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REGULARITY ESTIMATES FOR ELLIPTIC NONLOCAL OPERATORS

BARTLOMIEJ DYDA AND MORITZ KASSMANN

We study weak solutions to nonlocal equations governed by integrodifferential operators. Solutions are
defined with the help of symmetric nonlocal bilinear forms. Throughout this work, our main emphasis is
on operators with general, possibly singular, measurable kernels. We obtain regularity results which are
robust with respect to the differentiability order of the equation. Furthermore, we provide a general tool
for the derivation of Holder a priori estimates from the weak Harnack inequality. This tool is applicable
for several local and nonlocal, linear and nonlinear problems on metric spaces. Another aim of this work
is to provide comparability results for nonlocal quadratic forms.
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1. Introduction

The aim of this work is to develop a local regularity theory for general nonlocal operators. The main
focus is on operators that are defined through families of measures, which might be singular. The main
question that we ask is the following. Given a function u : R > R satisfying

lim (u(y) —u(x) p(x.dy) = f(x) (x€D), (1-1)

e—>0+ R4\ B.(x)
which properties of u can be deduced in the interior of D? Here D C R? is a bounded open set and the
family (u(x,-))xep of measures satisfies some assumptions to be discussed later in detail. The measures
u(x,-) are assumed to have a singularity for sets A C R? with x € A. As a result, the operators of the
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318 BARTLOMIEJ DYDA AND MORITZ KASSMANN

form (1-1) are not bounded integral operators but integrodifferential operators. For this reason we are
able to prove regularity results which resemble results for differential operators. One aim of this work is
to establish the following result:

Theorem 1.1. Assume u(x,dy) is uniformly (with respect to the variable x) comparable on small scales
to v*(dy — {x}) for some nondegenerate a-stable measure v* for some a € (0, 2). Then solutions to (1-1)
satisfy uniform Holder regularity estimates in the interior of D.

Theorem 1.1 will be proved as a special case of Theorem 1.11, which we provide with all details in
Section 1E. Special cases of Theorem 1.1 have received significant attention over the last years and we
give a small overview of results below. Note that it is well known how to treat functions f in (1-1). For
the sake of a clear presentation, we will sometimes restrict ourselves to the case f = 0.

In order to approach the question raised above, we need to establish the following results:

e weak Harnack inequality,
e implications of the weak Harnack inequality,
e comparability results for nonlocal quadratic forms.

The last topic needs to be included because our concept of solutions involves quadratic forms related to
u(x,dy). We present the main results in Sections 1C-1E. The following two subsections are devoted to
the set-up and our main assumptions.

1A. Function spaces. Before we can formulate the first result we need to set up quadratic forms and
function spaces. Let i = (u(x,-))  cge be a family of measures on R4 which is symmetric in the sense
that for every set A x B C R x R4 \ diag

A/B;L(x,dy)dx:/B/A,u(x,dy)dx. (1-2)

sup / min(|x — y|?, 1) u(x,dy) < +oo. (1-3)
R4

xeR4

We furthermore require

Example 1.2. An important example satisfying the above conditions is given by
pa(x.dy) = @=a)lx—y["7%dy (0<a<2). (1-4)
The choice of the factor (2 — «) will be discussed below in detail; see Sections 1B and 2.

For a given family u and a real number o € (0, 2) we consider the following quadratic forms on
L2(D) x L3(D), where D C R? is some open set:

e = [ [ o) —ut? utr.dy) ax. (1-5)
We denote by H ®/2(R4) the usual Sobolev space of fractional order «/2 € (0, 1) with the norm

1
el ety = (Null22 gy + €25 Ga10) . (1-6)
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oz/2 0[/2

If D C R? is open and bounded, then by Hp (R4) we denote the Banach space of functions

from H®*/2(R?) which are zero almost everywhere on D¢. H*/%2(D) shall be the space of functions
u € L?(D) for which

102y = 141220y + [) /D () ~u(x))? Ha(x. dy) dx

is finite. Note that for domains D with a Lipschitz boundary, Hg/ 2([Ri”l) can be identified with the closure
of C2°(D) with respect to the norm of H ®/2(D). In general, these two objects might be different, though.
By V%/2(D | R%) we denote the space of all measurable functions u : RY — R for which the quantity

/ (u(y) —u(x))?
D JR4

X y|d+e dxdy (1-7)

is finite, which implies finiteness of the quantity [yq u(x)2/(1 + |x|)¥*t* dx. The function space
Ve/2(D | R?) is a Hilbert space with the scalar product

o= [ O [ [ SO0 gy,

@ (1+ IXI)‘”“ |x — y|dte

The proof is similar to those of [Felsinger et al. 2015, Lemma 2.3] and [Dipierro et al. 2017a, Proposi-
tion 3.1]. If the scalar product (1-8) is defined with the expression [ps u(x)v(x)/(1 + |x])4+¢ replaced
by [, u(x)v(x) dx, then the Hilbert space is identical. The following continuous embeddings trivially
hold true:

HZ RY) — H%(RY) — VZ(D|RY).

We make use of function spaces generated by general 1 in the same way as above. Let H*(R?) be the
vector space of functions u € LZ(R?) such that £#(u, u) = S[R’fd (u, u) is finite. If D C R? is open and
bounded, then by HA = = Hp, *(R9) we denote the space of functions from H 1 (R?) which are zero almost
everywhere on D€. By V“ VH(D | R?) we denote the space of all measurable functions u : R? — R
for which the quantity

[ [ ) =2 e ay) e (19
D JRd
is finite. Now we are in a position to present and discuss our main results.

1B. Main assumptions. Let us formulate our main assumptions on (((x,-))xep. Given o € (0, 2) and
A > 1, the following condition is an analog of (A’") for nonlocal energy forms:

For every ball B,(xo) with p € (0, 1), x9 € By and every v € H“/Z(Bp(xo)),

A~ lgh

e w (A)
B, (xo0 y(v.v) < SBp(xo)(v’ v) < Ang(xo)(v’ V).

Condition (A) says that, locally in the unit ball, the energies £/ and £#« are comparable on every scale.
Note that this does not imply pointwise comparability of the densities of © and py. We also need to
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assume the existence of cut-off functions. Let @ € (0,2) and B > 1:

For 0 < p < R <1 and x¢ € B; there is a nonnegative measurable function 7 : R > R
with supp(t) C Br4p(x0), 7(x) =1 on Br(xg), ||[T]looc <1, and (B)

SUPxepd Jga (T(¥) = T(x))? p(x,dy) < Bp™.

In most of the cases (B) does not impose an additional restriction because the standard cut-off function
7(x) =max(0, 1 +min(0, (R—|x—xo|)/p)) is an appropriate choice. It is an interesting question whether,
under assumptions (1-2), (1-3) and (A), condition (B) holds or whether it holds with this standard choice.
Note that condition (B) becomes |Vt|? < Bp~2 when a — 2— and p(x, dy) is as in Example 1.2.

For every « € (0, 2), the family of measures (1o given in Example 1.2 satisfies the above conditions
for some constants A, B > 1. The normalizing constant 2 — ¢ in the definition of jt4 has the effect that
the constants A, B > 1 can be chosen independently of o for « — 2—. Since in this work we do not care
about the behavior of constants for « — 0+, in our examples we will use factors of the form 2 — . Let
us look at more examples.

Example 1.3. Assume 0 < <a <2. Let f, g: R — [1, 2] be measurable and symmetric functions. Set

p(x,dy) = f(x, ) pa(x,dy) +g(x, y) upg(x,dy).
Then p satisfies (1-2), (1-3), (A), and (B) with exponent «. This simply follows from

1 _ 1 . 1 -
|x —yldte T |x —y|dtB  |x—yldte T |x — y|dte

(x,y € Bi(xp), xo € RY).

For the verification of (B) we may choose the standard Lipschitz-continuous cut-off function.
Here is an example with some kernels which are not rotationally symmetric.

Example 1.4. Assume g € (0,2), 0<A <A, ve SS9 1 and 0 €[0,1). Set

(0] =)

Let k : R? x R? — [0, o] be any measurable function satisfying

2—-a) 2—a)
— <k, y)) < A——mF—
|x—y|d+°‘_ (x y)— |x—y|d+°‘

M:{heRd:

Aly(x—y) (1-10)

for some « € [org, 2) and for almost every x, y € R%. Set pu(x,dy) = k(x, y) dy. Then, as we will prove,
there are A > 1, B > 1, independent of «, such that (A) and (B) hold.

The following example of a family of measures falls into our framework. Note that the measures do
not possess a density with respect to the d-dimensional Lebesgue measure.

Example 1.5. Assume g € (0,2), oo < a < 2. Set

d
u(x.dy) = 2—a) Z[lxl- —yil 7y [ ] S{x,.}(dyj)]. (1-11)

i=1 J#i
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Again, as we will prove, there are A > 1, B > 1, independent of «, such that (A) and (B) hold. Note that
u(x, A) = 0 for every set A which has an empty intersection with any of the d lines {x 4+ t¢; : t € R}.

Let us now formulate our results.

1C. The weak Harnack inequality. Given functions u, v : R? — R we define the quantity

£ (u,v) = /f () —u ()W) — v(x) u(r. dy) dx, (1-12)
R4 Rd

if it is finite. We write & instead of £# when it is clear or irrelevant which measure u is used. One aim of
this work is to study properties of functions u satisfying £(u, ¢) > 0 for every nonnegative test function ¢.
Note that E#(u, ¢) is finite for u € V(D |R?), ¢ € Hg([Rd) for any open set D C R?. This follows
from the definition of these function spaces, the Cauchy—Schwarz inequality and the decomposition

£ (u.9) =/DD(M(y)—u(X))(¢(y)—¢(X))M(x,dy)dX+2/ (u(y)—u(x)($(y)—¢(x)) p(x,dy)dx.

DDc¢

Here is our first main result.

Theorem 1.6 (weak Harnack inequality). Assume 0 < o9 <2 and A > 1, B > 1. Let u satisfy (A), (B)
for some o € [, 2). Assume [ € L9/%(By) for some g > d. Letu € V*(By |R?), u > 0 in By, satisfy
EM(u, @) = (f, @) for every nonnegative ¢ € Hgl (R9). Then

1
. 20 _
inf ch(][ u(x)l’odx) —  sup / u (z) ,u(x,dz)—||f||Lq/a(Bls/16), (1-13)
Bia By,> xX€Bis5/16 R4\ By

with positive constants po and ¢ depending only on d, ag, A, B. In particular, py and ¢ do not depend
on .

Note that below we explain a local counterpart to this result, which relates to the limit « — 2—; see
Theorem 1.12.

Remark. It is remarkable that (A) and (B) do not imply a strong formulation of the Harnack inequality.
Examples 1.4 and 1.5 provide cases in which the classical strong formulation fails. See the discussion in
[Kassmann et al. 2014, Appendix A.1] and the concrete examples in [Bogdan and Sztonyk 2005, p. 148;
Bass and Chen 2010, Section 3]. The nonlocal term, i.e., the integral of ¥~ in (1-13) is unavoidable since
we do not assume nonnegativity of u on all of R4

1D. Regularity estimates. A separate aim of our work is to provide consequences of the (weak) Harnack
inequality. Before we explain this in a more abstract fashion let us formulate a regularity result, which
will be derived from Theorem 1.6 and which is one of the main results of this work. We need an additional
mild assumption on the decay of the kernels considered.

Given « € (0, 2) we assume that for some constants y > 1, C > 1

u(x. R\ B, (x) <Cr )~/ (x€B1.0<r=1,jeN). (D)
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Condition (D) rules out kernels with very heavy tails for large values of |x — y|. For example, u given by
wu(x,dy) = k(x, y)dy with k(x, y) = |x — |74 + |x — y|~? In(2 4 |x — y|)~2 does not satisfy (D).
Here is our main regularity result.

Theorem 1.7. Let o9 € (0,2), y >0, and A > 1, B > 1. Let u satisfy (A), (B) and (D) for some
o € [ag, 2). Assume u € V*(By | R?) satisfies E(u, ¢) = 0 for every ¢ € Hg1 (R?). Then the following
Hélder estimate holds for almost every x,y € Bys:

u(x) —u(y)| < cllufloslx — y, (1-14)

where ¢ > 1 and B € (0, 1) are constants which depend only on d, o, A, B, C, y. In particular, c and
do not depend on «.

This result contrasts the corresponding result for differential operators; see Theorem 1.13 below.

The main tool for the proof of Theorem 1.7 is the weak Harnack inequality, Theorem 1.6. The Harnack
inequality itself is an interesting object of study for nonlocal operators. In Section 2 we explain different
formulations of the Harnack inequality for nonlocal operators satisfying a maximum principle. A separate
aim of this article is to prove a general tool that allows us to deduce regularity estimates from the Harnack
inequality for nonlocal operators. This step was subject to discussion of many recent articles in the field.
We choose the set-up of a metric measure space so that this tool can be of future use in different contexts.

In the first decades after publication, the Harnack inequality itself did not attract as much attention
as the resulting convergence theorems. This changed when J. Moser in 1961 showed that the inequality
itself leads to a priori estimates in Holder spaces. His result can be formulated in a metric measure space
(X,d,m) as follows. Forr >0, x € X, set B,(x) ={y € X :d(y,x) <r}. Forevery x € X andr >0
let Sy » denote a family of measurable functions on X satisfying the conditions

r>0,ueSy,,acR = aueSx,, (u+1)eSx,,
By(x) CBs(y) = SysCSxr.

An example for Sy, is given by the set of all functions u : R? — R satisfying some (possibly nonlinear)
appropriate partial differential or integrodifferential equation in a ball B (x).

Theorem 1.8 (compare [Moser 1961]). Assume X is separable. Let xo € X and Sy, be as above. Assume
that there is ¢ > 1 such that for r > 0

(U € Sxo,r) AN(u>0in Br(x9)) = sup u<c inf wu. (1-15)
xGBr/z(xo) xeBr/Z(xO)

Then there exist B € (0, 1) such that for r > 0, u € Sx,,r and almost every x € Br(xo)

d(x, x0) )’
) =0 = 3= ) o | )
Recall that “sup” denotes the essential supremum and “inf” the essential infimum. With the help of this
theorem, regularity estimates can be established for various linear and nonlinear differential equations; see
[Gilbarg and Trudinger 1998]. One aim of this article is to show that (1-15) can be relaxed significantly
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by allowing some global terms of u to show up in the Harnack inequality. Already in Section 2 we have
seen that they naturally appear.
For x € X, r > 0let vy , be a measure on B(X \{x}), which is finite on all sets M with dist({x}, M) > 0.
We assume that for some ¢ > 1, y > 1 and forevery j e Ng, x € X,and 0 <r <1
V(X \ By (x) <cx . (1-16)
We further assume that, given K > 1, thereis ¢ > 1 such that forO<r < R<Kr, x€ X, M C X\ By (x)
Vx,R(M) < cvx ,(M). (1-17)
Conditions (1-16) and (1-17) will trivially hold true in the applications that are of importance to us. In
Section 5 we discuss these conditions in detail. A standard case is provided in the following example.

Example 1.9. Let o € (0,2). For x e R?, r >0, and 4 € B(R? \ {x}) set

e () = 1 pa(x, ) = 0@ =) [ fr= 514 ay. (1-18)
A

Then vy, satisfies conditions (1-16), (1-17).

The following result extends Theorem 1.8 to situations with nonlocal terms. It is an important tool in
the theory of nonlocal operators.

Theorem 1.10. Let xo € X, ro > 0,and A > 1, 0 > 1, 0 > 1. Let S r and vy r be as above. Assume
that conditions (1-16), (1-17) are satisfied. Assume that there is ¢ > 1 and p > 0 such that for 0 <r <rg
the following holds:

(u € x0.r) A (u = 0in By(x0)),
1

= (][ u(x)Pm(dx))p <c inf u+c sup / u (z)vxr(dz). (1-19)
By (x0) X

xX€B;/6(x0) X€B, /5 (x0)

Then there exists B € (0, 1) such that for 0 <r <rg, u € Sx,.r

B
05CB, (x) 1 < 26” [ul oo (3) O<p=<r), (1-20)
r

where oscps u 1= supy, u —infps u for M C X.

Note that in Lemma 5.1 we provide several conditions that are equivalent to (1-16).

1E. Comparability of nonlocal quadratic forms. With regard to Theorem 1.7 one major problem is to
provide conditions on p which imply (A). Let us formulate our results in this direction.

Since p = (u(x,-)),ere is a family of measures we need to impose a condition that fixes a uniform
behavior of u with respect to x. In our setup this condition implies that the integrodifferential operator
from (1-1) is comparable to a translation-invariant operator — most often the generator of an ¢-stable
process. We assume that there are measures vy and v* such that

/ Fux +2) valdz) < / Feoy) e dy) < / Floox +2)v*(d2) (T)
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for every measurable function f : R? — [0, 00] and every x € R?. For a measure v on R? such that
v({0}) = 0 and a set B C R? we define, abusing the previous notation slightly,

Ep(u,v) = / /d(u(x) —u(x+2))(v(x)—v(x+2z))1p(x +z)v(dz) dx. (1-21)
BJR
Note that (T) implies for every u € L?(B)
Ep(u,u) <EQ(u,u) < 5}’;* (u,u).

Let 5(A) = v(—A). It is easy to check that £¥ = £’+9)/2, Hence we may and do assume that the
measures vy, v are symmetric; i.e., v« (A4) = v« (—A) and v*(A4) = v*(—A).
We say that a measure v on B(Rr4 ) satisfies the upper-bound assumption (U) if for some Cy > 0

/ (r Alz])?v(dz) < Cyr?™™ (0<r<1). L)
R4
We say that a measure v on B(R4) satisfies the scaling assumption (S) if for some a > 1
[, rorvan=a= [ vy )
R4 R4

for every measurable function f : R — [0, oo] with supp f C Bj. For a linear subspace E C R, let
HEg denote the dim(E)-dimensional Hausdorff measure supported on E.
We say that a measure v on B(R?) satisfies the nondegeneracy assumption (ND) if for some n €
{1,....d}
v=>7%_, fx HE, for some linear subspaces Ej C R? and densities T
with lin(Uk Ek) = R4 and /Bl JkdHE, >0fork =1,...,n. (ND)

Here is our result on local comparability of nonlocal energy forms. It contains Theorem 1.1 as a special
case.

Theorem 1.11. Let = (u(x,-)) era be a family of measures on B (RY) satisfying (1-2). Assume that
there exist measures v« and v* for which (T) and (U) hold with ag € (0,2) and Cy > 0. Assume that

(1) v« is a nondegenerate o-stable measure (1-22), or
(ii) vy satisfies (ND) and for some a > 1 each measure fi Hg, satisfies (S).

Then there are A > 1, B > 1 such that (A) and (B) hold. One can choose B = 4Cy but the constant A
depends also on a, on the measure v« and on .

The result is robust in the following sense: if u* = (W*(x,-)) yepa satisfies (1-2) and (T) with measures
(v)® and (vV*)*, ag < a < 2, that are defined with the help of v« and v* as in Definition 6.9, then (A)
holds with a constant A independent of « € [ag, 2).

Recall that a measure v on B(R?) is a nondegenerate a-stable measure if for some o € (0, 2)
o0
V(E) = (2—a)/ / 1(r0)r~ "% dr n(df) (E € BRY)), (1-22)
Sd—1Jo

where 7 is some finite measure on S~ and lin(supp 7) = R%.
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1F. Related results. 1t is instructive to compare our results with two key results for differential operators
in divergence form. Let (A(x)), cpe be a family of d x d-matrices. Given a subset D C R? we introduce a
bilinear form Ap by Ap (u,v) = [, (Vu(x), A(x)Vu(x)) dx for u and v from the Sobolev space HY (D).
Instead of Aps we write A. The following theorem is at the heart of the theory named after E. De Giorgi,
J. Moser and J. Nash; see [Gilbarg and Trudinger 1998, Chapters 8.8—8.9]:

Theorem 1.12 (weak Harnack inequality). Let A > 1. Assume that for all balls B C By and all functions
ve HY(B)
A~ gt < [ 1VUP < A, (A"
B

Assume f € L9/2(By) for some g > d. Letu € HY(B)) satisfy u > 0 in By and Ap,(u,¢) > (f., ¢) for
every nonnegative ¢ € H(} (B1). Then

1

. pO
¢ inf u > (f u(x)po dx) - ||f||L‘1/2(B15/16)’
B2

B4
with constants pg, ¢ € (0, 1) depending only on d and A.

Remark. This by now classical result can be seen as the limit case of Theorem 1.6 for ¢ — 2—.
Condition (A’) implies that the differential operator = (A(-)Vu) is uniformly elliptic and obviously
describes a limit situation of (A). One might object that the nonlocal term in (1-13) is unnatural but in
fact, it is not. In Section 2 we explain this phenomenon in detail for the fractional Laplace operator.

If u is not only a supersolution but a solution in Theorem 1.12, then one obtains a classical Harnack
inequality: supp, LUsc infp, , u. Both the Harnack inequality and the weak Harnack inequality imply
Holder a priori regularity estimates:

Theorem 1.13. Assume condition (A’) holds true. There exist ¢ > 1, B € (0, 1) such that for every
u € H'(By) satisfying A(u, ) = 0 for every ¢ € HO1 (B1) the following Hélder estimate holds for almost
every x,y € By)s:

() =u(y)] < eflulloclx — yIP. (1-23)

The constants B, ¢ depend only on d and A.

After having recalled corresponding results for local differential operators, let us review some related
results for nonlocal problems. Note that we restrict ourselves to nonlocal equations related to bilinear
forms and distributional solutions.

Theorem 1.7 has already been proved under additional assumptions. If @ (x,-) has a density k(x, -)
which satisfies some isotropic lower bound, e.g., for some ¢y > 0, « € (0, 2)

plx,dy) =k(x, y)dy,  kx,y) = colx—y|™7* (x—y| <),
then Theorem 1.7 is proved in and follows from [Komatsu 1995; Bass and Levin 2002; Chen and
Kumagai 2003; Caffarelli et al. 2011]. In these works the constant ¢ in (1-14) depends on « € (0, 2)
with c(e¢) - 400 for « — 2—. The current work follows the strategy laid out in [Kassmann 2009],
which, on the one hand, allows the constants to be independent of « for « — 2— and, on the other hand,
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allows us to treat general measures. See [Felsinger and Kassmann 2013; Kassmann and Schwab 2014]
for corresponding results in the parabolic case.

The articles [Di Castro et al. 2014; 2016] study Holder regularity estimates and Harnack inequalities for
nonlinear equations. Moreover, the results therein provide boundedness of weak solutions. In [Di Castro
et al. 2014; 2016] the measures u(x, dy) are assumed to be absolutely continuous with respect to the
Lebesgue measure. Another difference to the present article is that our local regularity estimates require
only local conditions on the data and on the operator. Note that our study of implications of (weak)
Harnack inequalities in Section 5 allows for nonlinear problems in metric measure spaces and could be
used to deduce the regularity results of [Di Castro et al. 2016] from results in [Di Castro et al. 2014].

To our best knowledge there has been little research addressing the question of comparability of quadratic
nonlocal forms; we note here [Dyda 2006; Husseini and Kassmann 2007; Prats and Saksman 2017]. This
question becomes important when studying very irregular kernels as in [Silvestre 2016, Section 4].

Theorem 1.1 has recently been established in the translation-invariant case, i.e., when u(x,dy) =
v*(dy — {x}) for some «-stable measure v¥; see [Ros-Oton and Serra 2016]. The methods of that
paper seem not to be applicable in the general case, though. Note that anisotropic translation-invariant
integrodifferential operators allow for higher interior regularity; see [Ros-Oton and Valdinoci 2016].

Related questions on nonlocal Dirichlet forms on metric measure spaces are currently investigated by
several groups. We refer to the exposition in [Grigor’yan et al. 2014; Chen et al. 2019] for a discussion of
results regarding the fundamental solution.

1G. Notation. Throughout this article, “inf” denotes the essential infimum and “sup” the essential
supremum. By 971 = {x e R? : |x| = 1} we denote the unit sphere. We define the Fourier transform as
an isometry of L2(R?) determined by

i) =@n* |

) u(x)e_’f'x dx, ue Ll(IRd) N Lz(Rd).

R

1H. Structure of the article. The paper is organized as follows. In Section 2 we study the Harnack
inequality for the Laplace and the fractional Laplace operators. We explain how one can formulate a
Harnack inequality without assuming the functions under consideration to be nonnegative. In Section 3 we
provide several auxiliary results and explain how the inequality £#(u, ¢) > (f, ¢) is affected by rescaling
the family of measures . In Section 4 we prove Theorem 1.6 under assumptions (A) and (B) adapting
the approach by Moser to nonlocal bilinear forms. Section SA provides the proof of Theorem 1.7. We
first prove a general tool which allows us to deduce regularity results from weak Harnack inequalities; see
Corollary 5.2. Then Theorem 1.7 follows immediately. Section 6 contains the proof of our main result on
comparability, Theorem 1.11, in the two respective cases. We provide sufficient conditions on u for (A)
and (B) to hold true. In addition, we provide two examples of quite irregular kernels satisfying (A) and (B).

2. Harnack inequalities for the Laplace and the fractional Laplace operators

We establish a formulation of the Harnack inequality which does not require the functions to be nonnegative.
This reformulation is especially interesting for nonlocal problems but our formulation seems to be new



REGULARITY ESTIMATES FOR ELLIPTIC NONLOCAL OPERATORS 327

even for harmonic functions in the classical sense; see Theorem 2.5. For « € (0,2) and u € C, CZ(Rd ) the
fractional power of the Laplacian can be defined as

a . u(y) —u(x) Cod [ ulx+h)—2u(x)+u(x—h)
A2u(x) = Cyq lim ——dy = /Rd jdTa

dh, (2-1)
e=>0+ J|y_x|>¢ |y—x|d+“ 2

where

I'id+a)/2)
Cod = 7 .
27%7 2 |I'(—a/2)|
For later purposes we note that with some constant ¢ > 0 for every « € (0, 2)

a(2—a)

ca2—a) <Cyq < (2-2)

The use of the symbol A%/2 and the term “fractional Laplacian” are justified because of (—A)%/2y(§) =
|E|%71(&) for £ e RY and u € cx (R9). Note that we write A% 2y instead of —(—A)®/2y, which would
be more appropriate. The potential theory of these operators was initiated in [Riesz 1938]. The following
Harnack inequality can be easily established using the corresponding Poisson kernels.

Theorem 2.1. There is a constant ¢ > 1 such that for o € (0,2) and u € C(R?) with

AZu(x)=0 (x€ By), (2-3)
u(x) >0 (x eR?) (2-4)
the following inequality holds:
u(x) =cu(y) (x,y€By).

Note that A%/ 2u(x) = 0 at a point x € R4 requires that the integral in (2-1) converges. Thus some
additional regularity of u € C(R%) is assumed implicitly. Since A%/2 allows for shifting and scaling,
the result holds true for By, By, replaced by Br(xo), Bg,2(xo) with the same constant ¢ for arbitrary
xoe[R{d and R > 0.

Theorem 2.1 formulates the Harnack inequality in the standard way for nonlocal operators. The
function u is assumed to be nonnegative on all of R?. In the following we discuss the necessity of this
assumption and possible alternatives. The following result proves that this assumption cannot be dropped
completely.

Theorem 2.2. Assume « € (0,2). Then there exists a bounded function u € C(R%) which is infinitely
many times differentiable in By and satisfies
AZu(x)=0 (x€ By),
u(x) >0 (xe B1\{0}),
u(0) =0.

Therefore, the classical local formulation of the Harnack inequality as well as the local maximum principle
fail for the operator A*/2,
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A complicated and lengthy proof can be found in [Kassmann 2007a]. An elegant way to construct such
a function u would be to mollify the function v(x) = (1 —|x/ 2|2)11+°‘/ 2 and shift it such that u(0) =0.
Here we provide a short proof,! which includes a helpful observation on radial functions. See [Bucur and
Valdinoci 2016; Dipierro et al. 2017b] for further alternatives.

ForanopensetDC[R{d, xeD, 0<a§2,andv:[Rd—>[R{(O<a<2)orv:5—>[R{(a:2)we

write

Py(x,y)v(y)dy (O<a<?2),
Ha(v| D)(x) = / P, ) vy dy = | rp Falr v dy (2-5)
y¢D Jop P2(x.y)v(y)dy (e =2).
In the case of a ball, the Poisson kernel is explicitly known; namely for R > 0 and f : R4 \Br(0) >R
f(x) (Ix[= R),

Half | BRON() = {ca(Rz — X2 [,k SOV (¥ = R*2x =y ) dy (x| < R),

where cq = 7-4/271T(d /2) sin wer /2. For a function ¢ : [0, 00) — [0, 00) we set
h% = Ha(¢ o |-|BR(0)).

Proposition 2.3. Forall 0 < |x| < R

ds
(s+ l)s%'

Proof. Let us fix R > 0 and x € Br(0). Using polar coordinates we obtain

W) = calR2— xS [ N AL
w0 = ol [ ey otan S0

By the classical Poisson formula, see [Gilbarg and Trudinger 1998, formula (2.26)],

h(x) = M[msb(x/lezﬂ(zez—uﬁ))
T 0

(2-6)

1—|wl|? _
[ e @) = 15971 (<
sa-1 |lw—y|

hence

_ _ X
f Ix—y[™a(dy) =p 1] ‘——y
pSd—1 sd—1|p

Plugging this into (2-6) yields

—d

2\"1 4
_ _ 22 0

ay) = o s (1= B0 2 .

o =r '( 02 (d/2) p? — |xP?

d
2 a [ 2 d
h?.‘,(x) _ CqTl (R2— |x|2)§ [ P¢(P) P _.
Fd/2) (P2 = [x2)(p? — R%)%
The simple substitution s = (p?> — R?)/(R? —|x|?) leads to
o 2pp(p)dp 1 o ds
/ Ay AL A — / o (VR + (R —|x[)———.
R (p*—[xP)(p*—R?*)2  (R*—|x[*)2 Jo (s +1)s2
Thus the assertion follows. O

1'We owe the idea of this proof to Wolfhard Hansen.
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Theorem 2.2 now follows directly from the following corollary.

Corollary 2.4. Let R > 0 and suppose that ¢ is decreasing on [R, o0) such that ¢(s) < ¢ (r) for some
R <r <s. Then

h‘é(x) < h%(y), whenever 0 < x <y < R.

In particular, u := h% — h% (0) is a bounded function on R% which is a-harmonic on Bg(0) and satisfies
0 =u(0) < u(y) forevery y € Br(0).

In Theorem 2.1 the function u is assumed to be nonnegative on all of R4, It is not plausible that the
assertion should be false for functions u with small negative values at points far from the origin. A similar
question can be asked for classical harmonic functions. If u is positive and large on a large part of 0B,
it should not matter for the Harnack inequality on By, if u is negative with small absolute values on
a small part of dB;. Another motivation for a different formulation of the Harnack inequality is that
Theorem 2.1 does not allow us to use Moser’s approach to regularity estimates, like Theorem 1.8, in a
straightforward manner.

Let us give a new formulation of the Harnack? inequality that does not need any sign assumption on u.
It is surprising that this formulation seems not to have been established since Harnack’s textbook in 1887.
We treat the classical local case o = 2 together with the nonlocal case « € (0, 2).

Theorem 2.5. (Harnack inequality for A%/2, 0 < o < 2)

(1) There is a constant ¢ > 1 such that for 0 < « < 2 and u € C(R?) satisfying
ASu(x)=0 (x€ By) (2-7)
the following estimate holds for every x, y € By5:
c(u(y) = Ho™ | B)(»)) < u(x) < c(u(y) + Ho(u™ | B1)()). (2-8)

(2) There is a constant ¢ > 1 such that for 0 < a < 2 and every function u € C (Rd) which satisfies (2-7)
and is nonnegative in By the following inequality holds for every x,y € By5:

u(x) < c(u(y) +a(2—a) L(Z) dz). (2-9)
RY\B; |z|d+e

+

Proof of Theorem 2.5. The decomposition ¥ = u™ —u™~ and an application of Theorem 2.1 give

u(x) = Ha(u| B1)(x) < Hu™ | B1)(x) < cHo(u™ | B1)(y)
=cHy(u|B1)(y) +cHo(u™ | B1)(y) = cu(y) + cHo(u™ | B1)(y),

which proves the second inequality in (2-8). The first one is proved analogously.

2Kassmann would like to use the opportunity to correct an error in [Kassmann 2007b] concerning the name Harnack. The
correct name of the mathematician Harnack is Carl Gustav Axel Harnack. His renowned twin brother Carl Gustav Adolf carried
the last name “von Harnack™ after being granted the honor.
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Inequality (2-9) is proved as follows. Assume u is nonnegative in By. Using the same strategy as
above we obtain for some ¢, ¢z > 0 and ¢ = max(cy, ¢32)

u(x) < ey Ha(u| B3)(7) + 1 Hau™ | By)()

<ciu(y)+co(2—a) /I;{d\B <cu(y)+ca2—a) u=(z) dz

|Z|d+a

R\ B
The proof of the theorem is complete. Note that different versions of this result have been announced in
[Kassmann 2011]. O
Let us make some observations:
(1) There is no assumption on the sign of u needed for (2-8). Inequality (2-8) does hold in the classical
case o = 2, too.

(2) If u is nonnegative on all of R? (& € (0, 2)) or nonnegative in B (« = 2), then the second inequality
in (2-8) reduces to the well-known formulation of the Harnack inequality.

(3) If u is nonnegative in By, then (2-9) reduces for @ — 2 to the original Harnack inequality.

(4) For the above results, one might want to impose regularity conditions on u such that A2y (x)
exists at every point x € By, e.g., u|g, € C2(By) and u(x)/(1 + |x|4+%) e L1(R?). However, the
assumption that the integral in (2-1) converges is sufficient.

The proof of Theorem 2.5 does not use the special structure of A%2 The proof only uses the
decomposition ¥ = u —u~ and the Harnack inequality for the Poisson kernel. Roughly speaking, it
holds for every linear operator that satisfies a maximum principle. One more abstract way of formulating
this result in a general framework is as follows:

Lemma 2.6. Let (X, W) be a balayage space (see [Bliedtner and Hansen 1986]) such that 1 € W. Let
V, W be open sets in X with V.C W. Let ¢ > 0. Suppose that, forall x,y € V and h € H;’(V),

u(x) < cu(y). (2-10)
Then 8;/0 < cs},/c and, for every u € Hp(W),
u(x)fcu(y)—i—c/u_dsgc. (2-11)
Here, Hj(A) denotes the set of bounded functions which are harmonic in the Borel set A. Functions
in ’H,;L (A), in addition, are nonnegative.

Proof. Since, for every positive continuous function f with compact support, the mapping f +— 5;/(' f)
belongs to H;(V), the first statement follows. Let u € Hp(W). Then u(x) = 8;16 (u), u(y) = s},/c (n),
and hence

u(x) < SL/C ut) < cs;/c(u"') = cs;/c(u +u")=cu(y)+c / u- de},/c. O
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3. Functional inequalities and scaling property

In this section we collect several auxiliary results. In particular, we will need some properties of the
Sobolev spaces H @/2(D). The following fact about extensions has an elementary proof; see [Di Nezza
et al. 2012]. However, one has to go through it and see that the constants do not depend on «, provided
one has the factor (2 —«) in front of the Gagliardo norm; see (1-4) and (1-6).

Fact 3.1 (extension). Let D C R4 be a bounded Lipschitz domain, and let O < o < 2. Then there exists a
constant ¢ = c¢(d, D), which is independent of «, and an extension operator E : H @/2(D)y — HY2(RY)
with norm | E| < c.

Furthermore, we will need the following Poincaré inequality; see [Ponce 2004].

Fact 3.2 (Poincaré I). Let D C R4 be a bounded Lipschitz domain, and let 0 < og < o < 2. Then there
exists a constant ¢ = ¢(d, ag, D), which is independent of «, such that

2

U—— udx

A <cEh*(u,u) (ue H2(D)). (3-1)

L2(D)

The following results, Facts 3.3 and 3.4, are standard for fixed . For o — 2 they follow from results
in [Bourgain et al. 2001; Maz’ya and Shaposhnikova 2002; Ponce 2004]. They are established in the case
when B, (x) denotes the cube of all y € R such that |y; —x;| < r forany i € {1,...,d}. They hold true
for balls likewise.

Fact 3.3 (Poincaré—Friedrichs). Assume «g, & > 0 and 0 < o9 < o < 2. There exists a constant ¢, which
is independent of &, such that for Bgr = Br(xo)

ue H3(Br), |BrN{u=0}> ¢ Bgl

/ (u(x))2 dx < cRY / / (u(y) —u(x)* dy dx. (3-2)
B

rBr |1X— Cx—yldte

implies

Fact 3.4 (Sobolev embedding). Assumed €N, d >2, Ry>0,andO0<ag<a <2, g€[l,2d/(d —a)].
Then there exists a constant ¢, which is independent of «, such that for R € (0, Ry) and u € H*/2(Bg)

20 () —u)?” o dia=2) :
(o) e[, O a5 [ ).

We often make use of scaling and translations. Our main assumptions, conditions (A) and (B) assure
a certain behavior of the family of measures y with respect to the unit ball B; C R?. Let us formulate

these conditions with respect to general balls B, (£) C R¥.
Given £ € R?, r >0, A > 1, we say that u satisfies (A; &, r) if:

For every ball B,(xo) with p € (0, r) xo € By () and every vE Ha/z(Bp(x())),

A"lgl

Ajg,
b oy 0 0) SR (0 0) S AER (L (.v), (A:€.1)
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Given £ € R?, r >0, B > 1, we say that u satisfies (B: £, 1) if:

For 0 < p < R <r and x¢ € B, (§) there is a nonnegative measurable function t : R? > R
with supp(7) C Bryp(xo), 7(x) =1 o0on Br(xo), ||T]lec <1, and (B:&,1)
SUPxerd fRd (t(y) —t(x))? u(x,dy) < Bp™

Let us explain how the operator under consideration behaves with respect to rescaled functions.

Lemma 3.5 (scaling property). Assume geR? andr € (0,1). Letu € V*(B,(£) | R?) satisfy E*(u, ¢p) >
(f, @) for every nonnegatlve ¢ H ([R? ). Define a dlﬁ‘eomorphlsm J by J(x) =rx + &. Define
rescaled versions f uofuand f by u(x) =u(J(x)) and f by f(x) =r*f(J(x)).

(1) Then u satisfies for all nonnegative ¢ € Hgl (R9)

(@, §) = // @) — 7)) () — () Ax. dy) dx = (F. ).
Rde
where
Ao dy) =y (J().dy) and i (2. A) = u(z. J(A)). (3-3)

(2) Assume i satisfies conditions (A €,1), (B; €,1) for some € (0,2) and A>1, B> 1, £ e R%, r > 0.
Then the family of measures fiL = ji( -, dy) satisfies assumptions (A) and (B) with the same constants.

Remark. The condition (D) is affected by scaling in a noncritical way. We deal with this phenomenon
further below in Section 4 and SA.

Proof. For the proof of the first statement, let ¢ € Hp i (IRd) be a nonnegative test function. Define

¢,eH;;(S)(R )by ¢ = poJ L Then

/ (@(y) ~ 7)) () — $(x)) filx.dy) d
_ e / / () = u(J @) br (T () = (T () -1 (J (x). dy) dx
— rod / (u(J (7)) = (@) @r (S (7)) = $r(x)) -1 (x. dy) dx
=7 [ a3 =) ()~ 91 () . 0y
> ro—d / f(x) ¢ (x)dx = / r® f(J(x)) p(x) dx = / f@p(x)dx, (34

which is what we wanted to prove. Let us now prove that j inherits properties (A), (B) from p with
the same constants A4 and B. Let us only consider the case § = 0. In order to verify condition (A) we
need to consider an arbitrary ball B,(xo) with p € (0,1) and xo € By. Let us simplify the situation
further by assuming xo = 0. The general case can be proved analogously. Thus, we assume r € (0, 1)
andu e HY 2(Bp). The estimate & gp (u,u) < AE gj (u, u) can be derived as follows. Define a function
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i€ H**(B,,) by it =uoJ ™. Then
&g, 00 = [ [ wm-uwpiacanar=r [ [ @GUO=00D ua0).dy) ds
=t [ / @ ()= 11 (. dy) dx

_ 2 < roz —d (u(y) u(x))Z
[B ) f (B0 —A(x))* (. dy) dx < A /B ) /B ) dy dx

|x y|d+a

_ 4,-2d @ ) —u(J " (x))? _ (u(y)—u())?
= Ar /Bm s, T - 1)t dydx —A/Bp s, l—ylite dydx,

which proves our claim. The estimate Sg“;‘ (u,u) <AE& gp (u, u) follows in the same way.

In order to check condition (B) for ji we proceed as follows. Again, we assume xo =0, r € (0, 1). The
general case can be proved analogously. Assume R, p € (0,1). Let 7 : R >R satisfy supp(%) C B rR+rp>
7 =1on B, and

sup / E()-2 ()2 u(r.dy) <BUp) ™ >  sup / (F0)—2 () (T (x).dy) < B(rp) ™,
xerd JRA xeRrd JRY

Such a function 7 exists because, by assumption, u satisfies (B; &,r). Next, define 7 =7 o J. Then
satisfies supp(t) C ER_,_p, T =1 on Bg, and, by a change of variables,

sup fR (@0) =T x, dy) = 1 sup / FIO)) = 2T oy (J(x), dy)

xeR4 xeR4

r sup [ () — £ p(J(x).dy) < Bp™®

xeR4

which shows that i satisfies (B) with the constant B. O

4. The weak Harnack inequality for nonlocal equations

The main aim of this section is to provide a proof of the weak Harnack inequality Theorem 1.6. The key
result of this section is the corresponding result for supersolutions that are nonnegative in all of R :

Theorem 4.1. Assume f : By — R belongs to Lq/“(Bl5/16)for some q € (d, <], a € [ag, 2). There are
positive reals pg, ¢ such that for every u € V*(Bq | [Rd) with u > 0 in R4 satisfying

Eu,d) > (f,¢) forevery nonnegative ¢ € Hl‘;l ([R{d).
The following holds:

1

. pO
inf u > C(f u(x)? dx) ~ A are(sis 1)
Bi/2

Bia

The constants pg, ¢ depend only on d, oy, A, B. They are independent of a € [ag, 2).
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Remark. All results in this section are robust with respect to « € [ag, 2); i.e., constants do not depend
on «.

The main application of this result is the following proof.
Proof of Theorem 1.6. Set u = u™* —u~. The assumptions imply for any nonnegative ¢ € H 51 (R%)

Eut.¢) zé’(u‘,¢)+(ﬁ¢)=/B ¢(x>(f(x)—2/

u— (y) /L(x,dy)) dx;
R4\ By

i.e., u™ satisfies all assumptions of Theorem 4.1 with ¢ = +o0 and f : B1 — R defined by
Fo=fe-2 [ u ) uedn,
R\ B

The assertion of the theorem is true if SUPxeBys/16 fRd\Bl u~(y) u(x,dy) is infinite. Thus we can assume
this quantity to be finite. Theorem 4.1 now implies

1

. Po _
inf u>c; (][ u(x)Po dx) —C2 sup (/ u=(y) pu(x, dy)) - ||f||L‘1/°‘(Bls/16)
Bi/a Bi/2 x€Bis5/16 \RI\B]

for some positive constants ¢y, €. O
By scaling and translation, we obtain the following corollary.
Corollary 4.2. Let xo € R%, R € (0,1). Assume p is a family of measures satisfying (A;€,1) and

(B: £,1). Assume u € V*(BR(xo) | R?) satisfies u > 0 in Br(xq) and E(u, ¢) > 0 for every nonnegative
¢ € Hy () RY). Then

1
D
inf  u> c(][ u(x)?o dx) ’ _Re sup / u= (y) u(x,dy),
Brya(xo) BRr/2(x0) x€B15r/16(x0) YRY\BR(x0)

with positive constants pg, ¢ which depend only on d, o, A, B. In particular, they are independent of
a € [ag, 2).

Let us proceed to the proof of Theorem 4.1.

Remark. Without further mentioning we assume that w is a family of measures that satisfies (A) and (B)
for some A > 1, B > 1, and o9 < o < 2. The constants in the assertions below depend, among other
things, on 4, B, and «. They do not depend on «, though.

Let us first establish several auxiliary results. Our approach is closely related to the approach in
[Kassmann 2009]. Instead of Lemma 2.5 in that paper, which would be sufficient for homogeneous
equations,we will use the following auxiliary result.

Lemma 4.3. There exist positive constants c1, ¢ > 0 such that for everya,b >0, p>1,and0<711,175 <1
the following is true:

—p+1
2

2 2L ()2 (b P p gt (41

(b—a)(t?a™? —13b7P) > c1(r1a =5 b 0
p u—
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The above result is nothing but a discrete version of

(Vo V(r207P)) > e1(p)|V(zv 2 )2 —ca(p)|Ve[PoP T,

where v, T are positive functions. We provide a detailed proof in the Appendix.
The next result is an extension of corresponding results in [Kassmann 2009; Barlow et al. 2009].

Lemma 4.4. Assume 0 < p <r < 1 and zg € By. Set B, = B,(2¢). Assume f € Lq/“(BZr)for some
q > d. Assume u € V*(Ba, | R?) is nonnegative in R? and satisfies

E(u,d) = (f,¢) forany nonnegative ¢ € ngr ([F\Rd),

(4-2)
u(x)>e for almost all x € By, and some & > 0.
Then
o0 k
(logu(y) —log u(x))?
I, (2 b plr Ay dx
rBr \g=1 :

<cp™*|Brypl + e ||f||Lq/a(B,.+p) ||1||Lq/(q—a)(B,,+ﬂ), (4-3)
where ¢ > 0 is independent of u, xo, r, p, f, ¢, a.

Note that for
e=c1(r+p)° | f paracs,, ).
with § = a((¢ —d)/q), one obtains

> -1 2k
// 2 (Z(Ogu(y)(zk;gu(x)) )“(x’dy)dxfczp'“|3r+pl~ (4-4)
rBr \e=1 '

From the above lemma we will deduce logu € BMO(B7), where BMO(B1) contains all functions of
bounded mean oscillations in Bj; see [John and Nirenberg 1961].

Proof. The proof uses several ideas developed in [Barlow et al. 2009]. Let 7 : R? — R be a function
according to (B); i.e., more precisely we assume

Spp(D) € By CBare filoo =1 v=lonBr sup [ (000 = (0P ux.d) < By,
R

xeR4

Then

// () = 1)) (. dy) dx
Rde

-1l

<2 //B (2(y) — 1(x0))? p(x.dy) dx

r+oRY

< 2Brgl swp [ (00) =) (. dy) = 2007 Bl (4-5)

xeR4

(t(3) = 7(x)? pu(x.dy) dx + 2 // () = 1(x))? p(x. dy) dx

B, ,B¢

r+oBr+p r+o
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We choose ¢ (x) = —72(x) u~ 1 (x) as a test function. Denote B, by B. We obtain
Gz [ ) —u) o (0 - 20 () wx.dy) d
RY R4

T(x)u(y) f(y)u(X)_f(y)_f(x)) dy)d
//];?BT(X)T( )(T(J’)u(x) tu(y) x) T(y) ple ) dx

42 // () — () () u~ (6) = 2(0) u~ () (. dy) dx
BB¢

4 // () —u ()@@ @) — 20 u" ) . dy)dv. (@-6)
B¢ B¢

Setting A(x, ¥y) = u(y)/u(x) and B(x,y) = t(y)/t(x) we obtain

Al.y) | Bx,y) 1
[ (G + 2y~ 2= i s anys

A B
//BB r(x)r(y)[( (x.7)  B(x.7) —2) - (¢B(x,y)—

1
B(x,y) A(X,)’) B(x,y)

_ 2k
_ // r(x)t(y)(ZZ (1ogA(x,y)(2li<)>'g B(x,y)) )Mx,dy) dx
BB k=1 :

2
) ]u(x,dy)dx

2
- // r(x)r(y>(¢3(x,y>— : )u(x,dy)dx
BB B(x,y)
k
// T(x)r(y)( $ <log<u(y)/r(y))(;l::g(u(x)/r<x>>>2 )W’ o
BB !

k=1

- [ (t(6) = t(»))? (. dy) dx
BB

>, (logu(y) —log u(x))2* ~ - )
2//(2,; )Wvdy)dx /BB(f(x) (»)? p(x.dy) dx,

(2k)!

where we applied (4-5) and the fact that for positive real a, b

—h)2 loga —log b)%*
(aab) =@-he' - _1)—2Z(Oga(2k())!g) ' @7

Altogether, we obtain

> . (logu(y) — logu(x))% ) o,
(f.9)= [B , [B (2};1 m— )u(x,dy)dx /BB(rm () u(x. dy) dx

12 // () —u (N @ () = 20~ () (. dy) dr. (@-8)
B

rJr)OBrC—i-p
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The third term on the right-hand side can be estimated as follows:

> [/ () —u (N @ (1) — 20~ (1) (. dy) da
B

-

_ _ 2 -1
=2 f/B () — () 20~ (x) ju(x, dy) dx

.

=2 /Bw /Igf+p jg))

> _ _ 2
=2 [ [ @)= . dyy g,

u(y) (x,dy) dx —2 [3 [g 20 ulrdy)ds
r+oYBr4p

where we used nonnegativity of u in R4. Therefore,

0 _ 2k
[ (23t oe ) ey ax
reBrN k=1 ’

= 3//d d(T()C)—T(J’))2 p(x,dy)dx + ||f||Lq/a(Br+p)||u_1IILq/(q—m(Ber). (4-9)
RIR

The proof is complete after the trivial observation |u~!| <71, O

Lemma 4.5. Assume 0 < R<1land f € Lq/“(B5R/4)f0r some q > d. Assume u € V*(Bsg/4 | R9) is
nonnegative in R? and satisfies

Eu,d) > (f.¢) forany nonnegative ¢ € HY (Rd),

Bsrya

1 pd
u(x)>e for almost all x € B% and some & > 7R ”f”Lq/tx(BgR/g),

()

Then there exist p € (0, 1) and ¢ > 0 such that

(f u(x)’a dx)p dx < c(][ u(x)_ﬁ dx)_ , (4-10)
Bpr Br

where ¢ and p are independent of x¢, R, u, ¢, and «.

where

ST

Proof. The main idea is to prove logu € BMO(BR). Choose zg € Bg and r > 0 such that By, (zo) C Bgys.
Set p =r. Lemma 4.4 and Assumption (A) imply

1 —1 2
[ GO gyavs [ [ (ogu(y)-toguo) u(x.dy)ax cird e
»(20)/ By (20) lx—y| »(20) /By (z0)

Application of the Poincaré inequality, Fact 3.2, and the scaling property 3.3 leads to

/ [log u(x) —[logu]p, (z,) |2 dx < czrd, 4-11)
By (20
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where
[logu]p, (zo) = | B, (z0)| ™! / logu = ][ logu.
B, (z0) B, (z0)

From here

/ [log u(x) — [log “]B,(z0)|dx < (/ [log u(x)—[logu]Br(ZO)|2dx)2|Br(zo)|é < C3rd.
By (zo B/ (z0)
An application of the John—-Nirenberg embedding, see [Gilbarg and Trudinger 1998, Chapter 7.8], then
gives
/ ePlogu®)~loguls, | 4 < ¢, R,
Br

where p and c4 depend only on d and c¢3. One obtains

( / u(y)? dy) ( / u(y)? dy) _ ( / o Pllogu(y)~llogulz,) dy) ( / o~ llogu(y)~logulz,) dy)
Br Br Br Br

< cz R*.
The above inequality proves assertion (4-10). |

The next result allows us to apply Moser’s iteration for negative exponents. It is a purely local result
although the Dirichlet form is nonlocal.

Lemma 4.6. Assume xg € By and 0 < 8p < R < 1—p. Set BR = Br(xg). Let f € Lq/“(BSR/4) for
some q > d. Assume u € V*(Bsg/4 | R%) is nonnegative on all of R? and satisfies

E(u, ) = (f,¢) foranynonnegative ¢ € H]’;SRM ([Rd),
)
u(x)>e for almost all x € B% and some € > R°| f || La/a(Bog 5)-
where J
8= a(q — )
q
Then for p > 1
—1,p—1 14 —ay,,—1 21
125 o = (52 )7 1 @-12)

where ¢ > 0 is independent of u, xo, R, p, p, &, and «.
Proof: Let T : R? — R be a function according to assumption (B); i.e.,
S :=supp(r) C §R+p C B%,

Itllooc <1 forall x € Bg such that t(x) =1,

sup [ (e =t nx,dy) = B

x€R4

The assumptions of the lemma imply

Eu,—1t2u"P)y < (f.—t*uP).
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Let us observe the following:

5(74,—12”_”):/ () =)@ () u(x) ™7 = () u(y)~?) p(x,dy) dx

f / () —u () (@) u(x) ™ — () u(y)~P) ulr. dy) dx
12 / / () — () (E@) — T u )P ulx. dy) dx

> / f () —u() (@) u ()P — 23 uy)P) plx. dy) dx
SJS
2 /S u(x) =P /R g (OO F ) . d)

The last term is finite because of our assumptions on . However, note that t(y) =0 for y € R4 \S.
Next, we choose a = u(x), b =u(y), 11 = t(x), 2 = t(y), and apply Lemma 4.3 to the integrand in
the first term. Then

/Ssmy)u(y)‘”z @ u) 5 p(xdy) d

<P // (") = ()2 ()P +u) P u(x. dy) dx
r—1JJgs
2 a7 [ (@0 = e )2 aledy) e+ (i)
S RI\S

< (22 +2) [t [ e pean) st elfi-eu?)
p—1 S R4

<ci(p)p @ / u(x) Pt dx +c(f. —t*u?) (4-13)
R+p

for some positive constant ¢, which is independent of p, R, f and u. It remains to estimate |( f, —t2u~?)|
from above:

[(f —rzu_p)l =< g ! |(f, Tzu_p+1)| = e} ||f||Lq/“(BgR/g)”7:2u_p+1 ||L‘1/(‘1_"‘)(B9R/s)
=& ”f”LW"‘(BgR/s) ”TM%H ”izq/(‘/—"‘)(&ms)
||f||L‘7/°‘(B9R/8){a”Tu % ”LZ"/(‘l 9 (Bor/s) ta o aa ||ru ||L2(B9R/8)}
< R™T al|PurPH! lLara—e (o) + R Tame P Lt Borer
where a > 0 is arbitrary. We choose a = wR*@=4)/4 for some w and obtain

2 — 2. —p+1 a2, —p+1
|(}(,—T u P)| SC()HT u Pt ||Ld/(d—a)(B9R/8)+Cl) 7—d R (1”1, u pt ||Ll(BgR/3)‘

Combining these estimates we obtain from (4-13) for every p > 1 and every w > 0
—r+1 —r+1.2
I G0um ™ e uw ™) wexay ax
SS

<c3(p,w)p™® / u(x)"?Tdx + co||r2u—P ™! lara-e (B ,)-
BR+p
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Next, we use Assumption (A) and apply the Sobolev inequality, Fact 3.4, to the left-hand side. Choosing
o small enough and subtracting the term cow||t2u=?F1|| L4/@—a) (B, ,) fTom both sides, we prove the
assertion of the lemma. O

Lemma 4.6 provides us with an estimate which can be iterated. As a result of this iteration we obtain
the following corollary.

Corollary 4.7. Assume x9 € B1, 0 < R < %, and 0 <n <1< 0. Let f € LY*(Bgg) for some q > d.
Assume u € V*(Bgg | R?) satisfies

Eu,d) > (f, @) forany nonnegative ¢ € Hg (Rd),

®R

u(x)>e¢ for almost all x € Bgr and some & > (®R)8 ||f||Lq/a(BR(1+3®)/4)’

where

—d

d=u (q )

q

Then for any po > 0
1
D
inf u(x)> c(][ u(x)"Po dx) 0, (4-14)
xEBnR BR

where ¢ > 0 is independent of u, R, ¢, and «.

Proof. The idea of the proof is to apply Lemma 4.6 to radii Ry, pr with R; \ nR and p; \ 0 for k — oo.
For each k one chooses an exponent p; > 1 with pp — oo for k — co. Because of Assumption (A) we
can apply the Sobolev inequality, Fact 3.4, to the left-hand side in (4-12). Next, one iterates the resulting
inequality as in [Moser 1961]; see also Chapter 8.6 in [Gilbarg and Trudinger 1998]. The only difference
to the proof in [Moser 1961] is that the factor d/(d —2) now becomes d/(d — «). The assertion then
follows from the fact

1
Dr
(f u_pk) 5 inf u for k — oo. O
BR, (x0) Byr(xo0)

Let us finally prove Theorem 4.1.

Proof of Theorem 4.1. Define u = u + ||f”Lq/a(Bls/16) and note that £(u, ¢) = £(i1, ¢) for every ¢. We
apply Lemma 4.5 for R = % and obtain that there exist p € (0, 1) and ¢ > 0 such that

(][ i(x)? dx)ﬁ dx < c(][ u(x)"? dx) ﬁ.
B3/ B34

Next, we apply Corollary 4.7 with R = %, n= % and ® = %. Together with the estimate from above we
obtain

Ni=

inf u > c(
By,

u(x)ﬁdx) , (4-15)
|B%| B34

which, after recalling the definition of u, proves Theorem 4.1. O
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5. The weak Harnack inequality implies Holder estimates

The aim of this section is to provide the proof of Theorem 1.10. As is explained in Section 1D it is well
known that both the Harnack inequality and the weak Harnack inequality imply regularity estimates in
Holder spaces. Here we are going to establish such a result for quite general nonlocal operators in the
framework of metric measure spaces.

We begin with a short study of condition (1-16). The standard example that we have in mind is given
in Example 1.9. Let (X, d, m) be a metric measure space. For R >r >0, x € X, set

By(x)={yeX:d(y.x) <r}, Arr(x)=Br(x)\B(x). (5-1)

Lemma 5.1. For x € X, r > 0 let vy, be a measure on B(X \ {x}), which is finite on all sets M with
dist({x}, M) > 0. Then the following conditions are equivalent:

(1) Forsome y > 1, c>landallx e X, 0<r <1, jeNp
Vi, (X '\ B,y (%)) ECX_j-

(2) Given 0 > 1, there are y > 1, ¢ > 1 such thatforallx € X, 0<r <1, j €Ny
V(X \ Brgi () <cx™/.

(3) Given 0 > 1, thereare x > 1, ¢ > 1 such that forall x €e X, 0<r <1, j €Ny
Var(Argi pgi1 () ey

(4) Giveno > 1, 0 > 1thereare y > 1, ¢ > 1 suchthatforallx € X, 0<r <1, j€Ngand y € B;/5(x)

. 1
vy, (Apgi roiv1 (X)) Scx™,  wherer' = V(l - ;)- (5-2)

If, in addition to any of the above conditions, (1-17) holds, then (5-2) can be replaced by
Vyr(Args roit1(x)) <cy 7. (5-3)

Proof. If 6 > 2, the implication (1) = (2) trivially holds true. For 6 < 2 it can be obtained by adjusting y
appropriately. The proof of (2) = (1) is analogous. The implication (2) = (3) trivially holds true. The
implication (3) = (2) follows from

o0 o0
b0\ By )= 3 v g o (0) < 3 o7 = o(A5)r

The implication (4) = (3) trivially holds true. Instead of (3) = (4) we explain the proof of (2) = (4).
Fixo>1,0>1,xeX, r>0, jeNg,and y € B,/5(x). Setr' =r(1 —1/0). Then X \ B4, (x) C
X\ B,/ (y). Thus

V(X \ By (x)) < vy, (X \ Bpgi (0) cx. 0
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Remark. Note that the conditions above imply that, given j € Ng and x € X, the quantity

limsup vy (X \ B,/ (X))
r—>0+
is finite.

Remark. Let x € X, A4 € B(X \ {x}), with dist({x}, A) > 0. In the applications that are of interest to us,
the function r +— vy ,(A) is strictly increasing with vy o(A4) = 0.

Proof of Theorem 1.10. The proof follows closely the strategy of [Moser 1961]; see also [Silvestre 2006].
Throughout the proof, let us write B; instead of B;(xo) for ¢t > 0. Fix r € (0,rp) and u € Sx,,. Let
¢1 > 1 be the constant in (1-19). Set k = (2¢,2'/7)~! and

In(2/(2 —«)) 1 _
=——" 7 = (1-i)=06"
P In(6) (1-24)
Set Mo = ||u|oo, mo = infx u(x), and M_, = My, m_,, =mg for n € N. We will construct an increasing
sequence (my) and a decreasing sequence (My) such that for n € Z

my <u(z) <M, foralmostall z € B,g—n,

5-4
Mn_mane_nﬂy o9

where K = Mo —mg € [0, 2||u||co]. Assume there is k € N and there are M,,, m, such that (5-4) holds
for n <k — 1. We need to choose my, My, such that (5-4) still holds for n = k. Then the assertion of the
lemma follows by complete induction. For z € X set

. 29k—1)B
v(z) = (u(z) — 5 (Mg—1 + mk—l))T
The definition of v implies v € Sy, » and |v(z)| < 1 for almost any z € B, g—«—1. Our next aim is to

show that (1-19) implies that either v <1 —«k or v > —1 4+« on B,y—«. Since our version of the Harnack
inequality contains nonlocal terms we need to investigate the behavior of v outside of B, g—«-1). Given
z € X with d(z,xg) > r0~® =D there is j € N such that

r07 k7 < d(z,x0) < r@kTITL,
For such z and j we conclude
K 1
29(1(—1);‘3 U(Z) = (M(Z)— Q(Mk—l +I’I’Ik_1))

(My—j—1 —mp—j—1 +myg—j—1 — 5(Mg_1 +mj_y))
< (My—j—1 —mg—j—1 — 3(Mg_y —my_y)) < (KQ_(k_j_l)ﬂ - %KQ_(k_l)ﬂ),

IA

that is,

(5-5)

d(z,x0) \P |
o-G-n ) %

v(z) <20/F —1< 2(9
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and

K
ze(k_l)ﬂ U(Z) = (M(Z) - %(Mk—l +mk—l))
> (Mp—jo1 — Mg—j_1 + My—j_1 — 2 (Mg_y +mg_y))
> (—(Mi—jmt = mp—j—1) + 3 (Mi_y —mp_y)) = (—KO~«/7DF 4 Lgg=(-DF)

that is,
d(z, xo) )ﬂ

—29/8 > 122200
v(z)>1-20F >1 2(9r9_(k_1)

Now there are two cases:
Case 1: m({x € B.g—k+1/; 1 v(x) <0}) > %m(Bre—k—i-l/A).

Case 2: m({x € B.g—k+1/; 1 v(x) > 0}) > %m(Bre—k+l/A).
We work out details for Case 1 and comment afterwards on Case 2. In Case 1 our aim is to show
v(z) <1 —« for almost every z € B,.y—« and some « € (0, 1). Because then for almost any z € B,.y—«
u(z) < 31— ) KO EDP 4 S (Mg +mp—y)
= 21— Ko~ EVF L L (M —my_y) +mp_y

= mg—1 + 51— Ko~EVP 4 T go=*-DP
(5-6)

<mg_1+ K@‘kﬂ.
We then set my = my_q and My = my + K07 and obtain, using (5-6), my < u(z) < M} for almost

every z € B,y—«, which is what needs to be proved.
Consider w =1—v and note w € S, ,9-&-1 and w > 0 in B,g—«-1. We apply (1-19) and obtain
sup / W (2)vy pg-x-1(dz), (5-7)
X

r
(f w? dm) <c¢p inf w+4cq
Brg—k—i-l/,\(xo) B, -k xEBrG_k+1/a

In Case 1 the left-hand side of (5-7) is bounded from below by (%) 1/p . This, together with the estimate

(5-5) on v from above, leads to
sup / W (2)vy ro—-k-1(dz)

L
inf w>(c;27)" 1 —
XEBrG*k+l/o

ro—k
o
1 -1 -
> (c127) " — Z Sup / 1Ar9—k+j ro—k+j+1 (xo) (1 =v(2)) stref(kfl)(dz)
j=1x€Br9_k+1/U .
. o
1.1 ]
> (127) 7 =D "0 =),k
Jj=1
where
Nxo,r.0,j.k = sup Vi, rg=k=0 (Apg—tct) pg—k+j+1(X0)).

xeBrQ_k+l /o
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Now, (5-3) implies that 1y, r¢, .k < cx~/~1. Thus we obtain

o0
inf w=(127)7 —2e Y (0 — 1) (5-8)

ro—k j=1

Note that Z;”;l 078 y=/=1 < o for B > 0 small enough; i.e., there is / € N with

0 . . 0 . .
Yo @F -1y s Y 0P < (een T
j=I+1 J=I+1

Given [ we choose B > 0 smaller (if needed) in order to ensure
l
Y0 -yt < 6er)
—

The number B depends only on ¢y, ¢, x from (5-3) and on 6. Thus we have shown that w > k on B, g—«
or, equivalently, v <1 —« on B,g—«.

In Case 2 our aim is to show v(x) > —1 4 «. This time, set w = 1 + v. Following the strategy above
one sets My = My_, and my = My, — K6~*P leading to the desired result.

Let us show how (5-4) proves the assertion of the lemma. Given p < r, there exists j € Ny such that

rg—/ 1 <p< ro=7.

From (5-4) we conclude
o B
oscg,u <oscg ,_;u=<M;—m; 5205||u||oo(—) . |
ro—. r

Corollary 5.2. Let Q@ = By (x0) C X and let 0,0,A > 1. Let Sx r and v , be as above. Assume that
conditions (1-16), (1-17) are satisfied. Assume that there is ¢ > 1 such that for 0 <r <rg

(Br(x) CcAumex,r)A(u>0in Br(x))
1
= (][ u(€)? m(dg))p <c inf u+4c sup / u(z) vg,r(dz). (5-9)
B,y (x) By/g(x) §€B; /s (x) /X
Then there exist B € (0, 1) such that for every u € Sy, r, and almost every x, y €

d(x.,y) )/’.

d(x, Q) vd(y, Q°) (5-10)

) —u(y)]| < 166 ||u||oo(

Proof. By symmetry, we may assume that r := d(y, Q¢) > d(x, Q2°¢). Furthermore, it is enough to prove
(5-10) for pairs x, y such that d(x, y) < r/8, as in the opposite case the assertion is obvious.
We fix a number p € (0, ro/4) and consider all pairs of x, y € Q such that

2p=d(x,y) <p. (5-11)

We cover the ball B,,—4,(xo) by a countable family of balls B; with radii p. Without loss of generality,
we may assume that Ei N Bry—4p(x0) # <. Let B; denote the ball with the same center as the ball §,~
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and radius 2p and let B denote the ball with the same center as the ball B; with radius the maximal
radius that allows B C Q.

Let x, y € Q satisfy (5-11). From r > 8d(x, y) > 4p it follows that y € B,,_4,(x0); therefore y € B;
for some index i. We observe that both x and y belong to B;. We apply Theorem 1.10 to x¢ and rg being
the center and radius of B, respectively, and obtain

radius(B;) B
radius(B;")
B B
1 d(x,
<26 o 2 ) = 07l (52

r

oscp, u < 20P ||u||oo(

Hence (5-10) holds, provided x and y are such that |u(x) —u(y)| < oscp; u.
By considering p = g2~/ for j = 3, 4, ..., we prove (5-10) for almost all x and y such that
d(x,y) <ro/8; hence the proof is finished. |

S5A. Proof of Theorem 1.7. We are now going to use the above results and prove one of our main results.

Proof of Theorem 1.7. The proof of Theorem 1.7 follows from Corollaries 4.2 and 5.2. The proof is
complete once we can apply Corollary 5.2 for xo =0 and ro = % Assume 0 <r <rg and B;(x) C By/,.
Let Sy, be the set of all functions u € V* (B, (x) | R?) satisfying &(u, ¢) = 0 for every ¢ € ng(x)([Rd).
Assume u € Sy » and u > 0 in B, (x). Then Corollary 4.2 implies

1
D
inf wu zc(][ u(x)?o dx) Oy sup / u (z) u(y,dz),
By/4(x) B;/2(x) y€Bisgr/16(x) /RY\ By (x)

with positive constants pg, ¢ which depend only on d, ag, A, B. Set 0 =4, A =2, 6 = %. Let vy, be
the measure on R? \ B, (x) defined by

v (4) = ru(x, A).

The condition (1-17) obviously holds true. The condition (1-16) follows from (D). Thus we can apply
Corollary 5.2 for xg =0 and rg = % and obtain the assertion of Theorem 1.7. O

6. Local comparability results for nonlocal quadratic forms

The aim of this section is to provide the proof of Theorem 1.11. First, we show that (T) and (U) imply (B).
Then we establish the upper bound in (A) in the two cases (i) and (ii). The lower bound in (A) is more
challenging. We prove it for the two cases in separate subsections. The last subsection contains two
examples, which are not covered by cases (i) and (ii).

6A. (T) and (U) imply (B). It is easy to prove that (T) and (U) imply (B) with a constant B > 1
independent of & € (ap,2): Let 1 € C®(R?) be a function satisfying supp(zr) = BRrip, T=1o0n
Br, 0 <t <1onR% and |[t(x)—t(y)| <2p~!|x — y| for all x, y € R?. In particular, we have then
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lt(x) —7(»)| < 2p~Yx — y|) A 1. For every x € R¢ we obtain
| @ =P urdn) = [ @721y A1 v )
=4p~? /Rd (Iz12 A 1p?) v*(dz) < 2%Cyp™™ < 4Cyp~™.
Thus we only need to concentrate on proving (A).

6B. Upper bound in (A). Let us formulate and prove the following comparability result.

Proposition 6.1. Assume that v satisfies (U) with the constant Cy and let 0 < ag <o <2. If D C RY js
a bounded Lipschitz domain, then there exists a constant ¢ = c¢(xg,d, Cy, D) such that

Ep(u,u) < cEp* (u,u), ueH(D). (6-1)

The constant ¢ may be chosen such that (6-1) holds for all balls D = B, of radius r < 1, and for all
o € [ag, 2).

Proof. By E we denote the extension operator from H%/2(D) to H%/2(R%); see Fact 3.1. By subtracting
a constant, we may and do assume that |, p udx = 0. We have by Plancherel’s formula and Fubini’s
theorem

s = [ [ @t —uem)? v ©2)
<[] G- Eue? vy

< [ (Eu(y +2) — Eu(y))* dy v(dz)
Bgiam p (0) /R

-/ ( [ e 1|2v(dz))|@(s)|2ds
R4 \JBgiam p (0)

- /R ( /B " 4sin2(%z) v(dz))@(s)|2ds. (6-3)

For |£] > 2 we obtain, using (U)

[ st (557 ) vian < 2 [z n i) viam) < sl (64

/4sin2(s%) v(dz) 54/(‘572

epw = [ (el + DIEuGP o

< N w0y < cltlZarnpy = €5 e + lul22py)- (6-5)

and for |&| <2

2
A 1) v(dz) <4Cy.

Thus
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with ¢ = ¢(d, Cy, D). Since [, udx = 0, we have by Fact 3.2
Eg"‘ (u,u) > c(ao, d, D)/ u?(x)dx
D

and this together with (6-5) proves (6-1).

By scaling, the last assertion of the theorem is satisfied with a constant ¢ = ¢(«o, d, Cy, By). O
Proof of Theorem 1.11: upper bound in (A). The second inequality in (A) follows from Proposition 6.1.
We note that the constant in this inequality is robust under the mere assumption that o is bounded away
from zero. O

6C. Lower bound in (A), case (i). The aim of this subsection is to complete the proof of Theorem 1.11
in the case (i). The strategy? is as follows. We will begin with a simple specific case. We set ek =
©,...,0,1,0,...,0) € IRd; ie., e is the k-th standard unit vector in RY.

Theorem 6.2. Letd > 2, 0 <« <2, and let y be as in (1-11), i.e.,

d d
pu(x,dy) = 2 —a) Z[m —yil Ty [ s{x,.}(dm} =) mix,dy). (6-6)

i=1 j#i i=1
Then there exists a constant A = A(d) such that
for every ball B,(xo) with p € (0,1), xo € By, and every v € H%(Bp(xo)),

Ma 12
SBp(xo)(v, v) < Aé’Bp(xo)(v, v).

(6-7)

Proof. Let us fix B = B,(xo) as in the theorem. We may assume that xo = 0, because the measures
considered are translation invariant. For a permutation ¢ of {1,2,...,d} and x, y € B we define
y; ifo™1(j) <k,

9(x,y)=(ay,...,az), wherea; =
pk( y) = (a1 d) J Xj ifO’_l(j)>k.

For example,

Pg(st’):x, p(lf(x,y)z (xh""xU(l)—lvy(I(l)va'(l)-i—l""’xd)’ Pg(x»Y):y

That is, pg(x, y) are vertices of a polygonal chain joining x and y whose consecutive line segments
are parallel to the coordinate axes; more precisely, the j-th line segment is parallel to o (j)-th axis.
Furthermore, let

E°(B,x)={yeB:pj(x,y)eBforeachk =1,...,d} (6-8)

be the set of all points y which may be connected with x by such a polygonal chain lying completely
in B. We obtain

o .__ — 2
o= /B /E B O, 09)

d d
<4y Lo Lo (PR D~ 9D () ar = d Y0 69

k=1

3The authors thank an anonymous referee for the idea of the proof.
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We will bound 7} appearing on the right of (6-9), assuming for notational simplicity that o is the identity
permutation, i.e., o (k) = k. Then

o _ o B " 5
Ik —/;/;U(B’x)(u(l’k_l(x,y)) u(pk(x’y))) Ua(x,dy)dx

_ UL V1o Xk oo o2 %) — U1+ ey Vies Xkt 1o - - - » Xd))?
=Q2—-a) y
BJES(B,x) |x — y|dte

dy dx.

We would like to change the order of integration, so that we integrate outside with respect to

w:=pr_ () =1 Yh—1 Xk - -5 X)),
and inside with respect to
Z:=X4+Yy—wW= (X1, X1 Vicr--+sVd)-
Then |[x — y| = [z —w]| and pJ (x,y) = w + (z¢ —wy)ek. Let
F(B,w):= {ZeRd:w+(zk—wk)ek € B},
Fo(B,w):={t eR:w + (t — wg)e* € B).

We note that if x € B and y € E°(B, x), then w € B and py(x, y) € B; hence z € F(B, w). Therefore

o - ((w) —u(w + (zx —wr)e¥))?
I _(2—0[)/3/]?(3#)) w — z[d+a dz dw

dzy---dzgp_1dzgqq---dzg

— (- fB /F 0<B,w)[(”(w) —uw + (2 — wp)eb))? /R P }dz;c dw.

The inner integral over RA-1 is simple to calculate using scaling; it gives

/n dZ]“‘de_lek+1'“dZd
Rd—1 |lw—z|d+e

—d—«

o0
=|wk—2k|_°‘_10(d)/ (146377 1972 dr < C(d) |wg—z | >
0

Thus

19 < Cd)2—a) /B [F o 000 0+ G =) 2

= C(d) /B /B (w(w) — u(2))? e (w. d2) duw.

The same inequality as above holds for /7 with an arbitrary permutation 0. We obtain

d
Y I10=) 317 <C(d)d! gy (u.u), (6-10)
o 0 k=1
where the sum runs over the set of all permutations on {1,2,...,d}. On the other hand, for each pair

(x,¥) € B x B, there exists a permutation o such that y € E9(B, x). Indeed, if M =#{j : |y;| <|x;l|},
then as o we may take any permutation satisfying o({1,..., M}) =1{j : |y;| <|x;|}. If 1 < j < M, then
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|pj(x,y)| <|x|,andif j > M, then |p; (x, y)| <|y|; therefore p;(x,y) € B forall j;ie.,y € E°(B,x)
as claimed. Thus

2 17= Z/B/EO(B )(M(X) —u(y))? pa(x, dy) dx = E5* (u,u),

which together with (6-10) gives the assertion of the theorem. O

Next, we consider linear transformations of w. Let L : R4 — R< be an invertible linear transform. For
a measure [ on R? we define the measure wo L by

(woL)(E) = u(L(E)), ECRY where E is a Borel set,

or, equivalently, by

[ £ (o L)(dx) = / FIL o) (), 6-11)

for all Borel measurable functions f : R? — [0, c0).

Lemma 6.3. Let 0 < a9 <o <2 and let a measure |1 on R4 satisfy condition (6-7) with some constant A,

with E* defined by (1-21). Let L : R — R? be an invertible linear transform. Then [ o L also satisfies
-

condition (6-7) with the constant depending only on A, d, ag and the norms || L|| and || L
Proof- Let u be a Borel measurable function on R?; let B = B, (xo) with xo € By and p € (0, 1). Let
v(x) = u(L™ (x —xo) + x0)., xeRY.

By a linear change of variable and (6-11) we obtain

8L (u, u) (0(x) —v(x +2))% Loy £ L(B(0.p)) (X +2) ju(dz) dr.  (6-12)

~detL /xo+L(B(o,p>) Rd

We observe that B(0,sp) C L(B(0, p)), where s = ||L™!||~! A 1; therefore

ENL (u,u) >

det L /B( ) Jea (v(x) —v(x + Z))2 1B(xo,50) (X + 2) pu(dz) de
X0,50

1 A1
=&k Mo
B detLgB(xo,SP)(v’ v)z detLgB(xo,sp)(v’ v),

by the assumption and the fact that s < 1. Since L(B(0, stp)) C B(0, sp), where t = |[L||~! A 1, we get

-1

5§°L (u,u) > (W(x) = v(x +2))? L+ L(BO,51p)) (X + 2)1ha(dz) df

det L /xO+L(B(0,Stp)) R4
_ 4—1gMaoL
=A gB(O,stp) (u,u), o

where in the last line we used (6-12) with py in place of p.
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However,
(o 0 L)(E) = (2—a)/ x| 79 dx = (2—Ot)detL/ |L(x)|"4 " dx
L(E) £

> (2—a)detL||L|| 74~ / Ix|7¢"%dx = det L| L] "¢ "% ua (E).
E
Plugging this into (6-13) we obtain

ol —d— _ o
ER°F (u,u) > det L|| L7974 NI URNY

The theorem follows now from Lemma 6.13; since det L > ||[L™1|| and st = (L™ "L A D(|L||7E A D),
the constants depend only on A4, d, g, ||L| and |L~!|. We note here that the proof of this lemma,
although presented later, does not use any previous results, i.e., there is no circular reasoning. O

With the help of Lemma 6.3 we are able to prove the following generalization of Theorem 6.2.

Corollary 6.4. Let 0 < ag <a < 2. Let f1,..., f% e S?71 be linearly independent. Assume that
L:R? - R9 is the linear transform that maps e’ to f/. Then the measure

d oo
M(E)=(2—a)Z/ 8.7, (E)r1"%dr (E € B(RY)) (6-14)
j=179

satisfies condition (6-7) with E* defined by (1-21) and the constant depending only on d, o and the

norm |L71|.

Proof- Since || L| < +/d, the result follows from Theorem 6.2 and Lemma 6.3. O

In order to prove comparability for all nondegenerate a-stable measures, we need to study combinations
of measures as in (6-14). To this end, we will apply the following lemma, which essentially is contained
in [Krickeberg 1968].

Lemma 6.5. If 7 is a finite Borel measure on S 4=1 then there exists a Borel function ¢ : [0, m(X)] —
S4=1 such that | ¢~ (A)| = 7 (A) for every Borel set A C S~ and ¢ ([0, w(X)]) C supp 7.

Proof. 1t is enough to prove the result for measures 7 which are either purely atomic, or nonatomic. In
the first case the construction of such ¢ is straightforward: if {a; : 0 < j < N} are all the atoms of &
(where N € NU {o0}), then we put

aj forte[Yocie;m({ai}), Y o<i<; 7({ai})) and 0 < j <N,
ag fort =mn(X).

¢(1) =

In the nonatomic case, since 7 is Radon, the result follows from [Krickeberg 1968, Hilfssatz, page 64;
Oxtoby 1970, Theorem 2]. O

We finally provide the proof of the comparability result for general «-stable measures.

Proof of Theorem 1.11(1). Assume that v is a measure on S4=1 a5 in (1-22). Let x1,. .. ,Xq €ESupp
be a basis of R. Then for & > 0 small enough and some M > 0, any y; € B(x;,&) N §d-1 —. Bj also
span R4, If L is the linear operator mapping e/ = (0,...,0,1,0,...,0) to ¥, then the norms || L|| and
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|L~1|| are bounded from above by M. The number m = min{m(B1),...,m(Bg)} is strictly positive,
because x; belong to the support of 7. Let

= -NBj), j=1,...,d.
Then 7; are Borel measures on S¢~! with mass m and supp ; C B;. Let ¢; : [0, m] — S?~! be the
Borel functions from Lemma 6.5 corresponding to ;. For every Borel £ C S d-1
d d m d
wE) =2 Y (E) = Y07 Bl = [ Y s Ear
. S 0 S
J=1 J=1 7=1
Therefore

00 m d o0
v(E)=(2—a)/0 n(r Y E)yrT1me drzfo ((2—@2[0 8rg; 1y (E)r~1 7% dr) dr.
ji=1

By Corollary 6.4, the measure in the parentheses in the line above satisfies condition (6-7) with the
constant depending on d, og and M, but independent of ¢. Therefore also v satisfies condition (6-7) with
the constant depending on d, g and M, i.e., on g and 7. O

6D. Lower bound in (A), case (ii). The aim of this subsection is to complete the proof of Theorem 1.11
in the case (ii).

The main difficulty in establishing the lower bound in (A) is that the measures might be singular.
We will introduce a new convolution-type operation that, on the one hand, smooths the support of the
measures and, on the other hand, interacts nicely with our quadratic forms. The main result of this
subsection is Proposition 6.14.

For A <1 <nand a € (0,2) let

1
0. 2) = gy + 2" Lay, () 14,44 (). y.z€RY, (6-15)
where
Ay = B(0,nr)\ B(0, Ar).

Definition 6.6. For measures v, v, on B(R?) satisfying (U) with some « € (0, 2), define a new measure
v1 Q vy on B(RY) by
1 Ov2(E) = [[ Lonm 10+ 2) €](3.2) v @) vale).

1.e.,

/ £ O va(dy) = [ (f - 18) 10y +2))g] (v, 2 )01 (dy) va(d2),

for every measurable function f : R¢ — [0, o0].

This definition is tailored for our applications and needs some explanations. We consider v; Q v, only
for measures v; which satisfy (U) with some « € (0,2) for j € {1,2}. This « equals the exponent « in
the definition of gz. The above definition does not require v; to satisfy (S) but most often this will be
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the case. Note that Definition 6.6 is valid for any choice A < 1 <. However, it will be important to
choose A small enough and 7 large enough. The precise bounds depend on the number a from (S); see
Proposition 6.14. Before we explain and prove the rather technical details, let us treat an example.

Let us study Example 1.5 in R2 Assume « € (0, 2) and

v1(dh) = 2—a)|h1| 7' dhy 8(03(dh2).
va(dh) = (2—a)|ha| ™' "% dha 8103 (dhy).

Both measures are one-dimensional «-stable measures which are orthogonal to each other. The factor
(2—a) ensures that for « — 2— the measures do not explode. Let us show that v; Qv; is already absolutely
continuous with respect to the two-dimensional Lebesgue measure. For £ C B5, by the Definition 6.6
and the Fubini theorem,

v1 Qv (E)

—(2—a) // [f Y42 LE @O +20) Lay s ) a7 221
cee 8{0} (dyz) 5{0} (le) dy1 de

=(2-a) // |1, 22)1* LE (015 22)) Laygy, 20y V1, 0) Layy, 2 (0, 22) [y |7 %22 71 7% dy dza

—(2-a) // 1 (7) L, (1.0) T4, (0. x2) [ oy |71 o =1~ dxy dlxz.

The above computation shows that the measure vy Q v, is absolutely continuous with respect to the
two-dimensional Lebesgue measure, because v; Q v2(R? \ By) = 0. Let us look at the density more
closely.

So far, we have not specified A and 7 in the definition of gZ. If A < 1 is too large (in this particular case,
if A >1/+/2), then 14,(x1,0) 14,,,(0,x2) =0forall x € R2. If A is sufficiently small, then the support of
the function 14, (x1,0) 14,,,(0, x2) is a double-cone centered around the diagonals {x € R2:|x1| = |x2|}.
Let us denote this support by M. Note that on M the function |x|¥|x|~!17%|x3|~17% is comparable to
|x|727% Thus indeed the quantity vy Q v, is comparable to an a-stable measure in R2. If we continue
the procedure and define

V= (U1 @Uz)@ (Vl @Uz),

then we can make use of the fact that (v QO v,) is already absolutely continuous with respect to the
two-dimensional Lebesgue measure. Note that, if ;t; = h; dx, then 1 QO o has a density 71 Q hy with
respect to the Lebesgue measure given by

4 |y|*

h1©Qha(ny) = ——

/ 14, (v —2) La, (D) hi(y —2) ha(z) dz.  ny € By (6-16)

In this way we conclude that ¥ has full support and is comparable to a rotationally symmetric «c-stable
measure in R?. With this observation we end our study of Definition 6.6 in light of Example 1.5.
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Before we proceed to the proofs, let us informally explain the idea behind Definition 6.6 and our
strategy. In the inner integral defining

5 (u,u) = /B/Rd (u(x) —u(x + )2 1g(x + h) v(dh) dx

we take into account squared increments (1(x) —u(x + /))? in these directions 4, which are charged
by the measure v and such that x + 4 is still in B. By changing the variables, we see that we also have
squared increments (u(x 4 ) —u(x +h +z))?, again in directions z, which are charged by the measure v
and such that x + /& + z is still in B. This allows us to estimate the integral g (u, u) from below by
a similar integral with v replaced by some kind of a convolution of v with itself. Measure v O v turns out
to be the right convolution for this purpose; see Lemma 6.12.

In the definition of v Q v, the function gz vanishes if |y| or |z] is bigger than |y + z| or smaller than
Aly+z|. This means, in our interpretation, that we consider only those pairs of jumps which are comparable
to the size of the whole two-step jump (and in particular, the jumps must be comparable to each other).

To conclude these informal remarks on the definition of v{ Q v, let us note that if v; and v, have
“good properties”, then so has v; Qv (see Lemmas 6.7 and 6.11) and that 8;‘ Ov2 (u, u) can be estimated
from above by S;/ (u,u) (see Lemma 6.12). This allows us to reduce the problem of estimating g (u, u)
from below to estimating 51‘;(7” (u, u) from below, and this turns out to be easier, since the O-convolution
makes the measure more “smooth”; see Proposition 6.14.

Lemma 6.7. If two measures v for j € {1, 2} satisfy the scaling assumption (S) for some a > 1, then so
does the measure vy Q v, for the same constant a.

Proof. 1f supp f C By, then
/ Flax)v O va(dx) = f F1a(y +2) 15, (0 + 2)) &7(7. 2) v1 () va(dz)
= [ oy +a2) g(av.az) vi@r) vata),

because gz (y,z)= a_"‘gz (ay,az). We observe that the function (y, z) — f(n(y + z))gz (y, z) vanishes
outside B1 x By. Hence we may apply (S) twice to obtain

/ F(ax) vi O va(dx) = a® // £y +2) &7, 2) v (dy) va(d2) = a® / S0 Ova(dy). O

Next, we establish conditions which are equivalent to (U). We say that a measure v on B(R?) satisfies
the upper-bound assumption (UO) if for some Co > 0

/ (2P A 1) v(dz) < Co. Uo)
Rd

We say that a measure v on B(R?) satisfies the upper-bound assumption (U1) if there exists C1 > 0
such that for every r € (0, 1)
|z|2v(dz) < Cy 2%, (Ul

By
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Lemma 6.8. U) <<= (U0 AUI.
If the constants Cy, Cy are independent of a € [ag, 2), then so is Cy, and vice versa.

Proof. The implications (U) = (U1) and (U) = (UO0) are obvious; we may take Cop = C; := Cy. Let us
now assume that (U1) and (U0) hold true. Fix 0 < r < 1. We consider n =0, 1,2, ... such that 2" T1r < 1
(the set of such n’s is empty if r > %) We have by (Ul)

/ v(dz) < 2_2”r_2/ |z|2v(dz)
2nr<|z|<2nt1r 2nr<|z|<2ntly
< 2—211},—2C1 2(n+1)(2—a)r2—ot — 2—noe22—oz Clr—oe'

After summing over all such n we obtain

227 C
/ v(dz) < _1r_°‘.
rlzl<d 1-27

/ v(dz) < 4/ (IzI> A1) v(dz) < 4Cy < 4Cor™°.
kL R4

Finally,

Combining the two inequalities above and (U1) we get (U) with

22—(1
CU=(1_2_0[+1)C1+4C0~ O

The following definition interpolates between measures v which are related to different values of
a € (0,2). Such a construction is important for us because we want to prove comparability results which
are robust in the sense that constants stay bounded when o« — 27.

Definition 6.9. Assume v is a measure on B(R?) satisfying (U) or (S) for some ag € (0,2). For
o < a < 2 we define a new measure v¥*0 by

2—«a
2—0[0

To shorten notation we write v* instead of V*%0 whenever there is no ambiguity.

o,00

v |X|%07%%0(dx) ifa>ag and by p¥0:%0 = %o (6-17)

The above definition is consistent in the following ways. On the one hand, the first part of (6-17) holds
true for @ = . On the other hand, for 0 < a9 < o < 8 < 2, the following is true: V-0 = (p%-20)B.e
This requires that v*-%0 itself satisfies (U) or (S) which is established in the following lemma.

Lemma 6.10. Assume v*© satisfies (U) with some ag € (0,2), Cy > 0 or condition (S) with some
ao € (0,2), a > 1. Assume ag < @ < 2 and v¥ as in Definition 6.9.
(a) If v*o satisfies (U), then for every0<b <1, 0<r <1

2_
/ 1220 (dz) < =% cyho—ar2—a, (6-18)
br<|z|<r 2—ap

2_
/ Vo (dz) < — L cyre, (6-19)
B¢ 2—wo
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(b) Ifv® satisfies (U), then v* satisfies (U) with exponent o and constant 13Cy (2—ao) ™. In particular,
the constant does not depend on .
(¢) If v¥o satisfies (S), then v¥ satisfies (S) with exponent a.
Proof. Let 0 <r <1and 0 < b < 1. To prove (a)enumi, we derive,
2.« 2-« 24ao—a 0
|z|“v¥(dz) = |z|=THTY%0(dz)
br<|z|<r 2—a0 Jpr<|z|<r

_ 7
© (bryeo—e [ 2[Pv* (dz) <
2—0[0 B, 2—

=

o _ _
bao aC ’,2 Ot’
0

which proves (6-18). Furthermore,

2— 2—
/ Ve (dz) = 2% / 2[00 (dz) <
¢ o JB¢ 2

0T Cyro

2—

and (6-19) follows. To prove part (b)enumi, we use (6-18) and conclude

oo

9_
/ |z]2v¥(dz) = Z/ . |z|2v¥0(dz) < Z_SOCU?—“O;’Z_“ZZ"(“_Z)

2n+1 slzl<sm n=0

_ Cy2eor2® 2—g o RNCy 5,

) 6-20
2wy 1-202"30_aqy) (6-20)
since the function x — x /(1 —27%) is increasing. Furthermore, by (6-19),
2C
/ r2v¥(dz) < 22, (6-21)
¢ 2— (e 7))
and therefore (b)enumi follows. Finally, part (c)enumi is obvious. O

Lemma 6.11. Assume v}xo for j € {1,2} satisfies (U) with some g € (0,2), Cy > 0. Assume a9 < <2
and v;?‘ as in Definition 6.9. Then the measure v§ Q v§ satisfies (U) with the same exponent a and a
constant depending only on ag, Cy, A and .

Proof. By Lemma 6.8, it suffices to show that v{ O v§ satisfies (U0) and (U1). For 0 < r <1 we derive

/ PO () < o // n(r+2)P L, (1(y-+2)]y 21 v (dy) v (dz)
B, Ay+zI<|yl,lzl=nly+z|

n?|y|? IZI“
—// D a2
A|y+2|<|y| |z|<nly+z|<r

A / o PO @)

|T
_nt(Cy)? 13 20
= (2a)?
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where in the last passage we used parts (b)enumi and (a)enumi of Lemma 6.10. Furthermore, by (6-19),
1
[, wosan= " f L\, (10 + 2Dy + 210§ ()5 (@)
R\ B & Wy +zIlyllzi<nly+z]

2% // R 8(Cy)*n*
viwy(dz) < —/—————. |
2—a Magyz 7 A2 —-ao)?

=

The following lemma shows that the quadratic form with respect to v; O v, is dominated by the sum
of the quadratic forms with respect to v; and v,. Some enlargement of the domain is needed which is
taken care of in Lemma 6.13 by a covering argument.

Lemma 6.12. Assume quo for j € {1,2} satisfies (U) and (S) with some ag € (0,2), a > 1, and Cy > 0.
Assume og < a < 2 and vj‘.x as in Definition 6.9. Let ) = ak > 1 for some k € Z. For B = B, (xo) let us
set B* = B3y (xo). Then with ¢ = 4Cyn®A~* it holds that

ERV2 (u,u) < c(ERL (u, u) + EN (u, u)) (6-22)
for any measurable function u on By and any B such that B* C Bj.

Proof. Let B = By(xo) be such that B* C Bj. In particular, this means that r < 1/(37). By definition,
we obtain

5% ) = [0~ ux 20 1a() L+ 2) 1 © ()
5/[ (u(x) —u(x +n(y +2))? 1p(x) Lz (x +n(y +2)) g5 (v, 2) vi(dy) v2(dz) dx

<2 [[f 100 = e+ 02 + ) =+ 00+ )7
x 1p(x) 1p(x +n(y +2)) g3 (y.2) vi(dy) v2(dz) dx
=2[I1 + ). (6-23)
We may assume that
Ay +z| <zl < nly +z| < 2r,
Ay +z[ =yl <nly+z| =2r,

as otherwise the expression 1p(x)1p(x + n(y + z))gz (¥, z) would be zero. Since 2r < 1, it follows
that A|y|/n < |z| < n|y|/A A 1. Therefore, by changing the order of integration,

niyl

A

I < / f / () = u(x + )21y + 21 va(dz) v1 (d) d.
BJBy, J A Ay +z]<|z|< W Al

We estimate the inner integral above:

| o

|z E{ n*Cuy

y+z|%s(dz) < / ————————y(d2) <
7t <oy A% Ayl 3

J :=/
APVl +zl<lzl< 2 A
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Coming back to /1 we obtain,

I <

4
d — 2
/BfBzr(u(x) u(x +ny))2vi(dy) dx

4 6
n"Cy n°Cy
= [ [ o —ute v ar = TRl ept o,
2nr

where we used (S) and the fact that By, C Bj.
Finally, in order to estimate /,, we first change variables x = w — ny,

I < (x+ny)—u(x+n(y +2))>1(x +n(y +2)) g5 (v, 2) vi(dy) v2(dz) dx
By JBor
_ 2 n
< /B*/Bz,(u(w) u(w +nz))" 1p(w + nz) /Bzr g7(y.2) vi(dy) v2(dz) dw

<[] vt e [, 3+ 217 w1 (dy) va(dz) du.
B* B>, el aly+z)<ly|<ZE A

By symmetry, the following integral may be estimated exactly like J before:

4
n*Cuy
|y +z|*vi(dy) < :
/*'Z'vk|y+z|<|y|<" 2nt A%

A

This leads to an estimate

4
I, < il C;U / (u(w) —u(w + r]z))2 1p(w+ nz)va(dz) dw
A *JBoy
4
= CU “/*/anr(u(w)—u(w + 1) 1g(w +1) va(dt) dw < UACUEII;&( U,

where we used (S) and the fact that B>y, C By. The result follows from (6-23) and the obtained estimates
of I1 and I,. O

Lemma 6.13. Let 0 < o9 <o <2, 1o > 0, k € (0, 1), and v be a measure on B(R?). For B = B,(x),
x€R4 r>0,weset B = By (x). Suppose that for some c,, > 0

Epw(u,u) = ¢, €5 (u, u)

forevery O <r <rg, foreveryu € L2(Br0), and for every ball B C By, of radius kr. Then there exists a
constant ¢ = c(d, o, k), such that for every ball B C By, of radius r < ro and every u € L?(By,)

Ep(u,u) > ceyEp® (u, u).

Proof. Fix some 0 < r <rg and a ball D of radius r. We take B to be a family of balls with the following
properties:

(i) For some ¢ = c¢(d) and any x,y € D, if |x — y| < ¢ dist(x, D), then there exists B € B such that
X,y €B.
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(ii) For every B € B, we have B* C D.

(iii) Family { B*}peg has the finite overlapping property; that is, each point of D belongs to at most
M = M(d) balls B*, where B € B.

Such a family B may be constructed by considering Whitney decomposition of D into cubes and then
covering each Whitney cube by an appropriate family of balls.

We have
EH(u,u) > (u(x) —u(x + y))? v(dy) dx
b M2 1;/ /
> M2 > —u(y)?|x —y[7 7" dy dx
= se-w [ f| i HO OV ay (62

By [Dyda 2006, Proposition 5 and proof of Theorem 1], we may estimate

/D/| e B O
x—y|<cdist(x,D¢
> c(a.d) /D /D () —u()?x -y dydr, (6-25)

with some constant ¢ (o, d). We note that in [Dyda 2006, proof of Theorem 1] the constant depends on
the domain in question, but in our case, by scaling, we can take the same constant independent of the
choice of the ball D. One may also check that c(«, d) stays bounded when « € [«g, 2). By (6-24) and
(6-25) the lemma follows. O

For a linear subspace E C R?, we denote by HE the (dim E)-dimensional Hausdorff measure on R4
with the support restricted to E. In particular, Hypy = 8o}, the Dirac delta measure at 0.

Proposition 6.14. Let E1, E; C R be two linear subspaces with E1, Ey # {0}. Assume that v;,
j €{1,2}, are measures on B(R?) of the form vi = fjHg,; satisfying vi(By) > 0, (U), and (S) with
ap € (0,2), Cy >0, and a > 1. Then the following are true:

(1) v1 Qvy is absolutely continuous with respect to Hg, + g, and satisfies (U) and (S).

() Ifn=>a?*/(a—1)and A < 1/(a® + 1), then v Qva(B;) > 0.

3) va}xo =v; and v}" is defined as in Definition 6.9 for ag < @ < 2, then
v QY > 2 (V0 Q). (6-26)

Proof. Properties (U) and (S) follow from Lemmas 6.11 and 6.7, respectively. Let E = E; N E; and
let F; be linear subspaces such that £; = E @ F;, where j = 1,2. For y € Eq1 letus write y =Y + y,
where Y € E and y € Fy; similarly, for z € E, we write z = Z + Z, where Z € E and Z € F5. Then
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for A C B,

11OV (4) = //// LAY +5+Z+2) g (Y +7,Z+2)
xfiY +)) f2(Z+Z2) Hg(dY) HE(AZ) HF, (dy) HF, (dZ)

= [[[1anw-ssen( [ o e5w-y A vy +2) Her)
xHg (W) HF,(dy) Hr,(dZ) (6-27)
and since v; Q v, (R? \ B,) = 0, the desired absolute continuity follows.

To show nondegeneracy, let G, := Bq—n \ B,—n—1. By scaling property (S) it follows that v; (G, 1) =
a®v;(Gp); therefore v;(G,) > 0 foreachn =0, 1,.... Hence

1

v1 Qva(By) >
2—060

/G n /G IR0 ) Ly ) Lty 2 1) v2(02)

For (v, z) € Gy+2 x Gy, it holds that

a

—1
o WylIvizh =ly+z[ = (@ + Dyl Alz))

and also n(y + z) € By, provided n is large enough. Therefore vi Qv,(B;) > 0, if n > a?/(a—1) and
A<1/(a®+1).

To prove the last part of the lemma, we calculate first the most inner integral in (6-27) corresponding
to v§¥ Qv it equals

L:= /gz(YW’W—Y+5)f1“(Y+f)f2“(W—Y+2)HE(dY)
2—o o o o ) )
:—(2 o )2/|W+y+Z|W|Y+y|a0 alW—Y+Z|a0 al()flao(Y—i_y)fzao(W—Y—f—Z)HE(dY)’
—Q&0

where we used an abbreviation
1) =Ty (Y +5) Lagy 5y (W =Y +2).

On the other hand, the most inner integral in (6-27) corresponding to (v‘fo Q vgo)“ is

2—« o _ ~ R i A
R := —2_a0(77|W+y+z|)ao a/gZ(Y'i'yaW_Y+Z)f1a0(Y+y)f2a0(W—Y+Z)HE(dY)
—(2 —on™ " 5 5|20~ Qo ~\ 00 N
= a2 ) WA 1) f° +3) f3°(W =Y +2) HE(Y).

Inequality (6-26) follows now from the estimate
Y+ FIOTHW —Y + 22070 = W+ F + 2DV

and the fact that both sides of (6-26) are zero on R4 \ B>. O
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Proof of Theorem 1.11: lower bound in (A). We recall from Section 1E that we may and do assume that
fr are symmetric, i.e., fr(x) = fi(—x) for all x. By Proposition 6.14 it follows that the measure

V= (leEl)@(szEz)oO(anEn)

satisfies (U) and (S) and has density / with respect to the Lebesgue measure on B(R?) with /, B, h(x)dx >0,
if 7 is large enough and A small enough. We will show that the measure v Q v possesses a density h¥
with A9 (x) > ¢|x|~4~0 for all x € By \ {0} and some positive constant ¢ to be specified. This, together
with the preliminary results, will establish the assertion.

Condition (S) for v implies that i(ax) = a~4~%h(x) if x € B; /a- Therefore fGo h(x)dx > 0, where
Go = By \ By /4. Define h9(x) = h(x) 1g,(x) A 1. The function

x > 700 % 100 (x) = / 1S (y —x) hGo(y) dy
is continuous and strictly positive at 0. Thus there exists § € (0, (2a)~!) and & > 0 such that
AL *hGO(x) >¢ for x € Bg.

We consider the measure v Q v; it has density 2 with respect to the Lebesgue measure on B(B5) given
by formula, see (6-16),

Oy =2 [ (L XZW) (W), (X
ey =n /g*(n’ n )h(n)h( 77 )dw

> nZao/G gg(%, x;w) 1, (x — w) h(w)h(x — w) dw
0

n%o

=3 / x| 14, (W) L4, (x —w) 1G4 (x —w) A(w) ~(x —w) dw.
— Q0 JGy

Suppose n > a?/§ and A < 1/(a8). Then for x € Bg \ Bs /42 and w € Gy such that x —w € Gy it holds
that
g (w) Ly, (x—w) =1
This leads to the estimate

ho( )> ;7“08“061_20‘
X) =

for x € Bs \ Bg)42-

° 160 4 KOO (x) > 5 £

For x € By \ {0} let k € Z be such that §/a? < |x|a¥ <§ < |x|a¥*1. Then, by scaling (S),
ak(d—i—ozo)g 5d+a08

> e[ 740
2—ap  a2dt200(2 —qq)

h@(x) — ak(d+0l0) h@(xak) >

Now from Lemmas 6.12 and 6.13 it follows that for any B C B;
E5%° (u,u) < &) (u,u), (6-28)
with ¢ = ¢((f})., (Ej)).
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\xz 7 Qy
/: k:O\QEy
U

Figure 1. Support of the kernel k w1th b= %) consisting of four thorns. The set P
from the proof below is shown, too.

Finally, to obtain a robust result, we observe that by (6-26)

o a —2(2n—1) o —2(2n-1) 2—a ap—a 8d+a08 —d—ap
(V)" Q- Q(v4)* =1 (vxQ---Qvy)* > mm aszaOM 1p, (x)dx.

2n factors 2n factors

This together with Lemmas 6.12 and 6.13 gives us
Eg(u,u) < cé’g)*)a (u,u),
with the constant ¢ not depending on o € [a, 2). |

6E. Examples. In this subsection, we provide two examples showing that the assumptions of Theorem 1.11
are not necessary for (A) and (B). Note that condition (A) relates to integrated quantities but does not
require pointwise bounds on the density of w(x,dy).

Example 6.15. Let » € (0, 1) and
T = {(x1,x2) € R?: |x2| > |x1]% or |x1] > |x2|2}.
We consider the following function
k(z) = 2—a) 1rng, (2)|2|727F, zeR? (6-29)

where B = o — 1 + 1/b; see Figure 1. Let us show that conditions (A) and (B) are satisfied in this case.
We have, for 0 <r < 1,

r xl/b 8
/ |z|2k(z)dz < 8(2—a)/ / (x%24+y?) "2 dydx
B, 0J0

r X
<8(2—a) f / x B dydx =8r27; (6-30)
0J0

hence k satisfies (U1) with C; = 8. Since (U0) is clear, from Lemma 6.8 we conclude that k satisfies (U).
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Let
P={xeB1:0<x1 <xp<2x1}

and, for y = (x1,x2) € P, let
1 1
Ey = [xlv-xl +x1b] X [_xlb’()]
It is easy to check that if y € P and z € Ey, then

|§—|§|z|§4|y|, |;}—|§|y—z|§4|y|, and z,y—zel NBj.

Letn:4andk:%. Then for y € P

o
kQk(ny) = 2|y_|a / La,,,(2) La,,(y —2)2 =) 1rnp, (2) rap, (v —2) 12|27 P |y — 21727 dz
= @-alyle [ 1A -
Ey

2
> 2-a) @D Px] = @-a)3 ha 2B 2 = 41T 2 -y

In the following example, we provide a condition that cannot be handled by Theorem 1.11 but still
implies comparability of corresponding quadratic forms.

Example 6.16. For a measure v on B(R?) with a density k with respect to the Lebesgue measure we
formulate the following condition:

There exist @ > 1 and C;, C3 > 0 such that every annulus B,—n+1 \ Bg— (n =0,1,...) 6-31)
contains a ball B,, with radius Coa™" such that k(z) > C3(2 —a)|z|_d_°‘, z € By.

The following proposition provides a substitute for Theorem 1.11.

Proposition 6.17. Leta > 1, ag € (0,2), o € [ag,2), and Cy, Cz,C3 > 0. Let . = (U(X,*)) ccra be a
family of measures on R4 which satisfies (1-2). Furthermore, we assume that there exist measures Vs
and v* with property (T) such that (U) and (6-31) hold with exponent o and the constants Cyr, Ca, Cs.
Then there is A = A(a, ag, Cy, Ca, C3) > 1 not depending on o such that (A) hold.

Proof. We fix A <2/C> Al and n>2a?/C, Vv 1. For some n € {0, 1,...}, let

C C
_Za—n—l < |y| < _2a—n
2 2

and assume that ny € B,. By formula (6-16), we obtain

l

4y
2

kQk(ny) > / 14, (6 —2) Lay, () k(y — 2) k(z) dz.

Let us denote by By the ball concentric with By, but with radius Coa™" /2 (that is, By is twice smaller
than B,). We observe that if z € BZ, then y —z € B,,. Furthermore, by our choice of A and 7 it follows that

Ayl <ly—zl<nlyl. Alyl<lz|<nly| ifzeBy;
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thatis, y —z,z € A forz € BJ. Hence

n=4|y|®

Kok = 2R Cze-w? [y -zl
—u

n

2. —d 2d +2

- CinQ2—-a)Cy4m
— 22d+2a;3d +4a

> C(o.d, Ca, C3,1,a)(2—)|y|~47%,

ly|74—

or, equivalently, for w € B,
k Qk(w) > C'(ao,d, Ca, C3,1m,a)(2 —a)|w|~47%,

By Lemmas 6.12 and 6.13 we conclude that the lower estimate in (A) holds. The upper estimate is in
turn a consequence of Proposition 6.1. |

7. Global comparability results for nonlocal quadratic forms

In this section we provide a global comparability result; i.e., we study comparability in the whole R4
This result is not needed for the other results in this article; however it contains an interesting and useful
observation.

Proposition 7.1. Assume (U) holds. Then there exists a constant ¢ = ¢(«, d, Cy) such that
EM(u,u) < c(EMe(u,u) + ”u”iz(Rd)) for every u € L*(R?). (7-1)
Furthermore, if (U) is satisfied for all r > 0, then for every u € Lz(Rd)
EM(u,u) < cEMe(u,u). (7-2)
If the constant Cy in (U) is independent of « € (g, 2), where g > 0, then so are the constants in (7-1)
and (7-2).

Proof. By E we denote the identity operator from H */2(R4) to itself. One easily checks that the proof
of Proposition 6.1 from (6-2) until (6-5) works also in the present case of D = R4. Hence (7-1) follows.

To prove (7-2) we observe that if (U) holds for all r > 0, then also (6-4) holds for all £ # 0; we plug it
into (6-3) and we are done. |

We consider the following condition.

(K2,rg) There exists c¢g > 0 such that for all # € S d=1 apd all 0 < r < ro

h-
/ r? sin® (—Z) v (dz) > cor?@. (7-3)
R4 r

Clearly (6-31) implies (K2,rg)2,r¢ for ro = 1, and if C3 is independent of « € (g, 2), where ag > 0,
then so is ¢g. Condition (K2,rg)2,rg is also satisfied if for all 1 € S A=l andall 0 < r < ro

[B o |h-z|?ve(dz) > cor? 9. (7-4)
(0
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We note that (7-5) under condition (7-4) has been proved in [Abels and Husseini 2010]. The following
theorem extends their result by giving a characterization of kernels v, admitting comparability (7-5). We
stress that ro = oo is allowed, and in such a case we put 1/r§ = 0.

Theorem 7.2. Let 0 < ro < o0. If (K2,r9)2,ro holds, then

20(
Ele (y,u) < —S“(u u) + — ul?,. ueCHRY). (7-5)
0

Conversely, if for some ¢ < 00

20[
Ele (u,u) < €% (uu) + — [ull2>,  ueS®RY), (7-6)
0
then (K2,rg)2,ro holds.

Proof. Recalling that (u(- + z))(€) = ’§Z4i(&) and using Plancherel’s formula we obtain
EM(u,u) > / (u(x) —u(x 4 z))? dx v« (dz)

B / €57 — 117 [(5)]* d v (dz)

_ / ( / 4sin2(%z) u*(dz))m(s)lzds (7-7)

If (K2,r9)2,ro holds, then for all |&] > 2/rg

/4sin (52 )v*(d )z o |é|°‘>00l%“l°‘

For |§| <2/ro we have |€|% < (2/r0)% Inequality (7-5) follows from

-Ad,—a o B oA 9
e = [P li©P 78)

Now we prove the converse. Assume (7-6). By (7-7), the right-hand side of (7-6) equals

f(6/4sin (Ezz)v*(dZ)-i-2 )|u(§)|2d§

hence by (7-8) and (7-6) we obtain that

c / 4sin2(%) Vi (dz) + i—z > |£]% forae. £ € R (7-9)

0
By continuity of the function

Rd\{O}BSH/4sm ( Z)v*(dz)

(7-9) holds for all £ € RY. For |£| > 21+1/@r;1 we have by (7-9)

c / 4sin2(s?z) Vx(dz) > @
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and hence (K2,271/%r4) holds with ¢o = 2% 3¢~ L. Since

Sin2 hl Z l Sin2 h;z R
2r 4 r

also (K2,r9)2,r¢ holds with some constant cg.

Appendix
We give the proof of Lemma 4.3. It only uses basic observations.

Lemma A.1. Assume 11,72 > 0 and 11/t € [%.2]. Then

T12+T22 5
fp—72 73
Proof. Note that
rlz—l—rzz 112/':22—{—1 t+1

-l g -1

where ¢ = 112 / ‘E22. There are three cases:

(1) If t =1, then

r+1
—— =400
t—1
and the assertion is true.
(2) If t > 1, then
r+1  t+1
lt—1] t—1

Note that (r +1)/(t —1) > % holds true if and only if
5 5 71

t+1>21—> &= <4 < — <2
3 3 (%)
(3) If t < 1, then
t+1_t+1
lt—1] —t+1°

Note that (¢ +1)/(—¢ + 1) > 3 holds true if and only if

5 5 1 71 1
r+1>—->t+= > —> .
+1> 3+3 = =7 — =2

365

O

Lemma A.2. Assume p > 1 and n € (1, g) Set A = ((n—1)/(1 + )P, Assume a,b > 0 and

bja ¢ (A, 1/A). Then
a=P +bP

- <.
a?—br] ="



366 BARTLOMIEJ DYDA AND MORITZ KASSMANN

Proof. Sett = (b/a)?. Then
a?+b7?  (a/b)y"P+1 t+1
la=P —b=P| "~ |(a/b)7P =1 |t 1]’

Now there are two cases:

Case 1: ¢t > 1.
t+1 r+1 147 b (1+n\Y?
<n <~ —F=<n < tz—F < —=2|— .
[t —1| t—1 n—1 a n—1
Case 2: t < 1.
r41 r41 n—1 b (n—1\Y?
<n < <np &= 1<— = —<|—) . O
[t —1| —t+1 1+n a I+

Lemma A.3. There is ¢y > 0 such that for p > 1, A = (%)l/p, and a,b > 0 withb/a € (A, 1/}) the
following is true:
|b—al|(a™? +b~P)?
=7 b7
Proof. Setb/a =& € (A,1/1). Then
b—al@?+b~7)?

< L pmptl 4 gmp Yy,

jal[§—1]a?P (1+§77)?

< PHipgrtl) e < Syt Ertiyy)

la=P—b=P| P §=P—1|a=? TP
E-1A+E7P) _c1 pys
= <P+
§=P—1] p

E-1(1+E27 o

= it - p

(A-1)

Let us prove (A-1). Note that
E-1A+E77)2  _E-11+7)? _ ey 51
E=P—1E P +1) T 5P -1 §=7 —1|°

We want to apply the mean value theorem. Set £ > g(§) = £ 2. Then g/(€) = (—p)E~@PT1D. The
mean value theorem implies

il € —1 i
|§'5‘” - |g|;_1| |2 (0l = pr~ D for some x € (6. 1) U (1.£).
Thus,
B —(p+1)
% > p(%) p — p(71/P)_(P+1) — p7_1_%’

from which we deduce

E-ta+E2)2 76449 e -
=P —1E '+~ p T p  p
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Lemma A.4. For p > 1 and a, b > 0 the following is true:

2 —p+1 —p+1
2 2

_1(a —b )2.

(b—a)ya?-b"7)>
4

The proof of the above lemma is simple and can be found in several places, e.g., in [Kassmann 2009].

Lemma A.5. Assume p > 1, a,b >0, and 11,72 > 0. Then

>2(na 2 —mb 7 )2 =21t —1)2(a P + 5P,

(11 + 12)%(a R

Proof. Note
2na B —nh B ) = (Mm@ P b T )+ @m )@ T —b ),
From this equality we obtain the assertion as follows:
4(r1a_p;rl —10b =5 )2 <2(11 — 12)%(a R +2(t1 + )@ 2 e —b%ﬁ)2
<4(t1— )@ Pt + 7P 1 2(11 + 1)? (aT —pE 2. O
Finally, we can give the proof of Lemma 4.3.
Proof of Lemma 4.3. Let us first consider the case t1/13 ¢ (%, 2). Note that, in this case
max{ty, 72} < 2|11 — 12| (A-2)
and
—(rla_p2+] = _lea—p+1 2b ptl —i—2t1a_1)2+l rzb%Jrl > —tlza_PH —tzzb_p+1.

Thus, we obtain

(b—a)(tia P —13b"P) > —t?a Pt ¢ 2b"’+1+(11a_p2+1—r2b ) —(t1a =5t
> (Tla%ﬂ—fzb =5 )2—2tfa Pt 2¢2pPH!
> (fla_p2+1—12b ) 2_2max{ti, v }2a P =2 max{tr;, 1, }2b P!
> (ra 2 —nb 7 P =8(ti—t) (@ P 4p7P Y,

The proof in the case 71 /1, ¢ (%, 2) is complete.
Let us now assume 71 /7, € [l, 2]. A general observation is
(b —a)(ﬁza_p - sz Py = 2(b —a)(fl - Tz)(a P+b7P)+ z(b —a)(fl + Tz)(a P—p7P).

=P =G

Recall that Lemma A.4 implies

A (A-3)

Lo—ayar—pry=
2 p—

Choose 7= % and A = ( )1/ P Let us consider two subcases.

1
7
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. 1 ~
Case 1: b/a € (A, 1/1), 11/72 € [5.2]. In this case

Pl=[5@ +wlb—al}la?—b~? 1 |lu —nlla? —b 7| H|p—al} @7 +b77)]
, (b—a)(@ P +b7P)?
(=P —b7)
=F
Because of Lemma A.3, we know that there is c5 > 0 such that |F| < (¢s/p)(b~PT1 4 g=PT1),
Altogether, we obtain

%(11 +1)2(b—a)a P —b7P)+4(11 — 1)

(b—a)(t?a™P—12b7P)

= 5 (=) (TF=) (@ +b ) +5 (b—a) (e +T) (@ —b7)

> 1 b-a) (=3 @ P +bP)+ L (b-a)(mi ) @ P —b7P)

K a IR U LG s e VA R P

(@?—b7)

= 3 (n4 22 b-a) (@~ —b )01 —)* E’)E‘;_p;i)p)z
Zﬁ(fﬁwz)z(a_p;l—b 2 85 2t 1
zm(rla%“ (4ﬁ+ (j_l))(rl—rz)z(b_pH+a_p+1),

where we applied Lemma A.5. The first case has been completed.

Case2: b/a¢ (A, 1/X), 11/10 € [% 2]. Then Lemmas A.1 and A.2 imply
P> —|P| = —3lb—al|i? —Bl@? +b7") =~ |b—al(z} + D)@ +57)

= —E §|b a|(f1 +12)|a_p b~P| = —g(b a)(TI +t2)(a_P b™P) = —gG-

Thus, due to Lemma A.4, we obtain

1
(b—a)(tia™?—13b"P)=P +G > %sz(tl +12)a 2 BE_phs 2
1 o, =Pt —p+1. .,
> 2 _b 2
> IO(p—l)(T1+T2) (a )
1 —p+l —p+1 1
> 2 —1,h 2 2 _ 2 b—p—H —p+1 )
ST T A

The proof in the case t1/15 € [%, 2] is complete. The proof of Lemma 4.3 is complete if we choose ¢
and ¢, appropriately. O
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ON SOLVABILITY AND ILL-POSEDNESS
OF THE COMPRESSIBLE EULER SYSTEM
SUBJECT TO STOCHASTIC FORCES

DOMINIC BREIT, EDUARD FEIREISL AND MARTINA HOFMANOVA

We consider the barotropic Euler system describing the motion of a compressible inviscid fluid driven by
a stochastic forcing. Adapting the method of convex integration we show that the initial value problem
is ill-posed in the class of weak (distributional) solutions. Specifically, we find a sequence 1), — 00 of
positive stopping times for which the Euler system admits infinitely many solutions originating from the
same initial data. The solutions are weak in the PDE sense but strong in the probabilistic sense, meaning,
they are defined on an a priori given stochastic basis and adapted to the driving stochastic process.

1. Introduction

Solutions of nonlinear systems of conservation laws, including the compressible Euler system discussed
in the present paper, are known to develop singularities in finite time even for smooth initial data. Weak
solutions that can accommodate these singularities provide therefore a suitable framework for studying
the behavior of the system in the long run. A delicate and still largely open question is well-posedness of
the associated initial value problem in the class of weak solutions. More precisely, a suitable admissibility
criterion is needed to select the physically relevant solution. The method of convex integration, developed
in the context of fluid mechanics in [De Lellis and Székelyhidi 2012], gives rise to several striking results
concerning well-/ill-posedness of the Cauchy problem for the Euler system and related models of inviscid
fluids; see, e.g., [Chiodaroli 2014; De Lellis and Székelyhidi 2009; 2010]. In particular, the barotropic
Euler system in two and three space dimensions is ill-posed in the class of admissible entropy solutions
(solutions dissipating energy) even for rather regular initial data; see [Chiodaroli, De Lellis, and Kreml
2015; Chiodaroli and Kreml 2014]. In the context of incompressible fluids, the method has been used
for attacking the celebrated Onsager’s conjecture, finally proved in [Isett 2018], accompanied by related
results obtained in [Buckmaster, De Lellis, Székelyhidi, and Vicol 2019]. Very recently, the ill-posedness
in the class of weak solutions has been extended even for the incompressible Navier—Stokes system in
[Buckmaster and Vicol 2019]; see also [Buckmaster, Colombo, and Vicol 2018].
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Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement 320078. The Institute of Mathematics of the
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convex integration.
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In the present paper, we show that this difficulty persists even in the presence of a random forcing. As
a model example, we consider the barotropic Euler system describing the time evolution of the density o
and the velocity u of a compressible fluid:

do + div, (ou) dr =0, (1-1)
d(ou) +div, (ou ® u) dt + V, p(0) dt = 0G (o, ou) dW, (1-2)

where p = p(p) is the pressure, and the term oG (o, ou) dW represents a random volume force acting on
the fluid. A typical example is the so-called isentropic pressure density state equation p(p) = o”. We
focus on two iconic examples of forcing, namely,

o0
0G(0, ou)dW =0GdW =0 Y G'dpi, G'=G'(x), (1-3)
i=1
or

0G (o, ou) dW = pu dg. (1-4)

Here B; = B;(t), B = B(t) are real-valued Wiener processes, whereas the diffusion coefficients G' are
smooth functions depending only on the spatial variable x. For the sake of simplicity, we consider periodic
boundary conditions, meaning the underlying spatial domain can be identified with a flat torus,

TV = (0, Nlpo.1)", N=2,3.

Other boundary conditions, in particular the impermeability of the boundary, could be accommodated at
the expense of additional technical difficulties.

The problem of solvability of the stochastic compressible Euler system (1-1), (1-2) is very challenging
with only a few results available. In space dimension 1, [Berthelin and Vovelle 2013] proved existence
of entropy solutions. These solutions are also weak in the probabilistic sense; that is, the underlying
stochastic elements are not known in advance and become part of the solution. The only available results
in higher space dimensions concern the local well-posedness of strong solutions. To be more precise,
given a sufficiently smooth initial condition

Q(Ov ) = 00, Qu(ov ) = (Qu)Ov (1_5)

it can be shown that the problem (1-1), (1-2), (1-5) admits a unique local strong solution taking values
in the class of Sobolev spaces W2 of order m > %N + 3. These solutions are strong in both the
PDE and probabilistic sense; i.e., they are constructed on a given stochastic basis with a given Wiener
process. Nevertheless, they exist (and are unique in terms of the initial data) only up to a strictly positive
maximal stopping time 7. Beyond this time that may be finite, the solutions develop singularities and
uniqueness is not known. We refer the reader to [Breit, Feireisl, and Hofmanov4 2018], where the
stochastic compressible Navier—Stokes system with periodic boundary conditions was treated, and in
particular to Remark 2.10 of that work for a discussion of the inviscid case. Let us finally remark that
general symmetric hyperbolic systems on the whole space R were studied in [Kim 2011].

For completeness, let us mention that (1-4) may be seen as a “damping” term, the regularizing effect
of which in the context of incompressible fluids has been recognized in [Glatt-Holtz and Vicol 2014],
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and for a general symmetric hyperbolic system in [Kim 2011]. To be more precise, in [Kim 2011] it
was shown that the probability that the strong solution never blows up can be made arbitrarily close to 1
provided the initial condition is sufficiently small. In [Glatt-Holtz and Vicol 2014] it was proved that the
smallness assumption on the initial condition can be replaced by large intensity of the noise. Additionally,
in the case of additive noise, which in our setting corresponds to (1-3), that work showed global existence
of strong solutions to the incompressible Euler equations in two dimensions.

Our goal in the present paper is to show that the problem (1-1), (1-2) is ill-posed in the class of weak
(distributional) solutions. More precisely, we show that there exists an increasing sequence of strictly
positive stopping times Ty, with t)y — 00 as M — o0 a.s., such that problem (1-1), (1-2), (1-3) or
(1-4), (1-5) admits infinitely many weak solutions in the time interval [0, Tyy A T) for any positive 7.
We emphasize that weak is meant only in the PDE sense — the spatial derivatives are understood in the
distributional framework — while solutions are strong in the probabilistic sense. To be more precise, the
stochastic basis together with a driving Wiener process W are given and we construct infinitely many
solutions that are stochastic processes adapted to the given filtration. This is particularly interesting in
light of the fact that uniqueness is violated. Indeed, without the knowledge of uniqueness it is typically
only possible to construct probabilistically weak solutions that are not adapted to the given Wiener process.
This already applies on the level of SDEs; see, for instance, the discussion in [Karatzas and Shreve 1988,
Chapter 5].

Formally, both (1-3) and (1-4) represent a multiplicative noise. Nevertheless, under these assumptions,
the system of stochastic PDEs (1-1), (1-2) may be reduced to a system of PDEs with random coefficients
by means of a simple transformation. As a consequence, the stochastic integral no longer appears in
the system and deterministic methods can be employed pathwise. Such a semideterministic approach
was already used in many works; see for instance [Feireisl, Maslowski, and Novotny 2013; Tornatore
and Fujita Yashima 1997] for the compressible setting, and the seminal paper [Bensoussan and Temam
1973] for the incompressible case. However, we point out that in all these references, the nontrivial issue
of adaptedness of solutions with respect to the underlying stochastic perturbation remained unsolved.
Therefore, it was not possible to return to the original formulation of the problem with a well-defined
stochastic It6 integral. Even though we employ a similar semideterministic approach to (1-1), (1-2), (1-3)
or (1-4), we are able to answer affirmatively the question of adaptedness and accordingly the stochastic
It6 integral in the original formulation (1-1), (1-2) is well-defined.

To be more precise, for both (1-3) and (1-4), we rewrite (1-1), (1-2) as an abstract Euler system
with variable random coefficients in the spirit of [Feireisl 2016]. This relies on the particular structure
of the compressible Euler system and its interplay with stochastic perturbations satisfying (1-3) or
(1-4). The resulting problem is then solved by an adaptation of the deterministic method of convex
integration developed in [De Lellis and Székelyhidi 2010]. The main difficulty is to ensure that the
abstract construction based on the concept of subsolutions yields a solution g, ou adapted to the noise W.
This is done by a careful analysis of the oscillatory lemma of [De Lellis and Székelyhidi 2010], where
adaptedness is achieved by a delicate use of the celebrated Ryll-Nardzewski theorem on the existence of
a measurable selection of a multivalued mapping.
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The key point is to study a certain nonpositive functional / (see Section 6D) defined on an appropriate
class of subsolutions (see Section 6A) to the abstract Euler system. These subsolutions capture already all
the required (probabilistic) properties expected from the solutions. Similarly to [De Lellis and Székelyhidi
2010], the existence of infinitely many solutions to the original problem is obtained by applying an abstract
Baire category argument based on the possibility of augmenting a given subsolution by rapidly oscillating
increments. Determining the amplitude as well as the frequency of these oscillatory components at a
given time ¢ requires knowing the behavior of a given subsolution up to the time ¢ 43, § > 0. The specific
value of § is in general a random variable, the value of which depends on the behavior of the noise W
in the interval [7, f + §). Consequently, it is not adapted with respect to the natural filtration associated
to the noise. The problem can be solved only if § > 0 is deterministic, specifically if the solution paths
belong to a fixed compact set. To ensure this, we replace W by Wy, (¢) = W (¢t A tyr), where Ty is a family
of suitable stopping times defined in terms of the Hélder norm of W. It is exactly this rather technical
difficulty that restricts validity of our main result to the random time interval [0, ;7). Note, however, that
Ty can be made arbitrarily large with probability arbitrarily close to 1.

Let us stress that our results apply mutatis mutandis to situations when the driving force is given
by a more general stochastic process or a deterministic signal of low regularity. Provided a suitable
transformation formula to a PDE with random coefficients can be justified, the only ingredient is the
one required in Section 3A for the construction of the corresponding stopping times 7,;. Namely, the
trajectories of the driving stochastic process are supposed to be a.s. a-Holder continuous for some
a € (0, 1). Then existence of infinitely many weak solutions (to the transformed system) adapted to
the given stochastic process follows. Whether it is possible to go back to the original formulation then
depends on the particular stochastic process at hand, namely, whether a corresponding stochastic integral
can be constructed. If the driving signal is a deterministic Holder continuous path, the stopping times are
not needed and we obtain infinitely many weak solutions (to the transformed system) defined on the full
time interval [0, T].

It is important to note that the restriction to the multidimensional case N =2, 3 is absolutely essential
here and the variant of the method of convex integration presented below does not work for N = 1.
Indeed, the method leans on the property of the system to admit oscillatory solutions. As observed in
the pioneering works [DiPerna 1983a; 1983b], the deterministic counterpart of (1-1), (1-2) appended by
suitable admissibility conditions gives rise to a solution set that is precompact in the L?” framework if
N=1.

To conclude this introductory part, let us summarize the current state of understanding of a compressible
flow of an inviscid fluid under stochastic perturbation. Consider a sufficiently smooth initial condition
(1-5) and a fixed stochastic basis. On the one hand, it can be shown that there exists a unique local
strong solution. However, in view of our result, there exist infinitely many weak solutions emanating
from the same initial datum. The very natural question is therefore whether one can compare these two
kinds of solutions. In fluid dynamics, it is often possible to establish a so-called weak-strong uniqueness
result: strong solutions coincide with weak solutions satisfying a suitable form of energy inequality. The
corresponding result for the stochastic compressible Navier—Stokes system was proved in [Breit, Feireisl,
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and Hofmanova 2017]. Consequently, it would be interesting to see whether our weak solutions could be
constructed to satisfy an energy inequality. In analogy with the deterministic setting, we know this might
be possible only for certain initial data and we leave this problem to be addressed in future work.

The paper is organized as follows. In Section 2, we introduce a proper definition of a weak solution and
state our main results. In Section 3, the problem is rewritten in a semideterministic way that eliminates
the explicit presence of stochastic integrals. In Section 4, we rewrite the system as an abstract Euler
problem in the spirit of [Feireisl 2016]. Section 5 is the heart of the paper. Here, the apparatus of convex
integration developed in [De Lellis and Székelyhidi 2010] is adapted to stochastic framework. The main
result is a stochastic variant of the oscillatory lemma (Lemma 5.6) proved via the Ryll-Nardzewski
theorem on measurable selection. The proof of the main result is completed in Section 6.

2. Problem formulation and main results

Let (2, 5, (81)r>0, P) be a probability space with a complete right-continuous filtration (§;);>0. For the
sake of simplicity, we restrict ourselves to the case of a single noise; specifically,

0G (0, ou)dW =G (x)dB or oG(g, ou)dW =oudp, (2-1)

where B = B(¢) is a standard Wiener process relative to the filtration (§;);>0. In particular, we may
correctly define the stochastic integral (in It6’s sense)

/T(/ QG(Q,Qu)‘(pdx)dW
o \JTv

t— o¢ dx, t|—>/ ou-¢ dx (2-2)
TN TN

as soon as the processes

are (§;)-progressively measurable for any smooth (deterministic) test functions ¢ = ¢ (x) and ¢ = @(x).

Definition 2.1. We say that [g, u, t] is a weak solution to problem (1-1), (1-2), (1-5) with a stopping
time t provided:

(1) T > 01is an (§;)-stopping time.
(ii) The density p is (§;)-adapted and satisfies

0€C(0,7); Wh(TY)), 0>0 P-as.

(iii)) The momentum pu satisfies ¢ — fTN ou-¢ dx € C([0, 7]) for any ¢ € C° (TN: RVN), the stochastic
process t fTN ou - ¢ dx is (§;)-adapted, and

ot € Cyea ([0, T); L2(TN: RM)NL®(0,7) x TV: RY)  P-as..

(iv) Forall ¢ € C° (7N) and all ¢ > 0 the following holds P-a.s.:

/Q(t/\r,-)qbdx—/ Q0¢dx=/ T/ ou- V¢ dx dr. (2-3)
TN TN 0 TN
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(v) Forall ¢ € C>°(TV, RY) and all 7 > 0 the following holds P-a.s.:
/ Qu(t AT, ) @ dx—f (ou)o - ¢ dx
TN TN

INT INT
=/ / [ou @u : Vip + p(o) divy @] dx dt+/ (/ oG -¢ dx) dw. (2-4)
0 JTV 0 TN

Remark 2.2. The processes in (2-2) are continuous and (§;)-adapted, whence progressively measurable.
Consequently, the stochastic integral in (2-3) is correctly defined as soon as G = G(p, ou) satisfies (2-1).

We are ready to formulate our main result.

Theorem 2.3. Let T > 0 and the initial data oy, (ou)o be §o-measurable such that
00 € CY(TY), (owoeCHTV;RY), 00>0 P-as. (2-5)

Let the stochastic term satisfy (2-1), where B is a standard Wiener process, and the coefficient G €
WLoo(TN: RN is a given deterministic function. Finally, suppose that the pressure function p = p(0)
satisfies

p € C0,00)NC3(0,00), p(0)=0.

Then there exists a family of P-a.s. strictly positive (§;)-stopping times Ty satisfying ty < 1 P-a.s. for
M <L, and

Ty—>00 asM — oo P-as.,

such that problem (1-1), (1-2), (1-5) admits infinitely many weak solutions with the stopping time t =ty AT
in the sense of Definition 2.1.

Remark 2.4. Solutions obtained in Theorem 2.3 are “almost global” in the sense that for any & > 0,
problem (1-1), (1-2), (1-5) admits infinitely many (weak) solutions living on a given time interval (0, T)
with probability 1 — ¢ (choosing M large enough). The necessity of considering finite stopping times is
explained in detail in Remark 5.13 below.

Remark 2.5. We transform the problem to an abstract Euler system (see (4-7), (4-8) and (4-13), (4-14))
and show the existence of infinitely many solutions to the latter one. It is worth noting that our approach
can be applied to other problems in fluid mechanics, in particular to the incompressible stochastic Euler
equations. See also Remark 4.2.

The rest of the paper is devoted to the proof of Theorem 2.3. Let us now summarize the key points
of our construction. For both (1-3) and (1-4), we rewrite (1-1), (1-2) as an abstract Euler system with
variable random coefficients in the spirit of [Feireisl 2016]. On the set of subsolutions to this system we

T 2
I[v]=[E|:/ / |:l|v+h| —e] dxdti|.
0 JTN 2 r

Here, h, r are given functions related to the density ansatz and e is the target energy. The solutions of
the problem are represented by the points of continuity of I with respect to v. The exact definition of

define the functional
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I is given in Section 6D below. It is rather standard to see that / has infinitely many continuity points
and that /[v] = O implies that v is a solution. The bulk is to show that each continuity point satisfies
I[v] = 0, which implies the existence of infinitely many solutions. The latter statement can be shown
indirectly by augmenting a given continuity point by rapidly oscillating increments. These increments
are obtained by an adaptation of the deterministic method of convex integration developed in [De Lellis
and Székelyhidi 2010]. The main difficulty is to ensure progressive measurability in this construction.
Following [Donatelli, Feireisl, and Marcati 2015] we proceed in three steps:

(i) Assuming the subsolution under consideration is constant in space-time (but random) we gain an
oscillator sequence which is a random variable itself by the Ryll-Nardzewski theorem on measurable
selection. This is first done on the unit interval with density equal to 1 (see Lemma 5.6). A more general
version follows by scaling (see Lemma 5.8).

(i1) The construction from (i) can be extended to piecewise constant subsolutions which are evaluated at
the first time-point of each subinterval. This ensures progressive measurability of the oscillatory sequence
(see Lemma 5.10).

(iii) Finally, we consider the general case of continuous subsolutions (see Lemma 5.11). They can be
approximated by piecewise constant ones and we can apply step (ii). It is important that the modulus of
continuity can be controlled. This is where the stopping times in the noise come into play.

3. Transformation to a semideterministic setting

In view of the difficulties mentioned in Section 1, we are forced to replace the original Wiener process
by a suitable truncation and to rewrite the problem in a semideterministic setting.

3A. Stopping times. We start by fixing a family (tp7)yen Of stopping times enjoying the properties
claimed in Theorem 2.3. For a given 0 < a < % and the Wiener process 8, B(0) = 0 P-a.s., we introduce

O(t) = sup |B(s)|+ sup M fort >0, 0(0)=0.

0<s<t 0<n#£n<t |11 —12|*

Obviously, O is a nondecreasing stochastic process adapted to (§;);>0. Moreover, as 8 is a Wiener
process, it follows from the Kolmogorov continuity criterion that

|B(t1) — B(t2)| < B(T, b)|t; — 12| = B(T, b)|t; — t2]"~%|t; —12|° whenever 0 <t;,1, < T,

foranyO<a <b < %, T > 0, where B(T, b) is random and finite [P-a.s. In particular, we deduce that O
is continuous in [0, 0o). As a consequence, for M € N,

oy =inf{O() > M} AT
t>0
defines an (§;)-stopping time. Moreover, Ty < 17, P-a.s. for M < L, and in particular we get
Ty —>00 asM — oo [P-as.

Finally, as O is continuous and O (0) = 0 P-a.s., we have that tj; > 0 P-a.s. for all M € N.
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Next, let us introduce the stopped stochastic process
Wy =By, PBu@) =Bt Aty) fort>0.

We recall that, for T = 1, the stochastic integral in (2-4) can be rewritten as

IATY t
/ (/ QG-godx>dW=/</ QG-(pdx)dWM.
0 TN 0 TN

From now on, we consider problem (1-1), (1-2), (1-5) with g replaced by Bs;. Under these circumstances,
our task reduces to showing Theorem 2.3 with 8 = 8, on the deterministic time interval [0, T']. Note
that the paths of 8, are uniformly bounded and uniformly Holder continuous,

IBmllcaro.ry <M, 0<a<3 Pas. (3-1)

This is the essential property we use to construct probabilistically strong solutions, that is, solutions that
are adapted to the given filtration (§;);>0 associated to S.

3B. Problem with additive noise. 1If the noise is given by (1-3), we may combine Itd’s calculus with the
equation of continuity (2-3) to rewrite the stochastic integral in the form

t t
/ (/ eG-¢ dX> dBm = (/ eG-¢ dX>,3M(t)—/ ﬁM(S)/ ou-Vi(G-¢) dxds.
o \J7v T 0 ™

Consequently, the momentum equation (1-2) can be formally written as
d(ou — 0fmG) +divy(ou @u) dr + Vi p(0) dr = By G divy (ou) dr, (3-2)

where no stochastic integration is necessary. Passing to the weak formulation, our task reduces to finding
o and pu such that

t— opdx, / ou-¢ dx continuous and (§;)-adapted,
TN TN

(3-3)
/ 0(0,-)¢ dx =/ Qo¢ dx, / ou(0,-)-¢ dx =f (ou)o-¢ dx
TN T T T
for any smooth test functions ¢, @, satisfying
T
/ / [00:¢ +ou - Vigp] dxdr =0 (3-4)
0 JTN

for any ¢ € C°((0, T) x TV);
T
/ /N[(Q”  oBuG) - %+ ou DU : Ve + o) div, @] dx dr
0 JT

T
- f [Buou-VoG -+ you-Vep -Gl drdr (3-5)
0 JTN

for any ¢ € C°((0, T) x TV; RV).
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Remark 3.1. Problem (3-4), (3-5) can be viewed as a system of partial differential equations with random
coefficients. We point out that all steps leading from the original problem (2-3), (2-4) to (3-4), (3-5) are
reversible as long as o, ou are weakly continuous (§;)-adapted and Itd’s calculus applies. In particular, it
is enough to solve (3-3)—(3-5).

3C. Problem with linear multiplicative noise (stochastic “damping”). If the forcing is given by (1-4),
we may again use It6’s calculus for 0 < ¢ < 1) obtaining

dexp(—Bu) = —exp(—Bu) dBu + % exp(—Bu) dt,
and

eXP(—ﬂM)[d</ ou-¢ dx) - (/ ou-¢@ dx) dﬁM}
T TV

= d[eXP(—ﬂM)/ ou-¢ dx] +3 eXp(—ﬂM)/ ou-¢ dxdr.
TN TN
On the other hand, in accordance with (2-4),
d(/ ou-¢ dx) — (f ou-¢@ dx) dBum :f [ou@u :Vip+ p(o)div, @] dx dr.
TN 7—N 'TN

We therefore conclude that
d[eXp(—ﬁM) / ou-g dx]

TN

——Lexp(~pu) | ou-g dxditexp(—pu) [ louu: Vg + plo)div, o) drat

T T

Similarly to the case of additive noise, we may replace (2-3), (2-4) by a system of partial differential
equations with random coefficients, the weak formulation of which reads

T
| [ teao+ou-vig1 axar =0 (3-6)
0 JTN
for any ¢ € C°((0, T) x TN);
T
0= [ [ fexp(~Purou- -+ exp(~purou @ u': Vip -+ exp(~pun)ple) v, o] dr
0 JT
1 (7
— —/ / exp(—Bu)ou - ¢ dx dt (3-7)
2 Jo Jyv
forany ¢ € C2°((0, T) x T N. RN), where o, ou are the stochastic processes satisfying (3-3).

4. Abstract Euler problem

Our next goal is to rewrite the problems (3-3), (3-4), (3-5) and (3-3), (3-6), (3-7), respectively, to fit into
the abstract framework introduced in [Feireisl 2016]. In addition to (2-5) we suppose that P-a.s.

llooll e3¢y + l@wollcsrv. gyy + llog vy < D (4-1)
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for some deterministic constant D > 0. We claim that it is enough to show Theorem 2.3 for the initial
data satisfying (4-1). Indeed, any initial data gy, (ou)g satisfying (2-5) can be written as

[0, (ou)o]l = lim [oo,p, (ou)o,p] [P-as.,
D—o00

where
[eo, (ou)ol(w) if (4-1) holds,

[0, D, (0u)o,pl(w) = {[1’ 0] otherwise.

Let [op, (ou)p] be the solution emanating from the data [gg p, (ou)o p], the existence of which is
guaranteed by Theorem 2.3. We set

Qp ={w e 2| oo, (ou)ol(w) satisfies (4-1)}.

Note that Qp is §o-measurable for any D > 0. Since

[0, (ew)o] = 1o, le1, (@)1l + Y lap\ap_[00.0. (@W)o.p],
D=2

the desired solution for arbitrary initial data satisfying (2-5) can be obtained in the form

lo. oul = 1g,[e1. (@11 + Y _ lay\ap, [ob. (ou)p].
D=2

4A. Additive noise. Going back to (3-4), (3-5) we write

ou—o0BuG=v+V+V, U,

where
div, v =0, / vdr=0, V =V()eR" aspatially homogeneous function.
TN

Remark 4.1. Note that v + V represents the standard Helmholtz projection 1y of ou — 08y G onto the
space of solenoidal functions.

To meet the initial conditions (1-5), we fix
1
v(0,-)=11I U)ol — —— u)y dx,
(0, -) =Mul(ou)ol |TN|/7’N(Q )0

1
V(O0) = — / (ow)o dx, Ve W(0,-) = M (ou)o].
[T Jw
Accordingly, the equation of continuity (3-4) reads
90+ AW+ By divi(0G) =0,  0(0,-) = go. (4-2)

For given W, By, and G, the density ¢ in (4-2) is uniquely determined by the method of characteristics.
Moreover, as B, satisfies (3-1) and gy is strictly positive uniform in €2, we may fix the potential ¥ and
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subsequently the density o in such a way that
e C¥([0,T]; C*(TY)) P-as., W (§)-adapted, [|Wllc2qo.7).c30rvy <cm P-as.,
0eC'(10,T1; C/(T")) P-as, 0(0,-)=00, o (§:)-adapted,

1
lellcrgo,r:crervy <ems 0= o P-a.s., (4-3)

where c); > 0 is a deterministic constant depending on the stopping parameter M. Here, we have also
used the extra hypothesis (4-1).

Remark 4.2. We would like to point out that W and subsequently o are not uniquely determined. As a
matter of fact, there are infinitely many possibilities of how to choose W and o satisfying (4-2), (4-3). In
particular, if

div, (ou)o =0, / (ou)o=0, and div,G=0
TN
we can take the ansatz
o=1, ¥=0
obtaining pu = v — a solution of the incompressible Euler system.

Having fixed o and W, we compute V as the unique solution of the differential equation

dv 1 ) 1
= . V.G -V - dx. -
& = T /N[QﬁMVxG G+puViG- Vil dx. V(0= = /N(Qu)o (4-4)

In view of (4-3) and the assumption G € W (TV; RV) we easily deduce that
Ve Cl([O, T1; RY) P-as., Vis (8r)-adapted,  |Vlciqo.r1:rYy <cm P-as. 4-5)

Thus it remains to find v to satisfy (3-5). It turns out that v must be a weak solution of the abstract
Euler system

(v+gﬁMG+V+Vx\If)®(v+gﬁMG+V+vxqf)>
0

0;v +divy (

=—Vip(0) — 8 Ve ¥ + By divi(0Bu G + VW) G — / Bm dive(efu G + Vi W)G dx,

ITN
diviv=0, v(0,-)=wvy=Tx[(ou)] - Wl / (ou)o dx.
Finally, we solve the elliptic system
div, [me +Vim— % div, mﬂ]

=V, p(0) + 8 Ve W — By div (0Bu G + Ve W) G + —— /,BMlex(Q,BMG‘i‘V‘I’)GdX (4-6)

[TV
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Note that (4-6) admits a unique solution as the right-hand side is a function of zero mean. Consequently,
setting
r=90, h=0uG+V+V, V¥, M:me—i-V;m—%divxml]

we may rewrite the problem in a concise form:

(v+h)®@@w+h) n

r

orv +divx|: M] =0, div,v=0, (0, )=nu1g, 4-7)

where

voeCI(TN; RN) P-a.s., div, v9=0, f vo dx=0, vy is Fo-measurable, |lvollci¢rv.gy)<cy P-as.,

TN
heCi(0,T]; CH(TY; RY)) P-as., his (§)-adapted, [kllcaqo.r).ctrv:rry <cm P-as.,
4-8)
11 (
reC[0,T1; CY(TN)) P-as., ris (§,)-adapted, I7llcao.rcr vy <cm, —=— P-as.,
r CMm
Me (10, T1; CH(T™; RYSM) P-as., Mis (§)-adapted, M caqo,rrect ;v < €m P-as.

are given data. In the following we give a precise definition for solutions to (4-7).

Definition 4.3. Assume that the data vy, h, r, M satisfy (4-8)." We say that v is a weak solution to
problem (4-7) provided:

(i) We have t — fTN v-¢@ dx € C([0, T]) for any ¢ € C®(TN; RV), the stochastic process t
fTN v- ¢ dx is (§;)-adapted, and

v € Coeax ([0, T1; L2 (TN R¥)HYNL®0,T) x TV, RY) P-as..

(ii) For all ¢ € C®(TN, RV) and all ¢ € [0, T] the following holds P-a.s.:

f ‘U(l‘,-).(odx—/ Vo @ dx:// |:(v+h)®(v+h) va(P+MIVx(p:| dx dr. (4-9)
TN E 0 JTN

r

Let us summarize the above discussion in the following proposition.
Proposition 4.4. Let By and G € W (TN; RN) be given. Let o, ¥ belonging to the class (4-3) satisfy
(4-2). Finally, let v be a weak solution of problem (4-7) in the sense of Definition 4.3, with
r=0, h=0BuG+V +V, ¥, M:me—i-V;m—%dime[l,

where V, m solve (4-4), (4-6), respectively.
Then
o,ou=v+V+VV+08uyG
is a solution of problem (3-3)—(3-5).

Remark 4.5. In view of Proposition 4.4 and Remark 3.1, the proof of Theorem 2.3 in the case of additive
noise reduces to showing the existence of infinitely many solutions to problem (4-7).

A weak solution could be defined under much less restrictive assumptions on the data.
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4B. Multiplicative noise. Mimicking the steps of the previous section we write

exp(—Bm)ou =v+V +V, ¥
in (3-7), where

divy, v=0, / vdx=0, V=V@#)eRisa spatially homogeneous function,
TN

and
1 1
v(0, ) = Myl(ou)ol — — w) dx, V(0)=—- u)o dx, V,W(0,-) = x[(ou)o].
0. = Tpltewnl = = [ @un e, VOI= = [ oy 0.) = Mil(oupo]
Accordingly, the equation of continuity reads
0r0 +divy (exp(Bu) Vi W) =0,  0(0, -) = oo. (4-10)

Next, we fix V as the unique solution of

ﬂ+lv=0, V(O):—1 / (ou)o dx. (4-11)
dr 2 [ TN] S
Accordingly, the momentum equation can be written as
. (vHVAV)Q(v+V V) X X
dv+exp(Bum) divy 0 +exp(—Bm) Vi p(0)+3, Vi W43V, W =—1v,

| (4-12)
div, v=0. w0 =Millgull— /T (owodx.

Similarly to the above, we can fix g, W to satisfy (4-10) together with (4-3).
Finally, seeing that fTN v dx = 0, we may solve an analogue to the elliptic system (4-6), namely,

div, [me FV'm - % div, m[I] = exp(—Bu) Ve p(0) + 8V, W + 1V, W Lo, (4-13)

Note that, in contrast with (4-6), the solution m = m[v] depends on v.
Similarly to (4-7) we can write the final problem (setting h = V + V, W and r = g):

|:(v+h)(§>(v+h) —|—M[v]]

0;v +div, =0, div,v=0, (0, )=nu1g, (4-14)

where

vOECI(TN;RN) P-a.s., div, vy=0, f vo dx=0, vp is Fo-measurable, |[volci7v. gyy<cy P-as.,
TN

heC*(0,T1;CH(T™; RY)) P-as., his (§,)-adapted, ||hllcoqo.ry:c1¢7v:rVy <cm P-as., (4-15)

reC“([O, T], Cl(TN)) [p)-a.S., ris (S,)—adapted, ||r||Ca([07T];C1(7'N)SCM, %ZCL P-a.s., (4-16)
M
and

M =Ml[v] = Vim + V.m — %divx ml 4-17)

is the unique solution of the elliptic system (4-13).
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Remark 4.6. Note that £ is actually more regular than in Section 4A.
Similarly to the preceding section we have the following definition.

Definition 4.7. Assume that the data vy, h, r satisfy (4-15) and let M[v] be given by (4-17) with o, ¥
satisfying (4-3).> We say that v is a weak solution to problem (4-14) provided:

(i) We have ¢ > [y v-¢ dx € C([0, T]) for any ¢ € C*°(T"; R"), the stochastic process ¢ >
fTN v- @ dx is (§;)-adapted,

v € Cyeax([0, T1; L2 (TN RY)YNL®0,T) x TV, RY) P-as..

(ii) For all ¢ € C®°(TN, RV) and all ¢ € [0, T] the following holds P-a.s.:

t
/ v(t,.).(pdx—f v0-¢dx=// [(v+h)®(v+h):Vx(0+M[v]:Vx(oi|dxdt. (4-18)
TN TN 0 JTN

r

Again similarly to the preceding section, we summarize as follows.

Proposition 4.8. Let B8 be given. Let o, W solve (4-10), and let V solve (4-11). Let v be a weak solution
of (4-14), with
r=o0, h=V+VV, M:wm+wm—%mwmm

where m = m[v] is the unique solution of the elliptic system (4-13).
Then

0, ou =exp(By)(v+V + V) (4-19)
is a solution of problem (3-6), (3-7).

Remark 4.9. In view of Proposition 4.8, the proof of Theorem 2.3 in the case of the multiplicative noise
reduces to showing the existence of infinitely many solutions to problem (4-14).

5. Convex integration

Problems (4-7) and (4-14) can be solved pathwise using the method of [De Lellis and Székelyhidi 2010],
with the necessary modifications developed in [Feireisl 2016]. In such a way, we would obtain the existence
of (infinitely many) solutions in the semideterministic spirit introduced in [Bensoussan and Temam 1973].
More specifically, solutions obtained this way would be random variables, meaning §-measurable but not
necessarily (§;)-adapted (progressively measurable). Obviously, such a semideterministic result would
hold without any restriction imposed by the stopping times. Progressive measurability of o, ou claimed
in Theorem 2.3 represents a nontrivial issue that requires a careful revisiting of the method of convex
integration presented in [De Lellis and Székelyhidi 2010]. The main ingredient is a stochastic variant of
the so-called oscillatory lemma shown in the present section.

Definition 5.1. Let G : 2 — X be a (Borelian) random variable ranging in a topological space X. We
say that G has a compact range in X if there is a (deterministic) compact set K C X such that G € K a.s.

2 A weak solution could be defined under much less restrictive assumptions on the data.
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SA. Geometric setting. Let Ré\}’,;f]N denote the space of symmetric N x N matrices and let R(I)V quﬁ be its
subspace of traceless matrices. Following the ansatz of [De Lellis and Székelyhidi 2010, Lemma 3] we
consider the set

Slel ={[w,H] | w e R, He RYSN, 3N Amalw @ w —H] < e},

where Amax[A] denotes the maximal eigenvalue of a symmetric matrix A. Thanks to the algebraic

inequality
3N Ama[w @ w —H] > Jwl®,  He RIS, (5-1)
Sle] # @ only if e > 0. In addition, we have
LN = Dimax[w @ w —H] > HH2,  we RY; (5-2)

see [De Lellis and Székelyhidi 2010, Lemma 3(iii)]. Thus, for given e > 0, S[e] is a convex open and
bounded subset of RY x RY*YN Moreover, as shown in [De Lellis and Székelyhidi 2010],

0,sym
1 2
§|a| =€}.

De Lellis and Székelyhidi [2010, Lemma 6] proved the following result. Given e > 0 and [w, H] € S[e],
there exist @, b € RV enjoying the following properties:

aﬂ4={Pﬁ®a—%mm}

* We have
slal> = 31b)> =e. (5-3)

e There exists L > 0 such that fors =a —b, M=a ®a — b ® b, we have
[w+As, H4 AM] € S[e],

5-4
dist[[w + As, H 4+ AM]; dS[e]] > %dist[[w, H]; aS[ell ©-4)
forall A e [—L, L].
« There is a universal constant ¢(/N) depending only on the dimension such that
Lis| 2 eV~ (e = S wP) (5-5)
> NG 5 .
* We have
la £ b| > x (dist[[w, H]; 0S[e]]), (5-6)

where y is positive for positive arguments.

Motivated by this result, we consider a set-valued mapping

. N NxN RN xRN
F:(0,00) xR XRO,S>;m_>2 x

determined by the following properties:
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(1) Whenever [w, H] ¢ S[e] we have
F(e,w,H) = {[w, w]}. (5-7)
(2) If [w, H] € S[e], then [a, b] € F(e, w, H) if and only if:
o We have
slal> = 31b)> =e. (5-8)

e There exists L > 0 such that fors =a—b, M=a®a — b ® b, we have
[w+ As, H+ AM] € S[e],

5-9
dist[[w + As, H 4+ AM]; 0S[e]] > %dist[[w, H]; 0S[e]] >-9)
forall A € [—L, L].
e We have
Lls| >c(N)L(e—l|w|2), (5-10)
where ¢(N) is the universal constant from (5-5);
la £b| > x (dist[[w, H]; 0S[e]l), (5-11)

where x has been introduced in (5-6).

Basic properties of F are summarized in the following lemma.

Lemma 5.2. For any (e, w, H) € (0, 00) x RN x Ré\fsxyﬁ

contained in a compact set, the size of which depends only on e and |w|. Moreover, the mapping

the set F(e, w, H) is nonempty, closed, and

. N NxN RN xRN
F:(0,00) x R XRO,s>;m_)2 x

has closed graph with respect to the Hausdorff distance on compact sets.

Proof. As shown in [De Lellis and Székelyhidi 2010, Lemma 6], the set (e, w, H) is nonempty for any
[w, H] € S[e] for a certain universal constant ¢(N). If [w, H] € dS[e], then

and, consequently, (e, w, H) contains at least the trivial point [w, w]. Obviously, F(e, w, H) is closed
and bounded, whence compact.

Closedness of the graph follows by the standard compactness argument as the target space is locally
compact, and conditions (5-8)—(5-11) are invariant with respect to strong convergence. Il

Remark 5.3. The mapping assigns to any point [w, H] € S[e] a segment [w+As, H+AM], A e[—L, L],
that has “maximal” length and still belongs to the set S[e]. Solutions constructed later by the method of
convex integration “oscillate” along segments of this type.
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Let (€2, §, P) be a probability space endowed with a complete o -algebra of measurable sets §. Suppose
now that

[e, w, H] is an [, B[(0, c0) x RN x R(I)\,’ Sxyﬁ]]-measurable random variable,

where the symbol ‘B denotes the o-algebra of Borel sets. Our goal is to show that the composed mapping
F(e, w, H), considered now as a (set-valued) random variable, admits an §-measurable selection. To this
end, we recall the celebrated Kuratowski and Ryll-Nardzewski theorem, see e.g., the survey [Wagner 1977].

Theorem 5.4. Let (X, A, u) be a measure space with a (complete) o-algebra of measurable sets A. Let
H:X -2

be a set-valued mapping, where Y is a Polish space with the o-algebra of Borel sets B. Suppose that for
allx e X
‘H(x) is a nonempty and closed subset of Y,

and that H is weakly measurable, meaning

(x| Hx)NB#J}e A
for any open set B C Y.
Then H admits an A-B measurable selection, meaning a single valued A-B measurable mapping
H : X — Y such that
H(x) e H(x), xeX.

As both spaces (0, 00) x RN x Rév j;x and R" x R" are finite-dimensional, compactness of the range

of F and closedness of its graph imply that F is upper semicontinuous; specifically,
{le, w, H] | F(e, w, H) N D # &} is closed whenever D is closed in RN x RV.

See [Wagner 1977].
As preimages of closed sets are measurable, we get (strong) measurability of F; specifically,

[weQ| Fle,w,H)ND £ &}

XRNXN

. . PN
is measurable for any closed set D in R 0.5ym"

Strong measurability implies weak measurability
of F, namely,

[0e Q| Fle,w,H)NG # 2)

is measurable for any open set G in RV x R".
Thus applying Theorem 5.4 we obtain the following conclusion.

Proposition 5.5. Let

F(e, w,H) : (0, 00) x RN x Ré\;xyﬁ — QR"xRY

be a set-valued mapping enjoying the properties (5-7)—(5-11). Let (2,5, P) be a probability space
endowed with a complete o-algebra of measurable sets T, and let

(e, w, H) be an [§, B[(0, c0) x RN x R(I)\jsxyﬁ]]—measurable random variable.
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Then the mapping F admits an [F; B[RY x RN]]-measurable selection. In particular, there exists an
[§: B[RN x RN])-measurable mapping

F:Q— RN xRV
such that it holds P-a.s.:

if [w(w), H(w)] € Sle(w)], then F(w) = [a, b], where [a, b] satisfy (5-8)—(5-11). (5-12)
5B. Analytic setting. Following [De Lellis and Székelyhidi 2010] we introduce a mapping

RV 56 =60, &1, ..., &l > Agp(8) € RVIDXNHD

0,sym

Agp(E) = 3((R-£) @ (QE) - &)+ (QE) - §) @ (R-§)), (5-13)

where
Q=£Re)—e®E, R=([0,a]®[0,b])— ([0, 5] @0, a]),
and
eo=[1,0,...,0l, a,beR", lla*=1p>=e>0, a#+b.

Agp can be seen as a Fourier symbol of a pseudodifferential operator, where & = (&9, &1, ..., &n)
corresponds to 0 = [9;, Ox;, . . ., Oxy 1.

The following was shown in [De Lellis and Székelyhidi 2010, Section 4.4]:
o If p € C2°(R x RY), and if we define

0 w|
[w H} = Aas (D)[@]

then
ow~+div, H=0, div, w=0. (5-14)
¢ For |
n“’b:_(|a||b|+a-b)2/3[[0’a]+[0’b]_(|a||b|+a'b)60]’ Y € C™(R), (5-15)
we have
" a— b
Agp ()Yt x]-nap)] =" (2, x]- nab)[ b a®a— b®b] (5-16)

5C. A stochastic version of oscillatory lemma. Let Q = {(t,x) |t € (0, 1), x € (0, D). Let (2, §, P)
be a probability space with a complete o -algebra of measurable sets §. Finally, we introduce the metric
on the space of weakly continuous functions Cyea ([0, 11; LZ([0, 11V; RN)),

_ > 1 |f[0’1]N(v_w)'¢m dx\
=2 1 fo (0 —w) - @, dx|’ (5-17)
@, € CZ((0, DV:RY), m=1,2,..., {@,,}_ a dense set in L?>([0, 11V; RM)).

The following is the main result of the present section.
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Lemma 5.6. Let w +— [e, w, H] be a [F; B[(0, o0) x RN x RNXN]]-measurable mapping such that

0,sym
[w, H] € S[e] P-a.s. (5-18)
Then there exist sequences w, and V,, such that w, € C°(Q; RN) P-a.s. and V, € CX(0; Ré\’lsxyrﬁ)
P-a.s., n € N, enjoying the following properties:
() t — [wy, V,] is a stochastic process, meaning
[wa (2, -); Vo (1, )1 € C([0, 11V; RN x RYZN) P-as.
is [3; BLC(0, 11Y; RY x R 5N |1-measurable for any t € [0, 1], (5-19)
(i) In Q we have P-a.s.
ow, +div, V, =0, div, w, =0. (5-20)
(iil) As n — oo we have P-a.s.
w, = 0 in Cyea ([0, 15; L7([0, 11Y; RY)). (5-21)
@iv) In Q we have P-a.s.
[w+w,, H+V,] € S[e]. (5-22)
(v) The following holds P-a.s.:
1 N
liminf — [ |w,)?dx dt > &(e— Hwp?)?. (5-23)
n—oo | Q| 0 e
If, in addition to (5-18), e < ey P-a.s. for some deterministic constant ey, and
[w, H] € S[e — 8] for some deterministic constant § > 0, (5-24)
then each w,, V, has compact range in C(Q; RY), C(0; R(I)styﬁ), and
[w+w,, H+V,] € S[le —§,,] P-a.s. (5-25)

for some deterministic constants &, > 0. Moreover, the convergence in (5-21) can be strengthened to

ess sup( sup d[w,(t,-); 0]) —0 asn— o0. (5-26)
we  t€[0,T]

Remark 5.7. Hypothesis (5-24) is equivalent to saying that
ess inf{e — 2 NAmax[w ® w — H]} > 0.
Q
Note that if this is the case, we have e > § > 0, whence e is a random variable with a compact range in
(0, 00).
Proof. The proof is given through several steps.

Step 1: Given [w, H] and e, we use Proposition 5.5 to identify the measurable selection of vectors [a, b]
satisfying (5-12).
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Step 2: For each [a, b] we construct the operator A, p and the vector 7, 5 enjoying (5-14)—(5-16).

Step 3: We consider a deterministic function ¢ € C2°(Q) such that
0<gp<l, p(t,x)=1 whenever —1 <r<1 |x|<1

Step 4: We identify the functions w,, V,, from the relation

L
Aa,b(a)|:(noﬁ cos(n[t, x] - 77a,b)j| = |:u()) {U/ni| .

In accordance with our construction of the points [a, b], the operator A, p, and the vector 1, p, it is
easy to check the w,, V, enjoy the required measurability properties (5-19). Moreover, by virtue of
(5-14), equations (5-20) are satisfied.

Step 5: As A is a homogeneous differential operator of third order, we get, in agreement with (5-16),

0 (a-b) ]+1Rn (5-27)
n

L ,
Aa,b(a)[so; cos(nlr, x] - 77a,b)i| = @sin(n[t, x]-nap)L [(a_b) 4®a—bob

with | R, | uniformly bounded for n — 0o. As (5-9), (5-10) holds, we deduce the remaining properties
(5-21)—(5-23) provided 7 is chosen large enough. Note that we have

| sin(n[t, x]-nqp) <1
and

c|R,|?

liminff lw,|? dx dtzliminfg(e—%|w|2)2/ @?sin®(n[t, x] - nq.p) dx dr — lim sup
0 n—oo e 0

2
n—00 n—>00 n

= g(e — %|w|2)2%
using [De Lellis and Székelyhidi 2010, Lemma 7] in the last step. Strictly speaking |R,| is a random
variable so we need n > ng(w), where the latter is §-measurable. Setting [w,, V,] = [0, 0] whenever
n < ng yields the desired inclusion (5-22).

NxN

Step 6: If e < ey for some deterministic constants, then w, H have compact range in RN, RO,sym’

respectively. In addition, hypothesis (5-24) implies
[w,H] € S[e —¢] forany 0 <e <.

Thus the above construction can be therefore repeated with e replaced by e — ¢, ¢ > 0. Moreover, in
view of (5-11), the remainder R, specified in Step 5 above is now bounded uniformly by a deterministic
constant depending only on ¢. Since

Sle — 8] C S[e —e] C S[e —¢] C Sle],

compactness of the range of w,, V, follows from their construction and (5-11). Notably relations (5-8)
and (5-11) yield deterministic (in terms of &) upper and lower bounds on the norm of the vector 7, 5 used
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in the construction of w,, V,. More specifically,
O<n<lallbl+a-b<n, 0<n=|ngpl=n, (5-28)

for deterministic constants 1, 77. As & > 0 can be taken arbitrarily small, the inclusion (5-25) follows.
Finally, we show the uniform convergence claimed in (5-26). As w,, V, satisfy (5-20), (5-25), we
observe that

/ Jwntn ) —wa (2, )] - @ dx) < K(ew, )|t — 1o
[0,1]

forany0<t,<tr<1, n=1,2,..., @eC>(0,DN;RY), (5-29)

where K is a deterministic quantity.
Next we show that

’/ w, - ¥ dxds
o

< @W”WW(RNH;RN) for any ¥ € C2°(RV*!; RY), (5-30)
n

Indeed .

where R, is bounded in terms of the deterministic quantity e,;. Next,

V L(a—b)sin(n[t, x]-n4,p)-(9¥)dx dt
0

/ /L(a—b) sin(n(t, x]-nq.p)-(0¥) dt dx
RNJR

S;/ /L(a—b)cos(n[t,x].na,b).at((p,/,) dtdx‘
n|(ma.p)ol |Jrv R

c(em)
= HlGraol ¥ W wRY

In view of (5-15),
(Na.p)o = (la||b] +a-b)'7,

whence (5-30) follows from (5-28).
It remains to observe that (5-29), (5-30) give rise to the uniform convergence claimed in (5-26). Indeed,
since [|wy || L. rNy < c(en), it is enough to show that

ess sup( sup / w,(t, ) -gode -0 asn— o0 (5-31)
[0,11¥

weR tel0,1]

for any fixed ¢ € C2°((0, DY: RN). We write,

/ wn(t,-)-q)dxszs(t—r)(/ (wn(t,-)—wn(r,-))-codx)dwr/ Ye(t—T)w, - dxdr
0,117 R [0,11¥ 0

for any

Ve € CX(R), =0, supp[¥] C [—e. 1, / ety dr = 1.
R

Consequently, (5-31) follows from (5-29), (5-30). O
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5C.1. Extension by scaling. Let
0 =(T1, T7) x (a1,b1) x -+ x (an, by).

Following [Donatelli, Feireisl, and Marcati 2015, Section 4.2], we may use scaling in # and x and additivity
of the integral to show the following extension of Lemma 5.6.

Lemma 5.8. Let w — [e, r, w, H] be a [§; B[(0, 00)?, RV, Rg{;;g]]-measurable mapping such that

w
[ﬁ I]-I]] e Sle] P-a.s.

Then there exist sequences w, and V, such that w, € C°(Q; RN) P-a.s. and V, € CX(0; Ré\’lsxyrﬁ)

P-a.s., n € N, enjoying the following properties:

(1) t — [wy, V,] is a stochastic process, meaning

N
(W, (2, ); V,(2,-)] € C(l_[[a,-, bil; RN x Rgsxyﬁ) P-a.s.
i=1
N

is |:S; ‘B|:C (l_[[a,-, b;i1; RN x R&’?yﬁ)]]-measurablefar anyt € [Ty, T2]. (5-32)

i=1

@i1) In Q we have P-a.s.

ow, +div, V, =0, div, w, =0. (5-33)
(i11) As n — o0 we have P-a.s.
wy — 0 in Coea((T1, T2]; L*(RY; RY)). (5-34)
@iv) In Q we have P-a.s.
[% H+ \/n} e Slel. (5-35)
(v) The following holds P-a.s.:
linrggfé , |w:|2 dx dr > C(iv) (e - %@)2 (5-36)
If, in addition,
O<ry<r<ry, O<ey<e<ey P-as. (5-37)

for some deterministic constants r y, 'y, €, €y, and
w . . .
7, H | € Sle — §] P-a.s. for some deterministic § > 0,
P

then each wy,, \,, has compact range in C (é : RN, C (Q : R(I)\{ ;;z), respectively, and

|:w+Wn

T, H+ \/n:| € Sle — 6,] P-a.s. for some deterministic §,, > O. (5-38)
P
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Moreover,
ess sup( sup d{w,(¢,-); O]) —0 asn— 0.
weQ  t€0,T]
Remark 5.9. Condition (5-37) can be equivalently formulated saying that the random variable [r, e] has
compact range in (0, 00)>.

5C.2. Extension to piecewise constant coefficients. Consider now a complete right-continuous filtration
(§1)1=0 of measurable sets in € and fix Q = (0, T) x (0, H". We write [0, 1]V = J,; K, where K;
are disjoint open cubes of the edge length 1/m for some m € N. The random variables e, r, w, and H
will be now P-a.s. functions of the time ¢ and the spatial variable x that are piecewise constant. More
specifically, they shall P-a.s. belong to the class of functions satisfying

JT (G+DT

F(t,x)=F;; wheneverrte |:—

),xeK,-,ijfm—l,ieI. (5-39)
m m

These functions are piecewise constant on the rectangular grid given by

T (j+DT
[J—,u) xK;, 0<j<m—1, iel
m m
In addition, we suppose that [e, r, w, H] is (§;)-adapted, meaning that
. iT (j+1DT
[e, r, w, H](z, -) is §j7/m-measurable whenever ¢ € [J—; u)
m m

Keeping in mind that the oscillatory increments [w,, V,] constructed in Lemma 5.8 are compactly
supported in each cube and hence globally smooth, we get the following result when applying Lemma 5.8
with § replaced by §;7,,,. Note that w,, V, are even §r,,, adapted.

Lemma 5.10. Let (2, §, (51)r=0, P) be a probability space with a complete right continuous filtration
(81)i>0. Let [e, r, w, H] be an (§;)-adapted stochastic process which is P-a.s. piecewise constant and
belongs to the class (5-39). Suppose further thatr > 0, e > 0 P-a.s. and

w _
[ﬁ, |]-|]:| e Sle]l forall (t,x) e Q P-a.s. (5-40)

Then there exist sequences w, and V, such that w, € C°(Q; RM) P-a.s. and V,, € C(0; R(I)\jsxyﬁ)

P-a.s., n € N, enjoying the following properties:
(1) The process [wy, V,] is (§;)-adapted such that

[w,, V,] € C(O; RN x R(l)\fgﬁ) P-a.s. with compact range.

>i1) In Q we have P-a.s.
ow, +div,V, =0, div, w, =0.

(iii) As n — oo we have P-a.s.

w, = 0 in Cyeak ([0, T1; L*(TV; RV)).
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@iv) In Q we have P-a.s.

w+w,
—— H+V, | €Slel. 5-41
|: 7 + } le] (5-41)
(v) The following holds P-a.s.:
nl? N 1wl
liminf/ [nl” g gr > <) (e——ﬂ) dx dr. (5-42)
n—oo Jo supg e Jo 2 r

If, in addition,

O<ry<r<ry, O<ey<e<ey P-as

for some deterministic constants r y, ¥y, €, €y, and

|:E [H]] € Sle — 6] P-a.s. for some deterministic § > 0,
,

then each wy,, \, has compact range in C (Q :RM), C (Q : R(I)\{ Sxyﬁ ), respectively, and

w + w,
\/7

,H+ \/ni| € Sle — 6,] P-a.s. for some deterministic &, > 0.

Moreover,
ess sup( sup d[w,(t,);0]) >0 asn— oo.
weQ  tel0,T]

5C.3. Extension to continuous coefficients. Using the result on the piecewise constant coefficients, we
may use the approximation procedure from [Donatelli, Feireisl, and Marcati 2015, Section 4.3] to
extend the oscillatory lemma to the class of continuous processes [e, r, w, H]. The obvious idea is to
replace [e, r, w, H] by piecewise constant approximations and apply Lemma 5.10. More specifically,
for e € C([0, T] x TV; (0, 00)) P-as., (§:)-adapted, e > 0 P-a.s., we define a piecewise constant
approximation

T T i+ 1T
em(t, x) = sup e(J—,y) for 7 [’—; u) xeK, 0<j<m—1,iel,  (543)
yek; \m m m

and, similarly, for F' € {r, w, H},

iT iT (j+1)T
Fm(t,x)=F<J—,y) for some y € K;, forte [J—; G+D
m

), xekK;, 0<j<m—1,iel. (5-44)
m m

It is easy to check that these approximations satisfy the hypotheses of Lemma 5.10.

Now, since S[e] is an open set, it is possible, similarly to [Donatelli, Feireisl, and Marcati 2015,
Section 4.3] to replace F,, by F as long as the approximation is uniform. Specifically, for any § > 0,
there is m = m(§) such that

|F,(t,x)— F(t,x)| <8 forall (f,x) e Q (5-45)
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[P-a.s. For (5-45) to hold, it is necessary (and sufficient) that all random variables F = e, r, w, H have
compact range in the space of continuous functions on Q. Repeating the arguments of [Donatelli, Feireis],
and Marcati 2015, Section 4.3] we show the final form of the oscillatory lemma.

Lemma 5.11. Let [2, §, 5+, P] be a probability space with a complete right continuous filtration (§;):>o.
Let [e, r, w, H] be an (§;)-adapted stochastic process such that

e, r, w, H] € C(Q; (0,00)* x RN x RZ") P-as.

with compact range and such that
[1, I]-I]] cSle—38] forall (t,x) € Q P-as. (5-46)
Jr

for some deterministic constant § > 0.
Then there exist sequences w, and V, such that w, € C°(Q; RN) P-a.s. and V, € CX(0; R(])V;;ﬁ)
P-a.s., n € N, enjoying the following properties:

(1) The process [wy, V,] is (§;)-adapted such that

[w,, V,] € C(Q; RYN x Ré\fsxyﬁ) P-a.s. with compact range.

@i1) In Q we have P-a.s.
oyw, +div,V, =0, div, w, =0.

(iii) We have

ess sup( sup dw,(¢,-); O]) —0 asn— 0. (5-47)
weQ  1€[0,T]
@iv) In Q we have P-a.s.
w+w
[7 [H]+\/n} € Sle — 8,1

for some deterministic &, > 0.
(v) The following holds P-a.s.:
w,|? N 1 w2\
liminf/ 0l gy g = <) (e - _L) dx dr. (5-48)
n—>oo Jo supp e Jo 2 r
Remark 5.12. Observe that the assumption for a random variable [e, r, w, H] to be of compact range in

C(Q; (0, 00)* x RN x Ré\fsxy’;l) includes

O<ry<r<ry, e<ey P-as.

for some deterministic constants r s, 7y, ey as well as a positive lower bound for e already guaranteed
by (5-46).
Remark 5.13. The fact that the continuous processes considered in Lemma 5.11 must have compact

range is definitely restrictive but possibly unavoidable. This is also the main reason why our result holds
up to a stopping time, albeit arbitrarily large with “high” probability. Otherwise, the size of the grid used
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to construct the approximations F, would have to be a random variable. The oscillatory increments w,
would be then constructed on a grid determined by random points 0 < #; < £, < --- < t,, related to
stopping times associated to certain norms of the random processes. Here, the length of the interval
[, tm+1] would have to be 7, predictable which seems impossible.

6. Infinitely many solutions

We are ready to show Theorem 2.3 or, equivalently, its version for the abstract “Euler” problems (4-7),
(4-14), respectively. We begin with problem (4-7), where the tensor M is constant. Then, following
[Feireisl 2016], we specify how to accommodate the dependence M = M[v].

6A. Subsolutions. We introduce the set

X(RN) ={v:2x Q0 — RN | measureable, v € C([0, T'] x T, RN) a.s. with compact range} (6-1)

é\f ;;Q’l). Following [De Lellis and Székelyhidi 2010], we introduce the set of

subsolutions. Let the functions vy, h, r and M satisfy (4-8), and e = e(¢) is a real-valued (§;)-adapted
process specified below. In particular, the process [k, r, M] € C([0, T] x T N: RNY x (0, 00) x Ré\f Sxyﬁ is
(F) adapted and with compact range. We define a collection of subsolutions corresponding to vy, k, r,

M and e by

and analogously define X' (R

on{veX(RN)

v is (§)-adapted with v(0, -) = vy, there is F € X (R/%) ()-adapted s.t.

3 v+div, F=0, div,v=0in D'((0, T)xT": RY) P-as.,

(v+h)®(v+h)

%N)\max[ —I]:+M] <e—4§

r

VO<t<T, xe TN, P-a.s. for some deterministic § > 0}. (6-2)

Remark 6.1. The deterministic constant § > 0 may vary from one subsolution to another. The exact
meaning of the condition

wv+h)®@@w+h)

r

h h
ess sup sup (%Nlmax[(v+ )@@ +th) —[F+Mi| —e) < 0.
Q  tel0,T],xeTVN r

%Nkmax[ —I]:+M]<e—8

is

6B. Existence of a subsolution. Next we claim that e can be fixed in such a way that the set of subsolu-
tions is nonempty. To this end, consider
v=uyvy, [F=0.

This is obviously a subsolution provided e is taken in such a way that

(vo+h)® (vo+ h)
r

%N)\-max|: +Mj|<e—8.

In view of (4-8) this is possible, where e = ey can be taken as a sufficiently large deterministic constant.
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6C. Topology on the set of subsolutions. The processes v belonging to X are uniformly determinis-
tically bounded in L>((0, T) x TN); specifically, v(t) € By, for any ¢ € [0, T] P-a.s., where By is a
ball in L>°(7) with a deterministic radius. Consequently, we may consider the metric d, introduced in
(5-17), associated to the weak L2(7T™)-topology on By, together with

D[v, w] =E[ sup d[v(z); w(®)]].
1€[0,T]

Let X be the completion of X with respect to the metric D. Then X is a complete metric space with
infinite cardinality. Note that any element of X is ({§;)-adapted as the limit of measurable functions is
measurable.

6D. Convex functional. Similarly to [De Lellis and Székelyhidi 2010], we introduce the functional

{152 - Js]

Here, h, r are given functions related to the density ansatz and e is the target energy. Exactly as in
[De Lellis and Székelyhidi 2010], it can be shown that:

« [ is lower semicontinuous on the space X.
e I[v] <0 for any v € X.
o If I[v] =0 then

_1v+h?

> a.e.in (0, 7) x TV (6-3)

P-a.s.
Lemma 6.2. Under the hypotheses (4-8), each v € X with I[v] =0 solves the abstract Euler equation (4-7).

Proof. Let v € X. Then there is (v,,) C X with v,, = v with respect to the metric D. By the definition

of X we can find a sequence of (§;)-adapted processes (F,,) with [, € L*°(Q, Ré\{ ;;x) [P-a.s. such that

9 vy +divyF,, =0 inD'((0,T) x RY) (6-4)

P-a.s. and
U +h)Q (v, +h)

r

%N)"max|: —ﬂ:,n+M:|§€

NXN)

Using (5-2) and the properties of M (recall (4-8)) we see that [, is uniformly bounded in L*°(2x Q, Ry sym)-

Hence, after choosing a weakly* converging subsequence, we obtain

dv+div,F=0, div,v=0, v(0,-)=uvy inD((0,T)x R"Y), (6-5)
for a certain (§;)-adapted process F with F € L*°(Q, Ré\f jyﬁ) [P-a.s. Due to convexity of the functional
v+h v+h
[v,F] ~ %Nxmax[( theeth —F+M},
r
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we have
(v+h)® (v+h)
%Nkmax[ ; —F+M|<e

Consequently, by virtue of (5-1), relation (6-3) implies

h b 1 h|? h b 2

Fe M+ v+ @@w+h) 1 |v+h| M4+ W+tmH@W+h) 2
r N r r N

As e is independent of x, (6-4) yields the desired conclusion (4-7). 0

Thus each zero point of / yields a weak solution of the abstract Euler problem (4-7). Our next claim is
that /[v] = 0 whenever v is a point of continuity of / on X. By means of the Baire category argument,
the points of continuity of /, the latter being a lower-semicontinuous functional on the complete metric
space X, form a residual set, and in particular are dense in X, which completes the proof of the existence
of infinitely many solutions claimed in Theorem 2.3. Thus it remains to show that / vanishes at each
point of continuity, which is the objective of the last section.

6E. Points of continuity of I in X. We show that at each point of continuity of / on X, we have /[v] =0.
Let v be a point of continuity of / on X. Suppose that /[v] < 0. Consequently, there is a sequence

v, € Xo, Dlv,;v]—0, I[v,]— I[v], I[v,]<—-e<0 forallm=0,1,....

Now, we use the oscillatory lemma (Lemma 5.11) with the ansatz w = v,, +h, H=F,, —M. Consequently,
for each fixed m, we find a sequence {w,, ,};°, C X/ such that

U+ Wy € Xo, Dlvy+wp,, vl — 0 asn— oo.

The first statement follows from Lemma 5.11(iv), which also yields a uniform bound for w,, , as a
consequence of (5-1). The convergence with respect to the metric D follows from Lemma 5.11(iii),
the uniform bounds for w,, , and dominated convergence. Moreover, due to Lemma 5.11(iii), we
have

Wy |

r

11m1nfl[vm+wmn]_l[vm +11m1nf [E|:/. / dxdt]
TN

Here, by virtue of (5-48), Fatou’s lemma and Jensen’s inequality

e[ 5 ] D] o0 )

c(N T) c(N T)
Plv,] > e —>-~

e e

In such a way, we may construct a sequence (V) C Xo, Uy = Vs + W n(m)> D[V, v] = 0, and

liminf I[v,,] > I[v]. (6-6)

m—00

Relation (6-6) contradicts the assumption that v is a point of continuity of /.
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6F. Multiplicative noise. We conclude by showing how to accommodate the case of multiplicative noise,
where the matrix M depends on the solutions v; specifically,

M[v] = V.m + V,m' — % div, ml,

where m is the unique solution of the elliptic system (4-13). In particular, if v € X(R"V) (see (6-1)),
then, in view of the standard elliptic estimates, M[v] is (§;);>0-adapted and with compact range in

C(0, T1xTVN; R(j)\{ SXYZ). Exactly as in Section 6A, we define the set of subsolutions as

Xo= {v € X(RM) |v is (§;)-adapted with v(0, -) = vy, thereis F € X(Ré\{sf/ﬁ) (§+)-adapted s.t.
3 v+div, F=0, div, v=01in D' (0, T)xT"; RY) P-as.,

(v+h)®(v+h)

—[F—H\/[I[v]i| <e—§
’

%Nxmax[
VO<t<T, xeTV, P-as. for some deterministic § > 0}. (6-7)

Similarly to the above, we can show that

o the set X is nonempty;
« its closure with respect to the metric D is a complete metric space with infinite cardinality.

Consider the functional / on X defined in the same way as in Section 6D. We have an analogue of
Lemma 6.2:

Lemma 6.3. Under the hypotheses (4-15), (4-16) each v € X with I[v] = 0 solves the abstract Euler
equation (4-7).

Proof. The proof follows the same lines as that of Lemma 6.2. We have only to observe that, up to a
suitable subsequence,

Mlv,] = Mlv] in C([0, T] x TN; Ry o) P-as.

whenever
{vm};%ozl C XOa D[vm’ v] — 0.

Indeed this follows from the elliptic regularity estimates as the sequence v,, is bounded by a deterministic
constant in L>((0, T7) x TV; RY), whence {M[v,,1}>°_, belongs to Cyeak ([0, T1; W7 (TV; Ré\,’;yﬁ)) for
any 1 < p < oo P-a.s. and is bounded in the space

L&([0, T]: WhP (T RYXN))

by a deterministic constant. (|

Finally, we show that, necessarily, /[v] = 0 at any point of continuity v of /. Following the arguments
of Section 6E, we suppose I[v] < 0 for some point of continuity v € X. We consider a sequence {v,,}>>_,

satisfying

v, € Xo, Dlvy,;v]—0, I[v,]— I[v], I[v,]<—-e<0 forallm=0,1,....
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Next we apply the oscillatory lemma (Lemma 5.11) to
w=v,+h H=F,—Mv,].
Following the arguments of Section 6E, we find a sequence {w,, ,},; C X such that
Uy + Wy € Xo, Dlvy, +wy , v] > 0 asn — oo.
Here, the most delicate point is to show the inclusion
Uy + Wi 0 € Xo,

as the oscillatory lemma (Lemma 5.11) asserts only

(vm + Win,n + h) ® (vm + Wi, n + h) _
r

%N)‘max[ ”:m_”:m,n+M[vm]:| <e—0p

instead of the desired

(vm + Wiy, n + h) 2y (vm + Wy n + h) _
r

éNAmax[

Since we have

2 ..
M[vm + wm,n] - M[vm] = V,\f Fm,n + V)ﬁlym,n - N lex Fm,nl]’

where the field F,, , is the unique solution of the elliptic system

div, [vx Fon+ V' Eypy— %divx Fm,nu] =lw,, in7",

relation (6-8) follows as soon as we show

2

ess sup sup ViFpn+ V;Fm,n N divy Fp, yI| = 0 asn — oo.

weR  te[0,T],xeTN

To see (6-9), we use the convergence statement (5-47), namely

ess sup( sup d[wy, ,(t); 0]) — 0 asn— oo.
weQ  1€[0,T]

On one hand, as

NWm.nll oo, 7y 7V RNy < clem) P-as.,
we may use the standard elliptic estimates to deduce

sup (|Ve Fy ullwiacry, gyxvy < c(q, em) P-as., 1 <q <oo.
1€[0.T]

On the other hand, by virtue of (6-10), (6-11),

ess sup( sup ([ Wy llw-12¢7v.gv)) = 0 asn — oo,
we2  te[0,T]

whence, by the elliptic estimates,

ess sup( sup [V Fpnllp2¢7n.gyeny) — 0 as n — oo.
we  tel0,T]

F — Fon + Mo, + wm,n]] <e—1by.

(6-8)

(6-9)

(6-10)

(6-11)

(6-12)

(6-13)
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Seeing that W14 (TN) << C(TN) for ¢ > N we may interpolate (6-12), (6-13) to obtain the desired
convergence (6-9).
The remaining arguments are the same as in Section 6E. Due to Lemma 5.11(iii), we have

T 2
liminf I[v,, + wy, ,] = I[v,,] + lim inf%[E[/ / M dx dt]
n—oo 0 TN

n—0oo r
QC(Nv T)
ET—.

e

> Ivn]+
Thus for v, = vy, + Wy n(m) We get vy, € Xo, D[V, v] — 0, and

liminf I[v,,] > I[v]. (6-14)

m—00

Relation (6-14) contradicts the assumption that v is a point of continuity of /.
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VARIABLE COEFFICIENT WOLFF-TYPE INEQUALITIES
AND SHARP LOCAL SMOOTHING ESTIMATES
FOR WAVE EQUATIONS ON MANIFOLDS

DAVID BELTRAN, JONATHAN HICKMAN AND CHRISTOPHER D. SOGGE

The sharp Wolff-type decoupling estimates of Bourgain and Demeter are extended to the variable
coefficient setting. These results are applied to obtain new sharp local smoothing estimates for wave
equations on compact Riemannian manifolds, away from the endpoint regularity exponent. More generally,
local smoothing estimates are established for a natural class of Fourier integral operators; at this level
of generality the results are sharp in odd dimensions, both in terms of the regularity exponent and the
Lebesgue exponent.

1. Introduction and statement of results

1A. Local smoothing estimates. Letn>?2and (M, g) be a smooth,! compact n-dimensional Riemannian
manifold with associated Laplace—Beltrami operator A. Given initial data fo, fi: M — C belonging to
some a priori class, consider the Cauchy problem

(0?2 — Ag)u =0,

u(-,0)= fo, du(-,0)=f1.

It was shown, inter alia, in [Seeger, Sogge, and Stein 1991, Theorem 4.1] that for each fixed time ¢ and

(1-1)

1 < p < oo the solution u satisfies?

luC-. Ol e oy Smg Lfollpzan + I lLe (1-2)
s—3p s s—1
for all s € R, where 5, :=(n — 1) !% — %{ Here LY (M) denotes the standard Sobolev (or Bessel potential)

space on M with Lebesgue exponent p and s derivatives; the relevant definitions are recalled in Section 3
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Keywords: local smoothing, variable coefficient, Fourier integral operators, decoupling inequalities.

'In view of the methods of the present article it is convenient to work in the C % category, but the forthcoming definitions
and questions certainly make sense at lower levels of regularity.

2Given a (possibly empty) list of objects L, for real numbers A s,p» Bs,p = 0 depending on some Lebesgue exponent p
and/or regularity exponent s the notation As,p Sp Bs,p or By p X1 As,p signifies that A , < CB;s,p for some constant
C = CL p,p,s = 0 depending only on the objects in the list, 7, p and s. In such cases it will also be useful to sometimes write
As,p = OL(Bs,p). In addition, A, p ~1, By, p is used to signify that As p <y Bs,p and As,p 21 Bs,p.
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below. Moreover, provided ¢ avoids a discrete set of times, the estimate (1-2) is sharp forall 1 < p < 00
in the sense that one cannot replace s, with 5, — o for any o > 0.

The purpose of this article is to prove sharp local smoothing estimates for the solution u for a partial
range of p, which demonstrate a gain in regularity for space-time estimates over the fixed-time case.

Theorem 1.1. If u is the solution to the Cauchy problem (1-1) and p, < p < oo, where p, =
2(n +1)/(n—1), then

2 1/p
(g, ) s Ublezan + 10z on (13
holds for all s € R and all o < %

For the given range of p, this result is sharp up to the endpoint in the sense that the inequality fails if
o> %.3 It is likely, however, that the range of p is not optimal. For instance, Minicozzi and the third
author [Minicozzi and Sogge 1997] (see also [Sogge, Xi, and Xu 2018]) found specific manifolds for
which (1-3) can hold for all o < % onlyif p>2Bn+1)/(B3n—3) fornoddor p>23Brn+2)/(3n-2)
for n even; it is not unreasonable to speculate that these necessary conditions should, for general M, be
sufficient.* The examples of [Minicozzi and Sogge 1997] rely on Kakeya compression phenomena for
families of geodesics; the (euclidean) Kakeya conjecture, if valid, would preclude such behaviour over R”.
Indeed, the local smoothing conjecture for the wave equation [Sogge 1991] asserts that in the euclidean
case the estimate (1-3) should hold for all 0 < % in the larger range 2n/(n — 1) < p < oco. If true, this
would be a remarkable result, not least because the conjecture formally implies many other major open
problems in harmonic analysis (including the Bochner—Riesz, Fourier restriction and Kakeya conjectures);
see [Tao 1999].

It is well known (see, for instance, [Duistermaat 1996, Chapter 5] or [Sogge 2017, Chapter 4]) that the
solution u to the Cauchy problem (1-1) is given by

u(x,t) = Fo fo(x,1) + F1 f1(x,1), (1-4)

where, using the language of [Hormander 1971; Mockenhaupt, Seeger, and Sogge 1993], each F; €
17=Y4(M xR, M;C) is a Fourier integral operator (FIO) with canonical relation C satisfying the cinematic
curvature condition (the relevant definitions will be recalled below in Section 3; see also [Beltran, Hickman,
and Sogge 2018] for a comprehensive Introduction to FIOs in the context of local smoothing). In local
coordinates, such operators F; adopt the explicit form (1-5) below with u = j. Theorem 1.1 follows
from a more general result concerning Fourier integral operators.

3Such inequalities are also conjectured to hold at the endpoint (that is, the case 0 = %) and endpoint estimates have been
obtained for a further restricted range of p in high-dimensional cases: see [Heo, Nazarov, and Seeger 2011; Lee and Seeger
2013].

4The examples in [Minicozzi and Sogge 1997] concern certain oscillatory integral operators of Carleson—Sjélin type, defined
with respect to the geodesic distance on M. Their results lead to counterexamples for local smoothing estimates via a variant
of the well-known implication “local smoothing = Bochner—Riesz”. Implications of this kind will be discussed in detail in
Section 4.
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Theorem 1.2. Letn >2 and let Y and Z be precompact manifolds of dimensions n and n 4+ 1, respectively.
Suppose that F € 1 u—1/ 4(Z.,Y:C), where the canonical relation C satisfies the cinematic curvature
condition. If p, < p < 00, then

IFA e zy S W lLe,, o)
holds whenever . < —5, + %.

An interesting feature of Theorem 1.2 is that both the restriction on w and the restriction on p are
sharp in certain cases.

Proposition 1.3. For all odd dimensions n >3 there exists some operator F € [ ~=D/2=1/4gn+1 gn. )
with C satisfying the cinematic curvature condition such that

”(1 —Ax)y/zo}—f”Lp([R’H'l) < ”f”LI’(R”) forallO <y< %

fails for p < py.

If Fe [~ =D2=14Rn+1 R C), then (I —Ax)?/20F e IFVARMHL R C) for p=—1(n—1)+y
by the composition theorem for Fourier integral operators (see, for instance, [Sogge 2017, Theorem 6.2.2]).
The range 0 < y < % corresponds to —%(n ) <pu<—=5+ % and thus Proposition 1.3 demonstrates
that Theorem 1.2 is sharp in odd dimensions.

Proposition 1.3 is established by relating local smoothing estimates for Fourier integral operators to
L? estimates for oscillatory integral operators with nonhomogeneous phase (sometimes referred to as
Hormander-type operators) and then invoking well-known examples of [Bourgain 1991; 1995b] for the
oscillatory integral problem. The details of the argument are discussed in Section 4.%

At this juncture some historical remarks are in order. Local smoothing estimates for the euclidean
wave equation were introduced by the third author in [Sogge 1991] and then further investigated in
[Mockenhaupt, Seeger, and Sogge 1992]. These early results, however, did not involve a sharp gain in
regularity (that is, a sharp range of o, at least up to the endpoint); the first sharp local smoothing estimates
were established in R? in the seminal work [Wolff 2000]. For this, Wolff introduced what have since
become known as decoupling inequalities for the light cone. The results of [Wolff 2000] were improved
and extended by a number of authors [Laba and Wolft 2002; Garrigés and Seeger 2009; 2010; Bourgain
2013] before the remarkable breakthrough of [Bourgain and Demeter 2015] established essentially sharp
decoupling estimates in all dimensions (see also [Bourgain 1995a; Tao and Vargas 2000; Heo, Nazarov,
and Seeger 2011; Lee and Vargas 2012; Lee 2016] for alternative approaches to the local smoothing
problem and [Cladek 2018] for recent work in a related direction). One of the many consequences of the
theorem of [Bourgain and Demeter 2015] is the analogue of Theorem 1.1 for the wave equation in R".

Local smoothing estimates were studied in the broader context of Fourier integral operators in parallel
to the developments described above [Mockenhaupt, Seeger, and Sogge 1993; Lee and Seeger 2013] (see
also [Sogge 2017]). Results in this vein typically follow from variable-coefficient extensions of methods

31t is remarked that the F constructed to provide sharp examples for Theorem 1.2 do not arise as solutions to wave equations

of the kind discussed above. Thus, these examples do not show sharpness in Theorem 1.1. Indeed, it is likely that Theorem 1.1
should hold in the range suggested by [Minicozzi and Sogge 1997], as described above (see also the discussion in Section 4).
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used to study wave equations on flat space. Similarly, Theorem 1.2 (and therefore Theorem 1.1) is a
consequence of a natural variable-coefficient extension of the decoupling inequality of [Bourgain and
Demeter 2015]. The variable-coefficient decoupling theorem is the main result of this paper and concerns
certain oscillatory integral operators with homogeneous phase; the setup is described in the following
subsection.

1B. Variable coefficient decoupling. Let a = a1 ® a; € CP(R"T! x R"), where a; € C2(R") is
supported in B(0, 1) and a; is supported in the domain

Ii={eR": 1 <g, <2and |§| < [&| for 1 < j <n—1}.

Suppose that ¢: R x R x R" — R is smooth away from R” x R x {0} and that for all (x,7) € R” x R the
function £ — ¢ (x, ¢; £) is homogeneous of degree 1. Writing supp a \ 0 for the set (supp a) \ (R” xRx{0}),
assume, in addition, that ¢ satisfies the following geometric conditions:

(H1) rank 8§Z¢(x, t;&) =nforall (x,¢;€) € suppa \ 0. Here and below z is used to denote a vector in
R”*1 composed of the space-time variables (x, ¢).

(H2) Defining the generalised Gauss map by G(z;§) := Go(z;€)/|Go(z; §)| for all (z; &) € suppa \ 0,
where

Go(z: ) = )\ 0, 0:6(z: ),
j=1
one has

rank 97, (9:(z3 1), G(z:§))lp=g =1 — 1
for all (z; &) € suppa \ 0.

Here the wedge product of n vectors in R* ! is associated with a vector in R**1 in the usual manner.
It is remarked that (H1)1 and (H2)2 are the natural homogeneous analogues of the [Carleson and Sj6lin
1972] or [Hormander 1973] conditions for nonhomogeneous phase functions.

The conditions (H1)1 and (H2)2 naturally arise in the study of Fourier integral operators of the
type described in the previous subsection. Indeed, by standard theory (see, for instance, [Sogge 2017,
Proposition 6.1.4]), any operator belonging to the class 1#~1/4(Z,Y:C) with C satisfying the cinematic
curvature condition can be written in local coordinates as a finite sum of operators of the form

Ff.n):= / PO, 1) (1 + €2 1 (§) de, (1-5)
fn

where b is a symbol of order 0 (with compact support in the (x, ¢ )-variables) and ¢ satisfies the properties
(H1)1 and (H2)2 (at least on the support of b).

Rather than directly studying the operators F as in (1-5), a decoupling inequality shall instead be
formulated in terms of a certain closely related class of oscillatory integral operators.

Given A > 1, define the rescaled phase and amplitude

X t

o (.1 0) = Aqs(}, %“)) and a*(x.1:8) = al(z, A) ar )
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1/2

Figure 1. The decomposition of the domain I'; into R~/ “-plates. The centre (w, 1) of

one such plate 6 is indicated.

and, with this data, let

T* f(x.1) = / PTG (x 11 8) f(8) dE.

fn
The aforementioned variable-coefficient decoupling inequality compares the L?-norm of Tt f with the
LP-norms of localised pieces T* fy which form a decomposition of the original operator. To describe
this decomposition fix a second spatial parameter 1 < R < A and note that the support of a, intersects
the affine hyperplane &, = 1 on the disc B"~1(0, 1) x {1}. Fix a maximally R~!/2-separated subset of
B"1(0, 1) x {1} and for each w belonging to this subset define the R~!/2-plate

0:={(£. &) eR": 1 <& <2and |€/6 —w| < RV,

In this case (w, 1) € B*~1(0, 1) x {1} is referred to as the centre of the R~'/2-plate 6. Thus, the collection
of all R~V 2_plates forms a partition of the support of a, into finitely overlapping subsets (see Figure 1).
For each 6, let § be a subset of # such that the family of all 6 forms a partition of the support of a5.
Given any function f € Llloc([@”) and an R~Y/2-plate 0, define fy:= X3/, and for 1 < p < oo and any
measurable set £ € R”T! introduce the decoupled norm

1/p
||T*f||Ldpe.cR(E):=( > ||ka9||,’jp(E)) :

0:R—1/2_plate

This definition is extended to the case p = oo and to weighted norms |74 f|| LR () in the obvious
dec
manner.
Finally, let p, and 5, be as in the statement of Theorem 1.1 and given 2 < p < oo define the exponent
1

5 if2<p<pn,
oz(p):={_2p 1 "

1-6
5p—2 if p, < p < o0. (1-6)

With these definitions, the decoupling theorem reads as follows.
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Theorem 1.4. Let T be an operator of the form described above and 2 < p < oco. For all ¢ > 0 and
M e N one has®

IT* £l Lo @ty Se.Mpa AYPTENTH £ Loi@ty T AMNF 2@y (1-7)

Theorem 1.4 is a natural variable-coefficient extension of (the £# variant of) Theorem 1.2 in [Bourgain
and Demeter 2015], which treats the prototypical case ¢(x, ;&) = (x, &) + ]|&|. More generally, the
translation-invariant case, where ¢ is linear in the variables x, ¢, can be deduced from the results of
[Bourgain and Demeter 2015; 2017a] via an argument originating in [Pramanik and Seeger 2007; Garrigds
and Seeger 2010]. Interestingly, it transpires that the result for general operators T* follows itself from
the translation-invariant case. This stands in contrast with the L?-theory of such operators (see, for
instance, [Bourgain and Guth 2011; Guth, Hickman, and Iliopoulou 2019]).

Finally, it is remarked that the argument used to prove Theorem 1.4 is flexible in nature, and could
equally be applied to prove natural variable-coefficient extensions of other known decoupling results,
such as the £2 decoupling theorem for the paraboloid [Bourgain and Demeter 2015] or the decoupling
theorem of [Bourgain, Demeter, and Guth 2016] for the moment curve (in the latter case the relevant
variable-coefficient operators are those appearing in [Bak and Lee 2004; Bak, Oberlin, and Seeger 2009]).

2. A proof of the variable-coefficient decoupling inequality

2A. An overview of the proof. As indicated in the Introduction, Theorem 1.4 will be derived as a
consequence of the (known) translation-invariant case; the latter result is recalled presently. Let ap be
as in the Introduction and suppose h: R" — R is smooth away from 0, homogeneous of degree 1 and
satisfies rank agéh(f ) =n—1 forall £ € suppas, \ {0}. With this data, define the extension operator

Ef(x.t):= / B HE) ) (2) £ (£) d.

Rn
For the exponent « defined in (1-6), the translation-invariant case of the theorem reads thus.

Theorem 2.1 [Bourgain and Demeter 2015; 2017a]. For all 2 < p < oo and all € > 0 the estimate

|Ef 22 wny) SeNna AP HENES | oo (2-1)

(wB)L)
holds for A > 1.

Here Bg denotes a ball of radius R for any R > 0 and wp, is a rapidly decaying weight function,
concentrated on Bg. In particular, if (X,7) € R” x R denotes the centre of Bg, then

wBe(x.1) =14+ R Yx—%|+ R -7V, (2-2)

SStrictly speaking, the proof will establish this inequality with the operator appearing on the right-hand side of (1-7) defined
with respect to an amplitude with slightly larger spatial support than that appearing in the operator on the left (but both operators
are defined with respect to the same phase function). This has no bearing on the applications and such slight discrepancies will
be suppressed in the notation.
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where N can be taken to be any sufficiently large integer (depending on n, & and p). It is remarked
that the dependence on / of the implicit constant in the inequality (2-1) involves only the size of the
absolute values of the nonzero eigenvalues of 92,/ and their reciprocals, as well as upper bounds for a
finite number of higher-order derivatives 8? h, |B] = 3.

As mentioned in the Introduction, Theorem 2.1 does not appear in [Bourgain and Demeter 2015; 2017a]
in the stated generality, but this result may be readily deduced from the prototypical cases considered in
[Bourgain and Demeter 2015; 2017a] via the arguments of [Pramanik and Seeger 2007; Garrigés and
Seeger 2010] (see also [Bourgain and Demeter 2015, §7-8] and [Guo and Oh 2018]), or by using a variant
of the approach developed in the present article.

The passage from Theorem 2.1 to Theorem 1.4 is, in essence, realised in the following manner. The
desired decoupling inequalities have a “self-similar” structure, which is manifested in their almost-
invariance under certain Lorentz rescaling (see Lemma 2.3). An implication of this self-similarity is
that in order to prove the decoupling estimate, it suffices to obtain some nontrivial, but possibly very
small, gain at a single spatial scale; this gain can then be propagated through all the scales via Lorentz
rescaling.” At spatial scales K below the critical value A1/2 one can effectively approximate Tt by an
extension operator E of the form described above; this is the content of Lemma 2.6 below. Combining this
approximation with Theorem 2.1 provides some gain at such scales K, and combining these observations
concludes the argument.

2B. Basic properties of the phase. Before carrying out the programme described above, it is useful to
note some basic properties of homogeneous phases ¢ satisfying the conditions (H1)1 and (H2)2 and to
make some simple reductions.

After a localisation and a translation argument, one may assume that a is supported inside Z x &,
where Z := X x T for X € B(0,1) CR"” and T C (—1,1) € R small open neighbourhoods of the
origin and E C I'y is a small open sector around e, := (0,...,0,1) € R", By choosing the size of
the neighbourhoods appropriately, one may assume the phase satisfies a number of useful additional
properties, described presently.

By localising, one may ensure that strengthened versions of the conditions (H1)1 and (H2)2 hold. In
particular, without loss of generality one may work with phases satisfying:

(H1') det a§x¢(z; g)#O0forall (z;€) e Z x E.
(H2') detdgg0;¢(z;:€) #O0forall (z;6) € Zx E.

Indeed, by precomposing the phase with a rotation in the z = (x, ¢)-variables, one may assume that
G(0; en) = en+1 and therefore d¢d ¢ (0; e,,) = 0. Hence, by (H1)1, it follows that det 8§x¢(0; en)#0. On
the other hand, by the homogeneity of ¢, every (n—1) x(n—1) minor of the matrix featured in the (H2)2 con-
dition is a multiple of det 0, (0,9 (z; 1), G(2:§))|=¢. Thus, in order for the rank condition (H2)2 to hold,
this determinant must be nonzero. In particular, as G(0; e,) = e, +1, it follows that det dg/g/ 9 (0; e, ) # 0.
Choosing the neighbourhoods Z and E sufficiently small now ensures both (H1")1” and (H2")2’ hold.

7Further details and discussion of this perspective on decoupling theory can be found in the recorded lecture series given by
Guth as part of the MSRI harmonic analysis programme during January 2017 [Guth 2017a; 2017b; 2017c¢].



410 DAVID BELTRAN, JONATHAN HICKMAN AND CHRISTOPHER D. SOGGE

By Euler’s homogeneity relations,

0xp(x.1:6) =) & - 0g, 0xp(x.1:£).

j=1
Thus it follows that for each ¢+ € (—1,1) and & € R” the Jacobian determinant of the map x
((0g@)(x,1:§),¢p(x,1;)) is given by &, - det 8§xgb(x, t;€), which is nonzero by (H1’)1". Thus, there
exists a smooth local inverse mapping Y (-, ¢; £) which satisfies

() (XY (y.1:6),1:6) =y" and ¢(T(y,1:6),1:6) = yn. (2-3)
Similarly, there exists a smooth mapping W(x, ¢; -) such that

Given A > 1, let Y* and W* denote the natural rescaled versions of these maps, so that TA(Z; &) =
AY (y/A; €) and WA(z; ) := W(z/A; 7). One may assume that Z and Z are such that the above mappings
are everywhere defined.

2C. Quantitative conditions. Fixe>0, M €N, and 2 < p < oo (the p = oo case of Theorem 1.4 is trivial
but nevertheless must be treated separately: see (2-7)). To facilitate certain induction arguments, it is useful
to work with quantitative versions of the conditions (H1")1” and (H2")2” on the phase function. In particular,
let cpar be a small fixed constant and assume that for some 0 <o <n—1and A = (A1, A3, A3) €1, 00)3
the phase satisfies, in addition to (H1")1” and (H2)2’, the following:

(H14) 07,6 (2:§) = In| < cpary for all (z:€) € Z x E.
(H24) [0%,.,0:¢(z; ) — (1/&n) In—1,0,| < cparAz forall (z;€) € Z x E, where

£'¢
In—1,0, =diag(1,...,1,—1,...,—1)
0+ n—l—o4

is an (n—1) x (n—1) diagonal matrix.
Some additional control on the size of various derivatives, which is of a rather technical nature, is assumed:

(D1y) ||8§8xk¢||Loo(ZxE) < cparAy forall 1 <k <nand B € Nj with 2 < || < 3 satisfying 1B’ > 2;
102 8: || oo (zxm) < (cpur/(2n)) A1 for all B’ € Ng~" with |8'] = 3.

(D24) For some large integer N = Ng p1,, € N, depending only on the dimension 7 and the fixed choice
of &, M and p, one has
c
19029 Lo (zxa) < 5 A3

for all (c, B) € Ng“ x Ng with 2 < |a| <4N and 1 < |B| < 4N + 2 satisfying 1 < |B| < 4N or
1B’ = 2.
Finally, it is useful to assume a margin condition on the spatial support of the amplitude a:

(My) dist(suppay, R"™1\ Z) > 145
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Datum (¢, a) satisfying (H1 4)1 4, (H24)24, (D1 4)1 4, (D24)24 and (M 4) 4 (in addition to (H1")1’
and (H2')2') is said to be of type A. One may easily verify that any phase function satisfying (H1")1” and
(H2')2' is of type A for some A = (A1, A2, A3) € [1, 00)>. The conditions (H1 4)1 4 and (H24)2 4 are
quantitative substitutes for (H1’)1” and (H2')2' if, say, A1, A < I; for A and A, large, however, the
conditions (H14)1 4 and (H2 4)2 4 are vacuous and do not imply (H1")1” or (H2)2. By various rescaling
arguments, it is possible to reduce to the case where A =1:= (1, 1, 1), as shown in Section 2E.

2D. Setting up the induction for (1-7) and reduction to A1=¢/"-balls. Continuing with the fixed &, M
and p from the previous subsection, let A = (A1, A2, A3) € [1,00)3 and N € N be as in the definition of
the condition (D24)2 4. For 1 < R < A letA®(A; R) denote the infimum over all C > 0 for which the
inequality

A )—aN/(Sn)

IT*F Loy < CREPTENTA gy, 5+ R (ﬁ 1A l2@n @5

holds for all type-A data (¢, a)® and balls B of radius R contained in B(0, A). Here the weight function
is understood to be defined with respect to the fixed choice of N above, as in (2-2). It is remarked that

—-1/2

the quantity A°(A; R) is always finite. To see this, note that for any 1 < p < R and p -plate 6 one

may write
Trfo= > T fs
00575@
o:R~ V2 plate
recall that 6 is the subset of 6 upon which fy is supported. By the triangle and Holder’s inequalities, for
any weight w one has

) R\OD/CP)
I g = () 1T £ )ik -6)

dec

Taking p = 1, one thereby deduces the trivial bound
@j (A,, R) < R(n—l)/(ZP/)—a(P)’ (2-7)

which, in particular, shows that ’Dj (A; R) is finite. This trivial observation also proves Theorem 1.4 in
the p = oo case.
To prove Theorem 1.4 for the fixed parameters 2¢, M, and 2 < p < oo it is claimed that it suffices to
show that
AP AT S0 1 (2-8)

The “(e/n)-gain” realised by this reduction will be useful for various technical reasons. To see the above
claim, observe that the support conditions on the amplitude a imply that the support of T*f is always
contained in B(0, ). Take a cover of B(0, 1) by finitely overlapping A1~¢/"-balls and apply (2-8) to
the relevant L?-norm defined over each of these balls. Summing over all the contributions from the

8 As in the statement of Theorem 1.4, a discrepancy between the amplitude functions is allowed here: the right-hand operator is
understood to be defined with respect to some amplitude with possibly slightly larger spatial support than the original amplitude a.
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collection via Minkowski’s inequality, one deduces that

TA, < )&C‘(p)"f'S TA' —e/n
IT* fllLr(Bo.0) SA.s T2 SN par=erm o)

2n—eN/(8
4 p2n—eN/( n)||f||L2(@n)-
Here the weight wp( ) is as defined in (2-2) (with R = A and X = 0, t = 0). Provided N is sufficiently
large, the desired estimate (1-7) now follows from (2-6).
After reducing to the case A = 1, it will be shown in Section 2G, using induction on R, that
D{(A;R) Selforall1 <R < A1=¢/7 thus establishing (2-8). The trivial inequality (2-7) will serve as

the base case for this induction.

2E. Lorentz rescaling. The first ingredient required in the proof of Theorem 1.4 is a standard Lorentz
rescaling lemma. Before stating this result, it is useful to observe the following trivial consequence of
rescaling.

Lemma 2.2. Let A = (A1, As, A3) and A = (A1, A2, 1). Then
D3 (A R) <4, 93(%3; gs).

Proof. Let (¢, a) be a type-A datum. Observe that 72 f = TA/4s f, where T is defined with respect
to the phase ¢(z; €) := Az¢(z/As; §) and amplitude @(z; §) := a(z/As; £). Clearly the datum (¢, @)
satisfies (H1 Z)’ (H2 /T)’ (D1 E) and (D2 /f). The margin of the new amplitude a (with respect to the rescaled
open set A3Z) has been increased to size % and so (M7) holds. There is a slight issue here in that the
support of the rescaled amplitude may now lie outside the unit ball, but one may decompose the amplitude
via a partition of unity and translate each piece to write the operator as a sum of O(Ag‘“) operators
each associated to type—;f data. Finally, covering B(0, R) with a union of (R/Aj3)-balls and applying
the definition of @%(A /As; R/ As3) to each of the contributions arising from these balls, the result then
follows from the trivial decoupling inequality (2-6). O

Lemma 2.3 (Lorentz rescaling). Let | < p < R < A and suppose that T is defined with respect to a
type-A = (A1, A, A3) datum. If g is supported on a p~'-plate and p is sufficiently large depending on ¢,
then there exists a constant C = C ¢ = 1 such that

J’_
I oo (2 VY g
8lLr(wpy) ~ed.N ~1 Cp2 Cp2 )\ p? ENLL R wpp)
A —&eN/(8n)
R2I’l -
1( )

Remark 2.4. The proof of the lemma will show, more precisely, that the lower bound for p and the

”g”LZ(@n)- (2-9)

implicit constant in (2-9) may be chosen so as to depend only on ¢, A and the following quantities:
° inf(x,t;é)esuppa |det 3)265(,{)()(, t:§)|
e The infimum and supremum of the magnitudes of the eigenvalues of

3§/$/3t¢(xvf§§) (2_10)
over all (x,t; &) € suppa.
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Note that the quantities appearing in the above bullet points are nonzero by the conditions (H1")1” and
(H2)2'.

Lemma 2.3 will be applied in two different ways:

(i) An initial application of the lemma reduces the proof of Theorem 1.4 to operators defined with respect
to type-1 data. This is achieved by introducing a partition of unity of the frequency domain I'; into
o~ L-plates for some sufficiently large p, depending on ¢. Each of these frequency-localised pieces can
be rescaled via Lemma 2.3 and then summed together to yield the desired reduction. Observe that, by the
preceding remark, Lemma 2.3 is uniform for type-1 data.

(i) The second application of Lemma 2.3 will be to facilitate an induction argument which constitutes
the proof of Theorem 1.4 proper. The uniformity afforded by the reduction to type-1 phases is useful in
order to ensure that this induction closes.

Proof of Lemma 2.3. The argument used in what follows is a generalisation of the Lorentz rescaling used
to study decoupling for the light cone [Wolff 2000]; see Figure 2. Let w € B"~1(0, 1) be such that (o, 1)
is the centre of the p~!-plate upon which g is supported, so that

suppg € {(¢.&) eR": 1 <&, <2and |£'/&, —w| <p~'}.

Performing the change of variables (£, &,) = (nu@ + p~ 11, nn), it follows that

P A (e —1.,7 _ -
T’lg(z):/% ! 9" @t oTI ) g A (z: e + p 7y nw) § () i,

where g(n) := p~""Dg(y,0 + p~19, 1) and supp g C E.
By applying a Taylor series expansion and using the homogeneity, the phase function in the above
oscillatory integral may be expressed as

1
¢(Z§w’1)7In+P_1(8§/¢(Z;w71)77)/)+P_2/(; (1 =)z ¢z e +ro~ 0 na)n ') dr.

Let Yo (v,1):=(Y(y,t;w,1),t) and T(ﬁ (y,1):=AYw(y/A,t/A) and introduce the anisotropic dilations
Dp(y', yn,t) := (py’, yun, pt) and D;)_l(y/,yn) = (p~ 'y, p~2y,) on R*T! and R”, respectively.
Recalling (2-3), it follows that

T*gor} oD, = Tk/ng:
where

~2752 . FA/02 ) -
TA/P g(y,t) = /I,;@n el¢ o (y,t,rl)a/\(z;n)g(n) d’]

for the phase ¢(y, ;) given by

1
(y.m) + / (1 =) {830 (Yo (D) 1y, )i +rp~ 0 )0’ 0') dr -11)
0
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and the amplitude a(y,t;n) :=a(Ty (D;)_ly; t);nnw + p~ 11, n,). In particular, by a change of spatial
variables, it follows that

n+1)/p | TMPZ

A ~
IT*gllLrBr) <o P 8llLr((rzoD,)~1(BR)"

Fix a collection Bg ;2 of finitely overlapping (R / p?)-balls which cover (ch)L oD,)"!(Bg) and observe
that

1/p
~ 2
IT*glLr(Br) Sp PV VP Y T g“il’(BR/pz)) :

Br/p2€BR, 2

It will be shown below that

a(p)+e
~A/,02~ e )k . R R ~/\/p2~
1747 Gl oa,,, sg,wl(—épz,—épz 2 R e,

R/oz)

R 2n 2 —&N/(8n)
() (7)Mol 1

holds for each Bg, 2 € Br/,2 and a suitable constant C > 1, depending on ¢. Momentarily assuming
this (which would follow immediately from the definitions if (¢, a) were a type-1 datum), the proof of
Lemma 2.3 may be completed as follows.

Since Y, is a diffeomorphism, it follows that

U Bryy2 € (Y5 0Dp) " (Be,r).

Br/p2€BRr,p2

where B, R is the ball concentric to Bg but with radius Cy R for some suitable choice of constant Cyp > 1
depending on ¢. Thus, one may sum the p-th power of both sides of (2-12) over all the balls in Bg 2
and reverse the changes of variables (both in spatial and frequency) to conclude that®

X A R R a(p)+e N » 1/p
& .
1T gllLr(BR) Se.p.N 91(_6;;2’_6;;2)(?) ( > ge”Lﬂ(wBR))
0:(R/p%)~1/2-plate

_|_ R2}’l (_

R

—&N/(8n)
) el

where 6 is the image of 6 under the map (7', ) = (o(n' — nuw), ny). In particular, if wg denotes the
centre of the (R/p2)~1/2-plate 0, then

0 ={( &) eR": } <& <2and |0+ p w5 —&'/&:| < R7/?},

and so the 8 form a cover of the support of g by R™Y 2_plates. This establishes the desired inequality
(2-9) with a sharp cut-off appearing in the left-hand norm, rather than the weight function wg,. The

9Here one picks up O(p"* 1) copies of the error term (R/p2)3" ()k/R)_N/8 ||g||L2(@,,) from (2-12), that is, one for each
ball in the collection B g /02 This is compensated for by the factor p~#" appearing in each of these errors; it is for this reason
that the R2” factor is included in the definition of A¢(A; R) in (2-5).
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Figure 2. The simplest case of the Lorentz rescaling lemma, corresponding to the phase
G (x,1;€) := x1£1 + X262 + 1£7 /€. Here each plate is associated with a subset of the
conic surface C defined by £3 = & 12 /&> for % < &, < 2. The key observation is that there
exists an affine transformation of the ambient space which essentially maps 6 to the
whole of C.

strengthened result, with the weight, easily follows by pointwise dominating wpg, by a suitable rapidly
decreasing sum of characteristic functions of R-balls.
It remains to show the validity of the inequality (2-12) for each Bg/,2 € Bg/,2. Let L € GL(n, R) be
such that Le,, = ¢, and
02/, 0,@L(0.0:en) = In—1,6, (2-13)

for some 0 < o4 <n—1, where

oL(y.1:m) ==Ly, 1;Ly).

Observe that L is a composition of a rotation and an anisotropic dilation given by the matrix diag(\/|,u_1
. v/ |n—1l, 1), where the u; are the eigenvalues of (2-10) evaluated at (0, O en). By a linear change

of both the Y- and n-variables, it suffices to show that (2-12) holds with TAp? g replaced with T A0 gL,
where T A/p? is defined with respect to the datum (¢, d@1) for ¢ as above, ar (v, ;1) :=a(L "'y, t;Ly),
and g := |detL|- g oL. This would follow from the definition of ©7(A: R) and Lemma 2.2 provided that
the new datum (¢, dr) is of type (1, 1, C) for some suitable choice of constant C > 1. Note that the
amplitude a1, may not satisfy the required support conditions described at the beginning of Section 2B;
however, by decomposing the operator, as in the proof of Lemma 2.2, this issue may easily be resolved.
On the other hand, if C is suitably chosen, it is clear that G satisfies the required margin condition.

To verify the remaining hypotheses in the definition of type-(1, 1, C) data, first note that, by retracing
the steps of the argument prior to (2-11), one deduces that

$L(y.131) = PP (Yo (D), o L™y, 1), 1300 + p~ L1, 7). (2-14)

Alternatively, using (2-11) directly, &L(y, t; 1) can be expressed as

W) / (1= )0 d (Yo(D) s oL y. 1) ue + rp 'Ly )L L'y dr. (2-15)
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where L’ is the top-left (n—1) x (n—1) submatrix of L. These two formulae are used in conjunction to
yield bounds on various derivatives of ¢1.. To this end, it is also useful to note that, by the definition of Y
and the inverse function theorem,

WY 10, 1) = 9, ¢(Yo(y,1);0, 1),
so each entry 0, Yi(y,t;w, 1) of the above matrix may be written as the product of

[det(3Z ¢ (Yoo (3, 1); 0, )]

and a polynomial expression in (dg,0x, ) (Vo (y.1): @, 1).

First consider the technical conditions on the derivatives. Differentiating the formula (2-14) and
assuming p is sufficiently large, depending on ¢, immediately implies that ((j;L, ar,) satisfies conditions
(D1y) and (D2y) for |B’| > 2. The remaining cases of (D1y) and (D21) can then be readily deduced by
differentiating (2-15).

Concerning (H14), by differentiating (2-15) and using the conditions (D1 4)1 4 and (D2 4)2 4 of (¢, a),
one deduces that

2, dL(y.1:m) =In+ Op(p~").

Thus, (H1y) holds for (¢, dy) provided p is sufficiently large depending on ¢. Note that the conditions
(D14)1 4 and (D2 4)2 4 are used here so as to ensure the dependence on ¢ is as described in Remark 2.4.
Concerning (H2y), the homogeneity of ¢ and (2-13) imply

~ 1 1 - ! -
8%/77/8[¢L(Z; r’) - n_ln_l’g_,’_ - 77_ (872,’/"/8t¢L (Z, r’_, 1) - a?’/n/atqsL(O, en)) .
n

n Nn

In particular, for 1 <i, j <n—1, the (i, j)-entry of the above matrix equals

1 / / /
2 7 L n 2 Z L
/(; <8n/8ninj3t¢L(rZ, n—n, 1), n_n> +<323m,’j3t¢L(rZ, r’—n, 1),Z>dr.

Since it has been shown above that the datum (qu, ay) satisfies (D17) and (D2;), the integrand in the
above expression may now be bounded above in absolute value by cpar. Thus, ((,5L, ap) also satisfies
(H2;) and therefore is of type (1, 1, C), as required. O

2F. Approximation by extension operators. This subsection deals with an approximation lemma which
allows one to use Theorem 2.1 to bound variable-coefficient operators at small spatial scales.

Let 7% be an operator associated to a type-1 datum (¢, a). For each Z € R**! with Z/A € Z the map
N (8Z¢")(E; WA (z: n)) is a graph parametrisation of a hypersurface X5 with precisely one vanishing
principal curvature at each point. In particular, recalling (2-4), one has

(z, 0,01 WA G ) = (x,n) + ths(n) forall z = (x,1) e R,

where hz(n) := (0¢ (,bA)(Z; WA (z; n)). Let E5 denote the extension operator associated to Xz, given by

Esg(x,t):= /A e/ Wem+thzm) - (mye(n)dn  forall (x,7) € R**1,
Rn
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where a3z (1) 1= ap o W*(Z: n)|det 8,,\Il)L (Z:7m)|. The operator T* is effectively approximated by Ej;
at small spatial scales. Furthermore, the conditions on the translation-invariant decoupling inequality,
Theorem 2.1, are satisfied by each of the functions /3. In particular, the type-1 condition implies the
following uniform bound.

Lemma 2.5. Let (¢, a) be a type-1 datum. Each eigenvalue . of 0,y hz satisfies || ~ 1 on suppas.

The proof of this lemma is an elementary calculus exercise, the details of which are omitted.

Concerning the approximation of T* by E3, suppose that 1 < K <A'2 and z € B(Z, K) € B(0,31/4);
this containment property may be assumed in view of the margin condition (M1). By applying the change
of variables £ = W*(Z: ) and a Taylor expansion of ¢* around the point Z,

T)Lf(z) = /@n ei((Z—E,(3z¢l)(5;‘lll(5;7))))4—5?(Z—E;n))afll(Z)af(n)fz(n) dn, (2-16)

where f; := LG (29'))]‘ o Wt (z; +), and, by Taylor’s theorem,

Z+4+rv

1
5§(v;n)=% /0 (l—r)<(8§Z¢)( - ;\If"(z;n))v,v>dr. @-17)

Since K < A!/2 and (¢, a) is type-1, so that property (D2;) holds, it follows that

sup 882 (v; )| Swv 1
(v;m)€B(0,K)xsuppaz

for all B € N with 1 < |B] < 4N. Consequently, 6’? (z — z; &) does not contribute significantly to the
oscillation induced by the exponential in (2-16) and it can therefore be safely removed from the phase, at
the expense of some negligible error terms.

Lemma 2.6. Let T be an operator associated to a type-1 datum (¢, a). Let 0 < § < % 1<K< )\1/2_5,
and z /A € Z so that B(Z, K) € B(0,3A/4). Then

(1) ”T)Lf”L”(wB(z,K)) §N ”EEfZHL”(wB(O,K)) +A'_8N/2||f||L2(@n) (2'18)
holds provided N is sufficiently large depending on n, § and p.

(ii) Suppose that |Z| < M= There exists a family of operators T A all with phase function ¢ and
associated to type-(1, 1, C) data such that

1Ez 2L wsiox) SN ITEFlLese. ) + A7 ™ N2 £l 2@ (2-19)

holds for some Tﬁ eT* provided N is sufficiently large depending on n, § and p. Moreover, the
family T* has cardinality Oy (1) and is independent of the choice of ball B(Z, K).

Remark 2.7. (i) The weights appearing in Lemma 2.6 are defined with respect to the same N € N as
that appearing in the A exponent. This is also understood to be the same N as that appearing in the
definition of the (D2 4)2 4 condition.
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(ii) If one replaces wp(z, k) with the characteristic function y gz k) on the left-hand side of (2-18), then
the proof of Lemma 2.6 shows that the inequality holds without the additional A—8¥/2| 7| L2@@n)
term.

Several variants of this kind of approximation (or stability) lemma have previously appeared in the
literature; see, for instance, [Stein 1993, Chapter VI, §2] or [Christ 1988; Tao 1999]. In the context of
decoupling, Lemma 2.6 is closely related to certain approximation arguments used to extend decoupling
estimates to wider classes of surfaces in [Pramanik and Seeger 2007; Garrigds and Seeger 2010; Guo and
Oh 2018] and [Bourgain and Demeter 2015, §7-8]. A variant of Lemma 2.6 (which is somewhat cleaner
than the above statement) can also be applied to slightly simplify the original proof of the decoupling
theorem in [Bourgain and Demeter 2015; 2017b] and, in particular, obviate the need to reformulate
the problem in terms of functions with certain Fourier support conditions (the details of the original
“reformulation” approach are given in [Bourgain and Demeter 2017b, §5]).

Proof of Lemma 2.6. Note that f in (2-16) may be replaced by f i, where v is a smooth function that
equals 1 on supp az and vanishes outside its double. Moreover, recalling the definition of a; and that
(¢, a) is a type-1 datum, one may assume that the function ¥ is supported in [0, 277]". In view of the
expression (2-16), by performing a Fourier series decomposition of e & @.M () in the n-variable, one
may write

eEEDy () = Y by()e ), (2-20)

Lezn

where

be(v) = / eHEMAE @y () a,
[0,27]7

The formula (2-17) and property (D2;) of the phase together imply
B o |v]?
sup [dp 2 (vin)l Sv -

nel0,2x]"

for all multi-indices B € N with 1 <|8| < N. Therefore, by repeated application of integration-by-parts,
one deduces that
b)) Sv 1+ €)™Y whenever |v]| < 22172,

This, (2-20) and (2-16) lead to the useful pointwise estimate

IT*fE+v) sn Y A+ ) NEz(fze' D)), (2-21)

Legn
valid for |v] < 2A1/2. Writing
1T Flleone ) < 1T Haseory lLrase o) + 1T P e se.2112) L (ose. o)-

it follows from (2-21) that

IT* ) 2m/2) lLrse.xy S8 D ANV IE2(f2e" D Lo @wpox)- (2-22)
Lezn
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On the other hand, it is claimed that
T ) xam G212 ILrwpe ) S A COTINTED £ (2-23)
and therefore this term can be treated as an error. Indeed, if [v] > 2A1/2 and K < A1/278  then
(l + K_1|U|)_(N_n+2) < (1 +2A1/2K_1)_(N_n+2) < A—S(N—n+2).
Combining this observation with the trivial estimate

IT* Fllr @ik S K2 1S 2nys

where Wp(o, k) ;= (1 + K=Y - [)~®*2) one readily deduces (2-23).
Observe that the operator £z enjoys the translation-invariance property

Eg[ei(ﬁ")g](x, t)=Es;g(x+4£,1) forall (x,7) € R""! and all £ € R"; (2-24)

it is for this reason that the graph parametrisation was introduced at the outset of the argument. The
identity (2-24) together with (2-22) and (2-23) imply

IT* Fllrse.x) S8 D A+ ™M IEz flLoawsenx) 2V 21 2@y (2229
Lezn

provided N is chosen to be suitably large. One may readily verify that

>+ 1) N wpe.0.5) S WB©.K) (2-26)
Lezn
and combining this with (2-25) immediately yields the desired estimate (2-18).

The proof of (2-19) is similar to that of (2-18), although a slight complication arises since, in contrast
with Ez, the variable-coefficient operator T* does not necessarily satisfy the translation-invariance
property described in (2-24).

One may write

E: f3(v) = /A ! GV EMTIE Wi g () £ 0 WHE; ) dy
fn

and, by forming the Fourier series expansion of e~ & (”;")W(n) in n and undoing the change of variables
£ = WA(Z: 1), thereby deduce that

- - (- -
|Ez f:)| SN Y (14 €)™V T E00DCED) 1z 4 v))
Ltezn
whenever |v]| <2A 172 This pointwise bound is understood to hold modulo the choice of spatial cut-off a
appearing in the definition of T Taking L?(wp(z,k))-norms in z and reasoning as in the proof of (2-18),
one obtains

IEz £ Lo wao.xn SN D LD NIT* f) xpi 2212 |Lr s ) + 2N 21 | 2@y
Lezn
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where fg = ¢l {60261 Z:)) /- Note that the cut-off function x gz »51/2) can be dominated by a smooth
amplitude &f, where d; is equal to 1 on supp a; and has half the margin. The above sum is split into a
sum over £ satisfying |£| > Cp and a sum over the remaining £ where Cy is a constant depending on N,
chosen large enough for the present purpose. To control sum over large £, apply (2-18) and argue as in
(2-26) to conclude that

Yo A+ DITA felr ey S8 D A+ DM IEz fllLr@ae.o.x
Lez" Le7"
1€]>C [¢|>Cn

=< C[VN”EEfE”LP(wB(Q,K))'

Therefore, if Cy is chosen to be sufficiently large depending on N, the above term can be absorbed into
the left-hand side of the inequality and one obtains

1Ez fzlLowsoxny SN D, ITH felLoae.x) + AN 21F | 2
Le7"
[¢l<Cn

Each T* ﬁg can be thought of as an operator TZk where the latter has phase ¢ and amplitude function
Gu(:§) 1= @ (z:6)e (BP0 ED),

Unfortunately, these amplitudes depend on the choice of ball B(Z, K) and therefore are unsuitable for the
present purpose. To remove this undesirable dependence, one may take a Taylor series expansion to write

=\«
ei(f,(aztb)»)(Z;S)) — Z U (0) (%) + 0((|E|/A)N), (2-27)
la|<N—1

where each uy € C*°(R") satisfies |8§ua(§)| <n 1 for all || < N. Note that the 1y do not depend on
the choice of z. Furthermore, since |Z| < /\1_8/, it follows that the error in (2-27) is O(A_S/N ) and the
part of the operator arising from such terms can be bounded by A~™M8-8N/2) £ @ The family of
operators T A is now given by the family of amplitudes

ug(®)ag(z;6), | <Cp, la| <N —1.
Since |Z|/A < 1, one concludes that

1Ez 2 Lo wsoxny SN D, ITE felrae.x) + A ™ N 2] £l 2@m

TleT*

and the desired inequality now holds for some choice of Ti‘ eT* by pigeonholing. O

2G. Proof of the variable-coefficient decoupling estimates. By the discussion in Sections 2B-2E, to
prove Theorem 1.4 for the fixed parameters 2¢, M, and p it suffices to show

D{(A:R) <1 forall 1 < R<A'7/",
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The trivial estimate (2-7) implies the above inequality if R is small (that is, R <. 1), and the proof
proceeds by induction on R, using this observation as the base case. In particular, one may assume by
way of induction hypothesis that the following holds.

Radial Hypothesis. There is a constant C ¢ > 1, depending only on the admissible parameters n, e, M,
and p, such that

DI R) < Ce
holds for all 1 < R’ < R/2 and all X satisfying R’ < (\")'~¢/".

Let Bk be a finitely overlapping cover of Bg by balls of radius K for some 2 < K < A1/4. One
may assume that any centre Z of a ball in this cover satisfies |Z| < A17¢/". The estimate (2-18) from
Lemma 2.6 with § = % implies

1/]7 A‘ —N/S
A
IT" fllLr(Bg) < ( > ||Ezfz||fp(wB(OgK))) + R"H(E) 1Nl 2y

B(z,K)eBk
Applying the theorem of [Bourgain and Demeter 2015; 2017a] (that is, Theorem 2.1) with exponent &/2
(and recalling Lemma 2.5), one deduces that the inequality

| B2 £ Lo opo.x Se K*P T2 E foll .

holds for each of the extension operators in the previous display. Combining these observations with an
application of (2-19) from Lemma 2.6 with §' = ¢/n, and summing over By,

1/p A —&N/8n
||T*f||Lp(BR)ng““’”S/z( > ||T*fa||ip(wBR)) +R"+1(§) 1£ 112 @ny-
0:K—1/2 plate

K
(wB.k))

The operator on the right involves a slightly different amplitude function compared with that on the left
but, as in the statement of Theorem 1.4, this is suppressed in the notation.

Note that, since K >2, C > 1, and R < A!~¢/" trivially R/(CK) < (A/(CK))' /" and R/(CK) <
R /2. Consequently, the assumptions of the radial induction hypothesis are valid for the parameters
R := R/(CK) and A’ := A/(C K). Thus, by combining the radial induction hypothesis with (2-9) from
the Lorentz rescaling lemma, one concludes that

A —&N/(8n)
) 1 b

IT*F L) < CeCK™PREPTNTA S e, o+ R (E

Choosing K sufficiently large (depending only on ¢, n, M and p) so that C, K —¢/2 < 1, the induction
closes and the desired result follows.

3. Proof of the local smoothing estimate

In this section the relationships between the theorems stated in the Introduction are established and, in
particular, it is shown that

Theorem 1.4 —> Theorem 1.2 —> Theorem 1.1.
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Given the formula for the solution u from (1-4), the latter implication is almost immediate. The former
implication follows from a straightforward adaption of an argument due to [Wolff 2000], which treats an
analogous problem for the euclidean wave equation. Nevertheless, proofs of both of the implications are
included for completeness.

To begin, the definition of the cinematic curvature condition, as introduced in [Mockenhaupt, Seeger,
and Sogge 1993], is recalled. As in the statement of Theorem 1.2, let Y and Z be precompact smooth
manifolds of dimensions n and n + 1, respectively. Let C C T*Z \ 0 x T*Y \ 0 be a choice of canonical
relation; here 7* M \ 0 denotes the tangent bundle of a C *® manifold M with the 0 section removed. Thus,

C={x.t.5.t,y.n):(x,t,E, 1,y,—n) € A}

for some conic Lagrangian submanifold A C T*Z \ 0x T*Y \ 0; see [Hormander 1971] or [Duistermaat
1996; Sogge 2017] for further details. Certain conditions are imposed on C, defined in terms of the

7y ¢ M7x 2
/ lnx}
Z

T*Y \0 T;Z\0

projections

First there is the basic nondegeneracy hypothesis that the projections I17*y and I1z are submersions:
rankdIlI7+«+y =2n and rankdllz =n+ 1. (3-1)

This condition implies that for each zg € Z the image I';, := HTZ*O 7(C) of C under the projection onto
the fibre T;;Z is a C* immersed hypersurface. Note that I';, is conic and therefore has everywhere
vanishing Gaussian curvature. In addition to the nondegeneracy hypothesis (3-1), the following curvature
condition is also assumed:

For all zg € Z, the cone I';, has n — 1 nonvanishing principal curvatures at every point. (3-2)

If both (3-1) and (3-2) hold, then C is said to satisfy the cinematic curvature condition [Mockenhaupt,
Seeger, and Sogge 1993].

Remark 3.1. Using local coordinates, (3-1) and (3-2) may be expressed in terms of the conditions (H1)1
and (H2)2 introduced in Section 1B. Indeed, near any point

(xo0, t0, &0, 70, Y0.M0) €C,

the condition (3-1) implies that there exists a phase function ¢ (z; ) satisfying (H1)1 such that C is given
locally by

{(z,0:0(z:1m), 0ne(z:1). 1) : n € R"\{0} in a conic neighbourhood of 7¢}.

Furthermore, (3-2) implies that the function ¢ satisfies (H2)2. Further details may be found in [Sogge
2017, Chapter 8].
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Recall from the Introduction that the solution to the Cauchy problem (1-1) can be written as u = Fy fo +
F1f1, where each F; € [ J=1/4(M xR, M;C) for some canonical relation C satisfying the cinematic
curvature condition. Fix a choice of coordinate atlas {(£2, )}, on M and a partition of unity {y, },
subordinate to the cover {2, }, of M. A choice of Bessel potential norm || - ||, 7y is then defined by

1A 2 ary =D ol @
v

where f, := (¥, f)ok~! and L? (R") denotes the standard Bessel potential space in R”. Thus, expressing
everything in local coordinates and applying the composition theorem for Fourier integral operators (see,
for instance, [Sogge 2017, Theorem 6.2.2]), it is clear that Theorem 1.1 is an immediate consequence
of Theorem 1.2.

It remains to show that Theorem 1.2 follows from the decoupling inequality established in Theorem 1.4.
Working in local coordinates (and recalling Remark 3.1 and the discussion in Section 1B), it suffices to
prove an estimate for operators of the form

Ffn):= /R PR (1 6)(1+ 572 1 (§) dé. (3-3)

where b is a symbol of order 0 with compact support in the (x, ¢)-variables and ¢ is a smooth homogeneous
phase function satisfying (H1)1 and (H2)2 (at least on the support of b). Recall that b is a symbol of
order 0 if b € C®(R"*1 x R") and satisfies

18287 b(z:6)| Sy (1+ 1EN71 for all multi-indices (y, v) € NEFL x N2
In particular, Theorem 1.2 is a direct consequence of the following proposition.

Proposition 3.2. If p, < p < oo and F is defined as in (3-3) with u < —a(p) = —5p + %, then

IFf L @ety S N e @n)-

Proof. By applying a rotation and a suitable partition of unity, one may assume that b is supported in
B™(0,g9) x B1(1,&9) x I for a suitably small constant 0 < g9 < 1, where

[={EeR":|&g] <|&|for1<j<n—1}

Further, as the symbol b has compact (x, ¢)-support of diameter O(1), one may assume without loss
of generality that it is of product type; that is, b(x, ;&) = b1 (x,t)b2(§). The latter reduction follows
by taking Fourier transforms in a similar manner to that used in the proof of Lemma 2.6; the argument,
which is standard, is postponed until the end of the proof.

Fix f € C°(R) with supp B € [5,2] and such that 3" 4.4 B(r/A) = 1 for r # 0. Let Fr =
FoB(v/=A,/A), so that F f is given by introducing a B(|&|/A) factor into the symbol in (3-3),'° and

101 general, m(i_lax) denotes the Fourier multiplier operator (defined for f belonging to a suitable a priori class)
m(i 1 dx) f(x) = Jan eI XE) m(€) £ (§) d§ for any m € L®(R™). The operator m(v/—Ay) is then defined in the natural
manner via the identity —Ay =i 719, -i "1dy.
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decompose F f as

Ff=F3'f+ > F'f

A€N: dyadic

It follows that F <! is a pseudodifferential operator of order 0 and therefore bounded on L7 for all
1 < p < oo. Thus, letting ¢ := —(u + «(p))/2 > 0, the problem is further reduced to showing that

17 f lp @ty S A% PFFE £ Lo oy
forall A > 1.
By various rescaling arguments and Theorem 1.4, it follows that

1/p
”]:Af”Ll’(Rn_H) SS,p ,\a(P)'i‘s( Z ||]:9Af”§p(Rn+l)) P
0:A—1/2plate

where fé =F%o ag(i~10,) for ag a choice of smooth angular cut-off to 6. Thus, to conclude the proof
of Proposition 3.2 (and therefore that of Theorems 1.2 and 1.1), it suffices to establish the following
lemma.

Lemma 3.3. For ]-'g as defined above and 2 < p < 0o one has

1/p
(X 1 M) S oo

0:2—1/2 plate

This inequality essentially appears in [Seeger, Sogge, and Stein 1991] (see also [Stein 1993, Chap-
ter IX]); a sketch of the proof is included for completeness.

Proof of Lemma 3.3. By interpolation (via Holder’s inequality) it suffices to establish the cases p =2 and
p = 0.

To prove the p =2 bound, one may use Hérmander’s theorem (see, for instance, [Stein 1993, Chapter IX
§1.1]) for fixed ¢, followed by Plancherel’s theorem and the almost orthogonality of the plates 6.

To prove the p = oo bound, it suffices to show that

sup  ||Kp(x,1; Mzr@wny S A*,
(x,t)ern+1

where K g} is the kernel of the operator ]—"g. This follows from a standard stationary phase argument,

which exploits heavily the homogeneity of the phase and the angular localisation; see, for instance, [Stein
1993, Chapter IX, §4.5-4.6] for further details. O

It remains to justify the initial reduction to symbols of product type. As mentioned earlier, the argument
is standard and appears, for instance, in the proof of the L2 boundedness for pseudodifferential operators
of order O (see [Stein 1993, Chapter VI, §2]).

As b is a symbol of order O with compact (x, ¢)-support, (n-+2)-fold integration-by-parts shows that

|a§13(§; <, A+12)~ 2D+ 1g)™! for all multi-indices y € NZ, (3-4)
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where b denotes the Fourier transform of b in the z = (x, #)-variable. By means of the Fourier transform
one may write

; : . be(x,t;6) 4
Ff(x,t =/ e 201 4 —("+2)/ Gt 005 Ay g de,
fen= [ @0y [ ey @€
where be (x,1:§) == ¥ (x, t)l;(Z; £)(1 + |£])"*2 for Y a smooth cut-off equal to 1 in the z-support of b
and vanishing outside its double. The functions b, are all of product type and, by (3-4), are symbols of
order O uniformly in . Taking L?-norms and applying Minkowski’s integral inequality, it now suffices
to show the L? boundedness of F under the product hypothesis. |

4. Counterexamples for local smoothing estimates for certain Fourier integral operators

To conclude the paper, the proof of Proposition 1.3 is presented. As originally observed by the third
author in [Sogge 1991] and elaborated further in, for instance, [Mattila 2015; Mockenhaupt, Seeger, and
Sogge 1993; Sogge 2017; Tao 1999], it is known that local smoothing estimates for Fourier integral
operators imply favourable L? estimates for a natural class of oscillatory integral operators. Indeed, this
is the basis of the well-known formal implication that the local smoothing conjecture for the (euclidean)
wave equation implies the Bochner-Riesz conjecture (see [Sogge 1991; 2017]). In this section a general
form of this implication is combined with a counterexample of [Bourgain 1991; 1995b] to show that
Theorem 1.2 is sharp when n > 3 is odd.

4A. Local smoothing for Fourier integrals and nonhomogeneous oscillatory integrals. Let Q C R”
be open and suppose that ®: Q2 x 2 — R is smooth and satisfies

dy®(x,y) #0 forall (x,y) e QxQ 4-1)

and, moreover, that the Monge—Ampere matrix associated to ¢ is everywhere nonsingular:

0 3y P(x, y)
o (8xd>(x, y) 92, ®(x, y)) 70 forall (x,y) € 2x €. 4-2)

By (4-1), for each (x, ) € Q x (—1, 1) the level set
Sxp:={y €Q:®(x,y) =1} (4-3)

is a smooth hypersurface. The condition (4-2) implies that the smooth family of surfaces in (4-3) satisfies
the rotational curvature condition of [Phong and Stein 1986] (see also [Stein 1993, Chapter XI]).

The above phase function can be used to construct two natural oscillatory integral operators. To
describe these objects, first fix a pair of smooth cut-off functions a € C°(2 x Q) and p € C°((—1, 1)).

(i) For each fixed ¢ € R the distribution

K(x.1:y) := p(t) a(x, y) do(r — ®(x, y)) (4-4)
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is the kernel of a conormal Fourier integral operator on R” x R” of order —%(n —1). In particular, K can
be written as

K(x.1iy) = [ 02 p0a(x. ) de
R

where the right-hand side expression is understood to converge in the sense of oscillatory integrals. From
this formula, one can easily deduce (using, for instance, [Sogge 2017, Theorem 0.5.1]) that the canonical
relation is given by

C={(x,1,—10xP(x,y), 7,y, 10, P(x,y)) : O(x,y) =1)}. (4-5)

Note that the condition (4-2) ensures that each of these Fourier integrals is nondegenerate in the sense
that the canonical relation is a canonical graph.
It will be useful to consider the operator

Frni= [ K@i fo)dy. @-6)

which is understood to map functions on R” to functions on R**! by taking averages over the variable
hypersurfaces Sx ;.

(i) One may also consider the nonhomogeneous oscillatory integral operator

S5 i= [ ODate ) f3)dy. @)

where the amplitude a € C°(2 x ) is as in (4-4) and A > 1.

Assume, in addition to the condition (4-2), that
p()8o(t — D (x,y)) =80(t — D(x,y)) forall (x,y) €suppa and ¢t € R. (4-8)

Note that this holds if, for instance, ®(0,0) = 0 and p(¢) = 1 for all ¢ in a neighbourhood of 0 provided
that a vanishes outside of a small neighbourhood of the origin in R” x R”. Under these conditions
L? bounds for the operator (4-7) can be related to Sobolev estimates for (4-6).

Proposition 4.1. Under the conditions (4-2) and (4-8), if y > 0 is fixed and A > 1, then

ISENLr @ny—sLr @ S AN — Ax)Y? 0 Fllpo@ny Lo @ +1)- (4-9)
Proof. Let B € C2°(R) satisfy B(r) =1 for |r| < 1 and B(r) = 0 for |r| > 2. The condition (4-2) implies
that 0, ®(x, y) # 0 for all (x, y) € suppa and a simple integration-by-parts argument therefore shows
that for some small constant cg > O the estimate
v=A
()

=oy(AN
ok N ( )

LP(R")—L»(R")

holds for all N € N. Furthermore, since y > 0, it also follows that

(oo

co

=007).
LP(R")— L2 (R")
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Combining these observations,
ISEILr @iy Lo@n S AN = Ax)Y? 0 S§ll Lo @ny—Lo@n + ONATN). (4-10)

On the other hand, the definition of K and the condition (4-8) imply
/e’.M K(x,1;y)dt = &g (x, y).

One may therefore write the operator Sé in terms of K and apply Holder’s inequality together with the
estimate (4-10) to deduce the desired result. O

4B. Sharpness of the range of exponents p > py for optimal local smoothing bounds for odd n. To
show that the bounds obtained in Theorem 1.2 are sharp in odd dimensions, in this section certain phase
functions @ are investigated which, in addition to (4-2), satisfy a variant of the Carleson—Sj6lin condition
[1972].

Note that (4-2) ensures that at each point the rank of the mixed Hessian of ® is at least n — 1. Assume
that

rankaiycb(x,y) =n—1 forall (x,y) €suppa. (4-11)
It then follows that, provided €2 is sufficiently small, for any fixed x¢ in the x-support of a the map
y = 0x®(x0,y), yeQ,

parametrises a hypersurface X, C R". Suppose, in addition to (4-11), the phase also satisfies the following
curvature condition:

For each x¢ € €2 the surface X, has n — 1 nonvanishing principal curvatures at every point. (4-12)

In this case, the phase function @ is said to satisfy the n x n Carleson—Sjélin condition (see [Sogge 2017]).
This definition should be compared with the similar conditions (H1)1 and (H2)2 for the homogeneous
oscillatory integrals described in Section 1B (note, for instance, that (4-12) is equivalent to the condition
that, for a suitably defined Gauss map G, the y-Hessian of (3, ®(x¢, y), Go(xo, yo)) has rank n — 1 at
y = yo for every (xo, yo) € Q).

If (4-11) and (4-12) are valid, then it is claimed that the Fourier integral operators F in (4-6) satisfy the
cinematic curvature condition appearing in the hypotheses of Theorem 1.2. If C C T*R" \ Ox T*R"*1\ 0
is the canonical relation for F, then recall that the nondegeneracy condition (3-1) is that rank d[17+ge =2n
and rank dI1g»+1 = n 4 1. This holds as an immediate consequence of (4-2) since, as was observed
earlier, (4-2) implies that C is a local canonical graph. It remains to verify the cone condition (3-2). It
immediately follows from the expression (4-5) that for the Fourier integral operators in (4-6) the cones
Ixy,z, are given by

Ixpt0 = 1T(=0xP(x0,y), 1) : y € Q, T € R}.

Consequently, the cone condition holds if (4-11) and (4-12) are satisfied. This verifies the claim.
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Recall from the discussion following Proposition 1.3 that for each fixed ¢ the composition
(I —Ax)"2 0 (Fh)(-,1)

is a Fourier integral operator of order —%(n — 1)+ y. Thus, a special case of the local smoothing problem
is to show that for a given exponent 2n/(n — 1) < p < oo one has

1(I = A)Y2 0 Fll Lo @ny> Lo@nt1y = O(1) forall 0 <y < %. (4-13)
Note that, unlike the operators in (4-6), the Fourier integrals in (4-13) do not have kernels with compact
x-support; however, they are bounded and rapidly decreasing outside of any neighbourhood of the
x-support of a.

Adapting a counterexample of [Bourgain 1991; 1995b], one may construct a phase @ so that (4-13)
cannot hold for p < p, if n > 3 is odd. This establishes Proposition 1.3 and thereby shows that Theorem 1.2
is optimal in the odd-dimensional case. The details are given presently. Note that, strictly speaking, here
a slight simplification of Bourgain’s construction is used, which is due to [Stein 1993, Chapter IX, §6.5]
(see also [Sogge 2017, pp. 67-69] for further details).

Proof of Proposition 1.3. Consider the matrix-valued function A: R — Mat(2, R) defined by
A(s) := s for all s € R
- S Sz .

Let n > 3 be odd and A: R — Mat(n — 1, R) be given by

A(s) == A(s) D --- D A(s)
(n—1)/2-fold

so that A (s) is an (n—1) x (n—1) block-diagonal matrix. Using these matrices, define a phase function ¢
on R* x R"~1 by

P(x,y) = (x",y") + 5 (Axn)y'. y) (4-14)

for all (x, ") = (x/, xx, y’) € R" x R"~1. Given an amplitude function b € C2°(R" x R"~1) define the
oscillatory integral operator

Sprei= [ by 10
Rn—1
A stationary phase argument (see, for instance, [Sogge 2017, pp. 68—69]) then yields
)\._(n_l)/4_(n_l)/(2p) 5 ||S£”LP(R”_1)—>LP(R”) if A > 1 and p= 2, (4-15)

provided that b(0, 0) # 0.
If ¢ is as in (4-14) and

D(x,y) :==(x,y") + xXn + yn, (4-16)
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then clearly (4-2) is valid when x = y = 0. Since
(n—3)/2

y = 0x®(0,y) = (y’, >, y2j+1y2j+2) + en
j=0

parametrises a hyperbolic paraboloid with %(n — 1) positive principal curvatures and %(n — 1) negative
principal curvatures, one concludes that for small x the Carleson—Sj6lin conditions (4-11) and (4-12)
must hold, provided the support of b lies in a suitably small ball about the origin.

Suppose B is as in the proof of Proposition 4.1, so that B € C>°(R) satisfies f(r) = 1 whenever |r| <1
and B(r) = 0 whenever |r| > 2. Assume b € CX°(R" x R"~1) satisfies 5(0,0) # 0 and is supported in a
small neighbourhood of the origin. Take a in (4-7) to be equal to

ax.y) = bix, y’)ﬁ(i—’o’)

for some suitable choice of small constant 0 < ¢g < % Provided the size of the support of b and the
constant ¢g are suitably chosen, (4-8) holds. Furthermore, taking F(y) := 8 (yn)e_"’ly" (') in (4-7),
one readily observes that
1S5 f O ~ISEF()| and | FllLo@ny ~ Il fllo @1y
and, consequently,
15 @1y Lo @ny < 1S3 L0 @)L @0)-
Combining this with (4-15) and (4-9), for y > 0 and A > 1 one concludes that

AY=@=D/A=(=DICE) <\ (1 — A)Y 0 Fll o nys Lo @ity

where F is as in (4-6). Since

n n—1 n-1 . -
;—T—F>O 1fp<pn,

it follows that (4-13) cannot hold for any Lebesgue exponent satisfying p < pj. O

For even dimensions n > 4 one may modify the argument given in the proof of Proposition 1.3 to give
a necessary condition for the local smoothing problem for the general class of Fourier integral operators
under consideration. Indeed, in the even-dimensional case one simply defines

A(s) == A(s) DD A(s) (1 + ),

(n—2)/2-fold

where (14s) is a 1 x 1 matrix with entry 1+, so that once again A (s) is an (n—1) x (n—1) block-diagonal
matrix. Taking the phase function ¢ as in (4-14), it follows that the resulting oscillatory integral operators
satisfy

ATn/4=(n=2)/2p) < ||S$||Loo(w—1)—>u(u;en)-
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n odd n even

n—1 nonvanishing | 2(n+1) | 2(n+2)

curvatures n—1 n
n—1 positive 2(3n+1) | 2(3n+2)
curvatures 3n—3 3n—2

Table 1. Conjectured endpoint values for the exponent p for the sharp local smoothing
estimates in Theorem 1.2 under various hypothesis on F € #=1/4 Theorem 1.2 estab-
lishes the odd-dimensional case under the hypothesis of n — 1 nonvanishing principal
curvatures.

See, for instance, [Sogge 2017, p. 69] for further details. Arguing mutatis mutandis, for even n > 4 and F
defined as in the proof of Proposition 1.3 (with respect to the new choice of phase ¢) the estimate (4-13)
fails for p <2(n +2)/n.

4C. Some open problems. The cones 'y, ;, C T , R"*! associated to the phase in (4-16) have principal

x0.t
curvatures of opposite sign (in fact, in the example(:)s 0considered above the difference between the number
of positive and the number of negative principal curvatures is minimal). It would be interesting to see if
any improvement is possible in the range of p for which there is optimal local smoothing if the 'y, s,
always have n — 1 positive principal curvatures. The model case for this is the class of Fourier integrals
arising in the context of Theorem 1.1, that is, from solutions of wave equations given by a Laplace—
Beltrami operator on some Riemannian manifold (M, g). In this case ®(x, y) is given by the associated
Riemannian distance function dg (x, y) minus a constant. By Proposition 4.1 and the counterexamples of
[Minicozzi and Sogge 1997] (see also [Sogge, Xi, and Xu 2018]), there exist metrics for which optimal

local smoothing is not possible when p < p, + where

_ . 2@n+1)/(3n—3) ifnisodd,
Pnt = 2(3n+2)/(3n—2) if nis even.

On the other hand, if ®(x,y) := dg(x, y), then recent results of Guth, Iliopoulou and the second
author [Guth, Hickman, and Iliopoulou 2019] yield the optimal bounds for p > p, 4 for the oscillatory
operators in (4-7); this suggests that one should be able to obtain optimal local smoothing bounds for
P = pn,+ under the above convexity assumptions. In Table 1 the conjectured numerology for sharp local
smoothing estimates for Fourier integral operators is tabulated, according to the parity of the dimension
and various curvature assumptions. As mentioned in the Introduction, for the euclidean wave equation
sharp local smoothing estimates are conjectured to hold for the wider range 2n/(n — 1) < p < 0.

Finally, note that the conjectured numerology in Table 1 coincides with the sharp bounds to a problem
posed in [Hormander 1973] for oscillatory integral operators of the type T* under nonhomogeneous
versions of the conditions (H1)1 and (H2)2 (and a corresponding positive-definite version of (H2)2); see
[Guth, Hickman, and Iliopoulou 2019] for the details of this problem and a full historical account. In
particular, the argument presented earlier in this section shows that Theorem 1.1 implies a theorem of
[Stein 1986] in this context. For the remaining cases, the results of [Bourgain 1991; 1995b; Wisewell
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2005; Bourgain and Guth 2011; Guth, Hickman, and Iliopoulou 2019] suggest the p > 2(n 4+ 2)/n
numerology in the general even-dimensional case and reinforce the conjectured p > p, 4+ numerology in
the convex case.
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ON THE HOLDER CONTINUOUS SUBSOLUTION PROBLEM
FOR THE COMPLEX MONGE-AMPERE EQUATION, II

NGoc CUONG NGUYEN

We solve the Dirichlet problem for the complex Monge—Ampere equation on a strictly pseudoconvex
domain with the right-hand side being a positive Borel measure which is dominated by the Monge—Ampere
measure of a Holder continuous plurisubharmonic function. If the boundary data is continuous, then
the solution is continuous. If the boundary data is Holder continuous, then the solution is also Holder
continuous. In particular, the answer to a question of A. Zeriahi is always affirmative.

1. Introduction

The Holder regularity of plurisubharmonic solutions to the complex Monge—Ampere equation in a strictly
pseudoconvex domain has a long history. First, Bedford and Taylor [1976] obtained Holder continuous
solutions for the Dirichlet problem of the equation assuming the right-hand side is Holder continuous.
Later, this result was extended to a larger class of measures by Guedj, Kotodziej and Zeriahi [Guedj
et al. 2008]; namely, the measures have L? density with respect to the Lebesgue measure with some
extra assumptions on the density near the boundary and the boundary data. The extra assumptions are
removed in other subsequent works [Baracco et al. 2016; Charabati 2015]. On the other hand, the complex
Monge—Ampere operator of a Holder continuous plurisubharmonic function is not necessary absolutely
continuous with respect to the Lebesgue measure. Examples of such measures are Hausdorff measures
due to Charabati [2017], and the volume form of a smooth real hypersurface of codimension 1 by Pham
[2010]. (See also [Vu 2018] for a generalization to generic CR manifolds of arbitrary codimension.) So
far, these results give only sufficient conditions on the measures such that the solution to the equation is
Holder continuous. In [Nguyen 2018] we gave a necessary and sufficient condition for a measure whose
Monge—-Ampere potential is Holder continuous. This result is partly inspired by a global result due to
Dinh and Nguyén [2014]. However, to use the result in [Nguyen 2018] we require the Holder continuous
subsolution have zero value on the boundary and its total Monge—Ampere mass be finite, which cannot
be true for a general Holder continuous plurisubharmonic function (Remark 1.1). In this paper we will
remove these restrictions.

There are several motivations to study the Holder regularity of solutions. First, it is a basic question in
pluripotential theory to characterize measures for which the complex Monge—Ampere equation admits
bounded, continuous and Holder continuous solutions [Kotodziej 2013]. Next, Dinh, Nguyén and Sibony
[Dinh et al. 2010] showed that the Monge—Ampere measure of a Holder continuous plurisubharmonic

MSC2010: 32U40, 35J96, 53C55.
Keywords: Dirichlet problem, weak solutions, Holder continuous, Monge—Ampere, subsolution problem.
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function is locally moderate, which is a very useful generalization of Skoda’s theorem. We refer the
reader to [Dinh et al. 2010] for its application in complex dynamics. Their work leads to the interesting
open problem of whether the converse holds. The question in the toric setting has been studied recently
in [Coman et al. 2018, Theorem 4.4]. In this case the problem reduces to a real Monge—Ampere equation
on a convex polytope. Holder continuity is also studied with regard to the extremal functions arising in
(pluri-)potential theory. In fact the Holder continuity of the so-called relative extremal function u ¢ and
the Siciak—Zahariuta extremal function Vi [Siciak 1997; 2000] of a compact set K C C" is proven to
be equivalent to a Markov-type inequality in multivariate interpolation theory [Baran and Bialas-Ciez
2014; Pawlucki and Plesniak 1986] (see [Dinh et al. 2017; Vu 2018] for analogous results in the compact
Kéhler manifold setting). We believe that our work will be useful to study the Holder continuity of the
above extremal functions. For example we hope the techniques developed here can be used to simplify
the proof in [Vu 2018].

In this paper we continue our research, initiated in [Nguyen 2018], which focuses on the Dirichlet
problem for the complex Monge—Ampere equation in a bounded strictly pseudoconvex domain 2 C C”,
provided a Holder continuous subsolution exists. Let ¢ € PSH(Q2)NC 0.@(Q) for some 0 < o < 1. Assume
also that

=0 onodQ.

We consider the set
M(p, ) := {u is positive Borel measure : u < (dd¢p)" in Q}.

We also say that ¢ is a Holder continuous subsolution to measures in M(¢, Q). Given ¢ a Holder
continuous function on the boundary 92 and a measure p in M(p, Q) we look for a real-valued
function u satisfying

u € PSHNL*®(Q), dd‘w)"=un in Q, limu(z) =y ((x) forxedf2, (1I-1)
—>X
and
ueC™(Q) forsome0<a <1. (1-2)

The Dirichlet problem (1-1) was solved by Kotodziej [1995] provided that there exists a bounded
plurisubharmonic subsolution. In our setting, the Holder continuity of ¥ on 92 and of ¢ on Q are
necessary in order to solve the Dirichlet problem (1-1), (1-2). In [Nguyen 2018] this problem is solved
under the extra assumptions

Y =0 and /(ddcgo)” < 4o00.
Q

We will see now that these assumptions are not generic.

Remark 1.1. Let p be a defining function for a smoothly bounded pseudoconvex domain €2. Then, —|p|*
for 0 < @ < 1 is Holder continuous on € and its Monge—Ampére measure is

o"|p["7 D (dd  p)" +na" (1 —e)|p|" ™" dp AdCp A (dd° )"
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Therefore, for a neighborhood U, C C" of a strictly pseudoconvex point x € 9€2,
/ [dd(—|p|*)]" = +o0.
U,NQ

In particular, fQ [dd°(—|p|*)]* = +o00. Furthermore, let v be a plurisubharmonic function on 2 and
Holder continuous on Q satisfying

/(dd”v)" < +00.
Q

A typical way to modify the value of v on 9€2 is to add it to an envelope
h(z) = sup{w(z) : w € PSH(Q) N C*(Q) : w},, < —v)}. (1-3)

However, we cannot guarantee that the function v + & has finite Monge—Ampere mass on 2. Thus,
removing the above assumptions is desirable for applications.

The first main result of this paper is as follows.

Theorem A. Ler v € CO(3Q) and pu € M@, Q). Then, there exists a unique solution u € CY%Q) 1o the
Dirichlet problem (1-1).

This theorem is closely related to a question of S. Kotodziej [Dinew et al. 2016, Question 14], where
he asked if one could prove Theorem A when the subsolution ¢ is only continuous? The question is still
open in general. Very recently in [Kotodziej and Nguyen 2018b] we showed that Theorem A still holds
true for the subsolution ¢ satisfying a Dini-type continuity condition.

The next result gives a necessary and sufficient condition under which a positive Borel measure admits
a Holder continuous plurisubharmonic potential. In particular, the answer to a question of A. Zeriahi
[Dinew et al. 2016, Question 17] is affirmative.

Theorem B. Assume that v is Holder continuous and p € M(@, 2). Then, the Dirichlet problem (1-1),
(1-2) is solvable.

This theorem can be seen as the local version of [Demailly et al. 2014], where the compact Kéhler
manifold setting was considered (see also [Kotodziej and Nguyen 2018a] for the Hermitian manifold case
and the notion of subsolution in the compact manifold setting there). Now, we can say that the complex
Monge—Ampere equation on a compact Kihler (Hermitian) manifold admits a Holder continuous solution
if and only if it can be written locally as Monge—Ampere operators of Holder continuous plurisubharmonic
functions. The result has been also generalized to the complex Hessian equation [Kotodziej and Nguyen
2019]. Given Holder continuous plurisubharmonic functions uq, ..., u, in 2, it follows by the theorem
that there exists a Holder continuous plurisubharmonic function such that

ddw)" =dduy A - ANddCu,.

We also obtain the convexity of the set of Monge—Ampere measures of Holder continuous plurisubharmonic
functions in 2. Another important consequence is the so-called L? property given in Corollary C below.
In particular, our result covers the main findings in [Baracco et al. 2016, Charabati 2015; 2017], where
the L? property with respect to the Lebesgue measure was considered.
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Corollary C. Let u € M(p, Q) and f € LP(2,du), p > 1, a nonnegative function. Suppose that ¢ is
a Holder continuous plurisubharmonic function on a neighborhood of Q. Then, fu € M($, Q) for a
Hoélder continuous plurisubharmonic function ¢ in Q.

2. Preliminaries

In this section we will recall results that are needed in the proofs of Theorems A and B and Corollary C.
If there is no other indication, then the notation in this section will be used for the rest of the paper.

Let  be a bounded strictly pseudoconvex domain in C". Let p € C?(2) be a strictly plurisubharmonic
defining function for 2. Namely,

Q={p <0} and dp#0 onof. (2-1)
Let us denote by 8 = dd®|z|? the standard Kihler form in C". Without loss of generality we may assume
dd‘p>p on Q. (2-2)

Throughout the paper the Holder continuous subsolution ¢ and the associated set of measures M (g, €2)
are defined as in the Introduction.
The following estimate will be very useful for us. For simplicity we write

I-lloo :=sup| -] and ||-||p:=/|-|!’dvzn, 2-3)
Q Q

for the Lebesgue L”-norm for p > 1.

Lemma 2.1 [Btocki 1993]. Let vy, ..., v,, v, h € PSHNL>*(Q) be such that v; <0 fori=1,...,n,and
v < h. Assume that lim,_, 30[h(z) —v(z)] = 0. Then, for an integer 1 <k <n,

/ (h—v)*ddvi A~ Add vy <K Villso -+ - 10kl oo / ddVF AddCvesr Ao AddCv,.  (2-4)
Q Q
Consider also the Cegrell class

& = {v € PSHNL™(Q)

lim v(x) =0 for all z € 92 and / dd‘v)" < +oo}. (2-5)
X—>Z Q

The Cegrell inequality in this class reads:

Lemma 2.2 [Cegrell 2004]. Let vy, ..., v, € &. Then,

1/n 1/n
/ddcvl/\---/\ddcvn < (/ (ddcvl)"> (/ (ddcvn)”> : (2-6)
Q Q Q

We need also to work with a subclass of the Cegrell class:
& = {v €& / ddv)" < 1}. 2-7)
Q

The decay of the volume of sublevel sets of functions in the class £ is equivalent to the volume-capacity
inequality. This inequality plays a crucial role in the capacity method due to Kotodziej to obtain the
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a priori and stability estimates for weak solutions of the complex Monge—Ampere equation. Here the
capacity is the Bedford—Taylor capacity and it is defined as follows. For a Borel set E C €2,

cap(E, Q) := sup{f (ddw)" :w e PSH(Q), 0 <w < 1}. (2-8)
E

In what follows we shall write cap(E) instead of cap(E, 2) for simplicity as the domain 2 is already
fixed.

3. Proof of Theorem A

In this section we shall prove the following result.

Proposition 3.1. Assume that @ € M(@, 2). Then, there exist uniform constants oy, C > 0 depending
only on ¢, Q such that, for every compact set K C €,

—ap
u(K) < C cap(K) eXP(w)- (3-1)

Notice that under the assumption fQ (dd )" < 400 a similar inequality, without the factor cap(K) on
the right-hand side, was proven in [Nguyen 2018].

Remark 3.2. Theorem A will follow immediately from the proposition and [Kotodziej 2005, Theorem 5.9]
as u belongs to the class (A, h) with h = ¢*0* and a uniform A > 0.

We will need the following two lemmas. The first one tells us how fast the Monge—Ampere mass of
(dd“p)" on large sublevel sets goes to infinity.

Lemma 3.3. Letv € 56. Then, there exists a uniform constant C such that, for s > 0,

/ (dd )" <
{v<—s}

This estimate should be compared with [Kotodziej 2005, Lemma 4.1]. If ¢ is a C2?-smooth function

C n
s}'l

on €, then exponential decay as s tends to 400 has been obtained there. Although in our case, we are
more interested in the situation when s tends to 0.

Proof. Set vy := max{v, —s}. Then, vy = v on a neighborhood of 9€2. Moreover,

vx/z—vzg on {v < —s} € Q. (3-3)
Therefore,
: 2\ . 2"n! i
| wdor < (—) [ o= vrador <= e, [ @, (3-4)
{v<—s} N Q N Q
where the second inequality follows from Lemma 2.1. 0

On the other hand the volume with respect to the measure (dd )" of small sublevel sets of functions
in &) decays exponentially fast to zero. The Holder continuity of ¢ is crucially important to prove such
an estimate.
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Lemma 3.4. There exist uniform constants T > 0 and C > 0 such that, for v € 5(’) and s > 2,

/{ }(dd%p)” <Ce ™. (3-5)

Proof. We follow ideas of Dinh, Nguyén and Sibony [Dinh et al. 2010]. With the same notation as in the
proof of Lemma 3.3 we have for s > 2

2
f (ddg)' <> f (052 — V)(dd Q)" < / (U2 — ) (dd )", (3-6)
{v<—s} s Ja Q
Let us define
S i= (dd @)k A Bk,

where 8 = dd€|z|> and 0 < k < n is an integer. Our first goal is to show that there exist & > 0 and C > 0
(independent of v and s) such that, for v € 56 and s > 1,

f (vs —V)Sk < C([ (vs — V) dVZn) , (3-7)
Q Q

where vy = max{v, —s}. Indeed, without loss of generality we may assume that

0 < flvs — vl < 155- (3-8)

Otherwise, if ||vs — v||; = 0, then the inequality trivially holds. If ||vy — v||1 >
s >1,v <0, and Lemma 2.1, that

f (v — 0)Si = / (—s— )8 < / (—)kSe < Cllollk.. (3-9)
Q {v<—s} Q

1 .
106° then we have, using

This implies the inequality.
Next, under the assumption (3-8) we prove the inequality by induction in k. The case k = 0 is obvious.
Assume that for every integer m < k we have

/(vs —v)Sy, < C(/ (vs — v)den) m. (3-10)
Q Q

Then, we need to show that there exists 0 < a4 < 1 such that

/ (v — V) Ses1 < c( f (v, —v)dvzn> (3-11)
Q Q

S = (dd)k A gF 1. (3-12)

For simplicity we write

Let us still write ¢ to be a Holder continuous extension of ¢ onto a neighborhood U of Q. Consider
the convolution of ¢ with the standard smoothing kernel x, i.e., x € C2°(C") a radial function such that
x(z) >0, supp x € B(0, 1) and fc:n x(z) dVo, = 1. Namely, for z € U and § > 0 small,

7—7

1
pia@=[ Gt dva) = w(z/)x( ) V@) G-13)
B(0,1) " Jp

(z,1)
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Observe that

lo* x:(2) —@(2)] < / lp(z —12') — ()| x () d V2 (2') < Ct* (3-14)
B(0,1)
and 5
% * X, Cllolloo
< . 3-15
9207k (Z)‘ - 12 (-15)

We first have

/ (v —V)dd°p A S <
Q

/(vs—v)ddc(p*x,/\S‘—i—
Q

fg(vs —v)dd(p*x; —@)AS

=11+ 1. (3-16)

It follows from (3-15) that

o) c
n= S [wousap =S5 [ o-os (3-17)
t Q t Q
Hence,
Cliell ,

= — 5=l =", (3-18)

We turn to the estimate of the second integral /,. By integration by parts
/ (vg —v)dd“(p* s =) NS = / (@ x: —@)dd (vs —V) NS
Q Q
=/ (¢ * x: —@)dd (vy —V) A S, (3-19)
{v<—s/2}
as vy, = v on {v > —s}. Hence,
1) 5/ lo* x; —@|(ddv+ddvi)) AS < Ct“/ (ddv+ddvs) AS. (3-20)
{v<—s/2} {v<—s/2}

For the first term of the integral on the right-hand side we have

' 4\ e
ddvanS<|- (vsa—v) ddONS
{v<—s/2} § {v<—s/4}

< Sgk /Q (V574 — V)* ddv A (dd @) A B F1. (3-21)
Applying Lemma 2.1 we conclude that
[ woa=otddonaol ap =t <cloll, [ @acoftapTl
Using ddp > B (see Section 2) and Cegrell’s inequality we get

/(ddcv)k+1/\/3n_k_1 f/(ddcv)k+l/\(ddcp)n_k_l
Q Q

(k+1)/n (n—k—1)/n
< < / (dd%)") ( / (ddc,o)"> : (3-23)
Q Q
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Combining (3-21), (3-22) and (3-23) we have, for s > 1,
f ddvA S < Cllgl|~,. (3-24)
{v<—s/2}

Notice that v, € £). The same arguments as above imply that for s > 1

/ ddvg A S < C||<p||’f>o. (3-25)
{v<—s/2}
Thus, altogether we have
Cliell
I+ b= — 7= oy = Il + Cllplist”. (3-26)
If we choose
3 (01074
t=los = vl e == (3-27)

then the proof of (3-7) is completed.
We now conclude the proof of the lemma. It follows from [Nguyen 2018, equation (2.26)] and
[Kotodziej 2005, Lemma 4.1] that

/ (v — v) dVay < Ce™™,
Q

where 1o > 0 and C > 0 are uniform constants independent of v and s. Combining this with (3-6) and the
inequality (3-7) for k = n the lemma follows. O

Remark. The referee has suggested that the exponent 2 in the denominator of (3-15) can be improved.
Thus, the inequality (3-26) can be improved too, so the final choice of «;,, will be better.

We are ready to prove the main result of this section.

Proof of Proposition 3.1. Let us define v := (dd“p)". First, we show that for v € &; there exist uniform
constants oy, C > 0 such that

—ays
v(v < —s) <

for all s > 0. (3-28)

Indeed, there are two possibilities: either s > 2 or s < 2. If s > 2, then the inequality follows from
Lemma 3.4 as
n,_ —ts/2 (21’! )n —n
s'e <|—)e".
T

(We can take o] = 7/2). Otherwise, if 0 < s < 2, we have e”*'® > C. Then, the desired inequality follows
from Lemma 3.3.

To complete the proof of the proposition we use an argument which is inspired by the proofs in [Ahag
et al. 2009]. Let K C €2 be compact. Since v is dominated by a Monge—Ampere measure of a bounded
plurisubharmonic function, it vanishes on pluripolar sets. Hence, we may assume that K is nonpluripolar.
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Let h be the relative extremal function of K with respect to €. Since K C £2 is compact, it is well
known that

lim hj =0.
g_lglg k(&)
By [Bedford and Taylor 1982, Proposition 5.3] we have
" :=cap(K, Q) = / (dd°hy)" > 0.
Q

Let 0 < x < 1. Since the function w := h% /7 satisfies assumptions of the inequality (3-28), we have

1 n 1—
v(h*K<—1+x):v(w< +x>§C ! exp(—u)
T

af (1—x)" T

Letting x — 0%, we obtain

s o <& I )
v(hy <—1) < o cap(K, 2) eXp([cap(K, Q)]l/n). (3-29)

Since hx = h outside a pluripolar set, we have
v(K) <v(hg =—1)=v(hx =—1) <v(hy <-1). (3-30)
We combine (3-29) and (3-30) to finish the proof. Il

4. Proof of Theorem B

In this section we will prove the Holder continuity of the solution obtained in Theorem A provided
furthermore that the boundary data i is Holder continuous. Notice that the zero boundary values of the
subsolution ¢ are not essential. We can modify them by adding an appropriate envelope, similar to (4-5),
because no condition has been imposed on the total mass of the subsolution.

By Theorem A there exists a unique continuous solution to the Dirichlet problem (1-1), namely,
u € PSH(Q) N C%(Q) solving

(ddu)" = u, u(z) =y (z) forall z€0. (4-1)

We are going to show that u € C%' () for some exponent 0 < o’ < 1.

Outline of the proof. Let us sketch the proof of Theorem B. Overall we follow the steps in the proof of
[Nguyen 2018], which in turns followed [Guedj et al. 2008]. Though, we need to consider the problem
on an increasing exhaustive sequence of relatively compact domains in €2. Define for § > 0 small

Qs :={z € Q:dist(z, 0Q) > 6}, 4-2)

and for z € Qs we define

us(z) ;== sup u(z+¢), usz):= >
l]<6 0208

/ U(z+8) dVan(©), 4-3)
[g]<$

where o7, is the volume of the unit ball.
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Then, we wish to show that

sup(is —u) < 8%
Qs

for some 0 < @ < 1, where < means that the inequality holds up to an absolute constant. Thanks to the
Holder continuity of the boundary data we can extend it5 to & by a gluing process such that the new function
is plurisubharmonic on €2 and equal to u outside €2, for some (small) € > §. Moreover, we shall still have

sup(us — u) < sup(it —u) + Ce%,
ol Q

where « is the Holder exponent of the boundary data yr. Next, we shall show that

, 1
ddp)" 5 —.
Q. e

This estimate enables us to invoke the results of [Nguyen 2018]. It gives a precise quantitative estimate
supq (&2 — u) in terms of § and ¢. Finally, we can choose ¢ = 87" with @’ > 0 so small that our desired
inequality holds.

We now proceed to give details of the argument. For the remaining part of the proof we fix a small
8o > 0 and consider two parameters &, € such that

0<8<e<3dy. (4-4)

We may assume that 1 € C%2*(3Q2), where 0 < o < % (decreasing « if necessary) is the Holder exponent
of the subsolution ¢. Then, we define

h(z) = sup{v(z) € PSH(Q) N CO(Q) : hy,, < ). (4-5)

It is well known [Bedford and Taylor 1976, Theorem 6.2] that 7 € PSH(€2) N Co*(Q) and h = Y on 0€2,
which is also the solution of the homogeneous Monge—Ampere equation in 2. Hence, we may assume

¥ e PSH(Q)NC™(Q) and (ddy)" =0. (4-6)
Thanks to the comparison principle [Bedford and Taylor 1982] we get
Yv+e<u<y onQ. (4-7)
Lemma 4.1. We have, for z € Qs \ Q,

us(z) <u(z) + Ce”. (4-8)
In particular,
sup(its — u) < sup(iis —u) + Ce®. (4-9)
Qé Qs

Remark 4.2. It is important to keep in mind that the uniform constants C > 0 which appear in the lemma,
and many times below, are independent of § and €.

Proof. Fix a point z € Qs \ Q. Since u is continuous, there is £; € C" with |¢;| < 8 such that

us(z) =u(z+1). (4-10)
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Moreover, there exists ¢, € C" with |¢3| < ¢ such that z 4+ ¢ € 9. Using this and (4-7) we get
us(z) —u(@) =Y (z+86) — Y@ + @]
=Y (@+8) - v @] +1ek) — e+ )]
< Gilal* + Col &, (4-11)

where C1 = ||{/||cow, C2 = ||@]|lco«. Since § < g, we conclude the proof of the first part.
To prove the second part, we observe that u < 15 < us. Therefore,

sup(iis — u) < sup(its —u)+ sup (us —u). (4-12)
Qs Qe Q5\ 2
Combining this with the first part we get the second part. O

The lemma above tells us that to obtain the Holder continuity of the solution u it is enough to get the
estimate on the domain €2, for € a small constant, which is comparable to a small positive power of §. To
achieve our goal we will work on the domain €2, and keep track of the (negative) exponent of ¢.

Recall that

Q. ={z € Q:dist(z, 0Q) > ¢}. (4-13)
We define
D, :={p(2) < —¢}, (4-14)
where p is the defining function of 2 as in (2-1). The following lemma is very similar to Lemma 3.3.
The main observation is that the domains D, and €2, are comparable.

Lemma 4.3. Let 1 <k <n be an integer. Let v € PSHNL>®(R2). Then,

C k
/ ddv)* Ap T < % (4-15)
Q. €
where C is independent of ¢.
Proof. Observe that, from Hopf’s lemma,
lp(2)] = co dist(z, I€2) (4-16)
for a uniform constant 0 < ¢g < 1. Therefore,
Q. C{p(z) < —coe}. 4-17)
Since max{p, —&'/2} — p > &’/2 with ¢’ = ¢cpe on the latter set, it follows that
2 k 8/ k
ddv)faprr< (= / max{p, —— t — p| (ddv)* A g"*
Q e') Ja 2
C k
< ”vk”OO /(ddcp)k/\ﬂn—k’ (4-18)
& Q

where we used Lemma 2.1 for the second inequality. The last integral is bounded by the C2-smoothness
of p on Q. O
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We will now approximate the subsolution ¢. Let us define

Ap
(Ps ‘= max ¢ —& — (4—19)
&
where A := 14 [|¢]| -

Lemma 4.4. We have

CA"
/ (dde)" < . (4-20)
Q e
Moreover,
1p, - < (ddgs)" (4-21)

as two measures, where D, is defined in (4-14).

Proof. To estimate the Monge—Ampere mass of ¢, we use [Bedford and Taylor 1982, Corollary 4.3],
which is a consequence of the comparison principle. Since Ap/e < ¢, < 0 and the functions have zero
values on the boundary,

[ @acgor <= [ @apr. (422)
Q e Ja

The last integral is finite as p is C Zona neighborhood of the closure of 2. Furthermore, since ¢.(z) =
p(z)—eon D, ={p < —¢e} when 0 < ¢ < 1, it is clear that

1p, - p < (ddpe)". O

Remark 4.5. Using the same argument, we also get that for an integer 1 <k <n

. C A
| @ nprt < S5 (4-23)
Q &

We obtain now the volume-capacity inequality for the approximation sequence.

Corollary 4.6. There exist uniform constants oy > 0 and C > O which are independent of ¢ such that, for
every compact set K C €2,

/ ddp )" < E-Ca (K) -ex . S (4-24)
= SR feap 1 )
In particular, for a fixed t > 0, there is a constant C(t) > 0 such that, for every compact set K C €2,
C
/ @degey < 2 fcap(y) . (4-25)
K &

Proof. This is the analogue of Proposition 3.1 with ¢ replaced by ¢,, and thus the proof is the same as
that of the proposition. Here we need to take into account three facts:

C C
l@elloo < e and ”(Ps”CO,a(Q) = 2’ (4-26)
and, for an integer 1 < k < n (Remark 4.5),
C
/ (dd ) A B F < e (4-27)
Q

This explains why we need an extra factor C/&" on the right-hand side of the inequality. O
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Next, we have the following stability estimate for the Monge—Ampere equation similar to [Gued;j
et al. 2008, Theorem 1.1]. However, it also takes into account the possibility of infinite total mass of the
measure on the right-hand side.

Proposition 4.7. Let u be the solution of (4-1) and Q2 be defined by (4-13). Let v € PSHNL>®(Q2) be
such that v =u on Q\ Q. Then, there is 0 < ap < 1 such that

C @2
sup(v —u) < —(/ max{v — u, 0} du) . (4-28)
Q e" \Ja
Proof. Without loss of generality we may assume that supg (v —u) > 0. Set

50 1= irglzf(u —v). (4-29)

We know that for 0 < s < [sp]
U(s) :={u <v+so+s} € Q. (4-30)

Lemma 4.8. Fix v > 0. Suppose 0 < s,t < |so|/2. Then,
C(7)

o leap(U (s + NI (4-31)

1" cap(U (s)) <

Proof of Lemma 4.8. Let 0 < w < 1 be a plurisubharmonic function in 2. We have the chain of inequalities

o / (dd“w)" = f [dd* (rw)]"
Uls) {u<v+sp+s}

S/ [dd® (v +tw)]" Sf (ddu)",
{u<v+so+s+tw} {u<v+so+s+tw}

where we used the comparison principle [Bedford and Taylor 1982, Theorem 4.1] for the last inequality.

(4-32)

Since {u <v+s9p+s+tw} C U(s+1t) and w is arbitrary, we get

t" cap(U(s)) < / du. (4-33)
U(s+t)

If we define ¢’ := cpe, where cg is the constant in (4-16), then
1p, -dp < (dd )"

as two measures. Since U (s +1t) C Q2. C Dy, it follows that

C
/ dp 5/ dd )" < 52 [cap(U (s +1)]'*7, (4-34)
U(s+1) U (s+1) (coe)"
where the last inequality follows from Corollary 4.6. The proof of the lemma is complete. 0

Now together with Lemma 4.8, the rest of the proof of the proposition is the same as in [Gued; et al.
2008, Theorem 1.1] (see also [Kotodziej and Nguyen 2016, Theorem 3.11]). (|

The following result is a variation of Lemma 2.7 in [Nguyen 2018], where we considered the Holder
continuity of a measure v on &), though the situation now is different as v(£2) is no longer finite.
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Theorem 4.9. Let u be the solution of (4-1) and Q2. be defined by (4-13). Let v € PSHNL*(2) be such
that v =u on Q\ Q.. Then, there exists 0 < a3 < 1 such that

a3
/ lv—uldu < (f |v—u|dV2n> ) (4-35)
Q Q

Proof. This is a variation of the inequality (3-7) with

C
8"+1

ke i= (dd )" A B, (4-36)

where ¢, = max{gp — ¢, Ap/e} and 0 < k <n is an integer. Since u < §, ; on €2, it is enough to show
that there is 0 < t < 1 satisfying

c
[ =8, < gl (437)
for v > u on Q. (In the general case we use the identity
|v —u| = (max{v, u} —u) + (max{v, u} — v)

and apply twice the inequality (4-37) to get the theorem.)

Now we can repeat the inductive arguments of the proof of (3-7) with v, u and ¢, in the places of
vy, v and ¢, respectively. However, there are differences as follows. First, v, u are no longer in &).
Second, if ¢ is extended as in the proof of Lemma 3.4, then ¢, = max{p — &, Ap/e} is also defined on

the neighborhood U of Q, and

C

ay < —.
@ ll co vy < -

Taking into account above differences, to pass from the k-th step to the (k+1)-th step we need the
following inequality, corresponding to (3-16) (with S, := (dd"(pg)k A ,B”_k_l):

/Q(v—u)ddcgog/\Sg < /S;(v—u)ddcgog*xt/\Sg + /Q(v—u)dd”(gog*x, — @) A Se
= 11e+ . (4-38)
e e * 1 Cliglloo
‘ 82,07 ‘ =T (439)
and by the induction hypothesis at the k-th step, there exists 0 < t; < 1 such that
|y = I
Q &
we conclude that
hes e fQ W08 AP < TOZ - ul. (4-40)

Similarly to (3-19), by integration by parts, u = v on @\ €2, and
o

Ct
lpe * x1(2) — @e(2)] < put
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it follows that

o
(dd“v +dd“u) A S,. (4-41)
Q

12,8 =<

At this point as u, v do not belong to £, we need to use a different argument to bound I, .. Namely,
similarly to Lemma 4.3, we have

Cllu+vlloo(1+ @)

(dd‘u+ddv) NS, < v

Q;

(4-42)

Indeed, we first have

/

c c k n—k—1 2 € c c k n—k—1
dd(u+v) A(dde)" N B 5; max p,—a —p ) Add (u+v) Adde)" N B
Q

£

C . . L
< ;||u+v||oof(dd‘p)A(ddwg)"Aﬂ" el
Q

where &’ = cpe with ¢y defined by (4-16). The desired inequality (4-42) follows from Remark 4.5. Now,
combining (4-41) and (4-42) we get

Cr
he =77 (4-43)

Next, it is easy to see (from Lemma 4.4) that

1 n
/(U_M)S’ZSCHMHOO( + llelloo) '
Q et

Therefore, we can assume 0 < ||lv — u||; < 0.01. Thanks to (4-40) and (4-43) we have

o

C Ct
c Tk
/Qw—u)dd 0e NS < v —ullf + o5
If we choose 1 = ||jv — ullfkﬁ, Ter1 = aTi /3, then

.o C
/Q(v—u)Ss/\dd 0 = sl —ull}.

Thus, the induction argument is completed, and the theorem follows. U

The last ingredient to prove Theorem B was proved first in [Baracco et al. 2016] (see also [Nguyen
2018, Lemma 2.12]). Here, the estimate is sharper and the proof is simpler too.

Lemma 4.10. For § > 0 small we have

lits —u| d Vs, < C8. (4-44)
Qs
Proof. First, we know from the classical Jensen formula (see, e.g., [Guedj et al. 2008, Lemma 4.3]) that

f lits —u| < C82/ Au(z). (4-45)
Q5

Qs
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Again, it follows from Lemma 4.3 applied for k =1 and § = ¢, that

C
f Au(z) < —. (4-46)
Q 8
Therefore,
/ Iﬁs—uldenS/ Iﬁa—uldenHlulloo/ dVy, < C8. (4-47)
Qs Qo5 Q25\ Q25
This is the required inequality. U

We are ready to prove the Holder continuity of the solution.

End of proof of Theorem B. Let us fix § such that 0 < § < §p small and let ¢ be such that § < e < &g, which
is to be determined later. Thanks to Lemma 4.1 and 15 < us we have g — Cs® < u on 9S2,. Therefore,

the function R
max{is — Ce% u} on 2,

"= {u on 2\ 2 (4-48)

belongs to PSH(2) N CY%(). Notice that & > u in 2, and
u=u on\ Q. (4-49)
Again, by the second part of Lemma 4.1 we have

sup(its — u) < sup(ius —u) + Ce®
o) Q

<sup(ét —u) + Ce* 4+ Ce“. (4-50)
Q
By the stability estimate (Proposition 4.7) there exists 0 < oz < 1 such that

C 2
sup(u —u) < —(/ max{u — u, O}du)
Q " \Ja

C o2
5—(/ Iﬁ—uldu) , 4-51)
en Q

where we used the fact that # = u outside €2.. Using Theorem 4.9, there is 0 < a3 < 1 such that
3 C ~ a3
SgP(U—M)Sm Qlu—ulden

C a3
SW(/QEW‘S_MMVZ") , (4-52)

where we used 0 <t —u < 1g, - (15 —u) and Q. C Qs for the second inequality. It follows from (4-50),
(4-52), and Lemma 4.10 that

5203

sup(ils —u) < Ce* + ——. (4-53)
Qs €

Now, we choose a4 = aara3/(2n + 1+ «a) and

&= 8a2a3/(2n+1+o{).
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Then, supg, (t1i5—u) < C§*. Finally, thanks to [Gued; et al. 2008, Lemma 4.2] we infer that sup, ,(us—u) <
C5%. The proof of the theorem is finished. (|

Remark 4.11. In the above proof the Holder exponent of the solution u is &’ = oy = @z /(2n+ 1+ ),
where we can take 0 <ap < 1/(n+1) and a3 =" /3" by [Gued;j et al. 2008] and Theorem 4.9 respectively.
In our opinion it is far from being optimal. If we assume that the subsolution ¢ is merely continuous,
then we do not know if the inequality (4-51) holds true. Therefore, it seems to be hard to improve the
proof above to get the answer for the subsolution problem in the continuous category.

5. Proof of Corollary C

Let u e M(p, Q) and 0 < f € LP(Q2, du) with p > 1. We wish to show that there exists ¢ € PSH(2) N
C%%(Q), with 0 < & < 1, such that

fdp e M(g, ). (5-1)
The proof of the corollary is similar to that of Theorem B with the aid of the following two lemmas.

Lemma 5.1. Fix a constant T > 0. Then, there exists a uniform constant C (t) such that, for every compact
set K C Q,

/ fdp < C(t)lcap(K)]'. (5-2)
K

Proof. Holder’s inequality and Proposition 3.1 give us

d (P=1)/p —% b
/Kf w = fllzr@,dwln(K)] < C|:CaP(K)'€XP<W>] . (5-3)

Let 0 <a, b, c < 1 be fixed. The following elementary inequality holds for x > 0:
a ¢ 1+7
xtexp|—— | =C(ox 7,
X
where C(t) = C(7, a, b, ¢) depends only on 7, a, b, c. Thus, the desired inequality follows. O
Thanks to the lemma and [Kotodziej 2005, Theorem 5.9] we can solve the Monge—Ampere equation
u e PSH(Q)NCYRQ), (ddw)" = fdu, u),,=0. (5-4)

Moreover, the above lemma will enable us to have the stability estimate (Proposition 4.7). The next
lemma is also a consequence of the generalized Holder inequality which was proved in [Nguyen 2018,
Corollary 2.14].

Lemma 5.2. Let v € PSH(Q2) N CO%Q) be such that v > u in Q and v = u near 3S2. Then, there exist
uniform constants C > 0 and 0 < a3 < 1 such that

fg(u—u)fdufcnv—uniiw). (5-5)
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Next, we use the extendability assumption of ¢ to get a result similar to Lemma 4.1 in the current
setting. Namely, let Q be a strictly pseudoconvex neighborhood of Q such that ¢ € PSH(S) and Holder
continuous on the closure of 2. Thanks to the results in [Nguyen 2018] there exists v € PSH(SNZ) and
Hoélder continuous in satisfying

(ddv)"=1qfdp in S, v=0 on dS.

Consider A to be the maximal pluriharmonic extension into €2 of (—v),, which is Holder continuous on
3% (see (1-3)). So h is also Holder continuous on 2. Then, by the comparison principle,

v+h<u<0 onQ.

From this we easily deduce the desired estimate near the boundary for u.

Now the rest of the proof goes exactly as in the proof of Theorem B. Namely, the inequality (4-51)
holds for the measure f du, next use Lemma 5.2 and Theorem 4.9 to get the inequality (4-52). Then
we get the Holder continuity of u. Notice that the Holder exponent is worse by a factor of &3. Thus,
fdue M(u, Q).
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THE CALDERON PROBLEM FOR
THE FRACTIONAL SCHRODINGER EQUATION

TUHIN GHOSH, MIKKO SALO AND GUNTHER UHLMANN

We show global uniqueness in an inverse problem for the fractional Schrodinger equation: an unknown
potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also
show global uniqueness in the partial data problem where measurements are taken in arbitrary open,
possibly disjoint, subsets of the exterior. The results apply in any dimension > 1 and are based on a strong
approximation property of the fractional equation that extends earlier work. This special feature of the
nonlocal equation renders the analysis of related inverse problems radically different from the traditional
Calder6n problem.

1. Introduction

In this article we consider a nonlocal analogue of the inverse conductivity problem posed in [Calderén
1980]. In the standard Calderén problem, the objective is to determine the electrical conductivity of a
medium from voltage and current measurements on its boundary. This problem is the mathematical model
of electrical resistivity/impedance tomography in seismic, medical and industrial imaging. It serves as a
model case for various inverse problems for elliptic equations, and has a rich mathematical theory with
connections to many other questions. We refer to the survey [Uhlmann 2014] for more details.

In mathematical terms, if 2 C R” is a bounded open set with Lipschitz boundary (the medium of
interest), after a standard reduction one often considers the Dirichlet problem for the Schrodinger equation

(-A+qu=0 1ng, ulae = f,

where g € L°°(€2) and 0 is not a Dirichlet eigenvalue for —A + ¢ in Q2. The boundary measurements are
given by the Dirichlet-to-Neumann map (DN map)

Ay H'2OQ) — H'20Q),

defined weakly in terms of the bilinear form for the equation. Here and below, we denote the standard
L? based Sobolev spaces by H*.

For more regular boundaries and functions f, the DN map is given by the normal derivative A, f =
dyu|3q, where u is the solution with boundary value f. The inverse problem is to determine the potential g
in Q2 from the knowledge of the DN map A,.

MSC2010: primary 26A33, 35J10, 35R30; secondary 35J70.
Keywords: inverse problem, Calderén problem, fractional Laplacian, approximation property.
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We will consider an inverse problem for a nonlocal analogue of the Schrédinger equation. In fact, our
equation will be the fractional Schrédinger equation ((—A)* +¢g)u =0 in 2, where 0 < s < 1. Here the
fractional Laplacian is defined by

(—=A)Y'u=7"HEFaE), ueH RY),

and & = Zu is the Fourier transform of u. This operator is nonlocal (it does not preserve the support
of u), and one natural way to set up the Dirichlet problem is to look for solutions u € H*(R") satisfying

(=AY +qu=0 inQ, ule, = f,
where f € H*(S2.), and €2, is the exterior domain
Q. =R"\ Q.

We recall basic facts about weak solutions in Section 2. In particular, there is a countable set of Dirichlet
eigenvalues, and we will assume that ¢ is such that O is not an eigenvalue; that is,

ifu e H (R") solves ((—A)* +¢g)u =01n  and u|g, =0, then u = 0. (1-1)

This holds, e.g., if ¢ > 0. Then there is a unique solution u € H*(R") for any f € H*(L2,), and one may
define an analogue of the DN map,
Ayt HY (Q2,) > H*(R)",

that maps f to a nonlocal analogue of the Neumann boundary value of the solution . (This discussion
assumes that €2 is a bounded Lipschitz domain; see Section 2 for the case of general bounded open sets.)

We will define A, in Section 2 via the bilinear form associated with the fractional Dirichlet problem,
which will be sufficient for the proof of Theorem 1.1. There are other nonlocal Neumann operators that
one could use, but by Theorem 1.1 any reasonable measurement operator would be determined by A ;
we will verify this directly for the operator N in [Dipierro et al. 2017a]. Again, if € has C* boundary
and ¢ and f are more regular, the DN map is more explicit and is given by

Ay HP(Q) — HPMP(Q), A f =(—A)ulg,,

where u is the solution of ((—A)* + ¢g)u = 0 in Q with exterior value f, and maX{O, s — %} <B < %
(such a B exists since 0 < s < 1). Heuristically, given an open set W C €2, one can interpret A, f|w as
measuring the cost required to maintain the exterior value f in W. For more details on these facts (which
will not be needed for the proof of Theorem 1.1), we refer to the Appendix.

The following theorem is the main result in this article. It solves the fractional Schrodinger inverse
problem in any dimension # > 1, and also the partial data problem with exterior Dirichlet and Neumann

measurements in arbitrary open (possibly disjoint) sets Wy, W, C €2,.
Theorem 1.1. Let 2 C R", n > 1, be bounded open, let 0 < s < 1, and let q1, g2 € L°°(RQ) satisfy (1-1).
Let also Wi, Wy C Q, be open. If the DN maps for the equations ((—A)* + gj)u = 0 in Q satisfy

Ag flw, = Ag, flw, forany f e CZ(Wy),
then q1 = q7 in Q.
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For the usual Schrodinger equation (—A +¢q)u =0 and the related DN map A, on the full boundary 02,
the corresponding result is due to [Sylvester and Uhlmann 1987] when n > 3 and to [Bukhgeim 2008]
when n = 2 for slightly more regular potentials; for the case of L? potentials see [Blasten et al. 2015]
when n =2 and [Chanillo 1990; Nachman 1992] when n > 3. The partial data problem of determining g
from the knowledge of A, f|r for any f supported in I', when I" is an arbitrary open subset of 3€2, was
solved in [Imanuvilov et al. 2010] when n =2 for g; € C?>“. The corresponding result in dimensions n > 3
is open, but there are several partial results including [Kenig et al. 2007; Isakov 2007; Kenig and Salo
2013]. The case of measurements on disjoint sets is even more difficult, and counterexamples may appear
[Imanuvilov et al. 2011; Daudé et al. 2019a; 2019b]. See the surveys [Imanuvilov and Yamamoto 2013;
Kenig and Salo 2014] for further references.

The proof of Theorem 1.1 begins by showing that if the two DN maps are equal, then (exactly as in
the usual Schrodinger case) one has the integral identity

f (@1 —q)uiurdx =0
Q

for any u; € H*(R") that solve ((—A)*+¢;)u; =0 in 2 and satisfy supp(u;) C QU V_Vj. For the standard
Schrodinger equation, one then typically uses special complex geometrical optics solutions u; to show
that the products {uu>} form a complete set in L' (£2). See [Uhlmann 2014] for an overview.

However, solutions of the fractional Schrodinger equation are much less rigid than those of the usual
Schrodinger equation. The fractional equation enjoys stronger uniqueness and approximation properties,
as demonstrated by the following theorems:

Theorem 1.2. If 0 <s < 1, ifu € H"(R") for some r € R, and if both u and (—A)*u vanish in some
open set, then u = 0.

Theorem 1.3. Let Q C R" be a bounded open set, and let Q1 C R" be any open set with Q C Q1 and
Q\Q#o:

@) If g € L™®(R) satisfies (1-1), then any f € L*() can be approximated arbitrarily well in L*>(2) by
functions u|q where u € H*(R") satisfy

(=AY 4+qu=0 inQ, supp(u) C Q.

(b) If Q has C* boundary, and if ¢ € C2°(Q) satisfies (1-1), then any f € C*() can be approximated
arbitrarily well in C*®(2) by functions d(x)"*u|q where u € H*(R") satisfy

(=AY 4+qu=0 inQ, supp(u) C Q.

(Here d is any function in C*® () with d(x) = dist(x, Q) near Q and d > 0 in Q. Also, v, > vin
C>(Q) means that v; — v in CX(Q) for all k > 0.)

Note that both of these properties fail for the usual Laplacian: if u € C2°(R") then both u and Au
vanish in a large set but # can be nontrivial, and the set of harmonic functions in L*(Q) is a closed
subspace of L%(2) which is smaller than L?(2).
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Theorem 1.2 is classical [Riesz 1938] at least with stronger conditions on u#, and even the strong
unique continuation principle holds in this context [Fall and Felli 2014; Riiland 2015; Yu 2017]. For
later applications we will give a robust proof using the Carleman estimates from [Riiland 2015] and the
Caffarelli-Silvestre extension [2007].

The following version of Theorem 1.3 has been proved in [Dipierro et al. 2017b]; see also [Dipierro
et al. 2019]: given f € CX(B,) and & > 0, there is u € H*(R") with (—A)*x =0 in B; and supp(u) C Bg
for some possibly large R = R, r > 1, so that

llue — f”ck(El) <é&.

Theorem 1.3 improves this by reducing the approximation property to the uniqueness property, Theorem 1.2,
using a Runge-type argument [Lax 1956; Malgrange 1956] and regularity for fractional Dirichlet problems
[Hormander 1965; Grubb 2015]. In particular, this implies that the result of [Dipierro et al. 2017b] is
valid for any fixed R > 1. The strong approximation property replaces the method of complex geometrical
optics in solving the inverse problem for the fractional Schrédinger equation.

The study of fractional and nonlocal operators is currently an active research field and the related
literature is substantial. We only mention that operators of this type arise in problems involving anomalous
diffusion and random processes with jumps, and they have applications in probability theory, physics,
finance, and biology. See [Bucur and Valdinoci 2016; Ros-Oton 2016] for further information and
references.

The mathematical study of inverse problems for fractional equations goes back at least to [Cheng et al.
2009]. By now there are a number of results, mostly for time-fractional models and including many
numerical works. Here is an example of the rigorous results that are available [Sakamoto and Yamamoto
2011]: in the time-fractional heat equation

afu—Au:O inSZx(O, T), u|3QX(0,T):0,

where 0 < o < 1 and 9/ is the Caputo derivative, u(0) is determined by «(7’) in a mildly ill-posed way
(for ¢ =1 this problem is severely ill-posed). In general, nonlocality may influence the nature of the
inverse problem but there are several aspects to be taken into account. We refer to [Jin and Rundell 2015]
for a detailed discussion and many further references. We are not aware of any previous rigorous works
on multidimensional inverse problems for space-fractional equations.

Finally, we note that Theorem 1.1 is a global uniqueness result in the inverse problem for the fractional
Schrédinger equation, both with full and partial data. This provides a starting point for further work
on inverse problems for fractional equations and nonlocal models. In fact, after this article was first
submitted as a preprint, several works that build upon the ideas introduced here have appeared. These
include results for low regularity and stability [Riiland and Salo 2018; 2019a], matrix coefficients [Ghosh
et al. 2017], semilinear equations [Lai and Lin 2019], reconstruction and shape detection [Harrach and
Lin 2017; Cao et al. 2019; Ghosh et al. 2018], and quantitative Runge approximation [Riiland and Salo
2019b; 2020]. See also the survey [Salo 2017].

This paper is organized as follows. Section 1 is the introduction. In Section 2 we review weak solutions
of fractional Dirichlet problems, and give a definition of the DN map. In Sections 3 and 4 we prove
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Theorems 1.2 and 1.3(a). The solution of the inverse problem, Theorem 1.1, is given in Section 5. In
Section 6 we invoke the regularity theory for fractional Dirichlet problems in [Grubb 2015] and prove
Theorem 1.3(b). Further properties and alternative descriptions of the DN map may be found in the
Appendix.

2. Fractional Laplacian

In this section we review some basic facts about Dirichlet problems for the fractional Laplacian; see, e.g.,
[Hoh and Jacob 1996; Felsinger et al. 2015; Grubb 2015; Ros-Oton 2016]. For simplicity, we will assume
most functions to be real-valued in this paper.

2A. Sobolev spaces. We first establish the notation for Sobolev-type spaces. We write H*(R") =
W*2(R") for the standard L? based Sobolev space with norm
Nl s gy = (DY ull L2y

where (£) = (14 |£]*)!/2, and the notation m(D)u = .Z ' {m(£)ii(¢)} is used for Fourier multipliers
when m € C*°(R") is polynomially bounded together with its derivatives. Our notation for the Fourier
transform is

)= Fu(€) = / e S u(x) dx.

n

If U C R" is an open set (not necessarily bounded), define the spaces (we follow the notation of [McLean

2000])
H*(U) ={uly :u € H*(R")},

H*(U) = closure of CX°(U) in H* (R"),
Hij(U) = closure of C°(U) in H*(U).
We equip H*(U) with the quotient norm ||u || s () =inf{||lw| gs : w € H*(R"), w|y =u}. Also, if F C R"
is a closed set, we define
Hy = H;(R") ={u € H*(R") : supp(u) C F}.

We say that an open set U C R” is a Lipschitz domain if its boundary aU is compact and if locally
near each boundary point U can be represented as the set above the graph of a Lipschitz function. Thus
U could be a bounded Lipschitz domain, or U could be R" \ €, where € is a bounded Lipschitz domain.
If U is a Lipschitz domain, then (with natural identifications, see [McLean 2000; Triebel 2002])

H'(U)=HSR"), seR
H%([R")* =H*WU) and H'(U)"'= Hg“'([R”), s € R,
H'(U)=HE(R) = Hy(U), —5<s<3.

2B. Fractional Laplacian. Let s > —n/2 and consider the fractional Laplacian in R”,

(=N 'u=7"YE*aE), ue,
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where . denotes Schwartz space in R”. If ¢ € C2°(R") with ¥ = 1 near 0, writing |£|** = ¥ (€)|£|* +
(1 — ¥ (£))|£]* and using the assumption s > —n/2 shows that |£|* is the sum of an L' function and a
smooth function whose derivatives grow at most polynomially. Thus (—A)* for s > —n/2 is a continuous
map from .% to L™.

There are many other definitions of the fractional Laplacian [Kwasnicki 2017]. For instance, if 0 <s < 1,
it is given by the principal value integral

(- ut =eocp. [ ne =)

Ro | — oyt

We next extend (—A)® to act on larger spaces. In particular, if s > 0, then (—A)* will be well-defined on
H"(R") for any r € R.

Lemma 2.1. If s > 0, the fractional Laplacian extends as a bounded map
(_A)S . Hr(Rn) — Hr—ZS(Rn)

wheneverr € R. If —n/2 < s < 0, the fractional Laplacian (—A)® is the Riesz potential

. Cn.s
R) _ _ i)
(—A) u = 12|S|Lt = —| ] |n—2|s| kU

and it extends as a bounded map
(—A) : LP(R") — L"/@=25ID @Ry | < p < ——
s
Proof. If u € 7, then
(=AY ull g2 = |7~ {mE)(E) @(E) I 12,

where m (£) = (£)~2%|€|* is bounded and hence a Fourier multiplier on L2 showing that || (—A)Su|| gr-2 <

Cllu|lgr- The second statement is the Hardy—Littlewood—Sobolev inequality [Hormander 1983, Theo-
rem 4.5.3]. O

Remark 2.2. If s > 0, the fractional Laplacian also extends as a bounded map
(—A) WP (RY) — WP (RY),
(—A) : CLR") — C ¥R

whenever r € R and 1 < p < oo, where W"? are the usual L” Sobolev (Bessel potential) spaces and C,
are the Zygmund spaces; see [Taylor 1996]. An even larger domain for (—A)* is obtained as in [Silvestre
2007] by considering the test function space

Sy ={u e CPM") : (-)"29% € L>°(R") for any multi-index o},

equipped with the topology induced by the seminorms ||( - )*+23%u|| . Then (—A)* is continuous from
< 1o ¥, and extends to the dual

H={ue SR :u= > la|<m 0% tte for some m > 0 and uy € (-)rPa LR}

However, in this article it suffices to work with the spaces H*(R").
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2C. Dirichlet problem. Next we restrict our attention to nonlocal operators
(=AY, O0<s<l,
and consider the solvability of the Dirichlet problem
(A’ +qu=F inQ,
u=f inQ,,

where, for a bounded open set Q C R”, we denote the exterior domain by Q, = R" \ . Here F may be a
function in €2, or more generally an element of (H*(£2))*. We also denote the restriction to 2 by

rou =ulg,

and if U C R" is open and u, v € L%(U) we write

(u,v)y = / uvdx.
U

Lemma 2.3. Let Q@ C R" be a bounded open set, let 0 < s < 1, and let g € L°°(R2). Let B, be the bilinear
form defined for v, w € H*(R") by

B, (v, w) = (—A)?v, (=A)*Pw)gs + (grau, row)q.

(a) There is a countable set ¥ = {Aj}?‘;l CR, A1 <Ay <.+ — 00, with the following property: if
A€ R\ X, then forany F € (I-NIS(Q))* and f € H*(R") there is a unique u € H*(R") satisfying

B, (u, w) — A(u, g = F(w) forwe H(Q),  u—feH Q).
One has the norm estimate
Nl s @y < CUF g5 @y + 11 s @),

with C independent of F and f.

(b) The function u in (a) is also the unique u € H* (R") satisfying
ro((=A)' +qg —ANu=F inthe sense of distributions in

andu — f € H (Q).

(c) One has 0 ¢ X if (1-1) holds. If ¢ > 0, then one has ¥ C (0, 0o) and (1-1) always holds.

Proof. The proof is standard, but we give the details for completeness.

(@) If u= f 4w, itis enoughto find v € H* (£2) solving the equivalent problem
By (v, w) — A(v, wpr = F(w), w e H'(Q),

for a suitable F € (I:IV‘V(SZ))*. Consider the bilinear form B, (v, w) for v, w € ﬁs(Q). If > llg-|lLee),
where g_ (x) = — min{0, g(x)}, then, for v € FI"'(Q),

B, (v, ) + (v, V)gr = [(=A) 2017, + (= llg—ll Lo @) V113> = cllv]Fs.
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By the Riesz representation theorem, there is a unique v = Guf in H ¥(2) satisfying B, (v, w) +
w(v, w)gn = F(w) for w € H* (). Now

B,(v, )—i(v, )=F(-)on H(Q) <= v=G,[(u+1v+F).

The operator G, is bounded (ﬁ S(Q)* — H ¥(£2), and by compact Sobolev embedding it gives rise to
a compact, self-adjoint, positive definite operator L?($2) — L?(2). The spectral theorem for compact

self-adjoint operators proves (a); in particular the eigenvalues of G, are {1/(A; + M)}?’;l, and ¥ C

[—llg=llz>, 00). In fact ¥ C (—|lg—| L=, 00), since otherwise there would be a nontrivial function
u € H¥(2) with By (u, u) + [|g_ || .o (ut, u)gn = 0, showing that (—A)*/2u = 0 and thus u = 0, which is a
contradiction.

(b) If u is as in (a), then clearly u satisfies
By (u, v) — A(u, v)gn = F(v) forv e CX(), u—feﬁs(Q), (2-1)
which is equivalent to the condition in (b). Conversely, if u satisfies (2-1) for v € C°(R2), then (2-1)

holds for v € H® (€2) by density, and thus « is the unique solution in (a).

(c) Note that (1-1) states that any solution in Hg% is identically zero. This is stronger than stating that any
solution in H* (£2) is zero, which is equivalent to O ¢ X by the Fredholm alternative. If ¢ > 0, then it was
proved in (a) that ¥ C (0, oo) and thus (1-1) holds. Il

DN map. By analogy with the case s = 1, we may define the DN map for the fractional Schrédinger
equation via the bilinear form B, for the equation given in Lemma 2.3.

Lemma 2.4. Let Q C R" be a bounded open set, let 0 < s < 1, and let g € L>°(2) satisfy (1-1). There is
a bounded linear map

Ag: X — X*,
where X is the abstract trace space X = H* (R")/ H* (), defined by
(AgLf], [8]) = By(uy, 8), f.g€ H'(RY),
where uy € H*(R") solves (—A)* +q)u =0 in Q withu — f € H*(Q). One has
(AgLf) (8D = (Lf) AglgD),  f.g e H'(RY).

Proof. Let f,g € H*(R"). Since By(ufiy, g8 +V¥) = B,(uy, g) for ¢, in ﬁS(Q), the expression
(Ag[f1,[8]) = By (uy, g) is well-defined and
[(AGLf1, [gD] < 1= upll 2 1 (=AY gl 2+ llgll oo llusll 2 gl 2
< Cllugllaslelas < Cllflasllgllas.

Thus [(A4[f], [gDI < CII[fTlIxII[g]lllx, so Ay is well-defined and bounded, and self-adjointness follows
by taking g = ug. O
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If 2 has Lipschitz boundary, then X = H*(2,) and X* = Hf ¥ with natural identifications, but functions
in H, are only uniquely determined by their restrictions to SZ if s < 5. Thus, for Lipschitz domains,
one should think of the DN map as an operator

Ay HY (2,) — Héj([R{").
The integral identity that allows us to solve the inverse problem is a direct consequence of Lemma 2.4.

For simplicity, we will write f instead of [ f] for elements of X.

Lemma 2.5. Let Q C R” be a bounded open set, let 0 < s < 1, and let q1, g2 € L*(Q) satisfy (1-1). For
any f1, f» € X one has
((Agy — Agy) f1, 2) = ((q1 — q2)rquy, roua)q,
where uj € H*(R") solves ((—=A)* +qj)uj =0in Q withuj|q, = f;.
Proof. One has

((Aql _qu)fl’ f2) = (Aqlflv f2) - (fl’ qufZ) = Bql(l/tl, MZ) _qu(uls MZ)

= ((q1 — q2)rquy, rour)q. O

3. Uniqueness properties

We prove the uniqueness result for the fractional Laplacian, Theorem 1.2, which is an easy consequence
of the Carleman estimates in [Riiland 2015] and the Caffarelli-Silvestre extension [2007].

Proof of Theorem 1.2. Assume first that u is a continuous bounded function in R". Write [R'fl ={(x,y):
x € R", y > 0}, and denote by w the extension of u to R’f] defined by

y2s

C .
n,s (|x|2 + yZ)(n+23)/2

w(x,y) = (Pyku)(x), Pyx)=

By [Cabré and Sire 2014, Remark 3.8], w is the unique continuous bounded solution in R**! of the
Dirichlet problem
div(y'"»Vw) =0 in R"!, wly—o = u.

If we additionally assume that u € H*(R"), then by [Cabré and Sire 2014, Section 3] the solution w
satisfies fRTl y!=2|Vw|>dx dy < oo, and one has

(=AYu=—d; lim y">3,w(-. ).

where the limit exists in H°(R"). See [Cabré and Sire 2014] for the precise values of the constants ¢, s
and d;.

Assume now that u is a continuous bounded function in R" with u € H*(R"), and u|w = (—A)*u|w =0,
where W is a ball in R”. Denote by B the ball in R"*! with BN{y =0} = W, and define Bt ={(x, y) € B
y > 0}. Since u|w = (—A)*u|w =0, w satisfies

div(y! ™ Vw) =0 in BT,  w|pny=oy = lim y'"8,w|pn(=0; = 0.
y—0t
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The function w thus satisfies the conditions in [Riiland 2015, Proposition 2.2], and one obtains that
w|p+ = 0. But w is real-analytic in [Ri’fl as the solution of an elliptic equation with real-analytic
coefficients; see [Hormander 1983, Theorem 8.6.1]. Hence w = 0 in R"**!, which implies that u = 0.

Finally, let u € H™"(R") for some r > 0, and u|w = (—A)’u|w = 0 for some ball W C R". Consider
the smooth approximations

ug =uxe "p(-/¢),

where ¢ € C2°(R") satisfies [ ¢ dx =1, ¢ >0, and ¢ =0 for |x| > 1. There exist &y > 0 and a smaller
ball W C W such that u, |y =0 and also (—A) u.|w = (=AY u)xe"@(- /¢)|w = 0 whenever ¢ < g.
Now each u, is in H*(R") for any « € R, since i1.(§) = m(&)u (&), where m(§) = ¢(g&) is a Schwartz
function and (£) ™"/ (£) is in L2 By Sobolev embedding, each u, is also continuous and bounded in R".
The argument above implies that u, = 0 whenever & < gy, showing that u = lim,_ g u, = 0. Il

Remark 3.1. We note that for s = % the above argument simplifies: the function w in the proof is just the
harmonic extension of u to R"T!, and it satisfies w|w x{y=0} = dyw|wx{y=0; = 0. The odd extension w of
w to W x R is smooth, satisfies A, yw =0, and w|w x(y=0) = 9y W|wx{y=0y = 0. Using the equation one
observes that w vanishes to infinite order on W x {y = 0}; thus by analyticity w =0 and u = 0.

Remark 3.2. For comparison, we recall the original argument in [Riesz 1938, Chapitre III.11] for proving
a result like Theorem 1.2. There are two steps: first one uses the Kelvin transform to reduce to the case
where u and (—A)*u vanish outside some ball, and then one computes derivatives of u and lets x — co
to show that all moments of (—A)*u must vanish. See [Isakov 1990, Lemma 3.5.4] for another proof of
the second step.

Let u be in the Sobolev space W ~"4(R") for some r € R, where ¢ = 2n/(n + 2s). By approximation,
translation and scaling, we may assume that u € W4 (R") for any ¢ > 0 and u|p = (—A)’u|p = 0, where
B is the unit ball. Write f = (—A)*u, so f,u € L9 N L% and u = I, f. Define

v=Ryu, g=R_f,

where R, f(x) =|x|*7" f(K (x)) and K (x) = x/|x|* is the Kelvin transform. Since det DK (x) = —|x|~%"
and [K (x) — K(y)| = |x — y|/(|x[ly]), one computes |[R_z; fllzs = || flle and Roslos f = IyR_as f.
Then g € L9, both v = ;g and g vanish outside B, and

V() = cn s / =y g dy =0, |x|> 1.
B

In particular, letting x — oo, one gets | 5 8(y)dy = 0. Applying powers of the Laplacian to v(x) we get

f lx —y[* " *e(y)dy =0, k>0, |x|> 1.
B

Computing 9y, v(x) and letting x — 00 gives /, 5 Vi&(y) dy =0. Repeating this for higher-order derivatives

implies that | 5 Y*g(y) dy = 0 for any multi-index «; hence g = 0. This finally gives f =0 and u =0.
The above argument seems to require that f € L9 for g close to 1 in order for R_,s f to be an

LP function for some p. If one starts with a solution # € H~" for some r (as stated in Theorem 1.2), after
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approximation one gets f € L?>N L> and then there is an issue since R_»; f might have a nonintegrable
singularity at 0. Thus it seems that this method is not sufficient for proving Theorem 1.2 in full generality.

4. Approximation in L%(R)

We will use the following Runge approximation property for solutions of the fractional Schrédinger
equation. If g € L*°(R2) satisfies (1-1), we denote by P, the Poisson operator

Py:X— H'R"Y, [+ u, (4-1)

where X = H*(R")/ H ¥(£2) is the abstract space of exterior values, and u € H*(R") is the unique solution
of (A 4+q)u=0in Qwithu — f € ﬁS(Q) given in Lemma 2.3.

Lemma 4.1. Let Q2 C R" be bounded open set, let 0 < s < 1, and let g € L*°(2) satisfy (1-1). Let also
W be any open subset of 2,. Consider the set

R={ulg:u=P,f. f €CXW)).
Then R is dense in L*().

Proof. By the Hahn-Banach theorem, it is enough to show that any v € L?(R2) with (v, w)q = 0 for all
w € R must satisfy v = 0. If v is such a function, then

(v, reP; fla=0, feCXIW). (4-2)
We claim that the formal adjoint of rq P, is given by
W, rePy fle =By, ), feCTW), (4-3)
where ¢ € H°(R") is the solution given by Lemma 2.3 of
(A +q@p=v inQ,  ¢ecH Q).

In other words, B, (¢, w) = (v, row)g for any w € H‘Y(Q). To prove (4-3), let f € C°(W), and let
up =P, f € H*(R") souy — f € H* (). Then

w,reP;fla= W, reus— o= By(p,ur — f) =—B,(p, ).

In the last line, we used that u is a solution and ¢ € H ().
Combining (4-2) and (4-3), we have

B,(¢, f)=0, feCXW).
Since rq f = 0, this implies
0= (=), (=AY g = (=A@, fre, f€CZ(W).

In particular, ¢ € H*(R") satisfies
plw = (=A)’¢lw = 0.

Theorem 1.2 implies that ¢ = 0, and thus also v = 0. O
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5. Inverse problem

It is now easy to prove the uniqueness result for the inverse problem.

Proof of Theorem 1.1. Note that if F € X*, then F|w, is a distribution in W, with F|w,(¢) = F([¢]),
¢ € C°(W2). Now if Ay, flw, = Ay, flw, for any f € C°(Wy), the integral identity in Lemma 2.5
yields that

/ (@1 —q)uiurdx =0
Q

whenever u; € H*(R") solve ((—A)* +¢g;)u; =0 in Q with exterior values in CX°(W;). Let h € L*(R),
and use the approximation result, Lemma 4.1, to find sequences (uj(.k)) of functions in H*®(R") that satisfy

k k .
(=AY + gl = (=AY +gu’ =0 in @,
(k) . .
u; have exterior values in CZ(W)),
mugk) =h +r1(k), rgugk) =1 +r2(k),

& k)
’ r2

where r; — 0in L%(Q) as k — oo. Inserting these solutions in the integral identity and taking the

limit as k — oo implies

/ (@1 —q2)hdx =0.
Q

Since & € L*(2) was arbitrary, we conclude that ¢; = ¢. O

6. Higher-order approximation

We proceed to prove Theorem 1.3(b). The argument is similar to that in Section 4, but since the
approximation is in high regularity spaces, by duality we will need to solve Dirichlet problems with data
in negative-order Sobolev spaces. This follows again by duality from regularity results for the Dirichlet
problem proved in [Hormander 1965; Grubb 2015].

We will next introduce function spaces from [Grubb 2015]. Note that the smoothness indices s and
s(r) in this article correspond to a and a(s) in [Grubb 2015]. Assume that 2 C R" is a bounded domain
with C*° boundary, and let g € C°(R2) satisfy the analogue of (1-1),

if u e H (R") solves ((—A)* +¢g)u =01in Q and u|g, =0, then u = 0. (6-1)
We assume g compactly supported to fit the operator theory in [Grubb 2015]. Define
E(Q) =etd(x)'C®(Q),

where ™ denotes extension by zero from Q to R”, and d is a C™ function in €, positive in €, and
satisfying d(x) = dist(x, 02) near 0Q2. If r > s — % we will also consider the Banach space H*")(Q)

which arises as the exact solution space of functions u satisfying

ro((=A) +q)u € H™(Q), ulg, =0.
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We will not give the actual definition, but instead we will use the following properties from [Grubb 2015].
Lemma 6.1. Foranyr > s — %, there is a Banach space H*")(Q) with the following properties:

(a) H'"(Q) C Hé_l/ % with continuous inclusion.

(b) HO(Q) =HLif re(s—5.s+3).

(c) The operator rq((—A)* + q) is a homeomorphism from H*")(Q) onto H'~2(Q).

(d) Hs% Cc H'(Q) c H{ (S2) with continuous inclusions; i.e., multiplication by any x € C°(Q2) is
bounded H*"(Q) — H"(Q).

(©) E(Q) =os_1p H'"(Q), and E,(Q) is dense in H*(Q).

Proof. Parts (a) and (b) follow from [Grubb 2015, Section 1]. Part (c) follows since rq((—A)* +¢g) :
H"(Q) — H"~*(Q) is a Fredholm operator [Grubb 2015, Theorem 2], it has a finite-dimensional
kernel and range complement independent of » [Grubb 2014, Theorem 3.5], and for r = s the kernel and
range complement are trivial using (6-1) and Lemma 2.3. Part (d) follows from (c) and (a), or alternatively
from the definitions in [Grubb 2015, Section 1]. Part (e) is in [Grubb 2015, Proposition 4.1]. Il

We next prove an approximation result in the space £(2), equipped with the topology induced by the
norms {|| - || yeon ) by - Then £,(Q) is a Fréchet space.

Lemma 6.2. Let 2 C R" be a bounded domain with C* boundary, let 0 < s < 1, let W be an open subset
of Qe, and let g € CX(2) satisfy (6-1). If P, is the Poisson operator in (4-1), define

R={etroP,f: f e CX(W)}.
Then R is a dense subset of E(Q).

Proof. Note that R C &(), since for f e C*(W)onehas P, f = f+v, where ro((—A)* +q)v e C®(Q)
and v|g, = 0; hence v € E(Q) by Lemma 6.1.
Let L be a continuous linear functional on & () that satisfies

L(etroP, f)=0, feCXW).
It is enough to show that L =0, since then R will be dense by the Hahn—Banach theorem.

By the properties of Fréchet spaces, there exists an integer r so that

.
ILa)| < C Y lull gsom gy < C'lutll gsinggy. € E(Q).

m=1

Since & (Q) is dense in H*") (), we know L has a unique bounded extension L e (H*"(Q))* Consider
next the homeomorphism in Lemma 6.1,

T =ro((=A) +q): H'V(Q) - H™>(Q).
Its adjoint is a bounded map between the dual Banach spaces,
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The map T* is also a homeomorphism, with inverse given by (T ~!)*. Using the identification

r—2s * _ py—r+2s
(H' ™7 (82))" = Hy
one has
T*v(w) = (v, Tw), we H(Q).

Now letve Hg "+25 be the unique function satisfying 7*v = L, and choose a sequence (vj)j?° | CCE ()

with v; — vin H""2, If f € C2°(W), recall that etrq P, f = P, f — f, and observe that

0=L(etroP f)=L(Pyf — ) =T v(Pyf — ) =@, T(Pyf — )

=—, Tf) =—lim(v;, (=A)" +¢) ) = = lim(((=A)* + q)v;, ).
Here we used that 7 P, f =0 and v; € C2°(R2). Since f € C2°(W), we may take the limit as j — oo and
obtain that
(=A)'v, f)=0, [feCXZW).
Thus v € H "2 (R") satisfies
vlw = (=A)*v|w =0.

By Theorem 1.2 it follows that v = 0. This implies that L = 0 and L = 0 as required. UJ

Proof of Theorem 1.3. Let @ C Q; C R" be open sets with Q; \ Q # @ and Q bounded. Since
Q1 \ Q # @, we may find a small ball W with W C Q;\ Q. Lemma 4.1 implies that any f € L*>(2) can be
approximated in L3() by functions u|g, where u solves ((—A)* +¢q)u =0 in Q and supp(u) C QUW.
Since QUW C @, part (a) follows.

As for part (b), if f € C>®(Q) and if g=¢etdx)f e &(Q), Lemma 6.2 ensures that there is a
sequence (uj)j?‘;l C H*(R™) with

(=AY +q)u; =0 inQ, supp(u;) C Q1,

so that eTrou; € £(S2) and

e+r9uj — g in&(Q).

The result will follow if we can show that
M:C®(Q) — &(Q), Mf=etdx)f,
is a homeomorphism, since then applying M~ = d(x)*rq gives
d(x)rqu; — f in C®(Q).

But M is a bijective linear map between Fréchet spaces and has closed graph: if f; — f in C* and
Mf; — hin &, thenalso M f; — M f in L* and one obtains M f = h by uniqueness of distributional limits.
Thus M is a homeomorphism by the closed graph and open mapping theorems (in other words, there is a
unique Fréchet space topology on & (2) stronger than the Hausdorff topology inherited from D’(R")). O



THE CALDERON PROBLEM FOR THE FRACTIONAL SCHRODINGER EQUATION 469

Remark 6.3. Let us note the following consequence of Theorem 1.3(b): if k > 0 and R > 1 are fixed,
then for any g € C*¥(B) and for any & > O there is a function u € H*(R") satisfying

(-A)*u=0 in By, supp(u) C Bg, lu— gl <&
This can be seen by taking Q = B, and Q| = B, where 1 < r < R, and by choosing f € C*°(B,) with
Ilf —d(x)_sgllck(gl) small enough.
Appendix: The DN map

The abstract definition of the DN map A, in Section 2 is sufficient for the formulation and solution of
the inverse problem. However, in this appendix we will give more concrete descriptions of the DN map,
valid under stronger regularity assumptions. For simplicity we assume that the boundary and the potential
are C*°.

DN map and (—A)°.

Lemma A.1. Let Q@ C R" be a bounded open set with C* boundary, let 0 < s < 1, and let g € CZ°(R2)
satisfy (1-1). For any B > 0 satisfying s — % <pB < %, the restriction of A, to HP(Q,) is the map

Ag: HP(Q) — H (o), Agf = (=B)uylg,,
where uy € HSP(R") solves ((—A)* +q)u =0 in Q with ulg, = f.
Proof. First we use a result from [Vishik and Eskin 1965]; see also [Grubb 2015]: if 8 € [0, %) then for
any f € H*P(Q,) there is a unique u = uy € H*+F(R") satisfying
(=AY +qu=0 inQ, ulg, = f.

In fact [Grubb 2015, Theorem 3.1] asserts Fredholm solvability for the inhomogeneous problem, but the
result above can be reduced to this case by taking an H**# extension of f to R”", and Fredholm solvability
implies unique solvability since the finite-dimensional kernel and range complement are independent
of # by [Grubb 2014, Theorem 3.5] and they are trivial when 8 = 0 by Lemma 2.3.

Now for f, g € H*tF(Q,), with B € [0, %), let uy € H*P(R") be the solution obtained above and let
e, € H s+8 (R™) be some extension of g. Then, by definition,

(Mg fr @) = (D) Pug, (=AY e mn + (qrauy, raeg)a
=((—=A)uys, e)p + (qrauys, raeg)q

since ((—A)*2u, (—A)*2v)gn = ((—A)*u, v)ge holds first for Schwartz functions by the Parseval identity,
and then also for u, v € H*(R") by density.
It remains to show that whenever o € (—1, 1), u € H*(R"), v € H*(R"), then

(u, v)rn = (rqu, rov)o + (ro,u, ro,v)q, (A-1)
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in the sense of distributional pairings. If (A-1) is true, then the assumption § € (s — % %) implies
(=A)’uyr e HSHP(R") with —s + 8 € (—% %) and since uy is a solution in 2 one has

(Mg f, 8) =((=A)’uy, eg)rn + (qrauy, raeg)o = (ro,(—A)'uyr, 8q,,

which concludes the proof.

To show (A-1), let xq be the characteristic function of 2. This is a pointwise multiplier on H” (R")
fory € (—%, %) [Triebel 2002], and the same is true for 1 — yq. We may write u = xqu + (1 — xq)u and
similarly for v, and then

(u, v)rn = (xou, xoV)rr + ((1 — xo)u, (1 — xQ)v)rs,

where the cross terms vanish first for Schwartz u, v and then in general by density. Now xqu is in HZ?,
and hence can be approximated by functions in C2°(€2). Using similar approximations for the other
functions and restricting to €2 and €2, implies (A-1). 0

DN map and N. Several nonlocal Neumann boundary operators appear in the literature; see [Dipierro
et al. 2017a; Grubb 2016]. We will relate A, to the nonlocal Neumann boundary operator N introduced
in [Dipierro et al. 2017a], defined pointwise by

u(x) —u(y)
Q |x —y|nt3s

./\/Su(x) = Cn,s dy, x¢€Q,. (A-2)

The next lemma contains a definition that applies to Sobolev functions. The result states that knowing
Ay flw for f e C°(W) is equivalent to knowing Nsuy|w for f € C°(W), since Ay f|w and Nyuy|w
only differ by quantities that do not depend on the unknown potential ¢q.

Lemma A.2. Assume the conditions in Lemma A.1. One has
Aqf =Noug —mf + (=0 (Eola,. feH P (Q),
where, fory > —%, N is the map
Nyt HY (R") = H (), Nou =mulg, + (=A)* (xau)lq,,

where m € C®(L2,) is given by m(x) = ¢, 5 fQ 1/|x — y|"™5 dy and xq is the characteristic function
of Q. Also, Ey is extension by zero. If u € L*(R"), then Nyu € L2 (S2,) is given a.e. by the formula (A-2).

loc

Proof. If u € H”(R") with y > —%, then mu|q, € HIZC(Qe). By the pointwise multiplier property
of xq, we have yqu € H*(R") for some « € (—%, %) and (—A)*(xqu) € H* >(R"). However, if

@, ¥ € CX(R") satisfy ¢ = 1 near Q and v = 1 near supp(p), then for any r, f € R one has
(1=y)(=A)'g: H(R") — H'(R")

by the pseudolocal property of Fourier multipliers. Thus one also has (—A)*(xqu)lq, € HI’OC(Qe) for
any ¢, and N is well-defined and maps H” (R") to HIZC(QE) for y > —%.
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Moreover, if u € L2(R") and if ¢; € C2°(RQ) satisfy ¢; — xqu in L?(R"), then the pseudolocal property
implies
(=D (@ple, = (=) (xaw)le, in Li(Q).

After extracting a subsequence (using the diagonal argument), one has convergence a.e. in €2,. Thus the
pointwise expression (A-2) for a.e. x € 2, follows from the standard formula

(—AY () = c/ PO =00) ) e e, xe Q.

o 1=y
Let us prove the formula for A,. If f € HP(Q,), then f € H*(Q,) for some o € (—%, %
Eof,ur € H*(R"). Recall also that xg and 1 — xq are pointwise multipliers on H*(R"). Then
Ay f = (=N uyrle, = (=AY (xaup)le, + (=AM (1 = xo)us)la,
=Nsuy —mf + (=AY (Eof)lq,. O

) and hence

Nonlocal diffusion. Finally, we will give a heuristic interpretation of the quantity A, f (x) in terms of
nonlocal diffusions [Andreu-Vaillo et al. 2010]. This discussion is mostly for illustrative purposes, so we
will not give precise arguments and will restrict to the case ¢ = 0.

We begin with a macroscopic description of nonlocal diffusion in R". Suppose that u(x, ¢) describes
the density of particles at a point x € R" at time ¢. Given an initial density u((x), we assume that u(x, t)

is obtained as a solution of the nonlocal diffusion equation
{8,u +(=A)’u=0 inR"x{r>0}, (A-3)

uli=0 = uo.

Taking Fourier transforms in x, the solution at time 7 is given by

u(t, x) = (p; *ug)(x),

where p;(x) =.7 e !¢ |2S} is the probability density function of the Lévy process X; with infinitesimal
generator —(—A)®. If s = 1, then p, is a Gaussian, but for 0 < s < 1 it is a heavy-tailed distribution
with p,(x) ~ |x|™"2 for large |x| (for s = %, Pi(x) = cut (1% + |x|»)~+D/2), The Lévy process X, also
gives a microscopic description of u(x, ¢): it is obtained as the expected value

u(x,t) =Ey[uo(Xp)l,

which expresses how many Lévy particles from the initial distribution u#¢ have jumped to x at time ¢. See
[Applebaum 2004; Chen et al. 2010] for Lévy processes.

Let now 2 C R” be a bounded open set. We consider the following Dirichlet problem for nonlocal
diffusion: given ug € HS%, find u so that

it +(—AYu=0 inQ x>0l
ulo, x(r=0y =0, (A-4)
U|Rn x (1=0) = UQ-
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The solution is easily obtained in the form

w(x, )=y e M'cip;(x), (A-5)
j=1

where ug = Zj’; 1 ¢jpj and {pj}?‘;l C Hé is an orthonormal basis of L% consisting of eigenfunctions for
(—A)* with eigenvalues A;, so that (—=A)*p; = 4;p; in 2, pjlg, =0,and 0 <A} <Ay <---— 00. The
probabilistic interpretation is that we are looking at Lévy particles in €2 that are terminated when they
reach the exterior. One has

u(x,t) =Exluo(Xe)1p<qyl,

where 7 is the time when the Lévy process exits 2.
By the Duhamel principle and a standard reduction to homogeneous Dirichlet values, given any
f € H°(R,) and any ey € H*(R") with ey|q, = f, we can also solve the equation

{8tv+(—A)SU=O in € x {t > 0}, (A-6)

v(-, )|, =f fort>0,

with initial value v|gs (;—0y = € r. Another solution of (A-6) is given by vs(x, 1) =uy(x), if uy € H*(R")
solves (—A)*u = 0 in  with u|q, = f. The function u is the unique steady state of (A-6), since v — vy
solves (A-4) for some ug, and (A-5) implies

lv(-, 1) —usllgs >0 ast— oo.

Now, given f € H*(2,) and the solution u; of the Dirichlet problem, we may consider two nonlocal
diffusions with initial value u:

o the free diffusion (A-3) in R" with solution u(x, t),

« the diffusion (A-6) whose exterior value is fixed to be f.
If ¢ is small and x € €2,, then u(x, ¢t) formally satisfies
u(x, 1) =u(x,0)+du(x,0)r+ 0> = f(x) — (—A)*u(x,0)t + 0(t?)
= () = (Ao )1 +0(1?)
by Lemma A.1. Thus the DN map may be interpreted as follows:

e —Agf(x) is the (infinitesimal) amount of particles migrating to x in the free diffusion that starts
from the steady state uy.

e Ao f(x) is the (infinitesimal) cost required to maintain the exterior value f at x in the steady state
nonlocal diffusion.

Similar remarks apply to A, at least if ¢ > 0. We refer to [Chen et al. 2006] for some facts on the
related stochastic processes, and to [Piiroinen and Simon 2017] for stochastic interpretations of the usual
Calder6n problem.
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SHARP STRICHARTZ INEQUALITIES FOR FRACTIONAL AND
HIGHER-ORDER SCHRODINGER EQUATIONS

GIANMARCO BROCCHI, DIOGO OLIVEIRA E SILVA AND RENE QUILODRAN

We investigate a class of sharp Fourier extension inequalities on the planar curves s = |y|?, p > 1. We
identify the mechanism responsible for the possible loss of compactness of nonnegative extremizing
sequences, and prove that extremizers exist if 1 < p < po for some py > 4. In particular, this resolves
the dichotomy of Jiang, Pausader, and Shao concerning the existence of extremizers for the Strichartz
inequality for the fourth-order Schrodinger equation in one spatial dimension. One of our tools is a
geometric comparison principle for n-fold convolutions of certain singular measures in R?, developed in
the companion paper of Oliveira e Silva and Quilodran (Math. Proc. Cambridge Philos. Soc., (2019)).
We further show that any extremizer exhibits fast L2-decay in physical space, and so its Fourier transform
can be extended to an entire function on the whole complex plane. Finally, we investigate the extent to
which our methods apply to the case of the planar curves s = y|y|?~ !, p > 1.
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1. Introduction

Gaussians are known to extremize certain Strichartz estimates in low dimensions. Consider, for instance,
the Strichartz inequality for the homogeneous Schrodinger equation in d spatial dimensions,

€78 £l 2447a a1y = S @IS 2y, (1-1)

Oliveira e Silva was supported by the Hausdorff Center for Mathematics and DFG grant CRC 1060.

MSC2010: 35B38, 35Q41, 42B37.

Keywords: sharp Fourier restriction theory, extremizers, Strichartz inequalities, fractional Schrédinger equation, convolution of
singular measures.

477


http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2020.13-2
http://dx.doi.org/10.2140/apde.2020.13.477
http://msp.org
https://doi.org/10.1017/S0305004119000197

478 GIANMARCO BROCCHI, DIOGO OLIVEIRA E SILVA AND RENE QUILODRAN
with optimal constant given by

€78 £l 240 oy

S(d):= sup (1-2)

0#feL? ||f||L2([Rd)

That S (d) < oo is of course due to the original work of Strichartz [1977], which in turn had precursors in
[Tomas 1975; Segal 1976]. If d € {1, 2}, then Gaussians extremize (1-1), and therefore S (1) = 12-1/12
and S (2) = 2~!/2 This was originally established in [Foschi 2007; Hundertmark and Zharnitsky 2006],
and alternative proofs were subsequently given in [Bennett et al. 2009; 2015; Gongalves 2019]. All
of these approaches ultimately rely on the fact that the Strichartz exponent 2 + % is an even integer if
d € {1, 2}, which in turn allows us to recast inequality (1-1) in convolution form. This is a powerful
technique that has proved very successful in tackling a number of problems in sharp Fourier restriction
theory; see the recent survey [Foschi and Oliveira e Silva 2017].

In the recent work [Oliveira e Silva and Quilodrdn 2018], we explored the convolution structure of
a family of Strichartz inequalities for higher-order Schrddinger equations in two spatial dimensions in
order to answer a question concerning the existence of extremizers that had appeared in the previous
literature. Our purpose with the present work is three-fold. Firstly, we resolve the dichotomy from [Jiang
et al. 2010] concerning the existence of extremizers for the Strichartz inequality for the fourth-order
Schrédinger equation in one spatial dimension. This is related to the Fourier extension problem on the
planar curve s = y* Secondly, we study similar questions in the more general setting of the Fourier
extension problem on the curve s = |y|? for arbitrary p > 1. We also consider odd curves s = y|y|P~],
p > 1, the case p = 3 relating to the Airy—Strichartz inequality [Farah and Versieux 2018; Frank and
Sabin 2018; Shao 2009]. Lastly, we study superexponential decay and analyticity of the corresponding
extremizers and their Fourier transform via a bootstrapping procedure.

Jiang, Pausader, and Shao [Jiang et al. 2010] considered the fourth-order Schrédinger equation with
L? initial datum in one spatial dimension,

i0;u—pud2u—+93tu=0, (x,1)eRxR,

u(-.0) = f € L2(R). (1)

where u : RxR — C, and p > 0. By scaling, one may restrict attention to u € {0, 1}. The solution of the
Cauchy problem (1-3) can be written in terms of the propagator

u(x, 1) = " £y = L Aeixgeit(g4+“$2’f (&) &,
where the spatial Fourier transform is defined as'

F@) = /R ¢ £(x) dx.

I'The Fourier transform will occasionally be denoted by F( f) = f .
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The solution disperses as |t| — oo, and consequently the following Strichartz inequality due to Kenig,
Ponce, and Vega [Kenig et al. 1991, Theorem 2.1] holds:?

Lo a4 a2
1D £l 16 gy S 1 f L2my- (1-4)

The main result of [Jiang et al. 2010] is a linear profile decomposition for (1-3), which uses a refinement
of the Strichartz inequality (1-4) in the scale of Besov spaces, together with improved localized Fourier
restriction estimates. As a consequence, the authors of [Jiang et al. 2010] establish a dichotomy result for
the existence of extremizers for (1-4) when u = 0, which can be summarized as follows: Consider the
sharp inequality in multiplier form

1
||Dé’eltaxf||L)6”(R1+l) =< M”f”LZ(R)’ (1-5)

with optimal constant given by

3 it
IDg e flpo ,RI+1)
M = sup ~
0+# fel? ||f||L2(R)

(1-6)

Then [Jiang et al. 2010, Theorem 1.8] states that either an extremizer for (1-5) exists, or there exist a
sequence {a,} C R satisfying |a,| — oo as n — oo and a function f € L? such that

1.
IDg e/ "% (/> )|l 16 i+
M= lim —° )

n—00 I/ 122 @)

In the latter case, one necessarily has M = § (1), where S (1) denotes the optimal constant defined in
(1-2). Ouwur first main result resolves this dichotomy.

Theorem 1.1. There exists an extremizer for (1-5).

Theorem 1.1 will follow from a more general result which we now introduce. As noted in [Kenig et al.
1991, §2], the operator Dé/ 3pitd% i nothing but a constant multiple of the Fourier transform at the point
(—x, —t) € R? of the singular measure

dog(y.s) = 8(s —y*)|y|3 dy ds (1-7)

defined on the curve s = y4. As in [Oliveira e Silva and Quilodran 2018, §6.4], one is naturally led to
consider generic power curves s = |y|?. The corresponding inequality is

IMp(HILe ,@r+1y = Mpll S 2wy (1-8)

where the multiplier operator M, is defined as
p—2

Mp(f)(x,t) =Dy ® 11" f(x).

2Given € {0, 1}. and o € R, we follow the notation from [Jiang et al. 2010] and denote by Dl"j the differentiation operator
D f(x) 1= 55 [p ™ (u+66%)*/2 f(§) ds.



480 GIANMARCO BROCCHI, DIOGO OLIVEIRA E SILVA AND RENE QUILODRAN

Inequality (1-8) can be equivalently restated as a Fourier extension inequality,

1€ ()Low2) < Epll f 2w (1-9)
or in convolution form as
| fop * fop * fopllLame) < C IS 72 (1-10)

Here, the singular measure o, is defined in accordance with (1-7) by
p—2
dop(y.s) = 8(s—|y|")lyl© dyds. (1-11)

and the Fourier extension operator £, () = F(fop)(—-) is given by

&0 = [ ey p)dy, (1-12)
so that !
6" £,(f) = 20 My ().
If f is an extremizer for (1-9), then f is likewise an extremizer for (1-10), and F~!(f) is an extremizer
for (1-8). Thus these three existence problems are essentially equivalent. The convolution form (1-10)

also shows that the search for extremizers can be restricted to the class of nonnegative functions. An
application of Plancherel’s theorem further reveals that the corresponding optimal constants satisfy

6 __ 2,6 _ 3,1-L2 146
Ep—(Zn) Cp—(27r)6 2Mp.

Our next result extends the dichotomy proved in [Jiang et al. 2010, Theorem 1.8] to the case of arbitrary
exponents p > 1. It states that one of two possible scenarios occurs, compactness or concentration at a
point. We make the latter notion precise.

Definition 1.2. A sequence of functions { f,} C L%(R) concentrates at a point yo € R if, for every
g, p > 0, there exists N € N such that, for every n > N,

[ 0Py <elhilp
ly=yol=p

We choose to phrase our second main result in terms of the convolution inequality (1-10) because, as
we shall see, condition (1-13) has a very simple geometric meaning in terms of the boundary value of the
relevant 3-fold convolution measure.

Theorem 1.3. Let p > 1. If
6 2

(o B —
» 7 Japp—1)

then any extremizing sequence of nonnegative functions in L?(R) for (1-10) is precompact, after normal-

(1-13)

ization and scaling. In this case, extremizers for (1-10) exist. If instead equality holds in (1-13) then, given

any yo € R, there exists an extremizing sequence for (1-10) which concentrates at yg.
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A few remarks may help to further orient the reader. Firstly, if p = 1, then the curve s = |y| has no
curvature, and no nontrivial Fourier extension estimate can hold. Secondly, if equality holds in (1-13), then
Theorem 1.3 does not guarantee the nonexistence of extremizers. Indeed, C26 = 7/+/3, and Gaussians
are known to extremize (1-10) when p = 2. Various results of a similar flavor to that of Theorem 1.3
have appeared in the recent literature. They are typically derived from a sophisticated application of
concentration-compactness techniques [Christ and Shao 2012a; Shao 2016a], a full profile decomposition
[Jiang et al. 2010; 2014; Shao 2009], or the missing mass method as in [Frank et al. 2016; Frank and
Sabin 2018]. We introduce a new variant which follows the spirit of the celebrated works [Brézis and Lieb
1983; Lieb 1983; Lions 1984a; 1984b]. It seems more elementary and may be easier to adapt to other
manifolds. The proof of Theorem 1.3 involves a variant of Lions’ concentration-compactness lemma
[1984a], a variant of the corollary of the Brézis—Lieb lemma from [Fanelli et al. 2011], bilinear extension
estimates, and a refinement of inequality (1-9) over a suitable cap space.

In a range of exponents that includes the case p = 4, we are able to resolve the dichotomy posed by
Theorem 1.3.

Theorem 1.4. There exists po > 4 such that, for every p € (1, po) \ {2}, the strict inequality (1-13) holds.
In particular, if p € (1, pg), then there exists an extremizer for (1-10).

Our method yields pg &~ 4.803 with three decimal places, and effectively computes arbitrarily good
lower bounds for the ratio of L2-norms in (1-10) via expansions of suitable trial functions in the orthogonal
basis of Legendre polynomials. We remark that the value pg ~ 4.803 is suboptimal, in the sense that a
natural refinement of our argument allows us to increase this value to ~ 5.485; see Section 4C below.

Once the existence of extremizers has been established, their properties are typically deduced from the
study of the associated Euler-Lagrange equation. Following this paradigm, we show that any extremizer
of (1-9) decays superexponentially fast in L2, which reflects the analyticity of its Fourier transform. This
is the content of our next result.

Theorem 1.5. Let p > 1. If f is an extremizer for (1-9), then there exists (Lo > 0 such that
x > M7 r(x) e L2(R).

In particular, its Fourier transform f can be extended to an entire function on C.

Note that the exponent o necessarily depends on the extremizer itself; see the discussion in [Christ
and Shao 2012b, p. 964]. The proof relies on a bootstrapping argument that found similar applications in
[Christ and Shao 2012b; Erdogan et al. 2011; Hundertmark and Shao 2012; Shao 2016b].

To some extent, our methods are able to handle the case of the planar odd curves s = y|y|?~L, p > 1.
Define the singular measure

p—l p—2
dup(y,s) = 8(s—yly|P7 )|yl & dyds. (1-14)

The associated Fourier extension operator Sp(f) = F(fip)(—-), defined in (6-2) below, satisfies the
estimate ||Sp(f)|lLs < ||.f|lz2- In sharp convolution form, this can be rewritten as

I fip * fip * fripllL2@me) = Q;”f”zz(qu), (1-15)



482 GIANMARCO BROCCHI, DIOGO OLIVEIRA E SILVA AND RENE QUILODRAN

where Q) denotes the optimal constant. Odd curves are of independent interest, in particular because a
new phenomenon emerges: caps centered around points with parallel tangents interact strongly, regardless
of separation between the points. This mechanism was discovered in [Christ and Shao 2012a], and
further explored in [Carneiro et al. 2017; Foschi 2015; Frank et al. 2016; Frank and Sabin 2018; Shao
2016a]. Some of these works include a symmetrization step which relies on the convolution structure
of the underlying inequality. In the present case, we also show that the search for extremizers can be
further restricted to the class of even functions, but interestingly our symmetrization argument does
not depend on the convolution structure. This may be of independent interest since it applies to other
Fourier extension inequalities where some additional symmetry is present, as we indicate in Section 6A
below.
The following versions of Theorems 1.3 and 1.4 hold for odd curves.

Theorem 1.6. Let p > 1. If
6 5w

2= V3p(p—1)

then any extremizing sequence of nonnegative, even functions in L2(R) for (1-15) is precompact, after

(1-16)

normalization and scaling. In this case, extremizers for (1-15) exist. If instead equality holds in (1-16)
then, given any yo € R, there exists an extremizing sequence for (1-15) which concentrates at the pair

{=Yo0. Yo}

The case p = 3 of Theorem 1.6 coincides with a special case of [Frank and Sabin 2018, Theorem 1],
which was obtained by different methods.

Theorem 1.7. If p € (1,2), then the strict inequality (1-16) holds and, in particular, there exists an
extremizer for (1-15).

We believe that extremizers do not exist if p > 2; see Conjecture 6.6 below.

Overview. The paper is organized as follows. Section 2 is devoted to the technical preliminaries for the
dichotomy statement concerning the existence of extremizers: bilinear estimates and cap bounds. We then
prove Theorem 1.3 in Section 3. Existence of extremizers is the subject of Section 4, where we establish
Theorem 1.4. Theorem 1.5 addresses the regularity of extremizers and is established in Section 5. Odd
curves are treated in Section 6, where Theorems 1.6 and 1.7 are proved. In the Appendix, we establish
useful variants of Lions’ concentration-compactness lemma (Proposition A.1) and of a corollary of the
Brézis-Lieb lemma (Proposition B.1).

Notation. If x, y are real numbers, we write x = O(y) or x < y if there exists a finite absolute constant C
such that |x| < C|y|. If we want to make explicit the dependence of the constant C on some parameter «,
we write x = Og(y) or x <q y. We write x 2 y if y S x,and x >~ y if x < y and x = y. Finally, the
indicator function of a set £ C R? will be denoted by 1f, and the complement of E will at times be
denoted by E C
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2. Bilinear estimates and cap refinements

In this section, we prove the bilinear extension estimates and cap refinements which will be needed
in the next section. Bilinear extension estimates are usually deep [Tao 2003; Wolff 2001], but in the
one-dimensional case one may rely on the classical Hausdorff—Young inequality. Throughout this section,
we shall consider the dyadic regions

I =25 25 ) and 17 = (2K 2Fju 2k 2K (ke 2).

2A. Bilinear estimates. Recall the definitions (1-11) and (1-12) of the measure o, and the Fourier
extension operator &£y, respectively. Our first result quantifies the principle that distant caps interact weakly.

Proposition 2.1. Let p > 1 and k, k' € Z. Then

e—k!| 2=L
1€ (NE@ 3@y Sp 27 F 1T N 2 @llglo @1
for every f.g € L*(R) satisfying supp f C Ip and supp g C I7,.

Proof. Setting = |-|? and w = |- |pT_2, we have
. N , 1 1
(Sp(f)gp(g))(x’ l) = /Rz ezx(y+y )elt(lff(J’)‘Hﬁ(y ))f(y)g(y/)w(y)z w(y/)z dy dy/.

Change variables (y, y') — (u,v) = (y + ¥, ¥ (y) + ¥ (y’)). Except for null sets, this is a 2-to-1 map
from R? onto the region {(u, v): v > 2y (u/2)}. Its Jacobian is given by

J_l(y, /): 8(uav) — det (1 W’(J’)

y.y) 1 y/'(y")

and satisfies [J~1(y, y")| = p||y|P~' —|y’|?~!|, with equality if and only if yy’ > 0. Thus

) — WO =Y ) = O Y PR =P @)

(Ep(f)Ep(g))(x,1) =2 / 1™ f(y)g (¥ )w() 2 w(y')2 J (u, v) du dv, (2-3)
where the integral is taken over the region {(u, v): v > 2v(u#/2)}. Note that this implies

(fop * g0p)(u, v) = 2L (Mg )w() T w(y) 2 J (u, v) (2-4)

for every (u, v) satisfying v > 2y (u/2), where (y, y’) is related to (u, v) via the change of variables
described above.

By symmetry, we can and will restrict attention to |y’| < |y|. Taking the L3-norm of (2-3), invoking
the Hausdorff-Young inequality, and then changing variables back to (y, y'),

1€(NE@ 32 S 1F IO W) 2 Tl /2 g,

1 1 1
= /MG HIw 2w 2Ty 32 gy
Y.y
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If 2k < |y| < 2F+1 2K < |y/| < 2K'*1 and k > k' + 2, then

p=2 np—2
lyy'| 2T

S SaW-hi-k 2-5)
p2||y|P—t = |y P12 T 2k EE (1 — 2~k =D(p-1))3

It follows that
3 3 3 3 1
1€p(F)Ep (75 < /RZ | f (g I2Zw()*w(y)*|J (v, y)|Z dy dy’
yy |55
1 1
p2llylP=t—|y'|P=1|2

)2k kK3 3
2K =PE=52525 ) 112, gl 2

< [ f0g)3 dy dy’
RZ

lk—k/|2=L 3 3
=2 F A1 gl (2-6)
If k € {k', k" + 1}, then we can simply use the estimate ||E,(f)Ep(@) 3 SIS L2 llgllz2- O
Corollary 2.2. Let p > 1 and k,k’ € Z be such that k' < k. Then
< —lk—k'|25L
1€ ()Ep(IL3R2) Sp 2 S f 2w llgll2 ) (2-7)
for every f.g € LA(R) satisfying supp f < {|y| > 2¥} and supp g < {|y’| < 2¥'}.
Proof- Write f =3 ;> fj and g =3 ;14 gjs, where fj:= f1;e and g := g1js . Then
- J
—|j—j1 2=t
& (NE@DNsmy = D, N&UNEEIIs s Y. 27771 1 fll2lgi N2

=k, j <k’ izk, j'<k’

1
i ine=1\2 2
(X YT i)

izk, j' <k’ J=k, j' <k’

1
i 2=1\2
2(22 k15 ) 1/ 2Nl

=k

~ y—lk—k'| 25t
~ 27 RIS il llg Nl 2

where we used the triangle inequality, Proposition 2.1, the Cauchy—Schwarz inequality, L2-orthogonality,
and the fact that a geometric series is comparable to its largest term. O

When studying concentration at points different from the origin, it will be useful to consider dyadic
decompositions of the real line with arbitrary centers. By reflection and scaling, it suffices to consider
decompositions centered at 1. Define the dyadic regions

T={2%<y—1<28) and Tp:=0F <|y—1]<2*} (ke2)

so that 7y = 1+ Iy and Zp = 1+ I7. The following analogue of Proposition 2.1 holds.
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Proposition 2.3. Let p > 1 and k, k' € Z. Let § = min {é pT_l}. Then
l&p (N @ N3w) <o 27PN f 2w lgl2w (2-8)
for every f.g € L*(R) satisfying supp f C Iz and suppg C Ip,.

Before embarking on the proof, let us take a closer look at the factor |yy’|®?=2/4|J(y, y')|'/? that
appears after applying the Hausdorff—Young inequality in (2-6). We have already seen that

|7 . ) = plyly1P72 =¥y 1P 72 (2-9)

In (2-5) we observed that, if y, y’ are separated (say, |y’| < %| y|), then

yy'| 5 yy'| 5 _p, 02
TS =AY (2-10)
lyly1P=2—=y'Iy"1P72|12  |y|' Z

In order to obtain a useful bound in the case when both y, y’ are close to 1, invoke the mean value theorem
and write

P =11 = (0 = DsP 2y = 1Y)
for some s € [|y’], |v]]. Then, for 0 < y’ < y, we have

yo-i s (P —Yly?> ifpe(1,2],

P 2=y Y|P3 =P - .
ly—=y'1y'P7% if p €[2,00).

Thus the following estimate holds for every % <y, y <

N

Y|
YIy[P=2 =y |P2)
Proof of Proposition 2.3. Without loss of generality, assume |k —k’| > 2. We start by considering the
situation when 0 is an endpoint of Z},, i.e., k' € {—1,0}. Let k' = —1, so that Z}, = (0, 3] U[3. 2), split
g =g¢+gr, with gg:= gl(o’%] and g, 1= gl[%’z), and take the dyadic decomposition

1
Sly—y1z. (2-11)

8t = Zgj, with g; := glo-G+1 o-i3-
Jj=1

If k < —3, then (2-10) implies

Wi

||6p(f)6p(ge)||psZ(/Rzmy)gj(y/)ﬁ byl dydy/)

1
j=1 |[y[P=1 =y’ [P=1]2

2 2
_jp=2 3 3 =2 k__J. .3 3\?
Y (7 [ romoniae) (7 e tiskie)
j>1 R j=1
lk—

k _jp=1 k _ K/
=25 fll2 Y 277 llgillz S 261 fllrzllgellz S 2776 I f I2ligllze-
Jj=1
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If k > 1, then Corollary 2.2 applies, and directly yields

L — =1
1€, ()Ep (g ILs S 2715 Fll2llgll 2

A similar analysis applies to g. Setting #:=min {1, 2=}, we conclude that, if K’ = —1 and |k —k'| > 2,
then

1€, (N)E (@)L < 27K £ll L2 gl Lo

The case k" = 0 admits a similar treatment. If k, k" < —2 and k —k’ > 2, then (2-11) implies

K
1€p(f)Ep (I3 = 2; 1A l2llglie2 =
Finally, the remaining cases can be handled in a similar way by Corollary 2.2. O
Corollary 2.4. Let p > 1 and k, k' € Z be such that k' <k. Let § = rrnn{1 £ 1} Then
160 (N)Ep @ L3 @) Sp 27PN f 2 lIgl 2 (2-12)

for every f,g € L*(R) satisfying supp f < {|y —1| = 2¥} and supp g < {|y' — 1] < 2¥'}.
We finish this subsection by taking yet another look at the Jacobian factor (2-9). This will be useful in
Section 2B below. Let p > 2. If yy’ <0, then |J 1 (y,y")| = p(|y|?~' +|y’|?~ 1), in which case

yy'| ol 1
I 1)lS(IyIJrIyI) 2=ly—y|2
yIP=t+y|p—h2

uniformly in y, y’. To handle the complementary case yy’ > 0, note that, if p >2 and 0 <a < b, then
bP 1 —aP~l ~ (b —a)bP 2. (2-13)

It follows that, if p > 2 and yy’ > 0, then

T 0D = ply P~ = 1127 = |y =y max{|y], ||} 2,
and so if additionally |y| > |y’|, then

"Lz "2
1yl < 1y - -t
—1 / —1 1~ L—Z / 1 — |y_y | :
Iy[P=t =1y 1P=1z2 |y 2 |y —y'|2
Therefore the estimate
3 B RE
16 (NE Ol < [ L ay gy -14
R [y—y'|2

holds as long as p > 2. We cannot hope for such a bound if 1 < p < 2 since (2-13) fails in that case.
However, if |y| 2 |y’|, then one can check in a similar way that the estimate

3 ’
165 A% 803 se) < W yay’ @-15)
y—y'|?

holds for any p > 1 and functions f, gx which are both supported on /7.
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2B. Cap bounds. Aninspection of the proof of Proposition 2.1 reveals that if supp f C /7 and supp g C I,

for some k, k' € 7 satisfying k —k’ > 2, then

2
—fe—f!| =L _1 3\3
P e (17 / |f|2) (1717 [ 1et?)

k
k—k/| 2= 2 2 2z 2z
AN LN VA P

where the quantity A( f) is defined via

A= s 1l /|f|2.

(2-16)

2-17)

The purpose of this subsection is to develop on this observation. Given f € L%(R), write ' =Y ¢z fk»

with f ;= f1 I Our first result is the following.

Proposition 2.5. Let p > 1. Then the following estimates hold for every f € L*(R):

1€ NN 6@y S D 1 ficl 72y

kez
1
4 3 4
16N ey S0 X 16p e + AN (Z ko) 11 ey
kez kez

Proof. By the triangle inequality,
& (N3s = D 1EUDEUNESfi) L2

G,j.k)ez3
For each triple (i, j, k) in the previous sum, we lose no generality in assuming that
|j =kl =max{[i’—j'|:i", j" € {i, j. k}}.
Holder’s inequality and Proposition 2.1 then imply
16 (D& ()E Fillzz 27T fil 2l £ 2 fel o
By the maximality of |j — k|, we have |j — k| > %|l —Jjl+ %|] —k|+ %|k —1i|, and hence

I (NIFe s D 2 =1 g UK e £ a2 o

@i,),k)ez3

(2-18)

(2-19)

(2-20)

A final application of Holder’s inequality yields (2-18). Estimate (2-19) follows from similar considerations
which we now detail. Let S := {(i, j. k) € Z3:max{|i — j|,|j — k|, |k —i|} <1} and st.= 73 \ S. Split

the sum into diagonal and off-diagonal contributions,

1€ (76 =

Y EUNENE ) +H > gp(ﬁ)gp(fj)gp(fk)

(i.j.k)eS Lz W ikest
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and analyze the two terms separately. For the diagonal term, note that

> & (NEHNE(fi)

G,j.k)eS L2

< 2(3||5p(fk)gp(fk)gp(fk+l)||L2 +311E (fie—1)E (fi)Ep i) L2 + 1Ep (fi)Ep (fi)Ep (fi) I 2)
kez

<Y GUES76IEpSirDliLs + 31Ep Sr=D s 1Ep (fiOlT s + 1€ (fl76) S Y 1€ (il 6-
kez kez

To handle the off-diagonal term, note that estimate (2-16) implies

IDIIGEACEES IR SN P ER e ST

(i.j.k)esC (,/.k):j—k|=2
SN Y 2V Al 1 L Al
(@, /.k):1j—k|=2

where the sum X is taken over triples (i, j, k) € S C for which (J, k) satisfies the maximality assumption
(2-20). It follows that

” S S UNEUNE )| S AU S 2 Ui HTKHR=IDER 15l

(i.jk)est L2 ik
! :
4
A (L IA:) (X Ihk)
kez kez
This implies (2-19) at once, and concludes the proof of the proposition. O

The following L? dyadic cap estimate is a direct consequence of (2-18).

Corollary 2.6. Let p > 1. Then, for every f € L*(R),
||8p(f)||z6(|R2) <p (liup ”fk”L%[R))”f”iZ(R)-
ez

We now derive a cap bound similar to [Jiang et al. 2010, Lemma 1.2] and [Shao 2009, Lemma 1.2].

Proposition 2.7. Let p > 1. Then the following estimate holds:

-1 2 z
1€ (P 762y Sp (sup sup (117611 llL32y) * 1Lf 1 2y (2-21)

keziciy
for every f € L?(R), where the inner supremum is taken over all subintervals I C I e
Proof. We start by considering the case when f = fi(= f1 1,:). From (2-15), we have

FADYCOTE

, (2-22)
ly—=y'I2

lepflie % [
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Arguing as in as in [Jiang et al. 2010; Shao 2009] we obtain, for every g > 1, that

1_1 1 2
1€ (fi)llzs < (sup |1]2 q||fk||L‘7(I))3||fk||zz(R)- (2-23)
iciy

For the convenience of the reader, we provide the details. In light of (2-22), we may assume f; > 0.
Normalizing the supremum in (2-23) to equal 1, we may further assume that

/1 =< |1_% for every subinterval I C I. (2-24)

Denote the collection of dyadic intervals of length 2/ by D;j:={2/[k,k+1):k€Z},andset D:=J ez Dj.-
We perform a Whitney decomposition of R?\ {(y, y) : y € R} in the following manner; see for instance
[Dodson et al. 2018, Lemma 10] and [Bégout and Vargas 2007, Proof of Theorem 1.2]. Given distinct
v,y € R, there exists a unique pair of maximal dyadic intervals I, I’ satisfying

v,yh)elIxI', |Il=|I'l, and dist(I,1")>4|I|.
Let J denote the collection of all such pairs as y # y’ ranges over R x R. Then

Z 1y (1 (') =1 forevery (y,y’) € R® with y # ',
(I,1ed
and therefore

Se e = D" feaO) fir(y) forae. (y.y) R,

(1,I)e3

where fi ;:= fx1;. Clearly, if (y,y") € I x 1" and (I,1’) €3, then |y — y’| >~ |I|. From this and (2-22),
we may choose a slightly larger dyadic interval containing I U I’ but of length comparable to |/ (still

denoted by 7), and it suffices to show that
(/fk,) <[
We further decompose fi 1 as
fea =Y fean  where firni= fil {yer:

nez

IeD |I|

on+1
|]|1/2 <fr(¥)< |I|1/2}’

and note that it suffices to establish

1 3\ )
Z—;( / fk?I,n) soe [ g (2-25)

IeD |I|7

for some ¢ > 0 and every n € Z. By the Cauchy—Schwarz inequality,

(/ fk%l,n)z < ([ 720) ([ o).
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By construction of fi j ,, Chebyshev’s inequality, and normalization (2-24),

2n+1 2n 2n+1 q
/fk,l,n <— H< J1 Je <2-Inla=D)p)z (2-26)
|12

)T g 2y E T
for every ¢ > 1 and n > 0. If n < 0, then the following simpler estimate suffices:

21’!
/fk,],ns 1
1112

Combining (2-26) and (2-27), we conclude

|1|([f" ) . lnlg;eD/f“”

for some ¢ > 0, from which we get the desired (2-25) by noting that

IGD/kan Z Z /fk L= 1/2}_/( j%- sz(y))dygfsz.

JEZI€D;

yel: fr(y)=

—2-Inl)z. (2-27)

IeD

fe()=2n=il2

This concludes the verification of (2-23). Recalling inequality (2-19), and specializing (2-23) to g = %,

yields
_1 2 7
l&p (36 < ( sup 111780 ficllzarzny) D 1 ficl22 + (sup [T 78 L fell ) S £
kJ1cIg kez kez
—1 2z z
< (sup sup || 6||fk||L3/2(1))3||f||22,
kezicip
where the last line follows from Holder’s inequality. O

In the next section, it will be useful to have the L! version of (2-21) at our disposal, and this is the
content of the following result.

Proposition 2.8. Let p > 1. Then there exist y € (0, 1) such that

_1
1€ (N ILow2) Sp.y (sup sup 11172 Fllzi(r)” ||f||L2(R) (2-28)
kezIiclp

for every f € L?(R), where the inner supremum is taken over all subintervals I C I
The proof below yields y = ;% and is inspired by [Christ and Shao 2012a, Proposition 2.9].
Proof of Proposition 2.8. Set § := ||E,(f) sl .f ”L2‘ From (2-21) we have
1 2
sup sup [1|7e[| fll a2y 2 8211/ 2w
keziclp

Then there exist k € Z and an interval [ C [ l; such that

3 27, .1 3
[ = i1 1
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for a universal constant ¢g (independent of f,6). Given R > 1, define the set E :={y € I:| f(y)| < R}.
Set g:= f1lg and h:= f —g. Then g and h have disjoint supports, and ||g||z < R. Since |h(y)| > R
for almost every y € I for which h(y) # 0, we have

3 _1 _1
[ <& [P < RAS gy

1
Choose R satisfying R™2 = %008%|1|% ||f||L22(R). Then

3 3 3 Cp.27, .1 3
g3 = [ 1713 = [ iE = Do F RIS 1y
/1 I I 2 L2®
Since g is supported on I, Holder’s inequality implies
_1 9
IgllL2 = [1]75lIgllpsrz = 182 f L2, (2-29)
where ¢ is universal. Since ||g]|z < R, we have (by the definition of R) that

_27 _1
lgW =287 2 72 f llL2w11(y) for almost every y € R,

where ¢ is universal. Together with (2-29), this implies the lower bound

el o el
f|g|>f|g| B TS s e (1 e,
8[| f 2 (e

where c3 is universal. Since |g| < | f|, it follows that

45 1
382 112 flle@w = glieiay < 1/ Ly
Recalling the definition of §, we obtain (2-28) with y = 4—25. O

3. Existence versus concentration

This section is devoted to the proof of Theorem 1.3. Start by observing the scale invariance of (1-10), or
equivalently that of (1-9). Indeed, if f3(y) := f(Ay), then || f3llL2®) = )t_l/2||f||Lz(R). On the other
hand, £,(f1)(x,1) = )L_(p+4)/6€p(f)(x/k, t/AP), and so

_pt4, ptl _1
1Ep (S llLo@y =270 7o 1E(NLs@ey = A2 1€ (N) Lo we)-

In particular, given any sequence {a,} C R\ {0}, if { f;,} is an L2-normalized extremizing sequence for
(1-9), then s0 is {|an|/? fu(an )}
We come to the first main result of this section.

Proposition 3.1. Let { f,,} C L?(R) be an L?*-normalized extremizing sequence of nonnegative functions
for (1-9). Then there exist a subsequence { fy, } and a sequence {ay} C R\ {0} such that the rescaled
sequence {gr}, &k = |ax| l/zfnk (ay -) satisfies one of the following conditions:

(i) There exists g € L*(R) such that g — g in L>(R) as k — oc.

(i) {gr} concentrates at yg = 1.
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Theorem 1.3 follows at once from Proposition 3.1 and the following result.
Lemma 3.2. Let p > 1. Given yg € R\ {0}, let { f,,} C L*(R) be a sequence concentrating at yo. Then

) [ fnop * fuop * fn0p||12JZ(R2) 2
lim sup 3 < .
n—oo ”f””L2([R) \/gp(}’ - 1)

(3-1)

If‘we set fn (y) = e_n(|y|p_|YO|p_py0|y0|p_2(y_y0))|y|(p_2)/6’ then the sequence {fi’l”fl’l”z;} concen-

trates at yo, and equality holds in (3-1).

Convolution of singular measures is treated in much greater generality in the companion paper [Oliveira
e Silva and Quilodran 2019]. Lemma 3.2 is almost contained in [Oliveira e Silva and Quilodran 2018;
2019], and we just indicate the necessary changes.

Proof sketch of Lemma 3.2. Once the boundary value for | - |(1’_2)/60p * | - |(p_2)/60p * | - |(p_2)/60p
given in (4-3) below is known to equal the right-hand side of (3-1), the proof for p > 2 follows the exact
same lines as that of [Oliveira e Silva and Quilodrdan 2018, Lemmas 4.1 and 4.2]. We omit the details.

If 1 < p <2, then the function | - |(?=2)/€ fajls to be continuous at the origin, and an additional argument
is needed. We show how to reduce matters to the analysis of projection measure. Let { f;,} C L?(R)
concentrate at yg 7 0. Then

. ||fn0p*fn0p*fn0p||]%2 p—21: ||fnvp*fn‘}p*fn‘)p”iz
lim sup = |yo| lim sup

n—>00 1£§ - n—00 1£§ -

: (3-2)
where v, denotes the projection measure dv, = 8(s —|y|?) dy ds. To verify (3-2), consider the interval
J :=1[y0/2,3y0/2]. Then

| fnop * fnop * fnUp”iz | fnlyop * fnlyop * fnljUpHIZJz

lim sup = limsup
n—>o0 1fnll§ 2 n—>o0 1 fndsl§
2. ||fnvp*fnvp*fnvp||22
= Iyol~2 limsup .
n—o0 ||fn||L2

Here, to justify the first equality, invoke the continuity of the operator &,, and the fact that the sequence
{ fu} concentrates at yq. For the second equality, additionally note that

=2 =2
| fndsl-176 = fudslyol & 2
| fnlsliz2

From [Oliveira e Silva and Quilodrén 2019, Proposition 2.1], the measure v, * vp, * v, defines a continuous

—0 asn— oo.

function in the interior of its support, with continuous extension to the boundary except at (0, 0). Moreover,

for any yg # O,
2

V3p(p—1)|yol?=2

The result now follows as in [Oliveira e Silva and Quilodran 2018, Lemmas 4.1 and 4.2]. ]

(vp * vp xvp)(3y0, 3|yol?) =
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The proof of Proposition 3.1 relies on the bilinear extension estimates and cap bounds from Section 2,
together with a suitable variant of Lions’ concentration-compactness lemma, which is formulated in the
Appendix as Proposition A.1. This has two important consequences for the present context, the first of
which is the following.

Proposition 3.3. Let { f,,} C L?(R) be an L?-normalized extremizing sequence for (1-9). Let {r,} be a
sequence of nonnegative numbers satisfying r, — 0 as n — oo and

1+r,
inf[ | fn()I?dy > 0.
neN 1-ry,

Then the sequence { fn} concentrates at yy = 1.

Proof. Consider the intervals Jy, := [l —ry, 1 + 1], n € N, and define the pseudometric
o: R\ {1} xR\ {1} — [0, 00), o(x,y) = |k —k'|, (3-3)

where k, k’ are such that |x — 1| € [2%, 2K+ 1) and |y — 1| € [2¥,2K"+1). Let R be an integer. Then the
ball centered at x # 1 of radius R defined by g is given by

B(x,R) ={y e R\ {1}:2F"R < |y — 1| < 2k+R+1Y,

Let { f,} be as in the statement of the proposition. Apply Proposition A.1 to the sequence {| f,|?>} with
X = R equipped with Lebesgue measure, X = 1, the function o defined as in (3-3), and A = 1. Passing to
a subsequence, also denoted by {| f;,|?}, one of three cases arises.

Case 1: The sequence {| f,,|?} satisfies compactness. In this case, there exists {x,} C R\ {1} with the
property that for any ¢ > 0 there exists R < oo such that, for every n > 1,

f | ful2>1—e¢. (3-4)
B(xnaR)

Suppose that limsup,,_,o, |X» — 1| > 0. Then, possibly after extraction of a subsequence, {x,} is
eventually far from 1; i.e., there exist No € N, £* € Z such that |x, — 1| > 2¢" for every n > Ny. Let
£:= %infn Il fn ||i2 T 0, and choose an integer R such that (3-4) holds. Now,

where k, is such that |x, — 1| € [2k»,2kn+1) and hence B(x,, R) C {y # 1:|y — 1| > 2"~ R}, Let
N1 > Ny be such that r,, < 2" =R for every n > Nj. In this case, we have J, N B(x,, R) = &, which is
impossible because our choice of ¢ would then force

1=/|fn|22/ |fn|2+/ ful? > 1.
R Jn B(xu,R)

s

It follows that x,, — 1 as n — co and consequently the sequence { f;, } concentrates at yo = 1. Indeed, given
& > 0, choose an integer R such that (3-4) holds. Then B(x,, R) C [I —2kn+R+1 1 4 okn+R+1]\ (1},
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where |x, — 1| € [2k», 2kn+1) and k,, — —o0, as n — o0, so that 2kntR+1 5 0 as n — oco. This forces

1+2kn +R+1
[ | n)Pdy = 1—¢
1—2kn+R+1
for every n > 1, which implies concentration of the sequence { f,,} at yo = 1.

Case 2: The sequence {| f,,|?} satisfies dichotomy. Let a € (0, 1) be as in the dichotomy condition. Given
& > 0, consider the corresponding data R, ko, pn,; = | fn,j1% j €{1,2}, {xn} CR\ {1}, {Ry} C [0, 00).
In particular,

supp(fy.1) C B(xn, R) and  supp(fu.2) C B(xn, Rn)C.

Since R;, — R — 00 as n — oo, by Corollary 2.4 we obtain

1€p (fn,)Ep (fn2DIL3 = Cull fuall2ll fn2llL2, (3-5)

where C,, = Cp(¢) < 27 P®n=R) for some B > 0. In particular, given & > 0, we have C, — 0 as n — oo.
Aiming at a contradiction, consider

1
||gp(fn = Jaa— fn2)llps < Ep”fn —(fna+ S22 = Epe2. (3-6)

The latter inequality requires a short justification which boils down to the pointwise estimate
(fal = U faal + 1 fa2D)? < 1l = (a1 fa 2D = 1fal? = (fua P+ [ fu2PD) GD)

This, in turn, follows from the disjointness of the supports of f, 1 and f; 2, together with the trivial
estimate || fu| = ([ fn,1]+ [ fn2D] < [fu| + (I fn,1] + | fn.2]). In this way, (3-7) and Proposition A.1 imply

I(fal = (A fat L+ 2Dl < W fl? = (fua P+ 2 lLr < e
Coming back to (3-6), we have as an immediate consequence that

1
1Ep(fu)llLe < Epe? + 1Ep(fn,1 + fn2)llLe-

Expanding the binomial, using || fn.11lz2, || fn.2]l12 < 1, and Holder’s inequality together with (3-5), we
find that there exists ¢ independent of n such that, for sufficiently large n,

1€p(fut + Fa D56 < NEp(fu. DS 6 + 1€ (fa2) |56 +cCn
<ES(1fuallz + 11 f2ll82) +cCr
<EJ(@+¢)’+(1—a+e)?) +cCy. (3-8)

This implies, for every sufficiently large n,
1 1
€5 (fu)lls < Epe? + (ES((a + ) + (1 —a +)%) + ¢ Cp)®.
Taking n — oo, and recalling that { f,,} is an L2-normalized extremizing sequence for (1-9), we find that

Ep < Epe? + Ep((0+¢)% + (1 —a +¢)3)s
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for every & > 0. Taking ¢ — 0 yields 1 < a3 4 (1 — )3, which is impossible since « € (0, 1). Hence
dichotomy does not arise.

Case 3: The sequence {| f,|?} satisfies vanishing. In this case,

lim sup | fa()?dy =0

Gy 15/ /2k—R§|y—1|§2k+R+1
for every integer R < oo. In particular, for fixed k € N, we have

lim f)2dy =o. (3-9)

ne0 Ja—k<ly—1]=2
Set fu,1:= falp—a— 142k and fn2:= fulgy_q50ky. Since || fo — fu,1 — fu2llp2 > 0asn — oo
it follows that { f,,1 + fu,2}n is also an extremizing sequence for (1-9) for each k € N. This new
sequence splits the mass into two separated regions, and so we expect to reach a contradiction if
limsup, _, o || fn,2llL2 > 0, just as in Case 2. Set oy := limsup,,_, ||f,12||i2 (recall that f; » depends
on k), and note that {o } is a constant sequence. Indeed,

[ mora=[ 0P+ [ P G10)
ly—1]=2% |y—1]=2k+1 2k <|y—1|<2k+1

and from (3-9) with k + 1 instead of &k we have

lim | fn()I*dy =0.

no0 Jak<|y—1]<2k+1
Taking limsup,,_, ., in (3-10) yields a1 = o for every k € N. An argument analogous to that of
Case 2 (starting from (3-8)) shows that there exist 8 > 0 and a sequence {Cx}, 0 < Cx <27Pk 0 as
k — oo such that

1< “/3 +(1—ag)>+C, forevery k € N.

Since o = « is constant, we may take k — oo in the previous inequality and obtain 1 < o3 + (1 —a)3.
Since « € [0, 1], necessarily @ € {0, 1}. We claim that @ = 0. For any k > 1, the support of f, » is disjoint
from the interval Jj, if n large enough. Thus

||fn,2||izsl—/ |fn|251—inf/ a2,
Tn neNJ I,

and therefore

neN Jy

afl—inf/ | ful? < 1.
We conclude that o = 0, as claimed. Finally, we show that vanishing implies concentration at y = 1. Since

L= fallZ> = 1 faallFo + 1 fn2lZs +0n(D) = | fuallo +0n (1) = | falp—a—s 1424172 +0n (1),

we find that, for every k € N,
1+27%

lim | )P dy = 1.

n—>00 [1_»—k

This implies that the sequence { f,,} concentrates at yo = 1.
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To sum up, we proved that any sequence { f,} as in the statement of the proposition does not satisfy
dichotomy, and that if it satisfies compactness or vanishing, then it concentrates at yo = 1. Thus the proof
is complete. O

As a second application of Proposition A.1, we prove dyadic localization of extremizing sequences,
after rescaling. We take X = R, x = 0, and use the dyadic pseudometric

0:R\ {0} xR\ {0} = [0,00), o(x.,y):=|k—Kk'|, (3-11)
where this time |x| € [2%,2%%1) and |y| € [2K", 2+1). In this case, if R is an integer, then
B(x,R) = {y e R\ {0}: 2K~ R < |y| < 2k+R+1,

Proposition 3.4. Let { f,} C L*(R) be an L?-normalized extremizing sequence for (1-9). Then there
exist a subsequence { fp, }, a sequence {ay} C R\ {0}, and a function ® : [1, 00) — (0, 00), O(R) — 0
as R — oo such that the rescaled sequence {gr}, gk := |ak|1/2fnk (ag -), satisfies

”gk”LZ([_R’R]E) <O(R) foreveryk>1and R>1. (3-12)

This proposition will provide the input for the suitable application of the Brézis—Lieb lemma, which is
formulated in the Appendix as Proposition B.1.

Proof of Proposition 3.4. Let { f,,} be as in the statement of the proposition. In view of Corollary 2.6,
there exists £, € Z such that || fy ||L2(Ig y Zp L, if n is large enough. Setting g, := 26012 £, (260 ), we
then have

gnllz2cg) Zp 1 (3-13)

for every sufficiently large n. Using Proposition A.1 with the pseudometric (3-11), we obtain a subsequence
{18n, |2} that satisfies one of three possibilities. Because of (3-13), vanishing does not occur. The argument
given in Case 2 of the proof of Proposition 3.3 can be used in conjunction with Corollary 2.2 to show that
the sequence {|gn, |2} does not satisfy dichotomy either. Therefore it must satisfy compactness. Thus,
there exists a sequence { Ny} C Z such that, for every k > 1 and ¢ > 0, there exists an integer r = r(¢)
for which
2
dy>1-—e.
Lo s o002

Because of (3-13), the sequence { Ny } is bounded, supy > |Ng| =:ro < co. By redefining r as r +ro + 1,
it follows that

/ lgk(V)|Pdy = 1—¢ forevery k > 1. (3-14)
27" <|y|<2"

Defining the function

6(R) := sup / g ()2 dy.
k>1J{R=1<|y|<R}C
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R — 6(R) is a nonincreasing function of R which is bounded by 1 and, in view of (3-14), satisfies
0(R) — 0 as R — oo. By construction,

/;R | <ly|<RIE lgr(»)|>dy <@(R) foreveryk >1, R>1,
—I<lyl=

which implies (3-12) at once by taking ® := g1/2, O
We are finally ready to prove Proposition 3.1.

Proof of Proposition 3.1. Let { f,} be as in the statement of the proposition. Apply Proposition 3.4 to
{ f»}, and denote the resulting rescaled subsequence by {g,}. From the L! cap estimate (2-28) we know
that, for each sufficiently large n, there exists an interval J, = [s, — rn, Sy + ], contained in a dyadic
interval® [2Kn  2kn+1] such that
/ lgn| > C|Jn|%
Jn

for some ¢ > 0 which is independent of n. By the Cauchy—Schwarz inequality,

lgnllL2(s,) = ¢, (3-15)

and so estimate (3-12) implies the existence of C > 0 independent of n, such that C -1 < lsn| < C.
Rescaling again, we may assume s, = 1 for every n.

If r* :=liminf,_  |Ju| > 0, then passing to the relevant subsequence that realizes the limit inferior
we have

—2r* 1-2r*

1+2r* 1427
/1 gn(y)dy=/ |gn<y)|dyz[J PREN

provided 7 is large enough to ensure J, C [1 —2r*, 1 4 2r*]. Therefore any L2-weak limit of the
sequence {gn} is nonzero. Here we used the nonnegativity of the sequence {g,}. By Proposition B.1, we
conclude that there exists 0 # g € L?(R), such that possibly after a further extraction, g, — g in L2(R),
as n — oo. In other words, (i) holds.

It remains to consider the case when |J,| — 0, as n — oco. In view of (3-15), Proposition 3.3 applies,
and the sequence {g,} concentrates at yo = 1, i.e., (i) holds. This finishes the proof of Proposition 3.1
(and therefore of Theorem 1.3). O

4. Existence of extremizers

In this section, we prove Theorem 1.4. The basic strategy is to choose an appropriate trial function f for
which the ratio from (1-10),

| fop * fop * fgplliz(Rz)
6
1712

q)P(f) = ’ (4'1)

30r its negative, but in that case we replace f; by its reflection around the origin.
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can be estimated via a simple lower bound. We will give different arguments depending on whether
1 < p <2or p > 2, which rely on distinct choices of trial functions. This can be explained by the
different qualitative nature of the 3-fold convolutions wv, * wv, * wy, in the two regimes of p; see
Figure 1. Here, and throughout this section, dv, = §(s —|y|?) dy ds denotes projection measure on the
curve s = |y|?, and the weight is given by w = | - |?=2)/3, Note that dop, = Jw dvp.

The following analogue of [Oliveira e Silva and Quilodrdn 2018, Proposition 6.4] holds for 3-fold
convolutions in R2.

Proposition 4.1. Given p > 1, the following assertions hold for wv, * wvp * wWvp:
(a) It is absolutely continuous with respect to Lebesgue measure on R2.
(b) Its support, denoted by E,, is given by
Ep={( 1) eR?:t>37P|g|7). (4-2)

(¢) If p = 2, then its Radon—Nikodym derivative, also denoted by wv), * wv, * wvp, defines a bounded,
continuous function in the interior of the set E,. If 1 < p < 2, then wv, * wv, * wv, defines a

continuous function on the set
Eyp:={(E, 1) eR?:317P|g|P <7 <217P|g|P},
(d) It is even in &, that is,
(Wvp * WYy kW) (—E,T) = (WVp * WV * W) (€, T)
forevery £ € R, t > 0, and is homogeneous of degree zero in the sense that
(wvp * wvp * WVp)(AE, APT) = (wvp * Wy, xwVp) (€, T) for every A > 0.

(e) It extends continuously to the boundary of E,, except at the point (§, t) = (0, 0), with values given by

(wvp * wvp x wp)(E,3'PIE|P) =

21
— 0. 4-3
T 167 (43)
Proof. For p > 2, the result follows from Proposition 2.1 and Remark 2.3 of [Oliveira e Silva and
Quilodran 2019]. If 1 < p < 2, then the weight w is singular at the origin, and an additional argument is
required in order to establish parts (c) and (e) (as the others follow from [loc. cit.]). Note that part (e)
also follows from [loc. cit.] after we verify (c), and so it suffices to show the latter.

Let ¥ = |-|?. From [loc. cit., Remark 2.3], the formula

(|46 + a1 +02)| |26 —aw| |1 —aws]) T

(1, ) + (2. )

(w2 wrp) €0 = [ o 4-4)

where
Wi (5, 7,01, 02) = VY (36 +awr +aw) — VY (36 —aw;), =12,
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holds on E p, provided that the function W defined by

-2
W o1, 02) = (|36 + a(w1 + 02)| |3€ —ao1||3€ —Olwz\)pT (4-5)

is continuous in the domain of integration. Here wlz + w% = 1, arc-length measure on the unit circle S!
is denoted by wu, and the function o = « (€, 7, w1, wy) is implicitly defined by

e+ aton +on)|” + |36 —awn]” + |1 —aws]” ~
see [Oliveira e Silva and Quilodran 2019] for details. It follows that
16 +a(r + )|’ + |36 —aw |’ + |2 —aw,|” <2172,
provided (¢, 7) € E p- On the other hand, if %S —aw; = 0, then convexity of ¥ implies
128 + aws|” + |38 —aws|” = 2P g,

and similarly if %S —awy = 0, while if %S + a(w1 + w2) =0, then

11 —aw [P +|2E —aws|P = 217728 —a(wr + 02)|” =225
It follows that none of these three terms can vanish in a neighborhood of any point (§, 7) € E p, and therefore

W is continuous there. Thus identity (4-4) holds, and this concludes the verification of part (c). O

The boundedness of wv, * wv, * wv, provides an alternative way towards estimate (1-10) via the usual
application of the Cauchy—Schwarz inequality, at least in the restricted range p > 2. Moreover, identity
(4-3) and the argument in Lemma 3.2 together imply that the corresponding optimal constant C,, satisfies

CcS> B ,
V3p(p—1)
which should be compared to (1-13).
4A. Effective lower bounds for Cp. We start by examining a simple lower bound, which is the analogue
of [Oliveira e Silva and Quilodrdn 2018, Lemma 6.1] for 3-fold convolutions in R2.

Lemma 4.2. Given a strictly convex function ¥ : R — R and a nonnegative function w : R — [0, 00),
consider the measures dv(y,s) = 8(s —W¥(y))dy ds and do = Jw dv. Let E denote the support of the
convolution measure v x v * v. Given A > 0, a € R, let f3 4,(y) := e~ A¥O+ay) [ (y). Then

| fia® * fra® * Frao Vo) Wralfag
1 /a2y = T e 2MGrad) de de

forevery fj 4 € L?(R) such that J2.a0 * f2,a0 * f1,40 € L?(R?).

(4-6)

The proof is entirely parallel to that of [Oliveira e Silva and Quilodran 2018, Lemma 6.1]. Note that
(4-6) implies
If % fo* ol _ I f3all$2 gy

sup > sup — )
0% feL2(R) 1152 g i>0,acr [g e a0 dé dr

(4-7)
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Specializing Lemma 4.2 to the case of the measure 0, with the natural choice of trail function f(y) =
e~ Y17 |y|(P=2)/6 3 quick computation yields

3
41‘(1’3—;1)
31‘Ep21“( )

This lower bound is good enough to establish the strict inequality (1-13) in a range of p that includes

O,(f) = (4-8)

the cubic case p = 3 but not the quartic case p = 4, so we have to refine it. For the above choice of
trial function, the corresponding ratio (4-1) can be expanded as an infinite series with nonnegative terms,
whose coefficients are given in terms of the Gamma function and whose first term equals the expression
on the right-hand side of (4-8).

Proposition 4.3. Let p > 1 and f(y) = e 217 |y|(P=2/6 ¢ L2(R). Then
3177 p2r (4

%(f)=%2(4 n 12" l(g(gz)("g’; i) @9

where the coefficients {I,x(p)}k>0 are given by expression (4-15) below.

The proof will make use of the classical Legendre polynomials, denoted by { P, },>0, Which constitute
a family of orthogonal polynomials with respect to the L2-norm on the interval [—1, 1]. Explicitly, they

are given by*
n+k—1

Pn(z)zzni(Z)( 2 )zk, l<r<l, (4-10)

k=0
from where one checks that (P, Py);2 = (2/(2n + 1)) §(n = m); see [Stein and Weiss 1971, Corol-
lary 2.16, Chapter 4]. See also [Carneiro and Oliveira e Silva 2015; Christ and Shao 2012a; Foschi
2015; Gongalves 2019; Negro 2018] for earlier appearances of Legendre and other families of orthogonal

polynomials in sharp Fourier restriction theory.

Proof of Proposition 4.3. Start by noting that the function f(y) = e~ ?1”|y|(P=2)/¢ coincides with
e~ *y/w(&) on the support of 6,,. Using this together with parts (b) and (d) of Proposition 4.1, we obtain

2 — 2
||f0p * fUp * fUpHLz = |le T(va * WVp * w”p)”Lz

31—=1/p 1/p
/ /31 1/ps1/p _zr(va*va*va)z(gvt)dsdf
T
31=1/p
/ /31 U e 2T (wyp * Wrp * wrp)? (rl’k r)dAdr
31-1/p
— 1 =27 2
= TP dr (wvp * wyp kwvp)“(A, 1) dA
0 —31-1/p
3171 (L)
=1—+1p/ (va*va*va) (31 pt 1)dr. (4-11)
p2"r

“4Recall that the binomial coefficient (z) =a(e—1)--- (¢ —n+1)/n!is also defined when o ¢ Z.
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On the other hand,

2 1
B o0 2373 _(p+1
||f||22=/ 2017 |y 252 dy—zf 237 2 r( ) (4-12)
R 0 p 3p

Givent € [—1, 1], define g, (¢) := (wvp * wyp * va)(31_1/pt, 1). Expanding g in the basis of Legendre
polynomials,

o0

1 1 2
||gp||1242([_1,1]’d,) = Z W(/ gp(1) Pu (1) df)
n=0 1nlip2 \J=1

S (SEE [ wor o)

where the last identity follows from (4-10), the normalization || Py ||? 72 =2/(2n+1), and the fact that g is
an even function of 7. We proceed to find an explicit expression for the moments 7, (p) := f L &p ()t dr.
Given b € R, we compute

f —(- bg)(wv * Wy *x wvp) (&, 7)dEdr

31-1/p
/ / 5 _’ebtl/”(va*va*va)(/\, 1)dAdr
31=1/p
00 1-L)@n+1) ;20 00 1
3( b n+ .
= Z ! (/ et dr) / 127 (wvp * wvp * wp) (3! Iljt, 1)de
"0 (271)' 0 -1
© LH(1-L)@2r+1) 24
3(1-5 b 2n+1_(2n+1
- , P2 i) @13)
= (2n)! p

This Laplace transform can be alternatively computed as

3
Az e_(’_bS)(va xwvp *x wup)(§,7)dEdT = (/R e_‘ylpeby|y|pTz dy)
00 3
2b2n 00 _
“(S )
n=0( ! Jo

>, 22" p+1+6n 3
= (Z p(zn)!r( )) | 1

n=0

Equating coefficients of the same degree, we obtain

n n—k p+1+6k)F(p+1+6m)F(p+1+6(n—k—m))

23(2n)! 3p 3p
L2n(p) = 2. 2 (2k)! 2m)! 2(n —k —m))!

(1—i)(2n+1) 2(2n+1)I‘ 2n+1 k PR

(4-15)
Identity (4-9) follows at once, and the proof is complete. O
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14 ~
_p—3
—p=4
p=>5
p=11
p=12
t
—p=%
_3
—p=3
pP=3
0sf . ] ] .
0:2 04 06 0/8 1.0t

Figure 1. Plots of the functions g, (), appropriately normalized so that they are
closeto latt =1 for p €{3,4,5,10,11,12} and p € {% % %} For p € {3,4,5} and
pe{3.2.3} weused N = 10, for p € {10, 11,12} we used N = 15.

Remark 4.4. From the preceding proof, we have the following approximating sequence {g, N }N>0
for gp:

(32)(“2?%)1%(1)))PZn(t>, <i<l.

This was used to construct Figure 1. They correspond to approximate graphs of wv, * wv, * wv, on the
region {(£,1):0 < & < 31=1/P} for different values of p. By homogeneity, the full picture on R? can be
obtained from these graphs. Figure 1 (top) indicates that, for large p, the function g, (7) becomes small as
t — 0. The function (wvp, *wv, *wvp)(§, T) should then be small near the T-axis, unlike the case of small
values of p. This suggests that extremizing sequences may concentrate at the boundary if p is large enough.

N n
gpN (1) =Y (4n+1)22""! (Z
n=0

k=0

4B. Proof of Theorem 1.4. We consider the case p > 2 first. From Theorem 1.3 and Proposition 4.3, it
suffices to show that there exists N € N such that
1
317 pr(5) & "\ ony k-1 2 2
—”Z(4n+1)24"—1(2( ”)( 2)1 () > —2 (4-16)
2T(55)° 156 o 2n V3p(p—1)

where the coefficients I, (p) are given by (4-15). The range of validity of (4-16) can be estimated by
performing an accurate numerical calculation. Taking N = 15, one checks that inequality (4-16) holds
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for every p € (2, po), where pg € [4, 5] and can be numerically estimated by po ~ 4.803, with three
decimal places. Increasing the value of N does not seem to substantially increase pg.

If 1 < p < 2, then inequality (4-16) fails (for every N € N). Incidentally, note that if p = 2, then the
left- and right-hand sides of (4-16) are equal (for every N € N) since the 3-fold convolution of projection
measure on the parabola is constant inside its support; see [Foschi 2007, Lemma 4.1]. We are thus led to
a different trial function. For n € N, define

Fa(y) = e 20V =PV |y =567 4-17)

In light of Lemma 3.2, the sequence { /|| f» ||221} concentrates at yo = 1. Passing to a continuous
parameter A > 0, Lemma 4.2 yields the lower bound

12118,
®)
p(f2) = 1
—A(z—p§)
pre =P8 dE dr

=:¢p(A),
which we proceed to analyze. Since

2 X AP —py) |y -2
”fA”Lz(R) = e ly[~ 73 dy,
—0oQ

/ o~ MT—D§) dé dr = /oo APt (/oo e AT dr) de = ! /oo o~ ABITPIEIP—pE) dg,
Ep 00 31=rlglr A J-oo

we have

(f e—x(lylp—py)|y|—2%p dy)3

_ —o0
Pp(A) = A [22 eGB! IEIP=pE) dg

In view of (4-7), we have Cp6 > ¢p(A) for every A > 0. Therefore it suffices to show that ¢, (1) >
27/ (V3p(p — 1)), provided A is large enough. This is the content of the following lemma, which we
choose to formulate in terms of the function g, (1) := ¢, (A7 1).

Lemma 4.5. Let p € (1,2). Then

lim g,(0) = — 2% (4-18)
ot P T A1)
. , n(2—p)2p—1)
- 4-1
xl_lfg+ ) 9V3p2(p—1)2 " 19

In particular, if A > 0 is small enough, then ¢, (1) > 27/ (V3p(p —1)).

Note that (4-18) follows from Lemma 3.2, but we choose to present a unified approach that establishes
both (4-18) and (4-19).

Proof of Lemma 4.5. Rewrite ¢, in the equivalent form

(75, IO =252 g )

_ —o0
¢P(/\) =2 ffzo e—A317P(ly|P—37—p3r~1(y—3)) dy '
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Define real-valued functions y — a(y) and y — B(y) via®
b4 _(P 2
P =1=pr =D =(5) =D +at-1). (4-20)
1P =37 = p3r 7 (y=3) =372( D) (v =3 + By - 3)).

By the binomial series expansion, if |y| < 1, then

-2 -2 -3
oe(y)zp3 I f;p LT @-21)
2 3
By )_ 3. (p 12)(3102 )y4+ 4-22)

One easily checks that |« (y)| — oo and |,3(y)| — 00 as |y| — oo, and
lim Aw(A"2y) = lim AB(A"2y) =0 (4-23)
A—>00 A—>00
for each y € R. We also have

P_1— 1 _
/GXP(_AM Pp(y ))|y|_23p dy:*_é/e P2~haGT I a3y 7 5
R R

(3)

31=P(|y|P =3P — p3P~1(y -3
/exp(—x (Iy] p3P"(y )))dy _;
R

9

-

P / e e 3B gy
R

and consequently

5 ( 21 )_ o) (f e~V o Aa(A” 1/2y)|1+,\ 2y| dy)
“\p(p—1 V3p(p—1) Jpe? e—gﬂ((x)l/zy)dy .

For bookkeeping purposes, set

1/2
Ap(A) = (/ et G l/2)’)|1 + A7 2y| dy) and Bp(d) ::/e_yze_éﬁ((i) ») dy.
R R
We now analyze each expression. Recalling (4-22), the numerator A4, (A) is seen to satisfy
-2)2p—1 3
Ap(X) =ﬂ3(l—%+ O(A_g)) as A — oo. (4-24)

Since binomial series expansions are only valid inside the unit ball, this step requires some care which
we now briefly describe. Split the integral defining A4, (A) into three regions,

150 = (/ / /f)e P2 AT 3=y 7S dy = T T4 IIL

5Note that a(y) = 3728(3y).
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and estimate each of them separately. The main contribution comes from the integral Il =II(A1). Appealing
to (4-21) and to the binomial series expansion, we have
_ _ _ _ 92
P=2,-4 3. (r=2)(p—3) (r—2)

1 3
—Aa(A"2y)=1-"Z A2 Tyt 2 a1 0,072
exp(—Aa(A72y)) 3 P A T y°+ 0y(A72),

2 2 —2)(p—>5
4+ dyr St =1+ 2 ahy 222w I;p L3132 4 0,(173)

uniformly in y € [-+/A/2, ~/A/2]. From this one easily checks that

-2)2p—1
) =77 + n%%rl + oM.

Matters are thus reduced to verifying that the contributions from I and III become negligible as A — oo.
On the region of integration of I = I(1), the factor |1 + A~1/2y|~(2=P)/3 has an integrable singularity at
y = —A1/2. Recalling the definition (4-20) of the function «, and changing variables A™1/2y ~> x, we

have )

I(A) = A% / : e_mfil)('Hx'p_l_px)H +x|_2_Tp dx.

o0
Invoking the elementary inequality |1 4+ x|? —1 — px 2, [x|?, which is valid for every x < —% and
1 < p <2, we may use Holder’s inequality together with the local integrability of x — |1 + x|_(2_1’)/ 3
in order to bound
I(A) = 0p (A2 exp(—CpA))

for some C, > 0. The contribution of III(1) is easier to handle because no singularity occurs on
the corresponding region of integration. This concludes the verification of (4-24), which can then be
differentiated term by term because there is sufficient decay. Therefore

3
3 3(p—2)2p—1)m2
lim Ap(k) = 77;% and lim —A2A’ ) =— (p )(2p ) '
A—>00 A—00 14 144
On the other hand, using the binomial series expansion (4-22) we obtain

1

Ao((3)? p—2._1 (p—2)(p-3),_ (p—2)*. _ 3

eXP(—gﬂ((X) )’))=1_ 33 A 2y3_TA 1y4+Tk 1y6+0y(/\ 2)
2

uniformly in y € [—% (%A) (%A)l/ 2], so that an argument similar to that for 4, (1) gives

NJ—=

] -2)2p—1
Byy=ns+ )1(4f)t L

+ O3,

1

-2)2p—1n2

lim Bp(k)zyr% and lim —AZB/()L)z (p )( p )7T
A—00 A—00 P 144

We conclude

2A ) 27

Jim, ep() = lim ¢p(4) = lim_ ¢p(p(p— D) Brp-1)
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To address (4-19), note that

_ -2 -1 : . 2
gp() ==272¢507"). andso lim g} (3) = lim ~22¢}(4).

Therefore
lim —22- 4 (¢ ( 2) )): 27 (_3(p—2)(2p—1>_(p—2><2p—1)):n(z—p)(zp_l)
A—>00 “\p(p-1) V3p(p-1) 144 144 18v3p(p—1)

which readily implies (4-19). This completes the proof of the lemma (and therefore of Theorem 1.4). [

4C. Improving py. In view of the results from the last subsection, it is natural to let the functional ®,,
defined on (4-1) act on trial functions f(y) = e~ 1?17 |y|(P=2)/6+a for different choices of . By doing

s0, the value pg ~ 4.803 can be improved. We turn to the details.
Set k := | -|?=2)/3+4 and note that

(kv * KVp % kVp)(AE, AP T) = A3 (kv * Kkvp % kvp) (E,T)  for every A > 0.

Reasoning as in (4-11) and (4-12), one checks that

31 F(H—Ga)
||f0p*f0p*f0p||]%2(Rz) ZW(1+6LI)/ (Kvp * KVp % KVp) 2@31= Pt 1) dt,
p

235 1146
D p a

1 122 = r( )
re— ) 3p

Given t € [—1, 1], define hp(f) 1= (kvp * kVp * Kvp)(31_1/pt, 1). Expanding £, in the basis of Legendre
polynomials,

n
2 4 1 2n I’l+k ok
sy = 0+ 1287 (kZ(zk)( ” h(z)t o)
n=0 =0

We proceed to find explicit expressions for the moments 7, (p,a) := f_ll hp(t)t" dt. Given b € R, we
compute as in (4-13) and (4-14)

© H(1-1)@n+1);2n
e 303 b2" 2n+143a [ 2n+1+3a
/RZ€ (T bs)(KVp*KVp*KUp)(E,‘L’)déd‘[= E @) ) F( )IZn(p a)

n=0

B i 207" (pH1+6n+3a))?
- = p(2n)! 3p ’

Equating coefficients as before, we find that the moment /5, (p, a) equals

3_(1 )(2n+1)23(2n)' n n—k F(p+1—;;k+3a)F(p+1+36pm+3a)F(p+l+6(n3;k—m)+3a)

k) 2m)! 2(n —k —m))!

p2(2n+1+3a)r 2n+1+3a Z Z

kOmO

SNote that L2-integrability forces a > —(p + 1)/6.
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This implies

1
31—;p21—1(1+6a) oo n ) k—l 2
— p 4n—1 ny\mtk—z
(/)= e (1460 Y (40 +1)2 (Z(Zk)( o )12k(p,a)),
( 3p ) n=0 k=0
and consequently the following lower bound holds for every N > 0:
1
31—;p2F(1+6a) N n P k—l 2
P 4n—1 ny(M+tk=3
()2 e (160 Y (n 12 (Z(Zk)( , )Izk(p,a)) .
(75,7%) n=0 k=0

%, one can establish a lower bound that beats

the critical threshold 27/ (+/3p(p — 1)) for every p € (2, p1), where p; ~ 5.485 with three decimal
places. One further observes that the lower bound for small values of a > 0 is larger than that for a = 0,

By numerically evaluating this sum with N = 15and a =

strongly suggesting that the original trial function y > e~1”|y|(?=2)/6 might nor be an extremizer in
that range of exponents.
5. Superexponential L2-decay

This section is devoted to the proof of Theorem 1.5. We follow the outline of [Erdogan et al. 2011; Hundert-
mark and Shao 2012], and shall sometimes be brief. The Euler—Lagrange equation associated to (1-9) is

EX(Ep (N DIEN DY) =Af: (5-1)

see [Christ and Quilodran 2014, Proposition 2.4] for the variational derivation in a related context. The
following 6-linear form will play a prominent role in the analysis:

3
Q(fl’ f21 f3a f4s fSa f6) = /;@2 1_[ gp(f))(xv t)£p(f}+3)(x’ t) dx dt
=1
An immediate consequence of (1-9) is the basic estimate

6
10(f1- fo- fo fa fs SO S T T 1S 2wy (5-2)

Jj=1

The form Q can be rewritten as
3
Q1. fa f3. fu. f. fo) = /R T 5001 Frs0nlyial s 8@ 8(B(y))dy.
j=1

where y = (y1,..., v¢) € R® and
a(y) = |y1|? + [y21? + [y31? = |yal? = |ys1? = |ysl?.
B(y)=y1+y2+y3—ya—ys—Js.

We will also consider the associated form

K(f1, f2, 13, fas [5. Jo) i= QUL L2l LS5l [ fal L5l L fsl)
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which is sublinear in each entry. Clearly,

|OQ(f1, f2, f3. fa. [5, f6)| = K(f1, f2. f3. fa, [5. f6), (5-3)
6

K(fi. fo f3. fa fs fO S T 1 filemy- (5-4)
j=1

Let us now introduce a parameter s > 1, which will typically be large. If there exist j # k such that f; is
supported on [—s, 5] and f} is supported outside of [—C's, Cs] for some C > 1, then estimate (5-4) can
be improved to

6
_p=1
K(fi. fo fo fa S5 fo) SCT0 TS l2my: (5-5)
i=1
in accordance with the bilinear estimates of Corollary 2.2. Introducing the weighted variant
6
—_y© ; p=2
K (f1. f2. f3. fa. [5. J6) 3=/ GO G0)) 1_[ | pllyile 8(e(y)) 8(B(y))dy.

6
R i1

one checks at once that
K fi.e7C fr.e7C f3.7C f4.e7C f5.¢7C f6) = KG(f1. fo. f3. fa- f5. fo). (5-6)

Given u, ¢ > 0, define the function

wlyl?

G = 5-7
/L,S(y) 1 +ely? (5-7)

The same proof as [Hundertmark and Shao 2012, Proposition 4.5] yields
K6, .(f1: f2. f3. fa. f5. f6) < K(f1, f2. f3. fa. f5. fe): (5-8)

see also Remark 4.6 of that paper. Split f = f< + f~ with f5 ;= f 1[_ 52.52C> and define

. G
1 lpos.e = e S 2

Definition 5.1. A function f € L2(R) is said to be a weak solution of (5-1) if there exists A > 0 such that

Qg £ /. . f)=Mg, f)r> forevery g € L*(R). (5-9)

Note that if f extremizes (1-9), then f satisfies (5-9) with A = E z?” f ||12. The following key step
shows that for some positive u, the quantity || /|45, is bounded in & > 0.

Proposition 5.2. Given p > 1, let f be a weak solution of the Euler—Lagrange equation (5-1) with
| fllz2 = 1. If s > 1 is sufficiently large, then there exists C < oo such that

5
My 5.0 <01 flls=20,56+C DN f 152 o +02(D), (5-10)
(=2

where for j € {1,2} we have 0; (1) — 0 as s — oo uniformly in &. Moreover the constant C is independent
of s and e.
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Proof. We start by introducing some notation. Let G := G, ¢ be as in (5-7). Let h := eCf, hs:=e9fs,
and h< := h — h~. Further split f< = f« + fo and h< = h + h~, where f« := f1l_5 and
h« :=e% f«. Since f satisfies (5-9), we have

MeC follZs = MeC fo fo)2 =20 fo. )12 = QE*C fo . f f f )
=0 hs, f. fi f £, f)=0(hs, e Ch,e Ch,eCh e Ch e Ch) = 0g.
It follows from (5-3), (5-6), and (5-8) that |Qg| < K(h>,h,h,h,h, h). Writing h = h< + h~, the

sublinearity of K implies

/ 1
19615 Klhhesheheeh) + (X + X )K(h>,hj2,hj3,hj4,hj5,hj6),

where the first sum, denoted by By, is taken over indices j», ..., js € {>, <} with exactly one of the ji
equal to >, and the second sum, denoted by B, is taken over indices j3, ..., je € {>, <} with two or
more of the j; equal to >. We estimate the three terms separately. For the first one,
A:= K(h>, h<, h<, h<, h<, h<) < K(h>7 h<<, h<, h<, h<, h<) + K(h>, h~, h<, h<, h<, h<)
—1

_r=1
Shsllp2 (775 lhlpe + A2 h<7 5,

where we made use of the support separation of /1~ and h« via (5-5). Since || f||;2 = 1, the estimates
2 2
Ih<lzz <™. lhallz €7 and b2 < e £l

hold and therefore
_pr—1 _ <2 2
AZ|hs|p2(s7 78 pH(sP—=s2P) + ”fN”Lz)eSMs ’

The terms Bp, By can be estimated in a similar way. One obtains
1 2 2 > 2
_pr—1 P _¢2p V4 p
By < [1hs 256755 &6 | £l 12)e®™ and By < |l 2 (Z Ilh>lliz)e3“s :
=2
The result follows by choosing i = s~2? and noting that || f~|/;2 — 0, as s — oo. |

We are finally ready to prove that extremizers decay superexponentially fast.

Proof of Theorem 1.5. Let f € L? be an extremizer of (1-9), normalized so that || f||;> = 1. Then f
satisfies (5-9) with A = Ep6. Note that the function (s, &) = || f ||s~20 5 ¢ is continuous in (s, €) € (0, 00)?
and, for each fixed ¢ > 0,

1 lls=20 5.6 = €972 f1_o opcllz2 =0 as s — oo, (5-11)
Let C be the constant promised by Proposition 5.2, and consider the function

H®):= %Av—C(v2+v3 + vt +0°).
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In (5-10) choose s sufficiently large so that 01(1) < %)L for every & > 0. This is possible since 01(1) = 0
as s — oo uniformly in € > 0. Consequently,

H(|| flls—2» 5,¢) <02(1) forevery & > 0.

In view of (5-11), and the facts that H(0) =0, H’(0) > 0, and H is concave on [0, 00), we may choose
s sufficiently large so that sup,..o 02(1) < H(vo) and || f [|;~2» 5.1 < vo, where 0 < vg < vy are the two
unique positive solutions of the equation

H(vj) = %max{H(v) tv >0},

By continuity, || f|s—2» 5, < vo for every & > 0. The monotone convergence theorem then implies
| flls—2r 5,0 < vo < 0o, which translates into

—2p|.|P
il

f e L*(R).

Letting 1o := s~ 2P, where s is large enough so that all of the above steps hold, we have thus proved the
first part. For the second part, note that, for every u € R, the function

e”lxlf(x) — eHlx|=nolx]” ,ell«olxlpf(x)

belongs to L?(R), since the first factor is bounded (here we use p > 1) and the second factor is, as we
have just seen, square integrable. The result then follows from the Paley—Wiener theorem as in [Reed and
Simon 1975, Theorem IX.13]. O

We finish with two concluding remarks. Firstly, the argument can be adapted to the case of extremizers
for odd curves treated in the next section. Secondly, an interesting problem is whether extremizers are
smooth (and not only their Fourier transforms). This question has been addressed in the context of the
Fourier extension operator on low-dimensional spheres in [Christ and Shao 2012b; Shao 2016b], but we
have not investigated the extent to which their analysis can be adapted to the present case.

6. The case of odd curves

In this section we discuss the necessary modifications to establish analogues of Theorems 1.3 and 1.4 for
odd curves. In general terms, the analysis is similar, but the existence of parallel tangents requires an
extra symmetrization step. Estimate (1-15) can be rewritten as

ISp(NNLs@2) = Opll f 2wy (6-1)

where the Fourier extension operator on the curve s = y|y|?~! is given by
ixy i -1, | p=2
SpNw0 = [ ey () ay. (©2)

Given a real-valued function f € L?(R), denote the reflection of f with respect to the origin by
f := f(—-). One easily checks that

Sp(f)(x,1) = Sp(f)(—x,—t) = Sp(f)(x, 1),
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where the bar denotes complex conjugation. In particular,

15 (SI)Sp(&)lLs = 15 (S)Sp (&) I3,

and so functions f, g supported on intervals / and —/, respectively, are seen to interact in the same way
as if they were both supported on I, unlike the case of even curves. In this way, one is led to symmetrize
with respect to reflection. This has already been observed in the case of the spheres S! [Shao 2016a]
and S? [Christ and Shao 2012a]. Symmetrization on S? has been efficiently handled via §-calculus in
[Foschi 2015]. The same method can be applied to the present case, but we choose to present a different
argument which does not rely on the underlying convolution structure.

Lemma 6.1. Let p > 1 and f € L*(R). Then

15 (Dllzs@ - 19 @llzs@e)
I/ lL2w) " 0£gel2(R) lgllz2w)

g even

(6-3)

If equality holds in (6-3), then f is necessarily an even function.

Proof. Given f € L?(R), f # 0, take the decomposition f = f, + f,, where f, is an even function,

fe=feae. inR, and f, is odd, fo = —fo ae.in R. Then || f 12, = || fel|2, + | foll22, and Sp(fe) is
real-valued, while S, ( f,) is purely imaginary. Thus

1Sp (), D = 18p(fe) (6, 1) >+ [Sp(fo) (x,1)|>  for almost every (x, 1) € R?, (6-4)

and so, by the triangle inequality for the L3-norm, ||S, (f)||L6 < ||Sp(fe)|| + ||Sp(f0)||i6. It follows
that
1Sp ()76 - 1Sp (Sl s + 1Sp (f)II7 6 - 1Sp(fI7 s 1Sp (f)II7 6

< < max : :
1£117 I fell72 + 11 foll7 2 I fell72 1 foll7 >
L L L L L

where we set either ratio on the right-hand side of this chain of inequalities to zero whenever the

corresponding function f, or f, happens to vanish identically. Therefore we may restrict attention to
functions which are either even or odd. On the other hand, the equivalent convolution form (1-15) of the
inequality implies ||Sy(g)|lL6 < [Sp(|g|)ll6, With equality if and only if g = |g| a.e. in R. Thus

S 2 S 2 IS 2 S
| p(lelm < max | p(fez”lﬁ’ | p(|f0|2)||L6 - w | ,,(g)||L6’ 65)
”f”LZ ”fe”Lz ”fo”Lz 0#gel? ||g||L2
g even

where we used that both f, and | f,| are even functions. In order for equality to hold in (6-3), both
inequalities in (6-5) must be equalities. Inspection of the chain of inequalities leading to (6-5) shows that,
if there is equality in the first inequality, then necessarily one of the following alternatives must hold:

* || follL2 =0, in which case f = f., and so f is even; or

e || fellz2 = 0and f, = | fo| a.e. in R, which implies that f, =0, and so f = 0 which does not hold
by assumption; or
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o [ fell2ll follz # 0 and ISy (fe)llzs Il fell 2 = 1Sp (f)lloll foll 2 = ISp( fol)llzs |l folI 2, which
again forces f, = | f,| a.e. in R, so that f, = 0 which is absurd.

Therefore equality in (6-3) forces f to be an even function, as desired. |

For the remainder of this section, we restrict attention to nonnegative, even functions f. To prove the
analogue of Proposition 3.1, we need bilinear estimates as in Propositions 2.1 and 2.3, and an L' cap
bound as in Proposition 2.8. These can be obtained in exactly the same way as for the case of even curves,
since the Jacobian factor corresponding to (2-2) is now equal to p||y’|?~! —|y|?~!|, which amounts to
the bound we used before. We also need an analogue of Proposition A.1 with two points removed; i.e.,
consider Xz 5 := X \ {X, y} equipped with a pseudometric ¢ : Xz 5 X Xz 3 — [0, 00). The statement
is analogous so we omit it. Next, defining the dyadic pseudometric centered at zero as in (3-11) and
invoking the appropriate bilinear estimates, we obtain an analogue of Proposition 3.4, the statement again
being identical (omitted). The analogue of Proposition 3.3 requires the pseudometric

Q:R\{_laI}XR\{_I’l}_)[O’OO)’ Q(X,y) = |k_k/|a
where k, k' € Z are such that ||x| — 1| € [2%, 2%+ 1) and ||y| — 1| € [2K", 2"+1). It handles concentration
at a pair of opposite points, which we now define.

Definition 6.2. Let yo € R. A sequence of even functions { f,} C L?(R) concentrates at the pair
{—y0, yo} if, for every ¢, p > 0, there exists N € N such that, for every n > N,

Jisog I <l ol ey
ly=yol=p

The following analogue of Proposition 3.3 holds for odd curves.

Proposition 6.3. Let { f,} C L%(R) be an L*-normalized extremizing sequence of even functions for
(6-1). Let {rn} be a sequence of nonnegative numbers satisfying r, — 0 as n — 0o, and

1+r,
inf/ fa )P dy > 0.
1

neN Ji—p,
Then the sequence { f,} concentrates at the pair {—1, 1}.
As in the case of even curves, this can be used to prove the analogue of Proposition 3.1.

Proposition 6.4. Let { f,} C L*(R) be an L?-normalized extremizing sequence of nonnegative, even
functions for (6-1). Then there exist a subsequence { fy, } and a sequence {ay} C R\ {0} such that the
rescaled sequence {gr}, gr = |ag| 1/2fnk (ag -), satisfies one of the following conditions:

(i) There exists g € L*(R) such that g — g in L>(R) as k — oo.
(i) {gx} concentrates at the pair {—1, 1}.

Let { 4} C L?(R) be an L2-normalized sequence of nonnegative, even functions concentrating at
the pair {—1, 1}. Write f, = g» + gn, Where g, := ful[o,00). In particular, ||gn |2 = 2712 and the
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sequence {g,} concentrates at yo = 1. The left-hand side of (1-15) can be expanded into

| fubtp* frbip* fattp 7 2 = 1€nitp*&nitp*gnitp |7 2+ 1&nttp*Enltp*Enitp |7 2
+91gnitp*8nitp*&nitpl7 2+9gnitp*&nitp*Enitp |7
+6(gnilp*gnitp*gnitp: &nltp*&nlip*&nitp) L2
+6(gnilp*&nilp*&nilp, Enlp*&nllp*&nllp)L 2
+18(8nitp*Gnitp*&nitp: Enltp*8nilp*&nlip) L2
+6(gnlp*&nltp*&nitp: Enip*&nip*&niip)L>
+6(gnilp*gnitp*&nitp. &nlp*&nlip*&nitp) L2
+2(gnp*&nitp*&nitp. Enp*&nitp*&nitp)2-  (6-0)
The last three summands vanish since the corresponding supports intersect on a Lebesgue null set. The
symmetry of the inner products then implies
I futp * futtp * fattpll7 o
=201Igntp * Snltp * Enitpl7 2 + 30(gnip * nlhp * Enlhp * Enllp. Enilp * Enilp)L2-

Note that 1, = 0, on the support of g,, where o), was defined in (1-11). It follows that

| fnbtp * fnitp * fnﬂp”iz

£l
_ §||gn0p*gn0p*gnap||iz E(gngp*gnop*gnap*gnapa gnOp * §nOp) 12 (6-7)
2 ||gn||22 4 ”gn”gz

Since the sequence {g,} concentrates at yo = 1, we have

nli)néo(g,,op * 8nOp * §nOp * §nOp, §nOp * &n0p)r2 = 0.

Heuristically, g,0, * g,0) is supported near the point (2, 2), while (g, ap)*(4) is supported near the point
(4,4), and so in the limit there is no contribution of the inner product. More precisely, given & > 0, write
gn = hy + Kn, where hy := gnl[1_¢ 144 and |kp ||i2 — 0 as n — oo. If ¢ is small enough, then support
considerations force

(hnop * hpop * hyop * hyop, hyop *x hyop)y 2 =0 for every n,
whereas the cross terms involve &, whose L%-norm tends to zero as n — co. We conclude

. ||anp*anp*anp||]%2 5. ”gnap*gnap*gnaplliz
lim sup 7 = — lim sup 3
n—00 ”fn”Lz 2 n—oo ”gn”Lz

) (6-8)

and similarly for the limit inferior. Lemma 3.2 applied to the sequence {g;} implies
. | fnbtp * fnptp * fnﬂp”iz(Rz) 57
lim sup 3 = .
pa TAR Vap(p—1)
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Moreover, equality holds if we take f, = gn + n, With g, := 2721, ||k, ||Z21, and

— —1—p(y— p=2
ha(v) i= e PITImPOTDN T 0 0 (9).
Theorem 1.6 is now proved.

Remark 6.5. The invariant form of condition (1-16) in Theorem 1.6 is

2 [ _
(&)~ o

where C26 = 7r/+/3 is the best constant for the parabola in convolution form. In the case p = 3, a similar
condition appears in [Shao 2009] on the Airy—Strichartz inequality, which translates into (Q3/C5)% > %
This is of course incompatible with (6-9) but, as was recently pointed out in [Frank and Sabin 2018,
Remark 2.7], there is a problem in [Shao 2009, Lemma 6.1] in the passage from equation (89) to
equation (90), as the argument presented there disregards the effect of symmetrization. On the other hand,
the case p = 3 of (6-9) agrees with [Frank and Sabin 2018, Case p = g = 6 of Theorem 1], once the
proper normalization is considered.

We now come to the question of whether extremizers for (1-15) actually exist, and discuss the case
1 < p <2 first. Just as in (4-17), set g, (y) := e~ @/mMn2(y1”=py)| ;| =(2=P)/6 |5 even extension,

. 8n 1[0,00) + gnl(—oo,o]
fn = s

23 )gnllL2(0,00)

can be used to establish the strict inequality in (1-16). One simply uses (6-8) together with the fact that
the sequence {g,||gn ||Zzl }s>0 concentrates at yo = 1, so that an argument similar to Lemma 4.5 can be
applied to the present case. Therefore, extremizers for (1-15) exist if 1 < p < 2, and Theorem 1.7 is now
proved.

The case p > 2 seems harder. In view of (6-8), it is natural to use the methods of Section 4 in order to find
the series expansion for the trial functions f =2"1/2(g+g), where g(y) = e~ 1¥1”|y|(P=2)/6+a 110,00)(»)
for different choices of a. By doing so, we find that we cannot reach the critical threshold 57/ (v/3 p(p—1)),
but that we can approach it from below by varying the value of a. We are led to the following conjecture.

()
C) pp—1)

Moreover, extremizers for (1-15) do not exist.

Conjecture 6.6. For every p > 2,

6A. On symmetric complex- and real-valued extremizers. The proof of Lemma 6.1 merits some further
remarks which we attempt to insert within a broader context.

First of all, identity (6-4) holds thanks to the symmetry with respect to the origin of both the curve
s = y|y|?~! and the measure du, = (1 — y|y|P~1)|y|P=2/6 dy ds. In fact, the proof of Lemma 6.1
immediately generalizes to the Fourier extension operator associated to any antipodally symmetric
pair (X, ;). By this we mean a set X C R4 (usually a smooth submanifold) together with a Borel measure
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u supported on X, both symmetric with respect to the origin in the sense that 7(X) = X and T*u = u,
where T denotes the antipodal map 7'(y) = —y and T*u denotes the pushforward measure.

Secondly, the Lebesgue exponent 6 can be replaced with any finite exponent r > 2. More precisely, in
the general context of an antipodally symmetric pair (X, ), if an estimate

I llLrwey S 1F L2z, (6-10)

does hold for some r € [2, c0), then necessarily’

Ifillpr@ey I8/l Lr ey

o+ rer2(z ) 1 12z, 0#£g€L?(Z,1) lgllz2(z,m)
f R-valued g R-valued, g even or g odd

Thirdly, the discussion extends to the more general situation of complex-valued functions. For
concreteness, let us specialize to the case of the unit sphere ¥ = Si1cRe, d >2, equipped with its
natural surface measure p. Given an exponent p > py :=2(d + 1)/(d — 1), the Tomas—Stein inequality
states that

e ey Sp.a lullp2sa—1y (6-11)

for every complex-valued function u € L2(S?71). It is known [Fanelli et al. 2011; Frank et al. 2016]
that complex-valued extremizers for (6-11) exist in the full range p > pg4, the endpoint existence in
dimensions d > 4 being conditional on a celebrated conjecture concerning (1-2). Moreover, if p > py
is an even integer, then real-valued, even, nonnegative extremizers for (6-11) exist, by virtue of the
equivalent convolution form; see [Christ and Shao 2012a; Foschi 2015; Shao 2016a]. Finally, if p = oo,
then one easily checks that the unique extremizers for (6-11) are the constant functions. For general
P = pa, P # 00, we argue that the search for extremizers of (6-11) can be restricted to the class of
complex-valued, symmetric functions. Indeed, write u = f +ig, with f = %u, g = Ju. By reorganizing
the summands, we may write u = F +iG, where F = f, +ig, and G = g, —if,. The functions F, G
are complex-valued and symmetric, in the sense that F(y) = F(—y) and G(y) = G(—y), for every
y € S9~1. Moreover, one easily checks that

1 — 1 —

F(y)=5@y)+u=y), GO = 5=uy)—u(=y)), lul7 = IFI72 + G2,
and that, in view of the antipodal symmetry of the pair (s41, 1), the functions I/Tﬁ, éﬁ are real-valued.
Following the proof of Lemma 6.1, we are thus led to the following result.

Proposition 6.7. Letd >2 and 2(d +1)/(d —1) < p < occ. Then for every complex-valued u € L*(S%1),
u # 0, the following inequality holds:
)l rga) - IFullLr @a)

< . (6-12)
lull2sa—1y ™ oxrerz, -1y 1FllL2sd-1y

THere, a real-valued function g : ¥ — R is naturally defined to be even (resp. odd) if g(y) = g(—y) (resp. g(y) = —g(—y))
for p-almost every point y € X.
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where L2, (S 1) := {F € L2(S?~1): F(y) = F(—y) for p-a.e. y € S2~1Y. Moreover, if u realizes

sym

equality in (6-12), then there exist F € L2,_(S%~') and a constant k € C such that u = «F, n-a.e.

sym

Proof. In light of the previous discussion, we can assume p < 0o, and only the last statement merits further
justification. Suppose that u realizes equality in (6-12). In particular, u is a complex-valued extremizer
for (6-11). Decompose u = F + i G as before, with F(y) = %(u(y) +u(—y)), G = %(u(y) —u(—y)),
sothat F', G € Lzym
follows we assume F, G not to be identically zero. Following the proof of Lemma 6.1, we note that
equality occurs in the application of the triangle inequality with respect to the L? / 2(R%)-norm (recall

that p/2 > 1 is finite) only if there exists A > 0 such that®

(S41). If either F = 0 or G = 0, then there is nothing to prove, and so in what

[Fu(®)| = AIGu(®)| forevery £ € R (6-13)
Subsequent cases of equality further imply

lillLrway  NFpllLr@ey  IGlLr@a)
lull L2(sa-1y I Fll2ga-1y G llp2sa-1y

and so the functions F, G are also extremizers for (6-11). It suffices to show that F = kG, where
k € {—A,A}. Recall that Fu, Gu are real-valued functions, since F,G € Lszym(Sd 1) Let & € R?

be such that |77ﬁ($0)| # 0. We lose no generality in assuming that fﬁ(&g) > 0 and @("g‘o) > 0, for
otherwise we could replace F by —F or G by —G. By continuity, there exists ro > 0 such that

Fuu(t + &) = AGu(E + &) forevery |£] < ro. (6-14)

On the other hand, fﬁ(é + &) = (e Fu)(€) and @(S + &) = (e7V¥Gu)(&). The functions
e~ F and e 70 G belong to L2 _(S¢~1), and may be expanded in the basis of spherical harmonics,

sym
_ oo y(d,n) . oo y(d,n)
eV p — Z Z an i Ynx and "G = Z Z b iYn k- (6-15)
n=0 k=1 n=0 k=1

Here, {Yn,k}z(:d{") denotes a basis for the space of spherical harmonics of degree n in the sphere sd-1,
which has dimension y(d,n) := (d+r':_1) — (d::lz_ %); see [Stein and Weiss 1971, Chapter IV]. The
coefficients ay, k. b, x are complex numbers. Applying the Fourier transform to (6-15), we find that

oo y(d,n)
Fit+t=0nt> Y an,ki—ﬂsi‘z'“Jz-wasm,k(i),

22 B

ooO V]Z;Jlﬂ (6-16)
Gie+60) = @m¥ 3 Y buai ey Yo ()

n=0 k=1

8 As Fourier transforms of compactly supported distributions, both sides of (6-13) coincide with the absolute value of
real-valued, smooth functions, so that the pointwise equality occurs at every point, and not just almost everywhere.
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Using (6-14) and (6-16) together with the orthogonality of the functions {Y},  } in L2(S91), we obtain
_d _d
an k7 2+1J%—1+n(”) = Aby k7 2+1J%_1+n(r) for every r € (0, rp).
In particular, a, x = Ab, x. This and (6-15) together imply F = AG. |

A similar result to Proposition 6.7 holds for a broader class of antipodally symmetric pairs (X, ).
Indeed, let r € [2, 0o0) be such that the extension estimate (6-10) holds. Then

II(MM)IILr(Rd) IIFMIILr(Rd)
oruer2(zgy MLz, oprerz zg 1Fl2ew

sym

(6-17)

with the obvious definition of Lfym(E, 1). Moreover, if u is compactly supported and finite, then
any complex extremizer u for (6-10) necessarily coincides with a multiple of a symmetric extremizer
F e Lfym(E, ). Regarding the second part of Proposition 6.7, the previous proof used the particular
geometry of the sphere, but it can be modified to handle this more general situation. The crux of the matter
is the fact that the Fourier transform of a compactly supported finite measure is real analytic. Indeed, if

is a positive, compactly supported finite measure, and F € L?(Z, i), then, for every & € R4,

f?ks)=:[;e—4?yfwy)du<y>=:/;e—“f—%>Ye—*°yfxy)du(y)

— - l)k k ,—i&o'y
= E ((E o) y)'e F(y)du(y), (6-18)
k=0

where the convergence is locally uniform. To see this, note the tail estimate

l)k k

o
1 )
<@l Y o
k=K

]q«s £9)-y)Fe 507 F(y) du(y)

k K L)
which holds for every compact subset € R? and every K € N. Here, s = SUPzeq, yex 1§ —6olly] < oo.
Therefore, the analogue of (6-13) in this setting leads to the corresponding (6-14), which by analyticity of
(6-18) implies Tfﬁ = A@, and therefore F = AG.

These observations can be of interest when combined with the main result of [Fanelli et al. 2011],
which states that complex-valued extremizers exist in the nonendpoint setting, provided p is a positive,
compactly supported finite measure. Important cases of antipodally symmetric pairs (2, ;) which have
attracted recent attention include the aforementioned case of spheres, together with ellipsoids equipped
with surface measure, and the double cone, the one- and the two-sheeted hyperboloids equipped with
their natural Lorentz invariant measures; see [Foschi and Oliveira e Silva 2017].

We end this section with a final remark on the multiplier form of inequality (6-1). Consider the Cauchy
problem
0ru— 0P 10,u=0, (x,1)eRxR,

u(-.0) = f € LA(R), (¢19)
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whose solution can be written in terms of the propagator

Gty =0 ) = 5 [ I f g (6-20)
R

In view of (6-1), and more generally of [Kenig et al. 1991, Theorem 2.1], this satisfies the mixed norm

estimate

2=2 415 |P—1j
DI e 0% £l s iy Srs 1 12 wy-

whenever the Lebesgue exponents r, s are such that % + % = %

In this context, as noted in [Frank and Sabin 2018; Shao 2009] for the case p = 3, it makes sense to
distinguish between real-valued and general complex-valued L? initial data. This is because the evolution
e!10x17710x preserves real-valuedness. In other words, if f is real-valued, then so is e’ 1017719 f for every
t € R. In fact, if f is real-valued, then f (=& = f (¢), and so taking the complex conjugate of (6-20)
reveals that u(x, 1) = u(x, 1). The operator | D|P~2)/7 t10x]”

a similar way.

—1 . .
9x is seen to preserve real-valuedness in

It is then natural to consider the following family of sharp inequalities, for real- and complex-valued
initial data and admissible Lebesgue exponents 7, s:

p—2 —1
D7 e P00 s iy < Mip s (©) ] 2wy 6-21)

p—2 —1
et1dx1” 3Xf||L;L§;(R1+‘) = Mprs(® S 2wy 6-22)

D]~
where u : R — C is complex-valued and f :R— R isreal-valued. The study of extremizers for (6-21)—(6-22)

in the Airy—Strichartz case p = 3 has been considered in [Farah and Versieux 2018; Frank and Sabin 2018;
Hundertmark and Shao 2012; Shao 2009]. It would be interesting to determine whether the methods devel-
oped in the present paper can be adapted to the study of extremizers for (6-21)—(6-22) in the mixed norm
case r #£ s, S0 as to obtain an alternative approach to profile decomposition or the missing mass method. We
do not pursue these matters here. However, we would still like to point out two interesting features of this
problem which are easily derived from our previous analysis, and are the content of the following result.

Proposition 6.8. Let p > 1, and r, s € (2,00) be such that M, ; s(C) and M), ; s(R) are finite. Then
My, s(C) = My, s(R). Moreover, if a complex-valued extremizer u for My ;. s(C) exists, then there exist
k € C and a real-valued extremizer f for Mp ; s(R) such that u =« f.

The problem of the relationship between arbitrary complex-valued extremizers and real-valued extremiz-
ers has been considered in the literature; see, e.g., [Christ and Shao 2012b] for the case of the Tomas—Stein
inequality on the sphere S2. Note the duality with the second statement of Proposition 6.7 above.

Proof of Proposition 6.8. The equality M), , (C) = M, , s(R) follows the same lines as the proof of
Lemma 6.1. To see why this is the case, let u € L?(R) and write ¥ = f +ig, where f and g are the real
and imaginary parts of u, and hence real-valued. Therefore

lullZ> =11 /117 2+ llgll7 2. (6-23)

p— p—2

r—1 2 p—1 p—1
N 0y ()2 = || DI 7 AT 08 p ()2 | DI 0T g ()2 (6-24)

p—2

D]~
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for every (x,t) € R%. If r, s > 2, then we can use the triangle inequality for the Lfc/ 2_ and the L:/ %_norms
applied to (6-24), and obtain

222 419,177 10x . 12 222 19,1778y 12 222 410,710y 112
N1 02, <MD 0 p 7+ IDI M g 2, (625)

Without loss of generality, assume that f, g are not identically zero. Reasoning as in the proof of
Lemma 6.1 yields

p—=2 p—1 =2 p—1 p=2 r—1
| D] 77 e!1ox] axullz;Li 1| D] 77 el axfII%;Lgc I|D] 77 e 1] axgllig
5 < max 5 ,
[l £ 2

and therefore M), ; 5(C) < M), , s(R). The reverse inequality is immediate. We gratefully acknowledge

Ly

(6-26)
gl

recent personal communication with R. Frank and J. Sabin [2018], who independently arrived at a similar
conclusion.

We proceed to show that an arbitrary complex-valued extremizer for M), , s(C) necessarily coincides
with a constant multiple of a real-valued extremizer for M), , s(R). Let r, s € (2, 00), and suppose that u
is a complex-valued extremizer for M, , s(C), which we express as the sum of its real and imaginary
parts, u = f +ig. An inspection of the chain of inequalities leading to (6-26) shows that one of the
following alternatives must hold:

e g=0and u = f is a real-valued extremizer.
e =0, u=ig,and g is areal-valued extremizer.
e f, g are both not identically zero, and

r=2 r—1 r=2 r—1
[IDI*7 el 0 g2, D)5 e g2,
2 - 2 - :MP,T,S(R)’ (6_27)
2 2
I£17 lglly

so that f, g are real-valued extremizers.

It suffices to analyze the latter case. An inspection of the chain of inequalities leading to (6-25) shows
that equality must hold in both applications of the triangle inequality. Since r, s € (2, 00), this implies the
existence of A > 0 such that

p—2

D]~

et1x17 7 0x f(x)| = /\||D|pf_2et|aX|pflaxg(x)| for almost every (x, 1) € R%. (6-28)

Equality in (6-27) then implies || f'||;2 = A||g||;.2. By squaring (6-28), and applying the Fourier transform,
the equality of the resulting convolutions can be recast as

/RZ FOF32) 8¢ =) —v(y2) 8(x — i —)’2)|)’1yz|p7_2 dyy dyz

_ 2 /R L8028 =Y (y) =¥ (72) 8(x = y1 = y2)Iy1 215 dyy s (6:29)

where (x,1) € R? and ¥ (y) := y|y|?~. Considering points (x, ) in the interior of the support of the
convolution measure i, * /i, i.€., satisfying # > 2y (3x) for x > 0, and ¢ < 2y (1) for x <0, we see
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that there exists a unique positive solution & = «(x,?) > 0 of

t = w(%x —a(x, t)) + W(%x + o (x, t)), (6-30)

and hence that the system of equations t = ¥ (y1) + ¥ (y2), x = y1 + 2 has unique solutions

(1. y2) € {(Gx —a(x, 1), 3x +a(x. 1)), (Ax +a(x, 1), 3x —a(x,1))}.

From (6-29) and a similar reasoning to that of [Oliveira e Silva and Quilodran 2019, Proposition 2.1 and
Remark 2.3], it then follows that

f(3x—a.0)f (3x +a.n) = 1¢(3x —a(x.0)§(3x +ax.1)

for almost every (x, ) € supp(up * p). Alternatively, the latter identity follows by considering the
analogue of formula (2-4) obtained in the case of even curves, which by the previous discussion applies
to the present scenario as well. This yields

f)f () =228(x)8(x") (6-31)

for almost every (x, x’) € RZ. As f , & belong to L?(R), we may integrate over any compact subset / C R
in both variables x, x’ and obtain

. 2 2
( / f(x) dx) :AZ( / gr(x)dx). (6-32)
1 1

Choose a compact subset J C R for which f 7 &(x) dx # 0. From (6-32), we have
/ f(x) dx = A/ g(x)dx or / f(x) dx = —/\/ g(x)dx. (6-33)
J J J J

Integrating both sides of (6-31) over x” € J, one infers from (6-33) that either f = Ag or f =—-Ag,
and therefore that either f = Ag or f = —Ag. The conclusion is that there exists A > 0 such that either
u=(A+i)goru=(—A+i)g, and so u is a constant multiple of a real-valued extremizer, as desired. [J

Appendix A: Concentration-compactness

This appendix consists of a useful observation regarding Lions’ concentration-compactness lemma [1984a].
Let us start with some general considerations. Let (X, B3, i) be a measure space with a distinguished
point X € X such that {x} € B and u({x}) = 0. Set Xz := X \ {¥}. Leto: Xz x Xz — [0,00) be a
pseudometric on Xz, i.e., a measurable function on X; x X5 satisfying o(x,x) =0, o(x,y) =o(y, x),
and o(x, y) <o(x,z)+o(z, y) for every x, y, z € Xz. Define the ball of center x € X5 and radius r > 0,
B(x,r):={y € Xs:0(x,y) <r}, and its complement B(x, r)C = X \ B(x,r). It is clear that
Xz = U B(x,r)
r>0

for every x # X. We have the following concentration-compactness result, which should be compared to
[Lions 1984a, Lemma I.1].
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Proposition A.1. Let (X,B, 1), x € X,0: Xz X Xz — [0,00) be as above. Let {p,} be a sequence in
LY(X, ) satisfying
on=>0 inkX, /pnd;,L:)L,
X
where A > 0 is fixed. Then there exists a subsequence {py, } satisfying one of the following three
possibilities:

(i) (compactness) There exists {xy} C Xz such that pp, (- + xi) is tight; i.e.,

for all € > 0, there exists R < oo such that / Pn, dp > A —e.
B(xk,R)

(i1) (vanishing) limg _, o0 SUpy e x fB(y R) Pny du =0 forall R < oc;

(iii) (dichotomy) There exists a € (0, 1) with the following property. For every € > 0, there exist R € [0, 00),
ko > 1, and nonnegative functions pg 1, Pk 2 € LY(X, jv) such that, for every k > ko,

lony = (ok,1 + o) 1 x) <&, ‘/ka,l du—a| <e, ‘/ka,zdﬂ—(l—a) <e,

supp(pk,1) S B(xi. R) and  supp(px.») S Blxe, Re)"
for certain sequences {xi.} C Xz, {Rr} C [0, 00), with R — 0o as k — oo.

The proof of Proposition A.1 parallels that of [Lions 1984a, Lemma I.1] and proceeds via analysis of
the sequence of concentration functions

0n:[0.00) >R, Qult):= sup / o .
B(x,t)

x€X5x

The sequence {Q,} consists of nondecreasing, nonnegative, uniformly bounded functions on [0, 00)
which satisfy O, (¢) — A ast — o0, since u({x}) = 0. Very briefly, the argument goes as follows. By the
Helly selection principle, there exists a subsequence {ny} C N and a nondecreasing, nonnegative function
0:]0,00) — R such that Q, (1) — Q(t) as k — oo for every t > 0. Set « := lim; o0 Q(7) € [0, 7],
and note that:

e If o =0, then Q = 0. This translates into the vanishing condition at once.
e If « = A, then compactness occurs.
e If 0 < a < A, then dichotomy occurs. In this case, the functions pg 1, p > are given by pg 1 =
Py LB(xy,R) and Pk,2 = Py Lp T
We omit further details and refer the interested reader to [Lions 1984a].

When applying Proposition A.1 to the study of extremizing sequences for (1-9), the desirable outcome
(with a view towards obtaining concentration at a point under the hypotheses of Proposition 3.3) is
compactness or vanishing. Therefore the possibility of dichotomy needs to be discarded. To this end,
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Lions proposes the strict superadditivity condition [Lions 1984a, Section 1.2], which in the present setting
can be recast as follows. Define

L= sup{ll&p (N3 6y 1 172 = A)- (A-1)
The quantity /, is said to satisfy the strict superadditivity condition if, for every A > 0,
Iy>1y+1,_, foreverya e (0,1). (A-2)

In our case, &, is a linear operator, and so [} = A1 =AE 1?' Thus (A-2) translates into the elementary
numerical inequality 13 > a3 4+ (1 — )3, which holds for every A > 0 and @ € (0, A). As seen in the
proof of Proposition 3.3, it is condition (A-2) (applied with A = 1) which ensures that dichotomy does
not occur. A similar condition in a more general context is used in [Lieb 1983, Lemma 2.7].

Appendix B: Revisiting Brézis—Lieb

In this appendix, we prove a useful variant of [Fanelli et al. 2011, Proposition 1.1], which in turn relies
on the Brézis—Lieb lemma [1983]. Proposition 1.1 of [Fanelli et al. 2011] states that, in the compact
setting, the only obstruction to the strong convergence of an extremizing sequence is weak convergence
to zero. In the noncompact setting, it is in general nontrivial to verify condition (iv) of [Fanelli et al.
2011, Proposition 1.1]. To overcome this difficulty, various arguments using Sobolev embeddings and the
Rellich—Kondrachov compactness theorem have been employed in [Carneiro et al. 2019; Fanelli et al.
2012; Quilodran 2013]. In our case, it is not clear how such an argument would go. Instead we take a
different route, and argue that condition (iv) from [Fanelli et al. 2011, Proposition 1.1] can be replaced by
uniform decay of the L2-norm, in a sense compactifying the space in question. The following is a precise
formulation of this idea.

Proposition B.1. Given p > 1, consider the Fourier extension operator Ep: L?(R) — Lb(R?) defined in
(1-12). Let { f,,} C L%(R), and let ® : [1, 00) — (0, 00) with ®(R) — 0, as R — oo, be such that
@) || fullL2@w) =1 for everyn € N,
(i) limp—o0 [|Ep(fu)llLo®2) = Ep.
(i) f =~ f #0asn — oo,
@iv) ||f"||L2([—R,R]C) < O(R) foreveryn e Nand R > 1.

Then f, — f in L*>(R), as n — oo. In particular, I/ 2wy =1 and | Ep()|ILswz) = Ep, and so [ is
an extremizer of (1-9).

This variant was already observed in [Quilodrdn 2012, Proposition 2.31] for the case of the cone, and
the proof follows similar lines to that of [Fanelli et al. 2011, Proposition 1.1]. Note that the function ®
may depend on the sequence { f }, but not on n. The following proof is inspired by [Frank et al. 2016,
Proposition 2.2].
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Proof of Proposition B.1. Set ry :== fy — f. Then r, — 0 as n — o0, and thus m := lim, o |7 ||1242
exists and satisfies 1 = || f ||i2 + m. Given R > 0, take the decomposition

'n =Tnl[—R,R] +rn1[_R’R]C =!Tn,1 +Tny2.

Since the support of r,,1 is compact and r,,; — 0 as n — oo, we know £, (r,,1) — 0 pointwise a.e. in R2
as n — 00. On the other hand, from condition (iv) we have

15 (rn 26 < Ep(OR) +11f | 2 &1ty (B-1)

for every R > 1. This upper bound is independent of 7, and tends to 0 as R — co. We have &, ( f,—74,2) =
Ep(f)+Ep(rn1), and |Ep (fn —rn2) s < Ep(1+O(R) + || fll 2((— g &c)) is uniformly bounded in 7.
Since &, (fn —1n,2) = Ep(f) pointwise a.e. in R? as n — oo, we can invoke the Brézis—Lieb lemma
[1983] and obtain

1€ (fn = rn2) 36 = 1€ (N6 + 1€ (rn,1) 156 +0(1)  as n — oc.

It follows that p := limsup,, _, ., [|€p (”n,l)”zs and A :=limsup,, _, o, [|Ep (fn — ”n,2)||26 satisfy

A=1E (g6 + 1.

Since [|Ep(rn, )86 < EgllrnallSs < ES|rall®,, we have yu < ESm?. Therefore

A= 1E(OIfs + 1 = 1E(NITs + Ef1=1£172)°.

Thus, replacing the definition of A, we have proved
. 6 6 6 2 33
limsup |Ep (fu —rn2) 76 < 1E(N)pe + Ey (A= fll72) (B-2)
n—>o0

for every R > 1. Now, [|E5(fn —rn2) e = 1Ep(fu)lle — 1€p(rn,2) |6 and ||Ep(rn,2) |6 is bounded
above as quantified by (B-1). Thus

limsup [|Ep (fn —1n,2) s = Ep — Ep(O(R) + ”f”Lz([—R,R]C))
n—-oo
for every R > 1. Using this together with (B-2), and letting R — o0, yields
Ep <& NSs +Ey(1 =11 f172).
By the elementary inequality (1 —7)3 < 1 —¢3, valid for every ¢ € [0, 1], we then have
Ep <& N6+ Ey(1=11172)-

Since the reverse inequality holds by definition, we conclude that f is an extremizer. Moreover, since
f # 0 and the elementary inequality is strict unless ¢ € {0, 1}, we conclude that | f||;2 = 1. This
completes the proof of the proposition. O
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A BOOTSTRAPPING APPROACH TO JUMP INEQUALITIES
AND THEIR APPLICATIONS

MARIUSZ MIREK, ELIAS M. STEIN AND PAVEL ZORIN-KRANICH

The aim of this paper is to present an abstract and general approach to jump inequalities in harmonic
analysis. Our principal conclusion is the refinement of r-variational estimates, previously known for
r > 2, to endpoint results for the jump quasiseminorm corresponding to » = 2. This is applied to the
dimension-free results recently obtained by the first two authors in collaboration with Bourgain, and
Wrébel, and also to operators of Radon type treated by Jones, Seeger, and Wright.

1. Introduction

Variational and jump inequalities in harmonic analysis, probability, and ergodic theory have been studied
extensively since [Bourgain 1989], where a variational version of the Hardy—Littlewood maximal function
was introduced. The purpose of this paper is to formulate general sufficient conditions that allow us to
deal with variational and jump inequalities for a wide class of operators. Our approach will be based on
certain bootstrap arguments. As an application we extend the known L7 estimates for r-variations for
r > 2 (see definition (1.2)) to endpoint assertions for the jump quasiseminorm J. 2p (see definition (1.3)),
which corresponds to r = 2. In this way our results will extend previously recently obtained assertions in
[Bourgain et al. 2018; 2019] for dimension-free estimates given for r > 2, as well as a number of results
in [Jones et al. 2008] for operators of Radon type.

We recall the notation for jump quasiseminorms from [Mirek et al. 2018b]. For any A > 0 and | C R
the A-jump counting function of a function f :1 — C is defined by

NL(f) =Ny (f(0) 2 €D)

:=sup{J € N:there exists to <---<ty,tj €l, such that mino<;<s|f(#)—f(tj—1)|=A} (1.1)
and the r-variation seminorm by

SUp j e SUPro<--<ty (Z}]=1 | /() — f(tj_1)|’)%, 0<r<oo,
Vi(f):=V"(f@):tel):= 1€l (1.2)

suprg<t, | f(11) — f(10)], r =00,
tj€l
where the former supremum is taken over all finite increasing sequences in [.
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Throughout the article (X, B, m) denotes a o-finite measure space. For a function f : X x [ — C the
jump quasiseminorm on L?(X) for I < p < oo is defined by

JP() =0 ([ X x1=C):= I (S, 0))e) == JL (S (- ))ier: X — C)
SR AUGUEE D], (1.3)
>0

In this connection by [Mirek et al. 2018b, Lemma 2.12] we note that

V" (NLree Spr I3 () IV Ly (1.4)

for r > 2, and the first inequality fails for r = 2.
We now briefly list our main results:

(1) The extension to the jump quasiseminorm sz of dimension-free estimates for maximal averages
over convex sets, as given by Theorems 1.9, 1.11 and 1.14 below.

(2) The corresponding extension to J. 21) of the previous dimension-free estimates for cubes in the discrete
setting; see Theorem 1.18.

(3) The general J 21’ results for operators of Radon type (both averages and singular integrals) in Theorems
1.22 and 1.30, related to the previous results in [Jones et al. 2008].

Underlying the proofs of all these results will be the basic facts about the jump quantity sz obtained
in our recent paper [Mirek et al. 2018b], and the bootstrap arguments in Section 2 of the present paper.
The reader might compare the methods in Section 2 with related arguments in [Bourgain et al. 2018,
Section 2.2] as well as [Nagel et al. 1978; Duoandikoetxea and Rubio de Francia 1986; Carbery 1986],
and Christ’s observation included in [Carbery 1988]. The techniques in Section 2 will be carried out in the
following framework. We assume that we are given a measure space (X, B, m) which is endowed with a
sequence of linear operators (S;);jez acting on L' (X)) + L (X) that play the role of the Littlewood-Paley
operators. Namely, the following conditions are satisfied:

(1) The family (Sj);ez is a resolution of the identity on L2(X); i.e., the identity

Y osi=1Id (1.5)
jez
holds in the strong operator topology on L2 (X).

(2) For every 1 < p < oo we have

(Zlij|2)2 HL <1l feLP(X). (16)

jez

Suppose now we have a family of linear operators (7});¢; acting on L!(X) + L>®°(X), where the
index set [ is a countable subset of (0, o0). We assume that [ C (0, co) to make our exposition consistent
with the results in the literature. One of our aims is to understand what kind of conditions have to be
imposed on the family (77)¢j, in terms of its interactions with the Littlewood—Paley operators (S;);ez
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to obtain the inequality
J)(Tefar: X = C) < f v (1.7)

in some range of p’s. We accomplish this task in Section 2 by proving Theorems 2.14 and 2.39 for
positive operators! by certain bootstrap arguments, and Theorem 2.28 for general operators. Our approach
will be based on extension of ideas from [Duoandikoetxea and Rubio de Francia 1986; Bourgain et al.
2018] to a more abstract setting.

As mentioned above it has been very well known since [Bourgain 1989] that r-variational estimates
(and consequently maximal estimates, see (1.2)) can be deduced from jump inequalities. Namely, a priori
jump estimates (1.7) in an open range of p € (1, co) imply

V(T f 1 €Dliee Spor 1 fllLe

in the same range of p’s and for all » € (2, oo]. This follows from (1.4) and interpolation. Therefore, it is
natural to say that the jump inequality in (2.2) is an endpoint for r-variations at » = 2. On the other hand,
we also know that the range of r € (2, oo] in r-variational estimates, for many operators in harmonic
analysis, is sharp due to the sharp estimates in Lépingle’s inequality for martingales; see [Mirek et al.
2018b].

Here and later we write a < b if a < Cb, where the constant 0 < C < oo is allowed to depend on p,
but not on the underlying abstract measure space X or function f. If C is allowed to depend on some
additional parameters this will be indicated by adding a subscript to the symbol <.

1A. Applications to dimension-free estimates. An important application of the results from Section 2
will be bounds independent of the dimension in jump inequalities associated with the Hardy-Littlewood
averaging operators. Let G C R? be a symmetric convex body, that is, a nonempty symmetric convex
open bounded subset of R4, Define for 7 > 0 and x € R? the averaging operator

A f(x) = |G /G fee—t)dy, fe Ll ®). (1.8)

It follows from the spherical maximal theorem that, in the case that G is the Euclidean ball, the maximal
operator AY f := supt>0|A§; | corresponding to (1.8) is bounded on L?(R?) for all p > 1, uniformly in
d € N [Stein 1982]. This result was extended to arbitrary symmetric convex bodies G C R4 in [Bourgain
1986a] (for p = 2) and [Bourgain 1986b; Carbery 1986] (for p > 3). For unit balls G = B¢ induced by
29 norms in R¥ the full range p > 1 of dimension-free estimates was established in [Miiller 1990] (for
1 < g < o0) and [Bourgain 2014] (for cubes g = 0o) with constants depending on ¢q. In the latter case the
product structure of the cubes is important; this result was recently extended to products of Euclidean
balls of arbitrary dimensions [Sommer 2017].

Variational versions of most of the aforementioned dimension-free estimates were obtained in [Bourgain
et al. 2018] for » > 2. In this article we give a shorter and more self-contained proof of the main results
of that work and extend them to the endpoint » = 2 by appealing to Theorems 2.14 and 2.39. A notable

1A linear operator T is positive if Tf > 0 for every f > 0.
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simplification is that we do not use the maximal estimates as a black box. In particular, we reprove all
dimension-free estimates for the maximal function A .
In view of (1.4) and by real interpolation, Theorem 1.9 extends [Bourgain et al. 2018, Theorem 1.2].

Theorem 1.9. Let d € N and G C R? be a symmetric convex body. Then for every 1 < p < 0o and
f € LP(R?) we have
JL(AS Nkez :RT = ©) <1 f Lo (1.10)

where the implicit constant is independent of d and G.

As a consequence of Theorem 1.9 and the decomposition into long and short jumps, see (2.2),
Theorems 1.11 and 1.14 below extend Theorems 1.1 and 1.3 in [Bourgain et al. 2018], respectively.
Hence Theorem 1.9 can be thought of as the main result of this paper, since inequalities (1.12) and (1.15)
were obtained in [Bourgain et al. 2018]. However, we shall present a different approach to establish the
estimates in (1.12) and (1.15).

Theorem 1.11. Let G be as in Theorem 1.9. Then for every % < p<4and f € LP(R?) we have

‘ (Z(VZ(A,Gf ‘e [zk,zk“]))z)z

kez

S A ey (1.12)
Lr
In particular,
JY(AS [)i=0: R > ) || f|r, (1.13)
where the implicit constants in (1.12) and (1.13) are independent of d and G.

Theorem 1.14. Let d € N and G C R? be the unit ball induced by the £9 norm in R? for some 1 < ¢ < cc.
Then for every 1 < p < oo and [ € L?(R?) we have

‘ (Z(VZ(A,Gf ‘e [zk,zk“]))z)z

kez

Sq llf e (1.15)
Lp

In particular
I (AF =0 :RY > ©) g I fllr, (1.16)

where the implicit constants in (1.15) and (1.16) are independent of d.

The method of the present paper also allows us to provide estimates independent of the dimension in
jump inequalities associated with the discrete averaging operator along cubes in 7. For every x € 79
and N € N let

1
ANfx) = > f(x—p), [fel'@h, (1.17)
|ON NZ%] .
yeONnz
be the discrete Hardy—Littlewood averaging operator, where Q n = [-N, N ]d .

Theorem 1.18. For every % < p<4and [ €lP(Z% we have

JP((AN f)nen :Z% = C) < || fler- (1.19)
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Moreover, if we consider only lacunary parameters, then (1.19) remains true for all 1 < p < oo and we
have

I3 (A Niz0: 2 > ©) S f v, (1.20)
where the implicit constants in (1.19) and (1.20) are independent of d.

Theorem 1.18 provides the endpoint estimate at r = 2 for the recent dimension-free estimates [Bourgain
et al. 2019] for r-variations corresponding to operator (1.17).

The dimension-free results are proved in Section 3A by combining the results from Section 2 (Theo-
rems 2.14 and 2.39) with the jump estimates for the Poisson semigroup from [Mirek et al. 2018b] and
Fourier multiplier estimates from [Bourgain 1986a; 2014; Miiller 1990].

1B. Applications to operators of Radon type. Another important class of operators which was exten-
sively studied in [Jones et al. 2008] in the context of jump inequalities are operators of Radon type
modeled on polynomial mappings.

Let P=(P1,..., Py): R > R9 be a polynomial mapping, where each component P; : RF > Risa
polynomial with k variables and real coefficients. We fix Q C R a convex open bounded set containing the
origin (not necessarily symmetric), and for every x € R4 and 7 > 0 we define the Radon averaging operator

1
ME @)= o [ = POD (121
12| Je2,
where Q; = {x e R¥ : 1~ 'x e Q}. Using Theorems 2.14 and 2.39 we easily deduce Theorem 1.22; see

Section 3C.

Theorem 1.22. For every 1 < p < oo and f € L?(R?) we have
IZ(MS =0 :RT > C) Sap I /10, (1.23)

where the implicit constant is independent of the coefficients of P.

Before we formulate a corresponding result for truncated singular integrals we need to fix some
definitions and notation. A modulus of continuity is a function w : [0, c0) — [0, co) with w(0) = 0 that is
subadditive in the sense that

u<t+s = o) o)+ o).

Substituting s = 0 one sees that w(u) < w(¢) for all 0 < u < ¢. The basic example is w(t) = 19, with
6 € (0, 1). Note that the composition and sum of two moduli of continuity is again a modulus of continuity.
In particular, if (¢) is a modulus of continuity and 6 € (0, 1), then w(7)? and w(¢?) are also moduli of
continuity.

The Dini norm and the log-Dini norm of a modulus of continuity are defined respectively by setting

1 1
dr log¢|dt
folow = [ 00T and ol = [ o 1 (124
0 0
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For any ¢ > 0 the integral can be equivalently (up to a c-dependent multiplicative constant) replaced by
the sum over 27//¢ with j € N.
Finally, for every x € R¥ and r > 0 we will consider the truncated singular Radon transform

HEf= [ S PODKO) . (1.25)

defined for every Schwartz function f in R?, where K : RK \ {0} — C is a kernel satisfying the following
conditions:

(1) The size condition: there exists a constant Cg > 0 such that

|K(x)| < Cglx|™%  forall x € R¥. (1.26)
(2) The cancellation condition:
/ K(y)dy=0 for0<r < R < o0. (1.27)
Qr\Q,
(3) The smoothness condition:
sup  sup / |K(x)— K(x 4+ y)|dx < wg () (1.28)
R>0 Iy\S%Rt R=<|x|<2R

for every ¢ € (0, 1) with some modulus of continuity wg .

In many applications it is easy to verify the somewhat stronger pointwise version of the smoothness
estimate from (1.28). Namely,

|[K(x)— K(x + y)| £ wg (%)|x|_k, provided that |y| < %, (1.29)
X

for some modulus of continuity wg. One can immediately see that condition (1.29) implies condition
(1.28). Our next result establishes an analogue of the inequality (1.23) for the operators in (1.25).

Theorem 1.30. Suppose that ||w?(||10gDini + ||a)}0(/2||Dini < o0 for some 0 € (0,1]. Then for every p €
{14+6,(1+0)Yand f € L?(R?) we have

JL(HT Nis0 1R > ©) Zap I f 1o, (1.31)
where the implicit constant is independent of the coefficients of P. More precisely:
(D If”w?(lllogDini < 00, then

JZP((sz f)keZ : Rd - C) =< ||f||Lp (1.32)
@) If |0 * |pini < 00, then

‘ (Z VE(H. S e [2",2"“])2)2

kez

SIS o (1.33)
Lp
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The inequality (1.23) was proved in [Jones et al. 2008] for the averages Mf over Euclidean balls. The
inequality (1.31) was proved in that work for monomial curves, i.e., in the case

k=1, d=2, K()=y ' and P(x)=(x,x%, wherea> l.

General polynomials were considered in [Mirek et al. 2017] (although jump estimates are not explicitly
stated in that article they can also be obtained with minor modifications of the proofs). Multidimensional
variants of H ,P were also studied in that work under stronger regularity conditions imposed on the kernel K.
Inequalities (1.23) and (1.31) will be used to establish jump inequalities for the discrete analogues of
(1.21) and (1.25) in [Mirek et al. 2018a].

Finally we provide van der Corput integral estimates in Lemma B.1 and Proposition B.2, which have
the feature of permitting the handling of the oscillatory integrals with nonsmooth amplitudes. Their
broader scope will be needed in the proof of Theorem 1.30.

2. An abstract approach to jump inequalities

2A. Preliminaries. Let (X, 3, m) be a o-finite measure space endowed with a sequence of linear
Littlewood—Paley operators (S});jez satisfying (1.5), (1.6). Assume that (7;)¢; is a family of linear
operators acting on L1(X) + L% (X), where the index set [ is a subset of (0, 00). Under suitable
conditions imposed on the family (77);¢; in terms of its interactions with the Littlewood—Paley operators
(S}j)jez as in the Introduction, we will study strong uniform jump inequalities

(Tt frer: X = O S| fLe 2.1)

in various ranges of p’s; see Theorems 2.14, 2.28, and 2.39.

To avoid further problems with measurability we will always assume that [ is countable. Usually [ is
D := {2" : n € Z} the set of all dyadic numbers or [ is U:=|_J,c, 27"N the set of nonnegative rational
numbers whose denominators in reduced form are powers of 2. In practice, the countability assumption
may be removed if for every f € L'(X) + L% (X) the function | > ¢ — T} f(x) is continuous for
m-almost every x € X. In our applications this will always be the case.

We recall the decomposition into long and short jumps from [Jones et al. 2008, Lemma 1.3], which
tells that for every A > 0 we have

1
ANW(T: f(x):1€D)? < AN, (1 f(x) i1 € D)z + (Z(xNA(T,f(x) .1 e [k, 2k U)i)z)z. (2.2)
kez
In other words the A-jump counting function can be dominated by the long jumps (the first term in (2.2)
with ¢ € D) and the short jumps (the square function in (2.2)). Similar inequalities hold for the maximal
function and for r-variations.

We deal with L? bounds for the long jump counting function corresponding to 7; with ¢ €D in two ways,
similarly to [Duoandikoetxea and Rubio de Francia 1986]. The first approach is to find an approximating
family of operators (see the family ( Py )zez in Theorem 2.14) for which the bound in question is known
and control a square function that dominates the error term; see (2.15) in Theorem 2.14. In our case this
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method works for positive operators with martingales or related operators as the approximating family.
The second approach is to express T,« as a telescoping sum

Tuf=) Tif—Tunf=) Bif (2.3)
Jj=k Jj=k
and try to deduce bounds in question from the behavior of Bj = T,; — T, ;+1. This approach is needed
if Ty is a truncated singular integral-type operator; see Theorem 2.28. Similar strategies also yield L?
bounds for maximal functions supy ¢ |7« f(x)| or r-variations V" (T,« f(x) : k € Z).
In order to deal with short jumps we note that the square function on the right-hand side of (2.2) is
dominated by the square function associated with 2-variations, which in turn is controlled by a series of
square functions

(Z(VZ(th(X) ite [2k’ 2k+1) n ﬂ))z)z
kez L |

= ‘/EZ(Z Z |(Tok 2k~ mg1) — T2k+2k—lm)f(x)|2) . (24

>0 “keZm=0

The square function on the right-hand side of (2.4) gives rise to assumption (2.40). Inequality (2.4)
follows from the next lemma with g(t) = T« ., f(x) and r = 2.

Lemma 2.5. Let r € [1,00), k € Z, and a function g : [0,2X]NU — C be given. Then

2l—1 1
Vi(g(t) 1 €[0.25]nL) <27 Z(Z 102 (m + 1)) - g(zk—’m)|’)' : (2.6)

[>0 "'m=0

The variation norm on the left-hand side of (2.6) can be extended to all z € [0, 2K]if g : [0,2%] — C
is continuous. Lemma 2.5 originates in [Lewko and Lewko 2012], where it was observed that the
2-variation norm of a sequence of length N can be controlled by the sum of log N square functions and
this observation was used to obtain a variational version of the Rademacher—-Menshov theorem. Inequality
(2.6), essentially in this form, was independently proved by the first author and Trojan [Mirek and Trojan
2016] and used to estimate r-variations for discrete Radon transforms. Lemma 2.5 has been used in
several recent articles on r-variations, including [Bourgain et al. 2018]. For completeness we include a
proof, which is shorter than the previous proofs.

Proof of Lemma 2.5. Due to monotonicity of 7-variations it suffices to prove (2.6) with Uy = {u/2" :
ueNand 0 <u < 25TNV in place of [0, 2X] N U. Observe that

Vigt):teUy)=V" (g(ziN) te [0,2k+N]mz).

The proof will be completed if we show that
n 21—
V(g e[0.2)nZ) <2 Z( S 1o m + 1) —g(zlm)v)

[=0 * m=0

7

2.7)
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Once (2.7) is established we apply it with g(z/2™V) in place of g(¢) and n = k + N and obtain (2.6). We
prove (2.7) by induction on n. The case n = 0 is easy to verify. Let n > 1 and suppose that the claim is
known forn —1. Let 0 < ¢y <--- <ty < 2" be an increasing sequence of integers. For j € {0,..., J} let
sj <1j <uj be the closest smaller and larger even integer, respectively. Then

—_

7

7 1y
(Zm(rj)—g(r,-_or) - (D(g(m—g(s,-))+<g(s,->—g(u,-_1))+(g(u,-_1)—g<z,~_1))|’)
j=1 j=1

J 1 J 1
< (Dg(sj)—g(uj_l)v) +(D(g(t,-)—g(sj))+(g(u,-_1)—g<zj_1)>|’) :
j=1 j=1
In the first term we notice that the sequence ug < s; < u; < --- is monotonically increasing and takes
values in 2N, so we can apply the induction hypothesis to the function g(2-). In the second term we use
the elementary inequality (¢ 4+ b)” <2"~!(a” + b") and observe lti —=sj| <1, |[ti-1 —uj—1| <1, and
$j = uj_y, so that this is bounded by the / = 0 summand in (2.7). O

2B. Preparatory estimates. We recall Lemma 2.8 that deduces a vector-valued inequality from a maximal
one. Then we apply it to obtain Lemma 2.9.

Lemma 2.8 [Duoandikoetxea and Rubio de Francia 1986, p. 544]. Suppose that (X, B, m) is a o-finite
measure space and (M )y is a sequence of linear operators on L' (X)+ L®(X) indexed by a countable
set J. The corresponding maximal operator is defined by

My f :=sup sup |Myg|,
ked |gl<|f|

where the supremum is taken in the lattice sense. Let qg,q1 € [1,00] and 0 <0 <1 with % =(1-6)/qo
and qo < q1. Let q¢ € [q0.q1] be given by

1 1-6 0 1 1— 2
_L 40/‘

qe qo g 2 q1
Then

1-6 0
< (sup| M llao—ra0) 1 Mxgllzar_par
L6 kel

(ngzf

kel

H (Z|ngk |2)é

kel

L6

Proof. Consider the operator M g = (Mygr)rey acting on sequences of functions g = (gx)xey In
L'(X) + L*®(X). By Fubini’s theorem

| M gl Lao g0y = || Mrgx Nl Lao [ ¢a0

= (]Scup||Mk||Lq0—>L‘10)|| &k Il Lao | ¢a0
el

= (supl| My || L9090 || g | .90 (¢20).-
kel
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By definition of the maximal operator
Mgl pa gy = H sup|ngk|”qu H My (SUP|gk|) Hqu
keJ keJ

< [ MsglLar—>ra H;fpl&le = [MxllLar>pa (gl La1 (eoo).-
el

The claim for gg €[q¢, g1] follows by complex interpolation between L0 (X ; £90(J)) and L1 (X ; £°°(J)).
O

Lemma 2.9. Suppose that (X, B, m) is a o-finite measure space with a sequence of operators (Si)rez
that satisfy the Littlewood—Paley inequality (1.6). Let 1 < gy < g1 <2 and L € N be a positive integer
and letVy ={(k,[)€Z7?>:0<[] <L —1}. Let (My.1)(k,1yev, be a sequence of operators bounded on
L9 (X)) such that

L—1 %
H (Z Z|Mk,lsk+,-f|2) HLZSajufuLz, feL(x), 2.10)

kez 1=0

for some positive numbers (aj)jez. Then for p = qy and for all f € L?(X) we have

‘ (Z LZ_1|Mk,lSk+jf| ) H

kez 1=0
12 1170;—111 2—q; 111 —40
33 —4 —d4
SL2? qo( sup | Mic i1l faoy pao I Mo I pdi _y par @ S0 e 211)

(k,hevy

If My ; are convolution operators on an abelian group G, then (2.11) also holds for g1 < p < q}. The
implicit constants in the conclusion do not depend on the qualitative bounds that we assume for the
operators My ; on L9 (X).

Proof. First we show (2.11). In the case g; = 2 this is identical to the hypothesis (2.10), so suppose
g1 < 2. Let 6 and g¢ € [q0. ¢1] be as in Lemma 2.8; then by that lemma and Littlewood-Paley inequality
(1.6) we obtain

‘(Z S Mt Ses s ] )

kez 1=0

a0

1-60 6
5( sup ||Mk,l||L40_>qu)||M*,\/L||L41_>Lq1
(k,hevy

1
<L2( sup [ Mpgliab s pao) My 190y panll £l oo (2.12)
(k,))evy,

£

kez 1=0

Since qg < ¢ < 2, there is a unique v € (0, 1] such that

1 v 1—v

91 4e 2
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Substituting the definition of gy we obtain

1 _v@ 1
a2
It follows that 5 5
l_gzq_o’ 9=—_(]0, VO = —QI’
2 2 2
2— 2— —
b= (]1’ v(1—0) = (]1(]_0’ l—p=01"9
2—qo 2—qo 2 2—qo

Interpolating (2.12) with the hypothesis (2.10) gives the claim (2.11) for p =¢q;.
If My ; are convolution operators, then by duality the first inequality in (2.12) also holds with gg
replaced by ¢j. Also,
1

v 1—v
@ 9 2

so the same argument as before also works for p = ¢}. The conclusion for ¢; < p < ¢ follows by
complex interpolation. O

2C. Long jumps for positive operators. Suppose now we have a sequence of positive linear operators
(Ax)xez and an approximating family of linear operators ( Py )xez both acting on L!(X) 4+ L (X) such
that for every 1 < p < oo the maximal lattice operator

Pyf :=sup sup |Pyg|
kez|g|<|f]

satisfies the maximal estimate
| PellLr—rr < 1. (2.13)

Theorem 2.14 will be based on a variant of the bootstrap argument discussed in the context of differen-
tiation in lacunary directions in [Nagel et al. 1978]. These ideas were also used to provide L? bounds for
maximal Radon transforms in [Duoandikoetxea and Rubio de Francia 1986]. It was observed by Christ
that the argument from [Nagel et al. 1978] can be formulated as an abstract principle, which was useful
in many situations [Carbery 1988] and also in the context of dimension-free estimates [Carbery 1986].

Theorem 2.14. Assume that (X, B, m) is a o-finite measure space endowed with a sequence of linear
operators (Sj)jez satisfying (1.5) and (1.6). Given parameters 1 < qo < q1 =< 2, let (Ay)xez be a
sequence of positive linear operators such that supy <z || AxllLao—ra0 < 1. Suppose that the maximal
function Py satisfies (2.13) with p = g1 and

|

‘or some positive numbers (a;)jcy satisfyin
p j)j 8

(Zl(Ak _ Pk>sk+jf|2)2 HL <ajlflpan [ e LX), 2.15)

kez

4140

27
a:= E a; 0 < 0.

jez
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Then for all f € L?(X) with p = q1 we have

(St rose) HL < (U +a®)|flLs. 2.16)

kez

In particular

2
[AsllLr—Lr S1+adr. (2.17)
If in addition we have the jump inequality

I (Pifkez : X = C©) S| f e, (2.18)
then also
JP((Ak Nkez : X > C) S (A +am)| fLe. (2.19)

If Ay and Py are convolution operators on an abelian group G, all these implications also hold for
g1 <p= q/l, and we have the vector-valued estimate

‘ (Z|Akfk|f)i I H (kav);

kez kez
in the same range q1 < p < q’l foralll <r < oo.

(2.20)

Ly

A few remarks concerning the assumptions in Theorem 2.14 are in order. In applications it is usually
not difficult to verify the assumption (2.15). For general operators the most reasonable and efficient way
is to apply 7' T* methods. However, for convolution operators on G assumption (2.15) can be verified
using Fourier transform methods, which may be simpler than 7' 7* methods. Let us explain the second
approach more precisely when G = Re. We first have to fix some terminology.

Let A be a d x d real matrix whose eigenvalues have positive real part. We set

A

t” :=exp(Alogt) fort>0. (2.21)

Let g be a smooth A-homogeneous quasinorm on R4, that is, q: R? — [0, 00) is a continuous function,
smooth on R? \ {0}, and such that

(1) g(x) =0 x =0;
(2) there is C > 1 such that for all x, y € R? we have q(x + y) < C(q(x) + q(»));
(3) q(t4x) = tq(x) forall 7 > 0 and x € R4
Let also g« be a smooth (away from 0) A*-homogeneous quasinorm, where A* is the adjoint matrix

to A. We only have to find a sequence of Littlewood—Paley projections associated with the quasinorm qx.
For this purpose let ¢ : [0, 00) — [0, 00) be a smooth function such that 0 < ¢o < 1/, »] and its dilates

¢; (%) := ¢o(2/ x) satisfy
Y 97 = 10,00 (2.22)

jez
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For each j € Z we define the Littlewood—Paley operator S ; j such that S; i f Vi j corresponds to a smooth
function ¥/ (§) := ¢; (q«(£)) on R4. By (2.22) we see that (1.5) holds for S; = S > . Moreover, by [Riviére
1971, Theorem II.1.5] we obtain the Littlewood—Paley inequality (1.6) for the operators S and S; j-

If (O, :¢ > 0) is a family of Schwartz functions such that d (&)= &J(tq*(g )), where ® is a nonnegative
Schwartz function on R? with integral 1, then by [Jones et al. 2008, Theorem 1.1] we know that for every
1 < p < oo we have

TP (@ok % Nkez R = C) < | flLe, f€LP®RY). (2.23)

The maximal version of inequality (2.23) has been known for a long time and follows from the Hardy—
Littlewood maximal theorem [Stein 1993]. Hence taking Py f = ®,« * f for k € Z, we may assume that
(2.18) is verified.

Suppose now we have a family (Ag)xez of convolution operators Ay f = o« * f corresponding to a
family of probability measures (s : ¢ > 0) on R? such that

1:(E) — 21 (0)] < w(tqs(£)) if 1q«(€) <1, (2.24)
1A:(5)] < o((tg«(€)™") iftq«(§) = 1 (2.25)

for some modulus of continuity w.
Theorem 2.14, taking into account all the facts mentioned above, yields

IP((pak * Nkez 1R > O < | fllLe,  f € LP(RY), (2.26)

for p = ¢q; and g9 = 1 as long as

. a1—ag
a= Za)(Z_m) =40 < 00,

jez
since (2.15) can be easily verified with a; = (27171) using (2.24), (2.25) and the properties of S j and ©.

Proof of Theorem 2.14. We begin with the proof of (2.16). If g; = 2 then we use (1.5) and (2.15) and
we are done. We now assume that ¢; < 2. By the monotone convergence theorem it suffices to consider
only finitely many M}, := Ay — Py’s in (2.16), let us say those with |k| < K. Restrict all summations
and suprema to |k| < K and let B be the smallest implicit constant for which (2.16) holds with p = ¢;.
In view of the qualitative boundedness hypothesis we obtain B < co, but the bound may depend on K.
Our aim is to show that B < 1 +a2/91. There is nothing to do if B < 1. Therefore, we will assume that
B 2 1,s0 by (1.5), (2.13) and (2.11) with L =1 and M} o := M, we obtain

H( ) |Mkf|2) 23 ( S My /] )

lk|=K JEZ" “k|=K

2—qq

S+ Ml pr@)l SNz
Lr

By positivity we have [Ax /| < supjx|<g Ak|f| and consequently we obtain

1
A= s Al f1= s Pilf1+ (X 16l @27

lk|=K |k|=K lk|<K



540 MARIUSZ MIREK, ELIAS M. STEIN AND PAVEL ZORIN-KRANICH
By (2.27) and (2.13) we get

IMsllLr—rr <[ PellLr—rr + | AsllLr e < 2| PellLr >0 + B <14 B.
Taking into account these inequalities we have

H( )3 |<Ak—Pk>f|2)é - H( ) |Mkf|2)é

|k|<K |k|I=K

2—qq
<(+a(l+B)>
Lp

IS L.

Taking the supremum over f gives

2—q
2

2_
B<l+a(l+B) 2  <(1+a)B 2",

since we have assumed B > 1, and the conclusion (2.16) follows.
Once (2.16) is proven, in view of (2.27) we immediately obtain (2.17). In a similar way, if (2.18) holds,
we deduce (2.19) from (2.16). Indeed,

JY (A Nkez) S IF(Pr fkez) + IF (Mg fkez)
SWfller + | VEMi f k€D,

<1/lee + H (Z|Mkf|2)é

kez

Lp

In the case of convolution operators we can run the above proof of (2.16) with p = ¢/, since in this case
Lemma 2.9 tells that (2.11) also holds with p = q/l. Once the estimate (2.16) is known for p = ¢1, q’l,
by interpolation we extend it to ¢; < p < q;, and all other inequalities follow as before. Finally, the
vector-valued estimate (2.20) with » = oo is equivalent to the maximal estimate by positivity, with r = 1
it follows by duality, and with 1 < r < oo by complex interpolation. O

2D. Long jumps for nonpositive operators. We now drop the positivity assumption and we will be
working with general operators (B )xez acting on L' (X) + L (X). This will require some knowledge
about the maximal lattice operator B, defined in (2.29) and about the sum of By’s over k € Z. No
bootstrap argument seems to be available for nonpositive operators and therefore additional assumptions
like (2.30) and (2.32) will be indispensable. The proof of Theorem 2.28 is based on the ideas from
[Duoandikoetxea and Rubio de Francia 1986].

Theorem 2.28. Assume that (X, B, m) is a o-finite measure space endowed with a sequence of linear
operators (Sj)jez satisfying (1.5) and (1.6). Let 1 < go < g1 <2 and let (By)rez be a sequence of linear
operators commuting with the sequence (Sj)jez such that supy <z || Bi||La0—ra0 < 1. Suppose that the
maximal lattice operator

By f :=sup sup |Bpg| (2.29)
kez|g|=|f]
satisfies

| BsllLa1 >pa1 < 1. (2.30)
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for some positive numbers (aj)jez:

We also assume

(E:LBkSk+LfP) HszcunfﬂLL fer(x). @31

kez

(1) Suppose that (By) ez additionally satisfies

> 5

kez

<1 (2.32)

L9 — L1

Let Py :=)_ j>k Sj and assume that the jump inequality (2.18) holds for the sequence (Pr) ez with
p =q1. Then forall f € LP(X) with p = g1 we have

#(Zn) o)

j>k ‘1705_']1 .
- 2-a1 B
s(}j& —Hwﬂmqubmwwﬁqmﬁﬂfhm 2.33)
keZ L91— L1 kez
where
q1—40
~ . 2—
a:= Z(|]| + Da; ™™ <oo.

jez
(2) Suppose that there is a sequence of self-adjoint linear operators (§ j)jez such that Sj = S jz for every
J € Z and satisfying (1.6) and (2.31) with Sy in place of Siy j. Then for every sequence (&x)kez
bounded by 1 and for all f € LP(X) with p = q1 we have
a0 2—4q3 2—q;
> exBif

2 2— -
< (supll Bicll fao 7 a0 | Bxll i s parall Sl e, (2.34)
kez L? kez

where a is as in Theorem 2.14.

In the case of convolution operators on an abelian group G all these implications also hold for
q1 = p =q;.

In applications in harmonic analysis we will take By = T,x — Tox+1 for k € Z, where T is a truncated
singular integral operator of convolution type; see (2.3). This class of operators motivates, to a large extent,
the assumptions in Theorem 2.28. In many cases they can be verified if we manage to find positive operators
Ay such that | By f| < Ay | f| forevery k € Z and f € L'(X)+ L*(X). In practice, Ay is an averaging
operator. We shall illustrate this more precisely by appealing to the discussion after Theorem 2.14.

Suppose that (B )xez is a family of convolution operators By f = 05« * f corresponding to a family of
finite measures (o, : 7 > 0) on R such that SUp;ollo¢|| <ooandforevery k € Zandt € [2K, 2k*+1] we have

161(5)] < 0(2%q4()) if 2%q.(8) < 1, (2.35)
16:(8)] < o(Fqx(E)™Y) i 2Kqu(8) = 1 (2.36)



542 MARIUSZ MIREK, ELIAS M. STEIN AND PAVEL ZORIN-KRANICH

for some modulus of continuity @. Additionally, we assume that |0,k | < (o« for some family of finite
positive measures (1 : ¢ > 0) on R? such that sup;sollps|| < oo and satisfying (2.24) and (2.25). In
view of these assumptions and Theorem 2.14 we see that condition (2.30) holds, since | By | < Ax| f],
where Ay f = ok * f. Therefore,

> Bif

kez

Salflce
Lr

implies (2.32) with p = ¢; and g¢ = 1, provided that
.| 41=40
a= Za)(Z_m) a0 < 00,
jez
since (2.31) can be verified with a; = w(2_|j |) using (2.35), (2.36), and the properties of S ;j associated

with (2.22). Having proven (2.30) and (2.32) we see that (2.33) holds for the operators By f = 05k * f
with p = ¢, and g9 = 1 as long as

. d1=dg
a=> (ljl+ Do )0 <o,
jez
Proof of Theorem 2.28. In order to prove inequality (2.33) we employ the decomposition

S Bi=PcY Bi—> > SkwiBisj+ > > SkiBrsj: (2.37)

j=>k jez [>0j<0 1<0j=0
see [Duoandikoetxea and Rubio de Francia 1986, p. 548]. The sz quasiseminorm of the first term on the
right-hand side in (2.37) with p = ¢ is bounded, due to (2.18), and (2.32), which ensures boundedness
of the operator ) ;¢7 Bj.
The estimates for the second and the third terms are similar and we only consider the last term. We
take the £2 norm with respect to the parameter k and estimate

Jf((ZZBH,-Ska) X @)

1<0j20 ke

23
< |(ZIE X ssear] )
kez'1<0j>0 Lr
k 2\1
=](zz > Bunsif| )
keZ'm>0 n=k—m Lr
k 2\1
< B S by the triangle inequalit
_Z(ZZ n+mnf)Lp (by gle inequality)
m=>0" “kezZ'n=k—m
i 4
1
< m+1)2 ( B S 2) H by Holder’s inequalit
S+ D ButmSuf| L, quality)

m=0 keZ n=k—m

1

— Y m+ 1)” (Z1Bremsn 1)

m=0 nez

Ly
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By (2.11), with L = 1 and M o := By, we obtain

S+ 1)‘ (Z18eks1 )

jez kez

q9 2—4] 2—qq

2 2— -3 ~
< (lscup”Bk”Ltl()_fgcl())”B*||L6121_)L611a”f”L1’-
Lr €Z

To prove the second part observe that for a sequence of functions (f;)jez in L?(X;£*(Z)) we have
the inequality

; (2.38)

2.5il

Jj€Z

(Zm)

jE€Z

Lp ‘

which is the dual version of inequality (1.6) for the sequence (§ j)jez. To prove (2.34) we will use (1.5)
and (2.38). Indeed,

ZEkkaH <> Z8k3k5k+ij (by (1.5))
kez JE€EZ kez Lr
o S . ~2
= ZSk+j(8kBkSk+jf)H (since Sj = S)
jez"kez Lr
1
~ 2
< (Z|Bksk+ ; f|2) H (by 2.38))
jez" “kez Ly

— =4
< (]SCUPHBk ||qu_>104qo) || Bx ||L‘121 14 I/,
€Z

where in the last step we have used Lemma 2.9, with L = 1 and My o := By. O

2E. Shortvariations. We will work with a sequence of linear operators (A4;);cy (not necessarily positive)
acting on L1 (X) + L% (X). However, positive operators will be distinguished in our proof and in this
case we can also proceed as before using some bootstrap arguments.

For every k € Z and t € [2%, 2k+1] we will use the notation

A((As)se)e [ = A(A) f = Ar f — Ai f.

Theorem 2.39. Assume that (X, B, m) is a o-finite measure space endowed with a sequence of linear
operators (Sj)jez satisfying (1.5) and (1.6). Let (A)seu be a family of linear operators such that the
square function estimate

_L
H (Z Z|(A2k+2k ot 1) — Ag 42k zm)S,+kf|) H =rRalfle @4
L

keZ m=0
holds for all j € Z and | € N with some numbers a; ; > 0 such that for every 0 < & < p we have

Yy o af | < oo, (2.41)

1>0jez
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(1) Letl <qg<2and4 < goo < 00, and suppose that for each qy < p < oo the vector-valued estimate

1 1
2 2
‘ (Z|A2k<1+,)fk|2) S (Z|fk|2) (2.42)
kez Lr kez Lr
holds uniformly int € UNJ0, 1]. Then for each
3 P 4
+1/90 P S 142/4m
we have :
2
‘ (Z V(A f 1 e2F 2N W) SIS e (2.43)
kez Lr
and for each 4 < p < goo and
o P02
24oo—1p
we have 1
' (Z V(A f e 2K 25N W) SIS lee (2.44)
Lp

kez
forall f e LP(X).

(2) Let gy € [1,2) and o € [0, 1] be such that aqy < 1. Suppose that we have the operator norm
Holder-type condition

h o
|A¢+n— AtllLao—rao < (?) , t,t+heUandhe (0,1]. (2.45)
Then for every exponent g1 satisfying
2
Go<2— 1 <y <2 (2.46)
2—aqq
and such that
||A((As)seU.J)*,U_J||L“1—>L‘41 § 1 (2-47)

we have for all | € LP(X) with p = q; that the estimate (2.43) holds with the implicit constant which is
a constant multiple of

a1=a9 _2-a; 1y; 420

- 1
a = Z Z 2_(0‘ =gy 2 T272=q9 2—ap i)lajzl—qo < 00.

(3) Moreover, if (A¢)rey is a family of positive linear operators, then the condition (2.47) may be
replaced by a weaker condition
|4%,pllLar —pa <1 (2.48)

and the estimate (2.43) holds as well with the implicit constant which is a constant multiple of 1 + a*/91.

In the case of convolution operators on an abelian group G the implication from (2.48) to (2.43) also
holds with p replaced by p'.
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Theorem 2.39 combined with the results formulated in the previous two paragraphs for dyadic scales
will allow us to control, in view of (2.2), the cases for general scales. The first part of Theorem 2.39 gives
(2.43) in a restricted range of p’s. If one asks for a larger range, a smoothness condition like in (2.45)
must be assumed. Inequality (2.45) combined with maximal estimate (2.47) gives larger range of p’s in
(2.43). If we work with a family of positive operators the condition (2.47) may be relaxed to (2.48) by
some bootstrap argument. In the context of discussion after Theorem 2.14 and Theorem 2.28 let us look
at a particular situation of (2) and prove (2.43).

Suppose that (A;);>¢ is a family of convolution operators A; f = g * f corresponding to a family of
finite measures (o : ¢ > 0) on R? such that Sup;¢llo¢|| < oo and satisfying (2.35) and (2.36). We assume
that |o;| < 1, for some family of finite positive measures (1; : 7 > 0) on R? such that SuUp;sollpsl < oo
and satisfying (2.24) and (2.25) to make sure that condition (2.47) holds. Additionally, let us assume that
(2.45) holds with @ = 1 and g¢y = 1, 2. By Plancherel’s theorem, (2.35) and (2.36) we obtain

(A 4 25—t mag 1) = Aok g2kt ) Sjke fll L2 S @@V S 4k f N L2 (2.49)

Thus (2.45) with go = 2, t = 2% +25~Im, h = 2%~ combined with (2.49) imply

(A st o1 1y = At k1) S 4k SN2 S minQ@ ™ 0 @718 44 Sl 2 (2.50)

Consequently (2.40) holds with a; ; = min{1, 2wV |)} and Theorem 2.39 gives the desired conclusion

as long as
(a1-D!

a= ZZZ_ 7 (min{1, 2’027 hH"1 71 < 0o,

>0 j€ez

Proof of Theorem 2.39(1). By Minkowski’s inequality for 2 < s < goc < 00 we have

2l—1 Los
‘ (Z Z |(A2k+2k—l(m+1) - A2k+2k—lm)fk|s)
keZ m=0 Lieo
2l—1
= Z Z|(A2k+2k—l(m+1) —A2k+2k—1m)fk|s
m=0 kez Laco/s
201
f Z Zl(AZI"—f-Zk_’(m—i-l) —Azk_i_zk—lm)f}cls
m=0"kez Laoo/s
1
/ sY *
<2 sup Z|(A2k+2k—l(m+1) — A2k+2k—lm)fk|
0<m<2/ll \f o7 Ldoco
Lys
/ 2
<2 sup (Z|A2k+2k_’mfk| )
0=m=2l \} 7 Ldoo
1
I+s 2 2|
2D 1A :
Ldoco

kez
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where we have applied (2.42) in the last step. Using this with f; = S« f and applying (1.6) we obtain

2l—1 1
s L
|(A gk ok~ (my1) — Aok yok—1)Sjri [ 1* <25 fllLacss
L
keZ m=0 o0
for all 2 < s < goo < 00. By interpolation with (2.40) we obtain
2l—1 1
r _ 61, d-=6)
‘(Z Z |(Agk 4 ok~1 (1) —A2k+2k—lm)Sj+kf|r) <272t a?J”f”Ll” (2.51)
keZ m=0 Ly
where 0 <0 <1 and
1 6 1-6 1 6 1-6
-==<+ and —=—-+4+——,
r 2 ) D 2 Goo
o)
9 — EQOO - P‘
D Goo—?2

By Lemma 2.5, or more precisely by an analogue of inequality (2.4) with £” norm in place of £? norm,
and by (2.51) we obtain

H (Z V(A f 1 €25, 25N [U)’)r

kez

_61 =60l
Y >t sdd e (2.52)

L? >0 jez

In view of (2.41) withe =0/2— (1 —60)/s and p = 0 this estimate is summable in / and j, provided that
—0/2+ (1—6)/s < 0. In particular, for

4
25 p<——m—
= S T 2/40
we use s = 2. For 4 < p < goo We use
-2
oo Q0P —2)
oo — P
and then
-2
p> L2
2qoo—p
For ¢y € (1, 2) by Minkowski’s inequality and (2.42) we have
2! 1 L
‘ (Z Z |(A2k+2k—l(m+1) - A2k+2k—lm)ﬁc|2)
keZ m=0 Lo
2l—1 1
< Z (Zl(A2k+2k—l(m+1) — A2k+2k—lm)fk|2)
m=0" ‘kez Lo
! }
=2 s |(Ylassom i) | 52 (Z|fk|2)
o=m=2!1\} =, L0 kez Lo
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Substituting fx = S« f, applying (1.6), and interpolating with (2.40) we obtain

2l—1

1
ol
(Z D (Aot ot gty = Aok gk zm>S,+kf|) 272t i f e, (253)

keZ m=0 Lp
with
1_9 1-6
p 2 q0
for 0 < 6 < 1. Hence
2 p—
9=_P do
P 2—qo

and in view of (2.41) with e = /2 — (1 — 6) and p = 0 this estimate is summable in / and j, provided
that —8/2 + (1 — 6) < 0. The conclusion again follows from Lemma 2.5 and (2.53) like in (2.52) with

3 <
1—|—1/q0

Proof of Theorem 2.39(2)—(3). By the monotone convergence theorem we may restrict k£ in (2.43) to

<2. a

|k| < K¢ and parameters ¢ to the set
U, == {u/2%0 :u e Nand 210 <y < 2k +Lotly

for some Ky € N and L € Z as long as we obtain estimates independent of Ky and L¢. Fix Ky, Lo and
let 1 U| k<Ko [U Let q1 satisfy (2.46); then invoking (1.5) and (2.11), with L = 2! we obtain

2l-1

1

2

H( Z |(A2k+2k—l(m+1) —A2k+2k—/m)f|2)
|k|<Ko m=0

Lpr
2—qy | i_ql o Eai}
—aq 2 —q
<2700 2 ( |kS|uI1)( Aok okt g1y = Aok pok—tmll agos £a0) | AW A)sew)sill L6 pan
=Ko _
0sm<2f - (Z(z‘ﬁa,- 1)—) 1/ llzo
jez
2 11 ! 2— 2—q1 1 4q a1 qu
<25 b (e i D) | AU seweill s g2 E 0 0 3 a0 | .
jez

In order for the right-hand side to be summable in / we need

12—q; 2—q190 lq1—qo
— — — ——— <0 <~ 2— —a2— — - < 0.
230 a2—q0 2 22 (2—q1) —a(2—q1)q0 — (91 — q0)

It suffices to ensure

2(1 —aqo) +qo 2—qo
2—q)(1—ago) —(q1—q0) <0 = g1 > —2_ ’
2—aqo 2—aqo
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and this is our hypothesis (2.46). Hence under this condition by Lemma 2.5 we conclude for general
operators that

1 Ko+Lo 201 %
. k
H( Z Vz(Atf.tG[ULO)Z) < Z ( Z Z |(A2k+2k—l(m+1)—A2k+21c—lm)f|2)
|k|<Ko Ly =0 " Mk|<kom=0 Lr
2-aq; ,
< ”A((As)sefu)*,U”qul _)quaH]/ ”LP» (2.54)

as desired. For positive operators crude estimates and interpolation show that
B = || AspllLr—Lr < 00,

with p = ¢y, since [ is finite. Note that

1
2
sup|Atf<x>|Ssup|Atf(x>|+(§; sup |<At—A2k>f<x)|2). 2.55)
tel teD kez tel2k 2k+1H)n1

Therefore, appealing to (2.55), (2.48) and (2.54) we obtain by a bootstrap argument that B < 1 +

B2=41/24 gince
2—qy 2—q;

IA(As)sev)will i pay < B 2

Hence, B <1 +a?/91 In particular, the estimate (2.54) becomes uniform in | C U, and this simultaneously
implies (2.43).

In the case of convolution operators we may replace p = ¢ by p = ¢} in Lemma 2.9 and all subsequent
arguments. O

3. Applications

3A. Dimension-free estimates for jumps in the continuous setting. We begin by providing dimension-
free endpoint estimates, for »r = 2, in the main results of [Bourgain et al. 2018]. Let G C RY be a
symmetric convex body. By the definition of the averaging operator (1.8) we have A?ﬁ = ﬁA?(G),
where U f = f oU is the composition operator with an invertible linear map U : R? — R4, It follows
that all estimates in Section 1 are not affected if G is replaced by U(G).

By [Bourgain 1986a], after replacing G by its image under a suitable invertible linear transformation,

we may assume that the normalized characteristic function y := |G|~ '1¢ satisfies
@l =Cclg™, 3.1)
) —1] = CIEl, (3.2)
(6. V@) = C, (3.3)

with the constant C independent of the dimension. In [Bourgain 1986a] these estimates were proved with
|L(G)&| in place of |&| on the right-hand side, where L(G) is the isotropic constant corresponding to G.
The above form is obtained by rescaling.
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Then A; := AtG is the convolution operator with 1, and fi;(§) = [i(¢£). The Poisson semigroup is
defined by

Pf (€)= p(§) /(). where p;(£) := e 718,

The associated Littlewood—Paley operators are given by S := Pox — Pyk+1. Their Fourier symbols
satisfy

Sk ()] < min{2¥|g|, 27% &7}, (3.4)

where §k (&) is the multiplier associated with the operator Sy, i.e., S/k\f &) = §k €3] f (§). From now
on, for simplicity of notation, we will use this convention. The symbols associated with the Poisson
semigroup Py := P,k satisfy

|Pe()—1] < 12| and | Pp(8) <27 (g7". (3.5)

Proof of Theorem 1.9. We verify that the sequence (Ay)xez, Where Ay := A,«, satisfies the hypotheses
of Theorem 2.14 for every 1 = g9 < ¢1 < 2.

The maximal inequality (2.13) and the Littlewood—Paley inequality (1.6) for the Poisson semigroup
with constants independent of the dimension are well known [Stein 1970]. The jump estimate (2.18) was
recently established in [Mirek et al. 2018b, Theorem 1.5].

It remains to verify condition (2.15) for the operators My := Ay — Py. In view of (3.1), (3.2) and
(3.5), we have

| Mi(§)] < min{|2°E| 7" 1263,
For £ € R? \ {0} let ko € Z be such that § = 2kog satisfies |§| =~ 1. By (3.5) it follows that

D 1My () Skt (E)F <Y min{[25[71, 125} min{| 2 g ! 2k g )2

kez kez
= > min{|2%|71, [2%E ]} min{|2* T/ E| 7! 2K HTE
kez
<Y min{27* 2K} min{ (2% /)71 2k H/y2 < 070V (3.6)
kez

for § € (0, 2) with the implicit constant independent of the dimension. By Plancherel’s theorem this shows
that (2.15) holds with a; < 271/1/2, O

Proof of Theorem 1.11. We will apply Theorem 2.39 with A; := A; := A,G. By a simple scaling we have
S{H)G. Hence Theorem 2.14, with Ay = AS\,H)G, applies and we obtain the vector-valued
inequality (2.20) for all 1 < p < oo and r = 2, which consequently guarantees (2.42). It remains to verify
the hypothesis (2.40) of Theorem 2.39. We repeat the estimate [Bourgain et al. 2018, (4.23)]. By (3.3)

for ¢t > 0 and /2 > 0 we have

AZI‘(I-H‘) = ./4

t+h du

t+h h
e+ no—peo| = [ e awoyas [T ST 6
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By the Plancherel theorem this implies

h
[Aspn —Atllp2—p2 < T (3.8)
This allows us to estimate the square of the left-hand side of (2.40) by
2/—1
LHS (240> = D 3 [ (Agk okt g 1) — Aok k1) Sy S 17 2
kez m=0
2!—1
<202 27k SN
keZ m=0
=271 US4 172 <271 S 17
kez
Secondly, by (3.1) and (3.2) for every 0 <m < 2! we have
AQE + 257 (m + 1)8) — A2 + 257 m)8)| < minf|2¥E ) 12%¢1 7).
Arguing similarly to (3.6) we obtain
LHS (2.40)% < 21273171 1|12,
Hence (2.40) holds with a; ; = min{1,2/278171/2}, O

Proof of Theorem 1.14. By Theorem 1.9 we have the hypothesis (2.48) of Theorem 2.39. The hypothesis
(2.40) was verified in the proof of Theorem 1.11. The remaining hypothesis (2.45) is given by [Bourgain
et al. 2018, Lemma 4.2], but we give a more direct proof.

Recall that BY is the unit ball induced by £¢ norm in R4, From [Miiller 1990] (for 1 < g < 00), and
[Bourgain 2014] (for ¢ = co) we use the multiplier norm estimate

”ﬁluMl’ ip,q,oe I, m= (E-V)WA,

for @ € (0,1) and p € (1, 00) with implicit constant independent of the dimension. For a Lipschitz
function 4 : (1, 00) — R such that |(¢)| < |¢|7! and |h'(¢)| < |¢|7" fractional differentiation can be
inverted by fractional integration:

1 +oo
h(t) = Ta)/t w—0)*""D%(u)du, t>1;
see [Deleaval et al. 2018, Lemma 6.11]. In particular, for # > 1 we obtain
1 +o0
BO=h() = o [ =05 = =" D) d,

where v+ := max(u, 0) denotes the positive part. In view of (3.1) and (3.3) this result can be applied to
the function A(r) = f(t£) for any & € R? \ {0}. Observing D*h(u) = u~%m(u&) we obtain

~ ~ 1 oo a—1 oa—1y, —o ~
u(té)—u(é‘)=mfl (=% = @—=D3 u "m(ut)du.
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On the other hand we have
+o00
/1 = 0% = (= 1D ™ du S (1 — D,

and for a Schwartz function f € S(R?) this implies

. +o00 ~
17 (€)= S E)Lr Sfl =) = =D ™ F (@EV)* ) E) S E)le du
Se (t=1)% sul(a)llJfg1 (WEV)* 1) (uE) £ ()| Lo

Sa (=D*I(EV)*WE) I nee |l fllr.

where we have used the Fourier inversion formula and Fubini’s theorem in the first step and scale invariance
of the multiplier norm in the last step. Since the multiplier i (z€) — (§) is (qualitatively) bounded on
L? with norm < 2, by density of Schwartz functions this implies

() = Allmr Sa =1,
which by scaling implies the hypothesis (2.45). O
Finally we emphasize that once Theorem 1.9 is proved, alternative proofs of Theorems 1.11 and 1.14

follow by appealing to the short variational estimates given in [Bourgain et al. 2018].

3B. Dimension-free estimates for jumps in the discrete setting. We outline the proof of Theorem 1.18.
The strategy is much the same as for the proofs of Theorems 1.9 and 1.11. Let

1 .
my(§) = N1 Z e2mimE  forg e T4
€0

d
+ D

be the multiplier corresponding to the operators A defined in (1.17). Here we remind the reader
of the following estimates for my established recently in [Bourgain et al. 2019]. Namely there is a
constant 0 < C < oo independent of the dimension such that for every N, Ni, N, € N and for every
feTd=[-1, %)d we have
lmy (&) < C(NIED™",
imn(§) — 1] = CNIE], (3.9)
[m, (§) —ma, ()] < CINy — Ny max{N', Ny 13,
where | - | denotes the Euclidean norm restricted to <.
The discrete Poisson semigroup is defined by

Pof(E) = pi(€) [ (§), where p;(§) := e~ 27! Ekin,

for every & € T4 and

d 3
€ sin := (Z(Sin(néj))z) .

Jj=1
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We set Py := P,« and the associated Littlewood—Paley operators are given by Sy := Pyk — Pak+1. The
maximal inequality (2.13) and the Littlewood—Paley inequality (1.6) for the discrete Poisson semigroup
with constants independent of the dimension follow from [Stein 1970]. The jump estimate (2.18) for
discrete Poisson semigroup was recently proved in [Mirek et al. 2018b, Theorem 1.5]. Moreover, using
€] < |€|sin < 7|€] for & € T4, we see that the corresponding Fourier symbols Sy (£) and Py (£) satisfy
estimates (3.4) and (3.5) as well.

In order to prove (1.20) we have to verify that the sequence (Ag)xen, Where Ag := A,k satisfies
the hypotheses of Theorem 2.14 for every 1 = g9 < g¢; < 2. Taking into account (3.9), (3.4) and (3.5)
(associated with the discrete Poisson semigroup) it suffices to proceed as in the proof of Theorem 1.9. To
prove (1.19) we argue as in the proof of Theorem 1.11.

3C. Jump inequalities for the operators of Radon type. In this section we prove Theorems 1.22 and 1.30.
By the lifting procedure for the Radon transforms described in [Stein 1993, Chapter 11, Section 2.4]
we can assume without loss of generality that our polynomial mapping P (x) := (x)!' is the canonical
polynomial mapping for some I" C N’g \ {0} with lexicographical order, given by

RS x = (x1.....x¢) > () := (E36 ---x}{”‘:yeF)e[R{F,

where R! := RIT! is identified with the space of all vectors whose coordinates are labeled by multi-indices
Y= ) €L

Throughout what follows A is the diagonal |I"| x |I"| matrix such that (4x), = |y|x, forevery x € RT
and let g, be the quasinorm associated with A* = A, given by

G () = max(|&,|#1) for £ € RT.
yel

We shall later freely appeal, without explicit mention, to the discussions after Theorems 2.14, 2.28
and 2.39 with d = |T"|, A and g+« as above.

Proof of Theorem 1.22. Let M; := /\/l}D , where P(x) = (x). Observe that M; is a convolution operator
with a probability measure (., whose Fourier transform is defined by
(€)= 1 em2miE()T dy for&eRl.
12| Je,
Condition (2.25) with w(t) = 11/ follows from Proposition B.2 and Lemma A.1. It is not difficult to see
that (2.24) also holds.

In order to prove (1.23) it suffices, in view of (2.2), to show inequality (2.19) with A := M« and
inequality (2.43) with A; := M, for every 1 = g9 < q; < 2. We have already seen that (2.26) holds;
hence (2.19) holds and we are done. We now show (2.43). For this purpose note that (2.45) holds for all
1 < go < 0o. This combined with (2.24) and (2.25) permits us to prove (2.49) and (2.50), which imply
(2.40) and Theorem 2.39 yields the conclusion. O
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Proof of Theorem 1.30. Let H; := ’Hf , where P(x) = (x)T. Denote the Fourier multiplier corresponding
to the truncated singular Radon transform by

W, (§) ;:/ e 2mEMT K(y)dy  for £ e RY. (3.10)
RK\Q
For a fixed « € (0, 1) we claim

W1 (&) — Wy ()] <o 1€ 12T + o (114
S (0 (&) + g (9= (E))4)  if 1qu(®) = 1, (3.11)

for all s,¢ € (0, 00) such that k¢ < s < ¢. Indeed, by Proposition B.2 we obtain

W (§) —Ws(6) =

/ e 2miEMT gy dy'
Q\Q;

< o [10e10.00)- Uane K0 =)l
veRk:|v|§tA_%
with
A=) Mgl
yel
The claim (3.11) clearly holds for A < 1. If A > 1, then for a fixed v we use (1.28) and the fact that
Q:\ Qs € B(0,1)\ B(0, cqrt) to estimate the contribution of y such that y, y —v € Q; \ Q5. On the
set of y such that exactly one of y, y — v is contained in 2, \ 25 we use (1.26); the measure of this set
is bounded by a multiple of t*=1|v| due to Lemma A.1. This finishes the proof of (3.11).
Additionally, we have

W (§) —Ws(6)| < ItAéléo S (1907 + 0k (19 ()T)  if 1qu(E) < 1 (3.12)

due to the cancellation condition (1.27) and (1.26).

To prove (1.31) we fix 6 € (0,1] and p € {1 + 6, (1 + 6)'} and invoking (2.2) it suffices to prove
inequalities (1.32) and (1.33). Inequality (1.32) will follow from (2.33) withgg =1, ¢; =146, and Bj :=
H,i —H,i+1 upon expressing H,« as a telescoping series like in (2.3). Inequality (1.33) will be a conse-
quence of (2.43) withqo =1, g1 =1+6, and A; :=H;. Let (0 :t > 0) be a family of measures defined by

or * f(x) =/ f(x=)DHK(y)dy forevery ¢ e[2k,2k+1], ke?. (3.13)
Q\Q2,k

Estimates (3.11) and (3.12) allow us to verify (2.35) and (2.36) respectively with w(¢) := (a4

wi (1Y), Moreover |ook | < ok, Where pu; is the measure associated with the averaging operator M.

Hence the discussion after Theorem 2.28 guarantees that inequality (2.33) holds, since By f = 05k+1 * f.

To prove (2.43) it suffices to note that (2.45) holds for all 1 < gy < co. Moreover inequalities (2.49) and

(2.50) remain true for A; = H;. Then Theorem 2.39 completes the proof. O
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Appendix A: Neighborhoods of boundaries of convex sets

We will show how to control the measure of neighborhoods of the boundaries of convex sets. The proof
of the lemma below is based on a simple Vitali covering argument.

Lemma A.1. Ler Q C R¥ be a bounded and convex set and let 0 < s < diam(2). Then
[{x € R : dist(x, 0Q2) < s}| <g sdiam(Q)k_l.
The implicit constant depends only on the dimension k, but not on the convex set .

Proof. Let r = diam Q. By translation we may assume 2 € B(0, r), where B(y, s) denotes an open ball
centered at y € R¥ with radius s > 0. Notice

{x e R¥ dist(x,0Q2) < s} C U B(y,s).
yei

By the Vitali covering lemma there exists a finite subset ¥ C 92 such that the balls B(y, s), with y € Y,

are pairwise disjoint and
U BG.9)| | B(.s)
yeiI yeyYy

S

Consider the nearest-point projection P : R¥ — 1 Q, thatis, P(x) =x', where x” € cl Q is the unique point
such that |x — x’| = dist(x, c1 Q). It is well known that P is well-defined and contractive with respect to
the Euclidean metric. The restriction of P to the sphere dB(0, ) defines a surjection Py : dB(0,r) — 0.
This follows from the fact that for every point x € d2 there exists a linear functional ¢ : R* — R such
that ¢ (y) < ¢(x) for every y € cl Q; see, e.g., [Rockafellar 1970, Corollary 11.6.1]. For each y € Y we
choose z(y) € dB(0, r) such that Py(z(y)) = y. Then the balls B(z(y), s) are pairwise disjoint in view
of the contractivity of P and contained in the set

{xeRk:r—s<|x|<r+s},
which has measure < s(r + s)*~1. But the union of the balls B(z (»), s) has the same measure as
Uyey B(».s), and the conclusion follows. O
Appendix B: Estimates for oscillatory integrals

We present the following variant of van der Corput’s oscillatory integral lemma with a rough amplitude
function.

Lemma B.1. Given an interval (a,b) C R suppose that ¢ : (a,b) — R is a smooth function such that
| ®) (x)| = A for every x € (a, b) with some A > 0. Assume additionally that

e cither k > 2,

e ork =1 and ¢’ is monotonic.
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Then for every locally integrable function ¥ : R — C we have

b
/ ey () dx

Proof. Let 1) be a smooth positive function with suppn € [—1,1] and [ n(x)dx = 1. Let p(x) :=
¥« A k(A1 kx), and note that

x+A"VEk A/ k

b
. 1
< inf / |w(y)|dy+xk/ /|w<x)—w(x—y)|dxdy.
as<x=<b Jx_)\—1/k AUk Jq

¥ (x) — p(x)| swf»A|w(x)—w<x—y)||n(w1y)|dy.

Then we may replace ¥ by p on the left-hand side of the conclusion. For every x( € (a, b) by partial
integration and the van der Corput lemma, see for example [Stein 1993, Section VIII.1.2], we have

b b b x
[ e pax ='/0(x0) [ e as [Ceo [ iaax
a a a X0
b X0 Yo
S‘P(Xo)/ 1) gy / p’(y)/ e"”(x)dxdy‘Jr
a a a

. b
srk(|p<xo>|+ | |p/<x>|dx).

+

b b
/p’(y)/ e"”(")dxdy‘
X0 y

The latter term is estimated using

10/ ()] = (W (x) — ) % Ak gk ) (x)] S AR fRIW(x)—I/f(x — IO p)|dy,
and the conclusion follows. O

We will also need a multidimensional version of Lemma B.1. As before B(y, s) denotes an open ball
centered at y € R¥ with radius s > 0.

Proposition B.2 [Zorin-Kranich 2017]. Given d,k € N, let P(x) = lelalﬁ 4 Aax® be a polynomial in
k variables of degree at most d with real coefficients. Let R > 0 and let r : R — C be an integrable
function supported in B(0, R/2). Then

/Rk POy (x) dx

Sac s [ e —pe—olar

VERK:|v|<RA™ d

A= Y R,

1<|x|<d

where

We include the proof for completeness.

Proof. Changing the variables we have

— Rk

/ eiP(x)W(x) dx
Rk

/Rk e PRy p (x) dx|,
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where
PR(x)= Y Riux®  yr(x)=y(Rx) and suppyg S B(0.1).

1<|a|=<d
Let us define

= s [ () - velr-vldx

! 1
vERK:|v|<A™d

and observe that || ¥ g 1 < BA'/9. So there is nothing to prove if A < 1. We assume that A > 1. Let
be a nonnegative smooth bump function with integral 1, which is supported in the ball B (O, %) Then we
define p(x) = AK/4y(AY4x) and ¢(x) = Y * p(x) and we note

/|wR<x)—¢<x>|dst5/ f W R() — VRGr— )| dxn(A¥ y)dy < B.
R¥ Rk JRE

The proof will be completed if we show that

‘/Rk eiPR(x)qS(x) dx

Sak B (B.3)

Since ¢ is a smooth function supported in B(0, 1) we invoke [Stein and Wainger 2001, Lemma 2.2] to
get the conclusion. Indeed, that result ensures that there exists a unit vector £ € R* and an integer m € N
such that |(§ - V)" PR| > ¢k 4 /A on the unit ball B(0, 1) for some ci 4 > 0. We may assume, without
loss of generality, that £ = ¢y = (1,0,...,0) € RX. Then by the van der Corput lemma, see for example
[Stein 1993, Corollary, p. 334], we obtain

1
‘/ PR () dx / (|¢(1,x’)|+/ |81¢(x1,x')|dx1) dx’
RK R—1NB(0,1) -1
SATEVRlL.

QU=

SAT

since supp ¢ € B(0, 1) and ¢(1, x’) = 0 for every x” € R~1 n B(0, 1).
We now show that ||V |1 < A4 B Indeed, for every j € {1,..., k} we have

0,91 = [
:\[;Qk

sabtd [ e -yt pll@ma il ardy < A,
RI‘ RI‘

dx

ka YR(x —y)djip(y)dy

dx

| ) = valr = () dy

This proves (B.3) and completes the proof of Proposition B.2. O
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ON THE TRACE OPERATOR FOR FUNCTIONS OF BOUNDED A-VARIATION

DOMINIC BREIT, LARS DIENING AND FRANZ GMEINEDER

We consider the space BVA(Q) of functions of bounded A-variation. For a given first-order linear homo-
geneous differential operator with constant coefficients A, this is the space of L'-functions u : @ — RY
such that the distributional differential expression Au is a finite (vectorial) Radon measure. We show that
for Lipschitz domains  C R”, BVA(£2)-functions have an L'(3$2)-trace if and only if A is C-elliptic (or,
equivalently, if the kernel of A is finite-dimensional). The existence of an L' (d)-trace was previously only
known for the special cases that Au coincides either with the full or the symmetric gradient of the function u
(and hence covered the special cases BV or BD). As a main novelty, we do not use the fundamental
theorem of calculus to construct the trace operator (an approach which is only available in the BV- and
BD-settings) but rather compare projections onto the nullspace of A as we approach the boundary. As
a sample application, we study the Dirichlet problem for quasiconvex variational functionals with linear
growth depending on Au.

1. Introduction

1A. Aim and scope. Let Q2 be an open, bounded Lipschitz domain in R” and let 1 < p < co. A key
tool in the study of partial differential equations is the assignment of boundary values to elements
u € WHr(Q; RN), often being the first step towards well-posedness results for such equations. In this
respect, it is a well-established fact, see [Maz’ya 2011], that if 1 < p < oo, then there exists a surjective,
bounded linear trace embedding operator

tr: Whe(Q; RY) — wi=1/rraq; rY) (1-1)

which satisfies tr(u) = u|yq for u € C(Q; RV N Wh2(Q; RY). If p = 1 instead, a result of [Gagliardo
1957] asserts that there exists a surjective, bounded linear trace embedding operator

tr: Whi(Q; RY) — L' RY). (1-2)

The same holds true when W1(Q; RY) is replaced by BV(Q; RY), the R¥-valued functions of bounded
variation on 2. Both boundary trace embeddings (1-1), (1-2) and the corresponding variant for BV hinge
on inequalities
||u||W1—'/I'«P(3S2;RN) = C(”“”LP(Q;RN) + ||Du||LP(s2;[R§NX")), (1-3)
lullr@oryy < CUlullLy@ryy + | Dull L @ryxn))

MSC2010: primary 46E35, 26D10, 26B30; secondary 46E30, 49J45.
Keywords: trace operator, functions of bounded A-variation, linear growth functionals.
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if 1 < p < o0 or p =1, respectively, to be satisfied for all u € C(Q2; R¥)NC'(22; RY). These estimates in
turn are obtained as a consequence of the fundamental theorem of calculus in conjunction with a smooth
approximation argument.

As one of the fundamental achievements of 20th century harmonic analysis, Calderén and Zygmund
[1956] and Mihlin [1956] established that in a wealth of inequalities, the full gradient can be replaced
by weaker quantities only involving certain combinations of derivatives. Precisely, let A be a constant-
coefficient, linear, homogeneous differential operator from RY to RX: i.e., there exist fixed linear maps
A, : RV — RX with

n
A:Z%aa. (1-4)
a=1

Then for each 1 < p < oo there exists ¢ = c¢(p, n, A) > 0 such that there holds
I Dul Lo r:vny < cllAUN o gogry  for all u € C°(R™; RY) (1-5)

if and only if A is elliptic. Here we say that A is elliptic if and only if for each & = (&1, ..., &,) € R"\ {0}
the symbol map A[E]:= )", €Ay : RY — RX is an injective linear map. A special instance of (1-5) is the
case of the symmetric gradient operator Eu := %(Du + D "u) acting on maps u: R" — R" (here N =n >2
and K = n?, identifying R"*" = [RR”2). In this situation, (1-5) gives the usual Korn inequalities, which
play a pivotal role in elasticity or fluid mechanics; see [Fuchs and Seregin 2000] for a comprehensive
overview.

Singular integrals or Fourier multiplier operators in general are not bounded on L. Thus one expects
the exponent range 1 < p < oo for (1-5) to be optimal for general elliptic operators A. This is in fact true
and manifested by Ornstein’s celebrated noninequality, stating the impossibility of nontrivial L'-estimates:

Theorem [Ornstein 1962]. Let A and B be two constant-coefficient first-order, linear homogeneous
differential operators on R" from RN to RX and from RY to R, respectively. Suppose that there exists a
constant ¢ > 0 such that

IBull 11 ey < cllAullpigo.gry for allu € CO(R"; RY).
Then there exists T € L (RX; R) such that B =T o A.

This negative result— which faces contributions to date, see [Conti et al. 2005; Kirchheim and
Kristensen 2016] — immediately yields that if p = 1, inequalities that involve the full gradients Du do not
necessarily generalise to those involving only Au. On the other hand, by [Temam and Strang 1980] it is
known for the special case of A being the symmetric gradient operator that the second inequality in (1-3)
remains valid indeed for p =1 when D is replaced by £. However, the method employed in [Temam and
Strang 1980; Babadjian 2015] to arrive at this result is very specific to the symmetric gradient operator
and its structural properties: again based on the fundamental theorem of calculus, £u then allows one to
control a cone of line integrals emanating from the boundary, leading to the desired trace inequality. In
particular, it is far from clear whether and if so, how, trace inequalities of the form (1-3) can be established
for p =1 and D being replaced by differential operators A of the form (1-4). As we shall see below in
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Section 1C, even for general elliptic operators A the corresponding analogues of (1-3) break down and
hence the method employed for the symmetric gradient cannot easily generalise.

This leads us to the following classification problem: classify all differential operators of the form (1-4)
such that for any open and bounded Lipschitz domain Q C R" there exists a constant ¢ > 0 such that

lull L @asryy < clllull@ryy + 1AUl L1 @rK)) (1-6)

holds for all u € C(2; RY) N C'(Q; RY).  The overall objective of the present paper is to solve
this classification problem. Before we pass on to the precise description of our results —in particular,
Theorem 1.2 — we briefly pause and connect this theme to other results available in the literature first.

1B. Contextualisation and function spaces. The quest for classifying differential operators A of the
form (1-4) such that well-known inequalities generalise to the A-framework for p = 1 has come up rather
recently. Building on the foundational work [Bourgain and Brezis 2003; 2004; 2007], Van Schaftingen
[2013] characterised all operators A of the form (1-4) for which a Sobolev-type inequality

lull prsn—v r. vy < ClAU| L1 iy for all u € C(RY; RY) (1-7)

holds. Whereas ellipticity of A is easily seen to be necessary for (1-7), it is far from sufficient and needs
to be augmented by the so-called cancellation condition. Following [Van Schaftingen 2013], we call A
cancelling if and only if

(N AEIRY) = {0).

§€R™\{0}

Note that by ellipticity, u € C>°(R"; R") can be represented via u = kn * Au, where ka: R" \ {0} —
Z(RK; RV satisfies the growth bound |ka(y)| ~ |y|'™" for y € R\ {0}. Then the fractional integra-
tion theorem only implies that the convolution with kx yields an operator that maps L'(R"; RX) —
L'\i,/("_l)(lR"; RN) boundedly with the weak-L"/ =D space L'V'V/("_l)(IR"; RY), and so (1-7) implies a
proper improvement based on the additional cancellation condition.

To unify this theme also in view of (1-6), we wish to interpret the above inequalities in terms of
(boundary trace) embeddings and thus introduce function spaces via

WA(Q) :={v e LY(Q; RY) : Au e L1 (Q; R¥)),
BVA(Q) :={v e L' (2 RY) : Au e M(Q; RF)},

where Q@ C R” is open, A is a differential operator of the form (1-4) and M (2; RX) denotes the RX-
valued Radon measures of finite total variation on 2. These spaces are normed canonically via ||u|| a1 =
llet]l p1 + [JAu|| ;1 (similarly for BV” with the obvious modifications); clearly, wAL(Q) - BVA(Q) and
we shall refer to BVA(Q) as space of functions of bounded A-variation. In the literature, only particular
instances of spaces BV” have been studied in detail, namely for A = V or A = &, leading to the spaces
BV or BD of functions of bounded variation or deformation, respectively. Precisely, we then have
wil=wV-l LD=w¢! BV=BVY, BD=BV?, and this paper is the first attempt to characterise the
properties of BV”-maps in terms of the properties of A in a unifying manner. By this, we also aim to



562 DOMINIC BREIT, LARS DIENING AND FRANZ GMEINEDER

clarify the underlying mechanisms for the corresponding trace inequalities to work in the known cases
A=Dand A=¢E.

Returning to the classification problem related to (1-6), we conclude this subsection by pointing
out that ellipticity in itself cannot yield the required L'-trace theory. In fact, consider the operator
EPu:=Eu— % div(u)E, (E, € R"" being the identity matrix), which is usually referred to as trace-free
symmetric gradient operator, for n > 2. This operator enters in a variety of applications, for instance
fluid mechanics or general relativity; see [Feireisl 2004; Bartnik and Isenberg 2004]. Regardless of n > 2,
the operator £7 is elliptic; see Example 2.2(c). However, the following example from [Fuchs and Repin
2010] shows that an L'-trace does not exist if n = 2. Identifying R> = C, ker(£) essentially contains the
holomorphic functions. Upon identifying R?> with C and denoting by [) the open unit disc in C, the map
u: D—C, z 1/(z—1), even belongs to WE"1(B(0, 1)), whereas it is clear that || tr(x) 21 3B0.1y) = 00
In view of (1-6), our main result, Theorem 1.2 below, will cover the particular case of A =& Dasa special
case and provide a positive answer for all n > 3 and a negative answer for n = 2.

1C. Main results. Before we state our main result, we need to provide the definitions of several important
properties of our operator A. To begin with, we write the symbol mapping A[£] : RNV — RX as

n
Al :=v@a& =) EAgv, E=(f.....6) R, veRY. (1-8)
a=1

Moreover, we extend A[£]n = n ®a & by (1-8) also to complex-valued £ € C" and n € CV. We strengthen
terminology and say that A is R-elliptic if A[£]: RY — RX is injective for all £ € R"\ {0} (i.e., A is
elliptic in the above sense), and C-elliptic provided A[£]: CV¥ — CX is injective for all £ € C" \ {0}
(see Section 2C for more detail). Finally, we shall say that A has finite-dimensional nullspace if the
kernel N (A) of A in the distributional sense is finite-dimensional; i.e.,

dim(N(A)) < oo, with N(A) = {v e D'R"; RY) : Av =0}, (1-9)

where D(R"; RY) = CX(R", RY). We will see later in Theorem 2.6 that A has a finite-dimensional
nullspace if and only if it is C-elliptic. It is also equivalent to the type-(C) condition in the sense of
[Katamajska 1994]; see Remark 2.1. However, the notion of R-ellipticity is strictly weaker: For instance,
EP for n =2 is R-elliptic but not C-elliptic; see Example 2.2(c). We are now in position to formulate our
main result.

Theorem 1.1. Let A be a differential operator of the form (1-4). Then the following are equivalent:

(a) For all open and bounded Lipschitz domains Q2 C R" there exists a constant ¢ > 0 such that (1-6)
holds for all u € C(2; RYYNCl(Q; RY).
(b) A is C-elliptic.
Whereas necessity of C-ellipticity for (1-6) shall be addressed in Theorem 4.18 and essentially follows
from a construction relying on the properties of the two-dimensional operator £, the more involved part

is the sufficiency. For future reference, we single this out and state in the following more elaborate form;
the full statement can be found in Theorem 4.17:
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Theorem 1.2 (trace theorem). Let A be C-elliptic (or equivalently, A has finite-dimensional nullspace).
Then there exists a trace operator tr : BVA(Q) — LY(3Q, H"Y) such that the following holds:

(a) tr(u) coincides with the classical trace for all u € BVA(Q) N C(Q; RY).

(b) tr(u) is the unique strictly continuous extension of the classical trace on BVA(Q)NC(Q; RY). In
particular, tr: BVA(Q) — L'@QQ: H* Y is continuous for the norm topology on BVA(Q).

(c) tr(WAH(Q)) = r(BVA(RQ)) = L' (99; 1™~ 1).

Regarding sufficiency, the core issue is how to replace the use of the fundamental theorem of calculus
by that of C-ellipticity. As a main consequence of the latter, we will employ the nullspace of C-elliptic
operators being finite-dimensional. Using local projections onto the nullspace N (A) close to the boundary,
we construct suitable approximations of u € BV” (L) that have classical traces. The limit of these
traces provide us with the trace of u. In particular, the projections to the finite-dimensional nullspace
replace the fundamental theorem of calculus approach as used in [Temam and Strang 1980; Babadjian
2015].

In addition to Theorem 4.17 we will show in Theorem 4.18 and Remark 4.19 that if A is not C-elliptic,
then in general there is no trace operator from BVA(Q) to L'(32; H*1). In particular, the existence of
L'(d92; H"~")-traces on arbitrary bounded Lipschitz domains  C R”" is equivalent to C-ellipticity of A.
This conclusion also identifies the infinite-dimensional nullspace of A as the reason for the failure of the
trace embedding of we D’I(Q) into L'(9€2; H"~ 1) for n =2 (see Example 2.2(c)). As a consequence of
Theorem 1.2 we also obtain a version of the Gauss—Green theorem, see Theorem 4.20, and the gluing
theorem, see Corollary 4.21. Let us also remark that Theorem 1.2 includes both the trace theorems for
the spaces BV and BD.

The relation between the condition of C-ellipticity and Van Schaftingen’s elliptic and cancelling
condition will be investigated in detail in the follow-up [Gmeineder and Raitd 2019] to this paper by
Raita and the third author; among others, it will be shown that C-ellipticity implies Van Schaftingen’s
condition but in general not vice versa. In this sense and as might be anticipated, L'-boundary traces
require a stronger condition on A.

1D. Variational problems. As a concluding application of the trace theorem from above, we address the
Dirichlet problem for linear growth functionals involving operators A. To be precise, we are interested in
the minimisation of functionals of the form

Slul ::/ f(x, Au) dx (1-10)
Q

over a class of maps u: Q — R" subject to Dirichlet boundary data u = ug on dQ. Here f: Q x RV>*" —
R>o is a given variational integrand for which we suppose the linear growth assumption

cilzl < f(x,z) <calz|+c3 forall x € Qand z € RV*". (1-11)

Additionally, we assume that our integrand f is A-quasiconvex (in a sense specified in Section 5;
also see [Fonseca and Miiller 1999; Dacorogna 1982]). Our objective here is to minimise § over the
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Dirichlet class ug + WOA ’I(Q), which are the W1 ()-functions whose traces agree with the given
boundary datum (. From the treatment of the Dirichlet problem on BV*, where A = V, see [Giaquinta
et al. 1979a; 1979b; Ambrosio et al. 2000], it is clear that the functional should be considered on
the class of BV”-maps on a larger Lipschitz domain U. More precisely, we need to consider the
weak*-lower semicontinuous envelope of § on BVA(U). Whereas in the convex situation one can
make use of the classical results due to [Reshetnyak 1968], the quasiconvex case is substantially more
involved. The sequentially weak*-lower semicontinuous envelope T of § on BV() (so A = V) was
characterised in [Ambrosio and Dal Maso 1992; Fonseca and Miiller 1993]. The corresponding issue
for the symmetric-quasiconvex (so A = £) situation was resolved in [Rindler 2011]. Invoking the recent
outstanding generalisation of Alberti’s rank-one theorem [De Philippis and Rindler 2016], the weak*-
lower semicontinuity result of [Arroyo-Rabasa et al. 2018] and the area-strict continuity of [Kristensen
and Rindler 2010b], we give a precise characterization of the weak*-lower semicontinuous envelope §
on BVA(Q); see Proposition 5.1.

Consequently, a merger with Theorem 1.2 allows us to formulate the minimisation problem with
Dirichlet data u( purely in terms of BV*(); see Corollary 5.2. We demonstrate both the existence
of minima and the absence of a Lavrentiev gap with respect to the Dirichlet class ug + W(’)& 1(Q); see
Theorem 5.3.

1E. Organisation of the paper. The paper is organised as follows. In Section 2 we fix notation, introduce
the assumptions on the differential operators A and collect elementary implications for the Sobolev-type
spaces WA Q) and the spaces of functions of bounded A-variation BVA(Q). In Section 3 we introduce
local projection operators onto the nullspace N (A) on balls and derive Poincaré-type inequalities. In
Section 4, we construct the trace operator tr : BVA(Q) — L'(3Q; H"~!) and thereby give the proof of
Theorem 1.2. Moreover, we establish a Gauss—Green formula and a gluing lemma for BV*-maps. The
final Section 5 is dedicated to the existence of BV”-minimisers of A-quasiconvex variational problems
with linear growth subject to given Dirichlet boundary data.

2. Functions of bounded A-variation

In this section we introduce the space of functions of bounded variation associated with a differential
operator A.

2A. General notation. To avoid too many different constants throughout, we write a < b if there exists
a constant ¢ (which does not depend on the crucial quantities) with a < c¢b. If a < b and b < a, we also
write a ~ b. By £(B) we denote the diameter of a ball B and by | B|, its n-dimensional Lebesgue measure.
We write d( -, -) for the usual euclidean distance. For the euclidean inner product of a, b € R" we use
the equivalent notations {(a, b) or a - b. Given f € LIIOC([R{”; RX) and a measurable subset U C R" with
|U| > 0, we use the equivalent notations

][ £ dx = <f>U:=|U|1/ Fx) dx
U U
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for the mean value integral. Lastly, for notational simplicity, we shall often suppress the possibly vectorial
target space when dealing with function spaces and, e.g., write L' (R") instead of L'(R"; R), but this
will be clear from the context.

2B. Function space setup. Let A be given by (1-4). The corresponding dual (or formally adjoint)
operator A* is the differential operator on R" from RX to RV given by

n
A% =" A%y, (2-1)
a=1

where each A is the adjoint matrix of A,. For an open domain  C R" we define the Sobolev space
WA N(Q) associated to the operator A by
wALQ) = WAL RYY = {u e LY(; RY) : Au e L1(Q2; R¥)). (2-2)

This is a Banach space with respect to the norm

||M||WM(Q) = ||M||L1(Q) + ”A””U(Q)- (2-3)
We moreover define the fotal A-variation of u € LIIOC(Q; RY) by
|Au|(€2) := Sup{f (u, A*)dx : 9 € CH(Q: R), o] < 1} (2-4)
Q

and consequently say that u is of bounded A-variation if and only if u € L'(€2; RY) and |Au|(R) < oo.
Denoting by M (2; RX) the finite RX -valued Radon measures on 2, by the Riesz representation theorem
this amounts to

BVA(Q) :={u e L'(2: RY) : Au e M(Q; RF)). (2-5)

Here, the shorthands Au € L' or Au € M above have to be understood in the sense that the distributional
differential expressions Au can be represented by L!-functions or Radon measures, respectively. The norm

lullgya(q) = llullL1 @) + [Aul(£2) (2-6)

makes BV () a Banach space. However, due to the lack of good compactness properties, the norm
topology turns out not to be useful in many applications and one needs to consider weaker topologies. We
now introduce the canonical generalisations of well-known convergences in the full- or symmetric-gradient
cases; see [Ambrosio et al. 2000]. Let u € BVA(2) and (1) C BVA(2). We say that

o (uy) converges to u in the weak*-sense (in symbols up=u) if and only if uy — u strongly in L' (2; RV)
and AukLAu in the weak*-sense of RX -valued Radon measures on 2 as k — oo.

e (uy) converges to u in the strict sense (in symbols up>u) if and only if ds(ug, u) — 0 as k — oo,
where for v, w € BVA(Q) we set

dy(v, w) ::/ lv—w|dx + [|Av](R) — [Aw|(2)|.
Q
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o (ug) converges to u in the area-strict sense (in symbols uk—>u) if and only if

d dA
/\/1+‘d;,f de" + |Avuk|<s2>—>/\/1+‘ “I g 4 1au@), koo,

dAv dAv
A — gn AS
V=320 T g MY

where

is the Radon-Nikodym decomposition of Av € M(2; RX) with respect to the Lebesgue measure .£".

Strictly speaking, these notions are reserved for the BV-versions and hence the above notions have to
be read as A-weak*, A-strict, and A-area-strict convergence. However, to keep terminology simple, we
tacitly assume that the differential operator A is fixed throughout and stick to the above terminology.
Note that the A-variation is sequentially lower semicontinuous with respect convergence in the weak*-
sense; i.e., if ug—u, then |Au|() < liminfi_, o |Aug|($2). Moreover, if ux € BVA(S) is a bounded
sequence with u; — u in L' (Q; RV), then already u;=u. Finally, if  is open and bounded with Lipschitz
boundary, then it is easy to conclude by the theorem of Banach and Alaoglu that if (u;) C BVA(RQ)
is uniformly bounded in the BV”-norm, then there exists u € BV*(Q) and a subsequence (u(jy) of
(u) such that uy j)i\u as j — oo in the sense specified above. We shall often refer to this as the

weak*-compactness principle (for BV?).

2C. Assumptions on the differential operator A. For our trace result we need some structure on A
which we introduce now.
Let A be given by (1-4). Then A induces a bilinear pairing ®4: RY x R* — RX by

n
VQ®a 7= ZzoAav for z € R" and v € RV. 2-7
a=1
For all ¢ € C'(R") and v € C!(R"; RY) we have
A(pv) = pAv +v ®a V. (2-8)

Note that if A is the usual gradient, then ®4 can be identified with the usual dyadic product ®, and if A
is the symmetric gradient, then ®p is given by the symmetric tensor product ©.

Recalling the notions of R- and C-ellipticity from Section 1C, we now pass on to a more detailed
discussion and begin with linking them to the type-(C) condition as introduced in [Katamajska 1994].

Remark 2.1. The operator A is C-elliptic if and only if it is of type (C) in the sense of [Katamajska 1994].
More precisely, since A,[£] is a linear operator from RY to RX for each £ € R", we find coefficients
Aq, jk such that

n N
A=) D Au.jibanj
a=1 j=1
for every for £ € R” and n € R". Then
n
[I:Dj,ku = ZAa,j’kaauj

a=1
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for k = 1,..., K is the family of scalar differential operators as used in [Katamajska 1994]. The
corresponding symbols are

P& = Aujiba:

a=1
with j=1,...,Nandk=1, ..., K. Now according to [Katamajska 1994] the family (P4); is of type (C)
if and only if (P; x(§)); « has rank K for all n € C" \ {0}. Since
n N

N K K
NN Pu@n =Y 33 Agjadan; = AlEIn,

j=1k=1 a=1 j=1 k=1
this is equivalent to the injectivity of A[£] for all n € CV \ {0}, which is exactly the C-ellipticity of A.
We now turn to some examples, to which we shall frequently refer.

Example 2.2. In what follows, we carefully examine the gradient, symmetric and trace-free symmetric
gradient operators. As these typically map R to the matrices RY*" instead of a vector in RX, we
henceforth put K = Nn and identify RX with RV>":

(a) Let Au := Vu. Then N (A) just consists of the constants and
(V®v 2)jk = VjZk-
A has a finite-dimensional nullspace and is C-elliptic, since
ALE]nI? = §171n .
(b) Let Au:=&(u) = %(Vu + (Vu)T) with N = n. Then N(E) just consists of the generators of rigid
motions, 1.€.,
NE ={xr> Ax+b:AeR™ A=—AT beR"},
and
(V®sjxk= %(UjZk + vkzj).
£ has a finite-dimensional nullspace and is C-elliptic, since
ALEIP = ZIER I + 16, m)P
(c) Let Au:=£&Pu)=3(Vu+ (Vu)")— 1 div(u) E, with N =n. Then
n
(V®gp 2)jk = %(vjzk +vzj) — %&',k Z vz

=1
and

2_ L2, 1 2 1, -2
IALEInI” = S1E17 "+ 5 1(6, )" — (&, m)”.
If n > 3, then A is C-elliptic and it has the finite-dimensional nullspace
NEPY={x> Ax+b+ Q2 -x)x —|x|?a) : Ae R™" A=—AT a,beR").

Elements of N (EP) are also known as conformal killing vectors [Dain 2006].
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If n =2, then A is only R-elliptic, but not C-elliptic. Indeed, A[£]n =0 for £ = (1, i)” and n= (1, —i)7.
Moreover, the nullspace N (A) is of infinite dimension: indeed, if we identify R2 = C, then the kernel
of £P consists of the holomorphic functions. We will substantially use this property in the proofs of
Lemma 2.5 and Theorem 4.18.

We now draw some consequences of the single ellipticity conditions and link them to the finite-
dimensionality of the nullspace of A.

Lemma 2.3. Let A be K-elliptic with IK = R or K = C. Then there exist two constants 0 < k] < Ky < 00
such that

k1vl)z] < lv®azl <kalvllz| forallve KN and z € K".

Proof. By scaling it suffices to assume |v| = |z| = 1. We have |v ®a z| > 0, since A is KK-elliptic. Now
the claim follows by the compactness of {(v, z) : |[v| = |z] = 1} and continuity. O

Lemma 2.4. Let A have a finite-dimensional nullspace. Then A is R-elliptic.

Proof. We proceed by contradiction. Assume that A is not R-elliptic. Then there exists & € R" \ {0}
and n € RV \ {0} with A[£]n = 0. For every f € CL(R; R) we define us(x) := f({(&, x))n. Then
(Auyp)(x) =A[&]n f((§,x)) =0. Since n # 0 and & # 0, the mapping f +— u s is injective. Therefore,
the set {uy: f € C Ll (R)} is an infinite-dimensional subspace of N (A). This contradicts the fact that A
has finite-dimensional nullspace. O

Lemma 2.5. Let A have a finite-dimensional nullspace. Then A is C-elliptic.

Proof. Since A has finite-dimensional nullspace, it is R-elliptic by Lemma 2.4.

We proceed by contradiction, and so assume that A is not C-elliptic. Then there exists & € C" \ {0}
and n € CV \ {0} with 0 = A[£]n = n ®a £. We split £ and 7 into their real and imaginary parts by
& =:&+1i% and n =: n; +iny. Then A[§]n = 0 implies

Alé1Im —A[&In2 =0 and A& ]n2 +A[&]n =0. (2-9)

We will show now that &; and x;, resp. n; and 1,, are linearly independent.

We begin with the linear independence of &; and &,. If £, = 0, then &, # 0 and then the R-ellipticity
of A and (2-9) imply n; = n, = 0, which contradicts n # 0. By the same argument, also & = 0 is not
possible. Hence, we have & # 0 and & # 0. We now show the linear independence of & and &; by
contradiction, so let us assume that &, = A& with A # 0. Then it follows from (2-9) that

Al&1 11 = Al&In = AALE In = —AA[E ] = —A2A[E ][]

This implies A[£1][n1] = 0. Hence by the R-ellipticity of A and &; # 0, we get n; = 0. Now, (2-9) implies
A[&][n2] = 0, so again the R-ellipticity of A gives i, = 0. Overall, n = 0, which is a contradiction. This
proves that & and &; are linearly independent.

The proof of the linear independence of 1 and n, is completely analogous. Indeed, 1 = yn, implies
A& In = —yZA[’;‘l]m, so A[&1][n1] = 0. As above this implies n = 0, which is a contradiction.
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Let us define now 7 : R” — C and o : C — R" by

T(x) == (&, x) = (&1, x) +i (52, x),
o (z) :=Re(z)n; —Im(z)n2.
Let O(C) denote the set of holomorphic functions on C. Then dim(O(C)) = oo. Moreover, for f € O(C)

we have 9; f(z) = 0 in the sense of complex derivatives. Let us define i s: R — R¥ by hy:=0 0 fort.
Our goal is to prove Ak = 0. We identify in the following C with R2. By the chain rule we conclude

(Ah ) (x) = Al 11 (1 f1) (T () — AlE1]72(81 f2) (T (x))
+ Alg2]n1 (82 f1) (7 (x)) — AlE21m (82 f2) (T (x)).  (2-10)

Using the Cauchy—Riemann equations 9, f; = d» f> and 9; fo = —3d, f1 and (2-9) we get
(Ahr)(x) = (A[&1]1n1 — Al&2172) (01 fD) (T (%)) + (Al&1]1n2 + Al&2171) (02 f1) (T (x)) = 0.

So for each f € O(C), we constructed an s : R" — RN such that Ah; = 0. We need to show that
dim({h : f € O(C)}) = oo. For this, it suffices to show that the linear mapping f +> h is injective.
Recall that iy = o o f o 7. Hence, it suffices to show that o is injective and that 7 is surjective. This,
however, follows from the fact that & and &, resp. 1 and 1, are linearly independent. O

Theorem 2.6. The following are equivalent:
(a) A has a finite-dimensional nullspace.
(b) A is C-elliptic.

(c) There exists I € N with N(A) C &, where &) denotes the set of polynomials with degree less or
equal to l.

Proof. Lemma 2.5 proves (a)enumi = (b)enumi. Obviously, (c)enumi = (a)enumi. It remains to show
(b)enumi = (c)enumi.

Since A is C-elliptic, it is of type-(C) in the sense of [Katamajska 1994]; see Remark 2.1. Fix w €
CX(B(0, 1)) with f BO.1) @ dx = 1. Then for an arbitrary ball B, we obtain by dilation and translation
a function wp € C°(B) with fB wp(y)dy = 1. For every [ € Ny let 771[9 denote the averaged Taylor
polynomial with respect to B of order [, see [Dupont and Scott 1978]; i.e.,

(v =)
Ppu(x) = / > af(—,wgm u(y)dy.
Bipi=i p!
The formula is obtained by multiplying Taylor’s polynomial of order / by the weight wg and integrating
by parts. Note that Pgu € 2.
It follows from the representation formula of [Katamajska 1994, Theorem 4] that for all x € B

[(Au)(y)] d
g lx—y|"!

for some I € Ny (which is fixed from now on) and all u € C°*°(B). We do not know the exact value of /,

|u(x) — (Phu)(x)| < c (2-11)

but at least / is so large that N (A) C & (there is, however, an upper bound for / in terms of n and N.)
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Now, let v € N(A); i.e., v € D'(R"; RY) with Av = 0 in the distributional sense. Let ¢, denote a
standard mollifier; i.e., @c(x) := € "¢(x/e) with a radially symmetric function ¢ € C2°(B; [0, 1]) with
fB ¢ dx = 1. Then v x ¢, € C*°(R") and A(v * ¢¢) = (Av) x ¢p. = 0. Hence, it follows from (2-11) that
v P € Z(R"). This implies v € Z(R") as desired. ]

Remark 2.7. Let us compare our conditions with the ones of [Van Schaftingen 2013], building on the
fundamental work of [Bourgain and Brezis 2004; 2007]. According to [Van Schaftingen 2013] the
operator A is cancelling! if

[ ALEIRY) = {0}. (2-12)
§#0

It has been shown in Theorem 1.4 of [Van Schaftingen 2013] that whenever A is R-elliptic and cancelling,
then we have the Sobolev-type inequality

lll Lrro—v (s mrvy < CllAU| L1 (e, REY (2-13)

for all u € CX°(R"; RY). Moreover, the R-ellipticity and cancellation property of A are necessary for
such inequality.

For our result on traces we need the C-ellipticity of A. So the natural question arises how C-ellipticity
compares to the canceling property. It will been shown in [Gmeineder and Raita 2019] that C-ellipticity
implies the canceling property but not vice versa. Indeed, the operator

%31141—%32”2 %81u2+%82u1 03Uy
Aw) = § 1 1 1
01U +50u; F01u1—502un O3ur
is R-elliptic and cancelling but it is not C-elliptic, since it fails the finite-dimensional nullspace property

(recall Theorem 2.6).

2D. Smooth approximations in the interior. In this section we show that functions from W*1(€2) and
BVA(Q) can be approximated in a certain sense by functions from WALQ)NC®(Q; RN). The proof is
in the spirit of [Evans and Gariepy 1992, Chapter 5.2] and is included for the reader’s convenience.

Theorem 2.8 (smooth approximation). Let Q C R" be open. Then the following hold:

(a) The space (C* N WA (Q) is dense in WL(Q) with respect to the norm topology.

(b) The space (C*° N BVA)(Q) is dense in BV (Q2) with respect to the area-strict topology.
Proof. Fix u € BVA(Q). For k =2, 3, ... define

1 1
Q= Q:—— <d(x,0Q — .
& {xe k+1< (x )<k—1}

Now pick a sequence (/) such that for each k € N we have ¥, € C2°(€; [0, 1]) together with ), ¥ =1
globally in 2. Now let n.: R” — R be a standard mollifier (even and nonnegative).

IThe definition of cancelling in [Van Schaftingen 2013] is given in terms of the annihilating operator L from the exact
sequence in (5-6). However, it translates in our setting to (2-12).
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For j € N and k € N we can find €; ; > 0 such that:
(i) spt(ne;, * (Yxu)) C Q.
(i) [[Wau = e, % Wa) | 1@y < 2757
(iii) [lu ®a Vi — ey, % (u ®a V)|l 1(q) < 27577,
(iv) If u € WA1(Q), we additionally require ||y Au — ne,, * (YrAu)ll g1 gy <2757/

This allows us to define u; € C*(Q) by u;j :==) Ne;. * (Yru), which is well-defined in LIIOC(Q), since
the sum is locally finite. Then in L} ()

loc

w—uj ="y (Yru =,y x (Y)).
k

This and (ii)enumi imply [|u — u; || LR < 277 If u € WAH(Q), then (iii)enumi and (iv)enumi imply
|Au — Au; ”L'(R") < 27/. This proves (a)enumi.

It remains to prove u; L5 u for j — oo for u € BVA(Q). In fact, the proof is similar to the standard BV
case. For simplicity of notation we just show u js—>u for j — oo. The necessary changes to pass from
strict convergence to area-strict convergence are just like in [Bildhauer 2003, Lemma B.2].

Since u; — u in L'(R") it follows by the lower semicontinuity of the total A-variation that |Au|(€2) <
liminf;_, oo [Au;[(£2). It remains to prove limsup;_, . |[Au;|(£2) < |Au|(£2). For this we invoke the dual
characterisation (2-4) of the total A-variation. Let ¢ € C1(Q; RX) with |p| < 1 be arbitrary. We compute

/ (wj, Ag)dr =3 / ey * (Yn), A%g) dx = 3 / (Yt A (g, % ) d
Q X Q X Q

=Z/Q<u,A*(1//k(ng,,k*f/))))dx—Z/Qw, (Mg 1 * @) @ax Vi) dx
k k
=: Ij-l-IIj.

The sums are well-defined, since ¢ € Cg () andu; =), Nejx * (Yru) in Ll (). Now

loc

D e, %D <D Wilne, %01 <Y Vildlloo = bl < 1.
k k k

Therefore,

= fQ <uA* <Z V(e *90))>dx < [Au|(€).
k
Using Zk Vy,=0and ¢ € C(} (£2), we now rewrite I1; as
=3 fﬂw, ey, *9) ®2 Vi) dx — ;/ﬂw 0 ®a Vi) dx
= ij /Q (e, * (U ®a Vi) — (u ®a Vi), @) dx.

Invoking (iii)enumi and ||¢|| o, < 1 we obtain |I];| S 27J. Hence, collecting estimates we obtain as desired
limsup;_, oo |Au;|(2) <limsup; , . (|Au|(R) +c277) = [Au|(Q). O
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3. Projections and Poincaré inequalities

In this section we derive several versions of Poincaré’s inequality. We assume throughout the section
that A is C-elliptic (or, equivalently, A has a finite-dimensional nullspace; see Theorem 2.6).

3A. Projection operator. We begin with some projection estimates.
For every ball B C R" and u € L?>(B; R") we define ITgu as the L2-projection of u onto N (A). Hence,

/|1'[Bu|2dx§/|u|2dx.
B B

Since N (A) is finite-dimensional, there exists a constant ¢ > 0 with

1Tl o) < € ][ Tl u] dx. (3-1)
B

Indeed, this is clear for the unit ball and extends to general balls by dilation and translation. It follows

][|H3u|dx§c][|u|dx. (3-2)
B B

Thus, [T can be extended to L' (B; RY) such that (3-2) remains valid.

from this as usual that

Lemma 3.1. Then there exists ¢ > 1 with

inf |ju— <||lu—Tlgu <c inf |u-— .
ot lu—qlipis = Ul = ot lu—qll s

Proof. The first estimate is obvious. Now, for all ¢ € N(A) we have [1gg = ¢. This and (3-2) imply

lu—Tpullpigy < llu—qllpip + M@ —g) ) <cllu—qliLis)-

Taking the infimum over g € N (A) proves the lemma. U

3B. Poincaré inequalities. In this subsection we derive Poincaré-type inequalities for W*! and BV~
Recall that for a ball B we denote by £(B) its diameter.

Theorem 3.2. There exists a constant ¢ > 0 such that for all balls B and all u € BVA(B) it holds

inf _ < —I1 < cl(B) |Aul|(B),
qelzrvl(A)”u qlizipy < llu —pullpip) < cl(B) [Aul(B)

where Tl is the L?-orthogonal projection onto N (A) from Section 3A.

Proof. By dilation and translation, it suffices to prove the claim for the unit ball B = B(0, 1). Moreover,
by smooth approximation (see Theorem 2.8) it suffices to consider u € C*®(B; RV) N WA L(B).

We use the averaged Taylor polynomials as in the proof of Theorem 2.6. Recall that by (2-11) we have
the estimate

lu(x) — (Plu)(x)| gc/ 1ADMI

| T dy forall x € B. (3-3)
BIX—=Y
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Since P'u is not necessarily in the kernel of A, we wish to replace it by I1(P!). Thus, we start with
lu(x) — p(P'u)(x)| < lu(x) — (Pu) ()| + |(P'u)(x) — (TTp(P'w)) (x)|. (3-4)

Now, for any p € & there holds

Ip—ppllL~s <c ][ Ap| dx. (3.5)
B

Indeed, both sides define a norm on the finite-dimensional space 47;/ N (A) and vanish on N (A). Hence,
forall x € B

|(P'u) () = (Mp(P'w) ()] < |P'u — Tp(Pw)l| = (5) < ]g AP )| dx. (3-6)
The definition of the averaged Taylor polynomial implies
A(P'u) =P (Au), (3-7)
where P~!u := 0 if I = 0. The L!-stability of the averaged Taylor polynomial gives
1P~ Al 1s) < clBullpig)- (3-8)
Now, (3-5) and (3-8) yield

A
|(7>’u)(x)—(HB(P’u))(x>|sdi(B)]ilAuldyS fg% y

So, (3-3) and (3-4) imply the estimate

Ju(x) — (MP'u) ()] < cf |'( )ﬁ)" d (3-9)
B
Now, integration over x € B gives
A
/ Ty (Pl < // LGOI
B lx—ylI
< [ 101 [ -y axdy < ces [ 1auldy,
B B B
We have shown
lu = g (Pl 1 (py < cBAU L1 () (3-10)
The rest follows by Lemma 3.1. (|

Theorem 3.3. Let B’ and B be two balls with B’ C B and £(B) < £(B’). Then for all u € BV*(B) with
u = 0 on B’ there holds
lullpi gy < c€(B)|Au|(B).

The constant only depends on the ratio £(B)/¢(B’).

Proof. We use the same construction as in the proof of Theorem 3.2. However, we choose w € C2°(B) in
the construction of the averaged Taylor polynomial additionally as @ € C2°(B’). This implies that P'u
only depends on the values of u on B’. Hence, we obtain P'u = 0. Thus, Theorem 3.2 proves the claim. [
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Finally, let us remark that variants of Poincaré-type inequalities can also be established along the
lines of [Adams and Hedberg 1996, Lemma 8.3.1] or [Ziemer 1989, Chapter 4]. However, this requires
additional extension and compactness arguments which need to be proven first.

4. Traces

In this section we show that the space of functions of bounded A-variation admits a continuous trace
operator to L' (3) if and only if A is C-elliptic (or, equivalently, A has a finite-dimensional nullspace;
see Theorem 2.6).

4A. Assumptions on the domain. In order to ensure a proper trace we need to make certain regularity
assumptions on 2. Our results include all Lipschitz graph domains. However, we will consider even
more general domains. Indeed, nontangentially accessible domains (NTA domains) provide a natural
setting for our construction of the trace operator. We refer to [Hofmann et al. 2010] for more information
on NTA domains.

We begin with the necessary conditions on our domain.

Definition 4.1 (interior/exterior corkscrew condition). Let 2 C R":

(a) We say that 2 satisfies the interior corkscrew condition if there exist R > 0 and M > 2 such that for
all x € Q2 and all r € (0, R) there exists a y € 2 such that

1 r
—r<|lx—vy|< d Bly, — Q.
Mr_|x y|<r an (y M)C

(b) We say that Q2 satisfies the exterior corkscrew condition if R" \ 2 satisfies the interior corkscrew
condition.

Definition 4.2 (Harnack chain condition). We say that Q C R” satisfies the (interior) Harnack chain
condition if there exist R > 0 and M € N such that for any € >0, r € (0, R), x € 9€2, and y1, y» € B(x, r)N2
with |y; — y| < €2k and d(yj, 02) > € for j =1, 2 there exists a chain of Mk balls By, ..., By in
connecting y; and y; satisfying

(@) y1 € B1, y2 € By,

(b) %E(Bj) <d(Bj,dR2) < M{(B;) for j =1, ..., Mk,

(c) €(B)) = 3; min{d(y1, B)),d(y2, B))} for j=1,..., Mk.
Definition 4.3 (NTA domain). We say that a domain 2 C R” is an NTA (nontangentially accessible)

domain if 2 satisfies the interior corkscrew condition, the exterior corkscrew condition and the interior
Harnack chain condition.

Definition 4.4. We say that Q2 C R" has Ahlfors regular boundary if there exist R > 0 and M > 0 such
that for all » € (0, R)

1
Mr"_l <H" Y B(x,r)Na) < Mr" L. (4-1)

In the following we tacitly require that our domains satisfy the following assumption:
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Assumption 4.5. We assume that 2 satisfies the following:
(a) 2 1is an NTA domain.
(b) 2 has Ahlfors regular boundary.

Note that all Lipschitz domains satisfy this assumption.
Let us now construct families of balls that we will use later in the construction of our traces:
For each j € Z, let (B} )i denote a (countable) cover of balls of R" with diameter £(B; ;) such that
(@) 277 <eB) <g-27.
(b) The scaled balls (%Bj,k) , cover R"
(¢) Each family (B; ;) is locally finite with covering constant independent of j; i.e.,

J ok

For each j let (n; x)x be a partition of unity with respect to the (B} )« such that for all j, k

17l oo + E(Bj VN il oo < c. (4-2)
Now, we define the 27/ -neighbourhood U ; of 982 by

Upi={xeQ:dx, Q) <27/}

Since §2 satisfies the interior corkscrew condition, we can find for each ball B; ; close to the boundary a
reflected ball B}:’ « close by. We will use these reflected balls later to define the local projections of our
functions. More precisely:

(B1) There exists jo € Z, such that the following holds: for each B;; with j > jo and B; NU; # &,
there exists a ball B, C Q with ¢(B,) = £(Bj 1) =~ d(B} . 9S) and d(Bj . B} ;) < €(B; ). where the
hidden constants are independent of j, .

Moreover, due to the Harnack chain condition we can connect two reflected balls of neighbouring balls
by a small chain of balls. More precisely, we have the following.

(B2) If Bjx C Qand j > jo, then there exists a chain of balls Wy, ..., W,,, with y uniformly bounded,
such that

(a) Wi = Bj and W, = B,
(®) [WgNWpi| = [Wg| = [Wgpi| = |Bjlfor B=1,...,y -1,
(c) (W) ~l(Bjy)forp=1,...,y.
The hidden constants are independent of j, k, 8.
We define Q(Bj . B ) == U}_, Wp.

(B3) If B;xN By, #2 and j, 1 > jo with |j —I| < 1, then there exists a chain of balls Wy, ..., W, with
y uniformly bounded, such that

(a) W =B}, and W, = B

I,m’
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() IWgNWpii| = |Wg| = |Wppi| = |Bjil for B=1,...,y —1,
(c) d(Wg, dQ2) = £(Wp) = £(Bji) for B=1,...,y.
The hidden constants are independent of j, k, §.
We define Q(B;,. Bf,) == }_, Ws.
By construction of the chains above, we get:
(B4) There exists kg > 2 such that the following hold uniformly in j > jj:

<cxu, . and <cxu .
E : XB, = CXUj—ko\Ujrg E : § : Xa(B?, B, ) = CXUimig\Uj+k
m:ijmﬂU]‘#@ m:ij,,,ﬂUj;EZ kiBj+|wkﬁBj‘m;ﬁQ

4B. Trace operator. We will now construct the trace operator on BV*(€2). We will obtain the traces by

a suitable approximation process. In particular, we will define truncations 7;u which are smooth close to

the boundary and admit classical traces. The limits will later provide the trace of the original function.
We define

I ku = I'IB];ku.

Let pj € C*°(£2) be such that Xuin < Pj < Xu; and [[Vpj|l o <2/ andletu e BVA(). Then for j > jo
we define Tju in 2 by

Tju:=u—p; Y njalu— )= (1= pu+p; Y 0yl . (4-3)
k k

Due to the support of 1; x the sum in the definition is locally finite. In particular, the sum is well-defined
in Llloc(Q). The function Tju is an approximation of u that replaces the values of u in the neighbourhood
of 3L of distance 27/ by local averages. These averages are performed slightly inside the domain on the
balls B .

We begin with an auxiliary estimate involving IT; ;u.

Lemma 4.6. We have the following estimates:
(a) There holds

“Hj,ku”Loo(Bjk) Sf_ |M| dx.
\ B’

J.k

(b) If Bj,w N (U; \ Uj12) # @, then B; , C 2 and
= Tjmtel 1,y S ECBy ) VAUl (R(Bym, BF,))-
(©) IfBj-i-l,k N Bj,m # I, then
| By 1Tttt = Tt o, ) S €CBy ) AUl (R(BY, s B )

Proof. (a) Since I1; ; maps to N(A) and N (A) C &, this is just the usual inverse estimate for polynomials
of a fixed degree.
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(b) The definition of U; and £(B; ;) < ‘—1‘2_1' imply B; ,, C 2. We compute
u—1I1; ,u =lu—Tl,: u <|lu—Tlg, u Mg, u—1I1, u .
: il =1 B ”Ll(B,-,m) = Bt ey + 1B Bom ”Ll(B,-,m)

The first term can be estimated by Poincaré’s inequality from Theorem 3.2 which yields immediately

lu =T, ull 15 S CCBym) AU (Bjm).

L'(Bjm

For the second term we make use of the Harnack chain conditions (recall Definition 4.2) and, using (B2),
connect B; ,, and B}i’m by a chain

Y
f
Q(Bjx. B,) = W
p=1

where Wy, ..., W, are balls of size proportional to £(B; ;). In particular, we have Wy = B;,, and
W, = Bf’m. Moreover, we can assume that [Wg N\ Wg 1| = |[Wg| = £(B; ) for all 8. Now, we gain

ITg,, 0= Ty ul

y—1

< —

L](Bj ) = Z ||HW/3+1M HWﬁu”Ll(Bij)
m p=1

y—1 14
S Z ”HWﬂ+1u - HWﬂu”Ll(Wﬂ_HﬁWﬁ) 5 Z ||M - HWﬂu”Ll(Wﬂ)
p=1 p=1
using equivalence of norms on N (A). Finally, using again Theorem 3.2 in conjunction with (B4),
Y
SUBim) Y 1Aul(Wy) < €(Bj )| At (2(Bjm. BE,))-
p=1

||HB u—1TII,: I/l”
jm Bj,m I (Bim)

Gathering estimates, we arrive at the claim.

(c) First, by the inverse estimate for polynomials, we have

|Bj,m| “Hj-i-l,ku - Hj,mu”Loo(Bj‘m) S ”Hj-i-l,ku - Hj,mMHLI(Bj.m) = ||HB/:+1ku - HB}.mu”Ll(Bj m)-

Now, connecting B,ti 41, and Bﬁm via the chain (BIjj 1k

exactly as in (b). O

B}i’m) (recall (B3)), we obtain the claim arguing

The following lemma shows that 7; is well-defined on LY(Q).
Lemma 4.7. T; : LY(Q) — LY(Q) is linear and bounded.
Proof. We estimate pointwise on 2
| Tjul < (1= pplul +p; Y xm 1Tkl o - (4-4)

k
With Lemma 4.6 we get

Tjul S xovuyolul + ) XBj_k][

|u|dx.
B
k:Bj,kﬂUj#Q Jik
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This implies

1Tl S Il ooy + |Bjk|][ jul dx
k:Bj (NU; #9
Slelp@un+ /|u|dx
k:B; U £

Since the Bﬁk are locally finite by (B4), we get I Tjull 1 g S llullprq) as desired.
The next two lemmas show now that 7 ju — T;u is summable in L'(Q) and BVA(Q).

Lemma 4.8. Let u € L'(Q) and j > jo. Then

1Ty 1 = Tjull gy S Ml 21wy 4\ )
Proof. Let j > jo. Then we have
Tjp1u = Tju = (pj = pj+1)u + pj+1 Z nj+1x 11k — pj Z Njm Tl mu.
k m
Now
||(I0] _pj-‘rl)u”Ll(Q) = ”u”Ll(U/‘\UjJrz)‘
Moreover, by Lemma 4.6 (a) it follows that
”pjnj,mnj,mu”LI(Q) = ClB],m| ”Hj’mu”LOO(B_jm) = C”u”Ll(B?m)’

where it suffices to consider those j with B}, NU; # &. Now (B4) implies

Z ”pjnj,mnj,mu”LI(Q) = C”””LI(U]-,/(O\U]'H(O)'

m

Analogously,

Z ||p]n]+l,knj+l,ku||Ll(Q) S c”u”Ll(Uj-H—k()\Uj-H-H(())'
k

Combining the above estimates proves the lemma.

Lemma 4.9. Let u € BVA(Q) and j > jo. Then
VAT 11— Tyl 1 gy S AU Ut \ Ujty)-

Proof. Using that ) njm =Y ; nj+1.4 = 1 in Q we get

Tjp1u—Tju=(pj — pj+1) Z Nj,m U —T1j i) +pjy1 Z Nj+1,kMj,m (1 e — X pu) =2 T +11. (4-5)

m k,m

In order to estimate ||A(T;11u — Tju) 21 it is crucial that AIT;; ru = AIl; ,,u = 0 and the gradients

of pj, Pj+1, Nj,m, and nj 1 x are bounded by 2/: recall (4-2). Let us consider I1. We only have to estimate

those summands with k, m satisfying B; 1 xNB; ,, # & since otherwise 1,1 xn; » =0. For each such k, m

we estimate the L!(Q)-norm of AIl by Lemma 4.6(c)enumi. Now, in combination with (B4) we get

IAI L1 @) S 1AUI(Uj—ko \ Uj+io)-
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Let us consider I. We only need to estimate those summands with m satisfying B; ,,N(U;\U;42) # <, since
otherwise (p; —p;j+1)1;,m =0. For each such m we estimate the L' (Q)-norm of AI by Lemma 4.6(b)enumi.
Now, in combination with (B4) we get

AT L1 @) S 1AU(Uj—ky \ Ujiky)- O
Based on the two lemmas above, we now study the convergence Tju — u.

Corollary 4.10. Ifu € L' (), then

o
w=Tyu+ Y (Tpu—Tu)= lim Tu (4-6)
N J—)OO
I=jo
in LY(Q). If additionally u € BV*(R), then (4-6) also holds in BVA().
Proof. Since p; — 0 in Ll (Q), it is clear that Tju — u in LIIOC(Q).

loc
Note that for j > jj

j—1
Tju=Tjyu+ > (Tryiu— Tiu). (4-7)

I=jo
It follows from Lemmas 4.8 and 4.9 that T}, ju — Tju is summable in L' (2), resp. in BVA(), since the
Ujt1—ky \ Uj4x, are locally finite with respect to j. Hence, Tju is a Cauchy sequence in L' (), resp.
in BVA(). Since the limit must agree with the LIIOC(Q) limit, which is u, the claim follows. U

Since Tju is smooth close to the boundary 92, it is possible to evaluate the classical trace tr(7;u). We
now show that these traces form a L!(d2)-Cauchy sequence.

Lemma 4.11. Let u € BVA(Q). Then
(T 10) — 0 (T | 1y S 1A U)o \ Uj ko)
I (Tigi) | 1 a0y S 20 Netll 0\ i)

Proof. We begin with the first estimate. It follows from (4-5) that

tr(Tjrqu) —tr(Tju) = Z tr(mjr1,60j,m (1 g — I pu)),

k,m

where the sums are locally finite sums. Hence,

Itr(Tjpru) — tr(Tju) [l 15 < Z (1. k7jm (T ke — T i) | 1 50 -

k,m

We only have to consider those k, m with Bj N B} ,, # <. For such k, m

eyt xjm (Wt ke = T ) 1 gy < WL 1 ktt — Tl el oo, H''(OQN Bj1 14N Bjm).

We estimate the first factor by Lemma 4.6(c)enumi and the second by the Ahlfors regularity of the
boundary, see (4-1), and thereby obtain

11 4y (Tt it = Tt 1 gy S 10| (2(BL 10 B )
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Summing over k and m and using (B4) implies

”tr(Tj—Hu) - tr(Tju)”Ll(ag) S |Au|(Uj—ko \ Uj+k0)-

This proves the first estimate.
Let us now estimate ||tr(Tj,)|l ;. 0" We begin with

tr(Tj,) = Z tr(njo.x jg k1e).
k

For each k with B, ; N 92 there holds
o kT )| 3 oy < Ikt oo oM™ (D20 B ).

We estimate the first factor by Lemma 4.6(a)enumi and the second by the Ahlfors regularity of the
boundary; see (4-1). This gives

1
terjo & Ty ) 5—/ Jul dx.
PETREETEOD > 0By Ju: |

Summing over k and m and using (B4) implies

I T oy S 210 00\ O

Recall that by Corollary 4.10 we have

~

i
—> 00

o
u="Tju+ T —Tiu) = lim T;
o Z( 1+1u — Tiu) ; u
I=jo
in BVA(Q). Moreover, Lemma 4.11 shows that
tr(Tju) + Z(tr(TjHu) —tr(Tju)) = lim tr(7;(u))
i . Jj—>00
JZJo
is well-defined in L'(9<). Finally,

| lim tr(7; )| < (T @)l 1oy + Y, N (Tjau0) = (Tjao) | 11 o
j—o0 L'(3Q) =
S 2P Null i\ i) F D VAUt \ Ujikg)
J=Jo
S lullpig) + 1Au|(£2)
by Lemma 4.11. This allows us to define for every u € BVA(Q) a trace

tr(u) == lim tr(Tju), (4-8)
J—>00

the limit being understood in the L'(3)-sense. This limit satisfies

@)l ooy S lullziq) + 1Au|(). (4-9)
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We now show that tr coincides with tr for all smooth functions and hence start with an approximation
result.

Lemma 4.12. Let u € C°(Q) be uniformly continuous. Then Tju — u in C Q).

Proof. We have
w—Tju=p; ) k(=T ),
k

where it suffices to take the sum over those k with B; ; N U; # <. Let us take one of those k. We will
show that [|7;,x (u — I k) || ;o ) is small for large j. Since the B;  are locally finite with respect to k
(with a covering number independent of j), this will prove the lemma.
Since A maps constants to zero, the projections Il; ; map constants to themselves. Let (u),: :=
j k
f4: udx; then by Lemma 4.6(a)enumi !
ik

I = T e = = () D Ik = e D

Sl — () e | +][‘ = () s | dx.
Jik Loo(Bj,k) B]fk Jik

Since u is uniformly continuous, the B; ; and Bjj’ « are small and close to each other, see (B1), and we see
that both expressions on the right-hand side are small for large j uniformly in k. 0
Corollary 4.13. Letu € BVA(Q)NCYUQ) be uniformly continuous. Then tr(u) = tr(u).

Proof. We see from Corollary 4.10 and Lemma 4.12 that Tju — u in BVA(Q) and in C%(Q). By the
definition of tr(u), we have tr(Tju) — tr(u). Since Tiu — u in C%(Q), we also have tr(Tju) — tr(u)
in C°(32). The limits must agree in L}OC(a Q), so tr(u) = tr(u). Il

We have already seen that tr : BVA(Q) — L'(d) is continuous with respect to the norm topology.
We wish to use this to conclude that tr is the only extension of the classical trace to BVA(Q). However, as
smooth functions are not dense in BV” with respect to the norm topology, we switch to strict convergence
as in the BV-case.

Lemma 4.14. The trace operator tr : BVA(Q) — L'(3Q; RY) is continuous with respect to the strict
convergence of BVA(Q).

Proof. Let u, uy € BVA(Q) with uy>>u and m € N.
It follows from the definition (4-3) of 7; that for j > m + k¢ there holds for all v € BVA(Q)

Ti(pmv) = pm Tjv.

Indeed, p,, = 1 on the Bj; and the B}i’ « for all m that contribute to the sum in (4-3).
This implies

tr(v) = lim tr(Tjv) = lim te(Tj(ppv)) = T(pyv) in L'(3RQ).
Jj—o0 j—00

Now, forall k e N,

Itr(ur — )l 1 a0y = 1T (om (ux — )l 11 90 -
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Thus, by (4-9)
ltrur — )l 1 ey S lom k= 0l 21 @) + 1A (ux — 1)) |(R)
S llur —ull gy + AU [(Un) + [Aug [(Un) + 27" lug — ull L1y,
Now, let k, I — oco. Since u;>>u in BVA(Q) and U,, is open, we get
[t — )l o) S 1Aul(Un).
The right-hand side converges to zero for m — oo. Thus tr(uy) — tr(u) in L' (d) for k — oo. U

In order to proceed, we need a smooth approximation result up to the boundary in the area-strict
topology.
Lemma 4.15. Let u € BVA(Q). Then there exists uj € C>®(Q) with ujunt in BVA(Q).

Proof. For j > jo consider Tju. Then Tju is C* in l7j+1. Indeed, for all x € U; | we have
(Tju)(x) =D xTLj gt
k
For each k with By NUj;1 # 0 we have

IV 0T k) g S IVl e, T k00 ey IV Tl -

Using inverse estimates for polynomials and Lemma 4.6 we get
j(n+1
IV 0T 00 log S BB T st g, S 27Dl e

Hence, Tju is uniformly continuous on U 1

Now, let 5. : R" — R be an standard mollifier (even and nonnegative). It is well known that u;  :=
Pjr1Tiu+ ((1 — pj11)Tju) * ne converges to Tju as € \( 0 in L'() as well as in the area-strict sense.
Hence, we can find €; such that
<27/,

””j,ej - TJMHLI(Q)

|IAT;u)[(2) = 1A, (Q)| <277

Moreover, recall that Tju — u strongly in BVA(Q). This implies that u j i= Uj ¢ has the desired property.
This proves the strict convergence. The area-strict convergence follows by the same steps. O

As a consequence of Lemmas 4.14 and 4.15 we immediately obtain the following corollary.

Corollary 4.16. The operator tr: BVA(Q) — L1(3Q; H"Y) is the unique strictly continuous extension
of the classical trace on BVA(Q) NCc%Q).

Due to the above results it is not anymore necessary to distinguish the classical trace and our new trace.
We collect our results proven so far in the following theorem.

Theorem 4.17. Let A be C-elliptic and let Q be an NTA domain with Ahlfors regular boundary (see
Assumption 4.5). Then there exists a trace operator tr : BVA(Q) — L0, H"~) such that the following
hold:
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(a) tr(u) coincides with the classical trace for all u € BVA(Q)NCYQ).
(b) tr(u) is the unique strictly continuous extension of the classical trace on BVA(Q)NCYUQ).
(¢) r(WAL(Q)) =tr(BVA(RQ)) = L' (0, H" ).

Proof. The existence of tr is shown in Lemma 4.14. Part (a) follows from Corollary 4.13, whereas (b) is a
consequence of Corollary 4.16. Finally, part (c) is a consequence of the fact that

(W@ RY) = L'(0Q; RY)
and Wh1(Q; RY) ¢ WA(Q). In particular, the sufficiency part of Theorem 1.2 is complete. U

4C. Necessity of C-ellipticity. In this section we show that it is not possible to define an L!-trace of
BV*-functions if the operator A is not C-elliptic. As such, we extend the observation of [Fuchs and
Repin 2010] that D 5 z > 1/(z — 1) € C is holomorphic and belongs to L' (ID; C) but does not belong to
L'(dD; C); see Example 2.2(c).

Theorem 4.18 (without a trace). Suppose that A is not C-elliptic. Let B denote the unit ball of R".
Then there exists a vector & € R"\ {0} such that for the half-ball B™ := {x € B : (£, x) > 0} and
the hyperplane $) = {x € R" : (£1, x) = 0} there exists a function u € W*'(B*t) N C®(B*) such that
u¢ L'®ONB,H'™.

Proof. We begin with the case that A is not R-elliptic. Let us define f(x1, x2) := (|x1]| + |x2|%) 7374, The
crucial observation now is that f, d, f € L'(B). However, fé¢ L'({x; =0}5, H" ). We have to adapt
this example to our situation. Since A is not R elliptic, there exists & € R" \ {0} and n; € RN\ {0}
with A[&;]n; = 0. We choose &, ..., &, such that &1, ..., &, is a basis. Now, define 7 : R" — R2 and
o :R— RY by t(x) := ((£1, x), (62, x)) and 0 () := z 1. Moreover, we define hs : R* — RN by
hy:=o0o fot. Then we obtain

2
Ahy)(x) = ZA[gj]nl(ajf)(T(x))

j=1

(compare (2-10)). Since A[&1]n; = 0, this simplifies to

(Ah ) (x) = AlE21m (82 f) (T (x)).

We choose the hyperplane $:={x: (§;, x) =0}. It follows from f, d, f € L'(B) and fé¢ L'({x;=0}|g, 1" 1)
that u, Au € L'(B) and so in particular u, Au € L'(BT) with BY := {x € B : (§/,x) > 0} but u ¢
L'($N B, H"~1). This concludes the proof in the case that A is not R-elliptic.

Assume now that A is R-elliptic but not C-elliptic. Then as in the proof of Lemma 2.5 there exist
&1, & € R" and ny, n, € R", which are, resp., linearly independent such that

A& +ix2](m +inz) =0.

Define f:C — C by f(z)::%. Then f € L'(B)) with By :={|z| < 1} but f ¢ L'({Re(z) = 0}|p,, H" ).
As in Lemma 2.5 we define 7 : R* — C and 0 : C — R" by t(x) := (£, x) = (1, x) + i (£, x) and
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o0 (z) :=Re(z)n; — Im(z)n,. Moreover, define h;: R" — RN by hy:=o0o0 for. Then asin Lemma 2.5
we have (Ahs)(x) =0 in D'(B*) with BT := {x € B: (x1, x) > 0}. It follows from f € L'(B*) and
f ¢ L'({Re(z) =0}|p,, ") that h y € WAL(B) but hy ¢ L'(HN B, H"™") with $:= {x : (£, x) =0}.
This concludes the proof if A is R-elliptic but not C-elliptic. U
Remark 4.19. Theorem 4.18 shows the nonexistence of a trace on some particular boundary hyperplane.
If ©2 does not enjoy this simple geometry but is a bounded domain with C*°-boundary, then we choose a
boundary point xo € €2 such that a suitable translation of the hyperplanes $ from the preceding proof
becomes tangent to d€2 at x¢. In this situation, flattening the boundary locally around x( and applying the
preceding theorem directly yield the nonexistence of boundary traces in L'(3Q; #"~!). We leave the
details to the reader.

4D. Gauss-Green formula. We now deduce the Gauss—Green formula for functions from BV*(Q),
which, with Theorem 1.2 at our disposal, is a direct consequence of the Gauss—Green formula for smooth
functions. Let us note that up to here, only Assumption 4.5 is required, whereas in what follows we stick
to a Lipschitz assumption” on 9€2.

Theorem 4.20 (Gauss—Green formula). Let 2 C R" be open and bounded with Lipschitz boundary. For
all u € BVA(Q) and all ¢ € C1(Q; RN) we have

/ Au-qbdx:—/ u-A*pdx + (tr(u) @a v) - p dH" 1, (4-10)
Q Q aQ

where v denotes the unit outer normal of 2.

Proof. Due to Lemma 4.15 there exists a sequence u; € C () such that u jim in BVA(2). Due to
Lemma 4.14 we also have u; — u in L', H"1). Now, (4-10) is valid for each u;. Passing to the
limit proves the claim. 0

Corollary 4.21. Let Q2 € U C R" such that Q2 and U are open and bounded and have Lipschitz boundary.
For u € BVA(Q) and v € BVA(U \ Q) define w := xqu + xy\ov. Then w € BVAU) and

Aw = Aulg +AvL g+t (V) —tr™ (1) @a vH" Loq, @-11)

where tr™ (u) denotes the interior trace of u and tr~ (v) denotes the exterior trace of v and v the unit outer
normal of Q.

Proof. Let w be as given and let ¢ € C!(U). We split the domain U into  and U \ 2 and apply the
Gauss—Green formula (4-10) first to U and then to €2 and U \ €2 separately. This yields

—/ w-A*pdx = —/ u-A*¢pdx —/ v-A*¢dx
U Q U\Q

=[Au-¢dx—/ (tr*(u)@,_\v)-qsd}z"w/ Av-pdx+ | (T W)Qav)-¢pdH L.
Q Q U\Q Q

This proves w € BV*(U) and the representation formula (4-11). U

2In fact, this can be weakened towards more general domains, but we will not need this in the sequel.
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4E. Sobolev spaces with zero boundary values. Using our trace operator, it is natural to define subspaces
of functions with zero boundary values; i.e.,

W (Q) i= {u e WAN(Q) : tr(u) = 0},

BV, () := {u € BVA(Q) : tr(u) = 0}.
However, in the context of Sobolev spaces WOA’1 (R2) there are two more variants to define these spaces.
One by zero extension and one by the closure of C2°(£2). We will show below in Theorem 4.23 that all
three definitions define the same spaces.

We begin with an auxiliary lemma which we need for WOA’I(Q). For slightly more generality we state

it for BVy ().
Lemma 4.22. Let u € BVy(Q). Then (1 — p;)u — u in BVA(Q), with p; as in Section 4B.

Proof. We can assume that Q@ € U C R" for some open, bounded U with Lipschitz boundary. By
Corollary 4.21 we can extend u on U \ 2 by zero.
We have
A((1 = pj)u —u) = —pjAu —u Qa Vp;.
Hence,
AT = ppu —u)|(€2) < |Aul(Uj) + crj_l llell L1 w;)-

We will now show that
i el S 1A Uj—m)

for some m € N (and sufficiently large, i.e., j +m > jo). In fact, for fixed j define
KJ' ={k: Bj,k N Uj %+ I},
By the geometry of €2, we can find a factor A > 0 such that for each k € K; the enlarged ball A B; i
contains some ball BJ’.’ i that is completely in R" \ 2. Now, for each k € K, we get by Theorem 3.3
lullzis, o S Nullpigs,,) S rlAul(AB) k) = rjlAul(RNAB) k).

Since the (B} « )« are locally finite, so are the (AB; 1 ). Now, if we choose m € N such that QNAB; x CU;_,
then
r Ml S D0 Ml S D 1Al ans,o S AU ).
kekK; kekK;
Overall, we obtain
A1 = pj)u —u)|(€2) < [Aul(Uj—m).

Now, |Au|(U;-,) — 0, since U;_,, \( &. This proves the claim by the Poincaré inequality from
Theorem 3.3. 0

Theorem 4.23 (zero traces). Let Q2 € U C R" for some open, bounded U with Lipschitz boundary and let
u € WAN(Q). The following are equivalent:

(@) ue W, ().
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(b) The extension ii := yqu by zero on U \ Q is in W1 (U).
(c) There exist uxy € C°(S2) with uy — u in wWAL(Q).

Proof. (a)enumi = (b)enumi: Let u € WOA’I(Q) and let iz = xqu be its zero extension on U. Then by
Corollary 4.21 we have Aii = Aul_g € LY(U), so i € WAL(U).

(b)enumi = (a)enumi: Let it = yqu € W' (U). Then by Corollary 4.21 we have Aii = Aul g+ trt (1) @a
vH" ILyq. Since Ait € L'(U), the singular part must vanish; i.e., tr* () ®a vH" Ly = 0. So by
R-ellipticity of A we have tr* («) = 0 on <.

(c)enumi = (a)enumi: By continuity of the trace operator we have tr(x) = limy_, oo tr(#x) =0 in L'(3Q),
sou e Wy ().

(a)enumi = (c)enumi: Let v := (1 — pr)u as in Lemma 4.22. Then vy — u in W1 (Q). Moreover, the
v; have compact support, since vy = 0 on Ug4;. Now, let o : R* — R be an standard mollifier with
support on B¢ (0). Then we find ¢ such that

1ok — ve % el 1 gy + 1AV — Ak % Pl 1) <27
and supp(vx * @¢,) € 2. The sequence uy := vy * @¢, has the desired properties. O

Proposition 4.24 (trace-preserving area-strict smoothing). Let Q2 € U C R" such that 2 and U are open
and bounded and have Lipschitz boundary. Let ug € WALU). Further let u € BVA(U) with u = ug on
U \ Q. Then there exists u; € uo+ C2°(S2) such that ujunt in BVA(U).

Proof. The proof is a straightforward modification of the corresponding statement for BV-functions; see
[Bildhauer 2003, Lemma B.2] or [Kristensen and Rindler 2010a, Lemma 1]. Let us just explain the basic
idea: The usual localization argument by a partition of unity reduces the question to a local Lipschitz
graph. Then split u into ug + xq(u — ug). Now the xqo(u — up) part is moved by translation slightly
into Q. In a second step it is mollified to get a C2°(2) term. O

5. The Dirichlet problem on BV*

This final section is devoted to variational problems with linear growth involving Au subject to given
boundary data.

Let Q2 C R” be an open, bounded set with Lipschitz boundary. Our goal is to study the functional § :
WA Q) — R given by

Slv] :=/ f(x,Av)dx, (5-1)
Q

where f satisfies linear growth conditions. Given a boundary datum ug € WA L(Q), we wish to minimise §
within the Dirichlet class ug+ WoA ! (£2). The existence of a minimiser together with the precise formulation
of the problem at our disposal will be given in Theorem 5.3 below.

Let us define the A-rank-one cone €(A) = RY @4 R" C RX, with ®4 as given by (2-7). This cone
is important to characterise the jump terms of BV* functions as in Corollary 4.21. Also in the product
rule (2-8), we have v ®a V¢ € € (A) pointwise for ¢ € C'(R") and v € C'(R"; RV).
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By use of the Fourier transform, we see that A(u) = (A[£]a)". Since A[&]i € € (A) pointwise, we obtain
A(u) € span(%(A)) pointwise. Hence, we define the effective range of A as Z(A) := span(¢(A)) C RX;
i.e., Au € Z(A) pointwise. As a consequence, we only need to require that the second argument of f
in (5-1) is from Z(A). We assume that

f:Qx2A)— R is continuous (5-2)
and satisfies the following linear growth assumption
cilzl = f(x, 2) < ealz +c3 (5-3)

for all x € Q2 and z € Z(A). Moreover, we require A to be C-elliptic, which allows us to use the trace
results of the previous sections.
Furthermore, we assume that there exists a modulus of continuity @ such that

|f(x, A) = f(y, Al =o(lx = yDI +|A]) (5-4)

holds for all x, y €  and all A € Z(A). In all of what follows, we tacitly stick to these assumptions.
We say that g : Z(A) — R is A-quasiconvex if for all ¢ € WOI‘OO((O, 1)*; RV) and A € Z(A) there holds

g(A) < / (A +Ag) dr. (5-5)
0,1

We say that f : Q x Z(A) — R is A-quasiconvex if f(x, -) is A-quasiconvex for each x € Q.

Let us link this notion of quasiconvexity to that of [Fonseca and Miiller 1999, Definition 3.1]. Since A
is C-elliptic, it is also R-elliptic. So by [Van Schaftingen 2013, Proposition 4.2], there exists M € N and
a linear, homogeneous constant-coefficient differential operator L with symbol mapping L[£] from RX to
R that annihilates A in the sense that the corresponding symbol complex

RN A[] RK L[&] RM (5_6)

is exact for every & € R" \ {0}. In this situation, A is called a potential for L, and L an annihilator for A.
Since A[£](R") has the same dimension for all £ # 0, the operator L has constant rank. Consequently, our
A-quasiconvexity equals the [-quasiconvexity? of [Fonseca and Miiller 1999]. By exactness of the above
symbol complex (5-6), it is easy to see that the wave cone (or characteristic cone) Ay :={_J EeR\ {0} ker(L[£])
of L agrees with our A-rank-one cone %' (A).
We define the strong recession function > : Q x Z(A) — R by

fPx, A) = lim M

X' —>X

A'—A
t—00

(5-7)

whenever the limit exists.

3In [Fonseca and Miiller 1999, first-order annihilating operators are considered, and in general this is not the case in our
situation (e.g., the symmetric gradient is annihilated by curl curl). However, the generalisation of the concept of L-quasiconvexity
extends to higher-order operators L in the obvious manner.
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Since f is A-quasiconvex, satisfies the linear growth condition (5-3), and satisfies the continuity
condition (5-4), Lemma A.1 from the Appendix yields that > is automatically well-defined on  x €'(A).

As usual the Dirichlet class g+ WOA )1 (£2) is not large enough to ensure the existence of minimisers for
variational problems with linear growth. Here, the passage to BV () allows us to access the necessary
sequential compactness. However, elements of BV*(£2) do not admit control over their exterior trace. To
overcome this problem we proceed as in [Giaquinta et al. 1979a; 1979b] and pass to a larger superset U,
i.e., let Q € U with dU Lipschitz. Now, we extend § to BVA(U) and minimise over those u € BVA(U)
which agree with up on U \ Q2. For this, we further need to accomplish the following: First, we have to
extend f : Qx Z(A) - R to f: U x Z(A) — R, while preserving the structure of f; see Lemma A.2
in the Appendix. Second, we need to extend our boundary data to U, which is always possible, since
tr(WAL(Q)) = L'0Q, H'™!) = (W1 (U \ Q)) by Theorem 4.17. In particular, we assume in the
following that ug € WA 1(U).

We define the functional §y : BVA(U) — R by

Tolw] = ( dAw)d—l— oo( dAw )dAS
Uw._/fo,@ X /Uf x’dlASwl A w|

and the Dirichlet class

Dyy = {w e BVAU) : w=up on U \ Q).

Hence, our aim is to minimise §y over D,,,. Later we will see that this minimisation can also be expressed
only in terms of BVA(Q) with an additional term f°°( -, tr(u — ug) ®a v) which penalises the deviations
from the correct boundary values; see Theorem 5.3.

We begin with a characterisation of the extension of § : WA1(Q) — R to BVA(). For this, recall
that 2 C R” is a bounded Lipschitz domain and that (5-2)—(5-5) are in action.

Proposition 5.1. The functional § : BVA(Q) — R given by

e ) e g
ul = Qf X, o by Qf X, A u

is the A-area strict continuous extension of § : WALQ) — R. Moreover, Flu] : BVA(Q) — R is
sequentially weak*-lower semicontinuous on BV*().

Proof. We begin with the A-area strict continuity of § : BVA(Q) — R. If £ existed on all of Q x Z(A),
we could just use [Kristensen and Rindler 2010b, Theorem 4]. However, we can only rely on the existence
of > on Q x ¥(A) due to Lemma A.1 from the Appendix. The following steps show how to overcome
this technical issue and hence how the argument of [Kristensen and Rindler 2010b, Theorem 4] can be

made to work.
Let us denote by E (2, Z(A)) those functions g: Q x Z(A) — R such that

(x, &) > (1= EDg(x, (1—1ED'E)
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has a continuous extension to Q x Bk here, Bx denotes the unit ball in Z(A). In particular, the strong
recession function g® exists on all of Q x Z(A). Functionals with integrands from E (Q, Z(A)) enjoy
good continuity properties.

Due to [Alibert and Bouchitté 1997, Lemma 2.3] there exists a sequence f; € E (2, Z(A)) with

oo SO 1A
sup fy(x,A) = f(x,A) and sup f; (x, A) = fu(x, A) :=liminf . (5-8)
keN keN ﬁijﬁx t
—o0

Let u jﬂm in BVA(Q). Since fi € E(Q, %Z(A)) we may apply the Reshetnyak-type continuity theorem

in [Kristensen and Rindler 2010b, Theorem 5] to conclude

iminf §[u; imin X, X, Su;
j—o0 Ji= j—o Jo k dgr Q k dl/&suﬂ /

dAu dASu
= , d ooy d|A®
Aﬂeng“*Aﬂ%demJ' v

and so, by monotone convergence,

/f dAu dx—i—/f QAU §A% U] < timinf Fu;]
X, X, u| < u;l.
o d.gn AN T oo DN

Due to the generalisation of Alberti’s celebrated rank-one theorem in [De Philippis and Rindler 2016],
we know that dAu/d|A%u| € € (A) pointwisely |A’u|-a.e. Now, by Lemma A.1 from the Appendix, we
find that fx = f* on Q x €(A). Hence

ﬁ]—/ < %y)m+/ W<-fy)mNW<r'fﬁJ
S AT o\ am ) = m it

Since f is continuous, we may apply the same argument to — f to obtain F[«] > lim sup 00 Flu il
Hence F[u] = lim o0 Flu ;1. This proves that 3 BVA(Q) — R is A-area strictly continuous.

Due to Lemma 4.15, WA-1(Q) is dense in BVA(2) with respect to A-area strict convergence. Since
§ = on WA(Q), we see that § :BVA(Q) — R is the A-area strict extension of § : W*-! (2) - R.

It remains to prove the sequential weak*-lower semicontinuity of § : BVA(Q) — R on BVA(Q).
Let L be an A-annihilating operator as in the exact sequence (5-6). Now, the sequential weak*-lower
semicontinuity just follows from [Arroyo-Rabasa et al. 2018, Theorem 1.2] (note that f°° is well-defined
on Q x € (A) due to Lemma A.1 from the Appendix). U

If we apply to our Dirichlet class D,,, then we obtain the following results:

Corollary 5.2. Let f satisfy (5-2)—(5-5) and let §M0 ‘BVA(Q) > R, given by

o] /f( dAu)df”-i—/ f°°< dAu >d|N |+/ f°°( Vae@atr( ))d?—[”‘l (5-9)
wlul:=[ f{x — Xy o u X,V Uu—u . (5-
Q d.on o d|Asu| 20 ILSA 0

be sequentially weak*-lower semicontinuous on BV* ().



590 DOMINIC BREIT, LARS DIENING AND FRANZ GMEINEDER

Proof. Proposition 5.1 (applied with € replaced by U) shows that Fy : BVA(U) — R is area-strictly
continuous on BVA(U) and sequentially weak*-lower semicontinuous on BVA).

For u € BVA(Q) let it := Xu\glo + xeu. Then due to Corollary 4.21 we have i € BVA(U) and, with
the outer normal v of 2,

A =Aul Q+ AugL" L (U \ S_Z) +tr(u — ug) Qn vH LA, (5-10)
Hence,

Sulil = Fuglul + | f(x, Aug) dx. (5-11)
U\Q

If up = u in BVA(Q), then iix—ii in BVA(U). Indeed, it is clear that uy — u in L' (U). Moreover, since ux
is bounded in BVA(L), so is Auy € M(2) and tr(uz) in L' (3R2) (using the trace theorem, Theorem 4.17).
This and (5-10) show that ii; is bounded in BVA(U). In conjunction with uy — u in L'(U) we obtain

iy =ii in BVA(U).
Since Fy is sequentially weak*-lower semicontinuous on BVA(U), it follows that §u0 sequentially
weak*-lower semicontinuous on BVA(). O

Theorem 5.3. Let f satisfy (5-2)—(5-5). Then the functional §u0 - BVA(Q) = R is coercive and has a
minimiser on BVA(Q). Moreover, we have

min §, = inf 3. (5-12)
BVA(Q) uo+W,"' ()

Proof. We begin with the coerciveness of §u0. Let (vx) C BVA() with (§u0 (ur)) bounded. We have to
show that (vg) is bounded in BVA(R). Let § := Xu\&Ho + XUk as in Corollary 5.2. Then due to (5-11),
Fu (Ux) is bounded. By the linear growth condition (5-3) we see that (Avg) is uniformly bounded in
M(U; RX). Now choose a ball B’ C  and another ball B with U C B. Since vy —ug=0o0n U \ Q, we
can extend it by zero to a function from BV”(B) due to Theorem 4.23(b). Now, we can apply Poincaré’s
inequality in the form of Theorem 3.3 to conclude that (v;) is also bounded in L'(U). Hence, (vy) is
bounded on BV”(2), which is the desired coerciveness.

By positivity of f and f°°, we have {?uo[w] > 0 for all w € BVA(), and so we may pick a minimising
sequence (uy) in BVA(Q). By coerciveness, this sequence is bounded in BVA(Q). We can pick a
(nonrelabeled) subsequence such that Up=u in BVA(Q) for some u € BVA(Q). By the sequential
weak*-lower semicontinuity from Corollary 5.2, we deduce that u is a minimiser of §u0.

We conclude the proof by showing (5-12). The “<”-part is obvious. Due to Proposition 4.24 we find a
sequence wy € D,,, such that wklm in BVA(U). By the A-area-strict continuity of §U on BVA(U ), see
Proposition 5.1, we see that Fu(u) = limy_, oo Fu (wy). This and (5-11) prove the “>"-part of (5-12). U

Appendix

We now collect some auxiliary results that have been used in the main part of the paper. The following
lemma shows that the recession function is automatically well-defined on the A-rank-one cone.
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Lemma A.1. Let A be R-elliptic, let f : Q x Z(A) — R be A-quasiconvex in the sense of (5-5), satisfy
the linear growth condition (5-3), and satisfy the continuity condition (5-4). Then f(x,-) is Lipschitz

continuous in Z(A) uniformly in x € Q. Moreover, the strong recession function > : Q x Z(A) — R
with

fCx, A) = lim
X —>X
A —A
—>00

fx, tA)
t

is well-defined on Q x € (A). (Note that the limit A’ — A is taken in Z(A).) Moreover,

|fP(x, A) = [P, Al <o(x’ —x])]A|
forall x,x' € Qand A € €(A).

Proof. We begin with the Lipschitz continuity of f on Z(A).

Let Ae Z(A) and B=a®ab € €(A). Since f is A-quasiconvex, it is a consequence4 of [Fonseca
and Miiller 1999, Proposition 3.4] that ¢ — f(x, A+ ¢B) is convex on R. This property is known as
% (A)-convexity; see [Kirchheim and Kristensen 2016].

Thus the function

[f(x, A+ta®ab)— f(x, A
g@) =

t
is increasing. Hence, with A := (1 +|A+ B|+|A|)/|B| > 1, we obtain

|f(x,A+B)— f(x, A)l=g) =g*)

|B|

< ,A+A b) — , A
<|f(x,A+2ra®ab)— f(x )|1+|A+B|+|A|

Cz(2|A|+)»|BI)+ZC3|B|
14+|A+ B|+A|

_ (I +3[A[+]A+ B]) +2¢

- 14+]A+ B|+|A]

< (3c2+2¢3)|B]

|B|

using (5-3). This proves the Lipschitz continuity in ¢ (A)-directions.

If B € Z(A), then by Z(A) = span(%'(A)) we can decompose B into at most K summands from % (A).
Now the Lipschitz continuity in %’(A)-directions implies

|f(x, A+ B) — f(x, A)] < K(3c2 +2c3)| B (A-1)

for all A, B € #(A). This proves the Lipschitz continuity part.

Let A e ¢(A) and x € Q. Then t — (f(x,tA) — f(x, 0))/t is increasing in ¢t by %' (A)-convexity
of f(x,-) and bounded by c;|A| due to the linear growth condition (5-3). This allows us to define

4As proven in [Fonseca and Miiller 1999], if A is a first-order linear homogeneous differential operator, then .A-quasiconvex
functions are A _4-convex. Note that in our setting, L = .4 need not be first of first order; however, their arguments extend to the
case of higher-order annihilating operators A in a straightforward manner.
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g®: Q x%(A) - R by
% . fx,tA) fx,tA)
g¥(x,A) = lim ——= =sup ———.

1—00 t t>0 14
Now, let A’ € Z(A) and x’ € Q; then by (A-1) and (5-4)

fx' tA) _ f(x,tA)‘ - ‘f(x’, tA) — f(x', tA)‘_i_‘f(x/,tA)—f(x,tA)
t t B t t
1+1|A]

< K@Ber+2c3)|A - Al + (X" —x))

This proves f*(x, A) = g®(x, A) for all x € Q and A € €(A). Consequently, we obtain the existence
of £ in Q x F(A).
The continuity of f*°(-, A) for A € €(A) is a direct consequence of the continuity of f(-, A). U

Lemma A.2. Let A be R-elliptic, and let f : Q x Z(A) — R be A-quasiconvex in the sense of (5-5), satisfy
the linear growth condition (5-3), and satisfy the continuity condition (5-4). Furthermore, let Q € U with
oU Lipschitz. Then there exists an extension f :U x Z(A) — R of f, which is A-quasiconvex, satisfies
the linear growth condition (5-3), and satisfies the continuity condition (5-4). (The modulus of continuity
might change by a factor.)

Proof. Since dU and 9 are Lipschitz, we find a Lipschitz map ® : U — , which is the identity on Q.
Now define f(x, A) := f(®(x), A). O
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OPTIMAL CONSTANTS FOR A NONLOCAL APPROXIMATION OF
SOBOLEV NORMS AND TOTAL VARIATION

CLARA ANTONUCCI, MASSIMO GOBBINO, MATTEO MIGLIORINI AND NICOLA PICENNI

We consider the family of nonlocal and nonconvex functionals proposed and investigated by J. Bourgain,
H. Brezis and H.-M. Nguyen in a series of papers of the last decade. It was known that this family of
functionals Gamma-converges to a suitable multiple of the Sobolev norm or the total variation, depending
on the summability exponent, but the exact constants and the structure of recovery families were still
unknown, even in dimension 1.

We prove a Gamma-convergence result with explicit values of the constants in any space dimension.
We also show the existence of recovery families consisting of smooth functions with compact support.

The key point is reducing the problem first to dimension 1, and then to a finite combinatorial rearrange-
ment inequality.

1. Introduction

Let p > 1 and 8 > 0 be real numbers, let d be a positive integer, and let Q € R? be an open set. For every
measurable function u : 2 — R we set

sP
As p(u, Q2) = f/ ——dxdy, (1-1)
P 16 |y —x|dtp

where

16, u, ) :={(x,y) e Q2 lu(y) —u(x)| > 6}.

Nonconvex and nonlocal functionals of this type appeared in a paper by J. Bourgain, H. Brezis and
P. Mironescu [Bourgain et al. 2005]; see Open Problem 2 of that work. Subsequently, the family (1-1)
was investigated in a series of papers by H.-M. Nguyen [2006; 2007; 2008; 2011; 2014], J. Bourgain
and H.-M. Nguyen [2006], and H. Brezis and H.-M. Nguyen [2018]; see also [Brezis 2015; Brezis and
Nguyen 2017].

We point out that the dependence on u is just on the integration set. The fixed integrand is divergent
on the diagonal y = x, and the integration set is closer to the diagonal where the gradient of « is large.
This suggests that As ,(u, ) is proportional, in the limit as § — 07, to some norm of the gradient of u,

MSC2010: 26B30, 46E35.
Keywords: Gamma-convergence, Sobolev spaces, bounded-variation functions, monotone rearrangement, nonlocal functional,
nonconvex functional.
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and more precisely to the functional

fQ [Vu(x)|? dx if p>1andu e WHr(Q),
Ao, p(u, 2) := { total variation of u in @ if p =1 and u € BV(Q), (1-2)
400 otherwise.

It is natural to compare the family (1-1) with the classical approximations of Sobolev or BV norms,

based on nonlocal convex functionals such as
Gt @)= [ [ =I5 1y iy axay, (13
o ly—x[?

where gradients are replaced by finite differences weighted by a suitable family p, of mollifiers. The idea
of approximating integrals of the gradient with double integrals of difference quotients, where all pairs
of distinct points interact, has been considered independently by many authors in different contexts. For
example, E. De Giorgi proposed an approximation of this kind to the Mumford—Shah functional in any
space dimension, in order to overcome the anisotropy of the discrete approximation [Chambolle 1995]. The
resulting theory appears in [Gobbino 1998] and was then extended in [Gobbino and Mora 2001] to more
general free discontinuity problems, and in particular to Sobolev and BV spaces. In the same years, the
case of Sobolev and BV norms was considered in detail in [Bourgain et al. 2001]; see also [Ponce 2004].

The result, as expected, is that the family G, ,(u, R?) converges as ¢ — 07 to a suitable multiple
of Ao, p(u, R?), both in the sense of pointwise convergence, and in the sense of De Giorgi’s Gamma-
convergence. This provides a characterization of Sobolev functions (if p > 1), and of bounded variation
functions (if p = 1), as those functions for which the pointwise limit or the Gamma-limit is finite.

From the heuristic point of view, the nonconvex approximating family (1-1) seems to follow a different
paradigm. Indeed, it was observed by J.-M. Morel, as quoted on page 4 of the transparencies of the
presentation [Brezis 2016], that this definition involves some sort of “vertical slicing” that evokes the
definition of integral a la Lebesgue, in contrast to the definition a la Riemann that seems closer to the
“horizontal slicing” of the finite differences in (1-3).

From the mathematical point of view, the asymptotic behavior of (1-1) exhibits some unexpected
features. In order to state the precise results, let us introduce some notation. Let St li={oeR?:|o|=1)}
denote the unit sphere in R% For every p > 1 we consider the geometric constant

Gupi= f (v, )P do, (1-4)
Sd-1

where v is any element of S?~! (of course the value of G, p» does not depend on the choice of v), and the
integration is intended with respect to the (d—1)-dimensional Hausdorff measure. The value of G4, can
be explicitly computed in terms of special functions through Beta integrals. It turns out that G4, , = 2 for
every pifd =1, and

i 27 “"DRE((p+1)/2)

Gyp= meas(S972) (cos0)? - |sin6|972 do =
- a2 C((p+d)/2)

The main convergence results obtained so far can be summed up as follows.

for all d > 2.
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o Pointwise convergence for p > 1. For every p > 1 it turns out that
- ay_ 1 d pmd
ah%l+ As p(u, RY) = deJ, Ao, p(u, R%) forall u e LY (RY). (1-5)

e Pointwise convergence for p = 1. In the case p = 1, equality (1-5) holds true for every u € C; (RY),
but there do exist functions u € W1(R?) for which the left-hand side is infinite (while of course the
right-hand side is finite). A precise characterization of equality cases is still unknown.

o Gamma-convergence for every p > 1. For every p > 1 there exists a constant Cy4,, such that
- lim As ,(u, R?) = lGd,pcd,p Ao,p(u, RY) forall u € LP(RY),
s—>0+ 4

where the Gamma-limit is intended with respect to the usual metric of L?(R?) (but the result would
be the same with respect to the convergence in L'(R?) or in measure). Moreover, it was proved that
Ca,p € (0, 1); namely the Gamma-limit is always nontrivial but different from the pointwise limit.

As a consequence, again one can characterize the Sobolev space W7 (R9) as the set of functions in
L?(R?) for which the pointwise limit or the Gamma-limit is finite. As for BV(R?), in this setting it can
be characterized only through the Gamma-limit.

Some problems remained open, and were stated explicitly in [Nguyen 2011; Brezis and Nguyen 2018]:

Question 1. What is the exact value of Cy p, at least in the case d = 1?
Question 2. Does C,,, depend on d?

Question 3. Do there exist recovery families made up of continuous functions, or even of functions of
class C*?

In this paper we answer these three questions. Concerning Questions 1 and 2, we prove that Cy , does
not depend on d, and coincides with the value C,, conjectured in [Nguyen 2007] (see also [Nguyen 2011,
Open question 2]) for the 1-dimensional case, namely

1 ( 1 ) .
— (1—-=—) ifp>1,

Cp=13r—1 271 (1-6)
log2 if p=1.

Concerning the third question, we prove that smooth recovery families do exist. Our main result is the
following.

Theorem 1.1 (Gamma-convergence). Let us consider the functionals As , and Ao, , defined in (1-1) and
(1-2), respectively.
Then for every positive integer d and every real number p > 1 it turns out that

L= lim As G, RY) = %Gd,pcp Aoy, RY) forallu e LP(RY),

where G4 p is the geometric constant defined in (1-4), and C, is the constant defined in (1-6). In particular,
the following two statements hold true:
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(1) (liminf inequality) For every family {us}s-o < LP(RY), with us — u in LP(R%) as § — 0%, it turns
out that
liminf A, (us, RY) > lGd,,,cp Ao, p(u, RY). (1-7)
§—07F P

(2) (limsup inequality) For every u € LP(R?) there exists a family {us}s~o < LP(RY), with us — u in
LP(R?) as 8§ — 07, such that

limsup A, ,(us, RY) < %Gd,pc,, Ao, p(u, RY).

§—0F

We can also assume that the family {us} consists of functions of class C* with compact support.

The proof of this result requires a different approach to the problem, which we briefly sketch below. In
previous literature, see [Nguyen 2011, formula (1.3)] or [Brezis and Nguyen 2018, formula (1.12)], the
constant Cy, , was defined through some sort of cell problem as

%Gd,pcd,,, = inf{lgméngs,p(us, (0, DY) :us — ug in L7 ((0, DD},

where uo(x) = (x| + - - - + x4)/~/d. Unfortunately, this definition is quite implicit and provides no
information on the structure of the families that approach the optimal value. This lack of structure
complicates things, in such a way that just proving that Cy , > 0 requires extremely delicate estimates; this
is the content of [Bourgain and Nguyen 2006]. On the Gamma-limsup side, since As,, is quite sensitive to
jumps, what is difficult is gluing together the recovery families corresponding to different slopes, even in the
case of a piecewise affine function in dimension 1. This requires a delicate surgery near the junctions; see
[Nguyen 2011]. Finally, as for Question 3, difficulties originate from the lack of convexity or continuity of
the functionals (1-1), which do not seem to behave well under convolution or similar smoothing techniques.

The core of our approach consists in proving that As , in dimension 1 behaves well under vertical
3-segmentation and monotone rearrangement. We refer to Section 3A for the details, but roughly speaking
this means that monotone step functions whose values are consecutive integer multiples of § are the most
efficient way to fill the gap between any two given levels. The argument is purely 1-dimensional, and
it is carried out in Proposition 3.2. In turn, the proof relies on a discrete combinatorial rearrangement
inequality, which we investigate in Theorem 2.2 under more general assumptions.

We observe that this strategy, namely estimating the asymptotic cost of oscillations by reducing
ourselves to a discrete combinatorial minimum problem, is the same as that exploited in [Gobbino 1998;
Gobbino and Mora 2001], with the remarkable difference that now the reduction to the discrete setting
is achieved through vertical §-segmentation, while in [Gobbino 1998; Gobbino and Mora 2001] it was
obtained through a horizontal e-segmentation (see Figure 1).

The asymptotic estimate on the cost of oscillations opens the door to the Gamma-liminf inequality in
dimension 1, which at this point follows from well-established techniques. As for the Gamma-limsup
inequality, in dimension 1 we just need to exhibit a family that realizes the given explicit multiple of
Ao, p(u, R), and this can be achieved through a vertical §-segmentation a la Lebesgue (see Proposition 3.7).
This produces a recovery family made up of step functions, and it is not difficult to modify them in
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Figure 1. Vertical §-segmentation vs. horizontal e-segmentation (§ is the distance between
the parallel lines on the left, ¢ is the distance between the parallel lines on the right).

order to obtain functions of class C* with asymptotically the same energy (see Proposition 3.9). Finally,
passing from dimension 1 to any dimension is just an application of the 1-dimensional result to all the
1-dimensional sections of a function of d variables.

At the end of the day, we have a completely self-contained proof of Theorem 1.1 above, and a clear
indication that the true difficulty of the problem lies in dimension 1, and actually in the discretized
combinatorial model. We hope that these ideas can be extended to the more general functionals considered
in [Brezis and Nguyen 2018]. Some steps in this direction have already been done in [Antonucci et al.
2020]; see also [Antonucci et al. 2018].

This paper is organized as follows. In Section 2 we develop a theory of monotone rearrangements, first
in a discrete, and then in a semidiscrete setting. In Section 3 we prove our Gamma-convergence result in
dimension 1. In Section 4 we prove the Gamma-convergence result in any space dimension.

We would like to thank an anonymous referee for pointing out that the rearrangement inequality in
our Theorem 2.4 is equivalent to a rearrangement inequality proved in [Garsia and Rodemich 1974].
This equivalence is not immediate (see Remark 2.5 for further details), and for this reason the proofs
follow different paths. However, in both cases the basic step consists in reducing the problem to a discrete
combinatorial result, namely Theorem 2.2 in this paper, and a variant of Taylor’s lemma [1973] in [Garsia
and Rodemich 1974].

2. An aggregation/segregation problem

In this section we study the minimum problem for two simplified versions of (1-1), which we interpret as
optimizing the disposition of some objects of different types (actually dinosaurs of different species). The
first problem is purely discrete, namely with a finite number of dinosaurs of a finite number of species. The
second one is semidiscrete, namely with a continuum of dinosaurs belonging to a finite number of species.

2A. Discrete setting. Let us consider
e a positive integer n,
e afunctionu:{l,...,n} —> Z,

o a symmetric subset E C 72 (namely any subset with the property that (i, j) € E if and only if
(j, i) € E),

e anonincreasing function 2 : {0, 1,...,n —1} > R.
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Let us introduce the discrete interaction set
JE,u):={(x,y) e{l,....n}* 1 x <y, (wkx),uy)) e E}, (2-1)

and let us finally define
Hh E,u):= Y h(y—x). (2-2)
(x,y)eJ(E,u)

Just to help intuition, we think of u as an arrangement of n dinosaurs placed in the points {1, ..., n}.
There are different species of dinosaurs, indexed by integer numbers, so that #(x) denotes the species of
the dinosaur in position x. The subset E C Z? is the list of all pairs of species that are hostile to each other.
A pair of points (x, y) belongs to J(E, u) if and only if x < y and the two dinosaurs placed in x and y
belong to hostile species, and in this case the real number 4 (y — x) measures the “hostility”” between the
two dinosaurs. As expected, the closer the dinosaurs are, the larger their hostility.

Taking this Jurassic framework into account, sometimes in the sequel we call # a “discrete arrangement
of n dinosaurs”, we call E an “enemy list”, we call & a “discrete hostility function”, and H(k, E, u) the
“total hostility of the arrangement”. At this level of generality, we admit the possibility that (i, i) € E for
some integer i, namely that a dinosaur is hostile to dinosaurs of the same species, including itself. For
this reason, the hostility function £ (x) is defined also for x = 0. This generality turns out to be useful in
the proof of the main result for discrete arrangements.

In the sequel we focus on the special case where E coincides with

Ev:={G, HeZ’:|j—i|>k+1} (2-3)

for some positive integer k. In this case it is quite intuitive that the arrangements that minimize the total
hostility are the “monotone” ones, namely those in which all dinosaurs of the same species are close to
each other, and the groups corresponding to different species are sorted in ascending or descending order.
To this end, we introduce the following notion.

Definition 2.1 (nondecreasing rearrangement: discrete setting). Let n be a positive integer, and let u :
{1,...,n} — Z be afunction. The nondecreasing rearrangement of u is the function Mu : {1, ..., n} > 27
defined as

Mu(x) :=min{j € Z:|{y €{l,...,n}1u(y) < j} = x},

where |A| denotes the number of elements of the set A.

As the name suggests, Mu is the unique nondecreasing function that can be represented in the form
Mu=uom,wherew :{1,...,n} — {1, ..., n}is a suitable bijection. The nondecreasing rearrangement
can also be uniquely characterized by the fact that the two level sets

{xe{l,....n}:u(x)=7j}, {xef{l,....,n}: Mu(x)=j}

have the same number of elements for every j € Z.
As expected, the main result is that monotone arrangements minimize the total hostility with respect to
the enemy list Ey.
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Theorem 2.2 (total hostility minimization: discrete setting). Let n and k be two positive integers, let
Ei C 77 be the subset defined by (2-3), and let h : {0, ..., n — 1} — R be a nonincreasing function.
Letu:{l,...,n} — Z be any function, let Mu be the nondecreasing rearrangement of u introduced in
Definition 2.1, and let H(h, Ex, u) be the total hostility defined in (2-2).
Then it turns out that
H(h, Ex,u) > H(h, Ex, Mu). (2-4)

Taylor’s result [1973] is substantially equivalent to (2-4) in the special case where there are n dinosaurs
of n different species indexed by n consecutive integers. It is likely that Taylor’s approach based on the
celebrated Hall’s theorem, sometimes referred to as the “marriage theorem”, could work even in the more
general setting that we need here; see [Garsia and Rodemich 1974, Section 3]. The proof we present in
Section 2C below follows a different path.

2B. Semidiscrete setting. Let us consider
e an interval (a, b) C R,
e a measurable function u : (a, b) — Z with finite image,
e a symmetric subset £ C 72,
e a nonincreasing function ¢ : (0, b —a) — R (note that c(o) might diverge as o — 07).
Let us introduce the semidiscrete interaction set

I(E, u) :={(x, ) € (a,b)* : (u(x), u(y)) € E}, (2-5)
and let us finally define

F(c, E,u) = f/ c(ly—xl)dxdy. (2-6)
I1(E,u)

In analogy with the discrete setting, we interpret u#(x) as a continuous arrangement of dinosaurs of a
finite number of species, c(y — x) as the hostility between two dinosaurs of hostile species placed in x
and y, and we think of F(c, E, u) as the total hostility of the arrangement u# with respect to the enemy
list E.

Once again, we suspect that monotone arrangements minimize the total hostility with respect to the
enemy list Ex. This leads to the following notion.

Definition 2.3 (nondecreasing rearrangement: semidiscrete setting). Let u : (a, b) — Z be a measurable
function with finite image. The nondecreasing rearrangement of u is the function Mu : (a,b) — Z
defined as

Mu(x) :=min{j € Z : meas{y € (a, b) :u(y) < j} > x —a},

where meas(A) denotes the Lebesgue measure of a subset A C (a, b).

The function Mu is nondecreasing and satisfies

meas{x € (a,b) :u(x) = j} =meas{x € (a,b) : Mu(x) = j} forall j eZ.
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The following result is the semidiscrete counterpart of Theorem 2.2.

Theorem 2.4 (total hostility minimization: semidiscrete setting). Let (a, b) C R be an interval, let k be a
positive integer, let Ey C 77 be the subset defined by (2-3), and let ¢ : (0, b — a) — R be a nonincreasing
function. Let u : (a, b) — Z be any measurable function with finite image, let Mu be the nondecreasing
rearrangement of u introduced in Definition 2.3, and let F(c, Ey, u) be the total hostility defined in (2-6).

Then it turns out that
F(c, Ex,u) > F(c, Ex, Mu). (2-7)

Remark 2.5. Theorem 2.4 above is stated in the form that we need in the proof of Proposition 3.2. With
a further approximation step in the proof, one can show that the same conclusion (2-7) holds true also
without assuming that the image of u is finite and contained in Z, and without assuming that k is a positive
integer (but just a real number greater than —1).

It is interesting to compare this extended result with [Garsia and Rodemich 1974, Theorem 1.1], which
states that for every nondecreasing function @ : [0, +00) — [0, +00), and every ¢ € (0, b — a), it turns
out that

| eu —uehdxdy= [ omue) - Mucl dxdy. 2-8)
D() D)

where D(1) :={(x, y) € (a, b)* : |y — x| <t}. We observe that in (2-8) the integral involves only the pairs
(x, y) € (a, b)? that are close enough to the diagonal y = x, and the integrand ® penalizes the pairs for
which |u(y) —u(x)] is large. On the contrary, in our total hostility the integral involves only the pairs with
|u(y) —u(x)| large enough, and the integrand ¢ penalizes the pairs that are close to the diagonal. In this
sense the two statements seem to be two sides of the same coin (again as the Riemann and the Lebesgue
integral), and actually one can show that both statements are equivalent to saying that the inequality

meas{(x, y) € (a,b)?: |y —x| <1, [u(y) —u(x)| > 8}
> meas{(x, ) € (a, b)* : |y —x| <t, |[Mu(y) — Mu(x)| > 8} (2-9)

holds true for every t € (0, b — a) and every § > 0.

The proof of (2-8) given in [Garsia and Rodemich 1974] relies on this equivalence, and establishes
(2-9) through a variant of Taylor’s result. The proof of (2-7) that we present in Section 2D follows a more
direct path, based on our Theorem 2.2, which anyway is again discrete combinatorics.

2C. Proof of Theorem 2.2. Since the hostility function /4 is fixed, in the sequel we simply write H(E, u)
instead of H(h, E, u).

Our idea is to proceed by induction on the number of dinosaurs. In the case n =1 there is nothing
to prove. Let us assume now that (2-4) holds true for all arrangements of n dinosaurs, and let u be any
arrangement of n + 1 dinosaurs. In order to obtain an arrangement of n dinosaurs, we remove from u the
rightmost dinosaur of the species indexed by the highest integer, and we shift one position to the left all
subsequent dinosaurs. More formally, we set

wi=max{u(@):ie{l,...,n+1}},
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we consider the largest index m € {1, ..., n+ 1} such that u(m) = u, and we define the reduction of u to
be the new arrangement Red(u) : {1, ..., n} — Z given by
) u(i) ifi <m,
[Red()]1() :==1 . e
u(@i+1) ifi >m.

When passing from u to Red(u), the total hostility changes by an amount that we call the hostility gap,
defined as
A(E,u) :=H(E,u) —H(E, Red(un)).

Since M (Red(u)) = Red(Mu), the inductive hypothesis reads as
H(Ey, Red(u)) > H(Ey, M(Red(un))) = H(Ey, Red(Mu)),

and therefore
H(Ey, u) = H(Ek, Red(u)) + A(Ek, u)
> H(Ey, Red(Mu)) + A(Ex, u)
=H(Er, Mu) — A(Eyx, Mu) + A(Ey, u).
As a consequence, (2-4) is proved for the arrangement u if we can show that

A(Eg, u) > A(Eg, Mu), (2-10)

namely that the monotone rearrangement decreases (or at least does not increase) the hostility gap.

In order to prove (2-10), we begin by deriving a formula for the hostility gap. Let us consider the
removal that leads from u to Red(u#). We observe that interactions between any two dinosaurs placed
on the same side of the removed one are equal before and after the removal, and therefore they cancel
out when computing the gap. On the contrary, if two hostile dinosaurs are placed within distance d on
opposite sides of the removed one, their hostility changes from /& (d) to h(d — 1) after the removal. It
follows that the hostility gap can be written as

AMEw= Y h(m—iD— Y (h(—i=D—h(—i), (2-11)
ieJi(E,u,m) (i, j))eo(E,u,m)
where
JI(E,u,m)y:={iefl,....,n+1}: (@), u(m)) € E},
S(E,u,m):={3G,j)e{l,...,n+ 1}2 i<m<j, (u@),u(j)) e E}.

The first sum in (2-11) takes into account the interactions of the removed dinosaur with the rest of the
world, and the second sum represents the increment of the total hostility due to the reduction of distances
among the others.

Now we introduce the new enemy list

Epy =7 \{pt, =1, ..., u—k)?,
and we claim that
A(Eg,u) > A(Eqy, u) > A(E(,y, Mu) = A(E, Mu), (2-12)

which of course implies (2-10).
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The equality between the last two terms of (2-12) follows from formula (2-11). Indeed, since Mu is
nondecreasing, the removed dinosaur is the rightmost one, and therefore in both cases the second sum in
(2-11) is void. Also the first sum in (2-11) is the same in both cases, because a dinosaur of the highest
species is hostile to another dinosaur with respect to the enemy list Ey if and only if it is hostile to the
same dinosaur with respect to the enemy list E,,).

The inequality between the first two terms of (2-12) follows again from formula (2-11). Indeed, the
first sum has the same terms both in the case of the enemy list £y and in the case of the enemy list E,,),
as observed above. As for the second sum, the interactions with respect to Ej are also interactions with
respect to E,), and therefore when passing from Ej to E(,) the second sum cannot decrease. Since the
second sum appears in (2-11) with negative sign, the hostility gap with respect to E, is less than or
equal to the hostility gap with respect to Ej.

It remains to prove that

A(Ey, u) > A(Eqy, Mu). (2-13)

To this end, we introduce the complement enemy list

(=l —1 .. u—kP =2\ Ey.

Since 7?2 is the disjoint union of E (w and E <Cu>’ and the total hostility is additive with respect to the
enemy list, we deduce
H(E ), w) =H(@Z*, w) —H(E[,, w)

for every arrangement w, and for the same reason
A(E ), w) = AZ*, w) — A(E(,, w).

Moreover, we observe that the total hostility with respect to Z> depends only on the number of dinosaurs,
and in particular
AZ?, u) = AZ*, Mu).

As a consequence, proving (2-13) is equivalent to showing that

A(ES,y, u) < A(ES,,, Mu). (2-14)

The advantage of this “complement formulation” is that hostility gaps with respect to E7,, depend
only on the relative positions of the removed dinosaur with respect to the other dinosaurs of the species
with indices between yu — k and p.

To be more precise, let us compute the left-hand side of (2-14). Let m denote as usual the position of
the dinosaur that is removed from u to Red(u), and let us set

Rw):={r=1:u(m+r)ye{u,n—1,..., u—k}},
Lw)y={>1:uim—-20ec{u,nu—1,...,u—k}}.

In other words, this means that

m—C: e Lw)}U{m}U{m+r:reRu)}
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is the set of all integers i € {1, ..., n+1} suchthatu(i) e {u, u—1, ..., w—k}, namely the set of positions
where the dinosaurs of the last k 4 1 species are placed. With this notation, the first sum in (2-11) is

RO+ > h@+ Y h(r)

LeL(u) reR(u)

(we recall that in this “complement formulation” the dinosaur in position m is also hostile to itself), while
the second sum in (2-11) is
> (h+r =1 —h+r)).
(€,r)eL(u)xR(u)
Therefore, it turns out that

A(ES,, u) = G(L(u), Rw)).,

where the function G is defined by

G(L, R):=hO)+ Y )+ Y h(r)— > (h€+r—1)—h{l+r)) (2-15)
lel reRr (¢,r)eLxR
for any two sets L and R of positive integers.
On the other hand, in the nondecreasing arrangement Mu the rightmost dinosaur has |L(u)| 4 |R(u)]
dinosaurs of the last k 4 1 species exactly on its left, and therefore
[L(u)|+|R(w)|

A(E(,y, Muy= > h(.

i=0
As a consequence, inequality (2-14) is proved if we show that

ILI+|R|

G(L,R) < Y h() (2-16)

i=0
for every choice of the sets L and R. For this final step, we argue by induction on the number of elements
of R. If R =&, from (2-15) we deduce

IL]| ILI+IR|

G(L, R):=hO)+ ) h®) <Y hi)= )Y h(),
i=0

teL i=0
where the inequality is true term-by-term because 4 is nonincreasing.

Let us assume now that the conclusion holds true whenever R has n elements, and let us consider any
pair (L, R) with |R| =n+ 1. Let us set

a:=maxR, b:=min{fn e N\{0}:n &L},
and let us consider the new pair (L1, R;) defined as

Ly:=LU{b}, R;:=R\{a}.
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In words, we have removed the largest element of R, and added the smallest possible element to L.
We observe that |Ri| =n and |L{|+ |R{| = |L| 4+ | R|. Therefore, if we show that

G(L,R) =G(L1, Ry), (2-17)

then (2-16) follows from the inductive assumption.
In order to prove (2-17), we expand the left-and right-hand sides according to (2-15). After canceling
out the common terms, with some algebra we obtain that inequality (2-17) holds true if and only if

h(a) + Z (h(b+r—1)—h(+r)) <hd)+ Z(h(ﬁ +a—1)—h(+a)). (2-18)
reRr tel
All terms in the sums are nonnegative because 4 is nonincreasing. Let us consider the left-hand side.
If a > 1 we know that Ry C {1, ...,a — 1}, and hence
a—1
h@)+ Y (hb+r—1)—h(b+r)rut) <h(@) + Y (h(b+r—1)—hb+r))

reRr; r=1

=h(@)+hb)—ha+b-1). (2-19)

The same inequality is true for trivial reasons also if a = 1.
Let us consider now the right-hand side of (2-18). If b > 1 we know that L © {1, ..., b— 1}, and hence

b—1
hb)+Y (h(t+a—1)—h(+a) = h(B)+ Y (h(t+a—1)—h{+a))
el =1
= h(b) +h(a) —h(a+b—1). (2-20)

As before, the same inequality is true for trivial reasons also if b = 1.
Combining (2-20) and (2-19) we obtain (2-18), which in turn is equivalent to (2-17). This completes
the proof of (2-16). [

2D. Proof of Theorem 2.4. The proof relies on the following approximation result (we omit the proof,
which is an exercise in basic measure theory).

Lemma 2.6. Let m be a positive integer, and let Dy, ..., D,, be disjoint measurable subsets of (0, 1)
such that
Dpi=0.D.
i=1
Then for every & > O there exist disjoint subsets D1 ¢, ..., Dy ¢ of [0, 1] such that
m
UDie=©1)
i=1
and such that for everyi =1, ..., m it turns out that

e D; . is a finite union of intervals with rational endpoints,

o the Lebesgue measure of the symmetric difference between D; and D; . is less than or equal to ¢.
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We are now ready to prove Theorem 2.4. First of all, we observe that (2-7) is invariant by translations
and homotheties. As a consequence, there is no loss of generality in assuming that (a, b) = (0, 1) and
¢:(0,1) — R. Then we proceed in three steps. To begin with, we prove (2-7) in the special case where
the hostility function c is bounded and the arrangement # has a very rigid structure, then for general u but
again bounded hostility function, and finally in the general setting.

Step 1: We prove (2-7) under the additional assumption that the hostility function ¢ : (0, 1) — R is
bounded, and that there exists a positive integer d such that u(x) is constant in each interval of the form
(G—1)/d,i/d)ywithi=1,...,d.

Indeed, this is actually the discrete setting. To be more precise, we introduce the discrete arrangement
v:{l,...,d} — Z defined as

1
V(i) ::u(l dz) forall i e {1,...,d)

and the discrete hostility function 4 : {0, ..., d — 1} — R defined as

1/d (i+1)/d

h(i) :=/ dx/ c(ly—x|)dy forallie{0,...,d—1},
0 i/d

which represents the contribution to the total hostility of two intervals of length 1/d occupied by hostile

dinosaurs, and placed at distance i /d from each other. Then for every enemy list Ey it turns out that

F(c, Ex,u) =2H(h, Ei, v),

where H(h, Ei, v) is the discrete total hostility defined in (2-2), and the factor 2 takes into account
that both (x, y) and (y, x) are included in the semidiscrete interaction set I (E, u), while only one of
them is included in the discrete counterpart J(Ey, v); see (2-1) and (2-5). Moreover, the monotone
rearrangement Mv of v is related to the monotone rearrangement Mu of u by the formula

Mu(i) = Mu(i;%) foralli e {1,...,d),
and again it turns out that
F(c, Ex, Mu) =2H(h, Er, Mv)
for every enemy list Ej. At this point, (2-7) is equivalent to
H(h, Ex, v) > H(h, Ex, Mv),

which in turn is true because of Theorem 2.2.

Step 2: We prove (2-7) for a general arrangement « : (0, 1) — Z, but again under the additional assumption
that the hostility function ¢ : (0, 1) — R is bounded.
To this end, let z; < zp < - -+ < z,, denote the elements in the image of u, and let

D;:={xe0,1):ulx)=z)} forallie{l,...,m}
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denote the set of positions of dinosaurs of the species z;. For every ¢ > 0, let us consider the sets D g,
.., Dy ¢ given by Lemma 2.6, and the function u, : (0, 1) — Z defined as

ug(x)=z; forallx e D,;.

Since the hostility function c¢ is bounded, and the symmetric difference between D; and D; . has
measure less than or equal to &, there exists a constant I (depending on m and ¢, but independent of ¢)
such that

|F(c, Ex,u) —F(c, Ex,ug)| <T'e and |F(c, Ex, Mu) — F(c, Ex, Mu,)| <Te.
On the other hand, the function u, satisfies the assumptions of the previous step, and therefore
F(c, Ex,ug) > F(c, Ex, Muy).
From all these inequalities it follows that
F(c, Ex,u) > F(c, Ex, Mu) —2T'e.

Since ¢ > 0 is arbitrary, (2-7) is proved in this case.

Step 3: We prove (2-7) without assuming that the hostility function c(x) is bounded.
To this end, for every n € N we consider the truncated hostility function

¢y (x) :=min{c(x),n} forall x € (0, 1).
We observe that
F(c, Ex,u) > F(cp, Ex,u) forallneN

because c(x) > c,(x) for every x € (0, 1), and
F(cn, Ex,u) > F(cy, Ex, Mu) foralln e N

because of the result of the previous step applied to the bounded hostility function ¢, (x). As a consequence,
we obtain

F(c, Ex,u) = F(cy, Ex, Mu) forall n € N. 2-21)
On the other hand, by monotone convergence we deduce
F(c, Ex, Mu) = sup F(cn, Ex, Mu),
neN
and therefore (2-7) follows from (2-21). Il
3. Gamma-convergence in dimension 1

In this section we prove Theorem 1.1 for d = 1, in which case

Gi,p=2 forall p>1. 3-1)
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To begin with, we introduce the notion of vertical §-segmentation, which is going to play a crucial role
in many parts of the proof.

Definition 3.1 (vertical 5-segmentation). Let X be any set, let w : X — R be any function, and let § > 0.
The vertical §-segmentation of w is the function Ssw : X — R defined by

w(x)

Ssw(x) := 5{ J for all x € X. (3-2)

The function Ssw takes its values in §Z, and it is uniquely characterized by the fact that Ssw(x) = k§
for some k € Z if and only if k§ < w(x) < (k+ 1)4.

3A. Asymptotic cost of oscillations. Let us assume that a function us(x) oscillates between two values
A and B in some interval (a, b). Does this provide an estimate from below for As ,(us, (a, b)), at
least when § is small enough? The following proposition and the subsequent corollaries give a sharp
quantitative answer to this question. They are the fundamental tool in the proof of the liminf inequality.

Proposition 3.2 (limit cost of vertical oscillations). Let p > 1 be a real number, let (a, b) C R be an
interval, and let {us}s~o C L?((a, b)) be a family of functions.
Let us assume that there exist two real numbers A < B such that

lism(i)llfmeas{x €@, b):us(x)<A+¢e}>0 foralle >0, (3-3)
lgm(i)rlfmeas{x €(a,b):us(x)>B—¢}>0 foralle>D0. (3-4)

Then it turns out that
(B—A)P

b—ap T G-

. 2
I}SIE(I)EfAB,p(MS’ (a,b)) = P Cp

where C, is the constant defined in (1-6).

Proof. To begin with, we observe that (3-5) is trivial if A = B, and therefore in the sequel we assume that
A < B.
Let us fix € > 0 such that 4¢ < B — A. Due to assumptions (3-3) and (3-4), there exist n > 0 and §p > 0
such that
meas{x € (a,b) :us(x) <A+¢e}>n forall § e (0,5), (3-6)

meas{x € (a,b) :us(x) > B—¢e}>n forall § € (0, 5p). (3-7)

Truncation, §-segmentation and monotone rearrangement: In this section of the proof, we replace {us}
with a new family {iis} of monotone piecewise constant functions that still satisfies (3-3) and (3-4), without
increasing the left-hand side of (3-5). To this end, we perform three operations on us(x).
The first operation is a truncation between A and B. To be more precise, we define T4 pus: (a, b) = R

by setting

A if ug(x) < A,

Ty, pus(x) := qus(x) if A <us(x)<B,
B if us(x) > B.
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We observe that the implication
|Ta,pus(y) — Ta,pus(x)| >8 = |us(y) —us(x)| >3
holds true for every x and y in (a, b), and hence
As,p(Ta, pus, (a, b)) < As p(us, (a, b)) forall > 0.

We also observe that (3-6) and (3-7) remain true if we replace us(x) by T4 pus(x).
The second operation is a vertical §-segmentation; namely we replace T4 pus by the function SsT4 pus
defined according to (3-2). Again we observe that the implications

|SsTa. pus(y) — SsTa pus(x)| >8 = |SsTa pus(y) — SsTa pus(x)| > 28
= |Ta,pus(y) — Ta pus(x)| >3
hold true for every x and y in (a, b), and hence
A5, p(SsTa pus, (a, b)) < As, p(Ta pus, (a, b)) forall § > 0.
As for (3-6) and (3-7), we set §; := min{e, 8y}, and we observe that now
meas{x € (a,b) : SsTa pus(x) <A+2e}>n forall §e(0,3d), (3-8)
meas{x € (a,b) : SsTx pus(x) > B—2¢}>n forall§ e (0,d). (3-9)

The third and last operation we perform is monotone rearrangement; namely we replace SsT4 pus with
the nondecreasing function M SsT4 pus in (a, b) whose level sets have the same measure of the level sets
of SsT4 pus (see Definition 2.3).

From (3-8) and (3-9) we deduce that now

MSsTy pus(x) <A+2¢ forallx € (a,a+n), forall é € (0, 5y), (3-10)
MSsTy pus(x) > B—2¢ forallx € (b—n,b), forall § € (0, §;). (3-11)

Moreover, we claim that
As, (M SsTy pus, (a, b)) < As, p(SsTa, pus, (a, b)) forall § > 0. (3-12)

This is a straightforward consequence of Theorem 2.4. To be more formal, let us consider the
semidiscrete arrangement v; : (a, b) — Z defined by

vs(x) = %SgTA,Bug(x) for all x € (a, b)

(we recall that Ss T4 pus takes its values in §Z, and hence vs(x) is integer-valued) and the hostility function
¢:(0,b—a) — R defined as c¢(0) := 870~ !~P. We observe that

MSsTy pus(x) =8Mvs(x) forall x € (a, b),

where Mv; is the nondecreasing rearrangement of vs according to Definition 2.3.
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We observe also that for every pair of points x and y in (a, b) it turns out that
(x,y) €1(8, SsTa,pus, (a, b)) <= |vs(y) —vs(x)| =2 <= (x,y) € [(Ey, vs),

where E| is the enemy list defined in (2-3), and I (E}, vs) is the semidiscrete interaction set defined
according to (2-5). It follows that

A5, p(SsTa,pus, (a, b)) = F(c, E1,v5), As p(MSsTa pus, (a, b)) = F(c, E1, Mvs),

and therefore (3-12) is equivalent to (2-7).
In conclusion, the three operations described so far delivered us a family

125 = MS(STA,Bug

of nondecreasing functions such that the image of s is contained in §Z. This family satisfies (3-10) and
(3-11), and
As p(us, (a, b)) > As ,(is, (a, b)) forall § > 0. (3-13)
In the sequel we are going to show that any such family satisfies

2 (B—A—4g)?

I%T(i)nga'p(ﬁ‘s’ (a,b)) > ; Cp- b—ayr! (3-14)

Due to (3-13) and the arbitrariness of ¢ > 0, this is enough to prove (3-5).

Extension of the integrals to a vertical strip: In this section of the proof we modify the domain of
integration in order to simplify the computation of Ajs ,(iis, (a, b)). To begin with, we observe that

b il dxd l dxd
As (s, (a, b)) = — dxdy> —dxdy,
(s, (@, b)) f/A y—xpr f/B v —xr

As =13, s, (a, b)) = {(x, y) € (@, b)* : liis(y) — s (x)| > 8},
Bs:={(x,y) €(a+n,b—n) x(a,b):us(y) —iis(x)| > 8}.

where

Then we write the last integral in the form
// 87 8? o?
—dxdy:// —dxdy—// ——dxdy,
Bs |y_x|1+P Bs;UCs |y_x|l+p Cs |y_x|1+p

Cs:=(@a+n,b—n) xR\ (a,b)).

where

In other words, the set Bs U C; consists of the vertical strip (a + n, b —n) x R minus the set of points
(x,y) € (@+n,b—n) x (a, b) such that |is(y) — tis(x)| < 5. Now we observe that

// 8P » b—n +00 1
% dxdy=25 / dx/ L
Cs ly _x|1+p a+n b ly _x|1+p
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From the convergence of the last double integral it follows that

dxd 0,
5—>0+//c |y—x|1+P ray=
and therefore

8P 8P
li fA , b)) > 1i f dxdy =1 f — —dxdy. (3-15
1m1n s,p(s, (a, b)) 1r£(1)r+1 //1;8 e xdy }Srgég //BSUCS T xdy. (3-15)

Computing the integrals: In this last part of the proof we show that

B — A—dg)?
liminf// — T dxdy> 2. ,,-( 2l (3-16)
6—>0* BsUCs |y _-x| tp (b _a)P

Recalling (3-15), this proves (3-14), and hence also (3-5).
To this end, we need to introduce some notation. We know that is is a nondecreasing function with
finite image. Let us consider the partition

a=xg<xi<---<x,=»b

of (a, b) with the property that it5(x) is constant in each interval of the form (x;_1, x;), and different
intervals correspond to different constants. Let us set
h:=min{i € {1,...,n}:x; > a+n},
k:=max{i €{0,...,n—1}:x; <b—n}.
Of course n, h, k, as well as the partition, do depend on §. Now we claim that
// dxdy > 2 Cp : o7k —h— 17 for all § € (0, &1). (3-17)
B,UCs Iy—XI”" S b—ap

To this end we can limit ourselves, without loss of generality, to the case where the values of i5(x) in
neighboring intervals are consecutive multiples of §; namely if ii5(x) = mé in (x;_1, x;) for some m € Z,
then iis(x) = (m + 1)8 in (x;, x;1). Indeed, if éis(x) > (m +2)8 in (x;, x;11), then it turns out that

// 8P Xi X4l SP
—dxdyz/ dx/ — _dy.
B(gUC(s |y —x|1+p Xi—1 Xi (y —x)1+p

Since the integral in the right-hand side is divergent, the left-hand side is divergent as well, and in this
case (3-17) is trivially true.

Therefore, in the sequel we treat the case where the values of iis(x) in neighboring intervals are
consecutive multiples of §. Under this assumption it turns out that

817 +00 Xit1
————dxdy > (/ dx/ dy+/ dx/ y)
/‘/;,guc(g |y —x|1+p i= h+1 Xi+1 |y —x|1+p |y —x|1+p

517 k-1 Xi 1 Xit1 1
(/ ——dx+ / _ dx).
p xiog (Xig1 —x)P v (=xi_pP

i=h+1



OPTIMAL CONSTANTS FOR NONLOCAL APPROXIMATION OF SOBOLEV NORMS AND TOTAL VARIATION 613

Now we distinguish two cases.

o If p =1, computing the integrals we obtain

k-1
) Xipl —Xi—1 Xig1 — Xi—1
dxdy >34 log( . .
/./;?5UC5 (y —x)? Z Xip1 —Xi X —Xi_|

i=h+1

If ¢; := x; — xj_ denotes the length of the i-th interval of the partition, and we apply the inequality
between arithmetic and geometric mean, we obtain

k—1
) gi+4
// ———dxdy >3 Z log i+ tiv1)* >8 ) log4=2log2-8(k—h—1),
Bsuc; (y — %) i=h+1 E i i=h+1
which proves (3-17) in this case.
o If p > 1, computing the integrals we obtain
k—1
8? 87 1 1 2
——dxdy> —— ( + - )
//Mys y — x|+ p(p—1) ,;l T G

where we set ¢; := x; — x;_; as before. Therefore, with two applications of Jensen’s inequality to the
convex function ¢ — 7!~P, we obtain

k—1
8? 8P 2P —2
[ e 5 |
Bsucs |y — x['+P p(p=1) 5= iz + L))"
_ -2 (k—h—1)P

TP (T G+ )"

- P2 =2) (k—h—1)"

~ plp=1  QOb-a)r!
which proves (3-17) also in this case.

8P(k—h—1)°
(b —a)pr~1

2o, |
Now it remains to estimate (k — & — 1). To this end, from (3-10) and the minimality of 42 we deduce
A+2e>un5(x)=:myé forall x € (xp_1,x1).
Similarly, from (3-11) and the maximality of k£ we deduce
B —2¢ <ug(x) =:mpé forall x € (xg, xp11).
Since the values of iis in consecutive intervals are consecutive multiples of §, it turns out that

mg=ma+k—-—h+1),
and therefore
k—h—1)8=k—-—h+1)6—-26=(np—ma)d —26> B —A—4e—24.

Plugging this inequality into (3-17), and letting § — 0T, we obtain (3-16), which completes the
proof. O
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The following result is a straightforward consequence of Proposition 3.2.

Corollary 3.3. Let us assume that us — u in L (R), and let (a, b) C R be an interval whose endpoints a
and b are Lebesgue points of u.
Then it turns out that

o ) lu(b) —u(a)|?
I}SE(l)IlfAs,p(us, (a,b) = I Cp- C(b—a)P!

Proof. 1t is enough to apply Proposition 3.2 with A :=min{u(a), u(b)} and B :=max{u(a), u(b)}. Assump-
tions (3-3) and (3-4) are satisfied because a and b are Lebesgue points of the limit of the sequence us. [

We conclude with another variant of Proposition 3.2. We do not need this statement in the sequel, but
we think that it clarifies once more the relation between oscillations of us and values of As ,(us, (a, b)).

Corollary 3.4. Let (a, b) C R be an interval, let {us}s~o C L? ((a, b)) be a family of functions, and let
osc(us, (a, b)) denote the essential oscillation of us in (a, b).
Then it turns out that

2 1

liminf Ay, (us. (a. ) 2 ~Cp minfosc(us, (a, b))".

(b—ayr-! (tim

Proof. Let is and ss5 denote the essential infimum and the essential supremum of us(x) in (a, ), respectively.
Let us assume that is and s; are real numbers (otherwise an analogous argument works with standard
minor changes). Let us set ws(x) := us(x) — is, and let us observe that

A5, p(us, (a, b)) = As, p(ws, (a, b)) forall § > 0.
Now it is enough to apply Proposition 3.2 with A := 0 and
B :=1liminf(ss — is) = liminfosc(us, (a, b)). O
§—0t §—0t

3B. Piecewise affine approximation. The value of Ag ,(u, R) is the supremum of Ag ,(v, R) as v ranges
over a sequence of piecewise affine functions that approximate u. The formal statement is the following
(we omit the standard proof, based on the convexity of the norm).

Lemma 3.5 (piecewise affine horizontal segmentation). Let p > 1 be a real number, and let u € L? (R).
Then there exists ¢ € R such that ¢ + q is a Lebesgue point of u for every g € Q.
Moreover, if for every positive integer k we consider the piecewise affine function vy : R — R such that

vk(c—i—%) =u(c+%) forallieZ,

Ao, p(u, R) = lim /|v,’€(x)|pdx:supf|v,’€(x)|pdx.
’ k—+o00 JRr k>1JR

then it turns out that
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3C. Proof of Gamma-liminf inequality in dimension 1. We are now ready to prove (1-7) in the case
d = 1. The idea is that Corollary 3.3 represents a “localized” version of the liminf inequality (1-7), which
now follows from well-established techniques; see for example [Gobbino 1998; Gobbino and Mora 2001].
To this end, let us5 — u be any family converging in L?”(R), and let ¢ and v; be as in Lemma 3.5. For

every i € Z, we set ¢ ; :=c+1i/k, and we apply Corollary 3.3 in the interval (¢t ;, ¢k i+1). We obtain
. 2 . luleriv) —uler)l? 2 /”"“‘ ,
liminf A ,(Chiis Crii >=C : : ==C Pdx.
im in 5,p(Us, (Cr,iy Chit1)) = 57 1/ 57 N [v (x)]” dx
Since
As p(us, R) > Z As p(us, (cris cr,i+1)) forall § >0,
ieZ
we deduce
liminf As,p (s, R) = Hminf ) As.p(us, (€ crin)
ieZ
> Zlgrg(i)rlf/\a,p(ua, (Ck,is Ch,it1))
ieZ
Cl,i+1
> %C,,Z/ |v,’<(x)|pdx=%Cp/ v (x)|P dx.
icz ¥ ki R
Letting k — +o00, and recalling (3-1), we obtain exactly (1-7). O

3D. Proof of Gamma-limsup inequality in dimension 1. This subsection is devoted to a proof of state-
ment (2) of Theorem 1.1 in the case d = 1.

It is well known that we can limit ourselves to showing the existence of recovery families for every u
belonging to a subset of L”(R) that is dense in energy with respect to Ag, ,(u, R). Classical examples of
subsets that are dense in energy are the space C2°(R) of functions of class C* with compact support and
the space of piecewise affine functions with compact support. Here for the sake of generality we consider
the space PCi([R?) of piecewise C! functions with compact support, defined as follows.

Definition 3.6. Let # : R — R be a function. We say that u € PCE([R?) if u has compact support, it is
Lipschitz continuous, and there exists a finite subset S C R such that u € C'(R\ S).

We show that for every u € PCl (R) the family Ssu of vertical 5-segmentations of u is a recovery family.
This proves the Gamma-limsup inequality in dimension 1.

Proposition 3.7 (existence of recovery families). Let p > 1 be a real number, and let u € PC é([R) be a
piecewise C! function with compact support according to Definition 3.6. For every § > 0, let Ssu denote
the vertical 5-segmentation of u according to Definition 3.1.

Then it turns out that

limsup As ,(Ssu, R) < 2C,,f [’ (x)|? dx. (3-18)
5§—0% p R
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Proof. To begin with, we introduce some notation. Let Ry > 1 be any real number such that the support
of u is contained in [—Ry + 1, Rp — 1]. Let L be the Lipschitz constant of # in R, and let S C R be a
finite set such that u € C'(R\ S). For every x € R and every § > 0 we set

J(@S,u,x) :={yeR:[Ssu(y) — Ssu(x)| > 5}, (3-19)

and
&P J
H;s p(x) ;:/ ————dy,
P JGux) |y —x[1P

so that

As, p(Ssu, R) = / Hs ,(x)dx forall § > 0. (3-20)

R

In the sequel we call Hj ,(x) the “pointwise hostility function”. It represents the contribution of each
point x to the double integral defining Ajs ,(Ssu, R).
Strategy of the proof: The outline of the proof is the following. First of all, we show that

—Ro +0o0
lim Hs ,(x)dx = 1im+ Hs ,(x)dx =0. (3-21)

§—0" J_oo 50t Jg,

Then we define an averaged pointwise hostility function IEI\B’ p(x) with the property that

Ry Ro ~
Hs,()dx = [ Hyp(x)dx. (3-22)
—Ry —Ry

We also show that the averaged pointwise hostility function satisfies the uniform bound
fl\g,p(x) < %L” for all x € [—Ry, Ry], forall § > 0, (3-23)
and the asymptotic estimate
hgnzljp Ha p(x) < C lu'(x)|? for all x € [—Ry, Ro]\ S. (3-24)

At this point, from Fatou’s lemma we deduce

Ro Ry _ Ro 5 Ro
lim sup Hs, ,(x) dx =lim sup Hs ,(x)dx < / lim sup H5 pX)dx <= C / [’ (x)|? dx.
s—>0t J—Ro §—>0t J—Ry Ry §—0t Ro

Keeping (3-20) and (3-21) into account, this estimate implies (3-18).
Reducing integration to a bounded interval: We prove (3-21).

To this end, let us consider any x < —Ry. We observe that in this case the set J (8, u, x) defined in
(3-19) is contained in the support of u#, and hence

- Ro Ro—1
Hs ,(x)dx <6”/ dx/ dy.
/oo g Ro+1 |y_x|1+p

At this point the first limit in (3-21) follows from the convergence of the double integral. The proof of
the second limit is analogous.
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Uniform bound on the pointwise hostility function: We prove that
Hs ,(x) < %LP for all x € [— Ry, Rp], for all § > 0. (3-25)
To this end, we observe that the implication
|Ssu(y) — Ssu(x)| >8 = |u(y) —u(x)| >34

holds true for every (x, y) € R2. Since u is Lipschitz continuous, we deduce that
8
|Sou() = Spu)| > 8 = ly—xl= 1,
and hence

oP +o00 IN4 ) »
H; <x>s/ —dy=2/ A
! y—xlzs/L |y — x[1HP sjp 2P p

as required.

Averaged pointwise hostility function: In this part of the proof we introduce the averaged pointwise
hostility function. To this end, we consider the open set

Au, 8) = {x € (—Ry, Ro) : u(x) ¢ 87).

A connected component (a, b) of A(u, §) is called monotone if [a,b]N S = &, and |u'(x)| > § for
every x € [a, b]. In this case there exists k € Z such that u(a) = k8 and u(b) = k§ = &, where the sign
depends on the sign of u'(x) in (a, b). From the Lipschitz continuity of u we deduce that A(u, §) has
only a finite number of monotone connected components.

The averaged pointwise hostility function fl\(;, p : R— Ris defined as

_ 1 b
Hs ,(x) ::m/ Hs ,(s)ds

if x € [a, b) for some monotone connected component of A(§, u), and ﬁg, p(x) := Hs ,(x) otherwise.
At this point, inequality (3-23) follows from (3-25), while (3-22) is true because the integrals of H; ,(x)
and I/-I\(;, p(x) are the same both in all monotone connected components, and in the complement set.

Asymptotic estimate in stationary points: We prove that (3-24) holds true for every x € (—Ry, Rp) \ S
with |u/(x)| = 0.

To begin with, we observe that in this case x & [a, b) for every monotone connected component (a, b)
of A(8, u) (because |u'(x)| is strictly positive in the closure of every monotone connected component),
and therefore H\g, p(x) = Hs ,(x) for every § > 0.

If J(6, u, x) = @ for every § > 0, then u is identically null, and the conclusion is trivial. Otherwise
J (8, u, x) # & when § is small enough. In this case, let rs be the largest positive real number such that

(x—=rs,x+rs)NJ (G, u,x) =93,

x—rg sP +00 5P 2/ 8\
H; (x)sf —dy—l—/ —dy:_(_) |
P — |y _x|1+[7 X+rs ly _x|l+p P \rs

so that
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Let §; — 0™ be any sequence such that

. § . Ok
limsup — = lim —. (3-26)

s—0t Ts k—>toory
Up to subsequences, we can also assume that rs, tends to some rg. If ro > 0, then the limit in the
right-hand side of (3-26) is 0, which proves (3-24) in this case. If ro = 0, then from the maximality of r,
we deduce that |u(x £r5,) — u(x)| = 8 for a suitable choice of the sign, which might depend on k. In

any case, the limit in the right-hand side of (3-26) turns out to be
Sk lu(x £rs) —ulx)|

lim — = lim =[u'(x)| =0,
k—+o0 rg, k—400 s,

which proves (3-24) also in this case.

Asymptotic estimate in nonstationary points: We prove that (3-24) holds true for every x € (—Rp, Ro) \ S
with |u/(x)| > 0.

Let us assume, without loss of generality, that u’(x) > 0 (the other case is analogous). Then for every
8 > 0 small enough it turns out that x lies in the closure of a monotone connected component of A(S, u).
More precisely, there exist four real numbers as, bs, cs, ds with

as <bs <x <cs <ds,

and ks € Z such that

u(as) = (ks =18, u(bs) =ks8, ulcs) = (ks+ 1), u(ds) = (ks +2)3,

and
u(y) € (ks — 1)6, ksd) for all y € (as, bs), (3-27)
u(y) € (ksé, (ks +1)98) for all y € (bs, cs), (3-28)
u(y) € ((ks+1)8, (ks +2)8) forall y € (cs, ds). (3-29)

We observe that as, bs, cs, and ds tend to x as § — 0T, and hence

8 bs) —
lim _ gim AB @) (3-30)
§—0+ by —as §—0t bs —as
Similarly it turns out that
lim = lim =u'(x), (3-31)
5—0t c5 — bs s—0+ ds — ¢
) ) 5 u'(x)
lim = lim = . (3-32)
§—0*T cs — as §—0+ ds — by 2

From (3-27) through (3-29) we deduce that

J(S,u,s) C(—o0,as]Ulds, +oo) foralls € (bs, cs).
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It follows that

mpos[ —3”< SR ) for all s € [by, c3)
b.p8) = y= or all s € [bs, c5),
! R\(ay.dy) |y —S[1HP p \(ds—s)P  (s—as)P

and hence

H; ,(x) ! /CSH ()d<8p ! /8< ! + ! )d (3-33)
X) = S S — S -
P cs — bs Jp, b T pces—bs Jp, \(ds—s)  (s—as)?

for every x € [bs, cs). Now we distinguish two cases.

o If p =1, computing the integrals in (3-33) we obtain

~ 5 ds — bs ) cs —das )
Hé,p(x) =< log . . : ,
C(;—b(; 1) dg—c(g 1) b(;—a(;

and therefore (3-24) follows from (3-30) through (3-32).

o If p > 1, computing the integrals in (3-33) we obtain

o~ 1 ) §p—1 sp—1 sp—1 sp—1
H(S, (x) S { + - - }7
g p(p—1)cs —bs | (ds —cs)P~1 ~ (bs —as)P~!  (ds —bs)P~!  (cs —as)P~!
and therefore also in this case (3-24) follows from (3-30) through (3-32). Il

3E. Smooth recovery families. The aim of this subsection is refining the Gamma-limsup inequality by
showing the existence of recovery families consisting of C* functions with compact support. To this end,
we introduce the following notion.

Definition 3.8 (3-step functions). Let § be a positive real number. A function u : R — R is called a §-step
function if there exists a positive integer n, an (n+1)-tuple xog < x; < --- < x, of real numbers, and
(ky, ..., k,) € Z" such that

e u(x) =0 for every x € (—o0, xo) U (x,, +00),
e u(x) =k;i6in (x;_1, x;) foreveryi =1, ..., n,
e |ki|=lky,|=1and |k; —ki_1|=1foreveryi =2,...,n.

The values of u(x) for x € {xg, x1, ..., x,} are not relevant (just to fix ideas, we can define u(x;) as
the maximum between the limit of u(x) as x — xl.+ and the limit of u(x) as x — x,").

Now we show that, for every fixed § > 0, every §-step function can be approximated in energy by
functions of class C* with compact support. Roughly speaking, this is possible because the rigid structure
of §-step functions allows us to control the effect of convolutions, which otherwise is unpredictable due
to the sensitivity of the integration region in (1-1) to small perturbations.

Proposition 3.9 (smooth approximation of §-step functions). Let 6 > 0 and p > 1 be real numbers, and
let u : R — R be a §-step function.
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Then there exists a family {us}e~0 € C°(R) such that
lim u, =u in L?(R),
e—>0t
and

lim A57P(M8, R) = A(g’p(l/t, R)
e—01
Proof. Let n, x; and k; be as in the definition of §-step functions, and let
T:=min{x; —x;_1:i=1,...,n}

be the length of the smallest interval of the partition. We observe that points in neighboring intervals do
not contribute to the computation of As ,(u, R). In particular, if we write as usual

sP
As p(u, R) := // ——dxdy,
P 1R |y —x|HP

ly—x| >t forall (x,y) e l(5,u,R). (3-34)

then it turns out that

Let us fix a mollifier p € C2°(R) with

e p(x) >0 for every x € R,

e p(x) =0 for every x € R with |x| > 1,
o Jop(ydx=1,

and let us consider the usual regularization by convolution

e (x) = /R ux+ey)p(y) dy.

It is well known that u, € C2°(R) for every ¢ > 0, and that for every p > 1 it turns out that u, — u in
LP(R) as ¢ — O™
Let us assume that 2e < 7, let us consider the two open sets

n
A, = U(x,- —£,x+8 SR, Bo:=(A xR URxA,) SR,
i=0
and let us write

&P &P
As, (u,R):// —dxdy+// ————dxdy.
pe 1@ e, R)NB, |y —x|1FP 16 RNB, |y —x[1FP

Since the support of p is contained in [—1, 1], it turns out that u.(x) = u(x) for every x € R\ A,. It
follows that
1(87 ué’;" R)\BS = 1(81 u, R)\Bé‘,

and therefore

8% §P
lim f/ ——dxdy = lim /f ——dxdy=A; ,(u, R),
e=0" J 16 mnB, |y —x[1TP e=0t J Jrumnp, [y —x1TP b
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where the last equality follows from Lebesgue’s dominated convergence theorem because B, shrinks to a
set of null measure. So it remains to show that

sP
lim /f ————dxdy=0. (3-35)
e=0+ ) J16.u. mynB, |y —x 1P

To this end, from (3-34) and the properties of the support of the mollifier, we deduce that now

ly—x|>1t—2¢ forall (x,y)el(3,usR),

and therefore

§P n xi+e SP
[ vy [ S
1Gue,RNB, |y —x|'TP = Jxi—e lzj>7—2¢ |2]' TP

0
n Xi+e 8P 4 sP
522/ 2_ 9% =% e+,
5 Ju—e PlT—2e| plt—2elP
which implies (3-35). O

We are now ready to show the existence of smooth recovery families. As usual, it is enough to show
the existence of such a family for every u in a subset of L?(R) which is dense in energy for Ag ,(u, R).
In this case we consider the space PA.(R) of piecewise affine functions with compact support.

Since piecewise affine functions are piecewise C!, we know from Proposition 3.7 that the family Ssu
of vertical §-segmentations of u is a (nonsmooth) recovery family for u#. The key point is that the vertical
d-segmentation of a piecewise affine function with compact support is a §-step function according to
Definition 3.8. Thus from Proposition 3.9 we deduce the existence of a function us € C2°(R) such that

lus — SsullLrqry <6 and  Aj p(us, R) < As, p(Ssu, R) +6

for every § > 0. This implies that {u;} is a smooth recovery family for u. U

4. Gamma-convergence in any dimension

It remains to prove Theorem 1.1 in any space dimension. This follows from well-established sectioning
techniques. For every o € S?~!, let (0)* denote the hyperplane orthogonal to o, namely

(U)J‘ ={z e R? - (z,0) =0}

+ we consider the 1-dimensional section

Given any u : R — R, for every o € S?~! and every z € (o)
Ug,; : R — R defined as

Ug(x) :=u(z+ox) forallxeR.

The main idea is that Sobolev norms, total variation, and functionals such as Aj , computed in u are
a sort of average of the same quantities computed on the 1-dimensional sections u, ;. The result is the
following.

Proposition 4.1 (integral-geometric representation). Let u : R? — R be any measurable function. Let
As,p and Ao, be the functionals defined in (1-1) and (1-2), respectively.



622 CLARA ANTONUCCI, MASSIMO GOBBINO, MATTEO MIGLIORINI AND NICOLA PICENNI

(1) For every p > 1 it turns out that

Ld 1d0/ lAO,p(ua,za R)dZ:Gd,p AO,p(ua Rd),
- )

(o
where G, is the geometric constant defined in (1-4).

(2) Forevery § > 0 and every p > 1 it turns out that

/gd Ida/ LAa,p(ua,z,R)dzzzAs,p(u,Rd). 0
- )

(o

We skip the details of the proof of Proposition 4.1, which is a simple application of variable changes
in multiple integrals. More generally, for every o € S?~! and every g € L' (R?) it turns out that

/ g(y)dy=/ dZ/g(z—i—ox)dx,
R (o)t R

and this is the main ingredient in the proof of statement (1).
Similarly, for every g € L'(RY x R?) it turns out that

g(u,v)dudv:l do dz gz4ox,z+0y) |y —x|"Ldxdy,
RY xR 2 Jea-1 (o)t RxR

and this is the main ingredient in the proof of statement (2).

We are now ready to prove Theorem 1.1.

Proof. Gamma-liminf: Let us assume that us — u in L'(R¢). Then for every o € S?~! it turns out that
U)oz = Uz in L'(R)

for almost every z € (o). Therefore, from the integral-geometric representations of Proposition 4.1,
Fatou’s lemma, and the 1-dimensional result, we obtain

liminf As ,(us, R ) = 11m1nf / daf A5, p((Us)o,z, R) dz
3—0+ gd—1

O'

> f do/ llmlangp((ug)oZ, R) dz
2 Sd-1 (o)

1 §—0t

> = d —C A ,R)d
1

= ;Gd,pc,, Ao, p(u, RY).

Gamma-limsup: Letu € Cé’o(Rd ) be any function with compact support. For every § > 0 we consider the
vertical §-segmentation Ssu of u, and we observe that this operation commutes with the 1-dimensional
sections, in the sense that

(Ssit)g.. = S5(ug.) forallo € S9!, forall z € (o)t
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Therefore, from the integral-geometric representations of Proposition 4.1, Fatou’s lemma, and the
1-dimensional result, we obtain

limsup As,_,(Ssu, R?) = lim sup % /d ] do / A As p((Ssu)o,z, R)dz
Sdé= (o)

§—0t §—0t

< l/ da/ limsup As ,((Sstt)g,;, R) dz
2 §d—1 (J)

L 50t

< l/ da/ zCl7 Ao, p(usz, R)dz
2 gd-1 (o)Lt P

1
= 5 GapCp Roplu, RY).

The §-independent bounds on Ajs ,((Ssu)s,,, R) needed in order to apply Fatou’s lemma follow from
the Lipschitz continuity of u# and the boundedness of its support.

Smooth recovery families: It remains to show the existence of smooth recovery families. The strategy is
analogous to the 1-dimensional case, and therefore we limit ourselves to outlining the argument, sparing
the reader all technicalities.

To begin with, we observe that the space PA.(R¢) of piecewise affine functions with compact support
is a subspace of L? (R?) that is dense in energy for Ao ,(u, R4). This is true because cx (R?) is dense in
energy, and in turn any function in C (?O([Rd ) can be approximated in WLoo(RY) by functions in PA (RY);
see for example Chapter 4 in [Brenner and Scott 1994], and in particular Corollary 4.4.24.

As a consequence, it is enough to show the existence of a recovery family for every u € PA.(R?),
in which case a nonsmooth recovery family is provided by the vertical §-segmentations Ssu of u. On
the other hand, vertical §-segmentations of piecewise affine functions with compact support are §-step
functions, and these functions can be approximated in energy by smooth functions. It follows that for
every § > 0 there exists us € Cfo(Rd) such that

lus — Ssull Lpay <8 and  As p(us, RY) < As p(Ssu, RY) +36,

and therefore {u;} is the required recovery family.
The last approximation step can be proved by convolution as we did in Proposition 3.9. To be more
precise, a 8-step function in dimension d is a function v : R? — R with the property that there exist a

finite set { Py, ..., Py} of disjoint open polytopes (bounded intersections of half-spaces) and integers
ki, ..., k, such that
e v(x)=kj§in P; foreveryi =1,...,m,

e v(x) = 0 in the open set Py defined as the complement set of the closure of Py U---U P,
e |ki —kj| <1 whenever the closure of P; intersects the closure of P;,

e |k;| < 1 whenever the closure of P; intersects the closure of P.

In words, the level sets of a §-step function are finite unions of polytopes, and values in adjacent
regions differ by 4.
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The key point is that for every §-step function v there exists a positive real number 7 such that
el v,R) = |y—x|>1.

As a consequence, when we define v, as the convolution of v with a mollifier whose support is
contained in the ball with center in the origin and radius ¢, we obtain

x,ell v, R = |y—x|>1—2¢

and at this point the conclusion follows exactly as in the proof of Proposition 3.9. O
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