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COUPLED KÄHLER–RICCI SOLITONS ON TORIC FANO MANIFOLDS

JAKOB HULTGREN

We prove a necessary and sufficient condition in terms of the barycenters of a collection of polytopes
for existence of coupled Kähler–Einstein metrics on toric Fano manifolds. This confirms the toric case
of a coupled version of the Yau–Tian–Donaldson conjecture and as a corollary we obtain an example
of a coupled Kähler–Einstein metric on a manifold which does not admit Kähler–Einstein metrics. We
also obtain a necessary and sufficient condition for existence of torus-invariant solutions to a system of
soliton-type equations on toric Fano manifolds.

1. Introduction

Given a compact Kähler manifold (X, ω), an important question in complex geometry is the problem of
finding a metric of constant scalar curvature in the Kähler class [ω]. It has been known for a long time
that there are deep obstructions to existence of these metrics. In the case when [ω] = ±c1(X), constant
scalar curvature metrics coincide with Kähler–Einstein metrics, i.e., metrics that are proportional to their
Ricci tensor. It was recently shown [Chen et al. 2015a; 2015b; 2015c] that existence of such metrics is
equivalent to a certain algebraic stability condition: K-polystability (see also [Tian 2015]). A similar
stability condition for general Kähler classes is conjectured to be equivalent to existence of constant scalar
curvature metrics. However, except for some special classes of manifolds (see [Donaldson 2009]) this is
open. It should also be pointed out that even in light of [Chen et al. 2015a; 2015b; 2015c], determining
if a given manifold admits a Kähler–Einstein metric is not a straightforward task. The condition of
K-polystability is not readily checkable. On the other hand, a large class of manifolds where existence
of Kähler–Einstein metrics reduces to a simple criterion is given by toric Fano manifolds. Here, as was
originally proved in [Wang and Zhu 2004], existence of Kähler–Einstein metrics is equivalent to the
condition that the barycenter of the polytope associated to the anticanonical polarization is the origin. In
addition, Wang and Zhu [2004] proved that any toric Fano manifold admits a Kähler–Ricci soliton, in
other words a metric ω such that

Ricω = LV (ω)+ω (1)

for a holomorphic vector field V. Here LV denotes Lie derivative along V. These appear as natural
long-time solutions to the Kähler–Ricci flow and have attracted great interest over the years; see for
example [Hamilton 1993; 1995; Cao 1997; Tian 1997].
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In a recent paper Witt Nyström together with the present author introduced the concept of coupled
Kähler–Einstein metrics [Hultgren and Nyström 2018]. These are k-tuples of Kähler metrics (ω1, . . . , ωk)

on a compact Kähler manifold X satisfying

Ricω1 = · · · = Ricωk =±
∑

i

ωi . (2)

These generalize Kähler–Einstein metrics in the sense that for k = 1 this equation reduces to the classical
equation

Ricω1 =±ω1

defining Kähler–Einstein metrics. Moreover, (2) implies a cohomological condition on ω1, . . . , ωk ,
namely ∑

i

[ωi ] = ±c1(X). (3)

We see that, much as for Kähler–Einstein metrics, the theory splits into two cases: c1(X)<0 and c1(X)>0.
Now, as in [Hultgren and Nyström 2018] we will say that a k-tuple of Kähler classes (α1, . . . , αk) such
that

∑
i αi =±c1(X) is a decomposition of ±c1(X) and given a decomposition of c1(X) we will say that

it admits a coupled Kähler–Einstein metric if there is a coupled Kähler–Einstein metric (ω1, . . . , ωk)

such that [ωi ] = αi for all i . In [Hultgren and Nyström 2018] it was shown that fixing a decomposition of
c1(X) imposes the right boundary conditions on (2) in the sense that:

• If c1(X) < 0, then any decomposition of −c1(X) admits a unique coupled Kähler–Einstein metric.

• If c1(X) > 0, then any coupled Kähler–Einstein metric admitted by a given decomposition of c1(X)
is unique up to the flow of holomorphic vector fields.

Moreover, it was shown that if c1(X) > 0 and (ω1, . . . , ωk) is a coupled Kähler–Einstein metric, then
the associated k-tuple of Kähler classes ([ω1], . . . , [ωk]) satisfies a certain algebraic stability condition
which, by analogy, was called K-polystability. It was also conjectured that the converse of this holds,
providing a “coupled” Yau–Tian–Donaldson conjecture:

Conjecture 1 [Hultgren and Nyström 2018]. Assume c1(X) > 0. Then a decomposition of c1(X) admits
a coupled Kähler–Einstein metric if and only if it is K-polystable.

Our main theorem confirms this conjecture in the toric case and provides a simple condition for
K-polystability in terms of the barycenters of a collection of polytopes associated to (α1, . . . , αk). More
precisely, consider the anticanonical line bundle −K X over a toric Fano manifold X . Fixing the action of
(C∗)n on X , this defines a polytope P−K X in the vector space M ⊗R, where M is the character lattice
of (C∗)n. For a general Kähler class that arises as the curvature of a toric line bundle, this correspondence
is well-defined up to translation of the polytope (or equivalently, up to choice of action on the toric line
bundle). Moreover, the correspondence trivially extends to all Kähler classes that can be written as linear
combinations with positive real coefficients of Kähler classes of this type. By general facts (see Lemma 23
and the discussion following it) this holds for any Kähler class on a toric Fano manifold. This means that
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a decomposition of c1(X) determines (up to translations) a set of polytopes P1, . . . , Pk in Rn. Moreover,
the condition

∑
i αi = c1(X) means the polytopes can be chosen so that the Minkowski sum satisfies∑

i

Pi = P−K X . (4)

Enforcing this, we note that the polytopes associated to a decomposition of c1(X) are well-defined up to
translations

(P1, . . . , Pk) 7→ (P1+ c1, . . . , Pk + ck),

where c1, . . . , ck ∈ Rn satisfies
∑

i ci = 0.
Now, given a polytope P in Rn we will let b(P) be the (normalized) barycenter of P,

b(P)=
1

Vol(P)

∫
P

p dp,

where dp is the uniform measure on P and Vol(P) =
∫

P dp. Note that b(P + c) = b(P)+ c; hence,
assuming (4), the quantity

∑
i b(Pi ) is independent of the choices of translation of P1, . . . , Pk . Our main

theorem is:

Theorem 2. Let X be a toric Fano manifold. Assume (αi ) is a decomposition of c1(X) and P1, . . . , Pk

are the associated polytopes. Then the following are equivalent:

(i) (αi ) admits a coupled Kähler–Einstein tuple.

(ii) (αi ) is K-polystable in the sense of [Hultgren and Nyström 2018].

(iii)
∑

i b(Pi )= 0.

Remark 3. One important point is
∑

i b(Pi ) is not in general equal to

b
(∑

i

Pi

)
= b(P−K X );

hence the condition on P1, . . . , Pk in Theorem 2 is not (a priori) equivalent to existence of a classical
Kähler–Einstein metric. In fact, none of these conditions imply the others. By Corollary 4 below,
there is an example of a manifold that doesn’t admit Kähler–Einstein metrics but does admit coupled
Kähler–Einstein metrics. Moreover, by Remark 6 there is an example of a Kähler–Einstein manifold with
decompositions of c1(X) that doesn’t admit coupled Kähler–Einstein metrics.

Corollary 4. Let E be the rank-2 vector bundle

E =OP2(−1)⊕OP1(−1)

over P2
×P1 and consider the toric four-manifold X = P(E). Then X does not admit a Kähler–Einstein

metric. On the other hand, let π : X→ P1 be the natural projection onto P1 and β1, β2 ∈ H (1,1)(X) be
the classes corresponding to the divisors given by π−1(0) and π−1(∞), respectively. Then

α1 =
1
2 c1(X)− 1

4

√
5
7(β1+β2), α2 =

1
2 c1(X)+ 1

4

√
5
7(β1+β2) (5)

are Kähler and the decomposition of c1(X) given by (α1, α2) admits a coupled Kähler–Einstein metric.
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Remark 5. It would be interesting to see if there are simpler examples than the one given in Corollary 4
of manifolds which admit coupled Kähler–Einstein metrics but no Kähler–Einstein metrics. However, by
Corollary 1.6 in [Hultgren and Nyström 2018], the automorphism group of any manifold that admits a
coupled Kähler–Einstein metric is reductive. Among other things, this rules out P2 blown up in one or
two points.

Remark 6. The following is an example of a decomposition of c1(X) on an Einstein manifold that does
not admit a coupled Kähler–Einstein metric. Let X be the toric Fano manifold acquired by blowing up P2

in three points and D be the (S1)n-invariant divisor in X that corresponds to the ray generated by (1, 1)
in the fan of X . Let Dt =−

1
2 K X + t D. We have Dt + D−t =−K X . Computer calculations show that

b(PDt )+ b(PD−t ) 6= 0

for small t ; in other words the decomposition of c1(X) given by (c1(Dt), c1(D−t)) does not admit a
coupled Kähler–Einstein metric for small t .

Remark 7. As discussed in [Hultgren and Nyström 2018], fixing a Kähler class α on X we get a family
of decompositions of c1(X)

{(tα, c1(X)− tα) : t ∈ (0, tα)},

where tα = sup{t : c1(X)− tα > 0}. Assuming they admit coupled Kähler–Einstein metrics (ηt
1, η

t
2) we

get a canonical family of metrics {ωt := η
t
1/t} in α. Now, let X be a toric Fano surface. By Theorem 2,

(tα, α− c1(X)) admits a coupled Kähler–Einstein metric if and only if

tb(PLα )+ b(P−K X−t Lα )= 0, (6)

where Lα is a toric (R-)line bundle such that c1(Lα)= α. On the other hand, it was proven in [Donaldson
2009] that α admits a constant scalar curvature metric if and only if∫

∂PLα
f dσ∫

∂PLα
dσ
−

∫
PLα

f dp∫
PLα

dp
≥ 0 (7)

for every convex function f on the closure of PLα , with equality if and only if f is affine linear. Here dσ
is the measure on ∂PLα defined by the identity

d
dt

(∫
PLα+t P−K X

h dp
)∣∣∣∣

t=0
=

∫
∂PLα

h dσ

for all functions h continuous in a neighborhood of P. In particular, for affine linear functions f , (7)
reduces to the barycenter condition

b(PLα )= b(dσ)=

∫
∂PLα

σ dσ∫
∂PLα

dσ
. (8)

It would be interesting to understand the relationship of (6) with the conditions (7) and (8).
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Our second result considers a more general (soliton-type) version of (2), namely, given holomorphic
vector fields V1, . . . , Vk

Ricω1− LV1(ω1)= · · · = Ricωk − LVk (ωk)=
∑

i

ωi . (9)

We will say that a k-tuple of Kähler metrics satisfying (2) is a coupled Kähler–Ricci soliton. When
k = 1, (9) reduces to (1) and defines classical Kähler–Ricci solitons. As mentioned above these appear as
natural solutions to the Kähler–Ricci flow. In fact, a similar interpretation in terms of natural solutions
to a geometric flow can be given for (9). Given k Kähler metrics ω0

1, . . . , ω
0
k we may consider the flow

defined by
d
dt
ωt

1 = Ricωt
1−

∑
i

ωt
i , . . . ,

d
dt
ωt

k = Ricωt
k −

∑
i

ωt
i (10)

for t ∈ [0,∞). Stationary solutions to (10) are given by coupled Kähler–Einstein metrics, i.e., solutions
to (2). On the other hand, putting V1= · · ·= Vk = V and letting (ωt

i ) be the flow along V of a k-tuple (ω0
i )

satisfying (9) means (ωt
i ) will satisfy (9) for each t . Plugging this into the right-hand side of (10) gives

Ricωt
j −

∑
i

ωt
i = LV (ω

t
j )

for all j . By definition (d/dt)ωt
j = LV (ω

t
j ) for all j ; hence (ωt

i ) satisfies (10).
To state our second result we need some terminology. Note that a point in the vector space that is

dual to M ⊗R, namely N ⊗R where N is the lattice consisting of one-parameter subgroups in (C∗)n,
determines a holomorphic vector field on X . We will call any holomorphic vector field on X that arises
in this manner a toric vector field. These can be given a concrete description in the following way: By
definition, the action of (C∗)n on X admits an open, dense and free orbit. Identifying (C∗)n with this
orbit and letting σ1, . . . , σn be the standard logarithmic coordinates on (C∗)n the toric vector fields are
simply the vector fields that arise as linear combinations of the coordinate vector fields ∂/∂σ1, . . . , ∂/∂σk .
We will often identify a toric vector field with its associated point in N ⊗R.

In this context there is a natural vector-valued invariant AV (P) determined by a polytope P in
Rn
= M⊗R and a point V in the dual vector space N ⊗R. To define it we first introduce the V -weighted

volume of P

VolV (P)=
∫

P
e〈V,p〉 dp.

Then AV (P) is given by

AP(V )=
1

VolV (P)

∫
P

pe〈V,p〉 dp. (11)

With respect to this we have:

Theorem 8. Let V1, . . . , Vk be toric vector fields on a toric Fano manifold X. Assume (α1, . . . , αk) is a
decomposition of c1(X) and P1, . . . , Pk are the associated polytopes. Then there is an (S1)n-invariant
solution (ω1, . . . , ωk) to (9) such that ωi ∈ αi for each i if and only if∑

i

APi (Vi )= 0. (12)
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Remark 9. Much as in Theorem 2, the polytopes P1, . . . , Pk associated to (α1, . . . , αk) are only well-
defined up to translations Pi → Pi + ci for ci ∈ Rn satisfying

∑
i ci = 0. On the other hand, much as the

barycenter, AV (P) satisfies
AP+c(V )=AP(V )+ c,

and hence the left-hand side of (12) is invariant under such translations.

Remark 10. Theorem 8 is a generalization of Wang and Zhu’s theorem [2004] on the existence of
Kähler–Ricci solitons on toric manifolds. See also [Berman and Berndtsson 2013; Delcroix 2017] for
generalizations in other directions.

A straightforward corollary of Theorem 8, using that (11) is the gradient of a strictly convex and proper
function on Rn, is:

Corollary 11. Let (αi ) be a decomposition of c1(X) on a toric Fano manifold. Then there is a unique
toric vector field V such that (αi ) admits an (S1)n-invariant coupled Kähler–Ricci soliton where V1 =

· · · = Vk = V.

Remark 12. Naturally, we expect solutions of the flow (10) to converge to the Kähler–Ricci solitons in
Corollary 11. This parallels the theory in the case k = 1 (see [Tian and Zhu 2007]). On the other hand, it
is interesting to note that by Theorem 8 there exists a large class of solitons that do not appear as natural
solutions to (10) in the sense discussed above (this happens whenever Vi 6= Vj for some i and j). This
suggests that there is a more general flow, which includes (10) as a special case, and where the solitons of
Theorem 8 appear as natural solutions.

A second corollary of Theorem 8 is related to the corresponding real Monge–Ampère equation. Let
f1, . . . , fk be twice differentiable convex functions on Rn. Let ∇ fi denote the gradient of fi . Then, given
a decomposition (α1, . . . , αk) and associated polytopes P1, . . . , Pk , existence of coupled Kähler–Ricci
solitons is equivalent to the solvability of the equation

e〈V1,∇ f1〉

VolV1(P1)
det
(

d2 f1

dxl dxm

)
= · · · =

e〈Vk ,∇ fk〉

VolVk (Pk)
det
(

d2 fk

dxl dxm

)
= e−

∑
i fi (13)

under the boundary conditions
∇ fi (Rn)= Pi , (14)

where the left-hand side of (14) denotes the closure of the image of ∇ fi in Rn. We will say that a k-tuple
of polytopes in Rn is toric Fano if it is defined by a decomposition of c1(X) on a toric Fano manifold.

Corollary 13. Assume P1, . . . , Pk is a toric Fano k-tuple of polytopes and V1, . . . , Vk ∈ Rn. Then (13)
admits a solution satisfying (14) if and only if∑

i

APi (Vi )= 0.

In particular, if V1 = · · · = Vk = 0 then (13) admits a solution satisfying (14) if and only if∑
i

b(Pi )= 0.
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Theorem 2 essentially follows from considering the case V1 = · · · = Vk = 0 in Theorem 8. Doing this
gives that (iii) in Theorem 2 implies (i). As mentioned above, by a previous result [Hultgren and Nyström
2018, Theorem 1.15] (i) implies (ii). Finally, an explicit formula for the (coupled) Donaldson–Futaki
invariant of test configurations induced by toric vector fields shows that (ii) implies (iii). To be more
precise, if V is a toric vector field and (αi ) is a decomposition of c1(X) with associated polytopes
P1, . . . , Pk , then the test configuration for (αi ) induced by V has Donaldson–Futaki invariant〈

V,
∑

i

b(Pi )

〉
.

It follows that if
∑

i b(Pi ) 6= 0, then there is a test configuration for (αi ) with negative Donaldson–Futaki
invariant. By definition, this means (αi ) is not K-polystable (see Section 3.2 for a detailed argument).

The main point in the proof of Theorem 8 is to establish a priori C0-estimates along an associated
continuity path. More precisely, let θ1, . . . , θk be Kähler metrics such that [θi ] = αi . Assume, using the
Calabi–Yau theorem, that ω0 is a Kähler form such that Ricω0 =

∑
i θi and

∫
X ω

n
0 = 1. For each i , let

gi = gθi ,Vi be a θi -plurisubharmonic function on X such that

ddcgi = LVi (θi )

and
∫

X egi θn
i = 1 (see Lemma 17). For t ∈ [0, 1] we will consider the equation

eg1+V1(φ1)(θ1+ ddcφ1)
n
= · · · = egk+Vk(φk)(θk + ddcφk)

n
= e−t

∑
i φiωn

0 . (15)

Moreover, fixing a point x0 ∈ X we will assume solutions to (15) are normalized according to

φ1(x0)= · · · = φk(x0). (16)

The significance of these equations is that for t = 1, a k-tuple of functions φ1, . . . , φk such that each φi is
θi -plurisubharmonic solves (15) if and only if the k-tuple of Kähler metrics (θi + ddcφi ) is a coupled
Kähler–Ricci soliton. We prove:

Theorem 14. Let Vi , αi and Pi be as in Theorem 8 and assume (12) holds. Let x0 be the point in X that,
under the identification of (C∗)n with its open, dense and free orbit, corresponds to the identity element in
(C∗)n. Then, for any t0 > 0 there is a constant C such that any solution (φ1, . . . , φk) of (15) for t ≥ t0,
normalized according to (16), satisfies

sup
X
|φi |< C

for all i .

Pingali [2018] reduced existence of coupled Kähler–Einstein metrics to a priori C0-estimates. This
means that Theorem 8 in the special case when V1 = · · · = Vk = 0, and thus Theorem 2, follows from
Theorem 14 above and Pingali’s work. For the general case we adapt the argument of Pingali to the
soliton setting, essentially following the computations in [Tian and Zhu 2000]. Letting Aut(X) be the
automorphism group of X we prove:
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Theorem 15. Let X be a Fano manifold and V1, . . . , Vk be holomorphic vector fields in the reductive
part of the Lie algebra of Aut(X) such that Im Vi generate a compact one-parameter subgroup in Aut(X)
for each i . Let (αi ) be a decomposition of c1(X) with representatives θ1, . . . , θk such that Im LVi θi = 0
for all i . Assume also C0-estimates hold for (15); in other words, for each t0 > 0, there is a constant C
such that any solution (φi ) to (15) at t > t0 satisfies

sup
X
|φi |< C

for all i . Then (αi ) admits a solution to (9).

We get that the positive part of Theorem 8 follows directly from Theorems 14 and 15. The negative
part of Theorem 8 follows directly from a change of variables in (13) (see Lemma 28).

Remark 16. Berman and Berndtsson [2013] used a variational approach to prove existence of Kähler–
Ricci solitons on toric log Fano varieties. They give a direct argument for coercivity of the associated
Ding functional on (S1)n-invariant metrics. It would be interesting if this coercivity estimate could be
extended to the coupled setting. This would provide a stronger result than this paper in two respects:
First of all, it would cover the singular setting of log Fano varieties. Secondly, since this bypasses the
higher-order a priori estimates from complex geometry it would provide a version of Corollary 13 that is
valid for all k-tuples of polytopes, not only the ones that are defined by decompositions of c1(X) on toric
Fano manifolds.

This paper is organized in the following way: Sections 2.1 and 2.2 are devoted to the proof of
Theorem 15. In Section 2.1 we prove openness along the continuity path and solvability at t = 0. In
Section 2.2 we prove C2,α-estimates assuming C0-estimates, thus finishing the proof of Theorem 15. In
Section 3 we set up the real convex geometric framework and in Section 3.1 we use this to prove the
C0-estimate of Theorem 14. Finally, at the end of Section 3.1 we prove Theorem 8, Corollary 11 and
Corollary 13 and in Section 3.2 we prove Theorem 2.

2. Openness and higher-order estimates

This section is devoted to proving Theorem 15.
The following lemma is well known. However, as a courtesy to the reader we include a proof of it.

Lemma 17. Assume X is a Fano manifold, V a holomorphic vector field on X and θ a Kähler form on X
such that the imaginary part of LV (θ) vanishes. Then there is a smooth real-valued function g on X such
that

ddcg = LV (θ).

Proof. Since V is a holomorphic vector field, the contraction operator iV anticommutes with ∂̄; hence
iV θ is a ∂̄-closed (0, 1)-form. By the Kodaira vanishing theorem, since X is Fano, the sheaf cohomology
group satisfies

H 1(X,O)= H 1(X,−K X + K X )= 0.
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This means the Dolbeault cohomology group satisfies

H (0,1)(X)∼= H 1(X,O)= 0;

hence iV θi is also ∂̄-exact. Let g be a smooth function such that
√
−1∂̄g = iV θ . As LV (θ) is real, so

is g. Moreover,

ddcg = i∂∂̄g = ∂iV θ = LV (θ). �

For each i , let PSH(X, θi ) be the space of θi -plurisubharmonic functions on X , in other words the
space of upper semicontinuous and locally integrable functions φi satisfying ddcφi + θi ≥ 0. Note that if
φi is a smooth function in PSH(X, θi ), then

LVi (ddcφ)= ∂iVi

√
−1∂∂̄φi

=
√
−1∂∂̄iVi ∂φi = ddcVi (φi );

hence ddc(gi + Vi (φi ))= LV (θi + ddcφi ). This means that, much as in [Hultgren and Nyström 2018],
we get:

Lemma 18. Let X be a Fano manifold, V1, . . . , Vk holomorphic vector fields on X and (αi ) a k-tuple
of Kähler classes on X such that

∑
αi = c1(X). Assume each class αi has a representative θi such that

Im LV (θi )= 0 and, for each i , let φi be a smooth function in PSH(X, θi ). Then (φ1, . . . , φk) is a solution
to (15) at t = 1 if and only if the k-tuple of Kähler metrics (θi + ddcφi ) is a coupled Kähler–Ricci soliton.

2.1. Openness. Here we will prove the first part of Theorem 15, namely that the set of t such that (15)
is solvable is open.

We will use the Banach spaces

A = {(φ1, . . . , φk) : φi ∈ C4,α(X)},

B = {(v1, . . . , vk) : vi ∈ C2,α(X)}.

Moreover, let APSH be the open subset of A given by

APSH = {(φ1, . . . , φk) : φi ∈ C4,α(X)∩PSH(X, θi )}.

Let F : R× APSH→ B be defined by

F(t, (φi ))=

log((θ1+ ddcφ1)
n/ωn

0)+ g1+ V1(φ1)+ t
∑
φi

...

log((θk + ddcφk)
n/ωn

0)+ gk + Vk(φk)+ t
∑
φi

 .
Note that F(t, (φi )) = 0 if and only if (φi ) defines a solution to (15) at t . Moreover, in this case the
measure

µ := (θi + ddcφi )
negi+Vi (φi )

is independent of i .
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Lemma 19. The Fréchet derivative of F at (t, (φi )) with respect to the second argument is given by
H : A→ B defined by

H(v1, . . . , vk)=

−1ω1v1+ V1(v1)+ t
∑
vi

...

−1ωkvk + Vk(vk)+ t
∑
vi

 , (17)

where ωi = θi + ddcφi and 1ωi is the associated Laplace–Beltrami operator. Moreover, H is elliptic.
Finally, assume F(t, φ)= 0 and let 〈 · , · 〉 be the inner product on B given by

〈(ui ), (vi )〉 =
∑

i

∫
X

uiviµ.

Then

〈H(u1, . . . , uk), (vi )〉 = 〈(ui ), H(v1, . . . , vk)〉

for any (ui ), (vi ) ∈ B.

Proof. Equation (17) follows from straightforward differentiation and the well-known identity

d
ds

log
(θi + ddc(φi + svi ))

n

θn
i

∣∣∣∣
s=0
= n

ddcv(θi + ddcφi )
n−1

(θi + ddcφi )n
=1ωivi .

Now, H takes the following form in local coordinates:

(ui ) 7→ (vj )=

(∑
i,l,m

alm
i j (x)

∂2ui

∂xl∂xm
+ lower-order terms

)
,

where alm
i j = 0 if i 6= j and {alm

ii }l,m are the coefficients for the Laplace operator 1ωi . Recall that H is
elliptic if the matrix (∑

l,m

alm
i j (x)ξlξm

)
(18)

is invertible for all p ∈ X and all nonzero ξ =
∑
ξl(∂/∂xl) ∈ Tp X , but this follows immediately. To see

this note that ∑
l,m

alm
i j (x)ξlξm

is 0 if i 6= j and, by ellipticity of 1ωi , positive if i = j . This means (18) is a diagonal matrix with positive
entries on the diagonal; hence it is invertible.

We will now prove the last statement in the lemma. It is a consequence of the following identity for
functions u, v ∈ C2,α(X) (see Lemma 2.2 in [Tian and Zhu 2000]):∫

X
(1ωiv+ Vi (v))uµ=−

∫
X
〈dv, du〉ωiµ. (19)
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We get ∑
i

∫
X

(
1ωivi + Vi (vi )+

∑
j

vj

)
uiµ=−

∑
i

∫
X
〈dvi , dui 〉µ+

∑
i, j

∫
X
vj uiµ

=

∑
i

∫
X
vi

(
1ωi ui + Vi (ui )+

∑
j

u j

)
µ,

and the last statement in the lemma follows. �

Lemma 20. Assume t ∈ [0, 1) and (vi ) ∈ A are not all constant and satisfy

1ω1v1+ V1(v1)= · · · =1ωkvk + Vk(vk)= λ
∑

i

vi (20)

for a k-tuple ω1, . . . , ωk satisfying

Ricω1− LV1(ω1)= · · · = Ricωk − LVk (ωk)= t
∑

i

ωi + (1− t)
∑

i

θi . (21)

Then λ > t .

Proof. Let ∂ωiv denote the gradient of v with respect to the metric ωi . Moreover, we will use the notation
Ricωi = Ric(ωi ). The proof is based on the following Weitzenböck identity (see [Tian and Zhu 2000],
equation 2.7, page 277):

−

∫
X
〈d(1ωiv+ Vi (v)), dv〉ωiµ≥

∫
X
(Ricωi −LV (ωi ))(∂ωiv, ∂ωiv)µ.

Combining this with (21) and (20) gives

λ2
∫

X

(∑
j

vj

)2

µ=

∫
X
(1ωivi + Vi (vi ))

2µ=−

∫
X
〈d(1ωivi + Vi (vi )), dv〉ωiµ

≥

∫
X
(Ricωi +LV (ωi ))(∂ωivi , ∂ωivi )µ≥ t

∫
X

∑
j

|∂ωivi |
2
ωj
µ. (22)

Moreover, we claim that (20) implies∫
X
|∂ωivi |

2
ωj
µ≥

∫
X
|dvj |

2
ωj
µ (23)

for any i and j . Assuming that this is true we see that (22) implies

λ2
∫

X

(∑
j

vj

)2

µ≥ t
∫

X

∑
j

|∂ωjvj |
2
ωj
µ= t

∫
X

∑
j

|dvj |
2
ωj
µ

= t
∫

X

∑
j

(1ωjvj + Vi (vj ))vjµ

= tλ
∫

X

∑
j

(∑
i

vi

)
vjµ= tλ

∫
X

(∑
j

vj

)2

µ.
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We conclude that λ ≥ t . Moreover, if λ = t then equality holds in all inequalities above. In particular,
equality holds in the last inequality of (22); hence, by (21),

0=
∫

X
(Ricωi −LV (ωi ))(∂ωivi , ∂ωivi )µ− t

∫
X

∑
j

|∂ωivi |
2
ωj
µ

= (1− t)
∫

X

∑
j

|∂ωivi |
2
θj
µ

from which it follows that vi is constant for every i . This means that to finish the proof of the lemma it
suffices to prove (23). To do this, note that for any i and j , by (20)∫

X
|dvj |

2
ωj
µ=

∫
X
(1ωjvj + Vi (vj ))vjµ

=

∫
X
(1ωivi + Vi (vi ))vjµ=

∫
X
〈dvi , dvj 〉ωiµ.

Moreover, choosing coordinates (z1, . . . , zn) that are normal with respect to ωj and such that ωi is
diagonal with eigenvalues β1, . . . , βn at a point p we get

|〈dvi , dvj 〉ωi | =

∣∣∣∣∑
l

1
βl

∂vi

∂zl

∂vj

∂zl

∣∣∣∣≤
√∑

l

∣∣∣∣ 1
βl

∂vi

∂zl

∣∣∣∣2
√∑

l

∣∣∣∣∂vj

∂zl

∣∣∣∣2 = |∂ωivi |ωj |dvj |ωj .

Combining this with the Cauchy–Schwarz inequality we get∫
X
|dvj |

2
ωj
µ=

∫
X
〈dvi , dvj 〉ωiµ≤

∫
X
|∂ωivi |ωj |dvj |ωjµ≤

√∫
X
|∂ωivi |

2
ωj
µ

√∫
X
|dvj |

2
ωj
µ,

and (23) follows. �

We can now prove the first part of Theorem 15.

Proof of Theorem 15. First part: openness and the case t = 0. The theorem is proved using the continuity
method along the path defined by (15). Here we will prove that the set of t such that (15) is solvable is
nonempty and open in [0, 1]. At the end of Section 2.2 we will prove that it is also closed in [0, 1], hence
that (15) is solvable for all t ∈ [0, 1].

First of all, to see that the set of t such that (15) is solvable is nonempty, note that for t = 0, (15)
reduces to the collection of equations

(θj + ddcφj )
negj+Vj (φj ) = ωn

0 . (24)

This means that for each i we can apply the Main Theorem in [Zhu 2000] to get φi such that

(θj + ddcφj )
negj+Vj (φj )+cj = ωn

0 (25)

for some cj ∈ R. Integrating both sides of this and using the fact that∫
X

egi+Vi (φi )(θi + ddcφi )
n
=

∫
X

egi θn
i = 1=

∫
X
ωn

0 (26)
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for all smooth φi ∈ PSH(X, θi ) we see that cj = 0 for all j ; in other words (φ1, . . . , φk) provides a
solution to (15) at t = 0.

Now, (26) is well known but for completeness we provide an argument for it here. Consider the
variation of the left-hand side of (26) with respect to φi∫

X
(1ωi φ̇i + V (φ̇i ))µi , (27)

where we use the notation µi = egi+Vi (φi )(θi + ddcφi )
n . By (19),∫

X
(1ωi φ̇i + V (φ̇i ))(φ̇i + 1)µi =

∫
X
|dφ̇|2ωi

µi =

∫
X
(1ωi φ̇i + V (φ̇i ))φ̇iµi , (28)

and hence (27) vanishes. This proves (26).
The fact that the set of t such that (15) is solvable is open follows from Lemmas 19 and 20 and

a standard application of the implicit function theorem. More precisely, H is elliptic by Lemma 19.
This means the image of H : (W 2,2(X))k → (L2(X))k is closed (see for example Theorem 10.4.7 in
[Nicolaescu 1996]). Taking (vi ) in the orthogonal complement of the image of H gives

〈(vi ), H(ui )〉 = 0

for all (ui ) ∈ (W 2,2(X))k . In particular, it holds for all (ui ) ∈ (C∞(X))k . By the last point in Lemma 19
this means H(vi ) = 0 as a distribution. By elliptic regularity (see for example Corollary 10.3.10 in
[Nicolaescu 1996]) (vi ) ∈ (C∞(X))k and hence, by Lemma 20, (vi )= (Ci ) for constants C1, . . . ,Ck . As
H(Ci )= 0 we get

∑
Ci = 0. Using this and elliptic regularity again (see for example Theorem 10.3.11(b)

in [Nicolaescu 1996]), we may conclude that the kernel of H is
{
C1, . . . ,Ck :

∑
Ci = 0

}
and the image

of H is

B̂ =
{
(vi ) ∈ B :

∫
X
v1µ= · · · =

∫
X
vkµ

}
. (29)

It follows that H is invertible as a map from

Â = {(vi ) ∈ A : v1(x0)= · · · = vk(x0)}

to B̂. Moreover, the derivative of F with respect to t , (t, (φi )) 7→
(∑

φi , . . . ,
∑
φi
)
, trivially maps to B̂.

Thus, applying the implicit function theorem to F restricted to Â ∩ APSH completes the proof of the
theorem. �

2.2. Higher-order estimates. We begin with:

Lemma 21. Assume (φi ) satisfies (15) for some t ∈ [0, 1]. Then

sup
X
|1θjφj | ≤ C,

where C depends only on supi ‖φi‖C0(X).

We will use the following lemma from [Zhu 2000] (page 768, Corollary 5.3):
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Lemma 22. Let X be a compact Kähler manifold, ω a Kähler form on X and V a holomorphic vector
field on X. Assume φ ∈ PSH(X, ω) is smooth and X (φ) is a real-valued function. Then

sup
X
|V (φ)|< C

for a constant C that is independent of φ.

Proof of Lemma 21. We start with the following inequality originating in [Yau 1978] (see for example
equation 2.3 on page 1587 in [Chen and He 2012]): assume ω is a Kähler form and v is a smooth function
satisfying

(ω+ ddcv)n = eFωn.

Then there are constants C1,C2 and C3, independent of v, such that

1ω+ddcv(e−C1v(n+1ωv))≥ e−C1v1ωF +C2(n+1ωv)n/(n−1)
−C3. (30)

For each j , we have that φj satisfies the equation

(θj + ddcφj )= e−gj−Vi (φj )−t
∑

i φi+log(ωn
0/θ

n
j )θn

j . (31)

Applying (30) to this and letting
u j = e−C1φj (n+1θjφj ),

for all j we get

1ωj u j ≥ e−C1φj1θj

(
−gj − Vj (φj )− t

∑
i

φi + log(ωn
0/θ

n
j )

)
+C2(n+1θjφj )

n/(n−1)
−C3. (32)

Note that ddcφi >−θi ; hence

1θjφj = n
(ddcφj )∧ θ

n−1
j

θn
j

>−n.

This means u j > 0 for all j . Moreover, u j − e−C1φj1θjφj = ne−C1φj . Hence, adjusting C2 and C3 in a
way which only depends on supi ‖φi‖C0(X), we get

1ωj u j ≥−e−C1φj1θj (gj + Vj (φj ))− t
∑

i

ui +C2un/(n−1)
j −C3. (33)

Now, let

Vj =
∑

V j
m
∂

∂zm
and θj =

∑
θ

j
ml̄

dzm dz̄l .

As in [Tian and Zhu 2000], we compute

1θj (gj + Vj (φj ))=
∑
m,l

∂

∂zl

(
V j

m

(
θ

j
ml̄
+

∂φj

∂zm∂ z̄l

))

=

∑
m,l

∂V j
m

∂zl

(
θ

j
ml̄
+

∂2φj

∂zm∂ z̄l

)
+ V j

m

(
∂θ

j
ml̄

∂zl
+

∂3φj

∂zm∂zl∂ z̄l

)
. (34)
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We will be interested in this at a point, p, where u j attains its maximum. Choosing coordinates around p
that are normal with respect to θj and such that ωj = θj + ddcφj is diagonal, (34) reduces to

∑
m

∂V j
m

∂zm

(
1+

∂2φj

∂zm∂ z̄m

)
+ Vj (1φj ).

The first term of this can be bounded by

sup
m

∣∣∣∣∂V j
m

∂zm

∣∣∣∣(1+1θjφj ).

Moreover, as u j is stationary at p we get that

Vj (u j )= C1Vj (φj )u j − e−C1φj Vj (1θjφj )

vanishes at p; hence

(e−C1φj Vj (1θjφj ))|p = (C1Vj (φj )u j )|p.

We conclude that

e−C1φj1θj (gj + Vj (φj ))≤

(
sup

m

∣∣∣∣∂V j
m

∂zm

∣∣∣∣+C1Vj (φj )

)
u j .

By Lemma 22 this is bounded by Cu j for a uniform constant C .
We will now plug this into (33). By the maximum principle 1ωj u j ≤ 0 at p. Letting Mi =maxX ui ≥ 0

we get

0≥−Cu j − t
∑

i

Mi +C2un/(n−1)
j −C3

at p. Summing over j and using Young’s inequality a ≤ εan/(n−1)
+C(n, ε) we get, after adjusting C3,

0≥−C
∑

Mi − kt
∑

Mi +
C2

ε

∑
Mi −C3

=

(
−C − kt +

C2

ε

)∑
Mi −C3.

Choosing ε small enough that the expression in the parentheses is positive gives an upper bound on
∑

Mj .
Since Mi ≥ 0 for all i , this implies a bound on sup Mi = sup |ui |. This proves the lemma. �

Proof of Theorem 15. Second part: C2,α-estimates. Here we will prove that the set of t such that (15) is
solvable is closed.

By Lemma 21, |1θiφi | is bounded by a constant that depends only on ‖φi‖C0(X) for all i . We wish
to apply Theorem 1 in [Wang 2012]. To do this we need uniform bounds on the Hölder norms of φi

and Vi (φi ). These are implied by the uniform bounds on 1θiφi . To see this, choose coordinates that are
normal with respect to θi and such that θi + ddcφi is diagonal at a point p. Since

θi + ddcφi =
∑(

1+
∂2φi

∂zm∂ z̄m

)
dzm dz̄m > 0
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we get that ∂2φi/(∂zm∂ z̄m) >−1 for all m. Together with the bound

1θiφi =
∑

m

∂2φi

∂zm∂ z̄m
≤ C

this gives uniform bounds on |∂2φi/(∂zm∂ z̄l)| for all m and l and the bounds on the Hölder norms follow.
Combining this with the argument at the end of Section 2.1, we conclude that the set of t such that

(15) is solvable is nonempty, open and closed in [0, 1]. It follows that (15) has a solution (φi ) at t = 1.
Consequently, by Lemma 18 (θi + ddcφi ) solves (9). �

3. C0-estimates

In this section X will always be a toric Fano manifold. In other words c1(X) > 0 and, letting n = dim X ,
there is an n-dimensional complex torus (C∗)n acting on X by biholomorphisms such that the action
admits an open, dense and free orbit. The purpose of the section is to prove Theorem 14. We will begin by
recalling the well-known correspondence between metrics on line bundles over toric varieties and convex
functions in Rn. As in the Introduction we fix an action of (C∗)n on X and identify (C∗)n with its open,
dense and free orbit. Let θ be an (S1)n-invariant Kähler form on X that arises as the curvature of a metric
‖ · ‖ on a toric line bundle over X . Let P be the polytope associated to this toric line bundle. Assume s0

is the (C∗)n-invariant section corresponding to the point 0 ∈ P. By the invariance s0 is nonvanishing on
(C∗)n and the metric can be represented by a plurisubharmonic function ψ on (C∗)n by

ψ =− log ‖s0‖
2.

Then ψ satisfies ddcψ = θ . Using toric coordinates

(x1, . . . , xn)= (log |z1|, . . . , log |zn|) ∈ Rn

ψ defines a convex function on Rn

f (x1, . . . , xn) := ψ(ex1, . . . , exn )

which will have the property ∇ f (Rn)= P. Moreover, in logarithmic coordinates σi = log zi we have∑
i j

∂2 f
∂xi∂x j

dσi dσ̄j = ddcψ = θ. (35)

Now, for a convex polytope P, let E(P) be the space of smooth, strictly convex functions f such that

∇ f (Rn)= P.

Then it is well known (see for example Proposition 3.3, page 687 in [Berman and Berndtsson 2013]) that
(35) gives a one-to-one correspondence between the (S1)n-invariant elements in [θ ] and E(P).

As noted in the Introduction, the correspondence above extends trivially to any θ such that [θ ] can be
written as a linear combination with positive real coefficients of Kähler classes that arise as the curvature
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of toric line bundles. On the other hand, we have the following general principle which we record for the
convenience of the reader:

Lemma 23. Let α be a Kähler class on a Fano manifold X. Then there are some ample line bundles
L1, . . . , Lm over X and positive real coefficients λ1, . . . , λm such that

α =
∑

i

λi c1(L i ). (36)

Proof. First of all, any Kähler class α can be written as (36) where the line bundles L i are not necessarily
ample and the constants λi are not necessarily positive. To see this, recall that the map

c1 : H 1(X,O∗)→ H 2(X,Z)

is part of the exact sequence

H 1(X,O∗) c1
−→ H 2(X,Z)→ H 2(X,O).

By the Kodaira vanishing theorem, since X is Fano,

H 2(X,O)= H 2(X, K X − K X )= 0.

It follows that c1 is surjective, and hence any element in H 2
DR(X)∼= H 2(X,R) can be written as a linear

combination over R of elements in the image of c1. Note that this means the set of rational classes, in
other words the set of classes of the form qc1(L) for some rational number q and some line bundle L , is
dense in H (1,1)(X).

Now, the cone of Kähler classes K is open in H (1,1)(X). This means we can take a set of rational
classes η1, . . . , ηj in K that span H (1,1)(X) over R. Moreover, these classes define an open subcone of K ,

C =
{∑

i

λiηi : λi ∈ R+

}
.

For any α ∈ K we may take a rational class η0 in the open set (α−C)∩ K which is nonempty since α is
in the interior of K . This means α = η0+ κ , where κ ∈ C and (36) follows. �

Noting that any divisor on a toric manifold is linearly equivalent to an (S1)n-invariant divisor, Lemma 23
and the discussion preceding it gives:

Lemma 24. Let α be a Kähler class on X and P be the polytope corresponding to α. Then (35) gives a
one-to-one correspondence between the (S1)n-invariant elements in α and E(P). Moreover, if α = c1(L),
where L is a toric line bundle over X , then this correspondence is given by θ 7→ f , where

f (log |z1|, . . . , log |zn|) := − log ‖s0‖
2,

where s0 is the (S1)n-invariant (meromorphic) section corresponding to the point 0 ∈M⊗R and ‖ · ‖ is
the metric on L with curvature θ .



2084 JAKOB HULTGREN

For each i , let hi : R
n
→ R be defined by

hi (x)= log
1

NP

∑
y

e〈y,x〉,

where the sum is taken over all vertices of the polytope Pi and NP is the number of vertices of the
polytope Pi . These functions are smooth, strictly convex and satisfy ∇hi (Rn)= Pi ; hence hi ∈ E(Pi ).
For each i , let θi be the element in αi corresponding to hi . Then there is a one-to-one correspondence
between E(Pi ) and the smooth (S1)n-invariant elements of PSH(X, θi ) given by

fi (x)− hi (x)= φi (ex). (37)

Moreover, hi (0)= 0 for each i . This means the normalization (16) is equivalent to

f1(0)= · · · = fk(0). (38)

Using the correspondence in (37), it is possible to rewrite (15) as a real Monge–Ampère equation.

Lemma 25. Assume (φi ) and ( fi ) are related as in (37). Then, for t ∈ [0, 1], (φi ) satisfies (15) if and
only if ( fi ) satisfies

e〈V1,∇ f1〉

VolV1(P1)
det
(
∂2 f1

∂xm∂xl

)
= · · · =

e〈Vk ,∇ fk〉

VolVk (Pk)
det
(
∂2 fk

∂xm∂xl

)
= e−t

∑
i fi−(1−t)

∑
i hi . (39)

Proof. First of all, using (35) we see that

(θi + ddcφi )
n
=

(∑
m,l

∂2 fi

∂xm∂xl
dσj dσ̄l

)n

= det
(
∂2 fi

∂xm∂xl

)
dσ dσ̄ , (40)

where dσ dσ̄ = dσ1 · · · dσn dσ̄1 · · · dσ̄n .
Abusing notation, we may think of fi and hi as (S1)n-invariant plurisubharmonic functions on

(C∗)n ⊂ X . We will show that

e−t
∑

i φiωn
0 = e−t

∑
i ( fi−hi )ωn

0 = e−t
∑

i fi−(1−t)
∑

i hi dσ dσ̄ . (41)

This will follow if we show that
e
∑

hiωn
0 = dσ dσ̄ . (42)

To do this, we note that by convexity

∇

(∑
i

hi

)
(Rn)=

∑
i

∇hi (Rn)=
∑

Pi = P−K X .

By Lemma 24,
∑

hi defines a metric on −K X of curvature
∑
θi by the relation

‖s0‖
2∑

hi
= e−

∑
hi ,

where s0 is the unique (C∗)n-invariant section of −K X , in other words

s0 =
∂

∂σ1
∧ · · · ∧

∂

∂σk
= dσ−1.
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Moreover, the volume form ωn
0 defines a metric on −K X by the relation

‖dσ−1
‖

2
ωn

0
=

ωn
0

dσ dσ̄
.

The curvature of ‖ · ‖ωn
0

is Ricω0 =
∑
θi . By uniqueness in the Calabi–Yau theorem ‖ · ‖∑ hk = ‖ · ‖ω

n
0

and (42) follows.
It remains to show that

e〈Vi ,∇ fi 〉

VolVi (Pi )
= egi+Vi (φi ). (43)

We will first show that
〈Vi ,∇ fi 〉+Ci = gi + Vi (φi ) (44)

for some Ci ∈ R. Abusing notation again, and thinking of fi as an (S1)n-invariant plurisubharmonic
function on (C∗)n ⊂ X , we compute

ddc
〈Vi ,∇ fi 〉 = ddc

(∑
m

∂ fi

∂xm
am

)
=

∑
m, j,l

∂3 fi

∂x j∂xl∂xm
am dσj dσ̄l

= ∂iV

(∑
m,l

∂2 fi

∂xm∂xl
dσm dσ̄l

)
= ∂iV (θi + ddcφi )= LV (θi )= ddc(gi + Vi (φi ))

and (44) follows by the maximum principle. To get (43), note that the push forward of dσ dσ̄ under the map
(z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|) is the Euclidean measure dx on Rn. This means, by (40) and (44),∫

X
egi+Vi (φi )(θi + ddcφi )

n
=

∫
Rn

det
(
∂2 fi

∂xm∂xl

)
e〈Vi ,∇ fi 〉+Ci dx . (45)

Performing the change of variables ∇ fi = p we get

(45)= eCi

∫
Pi

e〈Vi ,p〉 dp.

By (26) ∫
X

egi+Vi (φi )(θi + ddcφi )
n
=

∫
X

egi θn
i = 1.

This means C = log VolVi (Pi ) and (43) follows.
Using (40), (41) and (43) we conclude that ( fi ) satisfies (13) if and only if (φi ) satisfies (15) on (C∗)n.

As (φi ) is assumed to be smooth, the lemma follows. �

3.1. Estimates. To prove Theorem 14 we need to prove that for all t0 > 0 there is a constant C such that
any solution ( fi ) to (39) at t > t0, normalized according to (38), satisfies

sup
X
| fi − hi | ≤ C (46)

for all i .
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For each i , let ui be the Legendre transform of fi . Recall that fi is a smooth, strictly convex function
on Rn such that ∇ fi (Rn)= Pi . This means each ui is a smooth, strictly convex function on Pi . Moreover,
a standard property of the Legendre transform is that

sup
Rn
| fi − hi | = sup

Pi

|ui − h∗i |,

where h∗i is the Legendre transform of hi . Since h∗i is bounded on Pi (this is easy to verify) we have that
(46) is equivalent to a uniform bound on supPi

|ui |.
We will use a variant of the method of [Wang and Zhu 2004] (see also [Donaldson 2008]). The first

step is to establish bounds on the function

w = wt =
∑

i

(t fi + (1− t)hi ).

Since w is strictly convex and 0 is in the interior of P−K X = ∇w(R
n) we have that w is bounded from

below and attains its minimal value at a unique point. Let m = infw and let xw be the minimal point of w.

Lemma 26. Assume t0 > 0 and (12) holds. Then there are constants C and ε such that if ( fi ) is a solution
to (39) at t > t0, then

w ≥ ε|x − xw| −C (47)
and

|xw| ≤ C. (48)

The proof of Lemma 26 follows one of the arguments in [Donaldson 2008], which is based on [Wang and
Zhu 2004]. The main point is the following convex geometric fact (see Proposition 2 in [Donaldson 2008]).

Lemma 27. Assume f is a convex function on Rn attaining minimal value 0, and suppose

det
(

∂2 f
∂xm∂xl

)
≥ λ

on K = { f ≤ 1}. Then
Vol(K )≤ Cλ−1/2

for some constant C depending only on the dimension n.

Using Lemma 27 we can prove Lemma 26.

Proof of Lemma 26. The proof proceeds in four steps:

Step 1: m is bounded from below. Let ρ−K X be the support function of P−K X defined by

ρ−K X (x)= sup
p∈P−K X

〈x, p〉.

Since ∇w(Rn)= P−K X we have w ≤ m+ ρ−K X . Moreover, by the change of variables p =∇ fi

1=

∫
Pi

e〈Vi ,p〉 dp

VolVi (Pi )
=

∫
Rn

e〈Vi ,∇ fi 〉

VolVi (Pi )
det
(
∂2 fi

∂xm∂xl

)
dx =

∫
Rn

e−w dx ≥ Ce−m
∫

Rn
e−ρ−K X dx ≥ Ce−m,

possibly changing C in the last inequality. This means m is bounded from below by a uniform constant.
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Step 2: m is bounded from above. By monotonicity of the determinant function and convexity we have

det
(

∂2w

∂xm∂xl

)
= det

[
t
∑

i

(
∂2 fi

∂xm∂xl

)
+ (1− t)

∑
i

(
∂2hi

∂xm∂xl

)]

≥ tn
0 det

(
∂2 f j

∂xm∂xl

)
= tn

0 VolVj (Pj )e−〈Vj ,∇ f j 〉−w ≥ Ce−wdx,

where the last inequality follows from the fact that ∇ f j (Rn)= Pj is bounded. This means

det
(

∂2w

∂xm∂xl

)
≥ Ce−m−1

on K = {w ≤ m+ 1}. By Lemma 27, possibly redefining C ,

Vol(K )≤ Cem/2. (49)

Convexity of w and the coarea formula give

1=
∫

Rn
e−w dx ≤ Ce−m/2.

This means m is bounded from above.

Step 3: w ≥ ε| · −xw| −m + 1 for uniform constants ε and C . Since ∇w(Rn) = P−K X and P−K X is
bounded we have that there is a uniform constant r > 0 such that K contains a small ball centered at xw of
radius r . If there was a point in K far from xw then the volume of K would be very big, contradicting (49).
This means K is contained in a ball centered at xw of radius R for some uniform constant R. Convexity
of w gives

w(x)≥
{

R−1
|x − xw| +m if x /∈ K ,

m if x ∈ K .

Moreover, R−1
|x − xw| ≤ 1 on K . This means putting ε = 1/R finishes Step 3.

Step 4: |xw| is bounded. In this step we will use the assumption (12). By the divergence theorem, since
e−w→ 0 exponentially as |x | →∞,∫

Rn
∇we−w dx =

∫
Rn

div∇(e−w) dx = 0.

Moreover, ∫
Rn
∇

(∑
i

fi

)
e−w dx =

∑
i

∫
Rn
∇ fi e−w dx

=

∑
i

1
VolVi (Pi )

∫
Rn
∇ fi e〈Vi ,∇ fi 〉 det

(
∂2 fi

∂xm∂xl

)
dx

=

∑
i

1
VolVi (Pi )

∫
Pi

pe〈Vi ,p〉 dp = 0,
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where the last two equalities are given by performing the change of variables p=∇ fi (x) in each summand
and (12). This means ∫

Rn
∇

(∑
i

hi

)
e−w dx = 0. (50)

Recall that
∑

hi is convex and hence ∇
(∑

i hi
)

is monotone. Hence, if |xw| is large then, putting
v = xw/|xw|, we get that 〈x, v〉 is positive and bounded away from 0 on some large ball centered at xw.
By (47) the mass of e−w dx is concentrated around xw. This contradicts (50). �

We can now prove Theorem 14.

Proof of Theorem 14. First of all, by the change of variables x =∇ui (p) and (15) we have∫
Pi

|∇ui |
q dp =

∫
Rn
|x |q det

(
∂2 fi

∂xm∂xl

)
dx

≤ VolVi (Pi )

∫
Rn
|x |qe−〈Vi ,∇ fi 〉−w dx

≤ C
∫

Rn
|x |qe−w dx ≤ Cq ,

(51)

where the second inequality follows from the fact that ∇ fi (Rn)= Pi is bounded and the last inequality
follows from Lemma 26. Put q = n+ 1 and

ûi =
1

Vol(Pi )

∫
Pi

ui dp.

By Morrey’s inequality (see [Haškovec and Schmeiser 2009]) we have

‖ui − ûi‖C0,γ (Pi ) ≤ C‖ui − ûi‖W 1,q (Pi )

= C‖ui − ûi‖Lq (Pi )+C‖∇ui‖Lq (Pi ),
(52)

where γ = 1− n/q. By the Poincaré–Wirtinger inequality this can be bounded by

C‖∇ui‖Lq (Pi )

for some C . This is bounded by (51). Since Pi is bounded we may conclude from this that

sup
p1,p2∈Pi

|ui (p1)− ui (p2)| ≤ C‖ui − ûi‖C0,γ (Pi ) ≤ C. (53)

This means it suffices to bound each ui in some point.
To bound each ui in some point, note that by general properties of the Legendre transform fi (0)=
−ui (∇ fi (0)). This means

|ui (∇ fi (0))| = | fi (0)| =
1
k

∣∣∣∣∑
j

f j (0)
∣∣∣∣= 1

k
|w(0)|,

where the last two equalities follow from (38) and the fact that hi (0)= 0 for all i . Since |xw| is bounded
and ∇w ∈ P−K X is bounded we have that |w(0)−w(xw)| is bounded. By Lemma 26, |w(xw)| = |m| is
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bounded. This means |ui (∇ fi (0))| and hence, by (53), supPi
|ui | is bounded for each i . By the discussion

following (46) this proves the theorem. �

Proof of Theorem 8. Assuming (12) holds, existence of coupled Kähler–Ricci solitons follow directly
from Theorem 14 and Theorem 15. Indeed, any toric holomorphic vector field Vi is in the reductive part
of the Lie algebra of Aut(X). Moreover, Im Vi generates a compact one-parameter subgroup of Aut(X)
and, since θi is (S1)n-invariant, Im LV (θi )= 0.

Assume that (αi ) admits a coupled Kähler–Ricci soliton. By Lemmas 18 and 25, (13) admits a solution.
Then (12) follows from Lemma 28 below. �

Lemma 28. Assume (13) admits a solution. Then∑
i

APi (Vi )= 0.

Proof. Let ( fi ) be a solution to (13). As in the proof of Lemma 26, by the divergence theorem, since
e−

∑
fi → 0 exponentially as |x | →∞,∫

Rn

(∑
i

∇ fi

)
e−

∑
i fi dx =

∫
Rn

div∇(e−
∑

i fi ) dx = 0. (54)

On the other hand, by (13)

(54)=
∑

i

∫
Rn
∇ fi e−

∑
i fi dx =

∑
i

∫
Rn
∇ fi

e〈Vi ,∇ fi 〉

VolVi (Pi )
det
(
∂2 fi

∂xm∂xl

)
dx .

Performing the change of variables ∇ fi = p in each summand gives that the right-hand side of this equals∑
i

1
VolVi (Pi )

∫
Pi

pe〈Vi ,p〉 dp =
∑

i

APi (Vi ). �

Proof of Corollary 11. Note that ∑
i

APi (V ) (55)

is the gradient of the function on Rn defined by

V 7→
∑

i

log
∫

Pi

e〈V,p〉 dp.

This is strictly convex and proper (in fact, its gradient image is
∑

i Pi = P−K X , which contains zero as an
interior point); hence it admits a unique minimum. Letting V be this minimum means (12) is fulfilled.
The corollary then follows from Theorem 8. �

Proof of Corollary 13. The corollary follows from Theorem 8 and Lemma 25. �
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3.2. Toric test configurations and proof of Theorem 2. Theorem 2 will follow from Theorem 8 combined
with Theorem 1.15 in [Hultgren and Nyström 2018] and an explicit calculation of the Donaldson–Futaki
invariant of test configurations induced by toric vector fields.

In [Hultgren and Nyström 2018] a type of test configuration for decompositions of c1(X) was defined.
The data defining them is essentially given by k test configurations (X1,L1), . . . , (Xk,Lk), where X1 =

· · · = Xk =: X , such that (X ,
∑

i Li ) defines a test configuration for (X,−K X ). The Donaldson–Futaki
invariant associated to this data is defined as the intersection number

DF(X , (Li ))=−
∑

i

Ln+1

|αi |
− (n+ 1)

(
−KX/P1 −

∑
i Li

)
·
(∑

i Li
)n

(−K X )n
, (56)

where |αi | =
∫

X θ
n for any θ such that [θ ] = α. We point out that the notation here differs from [Hultgren

and Nyström 2018] in that here (X ,Li ) are the (C∗-invariantly) compactified test configurations over P1.
Now, recall that if L is a toric line bundle over a toric manifold X , then a toric vector field V induces a

test configuration (X V,LV ) for (X, L). This can be described in the following way: Let d1, . . . , dk ∈N⊗R

and c1, . . . , ck ∈ R be the data defining the polytope PL , i.e.,

PL = {〈di , · 〉 ≥ −ci }.

Then, the polytope of LV can be arranged to be

PLV = {〈di , · 〉 ≥ −ci } ∩ {〈d0+ V, · 〉 ≥ 0} ∩ {〈−d0, · 〉 ≥ −CLV },

where d0 corresponds to the divisor given by the central fiber of X and CLV is a number that can be
modified without changing the Donaldson–Futaki invariant by adding a multiple OP1(1) to LV. In
particular, as long as CLV is big enough for LV to be ample,

(LV )n+1
= Vol(PLV )= Vol(PL)(CLV +〈V, b(PL)〉).

This also gives

(n+ 1)OP1(1) · (LV )n =
d
dt
(LV
+ t OP1(1))n+1

=
d
dt

Vol(PLV+t O
P1 (1))= Vol(PL). (57)

Finally, we note that if L =−K X then LV is the relative canonical bundle of X V up to a twist determined
by CLV .

LV
=−KX V /P1 +CLV OP1(1). (58)

Proof of Theorem 2. Putting V1 = · · · = Vk = 0 gives∑
i

APi (Vi )=
∑

i

b(Pi );

hence it follows from Theorem 8 that part (iii) of the theorem implies part (i). Moreover, (i) implies (ii)
by Theorem 1.15 in [Hultgren and Nyström 2018]. Thus, to finish the proof of Theorem 2, it suffices to
prove that (ii) implies (iii).
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We will prove the contrapositive. Assume
∑

i b(Pi ) 6= 0; in other words
∑

i 〈V, b(Pi )〉< 0 for some
toric vector field V. Let (X V, (LV

i )) be the associated test configuration. As (X V,
∑

i L
V
i ) is a test

configuration for −K X we get, using (58) and |αi | = Vol(Pi ),

DF(X V , (LV
i ))=

∑
i

(LV
i )

n+1

Vol(Pi )
− (n+ 1)

(∑
i CLV

i

)
OP1(1) ·

(∑
i L

V
i

)n

Vol(P−K X )

=

∑
i

(CLV
i
+〈V, b(PL)〉)−

∑
CLV

i

=

∑
i

〈V, b(Pi )〉< 0, (59)

and hence (αi ) is not K-polystable. �

3.3. Proof of Corollary 4.

Proof of Corollary 4. First of all, by [Futaki et al. 1990] (see also [Futaki 1983; Wang 1991]) the Futaki
invariant of X is nonzero; hence X does not admit a Kähler–Einstein metric. To prove the rest of the
corollary, we fix a (C∗)4-action on X in the following way: Consider the standard embeddings of OP2(−1)
and OP1(−1) in to C3

×P2 and C2
×P1 respectively:

OP2(−1)= {((z0, z1, z2), (a0 : a1 : a2)) : z0a1=z1a0, z1a2=z2a1},

OP1(−1)= {((w0, w1), (b0 : b1)) : w0b1=w1b0}.

We get an embedding of X = P(E) into P4
×P2

×P1 as

X = {((z0 : z1 : z2 : w0 : w1), (a0 : a1 : a2), (b0 : b1)) : z0a1 = z1a0, z1a2 = z2a1, w0b1 = w1b0}.

We define a (C∗)4-action by letting an element (t1, t2, t3, t4) ∈ (C∗)4 act on X by

((z0 : z1 : z2 :w0 :w1), (a0 :a1 :a2), (b0 :b1)) 7→ ((z0 : t1z1 : t2z2 : t4w0 : t4t3w1), (a0 : t1a1 : t2a2), (b0 : t3b1)).

The invariant divisors are

D1 = {z0=a0=0}, D2 = {z1=a1=0}, D3 = {z2=a2=0}, D4 = {w0=b0=0},

D5 = {w1=b1=0}, D6 = {z0=z1=z2=0}, D7 = {w0=w1=0}

corresponding to the following elements in the lattice N ∼= Z4 of one-parameter subgroups of (C∗)4:

d1 = (−1,−1, 0,−1), d2 = (1, 0, 0, 0), d3 = (0, 1, 0, 0), d4 = (0, 0,−1, 1),

d5 = (0, 0, 1, 0), d6 = (0, 0, 0,−1), d7 = (0, 0, 0, 1).

The divisor corresponding to −K X is
∑7

i=1 Di . For c ∈
( 1

4 ,
3
4

)
, we will be interested in divisors of the

form

D(c)= c(D4+ D5)+
∑

i 6=4,5

1
2 Di
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corresponding to polytopes

P(c)=
{

y ∈ R4
: 〈y, di 〉 ≤

1
2 , i 6= 4, 5, 〈y, di 〉 ≤ c, i = 4, 5

}
. (60)

Note that the two classes in (5) are given by D(c) and D(1− c) for

c = 1
2 +

1
4

√
5
7 ∈

( 1
4 ,

3
4

)
. (61)

To prove the corollary we will verify the following two facts:

• As long as c ∈
( 1

4 ,
3
4

)
, none of the conditions in (60) are redundant. (By standard theory for toric

varieties this implies D(c) and D(−c) are ample and hence β1 and β2 are Kähler.)

• We have ∫
P(c) y dy∫
P(c) dy

+

∫
P(1−c) y dy∫
P(1−c) dy

= 0

when c is given by (61).

Note that both these conditions are invariant under linear transformations of Rn. Applying to the generators
d1, . . . , d7 the linear transformation

A =


1 0 0 −2
0 1 0 −2
0 0 1 3
0 0 0 6


gives new generators

d ′1 = (−1,−1, 0,−2), d ′2 = (1, 0, 0,−2), d ′3 = (0, 1, 0,−2), d ′4 = (0, 0,−1, 3),

d ′5 = (0, 0, 1, 3), d ′6 = (0, 0, 0, 6), d ′7 = (0, 0, 0,−6),

and a new polytope

P ′(c)=
{

y ∈ R4
: 〈y, d ′i 〉 ≤

1
2 , i 6= 4, 5, 〈y, d ′i 〉 ≤ c, i = 4, 5

}
. (62)

It is straightforward to check that as long as c ∈
( 1

4 ,
3
4

)
, none of the conditions in (62) are redundant; hence

D(c) is ample for any c ∈
( 1

4 ,
3
4

)
. Moreover, the sets {d ′1, d ′2, d ′3, d ′6, d ′7} and {d ′4, d ′5} are both invariant

under the linear transformation

B =


0 −1 0 0
1 −1 0 0
0 0 −1 0
0 0 0 1

 .
It follows that P ′(c) and hence the barycenter of P ′(c) is invariant under B. As any fixed point of B is
parallel to (0, 0, 0, 1) we conclude that∫

P ′(c)
y1 dy =

∫
P ′(c)

y2 dy =
∫

P ′(c)
y3 dy = 0.
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Moreover, we denote by S2 the two-dimensional simplex corresponding to the anticanonical bundle of P2

S2 = {y ∈ R2
: y1 ≤ 1, y2 ≤ 1, −y1− y2 ≤ 1}

and note that (y1, . . . , y4)∈ P ′(c) if and only if y4 ∈
(
−

1
12 ,

1
12

)
, |y3| ≤ c−3y4 and (y1, y2)∈

( 1
2+2y4

)
S2.

We get ∫
P ′(c)

y4 dy =
∫

1
12 [−1,1]

y4

(∫
( 1

2+2y4)S2

dy1 dy2

)(∫
(c−3y4)[−1,1]

dy3

)
dy4

= 2 Vol(S2)

∫
1
12 [−1,1]

y4
( 1

2 + 2y4
)2
(c− 3y4) dy4 =

5c− 2
720

and similarly ∫
P ′(c)

dy = 2 Vol(S2)

∫
1

12 [−1,1]

( 1
2 + 2y4

)2
(c− 3y4) dy4 =

56c− 3
144

.

It follows that∫
P ′(c) y4 dy∫

P ′(c) dy
+

∫
P ′(1−c) y4 dy∫

P ′(1−c) dy
=

1
5

(
5c− 2
56c− 3

+
5(1− c)− 2
56(1− c)− 3

)
=
(112c2

− 112c+ 23)
(56c− 53)(56c− 3)

, (63)

which vanishes as

c = 1
2 ±

1
4

√
5
7 ∈

( 1
4 ,

3
4

)
. �
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