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We prove that the Dirichlet problem for degenerate elliptic equations div(A4Vu) = 0 in the upper half-space
(x,t)e [R{T'l is solvable when 7 > 2 and the boundary data is in L1 (R") for some p < oo. The coefficient
matrix A is only assumed to be measurable, real-valued and ¢-independent with a degenerate bound and
ellipticity controlled by an A,-weight p. It is not required to be symmetric. The result is achieved by prov-
ing a Carleson measure estimate for all bounded solutions in order to deduce that the degenerate elliptic
measure is in A, with respect to the p-weighted Lebesgue measure on R”. The Carleson measure estimate
allows us to avoid applying the method of e-approximability, which simplifies the proof obtained recently
in the case of uniformly elliptic coefficients. The results have natural extensions to Lipschitz domains.
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1. Introduction

We consider the Dirichlet boundary value problem for the degenerate elliptic equation div(AVu) = 0 in the
upper half-space [R{'rrl when n > 2 and which we make precise below. The boundary R” x {0} is identified
with R and we adopt the notation X = (x, ¢) for points X € [R’j_“ with coordinates x € R” and ¢ € (0, 00).
The gradient V := (Vy, d¢) and divergence div := div, +3; are with respect to all (n41)-coordinates. The
coefficient A denotes an (n+1) x (n+1) matrix of measurable, real-valued and ¢-independent functions
on [R{’jr“Ll. The matrix A(x) := A(x,t) is not required to be symmetric. We suppose that there exist

constants 0 < A < A < co and an A,-weight p on R” such that the degenerate bound and ellipticity

{AM)E O < Ap(x)IEE] and  (A(x)E &) = Au(x)IE? (1.1)

hold for all £,¢ € R"*! and almost every x € R". We use (-,-) and | - | to denote the Euclidean
inner product and norm. An A;-weight  on R” refers to a nonnegative locally integrable function
MSC2010: 35J25, 35170, 42B20, 42B25.
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u:R" — [0, oo] such that

1 1
litla,@my = S“p(|Q|/ px)dx )(|Q|/Qu<x> ) >

where supg denotes the supremum over all cubes Q in R” with volume |Q|. We also use u to denote the
measure ©(Q) = fQ p(x) dx and consider the Lebesgue space L% (R") with the norm ||f||Lp(Rn) =
(fn |f|1’ dp) VP for all p €[1,00). There is also the notation £, f dp 1= pu(Q)~ lfQ f d, whilst
fQ =10|" lfQ S(x)dx.

If p is identically 1, then A is called uniformly elliptic. The solvability of the Dirichlet problem for
general nonsymmetric coefficients in that case was obtained only recently by Hofmann, Kenig, Mayboroda
and Pipher [Hofmann et al. 2015a]. The result in dimension » = 1 had been obtained previously by Kenig,
Koch, Pipher and Toro [Kenig et al. 2000]. These results assert that for each uniformly elliptic coefficient
matrix A there exists some p < oo for which the Dirichlet problem is solvable for L?-boundary data.
Conversely, counterexamples in [Kenig et al. 2000] show that for each p < 0o, there exists a uniformly
elliptic coefficient matrix A for which the Dirichlet problem is not solvable for L?-boundary data. In
contrast, solvability of the Dirichlet problem for symmetric coefficients in the uniformly elliptic case is
well understood, and we mention only that it was obtained by Jerison and Kenig [1981] for L?-boundary
data when 2 < p < oo.

The solvability of the Dirichlet problem in the uniformly elliptic case has also been established for
a variety of complex coefficient structures; see, for instance, [Auscher and Stahlhut 2014; Hofmann
et al. 2015a; 2015b]. A significant portion of that theory was recently extended to the degenerate elliptic
case by Auscher, Rosén and Rule [Auscher et al. 2015] for Lz—boundary data. That extension did not
include, however, the results for general nonsymmetric coefficients in [Hofmann et al. 2015a]. This paper
complements the progress made in [Auscher et al. 2015] by extending the solvability obtained for the
Dirichlet problem in [Hofmann et al. 2015a] to the degenerate elliptic case.

For solvability on the upper half-space [R’f'l, the Ap-weight u on R” is extended to the ¢-independent
Aa-weight p(x, 1) := u(x) on R**! (and (1] 4, @n+1y = [1]4,®n))- We then say that u is a solution of
the equation div(4Vu) = 0 in an open set 2 € R"™! when u € WM 1OC(SZ) and fRn-H (AVu,vo) =0
for all smooth compactly supported functions ® € C>°(£2). The solution space is the local u-weighted
Sobolev space WM,loc defined in Section 2. The convergence of solutions to boundary data is afforded by
estimates for the nontangential maximal function Nsu of solutions u, defined by

(Nsu)(x):= sup |u(y,t)| forall x € R",
(.)€l (x)
where I'(x) is the cone {(y,?) € R"‘H t|ly —x| <t} If p e (1,00), then the Dirichlet problem for
Lﬁ(R") boundary data, or simply (D)p w» 18 said to be solvable when for each f € Lh w(R™) there exists

a solution u such that
div(AVu) =0 in R"F!,
Nau € LE(R™), (D)pou
hmt—)()u( ’t) - .f’
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where the limit is required to converge in Lﬁ(R”)—norm and in the nontangential sense whereby
limr (x)s(y,1)—(x,0) ¥(¥, 1) = f(x) for almost every x € R". Note that this definition of solvability
is distinct from well-posedness, which requires that such solutions are unique. We are able to obtain a
uniqueness result for solutions that converge uniformly to O at infinity, but the question of well-posedness
more generally remains open (see Theorem 5.34 and the preceding discussion).

A nonnegative Borel measure w on a cube Qg in R” is said to be in the Axo-class with respect to pu,
written w € Ao (1), when there exist constants C, 6 > 0, which we call the Ao, (Q¢)-constants, such that

M(E)

0
w(E) < C (@) o(0)

for all cubes Q C Qg and all Borel sets £ C Q. This is a scale-invariant version of the absolute continuity
of w with respect to u. It is well known, at least in the uniformly elliptic case, that solvability of the
Dirichlet problem for L?-boundary data for some p < co is equivalent to the property that an adapted
harmonic measure (elliptic measure) belongs to Ao, with respect to the Lebesgue measure on R”; see

X , which we call

Theorem 1.7.3 in [Kenig 1994]. In the degenerate case, an adapted harmonic measure w
degenerate elliptic measure, can also be defined at each X € [Ri'j_“ (see Section 5). We prove that this
degenerate elliptic measure is in Ao With respect to v and then deduce the solvability of (D), ,, stated
in the theorem below. This requires the notation associated with cubes Q in R", where x¢p and £(Q)
denote the centre and side length of Q, respectively, and X := (xg,£(Q)) denotes the corkscrew point

in [Ri:’_“ relative to Q.

Theorem 1.2. If n > 2 and the t-independent coefficient matrix A satisfies the degenerate bound and
ellipticity in (1.1) for some constants 0 < A < A < oo and an A-weight . on R", then there exists
p € (1, 00) such that (D), is solvable. Moreover, on each cube Q in R", the degenerate elliptic measure
w = wX2 | Q satisfies w € Aoo(t) With Aso(Q)-constants that depend only on n, A, A and (]as-

In contrast to the proof of solvability in the uniformly elliptic case in [Hofmann et al. 2015a], we avoid
the need to apply the method of e-approximability by first establishing the Carleson measure estimate
in the theorem below. This crucial estimate facilitates the main results of the paper. The connection
between the Carleson measure estimate and solvability was first established in the uniformly elliptic case
by Kenig, Kirchheim, Pipher and Toro [Kenig et al. 2016], and we follow their approach here, adapting it
to the degenerate elliptic setting (see Lemma 5.24 below). In particular, the Aso-property of degenerate
elliptic measure is obtained by combining the Carleson measure estimate (1.4) with the notion of good
e-coverings introduced in [Kenig et al. 2000].

Theorem 1.3. If n > 2 and the t-independent coefficient matrix A satisfies the degenerate bound and
ellipticity in (1.1) for some constants 0 < A < A < 00 and an A-weight (1 on R", then any solution
ue L°°(R’_1|_+l) of div(AVu) =0in IR’f'_—"l satisfies the Carleson measure estimate

L Q)
sup ———
o Q) Jo

where C depends only on n, A, A and [1t]4,.

dt
. |1V, 1) dp(x) = < Clul%, (1.4)
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Using the Carleson measure estimate in this way allows us to bypass the need to establish norm-
equivalences between the nontangential maximal function Nxu and the square function Su of solutions u,

defined by
_ » _dp(y) dr)'? "
(SM)(X)— (//l:(x) |tVu(y,t)| MT) for all x € R",

where A(x,t) is the surface ball {y € R” : |y — x| < t}. It was shown by Dahlberg, Jerison and Kenig
[Dahlberg et al. 1984], however, that such estimates are a consequence of the Ao-property of degenerate
elliptic measure, which provides the following result.

Theorem 1.5. If n > 2 and the t-independent coefficient matrix A satisfies the degenerate bound and
ellipticity in (1.1) for some constants 0 < A < A < 00 and an Ay-weight i on R", then any solution of
div(AVu) =0 in RTLI satisfies

”SMHLZ(R”) = C||N*U||L5(Rn) forall p € (0, 00),
and if, in addition, u(X¢) = 0 for some X¢ € R'}r"'l, then
||N*u||Lﬁ(Rn) = C||S”||Lﬁ([r@n) for all p € (0, 00),

where C depends only on Xg, p,n, A, A and [t]4,.

The paper is structured as follows. Technical preliminaries concerning weights and degenerate elliptic
operators are in Section 2, whilst estimates for weighted maximal operators are in Section 3. The Carleson
measure estimate in Theorem 1.3 is obtained in Section 4. The degenerate elliptic measure is constructed
in Section 5 and then the Aso-estimates in Theorem 1.2 are deduced as part of Theorem 5.30. The square
function and nontangential maximal function estimates in Theorem 1.5 are included in the more general
result in Theorem 5.31, whilst the solvability of the Dirichlet problem in Theorem 1.2 is finally deduced
in Theorem 5.34, where a uniqueness result is also obtained.

We state and prove our results in the upper half-space, but we note that they extend immediately to
the case that the domain is the region above a Lipschitz graph, by a well-known pull-back technique
which preserves the ¢-independence of the coefficients. In turn, our results concerning the Ao-property
of degenerate elliptic measure may then be extended to the case of a bounded star-like Lipschitz domain,
with radially independent coefficients, by a standard localization argument using the maximum principle.

The convention is adopted whereby C denotes a finite positive constant that may change from one line
to the next. For a, b € R, the notation a < b means that a < Cb, whilst ¢ < b means thata < b < a. We
write a <p b when a < Cb and we wish to emphasise that C depends on a specified parameter p.

2. Preliminaries

We dispense with some technical preliminaries concerning general A,-weights u for p € (1, 00) and
degenerate elliptic operators on R” for n € N. All cubes Q and balls B in R" are assumed to be
open (except in Section 5D where the standard dyadic cubes S in D(R") are assumed to be closed
to provide genuine coverings of R”). For @ > 0, let «Q and aB denote the concentric dilates of Q
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and B respectively. For x € R” and r > 0, define the ball B(x,r) :={y e R" : |y —x| <r}. An
Ap-weight refers to a nonnegative locally integrable function 1 on R” with the property that [©]4, (rn) =
supgo (f 0 :“) (f o) V“_l/(p_l))p 1o o0. The measure associated with such a weight satisfies the doubling

property
p(aB) < [u]a,a"? n(B) 2.1)

for all & > 1; see, for instance, Section 1.5 in Chapter V of [Stein 1993].
For an open set 2 C R”, the Sobolev space W/}’p (R2) is defined as the completion, in the ambient
space Lﬁ(Q), of the normed space of all f € C°°(2) with finite norm

p = Pd VflIPd : 2.2
10 sy = [ LVt [ 19517 dp <o 22)

The embedding of the completion Wﬂl’p () in L{,(Q) relies on the A,-property of the weight (to the
extent that it implies both u and /,L_l/(p_l) are in LlloC (€2)), which ensures that if (f;); is a W;’p(Q)—
Cauchy sequence in C *°(£2) converging to 0 in Lﬁ(Q), then (fj); converges to 0 in le "7 (Q)-norm;
see Section 2.1 in [Fabes et al. 1982b]. Therefore, since C°°(£2) is dense in Wul "P(Q), the gradient
extends to a bounded operator V : W/Ll’p (Q) —> Lﬁ(Q, R"), thereby extending (2.2) to all f € W/Ll’p ().
The Sobolev space WOI,;f (€2) is defined as the closure of C°(R2) in WM1 "7 (). It can be shown that
Wol,;f (R*) = W,}’p (R™) by following the proof in the unweighted case from Proposition 1 of Chapter V
in [Stein 1970] but instead using Lemma 2.2 in [Auscher et al. 2015] to deduce the convergence of the
regularization in LZ(R”). The local space WJ:lf)’C(Q) is then defined as the set of all f € LZJOC(Q) such
that f € Wul "7 (Q') for all open sets " with compact closure Q' C Q (henceforth denoted by Q' € Q).
Finally, the weighted Sobolev and Poincaré inequalities obtained for continuous functions in Theorems 1.2
and 1.5 in [Fabes et al. 1982b] have the following immediate extensions.

Theorem 2.3. Let n > 2 and suppose that B C R" denotes a ball with radius r(B). If p € (1, 00) and 1
is an Ap-weight on R", then there exists § > 0 such that

U(p(y48)) y
(f |f|1’(nf1+8)du) ’ srw)(][ IVfI”du) ’ @4
B B
forall f € Wy'?(B), and
1/p 1/p
(][ |f(x)—cB|Pdu) srw)(][ IVfI”du) @5)
B B

forall f € WMl’p(B) and cp € {fB fdu, {g f}, where the implicit constants depend only on n, p
and [u]a,. The estimates also hold when the ball B and the radius r(B) are replaced by a cube Q and
the side length £(Q).

For n € N, constants 0 < A < A < 0o and an Aj-weight © on R”, let £(n, A, A, i) denote the set
of all n x n matrices A of measurable real-valued functions on R” satisfying the degenerate bound and
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ellipticity
{AME O = Apn(x)IENIE] and  (A(X)E, €) = Ap(x)IE (2.6)

for all £, ¢ € R" and almost every x € R". These properties allow us to define
Ly :Dom(Ly) S L7(Q) — L1 (RQ)

as the maximal accretive operator in Li(Q) associated with the bilinear form defined by

1
oalf.g) = [ (AVAVe) = [ (LAY £ Ve)dy @)
Q Q'K
forall f,g € WO{i(Q). The domain of £, g is dense in LIZL(Q), and in particular

Dom(L,,q) = {f € Woli(Q) : sup M < oo},
’ gecc@) 1€lL2 @)
with

fQ (L0 f)gdu=aa(f.g) 2.8)

for all f € Dom(L, ) and g € Wolﬁ(Q). It is equivalent to define £, o as the composition
—div,, o((1/1)AV) of unbounded operators, where — div,, o is the adjoint V* of the closed densely
defined operator V : WOI”/%(Q) - Li(Q) — LIZL(Q, R), that is,

/ (—divq f)gdu = / (f.Vg)du 2.9)
Q Q

for all f € Dom(div,, @) :=Dom(V*)and g € Wol’;f (£2). In view of (2.7) and (2.8), we have the formal
identities div,, o = (1/u)divg p and £, o = —(1/p) dive (AV).
Now let 2 = Q for some cube Q C R” and denote the space of bounded linear functionals on WOI’Z(Q)

K

by WOT;’Z(Q). The inclusions WO{ﬁ(Q) - Lli(Q) - WO_,/i’Z(Q) are interpreted in the standard way by
identifying f € Li(Q) with the functional £ defined by ££(g) := fQ fgduforall g e WO{ﬁ(Q). Thus,

setting

Luof(@)=ap(fg) and —divup f(g):= /Q (f.Vg) du

forall f, g € WOI”;(Q) and f € L?(Q,R"), we obtain an extension of L, 0 from (2.8) to a bounded

invertible operator from Wol’;f(Q) onto WO_’:L’Z(Q), and an extension of div,, o from (2.9) to a bounded
operator from LIZL(Q) into WOT;’Z(Q). The surjectivity of £, o relies on (2.4) and the Lax—Milgram
theorem. These definitions imply

”V[’;}Q diVM,Q f”L%,_(Q,R") S ”f”le,,(Q,[R")

forall f € Li(Q, R"™). The topological direct sum or Wol”i( 0)-Hodge decomposition

L%(Q.R") = {iAVg ‘g€ WO{;f(Q)} ® {h € L%(Q.R") :divy,0 h = 0} (2.10)
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follows by writing
f= —iAVEE}Q divio f+(f + ﬁAVﬁ;}Q div,0 f) = iAVg +h,

since then div, o h = div, o f — E,LL,QE;}Q div,, o f = 0. This decomposition also extends to
Lﬁ(Q, R") for all p € [2,2 4+ €) and some € > 0 by recent work of Le [2015], although we do not need
it here.

Now let Q = R" and consider div,, := divy, g as in (2.9) so £, := —div,((1/un)AV) is maximal
accretive, thus having a maximal accretive square root cl/ 2 in L%L(R”). The solution of the Kato square
root problem in [Auscher et al. 2002] was recently extended to degenerate elliptic equations by Cruz-

— 1,2 mny.
gi)lrl:le(zrlljlzl){lis [2(1)125(3Rn"1;h15 shows that ||£M f||L2 (Rn) ~ ”Vf”Lﬁ(R",R") for all f € W,”(R"); hence

The operator £, is also injective and type-S,+ in L%L(R”) for some w € (O, 2) so it has a bounded
H®(Sg, )-functional calculus in LIZL(IR”) for each 6 € (w, ), where Sg :={z € C\ {0} : |argz| < 0}.
See Section 2.2 of [Auscher 2007] for the uniformly elliptic case and Theorems F and G in [Albrecht
et al. 1996] for the general theory. An equivalent property is the validity of the quadratic estimate

/0 LD T2 oy o = 112 gy Torall f € L2, @.11)

for each holomorphic ¥ on Sg__ satistying |y (z)| < min{|z|*, |z| 7B} for some «, B > 0, where the
bounded operator ¥ (1 £<) on Li([R{") is defined by a Cauchy integral. More generally, the relationship
between bounded holomorphic functional calculi and quadratic estimates is developed in the seminal
articles [Mclntosh 1986; Cowling et al. 1996].

The functional calculus then defines a bounded operator ¢ (L) on Li(R”) for each bounded holomor-
phic function ¢ on Sg and ”('D(L:M)HL,ZL(R")—)L%L(R”) <6 ||¢lloo- Another consequence is that —L,,
generates a holomorphic contraction semigroup (e_““);e 82,5, U0} ON L? 2 (R"); thus e s f €
Dom(£L,,) and d;(e™*“= f) = Lye "= f for all f € L7, (R") and t > 0. The functional calculus
also extends to define an unbounded operator ¢ (L) on Li ([R”) for each holomorphic function ¢ on S
satisfying |¢(z)| < max{|z|%, |z| 78} for some a, B > 0, but the algebra homomorphism property of the
functional calculus (¢1(Ly)P2(Ly) = ($1$2)(L,,)) must then be interpreted in the sense of unbounded
linear operators. This allows us to interpret both the semigroup and the square root of £, in terms of the
functional calculus in order to justify some otherwise formal manipulations, beginning with (2.15) in the
proof of the following corollary of the solution of the Kato problem in [Cruz-Uribe and Rios 2015].

Theorem 2.12. Let n > 1 and suppose that A € E(n, A, A, ) for some constants 0 < A < A < o0 and
an Az-weight p on R". The operator L, 1= —div, ((1/ /L).AV) satisfies

o0
| egyenrtes f||L2(Rn) = IV 12 gy 2.13)

42
/(; ||t Vx I'C,U,e ! Eﬂf||L2 (IR” RnJrl) t ~ ”vf”LZ (R” R”) (214)

forall f € WMI’Z([R{"), where the implicit constants depend only on n, A, A and [t]a,
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Proof. The functional calculus of £, justifies the identity

£Me—t25uf = ﬁb/2e—t2£u£llb/2f - e_(tz/z)ﬁﬂﬁue_(tz/z)ﬁﬂf (2.15)
for all f € Dom(ﬁ}/ 2) and ¢ > 0. The first equality in (2.15), the quadratic estimate in (2.11) and the

solution of the Kato problem in [Cruz-Uribe and Rios 2015] imply

o0 _ dt _ dt
[ e 12 ) = [ e R )

1/2
”‘C f||L2 (R™)
~ ”Vf”Lﬁ(R”,R”)
1/2y _ 1.2 mon .
for all € Dom(L,/~) = W,,”(R"), which proves (2.13).

The bounded H*°(S7, )-functional calculus of £, implies the uniform estimate
o+ n

2 2 _ [:
”tvx,te ! Mg||L2 R7 Rn—‘,—l) ||tat€ ! g”L2 R”) + ||tvx ! ||L2 R” Rn)

N “l‘zﬁ e’ ﬁ“g”LZ (R™) +/ 1*(AVye™ L‘“g, Vxe_ﬂﬁug)
R7
—2r —12
S g7z oy + 102 Lie™ gl oy le™ gl 2,
5 “g”i‘ZL(Rn)

forall g € LIZL([RR”) and ¢ > 0. Thus, the second equality in (2.15) and the vertical square function estimate
in (2.13), which we have already proved, imply

- dt -
J R Ty e o e 2 Y

for all f € W,">(R"), which proves (2.14). O

Now let us return to the case when 2 € R” is an arbitrary open set and suppose that f : Q@ — R"
is a measurable function for which (1/u) f € L°°(Q). A solution of the inhomogeneous equation
div(AVu) =div f in Q C R” refers to any function u € wl loc(Q) such that [p, (AVu— f,V®) =0 for
all ® € C2°(S2). All solutions u of the homogeneous equatlon div(AVu) = 0 in 2 are locally bounded
and Holder continuous in the sense that

1/2
lullzooB)y < (f u|? du) (2.16)
2B

and there exists « > 0 such that

_ o 1/2
lu(x) —u(y)| < ('j(—;;') (f |u|2du) for all x, y € B, (2.17)
2B
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and if, in addition, ¥ > 0 almost everywhere on €2, there is the Harnack inequality

supu <infu (2.18)
B B

for all balls B of radius r(B) such that 2B C €2, where « and the implicit constants depend only on 7, A,
A and [p]4,. These properties follow from Corollary 2.3.4, Lemma 2.3.5 and Theorem 2.3.12 in [Fabes
et al. 1982b] by observing that the proofs do not use the assumption therein that 4 is symmetric. The
estimates also hold when the balls B are replaced by (open) cubes Q, and also when the dilate 2B is
replaced by Co B for any Cy > 1, provided the implicit constants are understood to depend on Cy.

The following local boundedness estimate for solutions of the inhomogeneous equation is needed in
Lemma 4.3, although only for p = 2. This is a simpler version of Theorem 8.17 in [Gilbarg and Trudinger
1977], which we have adapted to degenerate elliptic equations. In fact, the result for p > 2 is already
proven in [Fabes et al. 1982b] by combining Corollary 2.3.4 with estimates (2.3.7) and (2.3.13) therein.
The proof is included here for the reader’s convenience and since it implies (2.16) as a special case, which
in turn is the well-known starting point for establishing (2.17).

Theorem 2.19. Let n > 2 and suppose that A € E(n, A, A, i) for some constants 0 < A < A < 00 and
an Ap-weight i on R™. Let Q C R” denote an open set and suppose that f : Q — R" is a measurable
Sfunction such that (1/p) f € L°(Q). If p € (1, 00) and div(AVu) = div f in Q, then

1/p
1
Wl < (£, 1P ai) - ra|Lr], Lo 2.20)

for all balls B of radius r(B) > 0 such that 2B C 2, where the implicit constant depends only on p, n, A,
A and [p] 4,

Proof. Suppose that div(AVu) = div f in Q and consider a ball B such that 2B C 2. First, assume that
u is nonnegative and in L°°(2B). Let € > 0, setk =r(B)|(1/1) f ||Lo(@) and ¢ :==u +k + €. Let B,
denote the ball concentric to B with radius r > 0 and recall the index § > 0 from the Sobolev inequality
in Theorem 2.3. We claim that if y € [p, 0c0) and r(B) <r; <r <2r(B), then

n 1/ (y (2 +5)) 2/
(f ﬁz(m-l-S) du) 4 < (]/ r ) V(][
B, r2—r B

where the implicit constant depends only on p, n, A, A and [p]4,. To prove (2.21), fix n € C2°(2) such
that n: 2 — [0,1], n=1o0n B;, n=00n Q\ By, and |V <2/(rp —71). Set B :=y —1 and
V= n%zf. Note that v € WOI’;%(Q) with

1/y
uY d,u) , (2.21)

2

Vo =2nVnab + n2af~vu,

since 0 < € < ue(x) < |lul|poo2B) + k + € < oo for almost every x € 2B; thus

/ (AVu— f . 2nVniP) = —/ (AVu— f, pr?ab=1vu).
Rn Rn
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We then use this identity and Cauchy’s inequality with o > 0 to obtain
/ nzﬁf_1|Vu|2du §,1/ 20 ﬂ Y AVuU, Vu)
R R”
=27 [ wil (AVu— £ )+ [ oab g V)
n Rn
<a o)™t [ il (1Vul+ [ L )1Vnldi [ el g 19ulan

Spo [ At vePdus ot [ A dp

+/ ﬁﬂ"rlv Zd +/( )/3+1d
Ve V|~ du B) %

_B_ — U _B+1
—|—o/ nzuﬂ YWul?du+o 1/ ( ) du,
Rn € R”? V(B)

where in the second inequality we used the assumption that § :=y —1 > p —1 and in the final inequality
we used the fact that |(1/w) f| <k/r(B) <iue/r(B) on 2. Next, choose 6 > 0 small enough, depending
only on p, A and A, to deduce that

2
1
vy du < / B“(v 2+(L))d s—/ abtau,
/;r | | M plA R Ue | 7}| r(B) M (72_7‘1)2 Brz K

1

where in the final inequality we used the fact that r(B) > r, — r;. Now combine this estimate with the
Sobolev inequality (2.4) and recall that 8 := y — 1 to obtain

n 1/ (G +6)
(][B -)’(n 1+5)d ) < rIZ][ |V(ﬁgﬂ+1)/2)|2 du

r Bl‘]

S+on? £ a7 du

8!

2
ri _
s(y ) ][ ul du,
rp—ri B,

2

where the implicit constants depend only on p, n, A, A and [u]4,, proving (2.21).
We now apply the Moser iteration technique to prove (2.20). Set y :=n/(n — 1) 4+ § and define
d(q,r) = (fBr uld du)l/q for g, r > 0. Estimate (2.21) implies

2]y
) O(y,r2),

where C depends only on p, n, A, A and [u]4,, and it follows by induction that

r
O(yy.r1) < (CV 1
rp —ri

D(py™. (1+27™)r(B)) < (4Cp)@/PYIE=0 17" (2) /D Y= kx™ @ (p. 21 (B)) < B(p. 2r(B))
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for all m € N. This shows that

1/p
liloeqay = Jim @(p2".r(B) < 0(p.20(8) = ({2 du)

and therefore

1/p 1/p 1
il < Vel < (£ 72di) = (£ wran) " 4r@|Lr], o +e
2B 2B MU ILoo(R)

for all € > 0, which implies (2.20).

Finally, it remains to remove the assumption that u is nonnegative and bounded. This is achieved by
setting ¢ := max{u, 0} + k + € and u, := — min{u, 0} + k + € respectively and in each case adjusting
the proof above to incorporate the truncated test function v := 5%k (ii¢ )iie, where

xP-1 x<N+k+e,

h =
N ) {(N+k+e)ﬂ—1, x>N+k+e.

We leave the standard details to the reader. O

The following self-improvement property for Carleson measures will be used in conjunction with the
local Holder continuity estimate for solutions in (2.17). The result is proved in the unweighted case in
Lemma 2.14 in [Auscher et al. 2001]. In that proof, the Lebesgue measure on R” can in fact be replaced
by any doubling measure, since the Whitney decomposition of open sets can be adapted to any such
measure; see, for instance, Lemma 2 in Chapter I of [Stein 1993]. The result below then follows.

Lemma 2.22. Let n > 1 and suppose that |4 is an Az-weight on R". Let «, Bo > 0 and suppose that
(v¢) >0 is a collection of Hélder continuous functions on a cube Q C R”" satisfying

0<v(0)<Po and [or(x)—v, ()] < ﬂo("“:y')

forall x,y € Q. If there exists n € (0,1], B > 0 and, for each cube Q' C Q, a measurable set F' C Q’
such that

L) d
p(F) 2 (@) and —o [ v dun < p,
then
1 {(Q) d
iy v e san b4 o

where the implicit constant depends only on a, n, n and [{t]4,.

3. Estimates for maximal operators

We obtain estimates for a variety of maximal operators (M, D« ;, N, and ]V,,f’ w) adapted to an A>-
weight p and degenerate elliptic operators £, := —div,, ((1/1).AV) on R" for n > 2. These will be used
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to prove the Carleson measure estimate from Theorem 1.3 in Section 4. We first define the maximal
operators M, and Dy , by

My, f(x) = sup ﬁ 1O,

r>0

_ 2 1/2
puasr=mn(f,, (G o)

forall f € L}L’IOC(R”), gEe WJ,’I%)C([R”) and x € R". The usual unweighted and centred Hardy-Littlewood

maximal operator is abbreviated by M. The maximal operator M, is bounded on Lﬁ([R{”) for all
p € (1, 00) and satisfies the weak-type estimate

,bL({X eR": |Mﬂf(x)| > K}) 5 K_IHf”LL'(R”) for all « > 0» (31)
forall f € LL(R”); see, for instance, Theorem 1 in Chapter I of [Stein 1993]. There is also the following
weak-type estimate for the maximal operator Dy ;.

Lemma 3.2. Letn > 2. If i is an Ax-weight on R", then
p(x €R" | Duy f(X)| > 1) SKT2IVLIZ, @y Jorall k>0, (3.3)
“m >

forall f € WMI’Z([R”), where the implicit constant depends only on n and [|t)4,.
Proof. If f € C2°(R"), then a version of Morrey’s inequality [1966, Theorem 3.5.2] shows that
FACIEFASD]
[x =yl
for almost every x, y € R”; hence
Dayu f(x) S M(Vf)(x) + (Mu[M(V ) (x))

Estimate (3.3) then follows from the weak-type bound for M, in (3.1), the fact that M is bounded on
Li([R{”) (see, for instance, Theorem 1 in Chapter V of [Stein 1993]) and the density of C°(R")

S MV f)x) + MV f)(y)

1/2

in W, (R). O
We now define the nontangential maximal operators N, and ﬁf - for n >0, by
N 1/2
Nou(x):= sup  |u(y,1), N,.f’,uv(x) = sup (f lv(z, t)|2 d,u(z))
(y.0)€Ty(x) (y,1)ely(x) \J B(y,tat)

for all measurable functions u, v on R’f’l (such that v(-,?) € LiﬁlOC(IR”) for a.e. t > 0) and x € R”,
where I'y(x) :=={(y,1) € [F\R’firJrl .|y — x| < nt} is the conical nontangential approach region in [R'rrl with
vertex at x and aperture 7.

Now suppose that A € E(n, A, A, 1), as defined by (2.6). In particular, since A has real-valued

coefficients, there exists an integral kernel W;(x, y) such that

S = [ W) f ) i) G4
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forall f € L2 ([R{”) and there exists constants C1, C2 > 0 such that

G lx—y?
Wi (x, y)| < m eXp(—Cz ; ) 3.5)

for all t+ > 0 and x, y € R". This was proved by Cruz-Uribe and Rios for f € CZ°(R") under the
assumption that 4 is symmetric; see Theorem 1 and Remark 3 in [Cruz-Uribe and Rios 2014]. The

symmetry assumption can be removed, however, by following their proof and applying the Harnack
inequality for degenerate parabolic equations obtained by Ishige [1999, Theorem A], which does not
require symmetric coefficients, instead of the version recorded in Proposition 3.8 of [Cruz-Uribe and Rios
2008]. The results also extend to f € Li(IR”) by density, Schur’s lemma and the doubling property of x.

We now consider the semigroup generated by £, := —div,((1/1).AV) with elliptic homogeneity (¢
replaced by ¢2) and denoted by P; := ¢! *Lu in the estimates below.

Lemma 3.6. Let n > 2 and suppose that A € E(n, A, A, u) for some constants 0 < A < A < oo and an
As-weight i on R™. Let p € (1, 00) and suppose that | is also an Ap-weight on R". If x € R", n > 0 and
o > 1, then

sup  [(00) " [Poe (f = cBr.ano) |0 Sa [Mu(IV £ 17) ()] (3.7
(¥.1)ely(x)

forall f € WMl’p([R”) and cp(x,ant) € {fB(x,ant) fdu, fB(x,ant) f}, and

INJ@cPe ) Sy IMu(IV £ 17) ()17, (3.8)
I INT @ Pe )7 S MU (V£ 1P) ()2, (3.9)
INJ (VP /))P < My (IMu (1Y £ 1P)P/P) () + Mu (1Y f ) (x) (3.10)

forall f € WP}’Z(R”) N Wu} l’;C([R”), where the implicit constants depend only on n, A, A, p, [i]a, and

[it]a,, as well as on o in (3.7) and on 7 in (3.8).

Proof Let x € R", (y.1) € T(x), f € Wy (R") N W, D (RY). fpix) = fpieny f and fpea) =
JEB(x t)f du. To prove (3.7), it suffices to assume that n = 1 and o > 1. We set Cy(¢) := B(x, at)
and define the dyadic annulus C; (¢) := B(x, 2/at)\ B(x,2/ lat) for all j € N. The Gaussian kernel
estimates in (3.4) and (3.5) imply

T P (S = fBGean) I =17 2 (3. 2)f(2) = fB(xan] du(z)

ly —z|?

=20 IM(B(J’ ) c.(t)e"p(‘cz )lf(z) fBean| din(z)

j=0
o
=) I

i=0

~.
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To estimate /g, note that B(x, «t) € B(y, (1 + «)¢) and apply the doubling property of u, followed by
the Lj;-Poincaré inequality in (2.5) with cg = fp(, ;) [ to obtain

1/p
Io Sat™! ][ If(Z)—fB(x,at)ldM(Z)S(][ IVflpdu) < M (1Y £17) (]2
B(x,axt) B(x,axt)

To estimate [, for each j € N, expand f(z) — fB(x,ar) as a telescoping sum to write
y2 H(B(x, 2jott))t_1
(B(y.1)) ;
X (f - f - fB(x,zf'az)| du+ Z |f~B(x,2iat) - fB(x,zi—lat)| + 1 /B(r.at) — SB(x.an) |)
B(x,27 at)

i=1

I < Cre~ G2 lam1

< G202 am 2 W(B(y. (1427 a)1) _1][ CE
1(B(y,1)) Z B(x.2ar) | = IBGx2ian | dit

’Se—Cz(Zj_lOt—l)z(l +2ja)2n 2la(f
Z -

=0

1/p
IVfI”dM)

(x,2 at)

<o Y 4IIML(V 1))V,

~

where the second inequality relies on the inclusion B(x,2/at) € B(y, (1 4+ 2/a)t), whilst the third
inequality uses the doubling property of w in (2.1) with p = 2, and the Lﬁ—Poincaré inequality in (2.5)
with cg = fB(x sign J dii. Altogether, we have

T P = SBran)] ()] a(ze—c‘“zt"f) [Mu(IV £1P) NP < M (V£ 12) (012

which proves (3.7) when cp(x,ar) = fB(x,az) f. The proof when cp(x.qr) = fB(xm) f du follows as
above by replacing fB(x,qr) With fB(x 4r), since (2.5) can still be applied.

To prove (3.8) and (3.9), suppose that n > 0. The Gaussian kernel estimate for e ~**# in (3.5) implies
that 7d,P; f(y) has an integral kernel W,2(y, z) satisfying

~ - Cq ly —z|?
WeO-D1=0 B ) &P (C2 2 )

and the conservation property [p, Wtz(y, z)du(y) =0 for all z € R” and ¢ > 0. This follows from
Theorem 5 in [Cruz-Uribe and Rios 2014], where the assumption that .4 is symmetric can be removed as
per the remarks preceding this lemma. Therefore, we may write

0P f () =171 Vi2 (v, D) (2) = fBemn)] din(2)

and a change of variables implies

sup  |0:Pr f(y)|= sup 1_1‘/ Wiz (0. DI (@) = feen] du(@))|.
(y.1)€I(x) (3.0l (x) R
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We can then obtain (3.8) by following the proof of (3.7) with & = 1 in order to show that this is bounded
by [M,(|V f|? )(x)]/P, since the doubling property of i ensures that

g Cl n |y_Z|2
W2 (3,2)] < —’GXP(—Cz, ly=zl
“m u(B(y.1) s

for some positive constants Cq,, and C» ; that depend on 7. We obtain (3.9) as an immediate consequence
of (3.8) and the fact that 77_18t77,7t = (05Ps)|s=n¢-

To prove (3.10), let n > 0, set uy, := Py, f and choose a nonnegative function ® € CZ°(B(y, 2nt))
such that ® = 1 on B(y,nt) and |V, ®| < (n¢)~. Let ¢ > 0 denote a constant that will be chosen later.
The definition of £,, implies

][ VaPye f12 dpt
B(y,nt)

1 / 212
S— |Vitns [P du
w(By, o) Jpr
1

& w(B(y,nt)) Jrn
1
=BG 70) Jpr AV etne Velline = Y O%]) = 2 AV i, Ve Dlaty: =) P}

(Avxunt, Vx(”nt - C))CDZ

1 / )
S | {(Lpune)une — )P + [ Vauy:| [V @ [(uye — )P} d
w(B(y.nt)) Jru TN s "
1 1
< ———|dsups | |ttns — | ®? + |Vettns| |V ®||u —c|d>)du
u(B(y.n1)) B(y,zm)(zn% s e
=1 +1I.

Now fix ¢ := fB(x,Snt)- To estimate I, we use Cauchy’s inequality and the doubling property of wu,
combined with the fact that B(x, nt) € B(y,2nt) € B(x, 3nt), to obtain

1< ][ (I~ 0crune >+ ) P fune = f 1+ 0721 f = foeeann ) du=: 11 + I + I5.
B(x,3nt)
It is immediate that 71 < M, (|71 N, (3:Py: £)|?)(x), whilst the semigroup property

nt
/ dsug(z)ds
0

implies that I» < M, (|N«(dsus)|?)(x), and the Li—Poincaré inequality in (2.5) shows that /3 <
My (IV f 12)(x): hence

I = Mu(In™ PN 3 Pye £)12) () + Mu(IN« Bs15) 1) (x) + M (IV f ) (x).

e (2) = f(2)] =

= NtN«(9sus)(2)

To estimate /1, we use Cauchy’s inequality with € > 0 to obtain

€
11 g—[ |V @2 dp + € (1o + I3).
w(By.nt) Jgn ' T
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A sufficiently small choice of € > 0 allows the e-term to be subtracted, yielding
][ - VxPye f12dp < T+ 11 < Mu(In™ N @ Pye )12 + IN«@: Py I+ IV S P) (),
B(y,nt

which, combined with (3.8) and (3.9), implies (3.10). O
The pointwise estimates in Lemma 3.6 have the following corollary.

Corollary 3.11. Let n > 2 and suppose that A € E(n, A, A, u) for some constants 0 < A < A < 0o and
an A-weight i on R™ If n > 0, then

pfx € R S INS@Pr () > 0} Sn k2 IV T2 un gy (3.12)

plx € R I N @ Py O] > 1) Sk 21V 112 o gy (3.13)
M )

p(lx € R [N (VxPre )] > kD) S K2V S I o ) (3.14)

forallk >0and f € Wul’2 (R™), where the implicit constants depend only on n, A, A and [|]4,, as well
as on nin (3.12).

Proof. Estimates (3.12) and (3.13) follow respectively from (3.8) and (3.9), in the case p = 2, since M,
satisfies the weak-type estimate in (3.1). To prove (3.14), note that there exists 1 < g < 2 such that yu is
an A4-weight on R"; see, for instance, Section 3 in Chapter V of [Stein 1993]. Therefore, combining
(3.10) in the case p = ¢ with (3.1) and noting that 2/¢q > 1, we obtain
no.an -2 ay2/4a 2
pEx € R" 1[Ny ) (Vi Pre ()] > k}) Sk (| M (IV £ )”L%/‘f(Rn) IV L2 @n )
-2 2
5 K ”Vf”Lﬁ(R”,R")

forallk >0and f € W,j’z([R{”) (since W,}’Z(R”) C W/;,’I%C([R{”)), as required. |

4. The Carleson measure estimate

The purpose of this section is to prove the Carleson measure estimate (1.4) in Theorem 1.3. We adopt
the strategy outlined at the end of Section 3.1 in [Hofmann et al. 2015a], although the crucial technical
estimate, stated here as Theorem 4.10, is not at all an obvious extension of the uniformly elliptic case.
Moreover, establishing the Carleson measure estimate directly allows us to avoid “good-A” inequalities
and thus apply a change of variables based on the WOI’Z—

S
W01’2+€-Versi0n (for a sufficiently small € > 0) required in [Hofmann et al. 2015a].

Hodge decomposition in (2.10), instead of the

The technical result in Theorem 4.10 establishes (1.4) on certain “big pieces” of all cubes. The passage
to the general estimate ultimately follows from the self-improvement property for Carleson measures in
Lemma 2.22. This requires, however, that the Carleson measure estimate on the full gradient Vu of a
solution # can be controlled by the same estimate on its transversal derivative d;u, which is the content
of Lemma 4.2. We briefly postpone the statement and proof of Lemma 4.2 and Theorem 4.10, however,
in order to deduce Theorem 1.3 from those results below.
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In contrast to the previous two sections, the results here concern solutions of the equation div(AVu) =0
in open sets 2 C [R’f'l when n > 2 and A is a t-independent coefficient matrix that satisfies (1.1) for
some 0 < A < A < oo and an A,-weight 1 on R”. In particular, in Section 2, weighted Sobolev spaces
were defined on open sets in R? and matrix coefficients A € & (d,A, A, u) were considered for all
d € N. Those results also hold here on open sets in the upper half-space with the weight u(x, ¢) := u(x)
and the coefficients A(x,r) := A(x) for all (x,7) € R"*!, since then [u]g,@n+1y = []4>wr) and
Ae&m+1,A, A, p). In particular, the solution space WMI,’I%)C(Q) is defined and the regularity estimates
in (2.16), (2.17) and (2.18) hold when 2 C [R{'rrl.

We will also use, without reference, the well-known fact that if u is a solution of div(AVu) = 0 in
QC R’jr“, then d;u is also a solution in 2. In particular, to see that d;u is in Wu}”lic(Q), a Whitney
decomposition of Q reduces matters to showing that d,u is in WM1 2 (R) for all cubes R C Q satisfying
L(R) < % dist(R, d€2). To this end, define the difference quotients Dlhu(X) =1/ h)[u(X +he;j)—u(X)]
for all X € R and h <dist(R, 3S2), where ¢; is the unit vector in the i-th coordinate direction in R"*1,
The t-independence of the coefficients implies that DZ 41U is a solution in R, so we use the identity
D,I: +1(0iu) = 0; (D,’f 41) and Caccioppoli’s inequality to obtain

[ 1Pk @oran < [ vkl desew? [ 10k e de
R R 2R

< U(R)? // |0:u|?>du =: K for all h < dist(R, 982),
2R

where the implicit constant depends only on n, A, A and [u]4,, and the final bound holds uniformly in /
because u is in Wul 2 (R); see Lemma 7.23 in [Gilbarg and Trudinger 1977]. We can then use Lemma 7.24
in the same reference to deduce that d;u is in W,}’Z(R) with the estimate

[|0;07ul| = [10;0;ul K

2 2
L2(R) L2(R) =

for alli € {1,...,n + 1}, as required. Note that the proofs of Lemmas 7.23 and 7.24 in [Gilbarg and
Trudinger 1977] extend immediately to the weighted context considered here because C *°(R) is still
dense in WMI’Z(R).

Proof of Theorem 1.3 from Lemma 4.2 and Theorem 4.10. Let O C R" denote a cube and suppose that
ue L°°([Ri+1) solves div(AVu) =0 in [RR’_’:”. It follows a fortiori from Theorem 4.10 that there exist
constants C, ¢ > 0 and, for each cube Q’ C Q, a measurable set F' C Q’ such that u(F’) > cou(Q’) and

L pl©) . A .
m/ﬂ /F, [t0ru(x, 1) dM(X)TSC”M”oo»

where C and co depend only on n, A, A and [u]4,.
The coefficient matrix A is ¢-independent, so d;u is also a solution and thus the degenerate version of
Moser’s estimate in (2.16), followed by Caccioppoli’s inequality, shows that ||f9;u]|eo < || ]|co- Moreover,
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the degenerate version of the de Giorgi—Nash Holder regularity for solutions in (2.17) shows that

X — o X — o
|za,u(x,z>—ratu(y,r)|s(' ty') ||ratu||oos||u||oo(' y')

t

for all x,y € Q and # > 0, where all of the implicit constants and the exponent & > 0 depend only on
n, A, A and [u]4,. Therefore, we may apply Lemma 2.22 with

(v, @, Bo.n, B} := {(tdu)*, &, C ||ull%, co, CllullZ}
to obtain

1 /‘K(Q) ) dt )
— [t0:u(x, )7 dp(x) — < llulls. 4.1)
w(Q) Jo 0 t e
where the implicit constant depends only on 7, A, A and [u]4,. This estimate holds for all cubes Q, so
by Lemma 4.2, we conclude that (1.4) holds. O

We now dispense with the following lemma, which was used in the proof of Theorem 1.3 above to
reduce to a Carleson measure estimate on the transversal derivative of solutions. The proof is adapted
from Section 3.1 of [Hofmann et al. 2015a].

Lemma 4.2. Let n > 2 and consider a cube Q CR". If A is a t-independent coefficient matrix that satisfies

the degenerate bound and ellipticity in (1.1) for some constants 0 < A < A < 0o and an A-weight |
on R”™, then any solution u € L*° (40 x (0,4£(Q))) of div(AVu) =0in 4Q x (0,4£(Q)) satisfies

(Q) 5 dt 4(Q) ) dt 2
/ / Va0 dui) & < / / (e, du) 2+ w()lull%.
o Jo 4 0 40 t

where the implicit constant depends only on n, A, A and [|1]4,.

Proof. Let 0 <6 < % and set P (1) := P(t/£(Q)), where ® : R — [0, 1] denotes a C *°-function such
that ®(¢) =1 for all 26 <t < 1, whilst ®(¢) =0 for all # < § and ¢ > 2. Integrating by parts with respect
to the 7-variable and noting that ||0; ®||z,00((1,27) < 1, whilst [|0; ®||z00((5,257) < 1/8, we obtain

24(Q)
. 2
I._/;/() [Vu(x, t)|“®o (1)t dt du(x)
24(0Q)
= /Q /0 0,(IVu(x. D20 ()2 di dp(x)

2£(Q)
<[] (0. Vute0) o) dr dpi
0Jo

20(Q) 260(Q)
+/ ][ |Vu(x,t)|2t2dtdu(x)+/ ][ |Vu(x,t)?t? dt du(x)
0 JuQ) 0 JsuQ)

= I,+IN+I”/.

For the term I’, we apply Cauchy’s inequality with an arbitrary € > 0 to obtain

L
I'SGI—I—E/ / |V u(x, )%t dt du(x).
0 Jo
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For the term 1", we apply Caccioppoli’s inequality, the doubling property of u and the fact that 1 ~ £(Q)
in the domain of the integration to obtain

24(Q)
" _— 2
1 NE(Q)/Q/Z(Q) |Vu(x,t)|”dt dp(x)

| 50(0)/2 , ,
St Lo [ P dr ) £ (@)l

Q) J20 Juo))2
For the term I"”, the same reasoning shows that 1" < 1 (Q)|Ju||%,. We now fix € > 0, depending only on
allowable constants, such that altogether

ZK(Q) 2.3 2
Is[Q/O Ve, )P0 dt dp(x) + p(Q) u )%,

which is justified since I < oo by Caccioppoli’s inequality and the support of ®g.

To complete the estimate, we let {W; : j € J} denote a collection of Whitney boxes (from a Whitney
decomposition of [R'jfl) such that W; N(Q x(0,24(Q))) # @ and Zjej Low, (x,1) < 1. The coefficient
matrix A is t-independent, so d;u is also a solution of div(AVu) = 0 in each set W} ; hence we may apply
Caccioppoli’s inequality in combination with the fact that < /(W) in W; to obtain

%) dt
[ ] ivutnPau S <3 [ Vot ddie + w@ll
250(Q) J toiggw

< Zuwj)/fzw BeuCe. DI di du(x) + () [ul%

jeJ
46(0) . dt .
< / / 180 Ce. P du) 2+ () llull%.
0 40 t

where the implicit constants do not depend on §. The final result is then obtained by applying Fatou’s
lemma to estimate the limit as § approaches O. O

The remainder of this section is dedicated to the proof of the crucial technical estimate, Theorem 4.10,
that was used to prove Theorem 1.3. The proof adapts the change of variables from Section 3.2 of
[Hofmann et al. 2015a] to the degenerate elliptic case. This is used to pull back solutions to certain
sawtooth domains where the Carleson measure estimate can be verified by reducing matters to the vertical
square function estimates in Theorem 2.12, which we recall were obtained from the solution of the Kato
problem in [Cruz-Uribe and Rios 2015]. The following technical lemma, which reprises the notation
Pr = e~*Lu for Ly, = —div,((1/n)AV) and A€ E(n, A, A, n) as in (2.6) and Lemma 3.6, will be
used to justify these changes of variables.

Lemma 4.3. Let n > 2 and suppose that A € E(n, A, A, u) for some constants 0 < A < A < 0o and an
An-weight i on R". Let Q C R" denote a cube and suppose that f :5Q — R" is a measurable function
such that (1/w) f € L°°(50Q). Let ¢ € Wol’;f(SQ) and suppose that div(AV¢) =div f in 50. If ko > 0,
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0<n< % and xg € Q satisfy A(n, ¢, A)(xo) < ko, where

A1 §. A) =07 N @ Pyed) + Na(0:Ped) + [Mu (V)] + Do, (4.4)

then
8Py ()| <o for all (x.,1) € Ty (o) @4.5)

and
(0 =Po)g @] Sn(ko+ | f| )1 forall (r.) € Ty(xo) 10 x .4LQ)). @6

where the implicit constant depends only on n, A, A and [|1]4,.
Proof. Suppose that kg >0, 0 <7 < % and xo € Q satisfy A(n, ¢, A)(xo) < kg. It follows a fortiori that
n~INS (3¢ Ppe)(x0) < Ko, so (4.5) holds for all (x, ) € T'y(xo).

To prove (4.6), first note that the properties of the semigroup imply

nt
|(1—7’m)¢(x())|=‘ A dsPsp(xo) ds

<Ntk 4.7

for all 7 > 0, since N« (05Ps¢)(x0) < ko. Now let (x,7) € I'y(x0) N (20 x (0,4£(Q))). We set ¢xy,ps =
fB(xo,znt) ¢(y) dy and apply estimate (3.7) with & = 2 to obtain
[Pt (@ = o) ()| S 0t [Myu (1Y) (x0)]'/? < . (4.8)

Next, since div(AV (¢ — ¢(xg))) = div(AVe¢) = div f in 50, and since 0 < 1 < % ensures that

B(xg,2nt) €50, we may apply the degenerate version of Moser’s estimate for inhomogeneous equations
in (2.20) to obtain

1/2
[¢(x) = p(x0)| S (][B( - |¢(y)—¢(xo)|2du(y)) +’”“ﬁf“w

< nt(D*,,u,fp(xO) + H if Hoo)

< r;t(lco n Hﬁf Hoo) (4.9)
Combining estimates (4.7), (4.8) and (4.9), we obtain
|(I =Pye)p ()] < |p(x) — P (x0)| + [(I —Pye)p(x0)| + [Pye (b — Pxo,ne) (x0)| + [Pye (¢ — Pxg,ne) (¥)]

UG WL

which proves (4.6), as the implicit constant depends only on n, A, A and [u]4,. |

We now present the main technical result of this section. The proof is adapted from Section 3.2 of
[Hofmann et al. 2015a], although some arguments have been simplified as detailed at the beginning of
this section, and the additional justification required in the degenerate elliptic case has been emphasised.

The strategy of the original proof in [Hofmann et al. 2015a] was motivated in part by the fact that
integration by parts is sufficient to establish the required estimate in the case when A has a certain block
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upper-triangular structure. A key idea in that paper was to account for the presence of lower-triangular
coefficients ¢ (and upper-triangular coefficients) by decomposing them according to a W01’2+€-Hodge
decomposition. This was done locally on a given cube Q and the idea has been adapted here. First, the
Wol,;f—Hodge decomposition ¢1s5g = uh — AV is introduced in (4.13), where A is the n x n submatrix
of A shown in (4.12). After integrating by parts, the divergence-free component ph provides valuable
cancellation, whilst the adapted gradient vector field A V¢ facilitates a reduction to the square function
estimates in Theorem 2.12, which are implied by the solution to the Kato problem in [Cruz-Uribe and
Rios 2015], for the boundary operator Ly ,, := —div,((1/p) A V).

*
I,

arranged by initially making the Dahlberg—Kenig—Stein-type pull-back ¢ ¢ — (I — P,;“t)go(x) so that the

The latter estimates, however, require that L} , acts on the range of P, := e_tleTﬂ and this is
lower-triangular coefficients become ph — A Vy P,;ktq). This change of variables is justified by choosing
n > 0 small enough so that the pull-back is bi-Lipschitz in . Once this is in place, a set F' is introduced
that contains a “big piece” of Q and on which the various maximal functions in Lemma 4.3 are bounded.
The integration on F x (0, £(Q)) is then performed by introducing a smooth test function Wy that equals 1
on F x (26£(Q),2£(Q)) and is supported on a certain truncated sawtooth domain 2, /3 ¢ 5 over F,
where § > 0 is an arbitrary (small) parameter that provides for a smooth truncation in the ¢-direction near
the boundary of [RT'I. The main integration by parts is then performed in (4.32). The two principal terms
S and 8, arise from the tangential and transversal integration by parts, respectively, where the former is
taken with respect to the measure p and thus requires additional justification from the uniformly elliptic
case. These and numerous error terms are then shown to be appropriately under control.

Theorem 4.10. Let n > 2 and consider a cube Q C R™. If A is a t-independent coefficient matrix
that satisfies the degenerate bound and ellipticity in (1.1) for some constants 0 < A < A < oo and
an Ap-weight | on R™, then for any solution u € L°°(4Q x (0,4£(Q))) that solves div(AVu) = 0 in
40 x(0,44(Q)), there exist constants C, cg > 0 and a measurable set F C Q such that w(F) > copu(Q)
and

i | [ rvuenRdue S < cpuli @1

where C and co depend only on n, A, A and [jL]4,.

Proof. We begin by expressing the matrix 4 and its adjoint A* (which is just the transpose A', since the
matrix coefficients are real-valued) in the form

A= | Al e A (4.12)
S letld | Sl btld | '

where A denotes the n x n submatrix of A with entries (A4y);,;j := Ai,j, 1 <i,j <n, whilst b :=

(A n+1)1<i<n is a column vector, ¢' := (Ap+1,/)1<j<n is arow vector and d := Ap41 1 is a scalar.
Now consider a cube Q C R”. The aim is to construct a set F C Q with the required properties. To

this end, we apply the Hodge decomposition from (2.10) to the space Li (50, R™) in order to write

1 1 * 1 1 ~ r
—clso =——A;Vo+h, —=blso=——AVo+h, 4.13
m 50 m N ve m 50 m nve ( )
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where ¢, ¢ € WJ,’g(SQ) and b, h € Li(SQ, R™) are such that div, h = div, h=0and

2
f (Vo) + h(0)) du(x) < f O g <1, 4.14)
50 50
- b 2
f avewp+lhor duw < f ‘ﬁ du(o) < 1. “.15)
50 50 M

We extend each of ¢, @, k. h to functions on R” by setting them equal to 0 on R” \ 50.
In Sections 2 and 3, we investigated the operators £, := —div,((1/1)AV) and P; := e~1*Lu for
arbitrary coefficient matrices A in E(n, A, A, ). We now set

Lll,u, = —diVM(iA”Vx), P, = e_tzL"‘,U.’

) (4.16)

iy (—
I, 1% w

in order to apply those results in the cases A = Ay and A = A}.

427 %
"Ly,

A;‘;vx), PFi=e

We now introduce two constants kg, 7 > 0, which will be fixed shortly, and recall the function A(n, ¢, .A)
from (4.4) to define the set F' C Q by

Fi={xeQ: A ¢. A)(X)+AM. §. A)(X)+ N (Vi P@) )+ N (Vi Ppe @) (x) <ko}. (4.17)
Applying the weak-type bounds in (3.1), (3.3), (3.13) and (3.14) followed by the estimates from the
Hodge decomposition in (4.14) and (4.15), we obtain

-2 2 ) -2
/’L(Q \ F) S KO (”V(p”Lﬁ(R”,R”) + ”vw”Lﬁ(R”,R”)) S KO /’L(Q)’

where the implicit constants depend only on n, A, A and [u]4,. This allows us to now fix ko > 1 and some
constant ¢g > 0 such that u(F) > cou(Q), where both «¢ and co depend only on the allowed constants,
and thus are independent of 7.

We now fix the value of 5 as follows. First, for 0 <« <4 and 8 > 0, let

Qp = UxeF Tp(x), Rp,0a:=RpN 20O X (al(Q),4£(Q)) and Qg o:=p 0,0

denote the sawtooth domains in [F\R'rrl spanned by cones centred on F of aperture 8. Next, note that the
properties of the Hodge decomposition in (4.13) imply —div(A4;V¢) = div(c1sp) and —div(4, V@) =
div(b1sp) in 5Q. Therefore, we now fix 0 <5 < % in accordance with (4.5) and (4.6) such that

max{|d; Py (X)), [0 Pye @ (X)[} < nko < % for all (x,1) € 2 (4.18)

and
max{|(I — Pp)p(x)|, [(I — Pye)@(x)[}

< (o + max | Le oo,
I

lb” })zgnmm%z for all (x,1) € Q.. (4.19)
Moo

where 1 and the implicit constants depend only on 7, A, A and [u]4,.
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It remains to prove (4.11). We will achieve this by changing variables in the transversal direction using
the mapping ¢ — t(x,?), with x € R” fixed, defined by

t(.0) =1 = (I = Py)p(x)
and having Jacobian denoted by
J(x, 1) :=0rt(x,1) = 14 0; Py (x). (4.20)
In order to justify such changes of variables, we note from (4.18) and (4.19) that
Zr<t(x,r)<3t and F<J(x,1)<3 forall (x,1) € Q0. 4.21)

In particular, foreachx € F and 0 <« < %, this implies that the mapping ¢ — t(x, t) is bi-Lipschitz in ¢
on 2af(Q),2£(Q)) with range

(4a0(Q). £(Q)) S T(x.-)((2al(Q).2L(Q))) S (b(Q). 4L(Q)). (4.22)
Moreover, for each 0 < f < 5, the mapping (x, 1) = p(x, 1) defined by
px. 1) = (x,7(x,1)) = (x,1 + Ppo(x) — p(x))
is bi-Lipschitz in  on Qg ¢ with range
Qgp/0.0 € P(Rp.0) € Q7.0 (4.23)

Now consider a bounded solution u satisfying div(AVu) = 0 in 4Q x (0,4£(Q)). The pull-back
up:=uopisin L*°(2y o) and div(4;Vu1) =0 in Q, o, where

Ay e |: JA, b +A||Vx<P—A||VxP,;k¢<P}
(uh — A Vx Ppio)' (Ap,p)/J
and _
px.1) = [fo_(ic, Z)} _ VxPr;erD(x_)l— Vx(D(x)] . (4.24)

Our statement that div(4;Vu1) = 0 in Q, ¢ does not mean that A; satisfies (1.1), only that u; €
WMI:I%C(Q”,Q) and that fszrJ,-l (A1Vuy, V@) =0 for all ® € C°(25,0). To prove this, we combine the
pointwise identity

(A((Va) o p). (Vv) 0 p)J = (41V(uop), V(vop)) forall ve Wy (p(2y,0)) (4.25)

with the change of variables (x,7) = p(x,?) on £, o, which is justified because p is bi-Lipschitz
in ¢ on Q; o with range p(2,,0) C 40 x (0,4£(Q)) by (4.23). Also, we note for later use that
112, ou1llco < llu]lco and, using (4.21), that

[qul — (Vxr)(0ru1)/J

Viuy| <
V] @eur)/J

]‘ Vatl ] = [(Viyopl + [Vt dus]  (426)

on Q4 0.
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Next, in order to work with the pull-back solution u1, we consider an arbitrary constant 0 < § < %
and define a smooth cut-off function Ws adapted to 2, ¢ as follows. Let §r(x) := dist(x, F), fix a
C°°-function ® : R — [0, 1] satisfying ®(¢) = 1 when ¢ < % and ®(f) = 0 when ¢ > %, and then define

_ afSF(x) ! _ 4 n+1
\Il(g(x,t).—CD( nt )®(32£(Q))(1 CD(—168K(Q))) forall (x,7) e RL.

This function is designed so that Wg = 1 on F x (26€(Q), 2£(Q)), and since n < %, we have supp Vg C
Qn/g’Q,g and

1, (x.0)  1g,(x.1)  1gs(x.1)
t t(Q) 56(Q)

Vi Ws(x, 1) < for all (x,7) € 2y/38.0.5- 4.27)

where
Ey:={(x,1) €20 x (0,4£(Q)) : 1gnt <8F(x) < gnt},
E> =20 x(20(Q),44(0)),
E3:=20 x (§£(0).28L(0)).

In contrast to Section 3.2 in [Hofmann et al. 2015a], the cut-off function Wg introduced here incorporates
an additional truncation in the ¢-direction at the boundary. This is done to simplify subsequent integration-
by-parts arguments, since it ensures that Wg vanishes on the boundary of [R’_’,_“. For later purposes, it is
also convenient to isolate the following general fact here.

Remark 4.28. For each k € Z, let IDZ denote the grid of dyadic cubes Q" C R" such that
6L4772_k <diam Q' < %nZ_k.
If Co > 0 and (vy);>0 is a collection of nonnegative measurable functions such that

sup ][ v;(x)dpu(x) < Cy forallk €Z, forall Q' e D7,
te[2—k 2—k+1] !

// + (1El(x DI AN 1E3(x’t))vt(x) dp(x) dt 5 Con(0), (4.29)
Rn 1

then

Q) 5(Q)

where the implicit constant depends only on 7, A, A and [u]4,. To see this, first observe that since §f is
a Lipschitz mapping with constant 1, we have

OWx 27 2 ¥ C k) = {(x, 1) €40 % (0,4£(Q)): ”g <8p(x) < Cnty,
0@ x [27F 2% 1] C 40 x (£(Q). 8£(0)).

03 x 27k 27kt c 40 x (38€(0).48€(Q))

whenever E; N (QW x [27% 27*+1]) £ @ and i € {1,2,3}. The estimate in (4.27) and the doubling
property of u then imply that the left side of (4.29) is bounded by
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dt 8L(0) 48£(0)
f 1z dp— +C][ w(0)di +C][ M(Q)dt)
7l 17¢)) 156(0)

2

(C/m)éF(x)
<G ( / / U i)+ M(Q)) < Con(0),
40 J(

1/(Cm)Sr(x) !

2k+

WL X [

kez g’epy

as required.

We now proceed to prove (4.11). First, note that it suffices to show that

£(0)
sup [ [ 1Vu(. t)lzdu(X) L < (0. (4.30)
0<6<1/8 48¢(Q)

since we may then obtain (4.11) by using Fatou’s lemma to pass to the limit as § approaches 0. To this
end, we use (4.22), followed by the bi-Lipschitz-in-¢ change of variables ¢ — t(x, ) on (§¢(Q),2£4(Q))
for each x € F, estimate (4.21) and identity (4.25) to obtain

14(9)] {«Q)
/ / [t Vu(x, t)|2du(x)— </ / (AVu,Vu)t dt dx
45¢(0) 484(Q)

24(Q)
/ / A1Vu1,Vu1)tdtdx
28£(Q)

< // (A1Vuy, Vu) W3 t dx dt.
Ri—i—l

Thus, in order to prove (4.30) and ultimately (4.11), it suffices to show that
/f (A1Vuy, Vu )3 rdx dt < |Ju|3ou(Q) forall0 <8 <4, (4.31)
n+l
where the implicit constant depends only on n, A, A and [u]4,.

Next, we recall that div(4;Vu1) = 0in £, o, noting that ul\llzt € W1 Z(Q,7 0), and then integrate
by parts to obtain

// (A1Vuy, Vu )3 t dx dt
R

:_l// (A V(). V(W21)) dx di

2 R+

+
1 1 1

=1 TI(V(M%), FAten w3 dudi = [ o VO Ve
1 {(Ap. p)

_E[ATI ui(L I m@)‘lfs dpdt + > //n 1 Zat(T W dx dt

__// (AV @), V() tdxdt + 5 // ui(ent1, A1V(¥3)) dx dt

IZS1+S2+E1+E2, (4.32)
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where e, +1 :=(0,...,0, 1) denotes the unit vector in the ¢-direction. In particular, note that the tangential
integration by parts

1

/ (vx(,f) h— A”V P,;ktg0>\115 du = /R u%divu[(h—ﬁAITVxP:t(p)\Ifg] du,

with respect to the measure , is justified by the definition of the operator div,,, since P ;¢ € Dom(L 1)
and div,, A =0 imply (h—(1/u) AV P* go)\llz € Dom(div,,) (recall (2.8), (2.9) and (4 16)). Meanwhile,
the transversal integration by parts

© Ap, *© Ap,
/0 a,(u%)(< 1;p>)w§dt:—/0 u%a,[(< I;p))\llg}dt

is justified because Wg vanishes on the boundary of [R{T'l.

We proceed to prove that, for all o € (0, 1), each term in (4.32) is controlled by

S1+Sz+E1+EzSG// +1(A1Vu1,Vu1)\I!§tdxdz+a_1||u||§o,u(Q), (4.33)
Rn

where the implicit constant depends only on 7, A, A and [j]4,. Estimate (4.31) will then follow by fixing
a sufficiently small o € (0, 1), depending only on allowed constants, to move the integral in (4.33) to the
left side of (4.32). This is justified because the integral in (4.33) is finite by Caccioppoli’s inequality and
the fact that Ws vanishes in a neighbourhood of the boundary of R'jfl (supp Ws € 2;/8.0,8)-

We now prove (4.33) in three steps to complete the proof.

Step 1: estimates for the error terms E; and E» in (4.32).
We first apply Cauchy’s inequality with o to write

|5 [ Ve @) axar
2 Rrrrl

=2‘// (A1 Vuy,, VU u 1 Ws t dx dt
Rn-i—l
+
So// (A1Vu1,Vu1)\IJ§tdxdt+o_1 // M%(A1V\P5,V\If5)tdxdt
Rn+1 Rn++1
= U// (A1Vuy, Vu )5 t dx dt + o E1.
Rn—H

We then use uh = clsg + Al"l‘V(p from (4.13), the degenerate bound in (1.1) for A, the bound
12, ou1lleo < llulleo and the estimate for VW from (4.27) to obtain

’ 1g lE 1g * 2
E| + E> < lul2 // ( Ly 1E 3)(1+|Vx(1—Pt)<p|)dudt,
D\ o) T "
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where (4.27) ensures that |V(lIf§)| and |VWg|?t can be controlled in the same manner. In order to
apply Remark 4.28 with v, = 1g, o , (1 +|Vx({ — P,;"t)go|2), we observe that if k € Z, Q' € [D)Z and
Qy/8,0,8N0(0"x [27%, 27k+1]) £ &, then there exists xo € F such that Q' C A(xg, n27%) € CQ’, where
A is used to denote balls in R”; hence

O'x 27k, 27¥ ) CQ, 10.5/4 (4.34)

and the doubling property of p implies

][ |vx(1—P,;‘,><p|2dus][ V. Pl d//«+][ Va0 du
o’ A(xo,nt) A(xg,n27K)
<IN (Vu PE@) o) + My (Vg ) (o)

<k2 <1 forallr e 275, 270+, (4.35)

where in the last line we used the definition of the set F in (4.17) and the weighted maximal operators Ni m
and M), from Section 3. It thus follows from (4.29) that E| + E5 < )12, (Q), so altogether we have

E\+E, 50// (A1Vur, Vu )5 t dx dt + o~ Hul|Zn(Q) forall o € (0,1). (4.36)
Rn—i—l

Step 2: estimates for the term S in (4.32).

We note that 9, P,j; = 772’L|T Py on L? 1(R") and integrate by parts in 7 to write

N % // +1 u%(LﬁsMP:t(P)‘I’g du dt
v

1
=_§//n a,(LM PAo)W2 1 dydt
+
// (ulatul)(BtP <p)ll‘8 dudt + — pre // ul(a me)‘l’aat‘l’a dudt

=:S{+S/+5S/,

where there is no boundary term because Wg vanishes on the boundary of [R{T'l.
To estimate S;”, we use the definition of the set F in (4.17), the estimate for |VWs| from (4.27), and

Remark 4.28 in the case v; = 1, to obtain

St S ullZ // NI (B P9) 10, V5| dp dt
Q

n/8.Q

< nicollull 2o (Q) S ullZen(Q).

To estimate S|, we observe that d,(L wPriw) =1Ly M(a Pp,p), since ¢ € W1 2([R”) and 9; P,

—2n? tP Lﬁ‘ 1 on the dense subset Dom(L ) of W1 2([R{") (note also that 1 Vy P and hence its adJ01nt

are bounded operators on L2, as can be seen from the proof of Theorem 2.12). We then apply Cauchy’s
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inequality with o to write

//n+ Ly 0 Py TVt dpdt

/
S <

// A”V 3 P9). V u1>u1\118tdudt‘

‘// A”Vx(E),qu)) vx%)u%%zdudz =J+K

<0// |qu1|2\llstdudt+(0_l 1)// u1|Vx8 P (p|2\1151dudt

+// N uilVeWs?tdpdt =:08S{; + (6~ + 1)S{, + S{5, (4.37)
+

where the integration by parts in x, with respect to the measure u, is justified by the definition of the oper-

ator Ll"l‘ N (recall (2.8), (2.9) and (4.16)). The terms J and K are highlighted above for reference in Step 3.

To estimate S {3, we use the estimate for |VWg| from (4.27) and Remark 4.28 in the case v; =1 to

obtain Sy; < [|u 2,14 (Q).

To estimate S,, we observe that Vyd, P,j; = —ZUZIVX i Py on L? 1,(R") and then apply the vertical

square function estimate from (2.14) followed by the Wo (5 0)-Hodge estimate for ¢ from (4.14) to obtain

dt

Si2 S ut|Vid; P ? W tdpde < Jlul3 12V Lyt P Izdu—
n+1 n+1
RYY Ry

SNV 12 gy S 112100,

The terms S|, and S|" will now be estimated together. We again apply Cauchy’s inequality with o,
followed by the vertical square function estimate from (2.13) with £, = L . and the W1 2(SQ) -Hodge
estimate for ¢ from (4.14) to obtain

0S11+S//<U// " |qu1|21p§tdudt+‘// +1(u18tu1)(8tP,;‘,<p)\IJ§dudt
RY RY

50// +1|Vu1|2\11§tdudt+0_1||u|| // |0 Py <p|2d,u—
Rf’l
<o[/ A1Vu1,Vu1)\118tdxdt+0/[ [Vit| |8,u1|2\118tdudt+0_1||u|| w(Q),

where we combined the pointwise estimates for Vu; and J from (4.26) and (4.21) with identity (4.25)
and the ellipticity of A to deduce the final inequality.
We use the dyadic decomposition from Remark 4.28 to write

// Vet (01 [PWF tdpudr <y Y /

kez Q/e[[])"

2—k+1
/1Qan|VxT| |0;u1)>tdudr.  (4.38)
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Observe that if k € Z, Q' € D] and Q5,056 N (Q' x [27,27%+1]) +£ g, then, as in (4.34) and (4.35),
it holds that Q" x [27%, 27k +11 € @, ,4 5/4 and

][ IVat(x.0)[>du(x) Sk§ forallr e 2%, 27F+1],
Q/

Also, we have %t <t(x,t) < %t and J(x,1) = 1 on Q' x [27%,27%k+1] by (4.21), so the degenerate
version of Moser’s estimate in (2.16) and 7-independence show that

2t
sup |01 (. 1) = sup |J(x,z>afu<x,r<x,z>)|25][ f 19510(y. )| ds du(y)
xeQ’ xeQ’ 20’ Jt/2

for all 7 € [27%, 27k+1]. In particular, note that
20" x 2751 27F 2 C @ = {(p,5) € RV 18R (1) < Sms, 180(0) <5 <8L(Q)),
since there exists (xg, fo) € Q' x [27%,27%+1] satisfying § r (xg) < %T]lo, whence
Sr(y) <diam(2Q’) + %Ufo < 1%172_]c < %ns forall y €20’ and s > 27%71,

whilst 8£(Q) < to < 4£(Q) implies [27%,27%+1] c (18¢(0), 8£(Q)).
The observations in the preceding paragraph show that (4.38) is bounded by

2—k+1 2t
>y (f |vxr|2du)(/ | |asu(y,s>|21m<y,s)dsdu(y))dr
kez gren! 2k o’ 207 Jt/2
2—k+2
S22 /z—k—l /2Q/|3su(y,S)|21sz*(y,S)Sdu(y)ds

kez Q/G[DZ
s(f[paospsanmrass [ iaaoP sdutds) = m+ £
*k Q*\Q**
where we used the fact that ) ; ., ZQ/E[[DZ 1,0/xp—k—1 p—k+2] < 1pn+1 and introduced
: ’ -

Q** = {(r,5) e R 85 () < ns. 48L(Q) <5 < L(Q)}.
To estimate the main term M, we use (4.21)—(4.23) to observe that
pH Q™) € Q16N (20 X (28L(0), 2L(0))).-

Thus, since Wg = 1 on these sets, the change of variables (y,s) — p(y, s) gives
M§// |(8,u)op|2J\11§td,udt§// (A1Vu1,Vu1)\II§tdxdt,
R:_—H Ri—i—l

where we used identity (4.25) and the ellipticity of A to deduce the final inequality.
To estimate the error term E, recall that the degenerate version of Moser’s estimate in (2.16), followed
by Caccioppoli’s inequality, ensures that ||s05u| oo < ||t|lco- Thus, by the definition of Q* \ Q** and
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the doubling property of w, we obtain

A8/mbr() g (BUQ) gy [45LQ) gq
E <ul’ / (/ —+/ —+/ )du(y)<||u|| 1(0).
20\J(@8/5n)8r () S £(0) S ©6/2)¢(Q) §

This shows that

oS{;+ S8 < //”H A1Vu1,Vu1)‘~118 tdxdt + o Hu| 2 mn(0);

hence

Slsa// +I(A1Vu1,Vu1)\I/§tdxdt+0_1||u||§ou(Q) for all o € (0, 1). (4.39)
Rn

Step 3: estimates for the term S5 in (4.32).
We observe that since A is ¢-independent it is possible to write

{(Ap. p)
252_/[ +1u18t( J VZdxdt

//Rnﬂ ( )(AP p)V2 dx dt
//Rnﬂ( ) (3:p. A*p) 3 dxdt+// ( )(Ap 90 p) V2 dx di

To estimate I, we recall the Jacobian J(x,7) =1+ 9; P, @ (x) from (4.20) and then integrate by parts

=1+4+1I+11I.

in ¢ to write

82P )
I = _//n+l u1 Jgt (Ap,p)\IJ(% dx dt

@ P )
:/[ t(”l nt (Ap, P)‘If(g dxdt+// B % Jgt 3t((Ap,p))\IJ§dxdt
n Rn

* -2 atPr;kt(p 2
+// u?d, P d:(J77)(Ap, p)\IIS dxdl-l—// . u? 72 (Ap., p)0:(Y5)dxdt
R RY

=11+ 1, + 15+ 14,

where there is no boundary term because W vanishes on the boundary of [R':rl.
To estimate Iy, we recall that J < 1 on supp Ws C €2, /3 0 5 by (4.21) and then apply Cauchy’s
inequality with ¢ to obtain

_ dt
|11|sa/f 0eu1|*|p)* Y5 tdpdt +o 1// ut|d; Ppeo | p|> V5 dp —
RT_I R'_"_'H t

=ol|+071]. (4.40)
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To estimate 17, recall that | p|?> = 1+ |V 7|? by the definition of p in (4.24), so we follow the treatment
of (4.38) above to obtain

B [ AV Va3 rdx e + Juln(0),
Rn

To estimate 17, recall that || 1g, ,u1llco < [[1]lco and use the dyadic decomposition from Remark 4.28

to obtain
2—k+1
B Y 3 WePiolmigrnosaion |, / PR
kGZQ’eD"
Sz D" D" 1m0 PN} cogorp—k 2—k+1))
kGZQ’eD"
2— k+2
Sy Y werf ][ 10: Pl du dt
kGZQ’elD"
2—k+2
sy X [ ey P dn
kez Q’e uj)” 29’

- dt
<l // L e g dp

where the second line uses the pointwise bound |p|2\11§ <1g,505(1+ V(I — P,?‘t)<p|2) and esti-
mate (4.35), the third line uses the parabolic version of the degenerate Moser-type estimate in (2.16)
(see Theorem B in [Fernandes 1991]), noting that v := Bt(e L, r@) solves d;v = —L} Vs Whilst
0: Py go(x)| <|tv(x, 77212)| and the final line uses the vertical square function estimate from (2.13) with
L, =Ly . and the W (5 0)-Hodge estimate for ¢ from (4.14).

To estimate I, we agaln use the bound J < 1 on supp Ws C €2, /5 o s from (4.21), and then recall
the definition p := (Vx(P,;"t —I)¢p,—1) from (4.24) to obtain

dt
s [ e wgrdum// Bl PrePlpP¥ian T @)
#

The first integral in (4.42) is the same as S|, from (4.37), whilst the second integral is the same as I{
from (4.40); hence |I2| < ||u]|2,1(Q).
To estimate I3, we use the bound [9; P, ¢| < g guaranteed by (4.18) to deduce that

10, (J 2 )|:|at(l+at ) 2|~|82 9

on supp Ws C Q2,,/8 0,5 and write

15 [ o pgelpPed an S + f/ 3107 PP pPWE dadi = 1+ 1.
!
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To estimate I}, we note that it is the same as I}’ from (4.40); thus I} < ||u]|2,n(0Q).
To estimate I g’ , we follow the estimates and justification provided for (4.41), noting in addition that
dv=0%(e” iLy, n@) solves 0;(d;v) = (d;v), to obtain

IIM
—k+1
sy Y 102Pe R e k2k+q%/ /“|p|w5du——
kez g’ep]
Sl Y Y @Y, Pyl + 1620 (Lik 1 P 17 o g1 wpp—k 25417
keZQ/e[D”
2— k+2
Sz Y Y wenf f7 (1L}, Pl + 120,(L P) ) dpsd
kGZQ’e[D)”

dt
<l /f iLE Pl du Ll // V(L PP d o

2

where the second line uses |32 (p| S0 Ly, Ppr@)| S Ly, Pyl + 110 (Lyy , Py @), the third line
uses |Ly , Prro(x)| = |v(x, n212)| and [0 (L, Py @) ()] < [1(0:v)(x, n*t?)|, and the final line uses
the vertical square function estimates from (2.13) and (2.14) with £, = L} s hence [I3]| < [lu 12,1(0).

To estimate I, we use [0; Pp,o| <1, J < 1 and Ipl? < (14 |Vx(I — 77t)(,o|2), which hold on
supp W < Qn /8,0.,8 by (4.18), (4.21) and (4.24), to reduce to the estimate obtained for E { + E»; hence

[14] < [lullZn(Q).
To estimate II, we use the definition p := (Vx(P,;“t — )¢, —1) from (4.24) to note that d; p =

(V0; P,;"t<p, 0) and use the Hodge decomposition from (4.13) to write
(0rp, A*P> (Vx 0y Pnt(p, A|| Vx(PyTt_I)Qﬂ —c)= (ant 90 A|| vxP (@ — wh) (4.43)

for all x € 50 and ¢ > 0. Using this and recalling that div,, A = 0, it follows that

II—//"+1( ) (Vx0: Py, Ay Vs Pyl — Mh)‘lj(g dx dt

//n ( )(8’ (L m@)‘l’g dpdt
// 9% me ( ) AV P*§0 Mh)‘l‘(g dx dt

// +1( ) Pro(Ve(¥5). Af Vi Prog — wh) dx di
er
=11+ I, + 113, (4.44)

where the integration by parts in x, with respect to the measure p, is justified by the definition of the

operator L; ,, (recall (2.8), (2.9) and (4.16)).

I,
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To estimate I1{, we use J < 1 and LIT,ILPTII('O —2n%t)~ 1o, P ;@ to show that it can be treated the

same way as I{ in (4.40), without | p|?; hence |II1] < [ul|%, ,u(Q)
To estimate II,, weuse J < 1,

IVe(J ™D =Ve(149: P0) ' S VX0 Prol

and apply Cauchy’s inequality with o to obtain

|112|<0*// |qu1|2\P51dudt+[/ u?|Vy0; Py Q>3 tdpdt

_ dt
+ (o 1+1)// N u%|a,P,;;¢|2(|vxP,;‘,¢|2+|h|2)\p§du7. (4.45)
Ry

The first integral is the same as S, from (4.37), whilst the remaining two integrals are the same as those
that bound 1 in (4.42), except (|Vx P, . ©|? + |h|?) replaces | p|% This factor is controlled in the same
way, however, since the Hodge decomposmon in (4.13) implies
2 1 | 2 2.
WP = |celsg + - ArVp| S 1+ Vapl:
2 M
hence by (4.35) we obtain

|IIZ|<U// » A1Vu1,Vu1)\l‘5tdxdt+0 1||u|| w(Q).
Rﬂ

To estimate 113, we use J < 1 and Cauchy’s inequality to write

dt
|113|5// N u%lvx%lztdudwr// +lu%|a,P,;‘,<p|2(|vx * o2 + [h|?) W2 dp -
RY R

The first term above is the same as S5 in (4.37), whilst the remaining term is the same as the last integral
in (4.45); hence |113] < [[u(|31(Q).
To estimate 111, we observe by analogy with (4.43) that

(Ap,d:p) = (AyVx(Py, — )¢ — b, Vx0: Pp,0)
= (A Vx(Py,0 —¢) + AyVxg — ph Vi 3: P,0)
= (AuVx[(P)0 — @) — (Ppi@ — @) + AyVx Pyi@ — ph, V50, Py o)

for all x € 50 and ¢ > 0 and then write
m= [ +1( )v (Pl —9) — Py — @), ALV x0: Plogp) W3 dx di
Rn

// +1( ) AyVx Py — /Lh V0 Pnt(p)\ps dx dt
Rn

=11+ 1II,.
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To estimate 1111, we integrate by parts in x with respect to the measure p to write
U% * ~ o~ * *
ity = [ (5 )P0 =0 = (Pued = DL P09 d
§ u2 w2
L i 0= = (). 4900

Rﬂ

+

=: 1T, + 11,

which is justified by the definition of LII " (recall (2.8), (2.9) and (4.16)).
To estimate 111}, we use Hardy S 1nequahty (see, for instance, page 272 in [Stein 1970]) to observe,
for the semigroups P; € {e PLi L, n}, the estimate

oo dt oo rnt dt o0 dt
[ |Pntf_f|2t_35[ (/ |8Psf|ds)—</ |8,77tf|27 forallfeL (R™).
0 0 0 0

We then recall that |1, ,u1]leo < [[U]loc and J < 1 on supp Ws € 22,/5,0,5 to obtain

1, |<||u||oo[[ (P2 — gl + | Pyud — @) | L 00 Pl dt de

L din\2 [ e . L di\\?
st [ ([ 1ro-or+1pug-o2 55 ) ([T ieLiarger ) d
1/2 /2
< Il (f/ o027 0P + 10 Pl e (// P07 Pl )

S ”ullgo(HV(p”LZ (R”,R”) + “vq)”LZ (Rn’Rn))l/ZHV(p”LZ (Rn Rn) ~ ”M” M(Q)

where the final line uses the vertical square function estimates from (2.13)-(2.14) for £, € {L} e L, wh
and the W1 2(SQ) -Hodge estimates for ¢, ¢ from (4.14)—(4.15).

To estimate 11", recall that |Pyr¢ —@| <t and |Ppi§ —@| <t onsupp Ws € 2,780, by (4.19),
whilst J = 1 and |V (J™1)| < | Vi ¢ Py, so distributing Vy over ul, \IIZ and 1/J yields terms that
can be controlled in the same way as J, K and S 12 in (4.37).

To estimate I1I,, note that the estimates used to control ¢ and Py;¢ also hold for ¢ and P;;¢ by
(4.14)—(4.15) and (4.18)—(4.19), whilst div,, A = div, h=0 by (4.13); hence III, can be estimated in
the same way as II in (4.44).

This gives

|11 | + | 111 5| <o// (A1Vuy, Vu )3 t dx dt + o Hlul|Z 1 (Q);
Rn +1
hence

S2§0/[ A1Vu1,Vu1)\118ldxdl+o 1||u|| w(Q) forallo € (0,1). (4.46)
n+1

We combine (4.36), (4.39) and (4.46) to obtain (4.33), as required. O
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5. Solvability of the Dirichlet problem

This section is dedicated to the proof of Theorem 1.2. We first consider the construction and properties of
a degenerate elliptic measure w* for degenerate elliptic equations div(4Vu) = 0 in the upper half-space,
where X = (x,t) € [R%ﬁ_“ and n > 2. The t-independent coefficient matrix A is assumed throughout
to satisfy the degenerate bound and ellipticity in (1.1) for some constants 0 < A < A < oo and an
Ap-weight 1 on R”™. This is necessary as the literature only seems to treat bounded domains, whilst the
passage to unbounded domains in the uniformly elliptic case (see Section 10 in [Littman et al. 1963] and
[Hofmann and Kim 2007]) relies on a global version of the Sobolev embedding in (2.4), which is not
known for A>-weights in general. The degenerate elliptic measure is then shown to be in the Axo-class
with respect to  on the boundary R” in Theorem 5.30 and the solvability of the Dirichlet problem follows
in Theorem 5.34. These results together prove Theorem 1.2.

5A. Boundary estimates for solutions. We require some estimates for solutions near the boundary 0%
of a bounded Lipschitz domain ¥ C R” (see Section 2 of [Caffarelli et al. 1981] for the standard
definition). These estimates require some regularity on the domain boundary but no attempt is made here
to obtain the minimal such regularity, as the focus is to define and analyse a degenerate elliptic measure
on R”,

The Lipschitz regularity of the boundary 9% ensures that the smooth class C°°(X) and the Lipschitz
class C%1(X) are both dense in WM1 ’2(2); see Theorem 3.4.1 in [Morrey 1966] and page 29 in [Kinder-
lehrer and Stampacchia 1980]. This allows the usual definition, for £ C 0¥ and u € WMI’Z(E), whereby
u > 0on E in the WI,%’Z(E)—sense means there exists a sequence u; in C 0.1(X) that converges to u in
Wﬁ’z(Z) with u;(x) > 0 for all x € E. This induces definitions for inequalities <, > and =, between
functions and/or constants, on E in the W/}’z(E)—sense; see, for instance, Definition 5.1 in [Kinderlehrer
and Stampacchia 1980]. Moreover, with supyx, # :=inf{k € R: v <k on dX in the Wul ’Z(E)—sense} and
infyy, := — supyx(—u), the weak maximum principle holds [Fabes et al. 1982b, Theorem 2.2.2], and the
strong version follows by the Harnack inequality in (2.18) [Fabes et al. 1982b, Corollary 2.3.10].

We can now state a Holder continuity estimate and a Harnack inequality for certain solutions near the
boundary. For a cube O C R", recall the corkscrew point Xg := (xg,£(Q)) and denote the Carleson
box in R% ! by Tp := Q x (0,£(Q)). Also, recall that p(x,?) := pu(x), so duu(x,1) = p(x)dx dt,
for (x,t) e R*tL Ifu e W,}’Z(TzQ) is a solution of div(AVu) = 0 in T, and u = 0 on 2Q in the
WMl’z(TZQ)—sense, then

a 1/2
(. 0| < (z(t@) (][T |u|2d/L) for all (x.1) € Tg. 5.1)
20

and if, in addition, ¥ > 0 almost everywhere on 7> ¢, then
u(X) Su(Xg) forall X € Ty, (5.2)

where « is from (2.17) and the implicit constants depend only on 7, A, A and [u]4,. Estimate (5.1) follows
from standard reflection arguments and the interior Holder continuity estimate in (2.17), as observed on
page 102 in [Fabes et al. 1982b]. Estimate (5.2) can then be deduced from (5.1) and the interior Harnack
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inequality in (2.18), as in the uniformly elliptic case; see the proof of Theorem 1.1 in [Caffarelli et al.
1981], which does not use the assumption therein that A is symmetric.

5B. Definition and properties of degenerate elliptic measure. For X € R"t1 x ¢ R* and r > 0, we
use B(X,r):={Y e R"t1:|Y — X| < r} to denote balls in R*T! and A(x,r) :={y e R": x| <r} to
denote balls in R”, where A(x, r) is identified with the surface ball B((x,0),r) N 8R'jr+1 in R"*1. For
each R > 0, consider the bounded Lipschitz domain Xg := B(0, R) N [R'_’Jl with Lipschitz constant
at most 1. For each X € Xg, the degenerate elliptic measure a)I}g is the measure on dX g, as defined
on page 583 in [Fabes et al. 1983], such that u(X) = /. 9% h da)l)g solves the Dirichlet problem for
continuous boundary data 7 € C(0XR) in the sense that div(AVu) = 0in X g and u € C(Zg) with
ulyz, = h.

We now define the degenerate elliptic measure on R”. If f € C.(R"), fix Ry > 0 such that supp f C
A(0, Ro) and set f equal to zero on [R{’jr'"l, so then f* € C(dZR) for all R > Ry, where f*(X) :=
max{=% f(X), 0}; thus

ug(X):= [  fEdoy forall X € T
0XR
solve the Dirichlet problem as above in X g for all R > Ry. The maximum principle then implies that
u%l(X) < uﬁz(X), whenever Ro < Ry < R and X € X, and that supg- ||u§||oo < || floo- This
allows us to define

u(X):= [uh(X)—ug(X)] forall X e R%F1, (5.3)

lim
R—o0
and since the mapping f — u(X) is a positive linear functional on C.(R"), the Riesz representation
theorem implies that there exists a regular Borel probability measure (the degenerate elliptic measure)
X on R" such that u(X) = [ f do*.

The function u from (5.3) solves div(AVu) =0 in IR’}F"']. To prove this, note that ||u||co < || f |lco, SO
for each compact set K C [F\RTFI, the Holder continuity of solutions in (2.17) ensures the equicontinuity
required to apply the Arzela—Ascoli theorem and extract a subsequence ug; that converges to u uniformly
on K. This combined with Caccioppoli’s inequality shows that u g, converges to u in Wu}’z (K); hence
uEe WJ,’IZOC(RTLI). Moreover, if ¢ € CCO"(R'J’F“) and K = supp¢ C X, then

‘ /K (AV(u—ur), Vo) = AIV@llooit(K)/2 1t —urll 12 (5.4)

from which it follows that [in+1{AVu, Vo) = 0, as required.
+

We note by (5.3) that, when restricted to any bounded Borel subset of R”, the measures wfg converge

weakly to @, so Theorem 1 on page 54 of [Evans and Gariepy 1992] shows that
oX(U) <liminfowX (U), X (K)>limsupop(K), oX(B)= lim wx(B) (5.5)

R—o0 R—00 R—o0

for all bounded open sets U C R”, all compact sets K C R”, and all bounded Borel sets B C R” such
that @ (3B) = 0. This construction of the degenerate elliptic measure also provides for the following

expected properties.
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Lemma 5.6. If X, X; € [Ri’j_“ and E C R" is a Borel set, then w*X°(E) = 0 if and only if X1 (E) = 0.
Moreover, the nonnegative function u(X) := w*X (E) is a solution of div(AVu) = 0 in [RTLI and the
boundary Holder continuity estimate

(e, 1) < (@)au(xg) forall (x.1) € Tg 5.7)

holds on all cubes Q such that 2Q C R" \ E, where « is from (2.17) and the implicit constants depend
onlyonn, A, A and [|1]4,,

Proof. The proof follows that of Lemma 1.2.7 in [Kenig 1994], except we must account for the fact that
the solution to the Dirichlet problem in [F\R’_’i_Jrl defined by (5.3) requires boundary data to have compact
support, which is easily done as we now show. Suppose that w*X°(E) = 0 and that K C E is a compact
set. The regularity of the measure implies that wX°(K) = 0 and, for each € > 0, there exists a bounded
open set U D K such that 0X0(U) < e. In particular, we may assume that U is bounded because K is
compact, so by Urysohn’s lemma there exists g € C.(R") such that g(x) =1on K,0<g(x) <lonU,
and supp g C U. It follows that u(X) = [p. g dw*X is the solution to the Dirichlet problem in [R{’f'l
defined by (5.3) with boundary data g. Applying the Harnack inequality from (2.18) and connecting X
with X via a Harnack chain then shows that there exists C > 0, depending on X¢ and X1, such that

0X1(K) <u(X1) < Cu(Xo) < CoX°(U) <Ce forall e > 0;

hence wX1(K) = 0 for all compact sets K C E, and so X! (E) = 0 by regularity.

The proof that u(X) := w* (E) is a solution of div(AVu) =0 in R’f‘l also follows that of Lemma 1.2.7
in [Kenig 1994]. It remains to prove that the boundary Holder continuity estimate holds on all cubes Q
such that 2Q € R" \ E. We first consider when E is bounded. In that case, let Us denote the open
§-neighbourhood of E and set x5 := ¢e * 1y, for all § > € > 0, where @¢(x) := € "¢(x/€) and
@ € C(A(0, 1)) is a fixed nonnegative function with [, ¢ = 1. In particular, since U is open, we have
1g <1y, <liminfc¢ x¢s. Consequently, if X = (x,7) € [F\R'_fl, then

u(X):wX(E)fa)X(Ug)f/ liminf)(egda)xfliminf/ Yes do™. (5.8)
gn €0 ’ €e=>0 Jpn

The function y. s belongs to C°(R™) and thus extends to a function in C£° (R"*1). The construction of
the degenerate elliptic measure (see pages 580-583 in [Fabes et al. 1983], which was the starting point for
our extension to the upper half-space above) thus implies ve(X) := [pn Xes dwX is in W1’2(T(3 /2)0)
and vanishes on %Q whenever 0 <€ < § < %E(Q), so estimate (5.8) combined with the boundary Holder
continuity estimate in (5.1) and the boundary Harnack inequality in (5.2) shows that

t o
u(x,t) < lign_)i(l)lfve(x, t) < (@) lign_j(l)lfve(XQ) for all (x,7) € To. (5.9)

We now let Us . denote the open e-neighbourhood of Us, in which case y. 5 < 1y, and ve(X) <
wX (Us.¢), so by (5.9) and the regularity of the degenerate elliptic measure we have

t .
< (- Xo < Xo
u(x,t) < (E(Q)) 11€m10nfa) (Us.e) < ( ) w2 (Us) forall (x,1)eTp.

L
t(Q)
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This proves (5.7) if E is bounded, since the regularity of the measure also implies that wXe (Us)
approaches wX2(E) = u(X o) as § approaches 0. If E is not bounded, then applying (5.7) on the
bounded sets Ey := Lyk+19\2k g E, for k € N, shows that

wr. ) =S 0¥ (Ep) < (L)anQ(Ek)z(L)anQ(E) for all (x.1) € Tg.
2 2\ 7o) te)

k=1

as required. O

5C. Preliminary estimates for degenerate elliptic measure. In the uniformly elliptic case, there is a rich
theory for the Green’s function on bounded domains, and specifically, estimates and connections with
elliptic measure; see, for instance, Theorem 1.2.8 and Corollary 1.3.6 in [Kenig 1994]. This theory also
extends to unbounded domains; see Section 10 in [Littman et al. 1963] and [Hofmann and Kim 2007]. In
the degenerate elliptic case, the theory was developed on bounded domains in [Fabes et al. 1982a; 1982b;
1983], but it is not clear if there is always such a Green’s function on unbounded domains. In particular, the
construction in [Hofmann and Kim 2007] for the uniformly elliptic case relies on the (unweighted) global
version of the Sobolev embedding in (2.4), which is not known for a general A;-weight. In what follows,
we combine the properties of the Green’s function on the bounded domain X := B(0, R) N R’f’l with
the limit properties in (5.5) to deduce estimates for degenerate elliptic measure on R”. These will be used
to prove Lemma 5.24 and ultimately Theorem 5.30.

For each R > 0, the Green’s function gg : g X X g > [0, 00] is constructed by following Proposition 2.4
in [Fabes et al. 1982a]. In particular, for each Y € X g, the mapping X + gr(X,Y) is the Holder
continuous function in X g \ {¥'} that vanishes on X g and satisfies sz (AVgRr(-,Y),V®) = ®(Y) for
all ® € C°(XR). As explained on page 583 in [Fabes et al. 1983], these properties are valid on any NTA
domain, hence a fortiori on X . The proofs do not rely on the assumption therein that A is symmetric,
although the symmetry property gr(X,Y) = gr(Y, X) is no longer guaranteed, as gx(X,Y) :=gr(¥, X)
is the Green’s function for the adjoint operator — div(A*V). We will rely on the following two lemmas,
which are immediate from Theorem 4 and Lemma 3 in [Fabes et al. 1983], respectively, to estimate the
Green’s function gg and the degenerate elliptic measure wg on X g.

Lemma 5.10. If X,Y €e Zgpand | X — Y| < %dist(Y, 0XR), then
dist(Y,02X R) 52 ds
wxn= [
where the implicit constants depend only on n, A, A and [j1]4,.

Lemma 5.11. If R > 0 and Q is a cube in R" such that T,p C X R, then

gr(X0.Y) _ y  £(Q) wk(0)
o)~ DUty = o)

where the implicit constants depend only on n, A, A and [|1]4,.

forallY € g\ Tro,
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The degenerate elliptic measure wl}g satisfies the doubling property a)I}g 20) < Coa)ig (Q) for all
cubes Q in R" such that 7,9 C X g and all X € X g\ T»¢, where the doubling constant Co > 0 depends
only on n, A, A and [u]4,. This is proved in Lemma 1 on page 584 of [Fabes et al. 1983] by using
the estimates in Lemma 5.11, the Harnack inequality in (2.18), and the doubling property of . The
doubling constant Cqy does not depend on R, which allows us to use the inequalities in (5.5) to show that
the degenerate elliptic measure w* is locally doubling on R”, in the sense that

»*(20) <liminfog (2Q) < liminfwy (3 Q) <limsupog (10) < 0*(Q) (5.12)
R—o0 R—o0 R—00
for all cubes Q C R"” and all X € [R{Trl \ T2¢. where the implicit constant is CZ. In particular, the
doubling property implies w* (3Q) = 0 for all cubes Q C R” (see page 403 in [Garcia-Cuerva and Rubio
de Francia 1985] or Proposition 6.3 in [Hofmann and Martell 2014]), so (5.12) actually improves to
0X(20) < CowX (Q), since by the equality in (5.5) we now have

0wX(0) = Jim wX(Q) (5.13)

for all cubes Q C R" and all X € [RRTLI \ T2p. This provides the following estimate for degenerate
elliptic measure.

Lemma 5.14. If Q is a cube in R", then wX2(Q) = 1, where the implicit constant depends only on n, A,
A and [l4,.

Proof. Let Q denote a cube in R" and fix Rg > 0 such that 7,9 C X g,. The Holder continuity at the
boundary in (5.1) and the Harnack inequality in (2.18) imply (see the proof of Lemma 3 on page 585 in
[Fabes et al. 1983]) that

wx2(Q)2 1 forall R > Ry,

where the implicit constant depends only on 7, A, A and [ut]4,, and so does not depend on R. The result

follows by using Harnack’s inequality to shift the pole (from X9 to X¢) in (5.12)—(5.13) to obtain
. X

®X2(Q) =limgoo wx?(Q) 2 1. O

The estimates in Lemma 5.11 also imply the following comparison principle. The result is stated on
page 585 in [Fabes et al. 1983] and the proof is the same as in the uniformly elliptic case; see Theorem 1.4
in [Caffarelli et al. 1981] or Lemma 1.3.7 in [Kenig 1994], neither of which use the assumption therein
that A is symmetric.

Lemma 5.15 (comparison principle). Let Q denote a cube in R" and suppose that u, v € W,Ll’z(TzQ) N

C(TzQ) withu,v > 0on Tg. If div(AVu) = div(AVv) =0in Trp andu = v = 0o0n 2Q, then
u(X) _u(Xg)
v(X)  v(Xp)

forall X € Tg,

where the implicit constants depend only on n, A, A and [|]4,.

The following corollary of these preliminaries will be used in Proposition 5.18 to estimate Radon—
Nikodym derivatives of the degenerate elliptic measure.
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Lemma 5.16. If Q¢ and Q are cubes in R" such that Q C Qy, then

0X(0)
wX(Qo)

where the implicit constants depend only on n, A, A and [|1]4,.

a)XQo(Q) = forall X € [R’_frl \ T20,

Proof. Let O C Qg be cubes in R”, suppose that X € [R{'jr"'l \ T> ¢, and consider R > 0 large enough so
that X € X g and T4, C X g. Lemma 5.11 shows that

0% (Q0) £(Q0) = 11(Q0) gr(X 04, X),
X (0)U0) = 1(Q) gr(X0, X)
0% (0)£(0) = u(Q) gr(Xo. X30,)-

Ifu(Y)=gr(Y,X)and v(Y)=ggr(Y¥, X30,), then div(AVu) =div(AVu)v =0in Trg, andu =v =0
on 20y, so the comparison principle in Lemma 5.15 shows that

gr(Xg. X) =U(XQ):V(XQ0)= gr(X gy, X)
gr(Xg.X30,) v(Xo) v(Xg,) gr(Xg,.X30,)

Also, Lemma 5.10 shows that gr(Xo,, X30,) =~ £(Q0)/1(Qo), so together we obtain

wx(Q) _ gr(Xg, X) n(Q) L(Qo) _ gr(Xg, X30,) 1£(Q) £(Qo) _

wp'*(Q)
0X(00) ~ grR(Xge. X) £(Q) 11(Q0) ~ gr(Xg,. X30,) £(Q) 1(Qo) ~ R '

X
The Harnack inequality from (2.18) then shows that ‘U})e( (Q) = a)fg (Qo)wpg Co (Q) and the result follows
by using (5.13) to estimate the limit as R approaches infinity. O

If X,Xp € [R{’_’,_H, then Lemma 5.6 shows that X and wX° are mutually absolutely continuous, so the
Lebesgue differentiation theorem for the locally doubling measure wX° implies that the Radon—Nikodym
derivative of w¥ satisfies
do* X (Q(y.5)) Xo

TR Y T T

where Q(y, s) denotes the cube in R” with centre y and side length s. The following decay estimate for

K(Xo,X,y):=

-ae. y € R”, (5.17)

the kernel function K extends Lemma 2 on page 584 in [Fabes et al. 1983]. It is the final property of
degenerate elliptic measure needed to prove Lemma 5.24.

Proposition 5.18. If Q¢ and Q are cubes in R" such that Q C Qy, then

1 max{ |y—XQ|
0% (Q) Q)

where o >0 from (2.17) and the implicit constant depend only on n, A, A and [j1]4,.

K(Xgy. X0,y) <

—
,1% , a)XQO-a.e.yer,
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Proof. Let Q C Qg denote cubes in R” and fix J € N such that 2710 € Qg €27 Q. If y € Q, then
Lemma 5.16 and the Harnack inequality in (2.18) show that

@22 (0(y.5)) _ 0¥ (Q(y.))
®*220(Q) wX20(Q)
whenever 0 < s < dist(y,R* \ Q). If y € 2/ 0\ 2/71Q for some j € {1,...,J}, then the boundary

Holder continuity estimate in (5.7) combined with Lemma 5.16 and the Harnack inequality in (2.18) show
that

0X2(Q(y.s) =

t(Q)
2/724(Q)

€(Q) )"‘w"Qo(Q(y,s))

* ijfz —
) w Q(Q(y’s))’\’(b;_le a)XQO(ZjQ)

o0 % (
whenever 0 < s < dist(y, R” \ (2/ Q \ 2/720Q)), where « > 0 from (2.17) and the implicit constants
depend only on 1, A, A and [u]4,. The result follows by using these two estimates to bound the limit
as s approaches zero in (5.17). O

5D. The A o-estimate for degenerate elliptic measure. We now combine the properties of degenerate
elliptic measure with good €g-coverings for sets, as introduced in [Kenig et al. 2000] and defined below
(see also [Kenig et al. 2016]), to construct bounded solutions that satisfy the truncated square function
estimate in Lemma 5.24. This result, combined with the Carleson measure estimate from Theorem 1.3,
allows us to prove the A-estimate for the degenerate elliptic measure in Theorem 5.30. This avoids the
need to apply the method of e-approximability, as was done in [Hofmann et al. 2015a], and so simplifies
the proof in the uniformly elliptic case.

Let D(R™) denote the standard collection {2 (j 4-[0, 1]%) :k € Z, j € Z™} of all closed dyadic cubes S
in R”. For each S € D(R") and n = 2K, where K € N, define D(S) :={S’ e D(R"): S’ C S} and

D7(S):={S' € D(S): £(S") =27 K¢(S)}, (5.19)
so D7(S) is precisely the set of all dyadic descendants of S at scale 2~ X¢(S).

Definition 5.20. Suppose that Q¢ is a cube in R”. If g >0, k € N, 0 € Qg isacube and E C Q,
then a good €g-cover of E of length k in Q is a collection {0y }5;1 of nested open sets that satisfy
E C Op € Og_; C-+-C 01 C Q and each of which has a decomposition 0; = | J72; Sl-l given by a
collection {Sl.l tien € D(R™) of dyadic cubes with pairwise disjoint interiors such that

wX220(0; N SI7Y) < g wX220(S!7Y) foralli eN, foralll € {2,... k}. (5.21)

Let us record a few important consequences of this definition that will be needed. It is proved on
page 243 in [Kenig et al. 2000] that for each i e N and [/ € {2, ..., k}, there exists a unique j € N such
that Sil is a proper subset of Sjl._l; thus E(Sl.l) < %E(S;_l). Also, for m € {2, ..., k}, iterating (5.21) as
in Lemma 2.5 of [Kenig et al. 2000] shows that

wX220(0; N SM) < eb™MwX220(S™) foralli €N, foralll € {m,... k}. (5.22)
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In the uniformly elliptic case, the following result is Lemma 2.3 from [Kenig et al. 2016]. The proof
extends to the degenerate elliptic case, since it only relies on the fact that the degenerate elliptic measure
wX220 is doubling when restricted to the cube Q.

Lemma 5.23. Suppose that Qg is a cube in R™. If €9 > 0, then there exists 8o > 0, depending only on €y,
n, A, A and [|1]4,, such that the following property holds:

If Q € Qo isacube and E C Qg such that wX220 (E) < 8, then there exists a good €y-cover of E of
length k in Q for some natural number k = log(w*220 (E))/log €9, where the implicit constants depend
onlyonn, A, A and [1]4,.

We can now prove the following lemma by adapting the proof in [Kenig et al. 2016] to the degenerate
elliptic case. The original argument has also been somewhat modified.

Lemma 5.24. Suppose that Qg is a cube in R™. If M > 1, then there exists §pr > 0, depending only on
M, n, A, A and [t)a,, such that the following property holds:

If Q € Qg is a cube and E € Q and wX?20 (E) < 8pr, then there is a Borel subset B of R" such that
the solution u(X) := X (B) of div(AVu) =0 in [R{{"_—H satisfies

rHe dp(y)  di
M = / / tVu(y,1))? ———— — forallx € E,
A(x,yt) W(A(x, 1)) t

where y > 0 is a constant that depends only on n, A, A and [[4]4,

Proof. We introduce three constants €g, 8, 1 € (0, 1) that will be chosen with § < §¢, where ¢ is determined
by € as in Lemma 5.23, and n = 27K for some K € N. Therefore, if E C 0 C Qp and wX220 (E) <6,
then there exists a good €g-cover of E of length k in Q such that k < log(wX220 (E))/ log €o. This cover
is denoted by {01}5‘21 with Oy = 2, Sl.l as in Definition 5.20, and for each such cube Sl.l , a dyadic
descendant §l.l in I]])”(Sl.l) that contains the centre of Sl.l is now fixed and

o0
0= 8. (5.25)
i=1
where we note that £(§ )= nﬁ(S ) in accordance with (5.19).

We claim that there exists a Borel subset 3 of R” such that 15 = Z 1—2 01 N0, To see this, suppose
that Zl — 0/ no & (x) # 0 and let /o denote the smallest integer / € [2, k] such that 1 5 \Ol (x)=1.
It must hold that x € 010 1\ Oy, so then x ¢ Oy, which implies x ¢ O; and x ¢ 0, for all l > lo; hence
15 8,_1\0; (x) =0 for all / > [y and the claim follows.

We now aim to choose €, 17 € (0, 1) such that u(X) := wX () on [Ri”Jrl satisfies

(X, 50) —u(X, gl 2 1 forall St eD(S!), foralli eN, foralll €{l,...,k}, (5.26)

where the implicit constant depends only on the allowed constants n, A, A and [u]4,, and if x and )?
denote the centres of S I"and S;, S, then the relevant corkscrew points are precisely X ns! = (x nt(S; ! ))
and X ns! = (x nzﬁ(S )). To this end, we proceed to obtain estimates for u (X Sz) and u(X S;)
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To estimate u (X nS! ), write
12

u(XnSg):/ lgda)XnS{+/ 1gdwXns! =T +11.
‘ R\ S! s!

1

The boundary Holder continuity in (5.7) shows that I < wXys! (R™\ Sl.l ) < Con®, where Cy, @ > 0 depend
only on the allowed constants. To estimate /7, write

X
”—2/1 5, 1o, dons + Z/ 15, 10, 4 "Sl“r/ 1

X o1
~ 5!
s O/\Oj 41 do”ns|
j=l+2 i

=: 111+ 11+ 113.

First, observe that /1y, =0, since if m € {2,...,[}, then Sl.l C 0; € 0j and so (5j_1 \Oj)N Sl-l =
To estimate /15, the kernel function representation in (5.17) and estimates in Proposition 5.18, the local

doubling property of the degenerate elliptic measure in (5.12) and property (5.22) of the good €p-covering,
show that

I, = Z /

K(X20y. X, 51.y) do*220(y)

i=lt2 (0;—1\0,)NS!
k
C X
S w ZQO((OJ I\O/)mS)
XzQO(Sl)JXI;Lz
C k
<—1— > 0*2(0; NS}
— X2Q0(Sl = l~|—2w ( -1 )

k

Cy j-1-1, X CnEO
<— E € 290 (S )< ——

X 0

w2eo (Sil) j=1+2 -

where the constant Cy, > 0 depends only on 1 and the allowed constants.
To estimate 113, observe that Sl.l N 5; = §l-l by the definition of 51 in (5.25); hence

15 = /~ dwXns! — /~ doXns! = 1T} — 11} .
S! S/N0; 41

The term /1] is estimated in the same way as /I, above to show that

C ~ C
" n Xz0 ) n X290 !
115 < —a)XZQO(SiI)w 0(01+1NS;) < CL)XZQO(Sil)a) 0(0141NS;) < Cyeo.
We estimate /1] from above and below. First, note that X nS! = (x r)K(S )) x € Sl and K(S )= nE(S ),
SO ns’ (S )= w sl (S ) by the Harnack inequality in (2 18), whilst wX l(S ) > 1 by Lemma 5.14.
Thus, there exists co € (0, 1) depending only on the allowed constants such that 175 = ® nSl-I (Sl.) > ¢o.
Next, choose a different dyadic descendant § f #* §l-l in ID)”(SZ.I ) that contains the centre of Sl.l . The
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preceding argument shows that a)anlZ (§ll.) > cg, whilst a)anl? (§ll. N §l.l) < w*ps! (3§ ) = 0; hence

co < I} = 0Xns! (§)) = 1 —0%us! R"\ §) <1

—w%ns! (S < 1—co.
The above estimates together show that if € € (0, 1), then
co fu(XnS'_;)fCon“+3Cneo+1—co. (5.27)
To estimate u (X . §i;), write

M(X S‘[):/ 15da) nSl —I—/:\ lgda)anf :jf-i—ﬁ,
1o R1\S! s

i

as well as

[
:Z/ 5,10, d0™is] + Z / 5,10, 4 ns] +/ 1670p4, 478!

j=l+2
III+IIZ+II3

The arguments used to estimate 7, I/; and I/, show that I< a)Xn§{ (R" \§l) < Con*~, ﬁl =0 and
11, < Cyep/(1 —€p). To estimate /13, observe that

SIn 0\ 0111) = (SINSH\ 0144,

where either 0¥ nS! (Sl N S ) =0 and I15=0,o0r Sl 51.1 and

115 :/A dw*s! —/A dwXns! =: 11— 117,
Sil S-lﬂ01+1

The boundary Holder continuity estimate in (5.7) shows that

Ty = 05! (S = 1—0Xss! ®R*\ §) > 1 - Con®,
whilst repeating the arguments used to estimate /75 shows that
ﬁ// < Cﬂ

PN C
__n X2 l _—n Xs0 I
—0"22(0;+1NS;) < w220(0;41 N S;) < Cyeop.
= oTaegh O NI = e gy O 9D = Greo
These estimates together show that if €g € (0 l) then either

Ofu(X,,ﬁil)ECOUa+3Cn€0 or ”(Xn§;)31_(con“+cn€0)'

(5.28)
The estimates (5.27) and (5.28) together imply

|M(XnS,~’) - M(Xn§,~’)| > co —2Con* —4Cyeo.
We thus obtain (5.26) by first choosing 1 € (0, 1) so that 2Con* < %co and then choosing ¢ € (O )

: 1

2
(depending on 1) so that 4Cyeg < %C(). These choices of 7 and €, which depend only on the allowed
constants, are now fixed.
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To complete the proof, suppose that M > 1 and x € E, and recall that § € (0, §p) remains to be chosen,
where 8¢ is now fixed by our choice of €y as in Lemma 5.23. First, fix a cube S¥ in {Sl.k }ien such that
x € Sk The remarks after Definition 5.20 then imply that for each [ € {1,...,k — 1}, there exists a
unique cube S in {Sl-l}ieN such that x € S’ and S/+! ¢ §; thus £(S!*1) < %Z(Sl). Next, for each
I e{l,..., k}, fix a dyadic descendant S’ in D"(S?) such that x € S’.

Observe that, for some t € (0, 1) sufficiently close to 1 and depending only on 7, the corkscrew points
X, st and X nS! both belong to the dilate rQl of the cube

0L = {(y.0) € R 1 |y —xloo < (3 + 12)E(SD). In?e(Sh) <1 < (1 4+ DS}
with (Z(Q%) =1+ %772)6(51). Therefore, if ¢! := fQé u, then the Moser-type estimate in (2.16), the
Poincaré inequality in (2.5) and the doubling property of p show that

12 12
—c "< fu—c

2 12
|M(X7/S1)_M(Xn§l)| f,lu(X,]SI)—Cl + u(X, s Lo(xQh)

77Sl)

S f u-cPanz el £ 1vultd
2, o)

e(s!
< S e [ Ve d
p(A(x, (14 3m2)Ush)) Jof

du(y) dt
[tVu(y, )| ———— —. (5.29)

s, oo i
Iterating the bound £(S!*1) < %K(S ) shows that £(S!") <2!=""¢(S") when I’ > [. This implies that
the collection {Q,ll, cee, Q],j} has the bounded intersection property whereby, for each [ € {1,...,k},

there are at most 3 + 21log,(1/5? + 1)) such cubes Qf; satisfying Qi,/ N Q,l7 = @. This allows us to sum
estimate (5.29) over [ € {1,..., k} and then apply (5.26) to obtain

» du(y) di _ [THD > du(y) dt
"5"// AR (A(x,r))Tsfo /A(x,m"v“(y’”' W(AG0) 1

for some y > 0 that depends only on 7 > 0 and thus only on the allowed constants.

To conclude, recall that k = log(wX220 (E)™1)/log(1/e€o) > log(1/8)/ log(1/€p), since wX220 (E) <
8 < 1. Therefore, the result follows by choosing § € (0, §o] such that M < log(1/48), since §ps:= 6
depends only on M and the allowed constants. O

We now combine the above technical lemma with the Carleson measure estimate from Theorem 1.3 to
prove the main A-estimate for degenerate elliptic measure.

Theorem 5.30. Suppose that Qg is a cube in R™. If X € [Rf'l \Tg, and w := wX | Qo denotes the
degenerate elliptic measure restricted to Qy, then w € Aoo(J4) and the following equivalent properties
hold:

(1) For each € € (0,1), there exists § € (0, 1), depending only on €, n, A, A and [jt]a,, such that
the following property holds: if Q C Qg is a cube and E C Q such that o(E) < sw(Q), then

R(E) < epn(Q).
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(2) The measure w is absolutely continuous with respect to | and there exists q € (1, 00) such that the
Radon—Nikodym derivative k := dw/du satisfies, on all surface balls A C Qy, the reverse Holder

estimate
1/q
()" oo
A A

where q and the implicit constant depend only on n, A, A and [1t]4,.

(3) There exist C, 0 > 0, depending only on n, A, A and [|1]4,, such that

(E)<C(“EQ;) w(0)

for all cubes Q C Q¢ and all Borel sets E C Q.

Proof. 1t is well known that (1)—(3) are equivalent; see Theorem 1.4.13 in [Kenig 1994]. Moreover, by
Lemma 5.16, it suffices to prove (1) when X = X, ¢,,. In that case, by Lemma 5.24, the Carleson measure
estimate in Theorem 1.3, Fubini’s theorem and the doubling property of u, it follows that for each M > 1,
there exists 637 > 0, depending only on M and the allowed constants, such that the following property
holds: if Q € Qg is acube and E € Q such that w(E) < §pr@(Q), then there exists a solution u of the
equation div(AVu) = 0 in [R{T'l with ||u]jeo < 1 such that

YD Cdu(y)  di
2 d
Mu(E) < /E /0 /A vt 0P S S

7e(0) dt
2 —
<[, oo ano < u),

where the implicit constants and > y > 0 depend only on the allowed constants. Therefore, if € € (0, 1),
we choose M(€) > 1 and thus dps(c) € (0, 1), depending only on € and the allowed constants, such that
W(E) <eu(Q), as required. O

5E. The square function and nontangential maximal function estimates. The L7, w(R™)-norm equiv-
alence between the square function Su and the nontangential maximal function Nyu of solutions u
in Theorem 1.5 is now a corollary of the main Ao-estimate for the degenerate elliptic measure in
Theorem 5.30. This was proved by Dahlberg, Jerison and Kenig in Theorem 1 of [Dahlberg et al. 1984],
which actually provides the more general result in Theorem 5.31 below. In particular, the degenerate
elliptic case is treated on page 106 of the same paper, noting that the normalisation u(Xo) = 0 assumed
therein is actually only required for the so-called N < S-estimate.

Theorem 5.31. Suppose that © : [0, 00)— [0, 00) is an unbounded, nondecreasing, continuous function
with ®(0) = 0 and ©(2t) < CD(¢) for all t > 0 and some C > 0. If div(AVu) =0in errl’ then

[ O(Su) du < / S(Naw) dp.
[Rﬂ Rn
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and if, in addition, u(Xo) = 0 for some X¢ € [RR’_’,_H, then

[ o duz /R (5w dp.

where the implicit constants depend only on Xo, ®, n, A, A and [t]4,.

The next result is also a consequence of the main Aso-estimate in Theorem 5.30. It will allow us to
construct solutions to the Dirichlet problem (D)., as integrals of Lﬁ(R”)—boundary data with respect to
degenerate elliptic measure.

Lemma 5.32. Suppose that 1/p + 1/q = 1, where q € (1,00) is the reverse Holder exponent from
Theorem 5.30. If X = (x,t) € [RET’I, then the Radon—Nikodym derivative k(X,-) 1= do*X /du is in
Lz (R™) and

[ G097 () 5 (A

Moreover, if f € Lﬁ(R”) and u(X) := [gn f(3) dw”, then ||N*“||Lﬁ(Rn) < ||f||ij(Rﬂ)- The implicit
constant in each estimate depends only on n, A, A and [|1]4,.

Proof. Suppose that X = (x,1) € IRTLI. The proof of Proposition 5.18 shows that

k((x’ th)a y)
0@ O (A(x,2/t))
Applying the reverse Holder estimate from Theorem 5.30 then shows that

[k anm = [

SAC D) T+ 2 (A, 27 0) S (A1)
Jj=1

k((x,t),y) <277@ forall y € A(x,27¢)\ A(x,2/71¢), forall j € N.

k(0. )" du) + Y | k(e 0, )7 dpa(y)
0 =/

(x,27 )\ A(x,2/~1¢)

s

To obtain the nontangential maximal function estimate, it suffices to consider the case when f > 0,
since in general we may then decompose f = f — f into its positive and negative parts T, £~ > 0.
To this end, suppose that xo € R” and that X = (x,1) € R’jfl in order to write

oo o)
f = flA(XO’Zt) + Z flA(xO,szrlt)\A(xO’zjt) = Z f)
Jj=1 Jj=0

and define

0= [ H0d*0)= [ GO duo),

The self-improvement property of the reverse Holder estimate from Theorem 5.30 (see Theorem 1.4.13
in [Kenig 1994]) implies that there exists an exponent r > g such that

1/r
(][A k(a0 ) du(y)) < ][A k(G ), ) du(y) < ﬁ (5.33)

for all surface balls A € A(x, %t)
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Now suppose that X = (x,¢) € I'(xp). To estimate ug, we apply the interior Harnack inequality in
(2.18) followed by Holder’s inequality and (5.33) to obtain

wo(x. 1) = uo(x. 61) < / FOYk(x60). y) d(y)

A(x0,2t)

1/r , 1/r
< ( / |k(<x,6z>,y)|’du<y>) ( [ oy du(y))
A(x0,2t) A(x0,2t)

, , 1/r’
< (A (xo, 207V ( /A oY du(y))

< M (f")(xo)]V".

To estimate u; when j € N, we apply the boundary Holder continuity estimate from (5.7) and then

(x0,21)

proceed as in the estimate above to obtain

r\* . . :
uj(x,t) < (2—”) uj(xg,2t) <2 '/a“j(xo,2'/+2t)

52_ja/ SO k((x0,27F210), y) dp(y)
A(XQ,ZJ'HZ‘)

. ) 1/r , 1/r’
soe([ ko2 ooy anm) ([ o du)
A(x0,27F1z) A(x0,27F12)

) , 1/r’
sz—ﬂ*(][ oy du(y))
A(x0,2/ T1¢)
< 27 M (f ) (xo)] VT

The above estimates together show that
Nau(xo) < [Myu(f 7 ) xo)] /"
for all xo € R", and since r’ < ¢’ = p, it follows that ||N*u||Lﬁ < ||f||Lﬁ, as required. |

We conclude the paper by using the preceding lemma to obtain solvability of the Dirichlet problem
(D)p,u- A uniqueness result is also obtained but only for solutions that converge uniformly to O at infinity.
This restriction does not appear in the uniformly elliptic case; see Theorem 1.7.7 in [Kenig 1994]. It
arises here because of the absence of a Green’s function for degenerate elliptic equations on unbounded
domains (see Section 5C) and it is not clear to us whether this can be improved.

Theorem 5.34. Suppose that 1/p + 1/q = 1, where q € (1, 00) is the reverse Holder exponent from
Theorem 5.30. The Dirichlet problem for Lﬁ(R”)—boundary data is solvable in the sense that for each
f e Lﬁ(IR”), there exists a solution u such that

div(AVu) =0 in R,

Nou € LE(R"), (D)p.s

hml—)O M(' ’ t) = .f?
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where the limit converges in Lﬁ(R")-norm and in the nontangential sense whereby

u(y.n) = f(x)

lim
T'(x)>(y,t)—>(x,0)

for almost every x € R"™. Moreover, if f has compact support, then there is a unique solution u of (D)p .
that converges uniformly to O at infinity in the sense that limpg_ o ||u “LOO(RTI \B.R) =0

Proof. Suppose that [ € Lﬁ(IR”) and define u(X) := [ou f dwX forall X IRTLl. We first prove that
div(AVu) =0 in [R{’rLl. Let (f;); denote a sequence in C.(R") that converges to f in Lﬁ([Ri”) and
consider the solutions u; (X) := [ fj dwX. The L9 (R")-estimate for the Radon-Nikodym derivative
dwX /dp from Lemma 5.32 and the doubling property of i show that

llj = vllLoe k) Sk 15 = SlliLg @

for all j € N and any compact set K C [R{’:LH, SO u; converges to u in Li’loc([R{”). Moreover, (fe;cioppoli’s
inequality and the arguments preceding (5.4) show that u; converges to a solution v in WM e (R?), so

then u = v is a solution in errl as required.

The nontangential maximal function estimate || Nyu|| LE@®Y) S INal LE @) is given by Lemma 5.32.
To prove the nontangential convergence to the boundary datum, first recall that u; € C ([ﬁi’_’i_ﬂ) with
ujlgn := fj, s0 imr(x)s(y,1)—(x,0) 4j (¥.1) = fj(x) (see Section 5B). We combine this fact with the
bound

(1) = OO < Ju(ret) = (. O]+l (0.0 = O+ 15 = )]
to obtain

limsup — u(y.2) = f(X)] < [Nu(u —u; )| + [(f = f7) ()]

r'x)>(y,t)—>(x,0)

for all x € R". For any n > 0, we then apply Chebyshev’s inequality and the nontangential maximal
function estimate from Lemma 5.32 to show that

p({xeR": lim sup lu(y.1)— f(x)| >n})
I'(x)2(y,1)—>(x,0)

< u({r € R Nulu—u))(x) > 3n}) + p(fx € R (f = /) @0)] > S)
S0P UNe =) p gy + 1 = S )
SIS = S0 p gy

It follows, since f; converges to f in L% (R"), that

li 1) =
F(x)a(ylyltl)lﬁ(x,o)u(y ) f(x)

for almost every x € R”, as required. The norm convergence lim;—q |[u(-, ) — f]|| LE@) then follows
by Lebesgue’s dominated convergence theorem.

It remains to prove that u is the unique solution satisfying lim| x| [[4(X)|lcc = O when f has
compact support. In that case, fix Ry > 0 such that f is supported in the surface ball A(0, Rg). If
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X e [Riﬁ_“ and | X | > 2Ry, then the reverse Holder estimate in Theorem 5.30 shows that

(X)] < /A SO k(X y) du(y)

0,Ro

1/q
<11l ey ( /A o1 FED du(y))

1
S gy (A0 31XD) 17 f k(X ) dpa()
A(0,1X|/2)

-1/
= ”f”Lﬁ(R")/’L(A(07%|X|)) 7,

whilst limg_, 0 (A0, R)) = o0, since p is in the Aso-class with respect to Lebesgue measure on R”;

thus limg—oo U]} o ®+\B(O.R) = 0. The maximum principle allows us to conclude that any solution
. . + ’ .

of (D)p,;, with this decay must be unique. |
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