msp






ANALYSIS AND PDE
Vol. 13, No. 3, 2020

dx.doi.org/10.2140/apde.2020.13.651

EXTERNAL BOUNDARY CONTROL OF THE MOTION OF A RIGID BODY
IMMERSED IN A PERFECT TWO-DIMENSIONAL FLUID

OLIVIER GLASS, JOZSEF J. KOLUMBAN AND FRANCK SUEUR

We consider the motion of a rigid body immersed in a two-dimensional irrotational perfect incompressible
fluid. The fluid is governed by the Euler equation, while the trajectory of the solid is given by Newton’s
equation, the force term corresponding to the fluid pressure on the body’s boundary only. The system is
assumed to be confined in a bounded domain with an impermeable condition on a part of the external
boundary. The issue considered here is the following: is there an appropriate boundary condition on the
remaining part of the external boundary (allowing some fluid going in and out the domain) such that the
immersed rigid body is driven from some given initial position and velocity to some final position (in the
same connected component of the set of possible positions as the initial position) and velocity in a given
positive time, without touching the external boundary? In this paper we provide a positive answer to this
question thanks to an impulsive control strategy. To that purpose we make use of a reformulation of the
solid equation into an ODE of geodesic form, with some force terms due to the circulation around the
body, as used by Glass, Munnier and Sueur (/Invent. Math. 214:1 (2018), 171-287), and some extra terms
here due to the external boundary control.
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1. Introduction and main result

1A. The model without control. A simple model of fluid-solid evolution is that of a single rigid body
surrounded by a perfect incompressible fluid. Let us describe this system. We consider a two-dimensional
bounded, open, smooth and simply connected! domain 2 C R?. The domain Q is composed of two
disjoint parts: the open part F(¢) filled with fluid and the closed part S(¢) representing the solid; see
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control problem, external boundary control.
IThe condition of simple connectedness is actually not essential and one could generalize the present result to the case where
€2 is merely open and connected at the price of long but straightforward modifications.
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Figure 1. The domains 2, S(¢) and F(t) = Q\ S(¥).

Figure 1. These parts depend on time 7. Furthermore, we assume that S(¢) is also smooth and simply
connected. On the fluid part F(¢), the velocity field u : {(t,x) : t € [0, T], x € F()} — R? and the
pressure field 77 : {(z, x) : t € [0, T, x € F(1)} = R satisfy the incompressible Euler equation:

g—?+(u-V)u+Vn:0 and divu=0 forre[0,T]andx € F(1). (1-1)

We consider impermeability boundary conditions, namely, on the solid boundary, the normal velocity
coincides with the solid normal velocity

u-n=ug-n onadS(), (1-2)
where us denotes the solid velocity described below, while on the outer part of the boundary we have
u-n=0 ondL, (1-3)

where 7 is the unit outward normal vector on dF(¢). The solid S(¢) is obtained by a rigid movement
from S(0), and one can describe its position by the center of mass, /(¢), and the angle variable with
respect to the initial position, 9 (¢). Consequently, we have

S(@) =h(t) + R@(@))(So — ho), (1-4)
where h is the center of mass at initial time, and

R = <cosz9 —sinﬁ>.

sin cos v

Moreover the solid velocity is hence given by
us(t, x) = h'(0) + ' (1) (x = h(t)*, (1-5)

where for x = (x1, x2) we define x+ = (—x2, x1).
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The solid evolves according to Newton’s law, and is influenced by the fluid’s pressure on the boundary:

mh” (1) = / rndo and Jv"(t) = / w(x — h(t))J‘ -ndo. (1-6)
AS(1) as(1)

Here the constants m > 0 and 7 > 0 denote respectively the mass and the moment of inertia of the body,
where the fluid is supposed to be homogeneous of density 1, without loss of generality. Furthermore, the
circulation around the body is constant in time, that is,

/ u(t)-rdcr:/ up-trdo =y e€R forallt >0, (1-7)
A8 (1) S0

due to Kelvin’s theorem, where t denotes the unit counterclockwise tangent vector.
The Cauchy problem for this system with initial data

Ul;—o =ug forx e F(0),
h(©)=hy, Hh(0)=hy 90)=0, 9(0)=01, (1-8)

is now well-understood; see, e.g., [Glass et al. 2014; Glass and Sueur 2015; Houot et al. 2010; Ortega et al.
2005; 2007]. Furthermore, the three-dimensional case has also been studied in [Glass et al. 2012; Rosier
and Rosier 2009]. Note in passing that it is our convention used throughout the paper that ¥ (0) = 0.

In this paper, we will furthermore assume that the fluid is irrotational at the initial time, that is curl ug =0
in F(0), which implies that it stays irrotational at all times, due to Helmholtz’s third theorem, i.e.,

curlu =0 forx € F(t), forall + > 0. (1-9)

1B. The control problem and the main result. We are now in position to state our main result.

Our goal is to investigate the possibility of controlling the solid by means of a boundary control acting
on the fluid. Consider ¥ a nonempty, open part of the outer boundary 0€2. Suppose that one can choose
some nonhomogeneous boundary conditions on ¥. One natural possibility is due to Yudovich [1962],
which consists of prescribing on the one hand the normal velocity on %, i.e., choosing some function
g € C°([0, T x ¥) with [5, ¢ =0 and imposing that

u(t,x) -n(x)=gk,x) onl0,T]x X, (1-10)
while on the rest of the boundary we have the usual impermeability condition
u-n=0 onl[0,T]x 32\ %), (1-11)

and on the other hand the vorticity on the set £~ of points of [0, 7] x ¥ where the velocity field points
inside 2. Note that ¥~ is deduced immediately from g.

Since we are interested in the vorticity-free case, we will actually consider here a null control in
vorticity, that is,

curlu(t,x) =0 onX™ ={(,x)e[0,T]x X :u(t,x) n(x) <O0}. (1-12)
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Condition (1-12) enforces the validity of (1-9) as in the uncontrolled setting despite the fact that some
fluid is entering the domain.

The general question of this paper is how to control the solid’s movement by using the above boundary
control (that is, the function g). In particular we raise the question of driving the solid from a given
position and a given velocity to some other prescribed position and velocity. Note that we cannot expect
to control the fluid velocity in the situation described above: for instance, Kelvin’s theorem gives an
invariant of the dynamics, regardless of the control.

Throughout this paper we will only consider solid trajectories which stay away from the boundary.
Therefore we introduce

OQ={qg:=0,9)eQxR:dh+ R(©®)(So— hp), 0%2) > 0}.
Furthermore, let us from here on set
Dr:={(t,x):1 €[0,T], x € F(1)},

where we have omitted from the notation the dependence on F( - ), and therefore on the unknown (%, ¥)(-).
The main result of this paper is the following statement.

Theorem 1. Let T > 0. Consider Sy C 2 bounded, closed, simply connected with smooth boundary,
which is not a disk, and ug € C*°(F(0); R?), y € R, go = (ho,0), q1 = (h1, ) € Q, hy, b € R?,
19(’), 01 € R such that (ho, 0) and (hy, ©1) belong to the same connected component of Q and

divug =curlug =0 in F(0), up-n=0 onas2,
ug-n = (hy+9y(x —ho))-n on dSy, / up-tdo =y.
380
(See Figure 2.) Then there exists a control g € Cg°((0, T) x ) and a solution (h, ¥, u) € C*([0, T']; Q) x

C®(Dr; R?) to (1-1), (1-2), (1-6), (1-7), (1-8), (1-9), (1-10), (1-11), which satisfies (h, k', 9, 9')(T) =
(hy, By, 91, 9).

Figure 2. The initial and final positions and velocities in the control problem.
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Remark 2. In Theorem 1 the control g can be chosen with an arbitrary small total flux through X 7; that
is, for any T > 0, for any v > 0, there exists a control g and a solution (&, 9, u) satisfying the properties

T
// u-ndodt
0 Js-

See Section 5D for more explanation. Let us mention that such a small flux condition cannot be guaranteed
in the results [Coron 1993; Glass 2000; 2001] regarding the controllability of the Euler equations.

of Theorem 1 and such that moreover

< V.

When Sy is a disk, the second equation in (1-6) becomes degenerate, so it needs to be treated separately.
For instance, in the case of a homogeneous disk, i.e., when the center of mass coincides with the center
of the disk and we have (x — h(t))* -n =0 for any x € d5(t), t > 0, we cannot control . However, we
have a similar result for controlling the center of mass /.

Theorem 3. Let T > 0. Given a homogeneous disk Sy C 2, ug € C®(F(0); R?), y €R, hg, h; € €,
h{), h’1 € R? such that (hy, 0) and (h1, 0) are in the same connected component of Q, and

divug =curlug =0 in F(0), up-n=0 onaQ2,

up-n="hy-n ondS, / uy-tdo =y,
9S8y

there exists g € C°((0, T) x X) and a solution (h, u) in C*°([0, T']; Q) x C*(Dr; R?) of (1-1), (1-2),
(1-6), (1-7), (1-9), (1-10), (1-11), (1-12) with initial data (ho, hy, uo), which satisfies (h, h')(T) = (hy, h').

The proof is similar to that of Theorem 1, with the added consideration that (x — h(t))*-n =0 for
any x € d5(¢t), t > 0. We therefore omit the proof. In the case where the disk is nonhomogeneous the
analysis is technically more intricate already in the uncontrolled setting, see [Glass et al. 2018], and we
will omit this case in this paper.

References. Let us mention a few results of boundary controllability of a fluid alone, that is without any
moving body. The problem is then finding a boundary control which steers the fluid velocity from u
to some prescribed state u. For the incompressible Euler equations small-time global exact boundary
controllability has been obtained in [Coron 1993; Glass 2000] in the two-dimensional, respectively three-
dimensional case. This result has been recently extended to the case of the incompressible Navier—Stokes
equation with Navier slip-with-friction boundary conditions in [Coron et al. 2020]; see also [Coron
et al. 2017] for a gentle exposition. Note that the proof there relies on the previous results for the Euler
equations by means of a rapid and strong control which drives the system in a high Reynolds regime. This
strategy was initiated in [Coron 1996], where an interior controllability result was already established. For
“viscous fluid + rigid body” control systems (with Dirichlet boundary conditions), local controllability
results have already been obtained in both two and three dimensions; see, e.g., [Boulakia and Guerrero
2013; Boulakia and Osses 2008; Imanuvilov and Takahashi 2007]. These results rely on Carleman
estimates on the linearized equation, and consequently on the parabolic character of the fluid equation.
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A different type of fluid-solid control result can be found in [Glass and Rosier 2013], where the fluid
is governed by the two-dimensional Euler equation. However in this paper the control is located on the
solid’s boundary which makes the situation quite different.

Actually, the results of Theorems 1 and 3 can rather be seen as some extensions to the case of an
immersed body of the results [Glass and Horsin 2010; 2012; 2016] concerning Lagrangian controllability
of the incompressible Euler and Stokes equations, where the control takes the same form as here.

1C. Generalizations and open problems. First, as we mentioned before, using the techniques of this
paper, the result could be straightforwardly generalized for domains that are not simply connected. One
could also manage in the same way the control of several solids (the reader may in particular see that the
argument using Runge’s theorem in Section 7 is local around the solid).

We would also like to underline that the absence of vorticity is not central here. This may surprise
the reader acquainted with the Euler equation, but actually following the arguments of [Coron 1993;
1996], one knows how to control the full model when one can control the irrotational one. This is by
the way the technique that we use to take care of the circulation y (see in particular Section 3). But the
presence of vorticity makes a lot of complications from the point of view of the initial boundary problem,
in particular for what concerns the uniqueness issue; see [Yudovich 1962]. To avoid these unnecessary
technical complications, we restrain ourselves to the irrotational problem. But the full problem could
undoubtedly be treated in the same way.

Furthermore, one might ask the question of whether or not it is possible to control with a reduced
number of controls, i.e., to only look for controls g which take the form of a linear combination of some

a priori given controls {g;};—1.....;, which may depend on the geometry, but not the initial or final data of

the control problem. We consider that our methods can be adapted to prove such a result, in particular
since in Section 3 we prove that Theorem 1 follows from a simpler result, Theorem 13, where the solid
displacement, the solid velocities and the circulation are small. It then suffices to discretize the control
with respect to the parameters (ho, h(, 9o, 9), (h1, h}, 91, 9]) and y. This does not pose a problem
since our control is actually constructed continuously with respect to these parameters, so one may apply a

compactness argument. However, the set of controls {g;};=1,..; will depend on the parameter § > 0 from

Theorem 13, used to restrict the set of admissible positions Q to the set Qs defined in (3-1). This subtlety
is due to the fact that the closure of Q also contains points where the solid touches the outer boundary,
while this is no longer the case with Q; for a given fixed § > 0, and we use this for the compactness
argument mentioned above.

There remain also many open problems.

Considering the recent progress on the controllability in the viscous case, a natural question is whether
or not the results in this paper could be adapted to the case where a rigid body is moving in a fluid driven by
the incompressible Navier—Stokes equation. In [Kolumbén 2020] we extend the analysis performed here
to prove the small-time global controllability of the motion of a rigid body in a viscous incompressible
fluid, driven by the incompressible Navier—Stokes equation, in the case where Navier slip-with-friction
boundary conditions are prescribed at the interface between the fluid and the solid. However, the case of

Dirichlet boundary conditions remains completely open.
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Let us mention the following open problem regarding the motion planning of a rigid body immersed in
an inviscid incompressible irrotational flow.

Open problem. Let 7 > 0, (ho, 0) in Q, and & in C2([0, T1; Q), with £(0) = (ho, 0). Let us decompose
£'(0) into &'(0) = (hy, ¥(). Consider Sy C €2 bounded, closed, simply connected with smooth boundary,
which is not a disk, y € R, and ug € C*°(F(0); R?) such that

divug =curlug =0 in F(0), up-n=0 ondQ,

ug-n = (hy+0y(x —ho)*)-n on dSp, / ug-tdo =y.
EEN)

Do there exist g € C([0, T'] x ¥) and a solution (%, ¥, u) € C%([0, T1; Q) x CH(Dr; R?) to (1-1), (1-2),
(1-6), (1-7), (1-8), (1-9), (1-10), (1-11), which satisfies & = (h, ¥')?

Even the approximate motion planning in C?, i.e., the same statement as above but with

& — (h, Dllc2qo.ry <€

(with & > 0 arbitrary) instead of & = (k, ¢), is an open problem.

Furthermore, in this paper we have ignored any possible thermodynamic effect in the model; however,
it would be a natural question to ask how our results could be generalized to the case when the fluid is
heat-conductive.

1D. Plan of the paper and main ideas behind the proof of Theorem 1. The paper is organized as
follows.

In Section 2 we first recall from [Glass et al. 2018] a reformulation of the Newton equations (1-6) as
an ODE in the uncontrolled case and then extend it to the case with control.

To be more precise, setting g := (h, ¥) and considering a manifold of admissible positions Q (to be
defined later), the authors proved in [Glass et al. 2018] that there exist a field M : @ — STH(R?) of
symmetric positive-definite matrices and smooth fields E, B : Q — R> such that the fluid-solid system is
equivalent to the following ODE in g:

M@)q"+ (@) q'.q) =y E@) +v4q x B@).
where ["(g) is a bilinear symmetric mapping, given by the so-called Christoffel symbols of the first kind:

Eo_ 1(3(M>k,j LM IM)
2%} 2 341 an aqk .

In particular, the case with zero circulation represents the fact that the particle ¢ is moving along the
geodesics associated with the Riemannian metric induced on Q by the so-called total inertia matrix M.
We extend the above result to the case with control g € Cg°([0, T'] x X) to find that ¢ satisfies the ODE

M@@q" +(T(@),q',q") =v*E(Q) +vq x B(q)+ Fi(q,q, v)lel + F2(q)[3;e], (1-13)
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where F and F, are regular, and « is defined as the unique smooth solution of the Neumann problem

Aax=0 1in F(¢) and oy =gly ondF(), (1-14)
with zero mean.

Note that in both cases above, the fluid velocity u can be recovered by solving some simple elliptic
PDEs.

In Section 3 we prove that Theorem 1 can be deduced from a simpler result, namely Theorem 13,
where the solid displacement, the initial and final solid velocities and the circulation are assumed to be
small.

This is achieved on one hand by using the usual time-rescale properties of the Euler equation in order
to pass from arbitrary solid velocities and circulation to small ones. More precisely, if u(z, - ) is a solution
to the Euler equation on [0, T'], then for any A > 0

ut(t, ) = %u(%, )

is a solution to the Euler equation on the time interval [0, AT]. The corresponding scaling for the initial
and final solid velocities and the circulation associated with u* becomes q4/*, q;/A and y /A. Hence, if
one can find a solution with small initial and final velocities and small circulation on [0, T'], one can pass
to the arbitrary (or large) case on [0, AT] with A € (0, 1) small enough, thus obtaining the controllability
result in smaller time. There are multiple possibilities for using up the remaining time from A7 to 7, and
we give one in Section 3, relying on the time-reversal properties of the Euler equation.

On the other hand, one may use a compact covering argument to pass from the case when gg and ¢
are remote to the case when their distance is small.

In Section 4 we prove that another reduction is possible, as we prove that an approximate controllability
result (rather than an exact one), namely Theorem 14, allows us to deduce Theorem 13.

Indeed, if instead of (¢, ¢")(T) = (g1, q}) one only has ||(g, ¢")(T) — (g1, gl <n for n > 0 small
enough, then it is possible to pass to exact controllability by using a Brouwer-type topological argument.
However, for such a result to be applied, one has to make sure that the map (g1, ¢}) — (¢, ¢")(T) is
well-defined and continuous for (g1, ¢{) in some small enough ball, which we will indeed achieve during
our construction.

Section 5 is devoted to the proof of Theorem 14 and is the core of the paper. In order to achieve the
aforementioned approximate controllability, we rely on the following strategy.

Suppose we have y = 0 (if this is not the case, one can at least expect to be close in some sense to the
case without circulation when y is small enough), and suppose that we can find some appropriate control
g € C3°([0, T1; ©) such that the term Fi(q, q¢’, 0)[a] + F>(¢)[9;c] in (1-13) behaves approximately like
V8o (¢) +v1 67 (¢) for any given v, v] € R3, where 8y and 87 denote the Dirac distributions at times r =0
and t = T~ respectively.

Then, (1-13) is going to be close (in an appropriate sense) to the formal toy model

M@q"+ (@), 4", q") = vodo + vidr, (1-15)
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and controlling (1-13) (at least approximately) reduces to controlling (1-15) by using the vectors vy, v; € R3
as our control. In fact, we consider a control of the form

g(t, x) = Po(1)go(x) + B1(1)g1(x), (1-16)

where the functions Bg, 81 are chosen as square roots of sufficiently close smooth approximations of
8o, 8 (since it turns out that F; depends quadratically on «, and by consequence also on g, see (1-14)),
and with some appropriate functions go, 1.

Let us quickly explain how the controllability of the toy model (1-15) can be established. Given
qo0, q1 € Q, there exists (at least in the case when gg and ¢, are sufficiently close, hence the arguments of
Section 3) a geodesic associated with the Riemannian metric induced on Q by M, which connects gg
with ¢g;. More precisely, there exists a unique smooth function g satisfying

M@§"+(T'(@),q',4")=0 on[0,T], withg(0)=gqo, ¢(T)=q. (1-17)

So, one can arrive at the desired final position ¢, but a priori the final velocity ¢'(T) differs from ¢1;
furthermore even the initial velocity ¢'(0) differs from g,).

Then, controlling the solution g of (1-15) from (g, g}) to (g1, g}) just amounts to setting vy :=
M(q0)(G'(0) —gqp) and vy := —M(q1)(q'(T) — q}), which transforms the initial and final velocities g’(0)
and ¢’ (T) exactly to the desired velocities in order to achieve controllability.

In Section 6 we prove a proposition that is important for Theorem 14, namely that the whole system
will behave like the toy model above, in a certain regime (and in particular for small y). This relies on
some appropriate estimations of the terms Fy, F, and some Gronwall-type arguments.

Section 7 explains how one can construct the control by means of complex analysis: it can be considered
as the cornerstone of our control strategy. It is here that we construct the spacial parts go, g; of our
control g from (1-16), as functions of vy, v;.

2. Reformulation of the solid’s equation into an ODE

In this section we establish a reformulation of the Newton equations (1-6) as an ODE for the three degrees
of freedom of the rigid body with coefficients obtained by solving some elliptic-type problems on a
domain depending on the solid position. Indeed the fluid velocity can be recovered from the solid position
and velocity by an elliptic-type problem, so that the fluid state may be seen as solving an auxiliary steady
problem, where time only appears as a parameter, instead of the evolution equation (1-1). The Newton
equations can therefore be rephrased as a second-order differential equation on the solid position whose
coefficients are determined by the auxiliary fluid problem.

Such a reformulation in the case without boundary control was already achieved in [Glass et al. 2018]
and we will start by recalling this case in Section 2A; see Proposition 12 below. A crucial fact in the
analysis is that in the ODE reformulation the prefactor of the body’s accelerations is the sum of the
inertia of the solid and of the so-called “added inertia” which is a symmetric positive-semidefinite matrix
depending only on the body’s shape and position, and which encodes the amount of incompressible fluid
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that the rigid body has also to accelerate around itself. Remarkably enough in the case without control
and where the circulation is 0 it turns out that the solid equations can be recast as a geodesic equation
associated with the metric given by the total inertia.

Then we will extend this analysis to the case where there is a control on a part of the external boundary
in Section 2B; see Theorem 6. In particular we will establish that the remote influence of the external
boundary control translates into two additional force terms in the second-order ODE for the solid position;
indeed we will distinguish one force term associated with the control velocity and another one associated
with its time derivative.

To simplify notation, we define the positions and velocities g = (h, ¥), ¢’ = (h', ©¥'), and

S(@) =h+R(®)(So—ho) and F(g) =Q2\S(q),

since the dependence in time of the domain occupied by the solid comes only from the position g.
Furthermore, we set g (¢) = (h(t), ¥ (¢)).

2A. A reminder of the uncontrolled case. We first recall that in the case without any control the fluid
velocity satisfies (1-2), (1-3), (1-7) and (1-9). Therefore at each time ¢ the fluid velocity u satisfies the

div/curl system
divu =curlu =0 in F(q),

u-n=0 on 0€2,
u-n=0h+%x—-nt)-n ondS(g),
fBS(q)”'Td“ =y,

where the dependence in time is only due to that of ¢ and ¢’. Given the solid position ¢ and the right-hand

(2-1)

sides, the system (2-1) uniquely determines the fluid velocity u in the space of C* vector fields on the
closure of F(q). Moreover thanks to the linearity of the system with respect to its right-hand sides, its
unique solution u# can be uniquely decomposed with respect to the following functions which depend
only on the solid position ¢ = (&, ¥) in Q and encode the contributions of elementary right-hand sides.
» The Kirchhoff potentials

® = (P, P2, P3)(q, ) (2-2)

are defined as the solution of the Neumann problems
A®;(g,x)=0 in F(q), 9,9;(qg,x)=0 onaQ, fori e{l,?2,3},

n; on dS(q), fori € {1, 2},
(x—h)*-n ondS(g), fori =3,

where all differential operators are with respect to the variable x.

9, Pi(g, x) = { (2-3)

o The stream function 1 for the circulation term is defined in the following way. First we consider the
solution (g, - ) of the Dirichlet problem Ay (¢, x) =0 in F(q), ¥ (g, x) =00n 9%, and ¥ (g, x) = 1
on 0S5(q). Then we set

-1
w(q,-)=—(/ anxif(q,xwo—) v(g,-) (2-4)
aS(q)
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such that we have

/ on¥(q,x)do =—1,
aS5(q)

noting that the strong maximum principle gives us 9,% (g, x) < 0 on 4S(q).

Remark 4. The Kirchhoff potentials @ and the stream function ¢ are C* as functions of ¢ on Q. We
will use several times some properties of regularity with respect to the domain of solutions to linear elliptic
problems, included for another potential A[g, g] associated with the control; see Definition 8 below. We
will mention throughout the proof the properties which will be used and we refer to [Chambrion and
Munnier 2012; Henrot and Pierre 2005; Lohéac and Munnier 2014] for more on this material, which is
now standard in fluid-structure interaction.

The following statement is an immediate consequence of the definitions above.

Lemma 5. Forany g = (h,®) in Q, for any p = (£, ) in R* x R and for any y, the unique solution u
in C®(F(q)) to the system

divu =curlu =0 in € F(q),
u-n=0 on 082,
u-nz(ﬂ—i—w(x—h)L)-n on 05(q),
fas(q)u-rda =y

is given by the formula, for x in F(q),

u(x) = V(p-o(q, x))+y Vg, x). (2-6)

Above p - ®(g, x) denotes the inner product

(2-5)

3
p-®(g,x) =) pi®i(q,x).

i=1
Let us now address the solid dynamics. The solid motion is driven by the Newton equations (1-6)
where the influence of the fluid on the solid appears through the fluid pressure. The pressure can in turn
be related to the fluid velocity thanks to the Euler equations (1-1). The contributions to the solid dynamics
of the two terms in the right-hand side of the fluid velocity decomposition formula (2-6) are very different.
On the one hand the potential part, i.e., the first term in the right-hand side of (2-6), contributes as an
added inertia matrix, together with a connection term which ensures a geodesic structure [Munnier 2009],
whereas on the other hand the contribution of the term due to the circulation, i.e., the second term in the
right-hand side of (2-6), turns out to be a force which reminds us of the Lorentz force in electromagnetism

by its structure [Glass et al. 2018]. We therefore introduce the following notation.

* We respectively define the genuine and added mass 3 x 3 matrices by

Mg=

o o 3
o 3 o
G oo
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and, for g € Q,
Ma(Q):(f V<I>i(q,X)-Vd>j(q,X)dX>
F(q)

1<i,j<3
Note that M, is a symmetric Gram matrix and is C* on Q.
o We define the symmetric bilinear map I'(g) given by

<F(q),p,p>=( > Ffﬁj(q)p,-pj) eR® forall peR?,

1<i,j<3 1=k=3

where, for each i, j, k € {1, 2, 3}, Fl].f j denotes the Christoffel symbol of the first kind defined on Q by

M= 1<8<Ma>k, i Mok IMa); j) 0
T2 dqi dq; gy
It can be checked that I" is of class C* on Q.
« We introduce the following C* vector fields on Q with values in R3:
1
E= —5/ 10, (q, 1?3, P(q. ) do, (2-8)
0S(q)
B=/ (g, )0, P(q, ) x 9 P(q, -)) do. (2-9)
9S(q)

We recall that the notation ® was given in (2-2).
The reformulation of the model as an ODE is given in the following result, which was first established
in [Munnier 2009] in the case y = 0 and in [Glass et al. 2018] in the case y € R.

Theorem 6. Given g = (h, ®) € C®([0, T]; Q), u € C®(Dr; R?) we have that (q, u) is a solution to
(1-1), (1-2), (1-3), (1-6), (1-7) and (1-9) if and only if q satisfies the ODE on [0, T]

(Mg +Ma(@)q" +(T(@).q'.q") =v*E(@) +vq x B(q), (2-10)

and u is the unique solution to the system (2-1). Moreover the total kinetic energy %(Mg +Mu(@)q -q’
is conserved in time for smooth solutions of (2-10), at least as long as there is no collision.

Note that in the case where y = 0, the ODE (2-10) means that the particle g is moving along the
geodesics associated with the Riemannian metric induced on Q by the matrix field M, + M, (g). Note
that, since Q is a manifold with boundary and the metric M, + M,(g) may become singular at the
boundary of Q, the Hopf—Rinow theorem does not apply and geodesics may not be global. However we
will make use only of local geodesics.

Remark 7. Let us also mention that the whole “inviscid fluid + rigid body” system can be reinterpreted
as a geodesic flow on an infinite-dimensional manifold; see [Glass and Sueur 2012]. However the
reformulation established by Theorem 6 relies on the finite-dimensional manifold Q and sheds more light
on the dynamics of the rigid body.
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Below we provide a sketch of the proof of Theorem 6; this will be useful in Section 2B when extending
the analysis to the controlled case.

Proof. Let us focus on the direct part of the proof for sake of clarity but all the subsequent arguments can
be arranged in order to ensure the converse part of the statement as well. Using Green’s first identity and
the properties of the Kirchhoff functions, the Newton equations (1-6) can be rewritten as

ng”zf Vi -Vd(gq,x)dx. (2-11)
Flg)
Moreover when u is irrotational, (1-1) can be rephrased as
V= —du— 3V, |ul* forx in F(q()), (2-12)
and Lemma 5 shows that for any ¢ in [0, T]
u(t, ) =V(g'@®) @@, ) +yV @), ). (2-13)

Substituting (2-13) into (2-12) and then the resulting decomposition of Vr into (2-11) we get

VIV(g - ®(q,x))I?
2

ng”:_/ (8tv(q/-<l>(q,x))+ )-VCD(q,x)dx
F(q)

—yf( (V9@ 0+ (Vg 0.2 T4y, 20) - VO, 0 ds
Flq

2
— y2/ M -V&(q,x)dx. (2-14)
Fl@) 2

According to Lemmas 32, 33 and 34 in [Glass et al. 2018], the terms in the three lines of the right-hand
side above are respectively equal to —M,(¢)q” — (I'(q),q',q"), vq' x B(g) and y>E(q), so that we
easily deduce the ODE (2-10) from (2-14).

The conservation of the kinetic energy %(M ¢ +Ma(q))q’ - q' is then simply obtained by multiplying
the ODE (2-10) by ¢’ and observing that

(Mg +Ma(@)g" +(T@).q".4)) ¢ = (3(Mg + Ma(@)q'-q'), (2-15)
completing the proof. U

2B. Extension to the controlled case. We now tackle the case where a control is imposed on the part X
of the external boundary d€2. At any time this control has to be compatible with the incompressibility of
the fluid, meaning that the flux through X has to be zero. We therefore introduce the set

C:= {gngo(E; [R):f gda:O}.
b

The decomposition of the fluid velocity u then involves a new potential term involving the following
function.
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Definition 8. For any ¢ € Q and g € C we consider the unique solution & := A[g, g] € C*°(F(q); R) to
the Neumann problem

Aa=0 1in F(q) and oy =gly ondF(q), (2-16)

with zero mean on F(gq).

Let us mention that the zero-mean condition above allows us to determine a unique solution to the
Neumann problem but plays no role in the sequel.
Now Lemma 5 can be modified as follows.

Lemma 9. Forany g = (h, 9) in Q, for any p = (£, ®) in R*> x R, for any g in C, the unique solution u
in C*®(F(q)) to
divu =curlu =0 in F(q),
u-n=1yg on 9L2,
u-n=U+owx—hnr)-n ondSQ),
fBS(q) u-tdo =y
is given by
u=V(p-®q.)+yVy(g.-)+VAlg. gl (2-17)
Let us avoid possible confusion by mentioning that the V operator above has to be considered with

respect to the space variable x. The function A[g, g] and its time derivative will respectively be involved
in the arguments of the following force terms.

Definition 10. We define, for any ¢ in Q, p in R?, « in COO(}?q); R) and y in R, Fi(q, p, y)[a] and
Fy(@)la] in R® by

Fi(q, p,y)la] = —% / |Va|?3,®(q, - ) do

35(q)
- fas( Ve (V(p-®lg. )+ YV (g, )P, ) do, (2-18)
q

F(g)la] = —/ ad,P(g, )do. (2-19)
35(q)

Observe that (2-18) and (2-19) only require o and Ve to be defined on dS(g). Moreover when these
formulas are applied to o = A[q, g] for some g in C, only the trace of « and the tangential derivative 9«
on dS(g) are involved, since the normal derivative of @ vanishes on dS(q) by definition; see (2-16).

We define our notion of controlled solution of the “fluid + solid” system as follows.

Definition 11. We say that (g, g) in C*([0, T]; Q) x C3°([0, T']; C) is a controlled solution if the
following ODE holds true on [0, T]:

(Mg +Mo(@)q" +(T(@).q.q)=v*E@) +vqd x B(g)+ Fi(q, ¢, )]+ Fx(q)[d:al, (2-20)

where «(t, -) := Alq(t), g(t, -)].

We have the following result for reformulating the model as an ODE.
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Proposition 12. Given
qeC>®(0,T);Q), uecC®Dr;R*) and geC(0,T];C),

we have that (q, u) is a solution to (1-1), (1-2), (1-6), (1-7), (1-8), (1-9), (1-10), (1-11), (1-12) if and only
if (q, g) is a controlled solution and u is the unique solution to the unique div/curl-type problem

divu =curlu =0 in F(q),
u-n=1sg on 02,
u-n=0+%x—-n1-n ondSg),
fas(q) u-tdo =y,

with g = (h, 9).

Proposition 12 therefore extends Theorem 6 to the case with an external boundary control (in particular
one recovers Theorem 6 in the case where g is identically vanishing).

Proof. We proceed as in the proof of Theorem 6 recalled above, with some modifications due to the
extra term involved in the decomposition of the fluid velocity; compare (2-6) and (2-17). In particular
some extra terms appear in the right-hand side of (2-14) after substituting the right-hand side of (2-17)
for u in (2-12). Using some integration by parts and the properties of the Kirchhoff functions we obtain
integrals on dS(q) whose sum precisely gives Fi(q, q’, y)[a(t, )]+ F2(q)[0,a(z, - )]. This allows us to
conclude. O

3. Reduction to the case where the displacement, velocities and circulation are small
For § > 0, we introduce the set
0s={qeQxR:d(S(g), 02) > 5}. (3-1)

The goal of this section is to prove that Theorem 1 can be deduced from the following result. The
balls have to be understood for the Euclidean norm (rather than for the metric Mg + M, (q)).

Theorem 13. Given § >0, Sy C Q2 bounded, closed, simply connected with smooth boundary, which is not
a disk, qo in Qs and T > 0, there exists r > 0 such that for any q, in B(qo, r), forany y € Rwith |y| <r
and for any q(’), qi € B(0, r), there is a controlled solution (g, g) in C*°([0, T']; Qs) x C3°([0, T] x X)
such that (q, q")(0) = (o, q¢) and (¢, ¢")(T) = (q1, q}).

Note in particular that for » > 0 small enough, B(qo, r) is included in the connected component of Qs
containing qg.

Proof of Theorem 1 from Theorem 13. We proceed in two steps: first we use a time-rescaling argument
in order to deduce from Theorem 13 a more general result covering the case where the initial and final
velocities ¢, and ¢; and the circulation y are large. This argument is reminiscent of a time-rescaling
argument used by J.-M. Coron [1993] for the Euler equation, which has been also used in [Glass and
Rosier 2013] in order to pass from the potential case to the case with vorticity. Then we use a compactness
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argument in order to deal with the case where go and g; are remote (but of course in the same connected
component of Qj).

The time-rescaling argument relies on the following observation: it follows from (2-20) that (¢, g) is a
controlled solution on [0, T'] with circulation y if and only if (g%, g") is a controlled solution on [0, AT]
with circulation y /A, where (¢*, g*) is defined by

iy i=q L d gx=g(! 3-2
6]()-—9(1) an g(,x)-—xg<x,x)- (3-2)

Of course the initial and final conditions

(q.4)0) = (q0.q)) and (q,¢)(T)=(q1,q})

translate respectively into

/ /

(g*. (¢"))(©0) = <qo, %) and (¢, (¢"))(T) = (ql, j—l) (3-3)
Now consider gy in Qs and ¢ in B (g0, r) in the same connected component of Qs as gg, with r > 0
as in Theorem 13, and ¢, ¢| and y without size constraint. For A small enough, (qo, Aq(), (q1, Aq})
and Ay satisfy the assumptions of Theorem 13. Hence there exists a controlled solution (g, g) on
[0, T'1, achieving (¢, ¢")(0) = (g0, Aqy) and (¢, ¢')(T) = (g1, Aq}). On the other hand, the corresponding
trajectory g* constructed above will satisfy the conclusions of Theorem 1 on [0, AT], in particular that
(q". (g"))(0) = (g0, q}) and (¢*, (¢"))(AT) = (q1, q}). Moreover we can assume that it is the case
without loss of generality that X is small, and in particular that A < 1. Thus the result is obtained but in a
shorter time interval.

To get to the desired time interval, using that (2-20) enjoys some invariance properties by translation
and time-reversal (up to the change of the sign of y) it is sufficient to glue together an odd number, say
2N + 1 with N in N¥ of appropriate controlled solutions each defined on a time interval of length AT
with A = 1/(2N + 1), going back and forth between (g0, g,) and (g1, ¢}) until time T = (2N + 1)AT.
Moreover one can see that the gluings are not only C? but even C*.

We have therefore already proven that Theorem 1 is true in the case where ¢ is close to gg, or more
precisely for any gg in Qs and ¢ in B (9o, Tgy)-

For the general case where gg and ¢g; are in the same connected component of Qg for some § > 0,
without the closeness condition, we use again a gluing process. Consider indeed a smooth curve from g to
q1. For each point g on this curve, there is an r, > 0 such that for any g in B(q, r,), any ¢, q; and any y,
one can connect (g, g;)) to (¢, g;) by a solution of the system for any time T > 0. Extract a finite subcover
of the curve by the balls B(q, r,). Therefore we find N > 2 and (g;/n)i=1
component of Qs as go such that forany i =1, ..., N, one has that g; /v is in E(q(i_l)/N, Tgi_1yn) (DOtE

..... N—1 1n the same connected
that this includes gg and ¢;). Therefore, using again the local result obtained above, there exist some
controlled solutions from (g —1),n, 0) to (gi/n, 0) (fori =1 and i = N we use (qo, q(’)/N) and (g, qi/N)
rather than (gg, 0) and (g1, 0)), each on a time interval of length 7" associated with circulation y/N. One
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deduces by time-rescaling some controlled solutions associated with circulation ¢ on a time interval of
length 7/N. Gluing them together leads to the desired controlled solution. (|

4. Reduction to an approximate controllability result

The goal of this section is to prove that Theorem 13 can be deduced from the following approximate
controllability result thanks to a topological argument already used in [Glass and Rosier 2013]; see
Lemma 15 below. Let us mention that a similar argument has also been used for control purposes but in
other contexts; see, e.g., [Aronsson 1973; Brunovsky and Lobry 1975; Grasse 1981; 1982].

Theorem 14. Given § > 0, Sy C Q2 bounded, closed, simply connected with smooth boundary, which
is not a disk, qo in Qs and T > 0, there is ¥ > 0 such that B(qo, ) is included in the same connected
component of Qs as qo, and furthermore, for any n > 0, there exists r' = r’(n) > 0 such that, for any
y € Rwith |y| <r’ and for any g in B(0, 7), there is a mapping

T : B((q0, ), 7) = C([0, T]; Q5),

which with (q1, q}) associates q where (g, g) is a controlled solution associated with the initial data
(90, q(,), such that the mapping

(q1,q)) € B((qo, q0), F) = (T(q1, 1), T(q1, q)))(T) € Qs x R?

is continuous and such that for any (qi, q}) in B((qo, qy),1)

(T (g1, g1). T(q1, g))NT) — (g1, gDl < 7.

The proof of Theorem 14 will be given in Section 5. Here we prove that Theorem 13 follows from
Theorem 14.

Proof of Theorem 13 from Theorem 14. Let § > 0, Sy C 2 bounded, closed, simply connected with
smooth boundary, which is not a disk, gg in Qs and T > 0. Let 7 > 0 as in Theorem 14 and n =7 /2. We
deduce that for any y € R with |y| <r' =r'(7/2) and ¢ in B(0, 7), there is a mapping

T : B((90, 90), ) = C*([0, T1; Qs)

which maps (g1, q}) to g where (g, g) is a controlled solution associated with the initial data (g, g()
such that for any (g1, g}) in B((qo, qo)s ),

[N T Y

1(T(q1. g1, T(q1. g))(T) = (q1. DIl <
We define a mapping f from B((qo, q),7) to R® which maps (g1, qy) to

f(q1.qp) = (T(q1. 91, T(q1, 4))(T).

Then we apply the following lemma borrowed from [Glass and Rosier 2013, pp. 32-33] to wo = (qo. g;))
and k =7.
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Lemma 15. Let wyeR", k >0, f:B(wo, k) — R" a continuous map such that we have | f (w)—w| <« /2
for any x in 0 B(wy, k). Then B(wy, k/2) C f(E(wo, K)).

This allows us to conclude the proof of Theorem 13 by setting

5 ()

since the conditions ¢ € B(qo,7), |y| < r and ¢;, q; € B(0,r) imply |y| < r'(7/2) and (g1, q;) €
B((qo0, q4),7/2). O

5. Proof of the approximate controllability result Theorem 14

In this section we prove Theorem 14 by exploiting the geodesic feature of the uncontrolled system with
zero circulation; see the observation below Theorem 6. To do so, we will use some well-chosen impulsive
controls which allow us to modify the velocity ¢’ in a short time interval and put the state of the system
on a prescribed geodesic (and use that |y| is small). We mention here [Bressan 1996] for many more
examples on the impulsive control strategy.

SA. First step. We consider Sy C €2 as before and consider § > 0 so that gy € Q5. We let r; > 0 be small
enough so that B(gg, r1) C Qs. We also let T > 0.

The first step consists in considering the geodesics associated with the uncontrolled, potential case
(y =0). The following classical result regarding the existence of geodesics can be found for instance in
[Marsden and Ratiu 1994, Section 7.5]; see also [Gaines 1969] for the continuity feature.

Lemma 16. There exists r in (0, r1/2) such that for any q, in B(qo, r>) there exists a unique C* solution
q(1t) lying in B(qo, r1/2) to

(Mg +Mu(@)q"+(T(@).q".4")=0 on[0,T], withg(0)=qo, §(T)=q. (5-1)
Furthermore the map q, € E(qo, ) — (co, 1) € RO given by co = ¢’ (0), ¢; = q'(T) is continuous.

Let us fix r; as in the lemma before. Let ¢ in B(0, ) and (¢, qp) in B ((qo, q¢)> 12)-

Our goal is to make the system follow approximately such a geodesic g, which we consider fixed
during this section. For the geodesic equation in (5-1), gg and ¢g; determine the initial and final velocities
(which of course differ in general from g/, and g}). But we will see that it is possible to use the penultimate
term of (2-20) in order to modify the initial and final velocities of the system. Precisely, the control will
be used so that the right-hand side of (2-20) behaves like two Dirac masses at times close to 0 and 7,
driving the velocity ¢’ from the initial and final velocities to the ones of the geodesic in two short time
intervals close to 0 and 7.

5B. Illustration of the method on a toy model. Let us illustrate this strategy on a toy model. We will
later on adapt the analysis to the complete model; see Proposition 21.
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Let 8 : R — R be a smooth, nonnegative function supported in [—1, 1] such that f_ll B(t)>dt =1 and,

for ¢ in (0, 1),
(1) = 1 t—e¢
Be )'_ﬁﬂ< . )

so that? (,882)8 is an approximation of the unity when ¢ — 0.
For a function f defined on [0, T'], we will define

I fllz.e == 1Iflcoqo.rpy + LS lerqze, 726 - (5-2)

Lemma 17. Let qo, 2, q1, g, and q; as above. Let

v 1= (Mg + Ma(go))(co(q1) —qp)  and  vi:=—(Mg+Ma(g))(c1(q1) —q)). (5-3)

Let, for e in (0, 1), g. be the maximal solution to the Cauchy problem

(Mg + Ma(qe)q. +(T(qe). gL, qL) = BZ(vo+ BT — vy, (5-4)

with q.(0) = qo and q(0) = q,. Then for & small enough, q.(t) lies in B(qo, 1) for t in [0, T and, as
e = 0%, llge — gllr.c — 0 and (g, g )(T) — (q1, q))-

Proof. For € in (0, 1), let us define T, = sup{f" > 0:q.(t) € B(qo, 1) fort € (0, f")}. Let us first prove
that there exists T > 0 such that for any ¢ in (0, 1) we have T, > T. Using the identity (2-15), we obtain
indeed, for any ¢ in (0, 1), for any ¢ € (0, T;)

(Mg + Ma(qe(1)))q, (1) - g, (1) = (M, +Ma(CIo))616~Q6+2/O (B2 )vo+ B2(T = )v1) - g

Moreover, relying on Remark 4, we see that there exists ¢ > 0 (which depends on §) such that for any ¢
in Qg, for any p in R3

clpl* < Mg+ Mu(@)p-p<c'pl* (5-5)

Therefore using Gronwall’s lemma we obtain that there exists C > 0 such that for any ¢ in (0, 1), for
any 7 € (0, T;) we have sup, ¢ 7, lg.(t)|| < C. Therefore by the mean value theorem for T .= r1/2C,
for any € in (0, 1) one has 7, > T.

We now prove in the same time that for ¢ > 0 small enough 7, > T, and the convergence results stated
in Lemma 17. In order to exploit the supports of the functions B.(-) and B.(T — -) in the right-hand
side of (5-4) we compare the dynamics of ¢, and g during the three time intervals [0, 2¢], [2¢, T — 2¢]
and [T —2¢,T].

Fore =T /2 and ¢ in (0, &), one already has that T, > 2¢ and we can therefore simply compare the
dynamics of ¢, and g on the first interval [0, 2¢]. Indeed using again the mean value theorem we obtain

2In the next lemma we are going to make use only of the square function ,382 but we will also have to deal with the function S,
itself in the sequel; see below Proposition 19.
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that sup, g 2.1 g — qol converges to 0 as ¢ goes to 0. Moreover integrating (5-4) on [0, 2¢] and taking
into account the choice of vy in (5-3), we obtain

(Mg + Ma(qe(2€)))q, (2¢) )

2e
=(Mg+/\/la((Jo))Co(Q1)—/0 (DMa(qs)-QQ)'CIQdf—/O (T'(ge), g, q;) dt.  (5-6)

Now, there exists C > 0 such that for any ¢ in Qj, for any p in R?

[(DMa(q)- p)- pl+1T(q), p, p)l < Clpl*. (5-7)

Combining this and the bound on g, we see that the two terms of the last line of (5-6) above converge to 0
as ¢ goes to 0. Since g — M, (g) is continuous on Qs and g.(2¢) converges to gg as € — 0, the matrix
M, (ge) converges to M, (qo) as € — 0. Therefore, using that the matrix M, + M,(qo) is invertible we
deduce that g, (2¢) converges to co(g1) as € goes to 0.

During the time interval [2e, T — 2¢], the right-hand side of (5-4) vanishes and the equation therefore
reduces to the geodesic equation in (5-1). Since this equation is invariant by translation in time, one may
use the following elementary result on the continuous dependence on the data, with a time shift of 2e.

Lemma 18. There exists n > 0 such that for any (qo, q,) in B((qo, co(q1)), n) there exists a unique C*
solution ¢ (t) lying in B(qo, ) to

Mg+ My(@NG"+(T(G).,q'.q)=0 on[0,T], withg(0)=go, ¢'(0)=qy.

Furthermore ||G — qllc1(o,77) = 0 as (4o, Go) = (qo, co(q1))-

Since g.(2¢) and g (2¢) respectively converge to go and co(g;), according to Lemma 18 there exists
&7 in (0, £1) such that for € in (0, &;), there exists a unique C* solution g.(¢) lying in B(gg, r1) to

(Mg + Mu(Ge)q; + (T @e). G 4,) =0 onl0, T],
with
4:(0) =q.(2¢), G.(0)=q.(2¢) and |IG: —qGliciqo.r) >0 ase—0.

Since the function defined by §.(¢) = g. (¢ + 2¢) also satisfies
(Mg +Ma(Ge)g; +(T(Ge). 4pr G;) =0 on [0, T —4¢e],  with §.(0) = g.(2¢), G.(0) = q,(2¢),

by the uniqueness part in the Cauchy-Lipschitz theorem one has that 7, > T — 2¢ and g, and g, coincide
on [0, T — 4¢], so that, shifting back in time, [|g: — g (- — 2&)llc1(j26, 7—2¢7) — 0 as € — 0. Since q is
smooth, this gives that ||g: — gl c1(2e, 727 = 0 as € — 0.

Finally one deals with the time interval [T — 2¢, T'] in the same way as the first step. In particular,
reducing & one more time if necessary one obtains, by an energy estimate, a Gronwall estimate and the
mean value theorem, that 7, > T. Moreover the choice of the vector v; in (5-3) allows us to reorient the
velocity ¢, from ¢ (q1) to ¢{, whereas the position is not much changed (due to the uniform bound of ¢

and the mean value theorem) so that the value of g, at time T converges to g; as & goes to 0. O
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5C. Back to the complete model. Now in order to mimic the right-hand side of (5-4) we are going to use
one part of the force term F; introduced in Definition 10. Let us therefore introduce some notations for
the different contributions of the force term F;. We define, for any ¢ in Q, p in R3, «in C Oo(}Tq); R)

Fl,a(q>[a]:=—%/as()|Va|28nd>(q,-)do, (5-8)
q
Fro(g. p)le] := —/88( Vo V(p-@(q. ) 8,0(q. ) do, (5-9)
q
Fl,c(q>[a]:=—/ Vo Vi) d:0(q. ) do (5-10)
3S(q)

so that for any y in R

Fi(g, p, Y)lal = Fiq.(@)lal + F15(q, pla]l+ vy Fi (@[]

The part which will allow us to approximate the right-hand side of (5-4) is F; ,. More precisely we are
going to see (see Proposition 20) that there exists a control « (chosen below as o = Alg, g.] with g,
given by (5-14)) that in the appropriate regime the dynamics of (2-20) behaves like the equation with only
F1 4 on the right-hand side. Moreover the following lemma, where the time parameter does not appear,
proves that the operator Fy ,(g)[ -] can actually attain any value v in R> Recall that § > 0 was fixed at
the beginning of Section 5SA.

Proposition 19. There exists a continuous mapping g : Qs x R> — C such that for any (¢, v) in Qs x R>
the function & = Alq, g(gq, v)] in C*®°(F(q); R) satisfies

Aa=0 inF(q) and =0 ondF(g)\X, (5-11)
f |Va|?8,®(q, ) do = v, (5-12)
9S(q)
/ &9,9(q, )do =0. (5-13)
9S(q)

We recall that the operator A was introduced in Definition 8. The result above will be proved in
Section 7. Note that when S(g) is a homogeneous disk, an adapted version of Proposition 19 still holds;
see Proposition 26 in Section 7. The condition (5-13) will be useful to cancel out the last term of (2-20).

We define
8e(t, x) 1= Be(1)g(qo, —2v0) (x) + B (T —1)g(q1, —2v1)(x), (5-14)
where vg and v were defined in (5-3) for (g1, ¢1) in B ((qo, q(/)), r2), and g is given by Proposition 19. The
goal is to prove that for ¢ and |y | small enough, this control drives the system (2-20) with o = Alq, g]
from (qo, g,) to (¢1, q1), approximately.
(1) We first observe that

F1a(@lAlg. g:11= B2 (1) F1.a(@)[Alg. (g0, —2v0)11+ BZ(T — ) F1a(@)[Alg. §(q1, —2v)]1], (5-15)
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and is therefore a good candidate to approximate the right-hand side of (5-4) if ¢ is near gg for ¢ near 0
and if g is near g; for t near T. One then may indeed expect that

Fi.a(@)[Alg, g(qo, —2v0)]l and F .(q)[Alg, g(q1, —2v1)]]
are close to
Fi.a(q0)Alqo, g(q0, —2vo)]] and  F .(q1)[Algq1, g(g1, —2v1)]],

respectively, on the respective supports of B.(-) and B.(T — -). Moreover, according to Proposition 19
these last two terms are equal to vg and v; (see (5-8) and (5-12)).

(2) Next we will rigorously prove in Proposition 21 below that the conclusion of Lemma 17 for the toy
system also holds when one substitutes the term Fj ,(q)[Alg, g-]] in (5-15). This corresponds also to
(2-20) with y = 0 and the term F7 ; and F, put to zero.

(3) Finally it will appear that in an appropriate regime, in particular for small ¢ and |y |, the second-to-last
term of (2-20) is dominant with respect to the other terms of the right-hand side (here the condition (5-13)
above will be essential in order to deal with the last term of (2-20)).

Let us state a proposition summarizing the claims above. According to the Cauchy—Lipschitz theorem
there exists a controlled solution ¢, , associated with the control g, introduced in (5-14), starting with
the initial condition ¢, , (0) = go and q;’y(O) = gy, with circulation y, and lying in B(qo, 1) up to some
positive time Tg ,,. More explicitly g , satisfies on [0, T ,, |

(Mg + Ma(qe.y)qe , + (0 (Gey)s Gz 5 G2 )
= VQE(CIS,)/) + ng‘,y X B(‘Ie,y) + F (qé‘,]/7 qé,y’ V)[-A[QE,)N gell+ FZ(C]s,y)[atA[q&ya gll. (5-16)

Observe that due to the choice of the control g, in (5-14) the function g, , also depends on (g, qi)
through vy and vy; see their definition in (5-3).
We have the following approximation result.

Proposition 20. For ¢ and |y| small enough, T., > T and, as ¢ and |y| converge to 0%, we have
Ige.y —qllr.e = 0and (ge,y, q; ,)(T) = (q1, q1), uniformly for (q1, q1) in B((qo, q¢), 2)-

This result will be proved in Section 6. Once Proposition 20 is proved, Theorem 14 follows rapidly.
Indeed, let us set 7 = r,; according to Proposition 20, for n > 0, there exists ¢ = &(n) > 0 and r' =r'(n)
in (0, 7) such that for any y € R with |y| < r’ and for any ¢ in B(0, 7) the mapping 7 defined on
B((qo, q(), 7) by setting T (g1, q;) = g¢,, has the desired properties. In particular the continuity of 7~
follows from the regularity of cp in Lemma 16 and of the solution of ODEs on their initial data. This
ends the proof of Theorem 14.

SD. About Remark 2. Now that we presented the scheme of proof of Theorem 1 let us explain how
to obtain the improvement mentioned in Remark 2. It is actually a direct consequence of the explicit
formula for g, (¢, x) given in (5-14) and of a change of variable in time. Due to the expression of S, given
at the beginning of Section 5B one obtains that the total flux through X7, that is, fOT fz, g-do dt, is of
order /¢. Hence one can reduce ¢ again in order to satisfy the requirement of Remark 2.
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On the other hand observe that the time-rescaling argument used in the proof of Theorem 1 from
Theorem 13, see (3-2), leaves the total flux through ¥~ invariant, while the number N of steps involved
in the end of the same proof does not depend on ¢.

6. Closeness of the controlled system to the geodesic: proof of Proposition 20

In this section, we prove Proposition 20.

6A. Proof of Proposition 20. The proof of Proposition 20 is split in several parts. To compare g ,
and ¢, we are going to consider an “intermediate trajectory” g. which imitates the trajectory g, of the toy
model of Lemma 17 by using the part F) , of the force term. More precisely we define g, by

(Mg + M, (és))é;/ + (F(ée)’ Ciév é:;) = Fl,a (és)[A[ée, gs]]a with 68(0) =40, é; (0) = Q(/)7 (6'1)

where g, was defined in (5-14) and where the operator .4 was introduced in Definition 8. Note that
due to the definition of g, the function g, also depends on gy, ¢{. The statement below is equivalent to
Lemma 17 for g., comparing g. to the “target geodesic” q.

Proposition 21. There exists €1 > 0 such that for any ¢ € (0, 11, for any (q1, q}) in B((qo, q4),12), the
solution g, given by (6-1) lies in the ball B(qo, r1) at least up to T. Moreover ||Ge — q|| 1. converges to 0
and (Ge, q,)(T) converges to (q1, q1) when & converges to 0T, uniformly for (q1, q}) in B((qo, q¢), r2) for
both convergences.

We recall that the norm || - |7, was defined in (5-2). The proof of Proposition 21 can be found in
Section 6B.

The following result allows us to deduce the closeness of the trajectories ¢g; o, given by (5-16) with
y =0, and g, given by (6-1). Let us recall that by the definition of 7} ,, that comes along (5-16), g. o lies
in B(qo, r1) up to the time 7 9, which depends on g, qi.

Proposition 22. There exists ¢, in (0, e1] such that for any ¢ € (0, 2], one has T, o > T. Moreover
IGe — ge.0llc1qo.77) = O when € — 0%, uniformly for (q1, q1) in B((qo, 4;), r2)-
The proof of Proposition 22 can be found in Section 6C.

Finally, we have the following estimation of the deviation due to the circulation y, which will be
proved in Section 6D.

Proposition 23. There exists €3 in (0, 2] such that for all ¢ € (0, 3], there exists yy > 0 such that for
any y € [=yo, yol, we have T, , > T and ||qe,, — qe.0llc1j0, 77 converges to O when y — 0, uniformly for
(91, q1) in B((q0, q¢)» 72)-

Propositions 21, 22 and 23 give us directly the result of Proposition 20.
6B. Proof of Proposition 21. We proceed as in the proof of Lemma 17 with a few extra complications

related to the fact that the right-hand side of (6-1) is more involved than the one of (5-4) and to the fact
that we need to obtain uniform convergences with respect to (g1, ¢;) in B((qo, q¢)> 12)-
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As in the proof of Lemma 17 we introduce, for ¢ in (0, 1), the time
T. = sup{T > 0: G.(t) € B(qo, r1) for t € (0, T}

and we first prove that there exists T > 0 such that for any ¢ in (0, 1) we have T, > T thanks to an energy
estimate. In order to deal with the term coming from (5-15) in the right-hand side of the energy estimate,
recalling Remark 4 and the definition of Fj , in (5-8), we observe that for any R > 0 there exists C > 0
such that for any ¢, g in Qs, for any v in B(0, R)

[F1.a(¢)[Alg. 8(q. 0]l = C. (6-2)

This allows us to deduce from the expressions of vy and v; in (5-3) that there exists T>0andC>0
such that for any (g1, 1) in B ((qo, q(), 2), for any ¢ in (0, 1) we have T, > T and g cqo.ny <C. We
deduce that for ¢; := T/Z and ¢ in (0, 1) we have T, > 2¢ and that SUP;[0,2¢] |ge — qo| converges to 0 as
e goes to 0 uniformly in (g1, ¢1) in B((q0, q{), 2)-

Now let us prove that g..(2¢) converges to co(q1) as & goes to 0 uniformly in (g1, qi) in B ((qo, q(’)), ).
We integrate (6-1) on [0, 2¢]. Thus

2¢e
(Mg + Ma(G:(28)))G 2e) = (Mg + Ma(q0))qy — /0 (DMa(Ge) - G;) - G, dt

2e 2¢e
- /0 (C@Ge). 3 3 di + /0 Fra@)[AlGe, gel1di. (6-3)

Then we pass to the limit as & goes to 0T in the last equality. Here we use two extra arguments with
respect to the corresponding argument in the proof of Lemma 17. On the one hand we see that the
convergences of M, (g.(2¢)) to M,(qo) and of the two first terms of the last line to 0, already obtained
in the proof of Lemma 17, hold uniformly with respect to (¢, qi) in B ((qo, q()), r2), as a consequence
of the uniform estimates of g, — g and g, obtained above. On the other hand the term F , enjoys the
following regularity property with respect to g: we have that g — F ,(q)[Alg, g§(qo, v)]] is Lipschitz
with respect to g in Qs uniformly for v in bounded sets of R3. Therefore using that SUP;(0.2¢1 19 — qol
converges to 0 as ¢ goes to 0 uniformly in (g1, q{) in B((qo, q(’)), r2), the expressions of vg and v in (5-3)
and that F ,(q0)[Alqo, (g0, —2v0)]] = vo, according to Proposition 19 we deduce that

sup |Fl,a(58)[¢4[689 g(qo, —2v0)1] — vo|
te[0,2¢]

converges to 0 as & goes to 0 uniformly in (g1, g;) in B ((qo, q(’)), r2). Since for ¢ in [0, 2¢], (5-15) applied
to ¢ = g, is simplified into

Fi.a(Ge)[Alge, 8611 = B2 (1) F1.a(Ge)[Alge, 8(qo, —2v0)]1],

and fozg :352 (t) dt = 1, we get that the last term in (6-3) converges to vy when & goes to 0. Moreover, due
to the choice of vg the first and last terms of the right-hand side of (6-3) can be combined at the limit to

get (Mg + Ma(go))co(q).
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Therefore, inverting the matrix in the right-hand side of (6-3) and passing to the limit, we see that
G,(2¢) converges to co(q1) as & goes to 0 uniformly in (g1, ;) in B((qo, qy)s 2)-

When ¢ is in [2¢, T — 2¢], (6-1) reduces to a geodesic equation so that the same arguments as in the
proof of Lemma 17 apply.

Finally for the last step, for ¢ in [T — 2¢, T'] we proceed in the same way as in the first step. This ends
the proof of Proposition 21.

6C. Proof of Proposition 22. We begin with the following lemma, which provides a uniform boundedness
for the trajectories g; ¢ satisfying (5-16) with y =0, that is,
(Mg + Ma(qe.0)q: o+ (T(ge,0)- 4e 0 G2.0)

= F1.a(4¢.0) [Alge,0, 8e11 4 F1.6(qe,0+ 95 0) [Alge,0. 811 + F2(qe.0)[8;Alge 0, ge11. (6-4)
We recall that g, is given by (5-14) with vy and v; given by (5-3). The terms F; , and Fj ;, were defined

in (5-8), (5-9), and F; in (2-18). Also we recall that by the definition of T; o (see the definition of T, in
the end of Section 5C), during the time interval [0, T o], the trajectory g, ¢ remains in B(qo, r1).

Lemma 24. There exists €, > 0 such that

sup lgz.0llcqo.r01 < +00.
(q1.91)€B((q0.9)).72)
e€(0,e4]

Proof. First we see that the mappings

g+ F14.(@)[Alg. g(qo,v)]l and q+— Fi(q, - )[Alg, g(qo, V)]

are bounded for g in Qg, uniformly for v in bounded sets of R3. Let us now focus on the F, term. For ¢
in [0, 2¢], we have g.(t) = B:(t)g(q0, —2vp) so that, by the chain rule, for ¢ in [0, min(2e, T; 0)],

31 Alge,0. 81 = Be Dy Alge,0. 8(qo. —2v0)]- g o + BrAlge.0. &(q0, —2v0)].

Concerning F> we have, using the property (5-13),

FZ(QS,O)[atA[CIs,O’ gs]]

= Be / (DgAlge,0. 8(qo. —2v0)]- g o) 3, P (ge,0. ) do
05(ge,0)

+ ,Bé (/ Alge.0, 8(qo, —2v0)] 0, P(ge,0, - ) do —/ Alqo, g(qo0, —2v0)]1 93, P (qo, -) da),
35(%,0) P

S(q0)

Using that the mapping g — faS(q) V,Alg, g(q0, vV)1®9,P(q, -) do is bounded for g over Qs and that
the mapping g — f 25(q) Alg, g(go, v)]0,P(q, -) do is Lipschitz with respect to g in Qs, both uniformly
for v in bounded sets of R?, we see that this involves (recalling the expression of 8. given at the beginning
of Section 5B)

1 1
| F2(qe,0)[0: Alge.0, ge11l S C(m|‘lé,o| + mms,o - Clol), (6-5)
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uniformly for (¢1, g) in B((qo, g§). r2). Then, multiplying (6-4) by 4, and using once more the identity
(2-15), we obtain, for any ¢ in (0, 1), for ¢ in [0, min(2¢, T; o)]

(Mg+Ma(ge,0()))g; o(1)-q; (1)
= (Mg+Ma(q0))q5-90
t
+2/0 (F1.a(qe,0) LALGe,0, 811+ F1.5(qe.0- 41 ) LALGe.0. 811+ F2(e.0)[0: Alge 0. 82 11) -1 o (6-6)

Then, using (5-5), the boundedness of the mappings

q = F14.(@)[Alg, g(qo,v)]] and q+— Fi;(q,-)[Alg, g(qo, v)]]

already mentioned above, the definition of 8, and the bound (6-5), we get

1 t 1 t
2 2
gL < C(l + /0 4L0(0) P ds + /0 19..0(5)114e.0(5) — ol ds).
Then using the mean value theorem and that < 2¢, we have

geoOF <C+e"?  sup gl ol?).
[0,min(2¢,T; 0)]

so that for ¢ small enough, and for 7 in [0, min(2¢, T o)1, Iqé’o(t)l < C, uniformly for (g1, ¢}) in
B ((qo0, q(’)), r2). As a consequence of the usual blow-up criterion for ODEs, we have T, o > 2¢.
During the next phase, i.e., for ¢ in [2e, T — 2¢], the control is inactive so that (6-4) is a geodesic
equation. Then by a simple energy estimate we get again that |qé’0(t)| < C on [0, min(T —2¢, T; 0)].
Finally if T, o > T — 2¢, then we deal with the last phase as in the first phase. This concludes the proof
of Lemma 24. O

We then conclude the proof of Proposition 22 by a classical comparison argument using Gronwall’s
lemma and the Lipschitz regularity with respect to g of the various mappings involved (M,, I', Fi 4,
F1 and F3). This allows us to prove that there exists &, in (0, &1] such that for any ¢ € (0, &2] we have
Te0 > T and [|Gs — ge0llc1jo,77) — O when & — 0F, uniformly for (g1, ¢}) in B((qo, q(), r2). This ends
the proof of Proposition 22.

6D. Proof of Proposition 23. First we may extend Lemma 24 to the solutions ¢, , to (5-16) in the
following manner.

Lemma 25. There exists ¢p in (0, &3) such that ||q;’y lcqo.7,,1) is bounded uniformly in e € (0, &p] for
any y € [—1, 1] and for (q1, q1) € B((q0. q{), 2).

It is indeed a matter of adding the “electric field” E in (6-6), and noting that E is bounded on Qjs; the
“magnetic field” B gives no contribution to the energy.

We now finish the proof of Proposition 23. Using a comparison argument we obtain that there exists
&3 in (0, gp] such that for all ¢ € (0, &3], there exists yy > 0 such that for any y € [—pp, y], we have
T, > T and .., — qe0llc1jo,7) converges to O when y — 0, uniformly for (g1, ¢;) in B ((qo, qy)s 12).-
This concludes the proof of Proposition 23.
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7. Design of the control according to the solid position: proof of Proposition 19

This section is devoted to the proof of Proposition 19.

7A. The case of a homogeneous disk. Before proving Proposition 19 we establish the following similar
result concerning the simpler case where the solid is a homogeneous disk. In that case, the statement
merely considers g of the form ¢ = (&, 0). Thus in order to simplify the writing, we introduce

Ol :={heR*: (h,0) € Qs).

Also throughout this section when we will write ¢, it will be understood that g is associated with 4 by
g = (h,0).

Proposition 26. Let § > 0. Then there exists a continuous mapping g : Qf; x R? — C such that the function
a = Alg, g(q, v)] in C*(F(q); R) satisfies

Ax(g,x)=0 inF(q) and opa(qg,x)=0 ondF(g)\ X, (7-1)
/ |Va(q, x)|*’ndo = v, (7-2)
85(q)
/ a(g, xyndo =0. (7-3)
85(q)

In order to prove Proposition 26, the mapping g will be constructed using a combination of some
elementary functions which we introduce in several lemmas.

To begin with, we will make use of the elementary geometrical property that {n(gg, x) : x € dS5(qo)} is
the unit circle S' and of the following lemma.

Lemma 27. There exist three vectors ey, ez, e3 €{n(qo, x) : x € 95(qo)} and positive C* maps (4;)1<i<3:
R? — R, such that for any v € R?

3
Z wi(v)e; =v. (7-4)
i=1

Proof. One may consider for instance e; := (1, 0), e, := (0, 1), e3 :=(—1, —1), and

wi() =vi+vV 1+ v+ v, @ =v+vI+vil?+ 2 ws@=v1+v2+]vn? O

In the next lemma, we introduce some functions that are defined in a neighborhood of dS(qg) (for
some go = (ho, 0) fixed), satisfying some counterparts of the properties (7-1) and (7-2).

Lemma 28. There exist families of functions (&é’j)ge(o,l), i, je{l,2,3}, such that forany i, j € {1, 2, 3},
for any & € (0, 1) the function &g’ is defined and harmonic in a closed neighborhood Ve’ of 0S(qo) and
satisfies 9,07 =0on 05(qo), and moreover one has foranyi, j, k,l in {1, 2, 3},

/ V&é’j . V&é"ln do — S(i,j),(k,l)e,- as & — 0+.
95(q0)
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Proof. Without loss of generality, we may suppose that S(go) is the unit disk. Consider the parametrization
{c(s) = (cos(s), sin(s)) : s € [0, 2]} of dS(qp) and the corresponding s; such that n(qo, c(s;)) = e;,
iefl,2,3}.

We consider families of smooth functions ﬂé’j :[0,27] — R, i, j €{l,2,3}, € € (0, 1), such that
supp ,Bé’j N supp ,Bf’l = @ whenever (i, j) # (k, [), diam(supp ,Bé’j) —0ase— 0t

21 2
/ Bii(s)do =0  and ‘/ 1B (5)1*n(qo, c(s)) ds —e;| — 0 ase— OT.
0 0
Then we define &é’j in polar coordinates as the truncated Laurent series

~7 7 1 1 1 ~lT N
ayl(r,v) = 3 Z A (rk + r_k) (—bk”js cos(k®) + ak”js sin(k®)),
0<k<K

where &,i”é and ZQZ{S denote the k-th Fourier coefficients of the function ¢, It is elementary to check that
the function a;”’ satisfies the required properties for an appropriate choice of K. O

Now, for any & € Q", we may define
Vil(q) ==V —ho+h,
which is a neighborhood of 95(g), and
abl(q.x):=al! (x+ho—h)

for each x € V7 (). We have for i, j, k, 1 in {1,2, 3},
/ V&é’j(q, Xx)- V&f’l(q, x)n(g,x)do = / V&é’j(x) . V&ﬁ’l(x)n(qo, x)do.
3S(q) 9S5(q0)

Proceeding as in [Glass 2001] (see also [Glass 2012, p. 147-149]) and relying in particular Runge’s
theorem, we have the following result which asserts the existence of harmonic approximate extensions on
the whole fluid domain.

Lemma 29. There exists a family of functions (ozf{j)ne(o,l), i, j €{l,2,3}, harmonic in F(q), satisfying
dnay’ (g, x) =00n dF(q)\ =, with for any k in N,

Litg )Y —a&b(g. - o + -
||a17 (Cl’ ) Olg (q» )”Ck(Vé'/ (q)m]:(q)) — 0 Whel’l n —> 0 . (7 5)
We now check that the above construction can be made continuous in g.

Lemma 30. For any v > 0, there exist continuous mappings h € Qf{ — ai(q,-) e C®(F(q)), where
qg=(h,0), 1, je{l,?2,3}, such that for any h € Qg’ we have A a/ (g, x) =0 in F(q), 9,07/ (g, x) =0
on dF(q)\ X and

/ Vati(q,-)-Val(q, yndo — 8 ) wnei| < v. (7-6)
35(q)
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Proof. Let us assume that the functions a,, ' were previously defined not only for 4 € Q s but for i € Qa ;
this is possible by using a smaller 8. Hence we may for each € Q" s find functions ozn] (for some n > 0)
satisfying the properties above, and in particular such that (7-6) is valid.

Next we observe that for any s € o, setting g = (h, 0), the unique solution &i,‘j (g,q,-) (up to an
additive constant) to the Neumann problem

7A@, q,%) =0 in F(g),
0077 (G, q,%) =0 on 3F(@)\ T,
Bn&fq’j(c}, q,x)= 8naf7’j(q, x) onZX,

is continuous with respect to g € Qs. It follows that when a family of functions ot,ijj satisfies (7-6) at some
point & € @g’, it satisfies (7-6) (with perhaps 2v in the right-hand side) in some neighborhood of %. Since
@g’ is compact and can be covered with such neighborhoods, one can extract a finite subcover and use a
partition of unity (according to the variable ¢) adapted to this subcover to conclude: one gets an estimate
like (7-6) with Cv on the right-hand side (for some constant C). It is then just a matter of considering
v/ C rather than v at the beginning. U

Finally our basic building blocks to prove Proposition 26 are given in the following lemma, where we
can add the constraint (7-3).

Lemma 31. For any v > 0, there exist continuous mappings g = (h,0) € Qs — a'(q, -) € C®(F(q)),
i €{1,2,3)}, such that for any g = (h,0) € Qs we have Aa'(q,x) = 0in F(q), 9,a'(g,x) =0 on
dF(g)\ X and

/ Va'(g,-)-Val (g, )ndo — 8 jei| <v, (7-7)
95(q)

/ a'(q, )ndo =0. (7-8)
9S5(q)

Proof. Consider the functions &/ given by Lemma 30. For any g = (h, 0) € Q, for any i € {1, 2, 3}
the three vectors f 25(q) ald (q, - )ndo, where j € {1, 2, 3}, are linearly dependent in R2; therefore there
exists A/ (¢) € R such that

3 3
@ [ @gnde =0 and Y @P =1 (79
— 25(@) i
Then one defines &' (q, - ) := 2;21 Ao (g)a' (q, ), and one checks that it satisfies (7-7) with some Cv

in the right-hand side. Again changing v in v/C allows us to conclude. O
We are now in position to prove Proposition 26.

Proof of Proposition 26. Let § > 0. Let v > 0. We define the mapping S which with (&, v) € Q’g x R?
associates the function

3
(g, )=y VW),
i=1
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in C*(F(q)), where the functions u! were introduced in Lemma 27 and the functions &' were introduced
in Lemma 31. Next we define 7T : le x R — Qf; x R2 by

(h,v)+—>(T,7'z)(h,v)::(h,/ |V&(q,-)|2nda), where & = S(h, v).
ad

S(q)
Using (7-4) and (7-7), one checks that 7 is smooth and that

@ =1d+O().

av
Hence taking v sufficiently small, we see that d7,/dv is invertible; hence 97 /d(h, v) is invertible.
Consequently one can use the inverse function theorem on 7: for each hg € @g’ it realizes a local
diffeomorphism at(kg, 0), and hence on @f; x B(0, r) for r > 0 small enough. This gives the result of
Proposition 26 for v small: given (h, v) € @g x B(0, r), we let (h, D) := T~ '(h, v). Then the functions
o= Z?: V(D)@' (g, +) and g := 1y 9, satisfy the requirements. The general case follows by the
linearity of (7-1) and (7-3) and by the homogeneity of (7-2). This ends the proof of Proposition 26. [

7B. The case when Sy is not a disk. We now get back to the proof of Proposition 19. We will denote
by coni(A) the conical hull of A, namely
k
coni(A) := {Zkiai ckeN* A >0, q; € A}.
i=1

The first step is the following elementary geometric lemma.

Lemma 32. Let Sy C Q2 bounded, closed, simply connected with smooth boundary, which is not a disk.
Then coni{(n(x), (x — ho)* -n(x)) : x € 3Sy} = R>

Proof. Suppose the contrary. Then there exists a plane separating (in the large sense) the origin in R?
from the set coni({(n(x), (x —ho)*-n(x)) : x € 3Sp}). We claim that a normal vector to this plane can be
put in the form (a, b, 1), with a, b € R. Indeed, otherwise it would need to be of the form (a, b, 0), and
the separation inequality would give (a, b) - n(x) > 0 for all x € 3S9. However, since 0S5 is a smooth,
closed curve, the set {n(x) : x € 3Sy} is the unit circle of R?; therefore we have a contradiction.

Now we deduce that we have the separation property

(a,b) -n(x)+ (x —ho)t-n(x)>0 forall x € dSp.

Setting w = (a, b) — hé, this translates into (w +x1) - n(x) > 0. But using Green’s formula, we get

0< (w—i—xl)-n(x)da:f div(w+xl)dx:0,
Sy So

and consequently, we deduce that (w+x=)-n(x) =0 for all x in 3Sy. This is equivalent to (x —w>)-7(x) =0

for all x in 8Sy. Parametrizing the translated curve Sy — w by {c(s) : s € [0, 1]}, it follows that

c(s) - ¢(s) =0, for all s in [0, 1], and therefore |c(s)|? is constant. This means that 8Sy — w is a circle,

so &y is a disk, which is a contradiction. O
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Fix q¢ € Qs. Recalling the definitions of the Kirchhoff potentials in (2-2) and (2-3), we infer from the
previous lemma that
coni{d, ®(go, x) : x € 38y} = R>.

In place of Lemma 27, we have the following lemma which is a straightforward consequence of Lemma 32
and of a repeated application of Carathéodory’s theorem on the convex hull.

Lemma 33. There are some (x;)ic(1
1<i <16, vi—> u;(v), such that

16} in 0Sy and positive continuous mappings [L; : R’ — R,

,,,,,

16
Z Ki (v)3, P(qo, xi) = v.
i=1
We are now in position to establish Proposition 19. We deduce from Lemma 33 that for any g :=

(h, 9) € Qs, for any v in R? y

Y 1i(v) 8,9(q, xi(q)) = R()v,

i=1

where x;(g) := R(¥)(x; — ho) + h and R(¥) denotes the 3 x 3 rotation matrix defined by

R(¥) O)

R() ::( 0 1

Due to the Riemann mapping theorem, there exists a biholomorphic mapping ¥ : C\ B(0, 1) = C\S(g)
with dS(g) = W(0B(0, 1)), where C denotes the Riemann sphere. We consider the parametrizations
{c(s) = (cos(s), sin(s)) : s € [0, 27]} of 0B(0, 1) and {¥(c(s)) : s € [0, 2]} of S(q), and the corre-
sponding s; such that x;(q) = W (c(s;)) fori € {1, ..., 16}.

Then, for any smooth function « : dS(q) — R, due to the Cauchy—Riemann relations, we have

1
da(W(x)) = mang(a o) (x),

2 2
/as<q) IVa(x)|” 0, P (g, x) do = /BB(O,I) [Va(W(x))|” 0,,P(g, ¥(x)) T DY) o
for any x € dB(0, 1), where n and np respectively denote the normal vectors on dS(g) and dB(0, 1).
Note that, since W is invertible, we have | det(DW(x))| > O for any x € d B(0, 1).

Foreach e > 0, i € {1,...,16}, j € {1,2,3,4} (here the index j belongs to {1, 2, 3, 4} rather
than {1, 2, 3} in order to adapt the linear dependence argument of Lemma 31 to the case of the three
linear constraints (5-13)), we consider families of smooth functions ,Bé’j : [0,27] — R satisfying
supp ﬂé’j Nsupp B&! = @ for (i, j) # (k, 1), diam(supp ,Bé’j) —0ase— 0F,

2w
/ B/ (s)ds =0,
0

and

—éi|—>0 ase—>0",

27 .
/0 B ()P 0, (g, ()

d
JEDICO)]
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where
> P— 1 .
= VI det(DW (c(s;)))] P, (@)

Then one may proceed essentially as in the proof of Proposition 26. The details are therefore left to

the reader.
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