Vol. 12, No. 8, 2019

Download this article
Download this article For screen
For printing
Recent Issues

Volume 13
Issue 6, 1605–1954
Issue 5, 1269–1603
Issue 4, 945–1268
Issue 3, 627–944
Issue 2, 317–625
Issue 1, 1–316

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
Author Index
To Appear
Other MSP Journals
Coupled Kähler–Ricci solitons on toric Fano manifolds

Jakob Hultgren

Vol. 12 (2019), No. 8, 2067–2094

We prove a necessary and sufficient condition in terms of the barycenters of a collection of polytopes for existence of coupled Kähler–Einstein metrics on toric Fano manifolds. This confirms the toric case of a coupled version of the Yau–Tian–Donaldson conjecture and as a corollary we obtain an example of a coupled Kähler–Einstein metric on a manifold which does not admit Kähler–Einstein metrics. We also obtain a necessary and sufficient condition for existence of torus-invariant solutions to a system of soliton-type equations on toric Fano manifolds.

coupled Kähler–Einstein metrics, Kähler–Einstein metrics, Monge–Ampère equations, Kähler manifolds
Mathematical Subject Classification 2010
Primary: 32Q15, 32Q20, 32Q26, 53C25
Received: 9 April 2018
Accepted: 18 October 2018
Published: 28 October 2019
Jakob Hultgren
Matematisk Institutt
Universitetet i Oslo