ANALYSIS & PDE

Volume 13

No. 3

2020

DAVID A. SHER

CORRECTION TO THE ARTICLE
THE HEAT KERNEL ON AN ASYMPTOTICALLY CONIC
MANIFOLD

CORRECTION TO THE ARTICLE THE HEAT KERNEL ON AN ASYMPTOTICALLY CONIC MANIFOLD

DAVID A. SHER

Volume 6:7 (2013), 1755-1791

We present a minor correction, which leaves the main results unchanged.

In the introduction of [Sher 2013], a theorem of Cheng, Li, and Yau has been misstated. Here is the correct version:

Theorem 1 [Cheng et al. 1981]. For any T > 0, there exist nonzero constants C_1 and C_2 such that the heat kernel on M, denoted by $H^M(t, z, z')$, satisfies, for any $z, z' \in M$ and any $t \in (0, T]$,

$$H^{M}(t,z,z') \le \frac{C_1}{t^{n/2}} e^{-|z-z'|^2/(C_2t)}.$$
 (1)

Note in particular that the constants C_1 and C_2 may depend on T. The incorrect version of Theorem 1 was used later in [Sher 2013], in Section 2.5, in the proof of Theorem 2. Specifically, Theorem 8 does not give the claimed order-n decay of the heat kernel at the face zf, and the corrected version of Theorem 1 is not sufficient to do so.

However, Theorem 2 is still true. An alternative approach to this proof is already outlined in [Sher 2013], but we also present another version suggested by Pierre Albin (personal communication, 2016). Specifically, since we know the heat kernel is polyhomogeneous, it has an expansion at zf. If that expansion is trivial, the leading order of the heat kernel at zf is ∞ and we are done. Otherwise, the expansion must be of the form

$$F(w, z, z') = w^{s_0} (\log w)^j a_0(z, z') + (\text{lower order terms})$$

for some $s_0 \in \mathbb{R}$, $j \in \mathbb{N}_0$, with $a_0(z, z')$ not identically zero. Applying the heat operator to this heat kernel gives zero by definition, and in these coordinates the heat operator is $-w^2\partial_w + \Delta_z$. Since the kernel has a polyhomogeneous conormal expansion we may apply this operator term by term. The leading-order term of the result is

$$w^{s_0}(\log w)^j \Delta_z a_0(z,z'),$$

with all other terms lower order. This term must be zero, so $\Delta_z a_0(z, z')$ must be zero, and therefore $a_0(z, z')$ is harmonic for each z' and nonvanishing for at least some z'. By the maximum principle, $a_0(z, z')$ cannot decay at infinity. So the leading-order term of F(w, z, z') at zf is $w^{s_0}(\log w)^j$ times a

MSC2010: 58J05, 58J35, 58J52.

Keywords: heat kernel, geometric microlocal analysis, asymptotically conic manifolds.

944 DAVID A. SHER

term which *does not vanish* at the left face lf_0 . Since $w^{s_0}(\log w)^j$ has index set (s_0, j) at lf_0 , the index set of F(w, z, z') at lf_0 must contain a term no better than (s_0, j) —in particular F(w, z, z') cannot decay to any order better than $w^{s_0}(\log w)^j$ at lf_0 . However, we already know that the leading order of F(w, z, z') at lf_0 is n. Thus $s_0 \ge n$, with j = 0 if $s_0 = n$. This shows that the leading order of the heat kernel at zf must actually be at least n, filling the gap in the proof of Theorem 2.

Acknowledgements

The author would like to thank Pierre Albin for finding this error and suggesting this alternative approach.

References

[Cheng et al. 1981] S. Y. Cheng, P. Li, and S. T. Yau, "On the upper estimate of the heat kernel of a complete Riemannian manifold", *Amer. J. Math.* **103**:5 (1981), 1021–1063. MR Zbl

[Sher 2013] D. A. Sher, "The heat kernel on an asymptotically conic manifold", Anal. PDE 6:7 (2013), 1755–1791. MR Zbl

Received 6 Dec 2018. Revised 10 Feb 2019. Accepted 21 Mar 2019.

DAVID A. SHER: dsher@depaul.edu

Department of Mathematical Sciences, DePaul University, Chicago, IL, United States

Analysis & PDE

msp.org/apde

EDITORS

EDITOR-IN-CHIEF

Patrick Gérard

patrick.gerard@math.u-psud.fr

Université Paris Sud XI

Orsay, France

BOARD OF EDITORS

Massimiliano Berti	Scuola Intern. Sup. di Studi Avanzati, Italy berti@sissa.it	Gilles Pisier	Texas A&M University, and Paris 6 pisier@math.tamu.edu
Michael Christ	University of California, Berkeley, USA mchrist@math.berkeley.edu	Tristan Rivière	ETH, Switzerland riviere@math.ethz.ch
Charles Fefferman	Princeton University, USA cf@math.princeton.edu	Igor Rodnianski	Princeton University, USA irod@math.princeton.edu
Ursula Hamenstaedt	Universität Bonn, Germany ursula@math.uni-bonn.de	Yum-Tong Siu	Harvard University, USA siu@math.harvard.edu
Vadim Kaloshin	University of Maryland, USA vadim.kaloshin@gmail.com	Terence Tao	University of California, Los Angeles, USA tao@math.ucla.edu
Herbert Koch	Universität Bonn, Germany koch@math.uni-bonn.de	Michael E. Taylor	Univ. of North Carolina, Chapel Hill, USA met@math.unc.edu
Izabella Laba	University of British Columbia, Canada ilaba@math.ubc.ca	Gunther Uhlmann	University of Washington, USA gunther@math.washington.edu
Richard B. Melrose	Massachussets Inst. of Tech., USA rbm@math.mit.edu	András Vasy	Stanford University, USA andras@math.stanford.edu
Frank Merle	Université de Cergy-Pontoise, France Frank.Merle@u-cergy.fr	Dan Virgil Voiculescu	University of California, Berkeley, USA dvv@math.berkeley.edu
William Minicozzi II	Johns Hopkins University, USA minicozz@math.jhu.edu	Steven Zelditch	Northwestern University, USA zelditch@math.northwestern.edu
Clément Mouhot	Cambridge University, UK c.mouhot@dpmms.cam.ac.uk	Maciej Zworski	University of California, Berkeley, USA zworski@math.berkeley.edu
Werner Müller	Universität Bonn, Germany mueller@math.uni-bonn.de		

PRODUCTION

production@msp.org Silvio Levy, Scientific Editor

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2020 is US \$340/year for the electronic version, and \$550/year (+\$60, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

APDE peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY

mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/

© 2020 Mathematical Sciences Publishers

ANALYSIS & PDE

Volume 13 No. 3 2020

On the gap between the Gamma-limit and the pointwise limit for a nonlocal approximation of the total variation	627
CLARA ANTONUCCI, MASSIMO GOBBINO and NICOLA PICENNI	
External boundary control of the motion of a rigid body immersed in a perfect two-dimensional fluid	651
OLIVIER GLASS, JÓZSEF J. KOLUMBÁN and FRANCK SUEUR	
Distance graphs and sets of positive upper density in \mathbb{R}^d NEIL LYALL and ÁKOS MAGYAR	685
Isolated singularities for semilinear elliptic systems with power-law nonlinearity MARIUS GHERGU, SUNGHAN KIM and HENRIK SHAHGHOLIAN	701
Regularity of the free boundary for the vectorial Bernoulli problem DARIO MAZZOLENI, SUSANNA TERRACINI and BOZHIDAR VELICHKOV	741
On the discrete Fuglede and Pompeiu problems GERGELY KISS, ROMANOS DIOGENES MALIKIOSIS, GÁBOR SOMLAI and MÁTÉ VIZER	765
Energy conservation for the compressible Euler and Navier–Stokes equations with vacuum IBROKHIMBEK AKRAMOV, TOMASZ DĘBIEC, JACK SKIPPER and EMIL WIEDEMANN	789
A higher-dimensional Bourgain–Dyatlov fractal uncertainty principle RUI HAN and WILHELM SCHLAG	813
Local minimality results for the Mumford–Shah functional via monotonicity DORIN BUCUR, ILARIA FRAGALÀ and ALESSANDRO GIACOMINI	865
The gradient flow of the Möbius energy: ε -regularity and consequences SIMON BLATT	901
Correction to the article The heat kernel on an asymptotically conic manifold DAVID A. SHER	943