msp



ANALYSIS AND PDE
Vol. 13, No. 4, 2020

dx.doi.org/10.2140/apde.2020.13.1173

STRICHARTZ ESTIMATES FOR THE SCHRODINGER FLOW
ON COMPACT LIE GROUPS

YUNFENG ZHANG

We establish scale-invariant Strichartz estimates for the Schrodinger flow on any compact Lie group
equipped with canonical rational metrics. In particular, full Strichartz estimates without loss for some non-
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1. Introduction

We start with a complete Riemannian manifold (M, g) of dimension d, associated to which are the
Laplace-Beltrami operator Ag and the volume-form measure pg. Then it is well known that Ag is
essentially self-adjoint on L2(M) := L*(M,dug); see [Strichartz 1983] for a proof. This gives the
functional calculus of Ag, and in particular gives the one-parameter unitary operator e!*As which provides
the solution to the linear Schrodinger equation on (M, g). We refer to !B as the Schridinger flow. The
functional calculus of Ag also gives the definition of the Bessel potentials, and thus the definition of the
Sobolev space

H (M) :={u e L>(M) | |ullgsary := I = A)2ull 2 ary < 00}
We are interested in obtaining estimates of the form
e 8 flloLraxmry < CILf as s (1-1)
MSC2010: primary 42B37; secondary 22E30.
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where I C R is a fixed time interval, and L? L9(I x M) is the space of L? functions on / with values
in L4(M). Such estimates are often called Strichartz estimates (for the Schrodinger flow), in honor of
Robert Strichartz [1977] who first derived such estimates for the wave equation on Euclidean spaces.

The significance of Strichartz estimates is evident in many ways. Strichartz estimates have important
applications in the field of nonlinear Schrddinger equations, in the sense that many perturbative results
often require good control on the linear solution, which is exactly provided by Strichartz estimates.
Strichartz estimates can also be interpreted as Fourier restriction estimates, which play a fundamental rule
in the field of classical harmonic analysis. Furthermore, the relevance of the distribution of eigenvalues
and the norm of eigenfunctions of A in deriving the estimates makes Strichartz estimates also a subject
in the field of spectral geometry.

Many cases of Strichartz estimates for the Schrodinger flow are known in the literature. For noncompact
manifolds, first we have the sharp Strichartz estimates on the Euclidean spaces obtained in [Ginibre and
Velo 1995; Keel and Tao 1998]:

le"™® fllLr Lo@xray < CIf IL2@as (1-2)

where % + % = %, p,.q4>2, (p,q,d) # (2,00,2). Such pairs (p, q) are called admissible. This implies
by Sobolev embedding that

||€itAf||LPLr(Rde) < Cllf | as ey (1-3)
where
d 2 d
s = 275 r >0, (1-4)

p,q9>2, (p,r,d) # (2,00,2). Note that the equality in (1-4) can be derived from a standard scaling
argument, and we call exponent triples (p, r, s) that satisfy (1-4) as well as the corresponding Strichartz
estimates scale-invariant. Similar Strichartz estimates hold on many noncompact manifolds. For example,
see [Anker and Pierfelice 2009; Banica 2007; Ionescu and Staffilani 2009; Pierfelice 2006] for Strichartz
estimates on the real hyperbolic spaces, [Anker et al. 2011; Pierfelice 2008; Banica and Duyckaerts
2007] for Damek-Ricci spaces which include all rank-1 symmetric spaces of noncompact type, [Bouclet
2011] for asymptotically hyperbolic manifolds, [Hassell et al. 2006] for asymptotically conic manifolds,
[Bouclet and Tzvetkov 2008; Staffilani and Tataru 2002] for some perturbed Schrédinger equations on
Euclidean spaces, and [Fotiadis et al. 2018] for symmetric spaces G/ K, where G is complex.

For compact manifolds, however, Strichartz estimates such as (1-2) are expected to fail. The Sobolev
exponent s in (1-1) is expected to be positive for (1-1) to possibly hold. And we also expect sharp
Strichartz estimates that are non-scale-invariant, in the sense that the exponents (p, r, s) in (1-1) satisfy

For example, from the results in [Staffilani and Tataru 2002; Burq et al. 2004], we know that on a general
compact Riemannian manifold (M, g) it holds that, for any finite interval 1,

€72 fllzorrrxan = CILf g .
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for all admissible pairs (p, r). These estimates are non-scale-invariant, and the special case of which
when (p,r,s) = (2, dz—fz, %) can be shown to be sharp on spheres of dimension d > 3 equipped with
canonical Riemannian metrics. On the other hand, scale-invariant estimates are out of reach of the local
methods employed in [Staffilani and Tataru 2002; Burg et al. 2004], and they are not well explored yet in
the literature. To my best knowledge, the only known results in the literature in this direction are on Zoll
manifolds, which include all compact symmetric spaces of rank 1, the standard sphere being a typical

example, and on rectangular tori. We summarize the results here. Consider the scale-invariant estimates

||eitAgf||LP(1xM) = C”f”Hd/z—(dJrz)/p(M)- (1-6)

In the direction of Zoll manifolds, (1-6) is first proved in [Burq et al. 2007] for the standard three-sphere
for p = 6. Then in [Herr 2013], (1-6) is proved for all p > 4 for any three-dimensional Zoll manifold, but
the methods employed in that paper in fact prove (1-6) for p > 4 for any Zoll manifold with dimension
d > 3 and for p > 6 for any Zoll surface (d = 2). The paper crucially uses the property of Zoll manifolds
that the spectrum of the Laplace—Beltrami operator is clustered around a sequence of squares, and the
spectral cluster estimates [Sogge 1988] which are optimal on spheres. In the direction of tori, (1-6) was

2(d+4)
—ad

first proved in [Bourgain 1993] for p > on square tori, by interpolating the distributional Strichartz

estimate
Jopd(t,x) € Tx T | [e"Bsg(NT28g) ()] > 247 < CN ™57 | fll 2
< Cll fllgarz—@+2/pay (1-7)
for A > N9/ 4. p> @, N > 1, with the trivial subcritical Strichartz estimate
le" ¢ fll2axray < CIf leaa)- (1-8)

The estimate (1-7) is a consequence of an arithmetic version of dispersive estimates:

d
. N
/25 p(N "2 Ag) oo qray < C( 1 ) 1/ It craye (1-9)
/2 (T4)
Va(l+ N[z =2[")
where || - || stands for the distance from O on the standard circle with length 1, % — %” < qLN’ a,q are

nonnegative integers with a < ¢ and (a,¢q) = 1, and ¢ < N. Here T is the period for the Schrodinger
flow e!?22. Then in [Bourgain 2013], the author improved (1-8) into a stronger subcritical Strichartz
estimate

||eitAgf||L2(d+1)/d(1><qyd) < Cl fllz2cray (1-10)

which yields (1-6) for p > @. Eventually, (1-6) with an e-loss is proved for the full range p > W

in [Bourgain and Demeter 2015], and (1-7) can be used to remove this &-loss. Then authors in [Guo et al.
2014; Killip and Visan 2016] extended the results to all rectangular tori. We will see in this paper that
by a slight adaptation of the methods in [Bourgain 1993], we may generalize (1-7) to all rational (not
necessarily rectangular) tori T4 = R4 /T, where I' 79 is a lattice such that there exists some D #0
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for which (A, u) € D~1Z for all A, u € ', which can also be used for the removal of the s-loss of the
results in [Bourgain and Demeter 2015] to yield (1-6) for the full range p > @ on such rational tori.

The understanding of Strichartz estimates on compact manifolds is far from complete. It is not known
in general how the exponents (p, r, s) in the sharp Strichartz estimates are related to the geometry and
topology of the underlying manifold. Also, there still are important classes of compact manifolds on
which Strichartz estimates have not been explored yet. Note that both standard tori and spheres on
which Strichartz estimates are known are special cases of compact globally symmetric spaces, and since
all compact globally symmetric spaces share the same behavior of geodesic dynamics as tori, from a
semiclassical point of view, it’s natural to conjecture that similar Strichartz estimates should hold on
general compact globally symmetric spaces. An important class of such spaces is the class of compact
Lie groups. The goal of this paper is to prove scale-invariant Strichartz estimates of the form (1-6) for
M = G being any connected compact Lie group equipped with a canonical rational metric in the sense

2(r+4)
=S

that is described below, for all p > , 1 being the rank of G. In particular, full Strichartz estimates

without loss for some nonrectangular tori will be given.

2. Statement of the main theorem

2A. Rational metric. Let G be a connected compact Lie group and g be its Lie algebra. By the classifi-
cation theorem of connected compact Lie groups, see [Procesi 2007, Chapter 10, Section 7.2, Theorem 4],
there exists an exact sequence of Lie group homomorphisms

1> A->G2T"xK -G —1,

where T” is the n-dimensional torus, K is a compact simply connected semisimple Lie group, and A4 is a
finite and central subgroup of the covering group G. Asa compact simply connected semisimple Lie
group, K is a direct product K; x K, x --- x K3, of compact simply connected simple Lie groups.

Now each K; is equipped with the canonical bi-invariant Riemannian metric g; that is induced from
the negative of the Cartan—Killing form. We use (-,-) to denote the Cartan—Killing form. Then we
equip the torus factor T” with a flat metric g¢ inherited from its representation as the quotient R” /27T
and require that there exists some D € N such that (A, u) € D717 for all A, u € T'. Then we equip
G=T"x K x .-+ x K, with the bi-invariant metric

m
g=Q B¢ (2-1)
j=0
Bj >0, j =0,...,m. Then g induces a bi-invariant metric g on G.

Definition 2.1. Let g be the bi-invariant metric induced from g in (2-1) as described above. We call g a
rational metric provided the numbers By, . . ., B, are rational multiples of each other. If not, we call it an
irrational metric.

Provided the numbers By, ..., Bm are rational multiples of each other, the periods of the Schrodinger

flow ¢!z on each factor of G are rational multiples of each other, which implies that the Schrodinger

flow on (~}, as well as on G, is also periodic (see Section 5).
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2B. Main theorem. We define the rank of G to be the dimension of any of its maximal torus. This paper
mainly proves the following theorem.

Theorem 2.2. Let G be a connected compact Lie group equipped with a rational metric g. Let d be the
dimension of G and r the rank of G. Let I C R be a finite time interval. Consider the scale-invariant
Strichartz estimate

le" 2% flliLrrxay < C Il f | grarz—wa+210(G)- (2-2)
Then the following statements hold true:
(i) (2-2) holds forall p > 2+ .

(ii) Let G = T4 be a flat torus equipped with a rational metric; that is, we can write T4 = R4 /2nl
such that there exists some D € R for which (A, u) € D™YZ forall A, u € T'. Then (2-2) holds for
allp>2+ 3.

The framework for the proof of this theorem will be based on [Bourgain 1993], in which the author
proves some Strichartz estimates for the case of square tori, based on the Hardy-Littlewood circle method.
We also refer to [Bourgain 1989] for applications of the circle method to Fourier restriction problems on
tori. Note that part (ii) of the above theorem provides full expected Strichartz estimates without loss for
some nonrectangular tori. We then have the following immediate corollary.

Corollary 2.3. Let d = 3,4 and let T% be the flat torus equipped with a rational metric (not necessarily
rectangular). Then the nonlinear Schrodinger equation i du; = —Au + |u |4/(d_2)u is locally well-posed
for initial data in HY(T?). Furthermore, for d = 3, we have i du; = —Au % |u|?u is locally well-posed
for initial data in HY/2(T9).

We refer to [Herr et al. 2011; Killip and Visan 2016] for the definition of local well-posedness and a
proof of this corollary.

Remark 2.4. To the best of my knowledge, the only known optimal range of p for (2-2) to hold is on
square tori T4, with p > 2 + % [Bourgain 1993], and on spheres S¢ (d > 3), with p > 4 [Burq et al.
2004; Herr 2013]. For a general compact Lie group, we do not yet have a conjecture about the optimal
range. We will prove (Theorem 6.2) the following distributional estimate: for any p > 2 + %,

itAg ) A—2 L 4442
Apit,x) € IXG [ e p(NTZAg) f(X)| > Aj7 <CN 2 7| fllL2(6) (2-3)

for all A > N4/277/4 [t seems reasonable to conjecture that the above distributional estimate could be
upgraded to the estimate (2-2) for all p > 2 + % (which is the case for the tori). But this still will not be
the optimal range for a general compact Lie group, by looking at the example of the three-sphere S3,
which is isomorphic to the group SU(2). The optimal range for S3 is p > 4, while Theorem 2.2 proves the
range p > 10, and the above conjecture indicates the range p > 6. Estimate (2-2) for S on the optimal
range p > 4 is proved in [Herr 2013] by crucially using the L?-estimates of the spectral clusters for the
Laplace—Beltrami operator [Sogge 1988], which are optimal on spheres. On tori and more generally
compact Lie groups with rank higher than 1, such spectral cluster estimates fail to be optimal and do
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not help provide the desired Strichartz estimates. On the other hand, the Stein—Tomas argument in our
proof of Theorem 2.2 seems only sensitive to the L.°°-estimate of the Schrodinger kernel (Theorem 6.1)
but not to the L?-estimate (as in Proposition 7.28). This failure of incorporating L?-estimates for either
the spectral clusters or the Schrodinger kernel may be one of the reasons why Theorem 2.2 is still a step
away from the optimal range.

2C. Organization of the paper. The organization of the paper is as follows. In Section 3, we will first
reduce the Strichartz estimates on G =~ G /A to the spectrally localized Strichartz estimates with respect
Littlewood-Paley projections of product type on the covering group G. In Section 4, we will review the
basic facts of structures and harmonic analysis on compact Lie groups, including the Fourier transform,
root systems, structure of maximal tori, Weyl’s character and dimension formulas, and the functional
calculus of the Laplace—Beltrami operator. In Section 5 we will explicitly write down the Schrodinger
kernel and interpret the Strichartz estimates as Fourier restriction estimates on the space-time, which
then makes applicable the argument of Stein—Tomas type in Section 6. Then comes the core of the
paper, Section 7, in which we will derive dispersive estimates for the Schrodinger kernel as the time
variable lies in major arcs. In Section 7A, we will estimate some Weyl-type exponential sums over the
so-called rational lattices, which in particular will imply the desired bound on the Schrédinger kernel
for the nonrectangular rational tori. In Section 7B, we will rewrite the Schrodinger kernel for compact
Lie groups into an exponential sum over the whole weight lattice instead of just one chamber of the
lattice, and will prove the desired bound on the kernel for the case when the variable in the maximal
torus stays away from all the cell walls by an application of the Weyl-type sum estimate established in
Section 7A. In Section 7C, we will record two approaches to the pseudopolynomial behavior of characters,
which will be applied to proving the desired bound on the Schrodinger kernel when the variable in the
maximal torus stays close to the identity. In Section 7D, we further extend the result to the case when the
variable in the maximal torus stays close to some corner. Section 7E will finally deal with the case when
the variable in the maximal torus stays away from all the corners but close to some cell walls. These
cell walls will be identified as those of a root subsystem, and we will then decompose the Schrodinger
kernel into exponential sums over the root lattice of this root subsystem, thus reducing the problem
into one similar to those already discussed in previous sections. This will finish the proof of the main
theorem. In Section 7F, we will derive L?(G) estimates on the Schrodinger kernel as an upgrade of the
L°°(G)-estimate.
Throughout the paper:

e A < B means A < CB for some constant C.

* A<4p,. B means A < CB for some constant C that depends on a, b, . ...

e A, p are short for the Laplace—Beltrami operator A and the associated volume-form measure [t
respectively when the underlying Riemannian metric g is clear from context.

LY, HS, LY, LYLE, LY are short for LP(M), HS(M), LP(I), LPLI(I x M), L?(I x M)

respectively when the underlying manifold M and time interval / are clear from context.

 p’ denotes the number such that % + # =1.
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3. First reductions

3A. Littlewood-Paley theory. Let (M, g) be a compact Riemannian manifold and A be the Laplace—
Beltrami operator. Let ¢ be a bump function on R. Then for N > 1, Py := ¢(N ~2A) defines a bounded
operator on L2(M) through the functional calculus of A. These operators Py are often called the
Littlewood—Paley projections. We reduce the problem of obtaining Strichartz estimates for e??2 to those
for Pye'td,

Proposition 3.1. Fix p,q > 2, s > 0. Then the Strichartz estimate (1-1) is equivalent to the following
statement: given any bump function ¢,

IPye flloLaxan < NS L2y

holds for all dyadic natural numbers N (that is, for N = 2™, m € Zy). In particular, (2-2) reduces to

, d_d+2
IPNe"™ fllLraxey < N2 7 |1 flr26)- (3-1)

This reduction is classical. We refer to [Burq et al. 2004] for a proof.
We also record here the Bernstein-type inequalities that will be useful in the sequel.

Proposition 3.2 [Burq et al. 2004, Corollary 2.2]. Let d be the dimension of M. Then forall 1 < p <r <o,

1_1
1Px fleron < NG Lo an. (3-2)

Note that the above proposition in particular implies that (3-1) holds for N < 1 or p = .

3B. Reduction to a finite cover.

Proposition 3.3. Let v : (M ,&) — (M, g) be a Riemannian covering map between compact Riemannian
manifolds (then automatically with finite fibers). Let Ag, Ag be the Laplace—Beltrami operators on
(M , &) and (M, g) respectively and let [i and | be the normalized volume-form measures respectively,
which define the LP spaces. Let w* be the pull-back map. Define
C2(M) = n*(C®(M)),

and similarly define Cy (M ), Lﬁ(l\? ) and H:, (]\71 ). Then the following statements hold:

(i) 7*: C(M) = Cx(M) and 7* : C®(M) — Ccx (M) are well-defined and are linear isomorphisms.
(i) #*: LP(M) — Lf,’(]\z) is well-defined and is an isometry.
(iii) Ag maps C2° (M) into cx (M) and the diagram

C®(M)a, — C(M)

L

cooM) —— (i)

commutes.
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(iv) e''22 maps L%(Z\Z) into LJZT(Z\Z) and is an isometry, and the diagrams

L2(M) ita, AN L2(M) L*(M)p,, AN L2 (M)
J leimg, l le (3-3)
L2(M) . L2 (M) L2(M) AN L2(M)

commute, where Py stands for both (N ~2Ag) and ga(N_zAg,).
(v) n* :H(M) — H} (1\7) is well-defined and is an isometry.
Proof. Parts (i), (ii) and (iii) are direct consequences of the definition of a Riemannian covering map.
For part (iv), note that (i), (ii) and (iii) together imply that the triples (LZ(M ),C® (M), Ag) and
(L2 (1\2 ), C° (M ). Ag) are isometric as systems of essentially self-adjoint operators on Hilbert spaces,
and thus have isometric functional calculus. This implies (iv). Note that the H*(M) and H_ (M)

norms are also defined in terms of the isometric functional calculus of (LZ(M),C*>®(M), A g) and
(L%(AZ ), C° (M ). Ag) respectively, which implies (v). O

Combining Proposition 3.1 and 3.3, Theorem 2.2 is reduced to the following.

Theorem 3.4. Let K;’s be simply connected simple Lie groups and let G = T" x Ky x --- X Ky, be
equipped with a rational metric as in Definition 2.1. Then

~ d_d+2
IPNe"™ fllLraxey SN27 7 I f 2o (3-4

holdsforpz2+§andN21.

3C. Littlewood—Paley projections of product type. Let (M, g) be the Riemannian product of the compact
Riemannian manifolds (M;, g;), j =0,...,m. Any eigenfunction of the Laplace—Beltrami operator A
on M with the eigenvalue A < 0 is of the form ]—[;-”:0 ¥, where each ¥/, is an eigenfunction of A; on
M; with eigenvalue A; <0, j =0,...,m,suchthat A =Ag + -+ + A,.
Given any bump function ¢ on R, there always exist bump functions ¢;, j =0, ..., m, such that for
all (xg,...,xm) € [R{’ggrl with @(xo + -+ + xm) # 0, we have ]_[;":0 @j(x;) = 1. In particular,
m
o-[Teix) =0
j=0
For N > 1, define
Py :=p(N72A),
Py :=¢o(N*A0) ® Q@ om(N > Ap)
as bounded operators on L?(M). We call Py a Littlewood—Paley projection of product type. We have
Py o Py = Py.

This implies that we can further reduce Theorem 3.4 into the following.
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Theorem 3.5. Let G = T" x K| x --- X Ky, be equipped with a rational metric. Let Ag, A1, ..., Ay, be
respectively the Laplace—Beltrami operators on T", K1, ..., Kp. Let ¢; be any bump function for each

j=0,....,m. For N >1,let Py = ®71=0 <pj(N_2Aj). Then
: d_d+2
IPNe"™ fllLrasxey SN2 7 I f 2o (3-5)
holds for p>2+ % and N 2 1.

On the other hand, similarly, for each Littlewood-Paley projection Pp of product type, there exists a
bump function ¢ such that Py = (N ~2A) satisfies Py o Py = Py . Noting that || Py f|l72 < || f Il 2,
(3-2) then implies

1_1
1PN flLran S NYCD f 2 (3-6)
forall2 <r < 0.

4. Preliminaries on harmonic analysis on compact Lie groups

4A. Fourier transform. Let G be a compact group and G be its Fourier dual, i.e., the set of equivalent
classes of irreducible unitary representations of G. For A € G, let 2 - V) — V), be the irreducible unitary
representation in the class A, and let d; = dim(V}). Let u be the normalized Haar measure on G. Then
for f € L?(G), define the Fourier transform

Fo = [G Fom Y dp.
Then the inverse Fourier transform

f) =" dye(f W)ma(x))

1eG

converges in L2(G). We have the Plancherel identities

1f 26y = ( > dAllfA(l)Hﬁs)z, (4-1)
1eG
(f.8) 2y = Y date(f(MEN)®). (4-2)
reG

Here || - ||gs denotes the Hilbert—Schmidt norm of endomorphisms.
For the convolution

(f *g)(x) = / £y Vg du).
G
we have A
(f*9 () = F(DEG). 4-3)

If g(A) = ¢y -1dg, xa, , where c;, is a scalar, then

I *gll2) = sup leal- I f l2(6)- (4-4)
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We also have the Hausdorff—Young inequality
A 1 ~
1 Mllus = dZ 1 f gy forallAeG. (4-5)

4B. Root system and the Laplace—Beltrami operator. Let G be a compact simply connected semisimple
Lie group of dimension ¢ and g be its Lie algebra, and let g¢ denote the complexification of g. Choose a
maximal torus B C G and let r be the dimension of B. Let b be the Lie algebra of B, which is a Cartan
subalgebra of g, and let be denote its complexification. The Fourier dual Bof B is isomorphic to a lattice
A C ib*, which is the weight lattice, under the isomorphism

A= B, Arse* (4-6)
We have the root space decomposition gc = be @ (Dyep 92)- Here ® C ib*,
¢ ={X € gc | Adp(X) = e%(b)X for all b € B},
and dimg g¢ = 1. This implies
1| +r =d. 4-7)

The Cartan—Killing form (-,-) on ib* becomes a real inner product, and (¥, (-, -)) becomes an integral
root system, that is, a finite set ® in a finite-dimensional real inner product space with the following
requirements:

(i) &=-9o.

(i) xed, keR, kae ® =k ==1.
(iii) sq® = P for all o € .

@iv) 2{a, B)/{a,a) € Z for all o, B € D.

Here s is the reflection about the hyperplane o orthogonal to «; that is,

sa(x) i =x _2(x,a)a
(o, )
Let P be a system of positive roots such that ® = P LI —P. Then by (4-7), we have
d—

Pl=5" (4-8)
We can describe the weight lattice A purely in terms of the root system

2(A,

Az{/\eib* ( a>er0rallae(I>}. (4-9)
o, o

The set ® of roots generate the root lattice I' and we have I' C A and A/ T is finite.
Let
2(A, o)

o, o

AT ::{Aeib* eZZoforallaeP§
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be the set of dominant weights. We describe A, AT in terms of a basis. Let {a1,...,a,} be the set of
simple roots in P. Let {wy, ..., w,} be the corresponding fundamental weights, i.e., the dual basis to the
coroot basis {2a1 /{1, 1), ..., 20 /{cty, r)}. Then

A=2wy+---+2Zw;,

At = Zzowl + -+ Zzowr.
Let
C =Rsowi +:--+Rsowr (4-10)

be the fundamental Weyl chamber, and we have the decomposition

b = (I—JVC) o

where W is the Weyl group. Here LI stands for disjoint union.

U{xeib*|(x,a)=0}), (4-11)

aed

Define
-
1 _ .
p.—EZa—Zw,. (4-12)
aceP i=1
Then we have
G=At

such that the irreducible representation 7, corresponding to A € A has the character y; and dimension d,
given by Weyl’s formulas

det s)eSA+0)
xilB = Lsew (dets) , (4-13)
Y sew (dets)es?
g = Hosple: A4 0) (4-14)
HaeP(as P)

Let H € b. We can think of —i H as a real linear functional on i b*, and by the Cartan—Killing inner
product on i b*, we thus get a correspondence between H € b and an element in i b*, still denoted as H.

AH) _ i(a.H)

Under this correspondence, e and we rewrite Weyl’s character formula as

> _sew (det s)e! (s(A+p).H)
> o (dets)ei (0:H)

Also under this correspondence between b and i b*, we have

xalexp H) = (4-15)

B ~ib*/2nT",
where
201 20,

rv=z7 .
(org, 1) (or, 0r)

is the coroot lattice.
We define the cells to be the connected components of {H € ib*/2xTV | (o, H) ¢ 277} and call
{H €ib*/2aTV | (o, H) € 21 Z} the cell walls.
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We also record here Weyl’s integral formula. Let f € L1(G) be invariant under the adjoint action
of G. Then

1
| fan= e [ s@DrOF ab, (@-16)
G W\ Jg
Here du, db are respectively the normalized Haar measures of G and B, and

Dp(H) = Z (dets)e! (0-H)
SEW
is the Weyl denominator.

Finally we describe the functional calculus of the Laplace—Beltrami operator A. Given any irreducible
unitary representation (wy, V) of G in the class A € G =~ A, the operator A acts on the space
M ={te(m)T) | T € End(V})} of matrix coefficients by

Af =—k; f forall feMy, AeG,
where
k= 1A+ pl*—1pl>. (4-17)

Let f € L?(G) and consider the inverse Fourier transform f(x) = 3", -+ d; tr(my (x) f (1)); then for
any bounded Borel function F : R — C, we have

F(A)f = Y F(—kp)dy tr(m (x) f (1))

AeA+t
In particular, we have

AL =Y e, (i (x) £ (L), (4-18)

AeATt

. k 4 .
Pyel™A f = Z (p(——i)e_”k*d;t tr(mwy (x) £ (A)). (4-19)
N2
AeA+t

Example 4.1. Let M = SU(2), which is of dimension 3 and rank 1. Let a = R be the Cartan subalgebra
and A =~ R/27Z be the maximal torus. The root system is {+«}, where o acts on a by «(6) = 26. The
fundamental weight is w = %a. We normalize the Cartan—Killing form so that |{w| = 1. The Weyl group W
is of order 2, and acts on a as well as a* through multiplication by +1. Form € Z>¢ = Z>ow = AT, we

have
dm =m+1, (4-20)
i(m+1)0 _ ,—~i(m+18 & Do
@ = —¢ _sintm D6 Ronz. (4-21)
619 _e—19 sm@
km = (m+1)2—1. (4-22)

5. The Schrodinger kernel

Let f € L?(G). Then (4-19) implies

. k . A
(Pre™® 17700 = (5 ) F .
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Define .
A =
(v, ) = 0 75 e M
which implies

ki \ _;
Kn(t= Y w(m)e 63 g 13.(x). (5-1)
AEAT
Then we can write

Pye" f =Kn(t,-)x [ = f*Kn(,-),
and we call Ky (¢, x) the Schridinger kernel. Incorporating (4-14), (4-15) and (4-17) into (5-1), we get

Kn(t.x)=Y e""('“”'z_""z)ﬁ”(|Hp|2_|pl2)HO‘GP(“’“P) Y sew (dets)e! (sA+e).H) (5-2)
ere: N2 [aep(@p) Y gep(dets)eisC)-H)

Example 5.1. Specializing the Schrodinger kernel (5-2) to G = SU(2), using (4-20), (4-21), and (4-22),

we have
00 _ j 0 __ —i(m+1)6
_ (m+1)>—1 i(manyp—ne e "D —e
KN(Z,Q)—méO(p(T (m+1)e 16,10 , BeR/2nZ. (5-3)

More generally, let G = R" /279 x K1 X --- X K, be equipped with a rational metric g as in
Definition 2.1. Let A¢ be the dual lattice of I'g and A ; be the weight lattice for K;, j =1,...,m. Let
Py = ®;-":0 @i (N —2A ;) be a Littlewood—Paley projection of product type as described in Section 3C.
Define the Schrodinger kernel Ky on G by

Pye'"® f = fxKn(t,)=Ky(t.) = f. (5-4)

Then m
Ky =] Kw,- (5-5)

Jj=0

where the K ;’s are respectively the Schrodinger kernels on each component of G

- AO 2 —itB~1 2
Knvo= Y (po(ﬁ)e i1 1Aol? i (o, Ho)
Ao€Ag 0

—Aj 0 P10 P\ it —1n;+0;1P+Ip; 12
Ky, = Z‘PJ( el L W G R T T PR

N2
AJ’ EAj_ ﬂj
J =1,...,m. Here the p;’s are defined in terms of (4-12). We also write
Ky =)o N)e "™d, 1.
reG

where

A=or ... m) €G =Agx Af x---x A},

m
—ky = =By hol> + DB (=1Aj + o 2 + 1o ). (5-6)
j=1
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—Aol*\ T —IA; + ;P + lp;I?
o N) = fpo( SR dukalin] (5-7)
BoN j=1 :BJN
m ) m
dy=[1dx, xa=e P T 1a;-
j=1 j=1

Tracking all the definitions, we get the following lemma.
Lemma 5.2. Let d, r be respectively the dimension and rank of G:
() [{2 € Gk SNH| SN,
(i) dy < N@=/2 yniformly for all A € G such that k, < N2
Now we interpret the Strichartz estimates on G as Fourier restriction estimates.

Lemma 5.3. For a compact simply connected semisimple Lie group G and its weight lattice A, there
exists D € N such that (A1, A,) € D17 forall Ay, Ay € A.

Proof. Let ® be the set of roots for G. Then by Lemma 4.3.5 in [Varadarajan 1974], {«, §) are rational
numbers for all &, f € ®. Let S = {@1,...,o,} C ® be a system of simple roots. Since the set of
fundamental weights {w1, ..., w,} forms a dual basis to {201 /{1, 1), ..., 20 /{ctr, oty )} With respect
to the Cartan—Killing form (-, - ), and (;, «;) are rational numbers for all i, j = 1,...,r, we have that
the w;’s can be expressed as linear combinations of the «;’s with rational coefficients. This implies that
(w;, w;) are rational numbers for all 7, j = 1,...,r. Since there are only finitely many such numbers as
(w;, w;), there exists D € N so that (w;, w;) € D™1Z foralli,j =1,...,r. Thus (11, A2) € D™1Z for
all A1, Ay € A, since A =Zw; +---+ Zw,. O

For G = R" /27y x K1 X --- X Ky, by the previous lemma, there exists for each j = 1,...,m some
D; € N such that (A, u) € D]._IZ forall A, u € AT, which implies by (4-12) that

—|j +pi >+ 1> =—=IA;1* = (A;.2p;) € D] 'Z

forall A; € A;. Also recall that we require that there exists some D € N such that (1, v) € D~17 for all
u,v € I'g. This implies that there also exists some Do € N such that (A, ) € DJIZ forall A, u € Ay.
By Definition 2.1 of a rational metric, there exists some D, > 0 such that

Bol..... B e DYIN.
Define
m
T =2xD.-[] D;. (5-8)
j=0
Then (5-6) implies that Tk, € 2w Z, which then implies that the Schrodinger kernel as in (5-5) is periodic

in ¢ with a period of T. Thus we may view the time variable ¢ as living on the circle T = R/TZ. Now
the formal dual to the operator

T:L*G)— LP(TxG), [ Pye'', (5-9)
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is computed to be

T*: Lp/(Tx G)— L2(G), F — / PNe_iSAF(s, 2) % (5-10)
T
and thus

TT*:LP (TxG)— L?(TxG), Fi> / P2 UT)RF(s,.) % =Ky *F, (5-11)
where !
Ky = Z 027, N)e_itk"‘d)t)()t =Ky *xKy.
reG
Note that the cutoff function ¢?(A, N) still defines a Littlewood—Paley projection of product type and
K N is the associated Schrodinger kernel. Now the argument of T T * says that the boundedness of the
operators (5-9), (5-10) and (5-11) are all equivalent; thus the Strichartz estimate in (3-1) is equivalent to

the space-time Strichartz estimate

~ _2(d+2)
IKN * FllLoaxay SN 7 IFl L0 axc): (5-12)

We have the space-time Fourier transform on T x G as follows. For (n, ) € ZT”Z x G, we have

~ A,N)-1d ifn=—kj,
KN(n,A) — 90( ) d,\Xd}L 1nn ] A (5_13)
0 otherwise.

Similarly, for f € L?(G), we have

- AN)Y-fA)  ifn=—k,

(Pye'™® £, py = | PA NS Q)i =k (5-14)
0 otherwise.

For m(1) = Y, can/ )z M (n)e'™", we compute

(mKn)Nn,A) =mn +ky)eA, N)dg, xq, - (5-15)

6. The Stein—-Tomas argument

Throughout this section, S! stands for the standard circle of unit length, and || - || stands for the distance

from 0 on S!. Define
._ 1], _a L}
Mayg = {te§ |”[ qH <qN ’
where

a€Zsyg, qeN, a<gq, (a,q)=1, g<N.

We call such Mg 4’s as major arcs, which are reminiscent of the Hardy—Littlewood circle method. We
will prove the following key dispersive estimate.

Theorem 6.1. Let Ky be the Schrodinger kernel (5-5) and T be the period (5-8). Then
Nd

K (0] 5 -
(Va(1+N| 55 - 2]?)

t . .
Jor 5—5 € Mg g, uniformly in x € G.
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Noting the product structure (5-5) of Ky, the above theorem reduces to the cases on irreducible
components of G.

Theorem 6.2. (i) Given G = T4 = Rd/ZJTF such that there exists D € R for which (A, 1) € D™YZ for
all A,y € T'. Then the Schridinger kernel

2
Kt ty= o B Yo
’ N

AEA

d
|KNmHMs( r alm)
Va(l+ Nz =21

satisfies

for ﬁ € Mg, 4, uniformly in H € T".

(i1) Let G be a compact simply connected semisimple Lie group. Let A be the weight lattice for which
(A, ) € D7YZ forall A, u € A for some D € R. Let Ky be the Schrodinger kernel as defined in (5-2).
Then NT,

(Va(L+ N | 55— ¢)"%)"

|Kn (. x)| < (6-1)

for ﬁ € Mg 4, uniformly in x € G.

We will prove this theorem in the next section. Now we show how this theorem implies Strichartz
estimates.

Theorem 6.3. Let G =T" x Ky X -+ X Ky, be equipped with a rational metric g and T be a period of
the Schrodinger flow as in (5-8). Let d, r be the dimension and rank of G respectively. Let f € L*(G),
A > 0 and define

my = pi(t.x) € TG || Pye’ f(0)] > A},

where jp = dt -dug, with dt being the standard measure on T =R/ TZ and dug being the Haar measure

on G. Let
2(r+2)
pO = . .

Then the following statements hold true:

d
M my Se N2 T@RDTp0| By L forall Az N
) my SNFEADQ =P f|2, o forall A2 NS5, p> po.

itA 4442

(IIT) I[Pne'™ fllLrarxe) SN27 7 1 flL2 ) (6-2)
holds for all p > 2+ 2.
(IV) Assume it holds that

d_r
274, ¢>0.

d+2
7 N fli2 ) (6-3)

~ a_
[Pye™ fllLrrxg) Se N2

for some p > po; then (6-2) holds for all g > p.
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The proof strategy of this theorem is a Stein—Tomas-type argument, similar to the proofs of Proposi-
tions 3.82, 3.110, 3.113 in [Bourgain 1993]. The new ingredient is the nonabelian Fourier transform. We
detail the proof in the following.

Let w € C2°(R) such that > 0, w(x) =1 forall |[x| <1 and w(x) =0 forall |[x| >2. Let N be a
dyadic natural number. Define

w . ‘=w(N?%.),

@ 1= o(NM -)—w(2NM -),

where
1<M <N, M dyadic.
Let
N )
Ny = 210" 1 <Q < Ny, Q dyadic.
Then
1 1
Z w1 =1 on [——,—], (6-4)
0 TN N NQ NQ
. 2 2
Z w_ 1 =0 outside [——,—]. (6-5)
0 TN NM NQ’  NQ
Write

1= Y > [( > 53)*0)[\/1}(%)4-,00). (6-6)

1<Q<Ny OQ<M=<N (a,9)=1
0=<g<20Q

Note the major arc disjointness property

(Z_: + [_Nle’NLQJ) n (Z—i + [_NZQZ’ NzQz]) =2

for (aj,qi) =1, Qi <q; <20;,i=1,2, Q1 < Q2 < Nji. This in particular implies

0<p(t)<1 forallteR/TZ, (6-7)
AT 1 (7T t 202
|:( Z 8?{) * Cl)% (T):| (O) = 7/0 ( Z 83) *a)N1 (?) dt < W’ (6-8)
(a,q)=1 (a,q)=1
0=q<20 0=q<20

which implies

~ . A 8N1 1
1= [pO)=1- Y > ‘[( > 52)*‘%&4(?)] (O)'zl—Tzz. (6-9)

1<Q<N; Q<M <N (a,9)=1
0=<g<2Q

By Dirichlet’s lemma on rational approximations, for any % € S! there exists a, q,witha € Z>¢, g €N,
(a.q) = 1,4 < N, such that | 7 — ¢|< qLN If p(%) # 0, then (6-4) implies ¢ > Ny = N/2'°. This
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implies by (6-1) and (6-7) that

o) KN (¢, %) || Loo(rxay < N972.

Now define coefficients o ps such that

|:( Z 82)*0)1\/11\/1(T)i| (O)IO[Q’M,@(O).

(a,9)=1

0=g<20
Then (6-8) and (6-9) imply
2
Qo.M = NM

Write
Kv@x= 3 > KN(z,x>[(( > 8;) xo 1 (7)) —aQ,Mp]a)

O<N; Q<M <N (a,q)=1

0=g<20
+ (1 + aQ,M)KN(z,x)p(r),
o.M

and define

AQ,M(I,X)2=KN(I,X)|:(( Z 82)*601\’5‘4(?))_“Q’Mpi|(l).

(a,9)=1
0=<g<20
o)

Then from (6-1), (6-10), (6-12), we have

(S]]

<

1A o mllLorxe) S N9™2 (

Next, we estimate /A\Q’ M. From (5-15), for

2, = A
ne TZ ~T, XegG,
we have
Aogm(n,A)=Aopm(n,A)-1dg, xa, »
where

romn =o)X 8] 0 (T —agud |+ k)

(a,q9)=1
0=<g<20

Note that (6-11) immediately implies

)LQ,M(H,)L) =0 forn+ky=0.

(6-10)

(6-11)

(6-12)

(6-13)

(6-14)

(6-15)

(6-16)

(6-17)

(6-18)

Let d(m, Q) denote the number of divisors of m less than Q; using Lemma 3.33 in [Bourgain 1993],

(5

(a,q9)=1
0=<g=<20

T
Sad(z—”,Q)Q”e, n#0,e>0,
T

(6-19)
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we get

Ao.m(n, V)| e (A, N)

Q1+8 T(n+k)
Nt ¢ 27

2
Q) + 2 o0+ K.
Using
d(m, Q) <em®,
(6-19) and (6-6), we have

. Q)Q1+8 NE
i< Y. ) —SW forn #0, |n| S N
1<Q<N;{ Q<M<N
thus

hoantn 1 55 0 Ny 0% (HUEA o) 4 o8 |

21
ON*®
<e (A, N

Proposition 6.4. (i) Assume that f € LY (T x G). Then
_r (M2
11+ Aomlimc 3 N5 (G ) 17 Iurcrnor

(ii) Assume that f € L*>(T x G). Assume also

for [n| < N2.

F(m,\)=0 for|n|= N2
Then
ON*®
L * Ag.mllr2xey Se 1/ 2 sy

Q1+2‘L'L B 4

N—||f||L2(1rxG) +MTLTIN| f i rxe)

I/ *Ao.mllL2(rxG) <<.B

for all
L>1, 0<t<l, B>g, N > (LO)B.

Proof. Using (6-15), we have

_r [ M\2
If * Agmllzecixay < I fllLiaxey Aol (rxay S N2 (5) I/ L rxe)-

1191

(6-20)

(6-21)

(6-22)

(6-23)

(6-24)

(6-25)

(6-26)

(6-27)

This proves (i). (6-25) is a consequence of (4-4), (6-16), and (6-22). To prove (6-26), we use (4-1), (4-3)

and (6-16) to get

1
~ 2
1S % Aot lli2nc) = (Z du|f(n,x>||ﬁs-|AQ,M<n,A)|2) |
n,A

which combined with (6-18), (6-20), and (6-21) yields
If*AomllL2axa)

2 MN?Z2—¢

. T k 2\3% 2
Se N (Zw(k,N)zdxllf(n,k)llﬁsd(—(”+ *),Q) ) +Q—_||f||L2(TXG).
n,A

(6-28)
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Using Lemma 3.47 in [Bourgain 1993] and Lemma 5.2, we have

In|.k; < N2, d(T("—Jrkl)’Q) > D}

oo :

< (D7PQTN?+0%). ax R 2) [k = mi

S (DPQ°N? 4+ 0F )-I{XGGIkst il

<o (D7PQTN? 1+ 0%)-N". (6-29)
Now (4-5) gives

1f G, Mifis S dall FI71 1wy

and Lemma 5.2 gives
lp(A, N)dZ| S NI,

which together with (6-29) imply
If *Ao.ml2rxa)

QI-H:‘D Q2 1+¢ B B d
_B . B d
<uB ( i +MN2_8)||f”L2(Tr><G)+ N Q- (D"2Q0°N+O2)N 2| flLraxg)- (6-30)
This implies (6-26) assuming the conditions in (6-27). O
Now interpolating (6-23) and (6-25), we get
d—5— 2d—r+2 r_r+2 _r r+2
If * Ag.mllraxg) Se N¥ M 0T T | flpr gy (6-31)
Interpolating (6-23) and (6-26) for
2 2 244
22042 o whichimplieso = & — "~ 24T (6-32)
r 2 )4
we get
d—r-2d—r+2 r_r42 = 2
If * Ao mllLraxc)y Seg N© 27 7 M27 7 Q77L7 || fllLrrxe)
_2(1_;) r_r+2 _ B
+Q VT M2 P L (6-33)

Now we are ready to prove Theorem 6.3.

Proof of Theorem 6.3. Without loss of generality, we assume that || f|12(g) = 1. Then for F = Py eltA f,
(3-2) implies

IFll2 <1, (6-34)
IFllLee S NE. (6-35)

Let
= X|F|>A" r (6-36)

|F|
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Let P n be a Littlewood—Paley projection of product type such that P No Py = Py. Let K N~ be the
Schrodinger kernel associated to Pyelt A Then by (4-3), (5-13), and (5-14), we have

F+xKy=F.

Let Q y2 be the Littlewood—Paley projection operator on L2(T x G) defined by
—kj —n?\ A
(Qn2H)" = w(T)H(n, %)
for some bump function ¢ such that Q 2 o Py = Py . Then by (4-2) and (5-14), we have

(F’H>L%’x = (QNZFvH)L%’x = (F, QNZH)L%J-
Then we can write
Amj < (F’H)L%x = (F*I?N, QN2H>fo'

Using (4-1) and (4-3) again, we get
Amy < (F, QuaH xR n)pz < IFllp2 1Qn2H*Ryllp2.
SIOn2H % I?NHLg,x =(On2H Ky, Qpn2H I?N)Lgx

= (On2H.Qu2H x (K Kn)) 3 - (637)
Let
H/IQNzH, ENII?N*I?N.

Note that H’ by definition satisfies the assumption in (6-24) and we can apply Proposition 6.4. Also note
that Ky is still a Schrodinger kernel associated to a Littlewood—Paley projection operator of product type.
Finally note that the Bernstein-type inequalities (3-2) and the definition (6-36) of H give

1

”H/”L{),x < ”H”Lf.x < m/{’. (6-38)
Write
A= Y > Aom. Ky=A+(Ey-N).
1<Q<N; Q<M =N
where A g s is defined as in (6-14) except that Ky is replaced by I?N. We have by (6-37)
A2m? < (H', H' « Nz +(H' H' (Ky — M)z

SUH 1 H 5 Ay +IH1Z, 1Ry = Allgs, (6-39)

L7,
Using (6-31) for p = po := 2(++2), then summing over Q, M, and noting (6-38), we have
2
2d+4 2d+4 -
||H/*A||LP gNd—ipo +8||Hl||2 , SNd_ 70 +8m1’0.
t.x LPO A

t,x

I1H']

p’
Lt,x

From (6-10) and (6-12) we get
IKn = AllLe, S N975, (6-40)



1194 YUNFENG ZHANG

which implies
IHIF) 1Ky = Allzgs, S NI2IHIZ, < NT5m3. (6-41)

Then we have

which implies for A > N4/2-7/4
m)t <8 NPO(%_dT—;z)‘i‘EA_pO‘

Thus part (I) is proved. To prove part (II) for some fixed p, using part (I) and (6-35), it suffices to prove
it for A > N4/2—¢, Summing (6-33) over O, M in the range indicated by (6-27), we get

_2d+4 _B _d+2
|H * Allpp S LNY75 0 H |y + Lo N0 B (6-42)

> Aowm

0<0;
O<M=<N

where

and Q; is the largest Q-value satisfying (6-27). For values Q > Q1, use (6-31) to get

(5-1%2)
e T

IH % (A=Al r S <. N5 (6-43)

p -
Ly

Using (6-39), (6-41), (6-42) and (6-43), we get

r_r+2

o 7

For A > N4/277/4 the last term of the above inequality can be dropped. Let Q1 = N 5 such that § > 0
and

26d+2) Né 2 _a+2 1+-L
A2m? < NI (LJr—)mA + LN T 4 N2

(LNHB < N (6-44)
such that (6-27) holds. Note that
&
L>1>——35
o; 7
for p > po + 107 and ¢ sufficiently small; thus
2d+42) 2’ d+2 1+,

Pm2 NG Lm? LN T w7
This implies

my < Np(z %)Lg/\—l? +Np(d— ) )L_BA_ZP
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d
N2\° p
L= , B>=—
(A) T

and § be sufficiently small so that (6-44) holds; then

Let

d rT
_aa N2\
m;LﬁNdz(—) .

A

Note that conditions for p, T indicated in (6-32) imply that p + % can take any exponent > pg = w

This completes the proof of part (II).
The proofs of parts (III) and (IV) are then identical to the proofs of Propositions 3.110 and 3.113
respectively in [Bourgain 1993]. ([

Proof of Theorem 2.2. Part (i) is a direct consequence of Theorem 6.3(III). Part (ii) is a direct consequence
of Theorem 6.3(IV) and the result from [Bourgain and Demeter 2015] that full Strichartz estimates hold
on any torus with an e-loss. O

7. Dispersive estimates on major arcs

In this section, we prove Theorem 6.2.

TA. Weyl-type sums on rational lattices.

Definition 7.1. Let L = Zw; + - - - + Zw, be a lattice on an inner product space (V, (-,-)). We say L is
a rational lattice provided that there exists some D € R such that (w;, w;) € D~17. We call the number
D a period of L.

By Lemma 5.3, any weight lattice A is a rational lattice with respect to the Cartan—Killing form. As a
sublattice of A, the root lattice I" is also rational.
Let f be a function on Z” and define the difference operator D; by

D;f(ny,....,ny):= f(ny,...,nj—1,n;i + ,nj41,...,0n.)— f(n1,...,n) (7-1)
fori =1,...,r. The Leibniz rule for D; reads
n n
D,-(]_[ f,~) => > Dife,Difi,- [ &5- (7-2)
j=1 I=1 1<k|<-<k;<n JFEk,....k;
1<j=n

Note that there are 2" — 1 terms in the right side of the above formula.

Definition 7.2. Let L =~ 7" be a lattice of rank r. Given A € R, we say a function f on L is a
pseudopolynomial of degree A provided for each n € Z>¢

|Diy -+ Dy, f(n1.....np)] S N4™" (7-3)

holds uniformly in |n;| SN, i =1,...,r, foralli; =1,...,r, j=1,...,n,and N > 1.
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A direct application of the Leibniz rule (7-2) gives the following lemma.

Lemma 7.3. Let L be a lattice and f, g two functions on L. Assume f, g are pseudopolynomials of
degrees A, B respectively. Then f - g is a pseudopolynomial of degree A + B.

Now we have the following estimate on Weyl-type sums, which generalizes the classical Weyl inequality
in one dimension, as in Lemma 3.18 of [Bourgain 1993].

Lemma 7.4. Let L = Zwq + - -+ 4+ Zw, be a rational lattice in the inner product space (V, (-,-)) with a
period D > 0. Let ¢ be a bump function on Rand N > 1, A € R. Suppose f : L — C a pseudopolynomial
of degree A. Let

it AP+ |A|
F(t,H) — Z e it|Al=+i({A,H) (p( N2) f (7_4)
A€L
fort €e Rand H € V. Then for MLD € Mg q, we have
NA+r
|[F(t, H)| < (7-5)

(Va(L+N |55 -¢]"%)"

uniformly in H € V.
Note that part (i) of Theorem 6.2 is a direct consequence of this lemma.

Proof. By the Weyl differencing trick, write

i B . B A 2 A 2

N2
A1,A2€L N
_ ; _ + A2 12
=Y . 212+ (0, H) > 12t(u,k)¢(|l’LNz| ) (l | )f(u+)t)f(/\)
=A—Aa A=Ay
_ IMJMI2 Mlz
= ¥ et (1 S+ )T
|w|SN' A

Now let L = Zw; + -+ + Zw,. Write

r
A :Zniwi

i=1

A2 A2
e =o (P Yo' ) F D

and

Note that as functions in A € L, both ¢(Ju + A|?/N?)| and ¢(|]A|>/N?) are pseudopolynomials of
degree 0, and both f (i + A) and f(A) are pseudopolynomials of degree A, which implies by Lemma 7.3
that g(A) is a pseudopolynomial of degree 2A4. That is, g(A) satisfies

Dy, -+ Di, g(A)] S N4 (7-6)
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uniformly for [A| S N and N > 1, forall iy,...,i, € {1,...,r}. Write

r

Z e_iZI(M’A)g(A.) — Z (1_[ e—iln w,2w; ) ()k) (7-7)

A€L ni,..,nr€Z Ni=1

By summation by parts twice, we have

— 2
3 eriomtnmg = (TN S 200 pgy -y 0)
§= 1 emitluzen) 180, 1tr);
ni€ez ni€z
then (7-7) becomes
—i2t{,A) it{u.2w1) 2 - —itn; {u,2w;) 2
2. g—(m) 2 (1_[6’ e l)Dlg(”lv---’"r)-
A€EL ni,...nr€Z Ni=1
Then we can carry out the procedure of summation by parts twice with respect to other variables n,, ..., n,.

But we require that only when
11 _e—it(M,sz)| > %
do we carry out the procedure to the variable n;. Using (7-6), we obtain

r

e e
o i=1 (max{l —e_il(M,Zwi), %})2
,
< NZA—I’ 1

SN

=1 (max{|| 5t (1. 2wi)
Writing 0 = er'=1 mjw;, m; € Z, we have

r

|F|2§N2Ar Z 1

|m,1|<N i=1 (max{” tzj—lmj(wwzwl ” N})Z.

Let
,
n,=ij(wj,2w,-)-D, i=1,...,r, (7-9)

where D > 0 is the period of L so that (w;,w;) € D™'7Z. Then n; € Z. Note that the matrix

((w;,2w;)D);,; is nondegenerate, which implies that for each vector (ny,...,n,) € Z" there exists
at most one vector (my,...,m;) € Z" so that (7-9) holds; thus
A 1
2 < 2A —r
|[F? SN > T

)2

\n1|<N i=1 (maX{H 32" |
1=1,...,

r

2A-r 1
. EII(IZSIN (max{ | 7 pmi ,i})z) |
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Then by a standard estimate as in the proof of the classical Weyl inequality in one dimension, we have
1 N3

<
Ini|SN (maX{Hﬁ””

2~ 1/2\y2°
) (VA N5 = ¢17)
which implies the desired result

|F|2 - N2A+2r -
(Va1 +N|z2p 2]

Remark 7.5. Let A¢ be a constant vector in R” and C a constant real number. Then we can slightly

generalize the form of the function F (¢, H) in the above lemma into

. . A+ Aol2+C
F(t,H) = Ze""“*O'ZJF’“’H)w(—' i ]\(;lz i )-f
A€L

such that the conclusion of the lemma still holds.

7B. From a chamber to the whole weight lattice. To prove part (ii) of Theorem 6.2, we first rewrite the
Schrodinger kernel as an exponential sum over the whole weight lattice A instead of just a chamber of it,
in order to apply Lemma 7.4.

Lemma 7.6. Recall that Dp(H) =Yy (dets)e! P-H) is the Weyl denominator. We have

Ky(t.x)= oitlol? Ze_iz|x|2+i<x,H>(p(IAIZ—Iplz) [T e.2) 7-10)
(Tacp fo.p) Dp (H) f vz )11
itlpl? , 212 i{s(A).H)
= e Ze—zt|x|2¢(|)t| 2|/0| ) 1—[<a’/\)zsew(dets)e' AT
(H(XGP(a’ p>)|W| AEA N wEP ZSEW(detS)el (S Pr), )

Proof. To prove (7-11), first note that from Proposition 7.13 below, [[,cp (@, ) is an anti-invariant
polynomial, that is,

[ (e s() = (dets) [] {e. 1) (7-12)

a€eP a€P

for all A € ib*. Recall that the Weyl group W acts on i b* isometrically; that is,
|s(M)] = |A| foralls e W, A e€ib*. (7-13)

Also recalling the definition (4-12) of p and the definition (4-10) of the fundamental chamber C, we may
rewrite K as in (5-2) into

eitlol?
Kn(t,x) =

Z e—it|A|2(p(|)L|2_ |P|2) 1_[ (0[ )L) Z(detS)ei(s(A)’H)
N2 ’ '

(H“€P<a’p>)DP AeANC a€EP SEW
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Using the (7-12) and (7-13), we write

2
eltlPl AR, |A2=|pl? i(s(),H)
Ky(t,x)= Z Z Nz l_[(a,s()t))e
(Maeplep)Dp /o, S acP
zt|;o|2 1)12—]0l2
Y Y eor ('S( )" =lpl )l_[(oz SO0 et s OLH)
2
(HaEP @.p)Dp [ he N aeP
it|,o|2 A12—1pl2
ot (| I“=lpl ) i(A,H)
> o =) [Tle V!5 314
(HueP o, IO>)DP A€l lsew s(ANC) N aE€P
which then implies by (4-11) that
eitler ap, (A2 —1o -
Kn(t, x)= e itIAl (p(—) (o, A)e! BH)
(Mocr (1) Dr 2 v )1l

This proves (7-10). To prove (7-11), write

i, (R =1o?
I e DI G

AEA aeP
. . MN12 =102
=ZfWW“Mm4ﬁ%%ﬁﬁﬁmmxmm
AEA aeP

which implies using (7-12) and (7-13) that

Z e itIAP+I (A, H) M 1_[ (o, A) = (dets) Z eTIHAPFI ). H) _|)\|2—|p|2 l_[ for.2)
o\ =z A) = SE o
A€A aeP AeA acP

which further implies

EERPYE A2 —lpl?

AEA aEeP
AP, |A1> = 1o i{s().H)
o Z 3 [T 2) ) (dets)e .
| | AEA acP seW
This combined with (7-10) yields (7-11). O

Example 7.7. Specializing (7-10) and (7-11) to the Schrédinger kernel (5-3) for G = SU(2), we get

—1
KN([ 9) —— Ze—ltm +im0 (Wl]v2 )m (7-16)
mez
et itm? m2—1 eim@ _e—imB
=72e (p( 73 )m pr g 0 eR/2nZ. (7-17)

meZ
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Corollary 7.8. (6-1) holds for the following two scenarios:
Scenario 1: x = 1g, where 1g is the identity element of G.

Scenario 2: ” %(a, H) H 2 %for any x conjugate to exp H. This is to say that the variable H is away
from all the cell walls {H ‘ H %(a, H) ” = 0 for some o € P} by a distance of = %

Proof. Scenario 1: When x = ¢, the character equals x; (1g) =dy = [[,ep (. A)/ [[yep (@, p). Then
by (7-11), the Schrodinger kernel at x = 1g equals

it|p|? o 2,512 2
Kn(t,1g) = i > et w(%)(l—[(a,k)) . (7-18)

(HaeP(O"P>)2|W| A€A acP

Note that f(1) = (]_[Olep(oz,)t))2 is a polynomial in the variable A = njw; + --- + n,w, € A of
degree 2| P|, which equals d — r by (4-8). Thus f is also a pseudopolynomial of degree d — r. Then the

desired estimate is a direct consequence of Lemma 7.4.

Scenario 2: By Lemma 4.13.4 of Chapter 4 in [Varadarajan 1974], the Weyl denominator Dp =
> sew (det 5)e!$8):-H) can be rewritten as

a€P
Note that
|ei(a,H) —1]
1< <.

2

Then by assumption the Weyl denominator satisfies

1Dp(H)| 2 ] |25 e H)| 2 NP (7-20)
aeP
Let 5 5
AP A1 = ol
F=Y et +1(A,H)(p( o f
AEA

where f =[] cp (@, A). Note that f is a polynomial and thus also a pseudopolynomial of degree |P |
in A. Applying Lemma 7.4 to F we get

itlpl? 1 NP
|Kn (. x)| = - 5 H‘-|F|5‘D H‘-|F|§N|P|- , T
(Taer ,01) D () PGE) (va(i+ Nz~ 417
Recalling |P| = %, we establish (6-1) for Scenario 2. O

Example 7.9. We specialize the Schrodinger kernel (7-16) and (7-17) to the case of G = SU(2). Scenario 1
in the above corollary corresponds to when 6 € 27 Z and

it . 2_1
KN(t,G):%Ze_”ngo(m )mz, |Kn(1,0)] <

N2
mezZ

(7-21)

2
—itm?2 m 1
E e irm QO( N2 )m2 .

mezZ
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Scenario 2 corresponds to when |e’? —e~10| > ﬁ equivalently, when 6 is away from the cell walls {0, 7'}
by a distance = % In this case,

(K@ OIS | 5 =5

—1
Ze_”mz’”me (mN2 )m‘ (7-22)

mez

Then we get the desired estimates for (7-21) and (7-22) using Lemma 7.4.

7C. Pseudopolynomial behavior of characters. We have established the key estimates (6-1) for when
the variable exp H in the maximal torus is either the identity or away from all the cell walls by a distance
of > 1 . To establish (6-1) fully, we need to look at the scenarios when the variable exp H is close to the
some of the cell walls within a distance of < 1{, In this section, we first deal with the scenario when the
variable exp H is close to all the cell walls within a distance of < + 1 . To achieve this end, we first prove
the following crucial lemma on the pseudopolynomial behavior of characters.

Lemma 7.10. Let u € ib* For A € ib*, define

Y, o (dets)el (SG+).H)

KA H) = ‘
! : Zsew(dets)el(s(p),H)

Let L = 7" be the weight lattice or the root lattice (or any sublattice of full rank of the weight lattice),
and viewing y*(A, H) as a function in A € L, we have

|Diy -+ Diy x

(7-23)

holds uniformly in |A| < N, |H| < N’ and N > 1, for all k € Z>¢. In other words, y*(A, H) is a
pseudopolynomial of degree 5% in A uniformly in |H| < N'

Using this lemma, applying Lemma 7.4 to the Schrodinger kernel Ky in the form of (7-11), we
immediately get the following corollary.

Corollary 7.11. Inequality (6-1) holds uniformly when x € G is conjugate to exp H such that |H| < %
In other words, when x is within < N a distance from the identity 1g.

We now prove Lemma 7.10 for L = Zw; + - - - + Zw, being the weight lattice (the case for the root
lattice or any other sublattice can be proved similarly). First note that as |H | < - for N large enough,
by (7-19), we have

]_[aeP (0(, H)

‘%1.
Dp

Thus it suffices to show (7-23) replacing y* (A, H) by

Y sew (det s)e’ (s(A+w),H)

KA, H) =
1@, H) Macr (@ H)

(7-24)
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7C.1. Approach 1: via BGG-Demazure operators. The idea is to expand the numerator of XI1L (A, H)
into a power series of polynomials in H € i b* which are anti-invariant with respect to the Weyl group W,
and then to estimate the quotients of these polynomial over the denominator [ [, ¢ p (o, H). We will see
that these quotients are in fact polynomials in H € ib*, and can be more or less explicitly computed by
the BGG-Demazure operators. We now review the basic definitions and facts of the BGG-Demazure
operators and the related invariant theory. A good reference is Chapter IV in [Hiller 1982].

From now on, we fix an inner product space (a, (-,-)) and let ® be an integral root system in the dual
space (a*, (-,-)). Let P(a) be the space of polynomial functions on a. The orthogonal group O(a) with
respect to the inner product on g, in particular the Weyl group, acts on P(a) by

(sf)(H):= f(s"'H), se€O0(a), feP(a), Hea
Definition 7.12. For « € a*, let 54 : a — a denote the reflection about the hyperplane

{Hea|a(H)=0},

that is,
a(H)

(o, )

where H € a. Here Hy corresponds to « through the identification a => a*. Define the BGG-Demazure

se(H):=H =2 H,,

operator Ay : P(a) — P(a) associated to o € a* by

Ao(f) = %.

As an example, we compute Ay (A™) for A € a*:

A A( =2 H) A () — 284 )
Aa(km)= ( ” o) a) = ( o )

_ ;(_1)"—1(’?) (Of;y. o)~ Am (7-25)

This computation in particular implies that for any f € P(a), the operator Ay ( f) lowers the degree of f

by at least 1.
Let P(a)" denote the subspace of P(a) that is invariant under the action of the Weyl group W, that is,

P :={feP(a)|sf = fforallseW}.
We call P(a)" the space of invariant polynomials. We also define
P(@¥ :={f € P(a) | sf = (dets) f forall s € W}.

We call P(a)g([:t the space of anti-invariant polynomials. We have the following proposition which states
that P(a)gf; is a free P(a)" -module of rank 1.
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Proposition 7.13 [Hiller 1982, Chapter II, Proposition 4.4]. Define dqee € P(a) by

ddet = 1_[ o.

aeP

Then dge; € P(cl)(‘;[e/t and
P(){, = daer- P()" .

By the above proposition, given any anti-invariant polynomial f, we have f = d - g, where g is
invariant. We call g the invariant part of f. The BGG-Demazure operators provide a procedure that
computes the invariant part of any anti-invariant polynomial. We describe this procedure as follows. The
Weyl group W is generated by the reflections sg,, . .., Sq,, Where S = {a1,...,a,} is the set of simple

roots. Define the length of s € W to be the smallest number k such that s can be written as s = Sa, " Sy, -
The longest element s in W is of length | P| = d;r

1990]. Write s = Sa;, " Say, - Set

, and such s is unique; see Section 1.8 in [Humphreys
5 = Ag; -+ Agy,
and note that it is well-defined in the sense it does not depend on the particular choice of the decomposition
§ = Sa;, v Sa;, 5 See Chapter IV, Proposition 1.7 in [Hiller 1982].

Proposition 7.14 [Hiller 1982, Chapter IV, Proposition 1.6]. We have

Wi

Sf =
f ddet

/

forall f e P(a¥.

That is, the operator § produces the invariant part of any anti-invariant polynomial (modulo a multi-
plicative constant). As an example, we compute § = Aail AaiL on A™. Proceed inductively using
(7-25), we arrive at the following proposition.

Proposition 7.15. Let m > L. Then
S(A™) = Z (-1)? H (aia,aiﬁ)a(a’ﬂ) l_[(k,otiy)b(y) l_[aft(g))tn
0.,a(e,B),b(y),c(¢),nez a<p 14 ¢
such that the following statements are true:
(1) In each term of the sum, 3, b(y) +1n = m.
(2) In each term of the sum, 3 ¢ c(§) +n=m— L.
(3) In each term of the sum, 3, b(y) = ¢ c(§) = L.
(4) In each term of the sum, |a(a, B)| <mL and b(y),c({),n=0,1,...,m.
(5) There are in total less than 3L torms in the sum.

l

Note that since each BGG-Demazure operator Aal.j ind = Ag; -+ Ag;, lowers the degree of polyno-

mials by at least 1, § lowers the degree by at least L. Thus

S(A™)=0 form< L. (7-26)
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Example 7.16. We specialize the discussion to the case M = SU(2). Recall that a* = Rw, where w
is the fundamental weight, and ® = {+«} with « = 2w. P(a) consists of polynomials in the variable
A € R~ Rw. For A e[R% Rw and f € P(a), we have

1 |—> w
S = f(=4)
B = ===
m—1
S(M) = A ., m odd,
0, m even,
daet(A) = 2. (7-27)

We can now finish the proof of (7-23).
Proof of Lemma 7.10. Recall that it suffices to prove (7-23) replacing y*(A, H) by x} (A, H) in (7-24).

Using power series expansions, write

Z(dets)ei(k"'“’H Z(dets) Z —(l (s(A+ ), H)™

sew sew
= Z Z(dets) s(A+w), H)™. (7-28)
m= 0 seW
Note that
Jm(H) = fm(A) = fm(A, H) := Z (dets)(s(A +p), H)™ (7-29)
seW

is an anti-invariant polynomial in H with respect to the Weyl group W; thus by Proposition 7.14,

ddet(H) 1_[ P
H)= Sfm(H) = 28— . §fru(H).
This implies that we can rewrite (7-24) as
© m
w1 t
X H) = Z ,
Thus to prove (7-23), it suffices to prove that
|
> —IDiy - Dig(fm ()| £ N1
m=0

for all k € Z>¢, uniformly in |n;| < N, where A = njwy + --- 4+ n,w,. Then by (7-29), it suffices to
prove that
21
Z —|Dj, -+ Dy B[+ )™ S NE7* forall s € W,
m!

Without loss of generality, it suffices to show

— 1
> —IDiy+ Dig (L + "Dl s NETE, (7-30)

m=0
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Noting (7-26), it suffices to consider cases when m > L. We apply Proposition 7.15 to write
S((A + ™) (H)

= Y D [ i i) P T T+ 00, )PP T Jletig s HYO A+, HYT. (7-31)
0,a(a,B),b(y),c(8),n a<p 4 ¢

First note that for A =njwy +---+n,w,, |n;| <N, i=1,...,r, we have
1S Kei o) S 1, (A +p,ai) SN, (7-32)

. 1
and by the assumption |H | < e

fors HY e 100 1] = | (S st #0) + ,H>‘51. (7-33)

i=1

These imply
I8((A + )™ (H)| < Z CXapla@pB)+2, b(y)+2 e c@)+n p2y c(v)=2¢ c(§) (7-34)
0,a(a,B),b(y),c(§),n

for some constant C independent of m. Now we derive a similar estimate for D; (6[(A + w)"])(H). By
(7-31),

D; (8[(A + W)™ (H) = Yoo O [ ey i) @B T Tl HY®
0,a(a,B8),b(y),c(§).n a<pB ¢
D (]‘[(A + i, PO+ H)”). (7-35)
14

For A =njwy + -+ n,w,, we compute
Di((A + p, i) = (@i, i),
Di((A+u, H)) = (o, H).
The above two formulas combined with (7-32), (7-33), and the Leibniz rule (7-2) for D; imply

D1 ([T 00+ ., 2+ . 1))
Y

< CLybWMtn 3y b()-1

This combined with (7-32), (7-33) and (7-35) implies
1Di (5[(A + w)"D(H)| < > CXa.pla@B+X, b))+ c@+n N, b= c@)=1
8.a(a,B),b(y),c(§).n
Inductively, we have
|Djy -+ Di, S[(A+)™ ) (H)| < Z Clapla@BI+3, b))+ c@)+n N3, b= c(§)—k
8,a(a,B),b(y),c(§).n

for some constant C independent of m. This by Proposition 7.15 then implies

|Djy -+ Dy (8[(A 4+ w)™)(H)| < 3mEcCmE NIk < cm L=k
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for some positive constant C independent of m. This estimate implies (7-30), noting that

o0
Cm
> —x31. (7-36)
m!
m=0
This finishes the proof. O

7C.2. Approach 2: via Harish-Chandra’s integral formula. This very short approach expresses XI1L (A H)
as an integral over the group G. We apply the Harish-Chandra’s integral formula [1957], which reads

3 (dets)elsti) = [laepteA) -Tlaeplo 1) / o(Ade(D.1a) o
seWw naeP<awo> G

where A, i € be, and dg is the normalized Haar measure on G. Then we can rewrite X’IL (A, H) as

| P

XIIL(A,H) _ i! |Haep(0‘,/\+ﬂ) / ol (AP, Adg (H)) dg.
l_[otEP (O{’ p) G

Note that

ilP' ]_[oceP (Oé, A+ P)
HaeP(a’p>

is a polynomial in A € A of degree |P| = dz;r Also, as |H| < 1, we have |Adg (H)| < % uniformly in

g € G, which implies that the integral

FX) :/Gei(/l+p,Adg(H)) dg

as a function in A is a pseudopolynomial of degree 0, uniformly in |H | < % Then by the Leibniz rule,

x' (A, H) as a function of A is a pseudopolynomial of degree %, uniformly in |H| < % This finishes

the proof of Lemma 7.10.

Remark 7.17. Note that Lemma 7.10 can be stated purely in terms of an integral root system without
mentioning the ambient compact Lie group, and it still holds true this way. It can be seen either by the
approach via BGG-Demazure operators, which is purely a root-system-theoretic argument, or by the fact
that, for any integral root system &, there associates to it a unique compact simply connected semisimple
Lie group equipped with this root system; thus the approach via Harish-Chandra’s integral formula still
works, even though the argument explicitly involves the group.

7D. From the weight lattice to the root lattice. We say exp H is a corner in the maximal torus provided

H%W’H)H =0 foralla € P.

In this section, we extend Corollary 7.11 to the scenarios when exp H is within a distance of < % from
some corner. That is, when

I (e, H)|| S & foralla e P. (7-37)
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To this end, we rewrite the Schrodinger kernel K y (7, x) as a finite sum of exponential sums over the root
lattice:

KN(t,x)

=C Z Z e—it(lx|2—|p|2)(p(|k|2—|p|2) [Tyep (@A) Zsew(dets)ez:(s(A),H)
N? [laep{e.p) ZseW(dets)el<S(ﬂ),H)

wEA/T Aeu+T

i (s(A
=C). Ze—l't<lx+u|2—|p|2>qo(lHMlz_mlz) Macp (@ A51) Yoew (dets)elCHH0I =
WeA/T Ael N2 [laeplo.p)  Fiew(dets)el 5C1H)
where C = ¢i!1°I” /| W |.
Proposition 7.18. Let ;1 be an element in the weight lattice A and let
Ky (t.x) 2 2 i (s(A+u), H
-y e—ir(|)t+u|2—|p|2)¢(|)L +ul* ol ) [Taep (o A+ 1) gew (dets)e! SAHm.H) 139)
Aer N? [loep (. p) Y sew (dets)el (s H)
where x is conjugate to exp H. Then
Nd
|Kly (1, %)] < - (7-40)
/2\\T
(Va(l+ Nz = 217)
for ﬁ € Mg, 4, uniformly for H %(a, H) ” < %for allo € P.
Using (7-38) and the finiteness of A/ I, we have the following corollary.
Corollary 7.19. Inequality (6-1) holds for the case when H % (a, H) ” < %for alla € P.
To prove Proposition 7.18, we first prove a variant of Lemma 7.10.
Lemma 7.20. Let 5 W(dets)e”s(“Jr’D’H)
AL H) = A (7-41)

e H [Tep (@@ HT 1)
be defined as in Lemma 7.10. Assume in addition that u € A. Then y* (A, H) as a functionin A € T is a
pseudopolynomial of degree %, uniformly in H such that H %a(H ) ” < % forall o € P.

Proof. For all H € ib* such that H %(a, H) ” < % for all @ € P, by considering the dual basis of the
simple roots {&1, ..., o}, we can write

H=H,+H, (7-42)
such that
|o= (i Hi)| = | 5= {ai H)| S %, i=1.....r, (7-43)
and
(aj, Hy) €27, i=1,...,r (7-44)

This implies that exp H> is a corner and
|Hi| < - (7-45)
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Then for A € I' = Zay + -+ - + Zay,

Y e (dets)el SGAH1) pi(s (), Ha)

12 — M —
PO H) = y* (A, Hy + Hp) = e~ i Ha) T _p (el\@H1) — 1)

(7-46)
epP (

Note that, see Corollary 4.13.3 in [Varadarajan 1974], s(u) —p € I" for all © € A and s € W, which
combined with (7-44) implies

e G H2) _ il ) op q)) LWEAN, seW.
Then (7-46) becomes
ei(MsHZ) . ZSGW(dets)el(s(A—‘f_M)aHl)
e—ilp,H2) o—i{p,Hi) Haep(ei(oc,Hl) —1)

d-r < & by Lemma 7.10. O

Proof of Proposition 7.18. Since Hae pla,A4+pu)isa polynomial and thus also a pseudopolynomial in )t
in | 3z (e H)| <

A H) = =l mteH2) iy HY), (7-47)

which is a pseudopolynomial in A € I" of degre

of degree | P| =
for all « € P by the previous lemma,
f(k) — HOLEP (Ol, A+ /’L>

HaGP (Ol, )

is then a pseudopolynomial of degree d — r uniformly in H %(a, H) H < % for all @ € P. Then the

(A H)

desired result comes from a direct application of Lemma 7.4. O

Example 7.21. We specialize the discussion in this section to the case G = SU(2). Recall that A = Zw,
I' = Za with @ = 2w; thus A/ T = {0, 1} - w. (7-38) specializes to

Kn(t,0)=L1e"(K}(t,0) + KN (t.0)),

where 5 - -
Im —im
0 _ —itm2 (M~ —1 e —e
Ky=)_ e go( N2 )m 00 _o—i0
m=2k
kez
2 imb —im6
1 —itm2 (M~ —1 e —e
Ky = %{:ﬂe go( N2 )m 010 _ =i
m=
kez

for 8 € R/2mZ. Condition (7-37) specializes to ” 9 H ﬁ Write 0 = 61 + 6, where 01| < % and
6, =0, . Then form =2k, k € Z,

1

_ imé —im6
Xm(@)—m-(e l—e 1)

1 (o, ¢]
= gy e~ e
n=0
0
:m > _(29n m"), (7-48)

n odd
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and similarly form =2k + 1, k € Z,

ei0291 i" n—1_n
xm(0) = 0o _ 1) Z 5(291 m").
n odd

Note that we are implicitly applying Proposition 7.14 so that
6, - 2911—1 n’ dd,
fa(61) 1= (b)) — (~mby)" = 6, -5, = { S
0, n even.
If |k| < N, then it is clear that
IDE ok SN'E IDEya | SNVE L eZs,

where D is the difference operator with respect to the variable k. These two inequalities will give the
desired estimates for K 2, and K le respectively using the Weyl sum estimate Lemma 7.4 in one dimension.

7E. Root subsystems. To finish the proof of part (ii) of Theorem 6.2, considering Corollaries 7.8 and 7.19,
it suffices to prove (6-1) in the scenarios when exp H is away from all the corners by a distance of = %
but stays close to some cell walls within a distance of < % We will identify these other walls as belonging
to a root subsystem of the original root system &, and then we will decompose the character, the weight
lattice and thus the Schrodinger kernel according to this root subsystem.

TE.1. Identifying root subsystems and rewriting the character. Given any H € ib*, let Q i be the subset
of the set ® of roots defined by

Thus
@\ 0n = o c @ | lo )] > 4}
Define
&y :={a € O |« lies in the Z-linear span of Qg }. (7-49)
Then &g D QOp, and
o, HY| S & foralla e @y, (7-50)

with the implicit constant independent of H, and
I (e, H)|| > & foralla e ®\ ®p. (7-51)
Note that g is Z-closed in ®; that is, no element in ® \ ® g lies in the Z-linear span of ®g.

Proposition 7.22. ®g is an integral root system.

Proof. We check the requirements for an integral root system listed on page 1182. Parts (ii) and (iv) are
automatic from the fact that ® g is a subset of ®. Part (i) comes from the fact that &g is a Z-linear space.
Part (iii) follows from the fact that s 8 is a Z-linear combination of o and B for all o, 8 € ®p, and the
fact that g is a Z-linear space. O
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Then we say that @ is a root subsystem of ®.

Let Wy be the Weyl group of ®g. Wy is generated by reflections s, for « € &y and Wy is a
subgroup of the Weyl group W of ®. Let P be a positive system of roots of ® and Pg = P N ®g. Then
Ppg is a positive system of roots of ®g. We rewrite the Weyl character as

ZseW (det S)ei(s()k),H)

"o et M) HaeP(ei(a’H) —1)
= (1/1Wa ) ZsHeWH ZSGW(det(sHs))ei((sHs)(A),H)
e~ 0 ) ([Taeprpy, @ @H = 1) [Taep, (€@ @0 —1))
) 1 > (dets) sy ewy (detsg)e! 51 SENH)
| Wy |e—i{p:H) l_[aeP\PH (eileH) _ 1) = HaGPH (eileH) 1)
Zs ew, (detSH)ei(sH(S(A)),H)
= CUD ) et = : (7-52)
ZW [Macp, (@ @H 1)
where
1
C(H):= . | | s
Wit le=10-H) T] e py py, (1@ H) — 1)
Then by (7-51),
|C(H)| < N'P\Pnl, s

Let Vg be the R-linear span of ®z in V =ib* and let H I'be the orthogonal projection of H on Vg.
Let H- = H — HI. Then H~ is orthogonal to Vg and we have

' LyHl
o cw,, (detsg) el sH GO H=+HT)
=C(H dets) . =2H="H :
" ( )S§V( : HaePH(el(a,Hi+Hll)_1)

(det sy )e! (SWssz (HD)) i(srr (s, H')

=C(H) ) (dets)- s Wy (7-55)

seEW HaePH(ei(a’H”) _1)

Note that since H is orthogonal to every root in ®z, H= is fixed by s for any « € ®p, which in turn
implies that H - is fixed by any sy € Wy ; that is, sg (H+) = H+. Then

s,y ey (detspr)el SOIH ) pi s (G, HY

11 =C(H) ) (dets)-

= [acr, (il H) _ 1)
i{s (s()),H")
— C(H) Z (det s) - ei(s(/l),Hl) ) ZSHEWH (detsg)e'V¥H (7-56)
sew HaePH (ei(oe,H”) - 1)

Note that by the definition of H I, we have

|5 (e, HIY| < & foralla € @p. (7-57)
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This means that exp H I'is a corner in the maximal torus of the compact semisimple Lie group associated
to the integral root system $g.
Using the above formula, we rewrite the Schrodinger kernel (7-11) as

C(H)eitlr)?
Kyt x) = e 3 (dets) - Ky ). (7-58)
(HoceP (Ol, p))|W| seW
where
; A ’HII
Kns(t.x) = Z ei(s(k),Hi)—itIAIZ(p(MP_|P|2)(1—[ (@ A)) > sy ey (detsg)el (51 ) )'
s Pt N2 wep HaePH (el(ot,HH) . 1)

Noting that for any s € W, [s(1)| = A, [[yep (. (1)) = (dets) [ [, p (. A) by Proposition 7.13, and
s(A) = A, we have

Kpys(t,x) = (dets)Kn,1(t, x),
where 1 is the identity element in W. Then (7-58) becomes

C(H)e'!lP?

KN = Mot 0)

Kna(t. x). (7-59)

Proposition 7.23. Recall that

i ; A2 —|p|? det sgp)e! (s W, H)
Ko 1= 3 by (B ([ ) B G0

AEA N? aeP [laepy (et H —1)

Then
NE—|P\PH]|

|Kn,1(t, x)| < 73
(Va(L+N|p = g1))

(7-61)

for ﬁ € Mg, q, uniformly in x € G.
Noting (7-54) and (7-59), the above proposition implies part (ii) of Theorem 6.2.

Example 7.24. Figure 1 is an illustration of the decomposition of the maximal torus of SU(3) according
to the values of H %(a, H) } , ¢ € d. Here P ={uy, an, 3 =1 +a2}. The three proper root subsystems
of ® are {+a;}, i =1,2,3. The association of ®g to H is as follows:

H € regions of color = Py =9,
H € regions of color = Oy ={xa1},
H € regions of color — Py ={zxaz},
H € regions of color — Py ={zxa3z},
H € regions of color = oy =0.
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Figure 1. Decomposition of the maximal torus of SU(3) according to the values of
H%(a,H} |, aeA.

7E.2. Decomposition of the weight lattice. To prove Proposition 7.23, we will make a decomposition of
the weight lattice A according to the root subsystem ®z. First, we have the following lemma about root
subsystems. Let Proj;; denote the orthogonal projection map from the ambient inner product space onto
the subspace U.

Lemma 7.25. Let ® be an integral root system in the space V with the associated weight lattice A ¢. Let
W be a root subsystem of ®. Then let I'y and A ¢ be the root lattice and weight lattice associated to W
respectively. Let Viy be the R-linear span of W in V. Let Y be the image of the orthogonal projection of
A onto Viy. Then the following statements hold true:

(1) Yy is a lattice and I'y C Yy C Ay. In particular, the rank of Yy equals the rank of Uy as well
as Ay.

(2) Let the ranks of Yy and Ag be r and R respectively. Let {wy,...,w;} be a basis of Yy. Pick
any {uy,...,ur} C Ag such that Projy,, (u;) = w;, i =1,...,r. Then we can extend {uy, ..., ur}
into a basis {uy, ..., Ur, Ur41,...,UR} Of Ao. Furthermore, we can pick {uy+1,...,uR} such that
Projy,, (u;j) =0 fori =r+1,..., R
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Proof. (1) It’s clear that Yy is a lattice. Let ' be the root lattice associated to ®. Then I'y C I'g. Thus
'y = Projy,, (I'y) C Projy,, (I'e) C Projy,, (Ag) = Ty.
On the other hand, for any u € Ag, a € I'y, we have (Projy,, (1), @) = (u, @). This in particular implies

Proj o )
2( vy (1) ):2<M a>eZ forall p € Ap, a € I'y.

(o, o) o, o

This implies Projy,, (1) € Ay for all u € Ag; thatis, Ty = Projy,, (Ag) C Ag.

(2) Let S :=Zuy +---+ Zu,; then S is a sublattice of Ag of rank r. By the theory of modules over a
principal ideal domain, there exists a basis {u/, ..., u’y} of A and positive integers dy|dz|- - -|d, such
that {du', ..., dyu}} is a basis of S¢. Then we must have d; =dp =--- =d, = 1, since

Zdy Projy, (u}) + -+ + Zdy Projy (u}) = Projy (o)
= Projy,, (Ae) D ZProjy,, (u}) + -+ ZProjy,, (u;) (7-62)
and v, ..., u, are R-linear independent. Thus we have
So =Zuy + -+ Zuy = Zu'y + -+ + Zu..

and then {u1, ..., u,, ”lr+1’ R u’R} is also a basis of A ¢. Furthermore, by adding a Z-linear combination
of uy,...,u, toeach ofu’r_H, ..., u'p, we can assume that ProjV\y(u;) =0fori=r+1,...,R. 0O

We apply the above lemma to the root subsystem ®g of ®. Let V =ib* Vg be the R-linear span of
&g in V, I'g be the root lattice for g, and let

Tg = Projy,, (A). (7-63)
Then by the above lemma, we have
Yg D I'y. (7-64)
Let rg be the rank of @y as well as of 'y and Yg, and let {wq, ..., w,, } C Ty such that

Yy =2Zwi +---+ 2wy, .
Pick {u1,...,us;} C A such that

Projy, (ui) =w;, i=1,....ry.
Then by the above lemma, we can extend {u1,...,u,, } into a basis {u1,...,u,} of A such that
Projy, (u;) =0, i=rg+1,....r, (7-65)
with
AN =2u;+---+ Zu,.
Set

Yy =Zuy+--++ Zuy, CA.
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Then
Projy, : Ty = Yg.

Recalling (7-64), let '}, be the sublattice of Y, corresponding to 'y C Y under this isomorphism.
More precisely, let {aq, ..., o, } be a simple system of roots for Iy ; then

Projy, : Ty =Zay +---+Zay, => Ty =Zay +---+Zay,, oo, i=1,....rg, (7-66)

and we have
Yy/Ty =Yu/Tu, |Ty/Tyl=|Tu/TH|<oo. (7-67)

Decomposing the weight lattice as

A= || W+Th+Zuryr+-+2uy),
weYy /Ty
we have
Y Y + A+ A2 = |pl?
KN,]_(I,X) — Z el(/L-}—kl-‘r/\z,HL)—ll‘“L-i-)L]+lzz(p(llu 1 N22| |IO| )
WEY ) /Ty

A=mal+etngy, a;H
A2=nrH+lurH+l+'“+”rur

; / I
: ( 1_[ (o, p+ A/l + A2)) SHGWFILI (ez‘(a HI) 1) (7-68)
aeP a€Py ’ -
Note that (7-65) implies for Ay = ny, 4 1Ury+1 + -+ nyu, that
(srr(A2), H) = (A2, s (H1)) = 0,
and (7-66) implies for A} = nyaj +---+n,ya,, that
(sarA)), HYY = (A s (HY) = Ay, s (HY) = (su (hn), HY),
where Ay =njoy + -+ n,, 0, € Vh. Similarly, also note that
(ser (), HY) = (s (), HY), where p!:= Projy,, ().
Thus we write
2 2
Kvitx)= Y 3 o A HA2 H Y it |t 4 +xz|2¢(lu+lﬁ+lzl —|pl )
s ’ 2
WeY /Ty A =n1a/1+~-~+nrHoz;H N
AM=niapttny oy,
A2:”;‘H—i—lurH—H"""'Fnrur I "
] +A1),H
) 1_[ (@, A +22) ZSHEWH (detSH)el(sH(M D.HT) (7-69)
oEeP ’ ' HaePH (ei(a’H”)_l) .

Remark 7.26. We have that in the above formula
- (detsH)eNSH(u“+Al),HH)
H H

Il
(A, HY = .
[Taep,, (e'f@H" —1)
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is a character of the form (7-41). Also note that ,u” € Projy,, (A) lies in the weight lattice Ay of @ by
Lemma 7.25.

Noting (7-67), Proposition 7.23 reduces to the following.

Proposition 7.27. For p € Yy, /T, let

/ 2 2
K% (tx) = Z ei(u—i—l’l+AZ,HJ-)—it|u+)L’1+)L2|2(p(|M+A1+/\2| —Ipl )
N\ T N2
Ay=nioy+tnp ol
A=nior+tny gy Oy
AzznrH+1urH+1+---+nrur
ni,...,nr€Z

detsg)e! (su (! +21),H')
( [ (e nt+t; +Az)) Lsuehi ).( iy (7-70)
aEeP HaePH (e!t*-H7—1)
Then
“ NA—IP\P]|
Ky (2. 0)| < (7-71)
N t 1/2 r
(Va(1+N|zp = 5177))
for 515 € Ma.q, uniformly in x € G.
Proof. We apply Lemma 7.4 to the lattice Zaty + -+ -+ Zaty,, + Zuyyy 41 + - - + Zu,. Write
X“H (AL H = Lsyews ( ) i
HaePH (eZ(a, ) — 1)
Then it suffices to show that
a€P
forl <iy,...,ip <r,
Ay =nay 4
Ar=niar+ 0y,
A2 = Nry ity 41+ ey,
uniformly in |n;| SN, i =1,...,r. Since [[,ep (o, + A} + A2) is a polynomial and thus a pseu-
dopolynomial of degree | P|, it suffices to show that
[Diy -+ Dy (2 G HIY)| 5 NOTIPNPHIr=IPIok = yIPnIE, (7-72)
Since y (A1) does not involve the variables n,,, +1, . .., 1y, it suffices to prove (7-72) for 1 <iy,...,ix <rg

uniformly in |A;| < N. But this follows by applying Lemma 7.20 to the root system @z, noting
Remark 7.26. O
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7F. L? estimates. We prove in this section L?(G) estimates of the Schrodinger kernel for p < oo.
Though we do not apply them to the proof of the main theorem, they encapsulate the essential ingredients
in the proof of the L°°(G)-estimate and are of independent interest.

Proposition 7.28. Ler Ky (¢, x) be the Schridinger kernel as in Theorem 6.1. Then for any p > 3, we

have
N9=%
IKn () Lr@) < (7-73)

(Va(l+N| 55 —2]%)

¢
for 57D € Ma,g-

Proof. As a linear combination of characters, the Schrodinger kernel Ky (z, - ) is a central function. Then
we can apply to it the Weyl integration formula (4-16)

1

[ Kn(, ’)Hiﬂ(G) = W

/ Kn (1. b)|P| Dp ()] db. (7-74)
B

where B is the maximal torus with normalized Haar measure db. Recall that we can parametrize B =exp b
by H €ib* =~ b, and write

B ~ib*/2nZa) +---+27Za)) = [0,27)a) +---+[0,27)e,’, (7-75)
where {&, = 20; /(j, ;) | i =1,...,r} is the set of simple coroots associated to a system of simple
roots {oj |[i =1,...,r}.

We have shown in Section 7E that each H € i b* is associated to a root subsystem @z such that (7-50)
and (7-51) hold. Note that there are finitely many root subsystems of a given root system; thus B is
covered by finitely many subsets R of the form

R={HeB||x(w.H)| <4 foralla e,

|%(Q,H)H>%forallaeq>\lll}, (7-76)

where W is a root subsystem of ®. Thus to prove (7-73), using (7-74), it suffices to show

P
N4 _
f|KN<r,epo)|P|Dp(expH>|2dHs( — ) N @
R (Vi +N|z5—217)
By (7-54), (7-59) and (7-61), we have
1 NE—IP\Q|

Kn(t.expH) < . . ,
Macro@@H =1 (/g1 4+ N| 55— 2?)

where P, Q are respectively the sets of positive roots of ® and ¥ with P D Q. Recalling Dp(exp H) =
[Tyep (e H) —1), (7-77) is then reduced to

/R 1

(ei(a,H) —1)

p—2

2
1_[ (ei(a,H) i 1)‘ dH < NP|P\Q|—d.
axeQ

HaeP\Q
Using

e~ 1) 5 || g (e, )| 5 JeH) — 1],
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it suffices to show

1 p=2 . 2
[P\Q|—d
- []l5fe. H)|| dH S NP : (7-78)
/R [aervo | 2r (e H) | veo
For each H € B, we write
H=H'+ H,
such that
|5 (. H) || = |5 (. H')|. (. Ho) €27Z foralla € P.
We write
RC g R’ + Ho, (7-79)
HoeB
(¢,Ho)e2nZ Nae P
where
R'={HeB||3(a H)| Sy foralla € Q, |5=(a, H)| > 4 foralla € P\ 0}. (7-80)
Note that (o, ;') € Z foralla € P andi =1,...,r due to the integrality of the root system; using (7-75),

we have that there are only finitely many Hy € B such that (o, Hy) € 277 for all & € P. Thus using
(7-79), (7-78) is further reduced to

1
/ [T12 e 1)

HaeP\Q‘%@{’H)‘ aeQ

Now we reparametrize B = [0, 27)ay” +--- 4 [0, 27)a) by

p—2 2
dH < NPIP\CI=d (7-81)

,
H = Ztiwi, (t1,...,tr) €D,
i=1
where {w; |i = 1,...,r} are the fundamental weights such that {a;, w;) = &;j|a;|?/2, i,j =1,...,r,
and D is a bounded domain in R”. Then the normalized Haar measure d H equals
dH = Cdty---dt,
for some constant C. Let s < r such that
{a1,...,a5} C P\ Q,
{Ols_:,_l,...,Ol,-} C Q.

Using (7-80), we estimate

/ ! - [1]% (e H)| de
R | Taep\olt 27 (. H)) ) o
5/ L ye-2aP\el-9) y—2121 gy gy,
r 1 ...[s|17—2
<neanay el [ mdh cedty. (182)

|tS+1 |a'-'s|tr|sﬁ



1218 YUNFENG ZHANG

If p > 3, the above is bounded by
< N@=2D(P\Q|=s) Ny =20 \ys(p=3)—(r=s) _ Ny PIP\Q|—d

noting that 2| P \ Q| +2|Q|+r =2|P|+r=d. O

Remark 7.29. The requirement p > 3 is by no means optimal. The estimate in (7-82) may be improved
to lower the exponent p. We conjecture that (7-73) holds for all p > p, such that lim; . pr = 2, where
r is the rank of G.

Acknowledgments

I would like to thank my Ph.D. thesis advisors Prof. Monica Visan and Prof. Rowan Killip for their
constant guidance and support. I especially thank them for giving me all the freedom to choose problems
that suit my own interest. I would like to thank Prof. Rapha€l Rouquier and Prof. Terence Tao for sharing
their expertise on the BGG-Demazure operators and the Weyl-type sums respectively. I would also like to
thank Jiayin Guo for pointing out several false conjectures of mine on root systems. My thanks also goes
to Prof. Guozhen Lu who encouraged me to publish the paper. I am thankful to the editors and referees
for their carefully reading the paper and their helpful suggestions on revising it. Last but not least, I am
thankful to Mengmeng Zhang for her company and encouragement.

References

[Anker and Pierfelice 2009] J.-P. Anker and V. Pierfelice, “Nonlinear Schrodinger equation on real hyperbolic spaces”, Ann. Inst.
H. Poincaré Anal. Non Linéaire 26:5 (2009), 1853-1869. MR Zbl

[Anker et al. 2011] J.-P. Anker, V. Pierfelice, and M. Vallarino, “Schrodinger equations on Damek—Ricci spaces”, Comm. Partial
Differential Equations 36:6 (2011), 976-997. MR Zbl

[Banica 2007] V. Banica, “The nonlinear Schrodinger equation on hyperbolic space”, Comm. Partial Differential Equations
32:10 (2007), 1643-1677. MR Zbl

[Banica and Duyckaerts 2007] V. Banica and T. Duyckaerts, “Weighted Strichartz estimates for radial Schrédinger equation on
noncompact manifolds”, Dyn. Partial Differ. Equ. 4:4 (2007), 335-359. MR Zbl

[Bouclet 2011] J.-M. Bouclet, “Strichartz estimates on asymptotically hyperbolic manifolds”, Anal. PDE 4:1 (2011), 1-84. MR
Zbl

[Bouclet and Tzvetkov 2008] J.-M. Bouclet and N. Tzvetkov, “On global Strichartz estimates for non-trapping metrics”, J. Funct.
Anal. 254:6 (2008), 1661-1682. MR Zbl

[Bourgain 1989] J. Bourgain, “On A(p)-subsets of squares”, Israel J. Math. 67:3 (1989), 291-311. MR Zbl

[Bourgain 1993] J. Bourgain, “Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear
evolution equations, I: Schrodinger equations”, Geom. Funct. Anal. 3:2 (1993), 107-156. MR Zbl

[Bourgain 2013] J. Bourgain, “Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces”,
Israel J. Math. 193:1 (2013), 441-458. MR Zbl

[Bourgain and Demeter 2015] J. Bourgain and C. Demeter, “The proof of the / 2 decoupling conjecture”, Ann. of Math. (2) 182:1
(2015), 351-389. MR Zbl

[Burq et al. 2004] N. Burq, P. Gérard, and N. Tzvetkov, “Strichartz inequalities and the nonlinear Schrédinger equation on
compact manifolds”, Amer. J. Math. 126:3 (2004), 569-605. MR Zbl

[Burq et al. 2007] N. Burq, P. Gérard, and N. Tzvetkov, “Global solutions for the nonlinear Schrddinger equation on three-
dimensional compact manifolds”, pp. 111-129 in Mathematical aspects of nonlinear dispersive equations (Princeton, 2004),
edited by J. Bourgain et al., Ann. of Math. Stud. 163, Princeton Univ. Press, 2007. MR Zbl


http://dx.doi.org/10.1016/j.anihpc.2009.01.009
http://msp.org/idx/mr/2566713
http://msp.org/idx/zbl/1176.35166
http://dx.doi.org/10.1080/03605302.2010.539658
http://msp.org/idx/mr/2765426
http://msp.org/idx/zbl/1252.35245
http://dx.doi.org/10.1080/03605300600854332
http://msp.org/idx/mr/2372482
http://msp.org/idx/zbl/1143.35091
http://dx.doi.org/10.4310/DPDE.2007.v4.n4.a3
http://dx.doi.org/10.4310/DPDE.2007.v4.n4.a3
http://msp.org/idx/mr/2376801
http://msp.org/idx/zbl/1137.35010
http://dx.doi.org/10.2140/apde.2011.4.1
http://msp.org/idx/mr/2783305
http://msp.org/idx/zbl/1230.35027
http://dx.doi.org/10.1016/j.jfa.2007.11.018
http://msp.org/idx/mr/2396017
http://msp.org/idx/zbl/1168.35005
http://dx.doi.org/10.1007/BF02764948
http://msp.org/idx/mr/1029904
http://msp.org/idx/zbl/0692.43005
http://dx.doi.org/10.1007/BF01896020
http://dx.doi.org/10.1007/BF01896020
http://msp.org/idx/mr/1209299
http://msp.org/idx/zbl/0787.35097
http://dx.doi.org/10.1007/s11856-012-0077-1
http://msp.org/idx/mr/3038558
http://msp.org/idx/zbl/1271.42039
http://dx.doi.org/10.4007/annals.2015.182.1.9
http://msp.org/idx/mr/3374964
http://msp.org/idx/zbl/1322.42014
http://dx.doi.org/10.1353/ajm.2004.0016
http://dx.doi.org/10.1353/ajm.2004.0016
http://msp.org/idx/mr/2058384
http://msp.org/idx/zbl/1067.58027
http://msp.org/idx/mr/2333209
http://msp.org/idx/zbl/1180.35475

STRICHARTZ ESTIMATES FOR THE SCHRODINGER FLOW ON COMPACT LIE GROUPS 1219

[Fotiadis et al. 2018] A. Fotiadis, N. Mandouvalos, and M. Marias, “Schrodinger equations on locally symmetric spaces”, Math.
Ann. 371:3-4 (2018), 1351-1374. MR Zbl

[Ginibre and Velo 1995] J. Ginibre and G. Velo, “Generalized Strichartz inequalities for the wave equation”, J. Funct. Anal.
133:1 (1995), 50-68. MR Zbl

[Guo et al. 2014] Z. Guo, T. Oh, and Y. Wang, “Strichartz estimates for Schrodinger equations on irrational tori”, Proc. Lond.
Math. Soc. (3) 109:4 (2014), 975-1013. MR Zbl

[Harish-Chandra 1957] Harish-Chandra, “Differential operators on a semisimple Lie algebra”, Amer. J. Math. 79 (1957), 87-120.
MR Zbl

[Hassell et al. 2006] A. Hassell, T. Tao, and J. Wunsch, “Sharp Strichartz estimates on nontrapping asymptotically conic
manifolds”, Amer. J. Math. 128:4 (2006), 963-1024. MR Zbl

[Herr 2013] S. Herr, “The quintic nonlinear Schrodinger equation on three-dimensional Zoll manifolds”, Amer. J. Math. 135:5
(2013), 1271-1290. MR Zbl

[Herr et al. 2011] S. Herr, D. Tataru, and N. Tzvetkov, “Global well-posedness of the energy-critical nonlinear Schrodinger
equation with small initial data in HI(T3)”, Duke Math. J. 159:2 (2011), 329-349. MR Zbl

[Hiller 1982] H. Hiller, Geometry of Coxeter groups, Research Notes in Math. 54, Pitman, Boston, 1982. MR Zbl

[Humphreys 1990] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Adv. Math. 29, Cambridge
Univ. Press, 1990. MR Zbl

[Ionescu and Staffilani 2009] A. D. Ionescu and G. Staffilani, “Semilinear Schrodinger flows on hyperbolic spaces: scatter-
ing H1”, Math. Ann. 345:1 (2009), 133-158. MR Zbl

[Keel and Tao 1998] M. Keel and T. Tao, “Endpoint Strichartz estimates”, Amer. J. Math. 120:5 (1998), 955-980. MR Zbl

[Killip and Visan 2016] R. Killip and M. Visan, “Scale invariant Strichartz estimates on tori and applications”, Math. Res. Lett.
23:2 (2016), 445-472. MR Zbl

[Pierfelice 2006] V. Pierfelice, “Weighted Strichartz estimates for the radial perturbed Schrodinger equation on the hyperbolic
space”, Manuscripta Math. 120:4 (2006), 377-389. MR Zbl

[Pierfelice 2008] V. Pierfelice, “Weighted Strichartz estimates for the Schrodinger and wave equations on Damek—Ricci spaces”,
Math. Z. 260:2 (2008), 377-392. MR Zbl

[Procesi 2007] C. Procesi, Lie groups: an approach through invariants and representations, Springer, 2007. MR Zbl

[Sogge 1988] C. D. Sogge, “Concerning the L? norm of spectral clusters for second-order elliptic operators on compact
manifolds”, J. Funct. Anal. 77:1 (1988), 123-138. MR Zbl

[Staffilani and Tataru 2002] G. Staffilani and D. Tataru, “Strichartz estimates for a Schrodinger operator with nonsmooth
coefficients”, Comm. Partial Differential Equations 27:7-8 (2002), 1337-1372. MR Zbl

[Strichartz 1977] R. S. Strichartz, “Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave
equations”, Duke Math. J. 44:3 (1977), 705-714. MR Zbl

[Strichartz 1983] R. S. Strichartz, “Analysis of the Laplacian on the complete Riemannian manifold”, J. Funct. Anal. 52:1
(1983), 48-79. MR Zbl

[Varadarajan 1974] V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice-Hall, Englewood Cliffs, NJ,
1974. MR Zbl

Received 27 Aug 2018. Revised 19 Feb 2019. Accepted 18 Apr 2019.

YUNFENG ZHANG: yunfeng.zhang@uconn.edu
Department of Mathematics, University of Connecticut, Storrs, CT, United States

mathematical sciences publishers :'msp


http://dx.doi.org/10.1007/s00208-017-1628-x
http://msp.org/idx/mr/3831274
http://msp.org/idx/zbl/1406.35353
http://dx.doi.org/10.1006/jfan.1995.1119
http://msp.org/idx/mr/1351643
http://msp.org/idx/zbl/0839.35016
http://dx.doi.org/10.1112/plms/pdu025
http://msp.org/idx/mr/3273490
http://msp.org/idx/zbl/1303.35099
http://dx.doi.org/10.2307/2372387
http://msp.org/idx/mr/0084104
http://msp.org/idx/zbl/0072.01901
http://dx.doi.org/10.1353/ajm.2006.0033
http://dx.doi.org/10.1353/ajm.2006.0033
http://msp.org/idx/mr/2251591
http://msp.org/idx/zbl/1177.58019
http://dx.doi.org/10.1353/ajm.2013.0040
http://msp.org/idx/mr/3117307
http://msp.org/idx/zbl/1278.58006
http://dx.doi.org/10.1215/00127094-1415889
http://dx.doi.org/10.1215/00127094-1415889
http://msp.org/idx/mr/2824485
http://msp.org/idx/zbl/1230.35130
http://msp.org/idx/mr/649068
http://msp.org/idx/zbl/0483.57002
http://dx.doi.org/10.1017/CBO9780511623646
http://msp.org/idx/mr/1066460
http://msp.org/idx/zbl/0725.20028
http://dx.doi.org/10.1007/s00208-009-0344-6
http://dx.doi.org/10.1007/s00208-009-0344-6
http://msp.org/idx/mr/2520054
http://msp.org/idx/zbl/1203.35262
http://dx.doi.org/10.1353/ajm.1998.0039
http://msp.org/idx/mr/1646048
http://msp.org/idx/zbl/0922.35028
http://dx.doi.org/10.4310/MRL.2016.v23.n2.a8
http://msp.org/idx/mr/3512894
http://msp.org/idx/zbl/1354.35140
http://dx.doi.org/10.1007/s00229-006-0015-9
http://dx.doi.org/10.1007/s00229-006-0015-9
http://msp.org/idx/mr/2245889
http://msp.org/idx/zbl/1128.35028
http://dx.doi.org/10.1007/s00209-007-0279-0
http://msp.org/idx/mr/2429618
http://msp.org/idx/zbl/1153.35074
http://dx.doi.org/10.1007/978-0-387-28929-8
http://msp.org/idx/mr/2265844
http://msp.org/idx/zbl/1154.22001
http://dx.doi.org/10.1016/0022-1236(88)90081-X
http://dx.doi.org/10.1016/0022-1236(88)90081-X
http://msp.org/idx/mr/930395
http://msp.org/idx/zbl/0641.46011
http://dx.doi.org/10.1081/PDE-120005841
http://dx.doi.org/10.1081/PDE-120005841
http://msp.org/idx/mr/1924470
http://msp.org/idx/zbl/1010.35015
http://dx.doi.org/10.1215/S0012-7094-77-04430-1
http://dx.doi.org/10.1215/S0012-7094-77-04430-1
http://msp.org/idx/mr/0512086
http://msp.org/idx/zbl/0372.35001
http://dx.doi.org/10.1016/0022-1236(83)90090-3
http://msp.org/idx/mr/705991
http://msp.org/idx/zbl/0515.58037
http://msp.org/idx/mr/0376938
http://msp.org/idx/zbl/0371.22001
mailto:yunfeng.zhang@uconn.edu
http://msp.org

Analysis & PDE
msp.org/apde

EDITORS

EDITOR-IN-CHIEF
Patrick Gérard
patrick.gerard @math.u-psud.fr

Université Paris Sud XI
Orsay, France

BOARD OF EDITORS

Massimiliano Berti ~ Scuola Intern. Sup. di Studi Avanzati, Italy Gilles Pisier  Texas A&M University, and Paris 6

Michael Christ

Charles Fefferman

Ursula Hamenstaedt

Vadim Kaloshin

Herbert Koch

Izabella Laba

Richard B. Melrose

Frank Merle

William Minicozzi IT

Clément Mouhot

‘Werner Miiller

berti @sissa.it

University of California, Berkeley, USA
mchrist@math.berkeley.edu
Princeton University, USA
cf@math.princeton.edu

Universitdt Bonn, Germany
ursula@math.uni-bonn.de

University of Maryland, USA
vadim.kaloshin @gmail.com
Universitit Bonn, Germany
koch@math.uni-bonn.de

University of British Columbia, Canada
ilaba@math.ubc.ca

Massachussets Inst. of Tech., USA
rbm@math.mit.edu

Université de Cergy-Pontoise, France
Frank.Merle @u-cergy.fr

Johns Hopkins University, USA
minicozz@math.jhu.edu

Cambridge University, UK
c.mouhot@dpmms.cam.ac.uk
Universitit Bonn, Germany

mueller @math.uni-bonn.de

Tristan Riviere

Igor Rodnianski

Yum-Tong Siu

Terence Tao

Michael E. Taylor

Gunther Uhlmann

Andrds Vasy

Dan Virgil Voiculescu

Steven Zelditch

Maciej Zworski

PRODUCTION
production @msp.org

Silvio Levy, Scientific Editor

pisier@math.tamu.edu

ETH, Switzerland

riviere @math.ethz.ch

Princeton University, USA

irod @math.princeton.edu

Harvard University, USA
siu@math.harvard.edu

University of California, Los Angeles, USA
tao @math.ucla.edu

Univ. of North Carolina, Chapel Hill, USA
met@math.unc.edu

University of Washington, USA

gunther @math.washington.edu
Stanford University, USA

andras @math.stanford.edu

University of California, Berkeley, USA
dvv@math.berkeley.edu

Northwestern University, USA
zelditch@math.northwestern.edu
University of California, Berkeley, USA
zworski @math.berkeley.edu

See inside back cover or msp.org/apde for submission instructions.

The subscription price for 2020 is US $340/year for the electronic version, and $550/year (+$60, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscriber address should be sent to MSP.

Analysis & PDE (ISSN 1948-206X electronic, 2157-5045 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o Uni-
versity of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and
additional mailing offices.

APDE peer review and production are managed by EditFlow® from MSP.

PUBLISHED BY
:I mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2020 Mathematical Sciences Publishers


http://msp.org/apde
mailto:patrick.gerard@math.u-psud.fr
mailto:berti@sissa.it
mailto:mchrist@math.berkeley.edu
mailto:cf@math.princeton.edu
mailto:ursula@math.uni-bonn.de
mailto:vadim.kaloshin@gmail.com
mailto:koch@math.uni-bonn.de
mailto:ilaba@math.ubc.ca
mailto:rbm@math.mit.edu
mailto:Frank.Merle@u-cergy.fr
mailto:minicozz@math.jhu.edu
mailto:c.mouhot@dpmms.cam.ac.uk
mailto:mueller@math.uni-bonn.de
mailto:pisier@math.tamu.edu
mailto:riviere@math.ethz.ch
mailto:irod@math.princeton.edu
mailto:siu@math.harvard.edu
mailto:tao@math.ucla.edu
mailto:met@math.unc.edu
mailto:gunther@math.washington.edu
mailto:andras@math.stanford.edu
mailto:dvv@math.berkeley.edu
mailto:zelditch@math.northwestern.edu
mailto:zworski@math.berkeley.edu
mailto:production@msp.org
http://msp.org/apde
http://msp.org/
http://msp.org/

ANALYSIS & PDE

Volume 13 No.4 2020

Estimates for the Navier—Stokes equations in the half-space for nonlocalized data 945
YASUNORI MAEKAWA, HIDEYUKI MIURA and CHRISTOPHE PRANGE
Almost-sure scattering for the radial energy-critical nonlinear wave equation in three dimen- 1011
sions
BJOERN BRINGMANN

On the existence of translating solutions of mean curvature flow in slab regions 1051
THEODORA BOURNI, MAT LANGFORD and GIUSEPPE TINAGLIA

Convex projective surfaces with compatible Weyl connection are hyperbolic 1073
THOMAS METTLER and GABRIEL P. PATERNAIN

Stability of small solitary waves for the one-dimensional NLS with an attractive delta potential 1099
SATOSHI MASAKI, JASON MURPHY and JUN-ICHI SEGATA

Geometric regularity for elliptic equations in double-divergence form 1129
RAIMUNDO LEITAO, EDGARD A. PIMENTEL and MAKSON S. SANTOS

Nonexistence of global characteristics for viscosity solutions 1145
VALENTINE ROOS

Strichartz estimates for the Schrodinger flow on compact Lie groups 1173
YUNFENG ZHANG

Parabolic L? Dirichlet boundary value problem and VMO-type time-varying domains 1221
MARTIN DINDOS, LUKE DYER and SUKJUNG HWANG



	1. Introduction
	2. Statement of the main theorem
	2A. Rational metric
	2B. Main theorem
	2C. Organization of the paper

	3. First reductions
	3A. Littlewood–Paley theory
	3B. Reduction to a finite cover
	3C. Littlewood–Paley projections of product type

	4. Preliminaries on harmonic analysis on compact Lie groups
	4A. Fourier transform
	4B. Root system and the Laplace–Beltrami operator

	5. The Schrödinger kernel
	6. The Stein–Tomas argument
	7. Dispersive estimates on major arcs
	7A. Weyl-type sums on rational lattices
	7B. From a chamber to the whole weight lattice
	7C. Pseudopolynomial behavior of characters
	7C.1. Approach 1: via BGG-Demazure operators
	7C.2. Approach 2: via Harish-Chandra's integral formula

	7D. From the weight lattice to the root lattice
	7E. Root subsystems
	7E.1. Identifying root subsystems and rewriting the character
	7E.2. Decomposition of the weight lattice

	7F. L^p estimates

	Acknowledgments
	References
	
	

