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REGULARITY ESTIMATES FOR ELLIPTIC NONLOCAL OPERATORS

BARTŁOMIEJ DYDA AND MORITZ KASSMANN

We study weak solutions to nonlocal equations governed by integrodifferential operators. Solutions are
defined with the help of symmetric nonlocal bilinear forms. Throughout this work, our main emphasis is
on operators with general, possibly singular, measurable kernels. We obtain regularity results which are
robust with respect to the differentiability order of the equation. Furthermore, we provide a general tool
for the derivation of Hölder a priori estimates from the weak Harnack inequality. This tool is applicable
for several local and nonlocal, linear and nonlinear problems on metric spaces. Another aim of this work
is to provide comparability results for nonlocal quadratic forms.
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1. Introduction

The aim of this work is to develop a local regularity theory for general nonlocal operators. The main
focus is on operators that are defined through families of measures, which might be singular. The main
question that we ask is the following. Given a function u W Rd ! R satisfying

lim
"!0C

Z
RdnB".x/

.u.y/�u.x// �.x; dy/D f .x/ .x 2D/; (1-1)

which properties of u can be deduced in the interior of D? Here D � Rd is a bounded open set and the
family .�.x; � //x2D of measures satisfies some assumptions to be discussed later in detail. The measures
�.x; � / are assumed to have a singularity for sets A� Rd with x 2 A. As a result, the operators of the

Both authors were supported by the German Science Foundation DFG through SFB 701. Dyda was additionally supported by
NCN grant 2012/07/B/ST1/03356.
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318 BARTŁOMIEJ DYDA AND MORITZ KASSMANN

form (1-1) are not bounded integral operators but integrodifferential operators. For this reason we are
able to prove regularity results which resemble results for differential operators. One aim of this work is
to establish the following result:

Theorem 1.1. Assume �.x; dy/ is uniformly (with respect to the variable x) comparable on small scales
to �˛.dy�fxg/ for some nondegenerate ˛-stable measure �˛ for some ˛ 2 .0; 2/. Then solutions to (1-1)
satisfy uniform Hölder regularity estimates in the interior of D.

Theorem 1.1 will be proved as a special case of Theorem 1.11, which we provide with all details in
Section 1E. Special cases of Theorem 1.1 have received significant attention over the last years and we
give a small overview of results below. Note that it is well known how to treat functions f in (1-1). For
the sake of a clear presentation, we will sometimes restrict ourselves to the case f D 0.

In order to approach the question raised above, we need to establish the following results:

� weak Harnack inequality,

� implications of the weak Harnack inequality,

� comparability results for nonlocal quadratic forms.

The last topic needs to be included because our concept of solutions involves quadratic forms related to
�.x; dy/. We present the main results in Sections 1C–1E. The following two subsections are devoted to
the set-up and our main assumptions.

1A. Function spaces. Before we can formulate the first result we need to set up quadratic forms and
function spaces. Let �D .�.x; � //x2Rd be a family of measures on Rd which is symmetric in the sense
that for every set A�B � Rd �Rd n diagZ

A

Z
B

�.x; dy/ dx D
Z
B

Z
A

�.x; dy/ dx: (1-2)

We furthermore require

sup
x2Rd

Z
Rd

min.jx�yj2; 1/ �.x; dy/ <C1: (1-3)

Example 1.2. An important example satisfying the above conditions is given by

�˛.x; dy/D .2�˛/jx�yj�d�˛ dy .0 < ˛ < 2/: (1-4)

The choice of the factor .2�˛/ will be discussed below in detail; see Sections 1B and 2.

For a given family � and a real number ˛ 2 .0; 2/ we consider the following quadratic forms on
L2.D/�L2.D/, where D � Rd is some open set:

E�D.u; u/D
Z
D

Z
D

.u.y/�u.x//2 �.x; dy/ dx: (1-5)

We denote by H˛=2.Rd / the usual Sobolev space of fractional order ˛=2 2 .0; 1/ with the norm

kukH˛=2.Rd / D .kuk
2
L2.Rd /

C E�˛
Rd
.u; u//

1
2 : (1-6)
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If D � Rd is open and bounded, then by H˛=2
D DH

˛=2
D .Rd / we denote the Banach space of functions

from H˛=2.Rd / which are zero almost everywhere on Dc. H˛=2.D/ shall be the space of functions
u 2 L2.D/ for which

kuk2
H˛=2.D/

D kuk2
L2.D/

C

Z
D

Z
D

.u.y/�u.x//2 �˛.x; dy/ dx

is finite. Note that for domains D with a Lipschitz boundary, H˛=2
D .Rd / can be identified with the closure

of C1c .D/ with respect to the norm of H˛=2.D/. In general, these two objects might be different, though.
By V ˛=2.D jRd / we denote the space of all measurable functions u W Rd ! R for which the quantityZ

D

Z
Rd

.u.y/�u.x//2

jx�yjdC˛
dx dy (1-7)

is finite, which implies finiteness of the quantity
R

Rd
u.x/2=.1Cjxj/dC˛ dx. The function space

V ˛=2.D jRd / is a Hilbert space with the scalar product

.u; v/D

Z
Rd

u.x/v.x/

.1Cjxj/dC˛
dxC

Z
D

Z
Rd

.u.y/�u.x//.u.v/� v.x//

jx�yjdC˛
dx dy: (1-8)

The proof is similar to those of [Felsinger et al. 2015, Lemma 2.3] and [Dipierro et al. 2017a, Proposi-
tion 3.1]. If the scalar product (1-8) is defined with the expression

R
Rd
u.x/v.x/=.1Cjxj/dC˛ replaced

by
R
D u.x/v.x/ dx, then the Hilbert space is identical. The following continuous embeddings trivially

hold true:

H
˛
2

D .R
d / ,!H

˛
2 .Rd / ,! V

˛
2 .D jRd /:

We make use of function spaces generated by general � in the same way as above. Let H�.Rd / be the
vector space of functions u 2 L2.Rd / such that E�.u; u/D E�

Rd
.u; u/ is finite. If D � Rd is open and

bounded, then by H�
D DH

�
D.R

d / we denote the space of functions from H�.Rd / which are zero almost
everywhere on Dc. By V �D D V

�.D jRd / we denote the space of all measurable functions u W Rd ! R

for which the quantity Z
D

Z
Rd
.u.y/�u.x//2 �.x; dy/ dx (1-9)

is finite. Now we are in a position to present and discuss our main results.

1B. Main assumptions. Let us formulate our main assumptions on .�.x; � //x2D . Given ˛ 2 .0; 2/ and
A� 1, the following condition is an analog of (A0) for nonlocal energy forms:

For every ball B�.x0/ with � 2 .0; 1/; x0 2 B1 and every v 2H˛=2.B�.x0//;

A�1 E�
B�.x0/

.v; v/� E�˛
B�.x0/

.v; v/� A E�
B�.x0/

.v; v/:
(A)

Condition (A) says that, locally in the unit ball, the energies E� and E�˛ are comparable on every scale.
Note that this does not imply pointwise comparability of the densities of � and �˛. We also need to
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assume the existence of cut-off functions. Let ˛ 2 .0; 2/ and B � 1:

For 0 < � �R � 1 and x0 2 B1 there is a nonnegative measurable function � W Rd ! R

with supp.�/� BRC�.x0/; �.x/� 1 on BR.x0/; k�k1 � 1; and

supx2Rd

R
Rd
.�.y/� �.x//2 �.x; dy/� B��˛:

(B)

In most of the cases (B) does not impose an additional restriction because the standard cut-off function
�.x/Dmax.0; 1Cmin.0; .R�jx�x0j/=�// is an appropriate choice. It is an interesting question whether,
under assumptions (1-2), (1-3) and (A), condition (B) holds or whether it holds with this standard choice.
Note that condition (B) becomes jr� j2 � B��2 when ˛! 2� and �.x; dy/ is as in Example 1.2.

For every ˛ 2 .0; 2/, the family of measures �˛ given in Example 1.2 satisfies the above conditions
for some constants A;B � 1. The normalizing constant 2�˛ in the definition of �˛ has the effect that
the constants A;B � 1 can be chosen independently of ˛ for ˛! 2�. Since in this work we do not care
about the behavior of constants for ˛! 0C, in our examples we will use factors of the form 2�˛. Let
us look at more examples.

Example 1.3. Assume 0<ˇ� ˛ < 2. Let f; g WRd ! Œ1; 2� be measurable and symmetric functions. Set

�.x; dy/D f .x; y/�˛.x; dy/Cg.x; y/�ˇ .x; dy/:

Then � satisfies (1-2), (1-3), (A), and (B) with exponent ˛. This simply follows from

1

jx�yjdC˛
�

1

jx�yjdCˇ
C

1

jx�yjdC˛
�

5

jx�yjdC˛
.x; y 2 B1.x0/; x0 2 Rd /:

For the verification of (B) we may choose the standard Lipschitz-continuous cut-off function.

Here is an example with some kernels which are not rotationally symmetric.

Example 1.4. Assume ˛0 2 .0; 2/, 0 < � < ƒ, v 2 Sd�1, and � 2 Œ0; 1/. Set

M D

�
h 2 Rd W

ˇ̌̌̌�
h

jhj
; v

�ˇ̌̌̌
� �

�
:

Let k W Rd �Rd ! Œ0;1� be any measurable function satisfying

�1M .x�y/
.2�˛/

jx�yjdC˛
� k.x; y/�ƒ

.2�˛/

jx�yjdC˛
(1-10)

for some ˛ 2 Œ˛0; 2/ and for almost every x; y 2 Rd. Set �.x; dy/D k.x; y/ dy. Then, as we will prove,
there are A� 1; B � 1, independent of ˛, such that (A) and (B) hold.

The following example of a family of measures falls into our framework. Note that the measures do
not possess a density with respect to the d -dimensional Lebesgue measure.

Example 1.5. Assume ˛0 2 .0; 2/, ˛0 � ˛ < 2. Set

�.x; dy/D .2�˛/

dX
iD1

�
jxi �yi j

�1�˛dyi
Y
j 6Di

ıfxj g.dyj /
�
: (1-11)



REGULARITY ESTIMATES FOR ELLIPTIC NONLOCAL OPERATORS 321

Again, as we will prove, there are A� 1; B � 1, independent of ˛, such that (A) and (B) hold. Note that
�.x;A/D 0 for every set A which has an empty intersection with any of the d lines fxC tei W t 2 Rg.

Let us now formulate our results.

1C. The weak Harnack inequality. Given functions u; v W Rd ! R we define the quantity

E�.u; v/D
“

RdRd
.u.y/�u.x//.v.y/� v.x// �.x; dy/ dx; (1-12)

if it is finite. We write E instead of E� when it is clear or irrelevant which measure � is used. One aim of
this work is to study properties of functions u satisfying E.u; �/� 0 for every nonnegative test function �.
Note that E�.u; �/ is finite for u 2 V �.D jRd /, � 2H�

D.R
d / for any open set D � Rd. This follows

from the definition of these function spaces, the Cauchy–Schwarz inequality and the decomposition

E�.u;�/D
“
DD

.u.y/�u.x//.�.y/��.x//�.x;dy/dxC2
“
DDc

.u.y/�u.x//.�.y/��.x//�.x;dy/dx:

Here is our first main result.

Theorem 1.6 (weak Harnack inequality). Assume 0 < ˛0 < 2 and A� 1, B � 1. Let � satisfy (A), (B)
for some ˛ 2 Œ˛0; 2/. Assume f 2 Lq=˛.B1/ for some q > d . Let u 2 V �.B1 jRd /, u� 0 in B1, satisfy
E�.u; �/� .f; �/ for every nonnegative � 2H�

B1
.Rd /. Then

inf
B1=4

u� c

�
/

Z
B1=2

u.x/p0 dx
� 1
p0

� sup
x2B15=16

Z
RdnB1

u�.z/ �.x; dz/�kf kLq=˛.B15=16/; (1-13)

with positive constants p0 and c depending only on d; ˛0; A; B . In particular, p0 and c do not depend
on ˛.

Note that below we explain a local counterpart to this result, which relates to the limit ˛! 2�; see
Theorem 1.12.

Remark. It is remarkable that (A) and (B) do not imply a strong formulation of the Harnack inequality.
Examples 1.4 and 1.5 provide cases in which the classical strong formulation fails. See the discussion in
[Kassmann et al. 2014, Appendix A.1] and the concrete examples in [Bogdan and Sztonyk 2005, p. 148;
Bass and Chen 2010, Section 3]. The nonlocal term, i.e., the integral of u� in (1-13) is unavoidable since
we do not assume nonnegativity of u on all of Rd.

1D. Regularity estimates. A separate aim of our work is to provide consequences of the (weak) Harnack
inequality. Before we explain this in a more abstract fashion let us formulate a regularity result, which
will be derived from Theorem 1.6 and which is one of the main results of this work. We need an additional
mild assumption on the decay of the kernels considered.

Given ˛ 2 .0; 2/ we assume that for some constants � > 1, C � 1

�.x;Rd nBr2j .x//� Cr
�˛��j .x 2 B1; 0 < r � 1; j 2 N0/: (D)
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Condition (D) rules out kernels with very heavy tails for large values of jx�yj. For example, � given by
�.x; dy/D k.x; y/ dy with k.x; y/D jx�yj�d�1Cjx�yj�d ln.2Cjx�yj/�2 does not satisfy (D).

Here is our main regularity result.

Theorem 1.7. Let ˛0 2 .0; 2/, � > 0, and A � 1, B � 1. Let � satisfy (A), (B) and (D) for some
˛ 2 Œ˛0; 2/. Assume u 2 V �.B1 jRd / satisfies E.u; �/D 0 for every � 2H�

B1
.Rd /. Then the following

Hölder estimate holds for almost every x; y 2 B1=2:

ju.x/�u.y/j � ckuk1jx�yj
ˇ ; (1-14)

where c � 1 and ˇ 2 .0; 1/ are constants which depend only on d; ˛0; A; B; C; �. In particular, c and ˇ
do not depend on ˛.

This result contrasts the corresponding result for differential operators; see Theorem 1.13 below.
The main tool for the proof of Theorem 1.7 is the weak Harnack inequality, Theorem 1.6. The Harnack

inequality itself is an interesting object of study for nonlocal operators. In Section 2 we explain different
formulations of the Harnack inequality for nonlocal operators satisfying a maximum principle. A separate
aim of this article is to prove a general tool that allows us to deduce regularity estimates from the Harnack
inequality for nonlocal operators. This step was subject to discussion of many recent articles in the field.
We choose the set-up of a metric measure space so that this tool can be of future use in different contexts.

In the first decades after publication, the Harnack inequality itself did not attract as much attention
as the resulting convergence theorems. This changed when J. Moser in 1961 showed that the inequality
itself leads to a priori estimates in Hölder spaces. His result can be formulated in a metric measure space
.X; d;m/ as follows. For r > 0, x 2X , set Br.x/D fy 2X W d.y; x/ < rg. For every x 2X and r > 0
let Sx;r denote a family of measurable functions on X satisfying the conditions

r > 0; u 2 Sx;r ; a 2 R D) au 2 Sx;r ; .uC 1/ 2 Sx;r ;

Br.x/� Bs.y/ D) Sy;s � Sx;r :

An example for Sx;r is given by the set of all functions u W Rd ! R satisfying some (possibly nonlinear)
appropriate partial differential or integrodifferential equation in a ball Br.x/.

Theorem 1.8 (compare [Moser 1961]). AssumeX is separable. Let x0 2X and Sx;r be as above. Assume
that there is c � 1 such that for r > 0

.u 2 Sx0;r/^ .u� 0 in Br.x0// D) sup
x2Br=2.x0/

u� c inf
x2Br=2.x0/

u: (1-15)

Then there exist ˇ 2 .0; 1/ such that for r > 0, u 2 Sx0;r and almost every x 2 Br.x0/

ju.x/�u.x0/j � 3ku�u.x0/k1

�
d.x; x0/

r

�̌
:

Recall that “sup” denotes the essential supremum and “inf” the essential infimum. With the help of this
theorem, regularity estimates can be established for various linear and nonlinear differential equations; see
[Gilbarg and Trudinger 1998]. One aim of this article is to show that (1-15) can be relaxed significantly
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by allowing some global terms of u to show up in the Harnack inequality. Already in Section 2 we have
seen that they naturally appear.

For x2X , r >0 let �x;r be a measure on B.Xnfxg/, which is finite on all setsM with dist.fxg;M/>0.
We assume that for some c � 1, � > 1 and for every j 2 N0, x 2X , and 0 < r � 1

�x;r.X nBr2j .x//� c�
�j : (1-16)

We further assume that, givenK >1, there is c� 1 such that for 0< r �R�Kr , x 2X , M �X nBr.x/

�x;R.M/� c�x;r.M/: (1-17)

Conditions (1-16) and (1-17) will trivially hold true in the applications that are of importance to us. In
Section 5 we discuss these conditions in detail. A standard case is provided in the following example.

Example 1.9. Let ˛ 2 .0; 2/. For x 2 Rd, r > 0, and A 2 B.Rd n fxg/ set

�x;r.A/D r
˛�˛.x; A/D r

˛˛.2�˛/

Z
A

jx�yj�d�˛ dy: (1-18)

Then �x;r satisfies conditions (1-16), (1-17).

The following result extends Theorem 1.8 to situations with nonlocal terms. It is an important tool in
the theory of nonlocal operators.

Theorem 1.10. Let x0 2 X , r0 > 0, and � > 1, � > 1, � > 1. Let Sx;r and �x;r be as above. Assume
that conditions (1-16), (1-17) are satisfied. Assume that there is c � 1 and p > 0 such that for 0 < r � r0
the following holds:

.u 2 x0; r/^ .u� 0 in Br.x0//;

D)

�
/

Z
Br=�.x0/

u.x/p m.dx/
�1
p

� c inf
x2Br=� .x0/

uC c sup
x2Br=� .x0/

Z
X

u�.z/ �x;r.dz/: (1-19)

Then there exists ˇ 2 .0; 1/ such that for 0 < r � r0, u 2 Sx0;r

oscB�.x0/ u� 2�
ˇ
kuk1

�
�

r

�̌
.0 < � � r/; (1-20)

where oscM u WD supM u� infM u for M �X .

Note that in Lemma 5.1 we provide several conditions that are equivalent to (1-16).

1E. Comparability of nonlocal quadratic forms. With regard to Theorem 1.7 one major problem is to
provide conditions on � which imply (A). Let us formulate our results in this direction.

Since �D .�.x; � //x2Rd is a family of measures we need to impose a condition that fixes a uniform
behavior of � with respect to x. In our setup this condition implies that the integrodifferential operator
from (1-1) is comparable to a translation-invariant operator — most often the generator of an ˛-stable
process. We assume that there are measures �� and �� such thatZ

f .x; xC z/ ��.dz/�
Z
f .x; y/�.x; dy/�

Z
f .x; xC z/ ��.dz/ (T)
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for every measurable function f W Rd ! Œ0;1� and every x 2 Rd. For a measure � on Rd such that
�.f0g/D 0 and a set B � Rd we define, abusing the previous notation slightly,

E�B.u; v/D
Z
B

Z
Rd
.u.x/�u.xC z//.v.x/� v.xC z//1B.xC z/ �.dz/ dx: (1-21)

Note that (T) implies for every u 2 L2.B/

E��B .u; u/� E�B .u; u/� E�
�

B .u; u/:

Let N�.A/D �.�A/. It is easy to check that E� D E.�CN�/=2. Hence we may and do assume that the
measures ��, �� are symmetric; i.e., ��.A/D ��.�A/ and ��.A/D ��.�A/.

We say that a measure � on B.Rd / satisfies the upper-bound assumption (U) if for some CU > 0Z
Rd
.r ^ jzj/2 �.dz/� CU r2�˛ .0 < r � 1/: (U)

We say that a measure � on B.Rd / satisfies the scaling assumption (S) if for some a > 1Z
Rd
f .y/ �.dy/D a�˛

Z
Rd
f .ay/ �.dy/ (S)

for every measurable function f W Rd ! Œ0;1� with suppf � B1. For a linear subspace E � Rd, let
HE denote the dim.E/-dimensional Hausdorff measure supported on E.

We say that a measure � on B.Rd / satisfies the nondegeneracy assumption (ND) if for some n 2
f1; : : : ; dg

� D
Pn
kD1 fkHEk for some linear subspaces Ek � Rd and densities fk

with lin
�S

k Ek
�
D Rd and

R
B1
fk dHEk > 0 for k D 1; : : : ; n:

(ND)

Here is our result on local comparability of nonlocal energy forms. It contains Theorem 1.1 as a special
case.

Theorem 1.11. Let �D .�.x; � //x2Rd be a family of measures on B.Rd / satisfying (1-2). Assume that
there exist measures �� and �� for which (T) and (U) hold with ˛0 2 .0; 2/ and CU > 0. Assume that

(i) �� is a nondegenerate ˛-stable measure (1-22), or

(ii) �� satisfies (ND) and for some a > 1 each measure fkHEk satisfies (S).

Then there are A� 1, B � 1 such that (A) and (B) hold. One can choose B D 4CU but the constant A
depends also on a, on the measure �� and on ˛0.

The result is robust in the following sense: if �˛D .�˛.x; � //x2Rd satisfies (1-2) and (T) with measures
.��/

˛ and .��/˛, ˛0 � ˛ < 2, that are defined with the help of �� and �� as in Definition 6.9, then (A)
holds with a constant A independent of ˛ 2 Œ˛0; 2/.

Recall that a measure � on B.Rd / is a nondegenerate ˛-stable measure if for some ˛ 2 .0; 2/

�.E/D .2�˛/

Z
Sd�1

Z 1
0

1E .r�/r
�1�˛ dr �.d�/ .E 2 B.Rd //; (1-22)

where � is some finite measure on Sd�1 and lin.supp�/D Rd.
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1F. Related results. It is instructive to compare our results with two key results for differential operators
in divergence form. Let .A.x//x2Rd be a family of d�d -matrices. Given a subsetD�Rd we introduce a
bilinear form AD by AD.u; v/D

R
D.ru.x/; A.x/ru.x// dx for u and v from the Sobolev spaceH 1.D/.

Instead of ARd we write A. The following theorem is at the heart of the theory named after E. De Giorgi,
J. Moser and J. Nash; see [Gilbarg and Trudinger 1998, Chapters 8.8–8.9]:

Theorem 1.12 (weak Harnack inequality). Let ƒ> 1. Assume that for all balls B �B1 and all functions
v 2H 1.B/

ƒ�1AB.u; u/�
Z
B

jruj2 �ƒAB.u; u/: (A0)

Assume f 2 Lq=2.B1/ for some q > d . Let u 2H 1.B1/ satisfy u� 0 in B1 and AB1.u; �/� .f; �/ for
every nonnegative � 2H 1

0 .B1/. Then

c inf
B1=4

u�

�

/

Z
B1=2

u.x/p0 dx
� 1
p0

�kf kLq=2.B15=16/;

with constants p0; c 2 .0; 1/ depending only on d and ƒ.

Remark. This by now classical result can be seen as the limit case of Theorem 1.6 for ˛ ! 2�.
Condition (A0) implies that the differential operator �.A. � /ru/ is uniformly elliptic and obviously
describes a limit situation of (A). One might object that the nonlocal term in (1-13) is unnatural but in
fact, it is not. In Section 2 we explain this phenomenon in detail for the fractional Laplace operator.

If u is not only a supersolution but a solution in Theorem 1.12, then one obtains a classical Harnack
inequality: supB1=4 u� c infB1=4 u. Both the Harnack inequality and the weak Harnack inequality imply
Hölder a priori regularity estimates:

Theorem 1.13. Assume condition (A0) holds true. There exist c � 1, ˇ 2 .0; 1/ such that for every
u 2H 1.B1/ satisfying A.u; �/D 0 for every � 2H 1

0 .B1/ the following Hölder estimate holds for almost
every x; y 2 B1=2:

ju.x/�u.y/j � ckuk1jx�yj
ˇ : (1-23)

The constants ˇ; c depend only on d and ƒ.

After having recalled corresponding results for local differential operators, let us review some related
results for nonlocal problems. Note that we restrict ourselves to nonlocal equations related to bilinear
forms and distributional solutions.

Theorem 1.7 has already been proved under additional assumptions. If �.x; � / has a density k.x; � /
which satisfies some isotropic lower bound, e.g., for some c0 > 0, ˛ 2 .0; 2/

�.x; dy/D k.x; y/ dy; k.x; y/� c0jx�yj
�d�˛ .jx�yj � 1/;

then Theorem 1.7 is proved in and follows from [Komatsu 1995; Bass and Levin 2002; Chen and
Kumagai 2003; Caffarelli et al. 2011]. In these works the constant c in (1-14) depends on ˛ 2 .0; 2/
with c.˛/! C1 for ˛ ! 2�. The current work follows the strategy laid out in [Kassmann 2009],
which, on the one hand, allows the constants to be independent of ˛ for ˛! 2� and, on the other hand,
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allows us to treat general measures. See [Felsinger and Kassmann 2013; Kassmann and Schwab 2014]
for corresponding results in the parabolic case.

The articles [Di Castro et al. 2014; 2016] study Hölder regularity estimates and Harnack inequalities for
nonlinear equations. Moreover, the results therein provide boundedness of weak solutions. In [Di Castro
et al. 2014; 2016] the measures �.x; dy/ are assumed to be absolutely continuous with respect to the
Lebesgue measure. Another difference to the present article is that our local regularity estimates require
only local conditions on the data and on the operator. Note that our study of implications of (weak)
Harnack inequalities in Section 5 allows for nonlinear problems in metric measure spaces and could be
used to deduce the regularity results of [Di Castro et al. 2016] from results in [Di Castro et al. 2014].

To our best knowledge there has been little research addressing the question of comparability of quadratic
nonlocal forms; we note here [Dyda 2006; Husseini and Kassmann 2007; Prats and Saksman 2017]. This
question becomes important when studying very irregular kernels as in [Silvestre 2016, Section 4].

Theorem 1.1 has recently been established in the translation-invariant case, i.e., when �.x; dy/ D
�˛.dy � fxg/ for some ˛-stable measure �˛; see [Ros-Oton and Serra 2016]. The methods of that
paper seem not to be applicable in the general case, though. Note that anisotropic translation-invariant
integrodifferential operators allow for higher interior regularity; see [Ros-Oton and Valdinoci 2016].

Related questions on nonlocal Dirichlet forms on metric measure spaces are currently investigated by
several groups. We refer to the exposition in [Grigor’yan et al. 2014; Chen et al. 2019] for a discussion of
results regarding the fundamental solution.

1G. Notation. Throughout this article, “inf” denotes the essential infimum and “sup” the essential
supremum. By Sd�1 D fx 2 Rd W jxj D 1g we denote the unit sphere. We define the Fourier transform as
an isometry of L2.Rd / determined by

Ou.�/D .2�/�
d
2

Z
Rd
u.x/e�i��x dx; u 2 L1.Rd /\L2.Rd /:

1H. Structure of the article. The paper is organized as follows. In Section 2 we study the Harnack
inequality for the Laplace and the fractional Laplace operators. We explain how one can formulate a
Harnack inequality without assuming the functions under consideration to be nonnegative. In Section 3 we
provide several auxiliary results and explain how the inequality E�.u; �/� .f; �/ is affected by rescaling
the family of measures �. In Section 4 we prove Theorem 1.6 under assumptions (A) and (B) adapting
the approach by Moser to nonlocal bilinear forms. Section 5A provides the proof of Theorem 1.7. We
first prove a general tool which allows us to deduce regularity results from weak Harnack inequalities; see
Corollary 5.2. Then Theorem 1.7 follows immediately. Section 6 contains the proof of our main result on
comparability, Theorem 1.11, in the two respective cases. We provide sufficient conditions on � for (A)
and (B) to hold true. In addition, we provide two examples of quite irregular kernels satisfying (A) and (B).

2. Harnack inequalities for the Laplace and the fractional Laplace operators

We establish a formulation of the Harnack inequality which does not require the functions to be nonnegative.
This reformulation is especially interesting for nonlocal problems but our formulation seems to be new
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even for harmonic functions in the classical sense; see Theorem 2.5. For ˛ 2 .0; 2/ and u 2 C 2c .R
d / the

fractional power of the Laplacian can be defined as

�
˛
2 u.x/D C˛;d lim

"!0C

Z
jy�xj>"

u.y/�u.x/

jy � xjdC˛
dy D

C˛;d

2

Z
Rd

u.xC h/� 2u.x/Cu.x� h/

jhjdC˛
dh; (2-1)

where

C˛;d D
�..d C˛/=2/

2�˛�
d
2 j�.�˛=2/j

:

For later purposes we note that with some constant c > 0 for every ˛ 2 .0; 2/

c˛.2�˛/� C˛;d �
˛.2�˛/

c
: (2-2)

The use of the symbol �˛=2 and the term “fractional Laplacian” are justified because of 4.��/˛=2u.�/D
j�j˛ Ou.�/ for � 2 Rd and u 2 C1c .R

d /. Note that we write �˛=2u instead of �.��/˛=2u, which would
be more appropriate. The potential theory of these operators was initiated in [Riesz 1938]. The following
Harnack inequality can be easily established using the corresponding Poisson kernels.

Theorem 2.1. There is a constant c � 1 such that for ˛ 2 .0; 2/ and u 2 C.Rd / with

�
˛
2 u.x/D 0 .x 2 B1/; (2-3)

u.x/� 0 .x 2 Rd / (2-4)

the following inequality holds:

u.x/� cu.y/ .x; y 2 B 1
2
/:

Note that �˛=2u.x/D 0 at a point x 2 Rd requires that the integral in (2-1) converges. Thus some
additional regularity of u 2 C.Rd / is assumed implicitly. Since �˛=2 allows for shifting and scaling,
the result holds true for B1; B1=2 replaced by BR.x0/; BR=2.x0/ with the same constant c for arbitrary
x0 2 Rd and R > 0.

Theorem 2.1 formulates the Harnack inequality in the standard way for nonlocal operators. The
function u is assumed to be nonnegative on all of Rd. In the following we discuss the necessity of this
assumption and possible alternatives. The following result proves that this assumption cannot be dropped
completely.

Theorem 2.2. Assume ˛ 2 .0; 2/. Then there exists a bounded function u 2 C.Rd / which is infinitely
many times differentiable in B1 and satisfies

�
˛
2 u.x/D 0 .x 2 B1/;

u.x/ > 0 .x 2 B1 n f0g/;

u.0/D 0:

Therefore, the classical local formulation of the Harnack inequality as well as the local maximum principle
fail for the operator �˛=2.
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A complicated and lengthy proof can be found in [Kassmann 2007a]. An elegant way to construct such
a function u would be to mollify the function v.x/D .1� jx=2j2/�1C˛=2

C
and shift it such that u.0/D 0.

Here we provide a short proof,1 which includes a helpful observation on radial functions. See [Bucur and
Valdinoci 2016; Dipierro et al. 2017b] for further alternatives.

For an open set D � Rd, x 2D, 0 < ˛ � 2, and v W Rd ! R (0 < ˛ < 2) or v WD! R (˛ D 2) we
write

H˛.v jD/.x/D

Z
y…D

P˛.x; y/ v.y/ dy D
�R

RdnD P˛.x; y/ v.y/ dy .0 < ˛ < 2/;R
@D P2.x; y/ v.y/ dy .˛ D 2/:

(2-5)

In the case of a ball, the Poisson kernel is explicitly known; namely for R>0 and f WRd nBR.0/!R

H˛.f jBR.0//.x/D

�
f .x/ .jxj �R/;

c˛.R
2� jxj2/˛=2

R
jyj>R f .y/=..jyj

2�R2/˛=2jx�yjd / dy .jxj<R/;

where c˛ D ��d=2�1�.d=2/ sin�˛=2. For a function � W Œ0;1/! Œ0;1/ we set

h
�
R WDH˛.� ı j � jBR.0//:

Proposition 2.3. For all 0 < jxj<R

h
�
R.x/D

sin�˛=2
�

Z 1
0

�.
p
R2C s.R2� jxj2//

ds

.sC 1/s
˛
2

:

Proof. Let us fix R > 0 and x 2 BR.0/. Using polar coordinates we obtain

h
�
R.x/D c˛.R

2
� jxj2/

˛
2

Z 1
R

Z
�Sd�1

jx�yj�d�.dy/
�.�/ d�

.�2�R2/
˛
2

: (2-6)

By the classical Poisson formula, see [Gilbarg and Trudinger 1998, formula (2.26)],Z
Sd�1

1� jwj2

jw�yjd
�.dy/D jSd�1j .jwj< 1/I

henceZ
�Sd�1

jx�yj�d�.dy/D ��1
Z
Sd�1

ˇ̌̌̌
x

�
�y

ˇ̌̌̌�d
�.dy/D ��1jSd�1j

�
1�
jxj2

�2

��1
D

2�
d
2

�.d=2/

�

�2� jxj2
:

Plugging this into (2-6) yields

h
�
R.x/D

c˛�
d
2

�.d=2/
.R2� jxj2/

˛
2

Z 1
R

2��.�/ d�

.�2� jxj2/.�2�R2/
˛
2

:

The simple substitution s D .�2�R2/=.R2� jxj2/ leads toZ 1
R

2��.�/ d�

.�2� jxj2/.�2�R2/
˛
2

D
1

.R2� jxj2/
˛
2

Z 1
0

�.
p
R2C s.R2� jxj2//

ds

.sC 1/s
˛
2

:

Thus the assertion follows. �
1We owe the idea of this proof to Wolfhard Hansen.



REGULARITY ESTIMATES FOR ELLIPTIC NONLOCAL OPERATORS 329

Theorem 2.2 now follows directly from the following corollary.

Corollary 2.4. Let R > 0 and suppose that � is decreasing on ŒR;1/ such that �.s/ < �.r/ for some
R < r < s. Then

h
�
R.x/ < h

�
R.y/; whenever 0� x < y < R.

In particular, u WD h�R � h
�
R.0/ is a bounded function on Rd which is ˛-harmonic on BR.0/ and satisfies

0D u.0/ < u.y/ for every y 2 BR.0/.

In Theorem 2.1 the function u is assumed to be nonnegative on all of Rd. It is not plausible that the
assertion should be false for functions u with small negative values at points far from the origin. A similar
question can be asked for classical harmonic functions. If u is positive and large on a large part of @B1,
it should not matter for the Harnack inequality on B1=2 if u is negative with small absolute values on
a small part of @B1. Another motivation for a different formulation of the Harnack inequality is that
Theorem 2.1 does not allow us to use Moser’s approach to regularity estimates, like Theorem 1.8, in a
straightforward manner.

Let us give a new formulation of the Harnack2 inequality that does not need any sign assumption on u.
It is surprising that this formulation seems not to have been established since Harnack’s textbook in 1887.
We treat the classical local case ˛ D 2 together with the nonlocal case ˛ 2 .0; 2/.

Theorem 2.5. (Harnack inequality for �˛=2, 0 < ˛ � 2)

(1) There is a constant c � 1 such that for 0 < ˛ � 2 and u 2 C.Rd / satisfying

�
˛
2 u.x/D 0 .x 2 B1/ (2-7)

the following estimate holds for every x; y 2 B1=2:

c
�
u.y/�H˛.u

C
jB1/.y/

�
� u.x/� c

�
u.y/CH˛.u

�
jB1/.y/

�
: (2-8)

(2) There is a constant c � 1 such that for 0 < ˛ � 2 and every function u 2 C.Rd / which satisfies (2-7)
and is nonnegative in B1 the following inequality holds for every x; y 2 B1=2:

u.x/� c

�
u.y/C˛.2�˛/

Z
RdnB1

u�.z/

jzjdC˛
dz
�
: (2-9)

Proof of Theorem 2.5. The decomposition uD uC�u� and an application of Theorem 2.1 give

u.x/DH˛.u jB1/.x/�H.u
C
jB1/.x/� cH˛.u

C
jB1/.y/

D cH˛.u jB1/.y/C cH˛.u
�
jB1/.y/D cu.y/C cH˛.u

�
jB1/.y/;

which proves the second inequality in (2-8). The first one is proved analogously.

2Kassmann would like to use the opportunity to correct an error in [Kassmann 2007b] concerning the name Harnack. The
correct name of the mathematician Harnack is Carl Gustav Axel Harnack. His renowned twin brother Carl Gustav Adolf carried
the last name “von Harnack” after being granted the honor.
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Inequality (2-9) is proved as follows. Assume u is nonnegative in B1. Using the same strategy as
above we obtain for some c1; c2 > 0 and c Dmax.c1; c2/

u.x/� c1H˛.u jB 3
4
/.y/C c1H˛.u

�
jB 3

4
/.y/

� c1u.y/C c2˛.2�˛/

Z
RdnB1

� cu.y/C c˛.2�˛/

Z
RdnB1

u�.z/

jzjdC˛
dz:

The proof of the theorem is complete. Note that different versions of this result have been announced in
[Kassmann 2011]. �

Let us make some observations:

(1) There is no assumption on the sign of u needed for (2-8). Inequality (2-8) does hold in the classical
case ˛ D 2, too.

(2) If u is nonnegative on all of Rd (˛ 2 .0; 2/) or nonnegative in B1 (˛D 2), then the second inequality
in (2-8) reduces to the well-known formulation of the Harnack inequality.

(3) If u is nonnegative in B1, then (2-9) reduces for ˛! 2 to the original Harnack inequality.

(4) For the above results, one might want to impose regularity conditions on u such that �˛=2u.x/
exists at every point x 2 B1, e.g., ujB1 2 C

2.B1/ and u.x/=.1CjxjdC˛/ 2 L1.Rd /. However, the
assumption that the integral in (2-1) converges is sufficient.

The proof of Theorem 2.5 does not use the special structure of �˛=2. The proof only uses the
decomposition uD uC � u� and the Harnack inequality for the Poisson kernel. Roughly speaking, it
holds for every linear operator that satisfies a maximum principle. One more abstract way of formulating
this result in a general framework is as follows:

Lemma 2.6. Let .X;W/ be a balayage space (see [Bliedtner and Hansen 1986]) such that 1 2W . Let
V;W be open sets in X with V �W . Let c > 0. Suppose that, for all x; y 2 V and h 2HC

b
.V /,

u.x/� cu.y/: (2-10)

Then "V
c

x � c"
V c

y and, for every u 2Hb.W /,

u.x/� cu.y/C c

Z
u� d"V

c

y : (2-11)

Here, Hb.A/ denotes the set of bounded functions which are harmonic in the Borel set A. Functions
in HC

b
.A/, in addition, are nonnegative.

Proof. Since, for every positive continuous function f with compact support, the mapping f 7! "V
c

z .f /

belongs to HC
b
.V /, the first statement follows. Let u 2Hb.W /. Then u.x/D "V

c

x .u/, u.y/D "V
c

y .u/,
and hence

u.x/� "V
c

x .uC/� c"V
c

y .uC/D c"V
c

y .uCu�/D cu.y/C c

Z
u� d"V

c

y : �
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3. Functional inequalities and scaling property

In this section we collect several auxiliary results. In particular, we will need some properties of the
Sobolev spaces H˛=2.D/. The following fact about extensions has an elementary proof; see [Di Nezza
et al. 2012]. However, one has to go through it and see that the constants do not depend on ˛, provided
one has the factor .2�˛/ in front of the Gagliardo norm; see (1-4) and (1-6).

Fact 3.1 (extension). Let D � Rd be a bounded Lipschitz domain, and let 0 < ˛ < 2. Then there exists a
constant c D c.d;D/, which is independent of ˛, and an extension operator E WH˛=2.D/!H˛=2.Rd /

with norm kEk � c.

Furthermore, we will need the following Poincaré inequality; see [Ponce 2004].

Fact 3.2 (Poincaré I). Let D � Rd be a bounded Lipschitz domain, and let 0 < ˛0 � ˛ < 2. Then there
exists a constant c D c.d; ˛0;D/, which is independent of ˛, such that



u� 1

jDj

Z
D

u dx




2
L2.D/

� cE�˛D .u; u/ .u 2H
˛
2 .D//: (3-1)

The following results, Facts 3.3 and 3.4, are standard for fixed ˛. For ˛! 2 they follow from results
in [Bourgain et al. 2001; Maz’ya and Shaposhnikova 2002; Ponce 2004]. They are established in the case
when Br.x/ denotes the cube of all y 2 Rd such that jyi �xi j< r for any i 2 f1; : : : ; dg. They hold true
for balls likewise.

Fact 3.3 (Poincaré–Friedrichs). Assume ˛0; " > 0 and 0 < ˛0 � ˛ < 2. There exists a constant c, which
is independent of ˛, such that for BR D BR.x0/

u 2H
˛
2 .BR/; jBR \fuD 0gj � "jBRj

implies Z
BR

.u.x//2 dx � cR˛
“
BRBR

.u.y/�u.x//2

jx�yjdC˛
dy dx: (3-2)

Fact 3.4 (Sobolev embedding). Assume d 2N, d � 2, R0 >0, and 0< ˛0 � ˛ < 2, q 2 Œ1; 2d=.d �˛/�.
Then there exists a constant c, which is independent of ˛, such that for R 2 .0; R0/ and u 2H˛=2.BR/�Z

BR

ju.x/j
2d
d�˛ dx

�d�˛
d

� c

“
BRBR

.u.y/�u.x//2

jx�yjdC˛
dy dxC cR�˛C

d.q�2/
q

�Z
BR

ju.x/jq dx
�2
q

:

We often make use of scaling and translations. Our main assumptions, conditions (A) and (B) assure
a certain behavior of the family of measures � with respect to the unit ball B1 � Rd. Let us formulate
these conditions with respect to general balls Br.�/� Rd.

Given � 2 Rd, r > 0, A� 1, we say that � satisfies .AI �; r/ if:

For every ball B�.x0/ with � 2 .0; r/; x0 2 Br.�/ and every v 2H˛=2.B�.x0//;

A�1 E�
B�.x0/

.v; v/� E�˛
B�.x0/

.v; v/� A E�
B�.x0/

.v; v/:
.AI �; r/
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Given � 2 Rd, r > 0, B � 1, we say that � satisfies .BI �; r/ if:

For 0 < � �R � r and x0 2 Br.�/ there is a nonnegative measurable function � W Rd ! R

with supp.�/� BRC�.x0/; �.x/� 1 on BR.x0/; k�k1 � 1; and

supx2Rd

R
Rd
.�.y/� �.x//2 �.x; dy/� B��˛:

.BI �; r/

Let us explain how the operator under consideration behaves with respect to rescaled functions.

Lemma 3.5 (scaling property). Assume � 2Rd and r 2 .0; 1/. Let u2V �.Br.�/ jRd / satisfy E�.u; �/�
.f; �/ for every nonnegative � 2 H�

Br .�/
.Rd /. Define a diffeomorphism J by J.x/ D rx C �. Define

rescaled versions Qf , Qu of u and f by Qu.x/D u.J.x// and Qf by Qf .x/D r˛f .J.x//.

(1) Then Qu satisfies for all nonnegative � 2H Q�B1.R
d /

E Q�. Qu; �/D
“

RdRd
. Qu.y/� Qu.x//.�.y/��.x// Q�.x; dy/ dx � . Qf ; �/;

where

Q�.x; dy/D r˛�J�1.J.x/; dy/ and �J�1.z; A/D �.z; J.A//: (3-3)

(2) Assume � satisfies conditions .AI �; r/, .BI �; r/ for some ˛ 2 .0; 2/ and A� 1, B � 1, � 2Rd, r > 0.
Then the family of measures Q�D Q�. � ; dy/ satisfies assumptions (A) and (B) with the same constants.

Remark. The condition (D) is affected by scaling in a noncritical way. We deal with this phenomenon
further below in Section 4 and 5A.

Proof. For the proof of the first statement, let � 2 H Q�B1.R
d / be a nonnegative test function. Define

�r 2H
�

Br .�/
.Rd / by �r D � ıJ�1. Then“

. Qu.y/� Qu.x//.�.y/��.x// Q�.x; dy/ dx

D r˛
“

.u.J.y//�u.J.x///.�r.J.y//��r.J.x/// �J�1.J.x/; dy/ dx

D r˛�d
“

.u.J.y//�u.x//.�r.J.y//��r.x// �J�1.x; dy/ dx

D r˛�d
“

.u.y/�u.x//.�r.y/��r.x// �.x; dy/ dx

� r˛�d
Z
f .x/ �r.x/ dx D

Z
r˛f .J.x// �.x/ dx D

Z
Qf .x/�.x/ dx; (3-4)

which is what we wanted to prove. Let us now prove that Q� inherits properties (A), (B) from � with
the same constants A and B . Let us only consider the case � D 0. In order to verify condition (A) we
need to consider an arbitrary ball B�.x0/ with � 2 .0; 1/ and x0 2 B1. Let us simplify the situation
further by assuming x0 D 0. The general case can be proved analogously. Thus, we assume r 2 .0; 1/
and u 2H˛=2.B�/. The estimate E Q�B�.u; u/� AE

�˛
B�
.u; u/ can be derived as follows. Define a function
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Ou 2H˛=2.Br�/ by OuD u ıJ�1. Then

E Q�B�.u; u/D
Z
B�

Z
B�

.u.y/�u.x//2 Q�.x; dy/ dx D r˛
Z
B�

Z
B�

. Ou.J.y//�Ou.J.x///2 �J�1.J.x/; dy/ dx

D r˛�d
Z
Br�

Z
Br

. Ou.J.y//�Ou.x//2 �J�1.x; dy/ dx

D r˛�d
Z
Br�

Z
Br�

. Ou.y/�Ou.x//2 �.x; dy/ dx � Ar˛�d
Z
Br�

Z
Br�

. Ou.y/�Ou.x//2

jx�yjdC˛
dy dx

D Ar�2d
Z
Br�

Z
Br�

.u.J�1.y//�u.J�1.x///2

jJ�1.x/�J�1.y/jdC˛
dy dx D A

Z
B�

Z
B�

.u.y/�u.x//2

jx�yjdC˛
dy dx;

which proves our claim. The estimate E�˛B� .u; u/� A E Q�B�.u; u/ follows in the same way.
In order to check condition (B) for Q� we proceed as follows. Again, we assume x0D 0, r 2 .0; 1/. The

general case can be proved analogously. Assume R; � 2 .0; 1/. Let O� WRd!R satisfy supp. O�/�BrRCr�,
O� � 1 on BrR and

sup
x2Rd

Z
Rd
. O�.y/�O�.x//2�.x;dy/�B.r�/�˛ () sup

x2Rd

Z
Rd
. O�.y/�O�.J.x///2�.J.x/;dy/�B.r�/�˛:

Such a function O� exists because, by assumption, � satisfies .BI �; r/. Next, define � D O� ı J. Then �
satisfies supp.�/� BRC�, � � 1 on BR, and, by a change of variables,

sup
x2Rd

Z
Rd
.�.y/� �.x//2 Q�.x; dy/D r˛ sup

x2Rd

Z
Rd
. O�.J.y//� O�.J.x///2 �J�1.J.x/; dy/

D r˛ sup
x2Rd

Z
Rd
. O�.y/� O�.J.x///2 �.J.x/; dy/� B��˛;

which shows that Q� satisfies (B) with the constant B . �

4. The weak Harnack inequality for nonlocal equations

The main aim of this section is to provide a proof of the weak Harnack inequality Theorem 1.6. The key
result of this section is the corresponding result for supersolutions that are nonnegative in all of Rd :

Theorem 4.1. Assume f WB1!R belongs to Lq=˛.B15=16/ for some q 2 .d;1�, ˛ 2 Œ˛0; 2/. There are
positive reals p0; c such that for every u 2 V �.B1 jRd / with u� 0 in Rd satisfying

E.u; �/� .f; �/ for every nonnegative � 2H�
B1
.Rd /:

The following holds:

inf
B1=4

u� c

�

/

Z
B1=2

u.x/p0 dx
� 1
p0

�kf kLq=˛.B15=16/:

The constants p0; c depend only on d; ˛0; A; B . They are independent of ˛ 2 Œ˛0; 2/.
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Remark. All results in this section are robust with respect to ˛ 2 Œ˛0; 2/; i.e., constants do not depend
on ˛.

The main application of this result is the following proof.

Proof of Theorem 1.6. Set uD uC�u�. The assumptions imply for any nonnegative � 2H�
B1
.Rd /

E.uC; �/� E.u�; �/C .f; �/D
Z
B1

�.x/

�
f .x/� 2

Z
RdnB1

u�.y/ �.x; dy/
�

dxI

i.e., uC satisfies all assumptions of Theorem 4.1 with q DC1 and Qf W B1! R defined by

Qf .x/D f .x/� 2

Z
RdnB1

u�.y/ �.x; dy/:

The assertion of the theorem is true if supx2B15=16
R

RdnB1
u�.y/ �.x; dy/ is infinite. Thus we can assume

this quantity to be finite. Theorem 4.1 now implies

inf
B1=4

u� c1

�

/

Z
B1=2

u.x/p0 dx
� 1
p0

� c2 sup
x2B15=16

�Z
RdnB1

u�.y/ �.x; dy/
�
�kf kLq=˛.B15=16/

for some positive constants c1; c2. �

By scaling and translation, we obtain the following corollary.

Corollary 4.2. Let x0 2 Rd, R 2 .0; 1/. Assume � is a family of measures satisfying .AI �; r/ and
.BI �; r/. Assume u 2 V �.BR.x0/ jRd / satisfies u� 0 in BR.x0/ and E.u; �/� 0 for every nonnegative
� 2H

�

BR.x0/
.Rd /. Then

inf
BR=4.x0/

u� c

�
/

Z
BR=2.x0/

u.x/p0 dx
� 1
p0

�R˛ sup
x2B15R=16.x0/

Z
RdnBR.x0/

u�.y/ �.x; dy/;

with positive constants p0; c which depend only on d; ˛0; A; B . In particular, they are independent of
˛ 2 Œ˛0; 2/.

Let us proceed to the proof of Theorem 4.1.

Remark. Without further mentioning we assume that � is a family of measures that satisfies (A) and (B)
for some A � 1, B � 1, and ˛0 � ˛ < 2. The constants in the assertions below depend, among other
things, on A;B , and ˛0. They do not depend on ˛, though.

Let us first establish several auxiliary results. Our approach is closely related to the approach in
[Kassmann 2009]. Instead of Lemma 2.5 in that paper, which would be sufficient for homogeneous
equations,we will use the following auxiliary result.

Lemma 4.3. There exist positive constants c1; c2>0 such that for every a; b>0, p>1, and 0��1; �2�1
the following is true:

.b� a/.�21a
�p
� �22b

�p/� c1.�1a
�pC1
2 � �2b

�pC1
2 /2�

c2p

p� 1
.�1� �2/

2.b�pC1C a�pC1/: (4-1)
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The above result is nothing but a discrete version of

.rv;r.�2v�p//� c1.p/jr.�v
�pC1
2 /j2� c2.p/jr� j

2v�pC1;

where v; � are positive functions. We provide a detailed proof in the Appendix.
The next result is an extension of corresponding results in [Kassmann 2009; Barlow et al. 2009].

Lemma 4.4. Assume 0 < � < r < 1 and z0 2 B1. Set Br D Br.z0/. Assume f 2 Lq=˛.B2r/ for some
q > d . Assume u 2 V �.B2r jRd / is nonnegative in Rd and satisfies

E.u; �/� .f; �/ for any nonnegative � 2H�
B2r
.Rd /;

u.x/� " for almost all x 2 B2r and some " > 0:
(4-2)

Then“
BrBr

� 1X
kD1

.logu.y/� logu.x//2k

.2k/Š

�
�.x; dy/ dx

� c��˛jBrC�jC "
�1
kf kLq=˛.BrC�/k1kLq=.q�˛/.BrC�/; (4-3)

where c > 0 is independent of u, x0, r , �, f , ", ˛.

Note that for
"� c1.r C �/

ı
kf kLq=˛.BrC�/;

with ı D ˛..q� d/=q/, one obtains“
BrBr

� 1X
kD1

.logu.y/� logu.x//2k

.2k/Š

�
�.x; dy/ dx � c2��˛jBrC�j: (4-4)

From the above lemma we will deduce logu 2 BMO.B1/, where BMO.B1/ contains all functions of
bounded mean oscillations in B1; see [John and Nirenberg 1961].

Proof. The proof uses several ideas developed in [Barlow et al. 2009]. Let � W Rd ! R be a function
according to (B); i.e., more precisely we assume

supp.�/� BrC� � B2r ; k�k1 � 1; � � 1 on Br ; sup
x2Rd

Z
Rd
.�.y/� �.x//2 �.x; dy/� B��˛:

Then“
RdRd

.�.y/� �.x//2 �.x; dy/ dx

D

“
BrC�BrC�

.�.y/� �.x//2 �.x; dy/ dxC 2
“
BrC�B

c
rC�

.�.y/� �.x//2 �.x; dy/ dx

� 2

“
BrC�Rd

.�.y/� �.x//2 �.x; dy/ dx

� 2jBrC�j sup
x2Rd

Z
Rd
.�.y/� �.x//2 �.x; dy/� 2c��˛jBrC�j: (4-5)
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We choose �.x/D��2.x/ u�1.x/ as a test function. Denote BrC� by B . We obtain

.f; �/�

“
RdRd

.u.y/�u.x//.�2.x/u�1.x/� �2.y/u�1.y// �.x; dy/ dx

D

“
BB

�.x/ �.y/

�
�.x/ u.y/

�.y/ u.x/
C
�.y/ u.x/

�.x/ u.y/
�
�.y/

�.x/
�
�.x/

�.y/

�
�.x; dy/ dx

C 2

“
BBc

.u.y/�u.x//.�2.x/ u�1.x/� �2.y/ u�1.y// �.x; dy/ dx

C

“
BcBc

.u.y/�u.x//.�2.x/ u�1.x/� �2.y/ u�1.y// �.x; dy/ dx: (4-6)

Setting A.x; y/D u.y/=u.x/ and B.x; y/D �.y/=�.x/ we obtain“
BB

�.x/ �.y/

�
A.x; y/

B.x; y/
C
B.x; y/

A.x; y/
�B.x; y/�

1

B.x; y/

�
�.x; dy/ dx

D

“
BB

�.x/ �.y/

��
A.x; y/

B.x; y/
C
B.x; y/

A.x; y/
� 2

�
�

�p
B.x; y/�

1p
B.x; y/

�2�
�.x; dy/ dx

D

“
BB

�.x/ �.y/

�
2

1X
kD1

.logA.x; y/� logB.x; y//2k

.2k/Š

�
�.x; dy/ dx

�

“
BB

�.x/ �.y/

�p
B.x; y/�

1p
B.x; y/

�2
�.x; dy/ dx

D

“
BB

�.x/ �.y/

�
2

1X
kD1

.log.u.y/=�.y//� log.u.x/=�.x///2k

.2k/Š

�
�.x; dy/ dx

�

“
BB

.�.x/� �.y//2 �.x; dy/ dx

�

Z
Br

Z
Br

�
2

1X
kD1

.logu.y/� logu.x//2k

.2k/Š

�
�.x; dy/ dx�

“
BB

.�.x/� �.y//2 �.x; dy/ dx;

where we applied (4-5) and the fact that for positive real a; b

.a� b/2

ab
D .a� b/.b�1� a�1/D 2

1X
kD1

.log a� log b/2k

.2k/Š
: (4-7)

Altogether, we obtain

.f; �/�

Z
Br

Z
Br

�
2

1X
kD1

.logu.y/� logu.x//2k

.2k/Š

�
�.x; dy/ dx�

“
BB

.�.x/��.y//2 �.x; dy/ dx

C 2

“
BrC�B

c
rC�

.u.y/�u.x//.�2.x/u�1.x/� �2.y/u�1.y// �.x; dy/ dx: (4-8)
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The third term on the right-hand side can be estimated as follows:

2

“
BrC�B

c
rC�

.u.y/�u.x//.�2.x/u�1.x/� �2.y/u�1.y// �.x; dy/ dx

D 2

“
BrC�B

c
rC�

.u.y/�u.x//�2.x/u�1.x/ �.x; dy/ dx

D 2

Z
BrC�

Z
Bc
rC�

�2.x/

u.x/
u.y/�.x; dy/ dx� 2

Z
BrC�

Z
Bc
rC�

�2.x/ �.x; dy/ dx

� �2

Z
Rd

Z
Rd
.�.y/� �.x//2 �.x; dy/ dx;

where we used nonnegativity of u in Rd. Therefore,Z
Br

Z
Br

�
2

1X
kD1

.logu.y/� logu.x//2k

.2k/Š

�
�.x; dy/ dx

� 3

“
RdRd

.�.x/� �.y//2 �.x; dy/ dxCkf kLq=˛.BrC�/ku
�1
kLq=.q�˛/.BrC�/

: (4-9)

The proof is complete after the trivial observation ju�1j � "�1. �

Lemma 4.5. Assume 0 < R < 1 and f 2 Lq=˛.B5R=4/ for some q > d . Assume u 2 V �.B5R=4 jRd / is
nonnegative in Rd and satisfies

E.u; �/� .f; �/ for any nonnegative � 2H�
B5R=4

.Rd /;

u.x/� " for almost all x 2 B 5R
4

and some " > 1
4
Rıkf kLq=˛.B9R=8/;

where

ı D ˛

�
q� d

q

�
:

Then there exist Np 2 .0; 1/ and c > 0 such that�

/

Z
BR

u.x/ Np dx
�1
Np

dx � c
�

/

Z
BR

u.x/� Np dx
�� 1
Np

; (4-10)

where c and Np are independent of x0, R, u, ", and ˛.

Proof. The main idea is to prove logu2 BMO.BR/. Choose z0 2BR and r >0 such that B2r.z0/�BR=8.
Set �D r . Lemma 4.4 and Assumption (A) implyZ
Br .z0/

Z
Br .z0/

.logu.y/� logu.x//2

jx�yjdC˛
dy dx�

Z
Br .z0/

Z
Br .z0/

.logu.y/�logu.x//2�.x;dy/dx� c1rd�˛:

Application of the Poincaré inequality, Fact 3.2, and the scaling property 3.3 leads toZ
Br .z0/

jlogu.x/� Œlogu�Br .z0/j
2 dx � c2rd ; (4-11)
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where
Œlogu�Br .z0/ D jBr.z0/j

�1

Z
Br .z0/

loguD /

Z
Br .z0/

logu:

From hereZ
Br .z0/

jlogu.x/� Œlogu�Br .z0/j dx �
�Z
Br .z0/

jlogu.x/� Œlogu�Br .z0/j
2 dx

�1
2

jBr.z0/j
1
2 � c3r

d :

An application of the John–Nirenberg embedding, see [Gilbarg and Trudinger 1998, Chapter 7.8], then
gives Z

BR

e Npjlogu.y/�Œlogu�Br j dy � c4Rd ;

where Np and c4 depend only on d and c3. One obtains�Z
BR

u.y/ Np dy
��Z

BR

u.y/� Np dy
�
D

�Z
BR

e Np.logu.y/�Œlogu�Br / dy
��Z

BR

e� Np.logu.y/�Œlogu�Br / dy
�

� c24R
2d :

The above inequality proves assertion (4-10). �

The next result allows us to apply Moser’s iteration for negative exponents. It is a purely local result
although the Dirichlet form is nonlocal.

Lemma 4.6. Assume x0 2 B1 and 0 < 8� < R < 1� �. Set BR D BR.x0/. Let f 2 Lq=˛.B5R=4/ for
some q > d . Assume u 2 V �.B5R=4 jRd / is nonnegative on all of Rd and satisfies

E.u; �/� .f; �/ for any nonnegative � 2H�
B5R=4

.Rd /;

u.x/� " for almost all x 2 B 9R
8

and some " > Rıkf kLq=˛.B9R=8/;

where

ı D ˛

�
q� d

q

�
:

Then for p > 1

ku�1k
p�1

L.p�1/d=.d�˛/.BR/
� c

�
p

p� 1

�
��˛ku�1k

p�1

Lp�1.BRC�/
; (4-12)

where c > 0 is independent of u, x0, R, �, p, ", and ˛.

Proof. Let � W Rd ! R be a function according to assumption (B); i.e.,

S WD supp.�/� BRC� � B 9R
8
;

k�k1 � 1 for all x 2 BR such that �.x/D 1;

sup
x2Rd

Z
Rd
.�.y/� �.x//2 �.x; dy/� B��˛:

The assumptions of the lemma imply

E.u;��2u�p/� .f;��2u�p/:
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Let us observe the following:

E.u;��2u�p/D
“

.u.y/�u.x//.�2.x/ u.x/�p � �2.y/ u.y/�p/ �.x; dy/ dx

D

Z
S

Z
S

.u.y/�u.x//.�2.x/ u.x/�p � �2.y/ u.y/�p/ �.x; dy/ dx

C 2

Z
S

Z
RdnS

.u.y/�u.x//.�.x/� �.y//2 u.x/�p�.x; dy/ dx

�

Z
S

Z
S

.u.y/�u.x//.�2.x/ u.x/�p � �2.y/ u.y/�p/ �.x; dy/ dx

� 2

Z
S

u.x/1�p
Z

RdnS

.�.x/� �.y//2 �.x; dy/ dx:

The last term is finite because of our assumptions on � . However, note that �.y/D 0 for y 2 Rd nS .
Next, we choose aD u.x/, b D u.y/, �1 D �.x/, �2 D �.y/, and apply Lemma 4.3 to the integrand in
the first term. Then“
SS

.�.y/ u.y/
�pC1
2 � �.x/ u.x/

�pC1
2 /2 �.x; dy/ dx

�
cp

p� 1

“
SS

.�.y/� �.x//2.u.y/�pC1Cu.x/�pC1/ �.x; dy/ dx

C 2

Z
S

u.x/�pC1
Z

RdnS

.�.x/� �.y//2 �.x; dy/ dxC c.f;��2u�p/

�

�
2cp

p� 1
C 2

�Z
S

u.x/�pC1
Z

Rd
.�.x/� �.y//2 �.x; dy/ dxC c.f;��2u�p/

� c1.p/�
�˛

Z
BRC�

u.x/�pC1 dxC c.f;��2u�p/ (4-13)

for some positive constant c, which is independent of p, R, f and u. It remains to estimate j.f;��2u�p/j
from above:
j.f;��2u�p/j � "�1j.f; �2u�pC1/j � "�1kf kLq=˛.B9R=8/k�

2u�pC1kLq=.q�˛/.B9R=8/

D "�1kf kLq=˛.B9R=8/k�u
�pC1
2 k

2
L2q=.q�˛/.B9R=8/

� "�1kf kLq=˛.B9R=8/fak�u
�pC1
2 k

2
L2d=.d�˛/.B9R=8/

C a�
d
q�d k�u

�pC1
2 k

2
L2.B9R=8/

g

�R�˛
q�d
q ak�2u�pC1kLd=.d�˛/.B9R=8/CR

�˛ q�d
q a�

d
q�d k�2u�pC1kL1.B9R=8/;

where a > 0 is arbitrary. We choose aD !R˛.q�d/=q for some ! and obtain

j.f;��2u�p/j � !k�2u�pC1kLd=.d�˛/.B9R=8/C!
� d
q�dR�˛k�2u�pC1kL1.B9R=8/:

Combining these estimates we obtain from (4-13) for every p > 1 and every ! > 0“
SS

�
�.y/ u.y/

�pC1
2 � �.x/ u.x/

�pC1
2

�2
�.x; dy/ dx

� c3.p; !/�
�˛

Z
BRC�

u.x/�pC1 dxC c!k�2u�pC1kLd=.d�˛/.BRC�/:
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Next, we use Assumption (A) and apply the Sobolev inequality, Fact 3.4, to the left-hand side. Choosing
! small enough and subtracting the term c!k�2u�pC1kLd=.d�˛/.BRC�/ from both sides, we prove the
assertion of the lemma. �

Lemma 4.6 provides us with an estimate which can be iterated. As a result of this iteration we obtain
the following corollary.

Corollary 4.7. Assume x0 2 B1, 0 < R < 1
2

, and 0 < � < 1 < ‚. Let f 2 Lq=˛.B‚R/ for some q > d .
Assume u 2 V �.B‚R jRd / satisfies

E.u; �/� .f; �/ for any nonnegative � 2H�
B‚R

.Rd /;

u.x/� " for almost all x 2 B‚R and some " > .‚R/ıkf kLq=˛.BR.1C3‚/=4/;

where

ı D ˛

�
q� d

q

�
:

Then for any p0 > 0

inf
x2B�R

u.x/� c

�
/

Z
BR

u.x/�p0 dx
�� 1

p0

; (4-14)

where c > 0 is independent of u;R, ", and ˛.

Proof. The idea of the proof is to apply Lemma 4.6 to radii Rk , �k with Rk& �R and �k& 0 for k!1.
For each k one chooses an exponent pk > 1 with pk!1 for k!1. Because of Assumption (A) we
can apply the Sobolev inequality, Fact 3.4, to the left-hand side in (4-12). Next, one iterates the resulting
inequality as in [Moser 1961]; see also Chapter 8.6 in [Gilbarg and Trudinger 1998]. The only difference
to the proof in [Moser 1961] is that the factor d=.d � 2/ now becomes d=.d � ˛/. The assertion then
follows from the fact �

/

Z
BRk .x0/

u�pk
�� 1

pk

! inf
B�R.x0/

u for k!1: �

Let us finally prove Theorem 4.1.

Proof of Theorem 4.1. Define NuD uCkf kLq=˛.B15=16/ and note that E.u; �/D E. Nu; �/ for every �. We
apply Lemma 4.5 for RD 3

4
and obtain that there exist Np 2 .0; 1/ and c > 0 such that�

/

Z
B3=4

Nu.x/ Np dx
�1
Np

dx � c
�

/

Z
B3=4

u.x/� Np dx
�� 1
Np

:

Next, we apply Corollary 4.7 with RD 3
4

, �D 2
3

and ‚D 5
4

. Together with the estimate from above we
obtain

inf
B1=2

u� c

�
1

jB 3
4
j

Z
B3=4

Nu.x/ Np dx
�1
Np

; (4-15)

which, after recalling the definition of Nu, proves Theorem 4.1. �
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5. The weak Harnack inequality implies Hölder estimates

The aim of this section is to provide the proof of Theorem 1.10. As is explained in Section 1D it is well
known that both the Harnack inequality and the weak Harnack inequality imply regularity estimates in
Hölder spaces. Here we are going to establish such a result for quite general nonlocal operators in the
framework of metric measure spaces.

We begin with a short study of condition (1-16). The standard example that we have in mind is given
in Example 1.9. Let .X; d;m/ be a metric measure space. For R > r > 0, x 2X , set

Br.x/D fy 2X W d.y; x/ < rg; Ar;R.x/D BR.x/ nBr.x/: (5-1)

Lemma 5.1. For x 2 X , r > 0 let �x;r be a measure on B.X n fxg/, which is finite on all sets M with
dist.fxg;M/ > 0. Then the following conditions are equivalent:

(1) For some � > 1, c � 1 and all x 2X , 0 < r � 1, j 2 N0

�x;r.X nBr2j .x//� c�
�j :

(2) Given � > 1, there are � > 1, c � 1 such that for all x 2X , 0 < r � 1, j 2 N0

�x;r.X nBr�j .x//� c�
�j :

(3) Given � > 1, there are � > 1, c � 1 such that for all x 2X , 0 < r � 1, j 2 N0

�x;r.Ar�j ;r�jC1.x//� c�
�j :

(4) Given � >1, � >1 there are �>1, c� 1 such that for all x 2X , 0<r � 1, j 2N0 and y 2Br=� .x/

�y;r 0.Ar�j ;r�jC1.x//� c�
�j ; where r 0 D r

�
1�

1

�

�
: (5-2)

If , in addition to any of the above conditions, (1-17) holds, then (5-2) can be replaced by

�y;r.Ar�j ;r�jC1.x//� c�
�j : (5-3)

Proof. If � � 2, the implication .1/) .2/ trivially holds true. For � < 2 it can be obtained by adjusting �
appropriately. The proof of .2/) .1/ is analogous. The implication .2/) .3/ trivially holds true. The
implication .3/) .2/ follows from

�x;r.X nBr�j .x//D

1X
kDj

�x;r.Ar�k ;r�kC1.x//� c

1X
kDj

��k D c

�
�

�� 1

�
��j :

The implication .4/) .3/ trivially holds true. Instead of .3/) .4/ we explain the proof of .2/) .4/.
Fix � > 1, � > 1, x 2X , r > 0, j 2 N0, and y 2 Br=� .x/. Set r 0 D r.1� 1=�/. Then X nBr�j .x/�
X nBr 0�j .y/. Thus

�y;r 0.X nBr�j .x//� �y;r 0.X nBr 0�j .y//� c�
�j : �
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Remark. Note that the conditions above imply that, given j 2 N0 and x 2X , the quantity

lim sup
r!0C

�x;r.X nBr2j .x//

is finite.

Remark. Let x 2X , A 2 B.X n fxg/, with dist.fxg; A/ > 0. In the applications that are of interest to us,
the function r 7! �x;r.A/ is strictly increasing with �x;0.A/D 0.

Proof of Theorem 1.10. The proof follows closely the strategy of [Moser 1961]; see also [Silvestre 2006].
Throughout the proof, let us write Bt instead of Bt .x0/ for t > 0. Fix r 2 .0; r0/ and u 2 Sx0;r . Let
c1 � 1 be the constant in (1-19). Set � D .2c121=p/�1 and

ˇ D
ln.2=.2� �//

ln.�/
D)

�
1� 1

2
�
�
D ��ˇ :

SetM0Dkuk1, m0D infX u.x/, andM�nDM0, m�nDm0 for n2N. We will construct an increasing
sequence .mn/ and a decreasing sequence .Mn/ such that for n 2 Z

mn � u.z/�Mn for almost all z 2 Br��n ;

Mn�mn �K�
�nˇ ;

(5-4)

where K DM0�m0 2 Œ0; 2kuk1�. Assume there is k 2 N and there are Mn; mn such that (5-4) holds
for n� k� 1. We need to choose mk;Mk such that (5-4) still holds for nD k. Then the assertion of the
lemma follows by complete induction. For z 2X set

v.z/D
�
u.z/� 1

2
.Mk�1Cmk�1/

�2� .k�1/ˇ
K

:

The definition of v implies v 2 Sx0;r and jv.z/j � 1 for almost any z 2 Br��.k�1/ . Our next aim is to
show that (1-19) implies that either v � 1� � or v ��1C � on Br��k . Since our version of the Harnack
inequality contains nonlocal terms we need to investigate the behavior of v outside of Br��.k�1/ . Given
z 2X with d.z; x0/� r��.k�1/ there is j 2 N such that

r��kCj � d.z; x0/ < r�
�kCjC1:

For such z and j we conclude

K

2� .k�1/ˇ
v.z/D

�
u.z/� 1

2
.Mk�1Cmk�1/

�
�
�
Mk�j�1�mk�j�1Cmk�j�1�

1
2
.Mk�1Cmk�1/

�
�
�
Mk�j�1�mk�j�1�

1
2
.Mk�1�mk�1/

�
�
�
K��.k�j�1/ˇ � 1

2
K��.k�1/ˇ

�
;

that is,

v.z/� 2�jˇ � 1� 2

�
�
d.z; x0/

r��.k�1/

�̌
� 1; (5-5)
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and

K

2� .k�1/ˇ
v.z/D

�
u.z/� 1

2
.Mk�1Cmk�1/

�
�
�
mk�j�1�Mk�j�1CMk�j�1�

1
2
.Mk�1Cmk�1/

�
�
�
�.Mk�j�1�mk�j�1/C

1
2
.Mk�1�mk�1/

�
�
�
�K��.k�j�1/ˇ C 1

2
K��.k�1/ˇ

�
;

that is,

v.z/� 1� 2�jˇ � 1� 2

�
�
d.z; x0/

r��.k�1/

�̌
:

Now there are two cases:

Case 1: m.fx 2 Br��kC1=� W v.x/� 0g/�
1
2
m.Br��kC1=�/.

Case 2: m.fx 2 Br��kC1=� W v.x/ > 0g/�
1
2
m.Br��kC1=�/.

We work out details for Case 1 and comment afterwards on Case 2. In Case 1 our aim is to show
v.z/� 1� � for almost every z 2 Br��k and some � 2 .0; 1/. Because then for almost any z 2 Br��k

u.z/� 1
2
.1� �/K��.k�1/ˇ C 1

2
.Mk�1Cmk�1/

D
1
2
.1� �/K��.k�1/ˇ C 1

2
.Mk�1�mk�1/Cmk�1

Dmk�1C
1
2
.1� �/K��.k�1/ˇ C 1

2
K��.k�1/ˇ

�mk�1CK�
�kˇ : (5-6)

We then set mk Dmk�1 and Mk DmkCK�
�kˇ and obtain, using (5-6), mk � u.z/�Mk for almost

every z 2 Br��k , which is what needs to be proved.
Consider w D 1� v and note w 2 Sx0;r��.k�1/ and w � 0 in Br��.k�1/ . We apply (1-19) and obtain�

/
Z
B
r��kC1=�

.x0/

wp dm
�1
p

� c1 inf
B
r��k

wC c1 sup
x2B

r��kC1=�

Z
X

w�.z/�x;r��.k�1/.dz/; (5-7)

In Case 1 the left-hand side of (5-7) is bounded from below by
�
1
2

�1=p. This, together with the estimate
(5-5) on v from above, leads to

inf
B
r��k

w � .c12
1
p /�1� sup

x2B
r��kC1=�

Z
X

w�.z/�x;r��.k�1/.dz/

� .c12
1
p /�1�

1X
jD1

sup
x2B

r��kC1=�

Z
1A

r��kCj ;r��kCjC1
.x0/.1� v.z//

��x;r��.k�1/.dz/

� .c12
1
p /�1�

1X
jD1

.2�jˇ � 2/�x0;r;�;j;k;

where

�x0;r;�;j;k D sup
x2B

r��kC1=�

�x;r��.k�1/.Ar��kCj ;r��kCjC1.x0//:



344 BARTŁOMIEJ DYDA AND MORITZ KASSMANN

Now, (5-3) implies that �x0;r;�;j;k � c�
�j�1. Thus we obtain

inf
B
r��k

w � .c12
1
p /�1� 2c

1X
jD1

.�jˇ � 1/��j�1: (5-8)

Note that
P1
jD1 �

jˇ��j�1 <1 for ˇ > 0 small enough; i.e., there is l 2 N with
1X

jDlC1

.�jˇ � 1/��j�1 �

1X
jDlC1

�jˇ��j�1 � .16c1/
�1:

Given l we choose ˇ > 0 smaller (if needed) in order to ensure
lX

jD1

.�jˇ � 1/��j�1 � .16c1/
�1:

The number ˇ depends only on c1, c, � from (5-3) and on � . Thus we have shown that w � � on Br��k
or, equivalently, v � 1� � on Br��k .

In Case 2 our aim is to show v.x/� �1C �. This time, set w D 1C v. Following the strategy above
one sets Mk DMk�1 and mk DMk �K�

�kˇ leading to the desired result.
Let us show how (5-4) proves the assertion of the lemma. Given � � r , there exists j 2 N0 such that

r��j�1 � � � r��j :

From (5-4) we conclude

oscB� u� oscB
r��j

u�Mj �mj � 2�
ˇ
kuk1

�
�

r

�̌
: �

Corollary 5.2. Let �D Br0.x0/ � X and let �; �; � > 1. Let Sx;r and �x;r be as above. Assume that
conditions (1-16), (1-17) are satisfied. Assume that there is c � 1 such that for 0 < r � r0

.Br.x/��/^ .u 2 x; r/^ .u� 0 in Br.x//

D)

�

/

Z
Br=�.x/

u.�/p m.d�/
�1
p

� c inf
Br=� .x/

uC c sup
�2Br=� .x/

Z
X

u�.z/ ��;r.dz/: (5-9)

Then there exist ˇ 2 .0; 1/ such that for every u 2 Sx0;r0 and almost every x, y 2�

ju.x/�u.y/j � 16�ˇkuk1

�
d.x; y/

d.x;�c/_ d.y;�c/

�̌
: (5-10)

Proof. By symmetry, we may assume that r WD d.y;�c/� d.x;�c/. Furthermore, it is enough to prove
(5-10) for pairs x, y such that d.x; y/ < r=8, as in the opposite case the assertion is obvious.

We fix a number � 2 .0; r0=4/ and consider all pairs of x, y 2� such that

1
2
� � d.x; y/� �: (5-11)

We cover the ball Br0�4�.x0/ by a countable family of balls zBi with radii �. Without loss of generality,
we may assume that zBi \Br0�4�.x0/¤∅. Let Bi denote the ball with the same center as the ball zBi
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and radius 2� and let B�i denote the ball with the same center as the ball zBi with radius the maximal
radius that allows B�i ��.

Let x, y 2� satisfy (5-11). From r > 8d.x; y/� 4� it follows that y 2Br0�4�.x0/; therefore y 2 zBi
for some index i . We observe that both x and y belong to Bi . We apply Theorem 1.10 to x0 and r0 being
the center and radius of B�i , respectively, and obtain

oscBi u� 2�
ˇ
kuk1

�
radius.Bi /
radius.B�i /

�̌
� 2�ˇkuk1

�
�

r � �

�̌
�
16

3
�ˇkuk1

�
d.x; y/

r

�̌
:

Hence (5-10) holds, provided x and y are such that ju.x/�u.y/j � oscBi u.
By considering � D r02

�j for j D 3, 4, . . . , we prove (5-10) for almost all x and y such that
d.x; y/� r0=8; hence the proof is finished. �

5A. Proof of Theorem 1.7. We are now going to use the above results and prove one of our main results.

Proof of Theorem 1.7. The proof of Theorem 1.7 follows from Corollaries 4.2 and 5.2. The proof is
complete once we can apply Corollary 5.2 for x0D 0 and r0D 1

2
. Assume 0 < r � r0 and Br.x/�B1=2.

Let Sx;r be the set of all functions u 2 V �.Br.x/ jRd / satisfying E.u; �/D 0 for every � 2H�

Br .x/
.Rd /.

Assume u 2 Sx;r and u� 0 in Br.x/. Then Corollary 4.2 implies

inf
Br=4.x/

u� c

�
/

Z
Br=2.x/

u.x/p0 dx
� 1
p0

� r˛ sup
y2B15R=16.x/

Z
RdnBr .x/

u�.z/ �.y; dz/;

with positive constants p0, c which depend only on d , ˛0, A, B . Set � D 4, �D 2, � D 16
15

. Let �x;r be
the measure on Rd nBr.x/ defined by

�x;r.A/D r
˛�.x;A/:

The condition (1-17) obviously holds true. The condition (1-16) follows from (D). Thus we can apply
Corollary 5.2 for x0 D 0 and r0 D 1

2
and obtain the assertion of Theorem 1.7. �

6. Local comparability results for nonlocal quadratic forms

The aim of this section is to provide the proof of Theorem 1.11. First, we show that (T) and (U) imply (B).
Then we establish the upper bound in (A) in the two cases (i) and (ii). The lower bound in (A) is more
challenging. We prove it for the two cases in separate subsections. The last subsection contains two
examples, which are not covered by cases (i) and (ii).

6A. (T) and (U) imply (B). It is easy to prove that (T) and (U) imply (B) with a constant B � 1
independent of ˛ 2 .˛0; 2/: Let � 2 C1.Rd / be a function satisfying supp.�/ D BRC�, � � 1 on
BR, 0 � � � 1 on Rd, and j�.x/� �.y/j � 2��1jx � yj for all x, y 2 Rd. In particular, we have then
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j�.x/� �.y/j � .2��1jx�yj/^ 1. For every x 2 Rd we obtainZ
Rd
.�.x/� �.y//2 �.x; dy/�

Z
Rd
..4��2jzj2/^ 1/ ��.dz/

D 4��2
Z

Rd

�
jzj2 ^ 1

4
�2
�
��.dz/� 2˛CU ��˛ � 4CU ��˛:

Thus we only need to concentrate on proving (A).

6B. Upper bound in (A). Let us formulate and prove the following comparability result.

Proposition 6.1. Assume that � satisfies (U) with the constant CU and let 0 < ˛0 � ˛ < 2. If D � Rd is
a bounded Lipschitz domain, then there exists a constant c D c.˛0; d; CU ;D/ such that

E�D.u; u/� cE
�˛
D .u; u/; u 2H

˛
2 .D/: (6-1)

The constant c may be chosen such that (6-1) holds for all balls D D Br of radius r < 1, and for all
˛ 2 Œ˛0; 2/.

Proof. By E we denote the extension operator from H˛=2.D/ to H˛=2.Rd /; see Fact 3.1. By subtracting
a constant, we may and do assume that

R
D u dx D 0. We have by Plancherel’s formula and Fubini’s

theorem

E�D.u; u/D
Z
D

Z
D�y

.u.yC z/�u.y//2 �.dz/ dy (6-2)

�

Z
D

Z
BdiamD.0/

.Eu.yC z/�Eu.y//2 �.dz/ dy

�

Z
BdiamD.0/

Z
Rd
.Eu.yC z/�Eu.y//2 dy �.dz/

D

Z
Rd

�Z
BdiamD.0/

jei��z � 1j2�.dz/
�
jcEu.�/j2 d�

D

Z
Rd

�Z
BdiamD.0/

4 sin2
�
� � z

2

�
�.dz/

�
jcEu.�/j2 d�: (6-3)

For j�j> 2 we obtain, using (U)Z
4 sin2

�
� � z

2

�
�.dz/� j�j2

Z
.jzj2 ^ 4j�j�2/ �.dz/� 4CU j�j˛; (6-4)

and for j�j � 2 Z
4 sin2

�
� � z

2

�
�.dz/� 4

Z �ˇ̌̌̌
� � z

2

ˇ̌̌̌2
^ 1

�
�.dz/� 4CU :

Thus

E�D.u; u/� c
0

Z
Rd
.j�j˛C 1/jcEu.�/j2 d�

� c0kEuk2
H˛=2.Rd /

� ckuk2
H˛=2.D/

D c.E�˛D .u; u/Ckuk2
L2.D/

/; (6-5)



REGULARITY ESTIMATES FOR ELLIPTIC NONLOCAL OPERATORS 347

with c D c.d; CU ;D/. Since
R
D u dx D 0, we have by Fact 3.2

E�˛D .u; u/� c.˛0; d;D/

Z
D

u2.x/ dx

and this together with (6-5) proves (6-1).
By scaling, the last assertion of the theorem is satisfied with a constant c D c.˛0; d; CU ; B1/. �

Proof of Theorem 1.11: upper bound in (A). The second inequality in (A) follows from Proposition 6.1.
We note that the constant in this inequality is robust under the mere assumption that ˛ is bounded away
from zero. �

6C. Lower bound in (A), case .i/. The aim of this subsection is to complete the proof of Theorem 1.11
in the case (i). The strategy3 is as follows. We will begin with a simple specific case. We set ek D
.0; : : : ; 0; 1; 0; : : : ; 0/ 2 Rd ; i.e., ek is the k-th standard unit vector in Rd.

Theorem 6.2. Let d � 2, 0 < ˛ < 2, and let � be as in (1-11), i.e.,

�.x; dy/D .2�˛/

dX
iD1

�
jxi �yi j

�1�˛ dyi
Y
j 6Di

ıfxj g.dyj /
�
DW

dX
iD1

�i .x; dy/: (6-6)

Then there exists a constant AD A.d/ such that

for every ball B�.x0/ with � 2 .0; 1/; x0 2 B1; and every v 2H
˛
2 .B�.x0//;

E�˛
B�.x0/

.v; v/� A E�
B�.x0/

.v; v/:
(6-7)

Proof. Let us fix B D B�.x0/ as in the theorem. We may assume that x0 D 0, because the measures
considered are translation invariant. For a permutation � of f1; 2; : : : ; dg and x; y 2 B we define

p�k .x; y/D .a1; : : : ; ad /; where aj D
�
yj if ��1.j /� k;
xj if ��1.j / > k:

For example,

p�0 .x; y/D x; p�1 .x; y/D .x1; : : : ; x�.1/�1; y�.1/; x�.1/C1; : : : ; xd /; p�d .x; y/D y:

That is, pk.x; y/ are vertices of a polygonal chain joining x and y whose consecutive line segments
are parallel to the coordinate axes; more precisely, the j -th line segment is parallel to �.j /-th axis.
Furthermore, let

E� .B; x/D fy 2 B W p�k .x; y/ 2 B for each k D 1; : : : ; dg (6-8)

be the set of all points y which may be connected with x by such a polygonal chain lying completely
in B . We obtain

I � WD

Z
B

Z
E� .B;x/

.u.x/�u.y//2 �˛.x; dy/ dx

� d

dX
kD1

Z
B

Z
E� .B;x/

.u.p�k�1.x; y//�u.p
�
k .x; y///

2 �˛.x; dy/ dx DW d
dX
kD1

I �k : (6-9)

3The authors thank an anonymous referee for the idea of the proof.
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We will bound I �
k

appearing on the right of (6-9), assuming for notational simplicity that � is the identity
permutation, i.e., �.k/D k. Then

I �k D

Z
B

Z
E� .B;x/

.u.p�k�1.x; y//�u.p
�
k .x; y///

2 �˛.x; dy/ dx

D .2�˛/

Z
B

Z
E� .B;x/

.u.y1; : : : ; yk�1; xk; : : : ; xd /�u.y1; : : : ; yk; xkC1; : : : ; xd //
2

jx�yjdC˛
dy dx:

We would like to change the order of integration, so that we integrate outside with respect to

w WD p�k�1.x; y/D .y1; : : : ; yk�1; xk; : : : ; xd /;

and inside with respect to

z WD xCy �w D .x1; : : : ; xk�1; yk; : : : ; yd /:

Then jx�yj D jz�wj and p�
k
.x; y/D wC .zk �wk/e

k . Let

F.B;w/ WD fz 2 Rd W wC .zk �wk/e
k
2 Bg;

F0.B;w/ WD ft 2 R W wC .t �wk/e
k
2 Bg:

We note that if x 2 B and y 2E� .B; x/, then w 2 B and pk.x; y/ 2 B; hence z 2 F.B;w/. Therefore

I �k � .2�˛/

Z
B

Z
F.B;w/

.u.w/�u.wC .zk �wk/e
k//2

jw� zjdC˛
dz dw

D .2�˛/

Z
B

Z
F0.B;w/

�
.u.w/�u.wC .zk �wk/e

k//2
Z

Rd�1

dz1 � � � dzk�1 dzkC1 � � � dzd
jw� zjdC˛

�
dzk dw:

The inner integral over Rd�1 is simple to calculate using scaling; it givesZ
Rd�1

dz1 � � �dzk�1 dzkC1 � � �dzd
jw�zjdC˛

Djwk�zkj
�˛�1c.d/

Z 1
0

.1Ct2/
�d�˛
2 td�2 dt �C.d/jwk�zkj

�˛�1:

Thus

I �k � C.d/.2�˛/

Z
B

Z
F0.B;w/

Œ.u.w/�u.wC .zk �wk/e
k//2jwk � zkj

�˛�1� dzk dw

D C.d/

Z
B

Z
B

.u.w/�u.z//2 �k.w; dz/ dw:

The same inequality as above holds for I �
k

with an arbitrary permutation � . We obtainX
�

I � D
X
�

dX
kD1

I �k � C.d/dŠ E
�
B .u; u/; (6-10)

where the sum runs over the set of all permutations on f1; 2; : : : ; dg. On the other hand, for each pair
.x; y/ 2 B �B , there exists a permutation � such that y 2E� .B; x/. Indeed, if M D #fj W jyj j< jxj jg,
then as � we may take any permutation satisfying �.f1; : : : ;M g/D fj W jyj j< jxj jg. If 1� j �M, then
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jpj .x; y/j< jxj, and if j >M, then jpj .x; y/j � jyj; therefore pj .x; y/2B for all j ; i.e., y 2E� .B; x/
as claimed. ThusX

�

I � D
X
�

Z
B

Z
E� .B;x/

.u.x/�u.y//2 �˛.x; dy/ dx � E�˛B .u; u/;

which together with (6-10) gives the assertion of the theorem. �

Next, we consider linear transformations of �. Let L W Rd ! Rd be an invertible linear transform. For
a measure � on Rd we define the measure � ıL by

.� ıL/.E/D �.L.E//; E � Rd ; where E is a Borel set;

or, equivalently, by Z
f .x/.� ıL/.dx/D

Z
f .L�1.x// �.dx/; (6-11)

for all Borel measurable functions f W Rd ! Œ0;1/.

Lemma 6.3. Let 0 < ˛0 � ˛ < 2 and let a measure � on Rd satisfy condition (6-7) with some constant A,
with E� defined by (1-21). Let L W Rd ! Rd be an invertible linear transform. Then � ıL also satisfies
condition (6-7) with the constant depending only on A, d , ˛0 and the norms kLk and kL�1k.

Proof. Let u be a Borel measurable function on Rd ; let B D B�.x0/ with x0 2 B1 and � 2 .0; 1/. Let

v.x/D u.L�1.x� x0/C x0/; x 2 Rd :

By a linear change of variable and (6-11) we obtain

E�ıLB .u; u/D
1

detL

Z
x0CL.B.0;�//

Z
Rd
.v.x/� v.xC z//2 1x0CL.B.0;�//.xC z/ �.dz/ dt: (6-12)

We observe that B.0; s�/� L.B.0; �//, where s D kL�1k�1 ^ 1; therefore

E�ıLB .u; u/�
1

detL

Z
B.x0;s�/

Z
Rd
.v.x/� v.xC z//2 1B.x0;s�/.xC z/ �.dz/ dt

D
1

detL
E�
B.x0;s�/

.v; v/�
A�1

detL
E�˛
B.x0;s�/

.v; v/;

by the assumption and the fact that s � 1. Since L.B.0; st�//� B.0; s�/, where t D kLk�1 ^ 1, we get

E�ıLB .u; u/�
A�1

detL

Z
x0CL.B.0;st�//

Z
Rd
.v.x/� v.xC z//2 1x0CL.B.0;st�//.xC z/�˛.dz/ dt

D A�1E�˛ıL
B.0;st�/

.u; u/; (6-13)

where in the last line we used (6-12) with �˛ in place of �.
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However,

.�˛ ıL/.E/D .2�˛/

Z
L.E/

jxj�d�˛ dx D .2�˛/ detL
Z
E

jL.x/j�d�˛ dx

� .2�˛/ detLkLk�d�˛
Z
E

jxj�d�˛ dx D detLkLk�d�˛�˛.E/:

Plugging this into (6-13) we obtain

E�ıLB .u; u/� detLkLk�d�˛A�1E�˛
B.0;st�/

.u; u/:

The theorem follows now from Lemma 6.13; since detL� kL�1k and st D .kL�1k�1^1/.kLk�1^1/,
the constants depend only on A, d , ˛0, kLk and kL�1k. We note here that the proof of this lemma,
although presented later, does not use any previous results, i.e., there is no circular reasoning. �

With the help of Lemma 6.3 we are able to prove the following generalization of Theorem 6.2.

Corollary 6.4. Let 0 < ˛0 � ˛ < 2. Let f 1; : : : ; f d 2 Sd�1 be linearly independent. Assume that
L W Rd ! Rd is the linear transform that maps ej to f j. Then the measure

�.E/D .2�˛/

dX
jD1

Z 1
0

ırfj .E/r
�1�˛ dr .E 2 B.Rd // (6-14)

satisfies condition (6-7) with E� defined by (1-21) and the constant depending only on d , ˛0 and the
norm kL�1k.

Proof. Since kLk �
p
d , the result follows from Theorem 6.2 and Lemma 6.3. �

In order to prove comparability for all nondegenerate ˛-stable measures, we need to study combinations
of measures as in (6-14). To this end, we will apply the following lemma, which essentially is contained
in [Krickeberg 1968].

Lemma 6.5. If � is a finite Borel measure on Sd�1, then there exists a Borel function � W Œ0; �.X/�!
Sd�1 such that j��1.A/j D �.A/ for every Borel set A� Sd�1 and �.Œ0; �.X/�/� supp� .

Proof. It is enough to prove the result for measures � which are either purely atomic, or nonatomic. In
the first case the construction of such � is straightforward: if faj W 0 � j < N g are all the atoms of �
(where N 2 N[f1g), then we put

�.t/D

�
aj for t 2

�P
0�i<j �.faig/;

P
0�i�j �.faig/

�
and 0� j < N ,

a0 for t D �.X/.

In the nonatomic case, since � is Radon, the result follows from [Krickeberg 1968, Hilfssatz, page 64;
Oxtoby 1970, Theorem 2]. �

We finally provide the proof of the comparability result for general ˛-stable measures.

Proof of Theorem 1.11(i). Assume that � is a measure on Sd�1 as in (1-22). Let x1; : : : ; xd 2 supp�
be a basis of Rd. Then for " > 0 small enough and some M > 0, any yj 2 B.xj ; "/\Sd�1 DW Bj also
span Rd. If L is the linear operator mapping ej D .0; : : : ; 0; 1; 0; : : : ; 0/ to yj , then the norms kLk and
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kL�1k are bounded from above by M. The number m D minf�.B1/; : : : ; �.Bd /g is strictly positive,
because xj belong to the support of � . Let

�j D
m

�.Bj /
�. � \Bj /; j D 1; : : : ; d:

Then �j are Borel measures on Sd�1 with mass m and supp�j � Bj . Let �j W Œ0;m�! Sd�1 be the
Borel functions from Lemma 6.5 corresponding to �j . For every Borel E � Sd�1

�.E/�

dX
jD1

�j .E/D

dX
jD1

j��1j .E/j D

Z m

0

dX
jD1

ı�j .t/.E/ dt:

Therefore

�.E/D .2�˛/

Z 1
0

�.r�1E/r�1�˛ dr �
Z m

0

�
.2�˛/

dX
jD1

Z 1
0

ır�j .t/.E/r
�1�˛ dr

�
dt:

By Corollary 6.4, the measure in the parentheses in the line above satisfies condition (6-7) with the
constant depending on d , ˛0 and M, but independent of t . Therefore also � satisfies condition (6-7) with
the constant depending on d , ˛0 and M, i.e., on ˛0 and � . �

6D. Lower bound in (A), case .ii/. The aim of this subsection is to complete the proof of Theorem 1.11
in the case (ii).

The main difficulty in establishing the lower bound in (A) is that the measures might be singular.
We will introduce a new convolution-type operation that, on the one hand, smooths the support of the
measures and, on the other hand, interacts nicely with our quadratic forms. The main result of this
subsection is Proposition 6.14.

For � < 1� � and ˛ 2 .0; 2/ let

g
�

�
.y; z/D

1

2�˛
jyC zj˛ 1AjyCzj.y/ 1AjyCzj.z/; y; z 2 Rd ; (6-15)

where
Ar D B.0; �r/ nB.0; �r/:

Definition 6.6. For measures �1; �2 on B.Rd / satisfying (U) with some ˛ 2 .0; 2/, define a new measure
�1~ �2 on B.Rd / by

�1~ �2.E/D

“
1E\B2.�.yC z// g

�

�
.y; z/ �1.dy/ �2.dz/;

i.e., Z
f .x/�1~ �2.dx/D

“
.f � 1B2/.�.yC z//g

�

�
.y; z /�1.dy/ �2.dz/;

for every measurable function f W Rd ! Œ0;1�.

This definition is tailored for our applications and needs some explanations. We consider �1~ �2 only
for measures �j which satisfy (U) with some ˛ 2 .0; 2/ for j 2 f1; 2g. This ˛ equals the exponent ˛ in
the definition of g�

�
. The above definition does not require �j to satisfy (S) but most often this will be
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the case. Note that Definition 6.6 is valid for any choice � < 1 � �. However, it will be important to
choose � small enough and � large enough. The precise bounds depend on the number a from (S); see
Proposition 6.14. Before we explain and prove the rather technical details, let us treat an example.

Let us study Example 1.5 in R2. Assume ˛ 2 .0; 2/ and

�1.dh/D .2�˛/jh1j�1�˛ dh1 ıf0g.dh2/;

�2.dh/D .2�˛/jh2j�1�˛ dh2 ıf0g.dh1/:

Both measures are one-dimensional ˛-stable measures which are orthogonal to each other. The factor
.2�˛/ ensures that for ˛! 2� the measures do not explode. Let us show that �1~�2 is already absolutely
continuous with respect to the two-dimensional Lebesgue measure. For E � B2, by the Definition 6.6
and the Fubini theorem,

�1~ �2.E/

D .2�˛/

““
jyC zj˛ 1E .�.yC z// 1AjyCzj.y/ 1AjyCzj.z/jy1j

�1�˛
jz2j
�1�˛

� � � ıf0g.dy2/ ıf0g.dz1/ dy1 dz2

D .2�˛/

“
j.y1; z2/j

˛ 1E .�.y1; z2//1Aj.y1;z2/j.y1; 0/1Aj.y1;z2/j.0; z2/jy1j
�1�˛

jz2j
�1�˛ dy1 dz2

D .2�˛/

“
1E .�x/1Ajxj.x1; 0/1Ajxj.0; x2/jxj

˛
jx1j
�1�˛

jx2j
�1�˛ dx1 dx2:

The above computation shows that the measure �1 ~ �2 is absolutely continuous with respect to the
two-dimensional Lebesgue measure, because �1 ~ �2.Rd nB2/ D 0. Let us look at the density more
closely.

So far, we have not specified � and � in the definition of g�
�

. If �< 1 is too large (in this particular case,
if �>1=

p
2), then 1Ajxj.x1; 0/1Ajxj.0; x2/D0 for all x 2R2. If � is sufficiently small, then the support of

the function 1Ajxj.x1; 0/1Ajxj.0; x2/ is a double-cone centered around the diagonals fx 2R2 W jx1jD jx2jg.
Let us denote this support by M. Note that on M the function jxj˛jx1j�1�˛jx2j�1�˛ is comparable to
jxj�2�˛. Thus indeed the quantity �1~ �2 is comparable to an ˛-stable measure in R2. If we continue
the procedure and define

Q� D .�1~ �2/~ .�1~ �2/;

then we can make use of the fact that .�1 ~ �2/ is already absolutely continuous with respect to the
two-dimensional Lebesgue measure. Note that, if �j D hj dx, then �1~�2 has a density h1~h2 with
respect to the Lebesgue measure given by

h1~ h2.�y/D
��d jyj˛

2�˛

Z
1Ajyj.y � z/ 1Ajyj.z/ h1.y � z/ h2.z/ dz; �y 2 B2: (6-16)

In this way we conclude that Q� has full support and is comparable to a rotationally symmetric ˛-stable
measure in R2. With this observation we end our study of Definition 6.6 in light of Example 1.5.
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Before we proceed to the proofs, let us informally explain the idea behind Definition 6.6 and our
strategy. In the inner integral defining

E�B.u; u/D
Z
B

Z
Rd
.u.x/�u.xC h//2 1B.xC h/ �.dh/ dx

we take into account squared increments .u.x/� u.xC h//2 in these directions h, which are charged
by the measure � and such that xCh is still in B . By changing the variables, we see that we also have
squared increments .u.xCh/�u.xChCz//2, again in directions z, which are charged by the measure �
and such that xC hC z is still in B . This allows us to estimate the integral E�B.u; u/ from below by
a similar integral with � replaced by some kind of a convolution of � with itself. Measure �~ � turns out
to be the right convolution for this purpose; see Lemma 6.12.

In the definition of �~ �, the function g�
�

vanishes if jyj or jzj is bigger than �jyC zj or smaller than
�jyCzj. This means, in our interpretation, that we consider only those pairs of jumps which are comparable
to the size of the whole two-step jump (and in particular, the jumps must be comparable to each other).

To conclude these informal remarks on the definition of �1 ~ �2 let us note that if �1 and �2 have
“good properties”, then so has �1~�2 (see Lemmas 6.7 and 6.11) and that E�1~�2B .u; u/ can be estimated
from above by E�jB .u; u/ (see Lemma 6.12). This allows us to reduce the problem of estimating E�B.u; u/
from below to estimating E�~�B .u; u/ from below, and this turns out to be easier, since the ~-convolution
makes the measure more “smooth”; see Proposition 6.14.

Lemma 6.7. If two measures �j for j 2 f1; 2g satisfy the scaling assumption (S) for some a > 1, then so
does the measure �1~ �2 for the same constant a.

Proof. If suppf � B1, thenZ
f .ax/�1~ �2.dx/D

“
f .�a.yC z//1B2.�.yC z// g

�

�
.y; z/ �1.dy/ �2.dz/

D a�˛
“

f .�.ayC az// g
�

�
.ay; az/ �1.dy/ �2.dz/;

because g�
�
.y; z/D a�˛g

�

�
.ay; az/. We observe that the function .y; z/ 7! f .�.yCz//g

�

�
.y; z/ vanishes

outside B1 �B1. Hence we may apply (S) twice to obtainZ
f .ax/ �1~ �2.dx/D a˛

“
f .�.yC z// g

�

�
.y; z/ �1.dy/ �2.dz/D a˛

Z
f .x/ �1~ �2.dx/: �

Next, we establish conditions which are equivalent to (U). We say that a measure � on B.Rd / satisfies
the upper-bound assumption (U0) if for some C0 > 0Z

Rd
.jzj2 ^ 1/ �.dz/� C0: (U0)

We say that a measure � on B.Rd / satisfies the upper-bound assumption (U1) if there exists C1 > 0
such that for every r 2 .0; 1/ Z

Br .0/

jzj2�.dz/� C1r2�˛: (U1)
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Lemma 6.8. (U) () (U0)^ (U1).

If the constants C0; C1 are independent of ˛ 2 Œ˛0; 2/, then so is CU , and vice versa.

Proof. The implications (U)) (U1) and (U)) (U0) are obvious; we may take C0 D C1 WD CU . Let us
now assume that (U1) and (U0) hold true. Fix 0< r � 1. We consider nD 0; 1; 2; : : : such that 2nC1r � 1�
the set of such n’s is empty if r > 1

2

�
. We have by (U1)Z

2nr�jzj<2nC1r

�.dz/� 2�2nr�2
Z
2nr�jzj<2nC1r

jzj2�.dz/

� 2�2nr�2C1 2
.nC1/.2�˛/r2�˛ D 2�n˛22�˛C1r

�˛:

After summing over all such n we obtainZ
r�jzj< 1

2

�.dz/�
22�˛C1

1� 2�˛
r�˛:

Finally, Z
1
2
�jzj

�.dz/� 4
Z

Rd
.jzj2 ^ 1/ �.dz/� 4C0 � 4C0r�˛:

Combining the two inequalities above and (U1) we get (U) with

CU D

�
22�˛

1� 2�˛
C 1

�
C1C 4C0: �

The following definition interpolates between measures � which are related to different values of
˛ 2 .0; 2/. Such a construction is important for us because we want to prove comparability results which
are robust in the sense that constants stay bounded when ˛! 2�.

Definition 6.9. Assume �˛0 is a measure on B.Rd / satisfying (U) or (S) for some ˛0 2 .0; 2/. For
˛0 � ˛ < 2 we define a new measure �˛;˛0 by

�˛;˛0 D
2�˛

2�˛0
jxj˛0�˛�˛0.dx/ if ˛ > ˛0 and by �˛0;˛0 D �˛0 : (6-17)

To shorten notation we write �˛ instead of �˛;˛0 whenever there is no ambiguity.

The above definition is consistent in the following ways. On the one hand, the first part of (6-17) holds
true for ˛ D ˛0. On the other hand, for 0 < ˛0 < ˛ < ˇ < 2, the following is true: �ˇ;˛0 D .�˛;˛0/ˇ;˛.
This requires that �˛;˛0 itself satisfies (U) or (S) which is established in the following lemma.

Lemma 6.10. Assume �˛0 satisfies (U) with some ˛0 2 .0; 2/, CU > 0 or condition (S) with some
˛0 2 .0; 2/, a > 1. Assume ˛0 � ˛ < 2 and �˛ as in Definition 6.9.

(a) If �˛0 satisfies (U), then for every 0 < b < 1, 0 < r � 1Z
br�jzj<r

jzj2�˛.dz/�
2�˛

2�˛0
CU b

˛0�˛r2�˛; (6-18)Z
Bcr

�˛.dz/�
2�˛

2�˛0
CU r

�˛: (6-19)
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(b) If �˛0 satisfies (U), then �˛ satisfies (U) with exponent ˛ and constant 13CU .2�˛0/�1. In particular,
the constant does not depend on ˛.

(c) If �˛0 satisfies (S), then �˛ satisfies (S) with exponent ˛.

Proof. Let 0 < r � 1 and 0 < b < 1. To prove (a)enumi, we derive,Z
br�jzj<r

jzj2�˛.dz/D
2�˛

2�˛0

Z
br�jzj<r

jzj2C˛0�˛�˛0.dz/

�
2�˛

2�˛0
.br/˛0�˛

Z
Br

jzj2�˛0.dz/�
2�˛

2�˛0
b˛0�˛CU r

2�˛;

which proves (6-18). Furthermore,Z
Bcr

�˛.dz/D
2�˛

2�˛0

Z
Bcr

jzj˛0�˛�˛0.dz/�
2�˛

2�˛0
r˛0�˛CU r

�˛0

and (6-19) follows. To prove part (b)enumi, we use (6-18) and concludeZ
Br

jzj2�˛.dz/D
1X
nD0

Z
r

2nC1
�jzj< r

2n

jzj2�˛0.dz/�
2�˛

2�˛0
CU 2

˛�˛0r2�˛
1X
nD0

2n.˛�2/

D
CU 2

˛�˛0r2�˛

2�˛0

2�˛

1� 2˛�2
�

32CU

3.2�˛0/
r2�˛; (6-20)

since the function x 7! x=.1� 2�x/ is increasing. Furthermore, by (6-19),Z
Bcr

r2�˛.dz/�
2CU

2�˛0
r2�˛; (6-21)

and therefore (b)enumi follows. Finally, part (c)enumi is obvious. �

Lemma 6.11. Assume �˛0j for j 2 f1; 2g satisfies (U) with some ˛0 2 .0; 2/, CU > 0. Assume ˛0 � ˛ < 2
and �˛j as in Definition 6.9. Then the measure �˛1 ~ �

˛
2 satisfies (U) with the same exponent ˛ and a

constant depending only on ˛0, CU , � and �.

Proof. By Lemma 6.8, it suffices to show that �˛1 ~ �
˛
2 satisfies (U0) and (U1). For 0 < r � 1 we deriveZ

Br

jxj2 �˛1~�
˛
2 .dx/�

1

2�˛

“
�jyCzj�jyj;jzj��jyCzj

j�.yCz/j21Br .�.yCz//jyCzj
˛ �˛1 .dy/�

˛
2 .dz/

�
1

2�˛

“
�jyCzj�jyj;jzj��jyCzj<r

�2jyj2

�2
jzj˛

�˛
�˛1 .dy/�

˛
2 .dz/

�
1

2�˛

�2

�2C˛

Z
Br

jzj˛
Z
�jzj
�
�jyj��jzj

�

jyj2 �˛1 .dy/�
˛
2 .dz/

�
�4.CU /

2

�4
13

.2�˛0/2
r2�˛;
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where in the last passage we used parts (b)enumi and (a)enumi of Lemma 6.10. Furthermore, by (6-19),Z
RdnB1

�˛1 ~ �
˛
2 .dx/�

1

2�˛

“
�jyCzj�jyj;jzj<�jyCzj

1B2nB1.�.yC z//jyC zj
˛�˛1 .y/�

˛
2 .dz/

�
2˛

2�˛

“
�
�
�jyj;jzj

�˛1 .y/�
˛
2 .dz/�

8.CU /
2�4

�4.2�˛0/2
: �

The following lemma shows that the quadratic form with respect to �1~ �2 is dominated by the sum
of the quadratic forms with respect to �1 and �2. Some enlargement of the domain is needed which is
taken care of in Lemma 6.13 by a covering argument.

Lemma 6.12. Assume �˛0j for j 2 f1; 2g satisfies (U) and (S) with some ˛0 2 .0; 2/, a > 1, and CU > 0.
Assume ˛0 � ˛ < 2 and �˛j as in Definition 6.9. Let �D ak > 1 for some k 2 Z. For B D Br.x0/ let us
set B� D B3�r.x0/. Then with c D 4CU �6��4 it holds that

E�1~�2B .u; u/� c.E�1B�.u; u/C E�2B�.u; u// (6-22)

for any measurable function u on B1 and any B such that B� � B1.

Proof. Let B D Br.x0/ be such that B� � B1. In particular, this means that r � 1=.3�/. By definition,
we obtain

E�1~�2B .u; u/D

“
.u.x/�u.xC z//2 1B.x/1B.xC z/ �1~ �2.dz/ dx

�

•
.u.x/�u.xC �.yC z///2 1B.x/1B.xC �.yC z// g

�

�
.y; z/ �1.dy/ �2.dz/ dx

� 2

•
Œ.u.x/�u.xC �y//2C .u.xC �y/�u.xC �.yC z///2�

�1B.x/1B.xC �.yC z// g
�

�
.y; z/ �1.dy/ �2.dz/ dx

D 2ŒI1C I2�: (6-23)

We may assume that
�jyC zj � jzj< �jyC zj � 2r;

�jyC zj � jyj< �jyC zj � 2r;

as otherwise the expression 1B.x/1B.xC �.yC z//g
�

�
.y; z/ would be zero. Since 2r � 1, it follows

that �jyj=� < jzj � �jyj=�^ 1. Therefore, by changing the order of integration,

I1 �

Z
B

Z
B2r

Z
�jyj
�
_�jyCzj�jzj��jyj

�
^1

.u.x/�u.xC �y//2jyC zj˛ �2.dz/ �1.dy/ dx:

We estimate the inner integral above:

J WD

Z
�jyj
�
_�jyCzj�jzj��jyj

�
^1

jyC zj˛�2.dz/�
Z
jzj��jyj

�
^1

jzj˛

�˛
jzj2�˛

.�jyj=�/2�˛
�2.dz/�

�4CU

�4
:
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Coming back to I1 we obtain,

I1 �
�4CU

�4

Z
B

Z
B2r

.u.x/�u.xC �y//2 �1.dy/ dx

D
�4CU

�4
�˛
Z
B

Z
B2�r

.u.x/�u.xCy//2 �1.dy/ dx �
�6CU

�4
E�1B�.u; u/;

where we used (S) and the fact that B2�r � B1.
Finally, in order to estimate I2, we first change variables x D w� �y,

I2 �

Z
B

Z
B2r

Z
B2r

.u.xC �y/�u.xC �.yC z///2 1B.xC �.yC z// g
�

�
.y; z/ �1.dy/ �2.dz/ dx

�

Z
B�

Z
B2r

.u.w/�u.wC �z//2 1B.wC �z/
Z
B2r

g
�

�
.y; z/ �1.dy/ �2.dz/ dw

�

Z
B�

Z
B2r

.u.w/�u.wC �z//2 1B.wC �z/
Z
�jzj
�
_�jyCzj�jyj��jzj

�
^1

jyC zj˛ �1.dy/ �2.dz/ dw:

By symmetry, the following integral may be estimated exactly like J before:Z
�jzj
�
_�jyCzj�jyj��jzj

�
^1

jyC zj˛ �1.dy/�
�4CU

�4
:

This leads to an estimate

I2 �
�4CU

�4

Z
B�

Z
B2r

.u.w/�u.wC �z//2 1B.wC �z/ �2.dz/ dw

D
�4CU

�4
�˛
Z
B�

Z
B2�r

.u.w/�u.wC t //2 1B.wC t / �2.dt / dw �
�6CU

�4
E�2B�.u; u/;

where we used (S) and the fact that B2�r �B1. The result follows from (6-23) and the obtained estimates
of I1 and I2. �

Lemma 6.13. Let 0 < ˛0 < ˛ < 2, r0 > 0, � 2 .0; 1/, and � be a measure on B.Rd /. For B D Br.x/,
x 2 Rd, r > 0, we set B� D Br=�.x/. Suppose that for some c� > 0

E�B�.u; u/� c�E
�˛
B .u; u/

for every 0 < r � r0, for every u 2L2.Br0/, and for every ball B � Br0 of radius �r . Then there exists a
constant c D c.d; ˛0; �/, such that for every ball B � Br0 of radius r � r0 and every u 2 L2.Br0/

E�B.u; u/� cc�E
�˛
B .u; u/:

Proof. Fix some 0 < r � r0 and a ball D of radius r . We take B to be a family of balls with the following
properties:

(i) For some c D c.d/ and any x; y 2D, if jx�yj< c dist.x;Dc/, then there exists B 2 B such that
x; y 2 B .
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(ii) For every B 2 B, we have B� �D.

(iii) Family fB�gB2B has the finite overlapping property; that is, each point of D belongs to at most
M DM.d/ balls B�, where B 2 B.

Such a family B may be constructed by considering Whitney decomposition of D into cubes and then
covering each Whitney cube by an appropriate family of balls.

We have

E�D.u; u/�
1

M 2

X
B2B

Z
B�

Z
B�
.u.x/�u.xCy//2 �.dy/ dx

�
c�

M 2
.2�˛/

X
B2B

Z
B

Z
B

.u.x/�u.y//2jx�yj�d�˛ dy dx

�
c�

M 2
.2�˛/

Z
D

Z
jx�yj<c dist.x;Dc/

.u.x/�u.y//2jx�yj�d�˛ dy dx: (6-24)

By [Dyda 2006, Proposition 5 and proof of Theorem 1], we may estimateZ
D

Z
jx�yj<c dist.x;Dc/

.u.x/�u.y//2jx�yj�d�˛ dy dx

� c.˛; d/

Z
D

Z
D

.u.x/�u.y//2jx�yj�d�˛ dy dx; (6-25)

with some constant c.˛; d/. We note that in [Dyda 2006, proof of Theorem 1] the constant depends on
the domain in question, but in our case, by scaling, we can take the same constant independent of the
choice of the ball D. One may also check that c.˛; d/ stays bounded when ˛ 2 Œ˛0; 2/. By (6-24) and
(6-25) the lemma follows. �

For a linear subspace E � Rd, we denote by HE the .dimE/-dimensional Hausdorff measure on Rd

with the support restricted to E. In particular, Hf0g D ıf0g, the Dirac delta measure at 0.

Proposition 6.14. Let E1; E2 � Rd be two linear subspaces with E1; E2 ¤ f0g. Assume that �j ,
j 2 f1; 2g, are measures on B.Rd / of the form �j D fjHEj satisfying �j .B1/ > 0, (U), and (S) with
˛0 2 .0; 2/, CU > 0, and a > 1. Then the following are true:

(1) �1~ �2 is absolutely continuous with respect to HE1CE2 and satisfies (U) and (S).

(2) If �� a2=.a� 1/ and �� 1=.a3C 1/, then �1~ �2.B1/ > 0.

(3) If �˛0j D �j and �˛j is defined as in Definition 6.9 for ˛0 � ˛ < 2, then

�˛1 ~ �
˛
2 � �

�2.�
˛0
1 ~ �

˛0
2 /

˛: (6-26)

Proof. Properties (U) and (S) follow from Lemmas 6.11 and 6.7, respectively. Let E D E1 \E2 and
let Fj be linear subspaces such that Ej DE˚Fj , where j D 1; 2. For y 2E1 let us write y D Y C Qy,
where Y 2 E and Qy 2 F1; similarly, for z 2 E2 we write z D ZC Oz, where Z 2 E and Oz 2 F2. Then
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for A� B2

�1~�2.A/D

““
1A.�.YC QyCZCOz//g

�

�
.YC Qy;ZCOz/

�f1.YC Qy/f2.ZCOz/HE .dY /HE .dZ/HF1.d Qy/HF2.d Oz/

D

•
1A.�.WC QyCOz//

�Z
g
�

�
.YC Qy;W �YCOz/f1.YC Qy/f2.W �YCOz/HE .dY /

�
�HE .dW /HF1.d Qy/HF2.d Oz/ (6-27)

and since �1~ �2.Rd nB2/D 0, the desired absolute continuity follows.
To show nondegeneracy, let Gn WDBa�n nBa�n�1 . By scaling property (S) it follows that �j .GnC1/D

a˛�j .Gn/; therefore �j .Gn/ > 0 for each nD 0; 1; : : : . Hence

�1~ �2.B1/�
1

2�˛0

Z
Gn

Z
GnC2

1B1.�.yC z// 1AjyCzj.y/1AjyCzj.z/ jyC zj
˛ �1.dy/ �2.dz/:

For .y; z/ 2GnC2 �Gn it holds that

a� 1

a2
.jyj _ jzj/� jyC zj � .a3C 1/.jyj ^ jzj/

and also �.yC z/ 2 B1, provided n is large enough. Therefore �1~ �2.B1/ > 0, if �� a2=.a� 1/ and
�� 1=.a3C 1/.

To prove the last part of the lemma, we calculate first the most inner integral in (6-27) corresponding
to �˛1 ~ �

˛
2 ; it equals

L WD

Z
g
�

�
.YC Qy;W �YCOz/f ˛1 .YC Qy/f

˛
2 .W �YCOz/HE .dY /

D
2�˛

.2�˛0/2

Z
jWC QyCOzj˛ jYC Qyj˛0�˛ jW �YCOzj˛0�˛ 1.� � �/f ˛01 .YC Qy/f

˛0
2 .W �YCOz/HE .dY /;

where we used an abbreviation

1.� � �/ WD 1AjWC QyCOzj.Y C Qy/1AjWC QyCOzj.W �Y C Oz/:

On the other hand, the most inner integral in (6-27) corresponding to .�˛01 ~ �
˛0
2 /

˛ is

R WD
2�˛

2�˛0
.�jW C QyC Ozj/˛0�˛

Z
g
�

�
.Y C Qy;W �Y C Oz/ f

˛0
1 .Y C Qy/ f

˛0
2 .W �Y C Oz/HE .dY /

D
.2�˛/�˛0�˛

.2�˛0/2

Z
jW C QyC Ozj2˛0�˛ 1.� � �/ f ˛01 .Y C Qy/ f

˛0
2 .W �Y C Oz/HE .dY /:

Inequality (6-26) follows now from the estimate

jY C Qyj˛0�˛jW �Y C Ozj˛0�˛1.� � �/� .�jW C QyC Ozj/2.˛0�˛/1.� � �/

and the fact that both sides of (6-26) are zero on Rd nB2. �
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Proof of Theorem 1.11: lower bound in (A). We recall from Section 1E that we may and do assume that
fk are symmetric, i.e., fk.x/D fk.�x/ for all x. By Proposition 6.14 it follows that the measure

� WD .f1HE1/~ .f2HE2/~ � � � ~ .fnHEn/

satisfies (U) and (S) and has density hwith respect to the Lebesgue measure on B.Rd /with
R
B1
h.x/ dx>0,

if � is large enough and � small enough. We will show that the measure �~ � possesses a density h~

with h~.x/� cjxj�d�˛0 for all x 2 B1 n f0g and some positive constant c to be specified. This, together
with the preliminary results, will establish the assertion.

Condition (S) for � implies that h.ax/D a�d�˛0h.x/ if x 2 B1=a. Therefore
R
G0
h.x/ dx > 0, where

G0 D B1 nB1=a. Define hG0.x/D h.x/ 1G0.x/^ 1. The function

x 7! hG0 � hG0.x/D

Z
hG0.y � x/ hG0.y/ dy

is continuous and strictly positive at 0. Thus there exists ı 2 .0; .2a/�1/ and " > 0 such that

hG0 � hG0.x/� " for x 2 Bı .

We consider the measure �~ �; it has density h~ with respect to the Lebesgue measure on B.B2/ given
by formula, see (6-16),

h~.x/D ��2d
Z
g
�

�

�
w

�
;
x�w

�

�
h

�
w

�

�
h

�
x�w

�

�
dw

� �2˛0
Z
G0

g
�

�

�
w

�
;
x�w

�

�
1G0.x�w/ h.w/h.x�w/ dw

D
�˛0

2�˛0

Z
G0

jxj˛0 1Ajxj.w/1Ajxj.x�w/ 1G0.x�w/ h.w/ h.x�w/ dw:

Suppose �� a2=ı and �� 1=.aı/. Then for x 2 Bı nBı=a2 and w 2G0 such that x�w 2G0 it holds
that

1Ajxj.w/1Ajxj.x�w/D 1:

This leads to the estimate

h~.x/�
�˛0ı˛0a�2˛0

2�˛0
hG0 � hG0.x/�

"

2�˛0
for x 2 Bı nBı=a2 .

For x 2 B1 n f0g let k 2 Z be such that ı=a2 < jxjak < ı < jxjakC1. Then, by scaling (S),

h~.x/D ak.dC˛0/ h~.xak/�
ak.dC˛0/"

2�˛0
�

ıdC˛0"

a2dC2˛0.2�˛0/
jxj�d�˛0 :

Now from Lemmas 6.12 and 6.13 it follows that for any B � B1

E�˛0B .u; u/� cE��B .u; u/; (6-28)

with c D c..fj /; .Ej //.
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Ey

y

k D 0k D 0

k D 0k D 0

x1

x2

Figure 1. Support of the kernel k
�
with b D 1

6

�
consisting of four thorns. The set P

from the proof below is shown, too.

Finally, to obtain a robust result, we observe that by (6-26)

.��/
˛
~� � �~.��/

˛„ ƒ‚ …
2n factors

� ��2.2n�1/.��~� � �~��„ ƒ‚ …
2n factors

/˛ � ��2.2n�1/
2�˛

2�˛0
jxj˛0�˛

ıdC˛0"

a2dC2˛0
jxj�d�˛01B1.x/dx:

This together with Lemmas 6.12 and 6.13 gives us

E˛B.u; u/� cE
.��/

˛

B .u; u/;

with the constant c not depending on ˛ 2 Œ˛0; 2/. �

6E. Examples. In this subsection, we provide two examples showing that the assumptions of Theorem 1.11
are not necessary for (A) and (B). Note that condition (A) relates to integrated quantities but does not
require pointwise bounds on the density of �.x; dy/.

Example 6.15. Let b 2 .0; 1/ and

� D f.x1; x2/ 2 R2 W jx2j � jx1j
b or jx1j � jx2jbg:

We consider the following function

k.z/D .2�˛/1�\B1.z/jzj
�2�ˇ ; z 2 R2; (6-29)

where ˇ D ˛� 1C 1=b; see Figure 1. Let us show that conditions (A) and (B) are satisfied in this case.
We have, for 0 < r < 1,Z

Br

jzj2k.z/ dz � 8.2�˛/
Z r

0

Z x1=b

0

.x2Cy2/�
ˇ
2 dy dx

� 8.2�˛/

Z r

0

Z x1=b

0

x�ˇ dy dx D 8r2�˛I (6-30)

hence k satisfies (U1) with C1 D 8. Since (U0) is clear, from Lemma 6.8 we conclude that k satisfies (U).
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Let
P D fx 2 B 1

4
W 0 < x1 < x2 < 2x1g

and, for y D .x1; x2/ 2 P, let

Ey D Œx1; x1C x
1
b

1 �� Œ�x
1
b

1 ; 0�:

It is easy to check that if y 2 P and z 2Ey , then

jyj

3
� jzj � 4jyj;

jyj

3
� jy � zj � 4jyj; and z; y � z 2 � \B1:

Let �D 4 and �D 1
3

. Then for y 2 P

k~ k.�y/D
jyj˛

2�˛

Z
1Ajyj.z/ 1Ajyj.y � z/.2�˛/

2 1�\B1.z/1�\B1.y � z/ jzj
�2�ˇ

jy � zj�2�ˇ dz

� .2�˛/jyj˛
Z
Ey

jzj�2�ˇ jy � zj�2�ˇ dz

� .2�˛/jyj˛.4jyj/2.�2�ˇ/x
2
b

1 � .2�˛/3
� 2
b 4�4�2ˇ jyj�2�˛ � 4�612�

2
b .2�˛/jyj�2�˛:

In the following example, we provide a condition that cannot be handled by Theorem 1.11 but still
implies comparability of corresponding quadratic forms.

Example 6.16. For a measure � on B.Rd / with a density k with respect to the Lebesgue measure we
formulate the following condition:

There exist a > 1 and C2; C3 > 0 such that every annulus Ba�nC1 nBa�n (nD 0; 1; : : :)
contains a ball Bn with radius C2a�n such that k.z/� C3.2�˛/jzj�d�˛; z 2 Bn:

(6-31)

The following proposition provides a substitute for Theorem 1.11.

Proposition 6.17. Let a > 1, ˛0 2 .0; 2/, ˛ 2 Œ˛0; 2/, and CU ; C2; C3 > 0. Let �D .�.x; � //x2Rd be a
family of measures on Rd which satisfies (1-2). Furthermore, we assume that there exist measures ��
and �� with property (T) such that (U) and (6-31) hold with exponent ˛ and the constants CU , C2, C3.
Then there is AD A.a; ˛0; CU ; C2; C3/� 1 not depending on ˛ such that (A) hold.

Proof. We fix � < 2=C2 ^ 1 and �� 2a2=C2 _ 1. For some n 2 f0; 1; : : :g, let

C2

2
a�n�1 � jyj �

C2

2
a�n;

and assume that �y 2 B2. By formula (6-16), we obtain

k~ k.�y/�
��d jyj˛

2�˛

Z
1Ajyj.y � z/1Ajyj.z/ k.y � z/ k.z/ dz:

Let us denote by Bon the ball concentric with Bn, but with radius C2a�n=2 (that is, Bon is twice smaller
than Bn). We observe that if z 2Bon , then y�z 2Bn. Furthermore, by our choice of � and � it follows that

�jyj � jy � zj< �jyj; �jyj � jzj< �jyj if z 2 Bon ;
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that is, y � z, z 2 Ajyj for z 2 Bon . Hence

k~ k.�y/�
��d jyj˛

2�˛
C 23 .2�˛/

2

Z
B0n

jy � zj�d�˛jzj�d�˛ dz

�
C 23 �

�d .2�˛/C 2dC2˛2

22dC2˛a3dC4˛
jyj�d�˛

� C.˛0; d; C2; C3; �; a/.2�˛/jyj
�d�˛;

or, equivalently, for w 2 B2

k~ k.w/� C 0.˛0; d; C2; C3; �; a/.2�˛/jwj
�d�˛:

By Lemmas 6.12 and 6.13 we conclude that the lower estimate in (A) holds. The upper estimate is in
turn a consequence of Proposition 6.1. �

7. Global comparability results for nonlocal quadratic forms

In this section we provide a global comparability result; i.e., we study comparability in the whole Rd.
This result is not needed for the other results in this article; however it contains an interesting and useful
observation.

Proposition 7.1. Assume (U) holds. Then there exists a constant c D c.˛; d; CU / such that

E�.u; u/� c.E�˛ .u; u/Ckuk2
L2.Rd /

/ for every u 2 L2.Rd /: (7-1)

Furthermore, if (U) is satisfied for all r > 0, then for every u 2 L2.Rd /

E�.u; u/� cE�˛ .u; u/: (7-2)

If the constant CU in (U) is independent of ˛ 2 .˛0; 2/, where ˛0 > 0, then so are the constants in (7-1)
and (7-2).

Proof. By E we denote the identity operator from H˛=2.Rd / to itself. One easily checks that the proof
of Proposition 6.1 from (6-2) until (6-5) works also in the present case of D D Rd. Hence (7-1) follows.

To prove (7-2) we observe that if (U) holds for all r > 0, then also (6-4) holds for all � ¤ 0; we plug it
into (6-3) and we are done. �

We consider the following condition.

(K2,r0) There exists c0 > 0 such that for all h 2 Sd�1 and all 0 < r < r0Z
Rd
r2 sin2

�
h � z

r

�
��.dz/� c0r2�˛: (7-3)

Clearly (6-31) implies (K2,r0)2,r0 for r0 D 1, and if C3 is independent of ˛ 2 .˛0; 2/, where ˛0 > 0,
then so is c0. Condition (K2,r0)2,r0 is also satisfied if for all h 2 Sd�1 and all 0 < r < r0Z

Br .0/

jh � zj2��.dz/� c2r2�˛: (7-4)
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We note that (7-5) under condition (7-4) has been proved in [Abels and Husseini 2010]. The following
theorem extends their result by giving a characterization of kernels �� admitting comparability (7-5). We
stress that r0 D1 is allowed, and in such a case we put 1=r˛0 D 0.

Theorem 7.2. Let 0 < r0 �1. If (K2,r0)2,r0 holds, then

E�˛ .u; u/�
1

c0
E�.u; u/C

2˛

r˛0
kuk2

L2
; u 2 C 1c .R

d /: (7-5)

Conversely, if for some c <1

E�˛ .u; u/� cE��.u; u/C
2˛

r˛0
kuk2

L2
; u 2 S.Rd /; (7-6)

then (K2,r0)2,r0 holds.

Proof. Recalling that .u. � C z//^.�/D ei��z Ou.�/ and using Plancherel’s formula we obtain

E�.u; u/�
“

.u.x/�u.xC z//2 dx ��.dz/

D

“
jei��z � 1j2j Ou.�/j2 d� ��.dz/

D

Z �Z
4 sin2

�
� � z

2

�
��.dz/

�
j Ou.�/j2 d�: (7-7)

If (K2,r0)2,r0 holds, then for all j�j> 2=r0Z
4 sin2

�
� � z

2

�
��.dz/�

4c0

2˛
j�j˛ � c0j�j

˛:

For j�j � 2=r0 we have j�j˛ � .2=r0/˛. Inequality (7-5) follows from

Ad;�˛
2˛.2�˛/

E˛
Rd
.u; u/D

Z
Rd
j�j˛j Ou.�/j2 d�: (7-8)

Now we prove the converse. Assume (7-6). By (7-7), the right-hand side of (7-6) equalsZ �
c

Z
4 sin2

�
� � z

2

�
��.dz/C

2˛

r˛0

�
j Ou.�/j2 d�I

hence by (7-8) and (7-6) we obtain that

c

Z
4 sin2

�
� � z

2

�
��.dz/C

2˛

r˛0
� j�j˛ for a.e. � 2 Rd. (7-9)

By continuity of the function

Rd n f0g 3 � 7!

Z
4 sin2

�
� � z

2

�
��.dz/;

(7-9) holds for all � 2 Rd. For j�j � 21C1=˛r�10 we have by (7-9)

c

Z
4 sin2

�
� � z

2

�
��.dz/�

j�j˛

2
;
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and hence (K2,2�1=˛r0) holds with c0 D 2˛�3c�1. Since

sin2
�
h � z

2r

�
�
1

4
sin2

�
h � z

r

�
;

also (K2,r0)2,r0 holds with some constant c0. �

Appendix

We give the proof of Lemma 4.3. It only uses basic observations.

Lemma A.1. Assume �1; �2 � 0 and �1=�2 2
�
1
2
; 2
�
. Then

�21 C �
2
2

j�21 � �
2
2 j
�
5

3
:

Proof. Note that
�21 C �

2
2

j�21 � �
2
2 j
D
�21=�

2
2 C 1

j�21=�
2
2 � 1j

D
t C 1

jt � 1j
;

where t D �21=�
2
2 . There are three cases:

(1) If t D 1, then
t C 1

t � 1
DC1

and the assertion is true.

(2) If t > 1, then
t C 1

jt � 1j
D
t C 1

t � 1
:

Note that .t C 1/=.t � 1/� 5
3

holds true if and only if

t C 1�
5

3
t �

5

3
() t � 4 ()

�1

�2
� 2:

(3) If t < 1, then
t C 1

jt � 1j
D

t C 1

�t C 1
:

Note that .t C 1/=.�t C 1/� 5
3

holds true if and only if

t C 1� �
5

3
t C

5

3
() t �

1

4
()

�1

�2
�
1

2
: �

Lemma A.2. Assume p > 1 and � 2
�
1; 5
3

�
. Set � D ..� � 1/=.1 C �//1=p. Assume a; b > 0 and

b=a … .�; 1=�/. Then
a�pC b�p

ja�p � b�pj
� �:
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Proof. Set t D .b=a/p. Then

a�pC b�p

ja�p � b�pj
D
.a=b/�pC 1

j.a=b/�p � 1j
D
t C 1

jt � 1j
:

Now there are two cases:

Case 1: t > 1.

t C 1

jt � 1j
� � ()

t C 1

t � 1
� � () t �

1C �

�� 1
()

b

a
�

�
1C �

�� 1

�1=p
:

Case 2: t < 1.

t C 1

jt � 1j
� � ()

t C 1

�t C 1
� � () t �

�� 1

1C �
()

b

a
�

�
�� 1

1C �

�1=p
: �

Lemma A.3. There is c1 > 0 such that for p > 1, � D
�
1
7

�1=p, and a; b > 0 with b=a 2 .�; 1=�/ the
following is true:

jb� aj.a�pC b�p/2

ja�p � b�pj
�
c1

p
.b�pC1C a�pC1/:

Proof. Set b=aD � 2 .�; 1=�/. Then

jb�aj.a�pCb�p/2

ja�p�b�pj
�
c1

p
.b�pC1Ca�pC1/ ()

jajj��1ja�2p.1C��p/2

j��p�1ja�p
�
c1

p
a�pC1.��pC1C1/

()
j��1j.1C��p/2

j��p�1j
�
c1

p
.��pC1C1/

()
j��1j.1C��p/2

j��p�1j.��pC1C1/
�
c1

p
: (A-1)

Let us prove (A-1). Note that

j� � 1j.1C ��p/2

j��p � 1j.��pC1C 1/
�
j� � 1j.1C 7/2

j��p � 1j
D 64

j� � 1j

j��p � 1j
:

We want to apply the mean value theorem. Set � 7! g.�/D ��p. Then g0.�/D .�p/��.pC1/. The
mean value theorem implies

j��p � 1j

j� � 1j
D
jg.�/� 1j

j� � 1j
D jg.x/j D px�.pC1/ for some x 2 .�; 1/[ .1; �/:

Thus,
j��p � 1j

j� � 1j
� p

�
1

�

��.pC1/
D p.71=p/�.pC1/ D p7�1�

1
p ;

from which we deduce

j� � 1j.1C ��p/2

j��p � 1j.��pC1C 1/
� 64

71C
1
p

p
�
64 � 49

p
D
c1

p
: �
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Lemma A.4. For p > 1 and a; b > 0 the following is true:

.b� a/.a�p � b�p/�
2

p� 1
.a
�pC1
2 � b

�pC1
2 /2:

The proof of the above lemma is simple and can be found in several places, e.g., in [Kassmann 2009].

Lemma A.5. Assume p > 1, a; b > 0, and �1; �2 � 0. Then

.�1C �2/
2.a

�pC1
2 � b

�pC1
2 /2 � 2.�1a

�pC1
2 � �2b

�pC1
2 /2� 2.�1� �2/

2.a�pC1C b�pC1/:

Proof. Note

2.�1a
�pC1
2 � �2b

�pC1
2 /D .�1� �2/.a

�pC1
2 C b

�pC1
2 /C .�1C �2/.a

�pC1
2 � b

�pC1
2 /:

From this equality we obtain the assertion as follows:

4.�1a
�pC1
2 � �2b

�pC1
2 /2 � 2.�1� �2/

2.a
�pC1
2 C b

�pC1
2 /2C 2.�1C �2/

2.a
�pC1
2 � b

�pC1
2 /2

� 4.�1� �2/
2.a�pC1C b�pC1/C 2.�1C �2/

2.a
�pC1
2 � b

�pC1
2 /2: �

Finally, we can give the proof of Lemma 4.3.

Proof of Lemma 4.3. Let us first consider the case �1=�2 …
�
1
2
; 2
�
. Note that, in this case

maxf�1; �2g � 2j�1� �2j (A-2)

and

�.�1a
�pC1
2 � �2b

�pC1
2 /2 D��21a

�pC1
� �22b

�pC1
C 2�1a

�pC1
2 �2b

�pC1
2 � ��21a

�pC1
� �22b

�pC1:

Thus, we obtain

.b�a/.�21a
�p
��22b

�p/� ��21a
�pC1

��22b
�pC1

C.�1a
�pC1
2 ��2b

�pC1
2 /2�.�1a

�pC1
2 ��2b

�pC1
2 /2

� .�1a
�pC1
2 ��2b

�pC1
2 /2�2�21a

�pC1
�2�22b

�pC1

� .�1a
�pC1
2 ��2b

�pC1
2 /2�2maxf�1; �2g2a�pC1�2maxf�1; �2g2b�pC1

� .�1a
�pC1
2 ��2b

�pC1
2 /2�8.�1��2/

2.a�pC1Cb�pC1/:

The proof in the case �1=�2 …
�
1
2
; 2
�

is complete.

Let us now assume �1=�2 2
�
1
2
; 2
�
. A general observation is

.b� a/.�21a
�p
� �22b

�p/D 1
2
.b� a/.�21 � �

2
2 /.a

�p
C b�p/„ ƒ‚ …

WDP

C
1
2
.b� a/.�21 C �

2
2 /.a

�p
� b�p/„ ƒ‚ …

WDG

:

Recall that Lemma A.4 implies

1

2
.b� a/.a�p � b�p/�

1

p� 1
.a
�pC1
2 � b

�pC1
2 /2: (A-3)

Choose �D 4
3

and �D
�
1
7

�1=p. Let us consider two subcases.
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Case 1: b=a 2 .�; 1=�/, �1=�2 2
�
1
2
; 2
�
. In this case

jP j D
h
1

4
.�1C �2/jb� aj

1
2 ja�p � b�pj

1
2

i
Œ2j�1� �2jja

�p
� b�pj�

1
2 jb� aj

1
2 .a�pC b�p/�

�
1

16
.�1C �2/

2.b� a/.a�p � b�p/C 4.�1� �2/
2 .b� a/.a

�pC b�p/2

.a�p � b�p/„ ƒ‚ …
WDF

:

Because of Lemma A.3, we know that there is c5 > 0 such that jF j � .c5=p/.b�pC1 C a�pC1/.
Altogether, we obtain

.b�a/.�21a
�p
��22b

�p/

D
1

2
.b�a/.�21��

2
2 /.a

�p
Cb�p/C

1

2
.b�a/.�21C�

2
2 /.a

�p
�b�p/

�
1

2
.b�a/.�21��

2
2 /.a

�p
Cb�p/C

1

4
.b�a/.�1C�2/

2.a�p�b�p/

� �
1

16
.�1C�2/

2.b�a/.a�p�b�p/�4.�1��2/
2 .b�a/.a

�pCb�p/2

.a�p�b�p/
C
1

4
.b�a/.�1C�2/

2.a�p�b�p/

D
3

16
.�1C�2/

2.b�a/.a�p�b�p/�4.�1��2/
2 .b�a/.a

�pCb�p/2

.a�p�b�p/

�
3

16.p�1/
.�1C�2/

2.a
�pC1
2 �b

�pC1
2 /2�

4c5

p
.�1��2/

2.b�pC1Ca�pC1/

�
6

16.p�1/
.�1a

�pC1
2 ��2b

�pC1
2 /2�

�
4c5

p
C

6

16.p�1/

�
.�1��2/

2.b�pC1Ca�pC1/;

where we applied Lemma A.5. The first case has been completed.

Case 2: b=a … .�; 1=�/, �1=�2 2
�
1
2
; 2
�
. Then Lemmas A.1 and A.2 imply

P � �jP j D �
1

2
jb� ajj�21 � �

2
2 j.a

�p
C b�p/� �

3

10
jb� aj.�21 C �

2
2 /.a

�p
C b�p/

� �
3

10
�
4

3
jb� aj.�21 C �

2
2 /ja

�p
� b�pj D �

2

5
.b� a/.�21 C �

2
2 /.a

�p
� b�p/D�

4

5
G:

Thus, due to Lemma A.4, we obtain

.b� a/.�21a
�p
� �22b

�p/D P CG � 1
5
G �

1

5.p� 1/
.�21 C �

2
2 /.a

�pC1
2 � b

�pC1
2 /2

�
1

10.p� 1/
.�1C �2/

2.a
�pC1
2 � b

�pC1
2 /2

�
1

5.p� 1/
.�1a

�pC1
2 � �2b

�pC1
2 /2�

1

5.p� 1/
.�1� �2/

2.b�pC1C a�pC1/:

The proof in the case �1=�2 2
�
1
2
; 2
�

is complete. The proof of Lemma 4.3 is complete if we choose c1
and c2 appropriately. �



REGULARITY ESTIMATES FOR ELLIPTIC NONLOCAL OPERATORS 369

Acknowledgement

The authors thank Wolfhard Hansen for an elegant proof of Theorem 2.2, the anonymous referees for
carefully reading the paper and, in particular, for suggesting a strategy that led to a proof of Theorem 1.11(i)
and Theorem 1.1. The authors thank Jamil Chaker for pointing out an error in a previous version.

Note in proof

Since the submission of the article, interesting related contributions have appeared, e.g., [Chen et al.
2019].

References

[Abels and Husseini 2010] H. Abels and R. Husseini, “On hypoellipticity of generators of Lévy processes”, Ark. Mat. 48:2
(2010), 231–242. MR Zbl

[Barlow et al. 2009] M. T. Barlow, R. F. Bass, Z.-Q. Chen, and M. Kassmann, “Non-local Dirichlet forms and symmetric jump
processes”, Trans. Amer. Math. Soc. 361:4 (2009), 1963–1999. MR Zbl

[Bass and Chen 2010] R. F. Bass and Z.-Q. Chen, “Regularity of harmonic functions for a class of singular stable-like processes”,
Math. Z. 266:3 (2010), 489–503. MR Zbl

[Bass and Levin 2002] R. F. Bass and D. A. Levin, “Transition probabilities for symmetric jump processes”, Trans. Amer. Math.
Soc. 354:7 (2002), 2933–2953. MR Zbl

[Bliedtner and Hansen 1986] J. Bliedtner and W. Hansen, Potential theory: an analytic and probabilistic approach to balayage,
Springer, 1986. MR Zbl

[Bogdan and Sztonyk 2005] K. Bogdan and P. Sztonyk, “Harnack’s inequality for stable Lévy processes”, Potential Anal. 22:2
(2005), 133–150. MR Zbl

[Bourgain et al. 2001] J. Bourgain, H. Brezis, and P. Mironescu, “Another look at Sobolev spaces”, pp. 439–455 in Optimal
control and partial differential equations, edited by J. L. Menaldi et al., IOS, Amsterdam, 2001. MR Zbl

[Bucur and Valdinoci 2016] C. Bucur and E. Valdinoci, Nonlocal diffusion and applications, Lecture Notes of the Unione
Matematica Italiana 20, Springer, 2016. MR Zbl

[Caffarelli et al. 2011] L. Caffarelli, C. H. Chan, and A. Vasseur, “Regularity theory for parabolic nonlinear integral operators”,
J. Amer. Math. Soc. 24:3 (2011), 849–869. MR Zbl

[Chen and Kumagai 2003] Z.-Q. Chen and T. Kumagai, “Heat kernel estimates for stable-like processes on d -sets”, Stochastic
Process. Appl. 108:1 (2003), 27–62. MR Zbl

[Chen et al. 2019] Z.-Q. Chen, T. Kumagai, and J. Wang, “Elliptic Harnack inequalities for symmetric non-local Dirichlet
forms”, J. Math. Pures Appl. .9/ 125 (2019), 1–42. MR Zbl

[Di Castro et al. 2014] A. Di Castro, T. Kuusi, and G. Palatucci, “Nonlocal Harnack inequalities”, J. Funct. Anal. 267:6 (2014),
1807–1836. MR Zbl

[Di Castro et al. 2016] A. Di Castro, T. Kuusi, and G. Palatucci, “Local behavior of fractional p-minimizers”, Ann. Inst. H.
Poincaré Anal. Non Linéaire 33:5 (2016), 1279–1299. MR Zbl

[Di Nezza et al. 2012] E. Di Nezza, G. Palatucci, and E. Valdinoci, “Hitchhiker’s guide to the fractional Sobolev spaces”, Bull.
Sci. Math. 136:5 (2012), 521–573. MR Zbl

[Dipierro et al. 2017a] S. Dipierro, X. Ros-Oton, and E. Valdinoci, “Nonlocal problems with Neumann boundary conditions”,
Rev. Mat. Iberoam. 33:2 (2017), 377–416. MR Zbl

[Dipierro et al. 2017b] S. Dipierro, O. Savin, and E. Valdinoci, “All functions are locally s-harmonic up to a small error”, J. Eur.
Math. Soc. .JEMS/ 19:4 (2017), 957–966. MR Zbl

[Dyda 2006] B. Dyda, “On comparability of integral forms”, J. Math. Anal. Appl. 318:2 (2006), 564–577. MR Zbl
[Felsinger and Kassmann 2013] M. Felsinger and M. Kassmann, “Local regularity for parabolic nonlocal operators”, Comm.
Partial Differential Equations 38:9 (2013), 1539–1573. MR Zbl

http://dx.doi.org/10.1007/s11512-009-0099-z
http://msp.org/idx/mr/2672607
http://msp.org/idx/zbl/1205.60094
http://dx.doi.org/10.1090/S0002-9947-08-04544-3
http://dx.doi.org/10.1090/S0002-9947-08-04544-3
http://msp.org/idx/mr/2465826
http://msp.org/idx/zbl/1166.60045
http://dx.doi.org/10.1007/s00209-009-0581-0
http://msp.org/idx/mr/2719417
http://msp.org/idx/zbl/1201.60055
http://dx.doi.org/10.1090/S0002-9947-02-02998-7
http://msp.org/idx/mr/1895210
http://msp.org/idx/zbl/0993.60070
http://dx.doi.org/10.1007/978-3-642-71131-2
http://msp.org/idx/mr/850715
http://msp.org/idx/zbl/0706.31001
http://dx.doi.org/10.1007/s11118-004-0590-x
http://msp.org/idx/mr/2137058
http://msp.org/idx/zbl/1081.60055
http://msp.org/idx/mr/3586796
http://msp.org/idx/zbl/1103.46310
http://dx.doi.org/10.1007/978-3-319-28739-3
http://msp.org/idx/mr/3469920
http://msp.org/idx/zbl/1377.35002
http://dx.doi.org/10.1090/S0894-0347-2011-00698-X
http://msp.org/idx/mr/2784330
http://msp.org/idx/zbl/1223.35098
http://dx.doi.org/10.1016/S0304-4149(03)00105-4
http://msp.org/idx/mr/2008600
http://msp.org/idx/zbl/1075.60556
http://dx.doi.org/10.1016/j.matpur.2017.10.011
http://dx.doi.org/10.1016/j.matpur.2017.10.011
http://msp.org/idx/mr/3944198
http://msp.org/idx/zbl/1415.35069
http://dx.doi.org/10.1016/j.jfa.2014.05.023
http://msp.org/idx/mr/3237774
http://msp.org/idx/zbl/1302.35082
http://dx.doi.org/10.1016/j.anihpc.2015.04.003
http://msp.org/idx/mr/3542614
http://msp.org/idx/zbl/1355.35192
http://dx.doi.org/10.1016/j.bulsci.2011.12.004
http://msp.org/idx/mr/2944369
http://msp.org/idx/zbl/1252.46023
http://dx.doi.org/10.4171/RMI/942
http://msp.org/idx/mr/3651008
http://msp.org/idx/zbl/1371.35322
http://dx.doi.org/10.4171/JEMS/684
http://msp.org/idx/mr/3626547
http://msp.org/idx/zbl/1371.35323
http://dx.doi.org/10.1016/j.jmaa.2005.06.021
http://msp.org/idx/mr/2215170
http://msp.org/idx/zbl/1107.26018
http://dx.doi.org/10.1080/03605302.2013.808211
http://msp.org/idx/mr/3169755
http://msp.org/idx/zbl/1277.35090


370 BARTŁOMIEJ DYDA AND MORITZ KASSMANN

[Felsinger et al. 2015] M. Felsinger, M. Kassmann, and P. Voigt, “The Dirichlet problem for nonlocal operators”, Math. Z.
279:3-4 (2015), 779–809. MR Zbl

[Gilbarg and Trudinger 1998] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed.,
Grundlehren der mathematischen Wissenschaften 224, Springer, 1998.

[Grigor’yan et al. 2014] A. Grigor’yan, J. Hu, and K.-S. Lau, “Estimates of heat kernels for non-local regular Dirichlet forms”,
Trans. Amer. Math. Soc. 366:12 (2014), 6397–6441. MR Zbl

[Husseini and Kassmann 2007] R. Husseini and M. Kassmann, “Markov chain approximations for symmetric jump processes”,
Potential Anal. 27:4 (2007), 353–380. MR Zbl

[John and Nirenberg 1961] F. John and L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math. 14
(1961), 415–426. MR Zbl

[Kassmann 2007a] M. Kassmann, “The classical Harnack inequality fails for nonlocal operators”, preprint no. 360, Collaborative
Research Center 611, University of Bonn, 2007, available at https://tinyurl.com/Kassman2007Harnackfails.

[Kassmann 2007b] M. Kassmann, “Harnack inequalities: an introduction”, Bound. Value Probl. 2007 (2007), art. id. 81415.
MR Zbl

[Kassmann 2009] M. Kassmann, “A priori estimates for integro-differential operators with measurable kernels”, Calc. Var.
Partial Differential Equations 34:1 (2009), 1–21. MR Zbl

[Kassmann 2011] M. Kassmann, “A new formulation of Harnack’s inequality for nonlocal operators”, C. R. Math. Acad. Sci.
Paris 349:11-12 (2011), 637–640. MR Zbl

[Kassmann and Schwab 2014] M. Kassmann and R. W. Schwab, “Regularity results for nonlocal parabolic equations”, Riv.
Math. Univ. Parma .N.S./ 5:1 (2014), 183–212. MR Zbl

[Kassmann et al. 2014] M. Kassmann, M. Rang, and R. W. Schwab, “Integro-differential equations with nonlinear directional
dependence”, Indiana Univ. Math. J. 63:5 (2014), 1467–1498. MR Zbl

[Komatsu 1995] T. Komatsu, “Uniform estimates for fundamental solutions associated with non-local Dirichlet forms”, Osaka J.
Math. 32:4 (1995), 833–860. MR Zbl

[Krickeberg 1968] K. Krickeberg, “Ein Isomorphiesatiz über topologische Massräume”, Math. Nachr. 37 (1968), 59–66. MR
Zbl

[Maz’ya and Shaposhnikova 2002] V. Maz’ya and T. Shaposhnikova, “On the Bourgain, Brezis, and Mironescu theorem
concerning limiting embeddings of fractional Sobolev spaces”, J. Funct. Anal. 195:2 (2002), 230–238. MR Zbl

[Moser 1961] J. Moser, “On Harnack’s theorem for elliptic differential equations”, Comm. Pure Appl. Math. 14 (1961), 577–591.
MR Zbl

[Oxtoby 1970] J. C. Oxtoby, “Homeomorphic measures in metric spaces”, Proc. Amer. Math. Soc. 24 (1970), 419–423. MR Zbl
[Ponce 2004] A. C. Ponce, “An estimate in the spirit of Poincaré’s inequality”, J. Eur. Math. Soc. .JEMS/ 6:1 (2004), 1–15. MR
Zbl

[Prats and Saksman 2017] M. Prats and E. Saksman, “A T.1/ theorem for fractional Sobolev spaces on domains”, J. Geom. Anal.
27:3 (2017), 2490–2538. MR Zbl

[Riesz 1938] M. Riesz, “Intégrales de Riemann–Liouville et potentiels”, Acta Sci. Math. .Szeged/ 9:1 (1938), 1–42. Zbl
[Ros-Oton and Serra 2016] X. Ros-Oton and J. Serra, “Regularity theory for general stable operators”, J. Differential Equations
260:12 (2016), 8675–8715. MR Zbl

[Ros-Oton and Valdinoci 2016] X. Ros-Oton and E. Valdinoci, “The Dirichlet problem for nonlocal operators with singular
kernels: convex and nonconvex domains”, Adv. Math. 288 (2016), 732–790. MR Zbl

[Silvestre 2006] L. Silvestre, “Hölder estimates for solutions of integro-differential equations like the fractional Laplace”,
Indiana Univ. Math. J. 55:3 (2006), 1155–1174. MR Zbl

[Silvestre 2016] L. Silvestre, “A new regularization mechanism for the Boltzmann equation without cut-off”, Comm. Math. Phys.
348:1 (2016), 69–100. MR Zbl

Received 25 Nov 2015. Revised 8 Dec 2017. Accepted 9 Apr 2018.

BARTŁOMIEJ DYDA: bdyda@pwr.edu.pl
Department of Pure and Applied Mathematics, Wrocław University of Science and Technology, Wrocław, Poland

MORITZ KASSMANN: moritz.kassmann@uni-bielefeld.de
Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany

mathematical sciences publishers msp

http://dx.doi.org/10.1007/s00209-014-1394-3
http://msp.org/idx/mr/3318251
http://msp.org/idx/zbl/1317.47046
http://dx.doi.org/10.1090/S0002-9947-2014-06034-0
http://msp.org/idx/mr/3267014
http://msp.org/idx/zbl/1304.47058
http://dx.doi.org/10.1007/s11118-007-9060-6
http://msp.org/idx/mr/2353972
http://msp.org/idx/zbl/1128.60071
http://dx.doi.org/10.1002/cpa.3160140317
http://msp.org/idx/mr/131498
http://msp.org/idx/zbl/0102.04302
https://tinyurl.com/Kassman2007Harnackfails
http://dx.doi.org/10.1155/2007/81415
http://msp.org/idx/mr/2291922
http://msp.org/idx/zbl/1144.35002
http://dx.doi.org/10.1007/s00526-008-0173-6
http://msp.org/idx/mr/2448308
http://msp.org/idx/zbl/1158.35019
http://dx.doi.org/10.1016/j.crma.2011.04.014
http://msp.org/idx/mr/2817382
http://msp.org/idx/zbl/1236.31003
http://msp.org/idx/mr/3289601
http://msp.org/idx/zbl/1329.35095
http://dx.doi.org/10.1512/iumj.2014.63.5394
http://dx.doi.org/10.1512/iumj.2014.63.5394
http://msp.org/idx/mr/3283558
http://msp.org/idx/zbl/1311.35047
http://projecteuclid.org/euclid.ojm/1200786472
http://msp.org/idx/mr/1380729
http://msp.org/idx/zbl/0867.35123
http://dx.doi.org/10.1002/mana.19680370106
http://msp.org/idx/mr/230865
http://msp.org/idx/zbl/0155.38401
http://dx.doi.org/10.1006/jfan.2002.3955
http://dx.doi.org/10.1006/jfan.2002.3955
http://msp.org/idx/mr/1940355
http://msp.org/idx/zbl/1028.46050
http://dx.doi.org/10.1002/cpa.3160140329
http://msp.org/idx/mr/159138
http://msp.org/idx/zbl/0111.09302
http://dx.doi.org/10.2307/2037379
http://msp.org/idx/mr/260961
http://msp.org/idx/zbl/0187.00902
http://link.springer.de/cgi/linkref?issn=1435-9855&year=04&volume=6&page=1
http://msp.org/idx/mr/2041005
http://msp.org/idx/zbl/1051.46019
http://dx.doi.org/10.1007/s12220-017-9770-y
http://msp.org/idx/mr/3667439
http://msp.org/idx/zbl/1377.42023
http://pub.acta.hu/acta/showCustomerArticle.action?id=5634&dataObjectType=article&returnAction=showCustomerVolume&sessionDataSetId=32e11bf412cd8b31&style=
http://msp.org/idx/zbl/0018.40704
http://dx.doi.org/10.1016/j.jde.2016.02.033
http://msp.org/idx/mr/3482695
http://msp.org/idx/zbl/1346.35220
http://dx.doi.org/10.1016/j.aim.2015.11.001
http://dx.doi.org/10.1016/j.aim.2015.11.001
http://msp.org/idx/mr/3436398
http://msp.org/idx/zbl/1334.35397
http://dx.doi.org/10.1512/iumj.2006.55.2706
http://msp.org/idx/mr/2244602
http://msp.org/idx/zbl/1101.45004
http://dx.doi.org/10.1007/s00220-016-2757-x
http://msp.org/idx/mr/3551261
http://msp.org/idx/zbl/1352.35091
mailto:bdyda@pwr.edu.pl
mailto:moritz.kassmann@uni-bielefeld.de
http://msp.org


ANALYSIS AND PDE
Vol. 13, No. 2, 2020

dx.doi.org/10.2140/apde.2020.13.371 msp

ON SOLVABILITY AND ILL-POSEDNESS
OF THE COMPRESSIBLE EULER SYSTEM

SUBJECT TO STOCHASTIC FORCES

DOMINIC BREIT, EDUARD FEIREISL AND MARTINA HOFMANOVÁ

We consider the barotropic Euler system describing the motion of a compressible inviscid fluid driven by
a stochastic forcing. Adapting the method of convex integration we show that the initial value problem
is ill-posed in the class of weak (distributional) solutions. Specifically, we find a sequence τM →∞ of
positive stopping times for which the Euler system admits infinitely many solutions originating from the
same initial data. The solutions are weak in the PDE sense but strong in the probabilistic sense, meaning,
they are defined on an a priori given stochastic basis and adapted to the driving stochastic process.

1. Introduction

Solutions of nonlinear systems of conservation laws, including the compressible Euler system discussed
in the present paper, are known to develop singularities in finite time even for smooth initial data. Weak
solutions that can accommodate these singularities provide therefore a suitable framework for studying
the behavior of the system in the long run. A delicate and still largely open question is well-posedness of
the associated initial value problem in the class of weak solutions. More precisely, a suitable admissibility
criterion is needed to select the physically relevant solution. The method of convex integration, developed
in the context of fluid mechanics in [De Lellis and Székelyhidi 2012], gives rise to several striking results
concerning well-/ill-posedness of the Cauchy problem for the Euler system and related models of inviscid
fluids; see, e.g., [Chiodaroli 2014; De Lellis and Székelyhidi 2009; 2010]. In particular, the barotropic
Euler system in two and three space dimensions is ill-posed in the class of admissible entropy solutions
(solutions dissipating energy) even for rather regular initial data; see [Chiodaroli, De Lellis, and Kreml
2015; Chiodaroli and Kreml 2014]. In the context of incompressible fluids, the method has been used
for attacking the celebrated Onsager’s conjecture, finally proved in [Isett 2018], accompanied by related
results obtained in [Buckmaster, De Lellis, Székelyhidi, and Vicol 2019]. Very recently, the ill-posedness
in the class of weak solutions has been extended even for the incompressible Navier–Stokes system in
[Buckmaster and Vicol 2019]; see also [Buckmaster, Colombo, and Vicol 2018].

The research of Feireisl leading to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement 320078. The Institute of Mathematics of the
Academy of Sciences of the Czech Republic is supported by RVO:67985840.
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In the present paper, we show that this difficulty persists even in the presence of a random forcing. As
a model example, we consider the barotropic Euler system describing the time evolution of the density %
and the velocity u of a compressible fluid:

d%+ divx(%u) dt = 0, (1-1)

d(%u)+ divx(%u⊗ u) dt +∇x p(%) dt = %G(%, %u) dW, (1-2)

where p = p(%) is the pressure, and the term %G(%, %u) dW represents a random volume force acting on
the fluid. A typical example is the so-called isentropic pressure density state equation p(%) = %γ. We
focus on two iconic examples of forcing, namely,

%G(%, %u) dW = %G dW = %
∞∑

i=1

Gi dβi , Gi
= Gi (x), (1-3)

or
%G(%, %u) dW = %u dβ. (1-4)

Here βi = βi (t), β = β(t) are real-valued Wiener processes, whereas the diffusion coefficients Gi are
smooth functions depending only on the spatial variable x . For the sake of simplicity, we consider periodic
boundary conditions, meaning the underlying spatial domain can be identified with a flat torus,

T N
= ([0, 1]|{0,1})N , N = 2, 3.

Other boundary conditions, in particular the impermeability of the boundary, could be accommodated at
the expense of additional technical difficulties.

The problem of solvability of the stochastic compressible Euler system (1-1), (1-2) is very challenging
with only a few results available. In space dimension 1, [Berthelin and Vovelle 2013] proved existence
of entropy solutions. These solutions are also weak in the probabilistic sense; that is, the underlying
stochastic elements are not known in advance and become part of the solution. The only available results
in higher space dimensions concern the local well-posedness of strong solutions. To be more precise,
given a sufficiently smooth initial condition

%(0, · )= %0, %u(0, · )= (%u)0, (1-5)

it can be shown that the problem (1-1), (1-2), (1-5) admits a unique local strong solution taking values
in the class of Sobolev spaces W m,2 of order m > 1

2 N + 3. These solutions are strong in both the
PDE and probabilistic sense; i.e., they are constructed on a given stochastic basis with a given Wiener
process. Nevertheless, they exist (and are unique in terms of the initial data) only up to a strictly positive
maximal stopping time τ . Beyond this time that may be finite, the solutions develop singularities and
uniqueness is not known. We refer the reader to [Breit, Feireisl, and Hofmanová 2018], where the
stochastic compressible Navier–Stokes system with periodic boundary conditions was treated, and in
particular to Remark 2.10 of that work for a discussion of the inviscid case. Let us finally remark that
general symmetric hyperbolic systems on the whole space RN were studied in [Kim 2011].

For completeness, let us mention that (1-4) may be seen as a “damping” term, the regularizing effect
of which in the context of incompressible fluids has been recognized in [Glatt-Holtz and Vicol 2014],



ON SOLVABILITY AND ILL-POSEDNESS OF THE COMPRESSIBLE EULER SYSTEM 373

and for a general symmetric hyperbolic system in [Kim 2011]. To be more precise, in [Kim 2011] it
was shown that the probability that the strong solution never blows up can be made arbitrarily close to 1
provided the initial condition is sufficiently small. In [Glatt-Holtz and Vicol 2014] it was proved that the
smallness assumption on the initial condition can be replaced by large intensity of the noise. Additionally,
in the case of additive noise, which in our setting corresponds to (1-3), that work showed global existence
of strong solutions to the incompressible Euler equations in two dimensions.

Our goal in the present paper is to show that the problem (1-1), (1-2) is ill-posed in the class of weak
(distributional) solutions. More precisely, we show that there exists an increasing sequence of strictly
positive stopping times τM , with τM →∞ as M →∞ a.s., such that problem (1-1), (1-2), (1-3) or
(1-4), (1-5) admits infinitely many weak solutions in the time interval [0, τM ∧ T ) for any positive T.
We emphasize that weak is meant only in the PDE sense — the spatial derivatives are understood in the
distributional framework — while solutions are strong in the probabilistic sense. To be more precise, the
stochastic basis together with a driving Wiener process W are given and we construct infinitely many
solutions that are stochastic processes adapted to the given filtration. This is particularly interesting in
light of the fact that uniqueness is violated. Indeed, without the knowledge of uniqueness it is typically
only possible to construct probabilistically weak solutions that are not adapted to the given Wiener process.
This already applies on the level of SDEs; see, for instance, the discussion in [Karatzas and Shreve 1988,
Chapter 5].

Formally, both (1-3) and (1-4) represent a multiplicative noise. Nevertheless, under these assumptions,
the system of stochastic PDEs (1-1), (1-2) may be reduced to a system of PDEs with random coefficients
by means of a simple transformation. As a consequence, the stochastic integral no longer appears in
the system and deterministic methods can be employed pathwise. Such a semideterministic approach
was already used in many works; see for instance [Feireisl, Maslowski, and Novotný 2013; Tornatore
and Fujita Yashima 1997] for the compressible setting, and the seminal paper [Bensoussan and Temam
1973] for the incompressible case. However, we point out that in all these references, the nontrivial issue
of adaptedness of solutions with respect to the underlying stochastic perturbation remained unsolved.
Therefore, it was not possible to return to the original formulation of the problem with a well-defined
stochastic Itô integral. Even though we employ a similar semideterministic approach to (1-1), (1-2), (1-3)
or (1-4), we are able to answer affirmatively the question of adaptedness and accordingly the stochastic
Itô integral in the original formulation (1-1), (1-2) is well-defined.

To be more precise, for both (1-3) and (1-4), we rewrite (1-1), (1-2) as an abstract Euler system
with variable random coefficients in the spirit of [Feireisl 2016]. This relies on the particular structure
of the compressible Euler system and its interplay with stochastic perturbations satisfying (1-3) or
(1-4). The resulting problem is then solved by an adaptation of the deterministic method of convex
integration developed in [De Lellis and Székelyhidi 2010]. The main difficulty is to ensure that the
abstract construction based on the concept of subsolutions yields a solution %, %u adapted to the noise W.
This is done by a careful analysis of the oscillatory lemma of [De Lellis and Székelyhidi 2010], where
adaptedness is achieved by a delicate use of the celebrated Ryll–Nardzewski theorem on the existence of
a measurable selection of a multivalued mapping.
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The key point is to study a certain nonpositive functional I (see Section 6D) defined on an appropriate
class of subsolutions (see Section 6A) to the abstract Euler system. These subsolutions capture already all
the required (probabilistic) properties expected from the solutions. Similarly to [De Lellis and Székelyhidi
2010], the existence of infinitely many solutions to the original problem is obtained by applying an abstract
Baire category argument based on the possibility of augmenting a given subsolution by rapidly oscillating
increments. Determining the amplitude as well as the frequency of these oscillatory components at a
given time t requires knowing the behavior of a given subsolution up to the time t+δ, δ > 0. The specific
value of δ is in general a random variable, the value of which depends on the behavior of the noise W
in the interval [t, t + δ). Consequently, it is not adapted with respect to the natural filtration associated
to the noise. The problem can be solved only if δ > 0 is deterministic, specifically if the solution paths
belong to a fixed compact set. To ensure this, we replace W by WM(t)=W (t∧τM), where τM is a family
of suitable stopping times defined in terms of the Hölder norm of W. It is exactly this rather technical
difficulty that restricts validity of our main result to the random time interval [0, τM). Note, however, that
τM can be made arbitrarily large with probability arbitrarily close to 1.

Let us stress that our results apply mutatis mutandis to situations when the driving force is given
by a more general stochastic process or a deterministic signal of low regularity. Provided a suitable
transformation formula to a PDE with random coefficients can be justified, the only ingredient is the
one required in Section 3A for the construction of the corresponding stopping times τM . Namely, the
trajectories of the driving stochastic process are supposed to be a.s. a-Hölder continuous for some
a ∈ (0, 1). Then existence of infinitely many weak solutions (to the transformed system) adapted to
the given stochastic process follows. Whether it is possible to go back to the original formulation then
depends on the particular stochastic process at hand, namely, whether a corresponding stochastic integral
can be constructed. If the driving signal is a deterministic Hölder continuous path, the stopping times are
not needed and we obtain infinitely many weak solutions (to the transformed system) defined on the full
time interval [0, T ].

It is important to note that the restriction to the multidimensional case N = 2, 3 is absolutely essential
here and the variant of the method of convex integration presented below does not work for N = 1.
Indeed, the method leans on the property of the system to admit oscillatory solutions. As observed in
the pioneering works [DiPerna 1983a; 1983b], the deterministic counterpart of (1-1), (1-2) appended by
suitable admissibility conditions gives rise to a solution set that is precompact in the L p framework if
N = 1.

To conclude this introductory part, let us summarize the current state of understanding of a compressible
flow of an inviscid fluid under stochastic perturbation. Consider a sufficiently smooth initial condition
(1-5) and a fixed stochastic basis. On the one hand, it can be shown that there exists a unique local
strong solution. However, in view of our result, there exist infinitely many weak solutions emanating
from the same initial datum. The very natural question is therefore whether one can compare these two
kinds of solutions. In fluid dynamics, it is often possible to establish a so-called weak-strong uniqueness
result: strong solutions coincide with weak solutions satisfying a suitable form of energy inequality. The
corresponding result for the stochastic compressible Navier–Stokes system was proved in [Breit, Feireisl,
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and Hofmanová 2017]. Consequently, it would be interesting to see whether our weak solutions could be
constructed to satisfy an energy inequality. In analogy with the deterministic setting, we know this might
be possible only for certain initial data and we leave this problem to be addressed in future work.

The paper is organized as follows. In Section 2, we introduce a proper definition of a weak solution and
state our main results. In Section 3, the problem is rewritten in a semideterministic way that eliminates
the explicit presence of stochastic integrals. In Section 4, we rewrite the system as an abstract Euler
problem in the spirit of [Feireisl 2016]. Section 5 is the heart of the paper. Here, the apparatus of convex
integration developed in [De Lellis and Székelyhidi 2010] is adapted to stochastic framework. The main
result is a stochastic variant of the oscillatory lemma (Lemma 5.6) proved via the Ryll–Nardzewski
theorem on measurable selection. The proof of the main result is completed in Section 6.

2. Problem formulation and main results

Let (�,F, (Ft)t≥0,P) be a probability space with a complete right-continuous filtration (Ft)t≥0. For the
sake of simplicity, we restrict ourselves to the case of a single noise; specifically,

%G(%, %u) dW = %G(x) dβ or %G(%, %u) dW = %u dβ, (2-1)

where β = β(t) is a standard Wiener process relative to the filtration (Ft)t≥0. In particular, we may
correctly define the stochastic integral (in Itô’s sense)∫ τ

0

(∫
T N
%G(%, %u) ·ϕ dx

)
dW

as soon as the processes

t 7→
∫
T N
%φ dx, t 7→

∫
T N
%u ·ϕ dx (2-2)

are (Ft)-progressively measurable for any smooth (deterministic) test functions φ = φ(x) and ϕ = ϕ(x).

Definition 2.1. We say that [%, u, τ ] is a weak solution to problem (1-1), (1-2), (1-5) with a stopping
time τ provided:

(i) τ ≥ 0 is an (Ft)-stopping time.

(ii) The density % is (Ft)-adapted and satisfies

% ∈ C([0, τ );W 1,∞(T N )), % > 0 P-a.s.

(iii) The momentum %u satisfies t 7→
∫
T N %u ·ϕ dx ∈C([0, τ ]) for any ϕ ∈C∞c (T N

; RN ), the stochastic
process t 7→

∫
T N %u ·ϕ dx is (Ft)-adapted, and

%u ∈ Cweak([0, τ ); L2(T N
; RN ))∩ L∞((0, τ )× T N

; RN ) P-a.s..

(iv) For all φ ∈ C∞c (T N ) and all t ≥ 0 the following holds P-a.s.:∫
T N
%(t ∧ τ, · )φ dx −

∫
T N
%0φ dx =

∫ t∧τ

0

∫
T N
%u · ∇xφ dx dt. (2-3)
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(v) For all ϕ ∈ C∞c (T N , RN ) and all t ≥ 0 the following holds P-a.s.:∫
T N
%u(t ∧ τ, · ) ·ϕ dx −

∫
T N
(%u)0 ·ϕ dx

=

∫ t∧τ

0

∫
T N
[%u⊗ u : ∇xϕ+ p(%) divx ϕ] dx dt +

∫ t∧τ

0

(∫
T N
%G ·ϕ dx

)
dW. (2-4)

Remark 2.2. The processes in (2-2) are continuous and (Ft)-adapted, whence progressively measurable.
Consequently, the stochastic integral in (2-3) is correctly defined as soon as G = G(%, %u) satisfies (2-1).

We are ready to formulate our main result.

Theorem 2.3. Let T > 0 and the initial data %0, (%u)0 be F0-measurable such that

%0 ∈ C3(T N ), (%u)0 ∈ C3(T N
; RN ), %0 > 0 P-a.s. (2-5)

Let the stochastic term satisfy (2-1), where β is a standard Wiener process, and the coefficient G ∈
W 1,∞(T N

; RN ) is a given deterministic function. Finally, suppose that the pressure function p = p(%)
satisfies

p ∈ C1
[0,∞)∩C2(0,∞), p(0)= 0.

Then there exists a family of P-a.s. strictly positive (Ft)-stopping times τM satisfying τM ≤ τL P-a.s. for
M ≤ L , and

τM →∞ as M→∞ P-a.s.,

such that problem (1-1), (1-2), (1-5) admits infinitely many weak solutions with the stopping time τ=τM∧T
in the sense of Definition 2.1.

Remark 2.4. Solutions obtained in Theorem 2.3 are “almost global” in the sense that for any ε > 0,
problem (1-1), (1-2), (1-5) admits infinitely many (weak) solutions living on a given time interval (0, T )
with probability 1− ε (choosing M large enough). The necessity of considering finite stopping times is
explained in detail in Remark 5.13 below.

Remark 2.5. We transform the problem to an abstract Euler system (see (4-7), (4-8) and (4-13), (4-14))
and show the existence of infinitely many solutions to the latter one. It is worth noting that our approach
can be applied to other problems in fluid mechanics, in particular to the incompressible stochastic Euler
equations. See also Remark 4.2.

The rest of the paper is devoted to the proof of Theorem 2.3. Let us now summarize the key points
of our construction. For both (1-3) and (1-4), we rewrite (1-1), (1-2) as an abstract Euler system with
variable random coefficients in the spirit of [Feireisl 2016]. On the set of subsolutions to this system we
define the functional

I [v] = E

[∫ T

0

∫
T N

[
1
2
|v+ h|2

r
− e

]
dx dt

]
.

Here, h, r are given functions related to the density ansatz and e is the target energy. The solutions of
the problem are represented by the points of continuity of I with respect to v. The exact definition of
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I is given in Section 6D below. It is rather standard to see that I has infinitely many continuity points
and that I [v] = 0 implies that v is a solution. The bulk is to show that each continuity point satisfies
I [v] = 0, which implies the existence of infinitely many solutions. The latter statement can be shown
indirectly by augmenting a given continuity point by rapidly oscillating increments. These increments
are obtained by an adaptation of the deterministic method of convex integration developed in [De Lellis
and Székelyhidi 2010]. The main difficulty is to ensure progressive measurability in this construction.
Following [Donatelli, Feireisl, and Marcati 2015] we proceed in three steps:

(i) Assuming the subsolution under consideration is constant in space-time (but random) we gain an
oscillator sequence which is a random variable itself by the Ryll–Nardzewski theorem on measurable
selection. This is first done on the unit interval with density equal to 1 (see Lemma 5.6). A more general
version follows by scaling (see Lemma 5.8).

(ii) The construction from (i) can be extended to piecewise constant subsolutions which are evaluated at
the first time-point of each subinterval. This ensures progressive measurability of the oscillatory sequence
(see Lemma 5.10).

(iii) Finally, we consider the general case of continuous subsolutions (see Lemma 5.11). They can be
approximated by piecewise constant ones and we can apply step (ii). It is important that the modulus of
continuity can be controlled. This is where the stopping times in the noise come into play.

3. Transformation to a semideterministic setting

In view of the difficulties mentioned in Section 1, we are forced to replace the original Wiener process β
by a suitable truncation and to rewrite the problem in a semideterministic setting.

3A. Stopping times. We start by fixing a family (τM)M∈N of stopping times enjoying the properties
claimed in Theorem 2.3. For a given 0< a < 1

2 and the Wiener process β, β(0)= 0 P-a.s., we introduce

O(t)= sup
0≤s≤t

|β(s)| + sup
0≤t1 6=t2≤t

|β(t1)−β(t2)|
|t1− t2|a

for t > 0, O(0)= 0.

Obviously, O is a nondecreasing stochastic process adapted to (Ft)t≥0. Moreover, as β is a Wiener
process, it follows from the Kolmogorov continuity criterion that

|β(t1)−β(t2)| ≤ B(T, b)|t1− t2|b = B(T, b)|t1− t2|b−a
|t1− t2|a whenever 0≤ t1, t2 ≤ T,

for any 0< a < b< 1
2 , T > 0, where B(T, b) is random and finite P-a.s. In particular, we deduce that O

is continuous in [0,∞). As a consequence, for M ∈ N,

τM = inf
t≥0
{O(t) > M} ∧ T

defines an (Ft)-stopping time. Moreover, τM ≤ τL P-a.s. for M ≤ L , and in particular we get

τM →∞ as M→∞ P-a.s.

Finally, as O is continuous and O(0)= 0 P-a.s., we have that τM > 0 P-a.s. for all M ∈ N.
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Next, let us introduce the stopped stochastic process

WM = βM , βM(t)= β(t ∧ τM) for t ≥ 0.

We recall that, for τ = τM , the stochastic integral in (2-4) can be rewritten as∫ t∧τM

0

(∫
T N
%G ·ϕ dx

)
dW =

∫ t

0

(∫
T N
%G ·ϕ dx

)
dWM .

From now on, we consider problem (1-1), (1-2), (1-5) with β replaced by βM . Under these circumstances,
our task reduces to showing Theorem 2.3 with β = βM on the deterministic time interval [0, T ]. Note
that the paths of βM are uniformly bounded and uniformly Hölder continuous,

‖βM‖Ca[0,T ] ≤ M, 0< a < 1
2 P-a.s. (3-1)

This is the essential property we use to construct probabilistically strong solutions, that is, solutions that
are adapted to the given filtration (Ft)t≥0 associated to β.

3B. Problem with additive noise. If the noise is given by (1-3), we may combine Itô’s calculus with the
equation of continuity (2-3) to rewrite the stochastic integral in the form∫ t

0

(∫
T N
%G ·ϕ dx

)
dβM =

(∫
T N
%G ·ϕ dx

)
βM(t)−

∫ t

0
βM(s)

∫
T N
%u · ∇x(G ·ϕ) dx ds.

Consequently, the momentum equation (1-2) can be formally written as

d(%u− %βM G)+ divx(%u⊗ u) dt +∇x p(%) dt = βM G divx(%u) dt, (3-2)

where no stochastic integration is necessary. Passing to the weak formulation, our task reduces to finding
% and %u such that

t 7→
∫
T N
%φ dx, t 7→

∫
T N
%u·ϕ dx continuous and (Ft)-adapted,∫

T N
%(0, ·)φ dx =

∫
T N
%0φ dx,

∫
T N
%u(0, ·)·ϕ dx =

∫
T N
(%u)0·ϕ dx

(3-3)

for any smooth test functions φ, ϕ, satisfying∫ T

0

∫
T N
[%∂tφ+ %u · ∇xφ] dx dt = 0 (3-4)

for any φ ∈ C∞c ((0, T )× T N );∫ T

0

∫
T N
[(%u− %βM G) · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%) divx ϕ] dx dt

=

∫ T

0

∫
T N
[βM%u · ∇x G ·ϕ+βM%u · ∇xϕ · G] dx dt (3-5)

for any ϕ ∈ C∞c ((0, T )× T N
; RN ).
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Remark 3.1. Problem (3-4), (3-5) can be viewed as a system of partial differential equations with random
coefficients. We point out that all steps leading from the original problem (2-3), (2-4) to (3-4), (3-5) are
reversible as long as %, %u are weakly continuous (Ft)-adapted and Itô’s calculus applies. In particular, it
is enough to solve (3-3)–(3-5).

3C. Problem with linear multiplicative noise (stochastic “damping”). If the forcing is given by (1-4),
we may again use Itô’s calculus for 0≤ t ≤ τM obtaining

d exp(−βM)=− exp(−βM) dβM +
1
2 exp(−βM) dt,

and

exp(−βM)

[
d
(∫

T N
%u ·ϕ dx

)
−

(∫
T N
%u ·ϕ dx

)
dβM

]
= d

[
exp(−βM)

∫
T N
%u ·ϕ dx

]
+

1
2 exp(−βM)

∫
T N
%u ·ϕ dx dt.

On the other hand, in accordance with (2-4),

d
(∫

T N
%u ·ϕ dx

)
−

(∫
T N
%u ·ϕ dx

)
dβM =

∫
T N
[%u⊗ u : ∇xϕ+ p(%) divx ϕ] dx dt.

We therefore conclude that

d
[

exp(−βM)

∫
T N
%u ·ϕ dx

]
=−

1
2 exp(−βM)

∫
T N
%u ·ϕ dx dt + exp(−βM)

∫
T N
[%u⊗ u : ∇xϕ+ p(%) divx ϕ] dx dt.

Similarly to the case of additive noise, we may replace (2-3), (2-4) by a system of partial differential
equations with random coefficients, the weak formulation of which reads∫ T

0

∫
T N
[%∂tφ+ %u · ∇xφ] dx dt = 0 (3-6)

for any ϕ ∈ C∞c ((0, T )× T N );

0=
∫ T

0

∫
T N
[exp(−βM)%u · ∂tϕ+ exp(−βM)%u⊗ u : ∇xϕ+ exp(−βM)p(%) divx ϕ] dx dt

−
1
2

∫ T

0

∫
T N

exp(−βM)%u ·ϕ dx dt (3-7)

for any ϕ ∈ C∞c ((0, T )× T N
; RN ), where %, %u are the stochastic processes satisfying (3-3).

4. Abstract Euler problem

Our next goal is to rewrite the problems (3-3), (3-4), (3-5) and (3-3), (3-6), (3-7), respectively, to fit into
the abstract framework introduced in [Feireisl 2016]. In addition to (2-5) we suppose that P-a.s.

‖%0‖C3(T N )+‖(%u)0‖C3(T N ;RN )+‖%
−1
0 ‖C(T N ) ≤ D (4-1)
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for some deterministic constant D > 0. We claim that it is enough to show Theorem 2.3 for the initial
data satisfying (4-1). Indeed, any initial data %0, (%u)0 satisfying (2-5) can be written as

[%0, (%u)0] = lim
D→∞
[%0,D, (%u)0,D] P-a.s.,

where

[%0,D, (%u)0,D](ω)=
{
[%0, (%u)0](ω) if (4-1) holds,
[1, 0] otherwise.

Let [%D, (%u)D] be the solution emanating from the data [%0,D, (%u)0,D], the existence of which is
guaranteed by Theorem 2.3. We set

�D = {ω ∈� | [%0, (%u)0](ω) satisfies (4-1)}.

Note that �D is F0-measurable for any D > 0. Since

[%0, (%u)0] = 1�1[%1, (%u)1] +
∞∑

D=2

1�D\�D−1[%0,D, (%u)0,D],

the desired solution for arbitrary initial data satisfying (2-5) can be obtained in the form

[%, %u] = 1�1[%1, (%u)1] +
∞∑

D=2

1�D\�D−1[%D, (%u)D].

4A. Additive noise. Going back to (3-4), (3-5) we write

%u− %βM G = v+ V +∇x9,

where

divx v = 0,
∫
T N
v dx = 0, V = V (t) ∈ RN a spatially homogeneous function.

Remark 4.1. Note that v+ V represents the standard Helmholtz projection 5H of %u− %βM G onto the
space of solenoidal functions.

To meet the initial conditions (1-5), we fix

v(0, · )=5H [(%u)0] −
1
|T N |

∫
T N
(%u)0 dx,

V (0)=
1
|T N |

∫
T N
(%u)0 dx, ∇x9(0, · )=5⊥H [(%u)0].

Accordingly, the equation of continuity (3-4) reads

∂t%+1x9 +βM divx(%G)= 0, %(0, · )= %0. (4-2)

For given 9, βM , and G, the density % in (4-2) is uniquely determined by the method of characteristics.
Moreover, as βM satisfies (3-1) and %0 is strictly positive uniform in �, we may fix the potential 9 and
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subsequently the density % in such a way that

9 ∈ C2([0, T ];C3(T N )) P-a.s., 9 (Ft)-adapted, ‖9‖C2([0,T ];C3(T N )) ≤ cM P-a.s.,

% ∈ C1([0, T ];C1(T N )) P-a.s., %(0, · )= %0, % (Ft)-adapted,

‖%‖C1([0,T ];C1(T N )) ≤ cM , % ≥
1

cM
P-a.s., (4-3)

where cM > 0 is a deterministic constant depending on the stopping parameter M. Here, we have also
used the extra hypothesis (4-1).

Remark 4.2. We would like to point out that 9 and subsequently % are not uniquely determined. As a
matter of fact, there are infinitely many possibilities of how to choose 9 and % satisfying (4-2), (4-3). In
particular, if

divx(%u)0 = 0,
∫
T N
(%u)0 = 0, and divx G = 0

we can take the ansatz

% ≡ 1, 9 ≡ 0

obtaining %u = v— a solution of the incompressible Euler system.

Having fixed % and 9, we compute V as the unique solution of the differential equation

dV
dt
=−

1
|T N |

∫
T N
[%β2

M∇x G · G+βM∇x G · ∇x9] dx, V (0)=
1
|T N |

∫
T N
(%u)0 dx . (4-4)

In view of (4-3) and the assumption G ∈W 1,∞(T N
; RN ) we easily deduce that

V ∈ C1([0, T ]; RN ) P-a.s., V is (Ft)-adapted, ‖V‖C1([0,T ];RN ) ≤ cM P-a.s. (4-5)

Thus it remains to find v to satisfy (3-5). It turns out that v must be a weak solution of the abstract
Euler system

∂tv+ divx

(
(v+ %βM G+ V +∇x9)⊗ (v+ %βM G+ V +∇x9)

%

)
=−∇x p(%)− ∂t∇x9 +βM divx(%βM G+∇x9)G−

1
|T N |

∫
T N
βM divx(%βM G+∇x9)G dx,

divx v = 0, v(0, · )= v0 =5H [(%u)0] −
1
|T N |

∫
T N
(%u)0 dx .

Finally, we solve the elliptic system

divx

[
∇x m+∇ t

x m− 2
N

divx mI
]

=∇x p(%)+ ∂t∇x9 −βM divx(%βM G+∇x9)G+
1
|T N |

∫
T N
βM divx(%βM G+∇x9)G dx . (4-6)
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Note that (4-6) admits a unique solution as the right-hand side is a function of zero mean. Consequently,
setting

r = %, h = %βM G+ V +∇x9, M=∇x m+∇ t
x m− 2

N
divx mI

we may rewrite the problem in a concise form:

∂tv+ divx

[
(v+ h)⊗ (v+ h)

r
+M

]
= 0, divx v = 0, v(0, · )= v0, (4-7)

where

v0∈C1(T N
; RN ) P-a.s., divx v0=0,

∫
T N
v0 dx=0, v0 is F0-measurable, ‖v0‖C1(T N ;RN )≤cM P-a.s.,

h∈Ca([0,T ];C1(T N
; RN )) P-a.s., h is (Ft)-adapted, ‖h‖Ca([0,T ];C1(T N ;RN ))≤ cM P-a.s.,

r ∈Ca([0,T ];C1(T N )) P-a.s., r is (Ft)-adapted, ‖r‖Ca([0,T ];C1(T N ))≤ cM ,
1
r
≥

1
cM

P-a.s.,

M∈Ca([0,T ];C1(T N
; RN×N

0,sym)) P-a.s., M is (Ft)-adapted, ‖M‖Ca([0,T ];C1(T N ;RN×N
0,sym))

≤ cM P-a.s.

(4-8)

are given data. In the following we give a precise definition for solutions to (4-7).

Definition 4.3. Assume that the data v0, h, r,M satisfy (4-8).1 We say that v is a weak solution to
problem (4-7) provided:

(i) We have t 7→
∫
T N v · ϕ dx ∈ C([0, T ]) for any ϕ ∈ C∞(T N

; RN ), the stochastic process t 7→∫
T N v ·ϕ dx is (Ft)-adapted, and

v ∈ Cweak([0, T ]; L2(T N
; RN ))∩ L∞((0, T )× T N

; RN ) P-a.s..

(ii) For all ϕ ∈ C∞(T N , RN ) and all t ∈ [0, T ] the following holds P-a.s.:∫
T N
v(t, · ) ·ϕ dx −

∫
T N
v0 ·ϕ dx =

∫ t

0

∫
T N

[
(v+ h)⊗ (v+ h)

r
: ∇xϕ+M : ∇xϕ

]
dx dt. (4-9)

Let us summarize the above discussion in the following proposition.

Proposition 4.4. Let βM and G ∈W 1,∞(T N
; RN ) be given. Let %, 9 belonging to the class (4-3) satisfy

(4-2). Finally, let v be a weak solution of problem (4-7) in the sense of Definition 4.3, with

r = %, h = %βM G+ V +∇x9, M=∇x m+∇ t
x m− 2

N
divx mI,

where V, m solve (4-4), (4-6), respectively.
Then

%, %u = v+ V +∇x9 + %βM G

is a solution of problem (3-3)–(3-5).

Remark 4.5. In view of Proposition 4.4 and Remark 3.1, the proof of Theorem 2.3 in the case of additive
noise reduces to showing the existence of infinitely many solutions to problem (4-7).

1A weak solution could be defined under much less restrictive assumptions on the data.
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4B. Multiplicative noise. Mimicking the steps of the previous section we write

exp(−βM)%u = v+ V +∇x9

in (3-7), where

divx v = 0,
∫
T N
v dx = 0, V = V (t) ∈ RN is a spatially homogeneous function,

and

v(0, · )=5H [(%u)0] −
1
|T N |

∫
T N
(%u)0 dx, V (0)=

1
|T N |

∫
T N
(%u)0 dx, ∇x9(0, · )=5⊥H [(%u)0].

Accordingly, the equation of continuity reads

∂t%+ divx(exp(βM)∇x9)= 0, %(0, · )= %0. (4-10)

Next, we fix V as the unique solution of

dV
dt
+

1
2 V = 0, V (0)=

1
|T N |

∫
T N
(%u)0 dx . (4-11)

Accordingly, the momentum equation can be written as

∂tv+exp(βM)

[
divx

(
v+V+∇x9

)
⊗
(
v+V+∇x9

)
%

]
+exp(−βM)∇x p(%)+∂t∇x9+

1
2∇x9=−

1
2v,

divx v= 0, v0=5H [(%u)0]−
1
|T N |

∫
T N
(%u)0 dx .

(4-12)

Similarly to the above, we can fix %, 9 to satisfy (4-10) together with (4-3).
Finally, seeing that

∫
T N v dx = 0, we may solve an analogue to the elliptic system (4-6), namely,

divx

[
∇x m+∇ t

x m− 2
N

divx mI
]
= exp(−βM)∇x p(%)+ ∂t∇x9 +

1
2∇x9 +

1
2v. (4-13)

Note that, in contrast with (4-6), the solution m = m[v] depends on v.
Similarly to (4-7) we can write the final problem (setting h = V +∇x9 and r = %):

∂tv+ divx

[
(v+ h)⊗ (v+ h)

r
+M[v]

]
= 0, divx v = 0, v(0, · )= v0, (4-14)

where

v0∈C1(T N
; RN ) P-a.s., divx v0=0,

∫
T N
v0 dx=0, v0 is F0-measurable, ‖v0‖C1(T N ;RN )≤cM P-a.s.,

h∈Ca([0,T ];C1(T N
; RN )) P-a.s., h is (Ft)-adapted, ‖h‖Ca([0,T ];C1(T N ;RN ))≤cM P-a.s., (4-15)

r∈Ca([0,T ];C1(T N )) P-a.s., r is (Ft)-adapted, ‖r‖Ca([0,T ];C1(T N )≤cM ,
1
r
≥

1
cM

P-a.s., (4-16)

and
M=M[v] = ∇x m+∇ t

x m− 2
N

divx mI (4-17)

is the unique solution of the elliptic system (4-13).
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Remark 4.6. Note that h is actually more regular than in Section 4A.

Similarly to the preceding section we have the following definition.

Definition 4.7. Assume that the data v0, h, r satisfy (4-15) and let M[v] be given by (4-17) with %,9
satisfying (4-3).2 We say that v is a weak solution to problem (4-14) provided:

(i) We have t 7→
∫
T N v · ϕ dx ∈ C([0, T ]) for any ϕ ∈ C∞(T N

; RN ), the stochastic process t 7→∫
T N v ·ϕ dx is (Ft)-adapted,

v ∈ Cweak([0, T ]; L2(T N
; RN ))∩ L∞((0, T )× T N

; RN ) P-a.s..

(ii) For all ϕ ∈ C∞(T N , RN ) and all t ∈ [0, T ] the following holds P-a.s.:∫
T N
v(t, · ) ·ϕ dx −

∫
T N
v0 ·ϕ dx =

∫ t

0

∫
T N

[
(v+ h)⊗ (v+ h)

r
: ∇xϕ+M[v] : ∇xϕ

]
dx dt. (4-18)

Again similarly to the preceding section, we summarize as follows.

Proposition 4.8. Let βM be given. Let %, 9 solve (4-10), and let V solve (4-11). Let v be a weak solution
of (4-14), with

r = %, h = V +∇x9, M=∇x m+∇ t
x m− 2

N
divx mI,

where m = m[v] is the unique solution of the elliptic system (4-13).
Then

%, %u = exp(βM)(v+ V +∇x9) (4-19)

is a solution of problem (3-6), (3-7).

Remark 4.9. In view of Proposition 4.8, the proof of Theorem 2.3 in the case of the multiplicative noise
reduces to showing the existence of infinitely many solutions to problem (4-14).

5. Convex integration

Problems (4-7) and (4-14) can be solved pathwise using the method of [De Lellis and Székelyhidi 2010],
with the necessary modifications developed in [Feireisl 2016]. In such a way, we would obtain the existence
of (infinitely many) solutions in the semideterministic spirit introduced in [Bensoussan and Temam 1973].
More specifically, solutions obtained this way would be random variables, meaning F-measurable but not
necessarily (Ft)-adapted (progressively measurable). Obviously, such a semideterministic result would
hold without any restriction imposed by the stopping times. Progressive measurability of %, %u claimed
in Theorem 2.3 represents a nontrivial issue that requires a careful revisiting of the method of convex
integration presented in [De Lellis and Székelyhidi 2010]. The main ingredient is a stochastic variant of
the so-called oscillatory lemma shown in the present section.

Definition 5.1. Let G :�→ X be a (Borelian) random variable ranging in a topological space X . We
say that G has a compact range in X if there is a (deterministic) compact set K ⊂ X such that G ∈ K a.s.

2A weak solution could be defined under much less restrictive assumptions on the data.
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5A. Geometric setting. Let RN×N
sym denote the space of symmetric N × N matrices and let RN×N

0,sym be its
subspace of traceless matrices. Following the ansatz of [De Lellis and Székelyhidi 2010, Lemma 3] we
consider the set

S[e] =
{
[w,H]

∣∣ w ∈ RN, H ∈ RN×N
0,sym,

1
2 Nλmax[w⊗w−H]< e

}
,

where λmax[A] denotes the maximal eigenvalue of a symmetric matrix A. Thanks to the algebraic
inequality

1
2 Nλmax[w⊗w−H] ≥ 1

2 |w|
2, H ∈ RN×N

0,sym, (5-1)

S[e] 6=∅ only if e > 0. In addition, we have

1
2(N − 1)λmax[w⊗w−H] ≥ 1

2 |H|
2, w ∈ RN

; (5-2)

see [De Lellis and Székelyhidi 2010, Lemma 3(iii)]. Thus, for given e > 0, S[e] is a convex open and
bounded subset of RN

× RN×N
0,sym . Moreover, as shown in [De Lellis and Székelyhidi 2010],

∂S[e] =
{[

a, a⊗ a− 1
N
|a|2I

] ∣∣∣∣ 1
2 |a|

2
= e

}
.

De Lellis and Székelyhidi [2010, Lemma 6] proved the following result. Given e> 0 and [w,H] ∈S[e],
there exist a, b ∈ RN enjoying the following properties:

• We have
1
2 |a|

2
=

1
2 |b|

2
= e. (5-3)

•There exists L ≥ 0 such that for s = a− b, M= a⊗ a− b⊗ b, we have

[w+ λs,H+ λM] ∈ S[e],

dist[[w+ λs,H+ λM]; ∂S[e]] ≥ 1
2 dist[[w,H]; ∂S[e]]

(5-4)

for all λ ∈ [−L , L].

• There is a universal constant c(N ) depending only on the dimension such that

L|s| ≥ c(N )
1
√

e

(
e− 1

2 |w|
2). (5-5)

• We have

|a± b| ≥ χ(dist[[w,H]; ∂S[e]]), (5-6)

where χ is positive for positive arguments.

Motivated by this result, we consider a set-valued mapping

F : (0,∞)× RN
× RN×N

0,sym→ 2RN
×RN

determined by the following properties:
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(1) Whenever [w,H] /∈ S[e] we have

F(e,w,H)= {[w,w]}. (5-7)

(2) If [w,H] ∈ S[e], then [a, b] ∈ F(e,w,H) if and only if:

• We have
1
2 |a|

2
=

1
2 |b|

2
= e. (5-8)

• There exists L ≥ 0 such that for s = a− b, M= a⊗ a− b⊗ b, we have

[w+ λs,H+ λM] ∈ S[e],

dist[[w+ λs,H+ λM]; ∂S[e]] ≥ 1
2 dist[[w,H]; ∂S[e]]

(5-9)

for all λ ∈ [−L , L].

• We have

L|s| ≥ c(N )
1
√

e

(
e− 1

2 |w|
2), (5-10)

where c(N ) is the universal constant from (5-5);

|a± b| ≥ χ(dist[[w,H]; ∂S[e]]), (5-11)

where χ has been introduced in (5-6).

Basic properties of F are summarized in the following lemma.

Lemma 5.2. For any (e,w,H) ∈ (0,∞)× RN
× RN×N

0,sym the set F(e,w,H) is nonempty, closed, and
contained in a compact set, the size of which depends only on e and |w|. Moreover, the mapping

F : (0,∞)× RN
× RN×N

0,sym→ 2RN
×RN

has closed graph with respect to the Hausdorff distance on compact sets.

Proof. As shown in [De Lellis and Székelyhidi 2010, Lemma 6], the set F(e,w,H) is nonempty for any
[w,H] ∈ S[e] for a certain universal constant c(N ). If [w,H] ∈ ∂S[e], then

1
2 |w|

2
= e,

and, consequently, F(e,w,H) contains at least the trivial point [w,w]. Obviously, F(e,w,H) is closed
and bounded, whence compact.

Closedness of the graph follows by the standard compactness argument as the target space is locally
compact, and conditions (5-8)–(5-11) are invariant with respect to strong convergence. �

Remark 5.3. The mapping assigns to any point [w,H] ∈ S[e] a segment [w+λs,H+λM], λ∈ [−L , L],
that has “maximal” length and still belongs to the set S[e]. Solutions constructed later by the method of
convex integration “oscillate” along segments of this type.
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Let (�,F,P) be a probability space endowed with a complete σ -algebra of measurable sets F. Suppose
now that

[e,w,H] is an [F,B[(0,∞)× RN
× RN×N

0,sym]]-measurable random variable,

where the symbol B denotes the σ -algebra of Borel sets. Our goal is to show that the composed mapping
F(e,w,H), considered now as a (set-valued) random variable, admits an F-measurable selection. To this
end, we recall the celebrated Kuratowski and Ryll–Nardzewski theorem, see e.g., the survey [Wagner 1977].

Theorem 5.4. Let (X,A, µ) be a measure space with a (complete) σ -algebra of measurable sets A. Let

H : X→ 2Y

be a set-valued mapping, where Y is a Polish space with the σ -algebra of Borel sets B. Suppose that for
all x ∈ X

H(x) is a nonempty and closed subset of Y,

and that H is weakly measurable, meaning

{x |H(x)∩ B 6=∅} ∈A
for any open set B ⊂ Y.

Then H admits an A-B measurable selection, meaning a single valued A-B measurable mapping
H : X→ Y such that

H(x) ∈H(x), x ∈ X.

As both spaces (0,∞)× RN
× RN×N

0,sym and RN
× RN are finite-dimensional, compactness of the range

of F and closedness of its graph imply that F is upper semicontinuous; specifically,

{[e,w,H] | F(e,w,H)∩ D 6=∅} is closed whenever D is closed in RN
× RN .

See [Wagner 1977].
As preimages of closed sets are measurable, we get (strong) measurability of F ; specifically,

{ω ∈� | F(e,w,H)∩ D 6=∅}

is measurable for any closed set D in RN
× RN×N

0,sym . Strong measurability implies weak measurability
of F , namely,

{ω ∈� | F(e,w,H)∩G 6=∅}

is measurable for any open set G in RN
× RN.

Thus applying Theorem 5.4 we obtain the following conclusion.

Proposition 5.5. Let
F(e,w,H) : (0,∞)× RN

× RN×N
0,sym→ 2RN

×RN

be a set-valued mapping enjoying the properties (5-7)–(5-11). Let (�,F,P) be a probability space
endowed with a complete σ -algebra of measurable sets F, and let

(e,w,H) be an [F,B[(0,∞)× RN
× RN×N

0,sym]]-measurable random variable.
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Then the mapping F admits an [F;B[RN
× RN

]]-measurable selection. In particular, there exists an
[F;B[RN

× RN
]]-measurable mapping

F :�→ RN
× RN

such that it holds P-a.s.:

if [w(ω),H(ω)] ∈ S[e(ω)], then F(ω)= [a, b], where [a, b] satisfy (5-8)–(5-11). (5-12)

5B. Analytic setting. Following [De Lellis and Székelyhidi 2010] we introduce a mapping

RN+1
3 ξ = [ξ0, ξ1, . . . , ξn] 7→ Aa,b(ξ) ∈ R(N+1)×(N+1)

0,sym ,

Aa,b(ξ)=
1
2

(
(R · ξ)⊗ (Q(ξ) · ξ)+ (Q(ξ) · ξ)⊗ (R · ξ)

)
, (5-13)

where

Q= ξ ⊗ e0− e0⊗ ξ, R= ([0, a]⊗ [0, b])− ([0, b]⊗ [0, a]),

and

e0 = [1, 0, . . . , 0], a, b ∈ RN , 1
2 |a|

2
=

1
2 |b|

2
= e > 0, a 6= ±b.

Aa,b can be seen as a Fourier symbol of a pseudodifferential operator, where ξ = (ξ0, ξ1, . . . , ξN )

corresponds to ∂ = [∂t , ∂x1, . . . , ∂xN ].
The following was shown in [De Lellis and Székelyhidi 2010, Section 4.4]:

• If φ ∈ C∞c (R× RN ), and if we define [
0 w

w H

]
≡ Aa,b(∂)[φ]

then

∂tw+ divx H= 0, divx w = 0. (5-14)

• For

ηa,b =−
1

(|a||b| + a · b)2/3
[[0, a] + [0, b] − (|a||b| + a · b)e0], ψ ∈ C∞(R), (5-15)

we have

Aa,b(∂)[ψ([t, x] · ηa,b)] = ψ
′′′([t, x] · ηa,b)

[
0 a−b

a−b a⊗ a−b⊗ b

]
. (5-16)

5C. A stochastic version of oscillatory lemma. Let Q = {(t, x) | t ∈ (0, 1), x ∈ (0, 1)N
}. Let (�,F,P)

be a probability space with a complete σ -algebra of measurable sets F. Finally, we introduce the metric
on the space of weakly continuous functions Cweak([0, 1]; L2([0, 1]N ; RN )),

d[v;w] =
∞∑

m=1

1
2m

∣∣∫
[0,1]N (v−w) ·ϕm dx

∣∣
1+

∣∣∫
[0,1]N (v−w) ·ϕm dx

∣∣ ,
ϕm ∈ C∞c ((0, 1)N

; RN ), m = 1, 2, . . . , {ϕm}
∞

m=1 a dense set in L2([0, 1]N ; RN )).

(5-17)

The following is the main result of the present section.
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Lemma 5.6. Let ω 7→ [e,w,H] be a [F;B[(0,∞)× RN
× RN×N

0,sym]]-measurable mapping such that

[w,H] ∈ S[e] P-a.s. (5-18)

Then there exist sequences wn and Vn such that wn ∈ C∞c (Q; RN ) P-a.s. and Vn ∈ C∞c (Q; RN×N
0,sym)

P-a.s., n ∈ N, enjoying the following properties:

(i) t 7→ [wn,Vn] is a stochastic process, meaning

[wn(t, · );Vn(t, · )] ∈ C([0, 1]N ; RN
× RN×N

0,sym) P-a.s.

is [F;B[C([0, 1]N ; RN
× RN×N

0,sym)]]-measurable for any t ∈ [0, 1]. (5-19)

(ii) In Q we have P-a.s.
∂twn + divx Vn = 0, divx wn = 0. (5-20)

(iii) As n→∞ we have P-a.s.

wn→ 0 in Cweak([0, 1]; L2([0, 1]N ; RN )). (5-21)

(iv) In Q we have P-a.s.
[w+wn,H+Vn] ∈ S[e]. (5-22)

(v) The following holds P-a.s.:

lim inf
n→∞

1
|Q|

∫
Q
|wn|

2 dx dt ≥
c(N )

e

(
e− 1

2 |w|
2)2
. (5-23)

If , in addition to (5-18), e ≤ ēM P-a.s. for some deterministic constant ēM , and

[w,H] ∈ S[e− δ] for some deterministic constant δ > 0, (5-24)

then each wn , Vn has compact range in C(Q; RN ), C(Q; RN×N
0,sym), and

[w+wn,H+Vn] ∈ S[e− δn] P-a.s. (5-25)

for some deterministic constants δn > 0. Moreover, the convergence in (5-21) can be strengthened to

ess sup
ω∈�

(
sup

t∈[0,T ]
d[wn(t, · ); 0]

)
→ 0 as n→∞. (5-26)

Remark 5.7. Hypothesis (5-24) is equivalent to saying that

ess inf
�

{
e− 1

2 Nλmax[w⊗w−H]
}
> 0.

Note that if this is the case, we have e ≥ δ > 0, whence e is a random variable with a compact range in
(0,∞).

Proof. The proof is given through several steps.

Step 1: Given [w,H] and e, we use Proposition 5.5 to identify the measurable selection of vectors [a, b]
satisfying (5-12).
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Step 2: For each [a, b] we construct the operator Aa,b and the vector ηa,b enjoying (5-14)–(5-16).

Step 3: We consider a deterministic function ϕ ∈ C∞c (Q) such that

0≤ ϕ ≤ 1, ϕ(t, x)= 1 whenever − 1
2 ≤ t ≤ 1

2 , |x | ≤
1
2 .

Step 4: We identify the functions wn , Vn from the relation

Aa,b(∂)

[
ϕ

L
n3 cos(n[t, x] · ηa,b)

]
=

[
0 wn

wn Vn

]
.

In accordance with our construction of the points [a, b], the operator Aa,b, and the vector ηa,b, it is
easy to check the wn , Vn enjoy the required measurability properties (5-19). Moreover, by virtue of
(5-14), equations (5-20) are satisfied.

Step 5: As A is a homogeneous differential operator of third order, we get, in agreement with (5-16),

Aa,b(∂)

[
ϕ

L
n3 cos(n[t, x] · ηa,b)

]
= ϕ sin(n[t, x] · ηa,b)L

[
0 (a−b)

(a−b) a⊗ a−b⊗ b

]
+

1
n

Rn (5-27)

with |Rn| uniformly bounded for n→∞. As (5-9), (5-10) holds, we deduce the remaining properties
(5-21)–(5-23) provided n is chosen large enough. Note that we have

|ϕ sin(n[t, x] · ηa,b)| ≤ 1

and

lim inf
n→∞

∫
Q
|wn|

2 dx dt ≥ lim inf
n→∞

c
e

(
e− 1

2 |w|
2)2

∫
Q
ϕ2 sin2(n[t, x] · ηa,b) dx dt − lim sup

n→∞

c|Rn|
2

n2

=
c
e

(
e− 1

2 |w|
2)2 |Q|

2

using [De Lellis and Székelyhidi 2010, Lemma 7] in the last step. Strictly speaking |Rn| is a random
variable so we need n ≥ n0(ω), where the latter is F-measurable. Setting [wn,Vn] = [0, 0] whenever
n ≤ n0 yields the desired inclusion (5-22).

Step 6: If e ≤ ēM for some deterministic constants, then w, H have compact range in RN, RN×N
0,sym ,

respectively. In addition, hypothesis (5-24) implies

[w,H] ∈ S[e− ε] for any 0≤ ε < δ.

Thus the above construction can be therefore repeated with e replaced by e− ε, ε > 0. Moreover, in
view of (5-11), the remainder Rn specified in Step 5 above is now bounded uniformly by a deterministic
constant depending only on ε. Since

S[e− δ] ⊂ S[e− ε] ⊂ S[e− ε] ⊂ S[e],

compactness of the range of wn , Vn follows from their construction and (5-11). Notably relations (5-8)
and (5-11) yield deterministic (in terms of ε) upper and lower bounds on the norm of the vector ηa,b used
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in the construction of wn , Vn . More specifically,

0< η ≤ |a||b| + a · b≤ η̄, 0< η ≤ |ηa,b| ≤ η̄, (5-28)

for deterministic constants η, η̄. As ε > 0 can be taken arbitrarily small, the inclusion (5-25) follows.
Finally, we show the uniform convergence claimed in (5-26). As wn , Vn satisfy (5-20), (5-25), we

observe that∣∣∣∣∫
[0,1]N
[wn(t1, · )−wn(t2, · )] ·ϕ dx

∣∣∣∣≤ K (ēM ,ϕ)|t1− t2|

for any 0≤ t1 ≤ t2 ≤ 1, n = 1, 2, . . . , ϕ ∈ C∞c ((0, 1)N
; RN ), (5-29)

where K is a deterministic quantity.
Next we show that∣∣∣∣∫

Q
wn ·ψ dx dt

∣∣∣∣≤ c(ēM)

n
‖ψ‖W 1,∞(RN+1;RN ) for any ψ ∈ C∞c (R

N+1
; RN ). (5-30)

Indeed
wn = ϕL(a− b) sin(n[t, x] · ηa,b)+

1
n

Rn,

where Rn is bounded in terms of the deterministic quantity ēM . Next,∣∣∣∣∫
Q

L(a−b)sin(n[t, x]·ηa,b)·(ϕψ)dx dt
∣∣∣∣= ∣∣∣∣∫

RN

∫
R

L(a−b)sin(n[t, x]·ηa,b)·(ϕψ) dt dx
∣∣∣∣

≤
1

n|(ηa,b)0|

∣∣∣∣∫
RN

∫
R

L(a−b)cos(n[t, x]·ηa,b)·∂t(ϕψ) dt dx
∣∣∣∣

≤
c(ēM)

n|(ηa,b)0|
‖ψ‖W 1,∞(RN+1;RN ).

In view of (5-15),
(ηa,b)0 = (|a||b| + a · b)1/3,

whence (5-30) follows from (5-28).
It remains to observe that (5-29), (5-30) give rise to the uniform convergence claimed in (5-26). Indeed,

since ‖wn‖L∞(Q;RN ) ≤ c(ēM), it is enough to show that

ess sup
ω∈�

(
sup

t∈[0,1]

∣∣∣∣∫
[0,1]N

wn(t, · ) ·ϕ dx
∣∣∣∣)→ 0 as n→∞ (5-31)

for any fixed ϕ ∈ C∞c ((0, 1)N
; RN ). We write,∫

[0,1]N
wn(t, · ) ·ϕ dx =

∫
R
ψε(t− τ)

(∫
[0,1]N

(wn(t, · )−wn(τ, · )) ·ϕ dx
)

dτ +
∫

Q
ψε(t− τ)wn ·ϕ dx dτ

for any

ψε ∈ C∞c (R), ψε ≥ 0, supp[ψε] ⊂ [−ε, ε],
∫

R
ψε(t) dt = 1.

Consequently, (5-31) follows from (5-29), (5-30). �
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5C.1. Extension by scaling. Let

Q = (T1, T2)× (a1, b1)× · · ·× (aN , bN ).

Following [Donatelli, Feireisl, and Marcati 2015, Section 4.2], we may use scaling in t and x and additivity
of the integral to show the following extension of Lemma 5.6.

Lemma 5.8. Let ω 7→ [e, r,w,H] be a [F;B[(0,∞)2, RN , RN×N
0,sym]]-measurable mapping such that[

w
√

r
,H

]
∈ S[e] P-a.s.

Then there exist sequences wn and Vn such that wn ∈ C∞c (Q; RN ) P-a.s. and Vn ∈ C∞c (Q; RN×N
0,sym)

P-a.s., n ∈ N, enjoying the following properties:

(i) t 7→ [wn,Vn] is a stochastic process, meaning

[wn(t, · );Vn(t, · )] ∈ C
( N∏

i=1

[ai , bi ]; RN
× RN×N

0,sym

)
P-a.s.

is
[
F;B

[
C
( N∏

i=1

[ai , bi ]; RN
× RN×N

0,sym

)]]
-measurable for any t ∈ [T1, T2]. (5-32)

(ii) In Q we have P-a.s.
∂twn + divx Vn = 0, divx wn = 0. (5-33)

(iii) As n→∞ we have P-a.s.

wn→ 0 in Cweak([T1, T2]; L2(RN
; RN )). (5-34)

(iv) In Q we have P-a.s. [
w+wn
√

r
,H+Vn

]
∈ S[e]. (5-35)

(v) The following holds P-a.s.:

lim inf
n→∞

1
|Q|

∫
Q

|wn|
2

r
dx dt ≥

c(N )
e

(
e−

1
2
|w|2

r

)2

. (5-36)

If , in addition,
0< r M ≤ r ≤ r̄M , 0< eM ≤ e ≤ ēM P-a.s. (5-37)

for some deterministic constants r M , r̄M , eM , ēM , and[
w
√

r
,H

]
∈ S[e− δ] P-a.s. for some deterministic δ > 0,

then each wn , Vn has compact range in C(Q; RN ), C(Q; RN×N
0,sym), respectively, and[

w+wn
√

r
,H+Vn

]
∈ S[e− δn] P-a.s. for some deterministic δn > 0. (5-38)
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Moreover,
ess sup
ω∈�

(
sup

t∈[0,T ]
d[wn(t, · ); 0]

)
→ 0 as n→∞.

Remark 5.9. Condition (5-37) can be equivalently formulated saying that the random variable [r, e] has
compact range in (0,∞)2.

5C.2. Extension to piecewise constant coefficients. Consider now a complete right-continuous filtration
(Ft)t≥0 of measurable sets in � and fix Q = (0, T )× (0, 1)N. We write [0, 1]N =

⋃
i∈I K i , where Ki

are disjoint open cubes of the edge length 1/m for some m ∈ N. The random variables e, r , w, and H

will be now P-a.s. functions of the time t and the spatial variable x that are piecewise constant. More
specifically, they shall P-a.s. belong to the class of functions satisfying

F(t, x)= F j,i whenever t ∈
[

jT
m
;
( j + 1)T

m

)
, x ∈ Ki , 0≤ j ≤ m− 1, i ∈ I. (5-39)

These functions are piecewise constant on the rectangular grid given by[
jT
m
,
( j + 1)T

m

)
× Ki , 0≤ j ≤ m− 1, i ∈ I.

In addition, we suppose that [e, r,w,H] is (Ft)-adapted, meaning that

[e, r,w,H](t, · ) is F jT/m-measurable whenever t ∈
[

jT
m
;
( j + 1)T

m

)
.

Keeping in mind that the oscillatory increments [wn,Vn] constructed in Lemma 5.8 are compactly
supported in each cube and hence globally smooth, we get the following result when applying Lemma 5.8
with F replaced by F jT/m . Note that wn,Vn are even F jT/m adapted.

Lemma 5.10. Let (�,F, (Ft)t≥0,P) be a probability space with a complete right continuous filtration
(Ft)t≥0. Let [e, r,w,H] be an (Ft)-adapted stochastic process which is P-a.s. piecewise constant and
belongs to the class (5-39). Suppose further that r > 0, e > 0 P-a.s. and[

w
√

r
,H

]
∈ S[e] for all (t, x) ∈ Q P-a.s. (5-40)

Then there exist sequences wn and Vn such that wn ∈ C∞c (Q; RN ) P-a.s. and Vn ∈ C∞c (Q; RN×N
0,sym)

P-a.s., n ∈ N, enjoying the following properties:

(i) The process [wn,Vn] is (Ft)-adapted such that

[wn,Vn] ∈ C(Q; RN
× RN×N

0,sym) P-a.s. with compact range.

(ii) In Q we have P-a.s.
∂twn + divx Vn = 0, divx wn = 0.

(iii) As n→∞ we have P-a.s.

wn→ 0 in Cweak([0, T ]; L2(T N
; RN )).
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(iv) In Q we have P-a.s. [
w+wn
√

r
,H+Vn

]
∈ S[e]. (5-41)

(v) The following holds P-a.s.:

lim inf
n→∞

∫
Q

|wn|
2

r
dx dt ≥

c(N )
supQ e

∫
Q

(
e−

1
2
|w|2

r

)2

dx dt. (5-42)

If , in addition,

0< r M ≤ r ≤ r̄M , 0< eM ≤ e ≤ ēM P-a.s.

for some deterministic constants r M , r̄M , eM , ēM , and[
w

r
,H

]
∈ S[e− δ] P-a.s. for some deterministic δ > 0,

then each wn , Vn has compact range in C(Q; RN ), C(Q; RN×N
0,sym), respectively, and[

w+wn
√

r
,H+Vn

]
∈ S[e− δn] P-a.s. for some deterministic δn > 0.

Moreover,

ess sup
ω∈�

(
sup

t∈[0,T ]
d[wn(t, · ); 0]

)
→ 0 as n→∞.

5C.3. Extension to continuous coefficients. Using the result on the piecewise constant coefficients, we
may use the approximation procedure from [Donatelli, Feireisl, and Marcati 2015, Section 4.3] to
extend the oscillatory lemma to the class of continuous processes [e, r,w,H]. The obvious idea is to
replace [e, r,w,H] by piecewise constant approximations and apply Lemma 5.10. More specifically,
for e ∈ C([0, T ] × T N

; (0,∞)) P-a.s., (Ft)-adapted, e > 0 P-a.s., we define a piecewise constant
approximation

em(t, x)= sup
y∈Ki

e
(

jT
m
, y
)

for t ∈
[

jT
m
;
( j + 1)T

m

)
, x ∈ Ki , 0≤ j ≤ m− 1, i ∈ I, (5-43)

and, similarly, for F ∈ {r,w,H},

Fm(t, x)= F
(

jT
m
, y
)

for some y∈Ki , for t ∈
[

jT
m
;
( j+1)T

m

)
, x ∈Ki , 0≤ j≤m−1, i ∈ I. (5-44)

It is easy to check that these approximations satisfy the hypotheses of Lemma 5.10.
Now, since S[e] is an open set, it is possible, similarly to [Donatelli, Feireisl, and Marcati 2015,

Section 4.3] to replace Fm by F as long as the approximation is uniform. Specifically, for any δ > 0,
there is m = m(δ) such that

|Fm(t, x)− F(t, x)|< δ for all (t, x) ∈ Q (5-45)
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P-a.s. For (5-45) to hold, it is necessary (and sufficient) that all random variables F = e, r,w,H have
compact range in the space of continuous functions on Q. Repeating the arguments of [Donatelli, Feireisl,
and Marcati 2015, Section 4.3] we show the final form of the oscillatory lemma.

Lemma 5.11. Let [�,F,Ft ,P] be a probability space with a complete right continuous filtration (Ft)t≥0.
Let [e, r,w,H] be an (Ft)-adapted stochastic process such that

[e, r,w,H] ∈ C(Q; (0,∞)2× RN
× RN×n

0,sym) P-a.s.

with compact range and such that[
w
√

r
,H

]
∈ S[e− δ] for all (t, x) ∈ Q P-a.s. (5-46)

for some deterministic constant δ > 0.
Then there exist sequences wn and Vn such that wn ∈ C∞c (Q; RN ) P-a.s. and Vn ∈ C∞c (Q; RN×N

0,sym)

P-a.s., n ∈ N, enjoying the following properties:

(i) The process [wn,Vn] is (Ft)-adapted such that

[wn,Vn] ∈ C(Q; RN
× RN×N

0,sym) P-a.s. with compact range.

(ii) In Q we have P-a.s.
∂twn + divx Vn = 0, divx wn = 0.

(iii) We have
ess sup
ω∈�

(
sup

t∈[0,T ]
d[wn(t, · ); 0]

)
→ 0 as n→∞. (5-47)

(iv) In Q we have P-a.s. [
w+wn
√

r
,H+Vn

]
∈ S[e− δn]

for some deterministic δn > 0.

(v) The following holds P-a.s.:

lim inf
n→∞

∫
Q

|wn|
2

r
dx dt ≥

c(N )
supQ e

∫
Q

(
e−

1
2
|w|2

r

)2

dx dt. (5-48)

Remark 5.12. Observe that the assumption for a random variable [e, r,w,H] to be of compact range in
C(Q; (0,∞)2× RN

× RN×n
0,sym) includes

0< r M ≤ r ≤ r̄M , e ≤ eM P-a.s.

for some deterministic constants r M , r̄M , eM as well as a positive lower bound for e already guaranteed
by (5-46).

Remark 5.13. The fact that the continuous processes considered in Lemma 5.11 must have compact
range is definitely restrictive but possibly unavoidable. This is also the main reason why our result holds
up to a stopping time, albeit arbitrarily large with “high” probability. Otherwise, the size of the grid used
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to construct the approximations Fm would have to be a random variable. The oscillatory increments wn

would be then constructed on a grid determined by random points 0 < t1 < t2 < · · · < tm related to
stopping times associated to certain norms of the random processes. Here, the length of the interval
[tm, tm+1] would have to be tm predictable which seems impossible.

6. Infinitely many solutions

We are ready to show Theorem 2.3 or, equivalently, its version for the abstract “Euler” problems (4-7),
(4-14), respectively. We begin with problem (4-7), where the tensor M is constant. Then, following
[Feireisl 2016], we specify how to accommodate the dependence M=M[v].

6A. Subsolutions. We introduce the set

X (RN ) := {v :�× Q→ RN
|measureable, v ∈ C([0, T ]× T N

; RN ) a.s. with compact range} (6-1)

and analogously define X (RN×N
0,sym). Following [De Lellis and Székelyhidi 2010], we introduce the set of

subsolutions. Let the functions v0, h, r and M satisfy (4-8), and e = e(t) is a real-valued (Ft)-adapted
process specified below. In particular, the process [h, r,M] ∈ C([0, T ]× T N

; RN )× (0,∞)× RN×N
0,sym is

(Ft) adapted and with compact range. We define a collection of subsolutions corresponding to v0, h, r ,
M and e by

X0=

{
v ∈X (RN )

∣∣∣∣v is (Ft)-adapted with v(0, ·)= v0, there is F∈X (RN×N
0,sym)(Ft)-adapted s.t.

∂tv+divx F= 0, divx v= 0 in D′((0,T )×T N
; RN ) P-a.s.,

1
2 Nλmax

[
(v+h)⊗(v+h)

r
−F+M

]
< e−δ

∀ 0≤ t ≤ T, x ∈ T N , P-a.s. for some deterministic δ > 0
}
. (6-2)

Remark 6.1. The deterministic constant δ > 0 may vary from one subsolution to another. The exact
meaning of the condition

1
2 Nλmax

[
(v+ h)⊗ (v+ h)

r
− F+M

]
< e− δ

is

ess sup
�

sup
t∈[0,T ],x∈T N

(
1
2 Nλmax

[
(v+ h)⊗ (v+ h)

r
− F+M

]
− e

)
< 0.

6B. Existence of a subsolution. Next we claim that e can be fixed in such a way that the set of subsolu-
tions is nonempty. To this end, consider

v = v0, F= 0.

This is obviously a subsolution provided e is taken in such a way that

1
2 Nλmax

[
(v0+ h)⊗ (v0+ h)

r
+M

]
< e− δ.

In view of (4-8) this is possible, where e = eM can be taken as a sufficiently large deterministic constant.
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6C. Topology on the set of subsolutions. The processes v belonging to X0 are uniformly determinis-
tically bounded in L∞((0, T )× T N ); specifically, v(t) ∈ B∞ for any t ∈ [0, T ] P-a.s., where B∞ is a
ball in L∞(T N ) with a deterministic radius. Consequently, we may consider the metric d , introduced in
(5-17), associated to the weak L2(T N )-topology on B∞, together with

D[v,w] = E[ sup
t∈[0,T ]

d[v(t);w(t)]].

Let X be the completion of X0 with respect to the metric D. Then X is a complete metric space with
infinite cardinality. Note that any element of X is (Ft)-adapted as the limit of measurable functions is
measurable.

6D. Convex functional. Similarly to [De Lellis and Székelyhidi 2010], we introduce the functional

I [v] = E

[∫ T

0

∫
T N

[
1
2
|v+ h|2

r
− e

]
dx dt

]
.

Here, h, r are given functions related to the density ansatz and e is the target energy. Exactly as in
[De Lellis and Székelyhidi 2010], it can be shown that:

• I is lower semicontinuous on the space X .

• I [v] ≤ 0 for any v ∈ X .

• If I [v] = 0 then

e =
1
2
|v+ h|2

r
a.e. in (0, T )× T N (6-3)

P-a.s.

Lemma 6.2. Under the hypotheses (4-8), each v∈ X with I [v]=0 solves the abstract Euler equation (4-7).

Proof. Let v ∈ X . Then there is (vm)⊂ X0 with vm→ v with respect to the metric D. By the definition
of X0 we can find a sequence of (Ft)-adapted processes (Fm) with Fm ∈ L∞(Q, RN×N

0,sym) P-a.s. such that

∂tvm + divx Fm = 0 in D′((0, T )× RN ) (6-4)

P-a.s. and
1
2 Nλmax

[
(vm + h)⊗ (vm + h)

r
− Fm +M

]
≤ e.

Using (5-2) and the properties of M (recall (4-8)) we see that Fm is uniformly bounded in L∞(�×Q,RN×N
0,sym).

Hence, after choosing a weakly∗ converging subsequence, we obtain

∂tv+ divx F= 0, divx v = 0, v(0, · )= v0 in D′((0, T )× RN ), (6-5)

for a certain (Ft)-adapted process F with F ∈ L∞(Q, RN×N
0,sym) P-a.s. Due to convexity of the functional

[v, F] 7→ 1
2 Nλmax

[
(v+ h)⊗ (v+ h)

r
− F+M

]
,
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we have
1
2 Nλmax

[
(v+ h)⊗ (v+ h)

r
− F+M

]
≤ e.

Consequently, by virtue of (5-1), relation (6-3) implies

F=M+
(v+ h)⊗ (v+ h)

r
−

1
N
|v+ h|2

r
=M+

(v+ h)⊗ (v+ h)
r

−
2
N

e.

As e is independent of x , (6-4) yields the desired conclusion (4-7). �

Thus each zero point of I yields a weak solution of the abstract Euler problem (4-7). Our next claim is
that I [v] = 0 whenever v is a point of continuity of I on X . By means of the Baire category argument,
the points of continuity of I , the latter being a lower-semicontinuous functional on the complete metric
space X , form a residual set, and in particular are dense in X , which completes the proof of the existence
of infinitely many solutions claimed in Theorem 2.3. Thus it remains to show that I vanishes at each
point of continuity, which is the objective of the last section.

6E. Points of continuity of I in X. We show that at each point of continuity of I on X , we have I [v]= 0.
Let v be a point of continuity of I on X . Suppose that I [v]< 0. Consequently, there is a sequence

vm ∈ X0, D[vm; v] → 0, I [vm] → I [v], I [vm]<−ε < 0 for all m = 0, 1, . . . .

Now, we use the oscillatory lemma (Lemma 5.11) with the ansatz w= vm+h, H=Fm−M. Consequently,
for each fixed m, we find a sequence {wm,n}

∞

n=1 ⊂ X0 such that

vm +wm,n ∈ X0, D[vm +wm,n, vm] → 0 as n→∞.

The first statement follows from Lemma 5.11(iv), which also yields a uniform bound for wm,n as a
consequence of (5-1). The convergence with respect to the metric D follows from Lemma 5.11(iii),
the uniform bounds for wm,n and dominated convergence. Moreover, due to Lemma 5.11(iii), we
have

lim inf
n→∞

I [vm +wm,n] = I [vm] + lim inf
n→∞

1
2 E

[∫ T

0

∫
T N

|wm,n|
2

r
dx dt

]
.

Here, by virtue of (5-48), Fatou’s lemma and Jensen’s inequality

lim inf
n→∞

1
2 E

[∫ T

0

∫
T N

|wm,n|
2

r
dx dt

]
≥

c(N , T )
e

(
E

[∫ T

0

∫
T N

[
e−

1
2
|vm + h|2

r

]
dx dt

])2

=
c(N , T )

e
I 2
[vm] ≥ ε

2 c(N , T )
e

.

In such a way, we may construct a sequence (ṽm)⊂ X0, ṽm = vm +wm,n(m), D[ṽm, v] → 0, and

lim inf
m→∞

I [ṽm]> I [v]. (6-6)

Relation (6-6) contradicts the assumption that v is a point of continuity of I .
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6F. Multiplicative noise. We conclude by showing how to accommodate the case of multiplicative noise,
where the matrix M depends on the solutions v; specifically,

M[v] = ∇x m+∇x mt
−

2
N

divx mI,

where m is the unique solution of the elliptic system (4-13). In particular, if v ∈ X (RN ) (see (6-1)),
then, in view of the standard elliptic estimates, M[v] is (Ft)t≥0-adapted and with compact range in
C([0, T ]× T N

; RN×N
0,sym). Exactly as in Section 6A, we define the set of subsolutions as

X0=

{
v ∈X (RN )

∣∣v is (Ft)-adapted with v(0, ·)= v0, there is F∈X (RN×N
0,sym)(Ft)-adapted s.t.

∂tv+divx F= 0, divx v= 0 in D′((0,T )×T N
; RN ) P-a.s.,

1
2 Nλmax

[
(v+h)⊗(v+h)

r
−F+M[v]

]
< e−δ

∀ 0≤ t ≤ T, x ∈ T N , P-a.s. for some deterministic δ > 0
}
. (6-7)

Similarly to the above, we can show that

• the set X0 is nonempty;

• its closure with respect to the metric D is a complete metric space with infinite cardinality.

Consider the functional I on X defined in the same way as in Section 6D. We have an analogue of
Lemma 6.2:

Lemma 6.3. Under the hypotheses (4-15), (4-16) each v ∈ X with I [v] = 0 solves the abstract Euler
equation (4-7).

Proof. The proof follows the same lines as that of Lemma 6.2. We have only to observe that, up to a
suitable subsequence,

M[vm] →M[v] in C([0, T ]× T N
; RN×N

0,sym) P-a.s.

whenever
{vm}

∞

m=1 ⊂ X0, D[vm, v] → 0.

Indeed this follows from the elliptic regularity estimates as the sequence vm is bounded by a deterministic
constant in L∞((0, T )×T N

; RN ), whence {M[vm]}
∞

m=1 belongs to Cweak([0, T ];W 1,p(T N
; RN×N

0,sym)) for
any 1< p <∞ P-a.s. and is bounded in the space

L∞([0, T ];W 1,p(T N
; RN×N

0,sym))

by a deterministic constant. �

Finally, we show that, necessarily, I [v] = 0 at any point of continuity v of I . Following the arguments
of Section 6E, we suppose I [v]< 0 for some point of continuity v ∈ X . We consider a sequence {vm}

∞

m=1
satisfying

vm ∈ X0, D[vm; v] → 0, I [vm] → I [v], I [vm]<−ε < 0 for all m = 0, 1, . . . .
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Next we apply the oscillatory lemma (Lemma 5.11) to

w = vm + h, H= Fm −M[vm].

Following the arguments of Section 6E, we find a sequence {wm,n}
∞

n=1 ⊂ X0 such that

vm +wm,n ∈ X0, D[vm +wm,n, vm] → 0 as n→∞.

Here, the most delicate point is to show the inclusion

vm +wm,n ∈ X0,

as the oscillatory lemma (Lemma 5.11) asserts only

1
2 Nλmax

[
(vm +wm,n + h)⊗ (vm +wm,n + h)

r
− Fm − Fm,n +M[vm]

]
< e− δm

instead of the desired

1
2 Nλmax

[
(vm +wm,n + h)⊗ (vm +wm,n + h)

r
− Fm − Fm,n +M[vm +wm,n]

]
< e− δm . (6-8)

Since we have
M[vm +wm,n] −M[vm] = ∇x Fm,n +∇

t
x Fm,n −

2
N

divx Fm,nI,

where the field Fm,n is the unique solution of the elliptic system

divx

[
∇x Fm,n +∇

t
x Fm,n −

2
N

divx Fm,nI
]
=

1
2wm,n in T N ,

relation (6-8) follows as soon as we show

ess sup
ω∈�

sup
t∈[0,T ],x∈T N

∣∣∣∇x Fm,n +∇
t
x Fm,n −

2
N

divx Fm,nI

∣∣∣→ 0 as n→∞. (6-9)

To see (6-9), we use the convergence statement (5-47), namely

ess sup
ω∈�

(
sup

t∈[0,T ]
d[wm,n(t); 0]

)
→ 0 as n→∞. (6-10)

On one hand, as
‖wm,n‖L∞((0,T )×T N ;RN ) ≤ c(ēM) P-a.s., (6-11)

we may use the standard elliptic estimates to deduce

sup
t∈[0,T ]

‖∇x Fm,n‖W 1,q (T N ;RN×N ) ≤ c(q, ēM) P-a.s., 1≤ q <∞. (6-12)

On the other hand, by virtue of (6-10), (6-11),

ess sup
ω∈�

(
sup

t∈[0,T ]
‖wm,n‖W−1,2(T N ;RN )

)
→ 0 as n→∞,

whence, by the elliptic estimates,

ess sup
ω∈�

(
sup

t∈[0,T ]
‖∇x Fm,n‖L2(T N ;RN×N )

)
→ 0 as n→∞. (6-13)
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Seeing that W 1,q(T N ) ↪→↪→ C(T N ) for q > N we may interpolate (6-12), (6-13) to obtain the desired
convergence (6-9).

The remaining arguments are the same as in Section 6E. Due to Lemma 5.11(iii), we have

lim inf
n→∞

I [vm +wm,n] = I [vm] + lim inf
n→∞

1
2 E

[∫ T

0

∫
T N

|wm,n|
2

r
dx dt

]
≥ I [vm] + ε

2 c(N , T )
e

.

Thus for ṽm = vm +wm,n(m) we get ṽm ∈ X0, D[ṽm, v] → 0, and

lim inf
m→∞

I [ṽm]> I [v]. (6-14)

Relation (6-14) contradicts the assumption that v is a point of continuity of I .
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VARIABLE COEFFICIENT WOLFF-TYPE INEQUALITIES
AND SHARP LOCAL SMOOTHING ESTIMATES

FOR WAVE EQUATIONS ON MANIFOLDS

DAVID BELTRAN, JONATHAN HICKMAN AND CHRISTOPHER D. SOGGE

The sharp Wolff-type decoupling estimates of Bourgain and Demeter are extended to the variable
coefficient setting. These results are applied to obtain new sharp local smoothing estimates for wave
equations on compact Riemannian manifolds, away from the endpoint regularity exponent. More generally,
local smoothing estimates are established for a natural class of Fourier integral operators; at this level
of generality the results are sharp in odd dimensions, both in terms of the regularity exponent and the
Lebesgue exponent.

1. Introduction and statement of results

1A. Local smoothing estimates. Let n�2 and .M; g/ be a smooth,1 compact n-dimensional Riemannian
manifold with associated Laplace–Beltrami operator �g . Given initial data f0; f1WM ! C belonging to
some a priori class, consider the Cauchy problem�

.@2t ��g/uD 0;

u. � ; 0/D f0; @tu. � ; 0/D f1:
(1-1)

It was shown, inter alia, in [Seeger, Sogge, and Stein 1991, Theorem 4.1] that for each fixed time t and
1 < p <1 the solution u satisfies2

ku. � ; t /kLp
s�Nsp

.M/ .M;g kf0kLps .M/Ckf1kLps�1.M/ (1-2)

for all s 2R, where Nsp WD .n� 1/
ˇ̌
1
2
�
1
p

ˇ̌
. Here Lps .M/ denotes the standard Sobolev (or Bessel potential)

space on M with Lebesgue exponent p and s derivatives; the relevant definitions are recalled in Section 3
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1In view of the methods of the present article it is convenient to work in the C1 category, but the forthcoming definitions
and questions certainly make sense at lower levels of regularity.

2Given a (possibly empty) list of objects L, for real numbers As;p ; Bs;p � 0 depending on some Lebesgue exponent p
and/or regularity exponent s the notation As;p .L Bs;p or Bs;p &L As;p signifies that As;p � CBs;p for some constant
C D CL;n;p;s � 0 depending only on the objects in the list, n, p and s. In such cases it will also be useful to sometimes write
As;p DOL.Bs;p/. In addition, As;p �L Bs;p is used to signify that As;p .L Bs;p and As;p &L Bs;p .
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below. Moreover, provided t avoids a discrete set of times, the estimate (1-2) is sharp for all 1 < p <1
in the sense that one cannot replace Nsp with Nsp � � for any � > 0.

The purpose of this article is to prove sharp local smoothing estimates for the solution u for a partial
range of p, which demonstrate a gain in regularity for space-time estimates over the fixed-time case.

Theorem 1.1. If u is the solution to the Cauchy problem (1-1) and Npn � p < 1, where Npn WD
2.nC 1/=.n� 1/, then�Z 2

1

ku. � ; t /k
p

L
p
s�NspC�

.M/
dt
�1=p
.M;g kf0kLps .M/Ckf1kLps�1.M/ (1-3)

holds for all s 2 R and all � < 1
p

.

For the given range of p, this result is sharp up to the endpoint in the sense that the inequality fails if
� > 1

p
.3 It is likely, however, that the range of p is not optimal. For instance, Minicozzi and the third

author [Minicozzi and Sogge 1997] (see also [Sogge, Xi, and Xu 2018]) found specific manifolds for
which (1-3) can hold for all � < 1

p
only if p � 2.3nC 1/=.3n� 3/ for n odd or p � 2.3nC 2/=.3n� 2/

for n even; it is not unreasonable to speculate that these necessary conditions should, for general M, be
sufficient.4 The examples of [Minicozzi and Sogge 1997] rely on Kakeya compression phenomena for
families of geodesics; the (euclidean) Kakeya conjecture, if valid, would preclude such behaviour over Rn.
Indeed, the local smoothing conjecture for the wave equation [Sogge 1991] asserts that in the euclidean
case the estimate (1-3) should hold for all � < 1

p
in the larger range 2n=.n� 1/� p <1. If true, this

would be a remarkable result, not least because the conjecture formally implies many other major open
problems in harmonic analysis (including the Bochner–Riesz, Fourier restriction and Kakeya conjectures);
see [Tao 1999].

It is well known (see, for instance, [Duistermaat 1996, Chapter 5] or [Sogge 2017, Chapter 4]) that the
solution u to the Cauchy problem (1-1) is given by

u.x; t/D F0f0.x; t/CF1f1.x; t/; (1-4)

where, using the language of [Hörmander 1971; Mockenhaupt, Seeger, and Sogge 1993], each Fj 2
I j�1=4.M�R;M I C/ is a Fourier integral operator (FIO) with canonical relation C satisfying the cinematic
curvature condition (the relevant definitions will be recalled below in Section 3; see also [Beltran, Hickman,
and Sogge 2018] for a comprehensive Introduction to FIOs in the context of local smoothing). In local
coordinates, such operators Fj adopt the explicit form (1-5) below with �D j . Theorem 1.1 follows
from a more general result concerning Fourier integral operators.

3Such inequalities are also conjectured to hold at the endpoint
�
that is, the case � D 1

p

�
and endpoint estimates have been

obtained for a further restricted range of p in high-dimensional cases: see [Heo, Nazarov, and Seeger 2011; Lee and Seeger
2013].

4The examples in [Minicozzi and Sogge 1997] concern certain oscillatory integral operators of Carleson–Sjölin type, defined
with respect to the geodesic distance on M. Their results lead to counterexamples for local smoothing estimates via a variant
of the well-known implication “local smoothing) Bochner–Riesz”. Implications of this kind will be discussed in detail in
Section 4.
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Theorem 1.2. Let n� 2 and let Y andZ be precompact manifolds of dimensions n and nC1, respectively.
Suppose that F 2 I��1=4.Z; Y I C/, where the canonical relation C satisfies the cinematic curvature
condition. If Npn � p <1, then

kFf kLploc.Z/
. kf kLpcomp.Y /

holds whenever � < �NspC 1
p

.

An interesting feature of Theorem 1.2 is that both the restriction on � and the restriction on p are
sharp in certain cases.

Proposition 1.3. For all odd dimensions n�3 there exists some operator F2I�.n�1/=2�1=4.RnC1;RnIC/
with C satisfying the cinematic curvature condition such that

k.I ��x/

=2
ıFf kLp.RnC1/ . kf kLp.Rn/ for all 0 < 
 < n

p

fails for p < Npn.

If F 2I�.n�1/=2�1=4.RnC1;RnI C/, then .I��x/
=2ıF 2I��1=4.RnC1;RnI C/ for�D�1
2
.n�1/C


by the composition theorem for Fourier integral operators (see, for instance, [Sogge 2017, Theorem 6.2.2]).
The range 0 < 
 < n

p
corresponds to �1

2
.n� 1/ < � < �NspC

1
p

and thus Proposition 1.3 demonstrates
that Theorem 1.2 is sharp in odd dimensions.

Proposition 1.3 is established by relating local smoothing estimates for Fourier integral operators to
Lp estimates for oscillatory integral operators with nonhomogeneous phase (sometimes referred to as
Hörmander-type operators) and then invoking well-known examples of [Bourgain 1991; 1995b] for the
oscillatory integral problem. The details of the argument are discussed in Section 4.5

At this juncture some historical remarks are in order. Local smoothing estimates for the euclidean
wave equation were introduced by the third author in [Sogge 1991] and then further investigated in
[Mockenhaupt, Seeger, and Sogge 1992]. These early results, however, did not involve a sharp gain in
regularity (that is, a sharp range of � , at least up to the endpoint); the first sharp local smoothing estimates
were established in R2 in the seminal work [Wolff 2000]. For this, Wolff introduced what have since
become known as decoupling inequalities for the light cone. The results of [Wolff 2000] were improved
and extended by a number of authors [Łaba and Wolff 2002; Garrigós and Seeger 2009; 2010; Bourgain
2013] before the remarkable breakthrough of [Bourgain and Demeter 2015] established essentially sharp
decoupling estimates in all dimensions (see also [Bourgain 1995a; Tao and Vargas 2000; Heo, Nazarov,
and Seeger 2011; Lee and Vargas 2012; Lee 2016] for alternative approaches to the local smoothing
problem and [Cladek 2018] for recent work in a related direction). One of the many consequences of the
theorem of [Bourgain and Demeter 2015] is the analogue of Theorem 1.1 for the wave equation in Rn.

Local smoothing estimates were studied in the broader context of Fourier integral operators in parallel
to the developments described above [Mockenhaupt, Seeger, and Sogge 1993; Lee and Seeger 2013] (see
also [Sogge 2017]). Results in this vein typically follow from variable-coefficient extensions of methods

5It is remarked that the F constructed to provide sharp examples for Theorem 1.2 do not arise as solutions to wave equations
of the kind discussed above. Thus, these examples do not show sharpness in Theorem 1.1. Indeed, it is likely that Theorem 1.1
should hold in the range suggested by [Minicozzi and Sogge 1997], as described above (see also the discussion in Section 4).
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used to study wave equations on flat space. Similarly, Theorem 1.2 (and therefore Theorem 1.1) is a
consequence of a natural variable-coefficient extension of the decoupling inequality of [Bourgain and
Demeter 2015]. The variable-coefficient decoupling theorem is the main result of this paper and concerns
certain oscillatory integral operators with homogeneous phase; the setup is described in the following
subsection.

1B. Variable coefficient decoupling. Let a D a1 ˝ a2 2 C
1
c .R

nC1 � Rn/, where a1 2 C1c .R
n/ is

supported in B.0; 1/ and a2 is supported in the domain

�1 WD
˚
� 2 yRn W 1

2
� �n � 2 and j�j j � j�nj for 1� j � n� 1

	
:

Suppose that �WRn�R� yRn! R is smooth away from Rn�R�f0g and that for all .x; t/ 2 Rn�R the
function � 7!�.x; t I �/ is homogeneous of degree 1. Writing supp an0 for the set .supp a/n.Rn�R�f0g/,
assume, in addition, that � satisfies the following geometric conditions:

(H1) rank @2
�z
�.x; t I �/D n for all .x; t I �/ 2 supp a n 0. Here and below z is used to denote a vector in

RnC1 composed of the space-time variables .x; t/.

(H2) Defining the generalised Gauss map by G.zI �/ WD G0.zI �/=jG0.zI �/j for all .zI �/ 2 supp a n 0,
where

G0.zI �/ WD

n̂

jD1

@�j @z�.zI �/;

one has
rank @2��h@z�.zI �/;G.zI �/ij�D� D n� 1

for all .zI �/ 2 supp a n 0.

Here the wedge product of n vectors in RnC1 is associated with a vector in RnC1 in the usual manner.
It is remarked that (H1)1 and (H2)2 are the natural homogeneous analogues of the [Carleson and Sjölin
1972] or [Hörmander 1973] conditions for nonhomogeneous phase functions.

The conditions (H1)1 and (H2)2 naturally arise in the study of Fourier integral operators of the
type described in the previous subsection. Indeed, by standard theory (see, for instance, [Sogge 2017,
Proposition 6.1.4]), any operator belonging to the class I��1=4.Z; Y I C/ with C satisfying the cinematic
curvature condition can be written in local coordinates as a finite sum of operators of the form

Ff .x; t/ WD
Z
yRn
ei�.x;t I�/b.x; t I �/.1Cj�j2/�=2 Of .�/ d�; (1-5)

where b is a symbol of order 0 (with compact support in the .x; t/-variables) and � satisfies the properties
(H1)1 and (H2)2 (at least on the support of b).

Rather than directly studying the operators F as in (1-5), a decoupling inequality shall instead be
formulated in terms of a certain closely related class of oscillatory integral operators.

Given �� 1, define the rescaled phase and amplitude

��.x; t I!/ WD ��

�
x

�
;
t

�
I!

�
and a�.x; t I �/ WD a1

�
x

�
;
t

�

�
a2.�/
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�1 �

� 0

�n

�n D
1
2

�n D 2

.!; 1/

Figure 1. The decomposition of the domain �1 into R�1=2-plates. The centre .!; 1/ of
one such plate � is indicated.

and, with this data, let

T �f .x; t/ WD

Z
yRn
ei�

�.x;t I�/a�.x; t I �/f .�/ d�:

The aforementioned variable-coefficient decoupling inequality compares the Lp-norm of T �f with the
Lp-norms of localised pieces T �f� which form a decomposition of the original operator. To describe
this decomposition fix a second spatial parameter 1�R � � and note that the support of a2 intersects
the affine hyperplane �n D 1 on the disc Bn�1.0; 1/� f1g. Fix a maximally R�1=2-separated subset of
Bn�1.0; 1/� f1g and for each ! belonging to this subset define the R�1=2-plate

� WD
˚
.� 0; �n/ 2 yR

n
W
1
2
� �n � 2 and j� 0=�n�!j �R�1=2

	
:

In this case .!; 1/2Bn�1.0; 1/�f1g is referred to as the centre of the R�1=2-plate � . Thus, the collection
of all R�1=2-plates forms a partition of the support of a2 into finitely overlapping subsets (see Figure 1).
For each � , let Q� be a subset of � such that the family of all Q� forms a partition of the support of a2.
Given any function f 2 L1loc.

yRn/ and an R�1=2-plate � , define f� WD � Q�f , and for 1� p <1 and any
measurable set E � RnC1 introduce the decoupled norm

kT �f k
L
p;R
dec .E/

WD

� X
� WR�1=2-plate

kT �f�k
p

Lp.E/

�1=p
:

This definition is extended to the case p D1 and to weighted norms kT �f k
L
p;R
dec .w/

in the obvious
manner.

Finally, let Npn and Nsp be as in the statement of Theorem 1.1 and given 2� p �1 define the exponent

˛.p/ WD

�1
2
Nsp if 2� p � Npn;
Nsp �

1
p

if Npn � p �1.
(1-6)

With these definitions, the decoupling theorem reads as follows.
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Theorem 1.4. Let T � be an operator of the form described above and 2 � p �1. For all " > 0 and
M 2 N one has6

kT �f kLp.RnC1/ .";M;�;a �˛.p/C"kT �f kLp;�dec .R
nC1/
C��Mkf k

L2.yRn/
: (1-7)

Theorem 1.4 is a natural variable-coefficient extension of (the `p variant of) Theorem 1.2 in [Bourgain
and Demeter 2015], which treats the prototypical case �.x; t I �/ D hx; �i C t j�j. More generally, the
translation-invariant case, where � is linear in the variables x; t , can be deduced from the results of
[Bourgain and Demeter 2015; 2017a] via an argument originating in [Pramanik and Seeger 2007; Garrigós
and Seeger 2010]. Interestingly, it transpires that the result for general operators T � follows itself from
the translation-invariant case. This stands in contrast with the Lp-theory of such operators (see, for
instance, [Bourgain and Guth 2011; Guth, Hickman, and Iliopoulou 2019]).

Finally, it is remarked that the argument used to prove Theorem 1.4 is flexible in nature, and could
equally be applied to prove natural variable-coefficient extensions of other known decoupling results,
such as the `2 decoupling theorem for the paraboloid [Bourgain and Demeter 2015] or the decoupling
theorem of [Bourgain, Demeter, and Guth 2016] for the moment curve (in the latter case the relevant
variable-coefficient operators are those appearing in [Bak and Lee 2004; Bak, Oberlin, and Seeger 2009]).

2. A proof of the variable-coefficient decoupling inequality

2A. An overview of the proof. As indicated in the Introduction, Theorem 1.4 will be derived as a
consequence of the (known) translation-invariant case; the latter result is recalled presently. Let a2 be
as in the Introduction and suppose hW yRn! R is smooth away from 0, homogeneous of degree 1 and
satisfies rank @2

��
h.�/D n� 1 for all � 2 supp a2 n f0g. With this data, define the extension operator

Ef .x; t/ WD

Z
yRn
ei.hx;�iCth.�//a2.�/f .�/ d�:

For the exponent ˛ defined in (1-6), the translation-invariant case of the theorem reads thus.

Theorem 2.1 [Bourgain and Demeter 2015; 2017a]. For all 2� p �1 and all " > 0 the estimate

kEf kLp.wB� /
.";N;h;a �˛.p/C"kEf kLp;�dec .wB� /

(2-1)

holds for �� 1.

Here BR denotes a ball of radius R for any R > 0 and wBR is a rapidly decaying weight function,
concentrated on BR. In particular, if . Nx; Nt / 2 Rn �R denotes the centre of BR, then

wBR.x; t/ WD .1CR
�1
jx� NxjCR�1jt � Nt j/�N ; (2-2)

6Strictly speaking, the proof will establish this inequality with the operator appearing on the right-hand side of (1-7) defined
with respect to an amplitude with slightly larger spatial support than that appearing in the operator on the left (but both operators
are defined with respect to the same phase function). This has no bearing on the applications and such slight discrepancies will
be suppressed in the notation.
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where N can be taken to be any sufficiently large integer (depending on n, h and p). It is remarked
that the dependence on h of the implicit constant in the inequality (2-1) involves only the size of the
absolute values of the nonzero eigenvalues of @2

��
h and their reciprocals, as well as upper bounds for a

finite number of higher-order derivatives @ˇ
�
h, jˇj � 3.

As mentioned in the Introduction, Theorem 2.1 does not appear in [Bourgain and Demeter 2015; 2017a]
in the stated generality, but this result may be readily deduced from the prototypical cases considered in
[Bourgain and Demeter 2015; 2017a] via the arguments of [Pramanik and Seeger 2007; Garrigós and
Seeger 2010] (see also [Bourgain and Demeter 2015, §7–8] and [Guo and Oh 2018]), or by using a variant
of the approach developed in the present article.

The passage from Theorem 2.1 to Theorem 1.4 is, in essence, realised in the following manner. The
desired decoupling inequalities have a “self-similar” structure, which is manifested in their almost-
invariance under certain Lorentz rescaling (see Lemma 2.3). An implication of this self-similarity is
that in order to prove the decoupling estimate, it suffices to obtain some nontrivial, but possibly very
small, gain at a single spatial scale; this gain can then be propagated through all the scales via Lorentz
rescaling.7 At spatial scales K below the critical value �1=2 one can effectively approximate T � by an
extension operator E of the form described above; this is the content of Lemma 2.6 below. Combining this
approximation with Theorem 2.1 provides some gain at such scales K, and combining these observations
concludes the argument.

2B. Basic properties of the phase. Before carrying out the programme described above, it is useful to
note some basic properties of homogeneous phases � satisfying the conditions (H1)1 and (H2)2 and to
make some simple reductions.

After a localisation and a translation argument, one may assume that a is supported inside Z �„,
where Z WD X � T for X � B.0; 1/ � Rn and T � .�1; 1/ � R small open neighbourhoods of the
origin and „ � �1 is a small open sector around en WD .0; : : : ; 0; 1/ 2 yRn. By choosing the size of
the neighbourhoods appropriately, one may assume the phase satisfies a number of useful additional
properties, described presently.

By localising, one may ensure that strengthened versions of the conditions (H1)1 and (H2)2 hold. In
particular, without loss of generality one may work with phases satisfying:

(H10) det @2
�x
�.zI �/¤ 0 for all .zI �/ 2Z �„.

(H20) det @�0�0@t�.zI �/¤ 0 for all .zI �/ 2Z �„.

Indeed, by precomposing the phase with a rotation in the z D .x; t/-variables, one may assume that
G.0I en/D enC1 and therefore @�@t�.0I en/D0. Hence, by (H1)1, it follows that det @2

�x
�.0I en/¤0. On

the other hand, by the homogeneity of �, every .n�1/�.n�1/minor of the matrix featured in the (H2)2 con-
dition is a multiple of det @�0�0h@z�.zI �/;G.zI �/ij�D� . Thus, in order for the rank condition (H2)2 to hold,
this determinant must be nonzero. In particular, asG.0I en/D enC1, it follows that det @�0�0@t�.0I en/¤ 0.
Choosing the neighbourhoods Z and „ sufficiently small now ensures both (H10)10 and (H20)20 hold.

7Further details and discussion of this perspective on decoupling theory can be found in the recorded lecture series given by
Guth as part of the MSRI harmonic analysis programme during January 2017 [Guth 2017a; 2017b; 2017c].
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By Euler’s homogeneity relations,

@x�.x; t I �/D

nX
jD1

�j � @�j @x�.x; t I �/:

Thus it follows that for each t 2 .�1; 1/ and � 2 yRn the Jacobian determinant of the map x 7!
..@�0�/.x; t I �/; �.x; t I �// is given by �n � det @2

�x
�.x; t I �/, which is nonzero by (H10)10. Thus, there

exists a smooth local inverse mapping ‡. � ; t I �/ which satisfies

.@�0�/.‡.y; t I �/; t I �/D y
0 and �.‡.y; t I �/; t I �/D yn: (2-3)

Similarly, there exists a smooth mapping ‰.x; t I � / such that

.@x�/.x; t I‰.x; t I �//D �: (2-4)

Given � � 1, let ‡� and ‰� denote the natural rescaled versions of these maps, so that ‡�.zI �/ D
�‡.y=�I �/ and‰�.zI �/ WD‰.z=�I �/. One may assume that Z and„ are such that the above mappings
are everywhere defined.

2C. Quantitative conditions. Fix ">0, M 2N, and 2�p<1 (the pD1 case of Theorem 1.4 is trivial
but nevertheless must be treated separately: see (2-7)). To facilitate certain induction arguments, it is useful
to work with quantitative versions of the conditions (H10)10 and (H20)20 on the phase function. In particular,
let cpar be a small fixed constant and assume that for some 0��C�n�1 andAD .A1; A2; A3/2 Œ1;1/3

the phase satisfies, in addition to (H10)10 and (H20)20, the following:

(H1A) j@2
�x
�.zI �/� Inj � cparA1 for all .zI �/ 2Z �„.

(H2A) j@2
�0�0
@t�.zI �/� .1=�n/In�1;�C j � cparA2 for all .zI �/ 2Z �„, where

In�1;�C WD diag.1; : : : ; 1„ ƒ‚ …
�C

;�1; : : : ;�1„ ƒ‚ …
n�1��C

/

is an .n�1/� .n�1/ diagonal matrix.

Some additional control on the size of various derivatives, which is of a rather technical nature, is assumed:

(D1A) k@ˇ� @xk�kL1.Z�„/ � cparA1 for all 1� k � n and ˇ 2 Nn0 with 2� jˇj � 3 satisfying jˇ0j � 2;
k@ˇ

0

�0
@t�kL1.Z�„/ � .cpar=.2n//A1 for all ˇ0 2 Nn�10 with jˇ0j D 3.

(D2A) For some large integer N DN";M;p 2N, depending only on the dimension n and the fixed choice
of ", M and p, one has

k@
ˇ

�
@˛z�kL1.Z�„/ �

cpar

2n
A3

for all .˛; ˇ/ 2 NnC10 �Nn0 with 2� j˛j � 4N and 1� jˇj � 4N C 2 satisfying 1� jˇj � 4N or
jˇ0j � 2.

Finally, it is useful to assume a margin condition on the spatial support of the amplitude a:

(MA) dist.supp a1;RnC1 nZ/� 1
4
A3.
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Datum .�; a/ satisfying (H1A)1A, (H2A)2A, (D1A)1A, (D2A)2A and (MA)A (in addition to (H10)10

and (H20)20) is said to be of type A. One may easily verify that any phase function satisfying (H10)10 and
(H20)20 is of type A for some A D .A1; A2; A3/ 2 Œ1;1/3. The conditions (H1A)1A and (H2A)2A are
quantitative substitutes for (H10)10 and (H20)20 if, say, A1; A2 � 1; for A1 and A2 large, however, the
conditions (H1A)1A and (H2A)2A are vacuous and do not imply (H10)10 or (H20)20. By various rescaling
arguments, it is possible to reduce to the case where A D 1 WD .1; 1; 1/, as shown in Section 2E.

2D. Setting up the induction for (1-7) and reduction to �1�"=n-balls. Continuing with the fixed ", M
and p from the previous subsection, let AD .A1; A2; A3/ 2 Œ1;1/3 and N 2N be as in the definition of
the condition (D2A)2A. For 1 � R � � letA".�IR/ denote the infimum over all C � 0 for which the
inequality

kT �f kLp.BR/ � CR
˛.p/C"

kT �f k
L
p;R
dec .wBR /

CR2n
�
�

R

��"N=.8n/
kf k

L2.yRn/
(2-5)

holds for all type-A data .�; a/8 and balls BR of radius R contained in B.0; �/. Here the weight function
is understood to be defined with respect to the fixed choice of N above, as in (2-2). It is remarked that
the quantityA".�IR/ is always finite. To see this, note that for any 1 � � � R and ��1=2-plate � one
may write

T �f� D
X

�\Q�¤∅
� WR�1=2-plate

T �f� I

recall that Q� is the subset of � upon which f� is supported. By the triangle and Hölder’s inequalities, for
any weight w one has

kT �f kLp;�dec .w/
�

�
R

�

�.n�1/=.2p0/
kT �f k

L
p;R
dec .w/

: (2-6)

Taking � = 1, one thereby deduces the trivial bound

D"A.�IR/.R
.n�1/=.2p0/�˛.p/; (2-7)

which, in particular, shows that D"
A
.�IR/ is finite. This trivial observation also proves Theorem 1.4 in

the p D1 case.
To prove Theorem 1.4 for the fixed parameters 2", M, and 2� p <1 it is claimed that it suffices to

show that
A".�I�1�"=n/.A;" 1: (2-8)

The “."=n/-gain” realised by this reduction will be useful for various technical reasons. To see the above
claim, observe that the support conditions on the amplitude a imply that the support of T �f is always
contained in B.0; �/. Take a cover of B.0; �/ by finitely overlapping �1�"=n-balls and apply (2-8) to
the relevant Lp-norm defined over each of these balls. Summing over all the contributions from the

8As in the statement of Theorem 1.4, a discrepancy between the amplitude functions is allowed here: the right-hand operator is
understood to be defined with respect to some amplitude with possibly slightly larger spatial support than the original amplitude a.
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collection via Minkowski’s inequality, one deduces that

kT �f kLp.B.0;�// .A;" �
˛.p/C"

kT �f k
L
p;�1�"=n

dec .wB.0;�//
C�2n�"N=.8n/kf k

L2.yRn/
:

Here the weight wB.0;�/ is as defined in (2-2) (with RD � and Nx D 0, Nt D 0). Provided N is sufficiently
large, the desired estimate (1-7) now follows from (2-6).

After reducing to the case A D 1, it will be shown in Section 2G, using induction on R, that
D"1.�IR/." 1 for all 1�R � �1�"=n, thus establishing (2-8). The trivial inequality (2-7) will serve as
the base case for this induction.

2E. Lorentz rescaling. The first ingredient required in the proof of Theorem 1.4 is a standard Lorentz
rescaling lemma. Before stating this result, it is useful to observe the following trivial consequence of
rescaling.

Lemma 2.2. Let A D .A1; A2; A3/ and zA D .A1; A2; 1/. Then

D"A.�IR/.A3 D
"
zA

�
�

A3
I
R

A3

�
:

Proof. Let .�; a/ be a type-A datum. Observe that T �f D zT �=A3f , where zT is defined with respect
to the phase Q�.zI �/ WD A3�.z=A3I �/ and amplitude Qa.zI �/ WD a.z=A3I �/. Clearly the datum . Q�; Qa/

satisfies (H1 zA), (H2 zA), (D1 zA/ and (D2 zA/. The margin of the new amplitude Qa (with respect to the rescaled
open set A3Z) has been increased to size 1

4
and so (M zA) holds. There is a slight issue here in that the

support of the rescaled amplitude may now lie outside the unit ball, but one may decompose the amplitude
via a partition of unity and translate each piece to write the operator as a sum of O.AnC13 / operators
each associated to type- zA data. Finally, covering B.0;R/ with a union of .R=A3/-balls and applying
the definition of D"

zA
.�=A3IR=A3/ to each of the contributions arising from these balls, the result then

follows from the trivial decoupling inequality (2-6). �

Lemma 2.3 (Lorentz rescaling). Let 1 � � � R � � and suppose that T � is defined with respect to a
type-AD .A1; A2; A3/ datum. If g is supported on a ��1-plate and � is sufficiently large depending on �,
then there exists a constant C D C � � 1 such that

kT �gkLp.wBR /
.";�;N D"1

�
�

C�2
I
R

C�2

��
R

�2

�̨ .p/C"

kT �gk
L
p;R
dec .wBR /

CR2n
�
�

R

��"N=.8n/
kgk

L2.yRn/
: (2-9)

Remark 2.4. The proof of the lemma will show, more precisely, that the lower bound for � and the
implicit constant in (2-9) may be chosen so as to depend only on ", A and the following quantities:

� inf.x;t I�/2suppajdet @2
x�
�.x; t I �/j.

� The infimum and supremum of the magnitudes of the eigenvalues of

@2�0�0@t�.x; t I �/ (2-10)
over all .x; t I �/ 2 supp a.
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Note that the quantities appearing in the above bullet points are nonzero by the conditions (H10)10 and
(H20)20.

Lemma 2.3 will be applied in two different ways:

(i) An initial application of the lemma reduces the proof of Theorem 1.4 to operators defined with respect
to type-1 data. This is achieved by introducing a partition of unity of the frequency domain �1 into
��1-plates for some sufficiently large �, depending on �. Each of these frequency-localised pieces can
be rescaled via Lemma 2.3 and then summed together to yield the desired reduction. Observe that, by the
preceding remark, Lemma 2.3 is uniform for type-1 data.

(ii) The second application of Lemma 2.3 will be to facilitate an induction argument which constitutes
the proof of Theorem 1.4 proper. The uniformity afforded by the reduction to type-1 phases is useful in
order to ensure that this induction closes.

Proof of Lemma 2.3. The argument used in what follows is a generalisation of the Lorentz rescaling used
to study decoupling for the light cone [Wolff 2000]; see Figure 2. Let ! 2Bn�1.0; 1/ be such that .!; 1/
is the centre of the ��1-plate upon which g is supported, so that

suppg �
˚
.� 0; �n/ 2 yR

n
W
1
2
� �n � 2 and j� 0=�n�!j � ��1

	
:

Performing the change of variables .� 0; �n/D .�n!C ��1�0; �n/, it follows that

T �g.z/D

Z
yRn
ei�

�.zI�n!C�
�1�0;�n/a�.zI �n!C �

�1�0; �n/ Qg.�/ d�;

where Qg.�/ WD ��.n�1/g.�n!C ��1�0; �n/ and supp Qg �„.
By applying a Taylor series expansion and using the homogeneity, the phase function in the above

oscillatory integral may be expressed as

�.zI!; 1/�nC �
�1
h@�0�.zI!; 1/; �

0
iC ��2

Z 1

0

.1� r/h@2�0�0�.zI �n!C r�
�1�0; �n/�

0; �0i dr:

Let ‡!.y; t/ WD .‡.y; t I!; 1/; t/ and ‡�!.y; t/ WD�‡!.y=�; t=�/ and introduce the anisotropic dilations
D�.y

0; yn; t / WD .�y0; yn; �
2t / and D0

��1
.y0; yn/ WD .��1y0; ��2yn/ on RnC1 and Rn, respectively.

Recalling (2-3), it follows that

T �g ı‡�! ıD� D
zT �=�

2

Qg;

where

zT �=�
2

Qg.y; t/ WD

Z
yRn
ei
Q��=�

2
.y;t I�/

Qa�.zI �/ Qg.�/ d�

for the phase Q�.y; t I �/ given by

hy; �iC

Z 1

0

.1� r/h@2�0�0�.‡!.D
0

��1
y; t/I �n!C r�

�1�0; �n/�
0; �0i dr (2-11)
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and the amplitude Qa.y; t I �/ WD a.‡!.D0��1yI t /I �n!C �
�1�0; �n/. In particular, by a change of spatial

variables, it follows that

kT �gkLp.BR/ .� �
.nC1/=p

k zT �=�
2

QgkLp..‡�!ıD�/�1.BR//
:

Fix a collection BR=�2 of finitely overlapping .R=�2/-balls which cover .‡�! ıD�/
�1.BR/ and observe

that

kT �gkLp.BR/ .� �
.nC1/=p

� X
B
R=�2

2B
R=�2

k zT �=�
2

Qgk
p

Lp.B
R=�2

/

�1=p
:

It will be shown below that

k zT �=�
2

QgkLp.B
R=�2

/ .";� D"1

�
�

C�2
I
R

C�2

��
R

�2

�̨ .p/C"

k zT �=�
2

Qgk
L
p;R=�2

dec .wB
R=�2

/

C

�
R

�2

�2n� �
R

��"N=.8n/
kgk

L2.yRn/
(2-12)

holds for each BR=�2 2 BR=�2 and a suitable constant C � 1, depending on �. Momentarily assuming
this (which would follow immediately from the definitions if . Q�; Qa/ were a type-1 datum), the proof of
Lemma 2.3 may be completed as follows.

Since ‡! is a diffeomorphism, it follows that[
B
R=�2

2B
R=�2

BR=�2 � .‡
�
! ıD�/

�1.BC�R/;

where BC�R is the ball concentric to BR but with radius C�R for some suitable choice of constant C� � 1
depending on �. Thus, one may sum the p-th power of both sides of (2-12) over all the balls in BR=�2
and reverse the changes of variables (both in spatial and frequency) to conclude that9

kT �gkLp.BR/ .";�;N D"1

�
�

C�2
I
R

C�2

��
R

�2

�̨ .p/C"� X
Q� W.R=�2/�1=2-plate

kT �g�k
p

Lp.wBR /

�1=p
CR2n

�
�

R

��"N=.8n/
kgk

L2.yRn/
;

where � is the image of Q� under the map .�0; �n/ 7! .�.�0� �n!/; �n/. In particular, if ! Q� denotes the
centre of the .R=�2/�1=2-plate Q� , then

� D
˚
.� 0; �n/ 2 yR

n
W
1
2
� �n � 2 and j!C ��1! Q� � �

0=�nj<R
�1=2

	
;

and so the � form a cover of the support of g by R�1=2-plates. This establishes the desired inequality
(2-9) with a sharp cut-off appearing in the left-hand norm, rather than the weight function wBR . The

9Here one picks up O.�nC1/ copies of the error term .R=�2/2n.�=R/�N=8kgk
L2.yRn/

from (2-12), that is, one for each
ball in the collection BR=�2 . This is compensated for by the factor ��4n appearing in each of these errors; it is for this reason
that the R2n factor is included in the definition ofA".�IR/ in (2-5).
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�

C

�1

�2

�3

Figure 2. The simplest case of the Lorentz rescaling lemma, corresponding to the phase
�.x; t I �/ WD x1�1C x2�2C t�

2
1=�2. Here each plate is associated with a subset of the

conic surface C defined by �3 D �21=�2 for 1
2
� �2 � 2. The key observation is that there

exists an affine transformation of the ambient space which essentially maps � to the
whole of C.

strengthened result, with the weight, easily follows by pointwise dominating wBR by a suitable rapidly
decreasing sum of characteristic functions of R-balls.

It remains to show the validity of the inequality (2-12) for each BR=�2 2 BR=�2 . Let L 2 GL.n;R/ be
such that Len D en and

@2�0�0@t
Q�L.0; 0I en/D In�1;�C (2-13)

for some 0� �C � n� 1, where

Q�L.y; t I �/ WD Q�.L�1y; t IL�/:

Observe that L is a composition of a rotation and an anisotropic dilation given by the matrix diag.
p
j�1j;

: : : ;
p
j�n�1j; 1/, where the �j are the eigenvalues of (2-10) evaluated at .0; 0I en/. By a linear change

of both the y- and �-variables, it suffices to show that (2-12) holds with zT �=�
2

Qg replaced with zT �=�
2

L QgL,
where zT �=�

2

L is defined with respect to the datum . Q�L; QaL/ for Q�L as above, QaL.y; t I �/ WD Qa.L�1y; t IL�/,
and QgL WD jdet Lj � Qg ıL. This would follow from the definition of D"1.�IR/ and Lemma 2.2 provided that
the new datum . Q�L; QaL/ is of type .1; 1; C / for some suitable choice of constant C � 1. Note that the
amplitude QaL may not satisfy the required support conditions described at the beginning of Section 2B;
however, by decomposing the operator, as in the proof of Lemma 2.2, this issue may easily be resolved.
On the other hand, if C is suitably chosen, it is clear that QaL satisfies the required margin condition.

To verify the remaining hypotheses in the definition of type-.1; 1; C / data, first note that, by retracing
the steps of the argument prior to (2-11), one deduces that

Q�L.y; t I �/D �
2�.‡!.D

0

��1
ıL�1y; t/; t I �n!C ��1L0�0; �n/: (2-14)

Alternatively, using (2-11) directly, Q�L.y; t I �/ can be expressed as

hy; �iC

Z 1

0

.1� r/h@2�0�0�.‡!.D
0

��1
ıL�1y; t/I �n!C r��1L0�0; �n/L0�0;L0�0i dr; (2-15)
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where L0 is the top-left .n�1/� .n�1/ submatrix of L. These two formulae are used in conjunction to
yield bounds on various derivatives of Q�L. To this end, it is also useful to note that, by the definition of ‡
and the inverse function theorem,

@y‡.y; t I!; 1/D @
2
�x�.‡!.y; t/I!; 1//

�1;

so each entry @yj‡
i .y; t I!; 1/ of the above matrix may be written as the product of

Œdet.@2�x�.‡!.y; t/I!; 1//�
�1

and a polynomial expression in .@�l@xk�/.‡!.y; t/I!; 1/.
First consider the technical conditions on the derivatives. Differentiating the formula (2-14) and

assuming � is sufficiently large, depending on �, immediately implies that . Q�L; QaL/ satisfies conditions
(D11) and (D21) for jˇ0j � 2. The remaining cases of (D11) and (D21) can then be readily deduced by
differentiating (2-15).

Concerning (H11), by differentiating (2-15) and using the conditions (D1A)1A and (D2A)2A of .�; a/,
one deduces that

@2�y
Q�L.y; t I �/D InCO�.�

�1/:

Thus, (H11) holds for . Q�L; QaL/ provided � is sufficiently large depending on �. Note that the conditions
(D1A)1A and (D2A)2A are used here so as to ensure the dependence on � is as described in Remark 2.4.

Concerning (H21/, the homogeneity of � and (2-13) imply

@2�0�0@t
Q�L.zI �/�

1

�n
In�1;�C D

1

�n

�
@2�0�0@t

Q�L

�
zI
�0

�n
; 1

�
� @2�0�0@t

Q�L.0I en/

�
:

In particular, for 1� i; j � n� 1, the .i; j /-entry of the above matrix equalsZ 1

0

�
@�0@

2
�i�j

@t Q�L

�
rzI

r�0

�n
; 1

�
;
�0

�n

�
C

�
@z@

2
�i�j

@t Q�L

�
rzI

r�0

�n
; 1

�
; z

�
dr:

Since it has been shown above that the datum . Q�L; QaL/ satisfies (D11) and (D21/, the integrand in the
above expression may now be bounded above in absolute value by cpar. Thus, . Q�L; QaL/ also satisfies
(H21) and therefore is of type .1; 1; C /, as required. �

2F. Approximation by extension operators. This subsection deals with an approximation lemma which
allows one to use Theorem 2.1 to bound variable-coefficient operators at small spatial scales.

Let T � be an operator associated to a type-1 datum .�; a/. For each Nz 2 RnC1 with Nz=� 2Z the map
� 7! .@z�

�/. NzI‰�. NzI �// is a graph parametrisation of a hypersurface † Nz with precisely one vanishing
principal curvature at each point. In particular, recalling (2-4), one has

hz; .@z�
�/. NzI‰�. NzI �//i D hx; �iC th Nz.�/ for all z D .x; t/ 2 RnC1;

where h Nz.�/ WD .@t��/. NzI‰�. NzI �//. Let E Nz denote the extension operator associated to † Nz , given by

E Nzg.x; t/ WD

Z
yRn
ei.hx;�iCthNz.�//a Nz.�/g.�/ d� for all .x; t/ 2 RnC1;
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where a Nz.�/ WD a2 ı ‰
�. NzI �/jdet @�‰�. NzI �/j. The operator T � is effectively approximated by E Nz

at small spatial scales. Furthermore, the conditions on the translation-invariant decoupling inequality,
Theorem 2.1, are satisfied by each of the functions h Nz . In particular, the type-1 condition implies the
following uniform bound.

Lemma 2.5. Let .�; a/ be a type-1 datum. Each eigenvalue � of @�0�0h Nz satisfies j�j � 1 on supp a Nz .

The proof of this lemma is an elementary calculus exercise, the details of which are omitted.
Concerning the approximation of T � byE Nz , suppose that 1�K ��1=2 and z 2B. Nz;K/�B.0; 3�=4/;

this containment property may be assumed in view of the margin condition (M1). By applying the change
of variables � D‰�. NzI �/ and a Taylor expansion of �� around the point Nz,

T �f .z/D

Z
yRn
ei.hz�Nz;.@z�

�/. NzI‰�. NzI�//iCE�
Nz
.z�NzI�//a�1 .z/a Nz.�/f Nz.�/ d�; (2-16)

where f Nz WD ei�
�. NzI‰�. NzI � //f ı‰�. NzI � /, and, by Taylor’s theorem,

E�Nz .vI �/D
1

�

Z 1

0

.1� r/

�
.@2zz�/

�
NzC rv

�
I‰�. NzI �/

�
v; v

�
dr: (2-17)

Since K � �1=2 and .�; a/ is type-1, so that property (D21) holds, it follows that

sup
.vI�/2B.0;K/�suppaNz

j@
ˇ

�
E�Nz .vI �/j.N 1

for all ˇ 2 Nn0 with 1 � jˇj � 4N. Consequently, E�
Nz .z � NzI �/ does not contribute significantly to the

oscillation induced by the exponential in (2-16) and it can therefore be safely removed from the phase, at
the expense of some negligible error terms.

Lemma 2.6. Let T � be an operator associated to a type-1 datum .�; a/. Let 0 < ı � 1
2

, 1�K � �1=2�ı ,
and Nz=� 2Z so that B. Nz;K/� B.0; 3�=4/. Then

(i) kT �f kLp.wB.Nz;K// .N kE Nzf NzkLp.wB.0;K//C�
�ıN=2kf k

L2.yRn/
(2-18)

holds provided N is sufficiently large depending on n, ı and p.

(ii) Suppose that j Nzj � �1�ı
0

. There exists a family of operators T � all with phase function � and
associated to type-.1; 1; C / data such that

kE Nzf NzkLp.wB.0;K// .N kT
�
� f kLp.wB.Nz;K//C�

�minfı;ı 0gN=2
kf k

L2.yRn/
(2-19)

holds for some T �� 2 T
� provided N is sufficiently large depending on n, ı and p. Moreover, the

family T � has cardinality ON .1/ and is independent of the choice of ball B. Nz;K/.

Remark 2.7. (i) The weights appearing in Lemma 2.6 are defined with respect to the same N 2 N as
that appearing in the � exponent. This is also understood to be the same N as that appearing in the
definition of the (D2A)2A condition.
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(ii) If one replaces wB. Nz;K/ with the characteristic function �B. Nz;K/ on the left-hand side of (2-18), then
the proof of Lemma 2.6 shows that the inequality holds without the additional ��ıN=2kf k

L2.yRn/

term.

Several variants of this kind of approximation (or stability) lemma have previously appeared in the
literature; see, for instance, [Stein 1993, Chapter VI, §2] or [Christ 1988; Tao 1999]. In the context of
decoupling, Lemma 2.6 is closely related to certain approximation arguments used to extend decoupling
estimates to wider classes of surfaces in [Pramanik and Seeger 2007; Garrigós and Seeger 2010; Guo and
Oh 2018] and [Bourgain and Demeter 2015, §7–8]. A variant of Lemma 2.6 (which is somewhat cleaner
than the above statement) can also be applied to slightly simplify the original proof of the decoupling
theorem in [Bourgain and Demeter 2015; 2017b] and, in particular, obviate the need to reformulate
the problem in terms of functions with certain Fourier support conditions (the details of the original
“reformulation” approach are given in [Bourgain and Demeter 2017b, §5]).

Proof of Lemma 2.6. Note that f in (2-16) may be replaced by f  , where  is a smooth function that
equals 1 on supp a Nz and vanishes outside its double. Moreover, recalling the definition of a Nz and that
.�; a/ is a type-1 datum, one may assume that the function  is supported in Œ0; 2��n. In view of the
expression (2-16), by performing a Fourier series decomposition of eiE

�
Nz
.v;�/ .�/ in the �-variable, one

may write
eiE

�
Nz
.vI�/ .�/D

X
`2Zn

b`.v/e
ih`;�i; (2-20)

where
b`.v/D

Z
Œ0;2��n

e�ih`;�ieiE
�
Nz
.vI�/ .�/ d�:

The formula (2-17) and property (D21) of the phase together imply

sup
�2Œ0;2��n

j@ˇ� E
�
Nz .vI �/j.N

jvj2

�

for all multi-indices ˇ 2 N with 1� jˇj �N. Therefore, by repeated application of integration-by-parts,
one deduces that

jb`.v/j.N .1Cj`j/�N whenever jvj � 2�1=2:

This, (2-20) and (2-16) lead to the useful pointwise estimate

jT �f . NzC v/j.N
X
`2Zn

.1Cj`j/�N jE Nz.f Nze
ih`;� i/.v/j; (2-21)

valid for jvj � 2�1=2. Writing

kT �f kLp.wB.Nz;K// � k.T
�f /�B. Nz;2�1=2/kLp.wB.Nz;K//Ck.T

�f /�RnnB. Nz;2�1=2/kLp.wB.Nz;K//;

it follows from (2-21) that

k.T �f /�B. Nz;2�1=2/kLp.wB.Nz;K// .N
X
`2Zn

.1Cj`j/�N kE Nz.f Nze
ih`;� i/kLp.wB.0;K//: (2-22)
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On the other hand, it is claimed that

k.T �f /�RnnB. Nz;2�1=2/kLp.wB.Nz;K// . �
n=.2p/�ı.N�nC2/

kf k
L2.yRn/

(2-23)

and therefore this term can be treated as an error. Indeed, if jvj> 2�1=2 and K � �1=2�ı , then

.1CK�1jvj/�.N�nC2/ � .1C 2�1=2K�1/�.N�nC2/ � ��ı.N�nC2/:

Combining this observation with the trivial estimate

kT �f kLp. QwB.Nz;K// .K
n=p
kf k

L2.yRn/
;

where QwB.0;K/ WD .1CK�1j � j/�.nC2/, one readily deduces (2-23).
Observe that the operator E Nz enjoys the translation-invariance property

E NzŒe
ih`;� ig�.x; t/DE Nzg.xC `; t/ for all .x; t/ 2 RnC1 and all ` 2 Rn; (2-24)

it is for this reason that the graph parametrisation was introduced at the outset of the argument. The
identity (2-24) together with (2-22) and (2-23) imply

kT �f kLp.wB.Nz;K// .N
X
`2Zn

.1Cj`j/�N kE Nzf NzkLp.wB..`;0/;K//C�
�ıN=2

kf k
L2.yRn/

; (2-25)

provided N is chosen to be suitably large. One may readily verify thatX
`2Zn

.1Cj`j/�NwB..`;0/;K/ . wB.0;K/ (2-26)

and combining this with (2-25) immediately yields the desired estimate (2-18).
The proof of (2-19) is similar to that of (2-18), although a slight complication arises since, in contrast

with E Nz , the variable-coefficient operator T � does not necessarily satisfy the translation-invariance
property described in (2-24).

One may write

E Nzf Nz.v/D

Z
yRn
ei�

�. NzCvI‰�. Nz;�//e�iE
�
Nz
.vI�/a Nz.�/f ı‰

�. NzI �/ d�

and, by forming the Fourier series expansion of e�iE
�
Nz
.vI�/ .�/ in � and undoing the change of variables

� D‰�. NzI �/, thereby deduce that

jE Nzf Nz.v/j.N
X
`2Zn

.1Cj`j/�4N jT �Œeih`;.@z�
�/. Nz � /if �. NzC v/j

whenever jvj � 2�1=2. This pointwise bound is understood to hold modulo the choice of spatial cut-off a1
appearing in the definition of T �. Taking Lp.wB. Nz;K//-norms in z and reasoning as in the proof of (2-18),
one obtains

kE Nzf NzkLp.wB.0;K// .N
X
`2Zn

.1Cj`j/�4N k.T � Qf`/�B. Nz;2�1=2/kLp.wB.Nz;K//C�
�ıN=2

kf k
L2.yRn/

;
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where Qf` WD eih`;.@z�
�/. NzI � /if . Note that the cut-off function �B. Nz;2�1=2/ can be dominated by a smooth

amplitude Qa�1 , where Qa1 is equal to 1 on supp a1 and has half the margin. The above sum is split into a
sum over ` satisfying j`j> CN and a sum over the remaining ` where CN is a constant depending on N,
chosen large enough for the present purpose. To control sum over large `, apply (2-18) and argue as in
(2-26) to conclude thatX

`2Zn

j`j>CN

.1Cj`j/�4N kT � Qf`kLp.wB.Nz;K// .N
X
`2Zn

j`j>CN

.1Cj`j/�2N kE Nzf NzkLp.wB..`;0/;K//

. C�NN kE Nzf NzkLp.wB.0;K//:

Therefore, if CN is chosen to be sufficiently large depending on N, the above term can be absorbed into
the left-hand side of the inequality and one obtains

kE Nzf NzkLp.wB.0;K// .N
X
`2Zn

j`j�CN

kT � Qf`kLp.wB.Nz;K//C�
�ıN=2

kf k
L2.yRn/

:

Each T � Qf` can be thought of as an operator T �
`

where the latter has phase � and amplitude function

Qa`.zI �/ WD Qa1.zI �/e
ih`;.@z�

�/. NzI�/i:

Unfortunately, these amplitudes depend on the choice of ball B. Nz;K/ and therefore are unsuitable for the
present purpose. To remove this undesirable dependence, one may take a Taylor series expansion to write

eih`;.@z�
�/. NzI�/i

D

X
j˛j�N�1

u˛.!/

�
Nz

�

�̨
CO..j Nzj=�/N /; (2-27)

where each u˛ 2 C1.Rn/ satisfies j@ˇ
�
u˛.�/j.N 1 for all jˇj �N. Note that the u˛ do not depend on

the choice of Nz. Furthermore, since j Nzj � �1�ı
0

, it follows that the error in (2-27) is O.��ı
0N / and the

part of the operator arising from such terms can be bounded by ��minfı;ı 0gN=2kf k
L2.yRn/

. The family of
operators T � is now given by the family of amplitudes

u˛.!/ Qa`.zI �/; j`j � Cn; j˛j �N � 1:

Since j Nzj=�� 1, one concludes that

kE Nzf NzkLp.wB.0;K// .N
X

T �� 2T �

kT ��
Qf`kLp.wB.Nz;K//C�

�minfı;ı 0gN=2
kf k

L2.yRn/

and the desired inequality now holds for some choice of T �� 2 T
� by pigeonholing. �

2G. Proof of the variable-coefficient decoupling estimates. By the discussion in Sections 2B–2E, to
prove Theorem 1.4 for the fixed parameters 2", M, and p it suffices to show

D"1.�IR/." 1 for all 1�R � �1�"=n.
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The trivial estimate (2-7) implies the above inequality if R is small (that is, R ." 1), and the proof
proceeds by induction on R, using this observation as the base case. In particular, one may assume by
way of induction hypothesis that the following holds.

Radial Hypothesis. There is a constant C " � 1, depending only on the admissible parameters n, ", M,
and p, such that

D"1.�
0
IR0/� C "

holds for all 1�R0 �R=2 and all �0 satisfying R0 � .�0/1�"=n.

Let BK be a finitely overlapping cover of BR by balls of radius K for some 2 � K � �1=4. One
may assume that any centre Nz of a ball in this cover satisfies j Nzj � �1�"=n. The estimate (2-18) from
Lemma 2.6 with ı D 1

4
implies

kT �f kLp.BR/ .
� X
B. Nz;K/2BK

kE Nzf Nzk
p

Lp.wB.0;K//

�1=p
CRnC1

�
�

R

��N=8
kf k

L2.yRn/
:

Applying the theorem of [Bourgain and Demeter 2015; 2017a] (that is, Theorem 2.1) with exponent "=2
(and recalling Lemma 2.5), one deduces that the inequality

kE Nzf NzkLp.wB.0;K// ." K
˛.p/C"=2

kE Nzf NzkLp;Kdec .wB.0;K//

holds for each of the extension operators in the previous display. Combining these observations with an
application of (2-19) from Lemma 2.6 with ı0 D "=n, and summing over BK ,

kT �f kLp.BR/ ." K
˛.p/C"=2

� X
� WK�1=2-plate

kT �f�k
p

Lp.wBR /

�1=p
CRnC1

�
�

R

��"N=8n
kf k

L2.yRn/
:

The operator on the right involves a slightly different amplitude function compared with that on the left
but, as in the statement of Theorem 1.4, this is suppressed in the notation.

Note that, sinceK � 2, C � 1, and R��1�"=n, trivially R=.CK/� .�=.CK//1�"=n and R=.CK/�
R=2. Consequently, the assumptions of the radial induction hypothesis are valid for the parameters
R0 WDR=.CK/ and �0 WD �=.CK/. Thus, by combining the radial induction hypothesis with (2-9) from
the Lorentz rescaling lemma, one concludes that

kT �f kLp.BR/ � C"C "K
�"=2R˛.p/C"kT �f k

L
p;R
dec .wBR /

CR2n
�
�

R

��"N=.8n/
kf k

L2.yRn/
:

Choosing K sufficiently large (depending only on ", n, M and p) so that C"K�"=2 � 1, the induction
closes and the desired result follows.

3. Proof of the local smoothing estimate

In this section the relationships between the theorems stated in the Introduction are established and, in
particular, it is shown that

Theorem 1.4 D) Theorem 1.2 D) Theorem 1.1.



422 DAVID BELTRAN, JONATHAN HICKMAN AND CHRISTOPHER D. SOGGE

Given the formula for the solution u from (1-4), the latter implication is almost immediate. The former
implication follows from a straightforward adaption of an argument due to [Wolff 2000], which treats an
analogous problem for the euclidean wave equation. Nevertheless, proofs of both of the implications are
included for completeness.

To begin, the definition of the cinematic curvature condition, as introduced in [Mockenhaupt, Seeger,
and Sogge 1993], is recalled. As in the statement of Theorem 1.2, let Y and Z be precompact smooth
manifolds of dimensions n and nC 1, respectively. Let C � T �Z n 0�T �Y n 0 be a choice of canonical
relation; here T �M n0 denotes the tangent bundle of a C1 manifoldM with the 0 section removed. Thus,

C D f.x; t; �; �; y; �/ W .x; t; �; �; y;��/ 2ƒg

for some conic Lagrangian submanifold ƒ� T �Z n 0�T �Y n 0; see [Hörmander 1971] or [Duistermaat
1996; Sogge 2017] for further details. Certain conditions are imposed on C, defined in terms of the
projections

C

T �Y n 0 Z T �z0Z n 0

…T�Y
…Z

…
T�z0

Z

First there is the basic nondegeneracy hypothesis that the projections …T �Y and …Z are submersions:

rank d…T �Y � 2n and rank d…Z � nC 1: (3-1)

This condition implies that for each z0 2Z the image �z0 WD…T �z0Z.C/ of C under the projection onto
the fibre T �z0Z is a C1 immersed hypersurface. Note that �z0 is conic and therefore has everywhere
vanishing Gaussian curvature. In addition to the nondegeneracy hypothesis (3-1), the following curvature
condition is also assumed:

For all z0 2Z, the cone �z0 has n� 1 nonvanishing principal curvatures at every point. (3-2)

If both (3-1) and (3-2) hold, then C is said to satisfy the cinematic curvature condition [Mockenhaupt,
Seeger, and Sogge 1993].

Remark 3.1. Using local coordinates, (3-1) and (3-2) may be expressed in terms of the conditions (H1)1
and (H2)2 introduced in Section 1B. Indeed, near any point

.x0; t0; �0; �0; y0; �0/ 2 C;

the condition (3-1) implies that there exists a phase function �.zI �/ satisfying (H1)1 such that C is given
locally by

f.z; @z�.zI �/; @��.zI �/; �/ W � 2 Rnnf0g in a conic neighbourhood of �0g:

Furthermore, (3-2) implies that the function � satisfies (H2)2. Further details may be found in [Sogge
2017, Chapter 8].
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Recall from the Introduction that the solution to the Cauchy problem (1-1) can be written as uDF0f0C
F1f1, where each Fj 2 I j�1=4.M �R;M I C/ for some canonical relation C satisfying the cinematic
curvature condition. Fix a choice of coordinate atlas f.�� ; ��/g� on M and a partition of unity f �g�
subordinate to the cover f��g� of M. A choice of Bessel potential norm k � kLps .M/ is then defined by

kf kLps .M/ WD

X
�

kf�kLps .Rn/;

where f� WD . �f /ı��1 andLps .Rn/ denotes the standard Bessel potential space in Rn. Thus, expressing
everything in local coordinates and applying the composition theorem for Fourier integral operators (see,
for instance, [Sogge 2017, Theorem 6.2.2]), it is clear that Theorem 1.1 is an immediate consequence
of Theorem 1.2.

It remains to show that Theorem 1.2 follows from the decoupling inequality established in Theorem 1.4.
Working in local coordinates (and recalling Remark 3.1 and the discussion in Section 1B), it suffices to
prove an estimate for operators of the form

Ff .x; t/ WD
Z
yRn
ei�.x;t I�/b.x; t I �/.1Cj�j2/�=2 Of .�/ d�; (3-3)

where b is a symbol of order 0 with compact support in the .x; t/-variables and � is a smooth homogeneous
phase function satisfying (H1)1 and (H2)2 (at least on the support of b). Recall that b is a symbol of
order 0 if b 2 C1.RnC1 �Rn/ and satisfies

j@�z@



�
b.zI �/j.
;� .1Cj�j/�j
 j for all multi-indices .
; �/ 2 NnC10 �Nn0 .

In particular, Theorem 1.2 is a direct consequence of the following proposition.

Proposition 3.2. If Npn � p <1 and F is defined as in (3-3) with � < �˛.p/D�NspC 1
p

, then

kFf kLp.RnC1/ . kf kLp.Rn/:

Proof. By applying a rotation and a suitable partition of unity, one may assume that b is supported in
Bn.0; "0/�B

1.1; "0/�� for a suitably small constant 0 < "0 � 1, where

� WD f� 2 yRn W j�j j � j�nj for 1� j � n� 1g:

Further, as the symbol b has compact .x; t/-support of diameter O.1/, one may assume without loss
of generality that it is of product type; that is, b.x; t I �/D b1.x; t/b2.�/. The latter reduction follows
by taking Fourier transforms in a similar manner to that used in the proof of Lemma 2.6; the argument,
which is standard, is postponed until the end of the proof.

Fix ˇ 2 C1c .R/ with suppˇ 2
�
1
2
; 2
�

and such that
P
� dyadic ˇ.r=�/ D 1 for r ¤ 0. Let F� WD

F ıˇ.
p
��x=�/, so that F�f is given by introducing a ˇ.j�j=�/ factor into the symbol in (3-3),10 and

10In general, m.i�1@x/ denotes the Fourier multiplier operator (defined for f belonging to a suitable a priori class)
m.i�1@x/f .x/ WD

R
yRn
eihx;�im.�/ Of .�/ d� for any m 2 L1.yRn/. The operator m.

p
��x/ is then defined in the natural

manner via the identity ��x D i�1@x � i�1@x .
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decompose Ff as

Ff DW F .1f C
X

�2NW dyadic

F�f:

It follows that F .1 is a pseudodifferential operator of order 0 and therefore bounded on Lp for all
1 < p <1. Thus, letting " WD �.�C˛.p//=2 > 0, the problem is further reduced to showing that

kF�f kLp.RnC1/ . �˛.p/C�C"kf kLp.Rn/
for all �� 1.

By various rescaling arguments and Theorem 1.4, it follows that

kF�f kLp.RnC1/ .s;p �˛.p/C"
� X
� W��1=2-plate

kF�� f k
p

Lp.RnC1/

�1=p
;

where F�
�
WDF� ıa� .i�1@x/ for a� a choice of smooth angular cut-off to � . Thus, to conclude the proof

of Proposition 3.2 (and therefore that of Theorems 1.2 and 1.1), it suffices to establish the following
lemma.

Lemma 3.3. For F�
�

as defined above and 2� p �1 one has� X
� W��1=2-plate

kF�� f k
p

Lp.RnC1/

�1=p
. ��kf kLp.Rn/:

This inequality essentially appears in [Seeger, Sogge, and Stein 1991] (see also [Stein 1993, Chap-
ter IX]); a sketch of the proof is included for completeness.

Proof of Lemma 3.3. By interpolation (via Hölder’s inequality) it suffices to establish the cases p D 2 and
p D1.

To prove the pD2 bound, one may use Hörmander’s theorem (see, for instance, [Stein 1993, Chapter IX
§1.1]) for fixed t , followed by Plancherel’s theorem and the almost orthogonality of the plates � .

To prove the p D1 bound, it suffices to show that

sup
.x;t/2RnC1

kK�� .x; t I � /kL1.Rn/ . �
�;

where K�
�

is the kernel of the operator F�
�

. This follows from a standard stationary phase argument,
which exploits heavily the homogeneity of the phase and the angular localisation; see, for instance, [Stein
1993, Chapter IX, §4.5–4.6] for further details. �

It remains to justify the initial reduction to symbols of product type. As mentioned earlier, the argument
is standard and appears, for instance, in the proof of the L2 boundedness for pseudodifferential operators
of order 0 (see [Stein 1993, Chapter VI, §2]).

As b is a symbol of order 0 with compact .x; t/-support, .nC2/-fold integration-by-parts shows that

j@



�
Ob.�I �/j.
 .1Cj�j/�.nC2/.1Cj�j/�j
 j for all multi-indices 
 2 Nn0 , (3-4)
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where Ob denotes the Fourier transform of b in the z D .x; t/-variable. By means of the Fourier transform
one may write

Ff .x; t/D
Z
yRnC1

eihz;�i.1Cj�j/�.nC2/
Z
yRn
ei�.x;t I�/

b� .x; t I �/

.1Cj�j2/��=2
Of .�/ d� d�;

where b� .x; t I �/ WD  .x; t/ Ob.�I �/.1Cj�j/nC2 for  a smooth cut-off equal to 1 in the z-support of b
and vanishing outside its double. The functions b� are all of product type and, by (3-4), are symbols of
order 0 uniformly in �. Taking Lp-norms and applying Minkowski’s integral inequality, it now suffices
to show the Lp boundedness of F under the product hypothesis. �

4. Counterexamples for local smoothing estimates for certain Fourier integral operators

To conclude the paper, the proof of Proposition 1.3 is presented. As originally observed by the third
author in [Sogge 1991] and elaborated further in, for instance, [Mattila 2015; Mockenhaupt, Seeger, and
Sogge 1993; Sogge 2017; Tao 1999], it is known that local smoothing estimates for Fourier integral
operators imply favourable Lp estimates for a natural class of oscillatory integral operators. Indeed, this
is the basis of the well-known formal implication that the local smoothing conjecture for the (euclidean)
wave equation implies the Bochner–Riesz conjecture (see [Sogge 1991; 2017]). In this section a general
form of this implication is combined with a counterexample of [Bourgain 1991; 1995b] to show that
Theorem 1.2 is sharp when n� 3 is odd.

4A. Local smoothing for Fourier integrals and nonhomogeneous oscillatory integrals. Let � � Rn

be open and suppose that ˆW���! R is smooth and satisfies

@yˆ.x; y/¤ 0 for all .x; y/ 2��� (4-1)

and, moreover, that the Monge–Ampère matrix associated to ˆ is everywhere nonsingular:

det
�

0 @yˆ.x; y/

@xˆ.x; y/ @
2
xyˆ.x; y/

�
¤ 0 for all .x; y/ 2���. (4-2)

By (4-1), for each .x; t/ 2�� .�1; 1/ the level set

Sx;t WD fy 2� Wˆ.x; y/D tg (4-3)

is a smooth hypersurface. The condition (4-2) implies that the smooth family of surfaces in (4-3) satisfies
the rotational curvature condition of [Phong and Stein 1986] (see also [Stein 1993, Chapter XI]).

The above phase function can be used to construct two natural oscillatory integral operators. To
describe these objects, first fix a pair of smooth cut-off functions a 2 C1c .���/ and � 2 C1c ..�1; 1//.

(i) For each fixed t 2 R the distribution

K.x; t Iy/ WD �.t/ a.x; y/ ı0.t �ˆ.x; y// (4-4)
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is the kernel of a conormal Fourier integral operator on Rn�Rn of order �1
2
.n� 1/. In particular, K can

be written as

K.x; t Iy/D

Z
yR

ei�.t�ˆ.x;y//�.t/a.x; y/ d�;

where the right-hand side expression is understood to converge in the sense of oscillatory integrals. From
this formula, one can easily deduce (using, for instance, [Sogge 2017, Theorem 0.5.1]) that the canonical
relation is given by

C D f.x; t;��@xˆ.x; y/; �; y; �@yˆ.x; y// W ˆ.x; y/D t /g: (4-5)

Note that the condition (4-2) ensures that each of these Fourier integrals is nondegenerate in the sense
that the canonical relation is a canonical graph.

It will be useful to consider the operator

Ff .x; t/ WD
Z

Rn
K.x; t Iy/f .y/ dy; (4-6)

which is understood to map functions on Rn to functions on RnC1 by taking averages over the variable
hypersurfaces Sx;t .

(ii) One may also consider the nonhomogeneous oscillatory integral operator

S�ˆf .x/ WD

Z
Rn
ei�ˆ.x;y/a.x; y/f .y/ dy; (4-7)

where the amplitude a 2 C1c .���/ is as in (4-4) and �� 1.

Assume, in addition to the condition (4-2), that

�.t/ı0.t �ˆ.x; y//D ı0.t �ˆ.x; y// for all .x; y/ 2 supp a and t 2 R. (4-8)

Note that this holds if, for instance, ˆ.0; 0/D 0 and �.t/D 1 for all t in a neighbourhood of 0 provided
that a vanishes outside of a small neighbourhood of the origin in Rn � Rn. Under these conditions
Lp bounds for the operator (4-7) can be related to Sobolev estimates for (4-6).

Proposition 4.1. Under the conditions (4-2) and (4-8), if 
 > 0 is fixed and �� 1, then

kS�ˆkLp.Rn/!Lp.Rn/ . �
�

k.I ��x/


=2
ıFkLp.Rn/!Lp.RnC1/: (4-9)

Proof. Let ˇ 2 C1c .R/ satisfy ˇ.r/D 1 for jr j � 1 and ˇ.r/D 0 for jr j � 2. The condition (4-2) implies
that @xˆ.x; y/¤ 0 for all .x; y/ 2 supp a and a simple integration-by-parts argument therefore shows
that for some small constant c0 > 0 the estimate



ˇ�p��xc0�

�
ıS�ˆ






Lp.Rn/!Lp.Rn/

DON .�
�N /

holds for all N 2 N. Furthermore, since 
 > 0, it also follows that



�1�ˇ�p��xc0�

��
ı .I ��x/

�
=2






Lp.Rn/!Lp.Rn/

DO.��
 /:
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Combining these observations,

kS�ˆkLp.Rn/!Lp.Rn/ . �
�

k.I ��x/


=2
ıS�ˆkLp.Rn/!Lp.Rn/CON .�

�N /: (4-10)

On the other hand, the definition of K and the condition (4-8) implyZ
ei�t K.x; t Iy/ dt D ei�ˆ.x;y/a.x; y/:

One may therefore write the operator S�ˆ in terms of K and apply Hölder’s inequality together with the
estimate (4-10) to deduce the desired result. �

4B. Sharpness of the range of exponents p � Npn for optimal local smoothing bounds for odd n. To
show that the bounds obtained in Theorem 1.2 are sharp in odd dimensions, in this section certain phase
functions ˆ are investigated which, in addition to (4-2), satisfy a variant of the Carleson–Sjölin condition
[1972].

Note that (4-2) ensures that at each point the rank of the mixed Hessian of ˆ is at least n� 1. Assume
that

rank @2xyˆ.x; y/D n� 1 for all .x; y/ 2 supp a. (4-11)

It then follows that, provided � is sufficiently small, for any fixed x0 in the x-support of a the map

y! @xˆ.x0; y/; y 2�;

parametrises a hypersurface†x0�Rn. Suppose, in addition to (4-11), the phase also satisfies the following
curvature condition:

For each x0 2� the surface †x0 has n� 1 nonvanishing principal curvatures at every point. (4-12)

In this case, the phase function ˆ is said to satisfy the n�n Carleson–Sjölin condition (see [Sogge 2017]).
This definition should be compared with the similar conditions (H1)1 and (H2)2 for the homogeneous
oscillatory integrals described in Section 1B (note, for instance, that (4-12) is equivalent to the condition
that, for a suitably defined Gauss map Gˆ, the y-Hessian of h@xˆ.x0; y/; Gˆ.x0; y0/i has rank n� 1 at
y D y0 for every .x0; y0/ 2�).

If (4-11) and (4-12) are valid, then it is claimed that the Fourier integral operators F in (4-6) satisfy the
cinematic curvature condition appearing in the hypotheses of Theorem 1.2. If C�T �Rn n 0�T �RnC1 n 0

is the canonical relation for F , then recall that the nondegeneracy condition (3-1) is that rank d…T �Rn�2n

and rank d…RnC1 � nC 1. This holds as an immediate consequence of (4-2) since, as was observed
earlier, (4-2) implies that C is a local canonical graph. It remains to verify the cone condition (3-2). It
immediately follows from the expression (4-5) that for the Fourier integral operators in (4-6) the cones
�x0;t0 are given by

�x0;t0 D f�.�@xˆ.x0; y/; 1/ W y 2�; � 2 Rg:

Consequently, the cone condition holds if (4-11) and (4-12) are satisfied. This verifies the claim.
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Recall from the discussion following Proposition 1.3 that for each fixed t the composition

.I ��x/

=2
ı .Fh/. � ; t /

is a Fourier integral operator of order �1
2
.n�1/C
 . Thus, a special case of the local smoothing problem

is to show that for a given exponent 2n=.n� 1/� p <1 one has

k.I ��x/

=2
ıFkLp.Rn/!Lp.RnC1/ DO.1/ for all 0 < 
 < n

p
: (4-13)

Note that, unlike the operators in (4-6), the Fourier integrals in (4-13) do not have kernels with compact
x-support; however, they are bounded and rapidly decreasing outside of any neighbourhood of the
x-support of a.

Adapting a counterexample of [Bourgain 1991; 1995b], one may construct a phase ˆ so that (4-13)
cannot hold for p< Npn if n�3 is odd. This establishes Proposition 1.3 and thereby shows that Theorem 1.2
is optimal in the odd-dimensional case. The details are given presently. Note that, strictly speaking, here
a slight simplification of Bourgain’s construction is used, which is due to [Stein 1993, Chapter IX, §6.5]
(see also [Sogge 2017, pp. 67–69] for further details).

Proof of Proposition 1.3. Consider the matrix-valued function AWR!Mat.2;R/ defined by

A.s/ WD

�
1 s

s s2

�
for all s 2 R.

Let n� 3 be odd and AWR!Mat.n� 1;R/ be given by

A.s/ WD A.s/˚ � � �˚A.s/„ ƒ‚ …
.n�1/=2-fold

so that A.s/ is an .n�1/� .n�1/ block-diagonal matrix. Using these matrices, define a phase function �
on Rn �Rn�1 by

�.x; y0/ WD hx0; y0iC 1
2
hA.xn/y

0; y0i (4-14)

for all .x; y0/D .x0; xn; y0/ 2 Rn �Rn�1. Given an amplitude function b 2 C1c .R
n �Rn�1/ define the

oscillatory integral operator

S�� f .x/ WD

Z
Rn�1

ei��.x;y
0/ b.x; y0/f .y0/ dy0:

A stationary phase argument (see, for instance, [Sogge 2017, pp. 68–69]) then yields

��.n�1/=4�.n�1/=.2p/ . kS�� kLp.Rn�1/!Lp.Rn/ if �� 1 and p � 2; (4-15)

provided that b.0; 0/¤ 0.
If � is as in (4-14) and

ˆ.x; y/ WD �.x; y0/C xnCyn; (4-16)
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then clearly (4-2) is valid when x D y D 0. Since

y! @xˆ.0; y/D

�
y0;

.n�3/=2X
jD0

y2jC1y2jC2

�
C en

parametrises a hyperbolic paraboloid with 1
2
.n� 1/ positive principal curvatures and 1

2
.n� 1/ negative

principal curvatures, one concludes that for small x the Carleson–Sjölin conditions (4-11) and (4-12)
must hold, provided the support of b lies in a suitably small ball about the origin.

Suppose ˇ is as in the proof of Proposition 4.1, so that ˇ 2C1c .R/ satisfies ˇ.r/D 1 whenever jr j � 1
and ˇ.r/D 0 whenever jr j � 2. Assume b 2 C1c .R

n �Rn�1/ satisfies b.0; 0/¤ 0 and is supported in a
small neighbourhood of the origin. Take a in (4-7) to be equal to

a.x; y/D b.x; y0/ˇ

�
yn

c0

�
for some suitable choice of small constant 0 < c0 < 1

2
. Provided the size of the support of b and the

constant c0 are suitably chosen, (4-8) holds. Furthermore, taking F.y/ WD ˇ.yn/e�i�ynf .y0/ in (4-7),
one readily observes that

jS�� f .x/j � jS
�
ˆF.x/j and kF kLp.Rn/ � kf kLp.Rn�1/

and, consequently,

kS�� kLp.Rn�1/!Lp.Rn/ . kS
�
ˆkLp.Rn/!Lp.Rn/:

Combining this with (4-15) and (4-9), for 
 > 0 and �� 1 one concludes that

�
�.n�1/=4�.n�1/=.2p/ . k.I ��x/
=2 ıFkLp.Rn/!Lp.RnC1/;

where F is as in (4-6). Since
n

p
�
n�1

4
�
n�1

2p
> 0 if p < Npn;

it follows that (4-13) cannot hold for any Lebesgue exponent satisfying p < Npn. �

For even dimensions n� 4 one may modify the argument given in the proof of Proposition 1.3 to give
a necessary condition for the local smoothing problem for the general class of Fourier integral operators
under consideration. Indeed, in the even-dimensional case one simply defines

A.s/ WD A.s/˚ � � �˚A.s/„ ƒ‚ …
.n�2/=2-fold

˚.1C s/;

where .1Cs/ is a 1�1matrix with entry 1Cs, so that once againA.s/ is an .n�1/�.n�1/ block-diagonal
matrix. Taking the phase function � as in (4-14), it follows that the resulting oscillatory integral operators
satisfy

��n=4�.n�2/=.2p/ . kS�� kL1.Rn�1/!Lp.Rn/:
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n odd n even

n�1 nonvanishing 2.nC1/

n�1

2.nC2/

ncurvatures

n�1 positive 2.3nC1/

3n�3

2.3nC2/

3n�2curvatures

Table 1. Conjectured endpoint values for the exponent p for the sharp local smoothing
estimates in Theorem 1.2 under various hypothesis on F 2 I��1=4. Theorem 1.2 estab-
lishes the odd-dimensional case under the hypothesis of n� 1 nonvanishing principal
curvatures.

See, for instance, [Sogge 2017, p. 69] for further details. Arguing mutatis mutandis, for even n� 4 and F
defined as in the proof of Proposition 1.3 (with respect to the new choice of phase �) the estimate (4-13)
fails for p < 2.nC 2/=n.

4C. Some open problems. The cones�x0;t0�T
�
x0;t0

RnC1 associated to the phase in (4-16) have principal
curvatures of opposite sign (in fact, in the examples considered above the difference between the number
of positive and the number of negative principal curvatures is minimal). It would be interesting to see if
any improvement is possible in the range of p for which there is optimal local smoothing if the �x0;t0
always have n� 1 positive principal curvatures. The model case for this is the class of Fourier integrals
arising in the context of Theorem 1.1, that is, from solutions of wave equations given by a Laplace–
Beltrami operator on some Riemannian manifold .M; g/. In this case ˆ.x; y/ is given by the associated
Riemannian distance function dg.x; y/ minus a constant. By Proposition 4.1 and the counterexamples of
[Minicozzi and Sogge 1997] (see also [Sogge, Xi, and Xu 2018]), there exist metrics for which optimal
local smoothing is not possible when p < Npn;C where

Npn;C WD

�
2.3nC 1/=.3n� 3/ if n is odd;
2.3nC 2/=.3n� 2/ if n is even.

On the other hand, if ˆ.x; y/ WD dg.x; y/, then recent results of Guth, Iliopoulou and the second
author [Guth, Hickman, and Iliopoulou 2019] yield the optimal bounds for p � Npn;C for the oscillatory
operators in (4-7); this suggests that one should be able to obtain optimal local smoothing bounds for
p � Npn;C under the above convexity assumptions. In Table 1 the conjectured numerology for sharp local
smoothing estimates for Fourier integral operators is tabulated, according to the parity of the dimension
and various curvature assumptions. As mentioned in the Introduction, for the euclidean wave equation
sharp local smoothing estimates are conjectured to hold for the wider range 2n=.n� 1/� p <1.

Finally, note that the conjectured numerology in Table 1 coincides with the sharp bounds to a problem
posed in [Hörmander 1973] for oscillatory integral operators of the type T � under nonhomogeneous
versions of the conditions (H1)1 and (H2)2 (and a corresponding positive-definite version of (H2)2); see
[Guth, Hickman, and Iliopoulou 2019] for the details of this problem and a full historical account. In
particular, the argument presented earlier in this section shows that Theorem 1.1 implies a theorem of
[Stein 1986] in this context. For the remaining cases, the results of [Bourgain 1991; 1995b; Wisewell
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2005; Bourgain and Guth 2011; Guth, Hickman, and Iliopoulou 2019] suggest the p � 2.nC 2/=n
numerology in the general even-dimensional case and reinforce the conjectured p � Npn;C numerology in
the convex case.
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ON THE HÖLDER CONTINUOUS SUBSOLUTION PROBLEM
FOR THE COMPLEX MONGE–AMPÈRE EQUATION, II

NGOC CUONG NGUYEN

We solve the Dirichlet problem for the complex Monge–Ampère equation on a strictly pseudoconvex
domain with the right-hand side being a positive Borel measure which is dominated by the Monge–Ampère
measure of a Hölder continuous plurisubharmonic function. If the boundary data is continuous, then
the solution is continuous. If the boundary data is Hölder continuous, then the solution is also Hölder
continuous. In particular, the answer to a question of A. Zeriahi is always affirmative.

1. Introduction

The Hölder regularity of plurisubharmonic solutions to the complex Monge–Ampère equation in a strictly
pseudoconvex domain has a long history. First, Bedford and Taylor [1976] obtained Hölder continuous
solutions for the Dirichlet problem of the equation assuming the right-hand side is Hölder continuous.
Later, this result was extended to a larger class of measures by Guedj, Kołodziej and Zeriahi [Guedj
et al. 2008]; namely, the measures have L p density with respect to the Lebesgue measure with some
extra assumptions on the density near the boundary and the boundary data. The extra assumptions are
removed in other subsequent works [Baracco et al. 2016; Charabati 2015]. On the other hand, the complex
Monge–Ampère operator of a Hölder continuous plurisubharmonic function is not necessary absolutely
continuous with respect to the Lebesgue measure. Examples of such measures are Hausdorff measures
due to Charabati [2017], and the volume form of a smooth real hypersurface of codimension 1 by Pham
[2010]. (See also [Vu 2018] for a generalization to generic CR manifolds of arbitrary codimension.) So
far, these results give only sufficient conditions on the measures such that the solution to the equation is
Hölder continuous. In [Nguyen 2018] we gave a necessary and sufficient condition for a measure whose
Monge–Ampère potential is Hölder continuous. This result is partly inspired by a global result due to
Dinh and Nguyên [2014]. However, to use the result in [Nguyen 2018] we require the Hölder continuous
subsolution have zero value on the boundary and its total Monge–Ampère mass be finite, which cannot
be true for a general Hölder continuous plurisubharmonic function (Remark 1.1). In this paper we will
remove these restrictions.

There are several motivations to study the Hölder regularity of solutions. First, it is a basic question in
pluripotential theory to characterize measures for which the complex Monge–Ampère equation admits
bounded, continuous and Hölder continuous solutions [Kołodziej 2013]. Next, Dinh, Nguyên and Sibony
[Dinh et al. 2010] showed that the Monge–Ampère measure of a Hölder continuous plurisubharmonic
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function is locally moderate, which is a very useful generalization of Skoda’s theorem. We refer the
reader to [Dinh et al. 2010] for its application in complex dynamics. Their work leads to the interesting
open problem of whether the converse holds. The question in the toric setting has been studied recently
in [Coman et al. 2018, Theorem 4.4]. In this case the problem reduces to a real Monge–Ampère equation
on a convex polytope. Hölder continuity is also studied with regard to the extremal functions arising in
(pluri-)potential theory. In fact the Hölder continuity of the so-called relative extremal function uK and
the Siciak–Zahariuta extremal function VK [Siciak 1997; 2000] of a compact set K ⊂ Cn is proven to
be equivalent to a Markov-type inequality in multivariate interpolation theory [Baran and Bialas-Ciez
2014; Pawłucki and Pleśniak 1986] (see [Dinh et al. 2017; Vu 2018] for analogous results in the compact
Kähler manifold setting). We believe that our work will be useful to study the Hölder continuity of the
above extremal functions. For example we hope the techniques developed here can be used to simplify
the proof in [Vu 2018].

In this paper we continue our research, initiated in [Nguyen 2018], which focuses on the Dirichlet
problem for the complex Monge–Ampère equation in a bounded strictly pseudoconvex domain �⊂ Cn,
provided a Hölder continuous subsolution exists. Let ϕ ∈ PSH(�)∩C0,α(�) for some 0<α≤ 1. Assume
also that

ϕ = 0 on ∂�.

We consider the set

M(ϕ,�) := {µ is positive Borel measure : µ≤ (ddcϕ)n in �}.

We also say that ϕ is a Hölder continuous subsolution to measures in M(ϕ,�). Given ψ a Hölder
continuous function on the boundary ∂� and a measure µ in M(ϕ,�) we look for a real-valued
function u satisfying

u ∈ PSH∩L∞(�), (ddcu)n = µ in �, lim
z→x

u(z)= ψ(x) for x ∈ ∂�, (1-1)

and

u ∈ C0,α′(�) for some 0< α′ ≤ 1. (1-2)

The Dirichlet problem (1-1) was solved by Kołodziej [1995] provided that there exists a bounded
plurisubharmonic subsolution. In our setting, the Hölder continuity of ψ on ∂� and of ϕ on � are
necessary in order to solve the Dirichlet problem (1-1), (1-2). In [Nguyen 2018] this problem is solved
under the extra assumptions

ψ ≡ 0 and
∫
�

(ddcϕ)n <+∞.

We will see now that these assumptions are not generic.

Remark 1.1. Let ρ be a defining function for a smoothly bounded pseudoconvex domain �. Then, −|ρ|α

for 0< α < 1 is Hölder continuous on � and its Monge–Ampère measure is

αn
|ρ|n(α−1)(ddcρ)n + nαn(1−α)|ρ|n(α−1)−1dρ ∧ dcρ ∧ (ddcρ)n−1.
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Therefore, for a neighborhood Ux ⊂ Cn of a strictly pseudoconvex point x ∈ ∂�,∫
Ux∩�

[ddc(−|ρ|α)]n =+∞.

In particular,
∫
�
[ddc(−|ρ|α)]n = +∞. Furthermore, let v be a plurisubharmonic function on � and

Hölder continuous on � satisfying ∫
�

(ddcv)n <+∞.

A typical way to modify the value of v on ∂� is to add it to an envelope

h(z)= sup{w(z) : w ∈ PSH(�)∩C0(�) : w|∂� ≤−v}. (1-3)

However, we cannot guarantee that the function v + h has finite Monge–Ampère mass on �. Thus,
removing the above assumptions is desirable for applications.

The first main result of this paper is as follows.

Theorem A. Let ψ ∈ C0(∂�) and µ ∈M(ϕ,�). Then, there exists a unique solution u ∈ C0(�) to the
Dirichlet problem (1-1).

This theorem is closely related to a question of S. Kołodziej [Dinew et al. 2016, Question 14], where
he asked if one could prove Theorem A when the subsolution ϕ is only continuous? The question is still
open in general. Very recently in [Kołodziej and Nguyen 2018b] we showed that Theorem A still holds
true for the subsolution ϕ satisfying a Dini-type continuity condition.

The next result gives a necessary and sufficient condition under which a positive Borel measure admits
a Hölder continuous plurisubharmonic potential. In particular, the answer to a question of A. Zeriahi
[Dinew et al. 2016, Question 17] is affirmative.

Theorem B. Assume that ψ is Hölder continuous and µ ∈M(ϕ,�). Then, the Dirichlet problem (1-1),
(1-2) is solvable.

This theorem can be seen as the local version of [Demailly et al. 2014], where the compact Kähler
manifold setting was considered (see also [Kołodziej and Nguyen 2018a] for the Hermitian manifold case
and the notion of subsolution in the compact manifold setting there). Now, we can say that the complex
Monge–Ampère equation on a compact Kähler (Hermitian) manifold admits a Hölder continuous solution
if and only if it can be written locally as Monge–Ampère operators of Hölder continuous plurisubharmonic
functions. The result has been also generalized to the complex Hessian equation [Kołodziej and Nguyen
2019]. Given Hölder continuous plurisubharmonic functions u1, . . . , un in �, it follows by the theorem
that there exists a Hölder continuous plurisubharmonic function such that

(ddcu)n = ddcu1 ∧ · · · ∧ ddcun.

We also obtain the convexity of the set of Monge–Ampère measures of Hölder continuous plurisubharmonic
functions in �. Another important consequence is the so-called L p property given in Corollary C below.
In particular, our result covers the main findings in [Baracco et al. 2016, Charabati 2015; 2017], where
the L p property with respect to the Lebesgue measure was considered.
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Corollary C. Let µ ∈M(ϕ,�) and f ∈ L p(�, dµ), p > 1, a nonnegative function. Suppose that ϕ is
a Hölder continuous plurisubharmonic function on a neighborhood of �. Then, f µ ∈M(ϕ̃, �) for a
Hölder continuous plurisubharmonic function ϕ̃ in �.

2. Preliminaries

In this section we will recall results that are needed in the proofs of Theorems A and B and Corollary C.
If there is no other indication, then the notation in this section will be used for the rest of the paper.

Let � be a bounded strictly pseudoconvex domain in Cn. Let ρ ∈C2(�) be a strictly plurisubharmonic
defining function for �. Namely,

�= {ρ < 0} and dρ 6= 0 on ∂�. (2-1)

Let us denote by β = ddc
|z|2 the standard Kähler form in Cn. Without loss of generality we may assume

ddcρ ≥ β on �. (2-2)

Throughout the paper the Hölder continuous subsolution ϕ and the associated set of measures M(ϕ,�)

are defined as in the Introduction.
The following estimate will be very useful for us. For simplicity we write

‖ · ‖∞ := sup
�

| · | and ‖ · ‖p :=

∫
�

| · |
p dV2n, (2-3)

for the Lebesgue L p-norm for p ≥ 1.

Lemma 2.1 [Błocki 1993]. Let v1, . . . , vn, v, h ∈ PSH∩L∞(�) be such that vi ≤ 0 for i = 1, . . . , n, and
v ≤ h. Assume that limz→∂�[h(z)− v(z)] = 0. Then, for an integer 1≤ k ≤ n,∫

�

(h− v)k ddcv1 ∧ · · · ∧ ddcvn ≤ k! ‖v1‖∞ · · · ‖vk‖∞

∫
�

(ddcv)k ∧ ddcvk+1 ∧ · · · ∧ ddcvn. (2-4)

Consider also the Cegrell class

E0 =

{
v ∈ PSH∩L∞(�)

∣∣∣∣ lim
x→z

v(x)= 0 for all z ∈ ∂� and
∫
�

(ddcv)n <+∞

}
. (2-5)

The Cegrell inequality in this class reads:

Lemma 2.2 [Cegrell 2004]. Let v1, . . . , vn ∈ E0. Then,∫
�

ddcv1 ∧ · · · ∧ ddcvn ≤

(∫
�

(ddcv1)
n
)1/n

· · ·

(∫
�

(ddcvn)
n
)1/n

. (2-6)

We need also to work with a subclass of the Cegrell class:

E ′0 :=
{
v ∈ E0 :

∫
�

(ddcv)n ≤ 1
}
. (2-7)

The decay of the volume of sublevel sets of functions in the class E ′0 is equivalent to the volume-capacity
inequality. This inequality plays a crucial role in the capacity method due to Kołodziej to obtain the
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a priori and stability estimates for weak solutions of the complex Monge–Ampère equation. Here the
capacity is the Bedford–Taylor capacity and it is defined as follows. For a Borel set E ⊂�,

cap(E, �) := sup
{∫

E
(ddcw)n : w ∈ PSH(�), 0≤ w ≤ 1

}
. (2-8)

In what follows we shall write cap(E) instead of cap(E, �) for simplicity as the domain � is already
fixed.

3. Proof of Theorem A

In this section we shall prove the following result.

Proposition 3.1. Assume that µ ∈M(ϕ,�). Then, there exist uniform constants α0,C > 0 depending
only on ϕ,� such that, for every compact set K ⊂�,

µ(K )≤ C cap(K ) exp
(

−α0

[cap(K )]1/n

)
. (3-1)

Notice that under the assumption
∫
�
(ddcϕ)n <+∞ a similar inequality, without the factor cap(K ) on

the right-hand side, was proven in [Nguyen 2018].

Remark 3.2. Theorem A will follow immediately from the proposition and [Kołodziej 2005, Theorem 5.9]
as µ belongs to the class F(A, h) with h = eα0x and a uniform A > 0.

We will need the following two lemmas. The first one tells us how fast the Monge–Ampère mass of
(ddcϕ)n on large sublevel sets goes to infinity.

Lemma 3.3. Let v ∈ E ′0. Then, there exists a uniform constant C such that, for s > 0,∫
{v<−s}

(ddcϕ)n ≤
C‖ϕ‖n

∞

sn . (3-2)

This estimate should be compared with [Kołodziej 2005, Lemma 4.1]. If ϕ is a C2-smooth function
on �, then exponential decay as s tends to +∞ has been obtained there. Although in our case, we are
more interested in the situation when s tends to 0.

Proof. Set vs :=max{v,−s}. Then, vs = v on a neighborhood of ∂�. Moreover,

vs/2− v ≥
s
2

on {v <−s}b�. (3-3)

Therefore, ∫
{v<−s}

(ddcϕ)n ≤

(
2
s

)n ∫
�

(vs/2− v)
n(ddcϕ)n ≤

2nn!
sn ‖ϕ‖

n
∞

∫
�

(ddcv)n, (3-4)

where the second inequality follows from Lemma 2.1. �

On the other hand the volume with respect to the measure (ddcϕ)n of small sublevel sets of functions
in E ′0 decays exponentially fast to zero. The Hölder continuity of ϕ is crucially important to prove such
an estimate.
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Lemma 3.4. There exist uniform constants τ > 0 and C > 0 such that, for v ∈ E ′0 and s ≥ 2,∫
{v<−s}

(ddcϕ)n ≤ Ce−τ s . (3-5)

Proof. We follow ideas of Dinh, Nguyên and Sibony [Dinh et al. 2010]. With the same notation as in the
proof of Lemma 3.3 we have for s ≥ 2∫

{v<−s}
(ddcϕ)n ≤

2
s

∫
�

(vs/2− v)(ddcϕ)n ≤

∫
�

(vs/2− v)(ddcϕ)n. (3-6)

Let us define
Sk := (ddcϕ)k ∧βn−k,

where β = ddc
|z|2 and 0≤ k ≤ n is an integer. Our first goal is to show that there exist αk > 0 and C > 0

(independent of v and s) such that, for v ∈ E ′0 and s ≥ 1,∫
�

(vs − v)Sk ≤ C
(∫

�

(vs − v) dV2n

)αk

, (3-7)

where vs =max{v,−s}. Indeed, without loss of generality we may assume that

0< ‖vs − v‖1 <
1

100 . (3-8)

Otherwise, if ‖vs − v‖1 = 0, then the inequality trivially holds. If ‖vs − v‖1 ≥
1

100 , then we have, using
s ≥ 1, v ≤ 0, and Lemma 2.1, that∫

�

(vs − v)Sk =

∫
{v<−s}

(−s− v)Sk ≤

∫
�

(−v)k Sk ≤ C‖ϕ‖k
∞
. (3-9)

This implies the inequality.
Next, under the assumption (3-8) we prove the inequality by induction in k. The case k = 0 is obvious.

Assume that for every integer m ≤ k we have∫
�

(vs − v)Sm ≤ C
(∫

�

(vs − v) dV2n

)αm

. (3-10)

Then, we need to show that there exists 0< αk+1 ≤ 1 such that∫
�

(vs − v)Sk+1 ≤ C
(∫

�

(vs − v) dV2n

)αk+1

. (3-11)

For simplicity we write
S := (ddcϕ)k ∧βn−k−1. (3-12)

Let us still write ϕ to be a Hölder continuous extension of ϕ onto a neighborhood U of �. Consider
the convolution of ϕ with the standard smoothing kernel χ , i.e., χ ∈ C∞c (C

n) a radial function such that
χ(z)≥ 0, suppχ b B(0, 1) and

∫
Cn χ(z) dV2n = 1. Namely, for z ∈U and δ > 0 small,

ϕ ∗χt(z)=
∫

B(0,1)
ϕ(z− t z′)χ(z′) dV2n(z′)=

1
t2n

∫
B(z,t)

ϕ(z′)χ
(

z− z′

t

)
dV2n(z′). (3-13)
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Observe that

|ϕ ∗χt(z)−ϕ(z)| ≤
∫

B(0,1)
|ϕ(z− t z′)−ϕ(z)|χ(z′) dV2n(z′)≤ Ctα (3-14)

and ∣∣∣∣∂2ϕ ∗χt

∂z j∂ z̄k
(z)
∣∣∣∣≤ C‖ϕ‖∞

t2 . (3-15)

We first have∫
�

(vs − v) ddcϕ ∧ S ≤
∣∣∣∣∫
�

(vs − v) ddcϕ ∗χt ∧ S
∣∣∣∣+ ∣∣∣∣∫

�

(vs − v) ddc(ϕ ∗χt −ϕ)∧ S
∣∣∣∣

=: I1+ I2. (3-16)

It follows from (3-15) that

I1 ≤
C‖ϕ‖∞

t2

∫
�

(vs − v)S ∧β =
C‖ϕ‖∞

t2

∫
�

(vs − v)Sk . (3-17)

Hence,

I1 ≤
C‖ϕ‖∞

t2 ‖vs − v‖
αk
1 . (3-18)

We turn to the estimate of the second integral I2. By integration by parts∫
�

(vs − v)ddc(ϕ ∗χt −ϕ)∧ S =
∫
�

(ϕ ∗χt −ϕ)ddc(vs − v)∧ S

=

∫
{v<−s/2}

(ϕ ∗χt −ϕ) ddc(vs − v)∧ S, (3-19)

as vs = v on {v ≥−s}. Hence,

I2 ≤

∫
{v<−s/2}

|ϕ ∗χt −ϕ|(ddcv+ ddcvs)∧ S ≤ Ctα
∫
{v<−s/2}

(ddcv+ ddcvs)∧ S. (3-20)

For the first term of the integral on the right-hand side we have∫
{v<−s/2}

ddcv∧ S ≤
(

4
s

)k ∫
{v<−s/4}

(vs/4− v)
k ddcv∧ S

≤
C
sk

∫
�

(vs/4− v)
k ddcv∧ (ddcϕ)k ∧βn−k−1. (3-21)

Applying Lemma 2.1 we conclude that∫
�

(vs/4− v)
k ddcv∧ (ddcϕ)k ∧βn−k−1

≤ C‖ϕ‖k
∞

∫
�

(ddcv)k+1
∧βn−k−1. (3-22)

Using ddcρ ≥ β (see Section 2) and Cegrell’s inequality we get∫
�

(ddcv)k+1
∧βn−k−1

≤

∫
�

(ddcv)k+1
∧ (ddcρ)n−k−1

≤

(∫
�

(ddcv)n
)(k+1)/n(∫

�

(ddcρ)n
)(n−k−1)/n

. (3-23)
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Combining (3-21), (3-22) and (3-23) we have, for s ≥ 1,∫
{v<−s/2}

ddcv∧ S ≤ C‖ϕ‖k
∞
. (3-24)

Notice that vs ∈ E ′0. The same arguments as above imply that for s ≥ 1∫
{v<−s/2}

ddcvs ∧ S ≤ C‖ϕ‖k
∞
. (3-25)

Thus, altogether we have

I1+ I2 ≤
C‖ϕ‖∞

t2 ‖vs − v‖
αk
1 +C‖ϕ‖k

∞
tα. (3-26)

If we choose

t = ‖vs − v‖
αk/3
1 , αk+1 =

ααk

3
, (3-27)

then the proof of (3-7) is completed.
We now conclude the proof of the lemma. It follows from [Nguyen 2018, equation (2.26)] and

[Kołodziej 2005, Lemma 4.1] that ∫
�

(vs − v) dV2n ≤ Ce−τ0s,

where τ0 > 0 and C > 0 are uniform constants independent of v and s. Combining this with (3-6) and the
inequality (3-7) for k = n the lemma follows. �

Remark. The referee has suggested that the exponent 2 in the denominator of (3-15) can be improved.
Thus, the inequality (3-26) can be improved too, so the final choice of αn will be better.

We are ready to prove the main result of this section.

Proof of Proposition 3.1. Let us define ν := (ddcϕ)n. First, we show that for v ∈ E ′0 there exist uniform
constants α1,C > 0 such that

ν(v <−s)≤
Ce−α1s

sn for all s > 0. (3-28)

Indeed, there are two possibilities: either s ≥ 2 or s < 2. If s ≥ 2, then the inequality follows from
Lemma 3.4 as

sne−τ s/2
≤

(
2n
τ

)n

e−n.

(We can take α1 = τ/2). Otherwise, if 0< s < 2, we have e−α1s
≥C . Then, the desired inequality follows

from Lemma 3.3.
To complete the proof of the proposition we use an argument which is inspired by the proofs in [Åhag

et al. 2009]. Let K ⊂� be compact. Since ν is dominated by a Monge–Ampère measure of a bounded
plurisubharmonic function, it vanishes on pluripolar sets. Hence, we may assume that K is nonpluripolar.
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Let h∗K be the relative extremal function of K with respect to �. Since K ⊂ � is compact, it is well
known that

lim
ζ→∂�

h∗K (ζ )= 0.

By [Bedford and Taylor 1982, Proposition 5.3] we have

τ n
:= cap(K , �)=

∫
�

(ddch∗K )
n > 0.

Let 0< x < 1. Since the function w := h∗K /τ satisfies assumptions of the inequality (3-28), we have

ν(h∗K <−1+ x)= ν
(
w <
−1+ x
τ

)
≤ C

τ n

αn
1 (1− x)n

exp
(
−
α1(1− x)

τ

)
.

Letting x→ 0+, we obtain

ν(h∗K ≤−1)≤
C
αn

1
cap(K , �) exp

(
−α1

[cap(K , �)]1/n

)
. (3-29)

Since hK = h∗K outside a pluripolar set, we have

ν(K )≤ ν(hK =−1)= ν(h∗K =−1)≤ ν(h∗K ≤−1). (3-30)

We combine (3-29) and (3-30) to finish the proof. �

4. Proof of Theorem B

In this section we will prove the Hölder continuity of the solution obtained in Theorem A provided
furthermore that the boundary data ψ is Hölder continuous. Notice that the zero boundary values of the
subsolution ϕ are not essential. We can modify them by adding an appropriate envelope, similar to (4-5),
because no condition has been imposed on the total mass of the subsolution.

By Theorem A there exists a unique continuous solution to the Dirichlet problem (1-1), namely,
u ∈ PSH(�)∩C0(�) solving

(ddcu)n = µ, u(z)= ψ(z) for all z ∈ ∂�. (4-1)

We are going to show that u ∈ C0,α′(�) for some exponent 0< α′ ≤ 1.

Outline of the proof. Let us sketch the proof of Theorem B. Overall we follow the steps in the proof of
[Nguyen 2018], which in turns followed [Guedj et al. 2008]. Though, we need to consider the problem
on an increasing exhaustive sequence of relatively compact domains in �. Define for δ > 0 small

�δ := {z ∈� : dist(z, ∂�) > δ}, (4-2)

and for z ∈�δ we define

uδ(z) := sup
|ζ |≤δ

u(z+ ζ ), ûδ(z) :=
1

σ2nδ2n

∫
|ζ |≤δ

u(z+ ζ ) dV2n(ζ ), (4-3)

where σ2n is the volume of the unit ball.
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Then, we wish to show that
sup
�δ

(ûδ − u). δ$

for some 0<$ ≤ 1, where . means that the inequality holds up to an absolute constant. Thanks to the
Hölder continuity of the boundary data we can extend ûδ to ũ by a gluing process such that the new function
is plurisubharmonic on � and equal to u outside �ε for some (small) ε > δ. Moreover, we shall still have

sup
�δ

(ûδ − u)≤ sup
�

(ũ− u)+Cεα,

where α is the Hölder exponent of the boundary data ψ . Next, we shall show that∫
�ε

(ddcϕ)n .
1
εn .

This estimate enables us to invoke the results of [Nguyen 2018]. It gives a precise quantitative estimate
sup�(ũ− u) in terms of δ and ε. Finally, we can choose ε = δ$

′

with $ ′ > 0 so small that our desired
inequality holds.

We now proceed to give details of the argument. For the remaining part of the proof we fix a small
δ0 > 0 and consider two parameters δ, ε such that

0< δ ≤ ε < δ0. (4-4)

We may assume that ψ ∈C0,2α(∂�), where 0<α ≤ 1
2 (decreasing α if necessary) is the Hölder exponent

of the subsolution ϕ. Then, we define

h(z)= sup{v(z) ∈ PSH(�)∩C0(�) : h|∂� ≤ ψ}. (4-5)

It is well known [Bedford and Taylor 1976, Theorem 6.2] that h ∈ PSH(�)∩C0,α(�) and h = ψ on ∂�,
which is also the solution of the homogeneous Monge–Ampère equation in �. Hence, we may assume

ψ ∈ PSH(�)∩C0,α(�) and (ddcψ)n ≡ 0. (4-6)

Thanks to the comparison principle [Bedford and Taylor 1982] we get

ψ +ϕ ≤ u ≤ ψ on �. (4-7)

Lemma 4.1. We have, for z ∈�δ \�ε,

uδ(z)≤ u(z)+Cεα. (4-8)

In particular,
sup
�δ

(ûδ − u)≤ sup
�ε

(ûδ − u)+Cεα. (4-9)

Remark 4.2. It is important to keep in mind that the uniform constants C > 0 which appear in the lemma,
and many times below, are independent of δ and ε.

Proof. Fix a point z ∈�δ \�ε. Since u is continuous, there is ζ1 ∈ Cn with |ζ1| ≤ δ such that

uδ(z)= u(z+ ζ1). (4-10)
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Moreover, there exists ζ2 ∈ Cn with |ζ2| ≤ ε such that z+ ζ2 ∈ ∂�. Using this and (4-7) we get

uδ(z)− u(z)≤ ψ(z+ ζ1)− [ψ(z)+ϕ(z)]

= [ψ(z+ ζ1)−ψ(z)] + [ϕ(z)−ϕ(z+ ζ2)]

≤ C1|ζ1|
α
+C2|ζ2|

α, (4-11)

where C1 = ‖ψ‖C0,α , C2 = ‖ϕ‖C0,α . Since δ ≤ ε, we conclude the proof of the first part.
To prove the second part, we observe that u ≤ ûδ ≤ uδ. Therefore,

sup
�δ

(ûδ − u)≤ sup
�ε

(ûδ − u)+ sup
�δ\�ε

(uδ − u). (4-12)

Combining this with the first part we get the second part. �

The lemma above tells us that to obtain the Hölder continuity of the solution u it is enough to get the
estimate on the domain �ε for ε a small constant, which is comparable to a small positive power of δ. To
achieve our goal we will work on the domain �ε and keep track of the (negative) exponent of ε.

Recall that
�ε = {z ∈� : dist(z, ∂�) > ε}. (4-13)

We define
Dε := {ρ(z) <−ε}, (4-14)

where ρ is the defining function of � as in (2-1). The following lemma is very similar to Lemma 3.3.
The main observation is that the domains Dε and �ε are comparable.

Lemma 4.3. Let 1≤ k ≤ n be an integer. Let v ∈ PSH∩L∞(�). Then,∫
�ε

(ddcv)k ∧βn−k
≤

C‖v‖k
∞

εk , (4-15)

where C is independent of ε.

Proof. Observe that, from Hopf’s lemma,

|ρ(z)| ≥ c0 dist(z, ∂�) (4-16)

for a uniform constant 0< c0 ≤ 1. Therefore,

�ε ⊂ {ρ(z) <−c0ε}. (4-17)

Since max{ρ,−ε′/2}− ρ ≥ ε′/2 with ε′ = c0ε on the latter set, it follows that∫
�ε

(ddcv)k ∧βn−k
≤

(
2
ε′

)k ∫
�

(
max

{
ρ,−

ε′

2

}
− ρ

)k

(ddcv)k ∧βn−k

≤
C‖v‖k

∞

εk

∫
�

(ddcρ)k ∧βn−k, (4-18)

where we used Lemma 2.1 for the second inequality. The last integral is bounded by the C2-smoothness
of ρ on �. �
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We will now approximate the subsolution ϕ. Let us define

ϕε :=max
{
ϕ− ε,

Aρ
ε

}
, (4-19)

where A := 1+‖ϕ‖∞.

Lemma 4.4. We have ∫
�

(ddcϕε)
n
≤

C An

εn . (4-20)

Moreover,
1Dε
·µ≤ (ddcϕε)

n (4-21)

as two measures, where Dε is defined in (4-14).

Proof. To estimate the Monge–Ampère mass of ϕε we use [Bedford and Taylor 1982, Corollary 4.3],
which is a consequence of the comparison principle. Since Aρ/ε ≤ ϕε ≤ 0 and the functions have zero
values on the boundary, ∫

�

(ddcϕε)
n
≤

An

εn

∫
�

(ddcρ)n. (4-22)

The last integral is finite as ρ is C2 on a neighborhood of the closure of �. Furthermore, since ϕε(z)=
ϕ(z)− ε on Dε = {ρ <−ε} when 0< ε < 1, it is clear that

1Dε
·µ≤ (ddcϕε)

n. �

Remark 4.5. Using the same argument, we also get that for an integer 1≤ k ≤ n∫
�

(ddcϕε)
k
∧βn−k

≤
C Ak

εk . (4-23)

We obtain now the volume-capacity inequality for the approximation sequence.

Corollary 4.6. There exist uniform constants α1 > 0 and C > 0 which are independent of ε such that, for
every compact set K ⊂�, ∫

K
(ddcϕε)

n
≤

C
εn · cap(K ) · exp

(
−α1

[cap(K )]1/n

)
. (4-24)

In particular, for a fixed τ > 0, there is a constant C(τ ) > 0 such that, for every compact set K ⊂�,∫
K
(ddcϕε)

n
≤

C(τ )
εn [cap(K )]1+τ . (4-25)

Proof. This is the analogue of Proposition 3.1 with ϕ replaced by ϕε, and thus the proof is the same as
that of the proposition. Here we need to take into account three facts:

‖ϕε‖∞ ≤
C
ε

and ‖ϕε‖C0,α(�) ≤
C
ε
, (4-26)

and, for an integer 1≤ k ≤ n (Remark 4.5),∫
�

(ddcϕε)
k
∧βn−k

≤
C
εk . (4-27)

This explains why we need an extra factor C/εn on the right-hand side of the inequality. �
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Next, we have the following stability estimate for the Monge–Ampère equation similar to [Guedj
et al. 2008, Theorem 1.1]. However, it also takes into account the possibility of infinite total mass of the
measure on the right-hand side.

Proposition 4.7. Let u be the solution of (4-1) and �ε be defined by (4-13). Let v ∈ PSH∩L∞(�) be
such that v = u on � \�ε. Then, there is 0< α2 ≤ 1 such that

sup
�

(v− u)≤
C
εn

(∫
�

max{v− u, 0} dµ
)α2

. (4-28)

Proof. Without loss of generality we may assume that sup�(v− u) > 0. Set

s0 := inf
�
(u− v). (4-29)

We know that for 0< s < |s0|

U (s) := {u < v+ s0+ s}b�ε. (4-30)

Lemma 4.8. Fix τ > 0. Suppose 0< s, t < |s0|/2. Then,

tn cap(U (s))≤
C(τ )
εn [cap(U (s+ t))]1+τ . (4-31)

Proof of Lemma 4.8. Let 0≤w≤ 1 be a plurisubharmonic function in�. We have the chain of inequalities

tn
∫

U (s)
(ddcw)n =

∫
{u<v+s0+s}

[ddc(tw)]n

≤

∫
{u<v+s0+s+tw}

[ddc(v+ tw)]n ≤
∫
{u<v+s0+s+tw}

(ddcu)n,
(4-32)

where we used the comparison principle [Bedford and Taylor 1982, Theorem 4.1] for the last inequality.
Since {u < v+ s0+ s+ tw} ⊂U (s+ t) and w is arbitrary, we get

tn cap(U (s))≤
∫

U (s+t)
dµ. (4-33)

If we define ε′ := c0ε, where c0 is the constant in (4-16), then

1Dε′
· dµ≤ (ddcϕε′)

n

as two measures. Since U (s+ t)⊂�ε ⊂ Dε′ , it follows that∫
U (s+t)

dµ≤
∫

U (s+t)
(ddcϕε′)

n
≤

C(τ )
(c0ε)n

[cap(U (s+ t))]1+τ , (4-34)

where the last inequality follows from Corollary 4.6. The proof of the lemma is complete. �

Now together with Lemma 4.8, the rest of the proof of the proposition is the same as in [Guedj et al.
2008, Theorem 1.1] (see also [Kołodziej and Nguyen 2016, Theorem 3.11]). �

The following result is a variation of Lemma 2.7 in [Nguyen 2018], where we considered the Hölder
continuity of a measure ν on E ′0, though the situation now is different as ν(�) is no longer finite.
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Theorem 4.9. Let u be the solution of (4-1) and �ε be defined by (4-13). Let v ∈ PSH∩L∞(�) be such
that v = u on � \�ε. Then, there exists 0< α3 ≤ 1 such that∫

�

|v− u| dµ≤
C
εn+1

(∫
�

|v− u| dV2n

)α3

. (4-35)

Proof. This is a variation of the inequality (3-7) with

Sk,ε := (ddcϕε)
k
∧βn−k, (4-36)

where ϕε =max{ϕ− ε, Aρ/ε} and 0≤ k ≤ n is an integer. Since µ≤ Sn,ε on �ε, it is enough to show
that there is 0< τ ≤ 1 satisfying ∫

�

(v− u)Sn,ε ≤
C
εn+1 ‖v− u‖τ1 (4-37)

for v ≥ u on �. (In the general case we use the identity

|v− u| = (max{v, u}− u)+ (max{v, u}− v)

and apply twice the inequality (4-37) to get the theorem.)
Now we can repeat the inductive arguments of the proof of (3-7) with v, u and ϕε in the places of

vs, v and ϕ, respectively. However, there are differences as follows. First, v, u are no longer in E ′0.
Second, if ϕ is extended as in the proof of Lemma 3.4, then ϕε =max{ϕ− ε, Aρ/ε} is also defined on
the neighborhood U of �, and

‖ϕε‖C0,α(U ) ≤
C
ε
.

Taking into account above differences, to pass from the k-th step to the (k+1)-th step we need the
following inequality, corresponding to (3-16) (with Sε := (ddcϕε)

k
∧βn−k−1):∫

�

(v− u) ddcϕε ∧ Sε ≤
∣∣∣∣∫
�

(v− u) ddcϕε ∗χt ∧ Sε

∣∣∣∣+ ∣∣∣∣∫
�

(v− u) ddc(ϕε ∗χt −ϕε)∧ Sε

∣∣∣∣
=: I1,ε + I2,ε. (4-38)

Since ∣∣∣∣∂2ϕε ∗χt

∂z j∂ z̄k
(z)
∣∣∣∣≤ C‖ϕ‖∞

εt2 , (4-39)

and by the induction hypothesis at the k-th step, there exists 0< τk ≤ 1 such that∫
�

(v− u)Sε ∧β ≤
C
εk+1 ‖v− u‖τk

1 ,

we conclude that
I1,ε ≤

C‖ϕ‖∞
ε t2

∫
�

(v− u)Sε ∧β ≤
C‖ϕ‖∞
εk+2 t2 ‖v− u‖τk

1 . (4-40)

Similarly to (3-19), by integration by parts, u = v on � \�ε, and

|ϕε ∗χt(z)−ϕε(z)| ≤
Ctα

ε
,
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it follows that

I2,ε ≤
Ctα

ε

∫
�ε

(ddcv+ ddcu)∧ Sε. (4-41)

At this point as u, v do not belong to E ′0 we need to use a different argument to bound I2,ε. Namely,
similarly to Lemma 4.3, we have∫

�ε

(ddcu+ ddcv)∧ Sε ≤
C‖u+ v‖∞(1+‖ϕ‖∞)k

εk+1 . (4-42)

Indeed, we first have∫
�ε

ddc(u+ v)∧ (ddcϕε)
k
∧βn−k−1

≤
2
ε′

∫
�

(
max

{
ρ,−

ε′

2

}
− ρ

)
∧ ddc(u+ v)∧ (ddcϕε)

k
∧βn−k−1

≤
C
ε
‖u+ v‖∞

∫
�

(ddcρ)∧ (ddcϕε)
k
∧βn−k−1,

where ε′ = c0ε with c0 defined by (4-16). The desired inequality (4-42) follows from Remark 4.5. Now,
combining (4-41) and (4-42) we get

I2,ε ≤
Ctα

εk+2 . (4-43)

Next, it is easy to see (from Lemma 4.4) that∫
�

(v− u)Sn ≤
C‖u‖∞(1+‖ϕ‖∞)n

εn .

Therefore, we can assume 0< ‖v− u‖1 < 0.01. Thanks to (4-40) and (4-43) we have∫
�

(v− u) ddcϕε ∧ Sε ≤
C

εk+2 t2 ‖v− u‖τk
1 +

Ctα

εk+2 .

If we choose t = ‖v− u‖τk/3
1 , τk+1 = ατk/3, then∫

�

(v− u)Sε ∧ ddcϕε ≤
C
εk+2 ‖v− u‖τk+1

1 .

Thus, the induction argument is completed, and the theorem follows. �

The last ingredient to prove Theorem B was proved first in [Baracco et al. 2016] (see also [Nguyen
2018, Lemma 2.12]). Here, the estimate is sharper and the proof is simpler too.

Lemma 4.10. For δ > 0 small we have ∫
�δ

|ûδ − u| dV2n ≤ Cδ. (4-44)

Proof. First, we know from the classical Jensen formula (see, e.g., [Guedj et al. 2008, Lemma 4.3]) that∫
�2δ

|ûδ − u| ≤ Cδ2
∫
�δ

1u(z). (4-45)
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Again, it follows from Lemma 4.3 applied for k = 1 and δ = ε, that∫
�δ

1u(z)≤
C
δ
. (4-46)

Therefore, ∫
�δ

|ûδ − u| dV2n ≤

∫
�2δ

|ûδ − u| dV2n +‖u‖∞

∫
�δ\�2δ

dV2n ≤ Cδ. (4-47)

This is the required inequality. �

We are ready to prove the Hölder continuity of the solution.

End of proof of Theorem B. Let us fix δ such that 0< δ < δ0 small and let ε be such that δ ≤ ε < δ0, which
is to be determined later. Thanks to Lemma 4.1 and ûδ ≤ uδ we have ûδ −Cεα ≤ u on ∂�ε. Therefore,
the function

ũ :=
{

max{ûδ −Cεα, u} on �ε,
u on � \�ε

(4-48)

belongs to PSH(�)∩C0(�). Notice that ũ ≥ u in �, and

ũ = u on � \�ε. (4-49)

Again, by the second part of Lemma 4.1 we have

sup
�δ

(ûδ − u)≤ sup
�ε

(ûδ − u)+Cεα

≤ sup
�

(ũ− u)+Cεα +Cεα. (4-50)

By the stability estimate (Proposition 4.7) there exists 0< α2 ≤ 1 such that

sup
�

(ũ− u)≤
C
εn

(∫
�

max{ũ− u, 0} dµ
)α2

≤
C
εn

(∫
�

|ũ− u| dµ
)α2

, (4-51)

where we used the fact that ũ = u outside �ε. Using Theorem 4.9, there is 0< α3 ≤ 1 such that

sup
�

(ũ− u)≤
C

εn+(n+1)α2

(∫
�

|ũ− u| dV2n

)α2α3

≤
C

ε2n+1

(∫
�δ

|ûδ − u| dV2n

)α2α3

, (4-52)

where we used 0≤ ũ− u ≤ 1�ε · (ûδ − u) and �ε ⊂�δ for the second inequality. It follows from (4-50),
(4-52), and Lemma 4.10 that

sup
�δ

(ûδ − u)≤ Cεα +
Cδα2α3

ε2n+1 . (4-53)

Now, we choose α4 = αα2α3/(2n+ 1+α) and

ε = δα2α3/(2n+1+α).
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Then, sup�δ (ûδ−u)≤Cδα4. Finally, thanks to [Guedj et al. 2008, Lemma 4.2] we infer that sup�δ (uδ−u)≤
Cδα4. The proof of the theorem is finished. �

Remark 4.11. In the above proof the Hölder exponent of the solution u is α′= α4= αα2α3/(2n+1+α),
where we can take 0<α2< 1/(n+1) and α3=α

n/3n by [Guedj et al. 2008] and Theorem 4.9 respectively.
In our opinion it is far from being optimal. If we assume that the subsolution ϕ is merely continuous,
then we do not know if the inequality (4-51) holds true. Therefore, it seems to be hard to improve the
proof above to get the answer for the subsolution problem in the continuous category.

5. Proof of Corollary C

Let µ ∈M(ϕ,�) and 0≤ f ∈ L p(�, dµ) with p > 1. We wish to show that there exists ϕ̃ ∈ PSH(�)∩
C0,α̃(�), with 0< α̃ ≤ 1, such that

f dµ ∈M(ϕ̃, �). (5-1)

The proof of the corollary is similar to that of Theorem B with the aid of the following two lemmas.

Lemma 5.1. Fix a constant τ > 0. Then, there exists a uniform constant C(τ ) such that, for every compact
set K ⊂�, ∫

K
f dµ≤ C(τ )[cap(K )]1+τ . (5-2)

Proof. Hölder’s inequality and Proposition 3.1 give us∫
K

f dµ≤ ‖ f ‖L p(�,dµ)[µ(K )](p−1)/p
≤ C

[
cap(K ) · exp

(
−α0

[cap(K )]1/n

)](p−1)/p

. (5-3)

Let 0< a, b, c < 1 be fixed. The following elementary inequality holds for x > 0:

xa exp
(
−

c
xb

)
≤ C(τ )x1+τ ,

where C(τ )= C(τ, a, b, c) depends only on τ, a, b, c. Thus, the desired inequality follows. �

Thanks to the lemma and [Kołodziej 2005, Theorem 5.9] we can solve the Monge–Ampère equation

u ∈ PSH(�)∩C0(�), (ddcu)n = f dµ, u|∂� = 0. (5-4)

Moreover, the above lemma will enable us to have the stability estimate (Proposition 4.7). The next
lemma is also a consequence of the generalized Hölder inequality which was proved in [Nguyen 2018,
Corollary 2.14].

Lemma 5.2. Let v ∈ PSH(�)∩C0(�) be such that v ≥ u in � and v = u near ∂�. Then, there exist
uniform constants C > 0 and 0< α̃3 < 1 such that∫

�

(v− u) f dµ≤ C‖v− u‖α̃3
L1(dµ). (5-5)
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Next, we use the extendability assumption of ϕ to get a result similar to Lemma 4.1 in the current
setting. Namely, let �̃ be a strictly pseudoconvex neighborhood of � such that ϕ ∈ PSH(�̃) and Hölder
continuous on the closure of �̃. Thanks to the results in [Nguyen 2018] there exists v ∈ PSH(�̃) and
Hölder continuous in �̃ satisfying

(ddcv)n = 1� f dµ in �̃, v = 0 on ∂�̃.

Consider h to be the maximal pluriharmonic extension into � of (−v)|∂� which is Hölder continuous on
∂� (see (1-3)). So h is also Hölder continuous on �. Then, by the comparison principle,

v+ h ≤ u ≤ 0 on �.

From this we easily deduce the desired estimate near the boundary for u.
Now the rest of the proof goes exactly as in the proof of Theorem B. Namely, the inequality (4-51)

holds for the measure f dµ, next use Lemma 5.2 and Theorem 4.9 to get the inequality (4-52). Then
we get the Hölder continuity of u. Notice that the Hölder exponent is worse by a factor of α̃3. Thus,
f dµ ∈M(u, �).
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THE CALDERÓN PROBLEM FOR
THE FRACTIONAL SCHRÖDINGER EQUATION

TUHIN GHOSH, MIKKO SALO AND GUNTHER UHLMANN

We show global uniqueness in an inverse problem for the fractional Schrödinger equation: an unknown
potential in a bounded domain is uniquely determined by exterior measurements of solutions. We also
show global uniqueness in the partial data problem where measurements are taken in arbitrary open,
possibly disjoint, subsets of the exterior. The results apply in any dimension ≥ 1 and are based on a strong
approximation property of the fractional equation that extends earlier work. This special feature of the
nonlocal equation renders the analysis of related inverse problems radically different from the traditional
Calderón problem.

1. Introduction

In this article we consider a nonlocal analogue of the inverse conductivity problem posed in [Calderón
1980]. In the standard Calderón problem, the objective is to determine the electrical conductivity of a
medium from voltage and current measurements on its boundary. This problem is the mathematical model
of electrical resistivity/impedance tomography in seismic, medical and industrial imaging. It serves as a
model case for various inverse problems for elliptic equations, and has a rich mathematical theory with
connections to many other questions. We refer to the survey [Uhlmann 2014] for more details.

In mathematical terms, if � ⊂ Rn is a bounded open set with Lipschitz boundary (the medium of
interest), after a standard reduction one often considers the Dirichlet problem for the Schrödinger equation

(−1+ q)u = 0 in �, u|∂� = f,

where q ∈ L∞(�) and 0 is not a Dirichlet eigenvalue for −1+ q in �. The boundary measurements are
given by the Dirichlet-to-Neumann map (DN map)

3q : H 1/2(∂�)→ H−1/2(∂�),

defined weakly in terms of the bilinear form for the equation. Here and below, we denote the standard
L2 based Sobolev spaces by H s.

For more regular boundaries and functions f , the DN map is given by the normal derivative 3q f =
∂νu|∂�, where u is the solution with boundary value f . The inverse problem is to determine the potential q
in � from the knowledge of the DN map 3q .

MSC2010: primary 26A33, 35J10, 35R30; secondary 35J70.
Keywords: inverse problem, Calderón problem, fractional Laplacian, approximation property.
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We will consider an inverse problem for a nonlocal analogue of the Schrödinger equation. In fact, our
equation will be the fractional Schrödinger equation ((−1)s + q)u = 0 in �, where 0< s < 1. Here the
fractional Laplacian is defined by

(−1)su =F−1
{|ξ |2s û(ξ)}, u ∈ H s(Rn),

and û =Fu is the Fourier transform of u. This operator is nonlocal (it does not preserve the support
of u), and one natural way to set up the Dirichlet problem is to look for solutions u ∈ H s(Rn) satisfying

((−1)s + q)u = 0 in �, u|�e = f,

where f ∈ H s(�e), and �e is the exterior domain

�e = Rn
\�.

We recall basic facts about weak solutions in Section 2. In particular, there is a countable set of Dirichlet
eigenvalues, and we will assume that q is such that 0 is not an eigenvalue; that is,

if u ∈ H s(Rn) solves ((−1)s + q)u = 0 in � and u|�e = 0, then u ≡ 0. (1-1)

This holds, e.g., if q ≥ 0. Then there is a unique solution u ∈ H s(Rn) for any f ∈ H s(�e), and one may
define an analogue of the DN map,

3q : H s(�e)→ H s(�e)
∗,

that maps f to a nonlocal analogue of the Neumann boundary value of the solution u. (This discussion
assumes that � is a bounded Lipschitz domain; see Section 2 for the case of general bounded open sets.)

We will define 3q in Section 2 via the bilinear form associated with the fractional Dirichlet problem,
which will be sufficient for the proof of Theorem 1.1. There are other nonlocal Neumann operators that
one could use, but by Theorem 1.1 any reasonable measurement operator would be determined by 3q ;
we will verify this directly for the operator Ns in [Dipierro et al. 2017a]. Again, if � has C∞ boundary
and q and f are more regular, the DN map is more explicit and is given by

3q : H s+β(�e)→ H−s+β(�e), 3q f = (−1)su|�e ,

where u is the solution of ((−1)s + q)u = 0 in � with exterior value f , and max
{
0, s − 1

2

}
< β < 1

2
(such a β exists since 0< s < 1). Heuristically, given an open set W ⊂�e, one can interpret 3q f |W as
measuring the cost required to maintain the exterior value f in W. For more details on these facts (which
will not be needed for the proof of Theorem 1.1), we refer to the Appendix.

The following theorem is the main result in this article. It solves the fractional Schrödinger inverse
problem in any dimension n ≥ 1, and also the partial data problem with exterior Dirichlet and Neumann
measurements in arbitrary open (possibly disjoint) sets W1,W2 ⊂�e.

Theorem 1.1. Let �⊂ Rn , n ≥ 1, be bounded open, let 0< s < 1, and let q1, q2 ∈ L∞(�) satisfy (1-1).
Let also W1,W2 ⊂�e be open. If the DN maps for the equations ((−1)s + qj )u = 0 in � satisfy

3q1 f |W2 =3q2 f |W2 for any f ∈ C∞c (W1),
then q1 = q2 in �.
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For the usual Schrödinger equation (−1+q)u= 0 and the related DN map3q on the full boundary ∂�,
the corresponding result is due to [Sylvester and Uhlmann 1987] when n ≥ 3 and to [Bukhgeim 2008]
when n = 2 for slightly more regular potentials; for the case of L p potentials see [Blåsten et al. 2015]
when n = 2 and [Chanillo 1990; Nachman 1992] when n ≥ 3. The partial data problem of determining q
from the knowledge of 3q f |0 for any f supported in 0, when 0 is an arbitrary open subset of ∂�, was
solved in [Imanuvilov et al. 2010] when n= 2 for qj ∈C2,α. The corresponding result in dimensions n≥ 3
is open, but there are several partial results including [Kenig et al. 2007; Isakov 2007; Kenig and Salo
2013]. The case of measurements on disjoint sets is even more difficult, and counterexamples may appear
[Imanuvilov et al. 2011; Daudé et al. 2019a; 2019b]. See the surveys [Imanuvilov and Yamamoto 2013;
Kenig and Salo 2014] for further references.

The proof of Theorem 1.1 begins by showing that if the two DN maps are equal, then (exactly as in
the usual Schrödinger case) one has the integral identity∫

�

(q1− q2)u1u2 dx = 0

for any u j ∈ H s(Rn) that solve ((−1)s+qj )u j = 0 in � and satisfy supp(u j )⊂�∪W j . For the standard
Schrödinger equation, one then typically uses special complex geometrical optics solutions u j to show
that the products {u1u2} form a complete set in L1(�). See [Uhlmann 2014] for an overview.

However, solutions of the fractional Schrödinger equation are much less rigid than those of the usual
Schrödinger equation. The fractional equation enjoys stronger uniqueness and approximation properties,
as demonstrated by the following theorems:

Theorem 1.2. If 0 < s < 1, if u ∈ H−r (Rn) for some r ∈ R, and if both u and (−1)su vanish in some
open set, then u ≡ 0.

Theorem 1.3. Let � ⊂ Rn be a bounded open set, and let �1 ⊂ Rn be any open set with � ⊂ �1 and
�1 \� 6=∅:

(a) If q ∈ L∞(�) satisfies (1-1), then any f ∈ L2(�) can be approximated arbitrarily well in L2(�) by
functions u|� where u ∈ H s(Rn) satisfy

((−1)s + q)u = 0 in �, supp(u)⊂�1.

(b) If � has C∞ boundary, and if q ∈ C∞c (�) satisfies (1-1), then any f ∈ C∞(�) can be approximated
arbitrarily well in C∞(�) by functions d(x)−su|� where u ∈ H s(Rn) satisfy

((−1)s + q)u = 0 in �, supp(u)⊂�1.

(Here d is any function in C∞(�) with d(x)= dist(x, ∂�) near � and d > 0 in �. Also, vj → v in
C∞(�) means that vj → v in Ck(�) for all k ≥ 0.)

Note that both of these properties fail for the usual Laplacian: if u ∈ C∞c (R
n) then both u and 1u

vanish in a large set but u can be nontrivial, and the set of harmonic functions in L2(�) is a closed
subspace of L2(�) which is smaller than L2(�).



458 TUHIN GHOSH, MIKKO SALO AND GUNTHER UHLMANN

Theorem 1.2 is classical [Riesz 1938] at least with stronger conditions on u, and even the strong
unique continuation principle holds in this context [Fall and Felli 2014; Rüland 2015; Yu 2017]. For
later applications we will give a robust proof using the Carleman estimates from [Rüland 2015] and the
Caffarelli–Silvestre extension [2007].

The following version of Theorem 1.3 has been proved in [Dipierro et al. 2017b]; see also [Dipierro
et al. 2019]: given f ∈Ck(B1) and ε > 0, there is u ∈ H s(Rn) with (−1)su = 0 in B1 and supp(u)⊂ BR

for some possibly large R = Rε, f > 1, so that

‖u− f ‖Ck(B1)
< ε.

Theorem 1.3 improves this by reducing the approximation property to the uniqueness property, Theorem 1.2,
using a Runge-type argument [Lax 1956; Malgrange 1956] and regularity for fractional Dirichlet problems
[Hörmander 1965; Grubb 2015]. In particular, this implies that the result of [Dipierro et al. 2017b] is
valid for any fixed R> 1. The strong approximation property replaces the method of complex geometrical
optics in solving the inverse problem for the fractional Schrödinger equation.

The study of fractional and nonlocal operators is currently an active research field and the related
literature is substantial. We only mention that operators of this type arise in problems involving anomalous
diffusion and random processes with jumps, and they have applications in probability theory, physics,
finance, and biology. See [Bucur and Valdinoci 2016; Ros-Oton 2016] for further information and
references.

The mathematical study of inverse problems for fractional equations goes back at least to [Cheng et al.
2009]. By now there are a number of results, mostly for time-fractional models and including many
numerical works. Here is an example of the rigorous results that are available [Sakamoto and Yamamoto
2011]: in the time-fractional heat equation

∂αt u−1u = 0 in �× (0, T ), u|∂�×(0,T ) = 0,

where 0< α < 1 and ∂αt is the Caputo derivative, u(0) is determined by u(T ) in a mildly ill-posed way
(for α = 1 this problem is severely ill-posed). In general, nonlocality may influence the nature of the
inverse problem but there are several aspects to be taken into account. We refer to [Jin and Rundell 2015]
for a detailed discussion and many further references. We are not aware of any previous rigorous works
on multidimensional inverse problems for space-fractional equations.

Finally, we note that Theorem 1.1 is a global uniqueness result in the inverse problem for the fractional
Schrödinger equation, both with full and partial data. This provides a starting point for further work
on inverse problems for fractional equations and nonlocal models. In fact, after this article was first
submitted as a preprint, several works that build upon the ideas introduced here have appeared. These
include results for low regularity and stability [Rüland and Salo 2018; 2019a], matrix coefficients [Ghosh
et al. 2017], semilinear equations [Lai and Lin 2019], reconstruction and shape detection [Harrach and
Lin 2017; Cao et al. 2019; Ghosh et al. 2018], and quantitative Runge approximation [Rüland and Salo
2019b; 2020]. See also the survey [Salo 2017].

This paper is organized as follows. Section 1 is the introduction. In Section 2 we review weak solutions
of fractional Dirichlet problems, and give a definition of the DN map. In Sections 3 and 4 we prove
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Theorems 1.2 and 1.3(a). The solution of the inverse problem, Theorem 1.1, is given in Section 5. In
Section 6 we invoke the regularity theory for fractional Dirichlet problems in [Grubb 2015] and prove
Theorem 1.3(b). Further properties and alternative descriptions of the DN map may be found in the
Appendix.

2. Fractional Laplacian

In this section we review some basic facts about Dirichlet problems for the fractional Laplacian; see, e.g.,
[Hoh and Jacob 1996; Felsinger et al. 2015; Grubb 2015; Ros-Oton 2016]. For simplicity, we will assume
most functions to be real-valued in this paper.

2A. Sobolev spaces. We first establish the notation for Sobolev-type spaces. We write H s(Rn) =

W s,2(Rn) for the standard L2 based Sobolev space with norm

‖u‖H s(Rn) = ‖〈D〉su‖L2(Rn),

where 〈ξ〉 = (1+ |ξ |2)1/2, and the notation m(D)u = F−1
{m(ξ)û(ξ)} is used for Fourier multipliers

when m ∈ C∞(Rn) is polynomially bounded together with its derivatives. Our notation for the Fourier
transform is

û(ξ)=Fu(ξ)=
∫

Rn
e−i x ·ξu(x) dx .

If U ⊂Rn is an open set (not necessarily bounded), define the spaces (we follow the notation of [McLean
2000])

H s(U )= {u|U : u ∈ H s(Rn)},

H̃ s(U )= closure of C∞c (U ) in H s(Rn),

H s
0 (U )= closure of C∞c (U ) in H s(U ).

We equip H s(U ) with the quotient norm ‖u‖H s(U )= inf{‖w‖H s :w ∈ H s(Rn), w|U = u}. Also, if F ⊂Rn

is a closed set, we define

H s
F = H s

F (R
n)= {u ∈ H s(Rn) : supp(u)⊂ F}.

We say that an open set U ⊂ Rn is a Lipschitz domain if its boundary ∂U is compact and if locally
near each boundary point U can be represented as the set above the graph of a Lipschitz function. Thus
U could be a bounded Lipschitz domain, or U could be Rn

\�, where � is a bounded Lipschitz domain.
If U is a Lipschitz domain, then (with natural identifications, see [McLean 2000; Triebel 2002])

H̃ s(U )= H s
U
(Rn), s ∈ R,

H s
U
(Rn)∗ = H−s(U ) and H s(U )∗ = H−s

U
(Rn), s ∈ R,

H s(U )= H s
U
(Rn)= H s

0 (U ), −
1
2 < s < 1

2 .

2B. Fractional Laplacian. Let s >−n/2 and consider the fractional Laplacian in Rn ,

(−1)su =F−1
{|ξ |2s û(ξ)}, u ∈S ,
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where S denotes Schwartz space in Rn. If ψ ∈ C∞c (R
n) with ψ = 1 near 0, writing |ξ |2s

= ψ(ξ)|ξ |2s
+

(1−ψ(ξ))|ξ |2s and using the assumption s >−n/2 shows that |ξ |2s is the sum of an L1 function and a
smooth function whose derivatives grow at most polynomially. Thus (−1)s for s >−n/2 is a continuous
map from S to L∞.

There are many other definitions of the fractional Laplacian [Kwaśnicki 2017]. For instance, if 0< s<1,
it is given by the principal value integral

(−1)su(x)= cn,s p.v.
∫

Rn

u(x)− u(y)
|x − y|n+2s dy.

We next extend (−1)s to act on larger spaces. In particular, if s ≥ 0, then (−1)s will be well-defined on
H r (Rn) for any r ∈ R.

Lemma 2.1. If s ≥ 0, the fractional Laplacian extends as a bounded map

(−1)s : H r (Rn)→ H r−2s(Rn)

whenever r ∈ R. If −n/2< s < 0, the fractional Laplacian (−1)s is the Riesz potential

(−1)su = I2|s|u =
cn,s

| · |n−2|s| ∗ u

and it extends as a bounded map

(−1)s : L p(Rn)→ Lnp/(n−2|s|p)(Rn), 1< p <
n

2|s|
.

Proof. If u ∈S , then
‖(−1)su‖H r−2s = ‖F−1

{m(ξ)〈ξ〉r û(ξ)}‖L2,

where m(ξ)=〈ξ〉−2s
|ξ |2s is bounded and hence a Fourier multiplier on L2, showing that ‖(−1)su‖H r−2s ≤

C‖u‖H r . The second statement is the Hardy–Littlewood–Sobolev inequality [Hörmander 1983, Theo-
rem 4.5.3]. �

Remark 2.2. If s ≥ 0, the fractional Laplacian also extends as a bounded map

(−1)s :W r,p(Rn)→W r−2s,p(Rn),

(−1)s : Cr
∗
(Rn)→ Cr−2s

∗
(Rn)

whenever r ∈ R and 1< p <∞, where W r,p are the usual L p Sobolev (Bessel potential) spaces and Cr
∗

are the Zygmund spaces; see [Taylor 1996]. An even larger domain for (−1)s is obtained as in [Silvestre
2007] by considering the test function space

Ss = {u ∈ C∞(Rn) : 〈 · 〉n+2s∂αu ∈ L∞(Rn) for any multi-index α},

equipped with the topology induced by the seminorms ‖〈 · 〉n+2s∂αu‖L∞ . Then (−1)s is continuous from
S to Ss and extends to the dual

S ′s =
{
u ∈S ′(Rn) : u =

∑
|α|≤m ∂

αuα for some m ≥ 0 and uα ∈ 〈 · 〉n+2a L∞(Rn)
}
.

However, in this article it suffices to work with the spaces H s(Rn).
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2C. Dirichlet problem. Next we restrict our attention to nonlocal operators

(−1)s, 0< s < 1,

and consider the solvability of the Dirichlet problem

((−1)s + q)u = F in �,

u = f in �e,

where, for a bounded open set �⊂ Rn, we denote the exterior domain by �e = Rn
\�. Here F may be a

function in �, or more generally an element of (H̃ s(�))∗. We also denote the restriction to � by

r�u = u|�,

and if U ⊂ Rn is open and u, v ∈ L2(U ) we write

(u, v)U =
∫

U
uv dx .

Lemma 2.3. Let �⊂Rn be a bounded open set, let 0< s < 1, and let q ∈ L∞(�). Let Bq be the bilinear
form defined for v,w ∈ H s(Rn) by

Bq(v,w)= ((−1)
s/2v, (−1)s/2w)Rn + (qr�v, r�w)�.

(a) There is a countable set 6 = {λj }
∞

j=1 ⊂ R, λ1 ≤ λ2 ≤ · · · → ∞, with the following property: if
λ ∈ R \6, then for any F ∈ (H̃ s(�))∗ and f ∈ H s(Rn) there is a unique u ∈ H s(Rn) satisfying

Bq(u, w)− λ(u, w)Rn = F(w) for w ∈ H̃ s(�), u− f ∈ H̃ s(�).

One has the norm estimate

‖u‖H s(Rn) ≤ C(‖F‖(H̃ s(�))∗ +‖ f ‖H s(Rn)),

with C independent of F and f .

(b) The function u in (a) is also the unique u ∈ H s(Rn) satisfying

r�((−1)s + q − λ)u = F in the sense of distributions in �

and u− f ∈ H̃ s(�).

(c) One has 0 /∈6 if (1-1) holds. If q ≥ 0, then one has 6 ⊂ (0,∞) and (1-1) always holds.

Proof. The proof is standard, but we give the details for completeness.

(a) If u = f + v, it is enough to find v ∈ H̃ s(�) solving the equivalent problem

Bq(v,w)− λ(v,w)Rn = F̃(w), w ∈ H̃ s(�),

for a suitable F̃ ∈ (H̃ s(�))∗. Consider the bilinear form Bq(v,w) for v,w ∈ H̃ s(�). If µ > ‖q−‖L∞(�),
where q−(x)=−min{0, q(x)}, then, for v ∈ H̃ s(�),

Bq(v, v)+µ(v, v)Rn ≥ ‖(−1)s/2v‖2L2 + (µ−‖q−‖L∞(�))‖v‖
2
L2 ≥ c‖v‖2H s .
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By the Riesz representation theorem, there is a unique v = Gµ F̃ in H̃ s(�) satisfying Bq(v,w) +

µ(v,w)Rn = F̃(w) for w ∈ H̃ s(�). Now

Bq(v, · )− λ(v, · )= F̃( · ) on H̃ s(�) ⇐⇒ v = Gµ[(µ+ λ)v+ F̃].

The operator Gµ is bounded (H̃ s(�))∗→ H̃ s(�), and by compact Sobolev embedding it gives rise to
a compact, self-adjoint, positive definite operator L2(�)→ L2(�). The spectral theorem for compact
self-adjoint operators proves (a); in particular the eigenvalues of Gµ are {1/(λj + µ)}

∞

j=1, and 6 ⊂
[−‖q−‖L∞,∞). In fact 6 ⊂ (−‖q−‖L∞,∞), since otherwise there would be a nontrivial function
u ∈ H̃ s(�) with Bq(u, u)+‖q−‖L∞(u, u)Rn = 0, showing that (−1)s/2u = 0 and thus u ≡ 0, which is a
contradiction.

(b) If u is as in (a), then clearly u satisfies

Bq(u, v)− λ(u, v)Rn = F(v) for v ∈ C∞c (�), u− f ∈ H̃ s(�), (2-1)

which is equivalent to the condition in (b). Conversely, if u satisfies (2-1) for v ∈ C∞c (�), then (2-1)
holds for v ∈ H̃ s(�) by density, and thus u is the unique solution in (a).

(c) Note that (1-1) states that any solution in H s
�

is identically zero. This is stronger than stating that any
solution in H̃ s(�) is zero, which is equivalent to 0 /∈6 by the Fredholm alternative. If q ≥ 0, then it was
proved in (a) that 6 ⊂ (0,∞) and thus (1-1) holds. �

DN map. By analogy with the case s = 1, we may define the DN map for the fractional Schrödinger
equation via the bilinear form Bq for the equation given in Lemma 2.3.

Lemma 2.4. Let �⊂ Rn be a bounded open set, let 0< s < 1, and let q ∈ L∞(�) satisfy (1-1). There is
a bounded linear map

3q : X→ X∗,

where X is the abstract trace space X = H s(Rn)/H̃ s(�), defined by

(3q [ f ], [g])= Bq(u f , g), f, g ∈ H s(Rn),

where u f ∈ H s(Rn) solves ((−1)s + q)u = 0 in � with u− f ∈ H̃ s(�). One has

(3q [ f ], [g])= ([ f ],3q [g]), f, g ∈ H s(Rn).

Proof. Let f, g ∈ H s(Rn). Since Bq(u f+ϕ, g + ψ) = Bq(u f , g) for ϕ,ψ in H̃ s(�), the expression
(3q [ f ], [g])= Bq(u f , g) is well-defined and

|(3q [ f ], [g])| ≤ ‖(−1)s/2u f ‖L2‖(−1)s/2g‖L2 +‖q‖L∞‖u f ‖L2‖g‖L2

≤ C‖u f ‖H s‖g‖H s ≤ C‖ f ‖H s‖g‖H s .

Thus |(3q [ f ], [g])| ≤ C‖[ f ]‖X‖[g]‖X , so 3q is well-defined and bounded, and self-adjointness follows
by taking g = ug. �
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If� has Lipschitz boundary, then X = H s(�e) and X∗= H−s
�e

with natural identifications, but functions
in H−s

�e
are only uniquely determined by their restrictions to �e if s < 1

2 . Thus, for Lipschitz domains,
one should think of the DN map as an operator

3q : H s(�e)→ H−s
�e
(Rn).

The integral identity that allows us to solve the inverse problem is a direct consequence of Lemma 2.4.
For simplicity, we will write f instead of [ f ] for elements of X .

Lemma 2.5. Let �⊂ Rn be a bounded open set, let 0< s < 1, and let q1, q2 ∈ L∞(�) satisfy (1-1). For
any f1, f2 ∈ X one has

((3q1 −3q2) f1, f2)= ((q1− q2)r�u1, r�u2)�,

where u j ∈ H s(Rn) solves ((−1)s + qj )u j = 0 in � with u j |�e = f j .

Proof. One has

((3q1 −3q2) f1, f2)= (3q1 f1, f2)− ( f1,3q2 f2)= Bq1(u1, u2)− Bq2(u1, u2)

= ((q1− q2)r�u1, r�u2)�. �

3. Uniqueness properties

We prove the uniqueness result for the fractional Laplacian, Theorem 1.2, which is an easy consequence
of the Carleman estimates in [Rüland 2015] and the Caffarelli–Silvestre extension [2007].

Proof of Theorem 1.2. Assume first that u is a continuous bounded function in Rn. Write Rn+1
+ = {(x, y) :

x ∈ Rn, y > 0}, and denote by w the extension of u to Rn+1
+ defined by

w(x, y)= (Py ∗ u)(x), Py(x)= cn,s
y2s

(|x |2+ y2)(n+2s)/2 .

By [Cabré and Sire 2014, Remark 3.8], w is the unique continuous bounded solution in Rn+1 of the
Dirichlet problem

div(y1−2s
∇w)= 0 in Rn+1, w|y=0 = u.

If we additionally assume that u ∈ H s(Rn), then by [Cabré and Sire 2014, Section 3] the solution w
satisfies

∫
Rn+1
+

y1−2s
|∇w|2 dx dy <∞, and one has

(−1)su =−ds lim
y→0+

y1−2s∂yw( · , y),

where the limit exists in H−s(Rn). See [Cabré and Sire 2014] for the precise values of the constants cn,s

and ds .
Assume now that u is a continuous bounded function in Rn with u ∈ H s(Rn), and u|W = (−1)su|W = 0,

where W is a ball in Rn. Denote by B the ball in Rn+1 with B∩{y= 0}=W, and define B+={(x, y)∈ B :
y > 0}. Since u|W = (−1)su|W = 0, w satisfies

div(y1−2s
∇w)= 0 in B+, w|B∩{y=0} = lim

y→0+
y1−2s∂yw|B∩{y=0} = 0.
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The function w thus satisfies the conditions in [Rüland 2015, Proposition 2.2], and one obtains that
w|B+ ≡ 0. But w is real-analytic in Rn+1

+ as the solution of an elliptic equation with real-analytic
coefficients; see [Hörmander 1983, Theorem 8.6.1]. Hence w ≡ 0 in Rn+1, which implies that u ≡ 0.

Finally, let u ∈ H−r (Rn) for some r > 0, and u|W = (−1)su|W = 0 for some ball W ⊂ Rn. Consider
the smooth approximations

uε = u ∗ ε−nϕ( · /ε),

where ϕ ∈ C∞c (R
n) satisfies

∫
ϕ dx = 1, ϕ ≥ 0, and ϕ = 0 for |x | ≥ 1. There exist ε0 > 0 and a smaller

ball W ′ ⊂W such that uε|W ′ = 0 and also (−1)suε|W ′ = ((−1)su)∗ε−nϕ( · /ε)|W ′ = 0 whenever ε < ε0.
Now each uε is in Hα(Rn) for any α ∈ R, since ûε(ξ)= m(ξ)û(ξ), where m(ξ)= ϕ̂(εξ) is a Schwartz
function and 〈ξ〉−r û(ξ) is in L2. By Sobolev embedding, each uε is also continuous and bounded in Rn.
The argument above implies that uε ≡ 0 whenever ε < ε0, showing that u = limε→0 uε = 0. �

Remark 3.1. We note that for s = 1
2 the above argument simplifies: the function w in the proof is just the

harmonic extension of u to Rn+1, and it satisfies w|W×{y=0} = ∂yw|W×{y=0} = 0. The odd extension w̃ of
w to W ×R is smooth, satisfies 1x,yw̃ = 0, and w̃|W×{y=0} = ∂yw̃|W×{y=0} = 0. Using the equation one
observes that w̃ vanishes to infinite order on W ×{y = 0}; thus by analyticity w̃ ≡ 0 and u ≡ 0.

Remark 3.2. For comparison, we recall the original argument in [Riesz 1938, Chapitre III.11] for proving
a result like Theorem 1.2. There are two steps: first one uses the Kelvin transform to reduce to the case
where u and (−1)su vanish outside some ball, and then one computes derivatives of u and lets x→∞
to show that all moments of (−1)su must vanish. See [Isakov 1990, Lemma 3.5.4] for another proof of
the second step.

Let u be in the Sobolev space W−r,q(Rn) for some r ∈ R, where q = 2n/(n+ 2s). By approximation,
translation and scaling, we may assume that u ∈W t,q(Rn) for any t > 0 and u|B = (−1)su|B = 0, where
B is the unit ball. Write f = (−1)su, so f, u ∈ Lq

∩ L∞ and u = I2s f . Define

v = R2su, g = R−2s f,

where Rα f (x)=|x |α−n f (K (x)) and K (x)= x/|x |2 is the Kelvin transform. Since det DK (x)=−|x |−2n

and |K (x)− K (y)| = |x − y|/(|x ||y|), one computes ‖R−2s f ‖Lq = ‖ f ‖Lq and R2s I2s f = I2s R−2s f .
Then g ∈ Lq, both v = I2s g and g vanish outside B, and

v(x)= cn,s

∫
B
|x − y|2s−ng(y) dy = 0, |x |> 1.

In particular, letting x→∞, one gets
∫

B g(y) dy = 0. Applying powers of the Laplacian to v(x) we get∫
B
|x − y|2s−n−2k g(y) dy = 0, k ≥ 0, |x |> 1.

Computing ∂x jv(x) and letting x→∞ gives
∫

B yj g(y) dy= 0. Repeating this for higher-order derivatives
implies that

∫
B yαg(y) dy = 0 for any multi-index α; hence g ≡ 0. This finally gives f ≡ 0 and u ≡ 0.

The above argument seems to require that f ∈ Lq for q close to 1 in order for R−2s f to be an
L p function for some p. If one starts with a solution u ∈ H−r for some r (as stated in Theorem 1.2), after
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approximation one gets f ∈ L2
∩ L∞ and then there is an issue since R−2s f might have a nonintegrable

singularity at 0. Thus it seems that this method is not sufficient for proving Theorem 1.2 in full generality.

4. Approximation in L2(�)

We will use the following Runge approximation property for solutions of the fractional Schrödinger
equation. If q ∈ L∞(�) satisfies (1-1), we denote by Pq the Poisson operator

Pq : X→ H s(Rn), f 7→ u, (4-1)

where X = H s(Rn)/H̃ s(�) is the abstract space of exterior values, and u ∈ H s(Rn) is the unique solution
of ((−1)s + q)u = 0 in � with u− f ∈ H̃ s(�) given in Lemma 2.3.

Lemma 4.1. Let �⊂ Rn be bounded open set, let 0< s < 1, and let q ∈ L∞(�) satisfy (1-1). Let also
W be any open subset of �e. Consider the set

R= {u|� : u = Pq f, f ∈ C∞c (W )}.

Then R is dense in L2(�).

Proof. By the Hahn–Banach theorem, it is enough to show that any v ∈ L2(�) with (v,w)� = 0 for all
w ∈R must satisfy v ≡ 0. If v is such a function, then

(v, r�Pq f )� = 0, f ∈ C∞c (W ). (4-2)

We claim that the formal adjoint of r�Pq is given by

(v, r�Pq f )� =−Bq(ϕ, f ), f ∈ C∞c (W ), (4-3)

where ϕ ∈ H s(Rn) is the solution given by Lemma 2.3 of

((−1)s + q)ϕ = v in �, ϕ ∈ H̃ s(�).

In other words, Bq(ϕ,w) = (v, r�w)� for any w ∈ H̃ s(�). To prove (4-3), let f ∈ C∞c (W ), and let
u f = Pq f ∈ H s(Rn) so u f − f ∈ H̃ s(�). Then

(v, r�Pq f )� = (v, r�(u f − f ))� = Bq(ϕ, u f − f )=−Bq(ϕ, f ).

In the last line, we used that u f is a solution and ϕ ∈ H̃ s(�).
Combining (4-2) and (4-3), we have

Bq(ϕ, f )= 0, f ∈ C∞c (W ).

Since r� f = 0, this implies

0= ((−1)s/2ϕ, (−1)s/2 f )Rn = ((−1)sϕ, f )Rn , f ∈ C∞c (W ).

In particular, ϕ ∈ H s(Rn) satisfies
ϕ|W = (−1)

sϕ|W = 0.

Theorem 1.2 implies that ϕ ≡ 0, and thus also v ≡ 0. �
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5. Inverse problem

It is now easy to prove the uniqueness result for the inverse problem.

Proof of Theorem 1.1. Note that if F ∈ X∗, then F |W2 is a distribution in W2 with F |W2(ϕ) = F([ϕ]),
ϕ ∈ C∞c (W2). Now if 3q1 f |W2 = 3q2 f |W2 for any f ∈ C∞c (W1), the integral identity in Lemma 2.5
yields that ∫

�

(q1− q2)u1u2 dx = 0

whenever u j ∈ H s(Rn) solve ((−1)s + qj )u j = 0 in � with exterior values in C∞c (Wj ). Let h ∈ L2(�),
and use the approximation result, Lemma 4.1, to find sequences (u(k)j ) of functions in H s(Rn) that satisfy

((−1)s + q1)u
(k)
1 = ((−1)

s
+ q2)u

(k)
2 = 0 in �,

u(k)j have exterior values in C∞c (Wj ),

r�u(k)1 = h+ r (k)1 , r�u(k)2 = 1+ r (k)2 ,

where r (k)1 , r (k)2 → 0 in L2(�) as k→∞. Inserting these solutions in the integral identity and taking the
limit as k→∞ implies ∫

�

(q1− q2)h dx = 0.

Since h ∈ L2(�) was arbitrary, we conclude that q1 = q2. �

6. Higher-order approximation

We proceed to prove Theorem 1.3(b). The argument is similar to that in Section 4, but since the
approximation is in high regularity spaces, by duality we will need to solve Dirichlet problems with data
in negative-order Sobolev spaces. This follows again by duality from regularity results for the Dirichlet
problem proved in [Hörmander 1965; Grubb 2015].

We will next introduce function spaces from [Grubb 2015]. Note that the smoothness indices s and
s(r) in this article correspond to a and a(s) in [Grubb 2015]. Assume that �⊂ Rn is a bounded domain
with C∞ boundary, and let q ∈ C∞c (�) satisfy the analogue of (1-1),

if u ∈ H s(Rn) solves ((−1)s + q)u = 0 in � and u|�e = 0, then u ≡ 0. (6-1)

We assume q compactly supported to fit the operator theory in [Grubb 2015]. Define

Es(�)= e+d(x)sC∞(�),

where e+ denotes extension by zero from � to Rn, and d is a C∞ function in �, positive in �, and
satisfying d(x) = dist(x, ∂�) near ∂�. If r > s − 1

2 we will also consider the Banach space H s(r)(�)

which arises as the exact solution space of functions u satisfying

r�((−1)s + q)u ∈ H r−2s(�), u|�e = 0.
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We will not give the actual definition, but instead we will use the following properties from [Grubb 2015].

Lemma 6.1. For any r > s− 1
2 , there is a Banach space H s(r)(�) with the following properties:

(a) H s(r)(�)⊂ H s−1/2
�

with continuous inclusion.

(b) H s(r)(�)= H r
�

if r ∈
(
s− 1

2 , s+ 1
2

)
.

(c) The operator r�((−1)s + q) is a homeomorphism from H s(r)(�) onto H r−2s(�).

(d) H r
�
⊂ H s(r)(�) ⊂ H r

loc(�) with continuous inclusions; i.e., multiplication by any χ ∈ C∞c (�) is
bounded H s(r)(�)→ H r (�).

(e) Es(�)=
⋂

r>s−1/2 H s(r)(�), and Es(�) is dense in H s(r)(�).

Proof. Parts (a) and (b) follow from [Grubb 2015, Section 1]. Part (c) follows since r�((−1)s + q) :
H s(r)(�)→ H r−2s(�) is a Fredholm operator [Grubb 2015, Theorem 2], it has a finite-dimensional
kernel and range complement independent of r [Grubb 2014, Theorem 3.5], and for r = s the kernel and
range complement are trivial using (6-1) and Lemma 2.3. Part (d) follows from (c) and (a), or alternatively
from the definitions in [Grubb 2015, Section 1]. Part (e) is in [Grubb 2015, Proposition 4.1]. �

We next prove an approximation result in the space Es(�), equipped with the topology induced by the
norms {‖ · ‖H s(m)(�)}

∞

m=1. Then Es(�) is a Fréchet space.

Lemma 6.2. Let�⊂Rn be a bounded domain with C∞ boundary, let 0< s < 1, let W be an open subset
of �e, and let q ∈ C∞c (�) satisfy (6-1). If Pq is the Poisson operator in (4-1), define

R= {e+r�Pq f : f ∈ C∞c (W )}.

Then R is a dense subset of Es(�).

Proof. Note that R⊂Es(�), since for f ∈C∞c (W ) one has Pq f = f +v, where r�((−1)s+q)v ∈C∞(�)
and v|�e = 0; hence v ∈ Es(�) by Lemma 6.1.

Let L be a continuous linear functional on Es(�) that satisfies

L(e+r�Pq f )= 0, f ∈ C∞c (W ).

It is enough to show that L ≡ 0, since then R will be dense by the Hahn–Banach theorem.
By the properties of Fréchet spaces, there exists an integer r so that

|L(u)| ≤ C
r∑

m=1

‖u‖H s(m)(�) ≤ C ′‖u‖H s(r)(�), u ∈ Es(�).

Since Es(�) is dense in H s(r)(�), we know L has a unique bounded extension L ∈ (H s(r)(�))∗. Consider
next the homeomorphism in Lemma 6.1,

T = r�((−1)s + q) : H s(r)(�)→ H r−2s(�).

Its adjoint is a bounded map between the dual Banach spaces,

T ∗ : (H r−2s(�))∗→ (H s(r)(�))∗.
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The map T ∗ is also a homeomorphism, with inverse given by (T−1)∗. Using the identification

(H r−2s(�))∗ = H−r+2s
�

one has

T ∗v(w)= (v, Tw), w ∈ H s(r)(�).

Now let v∈H−r+2s
�

be the unique function satisfying T ∗v= L , and choose a sequence (vj )
∞

j=1⊂C∞c (�)
with vj → v in H−r+2s. If f ∈ C∞c (W ), recall that e+r�Pq f = Pq f − f , and observe that

0= L(e+r�Pq f )= L(Pq f − f )= T ∗v(Pq f − f )= (v, T (Pq f − f ))

=−(v, T f )=− lim(vj , ((−1)
s
+ q) f )=− lim(((−1)s + q)vj , f ).

Here we used that T Pq f = 0 and vj ∈ C∞c (�). Since f ∈ C∞c (W ), we may take the limit as j→∞ and
obtain that

((−1)sv, f )= 0, f ∈ C∞c (W ).

Thus v ∈ H−r+2s(Rn) satisfies

v|W = (−1)
sv|W = 0.

By Theorem 1.2 it follows that v ≡ 0. This implies that L ≡ 0 and L ≡ 0 as required. �

Proof of Theorem 1.3. Let � ⊂ �1 ⊂ Rn be open sets with �1 \ � 6= ∅ and � bounded. Since
�1\� 6=∅, we may find a small ball W with W ⊂�1\�. Lemma 4.1 implies that any f ∈ L2(�) can be
approximated in L2(�) by functions u|�, where u solves ((−1)s + q)u = 0 in � and supp(u)⊂�∪W.
Since �∪W ⊂�1, part (a) follows.

As for part (b), if f ∈ C∞(�) and if g = e+d(x)s f ∈ Es(�), Lemma 6.2 ensures that there is a
sequence (u j )

∞

j=1 ⊂ H s(Rn) with

((−1)s + q)u j = 0 in �, supp(u j )⊂�1,

so that e+r�u j ∈ Es(�) and

e+r�u j → g in Es(�).

The result will follow if we can show that

M : C∞(�)→ Es(�), M f = e+d(x)s f,

is a homeomorphism, since then applying M−1
= d(x)−sr� gives

d(x)−sr�u j → f in C∞(�).

But M is a bijective linear map between Fréchet spaces and has closed graph: if f j → f in C∞ and
M f j→h in Es , then also M f j→M f in L∞ and one obtains M f =h by uniqueness of distributional limits.
Thus M is a homeomorphism by the closed graph and open mapping theorems (in other words, there is a
unique Fréchet space topology on Es(�) stronger than the Hausdorff topology inherited from D′(Rn)). �
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Remark 6.3. Let us note the following consequence of Theorem 1.3(b): if k ≥ 0 and R > 1 are fixed,
then for any g ∈ Ck(B1) and for any ε > 0 there is a function u ∈ H s(Rn) satisfying

(−1)su = 0 in B1, supp(u)⊂ BR, ‖u− g‖Ck(B1)
< ε.

This can be seen by taking �= Br and �1 = BR , where 1< r < R, and by choosing f ∈ C∞(Br ) with
‖ f − d(x)−s g‖Ck(B1)

small enough.

Appendix: The DN map

The abstract definition of the DN map 3q in Section 2 is sufficient for the formulation and solution of
the inverse problem. However, in this appendix we will give more concrete descriptions of the DN map,
valid under stronger regularity assumptions. For simplicity we assume that the boundary and the potential
are C∞.

DN map and (−1)s.

Lemma A.1. Let �⊂ Rn be a bounded open set with C∞ boundary, let 0< s < 1, and let q ∈ C∞c (�)
satisfy (1-1). For any β ≥ 0 satisfying s− 1

2 < β <
1
2 , the restriction of 3q to H s+β(�e) is the map

3q : H s+β(�e)→ H−s+β(�e), 3q f = (−1)su f |�e ,

where u f ∈ H s+β(Rn) solves ((−1)s + q)u = 0 in � with u|�e = f .

Proof. First we use a result from [Vishik and Eskin 1965]; see also [Grubb 2015]: if β ∈
[
0, 1

2

)
, then for

any f ∈ H s+β(�e) there is a unique u = u f ∈ H s+β(Rn) satisfying

((−1)s + q)u = 0 in �, u|�e = f.

In fact [Grubb 2015, Theorem 3.1] asserts Fredholm solvability for the inhomogeneous problem, but the
result above can be reduced to this case by taking an H s+β extension of f to Rn, and Fredholm solvability
implies unique solvability since the finite-dimensional kernel and range complement are independent
of β by [Grubb 2014, Theorem 3.5] and they are trivial when β = 0 by Lemma 2.3.

Now for f, g ∈ H s+β(�e), with β ∈
[
0, 1

2

)
, let u f ∈ H s+β(Rn) be the solution obtained above and let

eg ∈ H s+β(Rn) be some extension of g. Then, by definition,

(3q f, g)= ((−1)s/2u f , (−1)
s/2eg)Rn + (qr�u f , r�eg)�

= ((−1)su f , eg)Rn + (qr�u f , r�eg)�

since ((−1)s/2u, (−1)s/2v)Rn = ((−1)su, v)Rn holds first for Schwartz functions by the Parseval identity,
and then also for u, v ∈ H s(Rn) by density.

It remains to show that whenever α ∈
(
−

1
2 ,

1
2

)
, u ∈ H−α(Rn), v ∈ Hα(Rn), then

(u, v)Rn = (r�u, r�v)�+ (r�e u, r�ev)�e (A-1)
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in the sense of distributional pairings. If (A-1) is true, then the assumption β ∈
(
s − 1

2 ,
1
2

)
implies

(−1)su f ∈ H−s+β(Rn) with −s+β ∈
(
−

1
2 ,

1
2

)
, and since u f is a solution in � one has

(3q f, g)= ((−1)su f , eg)Rn + (qr�u f , r�eg)� = (r�e(−1)
su f , g)�e ,

which concludes the proof.
To show (A-1), let χ� be the characteristic function of �. This is a pointwise multiplier on Hγ (Rn)

for γ ∈
(
−

1
2 ,

1
2

)
[Triebel 2002], and the same is true for 1−χ�. We may write u = χ�u+ (1−χ�)u and

similarly for v, and then

(u, v)Rn = (χ�u, χ�v)Rn + ((1−χ�)u, (1−χ�)v)Rn ,

where the cross terms vanish first for Schwartz u, v and then in general by density. Now χ�u is in H−α
�

,
and hence can be approximated by functions in C∞c (�). Using similar approximations for the other
functions and restricting to � and �e implies (A-1). �

DN map and Ns. Several nonlocal Neumann boundary operators appear in the literature; see [Dipierro
et al. 2017a; Grubb 2016]. We will relate 3q to the nonlocal Neumann boundary operator Ns introduced
in [Dipierro et al. 2017a], defined pointwise by

Nsu(x)= cn,s

∫
�

u(x)− u(y)
|x − y|n+2s dy, x ∈�e. (A-2)

The next lemma contains a definition that applies to Sobolev functions. The result states that knowing
3q f |W for f ∈ C∞c (W ) is equivalent to knowing Nsu f |W for f ∈ C∞c (W ), since 3q f |W and Nsu f |W

only differ by quantities that do not depend on the unknown potential q .

Lemma A.2. Assume the conditions in Lemma A.1. One has

3q f =Nsu f −m f + (−1)s(E0 f )|�e , f ∈ H s+β(�e),

where, for γ >− 1
2 , Ns is the map

Ns : Hγ (Rn)→ Hγ

loc(�e), Nsu = mu|�e + (−1)
s(χ�u)|�e ,

where m ∈ C∞(�e) is given by m(x) = cn,s
∫
�

1/|x − y|n+2s dy and χ� is the characteristic function
of �. Also, E0 is extension by zero. If u ∈ L2(Rn), then Nsu ∈ L2

loc(�e) is given a.e. by the formula (A-2).

Proof. If u ∈ Hγ (Rn) with γ > − 1
2 , then mu|�e ∈ Hγ

loc(�e). By the pointwise multiplier property
of χ�, we have χ�u ∈ Hα(Rn) for some α ∈

(
−

1
2 ,

1
2

)
and (−1)s(χ�u) ∈ Hα−2s(Rn). However, if

ϕ,ψ ∈ C∞c (R
n) satisfy ϕ = 1 near � and ψ = 1 near supp(ϕ), then for any r, t ∈ R one has

(1−ψ)(−1)sϕ : H−r (Rn)→ H t(Rn)

by the pseudolocal property of Fourier multipliers. Thus one also has (−1)s(χ�u)|�e ∈ H t
loc(�e) for

any t , and Ns is well-defined and maps Hγ (Rn) to Hγ

loc(�e) for γ >−1
2 .
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Moreover, if u ∈ L2(Rn) and if ϕj ∈C∞c (�) satisfy ϕj→χ�u in L2(Rn), then the pseudolocal property
implies

(−1)s(ϕj )|�e → (−1)s(χ�u)|�e in L2
loc(�e).

After extracting a subsequence (using the diagonal argument), one has convergence a.e. in �e. Thus the
pointwise expression (A-2) for a.e. x ∈�e follows from the standard formula

(−1)sϕ(x)= cn,s

∫
Rn

ϕ(x)−ϕ(y)
|x − y|n+2s dy, ϕ ∈ C∞c (�), x ∈�e.

Let us prove the formula for 3q . If f ∈ H s+β(�e), then f ∈ Hα(�e) for some α ∈
(
−

1
2 ,

1
2

)
and hence

E0 f, u f ∈ Hα(Rn). Recall also that χ� and 1−χ� are pointwise multipliers on Hα(Rn). Then

3q f = (−1)su f |�e = (−1)
s(χ�u f )|�e + (−1)

s((1−χ�)u f )|�e

=Nsu f −m f + (−1)s(E0 f )|�e . �

Nonlocal diffusion. Finally, we will give a heuristic interpretation of the quantity 3q f (x) in terms of
nonlocal diffusions [Andreu-Vaillo et al. 2010]. This discussion is mostly for illustrative purposes, so we
will not give precise arguments and will restrict to the case q = 0.

We begin with a macroscopic description of nonlocal diffusion in Rn. Suppose that u(x, t) describes
the density of particles at a point x ∈ Rn at time t . Given an initial density u0(x), we assume that u(x, t)
is obtained as a solution of the nonlocal diffusion equation{

∂t u+ (−1)su = 0 in Rn
×{t > 0},

u|t=0 = u0.
(A-3)

Taking Fourier transforms in x , the solution at time t is given by

u(t, x)= (pt ∗ u0)(x),

where pt(x)=F−1
{e−t |ξ |2s

} is the probability density function of the Lévy process X t with infinitesimal
generator −(−1)s. If s = 1, then pt is a Gaussian, but for 0 < s < 1 it is a heavy-tailed distribution
with pt(x)∼ |x |−n−2s for large |x | (for s = 1

2 , pt(x)= cnt (t2
+|x |2)−(n+1)/2). The Lévy process X t also

gives a microscopic description of u(x, t): it is obtained as the expected value

u(x, t)= Ex [u0(X t)],

which expresses how many Lévy particles from the initial distribution u0 have jumped to x at time t . See
[Applebaum 2004; Chen et al. 2010] for Lévy processes.

Let now �⊂ Rn be a bounded open set. We consider the following Dirichlet problem for nonlocal
diffusion: given u0 ∈ H s

�
, find u so that

∂t u+ (−1)su = 0 in �×{t > 0},
u|�e×{t>0} = 0,
u|Rn×{t=0} = u0.

(A-4)
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The solution is easily obtained in the form

u(x, t)=
∞∑
j=1

e−λj t cjρj (x), (A-5)

where u0 =
∑
∞

j=1 cjρj and {ρj }
∞

j=1 ⊂ H s
�

is an orthonormal basis of L2
�

consisting of eigenfunctions for
(−1)s with eigenvalues λj , so that (−1)sρj = λjρj in �, ρj |�e = 0, and 0< λ1 ≤ λ2 ≤ · · · →∞. The
probabilistic interpretation is that we are looking at Lévy particles in � that are terminated when they
reach the exterior. One has

u(x, t)= Ex [u0(X t)1{t<τ }],

where τ is the time when the Lévy process exits �.
By the Duhamel principle and a standard reduction to homogeneous Dirichlet values, given any

f ∈ H s(�e) and any e f ∈ H s(Rn) with e f |�e = f , we can also solve the equation{
∂tv+ (−1)

sv = 0 in �×{t > 0},
v( · , t)|�e = f for t > 0,

(A-6)

with initial value v|Rn×{t=0} = e f . Another solution of (A-6) is given by vs(x, t)= u f (x), if u f ∈ H s(Rn)

solves (−1)su = 0 in � with u|�e = f . The function u f is the unique steady state of (A-6), since v− vs

solves (A-4) for some u0, and (A-5) implies

‖v( · , t)− u f ‖H s → 0 as t→∞.

Now, given f ∈ H s(�e) and the solution u f of the Dirichlet problem, we may consider two nonlocal
diffusions with initial value u f :

• the free diffusion (A-3) in Rn with solution u(x, t),

• the diffusion (A-6) whose exterior value is fixed to be f .

If t is small and x ∈�e, then u(x, t) formally satisfies

u(x, t)= u(x, 0)+ ∂t u(x, 0)t + O(t2)= f (x)− (−1)su(x, 0)t + O(t2)

= f (x)− (30 f )(x)t + O(t2)

by Lemma A.1. Thus the DN map may be interpreted as follows:

• −30 f (x) is the (infinitesimal) amount of particles migrating to x in the free diffusion that starts
from the steady state u f .

• 30 f (x) is the (infinitesimal) cost required to maintain the exterior value f at x in the steady state
nonlocal diffusion.

Similar remarks apply to 3q at least if q ≥ 0. We refer to [Chen et al. 2006] for some facts on the
related stochastic processes, and to [Piiroinen and Simon 2017] for stochastic interpretations of the usual
Calderón problem.
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SHARP STRICHARTZ INEQUALITIES FOR FRACTIONAL AND
HIGHER-ORDER SCHRÖDINGER EQUATIONS

GIANMARCO BROCCHI, DIOGO OLIVEIRA E SILVA AND RENÉ QUILODRÁN

We investigate a class of sharp Fourier extension inequalities on the planar curves s D jyjp, p > 1. We
identify the mechanism responsible for the possible loss of compactness of nonnegative extremizing
sequences, and prove that extremizers exist if 1 < p < p0 for some p0 > 4. In particular, this resolves
the dichotomy of Jiang, Pausader, and Shao concerning the existence of extremizers for the Strichartz
inequality for the fourth-order Schrödinger equation in one spatial dimension. One of our tools is a
geometric comparison principle for n-fold convolutions of certain singular measures in Rd, developed in
the companion paper of Oliveira e Silva and Quilodrán (Math. Proc. Cambridge Philos. Soc., (2019)).
We further show that any extremizer exhibits fast L2-decay in physical space, and so its Fourier transform
can be extended to an entire function on the whole complex plane. Finally, we investigate the extent to
which our methods apply to the case of the planar curves s D yjyjp�1, p > 1.
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1. Introduction

Gaussians are known to extremize certain Strichartz estimates in low dimensions. Consider, for instance,
the Strichartz inequality for the homogeneous Schrödinger equation in d spatial dimensions,

ke�it�f k
L
2C4=d
x;t .RdC1/

� S .d/kf kL2.Rd /; (1-1)
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with optimal constant given by

S .d/ WD sup
0¤f 2L2

ke�it�f k
L
2C4=d
x;t .RdC1/

kf kL2.Rd /
: (1-2)

That S .d/ <1 is of course due to the original work of Strichartz [1977], which in turn had precursors in
[Tomas 1975; Segal 1976]. If d 2 f1; 2g, then Gaussians extremize (1-1), and therefore S .1/D 12�1=12

and S .2/D 2�1=2. This was originally established in [Foschi 2007; Hundertmark and Zharnitsky 2006],
and alternative proofs were subsequently given in [Bennett et al. 2009; 2015; Gonçalves 2019]. All
of these approaches ultimately rely on the fact that the Strichartz exponent 2C 4

d
is an even integer if

d 2 f1; 2g, which in turn allows us to recast inequality (1-1) in convolution form. This is a powerful
technique that has proved very successful in tackling a number of problems in sharp Fourier restriction
theory; see the recent survey [Foschi and Oliveira e Silva 2017].

In the recent work [Oliveira e Silva and Quilodrán 2018], we explored the convolution structure of
a family of Strichartz inequalities for higher-order Schrödinger equations in two spatial dimensions in
order to answer a question concerning the existence of extremizers that had appeared in the previous
literature. Our purpose with the present work is three-fold. Firstly, we resolve the dichotomy from [Jiang
et al. 2010] concerning the existence of extremizers for the Strichartz inequality for the fourth-order
Schrödinger equation in one spatial dimension. This is related to the Fourier extension problem on the
planar curve s D y4. Secondly, we study similar questions in the more general setting of the Fourier
extension problem on the curve s D jyjp for arbitrary p > 1. We also consider odd curves s D yjyjp�1,
p > 1, the case p D 3 relating to the Airy–Strichartz inequality [Farah and Versieux 2018; Frank and
Sabin 2018; Shao 2009]. Lastly, we study superexponential decay and analyticity of the corresponding
extremizers and their Fourier transform via a bootstrapping procedure.

Jiang, Pausader, and Shao [Jiang et al. 2010] considered the fourth-order Schrödinger equation with
L2 initial datum in one spatial dimension,�

i@tu��@
2
xuC @

4
xuD 0; .x; t/ 2 R�R;

u. � ; 0/D f 2 L2x.R/;
(1-3)

where u W R�R! C, and �� 0. By scaling, one may restrict attention to � 2 f0; 1g. The solution of the
Cauchy problem (1-3) can be written in terms of the propagator

u.x; t/D eit.@
4
x��@

2
x/f .x/D

1

2�

Z
R

eix�eit.�
4C��2/ Of .�/ d�;

where the spatial Fourier transform is defined as1

Of .�/ WD

Z
R

e�ix�f .x/ dx:

1The Fourier transform will occasionally be denoted by F.f /D Of .
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The solution disperses as jt j !1, and consequently the following Strichartz inequality due to Kenig,
Ponce, and Vega [Kenig et al. 1991, Theorem 2.1] holds:2

kD
1
3
�e
it.@4x��@

2
x/f kL6x;t .R1C1/

. kf kL2.R/: (1-4)

The main result of [Jiang et al. 2010] is a linear profile decomposition for (1-3), which uses a refinement
of the Strichartz inequality (1-4) in the scale of Besov spaces, together with improved localized Fourier
restriction estimates. As a consequence, the authors of [Jiang et al. 2010] establish a dichotomy result for
the existence of extremizers for (1-4) when �D 0, which can be summarized as follows: Consider the
sharp inequality in multiplier form

kD
1
3

0 e
it@4xf kL6x;t .R1C1/

�Mkf kL2.R/; (1-5)

with optimal constant given by

M WD sup
0¤f 2L2

kD
1
3

0 e
it@4xf kL6x;t .R1C1/

kf kL2.R/
: (1-6)

Then [Jiang et al. 2010, Theorem 1.8] states that either an extremizer for (1-5) exists, or there exist a
sequence fang � R satisfying janj !1 as n!1 and a function f 2 L2 such that

M D lim
n!1

kD
1
3

0 e
it@4x .eianxf /kL6x;t .R1C1/

kf kL2.R/
:

In the latter case, one necessarily has M D S .1/, where S .1/ denotes the optimal constant defined in
(1-2). Our first main result resolves this dichotomy.

Theorem 1.1. There exists an extremizer for (1-5).

Theorem 1.1 will follow from a more general result which we now introduce. As noted in [Kenig et al.
1991, §2], the operator D1=30 eit@

4
x is nothing but a constant multiple of the Fourier transform at the point

.�x;�t / 2 R2 of the singular measure

d�4.y; s/D ı.s�y4/jyj
1
3 dy ds (1-7)

defined on the curve s D y4. As in [Oliveira e Silva and Quilodrán 2018, §6.4], one is naturally led to
consider generic power curves s D jyjp. The corresponding inequality is

kMp.f /kL6x;t .R1C1/
�Mpkf kL2.R/; (1-8)

where the multiplier operator Mp is defined as

Mp.f /.x; t/DD
p�2
6

0 eit j@x j
p

f .x/:

2Given � 2 f0; 1g and ˛ 2 R, we follow the notation from [Jiang et al. 2010] and denote by D˛� the differentiation operator
D˛�f .x/ WD

1
2�

R
R e

ix� .�C 6�2/˛=2 Of .�/ d�.
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Inequality (1-8) can be equivalently restated as a Fourier extension inequality,

kEp.f /kL6.R2/ �Epkf kL2.R/; (1-9)

or in convolution form as

kf�p �f�p �f�pkL2.R2/ � C
3
p kf k

3
L2.R/

: (1-10)

Here, the singular measure �p is defined in accordance with (1-7) by

d�p.y; s/D ı.s� jyjp/jyj
p�2
6 dy ds; (1-11)

and the Fourier extension operator Ep.f /D F.f �p/.� � / is given by

Ep.f /.x; t/D
Z

R

eixyeit jyj
p

jyj
p�2
6 f .y/ dy; (1-12)

so that

6
p�2
12 Ep. Of /D 2�Mp.f /:

If f is an extremizer for (1-9), then f is likewise an extremizer for (1-10), and F�1.f / is an extremizer
for (1-8). Thus these three existence problems are essentially equivalent. The convolution form (1-10)
also shows that the search for extremizers can be restricted to the class of nonnegative functions. An
application of Plancherel’s theorem further reveals that the corresponding optimal constants satisfy

E6p D .2�/
2C 6p D .2�/

361�
p
2M6

p :

Our next result extends the dichotomy proved in [Jiang et al. 2010, Theorem 1.8] to the case of arbitrary
exponents p > 1. It states that one of two possible scenarios occurs, compactness or concentration at a
point. We make the latter notion precise.

Definition 1.2. A sequence of functions ffng � L2.R/ concentrates at a point y0 2 R if, for every
"; � > 0, there exists N 2 N such that, for every n�N,Z

jy�y0j��

jfn.y/j
2 dy < "kfnk2L2.R/:

We choose to phrase our second main result in terms of the convolution inequality (1-10) because, as
we shall see, condition (1-13) has a very simple geometric meaning in terms of the boundary value of the
relevant 3-fold convolution measure.

Theorem 1.3. Let p > 1. If

C 6p >
2�

p
3p.p� 1/

; (1-13)

then any extremizing sequence of nonnegative functions in L2.R/ for (1-10) is precompact, after normal-
ization and scaling. In this case, extremizers for (1-10) exist. If instead equality holds in (1-13) then, given
any y0 2 R, there exists an extremizing sequence for (1-10) which concentrates at y0.
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A few remarks may help to further orient the reader. Firstly, if p D 1, then the curve s D jyj has no
curvature, and no nontrivial Fourier extension estimate can hold. Secondly, if equality holds in (1-13), then
Theorem 1.3 does not guarantee the nonexistence of extremizers. Indeed, C 62 D �=

p
3, and Gaussians

are known to extremize (1-10) when p D 2. Various results of a similar flavor to that of Theorem 1.3
have appeared in the recent literature. They are typically derived from a sophisticated application of
concentration-compactness techniques [Christ and Shao 2012a; Shao 2016a], a full profile decomposition
[Jiang et al. 2010; 2014; Shao 2009], or the missing mass method as in [Frank et al. 2016; Frank and
Sabin 2018]. We introduce a new variant which follows the spirit of the celebrated works [Brézis and Lieb
1983; Lieb 1983; Lions 1984a; 1984b]. It seems more elementary and may be easier to adapt to other
manifolds. The proof of Theorem 1.3 involves a variant of Lions’ concentration-compactness lemma
[1984a], a variant of the corollary of the Brézis–Lieb lemma from [Fanelli et al. 2011], bilinear extension
estimates, and a refinement of inequality (1-9) over a suitable cap space.

In a range of exponents that includes the case p D 4, we are able to resolve the dichotomy posed by
Theorem 1.3.

Theorem 1.4. There exists p0 > 4 such that, for every p 2 .1; p0/nf2g, the strict inequality (1-13) holds.
In particular, if p 2 .1; p0/, then there exists an extremizer for (1-10).

Our method yields p0 � 4:803 with three decimal places, and effectively computes arbitrarily good
lower bounds for the ratio ofL2-norms in (1-10) via expansions of suitable trial functions in the orthogonal
basis of Legendre polynomials. We remark that the value p0 � 4:803 is suboptimal, in the sense that a
natural refinement of our argument allows us to increase this value to � 5:485; see Section 4C below.

Once the existence of extremizers has been established, their properties are typically deduced from the
study of the associated Euler–Lagrange equation. Following this paradigm, we show that any extremizer
of (1-9) decays superexponentially fast in L2, which reflects the analyticity of its Fourier transform. This
is the content of our next result.

Theorem 1.5. Let p > 1. If f is an extremizer for (1-9), then there exists �0 > 0 such that

x 7! e�0jxj
p

f .x/ 2 L2.R/:

In particular, its Fourier transform Of can be extended to an entire function on C.

Note that the exponent �0 necessarily depends on the extremizer itself; see the discussion in [Christ
and Shao 2012b, p. 964]. The proof relies on a bootstrapping argument that found similar applications in
[Christ and Shao 2012b; Erdoğan et al. 2011; Hundertmark and Shao 2012; Shao 2016b].

To some extent, our methods are able to handle the case of the planar odd curves s D yjyjp�1, p > 1.
Define the singular measure

d�p.y; s/D ı.s�yjyjp�1/jyj
p�2
6 dy ds: (1-14)

The associated Fourier extension operator Sp.f /D F.f�p/.� � /, defined in (6-2) below, satisfies the
estimate kSp.f /kL6 . kf kL2 . In sharp convolution form, this can be rewritten as

kf�p �f�p �f�pkL2.R2/ �Q
3
pkf k

3
L2.R/

; (1-15)
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where Qp denotes the optimal constant. Odd curves are of independent interest, in particular because a
new phenomenon emerges: caps centered around points with parallel tangents interact strongly, regardless
of separation between the points. This mechanism was discovered in [Christ and Shao 2012a], and
further explored in [Carneiro et al. 2017; Foschi 2015; Frank et al. 2016; Frank and Sabin 2018; Shao
2016a]. Some of these works include a symmetrization step which relies on the convolution structure
of the underlying inequality. In the present case, we also show that the search for extremizers can be
further restricted to the class of even functions, but interestingly our symmetrization argument does
not depend on the convolution structure. This may be of independent interest since it applies to other
Fourier extension inequalities where some additional symmetry is present, as we indicate in Section 6A
below.

The following versions of Theorems 1.3 and 1.4 hold for odd curves.

Theorem 1.6. Let p > 1. If

Q6p >
5�

p
3p.p� 1/

; (1-16)

then any extremizing sequence of nonnegative, even functions in L2.R/ for (1-15) is precompact, after
normalization and scaling. In this case, extremizers for (1-15) exist. If instead equality holds in (1-16)
then, given any y0 2 R, there exists an extremizing sequence for (1-15) which concentrates at the pair
f�y0; y0g.

The case p D 3 of Theorem 1.6 coincides with a special case of [Frank and Sabin 2018, Theorem 1],
which was obtained by different methods.

Theorem 1.7. If p 2 .1; 2/, then the strict inequality (1-16) holds and, in particular, there exists an
extremizer for (1-15).

We believe that extremizers do not exist if p � 2; see Conjecture 6.6 below.

Overview. The paper is organized as follows. Section 2 is devoted to the technical preliminaries for the
dichotomy statement concerning the existence of extremizers: bilinear estimates and cap bounds. We then
prove Theorem 1.3 in Section 3. Existence of extremizers is the subject of Section 4, where we establish
Theorem 1.4. Theorem 1.5 addresses the regularity of extremizers and is established in Section 5. Odd
curves are treated in Section 6, where Theorems 1.6 and 1.7 are proved. In the Appendix, we establish
useful variants of Lions’ concentration-compactness lemma (Proposition A.1) and of a corollary of the
Brézis–Lieb lemma (Proposition B.1).

Notation. If x; y are real numbers, we write xDO.y/ or x.y if there exists a finite absolute constant C
such that jxj �C jyj. If we want to make explicit the dependence of the constant C on some parameter ˛,
we write x DO˛.y/ or x .˛ y. We write x & y if y . x, and x ' y if x . y and x & y. Finally, the
indicator function of a set E � Rd will be denoted by 1E , and the complement of E will at times be
denoted by E{.
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2. Bilinear estimates and cap refinements

In this section, we prove the bilinear extension estimates and cap refinements which will be needed
in the next section. Bilinear extension estimates are usually deep [Tao 2003; Wolff 2001], but in the
one-dimensional case one may rely on the classical Hausdorff–Young inequality. Throughout this section,
we shall consider the dyadic regions

Ik WD Œ2
k; 2kC1/ and I �k WD .�2

kC1;�2k�[ Œ2k; 2kC1/ .k 2 Z/:

2A. Bilinear estimates. Recall the definitions (1-11) and (1-12) of the measure �p and the Fourier
extension operator Ep , respectively. Our first result quantifies the principle that distant caps interact weakly.

Proposition 2.1. Let p > 1 and k; k0 2 Z. Then

kEp.f /Ep.g/kL3.R2/ .p 2�jk�k
0j
p�1
6 kf kL2.R/kgkL2.R/ (2-1)

for every f; g 2 L2.R/ satisfying suppf � I �
k

and suppg � I �
k0

.

Proof. Setting  D j � jp and w D j � j
p�2
3 , we have

.Ep.f /Ep.g//.x; t/D
Z

R2
eix.yCy

0/eit. .y/C .y
0//f .y/g.y0/w.y/

1
2w.y0/

1
2 dy dy0:

Change variables .y; y0/ 7! .u; v/D .yCy0;  .y/C .y0//. Except for null sets, this is a 2-to-1 map
from R2 onto the region f.u; v/W v � 2 .u=2/g. Its Jacobian is given by

J�1.y; y0/D
@.u; v/

@.y; y0/
D det

�
1  0.y/

1  0.y0/

�
D  0.y0/� 0.y/D p.y0jy0jp�2�yjyjp�2/ (2-2)

and satisfies jJ�1.y; y0/j � pjjyjp�1� jy0jp�1j, with equality if and only if yy0 � 0. Thus

.Ep.f /Ep.g//.x; t/D 2
Z
eixueitvf .y/g.y0/w.y/

1
2w.y0/

1
2J.u; v/ du dv; (2-3)

where the integral is taken over the region f.u; v/W v � 2 .u=2/g. Note that this implies

.f �p �g�p/.u; v/D 2f .y/g.y
0/w.y/

1
2w.y0/

1
2J.u; v/ (2-4)

for every .u; v/ satisfying v > 2 .u=2/, where .y; y0/ is related to .u; v/ via the change of variables
described above.

By symmetry, we can and will restrict attention to jy0j � jyj. Taking the L3-norm of (2-3), invoking
the Hausdorff–Young inequality, and then changing variables back to .y; y0/,

kEp.f /Ep.g/kL3.R2/ . kf .y/g.y0/w.y/
1
2w.y0/

1
2J.u; v/k

L
3=2
u;v .R1C1/

D kf .y/g.y0/w.y/
1
2w.y0/

1
2 jJ.y; y0/j

1
3 k
L
3=2

y;y0
.R1C1/

:
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If 2k � jyj< 2kC1, 2k
0

� jy0j< 2k
0C1, and k � k0C 2, then

jyy0j
p�2
4

p
1
2 jjyjp�1� jy0jp�1j

1
2

.
2.kCk

0/p�2
4

2k
p�1
2 .1� 2�.k�k

0�1/.p�1//
1
2

. 2.k
0�k/p

4
�k
0

2 : (2-5)

It follows that

kEp.f /Ep.g/k
3
2

L3
.
Z

R2
jf .y/g.y0/j

3
2w.y/

3
4w.y0/

3
4 jJ.y; y0/j

1
2 dy dy0

�

Z
R2
jf .y/g.y0/j

3
2

jyy0j
p�2
4

p
1
2 jjyjp�1� jy0jp�1j

1
2

dy dy0

. 2.k
0�k/p

4
�k
0

2 2
k
4 2

k0

4 kf k
3
2

L2
kgk

3
2

L2

D 2�jk�k
0j
p�1
4 kf k

3
2

L2
kgk

3
2

L2
: (2-6)

If k 2 fk0; k0C 1g, then we can simply use the estimate kEp.f /Ep.g/kL3 . kf kL2kgkL2 . �

Corollary 2.2. Let p > 1 and k; k0 2 Z be such that k0 � k. Then

kEp.f /Ep.g/kL3.R2/ .p 2�jk�k
0j
p�1
6 kf kL2.R/kgkL2.R/ (2-7)

for every f; g 2 L2.R/ satisfying suppf � fjyj � 2kg and suppg � fjy0j � 2k
0

g.

Proof. Write f D
P
j�k fj and g D

P
j 0<k0 gj 0 , where fj WD f 1I�

j
and gj 0 WD g1I�

j 0
. Then

kEp.f /Ep.g/kL3.R2/ �
X

j�k; j 0<k0

kEp.fj /Ep.gj 0/kL3 .
X

j�k; j 0<k0

2�jj�j
0j
p�1
6 kfj kL2kgj 0kL2

�

� X
j�k; j 0<k0

2�jj�j
0j
p�1
3

�1
2
� X
j�k; j 0<k0

kfj k
2
L2
kgj 0k

2
L2

�1
2

'

�X
j�k

2�jj�k
0j
p�1
3

�1
2

kf kL2kgkL2

' 2�jk�k
0j
p�1
6 kf kL2kgkL2 ;

where we used the triangle inequality, Proposition 2.1, the Cauchy–Schwarz inequality, L2-orthogonality,
and the fact that a geometric series is comparable to its largest term. �

When studying concentration at points different from the origin, it will be useful to consider dyadic
decompositions of the real line with arbitrary centers. By reflection and scaling, it suffices to consider
decompositions centered at 1. Define the dyadic regions

Ik WD f2k � y � 1 < 2kC1g and I �k WD f2
k
� jy � 1j< 2kC1g .k 2 Z/

so that Ik D 1C Ik and I �
k
D 1C I �

k
. The following analogue of Proposition 2.1 holds.
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Proposition 2.3. Let p > 1 and k; k0 2 Z. Let ˇ Dmin
˚
1
6
; p�1
6

	
. Then

kEp.f /Ep.g/kL3.R2/ .p 2�ˇ jk�k
0j
kf kL2.R/kgkL2.R/ (2-8)

for every f; g 2 L2.R/ satisfying suppf � I �
k

and suppg � I �
k0

.

Before embarking on the proof, let us take a closer look at the factor jyy0j.p�2/=4jJ.y; y0/j1=2 that
appears after applying the Hausdorff–Young inequality in (2-6). We have already seen that

jJ�1.y; y0/j D pjyjyjp�2�y0jy0jp�2j: (2-9)

In (2-5) we observed that, if y; y0 are separated (say, jy0j � 1
2
jyj), then

jyy0j
p�2
4

jyjyjp�2�y0jy0jp�2j
1
2

.
jyy0j

p�2
4

jyj
p�1
2

D jyj�
p
4 jy0j

p�2
4 : (2-10)

In order to obtain a useful bound in the case when both y; y0 are close to 1, invoke the mean value theorem
and write

jyjp�1� jy0jp�1 D .p� 1/sp�2.jyj � jy0j/

for some s 2 Œjy0j; jyj�. Then, for 0� y0 � y, we have

jyjyjp�2�y0jy0jp�2j D jyp�1�y0p�1j&
�
jy �y0jyp�2 if p 2 .1; 2�;
jy �y0jy0p�2 if p 2 Œ2;1/:

Thus the following estimate holds for every 1
2
� y; y0 � 3

2
:

jyy0j
p�2
4

jyjyjp�2�y0jy0jp�2j
1
2

. jy �y0j�
1
2 : (2-11)

Proof of Proposition 2.3. Without loss of generality, assume jk � k0j � 2. We start by considering the
situation when 0 is an endpoint of I �

k0
, i.e., k0 2 f�1; 0g. Let k0 D�1, so that I �

k0
D
�
0; 1
2

�
[
�
3
2
; 2
�
, split

g D g`Cgr , with g` WD g1.0; 1
2
� and gr WD g1Œ 3

2
;2/, and take the dyadic decomposition

g` D
X
j�1

gj ; with gj WD g1.2�.jC1/;2�j �:

If k � �3, then (2-10) implies

kEp.f /Ep.g`/kL3 .
X
j�1

�Z
R2
jf .y/gj .y

0/j
3
2

jyy0j
p�2
4

jjyjp�1� jy0jp�1j
1
2

dy dy0
�2
3

.
X
j�1

�
2�j

p�2
4

Z
R2
jf .y/gj .y

0/j
3
2 dy dy0

�2
3

.
X
j�1

�
2�j

p�2
4 2

k
4 2�

j
4 kf k

3
2

L2
kgj k

3
2

L2

�2
3

D 2
k
6 kf kL2

X
j�1

2�j
p�1
6 kgj kL2 . 2

k
6 kf kL2kg`kL2 . 2�

jk�k0j
6 kf kL2kgkL2 :
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If k � 1, then Corollary 2.2 applies, and directly yields

kEp.f /Ep.g`/kL3 . 2�jk�k
0j
p�1
6 kf kL2kgkL2 :

A similar analysis applies to gr . Setting ˇ WDmin
˚
1
6
; p�1
6

	
, we conclude that, if k0D�1 and jk�k0j � 2,

then
kEp.f /Ep.g/kL3 . 2�ˇ jk�k

0j
kf kL2kgkL2 :

The case k0 D 0 admits a similar treatment. If k; k0 � �2 and k� k0 � 2, then (2-11) implies

kEp.f /Ep.g/kL3 .
2
k
6 2

k0

6

2
k
3

kf kL2kgkL2 D 2
�
jk�k0j
6 kf kL2kgkL2 :

Finally, the remaining cases can be handled in a similar way by Corollary 2.2. �

Corollary 2.4. Let p > 1 and k; k0 2 Z be such that k0 � k. Let ˇ Dmin
˚
1
6
; p�1
6

	
. Then

kEp.f /Ep.g/kL3.R2/ .p 2�ˇ jk�k
0j
kf kL2.R/kgkL2.R/ (2-12)

for every f; g 2 L2.R/ satisfying suppf � fjy � 1j � 2kg and suppg � fjy0� 1j � 2k
0

g.

We finish this subsection by taking yet another look at the Jacobian factor (2-9). This will be useful in
Section 2B below. Let p � 2. If yy0 � 0, then jJ�1.y; y0/j D p.jyjp�1Cjy0jp�1/, in which case

jyy0j
p�2
4

.jyjp�1Cjy0jp�1/
1
2

. .jyjC jy0j/�
1
2 D jy �y0j�

1
2

uniformly in y; y0. To handle the complementary case yy0 > 0, note that, if p � 2 and 0� a � b, then

bp�1� ap�1 ' .b� a/bp�2: (2-13)

It follows that, if p � 2 and yy0 > 0, then

jJ�1.y; y0/j D pjjyjp�1� jy0jp�1j ' jy �y0jmaxfjyj; jy0jgp�2;

and so if additionally jyj � jy0j, then

jyy0j
p�2
4

jjyjp�1� jy0jp�1j
1
2

.
jyy0j

p�2
4

jyj
p�2
2 jy �y0j

1
2

� jy �y0j�
1
2 :

Therefore the estimate

kEp.f /Ep.g/k
3
2

L3.R2/
.
Z

R2

jf .y/g.y0/j
3
2

jy �y0j
1
2

dy dy0 (2-14)

holds as long as p � 2. We cannot hope for such a bound if 1 < p < 2 since (2-13) fails in that case.
However, if jyj ' jy0j, then one can check in a similar way that the estimate

kEp.fk/Ep.gk/k
3
2

L3.R2/
.
Z

R2

jfk.y/gk.y
0/j

3
2

jy �y0j
1
2

dy dy0 (2-15)

holds for any p > 1 and functions fk; gk which are both supported on I �
k

.
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2B. Cap bounds. An inspection of the proof of Proposition 2.1 reveals that if suppf �I �
k

and suppg�I �
k0

for some k; k0 2 Z satisfying k� k0 � 2, then

kEp.f /Ep.g/kL3.R2/ . 2�jk�k
0j
p�1
6

�
jIkj
� 1
4

Z
I�
k

jf j
3
2

�2
3
�
jIk0 j

� 1
4

Z
I�
k0

jgj
3
2

�2
3

. 2�jk�k
0j
p�1
6 ƒ.f /

2
9ƒ.g/

2
9 kf k

2
3

L2.R/
kgk

2
3

L2.R/
; (2-16)

where the quantity ƒ.f / is defined via

ƒ.f / WD sup
k2Z

jIkj
� 1
4

Z
I�
k

jf j
3
2 : (2-17)

The purpose of this subsection is to develop on this observation. Given f 2 L2.R/, write f D
P
k2Z fk ,

with fk WD f 1I�
k

. Our first result is the following.

Proposition 2.5. Let p > 1. Then the following estimates hold for every f 2 L2.R/:

kEp.f /k3L6.R2/ .p
X
k2Z

kfkk
3
L2.R/

; (2-18)

kEp.f /k3L6.R2/ .p
X
k2Z

kEp.fk/k3L6.R2/Cƒ.f /
4
9

�X
k2Z

kfkk
3
L2.R/

�1
3

kf k
4
3

L2.R/
: (2-19)

Proof. By the triangle inequality,

kEp.f /k3L6 �
X

.i;j;k/2Z3

kEp.fi /Ep.fj /Ep.fk/kL2 :

For each triple .i; j; k/ in the previous sum, we lose no generality in assuming that

jj � kj Dmaxfji 0� j 0j W i 0; j 0 2 fi; j; kgg: (2-20)

Hölder’s inequality and Proposition 2.1 then imply

kEp.fi /Ep.fj /Ep.fk/kL2 . 2�jj�kj
p�1
6 kfikL2kfj kL2kfkkL2 :

By the maximality of jj � kj, we have jj � kj � 1
3
ji � j jC 1

3
jj � kjC 1

3
jk� i j, and hence

kEp.f /k3L6 .
X

.i;j;k/2Z3

2�ji�j j
p�1
18 2�jj�kj

p�1
18 2�jk�i j

p�1
18 kfikL2kfj kL2kfkkL2 :

A final application of Hölder’s inequality yields (2-18). Estimate (2-19) follows from similar considerations
which we now detail. Let S WD f.i; j; k/ 2 Z3Wmaxfji �j j; jj �kj; jk� i jg � 1g and S{ WD Z3 nS . Split
the sum into diagonal and off-diagonal contributions,

kEp.f /k3L6 �




 X
.i;j;k/2S

Ep.fi /Ep.fj /Ep.fk/





L2
C





 X
.i;j;k/2S{

Ep.fi /Ep.fj /Ep.fk/





L2
;
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and analyze the two terms separately. For the diagonal term, note that



 X
.i;j;k/2S

Ep.fi /Ep.fj /Ep.fk/





L2

�

X
k2Z

�
3kEp.fk/Ep.fk/Ep.fkC1/kL2 C 3kEp.fk�1/Ep.fk/Ep.fk/kL2 CkEp.fk/Ep.fk/Ep.fk/kL2

�
�

X
k2Z

�
3kEp.fk/k2L6kEp.fkC1/kL6 C 3kEp.fk�1/kL6kEp.fk/k

2
L6
CkEp.fk/k3L6

�
.
X
k2Z

kEp.fk/k3L6 :

To handle the off-diagonal term, note that estimate (2-16) implies



 X
.i;j;k/2S{

Ep.fi /Ep.fj /Ep.fk/





L2
.

X0

.i;j;k/Wjj�kj�2

kfikL2kEp.fj /Ep.fk/kL3

.ƒ.f /
4
9

X0

.i;j;k/Wjj�kj�2

2�jj�kj
p�1
6 kfikL2kfj k

2
3

L2
kfkk

2
3

L2
;

where the sum †0 is taken over triples .i; j; k/ 2 S{ for which .j; k/ satisfies the maximality assumption
(2-20). It follows that



 X

.i;j;k/2S{

Ep.fi /Ep.fj /Ep.fk/





L2
.ƒ.f /

4
9

X
i;j;k

2�.ji�j jCjj�kjCjk�i j/
p�1
18 kfikL2kfj k

2
3

L2
kfkk

2
3

L2

.ƒ.f /
4
9

�X
k2Z

kfkk
3
L2

�1
3
�X
k2Z

kfkk
2
L2

�2
3

:

This implies (2-19) at once, and concludes the proof of the proposition. �

The following L2 dyadic cap estimate is a direct consequence of (2-18).

Corollary 2.6. Let p > 1. Then, for every f 2 L2.R/,

kEp.f /k3L6.R2/ .p
�
sup
k2Z

kfkkL2.R/
�
kf k2

L2.R/
:

We now derive a cap bound similar to [Jiang et al. 2010, Lemma 1.2] and [Shao 2009, Lemma 1.2].

Proposition 2.7. Let p > 1. Then the following estimate holds:

kEp.f /k3L6.R2/ .p
�
sup
k2Z

sup
I�I�

k

jI j�
1
6 kf kL3=2.I /

� 2
3 kf k

7
3

L2.R/
(2-21)

for every f 2 L2.R/, where the inner supremum is taken over all subintervals I � I �
k

.

Proof. We start by considering the case when f D fk.D f 1I�
k
/. From (2-15), we have

kEp.fk/k3L6 .
Z

R2

jfk.y/fk.y
0/j

3
2

jy �y0j
1
2

dy dy0: (2-22)



SHARP STRICHARTZ INEQUALITIES FOR FRACTIONAL AND HIGHER-ORDER SCHRÖDINGER EQUATIONS 489

Arguing as in as in [Jiang et al. 2010; Shao 2009] we obtain, for every q > 1, that

kEp.fk/kL6 .
�

sup
I�I�

k

jI j
1
2
� 1
q kfkkLq.I /

� 1
3 kfkk

2
3

L2.R/
: (2-23)

For the convenience of the reader, we provide the details. In light of (2-22), we may assume fk � 0.
Normalizing the supremum in (2-23) to equal 1, we may further assume thatZ

I

f
q

k
� jI j1�

q
2 for every subinterval I � I �k : (2-24)

Denote the collection of dyadic intervals of length 2j by Dj WDf2j Œk; kC1/ Wk2Zg, and set D WD
S
j2Z Dj .

We perform a Whitney decomposition of R2 n f.y; y/ W y 2 Rg in the following manner; see for instance
[Dodson et al. 2018, Lemma 10] and [Bégout and Vargas 2007, Proof of Theorem 1.2]. Given distinct
y; y0 2 R, there exists a unique pair of maximal dyadic intervals I; I 0 satisfying

.y; y0/ 2 I � I 0; jI j D jI 0j; and dist.I; I 0/� 4jI j:

Let I denote the collection of all such pairs as y ¤ y0 ranges over R�R. ThenX
.I;I 0/2I

1I .y/1I 0.y
0/D 1 for every .y; y0/ 2 R2 with y ¤ y0;

and therefore

fk.y/fk.y
0/D

X
.I;I 0/2I

fk;I .y/fk;I 0.y
0/ for a.e. .y; y0/ 2 R2;

where fk;I WD fk1I . Clearly, if .y; y0/ 2 I �I 0 and .I; I 0/ 2 I, then jy�y0j ' jI j. From this and (2-22),
we may choose a slightly larger dyadic interval containing I [ I 0 but of length comparable to jI j (still
denoted by I ), and it suffices to show thatX

I2D

1

jI j
1
2

�Z
f
3
2

k;I

�2
.
Z
f 2k :

We further decompose fk;I as

fk;I D
X
n2Z

fk;I;n; where fk;I;n WD fk1
fy2I W 2n

jI j1=2
�fk.y/<

2nC1

jI j1=2
g
;

and note that it suffices to establishX
I2D

1

jI j
1
2

�Z
f
3
2

k;I;n

�2
. 2�jnj"

Z
f 2k (2-25)

for some " > 0 and every n 2 Z. By the Cauchy–Schwarz inequality,�Z
f
3
2

k;I;n

�2
�

�Z
f 2k;I;n

��Z
fk;I;n

�
:
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By construction of fk;I;n, Chebyshev’s inequality, and normalization (2-24),Z
fk;I;n �

2nC1

jI j
1
2

ˇ̌̌̌�
y 2 I W fk.y/�

2n

jI j
1
2

�ˇ̌̌̌
�
2nC1

jI j
1
2

R
I f

q

k

2nqjI j�
q
2

. 2�jnj.q�1/jI j
1
2 (2-26)

for every q > 1 and n� 0. If n < 0, then the following simpler estimate suffices:Z
fk;I;n .

2n

jI j
1
2

jI j D 2�jnjjI j
1
2 : (2-27)

Combining (2-26) and (2-27), we concludeX
I2D

1

jI j
1
2

�Z
f
3
2

k;I;n

�2
. 2�jnj"

X
I2D

Z
f 2k;I;n

for some " > 0, from which we get the desired (2-25) by noting thatX
I2D

Z
f 2k;I;n D

X
j2Z

X
I2Dj

Z
f 2k 1ffk'2n�j=2g D

Z
R

� X
j2ZW

fk.y/'2
n�j=2

f 2k .y/

�
dy .

Z
f 2k :

This concludes the verification of (2-23). Recalling inequality (2-19), and specializing (2-23) to q D 3
2

,
yields

kEp.f /k3L6 .
�

sup
k;I�I�

k

jI j�
1
6 kfkkL3=2.I /

�X
k2Z

kfkk
2
L2
C
�
sup
k2Z

jIkj
� 1
6 kfkkL3=2

� 2
3 kf k

7
3

L2

.
�
sup
k2Z

sup
I�I�

k

jI j�
1
6 kfkkL3=2.I /

� 2
3 kf k

7
3

L2
;

where the last line follows from Hölder’s inequality. �
In the next section, it will be useful to have the L1 version of (2-21) at our disposal, and this is the

content of the following result.

Proposition 2.8. Let p > 1. Then there exist 
 2 .0; 1/ such that

kEp.f /kL6.R2/ .p;

�
sup
k2Z

sup
I�I�

k

jI j�
1
2 kf kL1.I /

�

kf k

1�


L2.R/
(2-28)

for every f 2 L2.R/, where the inner supremum is taken over all subintervals I � I �
k

.

The proof below yields 
 D 2
45

and is inspired by [Christ and Shao 2012a, Proposition 2.9].

Proof of Proposition 2.8. Set ı WD kEp.f /kL6kf k�1L2 . From (2-21) we have

sup
k2Z

sup
I�I�

k

jI j�
1
6 kf kL3=2.I / & ı

9
2 kf kL2.R/:

Then there exist k 2 Z and an interval I � I �
k

such thatZ
I

jf j
3
2 � c0ı

27
4 jI j

1
4 kf k

3
2

L2.R/
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for a universal constant c0 (independent of f; ı). Given R � 1, define the set E WD fy 2 I W jf .y/j �Rg.
Set g WD f 1E and h WD f �g. Then g and h have disjoint supports, and kgkL1 �R. Since jh.y/j �R
for almost every y 2 I for which h.y/¤ 0, we haveZ

I

jhj
3
2 �R�

1
2

Z
I

jhj2 �R�
1
2 kf k2

L2.R/
:

Choose R satisfying R�
1
2 D

1
2
c0ı

27
4 jI j

1
4 kf k

� 1
2

L2.R/
. ThenZ

I

jgj
3
2 D

Z
I

jf j
3
2 �

Z
I

jhj
3
2 �

c0

2
ı
27
4 jI j

1
4 kf k

3
2

L2.R/
:

Since g is supported on I, Hölder’s inequality implies

kgkL2 � jI j
� 1
6 kgkL3=2 � c1ı

9
2 kf kL2 ; (2-29)

where c1 is universal. Since kgkL1 �R, we have (by the definition of R) that

jg.y/j � c2ı
� 27
2 jI j�

1
2 kf kL2.R/1I .y/ for almost every y 2 R;

where c2 is universal. Together with (2-29), this implies the lower boundZ
I

jgj �

Z
I

jgj
jgj

c2ı
� 27
2 jI j�

1
2 kf kL2

D c�12 ı
27
2 jI j

1
2

kgk2
L2

kf kL2
� c3ı

45
2 jI j

1
2 kf kL2 ;

where c3 is universal. Since jgj � jf j, it follows that

c3ı
45
2 jI j

1
2 kf kL2.R/ � kgkL1.I / � kf kL1.I /:

Recalling the definition of ı, we obtain (2-28) with 
 D 2
45

. �

3. Existence versus concentration

This section is devoted to the proof of Theorem 1.3. Start by observing the scale invariance of (1-10), or
equivalently that of (1-9). Indeed, if f�.y/ WD f .�y/, then kf�kL2.R/ D �

�1=2kf kL2.R/. On the other
hand, Ep.f�/.x; t/D ��.pC4/=6Ep.f /.x=�; t=�p/, and so

kEp.f�/kL6.R2/ D �
�
pC4
6
C
pC1
6 kEp.f /kL6.R2/ D �

� 1
2 kEp.f /kL6.R2/:

In particular, given any sequence fang � R n f0g, if ffng is an L2-normalized extremizing sequence for
(1-9), then so is fjanj1=2fn.an � /g.

We come to the first main result of this section.

Proposition 3.1. Let ffng � L2.R/ be an L2-normalized extremizing sequence of nonnegative functions
for (1-9). Then there exist a subsequence ffnkg and a sequence fakg � R n f0g such that the rescaled
sequence fgkg, gk WD jakj1=2fnk .ak � / satisfies one of the following conditions:

(i) There exists g 2 L2.R/ such that gk! g in L2.R/ as k!1.

(ii) fgkg concentrates at y0 D 1.
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Theorem 1.3 follows at once from Proposition 3.1 and the following result.

Lemma 3.2. Let p > 1. Given y0 2 R n f0g, let ffng � L2.R/ be a sequence concentrating at y0. Then

lim sup
n!1

kfn�p �fn�p �fn�pk
2
L2.R2/

kfnk
6
L2.R/

�
2�

p
3p.p� 1/

: (3-1)

If we set fn.y/ D e�n.jyj
p�jy0j

p�py0jy0j
p�2.y�y0//jyj.p�2/=6, then the sequence ffnkfnk�1L2 g concen-

trates at y0, and equality holds in (3-1).

Convolution of singular measures is treated in much greater generality in the companion paper [Oliveira
e Silva and Quilodrán 2019]. Lemma 3.2 is almost contained in [Oliveira e Silva and Quilodrán 2018;
2019], and we just indicate the necessary changes.

Proof sketch of Lemma 3.2. Once the boundary value for j � j.p�2/=6�p � j � j.p�2/=6�p � j � j.p�2/=6�p
given in (4-3) below is known to equal the right-hand side of (3-1), the proof for p � 2 follows the exact
same lines as that of [Oliveira e Silva and Quilodrán 2018, Lemmas 4.1 and 4.2]. We omit the details.

If 1<p<2, then the function j � j.p�2/=6 fails to be continuous at the origin, and an additional argument
is needed. We show how to reduce matters to the analysis of projection measure. Let ffng � L2.R/
concentrate at y0 ¤ 0. Then

lim sup
n!1

kfn�p �fn�p �fn�pk
2
L2

kfnk
6
L2

D jy0j
p�2 lim sup

n!1

kfn�p �fn�p �fn�pk
2
L2

kfnk
6
L2

; (3-2)

where �p denotes the projection measure d�p D ı.s� jyjp/ dy ds. To verify (3-2), consider the interval
J WD Œy0=2; 3y0=2�. Then

lim sup
n!1

kfn�p �fn�p �fn�pk
2
L2

kfnk
6
L2

D lim sup
n!1

kfn1J�p �fn1J�p �fn1J�pk2L2

kfn1J k6L2

D jy0j
p�2 lim sup

n!1

kfn�p �fn�p �fn�pk
2
L2

kfnk
6
L2

:

Here, to justify the first equality, invoke the continuity of the operator Ep , and the fact that the sequence
ffng concentrates at y0. For the second equality, additionally note that

kfn1J j � j
p�2
6 �fn1J jy0j

p�2
6 kL2

kfn1J kL2
! 0 as n!1:

From [Oliveira e Silva and Quilodrán 2019, Proposition 2.1], the measure �p��p��p defines a continuous
function in the interior of its support, with continuous extension to the boundary except at .0; 0/. Moreover,
for any y0 ¤ 0,

.�p � �p � �p/.3y0; 3jy0j
p/D

2�
p
3p.p� 1/jy0jp�2

:

The result now follows as in [Oliveira e Silva and Quilodrán 2018, Lemmas 4.1 and 4.2]. �
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The proof of Proposition 3.1 relies on the bilinear extension estimates and cap bounds from Section 2,
together with a suitable variant of Lions’ concentration-compactness lemma, which is formulated in the
Appendix as Proposition A.1. This has two important consequences for the present context, the first of
which is the following.

Proposition 3.3. Let ffng � L2.R/ be an L2-normalized extremizing sequence for (1-9). Let frng be a
sequence of nonnegative numbers satisfying rn! 0 as n!1 and

inf
n2N

Z 1Crn

1�rn

jfn.y/j
2 dy > 0:

Then the sequence ffng concentrates at y0 D 1.

Proof. Consider the intervals Jn WD Œ1� rn; 1C rn�, n 2 N, and define the pseudometric

%WR n f1g �R n f1g ! Œ0;1/; %.x; y/ WD jk� k0j; (3-3)

where k; k0 are such that jx� 1j 2 Œ2k; 2kC1/ and jy � 1j 2 Œ2k
0

; 2k
0C1/. Let R be an integer. Then the

ball centered at x ¤ 1 of radius R defined by % is given by

B.x;R/D fy 2 R n f1gW 2k�R � jy � 1j< 2kCRC1g:

Let ffng be as in the statement of the proposition. Apply Proposition A.1 to the sequence fjfnj2g with
X DR equipped with Lebesgue measure, Nx D 1, the function % defined as in (3-3), and �D 1. Passing to
a subsequence, also denoted by fjfnj2g, one of three cases arises.

Case 1: The sequence fjfnj2g satisfies compactness. In this case, there exists fxng � R n f1g with the
property that for any " > 0 there exists R <1 such that, for every n� 1,Z

B.xn;R/

jfnj
2
� 1� ": (3-4)

Suppose that lim supn!1 jxn � 1j > 0. Then, possibly after extraction of a subsequence, fxng is
eventually far from 1; i.e., there exist N0 2 N, `� 2 Z such that jxn � 1j > 2`

�

for every n � N0. Let
" WD 1

2
infn kfnk2L2.Jn/ > 0, and choose an integer R such that (3-4) holds. Now,

B.xn; R/D fy 2 R n f1gW 2kn�R � jy � 1j< 2knCRC1g;

where kn is such that jxn � 1j 2 Œ2kn ; 2knC1/, and hence B.xn; R/ � fy ¤ 1W jy � 1j � 2`
��Rg. Let

N1 �N0 be such that rn < 2`
��R for every n�N1. In this case, we have Jn\B.xn; R/D∅, which is

impossible because our choice of " would then force

1D

Z
R

jfnj
2
�

Z
Jn

jfnj
2
C

Z
B.xn;R/

jfnj
2 > 1:

It follows that xn!1 as n!1 and consequently the sequence ffng concentrates at y0D1. Indeed, given
" > 0, choose an integer R such that (3-4) holds. Then B.xn; R/� Œ1� 2knCRC1; 1C 2knCRC1� n f1g,
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where jxn� 1j 2 Œ2kn ; 2knC1/ and kn!�1, as n!1, so that 2knCRC1! 0, as n!1. This forcesZ 1C2knCRC1

1�2knCRC1
jfn.y/j

2 dy � 1� "

for every n� 1, which implies concentration of the sequence ffng at y0 D 1.

Case 2: The sequence fjfnj2g satisfies dichotomy. Let ˛ 2 .0; 1/ be as in the dichotomy condition. Given
" > 0, consider the corresponding data R, k0, �n;j D jfn;j j2, j 2 f1; 2g, fxng �Rnf1g, fRng � Œ0;1/.
In particular,

supp.fn;1/� B.xn; R/ and supp.fn;2/� B.xn; Rn/{:

Since Rn�R!1 as n!1, by Corollary 2.4 we obtain

kEp.fn;1/Ep.fn;2/kL3 � Cnkfn;1kL2kfn;2kL2 ; (3-5)

where Cn D Cn."/. 2�ˇ.Rn�R/ for some ˇ > 0. In particular, given " > 0, we have Cn! 0 as n!1.
Aiming at a contradiction, consider

kEp.fn�fn;1�fn;2/kL6 �Epkfn� .fn;1Cfn;2/kL2 �Ep"
1
2 : (3-6)

The latter inequality requires a short justification which boils down to the pointwise estimate

.jfnj � .jfn;1jC jfn;2j//
2
� jjfnj

2
� .jfn;1jC jfn;2j/

2
j D jjfnj

2
� .jfn;1j

2
Cjfn;2j

2/j: (3-7)

This, in turn, follows from the disjointness of the supports of fn;1 and fn;2, together with the trivial
estimate jjfnj� .jfn;1jC jfn;2j/j � jfnjC .jfn;1jC jfn;2j/. In this way, (3-7) and Proposition A.1 imply

k.jfnj � .jfn;1jC jfn;2j//
2
kL1 � kjfnj

2
� .jfn;1j

2
Cjfn;2j

2/kL1 � ":

Coming back to (3-6), we have as an immediate consequence that

kEp.fn/kL6 �Ep"
1
2 CkEp.fn;1Cfn;2/kL6 :

Expanding the binomial, using kfn;1kL2 ; kfn;2kL2 � 1, and Hölder’s inequality together with (3-5), we
find that there exists c independent of n such that, for sufficiently large n,

kEp.fn;1Cfn;2/k6L6 � kEp.fn;1/k
6
L6
CkEp.fn;2/k6L6 C cCn

�E6p .kfn;1k
6
L2
Ckfn;2k

6
L2
/C cCn

�E6p ..˛C "/
3
C .1�˛C "/3/C cCn: (3-8)

This implies, for every sufficiently large n,

kEp.fn/kL6 �Ep"
1
2 C .E6p ..˛C "/

3
C .1�˛C "/3/C cCn/

1
6 :

Taking n!1, and recalling that ffng is an L2-normalized extremizing sequence for (1-9), we find that

Ep �Ep"
1
2 CEp..˛C "/

3
C .1�˛C "/3/

1
6
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for every " > 0. Taking "! 0 yields 1 � ˛3C .1� ˛/3, which is impossible since ˛ 2 .0; 1/. Hence
dichotomy does not arise.

Case 3: The sequence fjfnj2g satisfies vanishing. In this case,

lim
n!1

sup
k2Z

Z
2k�R�jy�1j�2kCRC1

jfn.y/j
2 dy D 0

for every integer R <1. In particular, for fixed k 2 N, we have

lim
n!1

Z
2�k�jy�1j�2k

jfn.y/j
2 dy D 0: (3-9)

Set fn;1 WD fn1Œ1�2�k ;1C2�k� and fn;2 WD fn1fjy�1j�2kg. Since kfn � fn;1 � fn;2kL2 ! 0 as n!1
it follows that ffn;1 C fn;2gn is also an extremizing sequence for (1-9) for each k 2 N. This new
sequence splits the mass into two separated regions, and so we expect to reach a contradiction if
lim supn!1 kfn;2kL2 > 0, just as in Case 2. Set ˛k WD lim supn!1 kfn;2k

2
L2

(recall that fn;2 depends
on k), and note that f˛kg is a constant sequence. Indeed,Z

jy�1j�2k
jfn.y/j

2 dy D
Z
jy�1j�2kC1

jfn.y/j
2 dyC

Z
2k�jy�1j�2kC1

jfn.y/j
2 dy (3-10)

and from (3-9) with kC 1 instead of k we have

lim
n!1

Z
2k�jy�1j�2kC1

jfn.y/j
2 dy D 0:

Taking lim supn!1 in (3-10) yields ˛kC1 D ˛k for every k 2 N. An argument analogous to that of
Case 2 (starting from (3-8)) shows that there exist ˇ > 0 and a sequence fCkg, 0� Ck . 2�ˇk! 0 as
k!1 such that

1� ˛3kC .1�˛k/
3
CCk for every k 2 N:

Since ˛k � ˛ is constant, we may take k!1 in the previous inequality and obtain 1� ˛3C .1�˛/3.
Since ˛ 2 Œ0; 1�, necessarily ˛ 2 f0; 1g. We claim that ˛D 0. For any k � 1, the support of fn;2 is disjoint
from the interval Jn if n large enough. Thus

kfn;2k
2
L2
� 1�

Z
Jn

jfnj
2
� 1� inf

n2N

Z
Jn

jfnj
2;

and therefore
˛ � 1� inf

n2N

Z
Jn

jfnj
2 < 1:

We conclude that ˛D 0, as claimed. Finally, we show that vanishing implies concentration at yD 1. Since

1D kfnk
2
L2
D kfn;1k

2
L2
Ckfn;2k

2
L2
C on.1/D kfn;1k

2
L2
C on.1/D kfn1Œ1�2�k ;1C2�k�k

2
L2
C on.1/;

we find that, for every k 2 N,

lim
n!1

Z 1C2�k

1�2�k
jfn.y/j

2 dy D 1:

This implies that the sequence ffng concentrates at y0 D 1.
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To sum up, we proved that any sequence ffng as in the statement of the proposition does not satisfy
dichotomy, and that if it satisfies compactness or vanishing, then it concentrates at y0D 1. Thus the proof
is complete. �

As a second application of Proposition A.1, we prove dyadic localization of extremizing sequences,
after rescaling. We take X D R, Nx D 0, and use the dyadic pseudometric

%WR n f0g �R n f0g ! Œ0;1/; %.x; y/ WD jk� k0j; (3-11)

where this time jxj 2 Œ2k; 2kC1/ and jyj 2 Œ2k
0

; 2k
0C1/. In this case, if R is an integer, then

B.x;R/D fy 2 R n f0gW 2k�R � jyj< 2kCRC1g:

Proposition 3.4. Let ffng � L2.R/ be an L2-normalized extremizing sequence for (1-9). Then there
exist a subsequence ffnkg, a sequence fakg � R n f0g, and a function ‚ W Œ1;1/! .0;1/, ‚.R/! 0

as R!1 such that the rescaled sequence fgkg, gk WD jakj1=2fnk .ak � /, satisfies

kgkkL2.Œ�R;R�{/ �‚.R/ for every k � 1 and R � 1: (3-12)

This proposition will provide the input for the suitable application of the Brézis–Lieb lemma, which is
formulated in the Appendix as Proposition B.1.

Proof of Proposition 3.4. Let ffng be as in the statement of the proposition. In view of Corollary 2.6,
there exists `n 2 Z such that kfnkL2.I �

`n
/ &p 1, if n is large enough. Setting gn WD 2`n=2fn.2`n � /, we

then have

kgnkL2.I �0/
&p 1 (3-13)

for every sufficiently large n. Using Proposition A.1 with the pseudometric (3-11), we obtain a subsequence
fjgnk j

2g that satisfies one of three possibilities. Because of (3-13), vanishing does not occur. The argument
given in Case 2 of the proof of Proposition 3.3 can be used in conjunction with Corollary 2.2 to show that
the sequence fjgnk j

2g does not satisfy dichotomy either. Therefore it must satisfy compactness. Thus,
there exists a sequence fNkg � Z such that, for every k � 1 and " > 0, there exists an integer r D r."/
for which Z

2Nk�r�jyj�2NkCrC1
jgk.y/j

2 dy � 1� ":

Because of (3-13), the sequence fNkg is bounded, supk�1 jNkj DW r0 <1. By redefining r as rC r0C1,
it follows that Z

2�r�jyj�2r
jgk.y/j

2 dy � 1� " for every k � 1: (3-14)

Defining the function

�.R/ WD sup
k�1

Z
fR�1�jyj�Rg{

jgk.y/j
2 dy;
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R 7! �.R/ is a nonincreasing function of R which is bounded by 1 and, in view of (3-14), satisfies
�.R/! 0 as R!1. By construction,Z

fR�1�jyj�Rg{
jgk.y/j

2 dy � �.R/ for every k � 1; R � 1;

which implies (3-12) at once by taking ‚ WD �1=2. �

We are finally ready to prove Proposition 3.1.

Proof of Proposition 3.1. Let ffng be as in the statement of the proposition. Apply Proposition 3.4 to
ffng, and denote the resulting rescaled subsequence by fgng. From the L1 cap estimate (2-28) we know
that, for each sufficiently large n, there exists an interval Jn D Œsn� rn; snC rn�, contained in a dyadic
interval3 Œ2kn ; 2knC1�, such that Z

Jn

jgnj � cjJnj
1
2

for some c > 0 which is independent of n. By the Cauchy–Schwarz inequality,

kgnkL2.Jn/ � c; (3-15)

and so estimate (3-12) implies the existence of C > 0 independent of n, such that C�1 � jsnj � C.
Rescaling again, we may assume sn D 1 for every n.

If r� WD lim infn!1 jJnj> 0, then passing to the relevant subsequence that realizes the limit inferior
we have Z 1C2r�

1�2r�
gn.y/ dy D

Z 1C2r�

1�2r�
jgn.y/j dy �

Z
Jn

jgnj&
p
r�;

provided n is large enough to ensure Jn � Œ1 � 2r�; 1C 2r��. Therefore any L2-weak limit of the
sequence fgng is nonzero. Here we used the nonnegativity of the sequence fgng. By Proposition B.1, we
conclude that there exists 0¤ g 2 L2.R/, such that possibly after a further extraction, gn! g in L2.R/,
as n!1. In other words, (i) holds.

It remains to consider the case when jJnj ! 0, as n!1. In view of (3-15), Proposition 3.3 applies,
and the sequence fgng concentrates at y0 D 1, i.e., (ii) holds. This finishes the proof of Proposition 3.1
(and therefore of Theorem 1.3). �

4. Existence of extremizers

In this section, we prove Theorem 1.4. The basic strategy is to choose an appropriate trial function f for
which the ratio from (1-10),

p̂.f / WD
kf�p �f�p �f�pk

2
L2.R2/

kf k6
L2.R/

; (4-1)

3Or its negative, but in that case we replace fn by its reflection around the origin.
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can be estimated via a simple lower bound. We will give different arguments depending on whether
1 < p < 2 or p > 2, which rely on distinct choices of trial functions. This can be explained by the
different qualitative nature of the 3-fold convolutions w�p �w�p �w�p in the two regimes of p; see
Figure 1. Here, and throughout this section, d�p D ı.s� jyjp/ dy ds denotes projection measure on the
curve s D jyjp, and the weight is given by w D j � j.p�2/=3. Note that d�p D

p
w d�p.

The following analogue of [Oliveira e Silva and Quilodrán 2018, Proposition 6.4] holds for 3-fold
convolutions in R2.

Proposition 4.1. Given p > 1, the following assertions hold for w�p �w�p �w�p:

(a) It is absolutely continuous with respect to Lebesgue measure on R2.

(b) Its support, denoted by Ep, is given by

Ep D f.�; �/ 2 R2 W � � 31�pj�jpg: (4-2)

(c) If p � 2, then its Radon–Nikodym derivative, also denoted by w�p �w�p �w�p , defines a bounded,
continuous function in the interior of the set Ep. If 1 < p < 2, then w�p �w�p �w�p defines a
continuous function on the set

zEp WD f.�; �/ 2 R2 W 31�pj�jp < � < 21�pj�jpg:

(d) It is even in �, that is,

.w�p �w�p �w�p/.��; �/D .w�p �w�p �w�p/.�; �/

for every � 2 R, � > 0, and is homogeneous of degree zero in the sense that

.w�p �w�p �w�p/.��; �
p�/D .w�p �w�p �w�p/.�; �/ for every � > 0:

(e) It extends continuously to the boundary of Ep , except at the point .�; �/D .0; 0/, with values given by

.w�p �w�p �w�p/.�; 3
1�p
j�jp/D

2�
p
3p.p� 1/

if � ¤ 0: (4-3)

Proof. For p � 2, the result follows from Proposition 2.1 and Remark 2.3 of [Oliveira e Silva and
Quilodrán 2019]. If 1 < p < 2, then the weight w is singular at the origin, and an additional argument is
required in order to establish parts (c) and (e) (as the others follow from [loc. cit.]). Note that part (e)
also follows from [loc. cit.] after we verify (c), and so it suffices to show the latter.

Let  D j � jp. From [loc. cit., Remark 2.3], the formula

.w�p �w�p �w�p/.�; �/D

Z
S1

�ˇ̌
1
3
�C˛.!1C!2/

ˇ̌ ˇ̌
1
3
� �˛!1

ˇ̌ ˇ̌
1
3
� �˛!2

ˇ̌�p�2
3˝

!1;
W1

˛

˛
C
˝
!2;

W2

˛

˛ d�.!1;!2/; (4-4)

where

Wi .�; �; !1; !2/Dr 
�
1
3
�C˛!1C˛!2

�
�r 

�
1
3
� �˛!i

�
; i D 1; 2;
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holds on zEp, provided that the function W defined by

W.�; !1; !2/ WD
�ˇ̌
1
3
�C˛.!1C!2/

ˇ̌ ˇ̌
1
3
� �˛!1

ˇ̌ ˇ̌
1
3
� �˛!2

ˇ̌�p�2
3 (4-5)

is continuous in the domain of integration. Here !21 C!
2
2 D 1, arc-length measure on the unit circle S1

is denoted by �, and the function ˛ D ˛.�; �; !1; !2/ is implicitly defined byˇ̌
1
3
�C˛.!1C!2/

ˇ̌p
C
ˇ̌
1
3
� �˛!1

ˇ̌p
C
ˇ̌
1
3
� �˛!2

ˇ̌p
D � I

see [Oliveira e Silva and Quilodrán 2019] for details. It follows thatˇ̌
1
3
�C˛.!1C!2/

ˇ̌p
C
ˇ̌
1
3
� �˛!1

ˇ̌p
C
ˇ̌
1
3
� �˛!2

ˇ̌p
< 21�pj�jp;

provided .�; �/ 2 zEp. On the other hand, if 1
3
� �˛!1 D 0, then convexity of  impliesˇ̌

2
3
�C˛!2

ˇ̌p
C
ˇ̌
1
3
� �˛!2

ˇ̌p
� 21�pj�jp;

and similarly if 1
3
� �˛!2 D 0, while if 1

3
�C˛.!1C!2/D 0, thenˇ̌

1
3
� �˛!1

ˇ̌p
C
ˇ̌
1
3
� �˛!2

ˇ̌p
� 21�p

ˇ̌
2
3
� �˛.!1C!2/

ˇ̌p
D 21�pj�jp:

It follows that none of these three terms can vanish in a neighborhood of any point .�; �/2 zEp , and therefore
W is continuous there. Thus identity (4-4) holds, and this concludes the verification of part (c). �

The boundedness of w�p�w�p�w�p provides an alternative way towards estimate (1-10) via the usual
application of the Cauchy–Schwarz inequality, at least in the restricted range p � 2. Moreover, identity
(4-3) and the argument in Lemma 3.2 together imply that the corresponding optimal constant Cp satisfies

C 6p �
2�

p
3p.p� 1/

;

which should be compared to (1-13).

4A. Effective lower bounds for Cp. We start by examining a simple lower bound, which is the analogue
of [Oliveira e Silva and Quilodrán 2018, Lemma 6.1] for 3-fold convolutions in R2.

Lemma 4.2. Given a strictly convex function ‰ W R! R and a nonnegative function w W R! Œ0;1/,
consider the measures d�.y; s/D ı.s�‰.y// dy ds and d� D

p
w d�. Let E denote the support of the

convolution measure � � � � �. Given � > 0, a 2 R, let f�;a.y/ WD e��.‰.y/Cay/
p
w.y/. Then

kf�;a� �f�;a� �f�;a�k
2
L2.R2/

kf�;ak
6
L2.R/

�

kf�;ak
6
L2.R/R

E e
�2�.�Ca�/ d� d�

(4-6)

for every f�;a 2 L2.R/ such that f�;a� �f�;a� �f�;a� 2 L2.R2/.

The proof is entirely parallel to that of [Oliveira e Silva and Quilodrán 2018, Lemma 6.1]. Note that
(4-6) implies

sup
0¤f 2L2.R/

kf� �f� �f�k2
L2.R2/

kf k6
L2.R/

� sup
�>0; a2R

kf�;ak
6
L2.R/R

E e
�2�.�Ca�/ d� d�

: (4-7)
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Specializing Lemma 4.2 to the case of the measure �p with the natural choice of trail function f .y/D
e�jyj

p

jyj.p�2/=6, a quick computation yields

p̂.f /�
4�
�pC1
3p

�3
31�

1
pp2�

�
1
p

� : (4-8)

This lower bound is good enough to establish the strict inequality (1-13) in a range of p that includes
the cubic case p D 3 but not the quartic case p D 4, so we have to refine it. For the above choice of
trial function, the corresponding ratio (4-1) can be expanded as an infinite series with nonnegative terms,
whose coefficients are given in terms of the Gamma function and whose first term equals the expression
on the right-hand side of (4-8).

Proposition 4.3. Let p > 1 and f .y/D e�jyj
p

jyj.p�2/=6 2 L2.R/. Then

p̂.f /D
31�

1
pp2�

�
1
p

�
23�

�pC1
3p

�3 1X
nD0

.4nC 1/24n�1
� nX
kD0

�2n
2k

��nCk� 1
2

2n

�
I2k.p/

�2
; (4-9)

where the coefficients fI2k.p/gk�0 are given by expression (4-15) below.

The proof will make use of the classical Legendre polynomials, denoted by fPngn�0, which constitute
a family of orthogonal polynomials with respect to the L2-norm on the interval Œ�1; 1�. Explicitly, they
are given by4

Pn.t/D 2
n

nX
kD0

�n
k

�� nCk�1
2

n

�
tk; �1� t � 1; (4-10)

from where one checks that hPm; PniL2 D .2=.2nC 1// ı.nDm/; see [Stein and Weiss 1971, Corol-
lary 2.16, Chapter 4]. See also [Carneiro and Oliveira e Silva 2015; Christ and Shao 2012a; Foschi
2015; Gonçalves 2019; Negro 2018] for earlier appearances of Legendre and other families of orthogonal
polynomials in sharp Fourier restriction theory.

Proof of Proposition 4.3. Start by noting that the function f .y/ D e�jyj
p

jyj.p�2/=6 coincides with
e��

p
w.�/ on the support of �p . Using this together with parts (b) and (d) of Proposition 4.1, we obtain

kf�p �f�p �f�pk
2
L2
D ke�� .w�p �w�p �w�p/k

2
L2

D

Z 1
0

Z 31�1=p�1=p

�31�1=p�1=p
e�2� .w�p �w�p �w�p/

2.�; �/ d� d�

D

Z 1
0

Z 31�1=p

�31�1=p
�
1
p e�2� .w�p �w�p �w�p/

2.�
1
p �; �/ d� d�

D

�Z 1
0

�
1
p e�2� d�

�Z 31�1=p

�31�1=p
.w�p �w�p �w�p/

2.�; 1/ d�

D
31�

1
p�
�
1
p

�
p21C

1
p

Z 1

�1

.w�p �w�p �w�p/
2.31�

1
p t; 1/ dt: (4-11)

4Recall that the binomial coefficient
�˛
n

�
WD ˛.˛� 1/ � � � .˛�nC 1/=nŠ is also defined when ˛ … Z.
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On the other hand,

kf k2
L2
D

Z
R

e�2jyj
p

jyj
p�2
3 dy D 2

Z 1
0

e�2y
p

y
p�2
3 dy D

2
2
3
� 1
3p

p
�

�
pC 1

3p

�
: (4-12)

Given t 2 Œ�1; 1�, define gp.t/ WD .w�p�w�p�w�p/.31�1=pt; 1/. Expanding gp in the basis of Legendre
polynomials,

kgpk
2
L2.Œ�1;1�; dt/ D

1X
nD0

1

kPnk
2
L2

�Z 1

�1

gp.t/Pn.t/ dt
�2

D

1X
nD0

.4nC 1/24n�1
� nX
kD0

�2n
2k

��nCk� 1
2

2n

� Z 1

�1

gp.t/t
2k dt

�2
;

where the last identity follows from (4-10), the normalization kPnk2L2D 2=.2nC1/, and the fact that gp is
an even function of t . We proceed to find an explicit expression for the moments In.p/ WD

R 1
�1 gp.t/ t

n dt .
Given b 2 R, we computeZ

R2
e�.��b�/.w�p �w�p �w�p/.�; �/ d� d�

D

Z 1
0

Z 31�1=p

�31�1=p
�
1
p e��eb�

1=p�.w�p �w�p �w�p/.�; 1/ d� d�

D

1X
nD0

3.1�
1
p
/.2nC1/b2n

.2n/Š

�Z 1
0

e���
2nC1
p d�

�Z 1

�1

t2n.w�p �w�p �w�p/.3
1� 1

p t; 1/ dt

D

1X
nD0

3.1�
1
p
/.2nC1/b2n

.2n/Š

2nC 1

p
�

�
2nC 1

p

�
I2n.p/: (4-13)

This Laplace transform can be alternatively computed asZ
R2
e�.��b�/.w�p �w�p �w�p/.�; �/ d� d� D

�Z
R

e�jyj
p

eby jyj
p�2
3 dy

�3
D

� 1X
nD0

2b2n

.2n/Š

Z 1
0

e�y
p

y
p�2
3
C2n dy

�3
D

� 1X
nD0

2b2n

p.2n/Š
�

�
pC 1C 6n

3p

��3
: (4-14)

Equating coefficients of the same degree, we obtain

I2n.p/D
23.2n/Š

3.1�
1
p
/.2nC1/p2.2nC 1/�

�
2nC1
p

� nX
kD0

n�kX
mD0

�
�pC1C6k

3p

�
�
�pC1C6m

3p

�
�
�pC1C6.n�k�m/

3p

�
.2k/Š .2m/Š .2.n� k�m//Š

:

(4-15)
Identity (4-9) follows at once, and the proof is complete. �
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p D 3

p D 4

p D 5

p D 10

p D 11

p D 12

p D 4
3

p D 3
2

p D 5
3

Figure 1. Plots of the functions gp;N .t/, appropriately normalized so that they are
close to 1 at t D 1 for p 2 f3; 4; 5; 10; 11; 12g and p 2

˚
4
3
; 3
2
; 5
3

	
. For p 2 f3; 4; 5g and

p 2
˚
4
3
; 3
2
; 5
3

	
we used N D 10, for p 2 f10; 11; 12g we used N D 15.

Remark 4.4. From the preceding proof, we have the following approximating sequence fgp;N gN�0
for gp:

gp;N .t/ WD

NX
nD0

.4nC 1/22n�1
� nX
kD0

�2n
2k

��nCk� 1
2

2n

�
I2k.p/

�
P2n.t/; �1� t � 1:

This was used to construct Figure 1. They correspond to approximate graphs of w�p �w�p �w�p on the
region f.�; 1/W 0� � � 31�1=pg for different values of p. By homogeneity, the full picture on R2 can be
obtained from these graphs. Figure 1 (top) indicates that, for large p, the function gp.t/ becomes small as
t! 0. The function .w�p�w�p�w�p/.�; �/ should then be small near the � -axis, unlike the case of small
values of p. This suggests that extremizing sequences may concentrate at the boundary if p is large enough.

4B. Proof of Theorem 1.4. We consider the case p > 2 first. From Theorem 1.3 and Proposition 4.3, it
suffices to show that there exists N 2 N such that

31�
1
pp2�

�
1
p

�
23�

�pC1
3p

�3 NX
nD0

.4nC 1/24n�1
� nX
kD0

�2n
2k

��nCk� 1
2

2n

�
I2k.p/

�2
>

2�
p
3p.p� 1/

; (4-16)

where the coefficients I2k.p/ are given by (4-15). The range of validity of (4-16) can be estimated by
performing an accurate numerical calculation. Taking N D 15, one checks that inequality (4-16) holds
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for every p 2 .2; p0/, where p0 2 Œ4; 5� and can be numerically estimated by p0 � 4:803, with three
decimal places. Increasing the value of N does not seem to substantially increase p0.

If 1 < p < 2, then inequality (4-16) fails (for every N 2N). Incidentally, note that if p D 2, then the
left- and right-hand sides of (4-16) are equal (for every N 2N) since the 3-fold convolution of projection
measure on the parabola is constant inside its support; see [Foschi 2007, Lemma 4.1]. We are thus led to
a different trial function. For n 2 N, define

fn.y/D e
�n
2
.jyjp�py/

jyj�
2�p
6 : (4-17)

In light of Lemma 3.2, the sequence ffnkfnk�1L2 g concentrates at y0 D 1. Passing to a continuous
parameter � > 0, Lemma 4.2 yields the lower bound

p̂.f�/�
kf�k

6
L2.R/R

Ep
e��.��p�/ d� d�

DW �p.�/;

which we proceed to analyze. Since

kf�k
2
L2.R/

D

Z 1
�1

e��.jyj
p�py/

jyj�
2�p
3 dy;Z

Ep

e��.��p�/ d� d� D
Z 1
�1

e�p�
�Z 1

31�p j�jp
e��� d�

�
d� D

1

�

Z 1
�1

e��.3
1�p j�jp�p�/ d�;

we have

�p.�/D �

�R1
�1

e��.jyj
p�py/jyj�

2�p
3 dy

�3R1
�1

e��.3
1�p j�jp�p�/ d�

:

In view of (4-7), we have C 6p � �p.�/ for every � > 0. Therefore it suffices to show that �p.�/ >
2�=.
p
3p.p� 1//, provided � is large enough. This is the content of the following lemma, which we

choose to formulate in terms of the function 'p.�/ WD �p.��1/.

Lemma 4.5. Let p 2 .1; 2/. Then

lim
�!0C

'p.�/D
2�

p
3p.p� 1/

; (4-18)

lim
�!0C

'0p.�/D
�.2�p/.2p� 1/

9
p
3p2.p� 1/2

; (4-19)

In particular, if � > 0 is small enough, then 'p.�/ > 2�=.
p
3p.p� 1//.

Note that (4-18) follows from Lemma 3.2, but we choose to present a unified approach that establishes
both (4-18) and (4-19).

Proof of Lemma 4.5. Rewrite �p in the equivalent form

�p.�/D �

�R1
�1

e��.jyj
p�1�p.y�1//jyj�

2�p
3 dy

�3R1
�1

e��3
1�p.jyjp�3p�p3p�1.y�3// dy

:



504 GIANMARCO BROCCHI, DIOGO OLIVEIRA E SILVA AND RENÉ QUILODRÁN

Define real-valued functions y 7! ˛.y/ and y 7! ˇ.y/ via5

jyjp � 1�p.y � 1/D
�p
2

�
..y � 1/2C˛.y � 1//;

jyjp � 3p �p3p�1.y � 3/D 3p�2
�p
2

�
..y � 3/2Cˇ.y � 3//:

(4-20)

By the binomial series expansion, if jyj< 1, then

˛.y/D
p� 2

3
y3C

.p� 2/.p� 3/

12
y4C � � � ; (4-21)

ˇ.y/D
p� 2

3 � 3
y3C

.p� 2/.p� 3/

12 � 32
y4C � � � : (4-22)

One easily checks that j˛.y/j !1 and jˇ.y/j !1 as jyj !1, and

lim
�!1

�˛.��
1
2y/D lim

�!1
�ˇ.��

1
2y/D 0 (4-23)

for each y 2 R. We also haveZ
R

exp
�
��
jyjp � 1�p.y � 1/�

p
2

� �
jyj�

2�p
3 dy D ��

1
2

Z
R

e�y
2

e��˛.�
�1=2y/

j1C��
1
2yj�

2�p
3 dy;

Z
R

exp
�
��

31�p.jyjp � 3p �p3p�1.y � 3//�
p
2

� �
dy D 3

1
2��

1
2

Z
R

e�y
2

e�
�
3
ˇ.. 3

�
/
1=2
y/ dy;

and consequently

�p

�
2�

p.p� 1/

�
D

2
p
3p.p� 1/

�R
R
e�y

2

e��˛.�
�1=2y/j1C��

1
2yj�

2�p
3 dy

�3R
R
e�y

2
e�

�
3
ˇ.. 3

�
/
1=2
y/ dy

:

For bookkeeping purposes, set

Ap.�/ WD

�Z
R

e�y
2

e��˛.�
�1=2y/

j1C��
1
2yj�

2�p
3 dy

�3
and Bp.�/ WD

Z
R

e�y
2

e�
�
3
ˇ.. 3

�
/
1=2
y/ dy:

We now analyze each expression. Recalling (4-22), the numerator Ap.�/ is seen to satisfy

Ap.�/D �
3
2

�
1�

.p� 2/.2p� 1/

144�
CO.��

3
2 /

�3
as �!1: (4-24)

Since binomial series expansions are only valid inside the unit ball, this step requires some care which
we now briefly describe. Split the integral defining Ap.�/ into three regions,

A
1
3
p .�/D

�Z �p�
2

�1

C

Z p�
2

�

p
�
2

C

Z 1
p
�
2

�
e�y

2

e��˛.�
�1=2y/

j1C��
1
2yj�

2�p
3 dy DW IC IIC III;

5Note that ˛.y/D 3�2ˇ.3y/.
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and estimate each of them separately. The main contribution comes from the integral IID II.�/. Appealing
to (4-21) and to the binomial series expansion, we have

exp.��˛.��
1
2y//D 1�

p� 2

3
��

1
2y3�

.p� 2/.p� 3/

12
��1y4C

.p� 2/2

18
��1y6COy.�

� 3
2 /;

j1C��
1
2yj�

2�p
3 D 1C

p� 2

3
��

1
2yC

.p� 2/.p� 5/

18
��1y2COy.�

� 3
2 /

uniformly in y 2 Œ�
p
�=2;

p
�=2�. From this one easily checks that

II.�/D �
1
2 C�

1
2
.p� 2/.2p� 1/

144
��1CO.��

3
2 /:

Matters are thus reduced to verifying that the contributions from I and III become negligible as �!1.
On the region of integration of ID I.�/, the factor j1C��1=2yj�.2�p/=3 has an integrable singularity at
y D��1=2. Recalling the definition (4-20) of the function ˛, and changing variables ��1=2y x, we
have

I.�/D �
1
2

Z � 1
2

�1

e�
2�

p.p�1/
.j1Cxjp�1�px/

j1C xj�
2�p
3 dx:

Invoking the elementary inequality j1C xjp � 1� px &p jxjp, which is valid for every x � �1
2

and
1 < p < 2, we may use Hölder’s inequality together with the local integrability of x 7! j1C xj�.2�p/=3

in order to bound
I.�/DOp.�

1
2 exp.�Cp�//

for some Cp > 0. The contribution of III.�/ is easier to handle because no singularity occurs on
the corresponding region of integration. This concludes the verification of (4-24), which can then be
differentiated term by term because there is sufficient decay. Therefore

lim
�!1

Ap.�/D �
3
2 and lim

�!1
��2A0p.�/D�

3.p� 2/.2p� 1/�
3
2

144
:

On the other hand, using the binomial series expansion (4-22) we obtain

exp
�
�
�

3
ˇ

��
3

�

�1
2

y

��
D 1�

p� 2

3
3
2

��
1
2y3�

.p� 2/.p� 3/

36
��1y4C

.p� 2/2

54
��1y6COy.�

� 3
2 /

uniformly in y 2
�
�
1
2

�
1
3
�
�1=2

; 1
2

�
1
3
�
�1=2�, so that an argument similar to that for Ap.�/ gives

Bp.�/D �
1
2 C

.p� 2/.2p� 1/�
1
2

144�
CO.��

3
2 /;

lim
�!1

Bp.�/D �
1
2 and lim

�!1
��2B 0p.�/D

.p� 2/.2p� 1/�
1
2

144
:

We conclude

lim
�!0C

'p.�/D lim
�!1

�p.�/D lim
�!1

�p

�
2�

p.p� 1/

�
D

2�
p
3p.p� 1/

:
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To address (4-19), note that

'0p.�/D��
�2�0p.�

�1/; and so lim
�!0C

'0p.�/D lim
�!1

��2�0p.�/:

Therefore

lim
�!1

��2
d

d�

�
�p

�
2�

p.p�1/

��
D

2�
p
3p.p�1/

�
�
3.p�2/.2p�1/

144
�
.p�2/.2p�1/

144

�
D
�.2�p/.2p�1/

18
p
3p.p�1/

;

which readily implies (4-19). This completes the proof of the lemma (and therefore of Theorem 1.4). �

4C. Improving p0. In view of the results from the last subsection, it is natural to let the functional p̂

defined on (4-1) act on trial functions f .y/D e�jyj
p

jyj.p�2/=6Ca for different choices of a.6 By doing
so, the value p0 � 4:803 can be improved. We turn to the details.

Set � WD j � j.p�2/=3Ca, and note that

.��p � ��p � ��p/.��; �
p�/D �3a.��p � ��p � ��p/.�; �/ for every � > 0:

Reasoning as in (4-11) and (4-12), one checks that

kf�p �f�p �f�pk
2
L2.R2/

D
31�

1
p�
�
1C6a
p

�
p21C

1C6a
p

.1C 6a/

Z 1

�1

.��p � ��p � ��p/
2.31�

1
p t; 1/ dt;

kf k2
L2.R/

D
2
2
3
�
1C6a
3p

p
�

�
pC 1C 6a

3p

�
:

Given t 2 Œ�1; 1�, define hp.t/ WD .��p ���p ���p/.31�1=pt; 1/. Expanding hp in the basis of Legendre
polynomials,

khpk
2
L2.Œ�1;1�; dt/ D

1X
nD0

.4nC 1/24n�1
� nX
kD0

�2n
2k

��nCk� 1
2

2n

� Z 1

�1

hp.t/t
2k dt

�2
:

We proceed to find explicit expressions for the moments In.p; a/ WD
R 1
�1 hp.t/t

n dt . Given b 2 R, we
compute as in (4-13) and (4-14)Z

R2
e�.��b�/.��p���p���p/.�;�/d� d� D

1X
nD0

3.1�
1
p
/.2nC1/b2n

.2n/Š

2nC1C3a

p
�

�
2nC1C3a

p

�
I2n.p;a/

D

� 1X
nD0

2b2n

p.2n/Š
�

�
pC1C6nC3a

3p

��3
:

Equating coefficients as before, we find that the moment I2n.p; a/ equals

3�.1�
1
p
/.2nC1/23.2n/Š

p2.2nC 1C 3a/�
�
2nC1C3a

p

� nX
kD0

n�kX
mD0

�
�pC1C6kC3a

3p

�
�
�pC1C6mC3a

3p

�
�
�pC1C6.n�k�m/C3a

3p

�
.2k/Š .2m/Š .2.n� k�m//Š

:

6Note that L2-integrability forces a > �.pC 1/=6.
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This implies

p̂.f /D
31�

1
pp2�

�
1C6a
p

�
23�

�pC1C6a
3p

�3 .1C 6a/ 1X
nD0

.4nC 1/24n�1
� nX
kD0

�2n
2k

��nCk� 1
2

2n

�
I2k.p; a/

�2
;

and consequently the following lower bound holds for every N � 0:

p̂.f /�
31�

1
pp2�

�
1C6a
p

�
23�

�pC1C6a
3p

�3 .1C 6a/ NX
nD0

.4nC 1/24n�1
� nX
kD0

�2n
2k

��nCk� 1
2

2n

�
I2k.p; a/

�2
:

By numerically evaluating this sum with N D 15 and aD 7
15

, one can establish a lower bound that beats
the critical threshold 2�=.

p
3p.p � 1// for every p 2 .2; p1/, where p1 � 5:485 with three decimal

places. One further observes that the lower bound for small values of a > 0 is larger than that for aD 0,
strongly suggesting that the original trial function y 7! e�jyj

p

jyj.p�2/=6 might not be an extremizer in
that range of exponents.

5. Superexponential L2-decay

This section is devoted to the proof of Theorem 1.5. We follow the outline of [Erdoğan et al. 2011; Hundert-
mark and Shao 2012], and shall sometimes be brief. The Euler–Lagrange equation associated to (1-9) is

E�p
�
Ep.f /. � ; t /jEp.f /. � ; t /j4

�
D �f I (5-1)

see [Christ and Quilodrán 2014, Proposition 2.4] for the variational derivation in a related context. The
following 6-linear form will play a prominent role in the analysis:

Q.f1; f2; f3; f4; f5; f6/ WD

Z
R2

3Y
jD1

Ep.fj /.x; t/Ep.fjC3/.x; t/ dx dt:

An immediate consequence of (1-9) is the basic estimate

jQ.f1; f2; f3; f4; f5; f6/j.
6Y

jD1

kfj kL2.R/: (5-2)

The form Q can be rewritten as

Q.f1; f2; f3; f4; f5; f6/D

Z
R6

3Y
jD1

fj .yj /jyj j
p�2
6 fjC3.yjC3/jyjC3j

p�2
6 ı.˛.y// ı.ˇ.y// dy;

where y D .y1; : : : ; y6/ 2 R6 and

˛.y/ WD jy1j
p
Cjy2j

p
Cjy3j

p
� jy4j

p
� jy5j

p
� jy6j

p;

ˇ.y/ WD y1Cy2Cy3�y4�y5�y6:

We will also consider the associated form

K.f1; f2; f3; f4; f5; f6/ WDQ.jf1j; jf2j; jf3j; jf4j; jf5j; jf6j/;
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which is sublinear in each entry. Clearly,

jQ.f1; f2; f3; f4; f5; f6/j �K.f1; f2; f3; f4; f5; f6/; (5-3)

K.f1; f2; f3; f4; f5; f6/.
6Y

jD1

kfj kL2.R/: (5-4)

Let us now introduce a parameter s � 1, which will typically be large. If there exist j ¤ k such that fj is
supported on Œ�s; s� and fk is supported outside of Œ�Cs; C s� for some C > 1, then estimate (5-4) can
be improved to

K.f1; f2; f3; f4; f5; f6/. C�
p�1
6

6Y
jD1

kfj kL2.R/; (5-5)

in accordance with the bilinear estimates of Corollary 2.2. Introducing the weighted variant

KG.f1; f2; f3; f4; f5; f6/ WD

Z
R6
eG.y1/�

P6
jD2G.yj /

6Y
jD1

jfj .yj /jjyj j
p�2
6 ı.˛.y// ı.ˇ.y// dy;

one checks at once that

K.eGf1; e
�Gf2; e

�Gf3; e
�Gf4; e

�Gf5; e
�Gf6/DKG.f1; f2; f3; f4; f5; f6/: (5-6)

Given �; "� 0, define the function

G�;".y/ WD
�jyjp

1C "jyjp
: (5-7)

The same proof as [Hundertmark and Shao 2012, Proposition 4.5] yields

KG�;".f1; f2; f3; f4; f5; f6/�K.f1; f2; f3; f4; f5; f6/I (5-8)

see also Remark 4.6 of that paper. Split f D f<Cf> with f> WD f 1
Œ�s2;s2�{ , and define

kf k�;s;" WD ke
G�;"f>kL2 :

Definition 5.1. A function f 2L2.R/ is said to be a weak solution of (5-1) if there exists �> 0 such that

Q.g; f; f; f; f; f /D �hg; f iL2 for every g 2 L2.R/: (5-9)

Note that if f extremizes (1-9), then f satisfies (5-9) with �DE6p kf k
4
L2

. The following key step
shows that for some positive �, the quantity kf k�;s;" is bounded in " > 0.

Proposition 5.2. Given p > 1, let f be a weak solution of the Euler–Lagrange equation (5-1) with
kf kL2 D 1. If s � 1 is sufficiently large, then there exists C <1 such that

�kf ks�2p;s;" � o1.1/kf ks�2p;s;"CC

5X
`D2

kf k`
s�2p;s;"

C o2.1/; (5-10)

where for j 2 f1; 2g we have oj .1/! 0 as s!1 uniformly in ". Moreover the constant C is independent
of s and ".
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Proof. We start by introducing some notation. Let G WDG�;" be as in (5-7). Let h WD eGf , h> WD eGf>,
and h< WD h � h>. Further split f< D f� C f� and h< D h� C h�, where f� WD f 1Œ�s;s� and
h� WD e

Gf�. Since f satisfies (5-9), we have

�keGf>k
2
L2
D �he2Gf>; f>iL2 D �he

2Gf>; f iL2 DQ.e
2Gf>; f; f; f; f; f /

DQ.eGh>; f; f; f; f; f /DQ.e
Gh>; e

�Gh; e�Gh; e�Gh; e�Gh; e�Gh/DWQG :

It follows from (5-3), (5-6), and (5-8) that jQG j . K.h>; h; h; h; h; h/. Writing h D h< C h>, the
sublinearity of K implies

jQG j.K.h>; h<; h<; h<; h<; h</C
�X0

C

X00
�
K.h>; hj2 ; hj3 ; hj4 ; hj5 ; hj6/;

where the first sum, denoted by B1, is taken over indices j2; : : : ; j6 2 f>;<g with exactly one of the jk
equal to >, and the second sum, denoted by B2, is taken over indices j2; : : : ; j6 2 f>;<g with two or
more of the jk equal to >. We estimate the three terms separately. For the first one,

A WDK.h>; h<; h<; h<; h<; h</�K.h>; h�; h<; h<; h<; h</CK.h>; h�; h<; h<; h<; h</

. kh>kL2.s�
p�1
6 kh�kL2 Ckh�kL2/kh<k

4
L2
;

where we made use of the support separation of h> and h� via (5-5). Since kf kL2 D 1, the estimates

kh<kL2 . e�s
2p

; kh�kL2 . e�s
p

; and kh�kL2 . e�s
2p

kf�kL2

hold and therefore

A. kh>kL2.s�
p�1
6 e�.s

p�s2p/
Ckf�kL2/e

5�s2p :

The terms B1; B2 can be estimated in a similar way. One obtains

B1 . kh>k2L2.s
�
p�1
6 e�.s

p�s2p/
Ckf�kL2/e

4�s2p and B2 . kh>kL2
� 5X
`D2

kh>k
`
L2

�
e3�s

2p

:

The result follows by choosing �D s�2p and noting that kf�kL2 ! 0, as s!1. �

We are finally ready to prove that extremizers decay superexponentially fast.

Proof of Theorem 1.5. Let f 2 L2 be an extremizer of (1-9), normalized so that kf kL2 D 1. Then f
satisfies (5-9) with �DE6p . Note that the function .s; "/ 7! kf ks�2p;s;" is continuous in .s; "/ 2 .0;1/2

and, for each fixed " > 0,

kf ks�2p;s;" D ke
G
s�2p;"f 1

Œ�s2;s2�{kL2 ! 0 as s!1: (5-11)

Let C be the constant promised by Proposition 5.2, and consider the function

H.v/ WD 1
2
�v�C.v2C v3C v4C v5/:
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In (5-10) choose s sufficiently large so that o1.1/� 1
2
� for every " > 0. This is possible since o1.1/! 0

as s!1 uniformly in " > 0. Consequently,

H.kf ks�2p;s;"/� o2.1/ for every " > 0:

In view of (5-11), and the facts that H.0/D 0, H 0.0/ > 0, and H is concave on Œ0;1/, we may choose
s sufficiently large so that sup">0 o2.1/ < H.v0/ and kf ks�2p;s;1 � v0, where 0 < v0 < v1 are the two
unique positive solutions of the equation

H.vj /D
1
2

maxfH.v/ W v � 0g:

By continuity, kf ks�2p;s;" � v0 for every " > 0. The monotone convergence theorem then implies
kf ks�2p;s;0 � v0 <1, which translates into

es
�2p j � jpf 2 L2.R/:

Letting �0 WD s�2p, where s is large enough so that all of the above steps hold, we have thus proved the
first part. For the second part, note that, for every � 2 R, the function

e�jxjf .x/D e�jxj��0jxj
p

� e�0jxj
p

f .x/

belongs to L2.R/, since the first factor is bounded (here we use p > 1) and the second factor is, as we
have just seen, square integrable. The result then follows from the Paley–Wiener theorem as in [Reed and
Simon 1975, Theorem IX.13]. �

We finish with two concluding remarks. Firstly, the argument can be adapted to the case of extremizers
for odd curves treated in the next section. Secondly, an interesting problem is whether extremizers are
smooth (and not only their Fourier transforms). This question has been addressed in the context of the
Fourier extension operator on low-dimensional spheres in [Christ and Shao 2012b; Shao 2016b], but we
have not investigated the extent to which their analysis can be adapted to the present case.

6. The case of odd curves

In this section we discuss the necessary modifications to establish analogues of Theorems 1.3 and 1.4 for
odd curves. In general terms, the analysis is similar, but the existence of parallel tangents requires an
extra symmetrization step. Estimate (1-15) can be rewritten as

kSp.f /kL6.R2/ �Opkf kL2.R/; (6-1)

where the Fourier extension operator on the curve s D yjyjp�1 is given by

Sp.f /.x; t/D
Z

R

eixyeityjyj
p�1

jyj
p�2
6 f .y/ dy: (6-2)

Given a real-valued function f 2 L2.R/, denote the reflection of f with respect to the origin by
Qf WD f .� � /. One easily checks that

Sp. Qf /.x; t/D Sp.f /.�x;�t /D Sp.f /.x; t/;



SHARP STRICHARTZ INEQUALITIES FOR FRACTIONAL AND HIGHER-ORDER SCHRÖDINGER EQUATIONS 511

where the bar denotes complex conjugation. In particular,

kSp.f /Sp.g/kL3 D kSp.f /Sp. Qg/kL3 ;

and so functions f; g supported on intervals I and �I, respectively, are seen to interact in the same way
as if they were both supported on I, unlike the case of even curves. In this way, one is led to symmetrize
with respect to reflection. This has already been observed in the case of the spheres S1 [Shao 2016a]
and S2 [Christ and Shao 2012a]. Symmetrization on S2 has been efficiently handled via ı-calculus in
[Foschi 2015]. The same method can be applied to the present case, but we choose to present a different
argument which does not rely on the underlying convolution structure.

Lemma 6.1. Let p > 1 and f 2 L2.R/. Then

kSp.f /kL6.R2/
kf kL2.R/

� sup
0¤g2L2.R/
g even

kSp.g/kL6.R2/
kgkL2.R/

: (6-3)

If equality holds in (6-3), then f is necessarily an even function.

Proof. Given f 2 L2.R/, f ¤ 0, take the decomposition f D fe C fo, where fe is an even function,
fe D Qfe a.e. in R, and fo is odd, fo D� Qfo a.e. in R. Then kf k2

L2
D kfek

2
L2
Ckfok

2
L2

, and Sp.fe/ is
real-valued, while Sp.fo/ is purely imaginary. Thus

jSp.f /.x; t/j2 D jSp.fe/.x; t/j2CjSp.fo/.x; t/j2 for almost every .x; t/ 2 R2; (6-4)

and so, by the triangle inequality for the L3-norm, kSp.f /k2L6 � kSp.fe/k
2
L6
CkSp.fo/k2L6 . It follows

that
kSp.f /k2L6
kf k2

L2

�
kSp.fe/k2L6 CkSp.fo/k

2
L6

kfek
2
L2
Ckfok

2
L2

�max
�
kSp.fe/k2L6
kfek

2
L2

;
kSp.fo/k2L6
kfok

2
L2

�
;

where we set either ratio on the right-hand side of this chain of inequalities to zero whenever the
corresponding function fe or fo happens to vanish identically. Therefore we may restrict attention to
functions which are either even or odd. On the other hand, the equivalent convolution form (1-15) of the
inequality implies kSp.g/kL6 � kSp.jgj/kL6 , with equality if and only if g D jgj a.e. in R. Thus

kSp.f /k2L6
kf k2

L2

�max
�
kSp.fe/k2L6
kfek

2
L2

;
kSp.jfoj/k2L6
kfok

2
L2

�
� sup
0¤g2L2
g even

kSp.g/kL6
kgkL2

; (6-5)

where we used that both fe and jfoj are even functions. In order for equality to hold in (6-3), both
inequalities in (6-5) must be equalities. Inspection of the chain of inequalities leading to (6-5) shows that,
if there is equality in the first inequality, then necessarily one of the following alternatives must hold:

� kfokL2 D 0, in which case f D fe, and so f is even; or

� kfekL2 D 0 and fo D jfoj a.e. in R, which implies that fo � 0, and so f � 0 which does not hold
by assumption; or
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� kfekL2kfokL2 ¤ 0 and kSp.fe/kL6kfek�1L2 D kSp.fo/kL6kfok
�1
L2
D kSp.jfoj/kL6kfok�1L2 , which

again forces fo D jfoj a.e. in R, so that fo D 0 which is absurd.

Therefore equality in (6-3) forces f to be an even function, as desired. �

For the remainder of this section, we restrict attention to nonnegative, even functions f . To prove the
analogue of Proposition 3.1, we need bilinear estimates as in Propositions 2.1 and 2.3, and an L1 cap
bound as in Proposition 2.8. These can be obtained in exactly the same way as for the case of even curves,
since the Jacobian factor corresponding to (2-2) is now equal to pjjy0jp�1� jyjp�1j, which amounts to
the bound we used before. We also need an analogue of Proposition A.1 with two points removed; i.e.,
consider X Nx; Ny WD X n f Nx; Nyg equipped with a pseudometric % W X Nx; Ny �X Nx; Ny ! Œ0;1/. The statement
is analogous so we omit it. Next, defining the dyadic pseudometric centered at zero as in (3-11) and
invoking the appropriate bilinear estimates, we obtain an analogue of Proposition 3.4, the statement again
being identical (omitted). The analogue of Proposition 3.3 requires the pseudometric

%WR n f�1; 1g �R n f�1; 1g ! Œ0;1/; %.x; y/ WD jk� k0j;

where k; k0 2 Z are such that jjxj � 1j 2 Œ2k; 2kC1/ and jjyj � 1j 2 Œ2k
0

; 2k
0C1/. It handles concentration

at a pair of opposite points, which we now define.

Definition 6.2. Let y0 2 R. A sequence of even functions ffng � L2.R/ concentrates at the pair
f�y0; y0g if, for every "; � > 0, there exists N 2 N such that, for every n�N,Z

jyCy0j��
jy�y0j��

jfn.y/j
2 dy < "kfnk2L2.R/:

The following analogue of Proposition 3.3 holds for odd curves.

Proposition 6.3. Let ffng � L2.R/ be an L2-normalized extremizing sequence of even functions for
(6-1). Let frng be a sequence of nonnegative numbers satisfying rn! 0 as n!1, and

inf
n2N

Z 1Crn

1�rn

jfn.y/j
2 dy > 0:

Then the sequence ffng concentrates at the pair f�1; 1g.

As in the case of even curves, this can be used to prove the analogue of Proposition 3.1.

Proposition 6.4. Let ffng � L2.R/ be an L2-normalized extremizing sequence of nonnegative, even
functions for (6-1). Then there exist a subsequence ffnkg and a sequence fakg � R n f0g such that the
rescaled sequence fgkg, gk WD jakj1=2fnk .ak � /, satisfies one of the following conditions:

(i) There exists g 2 L2.R/ such that gk! g in L2.R/ as k!1.

(ii) fgkg concentrates at the pair f�1; 1g.

Let ffng � L2.R/ be an L2-normalized sequence of nonnegative, even functions concentrating at
the pair f�1; 1g. Write fn D gnC Qgn, where gn WD fn1Œ0;1/. In particular, kgnkL2 D 2

�1=2, and the
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sequence fgng concentrates at y0 D 1. The left-hand side of (1-15) can be expanded into

kfn�p�fn�p�fn�pk
2
L2
D kgn�p�gn�p�gn�pk

2
L2
Ck Qgn�p� Qgn�p� Qgn�pk

2
L2

C9kgn�p�gn�p� Qgn�pk
2
L2
C9kgn�p� Qgn�p� Qgn�pk

2
L2

C6hgn�p�gn�p�gn�p; gn�p�gn�p� Qgn�piL2

C6hgn�p� Qgn�p� Qgn�p; Qgn�p� Qgn�p� Qgn�piL2

C18hgn�p� Qgn�p� Qgn�p; gn�p�gn�p� Qgn�piL2

C6hgn�p�gn�p�gn�p; gn�p� Qgn�p� Qgn�piL2

C6hgn�p�gn�p� Qgn�p; Qgn�p� Qgn�p� Qgn�piL2

C2hgn�p�gn�p�gn�p; Qgn�p� Qgn�p� Qgn�piL2 : (6-6)

The last three summands vanish since the corresponding supports intersect on a Lebesgue null set. The
symmetry of the inner products then implies

kfn�p �fn�p �fn�pk
2
L2

D 20kgn�p �gn�p �gn�pk
2
L2
C 30hgn�p �gn�p �gn�p �gn�p; gn�p �gn�piL2 :

Note that �p D �p on the support of gn, where �p was defined in (1-11). It follows that

kfn�p �fn�p �fn�pk
2
L2

kfnk
6
L2

D
5

2

kgn�p �gn�p �gn�pk
2
L2

kgnk
6
L2

C
15

4

hgn�p �gn�p �gn�p �gn�p; gn�p �gn�piL2

kgnk
6
L2

: (6-7)

Since the sequence fgng concentrates at y0 D 1, we have

lim
n!1

hgn�p �gn�p �gn�p �gn�p; gn�p �gn�piL2 D 0:

Heuristically, gn�p �gn�p is supported near the point .2; 2/, while .gn�p/�.4/ is supported near the point
.4; 4/, and so in the limit there is no contribution of the inner product. More precisely, given " > 0, write
gn D hnC �n, where hn WD gn1Œ1�";1C"� and k�nk2L2! 0 as n!1. If " is small enough, then support
considerations force

hhn�p � hn�p � hn�p � hn�p; hn�p � hn�piL2 D 0 for every n;

whereas the cross terms involve �n, whose L2-norm tends to zero as n!1. We conclude

lim sup
n!1

kfn�p �fn�p �fn�pk
2
L2

kfnk
6
L2

D
5

2
lim sup
n!1

kgn�p �gn�p �gn�pk
2
L2

kgnk
6
L2

; (6-8)

and similarly for the limit inferior. Lemma 3.2 applied to the sequence fgng implies

lim sup
n!1

kfn�p �fn�p �fn�pk
2
L2.R2/

kfnk
6
L2

�
5�

p
3p.p� 1/

:
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Moreover, equality holds if we take fn D gnC Qgn, with gn WD 2�1=2hnkhnk�1L2 , and

hn.y/ WD e
�n.jyjp�1�p.y�1//

jyj
p�2
6 1Œ0;1/.y/:

Theorem 1.6 is now proved.

Remark 6.5. The invariant form of condition (1-16) in Theorem 1.6 is�
Qp

C2

�6
>

5

p.p� 1/
; (6-9)

where C 62 D �=
p
3 is the best constant for the parabola in convolution form. In the case p D 3, a similar

condition appears in [Shao 2009] on the Airy–Strichartz inequality, which translates into .Q3=C2/6 > 1
3

.
This is of course incompatible with (6-9) but, as was recently pointed out in [Frank and Sabin 2018,
Remark 2.7], there is a problem in [Shao 2009, Lemma 6.1] in the passage from equation (89) to
equation (90), as the argument presented there disregards the effect of symmetrization. On the other hand,
the case p D 3 of (6-9) agrees with [Frank and Sabin 2018, Case p D q D 6 of Theorem 1], once the
proper normalization is considered.

We now come to the question of whether extremizers for (1-15) actually exist, and discuss the case
1 < p < 2 first. Just as in (4-17), set gn.y/ WD e�.u=n/n2.jyj

p�py/jyj�.2�p/=6. Its even extension,

fn WD
gn1Œ0;1/C Qgn1.�1;0�

2
1
2 kgnkL2.0;1/

;

can be used to establish the strict inequality in (1-16). One simply uses (6-8) together with the fact that
the sequence fgnkgnk�1L2 gs>0 concentrates at y0 D 1, so that an argument similar to Lemma 4.5 can be
applied to the present case. Therefore, extremizers for (1-15) exist if 1 < p < 2, and Theorem 1.7 is now
proved.

The case p�2 seems harder. In view of (6-8), it is natural to use the methods of Section 4 in order to find
the series expansion for the trial functions f D2�1=2.gC Qg/, where g.y/D e�jyj

p

jyj.p�2/=6Ca1Œ0;1/.y/
for different choices of a. By doing so, we find that we cannot reach the critical threshold 5�=.

p
3p.p�1//,

but that we can approach it from below by varying the value of a. We are led to the following conjecture.

Conjecture 6.6. For every p � 2, �
Qp

C2

�6
D

5

p.p� 1/
:

Moreover, extremizers for (1-15) do not exist.

6A. On symmetric complex- and real-valued extremizers. The proof of Lemma 6.1 merits some further
remarks which we attempt to insert within a broader context.

First of all, identity (6-4) holds thanks to the symmetry with respect to the origin of both the curve
s D yjyjp�1 and the measure d�p D ı.t �yjyjp�1/jyj.p�2/=6 dy ds. In fact, the proof of Lemma 6.1
immediately generalizes to the Fourier extension operator associated to any antipodally symmetric
pair .†;�/. By this we mean a set†�Rd (usually a smooth submanifold) together with a Borel measure
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� supported on †, both symmetric with respect to the origin in the sense that T .†/D† and T ��D �,
where T denotes the antipodal map T .y/D�y and T �� denotes the pushforward measure.

Secondly, the Lebesgue exponent 6 can be replaced with any finite exponent r � 2. More precisely, in
the general context of an antipodally symmetric pair .†;�/, if an estimate

kcf�kLr .Rd / . kf kL2.†;�/ (6-10)

does hold for some r 2 Œ2;1/, then necessarily7

sup
0¤f 2L2.†;�/
f R-valued

kcf�kLr .Rd /
kf kL2.†;�/

D sup
0¤g2L2.†;�/

g R-valued, g even or g odd

kcg�kLr .Rd /
kgkL2.†;�/

:

Thirdly, the discussion extends to the more general situation of complex-valued functions. For
concreteness, let us specialize to the case of the unit sphere †D Sd�1 � Rd, d � 2, equipped with its
natural surface measure �. Given an exponent p � pd WD 2.d C 1/=.d � 1/, the Tomas–Stein inequality
states that

kb.u�/kLp.Rd / .p;d kukL2.Sd�1/ (6-11)

for every complex-valued function u 2 L2.Sd�1/. It is known [Fanelli et al. 2011; Frank et al. 2016]
that complex-valued extremizers for (6-11) exist in the full range p � pd , the endpoint existence in
dimensions d � 4 being conditional on a celebrated conjecture concerning (1-2). Moreover, if p � pd
is an even integer, then real-valued, even, nonnegative extremizers for (6-11) exist, by virtue of the
equivalent convolution form; see [Christ and Shao 2012a; Foschi 2015; Shao 2016a]. Finally, if p D1,
then one easily checks that the unique extremizers for (6-11) are the constant functions. For general
p � pd , p ¤ 1, we argue that the search for extremizers of (6-11) can be restricted to the class of
complex-valued, symmetric functions. Indeed, write uD f C ig, with f D<u, gD=u. By reorganizing
the summands, we may write uD F C iG, where F D feC igo and G D ge � ifo. The functions F;G
are complex-valued and symmetric, in the sense that F.y/ D F.�y/ and G.y/ D G.�y/, for every
y 2 Sd�1. Moreover, one easily checks that

F.y/D
1

2
.u.y/Cu.�y//; G.y/D

1

2i
.u.y/�u.�y//; kuk2

L2
D kF k2

L2
CkGk2

L2
;

and that, in view of the antipodal symmetry of the pair .Sd�1; �/, the functions bF�, bG� are real-valued.
Following the proof of Lemma 6.1, we are thus led to the following result.

Proposition 6.7. Let d �2 and 2.dC1/=.d�1/�p�1. Then for every complex-valued u2L2.Sd�1/,
u¤ 0, the following inequality holds:

kb.u�/kLp.Rd /
kukL2.Sd�1/

� sup
0¤F 2L2sym.S

d�1/

kbF�kLp.Rd /
kF kL2.Sd�1/

; (6-12)

7Here, a real-valued function g W†! R is naturally defined to be even (resp. odd) if g.y/D g.�y/ (resp. g.y/D�g.�y/)
for �-almost every point y 2†.
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where L2sym.S
d�1/ WD fF 2 L2.Sd�1/WF.y/ D F.�y/ for �-a.e. y 2 Sd�1g. Moreover, if u realizes

equality in (6-12), then there exist F 2 L2sym.S
d�1/ and a constant � 2 C such that uD �F, �-a.e.

Proof. In light of the previous discussion, we can assume p<1, and only the last statement merits further
justification. Suppose that u realizes equality in (6-12). In particular, u is a complex-valued extremizer
for (6-11). Decompose uD F C iG as before, with F.y/D 1

2
.u.y/Cu.�y//, G D 1

2i
.u.y/�u.�y//,

so that F;G 2 L2sym.S
d�1/. If either F � 0 or G � 0, then there is nothing to prove, and so in what

follows we assume F;G not to be identically zero. Following the proof of Lemma 6.1, we note that
equality occurs in the application of the triangle inequality with respect to the Lp=2.Rd /-norm (recall
that p=2 > 1 is finite) only if there exists � > 0 such that8

jbF�.�/j D �jbG�.�/j for every � 2 Rd : (6-13)

Subsequent cases of equality further imply

kb.u�/kLp.Rd /
kukL2.Sd�1/

D
kbF�kLp.Rd /
kF kL2.Sd�1/

D
kbG�kLp.Rd /
kGkL2.Sd�1/

;

and so the functions F;G are also extremizers for (6-11). It suffices to show that F D �G, where
� 2 f��; �g. Recall that bF�;bG� are real-valued functions, since F;G 2 L2sym.S

d�1/. Let �0 2 Rd

be such that jbF�.�0/j ¤ 0. We lose no generality in assuming that bF�.�0/ > 0 and bG�.�0/ > 0, for
otherwise we could replace F by �F or G by �G. By continuity, there exists r0 > 0 such that

bF�.�C �0/D �bG�.�C �0/ for every j�j< r0: (6-14)

On the other hand, bF�.� C �0/ D5.e�iy��0F�/.�/ and bG�.� C �0/ D 5.e�iy��0G�/.�/. The functions
e�iy��0F and e�iy��0G belong to L2sym.S

d�1/, and may be expanded in the basis of spherical harmonics,

e�iy��0F D

1X
nD0


.d;n/X
kD1

an;kYn;k and e�iy��0G D

1X
nD0


.d;n/X
kD1

bn;kYn;k : (6-15)

Here, fYn;kg

.d;n/

kD1
denotes a basis for the space of spherical harmonics of degree n in the sphere Sd�1,

which has dimension 
.d; n/ WD
�
dCn�1
n

�
�
�
dCn�3
n�2

�
; see [Stein and Weiss 1971, Chapter IV]. The

coefficients an;k; bn;k are complex numbers. Applying the Fourier transform to (6-15), we find that

bF�.�C �0/D .2�/d2
1X
nD0


.d;n/X
kD1

an;ki
�n
j�j�

d
2
C1Jd

2
�1Cn.j�j/Yn;k

�
�

j�j

�
;

bG�.�C �0/D .2�/d2
1X
nD0


.d;n/X
kD1

bn;ki
�n
j�j�

d
2
C1Jd

2
�1Cn.j�j/Yn;k

�
�

j�j

�
:

(6-16)

8As Fourier transforms of compactly supported distributions, both sides of (6-13) coincide with the absolute value of
real-valued, smooth functions, so that the pointwise equality occurs at every point, and not just almost everywhere.
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Using (6-14) and (6-16) together with the orthogonality of the functions fYn;kg in L2.Sd�1/, we obtain

an;kr
�d
2
C1Jd

2
�1Cn.r/D �bn;kr

�d
2
C1Jd

2
�1Cn.r/ for every r 2 .0; r0/:

In particular, an;k D �bn;k . This and (6-15) together imply F D �G. �

A similar result to Proposition 6.7 holds for a broader class of antipodally symmetric pairs .†;�/.
Indeed, let r 2 Œ2;1/ be such that the extension estimate (6-10) holds. Then

sup
0¤u2L2.†;�/

kb.u�/kLr .Rd /
kukL2.†;�/

D sup
0¤F 2L2sym.†;�/

kbF�kLr .Rd /
kF kL2.†;�/

; (6-17)

with the obvious definition of L2sym.†;�/. Moreover, if � is compactly supported and finite, then
any complex extremizer u for (6-10) necessarily coincides with a multiple of a symmetric extremizer
F 2 L2sym.†;�/. Regarding the second part of Proposition 6.7, the previous proof used the particular
geometry of the sphere, but it can be modified to handle this more general situation. The crux of the matter
is the fact that the Fourier transform of a compactly supported finite measure is real analytic. Indeed, if �
is a positive, compactly supported finite measure, and F 2 L2.†;�/, then, for every �0 2 Rd,

bF�.�/D
Z
†

e�i��yF.y/ d�.y/D
Z
†

e�i.���0/�ye�i�0�yF.y/ d�.y/

D

1X
kD0

.�i/k

kŠ

Z
†

..� � �0/ �y/
ke�i�0�yF.y/ d�.y/; (6-18)

where the convergence is locally uniform. To see this, note the tail estimate



 1X
kDK

.�i/k

kŠ

Z
†

..� � �0/ �y/
ke�i�0�yF.y/ d�.y/






L1
�
.�/

� �.†/
1
2 kF kL2.†;�/

1X
kDK

sk

kŠ
;

which holds for every compact subset ��Rd and every K 2N. Here, s D sup�2�;y2† j�� �0jjyj<1.
Therefore, the analogue of (6-13) in this setting leads to the corresponding (6-14), which by analyticity of
(6-18) implies bF�D �bG�, and therefore F D �G.

These observations can be of interest when combined with the main result of [Fanelli et al. 2011],
which states that complex-valued extremizers exist in the nonendpoint setting, provided � is a positive,
compactly supported finite measure. Important cases of antipodally symmetric pairs .†;�/ which have
attracted recent attention include the aforementioned case of spheres, together with ellipsoids equipped
with surface measure, and the double cone, the one- and the two-sheeted hyperboloids equipped with
their natural Lorentz invariant measures; see [Foschi and Oliveira e Silva 2017].

We end this section with a final remark on the multiplier form of inequality (6-1). Consider the Cauchy
problem �

@tu� j@xj
p�1@xuD 0; .x; t/ 2 R�R;

u. � ; 0/D f 2 L2x.R/;
(6-19)
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whose solution can be written in terms of the propagator

u.x; t/D et j@x j
p�1@xf .x/D

1

2�

Z
R

eix�eit�j�j
p�1
Of .�/ d�: (6-20)

In view of (6-1), and more generally of [Kenig et al. 1991, Theorem 2.1], this satisfies the mixed norm
estimate

kjDj
p�2
r et j@x j

p�1@xf kLrtL
s
x.R1C1/

.r;s kf kL2.R/;

whenever the Lebesgue exponents r; s are such that 2
r
C
1
s
D

1
2

.
In this context, as noted in [Frank and Sabin 2018; Shao 2009] for the case p D 3, it makes sense to

distinguish between real-valued and general complex-valued L2 initial data. This is because the evolution
et j@x j

p�1@x preserves real-valuedness. In other words, if f is real-valued, then so is et j@x j
p�1@xf for every

t 2 R. In fact, if f is real-valued, then Of .��/D Of .�/, and so taking the complex conjugate of (6-20)
reveals that u.x; t/D u.x; t/. The operator jDj.p�2/=ret j@x j

p�1@x is seen to preserve real-valuedness in
a similar way.

It is then natural to consider the following family of sharp inequalities, for real- and complex-valued
initial data and admissible Lebesgue exponents r; s:

kjDj
p�2
r et j@x j

p�1@xukLrtL
s
x.R1C1/

�Mp;r;s.C/kukL2.R/; (6-21)

kjDj
p�2
r et j@x j

p�1@xf kLrtL
s
x.R1C1/

�Mp;r;s.R/kf kL2.R/; (6-22)

where u WR!C is complex-valued and f WR!R is real-valued. The study of extremizers for (6-21)–(6-22)
in the Airy–Strichartz case pD 3 has been considered in [Farah and Versieux 2018; Frank and Sabin 2018;
Hundertmark and Shao 2012; Shao 2009]. It would be interesting to determine whether the methods devel-
oped in the present paper can be adapted to the study of extremizers for (6-21)–(6-22) in the mixed norm
case r¤ s, so as to obtain an alternative approach to profile decomposition or the missing mass method. We
do not pursue these matters here. However, we would still like to point out two interesting features of this
problem which are easily derived from our previous analysis, and are the content of the following result.

Proposition 6.8. Let p > 1, and r; s 2 .2;1/ be such that Mp;r;s.C/ and Mp;r;s.R/ are finite. Then
Mp;r;s.C/DMp;r;s.R/. Moreover, if a complex-valued extremizer u forMp;r;s.C/ exists, then there exist
� 2 C and a real-valued extremizer f forMp;r;s.R/ such that uD �f .

The problem of the relationship between arbitrary complex-valued extremizers and real-valued extremiz-
ers has been considered in the literature; see, e.g., [Christ and Shao 2012b] for the case of the Tomas–Stein
inequality on the sphere S2. Note the duality with the second statement of Proposition 6.7 above.

Proof of Proposition 6.8. The equality Mp;r;s.C/ DMp;r;s.R/ follows the same lines as the proof of
Lemma 6.1. To see why this is the case, let u 2L2.R/ and write uD f C ig, where f and g are the real
and imaginary parts of u, and hence real-valued. Therefore

kuk2
L2
D kf k2

L2
Ckgk2

L2
; (6-23)

jjDj
p�2
r et j@x j

p�1@xu.x/j2 D jjDj
p�2
r et j@x j

p�1@xf .x/j2CjjDj
p�2
r et j@x j

p�1@xg.x/j2 (6-24)
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for every .x; t/ 2R2. If r; s � 2, then we can use the triangle inequality for the Ls=2x - and the Lr=2t -norms
applied to (6-24), and obtain

kjDj
p�2
r et j@x j

p�1@xuk2LrtL
s
x
� kjDj

p�2
r et j@x j

p�1@xf k2LrtL
s
x
CkjDj

p�2
r et j@x j

p�1@xgk2LrtL
s
x
: (6-25)

Without loss of generality, assume that f; g are not identically zero. Reasoning as in the proof of
Lemma 6.1 yields

kjDj
p�2
r et j@x j

p�1@xuk2
LrtL

s
x

kuk2
L2

�max

(
kjDj

p�2
r et j@x j

p�1@xf k2
LrtL

s
x

kf k2
L2

;
kjDj

p�2
r et j@x j

p�1@xgk2
LrtL

s
x

kgk2
L2

)
(6-26)

and therefore Mp;r;s.C/�Mp;r;s.R/. The reverse inequality is immediate. We gratefully acknowledge
recent personal communication with R. Frank and J. Sabin [2018], who independently arrived at a similar
conclusion.

We proceed to show that an arbitrary complex-valued extremizer for Mp;r;s.C/ necessarily coincides
with a constant multiple of a real-valued extremizer for Mp;r;s.R/. Let r; s 2 .2;1/, and suppose that u
is a complex-valued extremizer for Mp;r;s.C/, which we express as the sum of its real and imaginary
parts, u D f C ig. An inspection of the chain of inequalities leading to (6-26) shows that one of the
following alternatives must hold:

� g D 0 and uD f is a real-valued extremizer.

� f D 0, uD ig, and g is a real-valued extremizer.

� f; g are both not identically zero, and

kjDj
p�2
r et j@x j

p�1@xf k2
LrtL

s
x

kf k2
L2

D

kjDj
p�2
r et j@x j

p�1@xgk2
LrtL

s
x

kgk2
L2

DMp;r;s.R/; (6-27)

so that f; g are real-valued extremizers.

It suffices to analyze the latter case. An inspection of the chain of inequalities leading to (6-25) shows
that equality must hold in both applications of the triangle inequality. Since r; s 2 .2;1/, this implies the
existence of � > 0 such that

jjDj
p�2
r et j@x j

p�1@xf .x/j D �jjDj
p�2
r et j@x j

p�1@xg.x/j for almost every .x; t/ 2 R2: (6-28)

Equality in (6-27) then implies kf kL2 D�kgkL2 . By squaring (6-28), and applying the Fourier transform,
the equality of the resulting convolutions can be recast asZ

R2

Of .y1/ Of .y2/ ı.t � .y1/� .y2// ı.x�y1�y2/jy1y2j
p�2
r dy1 dy2

D �2
Z

R2
Og.y1/ Og.y2/ ı.t � .y1/� .y2// ı.x�y1�y2/jy1y2j

p�2
r dy1 dy2; (6-29)

where .x; t/ 2 R2 and  .y/ WD yjyjp�1. Considering points .x; t/ in the interior of the support of the
convolution measure �p ��p , i.e., satisfying t > 2 

�
1
2
x
�

for x > 0, and t < 2 
�
1
2
x
�

for x < 0, we see
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that there exists a unique positive solution ˛ D ˛.x; t/ > 0 of

t D  
�
1
2
x�˛.x; t/

�
C 

�
1
2
xC˛.x; t/

�
; (6-30)

and hence that the system of equations t D  .y1/C .y2/, x D y1Cy2 has unique solutions

.y1; y2/ 2
˚�
1
2
x�˛.x; t/; 1

2
xC˛.x; t/

�
;
�
1
2
xC˛.x; t/; 1

2
x�˛.x; t/

�	
:

From (6-29) and a similar reasoning to that of [Oliveira e Silva and Quilodrán 2019, Proposition 2.1 and
Remark 2.3], it then follows that

Of
�
1
2
x�˛.x; t/

�
Of
�
1
2
xC˛.x; t/

�
D �2 Og

�
1
2
x�˛.x; t/

�
Og
�
1
2
xC˛.x; t/

�
for almost every .x; t/ 2 supp.�p � �p/. Alternatively, the latter identity follows by considering the
analogue of formula (2-4) obtained in the case of even curves, which by the previous discussion applies
to the present scenario as well. This yields

Of .x/ Of .x0/D �2 Og.x/ Og.x0/ (6-31)

for almost every .x; x0/2R2. As Of ; Og belong to L2.R/, we may integrate over any compact subset I �R

in both variables x; x0 and obtain�Z
I

Of .x/ dx
�2
D �2

�Z
I

Og.x/ dx
�2
: (6-32)

Choose a compact subset J � R for which
R
J Og.x/ dx ¤ 0. From (6-32), we haveZ

J

Of .x/ dx D �
Z
J

Og.x/ dx or
Z
J

Of .x/ dx D��
Z
J

Og.x/ dx: (6-33)

Integrating both sides of (6-31) over x0 2 J, one infers from (6-33) that either Of D � Og or Of D �� Og,
and therefore that either f D �g or f D��g. The conclusion is that there exists � > 0 such that either
uD .�C i/g or uD .��C i/g, and so u is a constant multiple of a real-valued extremizer, as desired. �

Appendix A: Concentration-compactness

This appendix consists of a useful observation regarding Lions’ concentration-compactness lemma [1984a].
Let us start with some general considerations. Let .X;B; �/ be a measure space with a distinguished
point Nx 2 X such that f Nxg 2 B and �.f Nxg/ D 0. Set X Nx WD X n f Nxg. Let % W X Nx �X Nx ! Œ0;1/ be a
pseudometric on X Nx , i.e., a measurable function on X Nx �X Nx satisfying %.x; x/D 0, %.x; y/D %.y; x/,
and %.x; y/� %.x; z/C%.z; y/ for every x; y; z 2X Nx . Define the ball of center x 2X Nx and radius r � 0,
B.x; r/ WD fy 2X Nx W %.x; y/� rg, and its complement B.x; r/{ WDX nB.x; r/. It is clear that

X Nx D
[
r�0

B.x; r/

for every x ¤ Nx. We have the following concentration-compactness result, which should be compared to
[Lions 1984a, Lemma I.1].
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Proposition A.1. Let .X;B; �/; Nx 2 X; % W X Nx �X Nx ! Œ0;1/ be as above. Let f�ng be a sequence in
L1.X; �/ satisfying

�n � 0 in X;
Z
X

�n d�D �;

where � > 0 is fixed. Then there exists a subsequence f�nkg satisfying one of the following three
possibilities:

(i) (compactness) There exists fxkg �X Nx such that �nk . � C xk/ is tight; i.e.,

for all " > 0; there exists R <1 such that
Z
B.xk ;R/

�nk d�� �� ":

(ii) (vanishing) limk!1 supy2X Nx
R
B.y;R/ �nk d�D 0 for all R <1;

(iii) (dichotomy) There exists ˛2 .0; �/ with the following property. For every ">0, there existR2 Œ0;1/,
k0 � 1, and nonnegative functions �k;1; �k;2 2 L1.X; �/ such that, for every k � k0,

k�nk � .�k;1C �k;2/kL1.X/ � ";

ˇ̌̌̌Z
X

�k;1 d��˛
ˇ̌̌̌
� ";

ˇ̌̌̌Z
X

�k;2 d�� .��˛/
ˇ̌̌̌
� ";

supp.�k;1/� B.xk; R/ and supp.�k;2/� B.xk; Rk/
{

for certain sequences fxkg �X Nx , fRkg � Œ0;1/, with Rk!1 as k!1.

The proof of Proposition A.1 parallels that of [Lions 1984a, Lemma I.1] and proceeds via analysis of
the sequence of concentration functions

QnW Œ0;1/! R; Qn.t/ WD sup
x2X Nx

Z
B.x;t/

�n d�:

The sequence fQng consists of nondecreasing, nonnegative, uniformly bounded functions on Œ0;1/
which satisfy Qn.t/! � as t!1, since �.f Nxg/D 0. Very briefly, the argument goes as follows. By the
Helly selection principle, there exists a subsequence fnkg �N and a nondecreasing, nonnegative function
QW Œ0;1/! R such that Qnk .t/!Q.t/ as k!1 for every t � 0. Set ˛ WD limt!1Q.t/ 2 Œ0; ��,
and note that:

� If ˛ D 0, then Q� 0. This translates into the vanishing condition at once.

� If ˛ D �, then compactness occurs.

� If 0 < ˛ < �, then dichotomy occurs. In this case, the functions �k;1; �k;2 are given by �k;1 D
�nk1B.xk ;R/ and �k;2 D �nk1

B.xk ;Rk/{
.

We omit further details and refer the interested reader to [Lions 1984a].

When applying Proposition A.1 to the study of extremizing sequences for (1-9), the desirable outcome
(with a view towards obtaining concentration at a point under the hypotheses of Proposition 3.3) is
compactness or vanishing. Therefore the possibility of dichotomy needs to be discarded. To this end,
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Lions proposes the strict superadditivity condition [Lions 1984a, Section I.2], which in the present setting
can be recast as follows. Define

I� WD supfkEp.f /k6L6.R2/W kf k
2
L2.R/

D �g: (A-1)

The quantity I� is said to satisfy the strict superadditivity condition if, for every � > 0,

I� > I˛C I��˛ for every ˛ 2 .0; �/: (A-2)

In our case, Ep is a linear operator, and so I� D �3I1 D �3E6p . Thus (A-2) translates into the elementary
numerical inequality �3 > ˛3C .�� ˛/3, which holds for every � > 0 and ˛ 2 .0; �/. As seen in the
proof of Proposition 3.3, it is condition (A-2) (applied with �D 1) which ensures that dichotomy does
not occur. A similar condition in a more general context is used in [Lieb 1983, Lemma 2.7].

Appendix B: Revisiting Brézis–Lieb

In this appendix, we prove a useful variant of [Fanelli et al. 2011, Proposition 1.1], which in turn relies
on the Brézis–Lieb lemma [1983]. Proposition 1.1 of [Fanelli et al. 2011] states that, in the compact
setting, the only obstruction to the strong convergence of an extremizing sequence is weak convergence
to zero. In the noncompact setting, it is in general nontrivial to verify condition (iv) of [Fanelli et al.
2011, Proposition 1.1]. To overcome this difficulty, various arguments using Sobolev embeddings and the
Rellich–Kondrachov compactness theorem have been employed in [Carneiro et al. 2019; Fanelli et al.
2012; Quilodrán 2013]. In our case, it is not clear how such an argument would go. Instead we take a
different route, and argue that condition (iv) from [Fanelli et al. 2011, Proposition 1.1] can be replaced by
uniform decay of the L2-norm, in a sense compactifying the space in question. The following is a precise
formulation of this idea.

Proposition B.1. Given p > 1, consider the Fourier extension operator EpWL2.R/! L6.R2/ defined in
(1-12). Let ffng � L2.R/, and let ‚ W Œ1;1/! .0;1/ with ‚.R/! 0, as R!1, be such that

(i) kfnkL2.R/ D 1 for every n 2 N,

(ii) limn!1 kEp.fn/kL6.R2/ DEp,

(iii) fn*f ¤ 0 as n!1,

(iv) kfnkL2.Œ�R;R�{/ �‚.R/ for every n 2 N and R � 1.

Then fn! f in L2.R/, as n!1. In particular, kf kL2.R/ D 1 and kEp.f /kL6.R2/ DEp , and so f is
an extremizer of (1-9).

This variant was already observed in [Quilodrán 2012, Proposition 2.31] for the case of the cone, and
the proof follows similar lines to that of [Fanelli et al. 2011, Proposition 1.1]. Note that the function ‚
may depend on the sequence ffng, but not on n. The following proof is inspired by [Frank et al. 2016,
Proposition 2.2].
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Proof of Proposition B.1. Set rn WD fn � f . Then rn* 0 as n!1, and thus m WD limn!1 krnk2L2
exists and satisfies 1D kf k2

L2
Cm. Given R > 0, take the decomposition

rn D rn1Œ�R;R�C rn1
Œ�R;R�{ DW rn;1C rn;2:

Since the support of rn;1 is compact and rn;1*0 as n!1, we know Ep.rn;1/! 0 pointwise a.e. in R2

as n!1. On the other hand, from condition (iv) we have

kEp.rn;2/kL6 �Ep.‚.R/Ckf kL2.Œ�R;R�{// (B-1)

for everyR�1. This upper bound is independent of n, and tends to 0 asR!1. We have Ep.fn�rn;2/D
Ep.f /CEp.rn;1/, and kEp.fn� rn;2/kL6 �Ep.1C‚.R/Ckf kL2.Œ�R;R�{// is uniformly bounded in n.
Since Ep.fn � rn;2/! Ep.f / pointwise a.e. in R2 as n!1, we can invoke the Brézis–Lieb lemma
[1983] and obtain

kEp.fn� rn;2/k6L6 D kEp.f /k
6
L6
CkEp.rn;1/k6L6 C o.1/ as n!1:

It follows that � WD lim supn!1 kEp.rn;1/k6L6 and � WD lim supn!1 kEp.fn� rn;2/k6L6 satisfy

�D kEp.f /k6L6 C�:

Since kEp.rn;1/k6L6 �E
6
p krn;1k

6
L2
�E6p krnk

6
L2

, we have ��E6pm
3. Therefore

�D kEp.f /k6L6 C�� kEp.f /k
6
L6
CE6p .1�kf k

2
L2
/3:

Thus, replacing the definition of �, we have proved

lim sup
n!1

kEp.fn� rn;2/k6L6 � kEp.f /k
6
L6
CE6p .1�kf k

2
L2
/3 (B-2)

for every R � 1. Now, kEp.fn � rn;2/kL6 � kEp.fn/kL6 �kEp.rn;2/kL6 and kEp.rn;2/kL6 is bounded
above as quantified by (B-1). Thus

lim sup
n!1

kEp.fn� rn;2/kL6 �Ep �Ep.‚.R/Ckf kL2.Œ�R;R�{//

for every R � 1. Using this together with (B-2), and letting R!1, yields

E6p � kEp.f /k
6
L6
CE6p .1�kf k

2
L2
/3:

By the elementary inequality .1� t /3 � 1� t3, valid for every t 2 Œ0; 1�, we then have

E6p � kEp.f /k
6
L6
CE6p .1�kf k

6
L2
/:

Since the reverse inequality holds by definition, we conclude that f is an extremizer. Moreover, since
f ¤ 0 and the elementary inequality is strict unless t 2 f0; 1g, we conclude that kf kL2 D 1. This
completes the proof of the proposition. �
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A BOOTSTRAPPING APPROACH TO JUMP INEQUALITIES
AND THEIR APPLICATIONS

MARIUSZ MIREK, ELIAS M. STEIN AND PAVEL ZORIN-KRANICH

The aim of this paper is to present an abstract and general approach to jump inequalities in harmonic
analysis. Our principal conclusion is the refinement of r -variational estimates, previously known for
r > 2, to endpoint results for the jump quasiseminorm corresponding to r D 2. This is applied to the
dimension-free results recently obtained by the first two authors in collaboration with Bourgain, and
Wróbel, and also to operators of Radon type treated by Jones, Seeger, and Wright.

1. Introduction

Variational and jump inequalities in harmonic analysis, probability, and ergodic theory have been studied
extensively since [Bourgain 1989], where a variational version of the Hardy–Littlewood maximal function
was introduced. The purpose of this paper is to formulate general sufficient conditions that allow us to
deal with variational and jump inequalities for a wide class of operators. Our approach will be based on
certain bootstrap arguments. As an application we extend the known Lp estimates for r -variations for
r > 2 (see definition (1.2)) to endpoint assertions for the jump quasiseminorm J

p
2

(see definition (1.3)),
which corresponds to r D 2. In this way our results will extend previously recently obtained assertions in
[Bourgain et al. 2018; 2019] for dimension-free estimates given for r > 2, as well as a number of results
in [Jones et al. 2008] for operators of Radon type.

We recall the notation for jump quasiseminorms from [Mirek et al. 2018b]. For any � > 0 and I� R

the �-jump counting function of a function f W I! C is defined by

N�.f / WDN�.f .t/ W t 2 I/

WD supfJ2N W there exists t0< � � �< tJ ; tj 2 I; such that min0<j�J jf .tj /�f .tj�1/j ��g (1.1)

and the r -variation seminorm by

V r .f / WD V r .f .t/ W t 2 I/ WD

8<:supJ2N supt0<���<tJ
tj2I

�PJ
jD1jf .tj /�f .tj�1/j

r
� 1

r ; 0< r <1;

supt0<t1
tj2I
jf .t1/�f .t0/j; r D1;

(1.2)

where the former supremum is taken over all finite increasing sequences in I.
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Throughout the article .X;B;m/ denotes a �-finite measure space. For a function f WX � I! C the
jump quasiseminorm on Lp.X / for 1< p <1 is defined by

J
p
2
.f / WD J

p
2
.f WX � I! C/ WD J

p
2
..f . � ; t//t2I/ WD J

p
2
..f . � ; t//t2I WX ! C/

WD sup
�>0



�N�.f . � ; t/ W t 2 I/
1
2




Lp : (1.3)

In this connection by [Mirek et al. 2018b, Lemma 2.12] we note that

kV r .f /kLp;1 .p;r J
p
2
.f /� kV 2.f /kLp (1.4)

for r > 2, and the first inequality fails for r D 2.
We now briefly list our main results:

(1) The extension to the jump quasiseminorm J
p
2

of dimension-free estimates for maximal averages
over convex sets, as given by Theorems 1.9, 1.11 and 1.14 below.

(2) The corresponding extension to J
p
2

of the previous dimension-free estimates for cubes in the discrete
setting; see Theorem 1.18.

(3) The general J
p
2

results for operators of Radon type (both averages and singular integrals) in Theorems
1.22 and 1.30, related to the previous results in [Jones et al. 2008].

Underlying the proofs of all these results will be the basic facts about the jump quantity J
p
2

obtained
in our recent paper [Mirek et al. 2018b], and the bootstrap arguments in Section 2 of the present paper.
The reader might compare the methods in Section 2 with related arguments in [Bourgain et al. 2018,
Section 2.2] as well as [Nagel et al. 1978; Duoandikoetxea and Rubio de Francia 1986; Carbery 1986],
and Christ’s observation included in [Carbery 1988]. The techniques in Section 2 will be carried out in the
following framework. We assume that we are given a measure space .X;B;m/ which is endowed with a
sequence of linear operators .Sj /j2Z acting on L1.X /CL1.X / that play the role of the Littlewood–Paley
operators. Namely, the following conditions are satisfied:

(1) The family .Sj /j2Z is a resolution of the identity on L2.X /; i.e., the identityX
j2Z

Sj D Id (1.5)

holds in the strong operator topology on L2.X /.

(2) For every 1< p <1 we have



�X
j2Z

jSjf j
2

�1
2






Lp

. kf kLp ; f 2Lp.X /: (1.6)

Suppose now we have a family of linear operators .Tt /t2I acting on L1.X /CL1.X /, where the
index set I is a countable subset of .0;1/. We assume that I� .0;1/ to make our exposition consistent
with the results in the literature. One of our aims is to understand what kind of conditions have to be
imposed on the family .Tt /t2I, in terms of its interactions with the Littlewood–Paley operators .Sj /j2Z
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to obtain the inequality
J

p
2
..Ttf /t2I WX ! C/. kf kLp (1.7)

in some range of p’s. We accomplish this task in Section 2 by proving Theorems 2.14 and 2.39 for
positive operators1 by certain bootstrap arguments, and Theorem 2.28 for general operators. Our approach
will be based on extension of ideas from [Duoandikoetxea and Rubio de Francia 1986; Bourgain et al.
2018] to a more abstract setting.

As mentioned above it has been very well known since [Bourgain 1989] that r -variational estimates
(and consequently maximal estimates, see (1.2)) can be deduced from jump inequalities. Namely, a priori
jump estimates (1.7) in an open range of p 2 .1;1/ imply

kV r .Ttf W t 2 I/kLp .p;r kf kLp

in the same range of p’s and for all r 2 .2;1�. This follows from (1.4) and interpolation. Therefore, it is
natural to say that the jump inequality in (2.2) is an endpoint for r -variations at r D 2. On the other hand,
we also know that the range of r 2 .2;1� in r -variational estimates, for many operators in harmonic
analysis, is sharp due to the sharp estimates in Lépingle’s inequality for martingales; see [Mirek et al.
2018b].

Here and later we write a. b if a� Cb, where the constant 0< C <1 is allowed to depend on p,
but not on the underlying abstract measure space X or function f . If C is allowed to depend on some
additional parameters this will be indicated by adding a subscript to the symbol ..

1A. Applications to dimension-free estimates. An important application of the results from Section 2
will be bounds independent of the dimension in jump inequalities associated with the Hardy–Littlewood
averaging operators. Let G � Rd be a symmetric convex body, that is, a nonempty symmetric convex
open bounded subset of Rd. Define for t > 0 and x 2 Rd the averaging operator

AG
t f .x/ WD jGj

�1

Z
G

f .x� ty/ dy; f 2L1
loc.R

d /: (1.8)

It follows from the spherical maximal theorem that, in the case that G is the Euclidean ball, the maximal
operator AG

? f WD supt>0jAG
t f j corresponding to (1.8) is bounded on Lp.Rd / for all p> 1, uniformly in

d 2N [Stein 1982]. This result was extended to arbitrary symmetric convex bodies G � Rd in [Bourgain
1986a] (for p D 2) and [Bourgain 1986b; Carbery 1986]

�
for p > 3

2

�
. For unit balls G D Bq induced by

`q norms in Rd the full range p > 1 of dimension-free estimates was established in [Müller 1990] (for
1� q <1) and [Bourgain 2014] (for cubes q D1) with constants depending on q. In the latter case the
product structure of the cubes is important; this result was recently extended to products of Euclidean
balls of arbitrary dimensions [Sommer 2017].

Variational versions of most of the aforementioned dimension-free estimates were obtained in [Bourgain
et al. 2018] for r > 2. In this article we give a shorter and more self-contained proof of the main results
of that work and extend them to the endpoint r D 2 by appealing to Theorems 2.14 and 2.39. A notable

1A linear operator T is positive if Tf � 0 for every f � 0.
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simplification is that we do not use the maximal estimates as a black box. In particular, we reprove all
dimension-free estimates for the maximal function AG

? .
In view of (1.4) and by real interpolation, Theorem 1.9 extends [Bourgain et al. 2018, Theorem 1.2].

Theorem 1.9. Let d 2 N and G � Rd be a symmetric convex body. Then for every 1 < p <1 and
f 2Lp.Rd / we have

J
p
2
..AG

2kf /k2Z W R
d
! C/. kf kLp ; (1.10)

where the implicit constant is independent of d and G.

As a consequence of Theorem 1.9 and the decomposition into long and short jumps, see (2.2),
Theorems 1.11 and 1.14 below extend Theorems 1.1 and 1.3 in [Bourgain et al. 2018], respectively.
Hence Theorem 1.9 can be thought of as the main result of this paper, since inequalities (1.12) and (1.15)
were obtained in [Bourgain et al. 2018]. However, we shall present a different approach to establish the
estimates in (1.12) and (1.15).

Theorem 1.11. Let G be as in Theorem 1.9. Then for every 3
2
< p < 4 and f 2Lp.Rd / we have



�X

k2Z

�
V 2.AG

t f W t 2 Œ2
k ; 2kC1�/

�2�1
2






Lp

. kf kLp : (1.12)

In particular,
J

p
2
..AG

t f /t>0 W R
d
! C/. kf kLp ; (1.13)

where the implicit constants in (1.12) and (1.13) are independent of d and G.

Theorem 1.14. Let d 2N and G �Rd be the unit ball induced by the `q norm in Rd for some 1� q�1.
Then for every 1< p <1 and f 2Lp.Rd / we have



�X

k2Z

�
V 2.AG

t f W t 2 Œ2
k ; 2kC1�/

�2�1
2






Lp

.q kf kLp : (1.15)

In particular
J

p
2
..AG

t f /t>0 W R
d
! C/.q kf kLp ; (1.16)

where the implicit constants in (1.15) and (1.16) are independent of d .

The method of the present paper also allows us to provide estimates independent of the dimension in
jump inequalities associated with the discrete averaging operator along cubes in Zd. For every x 2 Zd

and N 2 N let

ANf .x/ WD
1

jQN \Zd j

X
y2QN\Zd

f .x�y/; f 2 `1.Zd /; (1.17)

be the discrete Hardy–Littlewood averaging operator, where QN D Œ�N;N �d .

Theorem 1.18. For every 3
2
< p < 4 and f 2 `p.Zd / we have

J
p
2
..ANf /N2N W Z

d
! C/. kf k`p : (1.19)
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Moreover, if we consider only lacunary parameters, then (1.19) remains true for all 1< p <1 and we
have

J
p
2
..A2kf /k�0 W Z

d
! C/. kf k`p ; (1.20)

where the implicit constants in (1.19) and (1.20) are independent of d .

Theorem 1.18 provides the endpoint estimate at r D 2 for the recent dimension-free estimates [Bourgain
et al. 2019] for r -variations corresponding to operator (1.17).

The dimension-free results are proved in Section 3A by combining the results from Section 2 (Theo-
rems 2.14 and 2.39) with the jump estimates for the Poisson semigroup from [Mirek et al. 2018b] and
Fourier multiplier estimates from [Bourgain 1986a; 2014; Müller 1990].

1B. Applications to operators of Radon type. Another important class of operators which was exten-
sively studied in [Jones et al. 2008] in the context of jump inequalities are operators of Radon type
modeled on polynomial mappings.

Let P D .P1; : : : ;Pd / W R
k! Rd be a polynomial mapping, where each component Pj W R

k! R is a
polynomial with k variables and real coefficients. We fix��Rk a convex open bounded set containing the
origin (not necessarily symmetric), and for every x 2Rd and t >0 we define the Radon averaging operator

MP
t f .x/ WD

1

j�t j

Z
�t

f .x�P .y// dy; (1.21)

where �t D fx 2 Rk W t�1x 2�g. Using Theorems 2.14 and 2.39 we easily deduce Theorem 1.22; see
Section 3C.

Theorem 1.22. For every 1< p <1 and f 2Lp.Rd / we have

J
p
2
..MP

t f /t>0 W R
d
! C/.d;p kf kLp ; (1.23)

where the implicit constant is independent of the coefficients of P .

Before we formulate a corresponding result for truncated singular integrals we need to fix some
definitions and notation. A modulus of continuity is a function ! W Œ0;1/! Œ0;1/ with !.0/D 0 that is
subadditive in the sense that

u� t C s D) !.u/� !.t/C!.s/:

Substituting s D 0 one sees that !.u/ � !.t/ for all 0 � u � t . The basic example is !.t/ D t�, with
� 2 .0; 1/. Note that the composition and sum of two moduli of continuity is again a modulus of continuity.
In particular, if !.t/ is a modulus of continuity and � 2 .0; 1/, then !.t/� and !.t� / are also moduli of
continuity.

The Dini norm and the log-Dini norm of a modulus of continuity are defined respectively by setting

k!kDini WD

Z 1

0

!.t/
dt

t
and k!klogDini WD

Z 1

0

!.t/
jlog t j dt

t
: (1.24)
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For any c > 0 the integral can be equivalently (up to a c-dependent multiplicative constant) replaced by
the sum over 2�j=c with j 2 N.

Finally, for every x 2 Rd and t > 0 we will consider the truncated singular Radon transform

HP
t f .x/ WD

Z
Rkn�t

f .x�P .y//K.y/ dy; (1.25)

defined for every Schwartz function f in Rd, where K WRk n f0g!C is a kernel satisfying the following
conditions:

(1) The size condition: there exists a constant CK > 0 such that

jK.x/j � CK jxj
�k for all x 2 Rk : (1.26)

(2) The cancellation condition:Z
�Rn�r

K.y/ dy D 0 for 0< r <R<1: (1.27)

(3) The smoothness condition:

sup
R>0

sup
jyj� 1

2
Rt

Z
R�jxj�2R

jK.x/�K.xCy/j dx � !K .t/ (1.28)

for every t 2 .0; 1/ with some modulus of continuity !K .

In many applications it is easy to verify the somewhat stronger pointwise version of the smoothness
estimate from (1.28). Namely,

jK.x/�K.xCy/j � !K

�
jyj

jxj

�
jxj�k ; provided that jyj �

jxj

2
; (1.29)

for some modulus of continuity !K . One can immediately see that condition (1.29) implies condition
(1.28). Our next result establishes an analogue of the inequality (1.23) for the operators in (1.25).

Theorem 1.30. Suppose that k!�
K
klogDini C k!

�=2
K
kDini <1 for some � 2 .0; 1�. Then for every p 2

f1C �; .1C �/0g and f 2Lp.Rd / we have

J
p
2
..HP

t f /t>0 W R
d
! C/.d;p kf kLp ; (1.31)

where the implicit constant is independent of the coefficients of P . More precisely:

(1) If k!�
K
klogDini <1, then

J
p
2
..H2kf /k2Z W R

d
! C/. kf kLp : (1.32)

(2) If k!�=2
K
kDini <1, then



�X

k2Z

V 2.Htf W t 2 Œ2
k ; 2kC1�/2

�1
2






Lp

. kf kLp : (1.33)
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The inequality (1.23) was proved in [Jones et al. 2008] for the averages MP
t over Euclidean balls. The

inequality (1.31) was proved in that work for monomial curves, i.e., in the case

k D 1; d D 2; K.y/D y�1 and P .x/D .x;xa/; where a> 1:

General polynomials were considered in [Mirek et al. 2017] (although jump estimates are not explicitly
stated in that article they can also be obtained with minor modifications of the proofs). Multidimensional
variants of HP

t were also studied in that work under stronger regularity conditions imposed on the kernel K.
Inequalities (1.23) and (1.31) will be used to establish jump inequalities for the discrete analogues of
(1.21) and (1.25) in [Mirek et al. 2018a].

Finally we provide van der Corput integral estimates in Lemma B.1 and Proposition B.2, which have
the feature of permitting the handling of the oscillatory integrals with nonsmooth amplitudes. Their
broader scope will be needed in the proof of Theorem 1.30.

2. An abstract approach to jump inequalities

2A. Preliminaries. Let .X;B;m/ be a �-finite measure space endowed with a sequence of linear
Littlewood–Paley operators .Sj /j2Z satisfying (1.5), (1.6). Assume that .Tt /t2I is a family of linear
operators acting on L1.X /C L1.X /, where the index set I is a subset of .0;1/. Under suitable
conditions imposed on the family .Tt /t2I in terms of its interactions with the Littlewood–Paley operators
.Sj /j2Z as in the Introduction, we will study strong uniform jump inequalities

J
p
2
..Ttf /t2I WX ! C/. kf kLp (2.1)

in various ranges of p’s; see Theorems 2.14, 2.28, and 2.39.
To avoid further problems with measurability we will always assume that I is countable. Usually I is

D WD f2n W n 2 Zg the set of all dyadic numbers or I is U WD
S

n2Z 2�nN the set of nonnegative rational
numbers whose denominators in reduced form are powers of 2. In practice, the countability assumption
may be removed if for every f 2 L1.X /CL1.X / the function I 3 t 7! Ttf .x/ is continuous for
m-almost every x 2X. In our applications this will always be the case.

We recall the decomposition into long and short jumps from [Jones et al. 2008, Lemma 1.3], which
tells that for every � > 0 we have

�N�.Ttf .x/ W t 2 I/
1
2 . �N�

3
.Ttf .x/ W t 2D/

1
2 C

�X
k2Z

�
�N�.Ttf .x/ W t 2 Œ2

k ; 2kC1/\ I/
1
2

�2�1
2

: (2.2)

In other words the �-jump counting function can be dominated by the long jumps (the first term in (2.2)
with t 2 D) and the short jumps (the square function in (2.2)). Similar inequalities hold for the maximal
function and for r -variations.

We deal with Lp bounds for the long jump counting function corresponding to Tt with t 2D in two ways,
similarly to [Duoandikoetxea and Rubio de Francia 1986]. The first approach is to find an approximating
family of operators (see the family .Pk/k2Z in Theorem 2.14) for which the bound in question is known
and control a square function that dominates the error term; see (2.15) in Theorem 2.14. In our case this
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method works for positive operators with martingales or related operators as the approximating family.
The second approach is to express T2k as a telescoping sum

T2kf D
X
j�k

T2j f �T2jC1f D
X
j�k

Bjf (2.3)

and try to deduce bounds in question from the behavior of Bj D T2j �T2jC1 . This approach is needed
if Tt is a truncated singular integral-type operator; see Theorem 2.28. Similar strategies also yield Lp

bounds for maximal functions supk2ZjT2kf .x/j or r -variations V r .T2kf .x/ W k 2 Z/.
In order to deal with short jumps we note that the square function on the right-hand side of (2.2) is

dominated by the square function associated with 2-variations, which in turn is controlled by a series of
square functions�X

k2Z

�
V 2.Ttf .x/ W t 2 Œ2

k ; 2kC1/\ I/
�2�1

2

�
p

2
X
l�0

�X
k2Z

2l�1X
mD0

j.T2kC2k�l .mC1/�T2kC2k�l m/f .x/j
2

�1
2

: (2.4)

The square function on the right-hand side of (2.4) gives rise to assumption (2.40). Inequality (2.4)
follows from the next lemma with g.t/D T2kCtf .x/ and r D 2.

Lemma 2.5. Let r 2 Œ1;1/, k 2 Z, and a function g W Œ0; 2k �\U! C be given. Then

V r .g.t/ W t 2 Œ0; 2k �\U/� 2
r�1

r

X
l�0

�2l�1X
mD0

jg.2k�l.mC 1//� g.2k�lm/jr
�1

r

: (2.6)

The variation norm on the left-hand side of (2.6) can be extended to all t 2 Œ0; 2k � if g W Œ0; 2k �! C

is continuous. Lemma 2.5 originates in [Lewko and Lewko 2012], where it was observed that the
2-variation norm of a sequence of length N can be controlled by the sum of log N square functions and
this observation was used to obtain a variational version of the Rademacher–Menshov theorem. Inequality
(2.6), essentially in this form, was independently proved by the first author and Trojan [Mirek and Trojan
2016] and used to estimate r -variations for discrete Radon transforms. Lemma 2.5 has been used in
several recent articles on r -variations, including [Bourgain et al. 2018]. For completeness we include a
proof, which is shorter than the previous proofs.

Proof of Lemma 2.5. Due to monotonicity of r -variations it suffices to prove (2.6) with UN D fu=2
N W

u 2 N and 0� u� 2kCN g in place of Œ0; 2k �\U. Observe that

V r .g.t/ W t 2 UN /D V r

�
g

�
t

2N

�
W t 2 Œ0; 2kCN �\Z

�
:

The proof will be completed if we show that

V r .g.t/ W t 2 Œ0; 2n�\Z/� 21� 1
r

nX
lD0

�2n�l�1X
mD0

jg.2l.mC 1//� g.2lm/jr
�1

r

: (2.7)
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Once (2.7) is established we apply it with g.t=2N / in place of g.t/ and nD kCN and obtain (2.6). We
prove (2.7) by induction on n. The case nD 0 is easy to verify. Let n� 1 and suppose that the claim is
known for n�1. Let 0� t0 < � � �< tJ < 2n be an increasing sequence of integers. For j 2 f0; : : : ;J g let
sj � tj � uj be the closest smaller and larger even integer, respectively. Then� JX

jD1

jg.tj /�g.tj�1/j
r

�1
r

D

� JX
jD1

j.g.tj /�g.sj //C.g.sj /�g.uj�1//C.g.uj�1/�g.tj�1//j
r

�1
r

�

� JX
jD1

jg.sj /�g.uj�1/j
r

�1
r

C

� JX
jD1

j.g.tj /�g.sj //C.g.uj�1/�g.tj�1//j
r

�1
r

:

In the first term we notice that the sequence u0 � s1 � u1 � � � � is monotonically increasing and takes
values in 2N, so we can apply the induction hypothesis to the function g.2 � /. In the second term we use
the elementary inequality .aC b/r � 2r�1.ar C br / and observe jtj � sj j � 1, jtj�1 � uj�1j � 1, and
sj � uj�1, so that this is bounded by the l D 0 summand in (2.7). �

2B. Preparatory estimates. We recall Lemma 2.8 that deduces a vector-valued inequality from a maximal
one. Then we apply it to obtain Lemma 2.9.

Lemma 2.8 [Duoandikoetxea and Rubio de Francia 1986, p. 544]. Suppose that .X;B;m/ is a �-finite
measure space and .Mk/k2J is a sequence of linear operators on L1.X /CL1.X / indexed by a countable
set J. The corresponding maximal operator is defined by

M�;Jf WD sup
k2J

sup
jgj�jf j

jMkgj;

where the supremum is taken in the lattice sense. Let q0; q1 2 Œ1;1� and 0� � � 1 with 1
2
D .1� �/=q0

and q0 � q1. Let q� 2 Œq0; q1� be given by

1

q�
D

1� �

q0

C
�

q1

D
1

2
C

1� q0=2

q1

:

Then 



�X
k2J

jMkgk j
2

�1
2






Lq�

�
�
sup
k2J

kMkkLq0!Lq0

�1��
kM�;Jk

�
Lq1!Lq1





�X
k2J

jgk j
2

�1
2






Lq�

:

Proof. Consider the operator zM g WD .Mkgk/k2J acting on sequences of functions g D .gk/k2J in
L1.X /CL1.X /. By Fubini’s theorem

k zM gkLq0 .`q0 / D kkMkgkkLq0k`q0

�
�
sup
k2J

kMkkLq0!Lq0

�
kkgkkLq0k`q0

D
�
sup
k2J

kMkkLq0!Lq0

�
kgkLq0 .`q0 /:
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By definition of the maximal operator

k zM gkLq1 .`1/ D


sup

k2J

jMkgk j




Lq1



M�;J
�
sup
k2J

jgk j
�



Lq1

� kM�;JkLq1!Lq1



sup
k2J

jgk j




Lq1
D kM�;JkLq1!Lq1kgkLq1 .`1/:

The claim for q� 2 Œq0; q1� follows by complex interpolation between Lq0.X I `q0.J// and Lq1.X I `1.J//.
�

Lemma 2.9. Suppose that .X;B;m/ is a �-finite measure space with a sequence of operators .Sk/k2Z

that satisfy the Littlewood–Paley inequality (1.6). Let 1 � q0 � q1 � 2 and L 2 N be a positive integer
and let VL D f.k; l/ 2 Z2 W 0 � l � L� 1g. Let .Mk;l/.k;l/2VL

be a sequence of operators bounded on
Lq1.X / such that 



�X

k2Z

L�1X
lD0

jMk;lSkCjf j
2

�1
2






L2

� ajkf kL2 ; f 2L2.X /; (2.10)

for some positive numbers .aj /j2Z. Then for p D q1 and for all f 2Lp.X / we have



�X
k2Z

L�1X
lD0

jMk;lSkCjf j
2

�1
2






Lp

.L
1
2

2�q1
2�q0

�
sup

.k;l/2VL

kMk;lk

q0
2

2�q1
2�q0

Lq0!Lq0

�
kM�;VL

k

2�q1
2

Lq1!Lq1
a

q1�q0
2�q0

j kf kLp : (2.11)

If Mk;l are convolution operators on an abelian group G, then (2.11) also holds for q1 � p � q0
1
. The

implicit constants in the conclusion do not depend on the qualitative bounds that we assume for the
operators Mk;l on Lq1.X /.

Proof. First we show (2.11). In the case q1 D 2 this is identical to the hypothesis (2.10), so suppose
q1 < 2. Let � and q� 2 Œq0; q1� be as in Lemma 2.8; then by that lemma and Littlewood–Paley inequality
(1.6) we obtain



�X

k2Z

L�1X
lD0

jMk;lSkCjf j
2

�1
2






Lq�

.
�

sup
.k;l/2VL

kMk;lk
1��
Lq0!Lq0

�
kM�;VL

k
�
Lq1!Lq1





�X
k2Z

L�1X
lD0

jSkCjf j
2

�1
2






Lq�

.L
1
2

�
sup

.k;l/2VL

kMk;lk
1��
Lq0!Lq0

�
kM�;VL

k
�
Lq1!Lq1kf kLq� : (2.12)

Since q� � q1 < 2, there is a unique � 2 .0; 1� such that

1

q1

D
�

q�
C

1� �

2
:
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Substituting the definition of q� we obtain

1

q1

D
��

q1

C
1

2
:

It follows that

1� � D
q0

2
; � D

2� q0

2
; �� D

2� q1

2
;

� D
2� q1

2� q0

; �.1� �/D
2� q1

2� q0

q0

2
; 1� � D

q1� q0

2� q0

:

Interpolating (2.12) with the hypothesis (2.10) gives the claim (2.11) for p D q1.
If Mk;l are convolution operators, then by duality the first inequality in (2.12) also holds with q�

replaced by q0
�

. Also,
1

q0
1

D
�

q0
�

C
1� �

2
;

so the same argument as before also works for p D q0
1
. The conclusion for q1 < p < q0

1
follows by

complex interpolation. �

2C. Long jumps for positive operators. Suppose now we have a sequence of positive linear operators
.Ak/k2Z and an approximating family of linear operators .Pk/k2Z both acting on L1.X /CL1.X / such
that for every 1< p <1 the maximal lattice operator

P�f WD sup
k2Z

sup
jgj�jf j

jPkgj

satisfies the maximal estimate
kP�kLp!Lp . 1: (2.13)

Theorem 2.14 will be based on a variant of the bootstrap argument discussed in the context of differen-
tiation in lacunary directions in [Nagel et al. 1978]. These ideas were also used to provide Lp bounds for
maximal Radon transforms in [Duoandikoetxea and Rubio de Francia 1986]. It was observed by Christ
that the argument from [Nagel et al. 1978] can be formulated as an abstract principle, which was useful
in many situations [Carbery 1988] and also in the context of dimension-free estimates [Carbery 1986].

Theorem 2.14. Assume that .X;B;m/ is a �-finite measure space endowed with a sequence of linear
operators .Sj /j2Z satisfying (1.5) and (1.6). Given parameters 1 � q0 < q1 � 2, let .Ak/k2Z be a
sequence of positive linear operators such that supk2ZkAkkLq0!Lq0 . 1. Suppose that the maximal
function P� satisfies (2.13) with p D q1 and



�X

k2Z

j.Ak �Pk/SkCjf j
2

�1
2






L2

� ajkf kL2 ; f 2L2.X /; (2.15)

for some positive numbers .aj /j2Z satisfying

a WD
X
j2Z

a

q1�q0
2�q0

j <1:
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Then for all f 2Lp.X / with p D q1 we have



�X
k2Z

j.Ak �Pk/f j
2

�1
2






Lp

. .1C a
2

q1 /kf kLp : (2.16)

In particular

kA�kLp!Lp . 1C a
2

q1 : (2.17)

If in addition we have the jump inequality

J
p
2
..Pkf /k2Z WX ! C/. kf kLp ; (2.18)

then also

J
p
2
..Akf /k2Z WX ! C/. .1C a

2
q1 /kf kLp : (2.19)

If Ak and Pk are convolution operators on an abelian group G, all these implications also hold for
q1 � p � q0

1
, and we have the vector-valued estimate



�X

k2Z

jAkfk j
r

�1
r






Lp

.




�X

k2Z

jfk j
r

�1
r






Lp

(2.20)

in the same range q1 � p � q0
1

for all 1� r �1.

A few remarks concerning the assumptions in Theorem 2.14 are in order. In applications it is usually
not difficult to verify the assumption (2.15). For general operators the most reasonable and efficient way
is to apply T T � methods. However, for convolution operators on G assumption (2.15) can be verified
using Fourier transform methods, which may be simpler than T T � methods. Let us explain the second
approach more precisely when GD Rd. We first have to fix some terminology.

Let A be a d � d real matrix whose eigenvalues have positive real part. We set

tA
WD exp.A log t/ for t > 0: (2.21)

Let q be a smooth A-homogeneous quasinorm on Rd, that is, q WRd ! Œ0;1/ is a continuous function,
smooth on Rd n f0g, and such that

(1) q.x/D 0() x D 0;

(2) there is C � 1 such that for all x;y 2 Rd we have q.xCy/� C.q.x/C q.y//;

(3) q.tAx/D tq.x/ for all t > 0 and x 2 Rd.

Let also q� be a smooth (away from 0) A�-homogeneous quasinorm, where A� is the adjoint matrix
to A. We only have to find a sequence of Littlewood–Paley projections associated with the quasinorm q�.
For this purpose let �0 W Œ0;1/! Œ0;1/ be a smooth function such that 0� �0 � 1Œ1=2;2� and its dilates
�j .x/ WD �0.2

j x/ satisfy X
j2Z

�2
j D 1.0;1/: (2.22)
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For each j 2Z we define the Littlewood–Paley operator zSj such that bzSjf D  j
Of corresponds to a smooth

function  j .�/ WD�j .q�.�// on Rd. By (2.22) we see that (1.5) holds for Sj D zS
2

j . Moreover, by [Rivière
1971, Theorem II.1.5] we obtain the Littlewood–Paley inequality (1.6) for the operators Sj and zSj .

If .ˆt W t > 0/ is a family of Schwartz functions such that ŷ t .�/D ŷ .tq�.�//, whereˆ is a nonnegative
Schwartz function on Rd with integral 1, then by [Jones et al. 2008, Theorem 1.1] we know that for every
1< p <1 we have

J
p
2
..ˆ2k �f /k2Z W R

d
! C/. kf kLp ; f 2Lp.Rd /: (2.23)

The maximal version of inequality (2.23) has been known for a long time and follows from the Hardy–
Littlewood maximal theorem [Stein 1993]. Hence taking Pkf Dˆ2k �f for k 2 Z, we may assume that
(2.18) is verified.

Suppose now we have a family .Ak/k2Z of convolution operators Akf D �2k �f corresponding to a
family of probability measures .�t W t > 0/ on Rd such that

j O�t .�/� O�t .0/j � !.tq�.�// if tq�.�/� 1; (2.24)

j O�t .�/j � !..tq�.�//
�1/ if tq�.�/� 1 (2.25)

for some modulus of continuity !.
Theorem 2.14, taking into account all the facts mentioned above, yields

J
p
2
..�2k �f /k2Z W R

d
! C/. kf kLp ; f 2Lp.Rd /; (2.26)

for p D q1 and q0 D 1 as long as

aD
X
j2Z

!.2�jj j/
q1�q0
2�q0 <1;

since (2.15) can be easily verified with aj D !.2
�jj j/ using (2.24), (2.25) and the properties of Sj and ˆ.

Proof of Theorem 2.14. We begin with the proof of (2.16). If q1 D 2 then we use (1.5) and (2.15) and
we are done. We now assume that q1 < 2. By the monotone convergence theorem it suffices to consider
only finitely many Mk WD Ak �Pk’s in (2.16), let us say those with jkj �K. Restrict all summations
and suprema to jkj �K and let B be the smallest implicit constant for which (2.16) holds with p D q1.
In view of the qualitative boundedness hypothesis we obtain B <1, but the bound may depend on K.
Our aim is to show that B . 1C a2=q1 . There is nothing to do if B . 1. Therefore, we will assume that
B & 1, so by (1.5), (2.13) and (2.11) with LD 1 and Mk;0 WDMk , we obtain



� X

jkj�K

jMkf j
2

�1
2






Lp

�

X
j2Z





� X
jkj�K

jMkSkCjf j
2

�1
2






Lp

. .1CkM�k
2�q1

2

Lp!Lp a/kf kLp :

By positivity we have jA�f j � supjkj�K Ak jf j and consequently we obtain

jA�f j � sup
jkj�K

Ak jf j � sup
jkj�K

Pk jf jC

� X
jkj�K

jMk jf jj
2

�1
2

: (2.27)
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By (2.27) and (2.13) we get

kM�kLp!Lp � kP�kLp!Lp CkA�kLp!Lp � 2kP�kLp!Lp CB . 1CB:

Taking into account these inequalities we have



� X
jkj�K

j.Ak �Pk/f j
2

�1
2






Lp

D





� X
jkj�K

jMkf j
2

�1
2






Lp

. .1C a.1CB/
2�q1

2 /kf kLp :

Taking the supremum over f gives

B . 1C a.1CB/
2�q1

2 . .1C a/B
2�q1

2 ;

since we have assumed B & 1, and the conclusion (2.16) follows.
Once (2.16) is proven, in view of (2.27) we immediately obtain (2.17). In a similar way, if (2.18) holds,

we deduce (2.19) from (2.16). Indeed,

J
p
2
..Akf /k2Z/. J

p
2
..Pkf /k2Z/CJ

p
2
..Mkf /k2Z/

. kf kLp C


V 2.Mkf W k 2 Z/




Lp

. kf kLp C





�X
k2Z

jMkf j
2

�1
2






Lp

:

In the case of convolution operators we can run the above proof of (2.16) with pD q0
1
, since in this case

Lemma 2.9 tells that (2.11) also holds with p D q0
1
. Once the estimate (2.16) is known for p D q1; q

0
1
,

by interpolation we extend it to q1 � p � q0
1
, and all other inequalities follow as before. Finally, the

vector-valued estimate (2.20) with r D1 is equivalent to the maximal estimate by positivity, with r D 1

it follows by duality, and with 1< r <1 by complex interpolation. �

2D. Long jumps for nonpositive operators. We now drop the positivity assumption and we will be
working with general operators .Bk/k2Z acting on L1.X /CL1.X /. This will require some knowledge
about the maximal lattice operator B� defined in (2.29) and about the sum of Bk’s over k 2 Z. No
bootstrap argument seems to be available for nonpositive operators and therefore additional assumptions
like (2.30) and (2.32) will be indispensable. The proof of Theorem 2.28 is based on the ideas from
[Duoandikoetxea and Rubio de Francia 1986].

Theorem 2.28. Assume that .X;B;m/ is a �-finite measure space endowed with a sequence of linear
operators .Sj /j2Z satisfying (1.5) and (1.6). Let 1� q0 < q1 � 2 and let .Bk/k2Z be a sequence of linear
operators commuting with the sequence .Sj /j2Z such that supk2ZkBkkLq0!Lq0 . 1. Suppose that the
maximal lattice operator

B�f WD sup
k2Z

sup
jgj�jf j

jBkgj (2.29)

satisfies
kB�kLq1!Lq1 . 1: (2.30)
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We also assume 



�X
k2Z

jBkSkCjf j
2

�1
2






L2

� ajkf kL2 ; f 2L2.X /; (2.31)

for some positive numbers .aj /j2Z:

(1) Suppose that .Bk/k2Z additionally satisfies



X
k2Z

Bk






Lq1!Lq1

. 1: (2.32)

Let Pk WD
P

j>k Sj and assume that the jump inequality (2.18) holds for the sequence .Pk/k2Z with
p D q1. Then for all f 2Lp.X / with p D q1 we have

J
p
2

��X
j�k

Bjf

�
k2Z

WX ! C

�
.
�



X

k2Z

Bk






Lq1!Lq1

C
�
sup
k2Z

kBkk

q0
2

2�q1
2�q0

Lq0!Lq0

�
kB�k

2�q1
2

Lq1!Lq1
Qa

�
kf kLp ; (2.33)

where

Qa WD
X
j2Z

.jj jC 1/a

q1�q0
2�q0

j <1:

(2) Suppose that there is a sequence of self-adjoint linear operators . zSj /j2Z such that Sj D zS
2

j for every
j 2 Z and satisfying (1.6) and (2.31) with zSkCj in place of SkCj . Then for every sequence ."k/k2Z

bounded by 1 and for all f 2Lp.X / with p D q1 we have



X
k2Z

"kBkf






Lp

.
�
sup
k2Z

kBkk

q0
2

2�q1
2�q0

Lq0!Lq0

�
kB�k

2�q1
2

Lq1!Lq1
akf kLp ; (2.34)

where a is as in Theorem 2.14.

In the case of convolution operators on an abelian group G all these implications also hold for
q1 � p � q0

1
.

In applications in harmonic analysis we will take Bk D T2k �T2kC1 for k 2 Z, where Tt is a truncated
singular integral operator of convolution type; see (2.3). This class of operators motivates, to a large extent,
the assumptions in Theorem 2.28. In many cases they can be verified if we manage to find positive operators
Ak such that jBkf j.Ak jf j for every k 2 Z and f 2L1.X /CL1.X /. In practice, Ak is an averaging
operator. We shall illustrate this more precisely by appealing to the discussion after Theorem 2.14.

Suppose that .Bk/k2Z is a family of convolution operators Bkf D �2k �f corresponding to a family of
finite measures .�t W t >0/ on Rd such that supt>0k�tk<1 and for every k 2Z and t 2 Œ2k ; 2kC1�we have

j O�t .�/j � !.2
kq�.�// if 2kq�.�/� 1; (2.35)

j O�t .�/j � !..2
kq�.�//

�1/ if 2kq�.�/� 1 (2.36)
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for some modulus of continuity !. Additionally, we assume that j�2k j. �2k for some family of finite
positive measures .�t W t > 0/ on Rd such that supt>0k�tk <1 and satisfying (2.24) and (2.25). In
view of these assumptions and Theorem 2.14 we see that condition (2.30) holds, since jBkf j.Ak jf j,
where Akf D �2k �f . Therefore, 



X

k2Z

Bkf






Lp

. akf kLp

implies (2.32) with p D q1 and q0 D 1, provided that

aD
X
j2Z

!.2�jj j/
q1�q0
2�q0 <1;

since (2.31) can be verified with aj D !.2
�jj j/ using (2.35), (2.36), and the properties of zSj associated

with (2.22). Having proven (2.30) and (2.32) we see that (2.33) holds for the operators Bkf D �2k �f

with p D q1 and q0 D 1 as long as

QaD
X
j2Z

.jj jC 1/!.2�jj j/
q1�q0
2�q0 <1:

Proof of Theorem 2.28. In order to prove inequality (2.33) we employ the decompositionX
j�k

Bj D Pk

X
j2Z

Bj �

X
l>0

X
j<0

SkClBkCj C

X
l�0

X
j�0

SkClBkCj I (2.37)

see [Duoandikoetxea and Rubio de Francia 1986, p. 548]. The J
p
2

quasiseminorm of the first term on the
right-hand side in (2.37) with p D q1 is bounded, due to (2.18), and (2.32), which ensures boundedness
of the operator

P
j2Z Bj .

The estimates for the second and the third terms are similar and we only consider the last term. We
take the `2 norm with respect to the parameter k and estimate

J
p
2

��X
l�0

X
j�0

BkCj SkClf

�
k2Z

WX ! C

�

�





�X
k2Z

ˇ̌̌̌X
l�0

X
j�0

BkCj SkClf

ˇ̌̌̌2 �1
2






Lp

D





�X
k2Z

ˇ̌̌̌X
m�0

kX
nDk�m

BnCmSnf

ˇ̌̌̌2 �1
2






Lp

�

X
m�0





�X
k2Z

ˇ̌̌̌ kX
nDk�m

BnCmSnf

ˇ̌̌̌2 �1
2






Lp

.by the triangle inequality/

�

X
m�0

.mC 1/
1
2





�X
k2Z

kX
nDk�m

jBnCmSnf j
2

�1
2






Lp

.by Hölder’s inequality/

D

X
m�0

.mC 1/





�X
n2Z

jBnCmSnf j
2

�1
2






Lp

:
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By (2.11), with LD 1 and Mk;0 WD Bk , we obtainX
j2Z

.jj jC 1/





�X
k2Z

jBkSkCjf j
2

�1
2






Lp

.
�
sup
k2Z

kBkk

q0
2

2�q1
2�q0

Lq0!Lq0

�
kB�k

2�q1
2

Lq1!Lq1
Qakf kLp :

To prove the second part observe that for a sequence of functions .fj /j2Z in Lp.X I `2.Z// we have
the inequality 



X

j2Z

zSjfj






Lp

.




�X

j2Z

jfj j
2

�1
2






Lp

; (2.38)

which is the dual version of inequality (1.6) for the sequence . zSj /j2Z. To prove (2.34) we will use (1.5)
and (2.38). Indeed,



X

k2Z

"kBkf






Lp

�

X
j2Z





X
k2Z

"kBkSkCjf






Lp

(by (1.5))

D

X
j2Z





X
k2Z

zSkCj ."kBk
zSkCjf /






Lp

.since Sj D zS
2

j /

.
X
j2Z





�X
k2Z

jBk
zSkCjf j

2

�1
2






Lp

.by (2.38)/

.
�
sup
k2Z

kBkk

q0
2

2�q1
2�q0

Lq0!Lq0

�
kB�k

2�q1
2

Lq1!Lq1
akf kLp ;

where in the last step we have used Lemma 2.9, with LD 1 and Mk;0 WD Bk . �

2E. Short variations. We will work with a sequence of linear operators .At /t2U (not necessarily positive)
acting on L1.X /CL1.X /. However, positive operators will be distinguished in our proof and in this
case we can also proceed as before using some bootstrap arguments.

For every k 2 Z and t 2 Œ2k ; 2kC1� we will use the notation

�..As/s2I/tf WD�.At /f WDAtf �A2kf:

Theorem 2.39. Assume that .X;B;m/ is a �-finite measure space endowed with a sequence of linear
operators .Sj /j2Z satisfying (1.5) and (1.6). Let .At /t2U be a family of linear operators such that the
square function estimate



�X

k2Z

2l�1X
mD0

j.A2kC2k�l .mC1/�A2kC2k�l m/SjCkf j
2

�1
2






L2

� 2�
l
2 aj ;lkf kL2 (2.40)

holds for all j 2 Z and l 2 N with some numbers aj ;l � 0 such that for every 0< " < � we haveX
l�0

X
j2Z

2�"la
�

j ;l
<1: (2.41)
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(1) Let 1< q0 < 2 and 4< q1 <1, and suppose that for each q0 � p � q1 the vector-valued estimate



�X
k2Z

jA2k.1Ct/fk j
2

�1
2






Lp

.




�X

k2Z

jfk j
2

�1
2






Lp

(2.42)

holds uniformly in t 2 U\ Œ0; 1�. Then for each

3

1C 1=q0

< p <
4

1C 2=q1
we have 



�X

k2Z

V 2.Atf W t 2 Œ2
k ; 2kC1�\U/2

�1
2






Lp

. kf kLp ; (2.43)

and for each 4� p < q1 and

r >
p

2

q1� 2

q1�p

we have 



�X
k2Z

V r .Atf W t 2 Œ2
k ; 2kC1�\U/r

�1
r






Lp

. kf kLp (2.44)

for all f 2Lp.X /.

(2) Let q0 2 Œ1; 2/ and ˛ 2 Œ0; 1� be such that ˛q0 � 1. Suppose that we have the operator norm
Hölder-type condition

kAtCh�AtkLq0!Lq0 .
�

h

t

�̨
; t; t C h 2 U and h 2 .0; 1�: (2.45)

Then for every exponent q1 satisfying

q0 � 2�
2� q0

2�˛q0

< q1 � 2 (2.46)

and such that
k�..As/s2U/�;UkLq1!Lq1 . 1 (2.47)

we have for all f 2Lp.X / with p D q1 that the estimate (2.43) holds with the implicit constant which is
a constant multiple of

a WD
X
l�0

X
j2Z

2
�.˛ 2�q1

2�q0

q0
2
C 1

2

q1�q0
2�q0

�
2�q1
2�q0

1
2
/l

a

q1�q0
2�q0

j ;l
<1:

(3) Moreover, if .At /t2U is a family of positive linear operators, then the condition (2.47) may be
replaced by a weaker condition

kA�;DkLq1!Lq1 . 1 (2.48)

and the estimate (2.43) holds as well with the implicit constant which is a constant multiple of 1C a2=q1.

In the case of convolution operators on an abelian group G the implication from (2.48) to (2.43) also
holds with p replaced by p0.
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Theorem 2.39 combined with the results formulated in the previous two paragraphs for dyadic scales
will allow us to control, in view of (2.2), the cases for general scales. The first part of Theorem 2.39 gives
(2.43) in a restricted range of p’s. If one asks for a larger range, a smoothness condition like in (2.45)
must be assumed. Inequality (2.45) combined with maximal estimate (2.47) gives larger range of p’s in
(2.43). If we work with a family of positive operators the condition (2.47) may be relaxed to (2.48) by
some bootstrap argument. In the context of discussion after Theorem 2.14 and Theorem 2.28 let us look
at a particular situation of (2) and prove (2.43).

Suppose that .At /t>0 is a family of convolution operators Atf D �t �f corresponding to a family of
finite measures .�t W t > 0/ on Rd such that supt>0k�tk<1 and satisfying (2.35) and (2.36). We assume
that j�t j. �t for some family of finite positive measures .�t W t > 0/ on Rd such that supt>0k�tk<1

and satisfying (2.24) and (2.25) to make sure that condition (2.47) holds. Additionally, let us assume that
(2.45) holds with ˛ D 1 and q0 D 1; 2. By Plancherel’s theorem, (2.35) and (2.36) we obtain

k.A2kC2k�l .mC1/�A2kC2k�l m/SjCkf kL2 . !.2�jj j/kSjCkf kL2 : (2.49)

Thus (2.45) with q0 D 2, t D 2k C 2k�lm, hD 2k�l combined with (2.49) imply

k.A2kC2k�l .mC1/�A2kC2k�l m/SjCkf kL2 .min.2�l ; !.2�jj j//kSjCkf kL2 : (2.50)

Consequently (2.40) holds with aj ;l Dminf1; 2l!.2�jj j/g and Theorem 2.39 gives the desired conclusion
as long as

aD
X
l�0

X
j2Z

2�
.q1�1/l

2 .minf1; 2l!.2�jj j/g/q1�1 <1:

Proof of Theorem 2.39(1). By Minkowski’s inequality for 2� s � q1 <1 we have
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X
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X
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� 2l sup
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k2Z
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2

�1
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s

Lq1
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�X
k2Z

jfk j
2

�1
2




s

Lq1

;
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where we have applied (2.42) in the last step. Using this with fk D SjCkf and applying (1.6) we obtain



�X
k2Z

2l�1X
mD0

j.A2kC2k�l .mC1/�A2kC2k�l m/SjCkf j
s

�1
s






Lq1

. 2
l
s kf kLq1

for all 2� s � q1 <1. By interpolation with (2.40) we obtain



�X
k2Z

2l�1X
mD0

j.A2kC2k�l .mC1/�A2kC2k�l m/SjCkf j
r

�1
r






Lp

. 2�
�l
2
C
.1��/l

s a�j ;lkf kLp ; (2.51)

where 0< � � 1 and
1

r
D
�

2
C

1� �

s
and

1

p
D
�

2
C

1� �

q1
;

so

� D
2

p

q1�p

q1� 2
:

By Lemma 2.5, or more precisely by an analogue of inequality (2.4) with `r norm in place of `2 norm,
and by (2.51) we obtain



�X

k2Z

V r .Atf W t 2 Œ2
k ; 2kC1�\U/r

�1
r






Lp

.
X
l�0

X
j2Z

2�
�l
2
C
.1��/l

s a�j ;lkf kLp : (2.52)

In view of (2.41) with "D �=2� .1��/=s and �D � this estimate is summable in l and j , provided that
��=2C .1� �/=s < 0. In particular, for

2� p <
4

1C 2=q1

we use s D 2. For 4� p < q1 we use

s >
q1.p� 2/

q1�p

and then

r >
p

2

q1� 2

q1�p
:

For q0 2 .1; 2/ by Minkowski’s inequality and (2.42) we have
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2

�1
2






Lq0

�

2l�1X
mD0





�X
k2Z

j.A2kC2k�l .mC1/�A2kC2k�l m/fk j
2

�1
2






Lq0

� 2lC1 sup
0�m�2l





�X
k2Z

jA2kC2k�l mfk j
2

�1
2






Lq0

. 2l





�X
k2Z

jfk j
2

�1
2






Lq0

:



A BOOTSTRAPPING APPROACH TO JUMP INEQUALITIES AND THEIR APPLICATIONS 547

Substituting fk D SjCkf , applying (1.6), and interpolating with (2.40) we obtain



�X
k2Z

2l�1X
mD0

j.A2kC2k�l .mC1/�A2kC2k�l m/SjCkf j
2

�1
2






Lp

. 2�
�l
2
C.1��/la�j ;lkf kLp ; (2.53)

with
1

p
D
�

2
C

1� �

q0

;

for 0< � < 1. Hence

� D
2

p

p� q0

2� q0

and in view of (2.41) with "D �=2� .1� �/ and �D � this estimate is summable in l and j , provided
that ��=2C .1� �/ < 0. The conclusion again follows from Lemma 2.5 and (2.53) like in (2.52) with

3

1C 1=q0

< p � 2: �

Proof of Theorem 2.39(2)–(3). By the monotone convergence theorem we may restrict k in (2.43) to
jkj �K0 and parameters t to the set

Uk
L0
WD fu=2L0 W u 2 N and 2kCL0 � u� 2kCL0C1

g

for some K0 2N and L0 2 Z as long as we obtain estimates independent of K0 and L0. Fix K0;L0 and
let I WD

S
jkj�K0

Uk
L0

. Let q1 satisfy (2.46); then invoking (1.5) and (2.11), with LD 2l, we obtain
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In order for the right-hand side to be summable in l we need

1

2
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2� q0
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1
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q1� q0

2� q0

< 0 () .2� q1/�˛.2� q1/q0� .q1� q0/ < 0:
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and this is our hypothesis (2.46). Hence under this condition by Lemma 2.5 we conclude for general
operators that



� X
jkj�K0

V 2.Atf W t 2Uk
L0
/2
�1

2






Lp

.
K0CL0X

lD0





� X
jkj�K0

2l�1X
mD0

j.A2kC2k�l .mC1/�A2kC2k�l m/f j
2

�1
2






Lp

. k�..As/s2U/�;Ik
2�q1

2

Lq1!Lq1
akf kLp ; (2.54)

as desired. For positive operators crude estimates and interpolation show that

B WD kA�;IkLp!Lp <1;

with p D q1, since I is finite. Note that

sup
t2I

jAtf .x/j � sup
t2D

jAtf .x/jC

�X
k2Z

sup
t2Œ2k ;2kC1/\I

j.At �A2k /f .x/j2
�1

2

: (2.55)

Therefore, appealing to (2.55), (2.48) and (2.54) we obtain by a bootstrap argument that B . 1C

B.2�q1/=2a, since

k�..As/s2U/�;Ik
2�q1

2

Lq1!Lq1
. B

2�q1
2 :

Hence, B. 1Ca2=q1 . In particular, the estimate (2.54) becomes uniform in I�U, and this simultaneously
implies (2.43).

In the case of convolution operators we may replace pD q1 by pD q0
1

in Lemma 2.9 and all subsequent
arguments. �

3. Applications

3A. Dimension-free estimates for jumps in the continuous setting. We begin by providing dimension-
free endpoint estimates, for r D 2, in the main results of [Bourgain et al. 2018]. Let G � Rd be a
symmetric convex body. By the definition of the averaging operator (1.8) we have AG

t
zU D zUAU.G/

t ,
where zUf WD f ıU is the composition operator with an invertible linear map U W Rd ! Rd. It follows
that all estimates in Section 1 are not affected if G is replaced by U.G/.

By [Bourgain 1986a], after replacing G by its image under a suitable invertible linear transformation,
we may assume that the normalized characteristic function � WD jGj�11G satisfies

j O�.�/j � C j�j�1; (3.1)

j O�.�/� 1j � C j�j; (3.2)

jh�;r O�.�/ij � C; (3.3)

with the constant C independent of the dimension. In [Bourgain 1986a] these estimates were proved with
jL.G/�j in place of j�j on the right-hand side, where L.G/ is the isotropic constant corresponding to G.
The above form is obtained by rescaling.
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Then At WD AG
t is the convolution operator with �t and O�t .�/D O�.t�/. The Poisson semigroup is

defined by
bPtf .�/ WD pt .�/ Of .�/; where pt .�/ WD e�2� t j�j:

The associated Littlewood–Paley operators are given by Sk WD P2k � P2kC1 . Their Fourier symbols
satisfy

j ySk.�/j.minf2k
j�j; 2�k

j�j�1
g; (3.4)

where ySk.�/ is the multiplier associated with the operator Sk , i.e., bSkf .�/ D ySk.�/ Of .�/. From now
on, for simplicity of notation, we will use this convention. The symbols associated with the Poisson
semigroup Pk WD P2k satisfy

j yPk.�/� 1j. j2k�j and j yPk.�/j. 2�k
j�j�1: (3.5)

Proof of Theorem 1.9. We verify that the sequence .Ak/k2Z, where Ak WDA2k , satisfies the hypotheses
of Theorem 2.14 for every 1D q0 < q1 � 2.

The maximal inequality (2.13) and the Littlewood–Paley inequality (1.6) for the Poisson semigroup
with constants independent of the dimension are well known [Stein 1970]. The jump estimate (2.18) was
recently established in [Mirek et al. 2018b, Theorem 1.5].

It remains to verify condition (2.15) for the operators Mk WD Ak �Pk . In view of (3.1), (3.2) and
(3.5), we have

j yMk.�/j.minfj2k�j�1; j2k�jg:

For � 2 Rd n f0g let k0 2 Z be such that Q� D 2k0� satisfies j Q�j ' 1. By (3.5) it follows thatX
k2Z

j yMk.�/ ySkCj .�/j
2 .

X
k2Z

minfj2k�j�1; j2k�jg2 minfj2kCj�j�1; j2kCj�jg2

D

X
k2Z

minfj2k Q�j�1; j2k Q�jg2 minfj2kCj Q�j�1; j2kCj Q�jg2

.
X
k2Z

minf2�k ; 2k
g
2 minf.2kCj /�1; 2kCj

g
2 . 2�ıjj j (3.6)

for ı 2 .0; 2/ with the implicit constant independent of the dimension. By Plancherel’s theorem this shows
that (2.15) holds with aj . 2�ıjj j=2. �

Proof of Theorem 1.11. We will apply Theorem 2.39 with At WDAt WDAG
t . By a simple scaling we have

A2k.1Ct/ DA.1Ct/G

2k . Hence Theorem 2.14, with Ak DA.1Ct/G

2k , applies and we obtain the vector-valued
inequality (2.20) for all 1< p <1 and r D 2, which consequently guarantees (2.42). It remains to verify
the hypothesis (2.40) of Theorem 2.39. We repeat the estimate [Bourgain et al. 2018, (4.23)]. By (3.3)
for t > 0 and h> 0 we haveˇ̌

O�..t C h/�/� O�.t�/
ˇ̌
�

Z tCh

t

jh�;r O�.u�/ij du.
Z tCh

t

du

u
. h

t
: (3.7)
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By the Plancherel theorem this implies

kAtCh�AtkL2!L2 .
h

t
: (3.8)

This allows us to estimate the square of the left-hand side of (2.40) by

LHS (2.40)2
D

X
k2Z

2l�1X
mD0

k.A2kC2k�l .mC1/�A2kC2k�l m/SjCkf k
2
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.
X
k2Z

2l�1X
mD0

2�2l
kSjCkf k

2
L2

D 2�l
X
k2Z

kSjCkf k
2
L2 . 2�l

kf k2
L2 :

Secondly, by (3.1) and (3.2) for every 0�m< 2l we haveˇ̌
O�..2k

C 2k�l.mC 1//�/� O�..2k
C 2k�lm/�/

ˇ̌
.minfj2k�j; j2k�j�1

g:

Arguing similarly to (3.6) we obtain

LHS (2.40)2 . 2l2�ıjj jkf k22:

Hence (2.40) holds with aj ;l Dminf1; 2l2�ıjj j=2g. �

Proof of Theorem 1.14. By Theorem 1.9 we have the hypothesis (2.48) of Theorem 2.39. The hypothesis
(2.40) was verified in the proof of Theorem 1.11. The remaining hypothesis (2.45) is given by [Bourgain
et al. 2018, Lemma 4.2], but we give a more direct proof.

Recall that Bq is the unit ball induced by `q norm in Rd. From [Müller 1990] (for 1� q <1), and
[Bourgain 2014] (for q D1) we use the multiplier norm estimate

k QmkM p .p;q;˛ 1; QmD .� � r/˛ O�;

for ˛ 2 .0; 1/ and p 2 .1;1/ with implicit constant independent of the dimension. For a Lipschitz
function h W

�
1
2
;1

�
! R such that jh.t/j . jt j�1 and jh0.t/j . jt j�1 fractional differentiation can be

inverted by fractional integration:

h.t/D
1

�.˛/

Z C1
t

.u� t/˛�1D˛h.u/ du; t > 1
2
I

see [Deleaval et al. 2018, Lemma 6.11]. In particular, for t > 1 we obtain

h.t/� h.1/D
1

�.˛/

Z C1
1

..u� t/˛�1
C � .u� 1/˛�1/D˛h.u/ du;

where uC WDmax.u; 0/ denotes the positive part. In view of (3.1) and (3.3) this result can be applied to
the function h.t/D O�.t�/ for any � 2 Rd n f0g. Observing D˛h.u/D u�˛ Qm.u�/ we obtain

O�.t�/� O�.�/D
1

�.˛/

Z C1
1

..u� t/˛�1
C � .u� 1/˛�1

C /u�˛ Qm.u�/ du:
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On the other hand we haveZ C1
1

j.u� t/˛�1
C � .u� 1/˛�1

C ju�˛ du.˛ .t � 1/˛;

and for a Schwartz function f 2 S.Rd / this implies

kF�1
� .. O�.t�/� O�.�// Of .�//kLp �

Z C1
1

j.u�t/˛�1
C �.u�1/˛�1

C ju�˛ �kF�1
� ...u� �r/˛ O�/.�/ Of .�//kLp du

.˛ .t�1/˛ sup
u>0

kF�1
� ...u� �r/˛ O�/.u�/ Of .�//kLp

.˛ .t�1/˛k..� �r/˛ O�/.�/kM pkf kLp ;

where we have used the Fourier inversion formula and Fubini’s theorem in the first step and scale invariance
of the multiplier norm in the last step. Since the multiplier O�.t�/� O�.�/ is (qualitatively) bounded on
Lp with norm � 2, by density of Schwartz functions this implies

k O�.t � /� O�kM p .˛ .t � 1/˛;

which by scaling implies the hypothesis (2.45). �

Finally we emphasize that once Theorem 1.9 is proved, alternative proofs of Theorems 1.11 and 1.14
follow by appealing to the short variational estimates given in [Bourgain et al. 2018].

3B. Dimension-free estimates for jumps in the discrete setting. We outline the proof of Theorem 1.18.
The strategy is much the same as for the proofs of Theorems 1.9 and 1.11. Let

mN .�/D
1

.2N C 1/d

X
m2QN

e2�im�� for � 2 Td

be the multiplier corresponding to the operators AN defined in (1.17). Here we remind the reader
of the following estimates for mN established recently in [Bourgain et al. 2019]. Namely there is a
constant 0 < C <1 independent of the dimension such that for every N;N1;N2 2 N and for every
� 2 Td �

�
�

1
2
; 1

2

�d we have

jmN .�/j � C.N j�j/�1;

jmN .�/� 1j � CN j�j;

jmN1
.�/�mN2

.�/j � C jN1�N2jmaxfN�1
1 ;N�1

2 g;

(3.9)

where j � j denotes the Euclidean norm restricted to Td.
The discrete Poisson semigroup is defined by

bPtf .�/ WD pt .�/ Of .�/; where pt .�/ WD e�2� t j�jsin ;

for every � 2 Td and

j�jsin WD

� dX
jD1

.sin.��j //2
�1

2

:
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We set Pk WD P2k and the associated Littlewood–Paley operators are given by Sk WD P2k �P2kC1 . The
maximal inequality (2.13) and the Littlewood–Paley inequality (1.6) for the discrete Poisson semigroup
with constants independent of the dimension follow from [Stein 1970]. The jump estimate (2.18) for
discrete Poisson semigroup was recently proved in [Mirek et al. 2018b, Theorem 1.5]. Moreover, using
j�j � j�jsin � �j�j for � 2 Td, we see that the corresponding Fourier symbols ySk.�/ and yPk.�/ satisfy
estimates (3.4) and (3.5) as well.

In order to prove (1.20) we have to verify that the sequence .Ak/k2N, where Ak WD A2k , satisfies
the hypotheses of Theorem 2.14 for every 1D q0 < q1 � 2. Taking into account (3.9), (3.4) and (3.5)
(associated with the discrete Poisson semigroup) it suffices to proceed as in the proof of Theorem 1.9. To
prove (1.19) we argue as in the proof of Theorem 1.11.

3C. Jump inequalities for the operators of Radon type. In this section we prove Theorems 1.22 and 1.30.
By the lifting procedure for the Radon transforms described in [Stein 1993, Chapter 11, Section 2.4]
we can assume without loss of generality that our polynomial mapping P .x/ WD .x/� is the canonical
polynomial mapping for some � � Nk

0
n f0g with lexicographical order, given by

Rk
3 x D .x1; : : : ;xk/ 7! .x/� WD .x


1

1
� � �x


k

k
W 
 2 �/ 2 R� ;

where R� WDRj�j is identified with the space of all vectors whose coordinates are labeled by multi-indices

 D .
1; : : : ; 
k/ 2 � .

Throughout what follows A is the diagonal j�j�j�j matrix such that .Ax/
 D j
 jx
 for every x 2R�

and let q� be the quasinorm associated with A� DA, given by

q�.�/Dmax

2�

.j�
 j
1
j
 j / for � 2 R� :

We shall later freely appeal, without explicit mention, to the discussions after Theorems 2.14, 2.28
and 2.39 with d D j�j, A and q� as above.

Proof of Theorem 1.22. Let Mt WDMP
t , where P .x/D .x/�. Observe that Mt is a convolution operator

with a probability measure �t , whose Fourier transform is defined by

O�t .�/ WD
1

j�t j

Z
�t

e�2�i��.y/� dy for � 2 R� :

Condition (2.25) with !.t/D t1=d follows from Proposition B.2 and Lemma A.1. It is not difficult to see
that (2.24) also holds.

In order to prove (1.23) it suffices, in view of (2.2), to show inequality (2.19) with Ak WDM2k and
inequality (2.43) with At WDMt for every 1 D q0 < q1 � 2. We have already seen that (2.26) holds;
hence (2.19) holds and we are done. We now show (2.43). For this purpose note that (2.45) holds for all
1� q0 <1. This combined with (2.24) and (2.25) permits us to prove (2.49) and (2.50), which imply
(2.40) and Theorem 2.39 yields the conclusion. �
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Proof of Theorem 1.30. Let Ht WDHP
t , where P .x/D .x/�. Denote the Fourier multiplier corresponding

to the truncated singular Radon transform by

‰t .�/ WD

Z
Rkn�t

e�2�i��.y/�K.y/ dy for � 2 R� : (3.10)

For a fixed � 2 .0; 1/ we claim

j‰t .�/�‰s.�/j.� jtA�j
� 1

d
1 C!K .jt

A�j
� 1

d
1 /

. .tq�.�//�
1
d C!K ..tq�.�//

� 1
d / if tq�.�/� 1; (3.11)

for all s; t 2 .0;1/ such that �t � s � t . Indeed, by Proposition B.2 we obtain

j‰t .�/�‰s.�/j D

ˇ̌̌̌Z
�tn�s

e�2�i��.y/�K.y/ dy

ˇ̌̌̌
. sup
v2Rk Wjvj�tƒ

� 1
d

Z
j.1�tn�s

K/.y/� .1�tn�s
K/.y � v/j dy;

with

ƒD
X

2�

t j
 jj�
 j:

The claim (3.11) clearly holds for ƒ � 1. If ƒ � 1, then for a fixed v we use (1.28) and the fact that
�t n�s � B.0; t/ nB.0; c��t/ to estimate the contribution of y such that y;y � v 2�t n�s . On the
set of y such that exactly one of y;y � v is contained in �t n�s we use (1.26); the measure of this set
is bounded by a multiple of tk�1jvj due to Lemma A.1. This finishes the proof of (3.11).

Additionally, we have

j‰t .�/�‰s.�/j. jtA�j
1
d
1 . .tq�.�//

1
d C!K ..tq�.�//

1
d / if tq�.�/� 1 (3.12)

due to the cancellation condition (1.27) and (1.26).
To prove (1.31) we fix � 2 .0; 1� and p 2 f1C �; .1C �/0g and invoking (2.2) it suffices to prove

inequalities (1.32) and (1.33). Inequality (1.32) will follow from (2.33) with q0D1, q1D1C� , and Bj WD

H2j �H2jC1 upon expressing H2k as a telescoping series like in (2.3). Inequality (1.33) will be a conse-
quence of (2.43) with q0D1, q1D1C� , and At WDHt . Let .�t W t >0/ be a family of measures defined by

�t �f .x/D

Z
�tn�2k

f .x� .y/�/K.y/ dy for every t 2 Œ2k ; 2kC1�; k 2 Z: (3.13)

Estimates (3.11) and (3.12) allow us to verify (2.35) and (2.36) respectively with !.t/ WD t1=d C

!K .t
1=d /. Moreover j�2k j. �2k , where �t is the measure associated with the averaging operator Mt .

Hence the discussion after Theorem 2.28 guarantees that inequality (2.33) holds, since Bkf D �2kC1 �f .
To prove (2.43) it suffices to note that (2.45) holds for all 1� q0 <1. Moreover inequalities (2.49) and
(2.50) remain true for At DHt . Then Theorem 2.39 completes the proof. �
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Appendix A: Neighborhoods of boundaries of convex sets

We will show how to control the measure of neighborhoods of the boundaries of convex sets. The proof
of the lemma below is based on a simple Vitali covering argument.

Lemma A.1. Let �� Rk be a bounded and convex set and let 0< s . diam.�/. Then

jfx 2 Rk
W dist.x; @�/ < sgj.k s diam.�/k�1:

The implicit constant depends only on the dimension k, but not on the convex set �.

Proof. Let r D diam�. By translation we may assume �� B.0; r/, where B.y; s/ denotes an open ball
centered at y 2 Rk with radius s > 0. Notice

fx 2 Rk
W dist.x; @�/ < sg �

[
y2@�

B.y; s/:

By the Vitali covering lemma there exists a finite subset Y � @� such that the balls B.y; s/, with y 2 Y ,
are pairwise disjoint and ˇ̌̌̌ [

y2@�

B.y; s/

ˇ̌̌̌
.
ˇ̌̌̌[
y2Y

B.y; s/

ˇ̌̌̌
:

Consider the nearest-point projection P WRk! cl�, that is, P .x/Dx0, where x02 cl� is the unique point
such that jx�x0j D dist.x; cl�/. It is well known that P is well-defined and contractive with respect to
the Euclidean metric. The restriction of P to the sphere @B.0; r/ defines a surjection P@ W @B.0; r/! @�.
This follows from the fact that for every point x 2 @� there exists a linear functional � W Rk ! R such
that �.y/� �.x/ for every y 2 cl�; see, e.g., [Rockafellar 1970, Corollary 11.6.1]. For each y 2 Y we
choose z.y/ 2 @B.0; r/ such that P@.z.y//D y. Then the balls B.z.y/; s/ are pairwise disjoint in view
of the contractivity of P and contained in the set

fx 2 Rk
W r � s < jxj< r C sg;

which has measure . s.r C s/k�1. But the union of the balls B.z.y/; s/ has the same measure asS
y2Y B.y; s/, and the conclusion follows. �

Appendix B: Estimates for oscillatory integrals

We present the following variant of van der Corput’s oscillatory integral lemma with a rough amplitude
function.

Lemma B.1. Given an interval .a; b/ � R suppose that � W .a; b/! R is a smooth function such that
j�.k/.x/j& � for every x 2 .a; b/ with some � > 0. Assume additionally that

� either k � 2,

� or k D 1 and �0 is monotonic.
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Then for every locally integrable function  W R! C we haveˇ̌̌̌Z b

a

ei�.x/ .x/ dx

ˇ̌̌̌
.k inf

a�x�b

Z xC��1=k

x���1=k

j .y/j dyC�
1
k

Z ��1=k

���1=k

Z b

a

j .x/� .x�y/j dx dy:

Proof. Let � be a smooth positive function with supp � � Œ�1; 1� and
R

R
�.x/ dx D 1. Let �.x/ WD

 ��1=k�.�1=kx/, and note that

j .x/� �.x/j � �
1
k

Z
R

j .x/� .x�y/jj�.�
1
k y/j dy:

Then we may replace  by � on the left-hand side of the conclusion. For every x0 2 .a; b/ by partial
integration and the van der Corput lemma, see for example [Stein 1993, Section VIII.1.2], we haveˇ̌̌̌Z b

a

ei�.x/�.x/dx

ˇ̌̌̌
D

ˇ̌̌̌
�.x0/

Z b

a

ei�.x/ dxC

Z b

a

ei�.x/

Z x

x0

�0.y/dy dx

ˇ̌̌̌
�

ˇ̌̌̌
�.x0/

Z b

a

ei�.x/ dx

ˇ̌̌̌
C

ˇ̌̌̌Z x0

a

�0.y/

Z y

a

ei�.x/ dx dy

ˇ̌̌̌
C

ˇ̌̌̌Z b

x0

�0.y/

Z b

y

ei�.x/ dx dy

ˇ̌̌̌
.��

1
k

�
j�.x0/jC

Z b

a

j�0.x/jdx

�
:

The latter term is estimated using

j�0.x/j D j. .x/� /��
1
k �.�

1
k � /0.x/j. �

2
k

Z
R

j .x/� .x�y/jj�0.�
1
k y/j dy;

and the conclusion follows. �

We will also need a multidimensional version of Lemma B.1. As before B.y; s/ denotes an open ball
centered at y 2 Rk with radius s > 0.

Proposition B.2 [Zorin-Kranich 2017]. Given d; k 2 N, let P .x/D
P

1�j˛j�d �˛x˛ be a polynomial in
k variables of degree at most d with real coefficients. Let R > 0 and let  W Rk ! C be an integrable
function supported in B.0;R=2/. Thenˇ̌̌̌Z

Rk

eiP.x/ .x/ dx

ˇ̌̌̌
.d;k sup

v2Rk Wjvj�Rƒ
� 1

d

Z
Rk

j .x/� .x� v/j dx;

where

ƒ WD
X

1�j˛j�d

Rj˛jj�˛j:

We include the proof for completeness.

Proof. Changing the variables we haveˇ̌̌̌Z
Rk

eiP.x/ .x/ dx

ˇ̌̌̌
DRk

ˇ̌̌̌Z
Rk

eiPR.x/ R.x/ dx

ˇ̌̌̌
;
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where

PR.x/D
X

1�j˛j�d

Rj˛j�˛x˛;  R.x/D  .Rx/ and supp R � B
�
0; 1

2

�
:

Let us define

ˇ D sup
v2Rk Wjvj�ƒ

� 1
d

Z
Rk

j R.x/� R.x� v/j dx;

and observe that k RkL1 . ˇƒ1=d. So there is nothing to prove if ƒ. 1. We assume that ƒ& 1. Let �
be a nonnegative smooth bump function with integral 1, which is supported in the ball B

�
0; 1

2

�
. Then we

define �.x/Dƒk=d�.ƒ1=dx/ and �.x/D  R � �.x/ and we noteZ
Rk

j R.x/��.x/j dx �ƒ
k
d

Z
Rk

Z
Rk

j R.x/� R.x�y/j dx�.ƒ
1
d y/dy . ˇ:

The proof will be completed if we show thatˇ̌̌̌Z
Rk

eiPR.x/�.x/ dx

ˇ̌̌̌
.d;k ˇ: (B.3)

Since � is a smooth function supported in B.0; 1/ we invoke [Stein and Wainger 2001, Lemma 2.2] to
get the conclusion. Indeed, that result ensures that there exists a unit vector � 2 Rk and an integer m 2 N

such that j.� � r/mPRj > ck;dƒ on the unit ball B.0; 1/ for some ck;d > 0. We may assume, without
loss of generality, that � D e1 D .1; 0; : : : ; 0/ 2 Rk. Then by the van der Corput lemma, see for example
[Stein 1993, Corollary, p. 334], we obtainˇ̌̌̌Z

Rk

eiPR.x/�.x/ dx

ˇ̌̌̌
.ƒ�

1
d

Z
Rk�1\B.0;1/

�
j�.1;x0/jC

Z 1

�1

j@1�.x1;x
0/j dx1

�
dx0

.ƒ�
1
d kr�kL1 ;

since supp� � B.0; 1/ and �.1;x0/D 0 for every x0 2 Rk�1\B.0; 1/.
We now show that kr�kL1 .ƒ1=dˇ. Indeed, for every j 2 f1; : : : ; kg we have

k@j�kL1 D

Z
Rk

ˇ̌̌̌Z
Rk

 R.x�y/@j�.y/ dy

ˇ̌̌̌
dx

D

Z
Rk

ˇ̌̌̌Z
Rk

. R.x/� R.x�y//@j�.y/ dy

ˇ̌̌̌
dx

.ƒ
k
d
C 1

d

Z
Rk

Z
Rk

j R.x/� R.x�y/jj.@j�/.ƒ
1
d y/j dx dy .ƒ

1
d ˇ:

This proves (B.3) and completes the proof of Proposition B.2. �
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ON THE TRACE OPERATOR FOR FUNCTIONS OF BOUNDED A-VARIATION

DOMINIC BREIT, LARS DIENING AND FRANZ GMEINEDER

We consider the space BVA(�) of functions of bounded A-variation. For a given first-order linear homo-
geneous differential operator with constant coefficients A, this is the space of L1-functions u :�→ RN

such that the distributional differential expression Au is a finite (vectorial) Radon measure. We show that
for Lipschitz domains �⊂ Rn, BVA(�)-functions have an L1(∂�)-trace if and only if A is C-elliptic (or,
equivalently, if the kernel of A is finite-dimensional). The existence of an L1(∂�)-trace was previously only
known for the special cases that Au coincides either with the full or the symmetric gradient of the function u
(and hence covered the special cases BV or BD). As a main novelty, we do not use the fundamental
theorem of calculus to construct the trace operator (an approach which is only available in the BV- and
BD-settings) but rather compare projections onto the nullspace of A as we approach the boundary. As
a sample application, we study the Dirichlet problem for quasiconvex variational functionals with linear
growth depending on Au.

1. Introduction

1A. Aim and scope. Let � be an open, bounded Lipschitz domain in Rn and let 1 ≤ p <∞. A key
tool in the study of partial differential equations is the assignment of boundary values to elements
u ∈ W 1,p(�;RN ), often being the first step towards well-posedness results for such equations. In this
respect, it is a well-established fact, see [Maz’ya 2011], that if 1< p <∞, then there exists a surjective,
bounded linear trace embedding operator

tr :W 1,p(�;RN ) ↪→W 1−1/p,p(∂�;RN ) (1-1)

which satisfies tr(u)= u|∂� for u ∈ C(�;RN )∩W 1,p(�;RN ). If p = 1 instead, a result of [Gagliardo
1957] asserts that there exists a surjective, bounded linear trace embedding operator

tr :W 1,1(�;RN ) ↪→ L1(∂�;RN ). (1-2)

The same holds true when W 1,1(�;RN ) is replaced by BV(�;RN ), the RN -valued functions of bounded
variation on �. Both boundary trace embeddings (1-1), (1-2) and the corresponding variant for BV hinge
on inequalities

‖u‖W 1−1/p,p(∂�;RN ) ≤ C(‖u‖L p(�;RN )+‖Du‖L p(�;RN×n)),

‖u‖L1(∂�;RN ) ≤ C(‖u‖L1(�;RN )+‖Du‖L1(�;RN×n))
(1-3)

MSC2010: primary 46E35, 26D10, 26B30; secondary 46E30, 49J45.
Keywords: trace operator, functions of bounded A-variation, linear growth functionals.
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if 1< p<∞ or p= 1, respectively, to be satisfied for all u ∈C(�;RN )∩C1(�;RN ). These estimates in
turn are obtained as a consequence of the fundamental theorem of calculus in conjunction with a smooth
approximation argument.

As one of the fundamental achievements of 20th century harmonic analysis, Calderón and Zygmund
[1956] and Mihlin [1956] established that in a wealth of inequalities, the full gradient can be replaced
by weaker quantities only involving certain combinations of derivatives. Precisely, let A be a constant-
coefficient, linear, homogeneous differential operator from RN to RK ; i.e., there exist fixed linear maps
Aα : RN

→ RK with

A =

n∑
α=1

Aα∂α. (1-4)

Then for each 1< p <∞ there exists c = c(p, n,A) > 0 such that there holds

‖Du‖L p(Rn;RN×n) ≤ c‖Au‖L p(Rn;RK ) for all u ∈ C∞c (R
n
;RN ) (1-5)

if and only if A is elliptic. Here we say that A is elliptic if and only if for each ξ = (ξ1, . . . , ξn) ∈Rn
\ {0}

the symbol map A[ξ ] :=
∑

α ξαAα : RN
→RK is an injective linear map. A special instance of (1-5) is the

case of the symmetric gradient operator Eu := 1
2(Du+D>u) acting on maps u : Rn

→Rn (here N = n≥ 2
and K = n2, identifying Rn×n ∼= Rn2

). In this situation, (1-5) gives the usual Korn inequalities, which
play a pivotal role in elasticity or fluid mechanics; see [Fuchs and Seregin 2000] for a comprehensive
overview.

Singular integrals or Fourier multiplier operators in general are not bounded on L1. Thus one expects
the exponent range 1< p <∞ for (1-5) to be optimal for general elliptic operators A. This is in fact true
and manifested by Ornstein’s celebrated noninequality, stating the impossibility of nontrivial L1-estimates:

Theorem [Ornstein 1962]. Let A and B be two constant-coefficient first-order, linear homogeneous
differential operators on Rn from RN to RK and from RN to R, respectively. Suppose that there exists a
constant c > 0 such that

‖Bu‖L1(Rn) ≤ c‖Au‖L1(Rn;RK ) for all u ∈ C∞c (R
n
;RN ).

Then there exists T ∈L (RK
;R) such that B= T ◦A.

This negative result — which faces contributions to date, see [Conti et al. 2005; Kirchheim and
Kristensen 2016] — immediately yields that if p= 1, inequalities that involve the full gradients Du do not
necessarily generalise to those involving only Au. On the other hand, by [Temam and Strang 1980] it is
known for the special case of A being the symmetric gradient operator that the second inequality in (1-3)
remains valid indeed for p = 1 when D is replaced by E . However, the method employed in [Temam and
Strang 1980; Babadjian 2015] to arrive at this result is very specific to the symmetric gradient operator
and its structural properties: again based on the fundamental theorem of calculus, Eu then allows one to
control a cone of line integrals emanating from the boundary, leading to the desired trace inequality. In
particular, it is far from clear whether and if so, how, trace inequalities of the form (1-3) can be established
for p = 1 and D being replaced by differential operators A of the form (1-4). As we shall see below in
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Section 1C, even for general elliptic operators A the corresponding analogues of (1-3) break down and
hence the method employed for the symmetric gradient cannot easily generalise.

This leads us to the following classification problem: classify all differential operators of the form (1-4)
such that for any open and bounded Lipschitz domain �⊂ Rn there exists a constant c > 0 such that

‖u‖L1(∂�;RN ) ≤ c(‖u‖L1(�;RN )+‖Au‖L1(�;RK )) (1-6)

holds for all u ∈ C(�;RN ) ∩ C1(�;RN ). The overall objective of the present paper is to solve
this classification problem. Before we pass on to the precise description of our results — in particular,
Theorem 1.2 — we briefly pause and connect this theme to other results available in the literature first.

1B. Contextualisation and function spaces. The quest for classifying differential operators A of the
form (1-4) such that well-known inequalities generalise to the A-framework for p = 1 has come up rather
recently. Building on the foundational work [Bourgain and Brezis 2003; 2004; 2007], Van Schaftingen
[2013] characterised all operators A of the form (1-4) for which a Sobolev-type inequality

‖u‖Ln/(n−1)(Rn;RN ) ≤ C‖Au‖L1(Rn;RK ) for all u ∈ C∞c (R
n
;RN ) (1-7)

holds. Whereas ellipticity of A is easily seen to be necessary for (1-7), it is far from sufficient and needs
to be augmented by the so-called cancellation condition. Following [Van Schaftingen 2013], we call A

cancelling if and only if ⋂
ξ∈Rn\{0}

A[ξ ](RN )= {0}.

Note that by ellipticity, u ∈ C∞c (R
n
;RN ) can be represented via u = kA ∗Au, where kA : Rn

\ {0} →
L (RK

;RN ) satisfies the growth bound |kA(y)| ∼ |y|1−n for y ∈ Rn
\ {0}. Then the fractional integra-

tion theorem only implies that the convolution with kA yields an operator that maps L1(Rn
;RK )→

Ln/(n−1)
w (Rn

;RN ) boundedly with the weak-Ln/(n−1) space Ln/(n−1)
w (Rn

;RN ), and so (1-7) implies a
proper improvement based on the additional cancellation condition.

To unify this theme also in view of (1-6), we wish to interpret the above inequalities in terms of
(boundary trace) embeddings and thus introduce function spaces via

W A,1(�) := {v ∈ L1(�;RN ) : Au ∈ L1(�;RK )},

BVA(�) := {v ∈ L1(�;RN ) : Au ∈M(�;RK )},

where � ⊂ Rn is open, A is a differential operator of the form (1-4) and M(�;RK ) denotes the RK -
valued Radon measures of finite total variation on �. These spaces are normed canonically via ‖u‖W A,1 =

‖u‖L1 +‖Au‖L1 (similarly for BVA with the obvious modifications); clearly, W A,1(�)( BVA(�) and
we shall refer to BVA(�) as space of functions of bounded A-variation. In the literature, only particular
instances of spaces BVA have been studied in detail, namely for A =∇ or A = E , leading to the spaces
BV or BD of functions of bounded variation or deformation, respectively. Precisely, we then have
W 1,1
=W∇,1, LD=W E,1, BV= BV∇, BD= BVE, and this paper is the first attempt to characterise the

properties of BVA-maps in terms of the properties of A in a unifying manner. By this, we also aim to
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clarify the underlying mechanisms for the corresponding trace inequalities to work in the known cases
A = D and A = E .

Returning to the classification problem related to (1-6), we conclude this subsection by pointing
out that ellipticity in itself cannot yield the required L1-trace theory. In fact, consider the operator
EDu := Eu− 1

n div(u)En (En ∈ Rn×n being the identity matrix), which is usually referred to as trace-free
symmetric gradient operator, for n ≥ 2. This operator enters in a variety of applications, for instance
fluid mechanics or general relativity; see [Feireisl 2004; Bartnik and Isenberg 2004]. Regardless of n ≥ 2,
the operator ED is elliptic; see Example 2.2(c). However, the following example from [Fuchs and Repin
2010] shows that an L1-trace does not exist if n= 2. Identifying R2∼=C, ker(ED) essentially contains the
holomorphic functions. Upon identifying R2 with C and denoting by D the open unit disc in C, the map
u : D→C, z 7→ 1/(z−1), even belongs to W ED,1(B(0, 1)), whereas it is clear that ‖ tr(u)‖L1(∂B(0,1)) =∞.
In view of (1-6), our main result, Theorem 1.2 below, will cover the particular case of A= ED as a special
case and provide a positive answer for all n ≥ 3 and a negative answer for n = 2.

1C. Main results. Before we state our main result, we need to provide the definitions of several important
properties of our operator A. To begin with, we write the symbol mapping A[ξ ] : RN

→ RK as

A[ξ ]v := v⊗A ξ :=

n∑
α=1

ξαAαv, ξ = (ξ1, . . . , ξn) ∈ Rn, v ∈ RN . (1-8)

Moreover, we extend A[ξ ]η= η⊗A ξ by (1-8) also to complex-valued ξ ∈Cn and η ∈CN. We strengthen
terminology and say that A is R-elliptic if A[ξ ] : RN

→ RK is injective for all ξ ∈ Rn
\ {0} (i.e., A is

elliptic in the above sense), and C-elliptic provided A[ξ ] : CN
→ CK is injective for all ξ ∈ Cn

\ {0}
(see Section 2C for more detail). Finally, we shall say that A has finite-dimensional nullspace if the
kernel N (A) of A in the distributional sense is finite-dimensional; i.e.,

dim(N (A)) <∞, with N (A)= {v ∈ D′(Rn
;RN ) : Av ≡ 0}, (1-9)

where D(Rn
;RN ) = C∞c (R

n
;RN ). We will see later in Theorem 2.6 that A has a finite-dimensional

nullspace if and only if it is C-elliptic. It is also equivalent to the type-(C) condition in the sense of
[Kałamajska 1994]; see Remark 2.1. However, the notion of R-ellipticity is strictly weaker: For instance,
ED for n = 2 is R-elliptic but not C-elliptic; see Example 2.2(c). We are now in position to formulate our
main result.

Theorem 1.1. Let A be a differential operator of the form (1-4). Then the following are equivalent:

(a) For all open and bounded Lipschitz domains � ⊂ Rn there exists a constant c > 0 such that (1-6)
holds for all u ∈ C(�;RN )∩C1(�;RN ).

(b) A is C-elliptic.

Whereas necessity of C-ellipticity for (1-6) shall be addressed in Theorem 4.18 and essentially follows
from a construction relying on the properties of the two-dimensional operator ED, the more involved part
is the sufficiency. For future reference, we single this out and state in the following more elaborate form;
the full statement can be found in Theorem 4.17:
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Theorem 1.2 (trace theorem). Let A be C-elliptic (or equivalently, A has finite-dimensional nullspace).
Then there exists a trace operator tr : BVA(�)→ L1(∂�,Hn−1) such that the following holds:

(a) tr(u) coincides with the classical trace for all u ∈ BVA(�)∩C(�;RN ).

(b) tr(u) is the unique strictly continuous extension of the classical trace on BVA(�)∩C(�;RN ). In
particular, tr : BVA(�)→ L1(∂�;Hn−1) is continuous for the norm topology on BVA(�).

(c) tr(W A,1(�))= tr(BVA(�))= L1(∂�;Hn−1).

Regarding sufficiency, the core issue is how to replace the use of the fundamental theorem of calculus
by that of C-ellipticity. As a main consequence of the latter, we will employ the nullspace of C-elliptic
operators being finite-dimensional. Using local projections onto the nullspace N (A) close to the boundary,
we construct suitable approximations of u ∈ BVA(�) that have classical traces. The limit of these
traces provide us with the trace of u. In particular, the projections to the finite-dimensional nullspace
replace the fundamental theorem of calculus approach as used in [Temam and Strang 1980; Babadjian
2015].

In addition to Theorem 4.17 we will show in Theorem 4.18 and Remark 4.19 that if A is not C-elliptic,
then in general there is no trace operator from BVA(�) to L1(∂�;Hn−1). In particular, the existence of
L1(∂�;Hn−1)-traces on arbitrary bounded Lipschitz domains �⊂ Rn is equivalent to C-ellipticity of A.
This conclusion also identifies the infinite-dimensional nullspace of A as the reason for the failure of the
trace embedding of W ED,1(�) into L1(∂�;Hn−1) for n = 2 (see Example 2.2(c)). As a consequence of
Theorem 1.2 we also obtain a version of the Gauss–Green theorem, see Theorem 4.20, and the gluing
theorem, see Corollary 4.21. Let us also remark that Theorem 1.2 includes both the trace theorems for
the spaces BV and BD.

The relation between the condition of C-ellipticity and Van Schaftingen’s elliptic and cancelling
condition will be investigated in detail in the follow-up [Gmeineder and Rait,ă 2019] to this paper by
Raita and the third author; among others, it will be shown that C-ellipticity implies Van Schaftingen’s
condition but in general not vice versa. In this sense and as might be anticipated, L1-boundary traces
require a stronger condition on A.

1D. Variational problems. As a concluding application of the trace theorem from above, we address the
Dirichlet problem for linear growth functionals involving operators A. To be precise, we are interested in
the minimisation of functionals of the form

F[u] :=
∫
�

f (x,Au) dx (1-10)

over a class of maps u : �→RN subject to Dirichlet boundary data u= u0 on ∂�. Here f : �×RN×n
→

R≥0 is a given variational integrand for which we suppose the linear growth assumption

c1|z| ≤ f (x, z)≤ c2|z| + c3 for all x ∈� and z ∈ RN×n. (1-11)

Additionally, we assume that our integrand f is A-quasiconvex (in a sense specified in Section 5;
also see [Fonseca and Müller 1999; Dacorogna 1982]). Our objective here is to minimise F over the
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Dirichlet class u0 + W A,1
0 (�), which are the W A,1(�)-functions whose traces agree with the given

boundary datum u0. From the treatment of the Dirichlet problem on BVA, where A = ∇, see [Giaquinta
et al. 1979a; 1979b; Ambrosio et al. 2000], it is clear that the functional should be considered on
the class of BVA-maps on a larger Lipschitz domain U. More precisely, we need to consider the
weak*-lower semicontinuous envelope of F on BVA(U ). Whereas in the convex situation one can
make use of the classical results due to [Reshetnyak 1968], the quasiconvex case is substantially more
involved. The sequentially weak*-lower semicontinuous envelope F of F on BV(�) (so A = ∇) was
characterised in [Ambrosio and Dal Maso 1992; Fonseca and Müller 1993]. The corresponding issue
for the symmetric-quasiconvex (so A = E) situation was resolved in [Rindler 2011]. Invoking the recent
outstanding generalisation of Alberti’s rank-one theorem [De Philippis and Rindler 2016], the weak*-
lower semicontinuity result of [Arroyo-Rabasa et al. 2018] and the area-strict continuity of [Kristensen
and Rindler 2010b], we give a precise characterization of the weak*-lower semicontinuous envelope F

on BVA(�); see Proposition 5.1.
Consequently, a merger with Theorem 1.2 allows us to formulate the minimisation problem with

Dirichlet data u0 purely in terms of BVA(�); see Corollary 5.2. We demonstrate both the existence
of minima and the absence of a Lavrentiev gap with respect to the Dirichlet class u0 +W A,1

0 (�); see
Theorem 5.3.

1E. Organisation of the paper. The paper is organised as follows. In Section 2 we fix notation, introduce
the assumptions on the differential operators A and collect elementary implications for the Sobolev-type
spaces W A,1(�) and the spaces of functions of bounded A-variation BVA(�). In Section 3 we introduce
local projection operators onto the nullspace N (A) on balls and derive Poincaré-type inequalities. In
Section 4, we construct the trace operator tr : BVA(�)→ L1(∂�;Hn−1) and thereby give the proof of
Theorem 1.2. Moreover, we establish a Gauss–Green formula and a gluing lemma for BVA-maps. The
final Section 5 is dedicated to the existence of BVA-minimisers of A-quasiconvex variational problems
with linear growth subject to given Dirichlet boundary data.

2. Functions of bounded A-variation

In this section we introduce the space of functions of bounded variation associated with a differential
operator A.

2A. General notation. To avoid too many different constants throughout, we write a . b if there exists
a constant c (which does not depend on the crucial quantities) with a ≤ cb. If a . b and b . a, we also
write a h b. By `(B) we denote the diameter of a ball B and by |B|, its n-dimensional Lebesgue measure.
We write d( · , · ) for the usual euclidean distance. For the euclidean inner product of a, b ∈ Rm we use
the equivalent notations 〈a, b〉 or a · b. Given f ∈ L1

loc(R
n
;RK ) and a measurable subset U ⊂ Rn with

|U |> 0, we use the equivalent notations

−

∫
U

f (x) dx := 〈 f 〉U := |U |−1
∫

U
f (x) dx
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for the mean value integral. Lastly, for notational simplicity, we shall often suppress the possibly vectorial
target space when dealing with function spaces and, e.g., write L1(Rn) instead of L1(Rn

;RN ), but this
will be clear from the context.

2B. Function space setup. Let A be given by (1-4). The corresponding dual (or formally adjoint)
operator A∗ is the differential operator on Rn from RK to RN given by

A∗ :=

n∑
α=1

A∗α∂α, (2-1)

where each A∗α is the adjoint matrix of Aα. For an open domain � ⊂ Rn we define the Sobolev space
W A,1(�) associated to the operator A by

W A,1(�)=W A,1(�;RN ) := {u ∈ L1(�;RN ) : Au ∈ L1(�;RK )}. (2-2)

This is a Banach space with respect to the norm

‖u‖W A,1(�) := ‖u‖L1(�)+‖Au‖L1(�). (2-3)

We moreover define the total A-variation of u ∈ L1
loc(�;R

N ) by

|Au|(�) := sup
{∫

�

〈u,A∗ϕ〉 dx : ϕ ∈ C1
c (�;R

K ), |ϕ| ≤ 1
}

(2-4)

and consequently say that u is of bounded A-variation if and only if u ∈ L1(�;RN ) and |Au|(�) <∞.
Denoting by M(�;RK ) the finite RK -valued Radon measures on �, by the Riesz representation theorem
this amounts to

BVA(�) := {u ∈ L1(�;RN ) : Au ∈M(�;RK )}. (2-5)

Here, the shorthands Au ∈ L1 or Au ∈M above have to be understood in the sense that the distributional
differential expressions Au can be represented by L1-functions or Radon measures, respectively. The norm

‖u‖BVA(�) := ‖u‖L1(�)+ |Au|(�) (2-6)

makes BVA(�) a Banach space. However, due to the lack of good compactness properties, the norm
topology turns out not to be useful in many applications and one needs to consider weaker topologies. We
now introduce the canonical generalisations of well-known convergences in the full- or symmetric-gradient
cases; see [Ambrosio et al. 2000]. Let u ∈ BVA(�) and (uk)⊂ BVA(�). We say that

• (uk) converges to u in the weak*-sense (in symbols uk
∗
⇀u) if and only if uk→ u strongly in L1(�;RN )

and Auk
∗
⇀Au in the weak*-sense of RK -valued Radon measures on � as k→∞.

• (uk) converges to u in the strict sense (in symbols uk
s
→u) if and only if ds(uk, u)→ 0 as k →∞,

where for v,w ∈ BVA(�) we set

ds(v,w) :=

∫
�

|v−w| dx +
∣∣|Av|(�)− |Aw|(�)∣∣.
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• (uk) converges to u in the area-strict sense (in symbols uk
〈 · 〉
−→u) if and only if∫

�

√
1+

∣∣∣∣dAuk

dL n

∣∣∣∣2 dL n
+ |Asuk |(�)→

∫
�

√
1+

∣∣∣∣ dAu
dL n

∣∣∣∣2 dL n
+ |Asu|(�), k→∞,

where
Av =

dAv

dL n L n
+

dAv

d|Asv|
|Asv|

is the Radon–Nikodym decomposition of Av ∈M(�;RK ) with respect to the Lebesgue measure L n.

Strictly speaking, these notions are reserved for the BV-versions and hence the above notions have to
be read as A-weak*, A-strict, and A-area-strict convergence. However, to keep terminology simple, we
tacitly assume that the differential operator A is fixed throughout and stick to the above terminology.

Note that the A-variation is sequentially lower semicontinuous with respect convergence in the weak*-
sense; i.e., if uk

∗
⇀u, then |Au|(�) ≤ lim infk→∞ |Auk |(�). Moreover, if uk ∈ BVA(�) is a bounded

sequence with uk ⇀u in L1(�;RN ), then already uk
∗
⇀u. Finally, if� is open and bounded with Lipschitz

boundary, then it is easy to conclude by the theorem of Banach and Alaoglu that if (uk) ⊂ BVA(�)

is uniformly bounded in the BVA-norm, then there exists u ∈ BVA(�) and a subsequence (uk( j)) of
(uk) such that uk( j)

∗
⇀u as j → ∞ in the sense specified above. We shall often refer to this as the

weak*-compactness principle ( for BVA).

2C. Assumptions on the differential operator A. For our trace result we need some structure on A

which we introduce now.
Let A be given by (1-4). Then A induces a bilinear pairing ⊗A : RN

×Rn
→ RK by

v⊗A z :=
n∑
α=1

zαAαv for z ∈ Rn and v ∈ RN . (2-7)

For all ϕ ∈ C1(Rn) and v ∈ C1(Rn
;RN ) we have

A(ϕv)= ϕAv+ v⊗A ∇ϕ. (2-8)

Note that if A is the usual gradient, then ⊗A can be identified with the usual dyadic product ⊗, and if A

is the symmetric gradient, then ⊗A is given by the symmetric tensor product �.
Recalling the notions of R- and C-ellipticity from Section 1C, we now pass on to a more detailed

discussion and begin with linking them to the type-(C) condition as introduced in [Kałamajska 1994].

Remark 2.1. The operator A is C-elliptic if and only if it is of type (C) in the sense of [Kałamajska 1994].
More precisely, since Aα[ξ ] is a linear operator from RN to RK for each ξ ∈ Rn, we find coefficients
Aα, j,k such that

(A[ξ ]η)k =:

n∑
α=1

N∑
j=1

Aα, j,kξαηj

for every for ξ ∈ Rn and η ∈ RN. Then

Pj,ku :=
n∑
α=1

Aα, j,k∂αu j
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for k = 1, . . . , K is the family of scalar differential operators as used in [Kałamajska 1994]. The
corresponding symbols are

Pj,k(ξ) :=

n∑
α=1

Aα, j,kξα,

with j = 1, . . . , N and k= 1, . . . , K . Now according to [Kałamajska 1994] the family (Pk)k is of type (C)
if and only if (Pj,k(ξ))j,k has rank K for all η ∈ Cn

\ {0}. Since
N∑

j=1

K∑
k=1

Pj,k(ξ)ηj =

n∑
α=1

N∑
j=1

K∑
k=1

Aα, j,kξαηj = A[ξ ]η,

this is equivalent to the injectivity of A[ξ ] for all η ∈ CN
\ {0}, which is exactly the C-ellipticity of A.

We now turn to some examples, to which we shall frequently refer.

Example 2.2. In what follows, we carefully examine the gradient, symmetric and trace-free symmetric
gradient operators. As these typically map RN to the matrices RN×n instead of a vector in RK, we
henceforth put K = Nn and identify RK with RN×n:

(a) Let Au := ∇u. Then N (A) just consists of the constants and

(v⊗∇ z)j,k = vj zk .

A has a finite-dimensional nullspace and is C-elliptic, since

|A[ξ ]η|2 = |ξ |2|η|2.

(b) Let Au := E(u) := 1
2(∇u+ (∇u)T ) with N = n. Then N (E) just consists of the generators of rigid

motions, i.e.,
N (E)= {x 7→ Ax + b : A ∈ Rn×n, A =−AT, b ∈ Rn

},

and
(v⊗E z)j,k =

1
2
(vj zk + vkz j ).

E has a finite-dimensional nullspace and is C-elliptic, since

|A[ξ ]η|2 =
1
2
|ξ |2|η|2+

1
2
|〈ξ, η〉|2.

(c) Let Au := ED(u)= 1
2(∇u+ (∇u)T )− 1

n div(u)En with N = n. Then

(v⊗ED z)j,k =
1
2
(vj zk + vkz j )−

1
n
δj,k

n∑
l=1

vl zl

and
|A[ξ ]η|2 =

1
2
|ξ |2|η|2+

1
2
|〈ξ, η〉|2−

1
n
〈ξ, η̄〉2.

If n ≥ 3, then A is C-elliptic and it has the finite-dimensional nullspace

N (ED)= {x 7→ Ax + b+ (2(a · x)x − |x |2a) : A ∈ Rn×n, A =−AT, a, b ∈ Rn
}.

Elements of N (ED) are also known as conformal killing vectors [Dain 2006].
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If n= 2, then A is only R-elliptic, but not C-elliptic. Indeed, A[ξ ]η= 0 for ξ = (1, i)T and η= (1,−i)T.
Moreover, the nullspace N (A) is of infinite dimension: indeed, if we identify R2 ∼= C, then the kernel
of ED consists of the holomorphic functions. We will substantially use this property in the proofs of
Lemma 2.5 and Theorem 4.18.

We now draw some consequences of the single ellipticity conditions and link them to the finite-
dimensionality of the nullspace of A.

Lemma 2.3. Let A be K-elliptic with K = R or K = C. Then there exist two constants 0< κ1 ≤ κ2 <∞

such that

κ1|v||z| ≤ |v⊗A z| ≤ κ2|v||z| for all v ∈ KN and z ∈ Kn.

Proof. By scaling it suffices to assume |v| = |z| = 1. We have |v⊗A z|> 0, since A is K-elliptic. Now
the claim follows by the compactness of {(v, z) : |v| = |z| = 1} and continuity. �

Lemma 2.4. Let A have a finite-dimensional nullspace. Then A is R-elliptic.

Proof. We proceed by contradiction. Assume that A is not R-elliptic. Then there exists ξ ∈ Rn
\ {0}

and η ∈ RN
\ {0} with A[ξ ]η = 0. For every f ∈ C1

c (R;R) we define u f (x) := f (〈ξ, x〉)η. Then
(Au f )(x)= A[ξ ]η f (〈ξ, x〉)= 0. Since η 6= 0 and ξ 6= 0, the mapping f 7→ u f is injective. Therefore,
the set {u f : f ∈ C1

c (R)} is an infinite-dimensional subspace of N (A). This contradicts the fact that A

has finite-dimensional nullspace. �

Lemma 2.5. Let A have a finite-dimensional nullspace. Then A is C-elliptic.

Proof. Since A has finite-dimensional nullspace, it is R-elliptic by Lemma 2.4.
We proceed by contradiction, and so assume that A is not C-elliptic. Then there exists ξ ∈ Cn

\ {0}
and η ∈ CN

\ {0} with 0 = A[ξ ]η = η⊗A ξ . We split ξ and η into their real and imaginary parts by
ξ =: ξ1+ iξ2 and η =: η1+ iη2. Then A[ξ ]η = 0 implies

A[ξ1]η1−A[ξ2]η2 = 0 and A[ξ1]η2+A[ξ2]η1 = 0. (2-9)

We will show now that ξ1 and x2, resp. η1 and η2, are linearly independent.
We begin with the linear independence of ξ1 and ξ2. If ξ1 = 0, then ξ2 6= 0 and then the R-ellipticity

of A and (2-9) imply η1 = η2 = 0, which contradicts η 6= 0. By the same argument, also ξ2 = 0 is not
possible. Hence, we have ξ1 6= 0 and ξ2 6= 0. We now show the linear independence of ξ1 and ξ2 by
contradiction, so let us assume that ξ2 = λξ1 with λ 6= 0. Then it follows from (2-9) that

A[ξ1]η1 = A[ξ2]η2 = λA[ξ1]η2 =−λA[ξ2]η1 =−λ
2A[ξ1][η1].

This implies A[ξ1][η1] = 0. Hence by the R-ellipticity of A and ξ1 6= 0, we get η1 = 0. Now, (2-9) implies
A[ξ2][η2] = 0, so again the R-ellipticity of A gives η2 = 0. Overall, η = 0, which is a contradiction. This
proves that ξ1 and ξ2 are linearly independent.

The proof of the linear independence of η1 and η2 is completely analogous. Indeed, η1 = γ η2 implies
A[ξ1]η1 =−γ

2A[ξ1]η1, so A[ξ1][η1] = 0. As above this implies η = 0, which is a contradiction.
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Let us define now τ : Rn
→ C and σ : C→ RN by

τ(x) := 〈ξ, x〉 = 〈ξ1, x〉+ i〈ξ2, x〉,

σ (z) := Re(z)η1− Im(z)η2.

Let O(C) denote the set of holomorphic functions on C. Then dim(O(C))=∞. Moreover, for f ∈O(C)
we have ∂z̄ f (z)= 0 in the sense of complex derivatives. Let us define h f : Rn

→ RN by h f := σ ◦ f ◦ τ .
Our goal is to prove Ah f = 0. We identify in the following C with R2. By the chain rule we conclude

(Ah f )(x)= A[ξ1]η1(∂1 f1)(τ (x))−A[ξ1]η2(∂1 f2)(τ (x))

+A[ξ2]η1(∂2 f1)(τ (x))−A[ξ2]η2(∂2 f2)(τ (x)). (2-10)

Using the Cauchy–Riemann equations ∂1 f1 = ∂2 f2 and ∂1 f2 =−∂2 f1 and (2-9) we get

(Ah f )(x)= (A[ξ1]η1−A[ξ2]η2)(∂1 f1)(τ (x))+ (A[ξ1]η2+A[ξ2]η1)(∂2 f1)(τ (x))= 0.

So for each f ∈ O(C), we constructed an h f : R
n
→ RN such that Ah f = 0. We need to show that

dim({h f : f ∈O(C)}) =∞. For this, it suffices to show that the linear mapping f 7→ h f is injective.
Recall that h f = σ ◦ f ◦ τ . Hence, it suffices to show that σ is injective and that τ is surjective. This,
however, follows from the fact that ξ1 and ξ2, resp. η1 and η2, are linearly independent. �

Theorem 2.6. The following are equivalent:

(a) A has a finite-dimensional nullspace.

(b) A is C-elliptic.

(c) There exists l ∈ N with N (A) ⊂Pl , where Pl denotes the set of polynomials with degree less or
equal to l.

Proof. Lemma 2.5 proves (a)enumi⇒ (b)enumi. Obviously, (c)enumi⇒ (a)enumi. It remains to show
(b)enumi⇒ (c)enumi.

Since A is C-elliptic, it is of type-(C) in the sense of [Kałamajska 1994]; see Remark 2.1. Fix ω ∈
C∞c (B(0, 1)) with

∫
B(0,1) ω dx = 1. Then for an arbitrary ball B, we obtain by dilation and translation

a function ωB ∈ C∞c (B) with
∫

B ωB(y) dy = 1. For every l ∈ N0 let P l
B denote the averaged Taylor

polynomial with respect to B of order l, see [Dupont and Scott 1978]; i.e.,

P l
Bu(x) :=

∫
B

∑
|β|≤l

∂βy

(
(y− x)β

β!
ωB(y)

)
u(y) dy.

The formula is obtained by multiplying Taylor’s polynomial of order l by the weight ωB and integrating
by parts. Note that P l

Bu ∈Pl .
It follows from the representation formula of [Kałamajska 1994, Theorem 4] that for all x ∈ B

|u(x)− (P l
Bu)(x)| ≤ c

∫
B

|(Au)(y)|
|x − y|n−1 dy (2-11)

for some l ∈N0 (which is fixed from now on) and all u ∈ C∞(B). We do not know the exact value of l,
but at least l is so large that N (A)⊂Pl (there is, however, an upper bound for l in terms of n and N.)
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Now, let v ∈ N (A); i.e., v ∈ D′(Rn
;RN ) with Av = 0 in the distributional sense. Let φε denote a

standard mollifier; i.e., ϕε(x) := ε−nϕ(x/ε) with a radially symmetric function ϕ ∈ C∞c (B; [0, 1]) with∫
B ϕ dx = 1. Then v ∗φε ∈ C∞(Rn) and A(v ∗φε)= (Av) ∗φε = 0. Hence, it follows from (2-11) that
v ∗φε ∈Pl(R

n). This implies v ∈Pl(R
n) as desired. �

Remark 2.7. Let us compare our conditions with the ones of [Van Schaftingen 2013], building on the
fundamental work of [Bourgain and Brezis 2004; 2007]. According to [Van Schaftingen 2013] the
operator A is cancelling1 if ⋂

ξ 6=0

A[ξ ](RN )= {0}. (2-12)

It has been shown in Theorem 1.4 of [Van Schaftingen 2013] that whenever A is R-elliptic and cancelling,
then we have the Sobolev-type inequality

‖u‖Ln/(n−1)(Rn;RN ) ≤ C‖Au‖L1(Rn;RK ) (2-13)

for all u ∈ C∞c (R
n
;RN ). Moreover, the R-ellipticity and cancellation property of A are necessary for

such inequality.
For our result on traces we need the C-ellipticity of A. So the natural question arises how C-ellipticity

compares to the canceling property. It will been shown in [Gmeineder and Rait,ă 2019] that C-ellipticity
implies the canceling property but not vice versa. Indeed, the operator

A(u) :=

(
1
2∂1u1−

1
2∂2u2

1
2∂1u2+

1
2∂2u1 ∂3u1

1
2∂1u2+

1
2∂2u1

1
2∂1u1−

1
2∂2u2 ∂3u2

)
is R-elliptic and cancelling but it is not C-elliptic, since it fails the finite-dimensional nullspace property
(recall Theorem 2.6).

2D. Smooth approximations in the interior. In this section we show that functions from W A,1(�) and
BVA(�) can be approximated in a certain sense by functions from W A,1(�)∩C∞(�;RN ). The proof is
in the spirit of [Evans and Gariepy 1992, Chapter 5.2] and is included for the reader’s convenience.

Theorem 2.8 (smooth approximation). Let �⊂ Rn be open. Then the following hold:

(a) The space (C∞ ∩W A,1)(�) is dense in W A,1(�) with respect to the norm topology.

(b) The space (C∞ ∩BVA)(�) is dense in BVA(�) with respect to the area-strict topology.

Proof. Fix u ∈ BVA(�). For k = 2, 3, . . . define

�k :=

{
x ∈� :

1
k+ 1

< d(x, ∂�) <
1

k− 1

}
.

Now pick a sequence (ψk) such that for each k ∈N we have ψk ∈C∞c (�k; [0, 1]) together with
∑

k ψk = 1
globally in �. Now let ηε : Rn

→ R be a standard mollifier (even and nonnegative).

1The definition of cancelling in [Van Schaftingen 2013] is given in terms of the annihilating operator L from the exact
sequence in (5-6). However, it translates in our setting to (2-12).
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For j ∈ N and k ∈ N we can find εj,k > 0 such that:

(i) spt(ηεj,k ∗ (ψku))⊂�k .

(ii) ‖ψku− ηεj,k ∗ (ψku)‖L1(�) < 2−k− j .

(iii) ‖u⊗A ∇ψk − ηεj,k ∗ (u⊗A ∇ψk)‖L1(�) < 2−k− j .

(iv) If u ∈W A,1(�), we additionally require ‖ψkAu− ηεj,k ∗ (ψkAu)‖L1(�) < 2−k− j .

This allows us to define u j ∈C∞(�) by u j :=
∑

k∈N ηεj,k ∗ (ψku), which is well-defined in L1
loc(�), since

the sum is locally finite. Then in L1
loc(�)

u− u j =
∑

k

(ψku− ηεj,k ∗ (ψku)).

This and (ii)enumi imply ‖u− u j‖L1(Rn)
. 2− j . If u ∈ W A,1(�), then (iii)enumi and (iv)enumi imply

‖Au−Au j‖L1(Rn)
. 2− j . This proves (a)enumi.

It remains to prove u j
〈 · 〉
−→u for j→∞ for u ∈BVA(�). In fact, the proof is similar to the standard BV

case. For simplicity of notation we just show u j
s
→u for j →∞. The necessary changes to pass from

strict convergence to area-strict convergence are just like in [Bildhauer 2003, Lemma B.2].
Since u j → u in L1(Rn) it follows by the lower semicontinuity of the total A-variation that |Au|(�)≤

lim inf j→∞ |Au j |(�). It remains to prove lim sup j→∞|Au j |(�)≤ |Au|(�). For this we invoke the dual
characterisation (2-4) of the total A-variation. Let ϕ ∈ C1

c (�;R
K ) with |ϕ| ≤ 1 be arbitrary. We compute∫

�

〈u j ,A∗ϕ〉 dx =
∑

k

∫
�

〈ηεj,k ∗ (ψku),A∗ϕ〉 dx =
∑

k

∫
�

〈ψku,A∗(ηεj,k ∗ϕ) dx

=

∑
k

∫
�

〈u,A∗(ψk(ηεj,k ∗ϕ))〉 dx −
∑

k

∫
�

〈u, (ηεj,k ∗ϕ)⊗A∗ ∇ψk〉 dx

=: Ij + IIj .

The sums are well-defined, since φ ∈ C1
c (�) and u j =

∑
k ηεj,k ∗ (ψku) in L1

loc(�). Now∣∣∣∣∑
k

ψk(ηεj,k ∗φ)

∣∣∣∣≤∑
k

ψk |ηεj,k ∗φ| ≤
∑

k

ψk‖φ‖∞ = ‖φ‖∞ ≤ 1.

Therefore,

Ij =

∫
�

〈
u,A∗

(∑
k

ψk(ηεj,k ∗ϕ)

)〉
dx ≤ |Au|(�).

Using
∑

k ∇ψk = 0 and φ ∈ C1
c (�), we now rewrite IIj as

IIj =
∑

k

∫
�

〈u, (ηεj,k ∗ϕ)⊗A∗ ∇ψk〉 dx −
∑

k

∫
�

〈u, ϕ⊗A∗ ∇ψk〉 dx

=

∑
k

∫
�

〈ηεj,k ∗ (u⊗A ∇ψk)− (u⊗A ∇ψk), ϕ〉 dx .

Invoking (iii)enumi and ‖φ‖∞ ≤ 1 we obtain |IIj |. 2− j. Hence, collecting estimates we obtain as desired
lim sup j→∞|Au j |(�)≤ lim sup j→∞(|Au|(�)+ c2− j )= |Au|(�). �
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3. Projections and Poincaré inequalities

In this section we derive several versions of Poincaré’s inequality. We assume throughout the section
that A is C-elliptic (or, equivalently, A has a finite-dimensional nullspace; see Theorem 2.6).

3A. Projection operator. We begin with some projection estimates.
For every ball B ⊂Rn and u ∈ L2(B;RN ) we define 5Bu as the L2-projection of u onto N (A). Hence,∫

B
|5Bu|2 dx ≤

∫
B
|u|2 dx .

Since N (A) is finite-dimensional, there exists a constant c > 0 with

‖5Bu‖L∞(B) ≤ c −
∫

B
|5Bu| dx . (3-1)

Indeed, this is clear for the unit ball and extends to general balls by dilation and translation. It follows
from this as usual that

−

∫
B
|5Bu| dx ≤ c −

∫
B
|u| dx . (3-2)

Thus, 5B can be extended to L1(B;RN ) such that (3-2) remains valid.

Lemma 3.1. Then there exists c ≥ 1 with

inf
q∈N (A)

‖u− q‖L1(B) ≤ ‖u−5Bu‖L1(B) ≤ c inf
q∈N (A)

‖u− q‖L1(B).

Proof. The first estimate is obvious. Now, for all q ∈ N (A) we have 5Bq = q. This and (3-2) imply

‖u−5Bu‖L1(B) ≤ ‖u− q‖L1(B)+‖5B(u− q)‖L1(B) ≤ c‖u− q‖L1(B).

Taking the infimum over q ∈ N (A) proves the lemma. �

3B. Poincaré inequalities. In this subsection we derive Poincaré-type inequalities for W A,1 and BVA.
Recall that for a ball B we denote by `(B) its diameter.

Theorem 3.2. There exists a constant c > 0 such that for all balls B and all u ∈ BVA(B) it holds

inf
q∈N (A)

‖u− q‖L1(B) ≤ ‖u−5Bu‖L1(B) ≤ c`(B) |Au|(B),

where 5B is the L2-orthogonal projection onto N (A) from Section 3A.

Proof. By dilation and translation, it suffices to prove the claim for the unit ball B = B(0, 1). Moreover,
by smooth approximation (see Theorem 2.8) it suffices to consider u ∈ C∞(B;RN )∩W A,1(B).

We use the averaged Taylor polynomials as in the proof of Theorem 2.6. Recall that by (2-11) we have
the estimate

|u(x)− (P lu)(x)| ≤ c
∫

B

|(Au)(y)|
|x − y|n−1 dy for all x ∈ B. (3-3)
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Since P lu is not necessarily in the kernel of A, we wish to replace it by 5B(P l). Thus, we start with

|u(x)−5B(P lu)(x)| ≤ |u(x)− (P lu)(x)| + |(P lu)(x)− (5B(P lu))(x)|. (3-4)

Now, for any p ∈Pl there holds

‖p−5B p‖L∞(B) ≤ c −
∫

B
|A p| dx . (3-5)

Indeed, both sides define a norm on the finite-dimensional space Pl/N (A) and vanish on N (A). Hence,
for all x ∈ B

|(P lu)(x)− (5B(P lu))(x)| ≤ ‖P lu−5B(P lu)‖L∞(B) ≤ c −
∫

B
|A(P lu)| dx . (3-6)

The definition of the averaged Taylor polynomial implies

A(P lu)= P l−1(Au), (3-7)

where P−1u := 0 if l = 0. The L1-stability of the averaged Taylor polynomial gives

‖P l−1(Au)‖L1(B) ≤ c‖Au‖L1(B). (3-8)

Now, (3-5) and (3-8) yield

|(P lu)(x)− (5B(P lu))(x)| ≤ c`(B) −
∫

B
|Au| dy ≤ c

∫
B

|(Au)(y)|
|x − y|n−1 dy.

So, (3-3) and (3-4) imply the estimate

|u(x)− (5BP lu)(x)| ≤ c
∫

B

|(Au)(y)|
|x − y|n−1 dy. (3-9)

Now, integration over x ∈ B gives∫
B
|u−5B(P lu)| dx ≤ c

∫
B

∫
B

|(Au)(y)|
|x − y|n−1 dy dx

≤ c
∫

B
|(Au)(y)|

∫
B
|x − y|1−n dx dy ≤ c`(B)

∫
B
|Au| dy.

We have shown
‖u−5B(P lu)‖L1(B) ≤ c`(B)‖Au‖L1(B). (3-10)

The rest follows by Lemma 3.1. �

Theorem 3.3. Let B ′ and B be two balls with B ′ ⊂ B and `(B). `(B ′). Then for all u ∈ BVA(B) with
u = 0 on B ′ there holds

‖u‖L1(B) ≤ c`(B)|Au|(B).

The constant only depends on the ratio `(B)/`(B ′).

Proof. We use the same construction as in the proof of Theorem 3.2. However, we choose ω ∈ C∞c (B) in
the construction of the averaged Taylor polynomial additionally as ω ∈ C∞c (B

′). This implies that P lu
only depends on the values of u on B ′. Hence, we obtain P lu= 0. Thus, Theorem 3.2 proves the claim. �
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Finally, let us remark that variants of Poincaré-type inequalities can also be established along the
lines of [Adams and Hedberg 1996, Lemma 8.3.1] or [Ziemer 1989, Chapter 4]. However, this requires
additional extension and compactness arguments which need to be proven first.

4. Traces

In this section we show that the space of functions of bounded A-variation admits a continuous trace
operator to L1(∂�) if and only if A is C-elliptic (or, equivalently, A has a finite-dimensional nullspace;
see Theorem 2.6).

4A. Assumptions on the domain. In order to ensure a proper trace we need to make certain regularity
assumptions on �. Our results include all Lipschitz graph domains. However, we will consider even
more general domains. Indeed, nontangentially accessible domains (NTA domains) provide a natural
setting for our construction of the trace operator. We refer to [Hofmann et al. 2010] for more information
on NTA domains.

We begin with the necessary conditions on our domain.

Definition 4.1 (interior/exterior corkscrew condition). Let �⊂ Rn:

(a) We say that � satisfies the interior corkscrew condition if there exist R > 0 and M > 2 such that for
all x ∈ ∂� and all r ∈ (0, R) there exists a y ∈� such that

1
M

r ≤ |x − y| ≤ r and B
(

y,
r
M

)
⊂�.

(b) We say that � satisfies the exterior corkscrew condition if Rn
\� satisfies the interior corkscrew

condition.

Definition 4.2 (Harnack chain condition). We say that � ⊂ Rn satisfies the (interior) Harnack chain
condition if there exist R>0 and M ∈N such that for any ε>0, r ∈ (0, R), x ∈∂�, and y1, y2∈ B(x, r)∩�
with |y1− y2| ≤ ε2k and d(yj , ∂�)≥ ε for j = 1, 2 there exists a chain of Mk balls B1, . . . , BMk in �
connecting y1 and y2 satisfying

(a) y1 ∈ B1, y2 ∈ BMk ,

(b) 1
M `(Bj )≤ d(Bj , ∂�)≤ M`(Bj ) for j = 1, . . . ,Mk,

(c) `(Bj )≥
1
M min {d(y1, Bj ), d(y2, Bj )} for j = 1, . . . ,Mk.

Definition 4.3 (NTA domain). We say that a domain � ⊂ Rn is an NTA (nontangentially accessible)
domain if � satisfies the interior corkscrew condition, the exterior corkscrew condition and the interior
Harnack chain condition.

Definition 4.4. We say that �⊂ Rn has Ahlfors regular boundary if there exist R > 0 and M > 0 such
that for all r ∈ (0, R)

1
M

rn−1
≤Hn−1(B(x, r)∩ ∂�)≤ Mrn−1. (4-1)

In the following we tacitly require that our domains satisfy the following assumption:



ON THE TRACE OPERATOR FOR FUNCTIONS OF BOUNDED A-VARIATION 575

Assumption 4.5. We assume that � satisfies the following:

(a) � is an NTA domain.

(b) � has Ahlfors regular boundary.

Note that all Lipschitz domains satisfy this assumption.
Let us now construct families of balls that we will use later in the construction of our traces:
For each j ∈ Z, let (Bj,k)k denote a (countable) cover of balls of Rn with diameter `(Bj,k) such that

(a) 1
8 · 2
− j
≤ `(Bj,k)≤

1
4 · 2
− j .

(b) The scaled balls
( 7

8 Bj,k
)

k cover Rn.

(c) Each family (Bj,k)k is locally finite with covering constant independent of j ; i.e.,

sup
j

∑
k

χBj,k ≤ c.

For each j let (ηj,k)k be a partition of unity with respect to the (Bj,k)k such that for all j, k

‖ηj,k‖L∞ + `(Bj,k)‖∇ηj,k‖L∞ ≤ c. (4-2)

Now, we define the 2− j -neighbourhood Uj of ∂� by

Uj := {x ∈� : d(x, ∂�) < 2− j
}.

Since � satisfies the interior corkscrew condition, we can find for each ball Bj,k close to the boundary a
reflected ball B]j,k close by. We will use these reflected balls later to define the local projections of our
functions. More precisely:

(B1) There exists j0 ∈ Z, such that the following holds: for each Bj,k with j ≥ j0 and Bj,k ∩Uj 6= ∅,
there exists a ball B]j,k ⊂� with `(B]j,k)h `(Bj,k)h d(B]j,k, ∂�) and d(Bj,k, B]j,k). `(Bj,k), where the
hidden constants are independent of j, k.

Moreover, due to the Harnack chain condition we can connect two reflected balls of neighbouring balls
by a small chain of balls. More precisely, we have the following.

(B2) If Bj,k ⊂� and j ≥ j0, then there exists a chain of balls W1, . . . ,Wγ , with γ uniformly bounded,
such that

(a) W1 = Bj,k and Wγ = B]j,k ,

(b) |Wβ ∩Wβ+1|h |Wβ |h |Wβ+1|h |Bj,k | for β = 1, . . . , γ − 1,

(c) `(Wβ)h `(Bj,k) for β = 1, . . . , γ .

The hidden constants are independent of j, k, β.
We define �(Bj,k, B]j,k) :=

⋃γ

β=1 Wβ .

(B3) If Bj,k ∩ Bl,m 6=∅ and j, l ≥ j0 with | j− l| ≤ 1, then there exists a chain of balls W1, . . . ,Wγ with
γ uniformly bounded, such that

(a) W1 = B]j,k and Wγ = B]l,m ,
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(b) |Wβ ∩Wβ+1|h |Wβ |h |Wβ+1|h |Bj,k | for β = 1, . . . , γ − 1,

(c) d(Wβ, ∂�)h `(Wβ)h `(Bj,k) for β = 1, . . . , γ .

The hidden constants are independent of j, k, β.
We define �(B]j,k, B]l,m) :=

⋃γ

β=1 Wβ .

By construction of the chains above, we get:

(B4) There exists k0 ≥ 2 such that the following hold uniformly in j ≥ j0:∑
m:Bj,m∩Uj 6=∅

χB]j,m
≤ cχUj−k0\Uj+k0

and
∑

m:Bj,m∩Uj 6=∅

∑
k:Bj+1,k∩Bj,m 6=∅

χ
�(B]j,m ,B

]

j+1,k)
≤ cχUj−k0\Uj+k0

.

4B. Trace operator. We will now construct the trace operator on BVA(�). We will obtain the traces by
a suitable approximation process. In particular, we will define truncations Tj u which are smooth close to
the boundary and admit classical traces. The limits will later provide the trace of the original function.

We define

5j,ku :=5B]j,k
u.

Let ρj ∈ C∞(�) be such that χUj+1 ≤ ρj ≤ χUj and ‖∇ρj‖∞ . 2 j and let u ∈ BVA(�). Then for j ≥ j0
we define Tj u in � by

Tj u := u− ρj

∑
k

ηj,k(u−5j,ku)= (1− ρj )u+ ρj

∑
k

ηj,k5j,ku. (4-3)

Due to the support of ηj,k the sum in the definition is locally finite. In particular, the sum is well-defined
in L1

loc(�). The function Tj u is an approximation of u that replaces the values of u in the neighbourhood
of ∂� of distance 2− j by local averages. These averages are performed slightly inside the domain on the
balls B]j,k .

We begin with an auxiliary estimate involving 5j,ku.

Lemma 4.6. We have the following estimates:

(a) There holds

‖5j,ku‖L∞(Bj,k)
.−
∫

B]j,k

|u| dx .

(b) If Bj,m ∩ (Uj \Uj+2) 6=∅, then Bj,m ⊂� and

‖u−5j,mu‖L1(Bj,m)
. `(Bj,m)|Au|(�(Bj,m, B]j,m)).

(c) If Bj+1,k ∩ Bj,m 6=∅, then

|Bj,m | ‖5j+1,ku−5j,mu‖L∞(Bj,m)
. `(Bj,m)|Au|(�(B]j+1,k, B]j,m)).

Proof. (a) Since5j,k maps to N (A) and N (A)⊂Pl , this is just the usual inverse estimate for polynomials
of a fixed degree.
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(b) The definition of Uj and `(Bj,m)≤
1
4 2− j imply Bj,m ⊂�. We compute

‖u−5j,mu‖L1(Bj,m)
= ‖u−5B]j,m

u‖
L1(Bj,m)

≤ ‖u−5Bj,m u‖L1(Bj,m)
+‖5Bj,m u−5B]j,m

u‖
L1(Bj,m)

.

The first term can be estimated by Poincaré’s inequality from Theorem 3.2 which yields immediately

‖u−5Bj,m u‖L1(Bj,m)
. `(Bj,m)|Au|(Bj,m).

For the second term we make use of the Harnack chain conditions (recall Definition 4.2) and, using (B2),
connect Bj,m and B]j,m by a chain

�(Bj,k, B]j,m)=
γ⋃
β=1

Wβ,

where W1, . . . ,Wγ are balls of size proportional to `(Bj,m). In particular, we have W1 = Bj,m and
Wγ = B]j,m . Moreover, we can assume that |Wβ ∩Wβ+1|h |Wβ |h `(Bj,m) for all β. Now, we gain

‖5Bj,m u−5B]j,m
u‖

L1(Bj,m)
≤

γ−1∑
β=1

‖5Wβ+1u−5Wβ
u‖L1(Bj,m)

.
γ−1∑
β=1

‖5Wβ+1u−5Wβ
u‖L1(Wβ+1∩Wβ )

.
γ∑
β=1

‖u−5Wβ
u‖L1(Wβ )

using equivalence of norms on N (A). Finally, using again Theorem 3.2 in conjunction with (B4),

‖5Bj,m u−5B]j,m
u‖

L1(Bj,m)
. `(Bj,m)

γ∑
β=1

|Au|(Wγ ). `(Bj,m)|Au|(�(Bj,m, B]j,m)).

Gathering estimates, we arrive at the claim.

(c) First, by the inverse estimate for polynomials, we have

|Bj,m | ‖5j+1,ku−5j,mu‖L∞(Bj,m)
. ‖5j+1,ku−5j,mu‖L1(Bj,m)

= ‖5B]j+1,k
u−5B]j,m

u‖
L1(Bj,m)

.

Now, connecting B]j+1,k and B]j,m via the chain �(B]j+1,k, B]j,m) (recall (B3)), we obtain the claim arguing
exactly as in (b). �

The following lemma shows that Tj is well-defined on L1(�).

Lemma 4.7. Tj : L1(�)→ L1(�) is linear and bounded.

Proof. We estimate pointwise on �

|Tj u| ≤ (1− ρj )|u| + ρj

∑
k

χBj,k‖5j,ku‖L∞(Bj,k)
. (4-4)

With Lemma 4.6 we get

|Tj u|. χ�\Uj+1 |u| +
∑

k:Bj,k∩Uj 6=∅
χBj,k −

∫
B]j,k

|u| dx .
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This implies

‖Tj u‖L1(�)
. ‖u‖L1(�\Uj+1)

+

∑
k:Bj,k∩Uj 6=∅

|Bj,k | −

∫
B]j,k

|u| dx

. ‖u‖L1(�\Uj+1)
+

∑
k:Bj,k∩Uj 6=∅

∫
B]j,k

|u| dx .

Since the B]j,k are locally finite by (B4), we get ‖Tj u‖L1(�)
. ‖u‖L1(�) as desired. �

The next two lemmas show now that Tj+1u− Tj u is summable in L1(�) and BVA(�).

Lemma 4.8. Let u ∈ L1(�) and j ≥ j0. Then

‖Tj+1u− Tj u‖L1(�)
. ‖u‖L1(Uj+1−k0\Uj+k0 )

.

Proof. Let j ≥ j0. Then we have

Tj+1u− Tj u = (ρj − ρj+1)u+ ρj+1
∑

k

ηj+1,k5j+1,ku− ρj

∑
m

ηj,m5j,mu.

Now
‖(ρj − ρj+1)u‖L1(�)

≤ ‖u‖L1(Uj\Uj+2)
.

Moreover, by Lemma 4.6 (a) it follows that

‖ρjηj,m5j,mu‖L1(�)
≤ c|Bj,m |‖5j,mu‖L∞(Bj,m)

≤ c‖u‖L1(B]j,m)
,

where it suffices to consider those j with Bj,m ∩Uj 6=∅. Now (B4) implies∑
m

‖ρjηj,m5j,mu‖L1(�)
≤ c‖u‖L1(Uj−k0\Uj+k0 )

.

Analogously, ∑
k

‖ρjηj+1,k5j+1,ku‖L1(�)
≤ c‖u‖L1(Uj+1−k0\Uj+1+k0 )

.

Combining the above estimates proves the lemma. �

Lemma 4.9. Let u ∈ BVA(�) and j ≥ j0. Then

‖A(Tj+1u− Tj u)‖L1(�)
. |Au|(Uj−k0 \Uj+k0).

Proof. Using that
∑

m ηj,m =
∑

k ηj+1,k = 1 in � we get

Tj+1u−Tj u= (ρj−ρj+1)
∑

m

ηj,m(u−5j,mu)+ρj+1
∑
k,m

ηj+1,kηj,m(5j+1,ku−5j,mu)=: I+ II. (4-5)

In order to estimate ‖A(Tj+1u− Tj u)‖L1(�)
it is crucial that A5j+1,ku = A5j,mu = 0 and the gradients

of ρj , ρj+1, ηj,m , and ηj+1,k are bounded by 2 j ; recall (4-2). Let us consider II. We only have to estimate
those summands with k,m satisfying Bj+1,k∩Bj,m 6=∅ since otherwise ηj+1,kηj,m=0. For each such k,m
we estimate the L1(�)-norm of AII by Lemma 4.6(c)enumi. Now, in combination with (B4) we get

‖AII‖L1(�) . |Au|(Uj−k0 \Uj+k0).
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Let us consider I. We only need to estimate those summands with m satisfying Bj,m∩(Uj\Uj+2) 6=∅, since
otherwise (ρj−ρj+1)ηj,m=0. For each such m we estimate the L1(�)-norm of AI by Lemma 4.6(b)enumi.
Now, in combination with (B4) we get

‖AI‖L1(�) . |Au|(Uj−k0 \Uj+k0). �

Based on the two lemmas above, we now study the convergence Tj u→ u.

Corollary 4.10. If u ∈ L1(�), then

u = Tj0u+
∞∑

l= j0

(Tl+1u− Tlu)= lim
j→∞

Tj u (4-6)

in L1(�). If additionally u ∈ BVA(�), then (4-6) also holds in BVA(�).

Proof. Since ρj → 0 in L1
loc(�), it is clear that Tj u→ u in L1

loc(�).
Note that for j ≥ j0

Tj u = Tj0u+
j−1∑

l= j0

(Tl+1u− Tlu). (4-7)

It follows from Lemmas 4.8 and 4.9 that Tl+1u− Tlu is summable in L1(�), resp. in BVA(�), since the
Uj+1−k0 \Uj+k0 are locally finite with respect to j . Hence, Tj u is a Cauchy sequence in L1(�), resp.
in BVA(�). Since the limit must agree with the L1

loc(�) limit, which is u, the claim follows. �

Since Tj u is smooth close to the boundary ∂�, it is possible to evaluate the classical trace tr(Tj u). We
now show that these traces form a L1(∂�)-Cauchy sequence.

Lemma 4.11. Let u ∈ BVA(�). Then

‖tr(Tj+1u)− tr(Tj u)‖L1(∂�)
. |Au|(Uj−k0 \Uj+k0),

‖tr(Tj0u)‖L1(∂�)
. 2 j0‖u‖L1(Uj0−k0\Uj0+k0 )

.

Proof. We begin with the first estimate. It follows from (4-5) that

tr(Tj+1u)− tr(Tj u)=
∑
k,m

tr(ηj+1,kηj,m(5j+1,ku−5j,mu)),

where the sums are locally finite sums. Hence,

‖tr(Tj+1u)− tr(Tj u)‖L1(∂�)
≤

∑
k,m

‖tr(ηj+1,kηj,m(5j+1,ku−5j,mu))‖L1(∂�)
.

We only have to consider those k,m with Bj+1,k ∩ Bj,m 6=∅. For such k,m

‖tr(ηj+1,kηj,m(5j+1,ku−5j,mu))‖L1(∂�)
≤ ‖5j+1,ku−5j,mu‖L∞(Bj,m)

Hn−1(∂�∩ Bj+1,k ∩ Bj,m).

We estimate the first factor by Lemma 4.6(c)enumi and the second by the Ahlfors regularity of the
boundary, see (4-1), and thereby obtain

‖tr(ηj+1,kηj,m(5j+1,ku−5j,mu))‖L1(∂�)
. |Au|(�(B]j+1,k, B]j,m)).
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Summing over k and m and using (B4) implies

‖tr(Tj+1u)− tr(Tj u)‖L1(∂�)
. |Au|(Uj−k0 \Uj+k0).

This proves the first estimate.
Let us now estimate ‖tr(Tj0)‖L1(∂�)

. We begin with

tr(Tj0)=
∑

k

tr(ηj0,k5j0,ku).

For each k with Bj0,k ∩ ∂� there holds

‖tr(ηj0,k5j0,ku)‖L1(∂�)
≤ ‖5j0,ku‖L∞(Bj0,k)

Hn−1(∂�∩ Bj0,k).

We estimate the first factor by Lemma 4.6(a)enumi and the second by the Ahlfors regularity of the
boundary; see (4-1). This gives

‖tr(ηj0,k5j0,ku)‖L1(∂�)
.

1
`(Bj0)

∫
B]j0,k

|u| dx .

Summing over k and m and using (B4) implies

‖tr(Tj0u)‖L1(∂�)
. 2 j0‖u‖L1(Uj0−k0\Uj0+k0 )

. �

Recall that by Corollary 4.10 we have

u = Tj0u+
∞∑

l= j0

(Tl+1u− Tlu)= lim
j→∞

Tj u

in BVA(�). Moreover, Lemma 4.11 shows that

tr(Tj0u)+
∑
j≥ j0

(tr(Tj+1u)− tr(Tj u))= lim
j→∞

tr(Tj (u))

is well-defined in L1(∂�). Finally,∥∥ lim
j→∞

tr(Tj (u))
∥∥

L1(∂�)

≤ ‖tr(Tj0(u))‖L1(∂�)
+

∑
j≥ j0

‖tr(Tj+1u)− tr(Tj u)‖L1(∂�)

. 2 j0‖u‖L1(Uj0−k0\Uj0+k0 )
+

∑
j≥ j0

|Au|(Uj−k0 \Uj+k0)

. ‖u‖L1(�)+ |Au|(�)

by Lemma 4.11. This allows us to define for every u ∈ BVA(�) a trace

t̃r(u) := lim
j→∞

tr(Tj u), (4-8)

the limit being understood in the L1(∂�)-sense. This limit satisfies

‖t̃r(u)‖L1(∂�) . ‖u‖L1(�)+ |Au|(�). (4-9)
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We now show that t̃r coincides with tr for all smooth functions and hence start with an approximation
result.

Lemma 4.12. Let u ∈ C0(�) be uniformly continuous. Then Tj u→ u in C0(�).

Proof. We have
u− Tj u = ρj

∑
k

ηj,k(u−5j,ku),

where it suffices to take the sum over those k with Bj,k ∩Uj 6=∅. Let us take one of those k. We will
show that ‖ηj,k(u−5j,ku)‖L∞(�) is small for large j . Since the Bj,k are locally finite with respect to k
(with a covering number independent of j), this will prove the lemma.

Since A maps constants to zero, the projections 5j,k map constants to themselves. Let 〈u〉B]j,k :=
−

∫
B]j,k

u dx ; then by Lemma 4.6(a)enumi

‖ηj,k(u−5j,ku)‖L∞(Bj,k)
≤ ‖u−〈u〉B]j,k

‖L∞(Bj,k)
+‖5j,k(u−〈u〉B]j,k

)‖
L∞(Bj,k)

. ‖u−〈u〉B]j,k
‖

L∞(Bj,k)
+ −

∫
B]j,k

|u−〈u〉B]j,k
| dx .

Since u is uniformly continuous, the Bj,k and B]j,k are small and close to each other, see (B1), and we see
that both expressions on the right-hand side are small for large j uniformly in k. �

Corollary 4.13. Let u ∈ BVA(�)∩C0(�) be uniformly continuous. Then t̃r(u)= tr(u).

Proof. We see from Corollary 4.10 and Lemma 4.12 that Tj u→ u in BVA(�) and in C0(�). By the
definition of t̃r(u), we have tr(Tj u)→ t̃r(u). Since Tj u→ u in C0(�), we also have tr(Tj u)→ tr(u)
in C0(∂�). The limits must agree in L1

loc(∂�), so t̃r(u)= tr(u). �

We have already seen that t̃r : BVA(�)→ L1(∂�) is continuous with respect to the norm topology.
We wish to use this to conclude that t̃r is the only extension of the classical trace to BVA(�). However, as
smooth functions are not dense in BVA with respect to the norm topology, we switch to strict convergence
as in the BV-case.

Lemma 4.14. The trace operator t̃r : BVA(�)→ L1(∂�;RN ) is continuous with respect to the strict
convergence of BVA(�).

Proof. Let u, uk ∈ BVA(�) with uk
s
→u and m ∈ N.

It follows from the definition (4-3) of Tj that for j > m+ k0 there holds for all v ∈ BVA(�)

Tj (ρmv)= ρm Tjv.

Indeed, ρm = 1 on the Bj,k and the B]j,k for all m that contribute to the sum in (4-3).
This implies

t̃r(v)= lim
j→∞

tr(Tjv)= lim
j→∞

tr(Tj (ρmv))= t̃r(ρmv) in L1(∂�).

Now, for all k ∈ N,
‖t̃r(uk − u)‖L1(∂�) = ‖t̃r(ρm(uk − u))‖L1(∂�).
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Thus, by (4-9)

‖t̃r(uk − u)‖L1(∂�) . ‖ρm(uk − u)‖L1(�)+ |A(ρm(uk − u))|(�)

. ‖uk − u‖L1(�)+ |Auk |(Um)+ |Auk |(Um)+ 2−m
‖uk − u‖L1(Um)

.

Now, let k, l→∞. Since uk
s
→u in BVA(�) and Um is open, we get

‖t̃r(uk − u)‖L1(∂�) . |Au|(Um).

The right-hand side converges to zero for m→∞. Thus t̃r(uk)→ t̃r(u) in L1(∂�) for k→∞. �

In order to proceed, we need a smooth approximation result up to the boundary in the area-strict
topology.

Lemma 4.15. Let u ∈ BVA(�). Then there exists u j ∈ C∞(�) with u j
〈 · 〉
−→u in BVA(�).

Proof. For j ≥ j0 consider Tj u. Then Tj u is C∞ in U j+1. Indeed, for all x ∈Uj+1 we have

(Tj u)(x)=
∑

k

ηj,k5j,ku.

For each k with Bj,k ∩Uj+1 6= 0 we have

‖∇(ηj,k5j,ku)‖
∞
. ‖∇ηj,k‖L∞(Bj,k)

‖5j,ku‖L∞(Bj,k)
+‖∇5j,ku‖L∞(Bj,k)

.

Using inverse estimates for polynomials and Lemma 4.6 we get

‖∇(ηj,k5j,ku)‖
∞
. `(Bj,k)|Bj,k |‖5j,ku‖L1(Bj,k)

. 2 j (n+1)
‖u‖L1(B]j,k)

.

Hence, Tj u is uniformly continuous on U j+1.
Now, let ηε : Rn

→ R be an standard mollifier (even and nonnegative). It is well known that u j,ε :=

ρj+1Tj u+ ((1− ρj+1)Tj u) ∗ ηε converges to Tj u as ε ↘ 0 in L1(�) as well as in the area-strict sense.
Hence, we can find εj such that

‖u j,εj − Tj u‖L1(�)
≤ 2− j ,∣∣|A(Tj u)|(�)− |A(u j,εj )|(�)
∣∣≤ 2− j .

Moreover, recall that Tj u→ u strongly in BVA(�). This implies that u j := u j,εj has the desired property.
This proves the strict convergence. The area-strict convergence follows by the same steps. �

As a consequence of Lemmas 4.14 and 4.15 we immediately obtain the following corollary.

Corollary 4.16. The operator t̃r : BVA(�)→ L1(∂�;Hn−1) is the unique strictly continuous extension
of the classical trace on BVA(�)∩C0(�).

Due to the above results it is not anymore necessary to distinguish the classical trace and our new trace.
We collect our results proven so far in the following theorem.

Theorem 4.17. Let A be C-elliptic and let � be an NTA domain with Ahlfors regular boundary (see
Assumption 4.5). Then there exists a trace operator tr : BVA(�)→ L1(∂�,Hn−1) such that the following
hold:
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(a) tr(u) coincides with the classical trace for all u ∈ BVA(�)∩C0(�).

(b) tr(u) is the unique strictly continuous extension of the classical trace on BVA(�)∩C0(�).

(c) tr(W A,1(�))= tr(BVA(�))= L1(∂�,Hn−1).

Proof. The existence of tr is shown in Lemma 4.14. Part (a) follows from Corollary 4.13, whereas (b) is a
consequence of Corollary 4.16. Finally, part (c) is a consequence of the fact that

tr(W 1,1(�;RN ))= L1(∂�;RN )

and W 1,1(�;RN )⊂W A,1(�). In particular, the sufficiency part of Theorem 1.2 is complete. �

4C. Necessity of C-ellipticity. In this section we show that it is not possible to define an L1-trace of
BVA-functions if the operator A is not C-elliptic. As such, we extend the observation of [Fuchs and
Repin 2010] that D 3 z 7→ 1/(z− 1) ∈ C is holomorphic and belongs to L1(D;C) but does not belong to
L1(∂D;C); see Example 2.2(c).

Theorem 4.18 (without a trace). Suppose that A is not C-elliptic. Let B denote the unit ball of Rn.
Then there exists a vector ξ1 ∈ Rn

\ {0} such that for the half-ball B+ := {x ∈ B : 〈ξ1, x〉 > 0} and
the hyperplane H := {x ∈ Rn

: 〈ξ1, x〉 = 0} there exists a function u ∈ W A,1(B+)∩C∞(B+) such that
u /∈ L1(H∩ B,Hn−1).

Proof. We begin with the case that A is not R-elliptic. Let us define f (x1, x2) := (|x1| + |x2|
2)−3/4. The

crucial observation now is that f, ∂2 f ∈ L1(B). However, f /∈ L1({x1 = 0}|B,Hn−1). We have to adapt
this example to our situation. Since A is not R elliptic, there exists ξ1 ∈ Rn

\ {0} and η1 ∈ RN
\ {0}

with A[ξ1]η1 = 0. We choose ξ2, . . . , ξn such that ξ1, . . . , ξn is a basis. Now, define τ : Rn
→ R2 and

σ : R→ RN by τ(x) := (〈ξ1, x〉, 〈ξ2, x〉) and σ(z) := z η1. Moreover, we define h f : Rn
→ RN by

h f := σ ◦ f ◦ τ . Then we obtain

(Ah f )(x)=
2∑

j=1

A[ξj ]η1(∂j f )(τ (x))

(compare (2-10)). Since A[ξ1]η1 = 0, this simplifies to

(Ah f )(x)= A[ξ2]η1(∂2 f )(τ (x)).

We choose the hyperplaneH:={x : 〈ξ1, x〉=0}. It follows from f,∂2 f ∈L1(B) and f /∈L1({x1= 0}|B,Hn−1)

that u,Au ∈ L1(B) and so in particular u,Au ∈ L1(B+) with B+ := {x ∈ B : 〈ξ1, x〉 > 0} but u /∈

L1(H∩ B,Hn−1). This concludes the proof in the case that A is not R-elliptic.
Assume now that A is R-elliptic but not C-elliptic. Then as in the proof of Lemma 2.5 there exist

ξ1, ξ2 ∈ Rn and η1, η2 ∈ Rn , which are, resp., linearly independent such that

A[ξ1+ i x2](η1+ iη2)= 0.

Define f :C→C by f (z) := 1
z . Then f ∈ L1(B1) with B1 := {|z|< 1} but f /∈ L1({Re(z)= 0}|B1,Hn−1).

As in Lemma 2.5 we define τ : Rn
→ C and σ : C→ RN by τ(x) := 〈ξ, x〉 = 〈ξ1, x〉 + i〈ξ2, x〉 and
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σ(z) := Re(z)η1− Im(z)η2. Moreover, define h f : Rn
→ RN by h f := σ ◦ f ◦ τ . Then as in Lemma 2.5

we have (Ah f )(x) = 0 in D′(B+) with B+ := {x ∈ B : 〈x1, x〉 > 0}. It follows from f ∈ L1(B+) and
f /∈ L1({Re(z)= 0}|B1,Hn−1) that h f ∈W A,1(B) but h f /∈ L1(H∩ B,Hn−1) with H := {x : 〈ξ1, x〉 = 0}.
This concludes the proof if A is R-elliptic but not C-elliptic. �

Remark 4.19. Theorem 4.18 shows the nonexistence of a trace on some particular boundary hyperplane.
If � does not enjoy this simple geometry but is a bounded domain with C∞-boundary, then we choose a
boundary point x0 ∈ ∂� such that a suitable translation of the hyperplanes H from the preceding proof
becomes tangent to ∂� at x0. In this situation, flattening the boundary locally around x0 and applying the
preceding theorem directly yield the nonexistence of boundary traces in L1(∂�;Hn−1). We leave the
details to the reader.

4D. Gauss–Green formula. We now deduce the Gauss–Green formula for functions from BVA(�),
which, with Theorem 1.2 at our disposal, is a direct consequence of the Gauss–Green formula for smooth
functions. Let us note that up to here, only Assumption 4.5 is required, whereas in what follows we stick
to a Lipschitz assumption2 on ∂�.

Theorem 4.20 (Gauss–Green formula). Let �⊂ Rn be open and bounded with Lipschitz boundary. For
all u ∈ BVA(�) and all φ ∈ C1(�;RN ) we have∫

�

Au ·φ dx =−
∫
�

u ·A∗φ dx +
∫
∂�

(tr(u)⊗A ν) ·φ dHn−1, (4-10)

where ν denotes the unit outer normal of �.

Proof. Due to Lemma 4.15 there exists a sequence u j ∈ C∞(�) such that u j
s
→u in BVA(�). Due to

Lemma 4.14 we also have u j → u in L1(∂�,Hn−1). Now, (4-10) is valid for each u j . Passing to the
limit proves the claim. �

Corollary 4.21. Let �bU ⊂ Rn such that � and U are open and bounded and have Lipschitz boundary.
For u ∈ BVA(�) and v ∈ BVA(U \�) define w := χ�u+χU\�v. Then w ∈ BVA(U ) and

Aw = Au �+Av U\�+(tr+(v)− tr−(u))⊗A νHn−1
∂�, (4-11)

where tr+(u) denotes the interior trace of u and tr−(v) denotes the exterior trace of v and ν the unit outer
normal of �.

Proof. Let w be as given and let φ ∈ C1
c (U ). We split the domain U into � and U \� and apply the

Gauss–Green formula (4-10) first to U and then to � and U \� separately. This yields

−

∫
U
w·A∗φ dx =−

∫
�

u·A∗φ dx−
∫

U\�
v·A∗φ dx

=

∫
�

Au·φ dx−
∫
∂�

(tr+(u)⊗Aν)·φ dHn−1
+

∫
U\�

Av·φ dx+
∫
∂�

(tr+(v)⊗Aν)·φ dHn−1.

This proves w ∈ BVA(U ) and the representation formula (4-11). �

2In fact, this can be weakened towards more general domains, but we will not need this in the sequel.
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4E. Sobolev spaces with zero boundary values. Using our trace operator, it is natural to define subspaces
of functions with zero boundary values; i.e.,

W A,1
0 (�) := {u ∈W A,1(�) : tr(u)= 0},

BVA
0 (�) := {u ∈ BVA(�) : tr(u)= 0}.

However, in the context of Sobolev spaces W A,1
0 (�) there are two more variants to define these spaces.

One by zero extension and one by the closure of C∞c (�). We will show below in Theorem 4.23 that all
three definitions define the same spaces.

We begin with an auxiliary lemma which we need for W A,1
0 (�). For slightly more generality we state

it for BVA
0 (�).

Lemma 4.22. Let u ∈ BVA
0 (�). Then (1− ρj )u→ u in BVA(�), with ρj as in Section 4B.

Proof. We can assume that � b U ⊂ Rn for some open, bounded U with Lipschitz boundary. By
Corollary 4.21 we can extend u on U \� by zero.

We have
A((1− ρj )u− u)=−ρj Au− u⊗A ∇ρj .

Hence,
|A((1− ρj )u− u)|(�)≤ |Au|(Uj )+ cr−1

j ‖u‖L1(Uj )
.

We will now show that
r−1

j ‖u‖L1(Uj )
. |Au|(Uj−m)

for some m ∈ N (and sufficiently large, i.e., j +m ≥ j0). In fact, for fixed j define

K j := {k : Bj,k ∩Uj 6=∅}.

By the geometry of �, we can find a factor λ > 0 such that for each k ∈ K j the enlarged ball λBj,k

contains some ball B ′j,k that is completely in Rn
\�. Now, for each k ∈ K j , we get by Theorem 3.3

‖u‖L1(Bj,k)
. ‖u‖L1(λBj,k)

. rj |Au|(λBj,k)= rj |Au|(�∩ λBj,k).

Since the (Bj,k)k are locally finite, so are the (λBj,k)k . Now, if we choose m∈N such that�∩λBj,k⊂Uj−m ,
then

r−1
j ‖u‖L1(Uj )

.
∑
k∈K j

r−1
j ‖u‖L1(Bj,k)

.
∑
k∈K j

‖Au‖L1(�∩λBj,k)
. |Au|(Uj−m).

Overall, we obtain
|A((1− ρj )u− u)|(�)≤ |Au|(Uj−m).

Now, |Au|(Uj−m) → 0, since Uj−m ↘ ∅. This proves the claim by the Poincaré inequality from
Theorem 3.3. �

Theorem 4.23 (zero traces). Let �bU ⊂ Rn for some open, bounded U with Lipschitz boundary and let
u ∈W A,1(�). The following are equivalent:

(a) u ∈W A,1
0 (�).
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(b) The extension ũ := χ�u by zero on U \� is in W A,1(U ).

(c) There exist uk ∈ C∞c (�) with uk→ u in W A,1(�).

Proof. (a)enumi⇒ (b)enumi: Let u ∈ W A,1
0 (�) and let ũ = χ�u be its zero extension on U. Then by

Corollary 4.21 we have Aũ = Au � ∈ L1(U ), so ũ ∈W A,1(U ).

(b)enumi⇒ (a)enumi: Let ũ=χ�u ∈W A,1(U ). Then by Corollary 4.21 we have Aũ=Au �+ tr+(u)⊗A

νHn−1
∂�. Since Aũ ∈ L1(U ), the singular part must vanish; i.e., tr+(u)⊗A νHn−1

∂� = 0. So by
R-ellipticity of A we have tr+(u)= 0 on ∂�.

(c)enumi⇒ (a)enumi: By continuity of the trace operator we have tr(u)= limk→∞ tr(uk)= 0 in L1(∂�),
so u ∈W A,1

0 (�).

(a)enumi⇒ (c)enumi: Let vk := (1− ρk)u as in Lemma 4.22. Then vk→ u in W A,1(�). Moreover, the
vk have compact support, since vk = 0 on Uk+1. Now, let ηε : Rn

→ R be an standard mollifier with
support on Bε(0). Then we find εk such that

‖vk − vk ∗φεk‖L1(�)+‖Avk −A(vk ∗φεk )‖L1(�) ≤ 2−k

and supp(vk ∗φεk )b�. The sequence uk := vk ∗φεk has the desired properties. �

Proposition 4.24 (trace-preserving area-strict smoothing). Let �bU ⊂ Rn such that � and U are open
and bounded and have Lipschitz boundary. Let u0 ∈W A,1(U ). Further let u ∈ BVA(U ) with u = u0 on
U \�. Then there exists u j ∈ u0+C∞c (�) such that u j

〈 · 〉
−→u in BVA(U ).

Proof. The proof is a straightforward modification of the corresponding statement for BV-functions; see
[Bildhauer 2003, Lemma B.2] or [Kristensen and Rindler 2010a, Lemma 1]. Let us just explain the basic
idea: The usual localization argument by a partition of unity reduces the question to a local Lipschitz
graph. Then split u into u0 + χ�(u − u0). Now the χ�(u − u0) part is moved by translation slightly
into �. In a second step it is mollified to get a C∞c (�) term. �

5. The Dirichlet problem on BVA

This final section is devoted to variational problems with linear growth involving Au subject to given
boundary data.

Let �⊂ Rn be an open, bounded set with Lipschitz boundary. Our goal is to study the functional F :
W A,1(�)→ R given by

F[v] :=

∫
�

f (x,Av) dx, (5-1)

where f satisfies linear growth conditions. Given a boundary datum u0 ∈W A,1(�), we wish to minimise F
within the Dirichlet class u0+W A,1

0 (�). The existence of a minimiser together with the precise formulation
of the problem at our disposal will be given in Theorem 5.3 below.

Let us define the A-rank-one cone C (A) = RN
⊗A Rn

⊂ RK , with ⊗A as given by (2-7). This cone
is important to characterise the jump terms of BVA functions as in Corollary 4.21. Also in the product
rule (2-8), we have v⊗A ∇φ ∈ C (A) pointwise for φ ∈ C1(Rn) and v ∈ C1(Rn

;RN ).
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By use of the Fourier transform, we see that A(u)= (A[ξ ]û)∨. Since A[ξ ]û∈C (A) pointwise, we obtain
A(u) ∈ span(C (A)) pointwise. Hence, we define the effective range of A as R(A) := span(C (A))⊂ RK ;
i.e., Au ∈R(A) pointwise. As a consequence, we only need to require that the second argument of f
in (5-1) is from R(A). We assume that

f :�×R(A)→ R is continuous (5-2)

and satisfies the following linear growth assumption

c1|z| ≤ f (x, z)≤ c2|z| + c3 (5-3)

for all x ∈� and z ∈R(A). Moreover, we require A to be C-elliptic, which allows us to use the trace
results of the previous sections.

Furthermore, we assume that there exists a modulus of continuity ω such that

| f (x, A)− f (y, A)| ≤ ω(|x − y|)(1+ |A|) (5-4)

holds for all x, y ∈� and all A ∈R(A). In all of what follows, we tacitly stick to these assumptions.
We say that g :R(A)→R is A-quasiconvex if for all ϕ ∈W 1,∞

0 ((0, 1)n;RN ) and A∈R(A) there holds

g(A)≤
∫
(0,1)n

g(A+Aϕ) dx . (5-5)

We say that f :�×R(A)→ R is A-quasiconvex if f (x, · ) is A-quasiconvex for each x ∈�.
Let us link this notion of quasiconvexity to that of [Fonseca and Müller 1999, Definition 3.1]. Since A

is C-elliptic, it is also R-elliptic. So by [Van Schaftingen 2013, Proposition 4.2], there exists M ∈N and
a linear, homogeneous constant-coefficient differential operator L with symbol mapping L[ξ ] from RK to
RM that annihilates A in the sense that the corresponding symbol complex

RN A[ξ ]
−−→ RK L[ξ ]

−−→ RM (5-6)

is exact for every ξ ∈ Rn
\ {0}. In this situation, A is called a potential for L, and L an annihilator for A.

Since A[ξ ](RN ) has the same dimension for all ξ 6= 0, the operator L has constant rank. Consequently, our
A-quasiconvexity equals the L-quasiconvexity3 of [Fonseca and Müller 1999]. By exactness of the above
symbol complex (5-6), it is easy to see that the wave cone (or characteristic cone)3L :=

⋃
ξ∈Rn\{0} ker(L[ξ ])

of L agrees with our A-rank-one cone C (A).
We define the strong recession function f∞ :�×R(A)→ R by

f∞(x, A) := lim
x ′→x
A′→A
t→∞

f (x ′, t A′)
t

, (5-7)

whenever the limit exists.

3In [Fonseca and Müller 1999], first-order annihilating operators are considered, and in general this is not the case in our
situation (e.g., the symmetric gradient is annihilated by curl curl). However, the generalisation of the concept of L-quasiconvexity
extends to higher-order operators L in the obvious manner.
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Since f is A-quasiconvex, satisfies the linear growth condition (5-3), and satisfies the continuity
condition (5-4), Lemma A.1 from the Appendix yields that f∞ is automatically well-defined on�×C (A).

As usual the Dirichlet class u0+W A,1
0 (�) is not large enough to ensure the existence of minimisers for

variational problems with linear growth. Here, the passage to BVA(�) allows us to access the necessary
sequential compactness. However, elements of BVA(�) do not admit control over their exterior trace. To
overcome this problem we proceed as in [Giaquinta et al. 1979a; 1979b] and pass to a larger superset U,
i.e., let �bU with ∂U Lipschitz. Now, we extend F to BVA(U ) and minimise over those u ∈ BVA(U )
which agree with u0 on U \�. For this, we further need to accomplish the following: First, we have to
extend f :�×R(A)→ R to f :U ×R(A)→ R, while preserving the structure of f ; see Lemma A.2
in the Appendix. Second, we need to extend our boundary data to U, which is always possible, since
tr(W A,1(�)) = L1(∂�,Hn−1) = tr(W 1,1(U \�)) by Theorem 4.17. In particular, we assume in the
following that u0 ∈W A,1(U ).

We define the functional FU : BVA(U )→ R by

FU [w] :=

∫
U

f
(

x,
dAw

dL n

)
dx +

∫
U

f∞
(

x,
dAw

d|Asw|

)
d|Asw|

and the Dirichlet class

Du0 = {w ∈ BVA(U ) : w = u0 on U \�}.

Hence, our aim is to minimise FU over Du0 . Later we will see that this minimisation can also be expressed
only in terms of BVA(�) with an additional term f∞( · , tr(u− u0)⊗A ν) which penalises the deviations
from the correct boundary values; see Theorem 5.3.

We begin with a characterisation of the extension of F : W A,1(�)→ R to BVA(�). For this, recall
that �⊂ Rn is a bounded Lipschitz domain and that (5-2)–(5-5) are in action.

Proposition 5.1. The functional F : BVA(�)→ R given by

F[u] :=
∫
�

f
(

x,
dAu
dL n

)
dx +

∫
�

f∞
(

x,
dAu

d|Asu|

)
d|Asu|

is the A-area strict continuous extension of F : W A,1(�) → R. Moreover, F[u] : BVA(�) → R is
sequentially weak*-lower semicontinuous on BVA(�).

Proof. We begin with the A-area strict continuity of F : BVA(�)→R. If f∞ existed on all of �×R(A),
we could just use [Kristensen and Rindler 2010b, Theorem 4]. However, we can only rely on the existence
of f∞ on �×C (A) due to Lemma A.1 from the Appendix. The following steps show how to overcome
this technical issue and hence how the argument of [Kristensen and Rindler 2010b, Theorem 4] can be
made to work.

Let us denote by E(�,R(A)) those functions g :�×R(A)→ R such that

(x, ξ) 7→ (1− |ξ |)g(x, (1− |ξ |)−1ξ)
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has a continuous extension to �×BK ; here, BK denotes the unit ball in R(A). In particular, the strong
recession function g∞ exists on all of �×R(A). Functionals with integrands from E(�,R(A)) enjoy
good continuity properties.

Due to [Alibert and Bouchitté 1997, Lemma 2.3] there exists a sequence fk ∈ E(�,R(A)) with

sup
k∈N

fk(x, A)= f (x, A) and sup
k∈N

f∞k (x, A)= f#(x, A) := lim inf
x ′→x
A′→A
t→∞

f (x ′, t A′)
t

. (5-8)

Let u j
〈 · 〉
−→u in BVA(�). Since fk ∈ E(�,R(A)) we may apply the Reshetnyak-type continuity theorem

in [Kristensen and Rindler 2010b, Theorem 5] to conclude

lim inf
j→∞

F[u j ] ≥ lim inf
j→∞

∫
�

fk

(
x,

dAu j

dL n

)
dx +

∫
�

f∞k

(
x,

dAsu j

d|Asu j |

)
d|Asu j |

=

∫
�

fk

(
x,

dAu
dL n

)
dx +

∫
�

f∞k

(
x,

dAsu
d|Asu|

)
d|Asu|

and so, by monotone convergence,∫
�

f
(

x,
dAu
dL n

)
dx +

∫
�

f#

(
x,

dAu
d|Asu|

)
d|Asu| ≤ lim inf

j→∞
F[u j ].

Due to the generalisation of Alberti’s celebrated rank-one theorem in [De Philippis and Rindler 2016],
we know that dAu/d|Asu| ∈ C (A) pointwisely |Asu|-a.e. Now, by Lemma A.1 from the Appendix, we
find that f# = f∞ on �×C (A). Hence

F[u] =
∫
�

f
(

x,
dAu
dL n

)
dx +

∫
�

f∞
(

x,
dAu

d|Asu|

)
d|Asu| ≤ lim inf

j→∞
F[u j ].

Since f is continuous, we may apply the same argument to − f to obtain F[u] ≥ lim sup j→∞ F[u j ].
Hence F[u] = lim j→∞ F[u j ]. This proves that F : BVA(�)→ R is A-area strictly continuous.

Due to Lemma 4.15, W A,1(�) is dense in BVA(�) with respect to A-area strict convergence. Since
F= F on W A,1(�), we see that F : BVA(�)→ R is the A-area strict extension of F :W A,1(�)→ R.

It remains to prove the sequential weak*-lower semicontinuity of F : BVA(�)→ R on BVA(�).
Let L be an A-annihilating operator as in the exact sequence (5-6). Now, the sequential weak*-lower
semicontinuity just follows from [Arroyo-Rabasa et al. 2018, Theorem 1.2] (note that f∞ is well-defined
on �×C (A) due to Lemma A.1 from the Appendix). �

If we apply to our Dirichlet class Du0 , then we obtain the following results:

Corollary 5.2. Let f satisfy (5-2)–(5-5) and let Fu0 : BVA(�)→ R, given by

Fu0[u]:=
∫
�

f
(

x,
dAu
dL n

)
dL n
+

∫
�

f∞
(

x,
dAu

d|Asu|

)
d|Asu|+

∫
∂�

f∞
(

x,ν∂�⊗Atr(u−u0)

)
dHn−1, (5-9)

be sequentially weak*-lower semicontinuous on BVA(�).
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Proof. Proposition 5.1 (applied with � replaced by U ) shows that FU : BVA(U )→ R is area-strictly
continuous on BVA(U ) and sequentially weak*-lower semicontinuous on BVA(U ).

For u ∈ BVA(�) let ũ := χU\�u0+χ�u. Then due to Corollary 4.21 we have ũ ∈ BVA(U ) and, with
the outer normal ν of �,

Aũ = Au �+Au0L
n (U \�)+ tr(u− u0)⊗A νHn−1 ∂�. (5-10)

Hence,

FU [ũ] = Fu0[u] +
∫

U\�
f (x,Au0) dx . (5-11)

If uk
∗
⇀u in BVA(�), then ũk

∗
⇀ũ in BVA(U ). Indeed, it is clear that uk→u in L1(U ). Moreover, since uk

is bounded in BVA(�), so is Auk ∈M(�) and tr(uk) in L1(∂�) (using the trace theorem, Theorem 4.17).
This and (5-10) show that ũk is bounded in BVA(U ). In conjunction with uk→ u in L1(U ) we obtain
ũk
∗
⇀ũ in BVA(U ).
Since FU is sequentially weak*-lower semicontinuous on BVA(U ), it follows that Fu0 sequentially

weak*-lower semicontinuous on BVA(�). �

Theorem 5.3. Let f satisfy (5-2)–(5-5). Then the functional Fu0 : BVA(�)→ R is coercive and has a
minimiser on BVA(�). Moreover, we have

min
BVA(�)

Fu0 = inf
u0+W A,1

0 (�)

F. (5-12)

Proof. We begin with the coerciveness of Fu0 . Let (vk)⊂ BVA(�) with (Fu0(uk)) bounded. We have to
show that (vk) is bounded in BVA(�). Let ṽk := χU\�u0+χ�vk as in Corollary 5.2. Then due to (5-11),
FU (ṽk) is bounded. By the linear growth condition (5-3) we see that (Avk) is uniformly bounded in
M(U ;RK ). Now choose a ball B ′ ⊂� and another ball B with U ⊂ B. Since vk − u0 = 0 on U \�, we
can extend it by zero to a function from BVA(B) due to Theorem 4.23(b). Now, we can apply Poincaré’s
inequality in the form of Theorem 3.3 to conclude that (vk) is also bounded in L1(U ). Hence, (vk) is
bounded on BVA(�), which is the desired coerciveness.

By positivity of f and f∞, we have Fu0[w] ≥ 0 for all w ∈BVA(�), and so we may pick a minimising
sequence (uk) in BVA(�). By coerciveness, this sequence is bounded in BVA(�). We can pick a
(nonrelabeled) subsequence such that uk

∗
⇀u in BVA(�) for some u ∈ BVA(�). By the sequential

weak*-lower semicontinuity from Corollary 5.2, we deduce that u is a minimiser of Fu0 .
We conclude the proof by showing (5-12). The “≤”-part is obvious. Due to Proposition 4.24 we find a

sequence wk ∈Du0 such that wk
〈 · 〉
−→u in BVA(U ). By the A-area-strict continuity of FU on BVA(U ), see

Proposition 5.1, we see that FU (u)= limk→∞ FU (wk). This and (5-11) prove the “≥”-part of (5-12). �

Appendix

We now collect some auxiliary results that have been used in the main part of the paper. The following
lemma shows that the recession function is automatically well-defined on the A-rank-one cone.
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Lemma A.1. Let A be R-elliptic, let f :�×R(A)→ R be A-quasiconvex in the sense of (5-5), satisfy
the linear growth condition (5-3), and satisfy the continuity condition (5-4). Then f (x, · ) is Lipschitz
continuous in R(A) uniformly in x ∈�. Moreover, the strong recession function f∞ :�×R(A)→ R

with

f∞(x, A) := lim
x ′→x
A′→A
t→∞

f (x ′, t A′)
t

is well-defined on �×C (A). (Note that the limit A′→ A is taken in R(A).) Moreover,

| f∞(x, A)− f∞(x ′, A)| ≤ ω(|x ′− x |)|A|

for all x, x ′ ∈� and A ∈ C (A).

Proof. We begin with the Lipschitz continuity of f on R(A).
Let A ∈R(A) and B = a⊗A b ∈ C (A). Since f is A-quasiconvex, it is a consequence4 of [Fonseca

and Müller 1999, Proposition 3.4] that t 7→ f (x, A+ t B) is convex on R. This property is known as
C (A)-convexity; see [Kirchheim and Kristensen 2016].

Thus the function

g(t) :=
| f (x, A+ ta⊗A b)− f (x, A)|

t

is increasing. Hence, with λ := (1+ |A+ B| + |A|)/|B|> 1, we obtain

| f (x, A+ B)− f (x, A)| = g(1)≤ g(λ)

≤ | f (x, A+ λa⊗A b)− f (x, A)|
|B|

1+ |A+ B| + |A|

≤
c2(2|A| + λ|B|)+ 2c3

1+ |A+ B| + |A|
|B|

≤
c2(1+ 3|A| + |A+ B|)+ 2c3

1+ |A+ B| + |A|
|B|

≤ (3c2+ 2c3)|B|

using (5-3). This proves the Lipschitz continuity in C (A)-directions.
If B ∈R(A), then by R(A)= span(C (A)) we can decompose B into at most K summands from C (A).

Now the Lipschitz continuity in C (A)-directions implies

| f (x, A+ B)− f (x, A)| ≤ K (3c2+ 2c3)|B| (A-1)

for all A, B ∈R(A). This proves the Lipschitz continuity part.
Let A ∈ C (A) and x ∈ �. Then t 7→ ( f (x, t A)− f (x, 0))/t is increasing in t by C (A)-convexity

of f (x, · ) and bounded by c2|A| due to the linear growth condition (5-3). This allows us to define

4As proven in [Fonseca and Müller 1999], if A is a first-order linear homogeneous differential operator, then A-quasiconvex
functions are 3A-convex. Note that in our setting, L=A need not be first of first order; however, their arguments extend to the
case of higher-order annihilating operators A in a straightforward manner.
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g∞ :�×C (A)→ R by

g∞(x, A)= lim
t→∞

f (x, t A)
t

= sup
t>0

f (x, t A)
t

.

Now, let A′ ∈R(A) and x ′ ∈�; then by (A-1) and (5-4)∣∣∣∣ f (x ′, t A′)
t

−
f (x, t A)

t

∣∣∣∣≤ ∣∣∣∣ f (x ′, t A′)− f (x ′, t A)
t

∣∣∣∣+ ∣∣∣∣ f (x ′, t A)− f (x, t A)
t

∣∣∣∣
≤ K (3c2+ 2c3)|A− A′| +ω(|x ′− x |)

1+ t |A|
t

.

This proves f∞(x, A)= g∞(x, A) for all x ∈� and A ∈ C (A). Consequently, we obtain the existence
of f∞ in �×C (A).

The continuity of f∞( · , A) for A ∈ C (A) is a direct consequence of the continuity of f ( · , A). �

Lemma A.2. Let A be R-elliptic, and let f :�×R(A)→R be A-quasiconvex in the sense of (5-5), satisfy
the linear growth condition (5-3), and satisfy the continuity condition (5-4). Furthermore, let �bU with
∂U Lipschitz. Then there exists an extension f̃ :U ×R(A)→ R of f , which is A-quasiconvex, satisfies
the linear growth condition (5-3), and satisfies the continuity condition (5-4). (The modulus of continuity
might change by a factor.)

Proof. Since ∂U and ∂� are Lipschitz, we find a Lipschitz map 8 :U →�, which is the identity on �.
Now define f̃ (x, A) := f (8(x), A). �
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OPTIMAL CONSTANTS FOR A NONLOCAL APPROXIMATION OF
SOBOLEV NORMS AND TOTAL VARIATION

CLARA ANTONUCCI, MASSIMO GOBBINO, MATTEO MIGLIORINI AND NICOLA PICENNI

We consider the family of nonlocal and nonconvex functionals proposed and investigated by J. Bourgain,
H. Brezis and H.-M. Nguyen in a series of papers of the last decade. It was known that this family of
functionals Gamma-converges to a suitable multiple of the Sobolev norm or the total variation, depending
on the summability exponent, but the exact constants and the structure of recovery families were still
unknown, even in dimension 1.

We prove a Gamma-convergence result with explicit values of the constants in any space dimension.
We also show the existence of recovery families consisting of smooth functions with compact support.

The key point is reducing the problem first to dimension 1, and then to a finite combinatorial rearrange-
ment inequality.

1. Introduction

Let p ≥ 1 and δ > 0 be real numbers, let d be a positive integer, and let �⊆Rd be an open set. For every
measurable function u :�→ R we set

3δ,p(u, �) :=
∫∫

I (δ,u,�)

δ p

|y− x |d+p dx dy, (1-1)

where

I (δ, u, �) := {(x, y) ∈�2
: |u(y)− u(x)|> δ}.

Nonconvex and nonlocal functionals of this type appeared in a paper by J. Bourgain, H. Brezis and
P. Mironescu [Bourgain et al. 2005]; see Open Problem 2 of that work. Subsequently, the family (1-1)
was investigated in a series of papers by H.-M. Nguyen [2006; 2007; 2008; 2011; 2014], J. Bourgain
and H.-M. Nguyen [2006], and H. Brezis and H.-M. Nguyen [2018]; see also [Brezis 2015; Brezis and
Nguyen 2017].

We point out that the dependence on u is just on the integration set. The fixed integrand is divergent
on the diagonal y = x , and the integration set is closer to the diagonal where the gradient of u is large.
This suggests that 3δ,p(u, �) is proportional, in the limit as δ→ 0+, to some norm of the gradient of u,

MSC2010: 26B30, 46E35.
Keywords: Gamma-convergence, Sobolev spaces, bounded-variation functions, monotone rearrangement, nonlocal functional,

nonconvex functional.
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and more precisely to the functional

30,p(u, �) :=


∫
�
|∇u(x)|p dx if p > 1 and u ∈W 1,p(�),

total variation of u in � if p = 1 and u ∈ BV(�),

+∞ otherwise.

(1-2)

It is natural to compare the family (1-1) with the classical approximations of Sobolev or BV norms,
based on nonlocal convex functionals such as

Gε,p(u, �) :=
∫∫

�

|u(y)− u(x)|p

|y− x |p
ρε(|y− x |) dx dy, (1-3)

where gradients are replaced by finite differences weighted by a suitable family ρε of mollifiers. The idea
of approximating integrals of the gradient with double integrals of difference quotients, where all pairs
of distinct points interact, has been considered independently by many authors in different contexts. For
example, E. De Giorgi proposed an approximation of this kind to the Mumford–Shah functional in any
space dimension, in order to overcome the anisotropy of the discrete approximation [Chambolle 1995]. The
resulting theory appears in [Gobbino 1998] and was then extended in [Gobbino and Mora 2001] to more
general free discontinuity problems, and in particular to Sobolev and BV spaces. In the same years, the
case of Sobolev and BV norms was considered in detail in [Bourgain et al. 2001]; see also [Ponce 2004].

The result, as expected, is that the family Gε,p(u,Rd) converges as ε→ 0+ to a suitable multiple
of 30,p(u,Rd), both in the sense of pointwise convergence, and in the sense of De Giorgi’s Gamma-
convergence. This provides a characterization of Sobolev functions (if p > 1), and of bounded variation
functions (if p = 1), as those functions for which the pointwise limit or the Gamma-limit is finite.

From the heuristic point of view, the nonconvex approximating family (1-1) seems to follow a different
paradigm. Indeed, it was observed by J.-M. Morel, as quoted on page 4 of the transparencies of the
presentation [Brezis 2016], that this definition involves some sort of “vertical slicing” that evokes the
definition of integral à la Lebesgue, in contrast to the definition à la Riemann that seems closer to the
“horizontal slicing” of the finite differences in (1-3).

From the mathematical point of view, the asymptotic behavior of (1-1) exhibits some unexpected
features. In order to state the precise results, let us introduce some notation. Let Sd−1

:= {σ ∈Rd
: |σ |= 1}

denote the unit sphere in Rd. For every p ≥ 1 we consider the geometric constant

Gd,p :=

∫
Sd−1
|〈v, σ 〉|p dσ, (1-4)

where v is any element of Sd−1 (of course the value of Gd,p does not depend on the choice of v), and the
integration is intended with respect to the (d−1)-dimensional Hausdorff measure. The value of Gd,p can
be explicitly computed in terms of special functions through Beta integrals. It turns out that Gd,p = 2 for
every p if d = 1, and

Gd,p =meas(Sd−2)

∫ π/2

−π/2
(cos θ)p

· | sin θ |d−2 dθ =
2π (d−1)/20((p+ 1)/2)

0((p+ d)/2)
for all d ≥ 2.

The main convergence results obtained so far can be summed up as follows.
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• Pointwise convergence for p > 1. For every p > 1 it turns out that

lim
δ→0+

3δ,p(u,Rd)=
1
p

Gd,p 30,p(u,Rd) for all u ∈ L p(Rd). (1-5)

• Pointwise convergence for p = 1. In the case p = 1, equality (1-5) holds true for every u ∈ C1
c (R

d),
but there do exist functions u ∈ W 1,1(Rd) for which the left-hand side is infinite (while of course the
right-hand side is finite). A precise characterization of equality cases is still unknown.

• Gamma-convergence for every p ≥ 1. For every p ≥ 1 there exists a constant Cd,p such that

0– lim
δ→0+

3δ,p(u,Rd)=
1
p

Gd,pCd,p 30,p(u,Rd) for all u ∈ L p(Rd),

where the Gamma-limit is intended with respect to the usual metric of L p(Rd) (but the result would
be the same with respect to the convergence in L1(Rd) or in measure). Moreover, it was proved that
Cd,p ∈ (0, 1); namely the Gamma-limit is always nontrivial but different from the pointwise limit.

As a consequence, again one can characterize the Sobolev space W 1,p(Rd) as the set of functions in
L p(Rd) for which the pointwise limit or the Gamma-limit is finite. As for BV(Rd), in this setting it can
be characterized only through the Gamma-limit.

Some problems remained open, and were stated explicitly in [Nguyen 2011; Brezis and Nguyen 2018]:

Question 1. What is the exact value of Cd,p, at least in the case d = 1?

Question 2. Does Cd,p depend on d?

Question 3. Do there exist recovery families made up of continuous functions, or even of functions of
class C∞?

In this paper we answer these three questions. Concerning Questions 1 and 2, we prove that Cd,p does
not depend on d , and coincides with the value C p conjectured in [Nguyen 2007] (see also [Nguyen 2011,
Open question 2]) for the 1-dimensional case, namely

C p :=


1

p−1

(
1− 1

2p−1

)
if p > 1,

log 2 if p = 1.
(1-6)

Concerning the third question, we prove that smooth recovery families do exist. Our main result is the
following.

Theorem 1.1 (Gamma-convergence). Let us consider the functionals 3δ,p and 30,p defined in (1-1) and
(1-2), respectively.

Then for every positive integer d and every real number p ≥ 1 it turns out that

0– lim
δ→0+

3δ,p(u,Rd)=
1
p

Gd,pC p 30,p(u,Rd) for all u ∈ L p(Rd),

where Gd,p is the geometric constant defined in (1-4), and C p is the constant defined in (1-6). In particular,
the following two statements hold true:
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(1) (liminf inequality) For every family {uδ}δ>0 ⊆ L p(Rd), with uδ→ u in L p(Rd) as δ→ 0+, it turns
out that

lim inf
δ→0+

3δ,p(uδ,Rd)≥
1
p

Gd,pC p 30,p(u,Rd). (1-7)

(2) (limsup inequality) For every u ∈ L p(Rd) there exists a family {uδ}δ>0 ⊆ L p(Rd), with uδ→ u in
L p(Rd) as δ→ 0+, such that

lim sup
δ→0+

3δ,p(uδ,Rd)≤
1
p

Gd,pC p 30,p(u,Rd).

We can also assume that the family {uδ} consists of functions of class C∞ with compact support.

The proof of this result requires a different approach to the problem, which we briefly sketch below. In
previous literature, see [Nguyen 2011, formula (1.3)] or [Brezis and Nguyen 2018, formula (1.12)], the
constant Cd,p was defined through some sort of cell problem as

1
p

Gd,pCd,p := inf
{
lim inf
δ→0+

3δ,p(uδ, (0, 1)d) : uδ→ u0 in L p((0, 1)d)
}
,

where u0(x) = (x1 + · · · + xd)/
√

d. Unfortunately, this definition is quite implicit and provides no
information on the structure of the families that approach the optimal value. This lack of structure
complicates things, in such a way that just proving that Cd,p > 0 requires extremely delicate estimates; this
is the content of [Bourgain and Nguyen 2006]. On the Gamma-limsup side, since3δ,p is quite sensitive to
jumps, what is difficult is gluing together the recovery families corresponding to different slopes, even in the
case of a piecewise affine function in dimension 1. This requires a delicate surgery near the junctions; see
[Nguyen 2011]. Finally, as for Question 3, difficulties originate from the lack of convexity or continuity of
the functionals (1-1), which do not seem to behave well under convolution or similar smoothing techniques.

The core of our approach consists in proving that 3δ,p in dimension 1 behaves well under vertical
δ-segmentation and monotone rearrangement. We refer to Section 3A for the details, but roughly speaking
this means that monotone step functions whose values are consecutive integer multiples of δ are the most
efficient way to fill the gap between any two given levels. The argument is purely 1-dimensional, and
it is carried out in Proposition 3.2. In turn, the proof relies on a discrete combinatorial rearrangement
inequality, which we investigate in Theorem 2.2 under more general assumptions.

We observe that this strategy, namely estimating the asymptotic cost of oscillations by reducing
ourselves to a discrete combinatorial minimum problem, is the same as that exploited in [Gobbino 1998;
Gobbino and Mora 2001], with the remarkable difference that now the reduction to the discrete setting
is achieved through vertical δ-segmentation, while in [Gobbino 1998; Gobbino and Mora 2001] it was
obtained through a horizontal ε-segmentation (see Figure 1).

The asymptotic estimate on the cost of oscillations opens the door to the Gamma-liminf inequality in
dimension 1, which at this point follows from well-established techniques. As for the Gamma-limsup
inequality, in dimension 1 we just need to exhibit a family that realizes the given explicit multiple of
30,p(u,R), and this can be achieved through a vertical δ-segmentation à la Lebesgue (see Proposition 3.7).
This produces a recovery family made up of step functions, and it is not difficult to modify them in
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Figure 1. Vertical δ-segmentation vs. horizontal ε-segmentation (δ is the distance between
the parallel lines on the left, ε is the distance between the parallel lines on the right).

order to obtain functions of class C∞ with asymptotically the same energy (see Proposition 3.9). Finally,
passing from dimension 1 to any dimension is just an application of the 1-dimensional result to all the
1-dimensional sections of a function of d variables.

At the end of the day, we have a completely self-contained proof of Theorem 1.1 above, and a clear
indication that the true difficulty of the problem lies in dimension 1, and actually in the discretized
combinatorial model. We hope that these ideas can be extended to the more general functionals considered
in [Brezis and Nguyen 2018]. Some steps in this direction have already been done in [Antonucci et al.
2020]; see also [Antonucci et al. 2018].

This paper is organized as follows. In Section 2 we develop a theory of monotone rearrangements, first
in a discrete, and then in a semidiscrete setting. In Section 3 we prove our Gamma-convergence result in
dimension 1. In Section 4 we prove the Gamma-convergence result in any space dimension.

We would like to thank an anonymous referee for pointing out that the rearrangement inequality in
our Theorem 2.4 is equivalent to a rearrangement inequality proved in [Garsia and Rodemich 1974].
This equivalence is not immediate (see Remark 2.5 for further details), and for this reason the proofs
follow different paths. However, in both cases the basic step consists in reducing the problem to a discrete
combinatorial result, namely Theorem 2.2 in this paper, and a variant of Taylor’s lemma [1973] in [Garsia
and Rodemich 1974].

2. An aggregation/segregation problem

In this section we study the minimum problem for two simplified versions of (1-1), which we interpret as
optimizing the disposition of some objects of different types (actually dinosaurs of different species). The
first problem is purely discrete, namely with a finite number of dinosaurs of a finite number of species. The
second one is semidiscrete, namely with a continuum of dinosaurs belonging to a finite number of species.

2A. Discrete setting. Let us consider

• a positive integer n,

• a function u : {1, . . . , n} → Z,

• a symmetric subset E ⊆ Z2 (namely any subset with the property that (i, j) ∈ E if and only if
( j, i) ∈ E),

• a nonincreasing function h : {0, 1, . . . , n− 1} → R.
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Let us introduce the discrete interaction set

J (E, u) := {(x, y) ∈ {1, . . . , n}2 : x ≤ y, (u(x), u(y)) ∈ E}, (2-1)

and let us finally define
H(h, E, u) :=

∑
(x,y)∈J (E,u)

h(y− x). (2-2)

Just to help intuition, we think of u as an arrangement of n dinosaurs placed in the points {1, . . . , n}.
There are different species of dinosaurs, indexed by integer numbers, so that u(x) denotes the species of
the dinosaur in position x . The subset E ⊆Z2 is the list of all pairs of species that are hostile to each other.
A pair of points (x, y) belongs to J (E, u) if and only if x ≤ y and the two dinosaurs placed in x and y
belong to hostile species, and in this case the real number h(y− x) measures the “hostility” between the
two dinosaurs. As expected, the closer the dinosaurs are, the larger their hostility.

Taking this Jurassic framework into account, sometimes in the sequel we call u a “discrete arrangement
of n dinosaurs”, we call E an “enemy list”, we call h a “discrete hostility function”, and H(h, E, u) the
“total hostility of the arrangement”. At this level of generality, we admit the possibility that (i, i) ∈ E for
some integer i , namely that a dinosaur is hostile to dinosaurs of the same species, including itself. For
this reason, the hostility function h(x) is defined also for x = 0. This generality turns out to be useful in
the proof of the main result for discrete arrangements.

In the sequel we focus on the special case where E coincides with

Ek := {(i, j) ∈ Z2
: | j − i | ≥ k+ 1} (2-3)

for some positive integer k. In this case it is quite intuitive that the arrangements that minimize the total
hostility are the “monotone” ones, namely those in which all dinosaurs of the same species are close to
each other, and the groups corresponding to different species are sorted in ascending or descending order.
To this end, we introduce the following notion.

Definition 2.1 (nondecreasing rearrangement: discrete setting). Let n be a positive integer, and let u :
{1, . . . , n}→Z be a function. The nondecreasing rearrangement of u is the function Mu : {1, . . . , n}→Z

defined as
Mu(x) :=min{ j ∈ Z : |{y ∈ {1, . . . , n} : u(y)≤ j}| ≥ x},

where |A| denotes the number of elements of the set A.

As the name suggests, Mu is the unique nondecreasing function that can be represented in the form
Mu = u ◦π , where π : {1, . . . , n}→ {1, . . . , n} is a suitable bijection. The nondecreasing rearrangement
can also be uniquely characterized by the fact that the two level sets

{x ∈ {1, . . . , n} : u(x)= j}, {x ∈ {1, . . . , n} : Mu(x)= j}

have the same number of elements for every j ∈ Z.
As expected, the main result is that monotone arrangements minimize the total hostility with respect to

the enemy list Ek .
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Theorem 2.2 (total hostility minimization: discrete setting). Let n and k be two positive integers, let
Ek ⊆ Z2 be the subset defined by (2-3), and let h : {0, . . . , n − 1} → R be a nonincreasing function.
Let u : {1, . . . , n} → Z be any function, let Mu be the nondecreasing rearrangement of u introduced in
Definition 2.1, and let H(h, Ek, u) be the total hostility defined in (2-2).

Then it turns out that
H(h, Ek, u)≥H(h, Ek,Mu). (2-4)

Taylor’s result [1973] is substantially equivalent to (2-4) in the special case where there are n dinosaurs
of n different species indexed by n consecutive integers. It is likely that Taylor’s approach based on the
celebrated Hall’s theorem, sometimes referred to as the “marriage theorem”, could work even in the more
general setting that we need here; see [Garsia and Rodemich 1974, Section 3]. The proof we present in
Section 2C below follows a different path.

2B. Semidiscrete setting. Let us consider

• an interval (a, b)⊆ R,

• a measurable function u : (a, b)→ Z with finite image,

• a symmetric subset E ⊆ Z2,

• a nonincreasing function c : (0, b− a)→ R (note that c(σ ) might diverge as σ → 0+).

Let us introduce the semidiscrete interaction set

I (E, u) := {(x, y) ∈ (a, b)2 : (u(x), u(y)) ∈ E}, (2-5)

and let us finally define

F(c, E, u) :=
∫∫

I (E,u)
c(|y− x |) dx dy. (2-6)

In analogy with the discrete setting, we interpret u(x) as a continuous arrangement of dinosaurs of a
finite number of species, c(y− x) as the hostility between two dinosaurs of hostile species placed in x
and y, and we think of F(c, E, u) as the total hostility of the arrangement u with respect to the enemy
list E .

Once again, we suspect that monotone arrangements minimize the total hostility with respect to the
enemy list Ek . This leads to the following notion.

Definition 2.3 (nondecreasing rearrangement: semidiscrete setting). Let u : (a, b)→ Z be a measurable
function with finite image. The nondecreasing rearrangement of u is the function Mu : (a, b)→ Z

defined as
Mu(x) :=min{ j ∈ Z :meas{y ∈ (a, b) : u(y)≤ j} ≥ x − a},

where meas(A) denotes the Lebesgue measure of a subset A ⊆ (a, b).

The function Mu is nondecreasing and satisfies

meas{x ∈ (a, b) : u(x)= j} =meas{x ∈ (a, b) : Mu(x)= j} for all j ∈ Z.
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The following result is the semidiscrete counterpart of Theorem 2.2.

Theorem 2.4 (total hostility minimization: semidiscrete setting). Let (a, b)⊆ R be an interval, let k be a
positive integer, let Ek ⊆ Z2 be the subset defined by (2-3), and let c : (0, b− a)→ R be a nonincreasing
function. Let u : (a, b)→ Z be any measurable function with finite image, let Mu be the nondecreasing
rearrangement of u introduced in Definition 2.3, and let F(c, Ek, u) be the total hostility defined in (2-6).

Then it turns out that
F(c, Ek, u)≥ F(c, Ek,Mu). (2-7)

Remark 2.5. Theorem 2.4 above is stated in the form that we need in the proof of Proposition 3.2. With
a further approximation step in the proof, one can show that the same conclusion (2-7) holds true also
without assuming that the image of u is finite and contained in Z, and without assuming that k is a positive
integer (but just a real number greater than −1).

It is interesting to compare this extended result with [Garsia and Rodemich 1974, Theorem 1.1], which
states that for every nondecreasing function 8 : [0,+∞)→ [0,+∞), and every t ∈ (0, b− a), it turns
out that ∫

D(t)
8(|u(y)− u(x)|) dx dy ≥

∫
D(t)

8(|Mu(y)−Mu(x)|) dx dy, (2-8)

where D(t) := {(x, y) ∈ (a, b)2 : |y− x | ≤ t}. We observe that in (2-8) the integral involves only the pairs
(x, y) ∈ (a, b)2 that are close enough to the diagonal y = x , and the integrand 8 penalizes the pairs for
which |u(y)−u(x)| is large. On the contrary, in our total hostility the integral involves only the pairs with
|u(y)− u(x)| large enough, and the integrand c penalizes the pairs that are close to the diagonal. In this
sense the two statements seem to be two sides of the same coin (again as the Riemann and the Lebesgue
integral), and actually one can show that both statements are equivalent to saying that the inequality

meas{(x, y) ∈ (a, b)2 : |y− x | ≤ t, |u(y)− u(x)| ≥ δ}

≥meas{(x, y) ∈ (a, b)2 : |y− x | ≤ t, |Mu(y)−Mu(x)| ≥ δ} (2-9)

holds true for every t ∈ (0, b− a) and every δ > 0.
The proof of (2-8) given in [Garsia and Rodemich 1974] relies on this equivalence, and establishes

(2-9) through a variant of Taylor’s result. The proof of (2-7) that we present in Section 2D follows a more
direct path, based on our Theorem 2.2, which anyway is again discrete combinatorics.

2C. Proof of Theorem 2.2. Since the hostility function h is fixed, in the sequel we simply write H(E, u)
instead of H(h, E, u).

Our idea is to proceed by induction on the number of dinosaurs. In the case n = 1 there is nothing
to prove. Let us assume now that (2-4) holds true for all arrangements of n dinosaurs, and let u be any
arrangement of n+ 1 dinosaurs. In order to obtain an arrangement of n dinosaurs, we remove from u the
rightmost dinosaur of the species indexed by the highest integer, and we shift one position to the left all
subsequent dinosaurs. More formally, we set

µ :=max{u(i) : i ∈ {1, . . . , n+ 1}},
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we consider the largest index m ∈ {1, . . . , n+ 1} such that u(m)= µ, and we define the reduction of u to
be the new arrangement Red(u) : {1, . . . , n} → Z given by

[Red(u)](i) :=
{

u(i) if i < m,
u(i + 1) if i ≥ m.

When passing from u to Red(u), the total hostility changes by an amount that we call the hostility gap,
defined as

1(E, u) :=H(E, u)−H(E,Red(u)).

Since M(Red(u))= Red(Mu), the inductive hypothesis reads as

H(Ek,Red(u))≥H(Ek,M(Red(u)))=H(Ek,Red(Mu)),
and therefore

H(Ek, u)=H(Ek,Red(u))+1(Ek, u)

≥H(Ek,Red(Mu))+1(Ek, u)

=H(Ek,Mu)−1(Ek,Mu)+1(Ek, u).

As a consequence, (2-4) is proved for the arrangement u if we can show that

1(Ek, u)≥1(Ek,Mu), (2-10)

namely that the monotone rearrangement decreases (or at least does not increase) the hostility gap.
In order to prove (2-10), we begin by deriving a formula for the hostility gap. Let us consider the

removal that leads from u to Red(u). We observe that interactions between any two dinosaurs placed
on the same side of the removed one are equal before and after the removal, and therefore they cancel
out when computing the gap. On the contrary, if two hostile dinosaurs are placed within distance d on
opposite sides of the removed one, their hostility changes from h(d) to h(d − 1) after the removal. It
follows that the hostility gap can be written as

1(E, u)=
∑

i∈J1(E,u,m)

h(|m− i |)−
∑

(i, j)∈J2(E,u,m)

(h( j − i − 1)− h( j − i)), (2-11)

where
J1(E, u,m) := {i ∈ {1, . . . , n+ 1} : (u(i), u(m)) ∈ E},

J2(E, u,m) := {(i, j) ∈ {1, . . . , n+ 1}2 : i < m < j, (u(i), u( j)) ∈ E}.

The first sum in (2-11) takes into account the interactions of the removed dinosaur with the rest of the
world, and the second sum represents the increment of the total hostility due to the reduction of distances
among the others.

Now we introduce the new enemy list

E〈µ〉 := Z2
\ {µ,µ− 1, . . . , µ− k}2,

and we claim that
1(Ek, u)≥1(E〈µ〉, u)≥1(E〈µ〉,Mu)=1(Ek,Mu), (2-12)

which of course implies (2-10).
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The equality between the last two terms of (2-12) follows from formula (2-11). Indeed, since Mu is
nondecreasing, the removed dinosaur is the rightmost one, and therefore in both cases the second sum in
(2-11) is void. Also the first sum in (2-11) is the same in both cases, because a dinosaur of the highest
species is hostile to another dinosaur with respect to the enemy list Ek if and only if it is hostile to the
same dinosaur with respect to the enemy list E〈µ〉.

The inequality between the first two terms of (2-12) follows again from formula (2-11). Indeed, the
first sum has the same terms both in the case of the enemy list Ek and in the case of the enemy list E〈µ〉,
as observed above. As for the second sum, the interactions with respect to Ek are also interactions with
respect to E〈µ〉, and therefore when passing from Ek to E〈µ〉 the second sum cannot decrease. Since the
second sum appears in (2-11) with negative sign, the hostility gap with respect to E〈µ〉 is less than or
equal to the hostility gap with respect to Ek .

It remains to prove that
1(E〈µ〉, u)≥1(E〈µ〉,Mu). (2-13)

To this end, we introduce the complement enemy list

Ec
〈µ〉 := {µ,µ− 1, . . . , µ− k}2 = Z2

\ E〈µ〉.

Since Z2 is the disjoint union of E〈µ〉 and Ec
〈µ〉, and the total hostility is additive with respect to the

enemy list, we deduce
H(E〈µ〉, w)=H(Z2, w)−H(Ec

〈µ〉, w)

for every arrangement w, and for the same reason

1(E〈µ〉, w)=1(Z2, w)−1(Ec
〈µ〉, w).

Moreover, we observe that the total hostility with respect to Z2 depends only on the number of dinosaurs,
and in particular

1(Z2, u)=1(Z2,Mu).

As a consequence, proving (2-13) is equivalent to showing that

1(Ec
〈µ〉, u)≤1(Ec

〈µ〉,Mu). (2-14)

The advantage of this “complement formulation” is that hostility gaps with respect to Ec
〈µ〉 depend

only on the relative positions of the removed dinosaur with respect to the other dinosaurs of the species
with indices between µ− k and µ.

To be more precise, let us compute the left-hand side of (2-14). Let m denote as usual the position of
the dinosaur that is removed from u to Red(u), and let us set

R(u) := {r ≥ 1 : u(m+ r) ∈ {µ,µ− 1, . . . , µ− k}},

L(u) := {`≥ 1 : u(m− `) ∈ {µ,µ− 1, . . . , µ− k}}.

In other words, this means that

{m− ` : ` ∈ L(u)} ∪ {m} ∪ {m+ r : r ∈ R(u)}
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is the set of all integers i ∈{1, . . . , n+1} such that u(i)∈{µ,µ−1, . . . , µ−k}, namely the set of positions
where the dinosaurs of the last k+ 1 species are placed. With this notation, the first sum in (2-11) is

h(0)+
∑
`∈L(u)

h(`)+
∑

r∈R(u)

h(r)

(we recall that in this “complement formulation” the dinosaur in position m is also hostile to itself), while
the second sum in (2-11) is ∑

(`,r)∈L(u)×R(u)

(h(`+ r − 1)− h(`+ r)).

Therefore, it turns out that

1(Ec
〈µ〉, u)= G(L(u), R(u)),

where the function G is defined by

G(L , R) := h(0)+
∑
`∈L

h(`)+
∑
r∈R

h(r)−
∑

(`,r)∈L×R

(h(`+ r − 1)− h(`+ r)) (2-15)

for any two sets L and R of positive integers.
On the other hand, in the nondecreasing arrangement Mu the rightmost dinosaur has |L(u)| + |R(u)|

dinosaurs of the last k+ 1 species exactly on its left, and therefore

1(Ec
〈µ〉,Mu)=

|L(u)|+|R(u)|∑
i=0

h(i).

As a consequence, inequality (2-14) is proved if we show that

G(L , R)≤
|L|+|R|∑

i=0

h(i) (2-16)

for every choice of the sets L and R. For this final step, we argue by induction on the number of elements
of R. If R =∅, from (2-15) we deduce

G(L , R) := h(0)+
∑
`∈L

h(`)≤
|L|∑
i=0

h(i)=
|L|+|R|∑

i=0

h(i),

where the inequality is true term-by-term because h is nonincreasing.
Let us assume now that the conclusion holds true whenever R has n elements, and let us consider any

pair (L , R) with |R| = n+ 1. Let us set

a :=max R, b :=min{n ∈ N \ {0} : n 6∈ L},

and let us consider the new pair (L1, R1) defined as

L1 := L ∪ {b}, R1 := R \ {a}.
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In words, we have removed the largest element of R, and added the smallest possible element to L .
We observe that |R1| = n and |L1| + |R1| = |L| + |R|. Therefore, if we show that

G(L , R)≤ G(L1, R1), (2-17)

then (2-16) follows from the inductive assumption.
In order to prove (2-17), we expand the left-and right-hand sides according to (2-15). After canceling

out the common terms, with some algebra we obtain that inequality (2-17) holds true if and only if

h(a)+
∑
r∈R1

(h(b+ r − 1)− h(b+ r))≤ h(b)+
∑
`∈L

(h(`+ a− 1)− h(`+ a)). (2-18)

All terms in the sums are nonnegative because h is nonincreasing. Let us consider the left-hand side.
If a > 1 we know that R1 ⊆ {1, . . . , a− 1}, and hence

h(a)+
∑
r∈R1

(h(b+ r − 1)− h(b+ r)rut)≤ h(a)+
a−1∑
r=1

(h(b+ r − 1)− h(b+ r))

= h(a)+ h(b)− h(a+ b− 1). (2-19)

The same inequality is true for trivial reasons also if a = 1.
Let us consider now the right-hand side of (2-18). If b> 1 we know that L ⊇ {1, . . . , b−1}, and hence

h(b)+
∑
`∈L

(h(`+ a− 1)− h(`+ a))≥ h(b)+
b−1∑
`=1

(h(`+ a− 1)− h(`+ a))

= h(b)+ h(a)− h(a+ b− 1). (2-20)

As before, the same inequality is true for trivial reasons also if b = 1.
Combining (2-20) and (2-19) we obtain (2-18), which in turn is equivalent to (2-17). This completes

the proof of (2-16). �

2D. Proof of Theorem 2.4. The proof relies on the following approximation result (we omit the proof,
which is an exercise in basic measure theory).

Lemma 2.6. Let m be a positive integer, and let D1, . . . , Dm be disjoint measurable subsets of (0, 1)
such that

m⋃
i=1

Di = (0, 1).

Then for every ε > 0 there exist disjoint subsets D1,ε, . . . , Dm,ε of [0, 1] such that
m⋃

i=1

Di,ε = (0, 1)

and such that for every i = 1, . . . ,m it turns out that

• Di,ε is a finite union of intervals with rational endpoints,

• the Lebesgue measure of the symmetric difference between Di and Di,ε is less than or equal to ε.
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We are now ready to prove Theorem 2.4. First of all, we observe that (2-7) is invariant by translations
and homotheties. As a consequence, there is no loss of generality in assuming that (a, b)= (0, 1) and
c : (0, 1)→ R. Then we proceed in three steps. To begin with, we prove (2-7) in the special case where
the hostility function c is bounded and the arrangement u has a very rigid structure, then for general u but
again bounded hostility function, and finally in the general setting.

Step 1: We prove (2-7) under the additional assumption that the hostility function c : (0, 1)→ R is
bounded, and that there exists a positive integer d such that u(x) is constant in each interval of the form
((i − 1)/d, i/d) with i = 1, . . . , d .

Indeed, this is actually the discrete setting. To be more precise, we introduce the discrete arrangement
v : {1, . . . , d} → Z defined as

v(i) := u
(

i − 1
2

d

)
for all i ∈ {1, . . . , d}

and the discrete hostility function h : {0, . . . , d − 1} → R defined as

h(i) :=
∫ 1/d

0
dx
∫ (i+1)/d

i/d
c(|y− x |) dy for all i ∈ {0, . . . , d − 1},

which represents the contribution to the total hostility of two intervals of length 1/d occupied by hostile
dinosaurs, and placed at distance i/d from each other. Then for every enemy list Ek it turns out that

F(c, Ek, u)= 2H(h, Ek, v),

where H(h, Ek, v) is the discrete total hostility defined in (2-2), and the factor 2 takes into account
that both (x, y) and (y, x) are included in the semidiscrete interaction set I (Ek, u), while only one of
them is included in the discrete counterpart J (Ek, v); see (2-1) and (2-5). Moreover, the monotone
rearrangement Mv of v is related to the monotone rearrangement Mu of u by the formula

Mv(i)= Mu
(

i − 1
2

d

)
for all i ∈ {1, . . . , d},

and again it turns out that
F(c, Ek,Mu)= 2H(h, Ek,Mv)

for every enemy list Ek . At this point, (2-7) is equivalent to

H(h, Ek, v)≥H(h, Ek,Mv),

which in turn is true because of Theorem 2.2.

Step 2: We prove (2-7) for a general arrangement u : (0, 1)→Z, but again under the additional assumption
that the hostility function c : (0, 1)→ R is bounded.

To this end, let z1 < z2 < · · ·< zm denote the elements in the image of u, and let

Di := {x ∈ (0, 1) : u(x)= zi } for all i ∈ {1, . . . ,m}
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denote the set of positions of dinosaurs of the species zi . For every ε > 0, let us consider the sets D1,ε,
. . . , Dm,ε given by Lemma 2.6, and the function uε : (0, 1)→ Z defined as

uε(x)= zi for all x ∈ Di,ε.

Since the hostility function c is bounded, and the symmetric difference between Di and Di,ε has
measure less than or equal to ε, there exists a constant 0 (depending on m and c, but independent of ε)
such that

|F(c, Ek, u)−F(c, Ek, uε)| ≤ 0ε and |F(c, Ek,Mu)−F(c, Ek,Muε)| ≤ 0ε.

On the other hand, the function uε satisfies the assumptions of the previous step, and therefore

F(c, Ek, uε)≥ F(c, Ek,Muε).

From all these inequalities it follows that

F(c, Ek, u)≥ F(c, Ek,Mu)− 20ε.

Since ε > 0 is arbitrary, (2-7) is proved in this case.

Step 3: We prove (2-7) without assuming that the hostility function c(x) is bounded.
To this end, for every n ∈ N we consider the truncated hostility function

cn(x) :=min{c(x), n} for all x ∈ (0, 1).

We observe that
F(c, Ek, u)≥ F(cn, Ek, u) for all n ∈ N

because c(x)≥ cn(x) for every x ∈ (0, 1), and

F(cn, Ek, u)≥ F(cn, Ek,Mu) for all n ∈ N

because of the result of the previous step applied to the bounded hostility function cn(x). As a consequence,
we obtain

F(c, Ek, u)≥ F(cn, Ek,Mu) for all n ∈ N. (2-21)

On the other hand, by monotone convergence we deduce

F(c, Ek,Mu)= sup
n∈N

F(cn, Ek,Mu),

and therefore (2-7) follows from (2-21). �

3. Gamma-convergence in dimension 1

In this section we prove Theorem 1.1 for d = 1, in which case

G1,p = 2 for all p ≥ 1. (3-1)
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To begin with, we introduce the notion of vertical δ-segmentation, which is going to play a crucial role
in many parts of the proof.

Definition 3.1 (vertical δ-segmentation). Let X be any set, let w : X→ R be any function, and let δ > 0.
The vertical δ-segmentation of w is the function Sδw : X→ R defined by

Sδw(x) := δ
⌊
w(x)
δ

⌋
for all x ∈ X. (3-2)

The function Sδw takes its values in δZ, and it is uniquely characterized by the fact that Sδw(x)= kδ
for some k ∈ Z if and only if kδ ≤ w(x) < (k+ 1)δ.

3A. Asymptotic cost of oscillations. Let us assume that a function uδ(x) oscillates between two values
A and B in some interval (a, b). Does this provide an estimate from below for 3δ,p(uδ, (a, b)), at
least when δ is small enough? The following proposition and the subsequent corollaries give a sharp
quantitative answer to this question. They are the fundamental tool in the proof of the liminf inequality.

Proposition 3.2 (limit cost of vertical oscillations). Let p ≥ 1 be a real number, let (a, b) ⊆ R be an
interval, and let {uδ}δ>0 ⊆ L p((a, b)) be a family of functions.

Let us assume that there exist two real numbers A ≤ B such that

lim inf
δ→0+

meas{x ∈ (a, b) : uδ(x)≤ A+ ε}> 0 for all ε > 0, (3-3)

lim inf
δ→0+

meas{x ∈ (a, b) : uδ(x)≥ B− ε}> 0 for all ε > 0. (3-4)

Then it turns out that

lim inf
δ→0+

3δ,p(uδ, (a, b))≥ 2
p
·C p ·

(B− A)p

(b− a)p−1 , (3-5)

where C p is the constant defined in (1-6).

Proof. To begin with, we observe that (3-5) is trivial if A= B, and therefore in the sequel we assume that
A < B.

Let us fix ε > 0 such that 4ε < B− A. Due to assumptions (3-3) and (3-4), there exist η > 0 and δ0 > 0
such that

meas{x ∈ (a, b) : uδ(x)≤ A+ ε} ≥ η for all δ ∈ (0, δ0), (3-6)

meas{x ∈ (a, b) : uδ(x)≥ B− ε} ≥ η for all δ ∈ (0, δ0). (3-7)

Truncation, δ-segmentation and monotone rearrangement: In this section of the proof, we replace {uδ}
with a new family {ûδ} of monotone piecewise constant functions that still satisfies (3-3) and (3-4), without
increasing the left-hand side of (3-5). To this end, we perform three operations on uδ(x).

The first operation is a truncation between A and B. To be more precise, we define TA,Buδ : (a, b)→R

by setting

TA,Buδ(x) :=


A if uδ(x) < A,
uδ(x) if A ≤ uδ(x)≤ B,
B if uδ(x) > B.
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We observe that the implication

|TA,Buδ(y)− TA,Buδ(x)|> δ =⇒ |uδ(y)− uδ(x)|> δ

holds true for every x and y in (a, b), and hence

3δ,p(TA,Buδ, (a, b))≤3δ,p(uδ, (a, b)) for all δ > 0.

We also observe that (3-6) and (3-7) remain true if we replace uδ(x) by TA,Buδ(x).
The second operation is a vertical δ-segmentation; namely we replace TA,Buδ by the function SδTA,Buδ

defined according to (3-2). Again we observe that the implications

|SδTA,Buδ(y)− SδTA,Buδ(x)|> δ =⇒ |SδTA,Buδ(y)− SδTA,Buδ(x)| ≥ 2δ

=⇒ |TA,Buδ(y)− TA,Buδ(x)|> δ

hold true for every x and y in (a, b), and hence

3δ,p(SδTA,Buδ, (a, b))≤3δ,p(TA,Buδ, (a, b)) for all δ > 0.

As for (3-6) and (3-7), we set δ1 :=min{ε, δ0}, and we observe that now

meas{x ∈ (a, b) : SδTA,Buδ(x)≤ A+ 2ε} ≥ η for all δ ∈ (0, δ1), (3-8)

meas{x ∈ (a, b) : SδTA,Buδ(x)≥ B− 2ε} ≥ η for all δ ∈ (0, δ1). (3-9)

The third and last operation we perform is monotone rearrangement; namely we replace SδTA,Buδ with
the nondecreasing function M SδTA,Buδ in (a, b) whose level sets have the same measure of the level sets
of SδTA,Buδ (see Definition 2.3).

From (3-8) and (3-9) we deduce that now

M SδTA,Buδ(x)≤ A+ 2ε for all x ∈ (a, a+ η), for all δ ∈ (0, δ1), (3-10)

M SδTA,Buδ(x)≥ B− 2ε for all x ∈ (b− η, b), for all δ ∈ (0, δ1). (3-11)

Moreover, we claim that

3δ,p(M SδTA,Buδ, (a, b))≤3δ,p(SδTA,Buδ, (a, b)) for all δ > 0. (3-12)

This is a straightforward consequence of Theorem 2.4. To be more formal, let us consider the
semidiscrete arrangement vδ : (a, b)→ Z defined by

vδ(x) :=
1
δ

SδTA,Buδ(x) for all x ∈ (a, b)

(we recall that SδTA,Buδ takes its values in δZ, and hence vδ(x) is integer-valued) and the hostility function
c : (0, b− a)→ R defined as c(σ ) := δ pσ−1−p. We observe that

M SδTA,Buδ(x)= δMvδ(x) for all x ∈ (a, b),

where Mvδ is the nondecreasing rearrangement of vδ according to Definition 2.3.
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We observe also that for every pair of points x and y in (a, b) it turns out that

(x, y) ∈ I (δ, SδTA,Buδ, (a, b)) ⇐⇒ |vδ(y)− vδ(x)| ≥ 2 ⇐⇒ (x, y) ∈ I (E1, vδ),

where E1 is the enemy list defined in (2-3), and I (E1, vδ) is the semidiscrete interaction set defined
according to (2-5). It follows that

3δ,p(SδTA,Buδ, (a, b))= F(c, E1, vδ), 3δ,p(M SδTA,Buδ, (a, b))= F(c, E1,Mvδ),

and therefore (3-12) is equivalent to (2-7).
In conclusion, the three operations described so far delivered us a family

ûδ := M SδTA,Buδ

of nondecreasing functions such that the image of ûδ is contained in δZ. This family satisfies (3-10) and
(3-11), and

3δ,p(uδ, (a, b))≥3δ,p(ûδ, (a, b)) for all δ > 0. (3-13)

In the sequel we are going to show that any such family satisfies

lim inf
δ→0+

3δ,p(ûδ, (a, b))≥ 2
p
·C p ·

(B− A− 4ε)p

(b− a)p−1 . (3-14)

Due to (3-13) and the arbitrariness of ε > 0, this is enough to prove (3-5).

Extension of the integrals to a vertical strip: In this section of the proof we modify the domain of
integration in order to simplify the computation of 3δ,p(ûδ, (a, b)). To begin with, we observe that

3δ,p(ûδ, (a, b))=
∫∫

Aδ

δ p

|y− x |1+p dx dy ≥
∫∫

Bδ

δ p

|y− x |1+p dx dy,

where
Aδ := I (δ, ûδ, (a, b))= {(x, y) ∈ (a, b)2 : |ûδ(y)− ûδ(x)|> δ},

Bδ := {(x, y) ∈ (a+ η, b− η)× (a, b) : |ûδ(y)− ûδ(x)|> δ}.

Then we write the last integral in the form∫∫
Bδ

δ p

|y− x |1+p dx dy =
∫∫

Bδ∪Cδ

δ p

|y− x |1+p dx dy−
∫∫

Cδ

δ p

|y− x |1+p dx dy,

where

Cδ := (a+ η, b− η)× (R \ (a, b)).

In other words, the set Bδ ∪Cδ consists of the vertical strip (a+ η, b− η)×R minus the set of points
(x, y) ∈ (a+ η, b− η)× (a, b) such that |ûδ(y)− ûδ(x)| ≤ δ. Now we observe that∫∫

Cδ

δ p

|y− x |1+p dx dy = 2δ p
∫ b−η

a+η
dx
∫
+∞

b

1
|y− x |1+p dy.
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From the convergence of the last double integral it follows that

lim
δ→0+

∫∫
Cδ

δ p

|y− x |1+p dx dy = 0,

and therefore

lim inf
δ→0+

3δ,p(ûδ, (a, b))≥ lim inf
δ→0+

∫∫
Bδ

δ p

|y− x |1+p dx dy = lim inf
δ→0+

∫∫
Bδ∪Cδ

δ p

|y− x |1+p dx dy. (3-15)

Computing the integrals: In this last part of the proof we show that

lim inf
δ→0+

∫∫
Bδ∪Cδ

δ p

|y− x |1+p dx dy ≥ 2
p
·C p ·

(B− A− 4ε)p

(b− a)p−1 . (3-16)

Recalling (3-15), this proves (3-14), and hence also (3-5).
To this end, we need to introduce some notation. We know that ûδ is a nondecreasing function with

finite image. Let us consider the partition

a = x0 < x1 < · · ·< xn = b

of (a, b) with the property that ûδ(x) is constant in each interval of the form (xi−1, xi ), and different
intervals correspond to different constants. Let us set

h :=min{i ∈ {1, . . . , n} : xi ≥ a+ η},

k :=max{i ∈ {0, . . . , n− 1} : xi ≤ b− η}.

Of course n, h, k, as well as the partition, do depend on δ. Now we claim that∫∫
Bδ∪Cδ

δ p

|y− x |1+p dx dy ≥ 2
p
·C p ·

δ p(k− h− 1)p

(b− a)p−1 for all δ ∈ (0, δ1). (3-17)

To this end we can limit ourselves, without loss of generality, to the case where the values of ûδ(x) in
neighboring intervals are consecutive multiples of δ; namely if ûδ(x)= mδ in (xi−1, xi ) for some m ∈ Z,
then ûδ(x)= (m+ 1)δ in (xi , xi+1). Indeed, if ûδ(x)≥ (m+ 2)δ in (xi , xi+1), then it turns out that∫∫

Bδ∪Cδ

δ p

|y− x |1+p dx dy ≥
∫ xi

xi−1

dx
∫ xi+1

xi

δ p

(y− x)1+p dy.

Since the integral in the right-hand side is divergent, the left-hand side is divergent as well, and in this
case (3-17) is trivially true.

Therefore, in the sequel we treat the case where the values of ûδ(x) in neighboring intervals are
consecutive multiples of δ. Under this assumption it turns out that∫∫

Bδ∪Cδ

δ p

|y− x |1+p dx dy ≥
k−1∑

i=h+1

(∫ xi

xi−1

dx
∫
+∞

xi+1

δ p

|y− x |1+p dy+
∫ xi+1

xi

dx
∫ xi−1

−∞

δ p

|y− x |1+p dy
)

=
δ p

p

k−1∑
i=h+1

(∫ xi

xi−1

1
(xi+1− x)p dx +

∫ xi+1

xi

1
(x − xi−1)p dx

)
.
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Now we distinguish two cases.

• If p = 1, computing the integrals we obtain∫∫
Bδ∪Cδ

δ

(y− x)2
dx dy ≥ δ

k−1∑
i=h+1

log
(

xi+1− xi−1

xi+1− xi
·

xi+1− xi−1

xi − xi−1

)
.

If `i := xi − xi−1 denotes the length of the i-th interval of the partition, and we apply the inequality
between arithmetic and geometric mean, we obtain∫∫

Bδ∪Cδ

δ

(y− x)2
dx dy ≥ δ

k−1∑
i=h+1

log
(`i + `i+1)

2

`i · `i+1
≥ δ

k−1∑
i=h+1

log 4= 2 log 2 · δ(k− h− 1),

which proves (3-17) in this case.

• If p > 1, computing the integrals we obtain∫∫
Bδ∪Cδ

δ p

|y− x |1+p dx dy ≥
δ p

p(p− 1)

k−1∑
i=h+1

(
1

`
p−1
i+1

+
1

`
p−1
i

−
2

(`i+1+ `i )p−1

)
,

where we set `i := xi − xi−1 as before. Therefore, with two applications of Jensen’s inequality to the
convex function t→ t1−p, we obtain∫∫

Bδ∪Cδ

δ p

|y− x |1+p dx dy ≥
δ p

p(p− 1)

k−1∑
i=h+1

2p
− 2

(`i+1+ `i )p−1

≥
δ p(2p

− 2)
p(p− 1)

·
(k− h− 1)p(∑k−1

i=h+1(`i+1+ `i )
)p−1

≥
δ p(2p

− 2)
p(p− 1)

·
(k− h− 1)p

(2(b− a))p−1 =
2
p
·C p ·

δ p(k− h− 1)p

(b− a)p−1 ,

which proves (3-17) also in this case.

Now it remains to estimate δ(k− h− 1). To this end, from (3-10) and the minimality of h we deduce

A+ 2ε ≥ ûδ(x)=: m Aδ for all x ∈ (xh−1, xh).

Similarly, from (3-11) and the maximality of k we deduce

B− 2ε ≤ ûδ(x)=: m Bδ for all x ∈ (xk, xk+1).

Since the values of ûδ in consecutive intervals are consecutive multiples of δ, it turns out that

m B = m A+ (k− h+ 1),

and therefore

(k− h− 1)δ = (k− h+ 1)δ− 2δ = (m B −m A)δ− 2δ ≥ B− A− 4ε− 2δ.

Plugging this inequality into (3-17), and letting δ → 0+, we obtain (3-16), which completes the
proof. �
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The following result is a straightforward consequence of Proposition 3.2.

Corollary 3.3. Let us assume that uδ→ u in L p(R), and let (a, b)⊆ R be an interval whose endpoints a
and b are Lebesgue points of u.

Then it turns out that

lim inf
δ→0+

3δ,p(uδ, (a, b))≥ 2
p
·C p ·

|u(b)− u(a)|p

(b− a)p−1 .

Proof. It is enough to apply Proposition 3.2 with A :=min{u(a), u(b)} and B :=max{u(a), u(b)}. Assump-
tions (3-3) and (3-4) are satisfied because a and b are Lebesgue points of the limit of the sequence uδ . �

We conclude with another variant of Proposition 3.2. We do not need this statement in the sequel, but
we think that it clarifies once more the relation between oscillations of uδ and values of 3δ,p(uδ, (a, b)).

Corollary 3.4. Let (a, b) ⊆ R be an interval, let {uδ}δ>0 ⊆ L p((a, b)) be a family of functions, and let
osc(uδ, (a, b)) denote the essential oscillation of uδ in (a, b).

Then it turns out that

lim inf
δ→0+

3δ,p(uδ, (a, b))≥ 2
p

C p
1

(b− a)p−1

(
lim inf
δ→0+

osc(uδ, (a, b))
)p
.

Proof. Let iδ and sδ denote the essential infimum and the essential supremum of uδ(x) in (a, b), respectively.
Let us assume that iδ and sδ are real numbers (otherwise an analogous argument works with standard
minor changes). Let us set wδ(x) := uδ(x)− iδ, and let us observe that

3δ,p(uδ, (a, b))=3δ,p(wδ, (a, b)) for all δ > 0.

Now it is enough to apply Proposition 3.2 with A := 0 and

B := lim inf
δ→0+

(sδ − iδ)= lim inf
δ→0+

osc(uδ, (a, b)). �

3B. Piecewise affine approximation. The value of30,p(u,R) is the supremum of30,p(v,R) as v ranges
over a sequence of piecewise affine functions that approximate u. The formal statement is the following
(we omit the standard proof, based on the convexity of the norm).

Lemma 3.5 (piecewise affine horizontal segmentation). Let p ≥ 1 be a real number, and let u ∈ L p(R).
Then there exists c ∈ R such that c+ q is a Lebesgue point of u for every q ∈Q.
Moreover, if for every positive integer k we consider the piecewise affine function vk : R→ R such that

vk

(
c+

i
k

)
= u

(
c+

i
k

)
for all i ∈ Z,

then it turns out that

30,p(u,R)= lim
k→+∞

∫
R

|v′k(x)|
p dx = sup

k≥1

∫
R

|v′k(x)|
p dx .
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3C. Proof of Gamma-liminf inequality in dimension 1. We are now ready to prove (1-7) in the case
d = 1. The idea is that Corollary 3.3 represents a “localized” version of the liminf inequality (1-7), which
now follows from well-established techniques; see for example [Gobbino 1998; Gobbino and Mora 2001].
To this end, let uδ→ u be any family converging in L p(R), and let c and vk be as in Lemma 3.5. For
every i ∈ Z, we set ck,i := c+ i/k, and we apply Corollary 3.3 in the interval (ck,i , ck,i+1). We obtain

lim inf
δ→0+

3δ,p(uδ, (ck,i , ck,i+1))≥
2
p

C p
|u(ck,i+1)− u(ck,i )|

p

(1/k)p−1 =
2
p

C p

∫ ck,i+1

ck,i

|v′k(x)|
p dx .

Since

3δ,p(uδ,R)≥
∑
i∈Z

3δ,p(uδ, (ck,i , ck,i+1)) for all δ > 0,

we deduce

lim inf
δ→0+

3δ,p(uδ,R)≥ lim inf
δ→0+

∑
i∈Z

3δ,p(uδ, (ck,i , ck,i+1))

≥

∑
i∈Z

lim inf
δ→0+

3δ,p(uδ, (ck,i , ck,i+1))

≥
2
p

C p

∑
i∈Z

∫ ck,i+1

ck,i

|v′k(x)|
p dx = 2

p
C p

∫
R

|v′k(x)|
p dx .

Letting k→+∞, and recalling (3-1), we obtain exactly (1-7). �

3D. Proof of Gamma-limsup inequality in dimension 1. This subsection is devoted to a proof of state-
ment (2) of Theorem 1.1 in the case d = 1.

It is well known that we can limit ourselves to showing the existence of recovery families for every u
belonging to a subset of L p(R) that is dense in energy with respect to 30,p(u,R). Classical examples of
subsets that are dense in energy are the space C∞c (R) of functions of class C∞ with compact support and
the space of piecewise affine functions with compact support. Here for the sake of generality we consider
the space PC1

c(R) of piecewise C1 functions with compact support, defined as follows.

Definition 3.6. Let u : R→ R be a function. We say that u ∈ PC1
c(R) if u has compact support, it is

Lipschitz continuous, and there exists a finite subset S ⊆ R such that u ∈ C1(R \ S).

We show that for every u ∈PC1
c(R) the family Sδu of vertical δ-segmentations of u is a recovery family.

This proves the Gamma-limsup inequality in dimension 1.

Proposition 3.7 (existence of recovery families). Let p ≥ 1 be a real number, and let u ∈ PC1
c(R) be a

piecewise C1 function with compact support according to Definition 3.6. For every δ > 0, let Sδu denote
the vertical δ-segmentation of u according to Definition 3.1.

Then it turns out that

lim sup
δ→0+

3δ,p(Sδu,R)≤
2
p

C p

∫
R

|u′(x)|p dx . (3-18)
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Proof. To begin with, we introduce some notation. Let R0 ≥ 1 be any real number such that the support
of u is contained in [−R0+ 1, R0− 1]. Let L be the Lipschitz constant of u in R, and let S ⊆ R be a
finite set such that u ∈ C1(R \ S). For every x ∈ R and every δ > 0 we set

J (δ, u, x) := {y ∈ R : |Sδu(y)− Sδu(x)|> δ}, (3-19)

and

Hδ,p(x) :=
∫

J (δ,u,x)

δ p

|y− x |1+p dy,

so that

3δ,p(Sδu,R)=

∫
R

Hδ,p(x) dx for all δ > 0. (3-20)

In the sequel we call Hδ,p(x) the “pointwise hostility function”. It represents the contribution of each
point x to the double integral defining 3δ,p(Sδu,R).

Strategy of the proof : The outline of the proof is the following. First of all, we show that

lim
δ→0+

∫
−R0

−∞

Hδ,p(x) dx = lim
δ→0+

∫
+∞

R0

Hδ,p(x) dx = 0. (3-21)

Then we define an averaged pointwise hostility function Ĥδ,p(x) with the property that∫ R0

−R0

Hδ,p(x) dx =
∫ R0

−R0

Ĥδ,p(x) dx . (3-22)

We also show that the averaged pointwise hostility function satisfies the uniform bound

Ĥδ,p(x)≤
2
p

L p for all x ∈ [−R0, R0], for all δ > 0, (3-23)

and the asymptotic estimate

lim sup
δ→0+

Ĥδ,p(x)≤
2
p

C p|u′(x)|p for all x ∈ [−R0, R0] \ S. (3-24)

At this point, from Fatou’s lemma we deduce

lim sup
δ→0+

∫ R0

−R0

Hδ,p(x) dx = lim sup
δ→0+

∫ R0

−R0

Ĥδ,p(x) dx ≤
∫ R0

−R0

lim sup
δ→0+

Ĥδ,p(x) dx ≤ 2
p

C p

∫ R0

−R0

|u′(x)|p dx .

Keeping (3-20) and (3-21) into account, this estimate implies (3-18).

Reducing integration to a bounded interval: We prove (3-21).
To this end, let us consider any x ≤ −R0. We observe that in this case the set J (δ, u, x) defined in

(3-19) is contained in the support of u, and hence∫
−R0

−∞

Hδ,p(x) dx ≤ δ p
∫
−R0

−∞

dx
∫ R0−1

−R0+1

1
|y− x |1+p dy.

At this point the first limit in (3-21) follows from the convergence of the double integral. The proof of
the second limit is analogous.
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Uniform bound on the pointwise hostility function: We prove that

Hδ,p(x)≤
2
p

L p for all x ∈ [−R0, R0], for all δ > 0. (3-25)

To this end, we observe that the implication

|Sδu(y)− Sδu(x)|> δ =⇒ |u(y)− u(x)|> δ

holds true for every (x, y) ∈ R2. Since u is Lipschitz continuous, we deduce that

|Sδu(y)− Sδu(x)|> δ =⇒ |y− x | ≥
δ

L
,

and hence

Hδ,p(x)≤
∫
|y−x |≥δ/L

δ p

|y− x |1+p dy = 2
∫
+∞

δ/L

δ p

z1+p dz = 2
p

L p,

as required.

Averaged pointwise hostility function: In this part of the proof we introduce the averaged pointwise
hostility function. To this end, we consider the open set

A(u, δ) := {x ∈ (−R0, R0) : u(x) 6∈ δZ}.

A connected component (a, b) of A(u, δ) is called monotone if [a, b] ∩ S = ∅, and |u′(x)| ≥ δ for
every x ∈ [a, b]. In this case there exists k ∈ Z such that u(a) = kδ and u(b) = kδ± δ, where the sign
depends on the sign of u′(x) in (a, b). From the Lipschitz continuity of u we deduce that A(u, δ) has
only a finite number of monotone connected components.

The averaged pointwise hostility function Ĥδ,p : R→ R is defined as

Ĥδ,p(x) :=
1

b− a

∫ b

a
Hδ,p(s) ds

if x ∈ [a, b) for some monotone connected component of A(δ, u), and Ĥδ,p(x) := Hδ,p(x) otherwise.
At this point, inequality (3-23) follows from (3-25), while (3-22) is true because the integrals of Hδ,p(x)

and Ĥδ,p(x) are the same both in all monotone connected components, and in the complement set.

Asymptotic estimate in stationary points: We prove that (3-24) holds true for every x ∈ (−R0, R0) \ S
with |u′(x)| = 0.

To begin with, we observe that in this case x 6∈ [a, b) for every monotone connected component (a, b)
of A(δ, u) (because |u′(x)| is strictly positive in the closure of every monotone connected component),
and therefore Ĥδ,p(x)= Hδ,p(x) for every δ > 0.

If J (δ, u, x)=∅ for every δ > 0, then u is identically null, and the conclusion is trivial. Otherwise
J (δ, u, x) 6=∅ when δ is small enough. In this case, let rδ be the largest positive real number such that

(x − rδ, x + rδ)∩ J (δ, u, x)=∅,
so that

Hδ,p(x)≤
∫ x−rδ

−∞

δ p

|y− x |1+p dy+
∫
+∞

x+rδ

δ p

|y− x |1+p dy = 2
p

(
δ

rδ

)p

.
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Let δk→ 0+ be any sequence such that

lim sup
δ→0+

δ

rδ
= lim

k→+∞

δk

rδk

. (3-26)

Up to subsequences, we can also assume that rδk tends to some r0. If r0 > 0, then the limit in the
right-hand side of (3-26) is 0, which proves (3-24) in this case. If r0 = 0, then from the maximality of rδk

we deduce that |u(x ± rδk )− u(x)| = δk for a suitable choice of the sign, which might depend on k. In
any case, the limit in the right-hand side of (3-26) turns out to be

lim
k→+∞

δk

rδk

= lim
k→+∞

|u(x ± rδk )− u(x)|
rδk

= |u′(x)| = 0,

which proves (3-24) also in this case.

Asymptotic estimate in nonstationary points: We prove that (3-24) holds true for every x ∈ (−R0, R0) \ S
with |u′(x)|> 0.

Let us assume, without loss of generality, that u′(x) > 0 (the other case is analogous). Then for every
δ > 0 small enough it turns out that x lies in the closure of a monotone connected component of A(δ, u).
More precisely, there exist four real numbers aδ, bδ, cδ, dδ with

aδ < bδ ≤ x < cδ < dδ,

and kδ ∈ Z such that

u(aδ)= (kδ − 1)δ, u(bδ)= kδδ, u(cδ)= (kδ + 1)δ, u(dδ)= (kδ + 2)δ,

and

u(y) ∈ ((kδ − 1)δ, kδδ) for all y ∈ (aδ, bδ), (3-27)

u(y) ∈ (kδδ, (kδ + 1)δ) for all y ∈ (bδ, cδ), (3-28)

u(y) ∈ ((kδ + 1)δ, (kδ + 2)δ) for all y ∈ (cδ, dδ). (3-29)

We observe that aδ, bδ, cδ, and dδ tend to x as δ→ 0+, and hence

lim
δ→0+

δ

bδ − aδ
= lim
δ→0+

u(bδ)− u(aδ)
bδ − aδ

= u′(x). (3-30)

Similarly it turns out that

lim
δ→0+

δ

cδ − bδ
= lim
δ→0+

δ

dδ − cδ
= u′(x), (3-31)

lim
δ→0+

δ

cδ − aδ
= lim
δ→0+

δ

dδ − bδ
=

u′(x)
2

. (3-32)

From (3-27) through (3-29) we deduce that

J (δ, u, s)⊆ (−∞, aδ] ∪ [dδ,+∞) for all s ∈ (bδ, cδ).
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It follows that

Hδ,p(s)≤
∫

R\(aδ,dδ)

δ p

|y− s|1+p dy =
δ p

p

(
1

(dδ − s)p +
1

(s− aδ)p

)
for all s ∈ [bδ, cδ),

and hence

Ĥδ,p(x)=
1

cδ − bδ

∫ cδ

bδ
Hδ,p(s) ds ≤

δ p

p
1

cδ − bδ

∫ cδ

bδ

(
1

(dδ − s)p +
1

(s− aδ)p

)
ds (3-33)

for every x ∈ [bδ, cδ). Now we distinguish two cases.

• If p = 1, computing the integrals in (3-33) we obtain

Ĥδ,p(x)≤
δ

cδ − bδ
log
(

dδ − bδ
δ
·

δ

dδ − cδ
·

cδ − aδ
δ
·

δ

bδ − aδ

)
,

and therefore (3-24) follows from (3-30) through (3-32).

• If p > 1, computing the integrals in (3-33) we obtain

Ĥδ,p(x)≤
1

p(p− 1)
δ

cδ − bδ

{
δ p−1

(dδ − cδ)p−1 +
δ p−1

(bδ − aδ)p−1 −
δ p−1

(dδ − bδ)p−1 −
δ p−1

(cδ − aδ)p−1

}
,

and therefore also in this case (3-24) follows from (3-30) through (3-32). �

3E. Smooth recovery families. The aim of this subsection is refining the Gamma-limsup inequality by
showing the existence of recovery families consisting of C∞ functions with compact support. To this end,
we introduce the following notion.

Definition 3.8 (δ-step functions). Let δ be a positive real number. A function u :R→R is called a δ-step
function if there exists a positive integer n, an (n+1)-tuple x0 < x1 < · · · < xn of real numbers, and
(k1, . . . , kn) ∈ Zn such that

• u(x)= 0 for every x ∈ (−∞, x0)∪ (xn,+∞),

• u(x)= kiδ in (xi−1, xi ) for every i = 1, . . . , n,

• |k1| = |kn| = 1 and |ki − ki−1| = 1 for every i = 2, . . . , n.

The values of u(x) for x ∈ {x0, x1, . . . , xn} are not relevant (just to fix ideas, we can define u(xi ) as
the maximum between the limit of u(x) as x→ x+i and the limit of u(x) as x→ x−i ).

Now we show that, for every fixed δ > 0, every δ-step function can be approximated in energy by
functions of class C∞ with compact support. Roughly speaking, this is possible because the rigid structure
of δ-step functions allows us to control the effect of convolutions, which otherwise is unpredictable due
to the sensitivity of the integration region in (1-1) to small perturbations.

Proposition 3.9 (smooth approximation of δ-step functions). Let δ > 0 and p ≥ 1 be real numbers, and
let u : R→ R be a δ-step function.
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Then there exists a family {uε}ε>0 ⊆ C∞c (R) such that

lim
ε→0+

uε = u in L p(R),

and
lim
ε→0+

3δ,p(uε,R)=3δ,p(u,R).

Proof. Let n, xi and ki be as in the definition of δ-step functions, and let

τ :=min{xi − xi−1 : i = 1, . . . , n}

be the length of the smallest interval of the partition. We observe that points in neighboring intervals do
not contribute to the computation of 3δ,p(u,R). In particular, if we write as usual

3δ,p(u,R) :=

∫∫
I (δ,u,R)

δ p

|y− x |1+p dx dy,

then it turns out that
|y− x | ≥ τ for all (x, y) ∈ I (δ, u,R). (3-34)

Let us fix a mollifier ρ ∈ C∞c (R) with

• ρ(x)≥ 0 for every x ∈ R,

• ρ(x)= 0 for every x ∈ R with |x | ≥ 1,

•

∫
R
ρ(x) dx = 1,

and let us consider the usual regularization by convolution

uε(x) :=
∫

R

u(x + εy)ρ(y) dy.

It is well known that uε ∈ C∞c (R) for every ε > 0, and that for every p ≥ 1 it turns out that uε→ u in
L p(R) as ε→ 0+.

Let us assume that 2ε < τ , let us consider the two open sets

Aε :=
n⋃

i=0

(xi − ε, xi + ε)⊆ R, Bε := (Aε×R)∪ (R× Aε)⊆ R2,

and let us write

3δ,p(uε,R)=

∫∫
I (δ,uε,R)∩Bε

δ p

|y− x |1+p dx dy+
∫∫

I (δ,uε,R)\Bε

δ p

|y− x |1+p dx dy.

Since the support of ρ is contained in [−1, 1], it turns out that uε(x)= u(x) for every x ∈ R \ Aε. It
follows that

I (δ, uε,R) \ Bε = I (δ, u,R) \ Bε,

and therefore

lim
ε→0+

∫∫
I (δ,uε,R)\Bε

δ p

|y− x |1+p dx dy = lim
ε→0+

∫∫
I (δ,u,R)\Bε

δ p

|y− x |1+p dx dy =3δ,p(u,R),



OPTIMAL CONSTANTS FOR NONLOCAL APPROXIMATION OF SOBOLEV NORMS AND TOTAL VARIATION 621

where the last equality follows from Lebesgue’s dominated convergence theorem because Bε shrinks to a
set of null measure. So it remains to show that

lim
ε→0+

∫∫
I (δ,uε,R)∩Bε

δ p

|y− x |1+p dx dy = 0. (3-35)

To this end, from (3-34) and the properties of the support of the mollifier, we deduce that now

|y− x | ≥ τ − 2ε for all (x, y) ∈ I (δ, uε,R),

and therefore∫∫
I (δ,uε,R)∩Bε

δ p

|y− x |1+p dx dy ≤ 2
n∑

i=0

∫ xi+ε

xi−ε

dx
∫
|z|≥τ−2ε

δ p

|z|1+p dz

≤ 2
n∑

i=0

∫ xi+ε

xi−ε

2
p

δ p

|τ − 2ε|p
dx =

4
p

δ p

|τ − 2ε|p
· 2ε(n+ 1),

which implies (3-35). �

We are now ready to show the existence of smooth recovery families. As usual, it is enough to show
the existence of such a family for every u in a subset of L p(R) which is dense in energy for 30,p(u,R).
In this case we consider the space PAc(R) of piecewise affine functions with compact support.

Since piecewise affine functions are piecewise C1, we know from Proposition 3.7 that the family Sδu
of vertical δ-segmentations of u is a (nonsmooth) recovery family for u. The key point is that the vertical
δ-segmentation of a piecewise affine function with compact support is a δ-step function according to
Definition 3.8. Thus from Proposition 3.9 we deduce the existence of a function uδ ∈ C∞c (R) such that

‖uδ − Sδu‖L p(R) ≤ δ and 3δ,p(uδ,R)≤3δ,p(Sδu,R)+ δ

for every δ > 0. This implies that {uδ} is a smooth recovery family for u. �

4. Gamma-convergence in any dimension

It remains to prove Theorem 1.1 in any space dimension. This follows from well-established sectioning
techniques. For every σ ∈ Sd−1, let 〈σ 〉⊥ denote the hyperplane orthogonal to σ , namely

〈σ 〉⊥ := {z ∈ Rd
: 〈z, σ 〉 = 0}.

Given any u : Rd
→ R, for every σ ∈ Sd−1 and every z ∈ 〈σ 〉⊥, we consider the 1-dimensional section

uσ,z : R→ R defined as
uσ,z(x) := u(z+ σ x) for all x ∈ R.

The main idea is that Sobolev norms, total variation, and functionals such as 3δ,p computed in u are
a sort of average of the same quantities computed on the 1-dimensional sections uσ,z . The result is the
following.

Proposition 4.1 (integral-geometric representation). Let u : Rd
→ R be any measurable function. Let

3δ,p and 30,p be the functionals defined in (1-1) and (1-2), respectively.
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(1) For every p ≥ 1 it turns out that∫
Sd−1

dσ
∫
〈σ 〉⊥

30,p(uσ,z,R) dz = Gd,p 30,p(u,Rd),

where Gd,p is the geometric constant defined in (1-4).

(2) For every δ > 0 and every p ≥ 1 it turns out that∫
Sd−1

dσ
∫
〈σ 〉⊥

3δ,p(uσ,z,R) dz = 23δ,p(u,Rd). �

We skip the details of the proof of Proposition 4.1, which is a simple application of variable changes
in multiple integrals. More generally, for every σ ∈ Sd−1 and every g ∈ L1(Rd) it turns out that∫

Rd
g(y) dy =

∫
〈σ 〉⊥

dz
∫

R

g(z+ σ x) dx,

and this is the main ingredient in the proof of statement (1).
Similarly, for every g ∈ L1(Rd

×Rd) it turns out that∫∫
Rd×Rd

g(u, v) du dv = 1
2

∫
Sd−1

dσ
∫
〈σ 〉⊥

dz
∫∫

R×R

g(z+ σ x, z+ σ y) · |y− x |d−1 dx dy,

and this is the main ingredient in the proof of statement (2).

We are now ready to prove Theorem 1.1.

Proof. Gamma-liminf : Let us assume that uδ→ u in L1(Rd). Then for every σ ∈ Sd−1 it turns out that

(uδ)σ,z→ uσ,z in L1(R)

for almost every z ∈ 〈σ 〉⊥. Therefore, from the integral-geometric representations of Proposition 4.1,
Fatou’s lemma, and the 1-dimensional result, we obtain

lim inf
δ→0+

3δ,p(uδ,Rd)= lim inf
δ→0+

1
2

∫
Sd−1

dσ
∫
〈σ 〉⊥

3δ,p((uδ)σ,z,R) dz

≥
1
2

∫
Sd−1

dσ
∫
〈σ 〉⊥

lim inf
δ→0+

3δ,p((uδ)σ,z,R) dz

≥
1
2

∫
Sd−1

dσ
∫
〈σ 〉⊥

2
p

C p 30,p(uσ,z,R) dz

=
1
p

Gd,pC p 30,p(u,Rd).

Gamma-limsup: Let u ∈ C∞c (R
d) be any function with compact support. For every δ > 0 we consider the

vertical δ-segmentation Sδu of u, and we observe that this operation commutes with the 1-dimensional
sections, in the sense that

(Sδu)σ,z = Sδ(uσ,z) for all σ ∈ Sd−1, for all z ∈ 〈σ 〉⊥.



OPTIMAL CONSTANTS FOR NONLOCAL APPROXIMATION OF SOBOLEV NORMS AND TOTAL VARIATION 623

Therefore, from the integral-geometric representations of Proposition 4.1, Fatou’s lemma, and the
1-dimensional result, we obtain

lim sup
δ→0+

3δ,p(Sδu,Rd)= lim sup
δ→0+

1
2

∫
Sd−1

dσ
∫
〈σ 〉⊥

3δ,p((Sδu)σ,z,R) dz

≤
1
2

∫
Sd−1

dσ
∫
〈σ 〉⊥

lim sup
δ→0+

3δ,p((Sδu)σ,z,R) dz

≤
1
2

∫
Sd−1

dσ
∫
〈σ 〉⊥

2
p

C p 30,p(uσ,z,R) dz

=
1
p

Gd,pC p 30,p(u,Rd).

The δ-independent bounds on 3δ,p((Sδu)σ,z,R) needed in order to apply Fatou’s lemma follow from
the Lipschitz continuity of u and the boundedness of its support.

Smooth recovery families: It remains to show the existence of smooth recovery families. The strategy is
analogous to the 1-dimensional case, and therefore we limit ourselves to outlining the argument, sparing
the reader all technicalities.

To begin with, we observe that the space PAc(R
d) of piecewise affine functions with compact support

is a subspace of L p(Rd) that is dense in energy for 30,p(u,Rd). This is true because C∞c (R
d) is dense in

energy, and in turn any function in C∞c (R
d) can be approximated in W 1,∞(Rd) by functions in PAc(R

d);
see for example Chapter 4 in [Brenner and Scott 1994], and in particular Corollary 4.4.24.

As a consequence, it is enough to show the existence of a recovery family for every u ∈ PAc(R
d),

in which case a nonsmooth recovery family is provided by the vertical δ-segmentations Sδu of u. On
the other hand, vertical δ-segmentations of piecewise affine functions with compact support are δ-step
functions, and these functions can be approximated in energy by smooth functions. It follows that for
every δ > 0 there exists uδ ∈ C∞c (R

d) such that

‖uδ − Sδu‖L p(Rd ) ≤ δ and 3δ,p(uδ,Rd)≤3δ,p(Sδu,Rd)+ δ,

and therefore {uδ} is the required recovery family.
The last approximation step can be proved by convolution as we did in Proposition 3.9. To be more

precise, a δ-step function in dimension d is a function v : Rd
→ R with the property that there exist a

finite set {P1, . . . , Pm} of disjoint open polytopes (bounded intersections of half-spaces) and integers
k1, . . . , km such that

• v(x)= kiδ in Pi for every i = 1, . . . ,m,

• v(x)= 0 in the open set P0 defined as the complement set of the closure of P1 ∪ · · · ∪ Pm ,

• |ki − k j | ≤ 1 whenever the closure of Pi intersects the closure of Pj ,

• |ki | ≤ 1 whenever the closure of Pi intersects the closure of P0.

In words, the level sets of a δ-step function are finite unions of polytopes, and values in adjacent
regions differ by δ.
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The key point is that for every δ-step function v there exists a positive real number τ such that

(x, y) ∈ I (δ, v,Rd) =⇒ |y− x | ≥ τ.

As a consequence, when we define vε as the convolution of v with a mollifier whose support is
contained in the ball with center in the origin and radius ε, we obtain

(x, y) ∈ I (δ, vε,Rd) =⇒ |y− x | ≥ τ − 2ε,

and at this point the conclusion follows exactly as in the proof of Proposition 3.9. �
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