x2/jC j�2;2.x1; x2/j

and

j�2;2.x1; x2/j � C jx2� x1jkf
0
k
2
L1 kgks

Z
fˇr�ˇy�1g

.ˇy/sy�2 dy

� Ckf 0k2L1 kgks jx1� x2j
s:

To deal with the term �2;1.x1; x2/ in (5-30) one obtains in view of (5-31)

j�2;1.x1; x2/j � jx1� x2j
s
kgks jf

0.x1/j

Z
fˇr�ˇy�1g

y

y2Cf 2.x1/
dy

� jx1� x2j
s
kgks jf

0.x1/j

Z 1
ˇ

0

1

yCf .x1/
dy:

Using the second part of Lemma 4.1 one finds for s0 2 .0; s�

jf 0.x1/j

Z 1
ˇ

0

1

yCf .x1/
dy � Ckf 0k

1
1Cs0

s0 jf .x1/j
s0

1Cs0

Z 1
ˇ

0

1

yCf .x1/
dy:

Combining this inequality with

sup
a>0

a
s0

1Cs0

yC a
� Cy

� 1
1Cs0

we get

sup
x12R

jf 0.x1/j

Z 1
ˇ

0

1

yCf .x1/
dy � Ckf 0k

1
1Cs0

s0 ˇ
� s0

1Cs0 (5-41)
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and therefore

j�2;1.x1; x2/j � jx1� x2j
s
kgks kf

0
k

1
1Cs0

s0 ˇ
� s0

1Cs0 :

Hence

jf 0.x1/T
r;1
f;extg.x1/�f

0.x2/T
r;1
f;extg.x2/j

� CkgkD kf
0
ks jx1� x2j

s
CCkf 0k2L1 kgks jx1� x2j

s
CC jx1� x2j

s
kgks kf

0
k

1
1Cs0

s0 ˇ
� s0

1Cs0 :

It follows that

kf 0T 1f gks � Ckgks.kf
0
k

1
1Cs0

s0 ˇ
� s0

1Cs0 Ckf 0k2L1/CCkgkDkf
0
ks: (5-42)

It remains to estimate f 0T 2;2
f

g described in (5-32) and (5-33). First one may write

jT
r;2;2
f;int g.x/j � CkgkL1 kf

0
kL1 kf

0
ks

Z r

0

ys�1 dy

� CkgkL1 kf
0
kL1 kf

0
ks jx1� x2j

s:

Therefore

jf 0.x1/T
r;2;2
f;int g.x1/�f

0.x2/T
r;2;2
f;int g.x2/j � CkgkL1 kf

0
k
2
L1 kf

0
ks jx1� x2j

s:

By Sobolev embeddings we get

jf 0.x1/T
r;2;2
f;int g.x1/�f

0.x2/T
r;2;2
f;int g.x2/j � Ckgks kf

0
kL1 kf

0
k
2
s jx1� x2j

s: (5-43)

From (5-35) and the analysis following that identity one has

j.f 0.x1/�f
0.x2//T

r;2;2
f;ext .x2/j � kf

0
ks kT

r;2;2
f;ext gkL1 jx1� x2j

s

� CkgkL1 kf
0
k
2
s kf

0
kL1 jx1� x2j

s

Using (5-36), (5-37) and (5-41) (with s0 D s) combined with Sobolev embeddings, one deduces

jf 0.x1/j

Z 1

r

jN .x1; y/�N .x2; y/j
D.x1; y/

dy � Ckf 0kL1 kgks .kf
0
k
2
s Ckf

0
ks/:

From (5-38) we get

jN .x2; y/.D.x2; y/�D.x1; y//j
D.x1; y/D.x2; y/

� CkgkL1 kf
0
kL1 kf

0
ks jx1� x2jy

s�2:

Therefore we get

jf 0.x1/j

Z 1

r

jN .x2; y/.D.x2; y/�D.x1; y//j
D.x1; y/D.x2; y/

dy � CkgkL1 kf
0
k
2
L1 kf

0
ks jx1� x2j

s:
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Hence plugging the preceding estimates into (5-35) and (5-36), we find

jf 0.x1/T
r;2;2
f;ext .x1/�f

0.x2/T
r;2;2
f;ext .x2/j � CkgkL1 kf

0
k
2
s kf

0
kL1 jx1� x2j

s

CCkf 0kL1 kgks .kf
0
k
2
s Ckf

0
ks/jx1� x2j

s

CCkgkL1 kf
0
k
2
L1 kf

0
ks jx1� x2j

s:

Using standard embeddings we get

jf 0.x1/T
r;2;2
f;ext .x1/�f

0.x2/T
r;2;2
f;ext .x2/j � Ckgks kf

0
kL1 jx1� x2j

s.kf 0ksCkf
0
k
2
s /: (5-44)

Putting together (5-43), (5-44) and (5-32) we obtain

kf 0T
2;2
f

gks � Ckgks kf
0
kL1.kf

0
ksCkf

0
k
2
s /: (5-45)

Combining (5-40), (5-42) and (5-45) we get for any s0 2 .0; s�

kf 0Tf gks � Ckgks kf
0
kD.kf

0
ksCkf

0
k
13
s /CCkgks kf

0
k

1
1Cs0

s0 ˇ
� s0

1Cs0 CCkgkD kf
0
ks:

Now using the embedding C s ,! C s
0

,!D we get

kf 0Tf gks � Ckgks.ˇ
� s
1Cs kf 0k

1
1Cs
s Ckf 0k14s /� Ckgks.ˇ

� 1
2 kf 0k

1
1Cs
s Ckf 0k14s /:

Another useful estimate that one can get from taking s0 D s
2

and using the interpolation inequalities

kf 0kD � Ckf
0
k

1Cs
2Cs
s � Ckf 0k

1
2Cs

L1 kf
0
k

1Cs
2Cs
s ; kf 0k s

2
� Ckf 0k

1
2

L1 kf
0
k
1
2
s ; ˇ�

s
2Cs � ˇ�

1
2 ;

is the following:

kf 0Tf gks � Ckgks kf
0
k

1
2Cs

L1 .kf
0
k

1
2Cs
s ˇ�

1
2 Ckf 0k14s /CCkgk

1
2Cs

L1 kgk
1Cs
2Cs
s kf 0ks:

This completes the proof of Theorem 5.2. �

6. Local well-posedness proof

The main objective of this section is to prove the local well-posedness result stated in the first part of
Theorem 2.1. The approach that we shall follow is classical and will be done in several steps. We start
with a priori estimates of smooth solutions in suitable Banach spaces and this will be the main concern of
Sections 6A and 6B. The rigorous construction of classical solutions will be conducted in Section 6C.

6A. Estimates of the source terms. The main goal of this section is to establish the following a priori
estimates for the source terms F and G described in (2-7) and (2-8).

Proposition 6.1. Let K be a compact set of R and s 2 .0; 1/. We denote by X one of the spaces C ?K
or C sK . There exists a constant C > 0 depending only on K such that the following estimates hold true:

(1) For any f 2X we have

kF kL1 � Ckf
0
kL1kf

0
kD; kF kX � Ckf

0
kD.kf

0
kX Ckf

0
k
3
X /:
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(2) For any f 2X we have

kGkL1 � Ckf
0
kL1.1Ckf

0
k
3
D/; kGkX � C.1Ckf

0
k
1
3

D/.kf
0
kX Ckf

0
k
16
X /:

Proof. For simplicity throughout this proof we denote the operator ��y by �y .

(1) The estimate of F in L1 is quite easy. Indeed, it is obvious according to (4-3) that

kF kL1 � Ckf
0
kL1

Z M

�M

sup
x2R

jf 0.xCy/�f 0.x/j

jyj
dy

� Ckf 0kL1

Z M

�M

!f 0.jyj/

jyj
dy

� Ckf 0kL1kf
0
kD:

Now let us move to the estimate of F in the function space X , which is the Dini space C ?K or the Hölder
space C sK . For this purpose we shall transform slightly F in order to apply Proposition 5.1. In fact from
Taylor’s formula one can write

F.x/D

Z M

�M

Z 1

0

y ��yf
0.x/�yf

0.x/

y2C .�yf .x//2
dy d�:

From the notation (5-2) one has

F.x/D

Z 1

0

C�;<
f

.f 0; f 0/.x/ d�:

At this stage it suffices to apply Proposition 5.1, which implies

kF kX � C.kf
0
kDkf

0
kX Ckf

0
kL1kf

0
kDkf

0
k
2
X /

and gives in turn the desired result according to the embedding X ,! L1.

(2) The expression of G is given in (2-8) and for simplicity we shall assume throughout this part that
M D 1: We shall first split G as follows:

G.x/D p.v.
Z 1

�1

Œ2f .x/C��y f .x/Cyf
0.x/�.f 0.xCy/Cf 0.x//

y2C.f .xCy/Cf .x//2
dy

D 2f .x/ p.v.
Z 1

�1

f 0.xCy/Cf 0.x/

y2C.f .xCy/Cf .x//2
dyCp.v.

Z 1

�1

Œ��y f .x/Cyf
0.x/�.2f 0.x/C��y f

0.x//

y2C.f .xCy/Cf .x//2
dy

,G1.x/CG2.x/: (6-1)

The estimate G1 in L1 is quite easy. To see this we can first assume that f .x/ > 0; otherwise the integral
is vanishing. Thus by change of variables we get

jG1.x/j � 4kf
0
kL1

Z 1

�1

jf .x/j

y2Cf 2.x/
dy � Ckf 0kL1 :



DYNAMICS OF ONE-FOLD SYMMETRIC PATCHES FOR THE AGGREGATION EQUATION 2035

Note that for x 2 suppf we have f .xCy/D 0 for all y … Œ�1; 1�. Thus

G1.x/D 2f .x/

Z
R

f 0.xCy/Cf 0.x/

y2C .f .xCy/Cf .x//2
dy � 4f .x/f 0.x/

Z 1
1

1

y2C .f .x//2
dy

D 2f .x/

Z
R

f 0.xCy/Cf 0.x/

y2C .f .xCy/Cf .x//2
dy � 4f 0.x/ arctan.f .x//

,G11CG12: (6-2)

The estimate of G12 in L1 is elementary:

kG12kL1 � 4kf
0
kL1 kf kL1 : (6-3)

However, to estimate G12 in X we use the product law (4-3) leading to

kf 0 arctanf kX � k arctanf kL1 kf 0kX Ckf 0kL1 k arctanf kX :

It is easy to check from the mean value theorem that

k arctanf kL1 � kf kL1 and !arctanf .r/� !f .r/;

which implies in view of the embedding Lip ,!X that

k arctanf kX � kf kX � Ckf 0kL1 :

Therefore we obtain from the classical embeddings

kG12kX � C.kf kL1kf
0
kX CCkf

0
k
2
L1/� Ckf

0
kL1 kf

0
kX : (6-4)

We shall now estimate the term G11 in the space X. First we use Taylor’s formula

f .xCy/Cf .x/D 2f .x/Cy

Z 1

0

f 0.xC �y/ d�;

which implies after the change of variables y D f .x/z (assuming that f .x/ > 0)

G11.x/D 2f .x/

Z
R

f 0.x/Cf 0.xCy/

y2C Œ2f .x/Cy
R 1
0 f
0.xC �y/ d��2

dy

D 2

Z
R

f 0.x/Cf 0.xCf .x/z/

'.x; z/
dz; (6-5)

with

'.x; z/D z2C

�
2C z

Z 1

0

f 0.xC �f .x/z/ d�

�2
:

Note that for f .x/D 0 we have from the definition G11.x/D 0, which agrees with the expression (6-5)
because f 0.x/D 0. The estimate in L1 is easy to get in view of (5-22):

kG11kL1 � 4kf
0
kL1

Z
R

k1='. � ; z/kL1 dz � C.kf
0
kL1 Ckf

0
k
3
L1/:
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From the product laws (4-4) and (4-8) we deduce that

kG11kX D 2

Z
R

kf 0Cf 0ı.IdCzf /kX k1='. � ;z/kL1 dzC2
Z

R

kf 0Cf 0ı.IdCzf /kL1 k1='. � ;z/kX dz

, `1C`2:

According to the product laws (4-6) and (4-7), one may write

kf 0Cf 0 ı .IdC zf /kX � kf 0kX .1C�.1Cjzjkf 0kL1//;

with

�.r/,
�

ln r if X D C ?K ;
rs if X D C s:

Observe that we can unify both cases through the estimate

kf 0Cf 0 ı .IdC zf /kX � Ckf 0kX .1C .1Cjzjkf 0kL1/s/

� Ckf 0kX .1Cjzj
s
kf 0ksL1/: (6-6)

Putting together (6-6) and (5-22) we find for any s 2 .0; 1/

`1 � Ckf
0
kX .1Ckf

0
k
2
L1/

Z
R

1Cjzjs kf 0ksL1

1C z2
dz

� Ckf 0kX .1Ckf
0
k
3
L1/: (6-7)

To estimate `2 we use the elementary estimate

kf 0Cf 0 ı .IdC zf /kL1 � 2kf 0kL1 :

Notice from the definition of the spaces X and (5-22) that one can deduce

k1='. � ; z/kX � k1='. � ; z/k
2
L1 k'. � ; z/kX � C

1Ckf 0k4L1

1C z4
k'. � ; z/kX : (6-8)

Moreover by the product laws we find

k'. � ; z/kX � 2jzj.2Cjzjkf
0
kL1/

Z 1

0

kf 0 ı .IdC �zf /kX d�;

and this implies according to (6-6)

k'. � ; z/kX � C jzj.2Cjzjkf
0
kL1/kf

0
kX .1Cjzj

s
kf 0ksL1/

� C.1Cjzj2Cs/.1Ckf 0k1CsL1 /kf
0
kX :

Putting together this estimate with (6-8) we find

k1='. � ; z/kX � C
.1Ckf 0k5CsL1 /kf

0kX

1Cjzj2�s
: (6-9)

Therefore we deduce that

`2 � Ckf
0
kL1.1Ckf

0
k
5Cs
L1 /kf

0
kX � C.1Ckf

0
k
7
L1/kf

0
kX :
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Combining this estimate with (6-7) we obtain

kG11kX � C.1Ckf
0
k
7
L1/kf

0
kX :

It follows from this latter estimate, (6-4) and (6-2) that

kG1kX � C.1Ckf
0
k
7
L1/kf

0
kX : (6-10)

What is left is to estimate G2. For this purpose we write according to Taylor’s formula

G2.x/D p.v.
Z

R

yf 0.x/
�
f 0.x/�.y/C 2

R 1
0 f
0.xC �y/ d� Cf 0.xCy/

�
y2C .f .x/Cf .xCy//2

dy

C p.v.
Z

R

�yf .x/�yf
0.x/

y2C .f .x/Cf .xCy//2
dyC 2f .x/f 0.x/

Z 1
1

dy

y2Cf 2.x/

,G2;1.x/CG2;2.x/C 2f 0.x/ arctan.f .x//;

where � W R! R is an even continuous compactly supported function belonging to X and taking the
value 1 on the neighborhood of Œ�1; 1�. Note that we have used in the first line the identity, for any x 2K,

p.v.
Z 1

�1

y

y2C Œf .xCy/Cf .x/�2
dy D p.v.

Z
R

y�.y/

y2C Œf .xCy/Cf .x/�2
dy;

which follows from the fact that f .xCy/D 0 for all y … Œ�1; 1�. Therefore we may write

G2;1.x/D .f
0.x//2.T

0;1
f

�/.x/C 2

Z 1

0

f 0.x/.T
1;�
f

f 0/.x/ d� Cf 0.x/.T
1;1
f

f 0/.x/;

where we use the notation T ˛;ˇ
f

from Theorem 5.2. The estimate of G2;1 in L1 is quite easy and follows
from Theorem 5.2:

kG2;1kL1 � Ckf
0
kL1 kf

0
kD.1Ckf

0
k
2
D/:

However to estimate G2;2 in L1 it is more convenient to write it in the form

G2;2.x/D p.v.
Z 1

�1

�yf .x/�yf
0.x/

y2C .f .x/Cf .xCy//2
dyC 2f 0.x/ arctan.f .x//:

Thus using the mean value theorem we find

kG2;2kL1 � Ckf
0
kL1 kf

0
kD:

Combining these estimates with (4-2) we obtain

kG2kL1 � Ckf
0
kL1.kf

0
kDCkf

0
k
3
D/: (6-11)

We shall now implement the estimates in X and start with the term G2;1. According to Theorem 5.2 one
can unify the estimates in C ?K and C s and get the weak estimate

kf 0T
˛;ˇ

f
gkX � CkgkX .kf

0
k
1
2

X ˇ
� 1
2 Ckf 0k15X /: (6-12)
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From the product laws (4-4) and (4-8) one has

k.f 0/2.T
0;1
f

�/kX � kf
0
kL1kf

0T
0;1
f

�kX Ckf
0
kX kf

0
kL1kT

0;1
f

�kL1 :

Hence we find

k.f 0/2.T
0;1
f

�/kX � Ckf
0
kL1.kf

0
k
1
2

X Ckf
0
k
15
X /Ckf

0
kX kf

0
kL1.1Ckf

0
k
2
X /

� Ckf 0kL1.kf
0
k
1
2

X Ckf
0
k
15
X /:

Using (6-12) we get successively

kf 0T
0;�
f

f 0kX � Ckf
0
kX .kf

0
k
1
2

X�
� 1
2 Ckf 0k15X / (6-13)

and
kf 0T

1;1
f

f 0kX � Ckf
0
kX .kf

0
k
1
2

X Ckf
0
k
15
X /:

Thus using the inequalities above we deduce that

kG2;1kX � Ckf
0
kL1.kf

0
k
1
2

X Ckf
0
k
15
X /CCkf

0
kX .kf

0
k
1
2

X Ckf
0
k
15
X /

� C.kf 0k
3
2

X Ckf
0
k
16
X /: (6-14)

When X D C s we can give a refined estimate for (6-13) using (5-7),

kf 0T
0;�
f

f 0ks � Ckf
0
k

1
2Cs

L1 .kf
0
k

3C2s
2Cs
s ��

1
2 Ckf 0k15s /;

which implies

kG2;1ks � Ckf
0
kL1.kf

0
k
1
2
s Ckf

0
k
15
s /CCkf

0
k

1
2Cs

L1 .kf
0
k

3C2s
2Cs
s Ckf 0k15s /

� Ckf 0k
1
3

L1.kf
0
ksCkf

0
k
16
s /: (6-15)

Hence one can combine (6-14) and (6-15):

kG2;1kX � Ckf
0
k
1
3

D.kf
0
kX Ckf

0
k
16
X /: (6-16)

As for the term G2;2, we may write

G2;2.x/D 2f
0.x/ arctan.f .x//

C

Z M

�M

Œ�yf .x/�yf
0.x/��yf

0.x/

y2C .f .xCy/Cf .x//2
dyC p.v.

Z
R

yf 0.x/�yf
0.x/

y2C .f .xCy/Cf .x//2
dy

, 2f 0.x/ arctan.f .x//CG12;2.x/CG
2
2;2.x/:

The last term was treated in the preceding estimates and we obtain as in (6-16)

kG22;2kX � Ckf
0
k
1
3

D.kf
0
kX Ckf

0
k
16
X /: (6-17)

It remains to estimate G12;2, which can be split into two terms

G12;2.x/D
yGint;r.x/C yGext;r.x/;
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with
yGint;r.x/D

Z
jyj�r

Œ�yf .x/�yf
0.x/��yf

0.x/

y2C .f .xCy/Cf .x//2
dy;

yGext;r.x/D

Z
M�jyj�r

Œ�yf .x/�yf
0.x/��yf

0.x/

y2C .f .xCy/Cf .x//2
dy:

Now we shall proceed as in the proof of Theorem 5.2. Let r 2 .0; 1/ and x1; x2 2 R such that
jx1� x2j � r . First it is clear that

j�yf
0.x/j � !f 0.jyj/: (6-18)

In addition, using Taylor formula we get

j�yf .x/�yf
0.x/j � jyj!f 0.jyj/: (6-19)

Therefore

j yGint;r.x/j �

Z
jyj�r

Œ!f 0.jyj/�
2

jyj
dy:

It follows that

sup
jx1�x2j�r

j yGint;r.x2/� yGint;r.x1/j � 4

Z r

0

Œ!f 0.y/�
2

y
dy: (6-20)

Hence by Fubini’s theoremZ 1

0

sup
jx1�x2j�r

j yGint;r.x1/� yGint;r.x1/j
dr

r
� 4

Z 1

0

Œ!f 0.y/�
2

y
jlnyj dy:

From the definition and the monotonicity of the modulus of continuity one deduces that for any r 2 .0; 1/

jln r j!f 0.r/�
Z 1

r

!f 0.y/

y
dy � kf 0kD;

which implies Z 1

0

sup
jx1�x2j�r

j yGint;r.x1/� yGint;r.x1/j
dr

r
� 4kf 0k2D: (6-21)

To get the suitable estimate in C s we come back to (6-20), which gives

sup
jx1�x2j�r

j yGint;r.x2/� yGint;r.x1/j � 4kf
0
k
2
s

Z r

0

y2s�1 dy � Ckf 0k2s r
2s;

and thus

sup
jx1�x2j�1

j yGint;r.x2/� yGint;r.x1/j

jx1� x2js
� Ckf 0k2s : (6-22)

As for yGext;r , one writes

yGext;r.x1/� yGext;r.x2/D

Z
M�jyj�r

N .x1;y/�N .x2;y/
K.x1/

dyC

Z
M�jyj�r

N .x2;y/ŒK.x2;y/�K.x1;y/�
K.x1;y/K.x2;y/

dy;
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with

N .x; y/D Œ�yf .x/�yf 0.x/��yf 0.x/ and K.x; y/D y2C .f .x/Cf .xCy//2:

Notice that from (6-18) and (6-19) one gets

jN .x1; y/�N .x2; y/j � C jyj!f 0.r/!f 0.jyj/ and jN .x; y/j � 2jyj!f 0.jyj/kf 0kL1 : (6-23)

In addition, using straightforward calculus we obtain

jK.x1; y/�K.x2; y/j � Crkf 0kL1.
p
K.x1; y/C

p
K.x2; y//:

Thus

sup
jx1�x2j�r

jN .x2; y/jjK.x2; y/�K.x1; y/j
K.x1; y/K.x2; y/

� Crkf 0k2L1
!f 0.jyj/

jyj2
:

Hence we get by Fubini’s theorem and (4-3)Z 1

0

sup
jx1�x2j�r

Z
fM�jyj�rg

jN .x1;y/�N .x2;y/j
K.x1/

dy
dr

r
�

Z 1

0

Z
fM�jyj�rg

!f 0.r/!f 0.jyj/
dy

jyj

dr

r
�Ckf 0k2D

andZ 1

0

sup
jx1�x2j�r

Z
fM�jyj�rg

jN .x2;y/jjK.x2;y/�K.x1;y/j
K.x1;y/K.x2;y/

dy
dr

r
�Ckf 0k2L1

Z 1

0

Z
fM�jyj�rg

!f 0.jyj/

jyj2
dy dr

�Ckf 0k2L1 kf
0
kD:

Finally we obtainZ 1

0

sup
jx1�x2j�r

j yGext;r.x1/� yGext;r.x2/j
dr

r
� Ckf 0k2DCCkf

0
k
2
L1kf

0
kD:

As to the estimate in C s we use (6-23) which impliesZ
fr�jyj�M g

jN .x1; y/�N .x2; y/j
K.x1/

dy � Ckf 0ksr
s

Z
fr�jyj�M g

!f 0.jyj/

jyj
dy

� Ckf 0kskf
0
kDr

s

and Z
fM�jyj�rg

jN .x2; y/jjK.x2; y/�K.x1; y/j
K.x1; y/K.x2; y/

dy � Ckf 0k2L1kf
0
ksr

Z
fM�jyj�rg

dy

jyj2�s

� Ckf 0k2L1kf
0
ksr

s:

It follows from Sobolev embedding C s ,! L1 that

sup
jx1�x2j�r

j yGext;r.x1/� yGext;r.x2/j

jx1� x2js
� Ckf 0kD kf

0
ksCCkf

0
kD kf

0
k
2
s :

Combining the estimates above with (6-21) and (6-22) we deduce

kG12;2kX � Ckf
0
kD.kf

0
kX Ckf

0
k
2
X /:
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Putting together this estimate with (6-16) and (6-17) we get

kG2kX � Ckf
0
k
1
3

D.kf
0
kX Ckf

0
k
16
X /: (6-24)

Now using (6-10) and (6-24) we find

kGkX � Ckf
0
kX .1Ckf

0
k
7
D/CCkf

0
k
1
3

D.kf
0
kX Ckf

0
k
16
X /

� C.1Ckf 0k
1
3

D/.kf
0
kX Ckf

0
k
16
X /;

which ends the proof of Proposition 6.1. �

6B. A priori estimates. The aim of this section is to establish weak and strong a priori estimates for
solutions to (2-1). This part is the cornerstone of the local well-posedness theory. The main result of this
section reads as follows.

Proposition 6.2. Let f W Œ0; T ��R! R be a smooth solution for the graph equation (2-1). Assume that
the initial data is positive and with compact support K0. Then the following assertions hold true:

(1) For any t 2 Œ0; T �, the function ft is positive and

for all t 2 Œ0; T �; kf .t/kL1 � kf0kL1 :

(2) For any t 2 Œ0; T �, we have
kf .t/kL1 D kf0kL1e

�t :

(3) The support suppft is contained in the convex hull of K0; that is,

for all t 2 Œ0; T �; suppf .t/� ConvK0:

(4) Set X D C ?K or X D C sK , with s 2 .0; 1/. If f 00 2 X then there exists T depending only on kf 00kX
such that f 0 2 L1.Œ0; T �IX/.

Proof. (1) To get the first part about the persistence of the positivity of we shall prove that

for all x 2 R; u2.t; x/D f .t; x/U.t; x/; (6-25)

with
kU.t/kL1 � C.1Ckf

0.t/k6D/

and C being a constant depending only on the size of the support of ft . Note from part (3) of the current
proposition that the support of ft is contained in a fixed compact set and therefore the constant C can be
taken independent of the time variable. Assume for a while (6-25) and let us see how to propagate the
positivity. Denote by  the flow associated to the velocity u1, that is, the solution of the ODE

@t .t; x/D u1.t;  .t; x//;  .0; x/D x: (6-26)

Recall that

u1.t; x/D
1

2�

Z
R

�
arctan

�
f .t; xCy/�f .t; x/

y

�
� arctan

�
f .t; xCy/Cf .t; x/

y

��
dy:
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Set
�.t; x/D f .t;  .t; x//I

then
@t�.t; x/D u2.t;  .t; x//D �.t; x/U.t;  .t; x//: (6-27)

Consequently

�.t; x/D f0.x/e
R t
0 U.�; .�;x// d� :

Since the flow  .t/ W R! R is a diffeomorphism we get the representation

f .t; x/D f0. 
�1.t; x//e

R t
0 UŒ�; .�; 

�1.t;x//� d� : (6-28)

As an immediate consequence we get the persistence through the time of the positivity of the solution. Let
us now come back to the proof of the identity (6-25). To simplify the notation we remove the variable t
from the functions. Applying Taylor’s formula to the function

� 2 Œ0; f .x/� 7! g.�/, log
�
y2C .� �f .xCy//2

y2C .� Cf .xCy//2

�
yields

�2�u2.x/

D f .x/

Z 1

0

Z M

�M

f .xCy/� �f .x/

y2C Œf .xCy/� �f .x/�2
d� dyCf .x/

Z 1

0

Z M

�M

f .xCy/C �f .x/

y2C Œf .xCy/C �f .x/�2
d� dy

, f .x/V1.x/Cf .x/V2.x/:

Using once again Taylor’s formula we get the expressions

V1.x/

D

Z 1

0

Z M

�M

.1��/f .x/

y2C
�
.1��/f .x/Cy

R 1
0 f
0.xC�y/d�

�2 d� dyCp.v.
Z 1

0

Z M

�M

y
R 1
0 f
0.xC�y/d�

y2CŒf .xCy/��f .x/�2
d� dy

,V1;1.x/CV1;2.x/

and

V2.x/

D

Z 1

0

Z M

�M

.1C�/f .x/

y2C
�
.1C�/f .x/Cy

R 1
0 f
0.xC�y/d�

�2 d� dyCp.v.
Z 1

0

Z M

�M

y
R 1
0 f
0.xC�y/d�

y2CŒf .xCy/C�f .x/�2
d� dy

,V2;1.x/CV2;2.x/:

To estimate V1;1 and V2;1 we can assume that f .x/ > 0. Then making the change of variables z 7! y D

.1� �/f .x/z leads to

V1;1.x/D

Z 1

0

Z M
.1��/f.x/

� M
.1��/f.x/

d� dz

z2C
�
1C z

R 1
0 f
0.xC �.1� �/f .x/z/ d�

�2 : (6-29)
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Using (5-22) we deduce that
kV1;1kL1 � C.1Ckf

0
k
2
L1/: (6-30)

Similarly we get
kV2;1kL1 � C.1Ckf

0
k
2
L1/: (6-31)

Let us now bound Vj;2; j D 1; 2. First by symmetry we write

V1;2.x/D

Z 1

0

Z M

0

y
R 1
0 f
0.xC �y/ d�Œf .x�y/�f .xCy/� � .x; y/

.y2C Œf .xCy/� �f .x/�2/.y2C Œf .x�y/� �f .x/�2/
dy d�

C

Z 1

0

Z M

0

y
R 1
0 Œf

0.xC �y/�f 0.x� �y/� d�

y2C Œf .x�y/� �f .x/�2
dy d�;

where
 � .x; y/D f .xCy/Cf .x�y/� 2�f .x/

D 2.1� �/f .x/Cy

Z 1

0

Œf 0.xC �y/�f 0.x� �y/� d�:

Thus

kV1;2kL1

� C

Z 1

0

Z M

0

kf 0k2L1y
2Œ.1��/f .x/Cy!f 0.y/�

.y2CŒf .xCy/��f .x/�2/.y2CŒf .x�y/��f .x/�2/
dy d�CC

Z 1

0

Z M

0

!f 0.y/

y
dy d�:

Similarly to V1;1 one getsZ 1

0

Z M

0

y2.1� �/f .x/ dy d�

.y2C Œf .xCy/� �f .x/�2/.y2C Œf .x�y/� �f .x/�2/
� C.1Ckf 0k4L1/:

It follows that

kV1;2kL1 � Ckf
0
k
2
L1.1Ckf

0
k
4
L1 C

Z M

0

!f 0.y/

y
dy/CCkf 0kD

� Ckf 0k2L1.1Ckf
0
k
4
L1 Ckf

0
kD/CCkf

0
kD: (6-32)

The estimate of V2;2 can be done in a similar way and one obtains

kV2;2kL1 D Ckf
0
k
2
L1.1Ckf

0
k
4
L1 Ckf

0
kD/CCkf

0
kD: (6-33)

Combining both last estimates with (6-30) and (6-31) we finally get according to the embedding (4-2)

kU kL1 � C.1Ckf
0
k
6
D/;

where the constant C depends only on the size of the support of f .
Now let us establish the maximum principle. From (2-2) combined with the positivity of ft one gets

for all t 2 Œ0; T �; for all x 2 R; u2.t; x/� 0:

Coming back to (6-27) we deduce that
@t�.t; x/� 0;
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which implies in turn that

for all t 2 Œ0; T �; for all x 2 R; f .t; x/� f0. 
�1.t; x//:

Combined with the positivity of f .t/ we deduce immediately the maximum principle

for all t 2 Œ0; T �; kf .t/kL1 � kf0kL1 :

Now we intend to provide a more refined identity that we shall use later in studying the asymptotic
behavior of the solution. Actually we have

u2.t; x/D�f .t; x/.1CR.t; x//; (6-34)

with
kR.t/kL1 � Ckf

0.t/kD.1Ckf
0.t/k5L1/:

First note that RD
P2
i;jD1 Vi;j . The estimates of V1;2 and V2;2 are done in (6-32) and (6-33). However

to deal with V1;1 and similarly V2;1 we return to the expression (6-29). Set

� 7!K.�/D
1

z2C Œ1C z��2
:

Easy computations using (5-22) show the existence of a positive constant C such that

for all �; z 2 R; jK 0.�/j D
2jzjj1C z� j

.z2C Œ1C zt �2/2
�

1

z2C Œ1C z��2
� C

1C �2

1C z2
:

Applying the mean value theorem yieldsˇ̌̌̌
K.�/�

1

1C z2

ˇ̌̌̌
� C j� j

1C �2

1C z2
:

Therefore we get ˇ̌̌̌
V1;1.x/�

Z 1

0

Z M
.1��/f.x/

� M
.1��/f.x/

dz d�

1C z2

ˇ̌̌̌
� Ckf 0kL1.1Ckf

0
k
2
L1/;

which implies that
jV1;1.x/��j � Ckf

0
kL1.1Ckf

0
k
2
L1/CCkf kL1 : (6-35)

Similarly we obtain

jV2;1.x/��j � Ckf
0
kL1.1Ckf

0
k
2
L1/CCkf kL1 : (6-36)

Putting together (6-32), (6-33), (6-35), (6-36) we get (6-34).

(2) Integrating (1-2) in the space variable we get after integration by parts

d

dt

Z
R

�.t; x/ dx D

Z
R

div v.t; x/�.t; x/ dx D�
Z

R

�2.t; x/ dx D�

Z
R

�.t; x/ dx;

where in the last line we have used that for the characteristic function one has �2 D �. The time decay
follows then easily.
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(3) According to the representation of the solution given by (6-28) we have easily that the support of
f .t/ is the image by the flow  .t/ of the initial support, that is,

Kt D  .t;K0/: (6-37)

We have to check that if K0 � Œa; b�, with a < b, then Kt � Œa; b�. To do so it is enough to prove that

 .t; Œa; b�/� Œa; b�:

This means that the flow is contractive on the boundary of the support. As  .t/ is a homeomorphism, we
have  .t; Œa; b�/D Œ .t; a/;  .t; b/�. Hence to get the desired inclusion it suffices to establish that

at ,  .t; a/� a and bt ,  .t; b/� b:

This reduces to studying the derivative in time of at and bt . First one has

Pat D u1.t; at / and Pbt D u1.t; bt /:

Since f .t; y/D 0, for all y … .at ; bt / and ft positive everywhere,

u1.t; at /D
1

�

Z bt�at

0

arctan
�
ft .at Cy/

y

�
dy � 0:

Hence Pat � 0 and therefore at � a, for any t 2 Œ0; T �.
Similarly we get

u1.t; bt /D�
1

�

Z bt�at

0

arctan
�
ft .bt �y/

y

�
dy � 0;

which implies that bt � b for any t 2 Œ0; T �. This ends the proof of part (3).

(4) Recall from (2-3) and (2-5) that g , f 0 satisfies the equation

@tgCu1@1g D
1

2�
.F �G/:

Set h.t; x/D g.t;  .t; x//, where  is the flow defined in (6-26). Then

@th.t; x/D
1

2�
.F.t;  .t; x//�G.t;  .t; x///:

Thus

g.t; x/D g0. 
�1.t; x//C

1

2�

Z t

0

.F �G/
�
�;  .�;  �1.t; x//

�
d�:

Recall the classical estimate

k@xŒ .�;  
�1.t; � //�kL1 � e

R t
� k@xu1.t

0;� /kL1 dt 0 ; (6-38)

which we may combine with the composition laws (4-6) and (4-7) to get

kg.t/kX � Ce
V.t/

�
kg0kX C

Z t

0

k.F �G/.�/kX d�

�
; V .t/,

Z t

0

k@xu1.�/kL1 d�: (6-39)
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To estimate k@xu1.t/kL1 we come back to (2-4). The first integral term can be restricted to a compact
set Œ�M;M� and thusˇ̌̌̌

p.v.
Z M

�M

f 0.xCy/�f 0.x/

y2C .f .xCy/�f .x//2
y dy

ˇ̌̌̌
� 2

Z M

0

!f 0.y/

y
dy � Ckf 0kD:

As for the second term, the integral can be restricted to Œ�M;M� and we simply write

p.v.
Z

R

f 0.xCy/Cf 0.x/

y2C .f .xCy/Cf .x//2
y dy

D p.v.
Z M

�M

f 0.xCy/�f 0.x/

y2C .f .xCy/Cf .x//2
y dyC p.v.

Z
R

2f 0.x/

y2C .f .xCy/Cf .x//2
y dy:

The first term of the right-hand side is controlled as before:ˇ̌̌̌
p.v.

Z M

�M

f 0.xCy/�f 0.x/

y2C .f .xCy/Cf .x//2
y dy

ˇ̌̌̌
� Ckf 0kD:

However, the last term can be estimated as in the proof of Theorem 5.2(1). One gets in view of (5-7),
(5-10) and (5-11)ˇ̌̌̌

p.v.
Z

R

y

y2C .f .xCy/Cf .x//2
dy

ˇ̌̌̌
� C.kf 0k2L1 Ckf

0
kL1kf

0
kDCkf

0
kL1/:

Hence using the embedding X ,! C ?K ,! L1 we find

k@xu1.t/kL1 � C.kf
0
kDCkf

0
kL1kf

0
kD/

� C.kf 0.t/kX Ckf
0.t/k2X /; (6-40)

which implies
V.t/� Ct.kf 0kL1t X Ckf

0
k
2
L1t X

/: (6-41)

Using Proposition 6.1 we obtain

k.F �G/.t/kX � C.kf
0.t/kX Ckf

0.t/k17X /: (6-42)

Plugging (6-41) and (6-42) into (6-39) we obtain

kf 0kL1T X � e
CT.kf 0kL1

T
XCkf

0k2
L1
T
X
/
.kf 00kX CT .kf

0
kL1T X

Ckf 0k17L1T X
//:

This shows the existence of small T depending only on kf 00kX and such that

kf 0kL1T X � 2kf
0
0kX ;

which ends the proof of the proposition. �

6C. Scheme construction of the solutions. This section is devoted to the construction of the solutions
to (2-3) in short time. Before giving a precise description about the method used here and based on a
double regularization, let us explain the main ideas of the strategy. The a priori estimates developed in
the previous sections require some rigid properties like the confinement of the support, the positivity of
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the solution and some nonlinear effects in order to control some singular terms, as was mentioned in
Theorem 5.2. So it appears hard to find a linear scheme that respects all of those constraints. The idea is
to proceed with a nonlinear double regularization scheme. First, we fix a small parameter " > 0 used to
regularize the singularity of the kernels around the origin, and second we elaborate an iterative nonlinear
scheme giving rise to a family of solutions .f "n /n that may violate some of the mentioned constraints.
With this scheme we are able to derive a priori estimates uniformly with respect to n during a short time
T" > 0, but this time may shrink to zero as " goes to zero. By compactness arguments we prove that
these approximate solutions .f "n /n converge as n goes to infinity to a solution f " living in our function
space during the time interval Œ0; T"�. Now the function f " satisfies a modified nonlinear problem but the
important fact is that all the a priori estimates developed in the preceding sections hold uniformly on ".
This allows us by a classical procedure to implement the bootstrap argument and prove that the family
.f "/" is actually defined on some time interval Œ0; T � independently on ". To conclude it remains to pass
to the limit when " goes to zero and this allows us to construct a solution for our initial problem.

Let us now give more details about this double scheme regularization. Consider the iterative scheme8̂<̂
:
@tf

"
nC1Cu

"
1.f

"
n /@xf

"
nC1 D u

"
2.f

"
nC1/; n 2 N;

f "0 .t; x/D f0.x/;

f "nC1.0; x/D f0.x/;

(6-43)

with

u"1.g/.t;x/,
1

2�
�.x/

Z
jyj�"

�.y/

�
arctan

�
g.t;xCy/�g.t;x/

y

�
Carctan

�
g.t;xCy/Cg.t;x/

y

��
dy;

u"2.g/.t;x/,
1

4�

Z
jyj�"

�.y/ log
�
y2C.g.t;xCy/�g.t;x//2

y2C.g.t;xCy/Cg.t;x//2

�
dy:

(6-44)

The function � is a positive smooth cut-off function taking the value 1 on some interval Œ�M;M� such
that

K0; K0�K0 � Œ�M;M�;

with K0 being the convex hull of suppf0. The function � is introduced in order to guarantee the
convergence of the integrals. We shall see later by using the support structure of the solutions that one
can in fact remove this cut-off function. Define

ET Dff Wf 2L1.Œ0;T ��R/; f 0 2L1.Œ0;T �;X/g

equipped with the norm

kf kET D kf kL1.Œ0;T ��R/Ck@xf kL1.Œ0;T �;X/;

where X denotes the Dini space C ? or Hölder space C s.R/, 0 < s < 1, and for simplicity we shall
during this part work only with the Hölder space. We intend to explain the approach without giving all
the details, because some of them are classical. Using the method of characteristics, one can transform
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(6-43) into a fixed-point problem

fnC1 DN "
n.fnC1/; with N .f /.t; x/D f0. �1n;".t; x//C

Z t

0

u"2.f /.�;  n;".�;  
�1
n;".t; x/// d�;

with  n;" being the one-dimensional flow associated to un1.f
"
n /, that is, the solution of the ODE

 n;".t; x/D xC

Z t

0

un1.f
"
n /.�;  n;".�; x// d�: (6-45)

It is clear that

kN .f /.t/kL1 � kf0kL1 C
Z t

0

ku"2.f /.�/kL1 d�:

Applying the elementary inequality, for a > 0, b; c 2 RC,ˇ̌̌̌
log
�
aC b

aC c

�ˇ̌̌̌
�
bC c

a
;

we get from (6-44) that

ju"2.f /.t; x/j �
1

4�

Z
jyj�"

�.y/
f 2.t; xCy/Cf 2.t; x/

y2
dy � C"�2kf .t/k2L1 :

It follows that
kN .f /kL1T L1 � kf0kL1 CC"

�2T kf k2L1T L1
: (6-46)

We shall move to the estimate of k@xN .f /kL1T X. Let us first start with the estimate of k@xff0. �1n;"/gkL1T X.
By straightforward computations using product laws (4-8), composition laws (4-6) in Hölder spaces and
the classical estimate on the flow

k@x 
˙1
n;"kL1T X

� Ce
Ck@x.u

"
1.f

"
n //kL1

T
L1 .1Ck@x.u

"
1.f

"
n //kL1TX

/;

one gets

k@xff0. 
�1
n;"/gkL1T X � kf@xf0g. 

�1
n;"/kL1T X k@x 

�1
n;"kL1T X

� Ck@xf0kXe
Ck@x.u

"
1.f

"
n //kL1

T
L1 .1Ck@x.u

"
1.f

"
n //kL1TX

/:

Differentiating the expression of u"1.f
"
n / in (6-44) and making standard estimates we get easily

k@xfu
"
1.f

"
n /.t/gkX � C CC"

�1
k@xf

"
n .t/kX CC"

�3
k@xf

"
n .t/kL1 kf

"
n .t/k

2
X

� C CC"�1kf "n kET CC"
�3
kf "n k

3
ET ;

where we have used  1

y2Cf 2


X

� Ckf k2Xy
�4:

Therefore

k@xff0. 
�1
n;"/gkL1T X � Ck@xf0kXe

CTCC"�1T kf "n kETCC"
�3T kf "n k

3
ET ; (6-47)

k@x 
˙1
n;"kL1T X

� Ce
CTCCT"�1kf "n kETCCT"

�3kf "n k
3
ET : (6-48)
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Similarly we get

k@xfu
"
2.f /gkL1T X � C"

�2
k@xf kL1T X kf kL

1
T X
CC"�4k@xf kL1T L1 kf kL

1
T L
1 kf k2L1T X

� C"�2kf k2ET CC"
�4
kf k4ET :

Combining this estimate with product laws and (6-48) we deduce that

k@xfu
"
2.f /.�;  n;".�;  

�1
n;"//gkX � C."

�2
kf k2ET C "

�4
kf k4ET /e

CTCCT"�1kf "n kETCCT"
�3kf "n k

3
ET :

Putting together this estimate with (6-47) we find that

k@xN .f /kL1T X � C.k@xf0kX CT"
�2
kf k2ET CT"

�4
kf k4ET /e

CTCCT"�1kf "n kETCCT"
�3kf "n k

3
ET ;

which yields in view of (6-46)

kN .f /kET �C.kf0kL1Ck@xf0kXCT"
�2
kf k2ET CT"

�4
kf k4ET /e

CTCCT"�1kf "n kETCCT"
�3kf "n k

3
ET :

We can assume that 0 < T � 1 and then

kN .f /kET � C.kf0kL1 Ck@xf0kX CT"
�4
kf k4ET /e

CT"�3kf "n k
3
ET :

Consider now the closed ball

B D ff 2 ET W kf kET � 2C.kf0kL1 Ck@xf0kX /e
CT"�3kf "n k

3
ET gI

if we choose T such that

16C 3"�4T .kf0kL1 Ck@xf0kX /
3e
5CT"�3kf "n k

3
ET � 1 (6-49)

then N WB!B is well-defined and proceeding as before we can show under this condition that it is also
a contraction. This implies the existence in this ball of a unique solution to the fixed-point problem and
so one can construct a solution f "nC1 2 ET to (6-43) and we have the estimates

for all n 2 N; kf "nC1kET � 2C.kf0kL1 Ck@xf0kX /e
CT"�3kf "n k

3
ET :

Now we select T such that it satisfies also

64C 4.kf0kL1 Ck@xf0kX /
3T"�3 � ln 2I (6-50)

then we get the uniform estimates

for all n 2 N; kfnkET � 4C.kf0kL1 Ck@xf0kX /:

In order to satisfy mutually the conditions (6-49) and (6-50) it suffices to take

T" WD C0"
2; (6-51)

with C0 depending only on kf0kL1 Ck@xf0kX such that

for all n 2 N; kfnkET � 4C.kf0kL1 Ck@xf0kX /: (6-52)
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Now we shall check that we can remove the localization in space through the cut-off function �. To do
so, it suffices to get suitable information on the support of .f "n /. We shall prove that

for all n 2 N; suppf "n .t/�K0; (6-53)

where K0 is the convex hull of the support of f0. Before giving the proof let us assume for a while
this property and see how to get rid of the localizations in the velocity fields. From the expression of
u"2.f

"
nC1/ one has

u"2.f
"
nC1/.t; x/D

1

4�

Z
jyj�"

log
�
y2C .f "nC1.t; xCy/�f
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nC1.t; x//

2

y2C .f "nC1.t; xCy/Cf
"
nC1.t; x//

2

�
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�
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Z
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Œ1��.y/� log
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y2C .f "nC1.t; xCy/�f

"
nC1.t; x//

2

y2C .f "nC1.t; xCy/Cf
"
nC1.t; x//

2

�
dy:

Since for all x…K0 we havefnC1.t;x/D0, it follows that u"2.f
"
nC1/.t;x/D0; hence suppu"2.f

"
nC1/.t/�K0.

Thus for all x 2K0Z
jyj�"

Œ1��.y/� log
�
y2C .f "nC1.t; xCy/�f

"
nC1.t; x//

2

y2C .f "nC1.t; xCy/Cf
"
nC1.t; x//

2

�
dy

D

Z
fjyj�j"g\K0�K0

Œ1��.y/� log
�
y2C .f "nC1.t; xCy/�f

"
nC1.t; x//

2

y2C .f "nC1.t; xCy/Cf
"
nC1.t; x//

2

�
dy D 0

because �D 1 on K0�K0. Now we claim that in the advection term u"1.f
"
nC1/.t; x/@xf

"
nC1 of (6-43)

one can remove the cut-off function. Since @xf "nC1D 0 outside K0, one gets immediately �.x/@xf "nC1D
@xf

"
nC1. Similarly one has

u"1.g/.t; x/,
1

2�

Z
jyj�"

�
arctan

�
g.t; xCy/�g.t; x/

y

�
Carctan

�
g.t; xCy/Cg.t; x/

y

��
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�
1
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Z
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�
arctan

�
g.t; xCy/�g.t; x/

y

�
Carctan

�
g.t; xCy/Cg.t; x/

y

��
dy;

and for x 2K0 it is clear thatZ
jyj�"

.1��.y//

�
arctan

�
g.t;xCy/�g.t;x/

y

�
Carctan

�
g.t;xCy/Cg.t;x/

y

��
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D

Z
fyj�"g\K0�K0

.1��.y//

�
arctan

�
g.t;xCy/�g.t;x/

y

�
Carctan

�
g.t;xCy/Cg.t;x/

y

��
dyD 0:

Now let us come back to the proof of (6-53) and provide further qualitative properties. Similarly to the
identity (6-25) one obtains

u
nC1;"
2 .t; x/D f "nC1.t; x/.1CUnC1;".t; x//; kUnC1;".t/kL1 � C.1CkfnC1.t/k

6
D/:

So following the same lines as in the proof of Proposition 6.2 we get a similar formula to (6-28) which
implies the positivity result

fnC1.t; x/� 0;
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where we have used in particular that the initial data satisfies f "nC1.0; x/D f0.x/� 0. Thus we obtain

for all n 2 N; fn.t; x/� 0:

As u2n;".t; x/� 0, following the same lines as the proof of Proposition 6.2 we get the maximum principle

for all n 2 N; kf "n .t/kL1 � kf0kL1 :

The proof of the confinement of the support (6-53) follows exactly the same lines as the proof of
Proposition 6.2(3). Now we shall study the strong convergence of the sequence .f "n /n. Set

�"n.t; x/ WD fnC1.t; x/�fn.t; x/:

Then

@t�
"
nC1Cu

"
1.f

"
nC1/@x�

"
nC1 D�.u

"
1.f

"
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"
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n //@xf
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nC1Cu
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nC2/�u

"
2.f

"
nC1/:

According to the mean value theorem one has for a > 0, x; y 2 R,

jarctan.x/� arctan.y/j � jx�yj and jlog.aCjxj/� log.aCjyj/j � jx�yja�1;

which imply
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Similarly, we obtain
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�2.kf "nC1.t/kL1 Ckf
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n .t/kL1/kf
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"
n .t/kL1 :

Using the uniform estimates (6-52) we get for any t 2 Œ0; T"�
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2.f
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0
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kf "nC1.t/�f

"
n .t/kL1 ; k@xf

"
nC1.t/kL1 � Ckf

0
0kX :

Using the maximum principle for the transport equation allows us to get for any t 2 Œ0; T"�

k�nC1.t/kL1 � C"
�2
kf 00kXk

Z t

0

Œk�nC1.�/kL1 Ck�n.�/kL1 � d�:

By virtue of Gronwall’s lemma one finds that for any t 2 Œ0; T"�

k�nC1.t/kL1 � e
C"�2kf 00kXT"

Z t

0

k�n.�/kL1 d�:

Hence we obtain in view of (6-51)

k�nC1.t/kL1 � C0
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k�n.�/kL1 d�:

By induction we find

for all n 2 N; for all t 2 Œ0; T"�; k�nkL1t L1 � C
n
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nŠ
k�0kL1t L1 :
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This implies the convergence of the seriesX
n2N

k�nC1kL1T"L
1 <1:

Therefore .f "n /n converges strongly in L1T"L
1 to an element f " 2 L1T"L

1. From the uniform estimates
(6-52) we deduce that f " 2 ET" . This allows us to pass to the limit in (6-43) and obtain that f " is a
solution to �

@tf
"Cu"1.f

"/@xf
" D u"2.f

"/;

f "0 .t; x/D f0.x/;
(6-54)

with

u"1.f
"/.t;x/, 1
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Z
jyj�"

�
arctan

�
f ".t;xCy/�f ".t;x/

y

�
Carctan

�
f ".t;xCy/Cf ".t;x/

y

��
dy;

u"2.f
"/.t;x/, 1

4�

Z
jyj�"

log
�
y2C.f ".t;xCy/�f ".t;x//2

y2C.f ".t;xCy/Cf ".t;x//2

�
dy:

(6-55)

Now, the proofs used to get the a priori estimates can be adapted to (6-54) supplemented with (6-55).
For instance the a priori estimates obtained in Proposition 6.2 hold for the modified equation (6-54)
independently on vanishing ". In particular one can bound uniformly in " the solution f " in the space XT"
and therefore T" is not maximal and by a standard bootstrap argument we can continue the solution up to
the local time T constructed in Proposition 6.2. It follows that f " belongs to ET uniformly with respect
to small ". This yields according once again to Proposition 6.2 and the inequalities (6-25) and (6-40)

sup
"2Œ0;1�

k@tf
"
kL1T L

1 � ku"1.f
"/kL1T L1 k@xf

"
kL1T L

1 Cku"2.f
"/kL1T L1 � C0;

and C0 is a constant depending on the size of the initial data. Now from the compact embedding C sK!Cb

and Ascoli’s lemma we deduce that up to a subsequence .f "/ converges strongly in L1T L
1 to some

element f which belongs in turn to ET . This allows us to pass to the limit in (6-54) and (6-55) and find
a solution to the initial value problem (6-43). We point out that by working more one may obtain the
strong convergence of the full sequence .f "/ to f . Note finally that the uniqueness follows easily from
the arguments used to prove that .�n/ is a Cauchy sequence.

7. Global well-posedness

We are concerned here with the global existence of strong solutions already constructed in Theorem 2.1.
This will be established under a smallness condition on the initial data and it is probable that for arbitrary
large initial data the graph structure might be destroyed in finite time. The basic ingredient which allows
us to balance the energy amplification during the time evolution is a damping effect generated by the
source terms. Note that this damping effect is plausible from the graph equation (2-1) according to the
identity (6-34). However, as we shall see in the next section, it is quite complicated to extend this behavior
for higher regularity at the level of the resolution space due to the existence of a linear part in the source
term governing the motion of the slope (2-3). This part could in general bring an amplification in time
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of the energy. To circumvent this difficulty we establish a weakly damping property of the linearized
operator associated to the source term that we combine with the time decay of the solution for weak
regularity using an interpolation argument.

7A. Weak and strong damping behavior of the source term. Note from Proposition 6.1 that F does not
contribute at the linear level, which is not the case of the functional G. We shall prove that actually there
is no linear contribution for G. This will be done by establishing a damping property that occurs at least
at the linear level. This is described by the following proposition.

Proposition 7.1. LetK be a compact set of R and s2.0;1/; then for anyf 2C sK we have the decomposition

G.x/D 2�f 0.x/CL.x/CN.x/;

with

kLks � 2�.kf
0
ksC 2kf

0
kL1/CCkf

0
k
s
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0
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0
k
1
3

D.kf
0
ksCkf

0
k
16
s /;

where C > 0 is a constant depending only on K and s. Moreover,

kLkL1 � C min.kf ksL1kf
0
ks; kf

0
kL1/ and kN kL1 � Ckf

0
kL1.kf

0
kDCkf

0
k
3
D/:

Proof. In view of (6-1), (6-2), (6-4), (6-16), (6-17) and (6-24) one gets

G.x/DG11.x/CH.x/; H DG12CG2;

with
kHks � Ckf

0
k
1
3

D.kf
0
ksCkf

0
k
16
s /: (7-1)

Note also that from (6-3) and (6-11) we get

kHkL1 � Ckf
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kL1.kf

0
ksCkf

0
k
3
s /: (7-2)

Now from (6-5) we get
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We shall split again G11 as follows:
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Z 1
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f 0.xC �f .x/z/ d� C z2
�Z 1

0

f 0.xC �f .x/z/ d�

�2
:

From (5-22) one gets
kNkL1 � Ckf 0k2L1.1Ckf

0
k
3
L1/: (7-3)
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Using the product law (4-8) we get Œf 0Cf 0 ı .IdC zf /� . � ; z/'. � ; z/


s

� 2kf 0kL1k . � ; z/kL1 k1='. � ; z/ks

C 2kf 0kL1 k . � ; z/ks k1='. � ; z/kL1

C .kf 0ksCkf
0
ı .IdC zf /ks/k . � ; z/kL1 k1='. � ; z/kL1 :

In addition, it is clear that

k . � ; z/kL1 � 4jzjkf
0
kL1 Cjzj

2
kf 0k2L1 :

Performing the composition law (4-6) we deduce that

k . � ; z/ks � C jzjkf
0
ks.1Cjzj

s
kf 0ksL1/CC jzj

2
kf 0kL1 kf

0
ks.1Cjzj

s
kf 0ksL1/:

Combining this latter estimate with (6-9) and (5-22) yields Œf 0Cf 0 ı .IdC zf /� . � ; z/'. � ; z/


s

� Ckf 0kL1 kf
0
ks.1Ckf

0
k
7Cs
L1 /.1Cjzj

s/:

Hence we get according to the embedding C sK ,! L1

kNks � Ckf 0kL1 kf 0ks.1Ckf 0k7CsL1 /

� Ckf 0k
1
3

L1.kf
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k
5
3
s Ckf

0
k
26
3
Cs

s /

� Ckf 0k
1
3

L1.kf
0
ksCkf

0
k
10
s /:

Setting N D N CH and combining the latter estimate with (7-1) we find the desired estimate for N
stated in the proposition. Putting together (7-2) and (7-3) combined with Sobolev embedding we find

kN kL1 � Ckf
0
kL1.kf

0
ksCkf

0
k
4
s /:

Coming back to L one may write

L.x/D 4f 0.x/
Z

R

1

z2C 4
dzC 2

Z
R

f 0.xCf .x/z/�f 0.x/

z2C 4
dz , 2�f 0.x/CL.x/: (7-4)

To estimate L in C s we simply write

kLks � 2

Z
R

kf 0 ı .IdC zf /ksCkf 0ks
z2C 4

dz:

Combined with (4-6) we find

kf 0 ı .IdC zf /ks � .kf 0ksC 2kf 0kL1/.1Cjzjkf 0kL1/s

� .kf 0ksC 2kf
0
kL1/.1Cjzj

s
kf 0ksL1/;

where in the last line we have used the inequality, for all s 2 .0; 1/, for all x; y � 0 one has

.xCy/s � xsCys:
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Using (4-2), it follows that

kLks � 2�.kf
0
ksC 2kf

0
kL1/CCkf

0
ks kf

0
k
s
L1 :

The estimate of L in L1 is easier and one gets according to (7-4),

jL.x/j � 2jf .x/js kf 0ks

Z
R

jzjs

z2C 4
dz � C jf .x/js kf 0ks:

Therefore we obtain
kLkL1 � Ckf k

s
L1 kf

0
ks:

We point out that we have obviously

kLkL1 � 2�kf
0
kL1 :

It follows that
kLkL1 � C min.kf ksL1kf

0
ks; kf

0
kL1/: (7-5)

This completes the proof of Proposition 7.1. �

7B. Global a priori estimates. The main goal of this section is to show how we may use the weakly
damping effect of the source terms stated in Proposition 7.1 in order to get global a priori estimates when
the initial data is small enough. The basic result reads as follows.

Proposition 7.2. Let K be a compact set of R and s 2 .0; 1/. There exists a constant " > 0 such that if
kf 00ks � " then (2-1) admits a unique global solution

f 0 2 L1.RCIC
s
K/:

Moreover, there exists a constant C0 depending on the initial data such that

for all t � 0; kf 0.t/kL1 � C0e�t :

Proof. According to the decomposition of Proposition 7.1 combined with (2-3) and (2-5) we get that
g D @xf satisfies the equation

@tg.t; x/Cu1.t; x/ @1g.t; x/Cg.t; x/DR.t; x/; R, 1
2�
.F �L�N/: (7-6)

Using Propositions 6.1 and 7.1 combined with the (4-2) we find

kRks �kf 0ksC2kf 0kL1CCkf 0kD.kf 0ksCkf 0k3s /CCkf
0
k
s
L1 kf

0
ksCCkf

0
k
1
3

L1.kf
0
ksCkf

0
k
16
s /:

The embedding C
s
2

K � C
?
K combined with interpolation inequalities in Hölder spaces yields

kf 0kD � Ckf
0
k
1
2

L1 kf
0
k
1
2
s : (7-7)

Set s0 Dmin
�
s; 1
3

�
; then it is easy to get

kRks � kf 0ksC 2kf 0kL1 CCkf 0ks0L1.kf
0
ksCkf

0
k
16
s /: (7-8)
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Let h.t; x/, g.t;  .t; x//, where  is the flow introduced in (6-26). Then it is obvious that

@th.t; x/C h.t; x/DR.t;  .t; x//:

This allows us to deduce the Duhamel integral representation

etg.t; x/D g0. 
�1.t; x//C

Z t

0

e�R.�;  .�;  �1.t; x/// d�:

Thus

etkg.t/ks � kg0. 
�1.t//ksC

Z t

0

e�kR.�;  .�;  �1.t///ks d�:

According to (6-38) and (4-6) we obtain

kg0. 
�1.t//ks � Ckg0kse

V.t/; V .t/D

Z t

0

k@xu1.�/kL1 d�

and
kR.�;  .�;  �1.t///ks � .kR.�/ksC 2kR.�/kL1/eV.t/�V.�/:

Note that the estimate of R in C s has been already stated in (7-8). However to get a suitable estimate in
L1 we use Propositions 6.1 and 7.1 combined with Sobolev embedding,

kR.t/kL1 � Ckf 0.t/kL1.kf 0.t/kDCkf 0.t/k3D/CC min.kf .t/ksL1kf
0.t/ks; kf

0.t/kL1/

� C.kf 0.t/kL1 Ckf
0.t/ksL1/.kf

0.t/ksCkf
0.t/k3s /

� Ckf 0.t/k
s0
L1.kf

0.t/ksCkf
0.t/k4s /: (7-9)

It follows that

kR.�;  .�;  �1.t///ks
� .kf 0.�/ksC 2kf

0.�/kL1/e
V.t/�V.�/

CCkf 0.�/k
s0
L1.kf

0.�/ksCkf
0.�/k16s /e

V.t/�V.�/:

Set K.t/D e�V.t/etkf 0.t/ks and

S.t/D Cete�V.t/.kf 0.t/kL1 Ckf
0.t/k

s0
L1.kf

0.t/ksCkf
0.t/k16s //:

Then

K.t/� CK.0/C

Z t

0

K.�/ d� C

Z t

0

S.�/ d�:

By virtue of Gronwall’s lemma we deduce that

K.t/� CetK.0/C

Z t

0

et��S.�/ d�:

This implies

kf 0.t/ks � Ce
V.t/
kf 00ks

CCeV.t/
Z t

0

kf 0.�/kL1 d� C e
V.t/

Z t

0

kf 0.�/k
s0
L1.kf

0.�/ksCkf
0.�/k16s / d�: (7-10)
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Combining the interpolation inequality

kf 0t kL1 � Ckftk
s
2Cs

L1
kf 0t k

2
2Cs
s ;

with Proposition 6.2(2) we obtain

kf 0.t/kL1 � Ce
� s
2Cs

t
kf0k

s
2Cs

L1
kf 0.t/k

2
2Cs
s : (7-11)

Plugging this estimate into (6-40) we find

k@xu1.t/kL1 � Ce
� s
2Cs

t
kf0k

s
2Cs

L1
.kf 0.t/k

2
2Cs
s Ckf 0.t/k

4Cs
2Cs
s /: (7-12)

It is quite obvious from (4-2) and the compactness of the support that

kf0kL1 � Ckf
0
0ks;

with C a constant depending on the size of the support of f0. Set

�.T /D sup
t2Œ0;T �

kf 0.t/ks:

Then combining (7-10) with (7-11) and (7-12) yields

�.T /� CeCkf
0
0k

s
2Cs
s .Œ�.T /�

2
2CsCŒ�.T /�

4Cs
2Cs /�.T /;

with

�.T /D kf 00ksCkf
0
0k

s
2Cs
s Œ�.T /�

2
2Cs Ckf 00k

ss0
2Cs
s Œ�.T /�

2s0
2Cs .�.T /C Œ�.T /�16/:

This implies the existence of small number " > 0 depending only on C, and thus on the size of the support
of f0, such that

kf 00ks � " D) for all T > 0; �.T /� ı.kf 00ks/; (7-13)

with limx!0 ı.x/D 0. This gives the global a priori estimates.
What is left is to establish the precise time decay of kf 0.t/kL1 stated in Proposition 7.2. From (7-6)

it is easy to establish the following estimate using the method of characteristics:

kg.t/kL1 � e
�t
kg0kL1 C

Z t

0

e�.t��/kR.�/kL1 d�: (7-14)

According to (7-9) we obtain

etkf 0.t/kL1 � kf
0
0kL1 CC

Z t

0

e�kf 0.�/kL1.kf
0.�/kDCkf

0
k
3
D/ d�:

Using Gronwall’s lemma we obtain

etkf 0.t/kL1 � kf
0
0kL1e

W.t/; W.t/D C

Z t

0

.kf 0.�/kDCkf
0
k
3
D/ d�:

Putting together (7-7) with (7-11) we obtain

kf 0.t/kD � Ce
� s
4C2s

t
kf0k

s
4C2s

L1
kf 0.t/k

4Cs
4C2s
s :
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Hence we deduce from (7-13) that

for all t � 0; W.t/� C0;

and therefore
for all t � 0; kf 0.t/kL1 � C0e�t ; kf 0.t/kD � C0e

� s
4C2s

t (7-15)

for a suitable constant C0 depending on the initial data. Inserting these estimates into (7-9) we obtain

for all t � 0; kR.t/kL1 � C0e�t : (7-16)

Since ft is compactly supported in a fixed compact set

for all t � 0; kf .t/kL1 � C1e�t : (7-17)

Finally, we point out that all the constants involved in the preceding estimates are time independent.
Indeed, they are related to the support of ft which is confined in the convex hull of the support of the
initial data, as has been stated in Proposition 6.2(3). �

8. Scattering and collapse to singular measure

The aim of the last section is to analyze and identify the long time behavior of the global solutions stated
in Theorem 2.2. It attempts to investigate the time evolution of the probability measure

dPt .x/,
�.t; x/

k�tkL1
dA.x/D et1Dt .x/ dA.x/;

where dA denotes the usual Lebesgue measure. Note that without loss of generality we have assumed in
the last line that k�0kL1 D 1. As we shall see, this measure converges weakly as t goes to infinity to a
probability measure concentrated on the real line and absolutely continuous with respect to Lebesgue
measure on the real line. The description of the density and the support of this limiting measure will be
the subject of the next two sections.

8A. Structure of the singular measure. In this section we shall prove the part of Theorem 2.2 dealing
with the weak convergence of the measure dPt when t goes to1. First, it is obvious that the probability
measure dPt is absolutely continuous with respect to the Lebesgue measure. The convergence of the
family fdPt W t � 0g will be done in a weak sense as follows. Let ' 2 D.R2/ be a test function; one can
write using Fubini’s theorem

It ,
Z

R2
'.x; y/ dPt D e

t

Z
R

Z ft .x/

�ft .x/

'.x; y/ dy:

According to Taylor expansion in the second variable one gets

for all .x; y/ 2 R2; '.x; y/D '.x; 0/Cy .x; y/ and k kL1 � C:

This implies

It D 2e
t

Z
R

ft .x/'.x; 0/ dxC I
1
t ; I 1t , e

t

Z
R

Z ft .x/

�ft .x/

y .x; y/ dy: (8-1)
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We shall check that the term I 1t does not contribute in the limiting behavior. Actually it vanishes for t
going to infinity. Indeed,

jI 1t j � e
t
k kL1

Z
R

Œft .x/�
2 dx:

Using (7-17) and the localization of the support of ft in the convex hull of the initial support, we deduce
that

jI 1t j � Ce
�t ;

and thus
lim
t!1

I 1t D 0:

Combining (2-1), (6-34), (7-15), (7-17) and (7-13) we deduce that

@tf .t; x/Cu1@xf .t; x/Cf .t; x/D�f .t; x/R.t; x/; (8-2)

with
kR.t/kL1 � kf

0.t/kD.1Ckf
0.t/k51/� Ce

� s
4C2s

t : (8-3)

From the method of characteristics developed in studying (7-6) we get the representation

etf .t;  .t; x//D f0.x/e
R t
0 R.�; .�;x// d� : (8-4)

From the integrability property (8-3) we deduce that fetf .t;  .t//g converges uniformly as t goes to1
to the positive function

x 7! f0.x/e
R1
0 R.�; .�;x// d� ,R2.x/: (8-5)

More precisely, using straightforward computations we easily get

ketft ı .t/�R2kL1 � kR2kL1

Z 1
t

kR.�/kL1 d� � Ce
� s
4C2s

t : (8-6)

The next goal is prove that the flow .t/ converges uniformly as t goes to infinity to some homeomorphism
 1 W R! R which belongs to the bi-Lipschitz class. First, recall from the definition (6-26) that

 .t; x/D xC

Z t

0

u1.�;  .�; x// d�:

Recall from Section 2 that u1.x/D v1.x; f .x// and the velocity is computed from the density � according
to the second equation of (1-2). Hence we get

ku1.t/kL1 � k�
�1
r�kL1 :

Now using the classical interpolation inequality

k��1r�kL1 � Ck�k
1
2

L1
k�k

1
2

L1

combined with the decay rate stated in Proposition 6.2(2) we deduce that

ku1.t/kL1 � Ce
� t
2 : (8-7)
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Consequently, it follows that  .t/ converges uniformly to the function

 1.x/, xC
Z 1
0

u1.�;  .�; x// d�:

More precisely, we have

k .t/� 1kL1 �

Z 1
t

ku1.�/kL1 d� � Ce
� t
2 : (8-8)

It remains to check that  1 is bi-Lipschitz. First we know that

k@x .t/kL1 � e
V.t/; V .t/D

Z t

0

k@xu1.�/kL1 d�:

Using (7-12) and (7-13) we deduce that

for all t � 0; k@x .�/kL1 � C; k@xu1.t/kL1 � C"
s
2Cs e�

s
2Cs

t : (8-9)

Differentiating  1 and using the triangle inequality we get

1�

Z 1
0

k@xu1.�/kL1k@x .�/kL1 d� �  
0
1.x/� 1C

Z 1
0

k@xu1.�/kL1k@x .�/kL1 d�:

Therefore we obtain

for all x 2 R; 1�C"
s
2Cs �  01.x/� 1CC"

s
2Cs :

Taking " small enough, meaning that the initial data is very small, we get

for all x 2 R; 1
2
�  01.x/�

3
2
: (8-10)

This shows that  1 is a bi-Lipschitz function from R to R. Furthermore, it is obvious that

 1.x/D  .t; x/C

Z 1
t

u1.�;  .�; x// d�;

and hence

 1. 
�1.t; x//D xC

Z 1
t

u1.�;  .�;  
�1.t; x/// d�:

Combining this identity with  1 ı �11 D Id and (8-7) yields

j 1. 
�1.t; x//� 1. 

�1
1 x/j �

Z 1
t

ku1.�/kL1 d� � Ce
� t
2 :

Applying (8-10) we deduce that

k �1.t/� �11 kL1 � Ce
� t
2 :

This shows that  �1.t/ converges uniformly to  �11 with an exponential rate. Set

ˆDR2 ı 
�1
1 (8-11)
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and assume for a while that R2 belongs to C ˛ for any ˛ 2 .0; 1/; then we deduce from the preceding
estimates, especially (8-6) and (8-4), that

ketf .t/�ˆkL1 � ke
tf .t/�R2 ı 

�1.t/kL1 CkR2 ı 
�1.t/�R2 ı 

�1
1 kL1

� Ce�
s

4C2s
t
CkR2k˛ k 

�1.t/� �11 k
˛
L1

� Ce�
s

4C2s
t
CCe�˛

t
2 :

Taking ˛ D 2s
4C2s

we get
ketf .t/�ˆkL1 � Ce

� s
4C2s

t : (8-12)

Let us now check that R2 belongs to C ˛ for any ˛ 2 .0; 1/. For this goal we shall express differently
the function R2. Set R1.t; x/D�f .t; x/R.t; x/; then from the method of characteristics the solution to
(8-2) may be recovered as follows:

etf .t;  .t; x//D f0.x/C

Z t

0

e�R1.�;  .�; x// d�:

Putting together (8-3) and (7-17) we deduce that

kR1.�;  .�//kL1 � Ce
�
4C3s
4C2s

t : (8-13)

Therefore we find the identity

R2.x/D f0.x/C

Z 1
0

e�R1.�;  .�; x// d�: (8-14)

We shall now study the regularity of R2 through the use of this representation.
Differentiating (8-2) in x and comparing it to (7-6) we get the identity

@xR1.t; x/DR.t; x/C @xu1.t; x/ @xf .t; x/:

Using (7-15), (7-16) and (8-9) we find

for all t � 0; k@xR1.t/kL1 � Ce�t :

Combining this latter estimate with the Leibniz formula and (8-9) implies

for all t � 0; k@x.R1.t;  .t; � ///kL1 � Ce�t : (8-15)

It suffices now to apply the following classical interpolation inequality: for any ˛ 2 .0; 1/ there exists
C > 0 such that

khk˛ � Ckhk
1�˛
L1 kh

0
k
˛
L1 ;

which implies that according to (8-13) and (8-15)

for all t � 0; kR1.t;  .t; � //k˛ � Ce�te�t.1�˛/
s

4C2s : (8-16)

Returning to the identity (8-14), one obtains in view of (8-16)

kR2k˛ � kf0k˛C

Z 1
0

e�kR1.�;  .�; � //k˛ d� � C
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for any ˛ 2 .0; 1/. As an immediate consequence of (8-11), (8-10) and (4-6) we find that ˆ belongs to
C ˛ for any ˛ 2 .0; 1/. We guess the profile ˆ to keep the same regularity as f0, that is, in C 1Cs, but this
could require much more refined analysis.

Now coming back to (8-1) we find in view of (8-12) and the Lebesgue theorem

lim
t!1

I.t/D 2

Z
R

ˆ.x/'.x; 0/ dx:

This is equivalent to writing in the weak sense

lim
t!1

dPt D 2ˆ ıR˝f0g , dP1: (8-17)

Now we shall discuss some properties of ˆ. From (8-5) and (8-11) we have

suppˆD  1.K0/; K0 D suppf0: (8-18)

According to (8-10), the measure of suppˆ is strictly positive with

j suppˆj � 1
2
jK0j: (8-19)

It remains to check that dP1 is a probability measure on the real axis, which reduces to verifying that

2

Z
R

ˆ.x/ dx D 1:

First note that using Proposition 6.2(2) one obtains for any t � 0

1D 2

Z
R

etf .t; x/ dx:

To exchange the limit and integral it suffices to apply the Lebesgue theorem thanks to the condition (8-12)
and the fact that suppft 2 ConvK0 (recall that for simplicity we have assumed that k�0kL1 D 1):

lim
t!1

Z
R

etf .t; x/ dx D

Z
R

ˆ.x/ dx:

This provides the desired result. We point out that with the normalization k�0kL1 D 1 one gets instead
of (8-17)

dP1 D
ˆ

kf0kL1
ıR˝f0g;

which gives the structure of the limiting measure stated in Theorem 2.2 thanks to (8-5) and (8-11).

8B. Concentration of the support. In this section we shall complete the study of the limiting measure
dP1 and identify its support, denoted by K1. What is left to conclude the proof of Theorem 2.2 is just
to check that the support Dt of the solution �t converges in the Hausdorff sense to K1. Recall that K0
is the support of f0 and is assumed to be a finite collection of increasing segments Œai I bi �, i D 1; : : : ; n,
such that ai < bi < aiC1. According to (8-18) one has

suppˆD  1.K0/,K1:
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Since ‰1 is strictly increasing due to (8-10) one deduces easily that

suppˆD[niD1Œa
1
i ; b

1
i �; a1i ,  1.ai /; b1i ,  1.bi /:

Using once again (8-10) one may easily obtain that

for all i; ja1i � b
1
i j �

1
2
jai � bi j:

Now to establish the convergence in the Hausdorff sense of Dt towards K1 it suffices to prove the result
for each connected component, that is,

for all i D 1; : : : ; n; dH .�
i
t ; Œa

1
i ; b

1
i �/� Ce

�t ;

with
� it , f.x; ft .x// W x 2 Œa

t
i ; b

t
i �g:

By straightforward analysis using (7-17) one obtains

dH .�
i
t ; Œa

1
i ; b

1
i �/� Ce

�t
CC max.jati � a

1
i j; jb

t
i � b

1
i j/:

From (8-8) one gets
max.jati � a

1
i j; jb

t
i � b

1
i j/� Ce

�t

and therefore
for all t � 0; dH .Dt ; K1/� Ce

�t :

The proof of Theorem 2.1 is now complete.
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