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We establish scale-invariant Strichartz estimates for the Schrödinger flow on any compact Lie group
equipped with canonical rational metrics. In particular, full Strichartz estimates without loss for some non-
rectangular tori are given. The highlights of this paper include estimates for some Weyl-type sums defined
on rational lattices, different decompositions of the Schrödinger kernel that accommodate different positions
of the variable inside the maximal torus relative to the cell walls, and an application of the BGG-Demazure
operators or Harish-Chandra’s integral formula to the estimate of the difference between characters.

1. Introduction 1173
2. Statement of the main theorem 1176
3. First reductions 1179
4. Preliminaries on harmonic analysis on compact Lie groups 1181
5. The Schrödinger kernel 1184
6. The Stein–Tomas argument 1187
7. Dispersive estimates on major arcs 1195
Acknowledgments 1218
References 1218

1. Introduction

We start with a complete Riemannian manifold .M; g/ of dimension d , associated to which are the
Laplace–Beltrami operator �g and the volume-form measure �g . Then it is well known that �g is
essentially self-adjoint on L2.M/ WD L2.M; d�g/; see [Strichartz 1983] for a proof. This gives the
functional calculus of�g , and in particular gives the one-parameter unitary operator eit�g, which provides
the solution to the linear Schrödinger equation on .M; g/. We refer to eit�g as the Schrödinger flow. The
functional calculus of �g also gives the definition of the Bessel potentials, and thus the definition of the
Sobolev space

H s.M/ WD fu 2 L2.M/ j kukH s.M/ WD k.I ��/
s
2ukL2.M/ <1g:

We are interested in obtaining estimates of the form

keit�gf kLpLr .I�M/ � Ckf kH s.M/; (1-1)

MSC2010: primary 42B37; secondary 22E30.
Keywords: compact Lie groups, Schrödinger equation, circle method, Strichartz estimates, BGG-Demazure operators,

Harish-Chandra’s integral formula.

1173

http://msp.org/apde/
http://dx.doi.org/10.2140/apde.2020.13-4
http://dx.doi.org/10.2140/apde.2020.13.1173
http://msp.org


1174 YUNFENG ZHANG

where I � R is a fixed time interval, and LpLq.I �M/ is the space of Lp functions on I with values
in Lq.M/. Such estimates are often called Strichartz estimates (for the Schrödinger flow), in honor of
Robert Strichartz [1977] who first derived such estimates for the wave equation on Euclidean spaces.

The significance of Strichartz estimates is evident in many ways. Strichartz estimates have important
applications in the field of nonlinear Schrödinger equations, in the sense that many perturbative results
often require good control on the linear solution, which is exactly provided by Strichartz estimates.
Strichartz estimates can also be interpreted as Fourier restriction estimates, which play a fundamental rule
in the field of classical harmonic analysis. Furthermore, the relevance of the distribution of eigenvalues
and the norm of eigenfunctions of �g in deriving the estimates makes Strichartz estimates also a subject
in the field of spectral geometry.

Many cases of Strichartz estimates for the Schrödinger flow are known in the literature. For noncompact
manifolds, first we have the sharp Strichartz estimates on the Euclidean spaces obtained in [Ginibre and
Velo 1995; Keel and Tao 1998]:

keit�f kLpLq.R�Rd / � Ckf kL2.Rd /; (1-2)

where 2
p
C
d
q
D

d
2

, p; q � 2, .p; q; d/¤ .2;1; 2/. Such pairs .p; q/ are called admissible. This implies
by Sobolev embedding that

keit�f kLpLr .R�Rd / � Ckf kH s.Rd /; (1-3)

where

s D
d

2
�
2

p
�
d

r
� 0; (1-4)

p; q � 2, .p; r; d/¤ .2;1; 2/. Note that the equality in (1-4) can be derived from a standard scaling
argument, and we call exponent triples .p; r; s/ that satisfy (1-4) as well as the corresponding Strichartz
estimates scale-invariant. Similar Strichartz estimates hold on many noncompact manifolds. For example,
see [Anker and Pierfelice 2009; Banica 2007; Ionescu and Staffilani 2009; Pierfelice 2006] for Strichartz
estimates on the real hyperbolic spaces, [Anker et al. 2011; Pierfelice 2008; Banica and Duyckaerts
2007] for Damek–Ricci spaces which include all rank-1 symmetric spaces of noncompact type, [Bouclet
2011] for asymptotically hyperbolic manifolds, [Hassell et al. 2006] for asymptotically conic manifolds,
[Bouclet and Tzvetkov 2008; Staffilani and Tataru 2002] for some perturbed Schrödinger equations on
Euclidean spaces, and [Fotiadis et al. 2018] for symmetric spaces G=K, where G is complex.

For compact manifolds, however, Strichartz estimates such as (1-2) are expected to fail. The Sobolev
exponent s in (1-1) is expected to be positive for (1-1) to possibly hold. And we also expect sharp
Strichartz estimates that are non-scale-invariant, in the sense that the exponents .p; r; s/ in (1-1) satisfy

s >
d

2
�
2

p
�
d

r
:

For example, from the results in [Staffilani and Tataru 2002; Burq et al. 2004], we know that on a general
compact Riemannian manifold .M; g/ it holds that, for any finite interval I,

keit�gf kLpLr .I�M/ � Ckf kH1=p.M/ (1-5)
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for all admissible pairs .p; r/. These estimates are non-scale-invariant, and the special case of which
when .p; r; s/ D

�
2; 2d
d�2

; 1
2

�
can be shown to be sharp on spheres of dimension d � 3 equipped with

canonical Riemannian metrics. On the other hand, scale-invariant estimates are out of reach of the local
methods employed in [Staffilani and Tataru 2002; Burq et al. 2004], and they are not well explored yet in
the literature. To my best knowledge, the only known results in the literature in this direction are on Zoll
manifolds, which include all compact symmetric spaces of rank 1, the standard sphere being a typical
example, and on rectangular tori. We summarize the results here. Consider the scale-invariant estimates

keit�gf kLp.I�M/ � Ckf kHd=2�.dC2/=p.M/: (1-6)

In the direction of Zoll manifolds, (1-6) is first proved in [Burq et al. 2007] for the standard three-sphere
for pD 6. Then in [Herr 2013], (1-6) is proved for all p > 4 for any three-dimensional Zoll manifold, but
the methods employed in that paper in fact prove (1-6) for p > 4 for any Zoll manifold with dimension
d � 3 and for p � 6 for any Zoll surface (d D 2). The paper crucially uses the property of Zoll manifolds
that the spectrum of the Laplace–Beltrami operator is clustered around a sequence of squares, and the
spectral cluster estimates [Sogge 1988] which are optimal on spheres. In the direction of tori, (1-6) was
first proved in [Bourgain 1993] for p� 2.dC4/

d
on square tori, by interpolating the distributional Strichartz

estimate

� ��f.t; x/ 2 I �Td j jeit�g'.N�2�g/f .x/j> �g
1
p � CN

d
2
�
dC2
p kf kL2.Td /

� Ckf kHd=2�.dC2/=p.Td / (1-7)

for � > N d=4, p > 2.dC2/
d

, N � 1, with the trivial subcritical Strichartz estimate

keit�gf kL2.I�Td / � Ckf kL2.Td /: (1-8)

The estimate (1-7) is a consequence of an arithmetic version of dispersive estimates:

keit�g'.N�2�g/kL1.Td / � C

 
N

p
q
�
1CN



 t
T
�
a
q



1=2�
!d
kf kL1.Td /; (1-9)

where k � k stands for the distance from 0 on the standard circle with length 1,


 t
T
�
a
q



< 1
qN

, a; q are
nonnegative integers with a < q and .a; q/D 1, and q < N. Here T is the period for the Schrödinger
flow eit�g. Then in [Bourgain 2013], the author improved (1-8) into a stronger subcritical Strichartz
estimate

keit�gf kL2.dC1/=d .I�Td / � Ckf kL2.Td /; (1-10)

which yields (1-6) for p� 2.dC3/
d

. Eventually, (1-6) with an "-loss is proved for the full range p> 2.dC2/
d

in [Bourgain and Demeter 2015], and (1-7) can be used to remove this "-loss. Then authors in [Guo et al.
2014; Killip and Vis,an 2016] extended the results to all rectangular tori. We will see in this paper that
by a slight adaptation of the methods in [Bourgain 1993], we may generalize (1-7) to all rational (not
necessarily rectangular) tori Td D Rd=� , where � Š Zd is a lattice such that there exists some D ¤ 0
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for which h�;�i 2D�1Z for all �;� 2 � , which can also be used for the removal of the "-loss of the
results in [Bourgain and Demeter 2015] to yield (1-6) for the full range p > 2.dC2/

d
on such rational tori.

The understanding of Strichartz estimates on compact manifolds is far from complete. It is not known
in general how the exponents .p; r; s/ in the sharp Strichartz estimates are related to the geometry and
topology of the underlying manifold. Also, there still are important classes of compact manifolds on
which Strichartz estimates have not been explored yet. Note that both standard tori and spheres on
which Strichartz estimates are known are special cases of compact globally symmetric spaces, and since
all compact globally symmetric spaces share the same behavior of geodesic dynamics as tori, from a
semiclassical point of view, it’s natural to conjecture that similar Strichartz estimates should hold on
general compact globally symmetric spaces. An important class of such spaces is the class of compact
Lie groups. The goal of this paper is to prove scale-invariant Strichartz estimates of the form (1-6) for
M DG being any connected compact Lie group equipped with a canonical rational metric in the sense
that is described below, for all p � 2.rC4/

r
, r being the rank of G. In particular, full Strichartz estimates

without loss for some nonrectangular tori will be given.

2. Statement of the main theorem

2A. Rational metric. Let G be a connected compact Lie group and g be its Lie algebra. By the classifi-
cation theorem of connected compact Lie groups, see [Procesi 2007, Chapter 10, Section 7.2, Theorem 4],
there exists an exact sequence of Lie group homomorphisms

1! A! zG Š Tn �K!G! 1;

where Tn is the n-dimensional torus, K is a compact simply connected semisimple Lie group, and A is a
finite and central subgroup of the covering group zG. As a compact simply connected semisimple Lie
group, K is a direct product K1 �K2 � � � � �Km of compact simply connected simple Lie groups.

Now each Ki is equipped with the canonical bi-invariant Riemannian metric gi that is induced from
the negative of the Cartan–Killing form. We use h � ; � i to denote the Cartan–Killing form. Then we
equip the torus factor Tn with a flat metric g0 inherited from its representation as the quotient Rn=2��

and require that there exists some D 2 N such that h�;�i 2 D�1Z for all �;� 2 � . Then we equip
zG Š Tn �K1 � � � � �Km with the bi-invariant metric

Qg D

mO
jD0

ǰgj ; (2-1)

ǰ > 0, j D 0; : : : ; m. Then Qg induces a bi-invariant metric g on G.

Definition 2.1. Let g be the bi-invariant metric induced from Qg in (2-1) as described above. We call g a
rational metric provided the numbers ˇ0; : : : ; ˇm are rational multiples of each other. If not, we call it an
irrational metric.

Provided the numbers ˇ0; : : : ; ˇm are rational multiples of each other, the periods of the Schrödinger
flow eit� Qg on each factor of zG are rational multiples of each other, which implies that the Schrödinger
flow on zG, as well as on G, is also periodic (see Section 5).
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2B. Main theorem. We define the rank of G to be the dimension of any of its maximal torus. This paper
mainly proves the following theorem.

Theorem 2.2. Let G be a connected compact Lie group equipped with a rational metric g. Let d be the
dimension of G and r the rank of G. Let I � R be a finite time interval. Consider the scale-invariant
Strichartz estimate

keit�gf kLp.I�G/ � Ckf kHd=2�.dC2/=p.G/: (2-2)

Then the following statements hold true:

(i) (2-2) holds for all p � 2C 8
r

.

(ii) Let G D Td be a flat torus equipped with a rational metric; that is, we can write Td D Rd=2��

such that there exists some D 2 R for which h�;�i 2D�1Z for all �;� 2 � . Then (2-2) holds for
all p > 2C 4

d
.

The framework for the proof of this theorem will be based on [Bourgain 1993], in which the author
proves some Strichartz estimates for the case of square tori, based on the Hardy–Littlewood circle method.
We also refer to [Bourgain 1989] for applications of the circle method to Fourier restriction problems on
tori. Note that part (ii) of the above theorem provides full expected Strichartz estimates without loss for
some nonrectangular tori. We then have the following immediate corollary.

Corollary 2.3. Let d D 3; 4 and let Td be the flat torus equipped with a rational metric (not necessarily
rectangular). Then the nonlinear Schrödinger equation i@ut D��u˙juj4=.d�2/u is locally well-posed
for initial data in H 1.Td /. Furthermore, for d D 3, we have i@ut D��u˙juj2u is locally well-posed
for initial data in H 1=2.Td /.

We refer to [Herr et al. 2011; Killip and Vis,an 2016] for the definition of local well-posedness and a
proof of this corollary.

Remark 2.4. To the best of my knowledge, the only known optimal range of p for (2-2) to hold is on
square tori Td, with p > 2C 4

d
[Bourgain 1993], and on spheres Sd (d � 3), with p > 4 [Burq et al.

2004; Herr 2013]. For a general compact Lie group, we do not yet have a conjecture about the optimal
range. We will prove (Theorem 6.2) the following distributional estimate: for any p > 2C 4

r
,

� ��f.t; x/ 2 I �G j jeit�g'.N�2�g/f .x/j> �g
1
p � CN

d
2
�
dC2
p kf kL2.G/ (2-3)

for all �&N d=2�r=4. It seems reasonable to conjecture that the above distributional estimate could be
upgraded to the estimate (2-2) for all p > 2C 4

r
(which is the case for the tori). But this still will not be

the optimal range for a general compact Lie group, by looking at the example of the three-sphere S3,
which is isomorphic to the group SU.2/. The optimal range for S3 is p >4, while Theorem 2.2 proves the
range p � 10, and the above conjecture indicates the range p > 6. Estimate (2-2) for S3 on the optimal
range p > 4 is proved in [Herr 2013] by crucially using the Lp-estimates of the spectral clusters for the
Laplace–Beltrami operator [Sogge 1988], which are optimal on spheres. On tori and more generally
compact Lie groups with rank higher than 1, such spectral cluster estimates fail to be optimal and do
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not help provide the desired Strichartz estimates. On the other hand, the Stein–Tomas argument in our
proof of Theorem 2.2 seems only sensitive to the L1-estimate of the Schrödinger kernel (Theorem 6.1)
but not to the Lp-estimate (as in Proposition 7.28). This failure of incorporating Lp-estimates for either
the spectral clusters or the Schrödinger kernel may be one of the reasons why Theorem 2.2 is still a step
away from the optimal range.

2C. Organization of the paper. The organization of the paper is as follows. In Section 3, we will first
reduce the Strichartz estimates on G Š zG=A to the spectrally localized Strichartz estimates with respect
Littlewood–Paley projections of product type on the covering group zG. In Section 4, we will review the
basic facts of structures and harmonic analysis on compact Lie groups, including the Fourier transform,
root systems, structure of maximal tori, Weyl’s character and dimension formulas, and the functional
calculus of the Laplace–Beltrami operator. In Section 5 we will explicitly write down the Schrödinger
kernel and interpret the Strichartz estimates as Fourier restriction estimates on the space-time, which
then makes applicable the argument of Stein–Tomas type in Section 6. Then comes the core of the
paper, Section 7, in which we will derive dispersive estimates for the Schrödinger kernel as the time
variable lies in major arcs. In Section 7A, we will estimate some Weyl-type exponential sums over the
so-called rational lattices, which in particular will imply the desired bound on the Schrödinger kernel
for the nonrectangular rational tori. In Section 7B, we will rewrite the Schrödinger kernel for compact
Lie groups into an exponential sum over the whole weight lattice instead of just one chamber of the
lattice, and will prove the desired bound on the kernel for the case when the variable in the maximal
torus stays away from all the cell walls by an application of the Weyl-type sum estimate established in
Section 7A. In Section 7C, we will record two approaches to the pseudopolynomial behavior of characters,
which will be applied to proving the desired bound on the Schrödinger kernel when the variable in the
maximal torus stays close to the identity. In Section 7D, we further extend the result to the case when the
variable in the maximal torus stays close to some corner. Section 7E will finally deal with the case when
the variable in the maximal torus stays away from all the corners but close to some cell walls. These
cell walls will be identified as those of a root subsystem, and we will then decompose the Schrödinger
kernel into exponential sums over the root lattice of this root subsystem, thus reducing the problem
into one similar to those already discussed in previous sections. This will finish the proof of the main
theorem. In Section 7F, we will derive Lp.G/ estimates on the Schrödinger kernel as an upgrade of the
L1.G/-estimate.

Throughout the paper:
� A. B means A� CB for some constant C.

� A.a;b;::: B means A� CB for some constant C that depends on a; b; : : : .

� �;� are short for the Laplace–Beltrami operator �g and the associated volume-form measure �g
respectively when the underlying Riemannian metric g is clear from context.

� L
p
x , H s

x , Lpt , Lpt L
q
x , Lpt;x are short for Lp.M/, H s.M/, Lp.I /, LpLq.I �M/, Lp.I �M/

respectively when the underlying manifold M and time interval I are clear from context.

� p0 denotes the number such that 1
p
C

1
p0
D 1.
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3. First reductions

3A. Littlewood–Paley theory. Let .M; g/ be a compact Riemannian manifold and � be the Laplace–
Beltrami operator. Let ' be a bump function on R. Then for N � 1, PN WD '.N�2�/ defines a bounded
operator on L2.M/ through the functional calculus of �. These operators PN are often called the
Littlewood–Paley projections. We reduce the problem of obtaining Strichartz estimates for eit� to those
for PN eit�.

Proposition 3.1. Fix p; q � 2, s � 0. Then the Strichartz estimate (1-1) is equivalent to the following
statement: given any bump function ',

kPN e
it�f kLpLq.I�M/ .N s

kf kL2.M/

holds for all dyadic natural numbers N (that is, for N D 2m, m 2 Z�0). In particular, (2-2) reduces to

kPN e
it�f kLp.I�G/ �N

d
2
�
dC2
p kf kL2.G/: (3-1)

This reduction is classical. We refer to [Burq et al. 2004] for a proof.
We also record here the Bernstein-type inequalities that will be useful in the sequel.

Proposition 3.2 [Burq et al. 2004, Corollary 2.2]. Let d be the dimension ofM. Then for all 1�p�r�1,

kPNf kLr .M/ .N d. 1
p
� 1
r
/
kf kLp.M/: (3-2)

Note that the above proposition in particular implies that (3-1) holds for N . 1 or p D1.

3B. Reduction to a finite cover.

Proposition 3.3. Let � W . zM; Qg/! .M; g/ be a Riemannian covering map between compact Riemannian
manifolds (then automatically with finite fibers). Let � Qg , �g be the Laplace–Beltrami operators on
. zM; Qg/ and .M; g/ respectively and let Q� and � be the normalized volume-form measures respectively,
which define the Lp spaces. Let �� be the pull-back map. Define

C1� .
zM/ WD ��.C1.M//;

and similarly define C�. zM/, Lp�. zM/ and H s
�.
zM/. Then the following statements hold:

(i) �� W C.M/! C�. zM/ and �� W C1.M/! C1� .
zM/ are well-defined and are linear isomorphisms.

(ii) �� W Lp.M/! L
p
�. zM/ is well-defined and is an isometry.

(iii) � Qg maps C1� . zM/ into C1� . zM/ and the diagram

C1.M/�g
��

//

��

C1� .
zM/

� Qg
��

C1.M/
��

// C1� .
zM/

commutes.
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(iv) eit� Qg maps L2�. zM/ into L2�. zM/ and is an isometry, and the diagrams

L2.M/eit�g
��

//

��

L2�.
zM/

e
it� Qg

��

L2.M/
��

// L2�.
zM/

L2.M/PN
��

//

��

L2�.
zM/

PN
��

L2.M/
��

// L2�.
zM/

(3-3)

commute, where PN stands for both '.N�2�g/ and '.N�2� Qg/.

(v) �� WH s.M/!H s
�.
zM/ is well-defined and is an isometry.

Proof. Parts (i), (ii) and (iii) are direct consequences of the definition of a Riemannian covering map.
For part (iv), note that (i), (ii) and (iii) together imply that the triples .L2.M/; C1.M/;�g/ and
.L2�.

zM/;C1� .
zM/;� Qg/ are isometric as systems of essentially self-adjoint operators on Hilbert spaces,

and thus have isometric functional calculus. This implies (iv). Note that the H s.M/ and H s
�.
zM/

norms are also defined in terms of the isometric functional calculus of .L2.M/; C1.M/;�g/ and
.L2�.

zM/;C1� .
zM/;� Qg/ respectively, which implies (v). �

Combining Proposition 3.1 and 3.3, Theorem 2.2 is reduced to the following.

Theorem 3.4. Let Ki ’s be simply connected simple Lie groups and let G D Tn �K1 � � � � �Km be
equipped with a rational metric as in Definition 2.1. Then

kPN e
it�f kLp.I�G/ .N

d
2
�
dC2
p kf kL2.G/ (3-4)

holds for p � 2C 8
r

and N & 1.

3C. Littlewood–Paley projections of product type. Let .M; g/ be the Riemannian product of the compact
Riemannian manifolds .Mj ; gj /, j D 0; : : : ; m. Any eigenfunction of the Laplace–Beltrami operator �
on M with the eigenvalue �� 0 is of the form

Qm
jD0  �j , where each  �j is an eigenfunction of �j on

Mi with eigenvalue �j � 0, j D 0; : : : ; m, such that �D �0C � � �C�n.
Given any bump function ' on R, there always exist bump functions 'j , j D 0; : : : ; m, such that for

all .x0; : : : ; xm/ 2 RmC1
�0 with '.x0C � � �C xm/¤ 0, we have

Qm
jD0 'j .xj /D 1. In particular,

' �

mY
jD0

'j .xj /D ':

For N � 1, define
PN WD '.N

�2�/;

PN WD '0.N
�2�0/˝ � � �˝'m.N

�2�m/

as bounded operators on L2.M/. We call PN a Littlewood–Paley projection of product type. We have

PN ıPN D PN :

This implies that we can further reduce Theorem 3.4 into the following.
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Theorem 3.5. Let G D Tn �K1 � � � � �Km be equipped with a rational metric. Let �0; �1; : : : ; �m be
respectively the Laplace–Beltrami operators on Tn; K1; : : : ; Km. Let 'j be any bump function for each
j D 0; : : : ; m. For N � 1, let PN D

Nm
jD0 'j .N

�2�j /. Then

kPN e
it�f kLp.I�G/ .N

d
2
�
dC2
p kf kL2.G/ (3-5)

holds for p � 2C 8
r

and N & 1.

On the other hand, similarly, for each Littlewood–Paley projection PN of product type, there exists a
bump function ' such that PN D '.N�2�/ satisfies PN ıPN DPN . Noting that kPNf kL2 . kf kL2 ,
(3-2) then implies

kPNf kLr .M/ .N d. 1
2
� 1
r
/
kf kL2.M/ (3-6)

for all 2� r �1.

4. Preliminaries on harmonic analysis on compact Lie groups

4A. Fourier transform. Let G be a compact group and yG be its Fourier dual, i.e., the set of equivalent
classes of irreducible unitary representations of G. For � 2 yG, let �� W V�! V� be the irreducible unitary
representation in the class �, and let d� D dim.V�/. Let � be the normalized Haar measure on G. Then
for f 2 L2.G/, define the Fourier transform

Of .�/D

Z
G

f .x/��.x
�1/ d�:

Then the inverse Fourier transform

f .x/D
X
�2 yG

d� tr. Of .�/��.x//

converges in L2.G/. We have the Plancherel identities

kf kL2.G/ D

�X
�2 yG

d�k Of .�/k
2
HS

�1
2

; (4-1)

hf; giL2.G/ D
X
�2 yG

d� tr. Of .�/ Og.�/�/: (4-2)

Here k � kHS denotes the Hilbert–Schmidt norm of endomorphisms.
For the convolution

.f �g/.x/D

Z
G

f .xy�1/g.y/ d�.y/;

we have
.f �g/^.j /D Of .j / Og.j /: (4-3)

If Og.�/D c� � Idd��d� , where c� is a scalar, then

kf �gkL2.G/ � sup
�

jc�j � kf kL2.G/: (4-4)
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We also have the Hausdorff–Young inequality

k Of .�/kHS � d
1
2

�
kf kL1.G/ for all � 2 yG: (4-5)

4B. Root system and the Laplace–Beltrami operator. LetG be a compact simply connected semisimple
Lie group of dimension d and g be its Lie algebra, and let gC denote the complexification of g. Choose a
maximal torus B �G and let r be the dimension of B . Let b be the Lie algebra of B , which is a Cartan
subalgebra of g, and let bC denote its complexification. The Fourier dual yB of B is isomorphic to a lattice
ƒ� ib�, which is the weight lattice, under the isomorphism

ƒ �!� yB; � 7! e�: (4-6)

We have the root space decomposition gC D bC˚
�L

˛2ˆ g˛
C

�
. Here ˆ� ib�,

g˛C D fX 2 gC j Adb.X/D e
˛.b/X for all b 2 Bg;

and dimC g˛
C
D 1. This implies

jˆjC r D d: (4-7)

The Cartan–Killing form h � ; � i on ib� becomes a real inner product, and .‰; h � ; � i/ becomes an integral
root system, that is, a finite set ˆ in a finite-dimensional real inner product space with the following
requirements:

(i) ˆD�ˆ.

(ii) ˛ 2ˆ, k 2 R, k˛ 2ˆ) k D˙1.

(iii) s˛ˆDˆ for all ˛ 2ˆ.

(iv) 2h˛; ˇi=h˛; ˛i 2 Z for all ˛; ˇ 2ˆ.

Here s˛ is the reflection about the hyperplane ˛? orthogonal to ˛; that is,

s˛.x/ WD x� 2
hx; ˛i

h˛; ˛i
˛:

Let P be a system of positive roots such that ˆD P t�P. Then by (4-7), we have

jP j D
d�r

2
: (4-8)

We can describe the weight lattice ƒ purely in terms of the root system

ƒD

�
� 2 ib�

ˇ̌̌̌
2h�; ˛i

h˛; ˛i
2 Z for all ˛ 2ˆ

�
: (4-9)

The set ˆ of roots generate the root lattice � and we have � �ƒ and ƒ=� is finite.
Let

ƒC WD

�
� 2 ib�

ˇ̌̌̌
2h�; ˛i

h˛; ˛i
2 Z�0 for all ˛ 2 P

�
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be the set of dominant weights. We describe ƒ;ƒC in terms of a basis. Let f˛1; : : : ; ˛rg be the set of
simple roots in P. Let fw1; : : : ; wrg be the corresponding fundamental weights, i.e., the dual basis to the
coroot basis f2˛1=h˛1; ˛1i; : : : ; 2˛r=h˛r ; ˛rig. Then

ƒD Zw1C � � �CZwr ;

ƒC D Z�0w1C � � �CZ�0wr :

Let
C D R>0w1C � � �CR>0wr (4-10)

be the fundamental Weyl chamber, and we have the decomposition

ib� D

�G
s2W

sC

�
t

�[
˛2ˆ

f� 2 ib� j h�; ˛i D 0g

�
; (4-11)

where W is the Weyl group. Here t stands for disjoint union.
Define

� WD
1

2

X
˛2P

˛ D

rX
iD1

wi : (4-12)

Then we have
yG ŠƒC

such that the irreducible representation �� corresponding to �2ƒC has the character �� and dimension d�
given by Weyl’s formulas

��jB D

P
s2W .det s/es.�C�/P
s2W .det s/es�

; (4-13)

d� D

Q
˛2P h˛; �C �iQ
˛2P h˛; �i

: (4-14)

Let H 2 b. We can think of �iH as a real linear functional on ib�, and by the Cartan–Killing inner
product on ib�, we thus get a correspondence between H 2 b and an element in ib�, still denoted as H.
Under this correspondence, e�.H/ D eih�;H i and we rewrite Weyl’s character formula as

��.expH/D
P
s2W .det s/eihs.�C�/;H iP
s2W .det s/eih�;H i

: (4-15)

Also under this correspondence between b and ib�, we have

B Š ib�=2��_;

where

�_ D Z
2˛1

h˛1; ˛1i
C � � �CZ

2˛r

h˛r ; ˛ri

is the coroot lattice.
We define the cells to be the connected components of fH 2 ib�=2��_ j h˛;H i … 2�Zg and call

fH 2 ib�=2��_ j h˛;H i 2 2�Zg the cell walls.



1184 YUNFENG ZHANG

We also record here Weyl’s integral formula. Let f 2 L1.G/ be invariant under the adjoint action
of G. Then Z

G

f d�D
1

jW j

Z
B

f .b/jDP .b/j
2 db: (4-16)

Here d�; db are respectively the normalized Haar measures of G and B , and

DP .H/D
X
s2W

.det s/eih�;H i

is the Weyl denominator.
Finally we describe the functional calculus of the Laplace–Beltrami operator �. Given any irreducible

unitary representation .��; V�/ of G in the class � 2 yG Š ƒC, the operator � acts on the space
M� D ftr.��T / j T 2 End.V�/g of matrix coefficients by

�f D�k�f for all f 2M�; � 2 yG;

where
k� D j�C �j

2
� j�j2: (4-17)

Let f 2 L2.G/ and consider the inverse Fourier transform f .x/D
P
�2ƒC d� tr.��.x/ Of .�//; then for

any bounded Borel function F W R! C, we have

F.�/f D
X
�2ƒC

F.�k�/d� tr.��.x/ Of .�//:

In particular, we have

eit�f D
X
�2ƒC

e�itk�d� tr.��.x/ Of .�//; (4-18)

PN e
it�f D

X
�2ƒC

'

�
�
k�

N 2

�
e�itk�d� tr.��.x/ Of .�//: (4-19)

Example 4.1. Let M D SU.2/, which is of dimension 3 and rank 1. Let aŠ R be the Cartan subalgebra
and AŠ R=2�Z be the maximal torus. The root system is f˙˛g, where ˛ acts on a by ˛.�/D 2� . The
fundamental weight iswD 1

2
˛. We normalize the Cartan–Killing form so that jwjD1. The Weyl groupW

is of order 2, and acts on a as well as a� through multiplication by ˙1. For m 2 Z�0 Š Z�0wDƒ
C, we

have
dm DmC 1; (4-20)

�m.�/D
ei.mC1/� � e�i.mC1/�

ei� � e�i�
D

sin.mC 1/�
sin �

; � 2 R=2�Z; (4-21)

km D .mC 1/
2
� 1: (4-22)

5. The Schrödinger kernel

Let f 2 L2.G/. Then (4-19) implies

.PN e
it�f /^.�/D '

�
k�

N 2

�
e�itk� Of .�/:
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Define

.KN .t; � //
^.�/D '

�
k�

N 2

�
e�itk�Idd��d� ;

which implies

KN .t; x/D
X
�2ƒC

'

�
k�

N 2

�
e�itk�d���.x/: (5-1)

Then we can write
PN e

it�f DKN .t; � /�f D f �KN .t; � /;

and we call KN .t; x/ the Schrödinger kernel. Incorporating (4-14), (4-15) and (4-17) into (5-1), we get

KN .t;x/D
X
�2ƒC

e�it.j�C�j
2�j�j2/'

�
j�C�j2�j�j2

N 2

�Q
˛2P h˛;�C�iQ
˛2P h˛;�i

P
s2W .dets/eihs.�C�/;H iP
s2W .dets/eihs.�/;H i

: (5-2)

Example 5.1. Specializing the Schrödinger kernel (5-2) to G D SU.2/, using (4-20), (4-21), and (4-22),
we have

KN .t; �/D

1X
mD0

'

�
.mC 1/2� 1

N 2

�
.mC1/e�i..mC1/

2�1/t e
i.mC1/� � e�i.mC1/�

ei� � e�i�
; � 2R=2�Z: (5-3)

More generally, let G D Rn=2��0 � K1 � � � � � Km be equipped with a rational metric g as in
Definition 2.1. Let ƒ0 be the dual lattice of �0 and ƒj be the weight lattice for Kj , j D 1; : : : ; m. Let
PN D

Nm
jD0 'j .N

�2�j / be a Littlewood–Paley projection of product type as described in Section 3C.
Define the Schrödinger kernel KN on G by

PN e
it�f D f �KN .t; � /DKN .t; � /�f: (5-4)

Then

KN D

mY
jD0

KN;j ; (5-5)

where the KN;j ’s are respectively the Schrödinger kernels on each component of G

KN;0 D
X
�02ƒ0

'0

�
�j�0j

2

ˇ0N 2

�
e�itˇ

�1
0 j�0j

2

eih�0;H0i;

KN;j D
X

�j2ƒ
C

j

'j

�
�j�j C �j j

2Cj�j j
2

ǰN 2

�
eitˇ

�1
j
.�j�jC�j j

2Cj�j j
2/d�j��j ;

j D 1; : : : ; m. Here the �j ’s are defined in terms of (4-12). We also write

KN D

X
�2 yG

'.�;N /e�itk�d���;

where

�D .�0; : : : ; �m/ 2 yG Dƒ0 �ƒ
C
1 � � � � �ƒ

C
m;

�k� D�ˇ
�1
0 j�0j

2
C

mX
jD1

ˇ�1j .�j�j C �j j
2
Cj�j j

2/; (5-6)
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'.�;N /D '0

�
�j�0j

2

ˇ0N 2

�
�

nY
jD1

'j

�
�j�j C �j j

2Cj�j j
2

ǰN 2

�
; (5-7)

d� D

mY
jD1

d�j ; �� D e
ih�0;H0i

mY
jD1

��j :

Tracking all the definitions, we get the following lemma.

Lemma 5.2. Let d; r be respectively the dimension and rank of G:

(i) jf� 2 yG j k� .N 2gj.N r .

(ii) d� .N .d�r/=2 uniformly for all � 2 yG such that k� .N 2.

Now we interpret the Strichartz estimates on G as Fourier restriction estimates.

Lemma 5.3. For a compact simply connected semisimple Lie group G and its weight lattice ƒ, there
exists D 2 N such that h�1; �2i 2D�1Z for all �1; �2 2ƒ.

Proof. Let ˆ be the set of roots for G. Then by Lemma 4.3.5 in [Varadarajan 1974], h˛; ˇi are rational
numbers for all ˛; ˇ 2 ˆ. Let S D f˛1; : : : ; ˛rg � ˆ be a system of simple roots. Since the set of
fundamental weights fw1; : : : ; wng forms a dual basis to f2˛1=h˛1; ˛1i; : : : ; 2˛r=h˛r ; ˛rig with respect
to the Cartan–Killing form h � ; � i, and h˛i ; j̨ i are rational numbers for all i; j D 1; : : : ; r , we have that
the wj ’s can be expressed as linear combinations of the j̨ ’s with rational coefficients. This implies that
hwi ; wj i are rational numbers for all i; j D 1; : : : ; r . Since there are only finitely many such numbers as
hwi ; wj i, there exists D 2N so that hwi ; wj i 2D�1Z for all i; j D 1; : : : ; r . Thus h�1; �2i 2D�1Z for
all �1; �2 2ƒ, since ƒD Zw1C � � �CZwn. �

For G D Rn=2��0�K1� � � � �Km, by the previous lemma, there exists for each j D 1; : : : ; m some
Dj 2 N such that h�;�i 2D�1j Z for all �;� 2ƒCj , which implies by (4-12) that

�j�j C �j j
2
Cj�j j

2
D�j�j j

2
� h�j ; 2�j i 2D

�1
j Z

for all �j 2ƒj . Also recall that we require that there exists some D 2 N such that hu; vi 2D�1Z for all
u; v 2 �0. This implies that there also exists some D0 2 N such that h�;�i 2D�10 Z for all �;� 2ƒ0.
By Definition 2.1 of a rational metric, there exists some D� > 0 such that

ˇ�10 ; : : : ; ˇ�1m 2D
�1
� N:

Define

T D 2�D� �

mY
jD0

Dj : (5-8)

Then (5-6) implies that T k� 2 2�Z, which then implies that the Schrödinger kernel as in (5-5) is periodic
in t with a period of T. Thus we may view the time variable t as living on the circle TD R=TZ. Now
the formal dual to the operator

T W L2.G/! Lp.T�G/; f 7!PN e
it�; (5-9)
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is computed to be

T � W Lp
0

.T�G/! L2.G/; F 7!

Z
T

PN e
�is�F.s; � /

ds

T
; (5-10)

and thus

T T � W Lp
0

.T�G/! Lp.T�G/; F 7!

Z
T

P2
N e

i.t�s/�F.s; � /
ds

T
D zKN �F; (5-11)

where
zKN D

X
�2 yG

'2.�;N /e�itk�d��� DKN �KN :

Note that the cutoff function '2.�;N / still defines a Littlewood–Paley projection of product type and
zKN is the associated Schrödinger kernel. Now the argument of T T � says that the boundedness of the

operators (5-9), (5-10) and (5-11) are all equivalent; thus the Strichartz estimate in (3-1) is equivalent to
the space-time Strichartz estimate

k zKN �F kLp.T�G/ .N d� 2.dC2/
p kF kLp0 .T�G/: (5-12)

We have the space-time Fourier transform on T�G as follows. For .n; �/ 2 2�
T

Z� yG, we have

yKN .n; �/D

�
'.�;N / � Idd��d� if nD�k�;
0 otherwise:

(5-13)

Similarly, for f 2 L2.G/, we have

.PN e
it�f .x//^.n; �/D

�
'.�;N / � Of .�/ if nD�k�;
0 otherwise:

(5-14)

For m.t/D
P
n2.2�=T /Z Om.n/e

itn, we compute

.mKN /
^.n; �/D Om.nC k�/'.�;N /Idd��d� : (5-15)

6. The Stein–Tomas argument

Throughout this section, S1 stands for the standard circle of unit length, and k � k stands for the distance
from 0 on S1. Define

Ma;q WD

n
t 2 S1

ˇ̌̌ 


t � a
q




< 1

qN

o
;

where
a 2 Z�0; q 2 N; a < q; .a; q/D 1; q < N:

We call such Ma;q’s as major arcs, which are reminiscent of the Hardy–Littlewood circle method. We
will prove the following key dispersive estimate.

Theorem 6.1. Let KN be the Schrödinger kernel (5-5) and T be the period (5-8). Then

jKN .t; x/j.
N d�p

q
�
1CN



 t
2�D
�
a
q



1=2��r
for t

2�D
2Ma;q , uniformly in x 2G.
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Noting the product structure (5-5) of KN , the above theorem reduces to the cases on irreducible
components of G.

Theorem 6.2. (i) Given G D Td D Rd=2�� such that there exists D 2 R for which h�;�i 2D�1Z for
all �;� 2 � . Then the Schrödinger kernel

KN .t;H/D
X
�2ƒ

'

�
j�j2

N 2

�
e�it j�j

2Cih�;H i

satisfies

jKN .t;H/j.

 
N

p
q
�
1CN



 t
2�D
�
a
q



1=2�
!d

for t
2�D
2Ma;q , uniformly in H 2 Tn.

(ii) Let G be a compact simply connected semisimple Lie group. Let ƒ be the weight lattice for which
h�;�i 2D�1Z for all �;� 2ƒ for some D 2 R. Let KN be the Schrödinger kernel as defined in (5-2).
Then

jKN .t; x/j.
N d�p

q
�
1CN



 t
2�D
�
a
q



1=2��r (6-1)

for t
2�D
2Ma;q , uniformly in x 2G.

We will prove this theorem in the next section. Now we show how this theorem implies Strichartz
estimates.

Theorem 6.3. Let G D Tn �K1 � � � � �Km be equipped with a rational metric Qg and T be a period of
the Schrödinger flow as in (5-8). Let d; r be the dimension and rank of G respectively. Let f 2 L2.G/,
� > 0 and define

m� D �f.t; x/ 2 T�G j jPN e
it�f .x/j> �jg;

where �D dt �d�G , with dt being the standard measure on TDR=TZ and d�G being the Haar measure
on G. Let

p0 D
2.r C 2/

r
:

Then the following statements hold true:

(I) m� ." N
dp0
2
�.dC2/C"��p0kf k

p0
L2.G/

for all �&N d
2
� r
4 ; " > 0.

(II) m� .N
dp
2
�.dC2/��pkf k

p

L2.G/
for all �&N d

2
� r
4 ; p > p0.

(III) kPN e
it�f kLp.T�G/ .N

d
2
�
dC2
p kf kL2.G/ (6-2)

holds for all p � 2C 8
r

.

(IV) Assume it holds that

kPN e
it�f kLp.T�G/ ." N

d
2
�
dC2
p
C"
kf kL2.G/ (6-3)

for some p > p0; then (6-2) holds for all q > p.
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The proof strategy of this theorem is a Stein–Tomas-type argument, similar to the proofs of Proposi-
tions 3.82, 3.110, 3.113 in [Bourgain 1993]. The new ingredient is the nonabelian Fourier transform. We
detail the proof in the following.

Let ! 2 C1c .R/ such that ! � 0, !.x/D 1 for all jxj � 1 and !.x/D 0 for all jxj � 2. Let N be a
dyadic natural number. Define

! 1

N2
WD !.N 2

� /;

! 1
NM
WD !.NM � /�!.2NM � /;

where

1�M <N; M dyadic:

Let

N1 D
N

210
; 1�Q<N1; Q dyadic:

Then X
Q�M�N

! 1
NM
D 1 on

h
�

1

NQ
;
1

NQ

i
; (6-4)

X
Q�M�N

! 1
NM
D 0 outside

h
�

2

NQ
;
2

NQ

i
: (6-5)

Write

1D
X

1�Q�N1

X
Q�M�N

�� X
.a;q/D1
Q�q<2Q

ıa
q

�
�! 1

NM

��
t

T

�
C �.t/: (6-6)

Note the major arc disjointness property�
a1
q1
C

h
�

2

NQ1
;
2

NQ1

i�
\

�
a2
q2
C

h
�

2

NQ2
;
2

NQ2

i�
D∅

for .ai ; qi /D 1, Qi � qi < 2Qi , i D 1; 2, Q1 �Q2 �N1. This in particular implies

0� �.t/� 1 for all t 2 R=TZ; (6-7)�� X
.a;q/D1
Q�q<2Q

ıa
q

�
�! 1

NM

�
�

T

��^
.0/D

1

T

Z T

0

� X
.a;q/D1
Q�q<2Q

ıa
q

�
�! 1

NM

�
t

T

�
dt �

2Q2

NM
; (6-8)

which implies

1� j O�.0/j � 1�
X

1�Q�N1

X
Q�M�N

ˇ̌̌̌�� X
.a;q/D1
Q�q<2Q

ıa
q

�
�! 1

NM

�
�

T

��^
.0/

ˇ̌̌̌
� 1�

8N1

N
�
1

2
: (6-9)

By Dirichlet’s lemma on rational approximations, for any t
T
2 S1, there exists a; q, with a 2 Z�0, q 2N,

.a; q/ D 1, q � N, such that
ˇ̌
t
T
�
a
q

ˇ̌
< 1
qN

. If �
�
t
T

�
¤ 0, then (6-4) implies q > N1 D N=210. This
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implies by (6-1) and (6-7) that

k�.t/KN .t; x/kL1.T�G/ .N d� r
2 : (6-10)

Now define coefficients ˛Q;M such that�� X
.a;q/D1
Q�q<2Q

ıa
q

�
�! 1

NM

�
�

T

��^
.0/D ˛Q;M O�.0/: (6-11)

Then (6-8) and (6-9) imply

˛Q;M .
Q2

NM
: (6-12)

Write

KN .t; x/D
X
Q�N1

X
Q�M�N

KN .t; x/

��� X
.a;q/D1
Q�q<2Q

ıa
q

�
�! 1

NM

�
�

T

��
�˛Q;M�

�
.t/

C

�
1C

X
Q;M

˛Q;M

�
KN .t; x/�.t/; (6-13)

and define

ƒQ;M .t; x/ WDKN .t; x/

��� X
.a;q/D1
Q�q<2Q

ıa
q

�
�! 1

NM

�
�

T

��
�˛Q;M�

�
.t/: (6-14)

Then from (6-1), (6-10), (6-12), we have

kƒQ;MkL1.T�G/ .N d� r
2

�
M

Q

�r
2

: (6-15)

Next, we estimate yƒQ;M . From (5-15), for

n 2
2�

T
ZŠ yT; � 2 yG;

we have
yƒQ;M .n; �/D �Q;M .n; �/ � Idd��d� ; (6-16)

where

�Q;M .n; �/D '.�;N /

�� X
.a;q/D1
Q�q<2Q

ıa
q

�̂
� O! 1

NM
.T � /�˛Q;M O�

�
.nC k�/: (6-17)

Note that (6-11) immediately implies

�Q;M .n; �/D 0 for nC k� D 0: (6-18)

Let d.m;Q/ denote the number of divisors of m less than Q; using Lemma 3.33 in [Bourgain 1993],ˇ̌̌̌� X
.a;q/D1
Q�q<2Q

ıa
q

�̂
.T n/

ˇ̌̌̌
." d

�
T n

2�
;Q

�
Q1C"; n¤ 0; " > 0; (6-19)
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we get

j�Q;M .n; �/j." '.�;N /
Q1C"

NM
d

�
T .nC k�/

2�
;Q

�
C
Q2

NM
j O�.nC k�/j: (6-20)

Using
d.m;Q/." m";

(6-19) and (6-6), we have

j O�.n/j �
X

1�Q�N1

X
Q�M�N

d
�
Tn
2�
;Q
�
Q1C"

NM
.
N "

N
for n¤ 0; jnj.N 2

I (6-21)

thus
j�Q;M .n; �/j." '.�;N /

Q

NM

�
Q"d

�
T .nC k�/

2�
;Q

�
C

Q

N 1�"

�
." '.�;N /

QN "

NM
for jnj.N 2: (6-22)

Proposition 6.4. (i) Assume that f 2 L1.T�G/. Then

kf �ƒQ;MkL1.T�G/ .N d� r
2

�
M

Q

�r
2

kf kL1.T�G/: (6-23)

(ii) Assume that f 2 L2.T�G/. Assume also

Of .n; �/D 0 for jnj&N 2: (6-24)

Then

kf �ƒQ;MkL2.T�G/ ."
QN "

NM
kf kL2.T�G/; (6-25)

kf �ƒQ;MkL2.T�G/ .�;B
Q1C2�L

NM
kf kL2.T�G/CM

�1L�
B
2 N

d
2 kf kL1.T�G/ (6-26)

for all
L> 1; 0 < � < 1; B >

6

�
; N > .LQ/B : (6-27)

Proof. Using (6-15), we have

kf �ƒQ;MkL1.T�G/ � kf kL1.T�G/kƒQ;MkL1.T�G/ .N d� r
2

�
M

Q

�r
2

kf kL1.T�G/:

This proves (i). (6-25) is a consequence of (4-4), (6-16), and (6-22). To prove (6-26), we use (4-1), (4-3)
and (6-16) to get

kf �ƒQ;MkL2.T�G/ D

�X
n;�

d�k Of .n; �/k
2
HS � j�Q;M .n; �/j

2

�1
2

;

which combined with (6-18), (6-20), and (6-21) yields

kf �ƒQ;MkL2.T�G/

."
Q1C"

NM

�X
n;�

'.�;N /2d�k Of .n; �/k
2
HS d

�
T .nC k�/

2�
;Q

�2 �1
2

C
Q2

MN 2�"
kf kL2.T�G/: (6-28)
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Using Lemma 3.47 in [Bourgain 1993] and Lemma 5.2, we haveˇ̌̌̌�
.n; �/

ˇ̌̌̌
jnj; k� .N 2; d

�
T .nC k�/

2�
;Q

�
>D

�̌̌̌̌
.�;B .D�BQ�N 2

CQB/ � max
jmj.N 2

jf.n; �/ j nC k� Dmgj

.�;B .D�BQ�N 2
CQB/ � jf� 2 yG j k� .N 2

gj

.�;B .D�BQ�N 2
CQB/ �N r : (6-29)

Now (4-5) gives
k Of .n; �/k2HS . d�kf k

2
L1.T�G/

;

and Lemma 5.2 gives
j'.�;N /d2� j.N

d�r ;

which together with (6-29) imply

kf �ƒQ;MkL2.T�G/

.�;B
�
Q1C"D

NM
C

Q2

MN 2�"

�
kf kL2.T�G/C

Q1C"

NM
�Q �.D�

B
2Q�NCQ

B
2 /N

d
2 kf kL1.T�G/: (6-30)

This implies (6-26) assuming the conditions in (6-27). �

Now interpolating (6-23) and (6-25), we get

kf �ƒQ;MkLp.T�G/ ." N d� r
2
�
2d�rC2

p
C"M

r
2
�
rC2
p Q�

r
2
C
rC2
p kf kLp0 .T�G/: (6-31)

Interpolating (6-23) and (6-26) for

p >
2.r C 2/

r
C 10�; which implies � D

r

2
�
r C 2C 4�

p
> 0; (6-32)

we get

kf �ƒQ;MkLp.T�G/ .�;B N d� r
2
�
2d�rC2

p M
r
2
�
rC2
p Q��L

2
p kf kLp0 .T�G/

CQ�
2
r
.1� 2

p
/M

r
2
�
rC2
p L�

B
pN d� r

2
�d�r

p kf kL1.T�G/: (6-33)

Now we are ready to prove Theorem 6.3.

Proof of Theorem 6.3. Without loss of generality, we assume that kf kL2.G/D 1. Then for F DPN e
it�f ,

(3-2) implies
kF kL2x . 1; (6-34)

kF kL1x .N
d
2 : (6-35)

Let

H D �jF j>� �
F

jF j
: (6-36)
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Let zzPN be a Littlewood–Paley projection of product type such that zzPN ıPN D PN . Let zzKN be the
Schrödinger kernel associated to zzPN e

it�. Then by (4-3), (5-13), and (5-14), we have

F � zzKN D F:

Let QN 2 be the Littlewood–Paley projection operator on L2.T�G/ defined by

.QN 2H/
^
WD '

�
�k��n

2

N 4

�
yH.n; �/

for some bump function ' such that QN 2 ıPN DPN . Then by (4-2) and (5-14), we have

hF;H iL2t;x
D hQN 2F;H iL2t;x

D hF;QN 2H iL2t;x
:

Then we can write
�m� � hF;H iL2t;x

D hF � zzKN ;QN 2H iL2t;x
:

Using (4-1) and (4-3) again, we get

�m� � hF;QN 2H �
zzKN iL2t;x

� kF kL2t;x
kQN 2H �

zzKN kL2t;x

. kQN 2H � zzKN kL2t;x
D hQN 2H �

zzKN ;QN 2H �
zzKN iL2t;x

D hQN 2H;QN 2H � .
zzKN �

zzKN /iL2t;x
: (6-37)

Let
H 0 DQN 2H;

zKN D
zzKN �

zzKN :

Note that H 0 by definition satisfies the assumption in (6-24) and we can apply Proposition 6.4. Also note
that zKN is still a Schrödinger kernel associated to a Littlewood–Paley projection operator of product type.
Finally note that the Bernstein-type inequalities (3-2) and the definition (6-36) of H give

kH 0kLpt;x
. kHkLpt;x .m

1
p

�
: (6-38)

Write
ƒD

X
1�Q�N1

X
Q�M�N

ƒQ;M ; zKN DƒC . zKN �ƒ/;

where ƒQ;M is defined as in (6-14) except that KN is replaced by zKN . We have by (6-37)

�2m2� . hH
0;H 0 �ƒiL2t;x

ChH 0;H 0 � . zKN �ƒ/iL2t;x

. kH 0k
L
p0

t;x

kH 0 �ƒkLpt;x
CkH 0k2

L1t;x
k zKN �ƒkL1t;x : (6-39)

Using (6-31) for p D p0 WD
2.rC2/
r

, then summing over Q;M, and noting (6-38), we have

kH 0k
L
p0

t;x

kH 0 �ƒkLpt;x
.N d� 2dC4

p0
C"
kH 0k2

L
p0
0
t;x

.N d� 2dC4
p0
C"
m

2

p0
0

�
:

From (6-10) and (6-12) we get
k zKN �ƒkL1t;x .N

d� r
2 ; (6-40)
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which implies
kH 0k2

L1t;x
k zKN �ƒkL1t;x .N

d� r
2 kH 0k2

L1t;x
.N d� r

2m2�: (6-41)

Then we have

�2m2� .N
d� 2dC4

p0
C"
m

2

p0
0

�
CN d� r

2m2�;

which implies for �&N d=2�r=4

m� ." N
p0.d2�

dC2
p0
/C"

��p0 :

Thus part (I) is proved. To prove part (II) for some fixed p, using part (I) and (6-35), it suffices to prove
it for �&N d=2�". Summing (6-33) over Q;M in the range indicated by (6-27), we get

kH 0 �ƒ1kLpt;x
. LN d� 2dC4

p kH 0k
L
p0

t;x

CL�
B
pN d�dC2

p kH 0kL1t;x
; (6-42)

where
ƒ1 WD

X
Q<Q1
Q�M�N

ƒQ;M

and Q1 is the largest Q-value satisfying (6-27). For values Q �Q1, use (6-31) to get

kH 0 � .ƒ�ƒ1/kLpt;x
." N d� 2dC4

p
C"Q

�. r
2
�
rC2
p
/

1 kH 0k
L
p0

t;x

: (6-43)

Using (6-39), (6-41), (6-42) and (6-43), we get

�2m2� .N
d� 2.dC2/

p

 
LC

N "

Q
r
2
�
rC2
p

1

!
m
2
p

0

�
CL�

B
pN d�dC2

p m
1C 1

p0

�
CN d� r

2m2�:

For �&N d=2�r=4, the last term of the above inequality can be dropped. Let Q1 DN ı such that ı > 0
and

.LN ı/B <N (6-44)

such that (6-27) holds. Note that

L> 1 >
N "

Q
r
2
�
rC2
p

1

for p > p0C 10� and " sufficiently small; thus

�2m2� .N
d� 2.dC2/

p Lm
2
p

0

�
CL�

B
pN d�dC2

p m
1C 1

p0

�
:

This implies

m� .Np.d
2
�
dC2
p
/L

p
2 ��pCNp.d�dC2

p
/L�B��2p

.N�d�2
�
N
d
2

�

�p
L
p
2 CN�d�2

�
N
d
2

�

�2p
L�B :



STRICHARTZ ESTIMATES FOR THE SCHRÖDINGER FLOW ON COMPACT LIE GROUPS 1195

Let

LD

�
N
d
2

�

��
; B >

p

�

and ı be sufficiently small so that (6-44) holds; then

m� .N�d�2
�
N
d
2

�

�pCp�
2

:

Note that conditions for p; � indicated in (6-32) imply that pC p�
2

can take any exponent >p0D
2.rC2/
r

.
This completes the proof of part (II).

The proofs of parts (III) and (IV) are then identical to the proofs of Propositions 3.110 and 3.113
respectively in [Bourgain 1993]. �

Proof of Theorem 2.2. Part (i) is a direct consequence of Theorem 6.3(III). Part (ii) is a direct consequence
of Theorem 6.3(IV) and the result from [Bourgain and Demeter 2015] that full Strichartz estimates hold
on any torus with an "-loss. �

7. Dispersive estimates on major arcs

In this section, we prove Theorem 6.2.

7A. Weyl-type sums on rational lattices.

Definition 7.1. Let LD Zw1C� � �CZwr be a lattice on an inner product space .V; h � ; � i/. We say L is
a rational lattice provided that there exists some D 2 R such that hwi ; wj i 2D�1Z. We call the number
D a period of L.

By Lemma 5.3, any weight lattice ƒ is a rational lattice with respect to the Cartan–Killing form. As a
sublattice of ƒ, the root lattice � is also rational.

Let f be a function on Zr and define the difference operator Di by

Dif .n1; : : : ; nr/ WD f .n1; : : : ; ni�1; ni C 1; niC1; : : : ; nr/�f .n1; : : : ; nr/ (7-1)

for i D 1; : : : ; r . The Leibniz rule for Di reads

Di

� nY
jD1

fj

�
D

nX
lD1

X
1�k1<���<kl�n

Difk1 � � �Difkl �
Y

j¤k1;:::;kl
1�j�n

fj : (7-2)

Note that there are 2n� 1 terms in the right side of the above formula.

Definition 7.2. Let L Š Zr be a lattice of rank r . Given A 2 R, we say a function f on L is a
pseudopolynomial of degree A provided for each n 2 Z�0

jDi1 � � �Dinf .n1; : : : ; nr/j.N
A�n (7-3)

holds uniformly in jni j.N, i D 1; : : : ; r , for all ij D 1; : : : ; r , j D 1; : : : ; n, and N � 1.
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A direct application of the Leibniz rule (7-2) gives the following lemma.

Lemma 7.3. Let L be a lattice and f; g two functions on L. Assume f; g are pseudopolynomials of
degrees A;B respectively. Then f �g is a pseudopolynomial of degree ACB .

Now we have the following estimate on Weyl-type sums, which generalizes the classical Weyl inequality
in one dimension, as in Lemma 3.18 of [Bourgain 1993].

Lemma 7.4. Let LD Zw1C � � �CZwr be a rational lattice in the inner product space .V; h � ; � i/ with a
periodD>0. Let ' be a bump function on R andN � 1, A2R. Suppose f WL!C a pseudopolynomial
of degree A. Let

F.t;H/D
X
�2L

e�it j�j
2Cih�;H i'

�
j�j2

N 2

�
�f (7-4)

for t 2 R and H 2 V . Then for t
2�D
2Ma;q , we have

jF.t;H/j.
NACr�p

q
�
1CN



 t
2�D
�
a
q



1=2��r (7-5)

uniformly in H 2 V .

Note that part (i) of Theorem 6.2 is a direct consequence of this lemma.

Proof. By the Weyl differencing trick, write

jF j2 D
X

�1;�22L

e�it.j�1j
2�j�2j

2/Cih�1��2;H i'

�
j�1j

2

N 2

�
'.
j�2j

2

N 2
/f .�1/f .�2/

D

X
�D�1��2

e�it j�j
2Cih�;H i

X
�D�2

e�i2th�;�i'

�
j�C�j2

N 2

�
'

�
j�j2

N 2

�
f .�C�/f .�/

�

X
j�j.N

ˇ̌̌̌X
�

e�i2th�;�i'

�
j�C�j2

N 2

�
'

�
j�j2

N 2

�
f .�C�/f .�/

ˇ̌̌̌
:

Now let LD Zw1C � � �CZwr . Write

�D

rX
iD1

niwi

and

g.�/D '

�
j�C�j2

N 2

�
'

�
j�j2

N 2

�
f .�C�/f .�/:

Note that as functions in � 2 L, both '.j�C �j2=N 2/j and '.j�j2=N 2/ are pseudopolynomials of
degree 0, and both f .�C�/ and f .�/ are pseudopolynomials of degree A, which implies by Lemma 7.3
that g.�/ is a pseudopolynomial of degree 2A. That is, g.�/ satisfies

jDi1 � � �Ding.�/j.N
2A�n (7-6)
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uniformly for j�j.N and N � 1, for all i1; : : : ; in 2 f1; : : : ; rg. WriteX
�2L

e�i2th�;�ig.�/D
X

n1;:::;nr2Z

� rY
iD1

e�itni h�;2wi i
�
g.�/: (7-7)

By summation by parts twice, we haveX
n12Z

e�itn1h�;2w1ig D

�
e�ith�;2w1i

1� e�ith�;2w1i

�2 X
n12Z

e�itn1h�;2w1iD21g.n1; : : : ; nr/I (7-8)

then (7-7) becomesX
�2L

e�i2th�;�ig D

�
e�ith�;2w1i

1� e�ith�;2w1i

�2 X
n1;:::;nr2Z

� rY
iD1

e�itni h�;2wi i
�
D21g.n1; : : : ; nr/:

Then we can carry out the procedure of summation by parts twice with respect to other variables n2; : : : ; nr .
But we require that only when

j1� e�ith�;2wi ij � 1
N

do we carry out the procedure to the variable ni . Using (7-6), we obtainˇ̌̌̌X
�

e�i2th�;�i'

�
j�C�j2

N 2

�
'

�
j�j2

N 2

�
f .�C�/f .�/

ˇ̌̌̌
.N 2A�r

rY
iD1

1�
max

˚
1� e�ith�;2wi i; 1

N

	�2
.N 2A�r

rY
iD1

1�
max

˚

 1
2�
th�; 2wi i



; 1
N

	�2 :
Writing �D

Pr
jD1mjwj , mj 2 Z, we have

jF j2 .N 2A�r
X
jmj j.N
jD1;:::;r

rY
iD1

1�
max

˚

 1
2�
t
Pr
jD1mj hwj ; 2wi i



; 1
N

	�2 :
Let

ni D

rX
jD1

mj hwj ; 2wi i �D; i D 1; : : : ; r; (7-9)

where D > 0 is the period of L so that hwj ; wi i 2 D�1Z. Then ni 2 Z. Note that the matrix
.hwj ; 2wi iD/i;j is nondegenerate, which implies that for each vector .n1; : : : ; nr/ 2 Zr there exists
at most one vector .m1; : : : ; mr/ 2 Zr so that (7-9) holds; thus

jF j2 .N 2A�r
X
jni j.N
iD1;:::;r

rY
iD1

1�
max

˚

 t
2�D

ni


; 1
N

	�2
.N 2A�r

rY
iD1

 X
jni j.N

1�
max

˚

 t
2�D

ni


; 1
N

	�2
!
:
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Then by a standard estimate as in the proof of the classical Weyl inequality in one dimension, we haveX
jni j.N

1�
max

˚

 t
2�D

ni


; 1
N

	�2 . N 3�p
q
�
1CN



 t
2�D
�
a
q



1=2��2 ;
which implies the desired result

jF j2 .
N 2AC2r�p

q
�
1CN



 t
2�D
�
a
q



1=2��2r : �

Remark 7.5. Let �0 be a constant vector in Rr and C a constant real number. Then we can slightly
generalize the form of the function F.t;H/ in the above lemma into

F.t;H/D
X
�2L

e�it j�C�0j
2Cih�;H i'

�
j�C�0j

2CC

N 2

�
�f

such that the conclusion of the lemma still holds.

7B. From a chamber to the whole weight lattice. To prove part (ii) of Theorem 6.2, we first rewrite the
Schrödinger kernel as an exponential sum over the whole weight lattice ƒ instead of just a chamber of it,
in order to apply Lemma 7.4.

Lemma 7.6. Recall that DP .H/D
P
s2W .det s/eih�;H i is the Weyl denominator. We have

KN .t;x/D
eit j�j

2�Q
˛2P h˛;�i

�
DP .H/

X
�2ƒ

e�it j�j
2Cih�;H i'

�
j�j2�j�j2

N 2

� Y
˛2P

h˛;�i (7-10)

D
eit j�j

2�Q
˛2P h˛;�i

�
jW j

X
�2ƒ

e�it j�j
2

'

�
j�j2�j�j2

N 2

� Y
˛2P

h˛;�i

P
s2W .dets/eihs.�/;H iP
s2W .dets/eihs.�/;H i

: (7-11)

Proof. To prove (7-11), first note that from Proposition 7.13 below,
Q
˛2P h˛; � i is an anti-invariant

polynomial; that is, Y
˛2P

h˛; s.�/i D .det s/
Y
˛2P

h˛; �i (7-12)

for all � 2 ib�. Recall that the Weyl group W acts on ib� isometrically; that is,

js.�/j D j�j for all s 2W; � 2 ib�: (7-13)

Also recalling the definition (4-12) of � and the definition (4-10) of the fundamental chamber C, we may
rewrite KN as in (5-2) into

KN .t; x/D
eit j�j

2�Q
˛2P h˛; �i

�
DP

X
�2ƒ\C

e�it j�j
2

'

�
j�j2� j�j2

N 2

� Y
˛2P

h˛; �i
X
s2W

.det s/eihs.�/;H i:
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Using the (7-12) and (7-13), we write

KN .t;x/D
eit j�j

2�Q
˛2P h˛;�i

�
DP

X
s2W

X
�2ƒ\C

e�it j�j
2

'

�
j�j2�j�j2

N 2

� Y
˛2P

h˛;s.�/ieihs.�/;H i

D
eit j�j

2�Q
˛2P h˛;�i

�
DP

X
s2W

X
�2ƒ\C

e�it js.�/j
2

'

�
js.�/j2�j�j2

N 2

� Y
˛2P

h˛;s.�/ieihs.�/;H i

D
eit j�j

2�Q
˛2P h˛;�i

�
DP

X
�2
F
s2W s.ƒ\C/

e�it j�j
2

'

�
j�j2�j�j2

N 2

� Y
˛2P

h˛;�ieih�;H i; (7-14)

which then implies by (4-11) that

KN .t; x/D
eit j�j

2�Q
˛2P h˛; �i

�
DP

X
�2ƒ

e�it j�j
2

'

�
j�j2� j�j2

N 2

� Y
˛2P

h˛; �ieih�;H i:

This proves (7-10). To prove (7-11), writeX
�2ƒ

e�it j�j
2Cih�;H i'

�
j�j2� j�j2

N 2

� Y
˛2P

h˛; �i

D

X
�2ƒ

e�it js.�/j
2Cihs.�/;H i'

�
js.�/j2� j�j2

N 2

� Y
˛2P

h˛; s.�/i; (7-15)

which implies using (7-12) and (7-13) thatX
�2ƒ

e�it j�j
2Cih�;H i'

�
j�j2�j�j2

N 2

� Y
˛2P

h˛;�iD .dets/
X
�2ƒ

e�it j�j
2Cihs.�/;H i'

�
j�j2�j�j2

N 2

� Y
˛2P

h˛;�i;

which further impliesX
�2ƒ

e�it j�j
2Cih�;H i'

�
j�j2� j�j2

N 2

� Y
˛2P

h˛; �i

D
1

jW j

X
�2ƒ

e�it j�j
2

'

�
j�j2� j�j2

N 2

� Y
˛2P

h˛; �i
X
s2W

.det s/eihs.�/;H i:

This combined with (7-10) yields (7-11). �

Example 7.7. Specializing (7-10) and (7-11) to the Schrödinger kernel (5-3) for G D SU.2/, we get

KN .t; �/D
eit

ei� � e�i�

X
m2Z

e�itm
2Cim�'

�
m2� 1

N 2

�
m (7-16)

D
eit

2

X
m2Z

e�itm
2

'

�
m2� 1

N 2

�
m �

eim� � e�im�

ei� � e�i�
; � 2 R=2�Z: (7-17)
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Corollary 7.8. (6-1) holds for the following two scenarios:

Scenario 1: x D 1G , where 1G is the identity element of G.

Scenario 2:


 1
2�
h˛;H i



& 1
N

for any x conjugate to expH. This is to say that the variable H is away
from all the cell walls

˚
H
ˇ̌ 

 1

2�
h˛;H i



D 0 for some ˛ 2 P
	

by a distance of & 1
N

.

Proof. Scenario 1: When xD 1G , the character equals ��.1G/D d�D
Q
˛2P h˛; �i=

Q
˛2P h˛; �i. Then

by (7-11), the Schrödinger kernel at x D 1G equals

KN .t; 1G/D
eit j�j

2�Q
˛2P h˛; �i

�2
jW j

X
�2ƒ

e�it j�j
2

'

�
j�j2� j�j2

N 2

��Y
˛2P

h˛; �i

�2
: (7-18)

Note that f .�/ D
�Q

˛2P h˛; �i
�2 is a polynomial in the variable � D n1w1 C � � � C nrwr 2 ƒ of

degree 2jP j, which equals d � r by (4-8). Thus f is also a pseudopolynomial of degree d � r . Then the
desired estimate is a direct consequence of Lemma 7.4.

Scenario 2: By Lemma 4.13.4 of Chapter 4 in [Varadarajan 1974], the Weyl denominator DP DP
s2W .det s/eihs.�/;H i can be rewritten as

DP D e
�ih�;H i

Y
˛2P

.eih˛;H i� 1/: (7-19)

Note that

1.
jeih˛;H i� 1j

 1
2�
h˛;H i



 . 1:
Then by assumption the Weyl denominator satisfies

jDP .H/j&
Y
˛2P



 1
2�
h˛;H i



&N�jP j: (7-20)

Let

F D
X
�2ƒ

e�it j�j
2Cih�;H i'

�
j�j2� j�j2

N 2

�
�f;

where f D
Q
˛2P h˛; �i. Note that f is a polynomial and thus also a pseudopolynomial of degree jP j

in �. Applying Lemma 7.4 to F we get

jKN .t; x/j D

ˇ̌̌̌
eit j�j

2�Q
˛2P h˛; �i

�
DP .H/

ˇ̌̌̌
� jF j.

ˇ̌̌̌
1

DP .H/

ˇ̌̌̌
� jF j.N jP j �

N rCjP j�p
q
�
1CN



 t
2�D
�
a
q



1=2��r :
Recalling jP j D d�r

2
, we establish (6-1) for Scenario 2. �

Example 7.9. We specialize the Schrödinger kernel (7-16) and (7-17) to the case ofGDSU.2/. Scenario 1
in the above corollary corresponds to when � 2 2�Z and

KN .t; �/D
eit

2

X
m2Z

e�itm
2

'

�
m2� 1

N 2

�
m2; jKN .t; �/j.

ˇ̌̌̌X
m2Z

e�itm
2

'

�
m2� 1

N 2

�
m2
ˇ̌̌̌
: (7-21)
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Scenario 2 corresponds to when jei� �e�i� j& 1
N

, equivalently, when � is away from the cell walls f0; �g
by a distance & 1

N
. In this case,

jKN .t; �/j.
ˇ̌̌̌

1

ei� � e�i�

ˇ̌̌̌
�

ˇ̌̌̌X
m2Z

e�itm
2Cim�'

�
m2� 1

N 2

�
m

ˇ̌̌̌
: (7-22)

Then we get the desired estimates for (7-21) and (7-22) using Lemma 7.4.

7C. Pseudopolynomial behavior of characters. We have established the key estimates (6-1) for when
the variable expH in the maximal torus is either the identity or away from all the cell walls by a distance
of & 1

N
. To establish (6-1) fully, we need to look at the scenarios when the variable expH is close to the

some of the cell walls within a distance of . 1
N

. In this section, we first deal with the scenario when the
variable expH is close to all the cell walls within a distance of . 1

N
. To achieve this end, we first prove

the following crucial lemma on the pseudopolynomial behavior of characters.

Lemma 7.10. Let � 2 ib�. For � 2 ib�, define

��.�;H/D

P
s2W .det s/eihs.�C�/;H iP
s2W .det s/eihs.�/;H i

:

Let LŠ Zr be the weight lattice or the root lattice (or any sublattice of full rank of the weight lattice),
and viewing ��.�;H/ as a function in � 2 L, we have

jDi1 � � �Dik�
�.�;H/j.N

d�r
2
�k (7-23)

holds uniformly in j�j . N, jH j . 1
N

, and N � 1, for all k 2 Z�0. In other words, ��.�;H/ is a
pseudopolynomial of degree d�r

2
in � uniformly in jH j. 1

N
.

Using this lemma, applying Lemma 7.4 to the Schrödinger kernel KN in the form of (7-11), we
immediately get the following corollary.

Corollary 7.11. Inequality (6-1) holds uniformly when x 2G is conjugate to expH such that jH j. 1
N

.
In other words, when x is within . 1

N
a distance from the identity 1G .

We now prove Lemma 7.10 for LŠ Zw1C � � �CZwr being the weight lattice (the case for the root
lattice or any other sublattice can be proved similarly). First note that as jH j. 1

N
for N large enough,

by (7-19), we have ˇ̌̌̌Q
˛2P h˛;H i

DP

ˇ̌̌̌
� 1:

Thus it suffices to show (7-23) replacing ��.�;H/ by

�
�
1 .�;H/D

P
s2W .det s/eihs.�C�/;H iQ

˛2P h˛;H i
: (7-24)
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7C.1. Approach 1: via BGG-Demazure operators. The idea is to expand the numerator of ��1 .�;H/
into a power series of polynomials in H 2 ib� which are anti-invariant with respect to the Weyl group W ,
and then to estimate the quotients of these polynomial over the denominator

Q
˛2P h˛;H i. We will see

that these quotients are in fact polynomials in H 2 ib�, and can be more or less explicitly computed by
the BGG-Demazure operators. We now review the basic definitions and facts of the BGG-Demazure
operators and the related invariant theory. A good reference is Chapter IV in [Hiller 1982].

From now on, we fix an inner product space .a; h � ; � i/ and let ˆ be an integral root system in the dual
space .a�; h � ; � i/. Let P.a/ be the space of polynomial functions on a. The orthogonal group O.a/ with
respect to the inner product on a, in particular the Weyl group, acts on P.a/ by

.sf /.H/ WD f .s�1H/; s 2O.a/; f 2 P.a/; H 2 a:

Definition 7.12. For ˛ 2 a�, let s˛ W a! a denote the reflection about the hyperplane

fH 2 a j ˛.H/D 0g;

that is,

s˛.H/ WDH � 2
˛.H/

h˛; ˛i
H˛;

where H 2 a. Here H˛ corresponds to ˛ through the identification a �!� a�. Define the BGG-Demazure
operator �˛ W P.a/! P.a/ associated to ˛ 2 a� by

�˛.f /D
f � s˛.f /

˛
:

As an example, we compute �˛.�m/ for � 2 a�:

�˛.�
m/D

�m��
�
� � 2 ˛

h˛;˛i
H˛
�m

˛
D
�m�

�
�� 2 h�;˛i

h˛;˛i
˛
�m

˛

D

mX
iD1

.�1/i�1
�m
i

�
2i

h˛; ˛ii
h�; ˛ii˛i�1�m�i : (7-25)

This computation in particular implies that for any f 2 P.a/, the operator �˛.f / lowers the degree of f
by at least 1.

Let P.a/W denote the subspace of P.a/ that is invariant under the action of the Weyl group W , that is,

P.a/W WD ff 2 P.a/ j sf D f for all s 2W g:

We call P.a/W the space of invariant polynomials. We also define

P.a/Wdet WD ff 2 P.a/ j sf D .det s/f for all s 2W g:

We call P.a/Wdet the space of anti-invariant polynomials. We have the following proposition which states
that P.a/Wdet is a free P.a/W -module of rank 1.
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Proposition 7.13 [Hiller 1982, Chapter II, Proposition 4.4]. Define ddet 2 P.a/ by

ddet D
Y
˛2P

˛:

Then ddet 2 P.a/
W
det and

P.a/Wdet D ddet �P.a/
W :

By the above proposition, given any anti-invariant polynomial f , we have f D d � g, where g is
invariant. We call g the invariant part of f . The BGG-Demazure operators provide a procedure that
computes the invariant part of any anti-invariant polynomial. We describe this procedure as follows. The
Weyl group W is generated by the reflections s˛1 ; : : : ; s˛r , where S D f˛1; : : : ; ˛rg is the set of simple
roots. Define the length of s 2W to be the smallest number k such that s can be written as sD s˛i1 � � � s˛ik .
The longest element s in W is of length jP j D d�r

2
, and such s is unique; see Section 1.8 in [Humphreys

1990]. Write s D s˛i1 � � � s˛iL . Set
ı D�˛i1 � � ��˛iL

and note that it is well-defined in the sense it does not depend on the particular choice of the decomposition
s D s˛i1 � � � s˛iL ; see Chapter IV, Proposition 1.7 in [Hiller 1982].

Proposition 7.14 [Hiller 1982, Chapter IV, Proposition 1.6]. We have

ıf D
jW j

ddet
�f

for all f 2 P.a/Wdet.

That is, the operator ı produces the invariant part of any anti-invariant polynomial (modulo a multi-
plicative constant). As an example, we compute ı D �˛i1 � � ��˛iL on �m. Proceed inductively using
(7-25), we arrive at the following proposition.

Proposition 7.15. Let m� L. Then

ı.�m/D
X

�;a.˛;ˇ/;b.
/;c.�/;�2Z

.�1/�
Y
˛�ˇ

h˛i˛ ; ˛iˇi
a.˛;ˇ/

Y



h�; ˛i
 i
b.
/

Y
�

˛
c.�/
i�

��

such that the following statements are true:

(1) In each term of the sum,
P

 b.
/C �Dm.

(2) In each term of the sum,
P
� c.�/C �Dm�L.

(3) In each term of the sum,
P

 b.
/�

P
� c.�/D L.

(4) In each term of the sum, ja.˛; ˇ/j �mL and b.
/; c.�/; �D 0; 1; : : : ; m.

(5) There are in total less than 3mL terms in the sum.

Note that since each BGG-Demazure operator �˛ij in ı D�˛i1 � � ��˛iL lowers the degree of polyno-
mials by at least 1, ı lowers the degree by at least L. Thus

ı.�m/D 0 for m<L: (7-26)
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Example 7.16. We specialize the discussion to the case M D SU.2/. Recall that a� D Rw, where w
is the fundamental weight, and ˆD f˙˛g with ˛ D 2w. P.a/ consists of polynomials in the variable
� 2 R

1
Š
7!

Rw
w

. For � 2 R
1
Š
7!

Rw
w

, and f 2 P.a/, we have

.ıf /.�/D
f .�/�f .��/

2�
;

ı.�m/D

�
�m�1; m odd;
0; m even;

ddet.�/D 2�: (7-27)

We can now finish the proof of (7-23).

Proof of Lemma 7.10. Recall that it suffices to prove (7-23) replacing ��.�;H/ by ��1 .�;H/ in (7-24).
Using power series expansions, writeX

s2W

.det s/eih�C�;H i D
X
s2W

.det s/
1X
mD0

1

mŠ
.ihs.�C�/;H i/m

D

1X
mD0

im

mŠ

X
s2W

.det s/hs.�C�/;H im: (7-28)

Note that
fm.H/D fm.�/D fm.�;H/ WD

X
s2W

.det s/hs.�C�/;H im (7-29)

is an anti-invariant polynomial in H with respect to the Weyl group W ; thus by Proposition 7.14,

fm.H/D
ddet.H/

jW j
� ıfm.H/D

Q
˛2P h˛;H i

jW j
� ıfm.H/:

This implies that we can rewrite (7-24) as

��1.�;H/D
1

jW j

1X
mD0

im

mŠ
ıfm.H/:

Thus to prove (7-23), it suffices to prove that
1X
mD0

1

mŠ
jDi1 � � �Dik .ıfm.�//j.N

L�k

for all k 2 Z�0, uniformly in jni j . N, where � D n1w1C � � � C nrwr . Then by (7-29), it suffices to
prove that

1X
mD0

1

mŠ
jDi1 � � �Dik .ıŒ.s.�C�//

m�/j.NL�k for all s 2W:

Without loss of generality, it suffices to show
1X
mD0

1

mŠ
jDi1 � � �Dik .ıŒ.�C�/

m�/j.NL�k : (7-30)
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Noting (7-26), it suffices to consider cases when m� L. We apply Proposition 7.15 to write

ı..�C�/m/.H/

D

X
�;a.˛;ˇ/;b.
/;c.�/;�

.�1/�
Y
˛�ˇ

h˛i˛ ; ˛iˇi
a.˛;ˇ/

Y



h�C�; ˛i
 i
b.
/

Y
�

h˛i� ;H i
c.�/
h�C�;H i�: (7-31)

First note that for �D n1w1C � � �Cnrwr , jni j.N, i D 1; : : : ; r , we have

1. jh˛i ; j̨ ij. 1; jh�C�; ˛i ij.N; (7-32)

and by the assumption jH j. 1
N

,

jh˛i ;H ij. 1
N
; jh�C�;H ij D

ˇ̌̌̌� rX
iD1

ni hwi ;H i

�
Ch�;H i

ˇ̌̌̌
. 1: (7-33)

These imply

jı..�C�/m/.H/j �
X

�;a.˛;ˇ/;b.
/;c.�/;�

C
P
˛;ˇ ja.˛;ˇ/jC

P

 b.
/C

P
� c.�/C�N

P

 c.
/�

P
� c.�/ (7-34)

for some constant C independent of m. Now we derive a similar estimate for Di .ıŒ.�C�/m�/.H/. By
(7-31),

Di .ıŒ.�C�/
m�/.H/D

X
�;a.˛;ˇ/;b.
/;c.�/;�

.�1/�
Y
˛�ˇ

h˛i˛ ; ˛iˇi
a.˛;ˇ/

Y
�

h˛i� ;H i
c.�/

�Di

�Y



h�C�; ˛i
 i
b.
/
h�C�;H i�

�
: (7-35)

For �D n1w1C � � �Cnrwr , we compute

Di .h�C�; ˛i
 i/D h˛i ; ˛i
 i;

Di .h�C�;H i/D h˛i ;H i:

The above two formulas combined with (7-32), (7-33), and the Leibniz rule (7-2) for Di implyˇ̌̌̌
Di

�Y



h�C�; ˛i
 i
b.
/
h�C�;H i�

�ˇ̌̌̌
� C

P

 b.
/C�N

P

 b.
/�1:

This combined with (7-32), (7-33) and (7-35) implies

jDi .ıŒ.�C�/
m�/.H/j.

X
�;a.˛;ˇ/;b.
/;c.�/;�

C
P
˛;ˇ ja.˛;ˇ/jC

P

 b.
/C

P
� c.�/C�N

P

 b.
/�

P
� c.�/�1:

Inductively, we have

jDi1 � � �Dik .ıŒ.�C�/
m�/.H/j.

X
�;a.˛;ˇ/;b.
/;c.�/;�

C
P
˛;ˇ ja.˛;ˇ/jC

P

 b.
/C

P
� c.�/C�N

P

 b.
/�

P
� c.�/�k

for some constant C independent of m. This by Proposition 7.15 then implies

jDi1 � � �Dik .ıŒ.�C�/
m�/.H/j � 3mLCCmLNL�k

� CmNL�k
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for some positive constant C independent of m. This estimate implies (7-30), noting that
1X
mD0

Cm

mŠ
. 1: (7-36)

This finishes the proof. �

7C.2. Approach 2: via Harish-Chandra’s integral formula. This very short approach expresses ��1 .�;H/
as an integral over the group G. We apply the Harish-Chandra’s integral formula [1957], which readsX

s2W

.det s/ehs�;�i D
Q
˛2P h˛; �i �

Q
˛2P h˛;�iQ

˛2P h˛; �i

Z
G

ehAdg.�/;�i dg;

where �;� 2 bC, and dg is the normalized Haar measure on G. Then we can rewrite ��1 .�;H/ as

�
�
1 .�;H/D

i jP j
Q
˛2P h˛; �C �iQ
˛2P h˛; �i

Z
G

eih�C�;Adg.H/i dg:

Note that
i jP j

Q
˛2P h˛; �C �iQ
˛2P h˛; �i

is a polynomial in � 2ƒ of degree jP j D d�r
2

. Also, as jH j. 1
N

, we have jAdg.H/j. 1
N

uniformly in
g 2G, which implies that the integral

f .�/D

Z
G

eih�C�;Adg.H/i dg

as a function in � is a pseudopolynomial of degree 0, uniformly in jH j. 1
N

. Then by the Leibniz rule,
�0.�;H/ as a function of � is a pseudopolynomial of degree d�r

2
, uniformly in jH j. 1

N
. This finishes

the proof of Lemma 7.10.

Remark 7.17. Note that Lemma 7.10 can be stated purely in terms of an integral root system without
mentioning the ambient compact Lie group, and it still holds true this way. It can be seen either by the
approach via BGG-Demazure operators, which is purely a root-system-theoretic argument, or by the fact
that, for any integral root system ˆ, there associates to it a unique compact simply connected semisimple
Lie group equipped with this root system; thus the approach via Harish-Chandra’s integral formula still
works, even though the argument explicitly involves the group.

7D. From the weight lattice to the root lattice. We say expH is a corner in the maximal torus provided

 1
2�
h˛;H i



D 0 for all ˛ 2 P:

In this section, we extend Corollary 7.11 to the scenarios when expH is within a distance of . 1
N

from
some corner. That is, when 

 1

2�
h˛;H i



. 1
N

for all ˛ 2 P: (7-37)
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To this end, we rewrite the Schrödinger kernel KN .t; x/ as a finite sum of exponential sums over the root
lattice:
KN .t;x/

DC
X
�2ƒ=�

X
�2�C�

e�it.j�j
2�j�j2/'

�
j�j2�j�j2

N 2

�Q
˛2P h˛;�iQ
˛2P h˛;�i

P
s2W .dets/eihs.�/;H iP
s2W .dets/eihs.�/;H i

DC
X
�2ƒ=�

X
�2�

e�it.j�C�j
2�j�j2/'

�
j�C�j2�j�j2

N 2

�Q
˛2P h˛;�C�iQ
˛2P h˛;�i

P
s2W .dets/eihs.�C�/;H iP
s2W .dets/eihs.�/;H i

; (7-38)

where C D eit j�j
2

=jW j.

Proposition 7.18. Let � be an element in the weight lattice ƒ and let

K
�
N .t; x/

D

X
�2�

e�it.j�C�j
2�j�j2/'

�
j�C�j2� j�j2

N 2

�Q
˛2P h˛; �C�iQ
˛2P h˛; �i

P
s2W .det s/eihs.�C�/;H iP
s2W .det s/eihs.�/;H i

; (7-39)

where x is conjugate to expH. Then

jK
�
N .t; x/j.

N d�p
q
�
1CN



 t
2�D
�
a
q



1=2��r (7-40)

for t
2�D
2Ma;q , uniformly for



 1
2�
h˛;H i



. 1
N

for all ˛ 2 P.

Using (7-38) and the finiteness of ƒ=� , we have the following corollary.

Corollary 7.19. Inequality (6-1) holds for the case when


 1
2�
h˛;H i



. 1
N

for all ˛ 2 P.

To prove Proposition 7.18, we first prove a variant of Lemma 7.10.

Lemma 7.20. Let

��.�;H/D

P
s2W .det s/eihs.�C�/;H i

e�ih�;H i
Q
˛2P .e

ih˛;H i� 1/
(7-41)

be defined as in Lemma 7.10. Assume in addition that � 2ƒ. Then ��.�;H/ as a function in � 2 � is a
pseudopolynomial of degree d�r

2
, uniformly in H such that



 1
2�
˛.H/



. 1
N

for all ˛ 2 P.

Proof. For all H 2 ib� such that


 1
2�
h˛;H i



 . 1
N

for all ˛ 2 P, by considering the dual basis of the
simple roots f˛1; : : : ; ˛rg, we can write

H DH1CH2 (7-42)

such that ˇ̌
1
2�
h˛i ;H1i

ˇ̌
D


 1
2�
h˛i ;H i



. 1
N
; i D 1; : : : ; r; (7-43)

and
h˛i ;H2i 2 2�Z; i D 1; : : : ; r: (7-44)

This implies that expH2 is a corner and
jH1j. 1

N
: (7-45)
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Then for � 2 � D Z˛1C � � �CZ˛r ,

��.�;H/D ��.�;H1CH2/D

P
s2W .det s/eihs.�C�/;H1ieihs.�/;H2i

e�ih�;H1CH2i
Q
˛2P .e

ih˛;H1i� 1/
: (7-46)

Note that, see Corollary 4.13.3 in [Varadarajan 1974], s.�/�� 2 � for all � 2 ƒ and s 2 W , which
combined with (7-44) implies

eihs.�/;H2i D eih�;H2i for all � 2ƒ; s 2W:

Then (7-46) becomes

��.�;H/D
eih�;H2i

e�ih�;H2i
�

P
s2W .det s/eihs.�C�/;H1i

e�ih�;H1i
Q
˛2P .e

ih˛;H1i� 1/
D eih�C�;H2i ���.�;H1/; (7-47)

which is a pseudopolynomial in � 2 � of degree d�r
2

uniformly in jH1j. 1
N

by Lemma 7.10. �

Proof of Proposition 7.18. Since
Q
˛2P h˛; �C�i is a polynomial, and thus also a pseudopolynomial in �

of degree jP jD d�r
2

, and ��.�;H/ is a pseudopolynomial of degree d�r
2

uniformly in


 1
2�
h˛;H i



. 1
N

for all ˛ 2 P by the previous lemma,

f .�/D

Q
˛2P h˛; �C�iQ
˛2P h˛; �i

���.�;H/

is then a pseudopolynomial of degree d � r uniformly in


 1
2�
h˛;H i



 . 1
N

for all ˛ 2 P. Then the
desired result comes from a direct application of Lemma 7.4. �

Example 7.21. We specialize the discussion in this section to the case G D SU.2/. Recall that ƒD Zw,
� D Z˛ with ˛ D 2w; thus ƒ=� Š f0; 1g �w. (7-38) specializes to

KN .t; �/D
1
2
eit .K0N .t; �/CK

1
N .t; �//;

where

K0N D
X
mD2k
k2Z

e�itm
2

'

�
m2� 1

N 2

�
m �

eim� � e�im�

ei� � e�i�
;

K1N D
X

mD2kC1
k2Z

e�itm
2

'

�
m2� 1

N 2

�
m �

eim� � e�im�

ei� � e�i�

for � 2 R=2�Z. Condition (7-37) specializes to


 �
�



 . 1
N

. Write � D �1C �2, where j�1j . 1
N

, and
�2 D 0; � . Then for mD 2k, k 2 Z,

�m.�/D
1

e�i� .ei2�1 � 1/
� .eim�1 � e�im�1/

D
1

e�i� .ei2�1 � 1/
�

1X
nD0

in

nŠ
..m�1/

n
� .�m�1/

n/

D
�1

e�i� .ei2�1 � 1/
�

X
n odd

in

nŠ
.2�n�11 mn/; (7-48)
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and similarly for mD 2kC 1, k 2 Z,

�m.�/D
ei�2�1

e�i� .ei2�1 � 1/
�

X
n odd

in

nŠ
.2�n�11 mn/:

Note that we are implicitly applying Proposition 7.14 so that

fn.�1/ WD .m�1/
n
� .�m�1/

n
D �1 � ıfn D

�
�1 � 2�

n�1
1 mn; n odd;

0; n even:

If jkj.N, then it is clear that

jDL�2kj.N 1�L; jDL�2kC1j.N 1�L; L 2 Z�0;

where D is the difference operator with respect to the variable k. These two inequalities will give the
desired estimates for K0N and K1N respectively using the Weyl sum estimate Lemma 7.4 in one dimension.

7E. Root subsystems. To finish the proof of part (ii) of Theorem 6.2, considering Corollaries 7.8 and 7.19,
it suffices to prove (6-1) in the scenarios when expH is away from all the corners by a distance of & 1

N

but stays close to some cell walls within a distance of. 1
N

. We will identify these other walls as belonging
to a root subsystem of the original root system ˆ, and then we will decompose the character, the weight
lattice and thus the Schrödinger kernel according to this root subsystem.

7E.1. Identifying root subsystems and rewriting the character. Given any H 2 ib�, let QH be the subset
of the set ˆ of roots defined by

QH WD
˚
˛ 2ˆ

ˇ̌ 

 1
2�
h˛;H i



� 1
N

	
:

Thus
ˆ nQH D

˚
˛ 2ˆ

ˇ̌ 

 1
2�
h˛;H i



> 1
N

	
:

Define
ˆH WD f˛ 2ˆ j ˛ lies in the Z-linear span of QH g: (7-49)

Then ˆH �QH , and 

 1
2�
h˛;H i



. 1
N

for all ˛ 2ˆH ; (7-50)

with the implicit constant independent of H, and

 1
2�
h˛;H i



> 1
N

for all ˛ 2ˆ nˆH : (7-51)

Note that ˆH is Z-closed in ˆ; that is, no element in ˆ nˆH lies in the Z-linear span of ˆH .

Proposition 7.22. ˆH is an integral root system.

Proof. We check the requirements for an integral root system listed on page 1182. Parts (ii) and (iv) are
automatic from the fact that ˆH is a subset of ˆ. Part (i) comes from the fact that ˆH is a Z-linear space.
Part (iii) follows from the fact that s˛ˇ is a Z-linear combination of ˛ and ˇ for all ˛; ˇ 2ˆH , and the
fact that ˆH is a Z-linear space. �
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Then we say that ˆH is a root subsystem of ˆ.
Let WH be the Weyl group of ˆH . WH is generated by reflections s˛ for ˛ 2 ˆH and WH is a

subgroup of the Weyl group W of ˆ. Let P be a positive system of roots of ˆ and PH D P \ˆH . Then
PH is a positive system of roots of ˆH . We rewrite the Weyl character as

�� D

P
s2W .det s/eihs.�/;H i

e�ih�;H i
Q
˛2P .e

ih˛;H i� 1/

D
.1=jWH j/

P
sH2WH

P
s2W .det.sH s//eih.sH s/.�/;H i

e�ih�;H i
�Q

˛2PnPH
.eih˛;H i� 1/

��Q
˛2PH

.eih˛;H i� 1/
�

D
1

jWH je�ih�;H i
Q
˛2PnPH

.eih˛;H i� 1/

X
s2W

.det s/ �

P
sH2WH

.det sH /eihsH .s.�//;H iQ
˛2PH

.eih˛;H i� 1/

D C.H/
X
s2W

.det s/ �

P
sH2WH

.det sH /eihsH .s.�//;H iQ
˛2PH

.eih˛;H i� 1/
; (7-52)

where

C.H/ WD
1

jWH je�ih�;H i
Q
˛2PnPH

.eih˛;H i� 1/
: (7-53)

Then by (7-51),

jC.H/j.N jPnPH j: (7-54)

Let VH be the R-linear span of ˆH in V D ib� and let H k be the orthogonal projection of H on VH .
Let H? DH �H k. Then H? is orthogonal to VH and we have

�� D C.H/
X
s2W

.det s/ �

P
sH2WH

.det sH / eihsH .s.�//;H
?CHkiQ

˛2PH
.eih˛;H

?CHki� 1/

D C.H/
X
s2W

.det s/ �

P
sH2WH

.det sH /eihs.�/;sH .H
?/ieihsH .s.�//;H

kiQ
˛2PH

.eih˛;H
ki� 1/

: (7-55)

Note that since H? is orthogonal to every root in ˆH , H? is fixed by s˛ for any ˛ 2ˆH , which in turn
implies that H? is fixed by any sH 2WH ; that is, sH .H?/DH?. Then

�� D C.H/
X
s2W

.det s/ �

P
sH2WH

.det sH /eihs.�/;H
?ieihsH .s.�//;H

kiQ
˛2PH

.eih˛;H
ki� 1/

D C.H/
X
s2W

.det s/ � eihs.�/;H
?i
�

P
sH2WH

.det sH /eihsH .s.�//;H
kiQ

˛2PH
.eih˛;H

ki� 1/
: (7-56)

Note that by the definition of H k, we have

 1
2�
h˛;H ki



. 1
N

for all ˛ 2ˆH : (7-57)
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This means that expH k is a corner in the maximal torus of the compact semisimple Lie group associated
to the integral root system ˆH .

Using the above formula, we rewrite the Schrödinger kernel (7-11) as

KN .t; x/D
C.H/eit j�j

2�Q
˛2P h˛; �i

�
jW j

X
s2W

.det s/ �KN;s.t; x/; (7-58)

where

KN;s.t; x/D
X
�2ƒ

eihs.�/;H
?i�it j�j2'

�
j�j2� j�j2

N 2

��Y
˛2P

h˛; �i

�P
sH2WH

.det sH /eihsH .s.�//;H
kiQ

˛2PH
.eih˛;H

ki� 1/
:

Noting that for any s 2W , js.�/j D j�j,
Q
˛2P h˛; s.�/i D .det s/

Q
˛2P h˛; �i by Proposition 7.13, and

s.ƒ/Dƒ, we have

KN;s.t; x/D .det s/KN;1.t; x/;

where 1 is the identity element in W . Then (7-58) becomes

KN .t; x/D
C.H/eit j�j

2�Q
˛2P h˛; �i

�KN;1.t; x/: (7-59)

Proposition 7.23. Recall that

KN;1.t; x/D
X
�2ƒ

eih�;H
?i�it j�j2'

�
j�j2� j�j2

N 2

��Y
˛2P

h˛; �i

�P
sH2WH

.det sH /eihsH .�/;H
kiQ

˛2PH
.eih˛;H

ki� 1/
: (7-60)

Then

jKN;1.t; x/j.
N d�jPnPH j�p

q
�
1CN

ˇ̌
t

2�D
�
a
q

ˇ̌1=2��r (7-61)

for t
2�D
2Ma;q , uniformly in x 2G.

Noting (7-54) and (7-59), the above proposition implies part (ii) of Theorem 6.2.

Example 7.24. Figure 1 is an illustration of the decomposition of the maximal torus of SU.3/ according
to the values of



 1
2�
h˛;H i



, ˛ 2ˆ. Here P Df˛1; ˛2; ˛3D˛1C˛2g. The three proper root subsystems
of ˆ are f˙˛ig, i D 1; 2; 3. The association of ˆH to H is as follows:

H 2 regions of color () ˆH Dˆ;

H 2 regions of color () ˆH D f˙˛1g;

H 2 regions of color () ˆH D f˙˛2g;

H 2 regions of color () ˆH D f˙˛3g;

H 2 regions of color () ˆH D∅:
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2�
2˛1
h˛1;˛1i

2�
2˛3
h˛3;˛3i

2�
2˛2
h˛2;˛2i

HH k

H?
�

1
N

Figure 1. Decomposition of the maximal torus of SU.3/ according to the values of

 1
2�
h˛;H i



, ˛ 2�.

7E.2. Decomposition of the weight lattice. To prove Proposition 7.23, we will make a decomposition of
the weight lattice ƒ according to the root subsystem ˆH . First, we have the following lemma about root
subsystems. Let ProjU denote the orthogonal projection map from the ambient inner product space onto
the subspace U.

Lemma 7.25. Let ˆ be an integral root system in the space V with the associated weight lattice ƒˆ. Let
‰ be a root subsystem of ˆ. Then let �‰ and ƒˆ be the root lattice and weight lattice associated to ‰
respectively. Let V‰ be the R-linear span of ‰ in V . Let ‡‰ be the image of the orthogonal projection of
ƒˆ onto V‰. Then the following statements hold true:

(1) ‡‰ is a lattice and �‰ � ‡‰ �ƒ‰. In particular, the rank of ‡‰ equals the rank of �‰ as well
as ƒ‰.

(2) Let the ranks of ‡‰ and ƒˆ be r and R respectively. Let fw1; : : : ; wrg be a basis of ‡‰. Pick
any fu1; : : : ; urg �ƒˆ such that ProjV‰.ui /D wi , i D 1; : : : ; r . Then we can extend fu1; : : : ; urg
into a basis fu1; : : : ; ur ; urC1; : : : ; uRg of ƒˆ. Furthermore, we can pick furC1; : : : ; uRg such that
ProjV‰.ui /D 0 for i D r C 1; : : : ; R.
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Proof. (1) It’s clear that ‡‰ is a lattice. Let �ˆ be the root lattice associated to ˆ. Then �‰ � �ˆ. Thus

�‰ D ProjV‰.�‰/� ProjV‰.�ˆ/� ProjV‰.ƒˆ/D ‡‰:

On the other hand, for any � 2ƒˆ, ˛ 2 �‰, we have hProjV‰.�/; ˛i D h�; ˛i. This in particular implies

2
hProjV‰.�/; ˛i
h˛; ˛i

D 2
h�; ˛i

h˛; ˛i
2 Z for all � 2ƒˆ; ˛ 2 �‰:

This implies ProjV‰.�/ 2ƒ‰ for all � 2ƒˆ; that is, ‡‰ D ProjV‰.ƒˆ/�ƒ‰.

(2) Let Sˆ WD Zu1C� � �CZur ; then Sˆ is a sublattice of ƒˆ of rank r . By the theory of modules over a
principal ideal domain, there exists a basis fu01; : : : ; u

0
Rg of ƒˆ and positive integers d1jd2j � � � jdr such

that fd1u01; : : : ; dru
0
rg is a basis of Sˆ. Then we must have d1 D d2 D � � � D dr D 1, since

Zd1 ProjV‰.u
0
1/C � � �CZdr ProjV‰.u

0
r/D ProjV‰.Sˆ/

D ProjV‰.ƒˆ/� Z ProjV‰.u
0
1/C � � �CZ ProjV‰.u

0
r/ (7-62)

and u01; : : : ; u
0
r are R-linear independent. Thus we have

Sˆ D Zu1C � � �CZur D Zu01C � � �CZu0r

and then fu1; : : : ; ur ; u0rC1; : : : ; u
0
Rg is also a basis ofƒˆ. Furthermore, by adding a Z-linear combination

of u1; : : : ; ur to each of u0rC1; : : : ; u
0
R, we can assume that ProjV‰.u

0
i /D 0 for i D r C 1; : : : ; R. �

We apply the above lemma to the root subsystem ˆH of ˆ. Let V D ib�, VH be the R-linear span of
ˆH in V , �H be the root lattice for ˆH , and let

‡H WD ProjVH .ƒ/: (7-63)

Then by the above lemma, we have
‡H � �H : (7-64)

Let rH be the rank of ˆH as well as of �H and ‡H , and let fw1; : : : ; wrH g � ‡H such that

‡H D Zw1C � � �CZwrH :

Pick fu1; : : : ; urH g �ƒ such that

ProjVH .ui /D wi ; i D 1; : : : ; rH :

Then by the above lemma, we can extend fu1; : : : ; urH g into a basis fu1; : : : ; urg of ƒ such that

ProjVH .ui /D 0; i D rH C 1; : : : ; r; (7-65)

with
ƒD Zu1C � � �CZur :

Set
‡ 0H D Zu1C � � �CZurH �ƒ:
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Then
ProjVH W ‡

0
H �!
� ‡H :

Recalling (7-64), let � 0H be the sublattice of ‡ 0H corresponding to �H � ‡H under this isomorphism.
More precisely, let f˛1; : : : ; ˛rH g be a simple system of roots for �H ; then

ProjVH W �
0
H D Z˛01C � � �CZ˛0rH �!

� �H D Z˛1C � � �CZ˛rH ; ˛0i 7! ˛i ; i D 1; : : : ; rH ; (7-66)

and we have
‡ 0H=�

0
H Š ‡H=�H ; j‡

0
H=�

0
H j D j‡H=�H j<1: (7-67)

Decomposing the weight lattice as

ƒD
G

�2‡ 0H =�
0
H

.�C� 0H CZurHC1C � � �CZur/;

we have

KN;1.t; x/D
X

�2‡ 0H =�
0
H

�01Dn1˛
0
1C���CnrH ˛

0
rH

�2DnrHC1urHC1C���Cnrur

eih�C�
0
1C�2;H

?i�it j�C�01C�2j
2

'

�
j�C�01C�2j

2� j�j2

N 2

�

�

�Y
˛2P

h˛;�C�01C�2i

�P
sH2WH

.det sH /eihsH .�C�
0
1C�2/;H

kiQ
˛2PH

.eih˛;H
ki� 1/

: (7-68)

Note that (7-65) implies for �2 D nrHC1urHC1C � � �Cnrur that

hsH .�2/;H
k
i D h�2; sH .H

k/i D 0;

and (7-66) implies for �01 D n1˛
0
1C � � �CnrH˛

0
rH

that

hsH .�
0
1/;H

k
i D h�01; sH .H

k/i D h�1; sH .H
k/i D hsH .�1/;H

k
i;

where �1 D n1˛1C � � �CnrH˛rH 2 VH . Similarly, also note that

hsH .�/;H
k
i D hsH .�

k/;H ki; where �k WD ProjVH .�/:

Thus we write

KN;1.t;x/D
X

�2‡ 0H =�
0
H

X
�01Dn1˛

0
1C���CnrH ˛

0
rH

�1Dn1˛1C���CnrH ˛rH
�2DnrHC1urHC1C���Cnrur

eih�C�
0
1C�2;H

?i�it j�C�01C�2j
2

'

�
j�C�01C�2j

2�j�j2

N 2

�

�

�Y
˛2P

h˛;�C�01C�2i

�P
sH2WH

.detsH /eihsH .�
kC�1/;H

kiQ
˛2PH

.eih˛;H
ki�1/

: (7-69)

Remark 7.26. We have that in the above formula

��
k

.�1;H
k/ WD

P
sH2WH

.det sH /eihsH .�
kC�1/;H

kiQ
˛2PH

.eih˛;H
ki� 1/
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is a character of the form (7-41). Also note that �k 2 ProjVH .ƒ/ lies in the weight lattice ƒH of ˆH by
Lemma 7.25.

Noting (7-67), Proposition 7.23 reduces to the following.

Proposition 7.27. For � 2 ‡ 0H=�
0
H , let

K
�
N;1.t;x/ WD

X
�01Dn1˛

0
1C���CnrH ˛

0
rH

�1Dn1˛1C���CnrH ˛rH
�2DnrHC1urHC1C���Cnrur

n1;:::;nr2Z

eih�C�
0
1C�2;H

?i�it j�C�01C�2j
2

'

�
j�C�01C�2j

2�j�j2

N 2

�

�

�Y
˛2P

h˛;�C�01C�2i

�P
sH2WH

.detsH /eihsH .�
kC�1/;H

kiQ
˛2PH

.eih˛;H
ki�1/

: (7-70)

Then

jK
�
N;1.t; x/j.

N d�jPnPH j�p
q
�
1CN

ˇ̌
t

2�D
�
a
q

ˇ̌1=2��r (7-71)

for t
2�D
2Ma;q , uniformly in x 2G.

Proof. We apply Lemma 7.4 to the lattice Z˛01C � � �CZ˛0rH CZurHC1C � � �CZur . Write

��
k

.�1;H
k/D

P
sH2WH

.det sH /eihsH .�
kC�1/;H

kiQ
˛2PH

.eih˛;H
ki� 1/

:

Then it suffices to show thatˇ̌̌̌
Di1 � � �Dik

�Y
˛2P

h˛;�C�01C�2i�
�k.�1;H

k/

�ˇ̌̌̌
.N d�jPnPH j�r�k

for 1� i1; : : : ; ik � r ,
�01 D n1˛

0
1C � � �CnrH˛

0
rH
;

�1 D n1˛1C � � �CnrH˛rH ;

�2 D nrHC1urHC1C � � �Cnrur ;

uniformly in jni j . N, i D 1; : : : ; r . Since
Q
˛2P h˛;�C �

0
1C �2i is a polynomial and thus a pseu-

dopolynomial of degree jP j, it suffices to show that

jDi1 � � �Dik .�
�k.�1;H

k//j.N d�jPnPH j�r�jP j�k DN jPH j�k : (7-72)

Since �.�1/ does not involve the variables nrHC1; : : : ; nr , it suffices to prove (7-72) for 1� i1; : : : ; ik�rH
uniformly in j�1j . N. But this follows by applying Lemma 7.20 to the root system ˆH , noting
Remark 7.26. �
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7F. Lp estimates. We prove in this section Lp.G/ estimates of the Schrödinger kernel for p < 1.
Though we do not apply them to the proof of the main theorem, they encapsulate the essential ingredients
in the proof of the L1.G/-estimate and are of independent interest.

Proposition 7.28. Let KN .t; x/ be the Schrödinger kernel as in Theorem 6.1. Then for any p > 3, we
have

kKN .t; � /kLp.G/ .
N d�d

p�p
q
�
1CN



 t
2�D
�
a
q



 12 ��r (7-73)

for t
2�D
2Ma;q .

Proof. As a linear combination of characters, the Schrödinger kernel KN .t; � / is a central function. Then
we can apply to it the Weyl integration formula (4-16)

kKN .t; � /k
p

Lp.G/
D

1

jW j

Z
B

jKN .t; b/j
p
jDP .b/j

2 db; (7-74)

whereB is the maximal torus with normalized Haar measure db. Recall that we can parametrizeBD exp b
by H 2 ib� Š b, and write

B Š ib�=.2�Z˛_1 C � � �C 2�Z˛_r /D Œ0; 2�/˛
_
1 C � � �C Œ0; 2�/˛

_
r ; (7-75)

where f˛_i D 2˛i=h˛i ; ˛i i j i D 1; : : : ; rg is the set of simple coroots associated to a system of simple
roots f˛i j i D 1; : : : ; rg.

We have shown in Section 7E that each H 2 ib� is associated to a root subsystem ˆH such that (7-50)
and (7-51) hold. Note that there are finitely many root subsystems of a given root system; thus B is
covered by finitely many subsets R of the form

RD
˚
H 2 B

ˇ̌ 

 1
2�
h˛;H i



. 1
N

for all ˛ 2‰;


 1
2�
h˛;H i



> 1
N

for all ˛ 2ˆ n‰
	
; (7-76)

where ‰ is a root subsystem of ˆ. Thus to prove (7-73), using (7-74), it suffices to showZ
R

jKN .t; expH/jpjDp.expH/j2 dH .

 
N d�p

q
�
1CN



 t
2�D
�
a
q



1=2��r
!p
N�d : (7-77)

By (7-54), (7-59) and (7-61), we have

KN .t; expH/.
1Q

˛2PnQ.e
ih˛;H i� 1/

�
N d�jPnQj�p

q
�
1CN

ˇ̌
t

2�D
�
a
q

ˇ̌1=2��r ;
where P;Q are respectively the sets of positive roots of ˆ and ‰ with P �Q. Recalling DP .expH/DQ
˛2P .e

ih˛;H i� 1/, (7-77) is then reduced toZ
R

ˇ̌̌̌
1Q

˛2PnQ.e
ih˛;H i� 1/

ˇ̌̌̌p�2 ˇ̌̌̌ Y
˛2Q

.eih˛;H i� 1/

ˇ̌̌̌2
dH .NpjPnQj�d :

Using
jeih˛;H i� 1j.



 1
2�
h˛;H i



. jeih˛;H i� 1j;
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it suffices to showZ
R

ˇ̌̌̌
1Q

˛2PnQ



 1
2�
h˛;H i




ˇ̌̌̌p�2 ˇ̌̌̌ Y

˛2Q



 1
2�
h˛;H i



ˇ̌̌̌2 dH .NpjPnQj�d : (7-78)

For each H 2 B , we write
H DH 0CH0

such that 

 1
2�
h˛;H i



D ˇ̌ 1
2�
h˛;H 0i

ˇ̌
; h˛;H0i 2 2�Z for all ˛ 2 P:

We write
R �

[
H02B

h˛;H0i22�Z;8˛2P

R0CH0; (7-79)

where

R0 D
˚
H 2 B

ˇ̌ ˇ̌
1
2�
h˛;H i

ˇ̌
. 1
N

for all ˛ 2Q;
ˇ̌
1
2�
h˛;H i

ˇ̌
> 1
N

for all ˛ 2 P nQ
	
: (7-80)

Note that h˛; ˛_i i 2Z for all ˛ 2P and i D 1; : : : ; r due to the integrality of the root system; using (7-75),
we have that there are only finitely many H0 2 B such that h˛;H0i 2 2�Z for all ˛ 2 P. Thus using
(7-79), (7-78) is further reduced toZ

R0

ˇ̌̌̌
1Q

˛2PnQ

ˇ̌
1
2�
h˛;H i

ˇ̌ ˇ̌̌̌p�2 ˇ̌̌̌ Y
˛2Q

ˇ̌
1
2�
h˛;H i

ˇ̌ˇ̌̌̌2
dH .NpjPnQj�d : (7-81)

Now we reparametrize B Š Œ0; 2�/˛_1 C � � �C Œ0; 2�/˛
_
r by

H D

rX
iD1

tiwi ; .t1; : : : ; tr/ 2D;

where fwi j i D 1; : : : ; rg are the fundamental weights such that h˛i ; wj i D ıij j˛i j2=2, i; j D 1; : : : ; r ,
and D is a bounded domain in Rr. Then the normalized Haar measure dH equals

dH D Cdt1 � � � dtr

for some constant C. Let s � r such that

f˛1; : : : ; ˛sg � P nQ;

f˛sC1; : : : ; ˛rg �Q:

Using (7-80), we estimateZ
R0

ˇ̌̌̌
1Q

˛2PnQ

ˇ̌
t 1
2�
h˛;H i

ˇ̌ ˇ̌̌̌p�2 ˇ̌̌̌ Y
˛2Q

ˇ̌
1
2�
h˛;H i

ˇ̌ˇ̌̌̌2
dH

.
Z
R0

1

jt1 � � � tsjp�2
N .p�2/.jPnQj�s/N�2jQj dt1 � � � dtr

.N .p�2/.jPnQj�s/N�2jQj
Z
jt1j;:::;jts j&

1
N

jtsC1j;:::;jtr j.
1
N

1

jt1 � � � tsjp�2
dt1 � � � dtr : (7-82)
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If p > 3, the above is bounded by

.N .p�2/.jPnQj�s/N�2jQjN s.p�3/�.r�s/
DNpjPnQj�d ;

noting that 2jP nQjC 2jQjC r D 2jP jC r D d . �
Remark 7.29. The requirement p > 3 is by no means optimal. The estimate in (7-82) may be improved
to lower the exponent p. We conjecture that (7-73) holds for all p > pr such that limr!1 pr D 2, where
r is the rank of G.
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