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UNIFORM SOBOLEV ESTIMATES FOR SCHRÖDINGER OPERATORS
WITH SCALING-CRITICAL POTENTIALS AND APPLICATIONS

HARUYA MIZUTANI

We prove uniform Sobolev estimates for the resolvent of Schrödinger operators with large scaling-critical
potentials without any repulsive condition. As applications, global-in-time Strichartz estimates including
some nonadmissible retarded estimates, a Hörmander-type spectral multiplier theorem, and Keller-type
eigenvalue bounds with complex-valued potentials are also obtained.

1. Introduction and main results

This paper is a continuation of [Bouclet and Mizutani 2018; Mizutani 2019], where uniform estimates
for the resolvent (H − z)−1 of the Schrödinger operator H = −1+ V (x) on Rn with a real-valued
potential V (x) exhibiting one critical singularity were investigated under some repulsive conditions
so that H is nonnegative and its spectrum σ(H) is purely absolutely continuous. In the present paper
we improve upon and extend those previous results to a class of scaling-critical potentials without any
repulsive condition such that H may have (finitely many) negative eigenvalues and multiple scaling-
critical singularities. Applications to Strichartz estimates, a Hörmander-type multiplier theorem for H
and eigenvalue bounds for H +W with complex potential W are also established.

We first recall some known results in the free case, H =−1, describing the motivation of this paper.
The classical Hardy–Littlewood–Sobolev (HLS for short) inequality states that

‖(−1)−s/2 f ‖Lq ≤ C‖ f ‖L p

for f ∈ S(Rn), 0 < s < n, 1 < p < q <∞ and 1/p− 1/q = s/n, where S(Rn) denotes the space of
Schwarz functions, (−1)−s/2

= F−1
|ξ |−sF is the Riesz potential of order s and F stands for the Fourier

transform in Rn. An equivalent form is Sobolev’s inequality

‖ f ‖Lq ≤ C‖(−1)s/2 f ‖L p .

When s = 2, the HLS inequality can be regarded as the L p-Lq boundedness of the free resolvent
(−1− z)−1 at z = 0. In this context, the HLS inequality was extended to nonzero energies z 6= 0 in
[Kenig, Ruiz, and Sogge 1987; Kato and Yajima 1989; Gutiérrez 2004] as follows:
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Proposition 1.1 (uniform Sobolev estimates). Let n ≥ 3, 1≤ r ≤∞ and (p, q) satisfy

2
n+1

≤
1
p
−

1
q
≤

2
n
,

2n
n+3

< p < 2n
n+1

,
2n

n−1
< q < 2n

n−3
. (1-1)

Then the free resolvent R0(z)= (−1− z)−1 satisfies

‖R0(z) f ‖Lq,r ≤ C |z|(n/2)(1/p−1/q)−1
‖ f ‖L p,r (1-2)

uniformly in f ∈ L p,r (Rn), z ∈ C \ [0,∞) and r , where L p,r (Rn) denotes the Lorentz space.

Sketch of proof. By virtue of real interpolation (see Theorem A.1 in the Appendix), we may replace
without loss of generality L p,r and Lq,r by L p and Lq, respectively. Then the case 1/p+ 1/q = 1 was
proved independently by [Kenig, Ruiz, and Sogge 1987, Theorem 2.3] and [Kato and Yajima 1989, (3.29),
p. 493]; the case 1/p− 1/q = 2/n is due to [Kenig, Ruiz, and Sogge 1987, Theorem 2.2]; otherwise, we
refer to [Gutiérrez 2004, Theorem 6]. �

Note that, when 1/p− 1/q = 2/n, the estimate is uniform in z, as its name suggests.
Uniform Sobolev estimates can be used in the study of broad areas including the spectral and scattering

theory for Schrödinger operators. In [Kenig, Ruiz, and Sogge 1987], the authors applied (1-2) to study
unique continuation properties of−1+V with V ∈ Ln/2. In [Kato and Yajima 1989; Goldberg and Schlag
2004; Ionescu and Schlag 2006], (1-2) was used to show the limiting absorption principle and asymptotic
completeness of wave operators for−1+L with a large class of singular perturbations L . In [Frank 2011],
(1-2) was used to prove the Keller-type inequality for −1+W (x) with a complex potential W ∈ L p with
some p≥ n/2, which is a quantitative estimate of the spectral radius of σp(−1+W ). In [Gutiérrez 2004],
(1-2) was applied to show the existence of Lq-solutions for the stationary Ginzburg–Landau equation
under some radiation condition.

In a more abstract setting, the following observations are satisfied for not only 1 but also a general
nonnegative self-adjoint operator L on L2(X, µ):

• The uniform Sobolev estimate with p = 2n/(n+ 2) and q = 2n/(n− 2) implies that, for any w ∈ Ln,
the weighted resolvent w(L − z)−1w is bounded on L2 uniformly in z ∈ C \ [0,∞). As observed by
[Kato 1966; Kato and Yajima 1989; Rodnianski and Schlag 2004], such a weighted estimate is closely
connected with dispersive properties of the solution to (1-4) such as Kato-smoothing effects, time-decay
and Strichartz estimates, which are fundamental tools in the study of nonlinear Schrödinger equations;
see [Tao 2006].

• Uniform Sobolev estimates imply that the spectral measure d EL(λ) associated with L is bounded from
L p to L p′ for

2n
n+2

≤ p ≤ 2(n+1)
n+3

.

This is an important input to prove the Hörmander-type theorem on the L p boundedness of the spectral
multiplier f (L); see [Chen, Ouhabaz, Sikora, and Yan 2016].
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Motivated by those observations, we are interested in extending (1-2) to the Schrödinger operator
H =−1+ V (x). If V is of very short range type in the sense that, with some ε > 0,

|V (x)| ≤ C(1+ |x |)−2−ε, x ∈ Rn, (1-3)

then there is a vast literature on uniform weighted L2-estimates for (H − z)−1 without any additional
repulsive condition such as suitable smallness of the negative part of V ; see, e.g., [Jensen and Kato 1979;
Rodnianski and Tao 2015]. Weighted L2-estimates were also obtained for a class of potentials satisfying
|x |2V ∈ L∞ under some additional repulsive conditions [Burq, Planchon, Stalker, and Tahvildar-Zadeh
2004; Barceló, Vega, and Zubeldia 2013]. In our previous works [Bouclet and Mizutani 2018; Mizutani
2019], we proved uniform Sobolev estimates for H with a class of critical potentials V ∈ Ln/2,∞ under
some repulsive conditions so that H has purely absolutely continuous spectrum. However, in these works,
the range of (p, q) has been restricted on the line 1/p+ 1/q = 1. Furthermore, the situation for (large)
critical potentials without any repulsive condition is less understood.

The main goal of this paper is to prove the full set of uniform Sobolev estimates for H =−1+ V (x)
with a large scaling-critical potential V ∈ Ln/2,∞

0 without any repulsive condition. The following three
types of applications are also established in the paper:

(i) We prove global-in-time Strichartz estimates for the Schrödinger equation

i∂t u(t, x)= Hu(t, x)+ F(t, x), (t, x) ∈ R1+n, u(0, x)= ψ, x ∈ Rn, (1-4)

for all admissible cases and several nonadmissible cases.

(ii) A Hörmander-type spectral multiplier theorem for f (H) is obtained provided that H is nonnegative.

(iii) We obtain Keller-type estimates for the eigenvalues (including possible embedded eigenvalues) of
the operator H +W with complex potentials W ∈ L p, n/2< p ≤ (n+ 1)/2.

Finally, we mention that the results in this paper could be used to study spectral and scattering theory
for both linear and nonlinear Schrödinger equations with potentials V ∈ Ln/2,∞

0 .

Notation. A . B (resp. A & B) means A ≤ cB (resp. A ≥ cB) with some universal constant c > 0.
By 〈x〉 we denote

√
1+ |x |2 and we set C± := {z ∈ C | ± Im z > 0}. Given two Banach spaces X

and Y, B(X, Y ) is the Banach space of bounded linear operators from X to Y and B(X) = B(X, X),
and B∞(X, Y ) and B∞(X) are families of compact operators. By 〈 f, g〉 =

∫
f ḡ dx we denote the inner

product in L2. We also use the same notation 〈 · , · 〉 for the dual coupling between L p and L p′, where
p′ = p/(p− 1) denotes the Hölder conjugate of p. L p

t Xx = L p(R;X) is the Bochner–Lebesgue space
with norm ‖F‖L p

t X
=‖‖F(t, x)‖Xx

‖L p
t
. L p

T Lq
x := L p([−T, T ]; Lq(Rn)). Let 〈 · , · 〉T be the inner product

in L2
T L2

x defined by

〈F,G〉T =
∫ T

−T
〈F( · , t),G( · , t)〉 dt.

Hs(Rn) and Ḣs(Rn) are inhomogeneous and homogeneous L2-Sobolev spaces, respectively. Ws,p(Rn)

is the L p-Sobolev space. L p,q(Rn) denotes the Lorentz space (see the Appendix).
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1A. Main results. Throughout the paper we assume that n ≥ 3 and that V ∈ Ln/2,∞
0 (Rn) is a real-valued

function, where L p,∞
0 (Rn) is the completion of C∞0 (R

n) with respect to the norm ‖ · ‖L p,∞ . It follows
from Hölder’s and Sobolev’s inequalities for Lorentz norms (see the Appendix) that V is 1-form compact.
Then the KLMN theorem [Reed and Simon 1975, Theorem X.17] yields that there exists a unique lower
semibounded self-adjoint operator H on L2(Rn) with form domain H1(Rn) such that

〈Hu, v〉 = 〈(−1+ V )u, v〉, u ∈ D(H), v ∈H1(Rn),

and that its domain D(H) = {u ∈ H1(Rn) | Hu ∈ L2(Rn)} is dense in H1(Rn). In other words, H is
defined as the Friedrichs extension of the sesquilinear form 〈(−1+ V )u, v〉.

Remark 1.2. Note that Ln/2,q ↪→ Ln/2,∞
0 for all 1≤ q <∞. Also note that the class Ln/2,∞

0 is scaling-
critical in the sense that the norm ‖V ‖Ln/2,∞ is invariant under the scaling V 7→Vλ, where Vλ(x)=λ2V (λx).
In particular, if V itself is invariant under this scaling, the potential energy 〈V u, u〉 has the same scale-
invariant structure as that for the kinetic energy 〈−1u, u〉.

Let E ⊂ σ(H) be the exceptional set of H, the set of all eigenvalues and resonances of H (see
Definition 2.6). Note that E ∩ (−∞, 0) is equal to σd(H), the discrete spectrum of H, and that E is
bounded in R (see Remark 3.4). For the absence of embedded eigenvalues and resonances, we have the
following simple criterion (see also Remark 1.18):

Lemma 1.3. Let V be as above. Then the following statements are satisfied:

(1) If V ∈ Ln/2 then there are no positive eigenvalues and resonances; that is, E∩ (0,∞)=∅.

(2) If −1+ V ≥−δ1 with some δ > 0 in the sense of forms on C∞0 then 0 /∈ E.

Proof. The proof will be given in Section 2B. �

Define Eδ := {z ∈ C | dist(z,E) < δ} if E 6=∅ and Eδ :=∅ if E=∅. For z ∈ C \σ(H), we denote the
resolvent of H by R(z)= (H − z)−1.

Then the main result in this paper is as follows.

Theorem 1.4. Suppose that (p, q) satisfies (1-1). Then R(z) extends to a bounded operator from L p,2 to
Lq,2 for all z ∈ C \ σ(H). Moreover, for any δ > 0 there exists Cδ > 0 such that

‖R(z) f ‖Lq,2 ≤ Cδ|z|(n/2)(1/p−1/q)−1
‖ f ‖L p,2 (1-5)

for all z ∈C\ ([0,∞)∪Eδ) and f ∈ L p,2. In particular, if E=∅, then (1-5) holds uniformly with respect
to z ∈ C \ [0,∞) and f ∈ L p,2.

As a corollary, the limiting absorption principle in the same topology is derived.

Corollary 1.5. Let (p, q) satisfy (1-1). Then the following statements are satisfied:

(1) The boundary values R(λ± i0) = limε↘0 R(λ± iε) ∈ B(L p,2, Lq,2) exist for all λ ∈ (0,∞) \ E.
Moreover, for any δ > 0 there exists Cδ > 0 such that

‖R(λ± i0) f ‖Lq,2 ≤ Cδλ(n/2)(1/p−1/q)−1
‖ f ‖L p,2, f ∈ L p,2(Rn), λ ∈ (0,∞) \Eδ. (1-6)

In particular, if E∩ [0,∞)=∅, then (1-6) holds uniformly in λ > 0.
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(2) Assume in addition that 1/p − 1/q = 2/n and 0 /∈ E. Then R(0± i0) ∈ B(L p,2, Lq,2) exist and
R(0+ i0)= R(0− i0). Moreover, H R(0+ i0) f = f and R(0+ i0)Hg = g for all f, g ∈ S in the
sense of distributions. In particular, one has the HLS-type inequality

‖H−1 f ‖Lq,2 ≤ C‖ f ‖L p,2, f ∈ L p,2(Rn). (1-7)

As a byproduct of Theorem 1.4, we also obtain the L p-Lq boundedness of R(z) for fixed z with a
wider range than (1-1).

Corollary 1.6. For any z ∈ C \ σ(H), the resolvent R(z) is bounded from L p,2 to Lq,2 whenever

0≤ 1
p
−

1
q
≤

2
n
,

2n
n+3

< p, q < 2n
n−3

. (1-8)

In particular, D(H)⊂ D(w) for any w ∈ Ln/s,∞ with 0≤ s < 3
2 . Here D(w) denotes the domain of the

multiplication operator by w(x).

Remark 1.7. Since L p ↪→ L p,2 and Lq,2 ↪→ Lq if p ≤ 2 ≤ q, one has B(L p,2, Lq,2) ⊂ B(L p, Lq).
Moreover, by virtue of real interpolation (see Theorem A.1), Theorem 1.4 and Corollaries 1.5 and 1.6
also hold with L p,2 and Lq,2 replaced respectively by L p,r and Lq,r for any 1≤ r ≤∞.

As explained in the Introduction, the resolvent R(z) has a close relation with the spectral measure EH

associated with H through Stone’s formula

E ′H (λ)=
1

2π i
lim
ε↘0

(R(λ+ iε)− R(λ− iε)), λ ∈ (0,∞) \ σp(H), (1-9)

where E ′H (λ) = (d EH/dλ)(λ) is the density of EH . Using this formula and above theorems, we also
obtain the following restriction-type estimates.

Theorem 1.8. Assume that E∩ [0,∞)=∅. Then, for any

2n
n+3

< p ≤ 2(n+1)
n+3

,

we have
‖E ′H (λ)‖B(L p,L p′ ) ≤ Cλ(n/2)(1/p−1/p′)−1, λ > 0. (1-10)

Remark 1.9. The existence of R(λ± i0) in B(L2(n+1)/(n+3), L2(n+1)/(n−1)) for each λ > 0 was proved
in [Ionescu and Schlag 2006] for the case when V ∈ L p with n/2≤ p ≤ (n+1)/2. The uniform estimate
(1-6) in the high energy regime λ ≥ λ0 > 0 was obtained in [Goldberg and Schlag 2004] for the case
when n = 3, V ∈ L3/2

∩ Lr with r > 3
2 and (p, q)=

( 4
3 , 4

)
. Recently, (1-6) for λ > 0 and

(p, q)=
(2(n+1)

n−1
,

2(n+1)
n+3

)
was proved in [Huang, Yao, and Zheng 2018] provided that V ∈ Ln/2

∩Ln/2+ε and 0 /∈ E (note that, in this
case, E∩(0,∞)=∅ as in Lemma 1.3). Compared with those previous works, the main new contributions
of Theorem 1.4 and Corollary 1.5 are threefold. At first, we obtain the uniform estimates (1-5) and (1-6)
with respect to z or λ in both high- and low-energy regimes, under the condition E∩[0,∞)=∅. This is an
important input to prove global-in-time Strichartz estimates without any low- or high-energy cut-off. Next,
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the full set of uniform Sobolev estimates is obtained, while the above previous references considered the
case 1/p+1/q = 1 only. In particular, (1-5) and (1-6) for (p, q) away from the line 1/p+1/q = 1 seems
to be new even under the condition (1-3). Such “off-diagonal” estimates play an important role in the proof
of Strichartz estimates for nonadmissible pairs and L p-boundedness of the spectral multiplier f (H) for a
wider range of p than that obtained by the “diagonal” estimate on the line 1/p+ 1/q = 1 (see Sections 4
and 5, respectively). Finally, we obtain the above results for large critical potentials V ∈ Ln/2,∞

0 without
any additional regularity or repulsive condition. Concerning L p-Lq boundedness of R(z) for each z ∈C\

[0,∞), a result similar to Corollary 1.6 was previously obtained in [Simon 1982] for Kato class potentials.
However, to our best knowledge, this corollary seems to be new for the present class of potentials.

In this paper we also study several applications of the above resolvent estimates to the time-dependent
problem, harmonic analysis and spectral theory associated with H.

We first consider global-in-time estimates for the Schrödinger equation (1-4). Let e−i t H be the unitary
group generated by H via Stone’s theorem. For F ∈ L1

loc(R; L
2(Rn)), we define

0H F(t)=
∫ t

0
e−i(t−s)H F(s) ds.

For ψ ∈ L2(Rn) and F ∈ L1
loc(R; L

2(Rn)), a unique (mild) solution to (1-4) is then given by

u = e−i t Hψ − i0H F. (1-11)

The next theorem generalizes a result in [Ben-Artzi and Klainerman 1992], where the case when |V (x)|.
〈x〉−2−ε was considered.

Theorem 1.10. Assume that E∩ [0,∞)=∅. Then, for any ρ > 1
2 ,

‖〈x〉−ρ |D|1/2e−i t H Pac(H)ψ‖L2
t L2

x
≤ Cρ‖ψ‖L2

x
,

where Pac(H) is the projection onto the absolutely continuous subspace associated with H.

To state the result on Strichartz estimates, we recall some standard notation.

Definition 1.11. When n ≥ 3, a pair (p, q) ∈ R2 is said to be admissible if

p, q ≥ 2, 2
p
= n

(1
2
−

1
q

)
. (1-12)

Theorem 1.12. Suppose that E∩ [0,∞)=∅. Then, for any admissible pairs (p1, q1) and (p2, q2), the
solution u to (1-4) satisfies

‖Pac(H)u‖L
p1
t L

q1
x
. ‖ψ‖L2 +‖F‖

L
p′2
t L

q′2
x
, ψ ∈ L2, F ∈ L

p′2
t L

q ′2
x . (1-13)

For any
n

2(n−1)
≤ s ≤ 3n−4

2(n−1)
,

we also obtain nonadmissible inhomogeneous Strichartz estimates:

‖0H Pac(H)F‖L2
t L2n/(n−2s)

x
. ‖F‖L2

t L2n/(n+2(2−s))
x

, F ∈ L2
t L2n/(n+2(2−s))

x . (1-14)
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Remark 1.13. For the admissible case or the case when
n

2(n−1)
< s < 3n−4

2(n−1)
,

we can actually obtain stronger estimates than (1-13) and (1-14):

‖Pac(H)u‖L
p1
t L

q1,2
x
. ‖ψ‖L2 +‖F‖

L
p′2
t L

q′2,2
x
,

‖0H Pac(H)F‖L2
t L2n/(n−2s),2

x
. ‖F‖L2

t L2n/(n+2(2−s)),2
x

,
n

2(n−1)
< s < 3n−4

2(n−1)
,

Inhomogeneous estimates for some other nonadmissible pairs may be also deduced from (1-14) and
usual inhomogeneous estimates. For instance, if we interpolate between (1-14) and the trivial estimate
‖0H Pac(H)F‖L∞t L2

x
≤ ‖F‖L1

t L2
x

then

‖0H Pac F‖L p
t Lq

x
. ‖F‖

L p̃′
t L q̃′

x
,

where
n

2(n−1)
≤ s ≤ 3n−4

2(n−1)
and n

s

(1
2
−

1
q

)
=

2
p
=

2
p̃
=

n
2−s

(1
2
−

1
q̃

)
.

Inhomogeneous Strichartz estimates with nonadmissible pairs for the free Schrödinger equation have
been studied by several authors [Kato 1994; Keel and Tao 1998; Foschi 2005; Vilela 2007; Koh and Seo
2016] under suitable conditions on (p, q); see [Foschi 2005; Koh and Seo 2016]. The estimates (1-14)
correspond to the endpoint cases for such conditions. It is also worth noting that, as well as the estimates
for admissible pairs, nonadmissible estimates can be used in the study of nonlinear Schrödinger equations;
see [Kato 1994].

Remark 1.14. There is a vast literature on Strichartz estimates for Schrödinger equations with potentials.
We refer to [Rodnianski and Schlag 2004; Goldberg 2009; Beceanu 2011; Bouclet and Mizutani 2018]. We
also note that the dispersive L1-L∞ estimate for e−i t H Pac(H) and L p-boundedness of wave operators W±,
which imply Strichartz estimates, have been also extensively studied; see [Rodnianski and Schlag 2004;
Beceanu and Goldberg 2012; Yajima 1995; Beceanu 2014]. In particular, Goldberg [2009] proved the
endpoint Strichartz estimates for e−i t H Pac under the conditions V ∈ Ln/2, 0 /∈ E and n ≥ 3. When
n = 3, Strichartz estimates for all admissible cases and some nonadmissible cases (which are different
from (1-14)) for V ∈ L3/2,∞

0 were obtained in [Beceanu 2011]. Compared with those previous works, a
new contribution of this theorem is that we obtain the full set of admissible Strichartz estimates (1-13),
including the inhomogeneous double endpoint case for all n ≥ 3. Moreover, nonadmissible estimates
(1-14) are new even for V ∈ Ln/2.

The next application of resolvent estimates in this paper is the L p-boundedness of the spectral multiplier
F(H), which is defined by the spectral decomposition theorem, namely

F(H)=
∫
σ(H)

F(λ) d EH (λ).

For the free case H =−1, Hörmander’s multiplier theorem [1960] implies that if F ∈ L∞ satisfies

sup
t>0
‖ψ( · )F(t · )‖Hβ <∞, (1-15)
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with some nontrivial ψ ∈C∞0 (R) supported in (0,∞) and β > n/2, then F(−1) is bounded on L p for all
1< p <∞. The following theorem is a generalization of this result to nonnegative Schrödinger operators
with scaling-critical potentials.

Theorem 1.15. Suppose that E∩ [0,∞) = ∅ and H ≥ 0. Then, for any F ∈ L∞(R) satisfying (1-15)
with some nontrivial ψ ∈ C∞0 (R) supported in (0,∞) and β > 3

2 , F(
√

H) is bounded on L p for all

2n
n+3

< p < 2n
n−3

and satisfies
‖F(
√

H)‖B(L p) ≤ C(sup
t>0
‖ψ( · )F(t · )‖Hβ + |F(0)|). (1-16)

It is easy to check that F satisfies (1-15) if and only if G(λ)= F(λ2) does. Therefore, (1-16) also holds
with F(

√
H) replaced by F(H). Also note that, in the proof of this theorem, the restriction estimates

(1-10) will play an essential role and the restriction for the range of p when n ≥ 4 is due to the condition
p > 2n/(n+ 3) for (1-10).

Remark 1.16. Some applications of Theorem 1.15 will be also established (see Section 5). First we
obtain the equivalence between the Sobolev norms ‖(−1)s/2u‖L2 and ‖H s/2u‖L2 for 0≤ s < 3

2 . Then we
shall prove square function estimates for the Littlewood–Paley decomposition via the spectral multiplier
associated with H. These are known to play an important role in the study of nonlinear Schrödinger
equations with potentials; see, e.g., [Killip, Miao, Visan, Zhang, and Zheng 2018].

Remark 1.17. If the Schrödinger semigroup e−t H satisfies the Gaussian estimate or some generalized
Gaussian-type estimates, then Hörmander’s multiplier theorem for F(H) has been extensively studied;
see [Chen, Ouhabaz, Sikora, and Yan 2016]. Compared with such cases, the interest of Theorem 1.15 is
that we obtain Hörmander’s multiplier theorem under a scaling-critical condition V ∈ Ln/2,∞

0 , while it is
not known for such a class of potentials whether H satisfies (generalized) Gaussian estimates or not, even
if H is assumed to be nonnegative.

Remark 1.18. To ensure the nonnegativity of H, it suffices to assume ‖V−‖Ln/2,∞ ≤ S−1
n , where V− =

max{0,−V } is the negative part of V and

Sn :=
n(n−2)

4
22/nπ1+1/n0

(n+1
2

)−2/n

is the best constant in Sobolev’s inequality. ‖ f ‖L2n/(n−2) ≤ Sn‖∇ f ‖L2 . Moreover, if ‖V−‖Ln/2 < S−1
n then

0 /∈ E by Lemma 1.3.

The last application of Theorem 1.4 in the paper is the Keller-type inequality for individual eigenvalues
of a non-self-adjoint Schrödinger operator. Let 0<γ <∞ and W ∈ Ln/2+γ (Rn

;C) be a possibly complex-
valued potential. Then W is H -form compact and we define the operator HW = H +W as a form sum.
Under this setting, it is known that σ(HW ) is contained in a sector {z∈C | | arg(z−z0)|≤ θ} for some z0∈R

and θ ∈
[
0, π2

)
(see [Kato 1966]), but the point spectrum σp(HW ) could be unbounded in C in general even

if V ≡ 0 and W is smooth. The following theorem, however, shows that this is not the case if 0< γ ≤ 1
2 .
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Theorem 1.19. Let δ > 0. If 0< γ ≤ 1
2 , any eigenvalue E ∈ C \Eδ of HW satisfies

|E |γ ≤ Cγ,δ‖W‖
n/2+γ
Ln/2+γ . (1-17)

Moreover, if γ > 1
2 , any eigenvalue E ∈ C \Eδ of HW satisfies

|E |1/2 dist(E, [0,∞))γ−1/2
≤ Cγ,δ‖W‖

n/2+γ
Ln/2+γ . (1-18)

Here the constant Cγ,δ = C(γ, δ, n, V ) > 0 may be taken uniformly in W.

Remark 1.20. Theorem 1.19 implies the following spectral consequence. If 0< γ ≤ 1
2 then

σp(HW )⊂ Eδ ∪ {z ∈ C | |z|γ ≤ Cγ,δ‖W‖
n/2+γ
Ln/2+γ }.

In particular, since E is bounded in R (see Remark 3.4), σp(HW ) is bounded in C. On the other hand, if
γ > 1

2 and Re E > 0, then E satisfies

|Im E | ≤ Cγ,δ|E |−1/(2(γ−1/2))
‖W‖(n+2γ )/(2γ−1)

Ln/2+γ .

This implies that, for any sequence {E j } ⊂ σp(HW ) \ [0,∞) satisfying Re E j →+∞ as j →∞, we
have |Im E j | → 0 as j→∞.

Remark 1.21. For a complex potential W (x), the estimates (1-17) and (1-18) were first proved by Frank
[2011; 2018] for the case when −1+W (x) and then extended to the operator −1− a|x |−2

+W (x)
with a ≤ (n− 2)− 2

4 by [Mizutani 2019]. In both cases, the free Hamiltonians −1 and −1− a|x |−2 are
nonnegative and purely absolutely continuous. Theorem 1.19 shows that the same result still holds even
if the free Hamiltonian has (embedded) eigenvalues or resonances.

The rest of the paper is devoted to the proof of above results. We here outline the plan of the paper,
describing rough idea of the proofs. Following the classical scheme, the proof of the uniform Sobolev
estimates is based on the resolvent identity R(z)= (I + R0(z)V )−1 R0(z).

In Section 2 we collect several properties on the free resolvent R0(z) used throughout the paper and,
then, study basic properties of the exceptional set E. In particular, we show that R0(z)V extends to a
B∞(Lq)-valued continuous function on C+. This fact plays an important role to justify the above resolvent
identity. The proof of Lemma 1.3 is also given in Section 2.

Using materials prepared in Section 2 and the Fredholm alternative theorem, we prove Theorem 1.4,
Corollaries 1.5 and 1.6 and Theorem 1.8 in Section 3.

Section 4 is devoted to proving Theorems 1.10 and 1.12. The proof follows an abstract scheme by
[Rodnianski and Schlag 2004] (see also [Burq, Planchon, Stalker, and Tahvildar-Zadeh 2004; Bouclet
and Mizutani 2018]), which is based on Duhamel’s formulas

e−i t H
= ei t1

− i00V0H , 0H = 00− i00V0H ,

where 00 = 0−1. Using these identities, the proof can be reduced to that of corresponding estimates for
the free propagators ei t1 and 00, which are well known, and L2

t L2
x estimates for V1e−i t H Pac(H) and
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V10H Pac(H)V2 with a suitable decomposition V = V1V2. Kato’s smooth perturbation theory [1966]
allows us to deduce such L2

t L2
x -estimates from the resolvent estimate

sup
z∈C\R

‖V1 R(z)Pac(H)V2‖B(L2) <∞,

which follows from uniform Sobolev estimates for Pac(H)R(z) (which are also proved as a corollary
of Theorem 1.4 in the end of Section 3) and Hölder’s inequality. A rigorous justification of the above
Duhamel’s formulas in the sense of forms are also given in Section 4.

Proofs of the spectral multiplier theorem and its applications are given in Section 5. The proof of
Theorem 1.15 employs an abstract method by [Chen, Ouhabaz, Sikora, and Yan 2016], which allows us
to deduce Theorem 1.15 from the restriction estimates (1-10) and the so-called Davies–Gaffney estimate
for the Schrödinger semigroup e−t H. In the proof of the Davies–Gaffney estimate, we use the condition
that H is nonnegative.

Section 6 is devoted to the proof of Theorem 1.19, which follows basically the same line as in [Frank
2011; 2018] and is based on the estimates (1-5), (1-6) and the Birman–Schwinger principle.

The Appendix is devoted to a brief introduction of real interpolation and Lorentz spaces.

2. Preliminaries

In this section we first study several properties of the free resolvent, which will often appear in the sequel.
The second part is devoted to a detailed study of the exceptional set of H.

2A. The free resolvent. For z /∈ C \ [0,∞), R0(z)= (−1− z)−1 denotes the free resolvent, which is
defined as a Fourier multiplier with symbol (|ξ |2− z)−1. The integral kernel of R0(z) is given by

R0(z, x, y)=
i
4

(
z1/2

2π |x − y|

)n/2−1

H (1)
n/2−1(z

1/2
|x − y|), Im z1/2 > 0,

where H (1)
n/2−1 is the Hankel function of the first kind. The pointwise estimate

|H (1)
n/2−1(w)| ≤ Cn

{
|w|−n/2+1 for |w| ≤ 1,
|w|−1/2 for |w|> 1,

then implies that there exists Cn > 0 depending only on n such that

|R0(z, x, y)| ≤ Cn(|x − y|−n+2
+ |x − y|−(n−1)/2)〈z〉(n−3)/4

; (2-1)

see [Jensen 1980]. For s ∈ R, we let L2
s = L2(Rn, 〈x〉2sdx) and H2

s = {u | ∂
αu ∈ L2

s , |α| ≤ 2}. Then the
following limiting absorption principle in weighted L2-spaces is well known; see [Agmon 1975; Jensen
and Kato 1979; Jensen 1980; 1984].

Lemma 2.1. Let s > (n + 1)/2. Then R0(z) is bounded from L2
s to L2

−s uniformly in z ∈ C \ [0,∞).
Moreover, the following statements are satisfied:

• Boundary values R0(λ ± i0) = limε→0 R0(λ ± iε) ∈ B∞(L2
s , L2
−s) exist on [0,∞) such that

R0(0± i0)= (−1)−1. Moreover, R0(λ± i0) ∈ B∞(L2
s ,H

2
−s) if λ > 0.
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Figure 1. The set of (1/p, 1/q) satisfying (1-1) is the trapezium AB B ′A′ with two
closed line segments AB, B ′A′ removed. The set of (1/p, 1/q) satisfying (1-8) is the
trapezium ACC ′A′ with two closed line segments AC , C ′A′ removed.

• Define the extended free resolvent R±0 (z) by R±0 (z)= R0(z) if z ∈C\[0,∞) and R±0 (z)= R0(z± i0)
if z ≥ 0. Then R±0 (z) are B∞(L2

s , L2
−s)-valued continuous functions on C±.

• For any z ∈ C+ and f ∈ L2
s , we have (−1− z)R±0 (z) f = f in the sense of distributions.

The following corollaries are immediate consequences of Lemma 2.1 and Proposition 1.1.

Corollary 2.2. Let (p, q) satisfy (1-1) and

2n
n+3

< r < 2n
n+1
;

see Figure 1. Then:

(1) R±0 (z) extend to elements in B(L p,2, Lq,2) and satisfy

‖R±0 (z)‖B(L p,2,Lq,2)
≤ C |z|(n/2)(1/p−1/q)−1, z ∈ C± \ {0}. (2-2)

(2) For any f ∈ L p,2 and g ∈ Lq ′,2, we have 〈R±0 (z) f, g〉 are continuous on C± \ {0}.

(3) For any z ∈ C± and f ∈ Lr,2, we have (−1− z)R±0 (z) f = f in the sense of distributions.

Assuming in addition that 1/p− 1/q = 2/n, the statements (1) and (2) hold for all z ∈ C±.

Throughout the paper, we frequently use the notation

ps =
2n

n+ 2(2− s)
, qs =

2n
n− 2s

. (2-3)
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Note that {
(ps, qs)

∣∣∣ 1
2
< s < 3

2

}
=

{
(p, q)

∣∣∣ (p, q) satisfies (1-1) and 1
p
−

1
q
=

2
n

}
.

Corollary 2.3. Let 1
2 < s < 3

2 , V1 ∈ Ln/s,∞
0 and V2 ∈ Ln/(2−s),∞

0 (Rn). Then V1 R±0 (z)V2 are B∞(L2)-
valued continuous functions of z ∈ C±.

Proof. Corollary 2.2(1) with (p, q)= (ps, qs) and Hölder’s inequality (A-1) imply

sup
z∈C+

‖V1 R±0 (z)V2‖B(L2)
. ‖V1‖Ln/s,∞‖V2‖Ln/(2−s),∞ .

Since C∞0 is dense in L p,∞
0 for all 1< p<∞ and an operator norm limit of compact operators is compact,

we observe from this uniform bound and a standard ε/3 argument that it suffices to show the corollary
for V1, V2 ∈ C∞0 . In this case, the corollary follows from Lemma 2.1. �

The following proposition plays an essential role throughout the paper.

Proposition 2.4. Let w ∈ Ln/2,∞
0 (Rn), 1

2 < s < 3
2 and qs as above. Then R0(z)w ∈ B∞(H

1) for all
z ∈ C \ [0,∞). Moreover, R±0 (z)w are B∞(Lqs ,2)-valued continuous functions on C±.

Remark 2.5. R±0 (z)w are also B∞(Lqs )-valued continuous functions on C±. The proof is completely
the same.

Proof. The facts R0(z)w ∈ B(H1) ∩ B(Lqs ,2) and R±0 (z)w ∈ B(Lqs ,2) follow from the continuity of
R0(z) :H−1

→H1, uniform Sobolev estimates (1-2) and Hölder’s inequality for Lorentz norms.
To prove the compactness and the continuity (in z), by virtue of these estimates and the same argument

as above, we may assume without loss of generality that w ∈ C∞0 and w(x)= 0 for |x | ≥ c0 with some
c0 > 0. Then it was proved by [Ionescu and Schlag 2006, Lemma 4.2] that there is a Banach space X
satisfying the continuous embedding X ↪→H−1 such that w : X∗→ X is compact as a multiplication
operator. R0(z)w is therefore compact on H1 for z ∈ C \ [0,∞).

Next we shall prove that R±0 (z)w are compact on Lqs ,2 for z ∈C±. As before, we only consider R+0 (z).
By virtue of real interpolation (Theorem A.1), it suffices to show that R+0 (z)w is compact on Lqs for all
1
2 < s < 3

2 . Assume that f j ∈ Lqs and ‖ f ‖Lqs ≤ 1. Extracting a subsequence if necessary we may assume
f j → 0 weakly in Lqs. Then it remains to show that there exists a subsequence { f̃ j } ⊂ { f j } such that
R+0 (z)w f̃ j → 0 strongly in Lqs. To this end, we decompose R+0 (z)w into two regions Bc

r and Br , where
Br = {x ∈ Rn

| |x | ≤ r}. For the former case, the pointwise estimate (2-1) yields

|R+0 (z)w f j (x)| ≤ Cn〈z〉(n−3)/4
|x |−(n−1)/2

‖w f j‖L1 ≤ Cn,z|x |−(n−1)/2
‖w‖L2n/(n+2s)

uniformly in |x | ≥ r , r ≥ 2c0 and j ≥ 0. Let us fix ε > 0 arbitrarily. Since

‖|x |−(n−1)/2
‖Lqs (Bc

r )
≤ Cr−(s−1/2),

we can find r0 = r0(n, ε, z, w) > 0 such that

‖R+0 (z)w f j‖Lqs (Bc
r0
)
< ε. (2-4)
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For the latter case, we observe that R+0 (z)w : L
qs (Rn)→W2,qs (Rn) is bounded since

(−1+ 1)R+0 (z)w f = (−1− z)R+0 (z)w f + (z+ 1)R+0 (z)w f = w f + (z+ 1)R+0 (z)w f (2-5)

for all f ∈ Lqs by Corollary 2.2(3). In particular, {R+0 (z)w f j } j is bounded in W2,qs (Br0). Since W2,qs (Br0)

embeds compactly into Lqs (Br0) by the Rellich–Kondrachov compactness theorem, one can find a
subsequence { f̃ j } ⊂ { f j } such that

lim
j→∞
‖R+0 (z)w f̃ j‖Lqs (Br0 )

= 0. (2-6)

It follows from (2-4) and (2-6) that

lim sup
j→∞

‖R+0 (z)w f̃ j‖Lqs (Rn)
≤ ε.

By extracting further a subsequence, we conclude that R+0 (z)w f̃ j → 0 strongly in Lqs.
To prove the continuity, let us fix a bounded set3⊂C+ arbitrarily. We first show that, for any z, z j ∈3

and g, g j ∈ Lqs ,2 satisfying z j → z and g j → g weakly in Lqs ,2 as j→∞,

R+0 (z j )wg j → R+0 (z)wg strongly in Lqs ,2 as j→∞. (2-7)

To this end, we write

R+0 (z j )wg j − R+0 (z)wg = (R+0 (z j )w− R+0 (z)w)g j + R+0 (z)w(g j − g).

The second term R+0 (z)w(g j − g) converges to 0 strongly in Lqs ,2 since R+0 (z)w is compact on Lqs ,2

and g j → g weakly. For the first part, we set h j = (R+0 (z j )w− R+0 (z)w)g j and shall show that h j → 0
strongly in Lqs ,2. Since {g j } ⊂ Lqs ,2 is bounded, say ‖g j‖Lqs ,2 ≤ M with M > 0 being independent of j ,
we have by the same argument as above that, with some γ j = γ j (s, n) > 0,

‖R+0 (ζ )wg j‖Lqs ,2(Bc
r )
≤ Cn,M,w〈ζ 〉

γ1r−γ2

for all ζ ∈ C+, j ≥ 1 and r ≥ 2c0, where Cn,M,w may be taken uniformly in j and r . This estimate yields
that, for any ε > 0, there exists 0< rε = r(n,M, w,3, ε)∼ ε−1/γ2 such that

sup
j≥1,
‖h j‖Lqs ,2(Bc

rε )
≤ sup

j≥1
(‖R+0 (z j )wg j‖Lqs ,2(Bc

rε )
+‖R+0 (z)wg j‖Lqs ,2(Bc

rε )
) < ε. (2-8)

On the other hand, it follows from Sobolev’s embedding on Rn that

‖h j‖Lqs ,2(Brε )
≤ Cε,N‖(−1+ 1)〈x〉−N h j‖L2(Rn)

≤ Cε,N‖〈x〉−N (−1+ 1)h j‖L2(Rn)

for all N ≥ 0, where we have used the fact that (−1+ 1)〈x〉−N (−1+ 1)−1
〈x〉N is a pseudodifferential

operator of order 0 and thus bounded on L p for all 1< p <∞. Equation (2-5) then yields

‖〈x〉−N (−1+ 1)h j‖L2 ≤ |z− z j |‖〈x〉−N R+0 (z j )〈x〉−N
‖

B(L2)
‖〈x〉Nwg j‖L2

+ (|z| + 1)‖〈x〉−N (R+0 (z j )− R+0 (z))〈x〉
−N
‖

B(L2)
‖〈x〉Nwg j‖L2 .
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Let N ≥ (n+ 1)/2. Since 〈x〉−N R+0 (z)〈x〉
−N is bounded on L2 uniformly in z ∈ C+ and continuous on

C+ in the operator norm topology of B(L2) by Lemma 2.1 and

‖〈x〉Nwg j‖L2 ≤ C M‖〈x〉Nw‖L2n/(n+2s),2 ≤ CN ,M,ω

uniformly in j , we see that lim j→∞ ‖〈x〉−N (−1+ 1)h j‖L2 = 0, which, together with (2-8), shows that
there exists jε ∈ N such that, for all j ≥ jε, we have ‖h j‖Lqs ,2(Rn)

< ε. Since ε > 0 is arbitrarily small,
this shows that h j → 0 strongly in Lqs ,2 and (2-7) follows.

Finally, we shall show R+0 (z)w is continuous on C+ in the operator norm topology of B(Lqs ,2). Assume
for contradiction that this is not the case. Then there exist z j , z ∈ C+ with z j → z and g j ∈ Lqs ,2 with
‖g j‖Lqs ,2 ≤ 1 such that lim inf j→∞ ‖(R+0 (z j )w− R+0 (z)w)g j‖Lqs ,2 > 0. Extracting a subsequence if
necessary we may assume g j → g with some g ∈ Lqs weakly in Lqs. Then, by the argument as above
and the compactness of R+0 (z)w, we have lim j→∞ R+0 (z j )wg j = R+0 (z)wg= lim j→∞ R+0 (z)wg j , which
gives a contradiction, proving the desired assertion. �

2B. The exceptional set. Having Proposition 2.4 in mind, we define the exceptional set of H as follows.

Definition 2.6. We say that λ∈E if there exist 1
2 < s< 3

2 and f ∈ Lqs ,2(Rn)\{0} such that f =−R0(λ)V f ,
where qs = 2n/(n− 2s) and R0(λ) is replaced by R0(λ+ i0) if λ≥ 0. E is said to be the exceptional set
of H, and z ∈ E \ σp(H) is called a resonance of H. For λ ∈ E, we denote the family of corresponding
solutions by Ns(λ):

Ns(λ) := { f ∈ Lqs ,2(Rn) \ {0} | f =−R0(λ)V f },

where R0(λ) is replaced by R+0 (λ) if λ≥ 0.

Note that, since R0(λ− i0) f = R0(λ+ i0) f̄ , one has

Ns(λ)= { f ∈ Lqs ,2(Rn) \ {0} | f =−R−0 (λ)V f }, λ≥ 0. (2-9)

The next lemma collects some basic properties of E.

Proposition 2.7. (1) E ⊂ σ(H), σp(H) ⊂ E and E ∩ (−∞, 0) = σd(H). Moreover, Ns(λ) is finite-
dimensional.

(2) Ns(λ) is independent of 1
2 < s < 3

2 ; that is, Ns(λ)=Ns′(λ) for any 1
2 < s, s ′ < 3

2 .

Proof of Proposition 2.7(1). To prove E⊂ σ(H), we first claim that

Ns(λ)= { f ∈ Ḣs
| f =−R0(λ)V f }, λ ∈ C \ (0,∞). (2-10)

Indeed, if we set Ñs(λ) := { f ∈ Ḣs
| f = −R0(λ)V f } then the inclusion Ñs(λ) ⊂ Ns(λ) is obvious

since Ḣs
⊂ Lqs ,2 by the HLS inequality (A-2). On the other hand, the HLS inequality (A-2) shows that

R0(λ)V ∈ B(Lqs ,2, Ḣs) for λ ∈ C \ (0,∞) and the opposite inclusion Ñ(λ)s ⊃Ns(λ) thus holds. Next,
we let f ∈Ns(λ) with some λ∈C\σ(H). Then V f ∈ Ḣ2−s

∩L ps ,2 by the HLS and Hölder’s inequalities
for Lorentz norms. Therefore, by Corollary 2.2(3), (−1− λ) f =−V f holds in the distribution sense.
In particular, λ f = (−1+ V ) f ∈ Ḣ2−s

∩ Ḣs
⊂ L2 and thus f ∈ D(H). Since σ(H) ⊂ R, this shows

f ≡ 0. Therefore, we obtain E⊂ σ(H).
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The inclusion σp(H)⊂ E is obvious since D(H)⊂H1
⊂ Ḣ1. This inclusion, together with the fact

σ(H)∩ (−∞, 0)= σd(H), implies E∩ (−∞, 0)= σd(H). Finally, since R±0 (z)V are compact operators
on Lqs ,2, one has dimNs(λ) <∞. �

To prove the second part of Proposition 2.7, we need the following:

Lemma 2.8. For 1
2 < s < 3

2 and real-valued functions V1 ∈ Ln/s,∞
0 , V2 ∈ Ln/(2−s),∞

0 with V = V1V2, we
set K+s (λ) := V1 R+(λ)V2. Then, for λ ∈ R,

dimNs(λ)= dim Ker(I + K+s (λ))= dim Ker(I + K+s (λ)
∗)= dimN2−s(λ).

Remark 2.9. Such V1, V2 always exist. Indeed, one can take V1 = |V |s/2 and V2 = sgn V |V |(2−s)/2.

Proof. Hölder’s inequality (A-1) and (2-2) yield that

‖V1 f ‖L2 ≤ C‖V ‖Ln/s,∞‖ f ‖Lqs ,2, ‖R±0 (λ)V2u‖Lqs ,2 . ‖V2‖Ln/(2−s),∞‖u‖L2,

from which one has two continuous maps

Ns(λ) 3 f 7→ V1 f ∈ Ker(I + K+s (λ)), Ker(I + K+s (λ)) 3 u 7→ −R+0 (λ)V2u ∈Ns(λ).

Furthermore, one also has, for f ∈Ns(λ) and u ∈ Ker(I + Ks(λ)),

−R+0 (λ)V2V1 f =−R+0 (λ)V f = f, −V1 R+0 (λ)V2u = u.

Therefore, the multiplication by V1 is a bijection between Ns(λ) and Ker(I + K+s (λ)) and its inverse is
given by −R+0 (λ)V2. In particular, dim Ker(I + K+s (λ))= dimNs(λ).

Taking the facts R±0 (z)
∗
= R∓0 (z̄) and (2-9) into account, it can be seen from the same argument that

the multiplication by V2 is a bijection between N2−s(λ) and Ker(I + K+s (λ)
∗), and its inverse is given by

−R−0 (λ)V1. In particular, dimN2−s(λ)= dim Ker(I + K+s (λ)
∗).

For the part dim Ker(I + K+s (λ)) = dim Ker(I + K+s (λ)
∗), since K+s (λ) is compact on L2 (see

Corollary 2.3), I + K+s (λ) is Fredholm and its index satisfies

dim Ker(I + K+s (λ))− codim Ran(I + K+s (λ))= ind(I + K+s (λ))= indI = 0.

Therefore, taking the fact L2/Ran(I + K+s (λ))∼= [Ran(I + K+s (λ))]
⊥ into account, one has

dim Ker(I + K+s (λ))= dim[Ran(I + K+s (λ))]
⊥
= dim Ker(I + K+s (λ)

∗),

which completes the proof. �

Proof of Proposition 2.7(2). Let f ∈Ns(λ) and 1
2 < s ≤ s ′ < 3

2 . Let V = v1+ v2 be such that v1 ∈ C∞0
and ‖v2‖Ln/2,∞ ≤ ε. Then f = −R+0 (λ)v1 f − R+0 (λ)v2 f . By Proposition 2.4, the map I + R+0 (λ)v2 :

L2n/(n−2r),2
→ L2n/(n−2r),2 is bounded and invertible for r = s, s ′ and small ε > 0. If Er denotes the

inverse of I + R+0 (λ)v2 : L2n/(n−2r),2
→ L2n/(n−2r),2, then Es = Es′ on L2n/(n−2s),2

∩L2n/(n−2s′),2. Taking
the inequality s− s ′ >−1 into account, the HLS inequality (A-2) implies

‖R+0 (λ)v1 f ‖L2n/(n−2s′),2 . ‖v1 f ‖L2n/(n+2(2−s′)) . ‖v1‖Ln/(2+2(s−s′))‖ f ‖L2n/(n−2s) .
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Thus R+0 (λ)v1 f ∈ L2n/(n−2s),2
∩ L2n/(n−2s′),2 and f = Es R+0 (λ)v1 f = Es′R+0 (λ)v1 f ∈ L2n/(n−2s′),2,

which implies f ∈ Ns′(λ). Therefore Ns(λ) is monotonically increasing in s. Combined with the fact
dimNs(λ)= dimN2−s(λ) <∞ (see Lemma 2.8), this monotonicity implies Ns(λ)=Ns′(λ). �

We conclude this subsection to prove Lemma 1.3. For the first part, we employ the following results of
[Ionescu and Jerison 2003; Ionescu and Schlag 2006].

Proposition 2.10 [Ionescu and Jerison 2003, Theorem 2.1]. Let n ≥ 3 and V ∈ Ln/2. Suppose that
f ∈H1

loc and 〈x〉−1/2+δ f ∈ L2 with some δ > 0. If −1 f + V f = λ f for some λ > 0, then f ≡ 0.

Let us set X =W−1/(n+1),2(n+1)/(n+3)
+ S1(B), where B is the Agmon–Hörmander space and S1(B)

is the image of B under S1 = (1−1)1/2; see [Ionescu and Schlag 2006]. Then

X∗ =W1/(n+1),2(n+1)/(n−1)
∩ S−1(B∗)

and we have the continuous embeddings L2n/(n+2)
⊂ X and X∗ ⊂ L2n/(n−2). Moreover, it was proved in

[Ionescu and Schlag 2006, Lemma 4.1(b)] that R±0 (λ) ∈ B(X, X∗) for all λ ∈ R \ {0}.

Proposition 2.11 [Ionescu and Schlag 2006, Lemma 4.4]. Let n ≥ 3 and V ∈ Ln/2. Assume that f
belongs to X∗ and satisfies f + R±0 (λ)V f = 0 for some λ ∈ R \ {0}. Then, for any N ≥ 0,

‖〈x〉N f ‖X∗ ≤ CN ,λ‖ f ‖X∗ .

Proof of Lemma 1.3. For the proof of the part (1), we let f ∈ N1(λ) with λ > 0. As observed in the
proof of Proposition 2.4, R+0 (λ)V maps from L2n/(n−2)(Rn) into W2,2n/(n−2)(Rn) (see (2-5)) and thus
f =−R+0 (λ)V f ∈H1

loc. Moreover, since V f ∈ L2n/(n+2)
⊂ X and R±0 (λ) ∈ B(X, X∗), we have f ∈ X∗.

Proposition 2.11 then implies that f ∈ L2. Using Proposition 2.10, we conclude that f ≡ 0. For part (2),
we let f ∈N1(0). Since −1 f + V f ∈ Ḣ−1, the form 〈−1 f + V f, f 〉 is well-defined. By assumption,
we have 0= 〈−1 f + V f, f 〉 ≥ δ‖ f ‖Ḣ1 , which implies f ≡ 0. �

3. Uniform Sobolev estimates

This section is devoted to the proof of Theorem 1.4, Corollaries 1.5 and 1.6 and Theorem 1.8. We begin
with the following proposition which plays an important role in the proof.

Proposition 3.1. Assume 1
2 < s < 3

2 and let (ps, qs) be as in (2-3). Then (I + R±0 (z)V )
−1 are B(Lqs ,2)-

valued continuous functions on C± \E, respectively. Furthermore, for any δ > 0,

sup
z∈C±\Eδ

‖(I + R±0 (z)V )
−1
‖

B(Lqs ,2)
<∞. (3-1)

In particular, if E∩ [0,∞)=∅, then supz∈C\R ‖(I + R0(z)V )−1
‖B(Lqs ,2) <∞.

The proof of Proposition 3.1 is divided into a series of lemmas. Let us prove the proposition for
z ∈ C+ \E only, as the proof for the case z ∈ C− \E is analogous.

Lemma 3.2. (I + R+0 (z)V )
−1 is a B(Lqs ,2)-valued continuous function on C+ \E.
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Proof. By Proposition 2.4, R+0 (z)V is compact. Since Ns(z) = {0} for z ∈ C+ \ E by definition, the
Fredholm alternative ensures the existence of (I + R+0 (z)V )

−1
∈ B(Lqs ,2). Moreover, since R+0 (z)V is

continuous on C+ in the operator norm topology of B(Lqs ,2) by Proposition 2.4, (I + R+0 (z)V )
−1 is also

continuous on C+ \E in the same topology. �

The proof of the uniform bound (3-1) is divided into high-, intermediate- and low-energy parts.

Lemma 3.3 (the high-energy estimate). There exists L ≥ 1 such that (I + R+0 (z)V )
−1 is bounded on

L2n/(n−2s),2 uniformly in z ∈ C+ ∩ {|z| ≥ L}.

Proof. Let Vk ∈ C∞0 (R
n) be such that limk→∞ ‖V − Vk‖Ln/2,∞ = 0 and set Q+k (z) := R+0 (z)(V −Vk). By

Corollary 2.2 with (ps, qs), one can find k0 ≥ 1 such that

sup
z∈C+

‖Q+k0
(z)‖

B(Lqs ,2)
≤

1
2 .

Hence (I + Qk0(z))
−1 is defined by the Neumann series

∑
∞

n=0(−Q+k0
(z))n and satisfies

M1 := sup
z∈C+

‖(I + Q+k0
(z))−1

‖
B(Lqs ,2)

≤ 2.

Next if we take pδ and small δ > 0 such that 1/pδ = 1/ps − δ and (pδ, qs) satisfies (1-1), Corollary 2.2
implies

‖R+0 (z)Vk0 f ‖Lqs ,2 . |z|
−δ
‖Vk0 f ‖L pδ ,2 . |z|

−δ
‖Vk0‖Lr‖ f ‖Lqs ,2

uniformly in |z| ≥ 1 and f ∈ Lqs ,2, where 1/r = 1/pδ− 1/qs = 2/n− δ. Hence one can find L = Lk0 so
large that M2 := ‖R+0 (z)Vk0‖B(Lqs ,2)

≤
1
4 for |z| ≥ L . Then, writing

I + R+0 (z)V = I + Q+k0
(z)+ R+0 (z)Vk0 = (I + Q+k0

(z))
(
I + (I + Q+k0

(z))−1 R+0 (z)Vk0

)
,

we see that (I + R+0 (z)V )
−1
=
(
I + (I + Q+k0

(z))−1 R+0 (z)Vk0

)−1
(I + Q+k0

(z))−1 and

sup
z∈C+∩{|z|≥L}

‖(I + R+0 (z)V )
−1
‖

B(Lqs ,2)
≤ M1

∞∑
n=1

(M1 M2)
n
≤ 4. �

Remark 3.4. This lemma particularly implies E∩ [L ,∞)=∅ and thus E is bounded in R.

Lemma 3.5 (the intermediate-energy estimate). For any δ, L>0, the function (I+R+0 (z)V )
−1 is bounded

on Lqs ,2 uniformly in z ∈ (C+ \Eδ)∩ {δ < |z|< L}.

Proof. We follow the argument in [Ionescu and Schlag 2006, Lemma 4.6] closely. Let

3δ,L = (C+ \Eδ)∩ {δ < |z|< L}.

Note that 3δ,L ∩E=∅. Assume for contradiction that

sup
z∈3δ,L

‖(I + R+0 (z)V )
−1
‖

B(Lqs ,2)
=∞.
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Then one can find f j ∈ Lqs ,2 with ‖ f j‖Lqs ,2 = 1 and z j ∈3δ,L such that

‖(I + R+0 (z j )V ) f j‖B(Lqs ,2)
→ 0, j→∞. (3-2)

By passing to a subsequence, we may assume z j → z∞ ∈3δ,L as j→∞. Since R+0 (z∞)V is compact
on Lqs ,2, by passing to a subsequence, we may assume without loss of generality that there exists g ∈ Lqs ,2

such that R+0 (z∞)V f j → g strongly in Lqs ,2. By virtue of (3-2) and the condition ‖ f j‖Lqs ,2 = 1, we have
g 6≡ 0. Now we claim that g belongs to Ns(z∞), which implies z∞ ∈ E. This contradicts z∞ ∈3δ,L .

In order to prove the claim, we write f j as

f j = (I + R+0 (z j )V ) f j − (R+0 (z j )− R+0 (z∞))V f j − R+0 (z∞)V f j .

By virtue of (3-2) and the continuity of R+0 (z)V (see Proposition 2.4) and the fact ‖ f j‖Lqs ,2 = 1, the
right-hand side converges to −g strongly in Lqs ,2 as j →∞. Therefore, we have g = −R+0 (z∞)V g.
Moreover, since ‖ f j‖ = 1, we have g 6≡ 0 and hence g ∈Ns(z∞) follows. �

Lemmas 3.3 and 3.5 give the desired bound (3-1) for the case when 0 ∈ E. When 0 /∈ E, we need the
following lemma to complete the proof of Proposition 3.1.

Lemma 3.6 (the low-energy estimate). Suppose that 0 /∈ E. Then there exists δ > 0 such that the function
(I + R+0 (z)V )

−1 is bounded on Lqs ,2 uniformly in z ∈ C+ ∩ {|z| ≤ δ}.

Proof. Since I + R+0 (0)V is invertible if 0 /∈ E by Lemma 3.2, one can write

I + R+0 (z)V = (I + R+0 (0)V )(I + (I + R+0 (0)V )
−1(R+0 (z)− R+0 (0))V ).

Since C+ 3 z 7→ R+0 (z)V ∈ B(Lqs ,2) is continuous by Proposition 2.4, one has

sup
z∈C+∩{|z|≤δ}

‖(R+0 (z)− R+0 (0))V ‖B(Lqs ,2)
≤

1
2‖(I + R+0 (0)V )

−1‖

for δ > 0 small enough. Therefore, I + R+0 (z)V is invertible on Lqs ,2 and

sup
z∈C+∩{|z|≤δ}

‖(I + R+0 (z)V )
−1
‖

B(Lqs ,2)
≤ 2 sup

z∈C+∩{|z|≤δ}

‖(I + R+0 (0)V )
−1
‖

B(Lqs ,2)
<∞,

which completes the proof. �

By Lemmas 3.2–3.5, we have completed the proof of Proposition 3.1.
We next give a rigorous justification of the second resolvent equation.

Lemma 3.7. Let z ∈ C \ σ(H). Then, as a bounded operator from L2 to D(H),

R(z)= (I + R0(z)V )−1 R0(z)= R0(z)− R0(z)V R(z). (3-3)

Moreover, we also obtain for z, z′ ∈ C \ σ(H),

R(z)− R(z′)= (I + R0(z′)V )−1(R0(z)− R0(z′))(I − V R(z)). (3-4)
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Proof. It follows from Proposition 2.7(1) and the fact H1
⊂ L2n/(n−2),2 that KerH1(I + R0(z)V ) is

trivial. Since R0(z)V ∈ B∞(H
1) by Proposition 2.4, I + R0(z)V is invertible on H1 by the Fredholm

alternative theorem. Thus (I + R0(z)V )−1 R0(z) is a bounded operator from L2 to H1. Let f ∈ L2 and
set g = (I + R0(z)V )−1 R0(z) f ∈H1. Since

(I + R0(z)V )(I + R0(z)V )−1 R0(z)= R0(z)

as a bounded operator from L2 to H1, we see that

g = R0(z) f − R0(z)V g. (3-5)

Then, for any ϕ ∈H1,

〈(−1− z)g, ϕ〉 = 〈 f, ϕ〉− 〈V g, ϕ〉 = 〈 f, ϕ〉− 〈V1g, V2ϕ〉,

where V1, V2 ∈ Ln/2,∞
0 (Rn

;R) satisfies V = V1V2. Therefore, we obtain

〈(H − z)g, ϕ〉 = 〈(−1− z)g, ϕ〉+ 〈V1g, V2ϕ〉 = 〈 f, ϕ〉,

which shows (H − z)(I + R0(z)V )−1 R0(z)= I on L2. For f ∈ D(H), we similarly obtain

(I + R0(z)V )−1 R0(z)(H − z) f = (I + R0(z)V )−1 f + (I + R0(z)V )−1 R0(z)V f = f,

which gives us (I + R0(z)V )−1 R0(z)(H − z) = I on D(H) and the first identity in (3-3) thus follows.
The second identity in (3-3) follows from the first identity and (3-5).

Now we shall show (3-4). It follows from (3-3) that

(I + R0(z′)V )(R(z)− R(z′))= (R0(z)− R0(z′))(I − V R(z))

on L2. Since R0(z)− R0(z′), R(z)− R(z′) : L2
→H1 are continuous and I + R0(z′)V is invertible on H1,

we have the desired identity (3-4). �

Now we are in position to prove Theorem 1.4, Corollaries 1.5 and 1.6 and Theorem 1.8.

Proof of Theorem 1.4. Assume that (p, q) satisfies (1-1). It follows from Propositions 1.1 and 3.1 and
Lemma 3.7 that for any δ > 0 there exists Cδ > 0 such that

‖R(z) f ‖Lq,2 ≤ Cδ(1+‖(I + R0(z)V )−1
‖B(Lq,2))‖R0(z) f ‖Lq,2 ≤ Cδ|z|(n/2)(1/p−1/q)−1

‖ f ‖L p,2

for all f ∈ L2
∩ L p,2 and z ∈ C \ ([0,∞) ∪ Eδ). Since L2

∩ L p,2 is dense in L p,2, this implies that
R(z) ∈ B(L p,2, Lq,2) and that (1-5) holds uniformly in z ∈ C \ ([0,∞)∪Eδ). �

Proof of Corollary 1.5. As before, we shall prove the corollary for R(λ+ i0) only. We also consider
the case 1/p− 1/q = 2/n only, as the proofs for other cases are similar. At first, we claim that, for any
χ1, χ2∈C∞0 (R

n), χ1 R(z)χ2 defined for z∈C+ extends to a B(L2)-valued continuous function χ1 R+(z)χ2

on C+ \E. It follows from this claim that, for any u, v ∈ C∞0 (R
n), 〈R+(z)u, v〉 is a continuous function

on C+ \E. Then, by letting ε↘ 0 in the estimate

|〈R(λ+ iε)u, v〉|. ‖u‖L p,2‖v‖Lq′,2,
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which follows from Theorem 1.4, and by using the density argument, we obtain that R(λ+ i0) extends to
an element in B(L p,2, Lq,2) and satisfies

sup
λ∈[0,∞)\E

‖R(λ+ i0)‖B(L p,2,Lq,2) <∞. (3-6)

This shows the first statement (1). For the second statement (2), it follows by setting z = λ± iε and then
letting ε↘ 0 in (3-3) that, for any f ∈ Lq,2

∩ L2 and λ ∈ [0,∞) \E,

R(λ± i0) f = R0(λ± i0)(I − V R(λ± i0)) f (3-7)

in the sense of distributions, which particularly implies that, under the condition 0 /∈E, we have R(0+i0)=
R(0− i0) since R0(0± i0)= (−1)−1. Moreover, we also know by (3-7) that

(−1+ V − λ)R(λ+ i0)u = (I + V R0(λ+ i0))(I − V R(λ+ i0))u

= u+ V [R0(λ+ i0)− R(λ+ i0)− R0(λ+ i0)V R(λ+ i0)]u = u

for all u ∈ L2
∩ L p,2 and that, for all v ∈ S,

R(λ+ i0)(−1+ V − λ)v = R0(λ+ i0)(I − V R(λ+ i0))(−1+ V − λ)v

= v− R0(λ+ i0)V v− R0(λ+ i0)V v = v

in the sense of distributions. These two identities and (3-6) imply (1-7).
It remains to show the above claim. Let V1, V2 ∈ Ln,∞

0 (Rn
;R) be such that V = V1V2 and set

K1(z)= V1 R0(z)V2. The resolvent identity (3-3) then yields

V1 R(z)χ2 = V1 R0(z)χ2− K1(z)V1 R(z)χ2

on L2 for all z ∈ C \ σ(H). Since K1(z) ∈ B∞(L2) by Corollary 2.3 and KerL2(I + K1(z))=∅ for all
z ∈ C \ σ(H) by Proposition 2.7 and Lemma 2.8, we have by this identity that

V1 R(z)χ2 = (I + K1(z))−1V1 R0(z)χ2, z ∈ C \ σ(H),

on L2. It follows from again Corollary 2.3 that V1 R0(z)χ2 and K1(z) extend to B∞(L2)-valued continuous
functions V1 R+0 (z)χ2 and K+1 (z) = V1 R+0 (z)V2 on C+. Since Ker(I + K+1 (z)) = ∅ for z ∈ C+ \ E,
(I + K1(z))−1 also extends to a B(L2)-valued continuous function (I + K+1 (z))

−1 on C+ \ E. Thus
V1 R(z)χ2 extends to a B(L2)-valued continuous function V1 R+(z)χ2 on C+ \E satisfying V1 R+(z)χ2 =

(I + K+1 (z))
−1V1 R+0 (z). Finally, the claim follows from the formula

χ1 R(z)χ2 = χ1 R0(z)χ2−χ1 R0(z)V2V1 R(z)χ2

and the continuity of χ1 R+0 (z)χ2, χ1 R+0 (z)V2 and V1 R+0 (z)χ2 on C+ \E. �

Proof of Corollary 1.6. Let us fix z ∈ C \ σ(H) and take δ > 0 so small that z /∈ Eδ. Recall that
R0(z) ∈ B(L p) for all 1≤ p ≤∞ and thus R0(z) ∈ B(L p,2) for all 1< p <∞ by Theorem A.1.

The proof of the first assertion is divided into two cases:

2n
n+3

< p = q < 2n
n+1
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and otherwise. In the first case one can find

2n
n−1

< q0 <
2n

n−3

such that 1/p− 1/q0 = 2/n. Applying Theorem 1.4 to the resolvent equation (3-3) implies that, for all
f ∈ L2

∩ L p,2,

‖R(z) f ‖L p,2 . ‖R0(z) f ‖L p,2 +‖R0(z)‖B(L p,2)‖V ‖Ln/2,∞‖R(z) f ‖Lq0,2 ≤ Cδ‖ f ‖L p,2 .

Combined with a density argument, this implies R(z) ∈ B(L p,2) for each z ∈ C \ σ(H).
Next, by taking the adjoint and using the fact R(z)∗ = R(z̄), we see that R(z) ∈ B(L p,2) for all

2n
n−1

< p < 2n
n−3

.

Interpolating these two cases yields that R(z) ∈ B(L p,2) for all

2n
n+3

< p < 2n
n−3

.

Then the other cases in the first assertion follow by interpolating between the estimates on the two lines
1/p− 1/q = 0 and 1/p− 1/q = 2/n under the conditions 2n/(n+ 3) < p and q < 2n/(n− 3).

Finally, assuming 1
2 < s < 3

2 without loss of generality, the second assertion follows from

‖wR(M) f ‖L2 . ‖w‖Ln/s,∞‖R(M) f ‖L2n/(n−2s),2 . ‖w‖Ln/s,∞‖ f ‖L2

for M < inf σ(H)− 1, which is a particular case of the first assertion. �

Proof of Theorem 1.8. When
2n

n+2
≤ p ≤ 2(n+1)

n+3
,

(1-10) follows from (1-6) and Stone’s formula (1-9). When

2n
n+3

< p < 2n
n+2

,

there are two main ingredients.
At first, it is known that E ′

−1(λ) ∈ B(L p, L p′) for all

1≤ p ≤ 2(n+1)
n+3

and satisfies

‖E ′
−1(λ)‖B(L p,L p′ )

. λ(n/2)(1/p−1/p′)−1, λ > 0. (3-8)

Indeed, E ′
−1(λ) can be brought to the form E ′

−1(λ)= (2π)
−nλ(n−1)/2 R∗√

λ
R√λ, where

Rµu(ω) :=
∫

Rn
e−2π iµω·x u(x) dx, µ > 0, ω ∈ Sn−1.
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Then the Stein–Tomas restriction theorem (see [Tomas 1975; Stein 1970]) and the T T ∗-argument show
that R∗1 R1 is bounded from L p to L p′ for all

1≤ p ≤ 2(n+1)
n+3

,

which particularly implies (3-8) by scaling.
Secondly, we claim that the following identity holds for all f, g ∈ S and λ ∈ (0,∞):

〈E ′H (λ) f, g〉 = 〈(I + R0(λ− i0)V )−1 E ′
−1(λ)(I − V R(λ+ i0)) f, g〉. (3-9)

Since V R(λ+ i0) ∈ B(L p) and (I + R0(λ− i0)V )−1
∈ B(L p′) for

2n
n+3

< p < 2n
n+1

by Corollary 1.5 and Proposition 3.1, the desired assertion (1-10) follows from (3-8), (3-9) and a density
argument.

It remains to show the identity (3-9). Let f, g ∈ S and set

F(z)= 1
π
(I + R0(z̄)V )−1 Im R0(z)(I − V R(z)), z ∈ C+,

which is a bounded operator from L2 to H1 (see the proof of Lemma 3.7), where

Im R0(z)= (2i)−1(R0(z)− R0(z̄)).

By (3-4) with z = λ+ iε, z′ = z̄, one has π−1 Im R(z)= F(z). Moreover,

〈E ′H (λ) f, g〉 = π−1 lim
ε↘0
〈Im R(λ+ iε) f, g〉

exists by Corollary 1.5. For the operator F(z), we write

F(z) f = 1
π
(I + R0(z̄)V )−1(Im R0(z)〈x〉−3

− Im R0(z)V R(z)〈x〉−3)〈x〉3 f.

By Proposition 2.4, all of (I + R0(z̄)V )−1, Im R0(z)〈x〉−3, Im R0(z)V and R(z)〈x〉−3 extend to B(L p′)-
valued continuous function on C+ \E. Therefore, 〈F(λ+ i0) f, g〉 = limε↘0〈F(λ+ iε) f, g〉 exists and
coincides with the right-hand side of (3-9). Therefore (3-9) follows. �

The remaining part of the section is devoted to the following theorem, which plays a crucial role in the
proof of Strichartz estimates.

Theorem 3.8. Suppose that E∩ [0,∞)=∅. Let (p, q) be such that

1
p
−

1
q
=

2
n

and 2n
(n+3)

< p < 2n
(n+1)

.

Then

sup
z∈C\[0,∞)

‖Pac(H)R(z)‖B(L p,2,Lq,2) <∞. (3-10)
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We first prove some L p-boundedness of the projection Pac(H). At first note that, under the condition
0 /∈ E, H may have at most finitely many negative eigenvalues of finite multiplicities. Indeed, since
σp(H) ∩ (−∞, 0) = σd(H), each negative eigenvalue has finite multiplicity and their only possible
accumulation point is z= 0. Moreover, Lemma 3.6 and the Fredholm alternative show that, for sufficiently
small δ > 0, (−δ, δ)∩E=∅ as long as 0 /∈ E. Therefore, H may have at most finitely many negative
eigenvalues. In this case Pac(H) is written in the form

Pac(H)= I −
N∑

j=1

Pj , Pj := 〈 · , ψ j 〉ψ j , (3-11)

where ψ j are eigenfunctions of H and N <∞.

Lemma 3.9. We have ψ j ∈ Lq,2 and Pac(H) ∈ B(Lq,2) for all

2n
n+3

< q < 2n
n−3

.

Proof. Let ψ be an eigenfunction of H with an eigenvalue λ< 0. By virtue of (3-11) and real interpolation,
it suffices to show ψ ∈ Lq,2. For a given ε > 0, we decompose V as V = v1+ v2 with v1 ∈ C∞0 (R

n) and
‖v2‖Ln/2,∞ ≤ ε. We first let

2n
n−1

< q < 2n
n−3

.

By Sobolev’s inequality and Proposition 1.1, one has

‖R0(λ)v1ψ‖Lq . ‖R0(λ)v1ψ‖Hn(1/2−1/q) ≤ Cλ‖v1ψ‖L2 ≤ Cλ‖v1‖L∞‖ψ‖L2,

‖R0(λ)v2‖B(Lq ) . ‖v2‖Ln/2,∞ .

For ε > 0 small enough, I + R0(λ)v2 thus is invertible on Lq and

ψ =−R0(λ)Vψ = R0(λ)v1ψ − R0(λ)v2ψ =−(I + R0(λ)v2)
−1 R0(λ)v1ψ ∈ Lq .

Next, since R0(λ) ∈ B(L p) for all 1< p <∞, we have by Hölder’s inequality that

‖ψ‖L p = ‖R0(λ)Vψ‖L p ≤ Cλ‖Vψ‖L p ≤ Cλ‖V ‖Ln/2,∞‖ψ‖Lq

if 1/p− 1/q = 2/n. This shows ψ ∈ L p for all

2n
n+3

< p < 2n
n+1

.

Interpolating these two cases, we conclude that ψ ∈ Lq for all

2n
n+3

< q < 2n
n−3

. �

Proof of Theorem 3.8. Assume that E∩ [0,∞) = ∅. Then one can find δ > 0 small enough such that
dist(Eδ, [0,∞)) ≥ δ/2. The proof is divided into two cases: z ∈ C \ ([0,∞)∪Eδ) and z ∈ Eδ. For the
case when z ∈ C \ ([0,∞)∪Eδ), since

2n
n−1

< q, p′ < 2n
n−3
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and Pj R(z)= (λ j − z)−1
〈 · , ψ j 〉ψ j , Lemma 3.9 implies

‖Pj R(z) f ‖L p′,2 ≤ δ
−1
‖ψ j‖Lq,2‖ψ j‖L p′,2‖ f ‖L p,2,

which, together with Theorem 1.4 and the formula (3-11), gives us the desired bound

sup
z∈C\([0,∞)∪Eδ)

‖Pac(H)R(z)‖B(L p,2,Lq,2) . δ
−1. (3-12)

When z ∈ Eδ, we use twice the first resolvent equation R(z)= R(z′)− (z− z′)R(z′)R(z) to write

Pac(H)R(z)= Pac(H)R(M)+ (z+M)Pac(H)R(M)2+ (z+M)2 R(M)Pac(H)R(z)R(M),

where we have taken M < inf σ(H)− 1. Note that |z+M | ≤ 2|M | + δ for z ∈ Eδ since E is a bounded
set in R. Moreover, we have by Lemma 3.9 and Corollary 1.6 and Theorem A.1 that

‖Pac(H)R(M)‖B(L p,2,Lq,2) ≤ ‖Pac(H)‖B(Lq,2)‖R(M)‖B(L p,2,Lq,2) ≤ CM ,

‖R(M)‖B(L2,Lq,2)+‖R(M)‖B(L p,2,L2) ≤ CM

for some CM independent of z. It follows from these two bounds and the trivial L2-bound

sup
z∈Eδ
‖Pac(H)R(z)‖B(L2) ≤ dist(Eδ, [0,∞))−1

≤ 2δ−1

that there exists CM,δ > 0, independent of z, such that

sup
z∈Eδ
‖Pac(H)R(z)‖B(L p,2,Lq,2) ≤ CM,δ. (3-13)

The assertion of the theorem then follows from (3-12) and (3-13). �

4. Kato smoothing and Strichartz estimates

This section is devoted to the proof of Theorems 1.10 and 1.12. We first prepare several lemmas. Let ei t1

be the free Schrödinger unitary group and define

00 F(t) :=
∫ t

0
ei(t−s)1F(s) ds, F ∈ L1

loc(R; L
2(Rn)).

The estimates for the free Schrödinger equation used in this section are summarized as follows:

Lemma 4.1. Let (p, q) satisfy (1-12), (ps, qs) be as in (2-3) and ρ > 1
2 . Then

‖ei t1ψ‖L p
t Lq,2

x
. ‖ψ‖L2

x
, (4-1)

‖00 F‖L2
t Lqs ,2

x
. ‖F‖L2

t L ps ,2
x

for n
2(n−1)

< s < 3n−4
2(n−1)

, (4-2)

‖00 F‖L2
t Lqs

x
. ‖F‖L2

t L ps
x

for s = n
2(n−1)

,
3n−4

2(n−1)
, (4-3)

‖〈x〉−ρ |D|1/2ei t1ψ‖L2
t L2

x
. ‖ψ‖L2

x
, (4-4)

‖〈x〉−ρ |D|1/200 F‖L2
t L2

x
. ‖F‖L2

t L2n/(n+2),2
x

. (4-5)
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Proof. Inequality (4-1) for p > 2 is due to [Strichartz 1977; Ginibre and Velo 1985]. Inequality (4-1)
with p = 2 and (4-2) with s = 1 were settled in [Keel and Tao 1998]. Inequality (4-2) was proved
independently by [Foschi 2005] and [Vilela 2007]. Inequality (4-3) was settled recently in [Koh and Seo
2016]. Kato-smoothing (4-4) was proved in [Kenig, Ponce, and Vega 1991]. Finally, (4-5) can be found
in [Mizutani 2018, Lemma 3.2]. �

The following lemma, which was proved in [Kato 1966] (see also [Reed and Simon 1978; D’Ancona
2015]), shows the equivalence of the uniform weighted resolvent estimate and the Kato smoothing
estimate.

Lemma 4.2. Let L be a self-adjoint operator on a Hilbert space H, let A be a densely defined closed
operator on H, and let a > 0. Then the following two estimates are equivalent to each other:

|〈Im(L − z)−1 A∗u, A∗u〉H| ≤ a‖u‖2H, u ∈ D(A∗), z ∈ C \R,

‖Ae−i t Lv‖L2
t H
≤ 2
√

a‖v‖H, v ∈H.

The following concerns the equivalence of Sobolev norms generated by 1 and H.

Lemma 4.3. Assume that E∩ [0,∞)=∅ and 0≤ s < 3
2 . Then

‖(−1+M)s/2(H +M)−s/2
‖B(L2)+‖(H +M)s/2(−1+M)−s/2

‖B(L2) <∞. (4-6)

Proof. The proof will be given in the next section. �

Recall that 〈 · , · 〉T is the inner product in L2
T L2

x defined by 〈F,G〉T =
∫ T
−T 〈F(t),G(t)〉 dt . It is not

hard to check that 〈0H F,G〉T = 〈F, 0∗H G〉T with

0∗H G(t)= 1[0,∞)(t)
∫ T

t
e−i(t−s)H G(s) ds−1(−∞,0](t)

∫ t

−T
e−i(t−s)H G(s) ds.

The following lemma gives the rigorous definition of Duhamel’s formula (in the sense of forms).

Lemma 4.4. Let 1
2 < s < 3

2 , V1 ∈ Ln/s,∞
0 (Rn

;R) and V2 ∈ Ln/(2−s),∞
0 (Rn

;R) be such that V = V1V2.
Then, for all ψ ∈ L2 and all simple functions F,G : R→ S,

〈e−i t H Pac(H)ψ,G〉T = 〈ei t1Pac(H)ψ,G〉T − i〈V1 Pac(H)e−i t Hψ, V20
∗

0 G〉T , (4-7)

〈0H Pac(H)F,G〉T = 〈00 Pac(H)F,G〉T − i〈V10H Pac(H)F, V20
∗

0 G〉T , (4-8)

= 〈00 F, Pac(H)G〉T − i〈V200 F, V10
∗

H Pac(H)G〉T . (4-9)

Proof. The proof is basically same as that in [Bouclet and Mizutani 2018, Proposition 4.4], where the case
s = 1 was considered. We shall show (4-8), since the other proofs are similar. We start from the formula

〈e−i t H Pac(H)u, v〉− 〈ei t1Pac(H)u, v〉 = −i
∫ t

0
〈V1e−iτH Pac(H)u, V2ei(t−τ)1v〉 dτ (4-10)

for u, v ∈ S, which follows by computing d
dt 〈e

−i t H Pac(H)u, ei t1v〉. Here note that the HLS inequality
(A-2) and Lemma 4.3 yield

|〈V1e−iτH Pac(H)u, V2ei(t−τ)1v〉|.‖V1‖Ln/s,∞‖V2‖Ln/(2−s),∞‖(−1+ 1)s/2u‖L2‖(−1+ 1)1−s/2v‖L2<∞
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and, hence, the right-hand side of (4-10) makes sense. Changing t to t−s, plugging in u= F(s), v=G(t)
and integrating in s over [0, t], we obtain

〈0H Pac(H)F(t),G(t)〉− 〈00 Pac(H)F(t),G(t)〉

= −i
∫ t

0

∫ t

s
〈V1e−i(τ−s)H Pac(H)F(s), V2ei(τ−t)1G(t)〉 dτ dt,

where, by the same argument as above, the integrand of the right-hand side is finite and thus integrable in
(τ, s) ∈ [0, t]2. Therefore, by Fubini’s theorem,

〈0H Pac(H)F(t),G(t)〉− 〈00 Pac(H)F(t),G(t)〉

= −i
∫ t

0
〈V10H Pac(H)F(τ ), V2ei(τ−t)1G(t)〉 dτ. (4-11)

Finally, observing from the same argument as above that |〈V10H F(τ ), V2ei(τ−t)1G(t)〉| is finite, we
integrate (4-11) in t and use Fubini’s theorem to obtain the desired formula (4-8). �

Remark 4.5. When s = 1, the identities (4-7), (4-8) and (4-9) also hold for all F,G ∈ L1
locL2; see

[Bouclet and Mizutani 2018, Proposition 4.4].

Using these lemmas, we first prove Kato smoothing estimates.

Proof of Theorem 1.10. The following argument is basically same as that in [Burq, Planchon, Stalker, and
Tahvildar-Zadeh 2004]. With the above remark at hand, we use (4-7) with G replaced by |D|1/2〈x〉−ρG
to obtain

〈〈x〉−ρ |D|1/2e−i t H Pac(H)ψ,G〉T

= 〈〈x〉−ρ |D|1/2ei t1Pac(H)ψ,G〉T − i〈V1 Pac(H)e−i t Hψ, V20
∗

0 |D|
1/2
〈x〉−ρG〉T

for all ψ ∈ L2 and a simple function G(t) : R→ S. By (4-4), the first term obeys

|〈〈x〉−ρ |D|1/2ei t1Pac(H)ψ,G〉T |. ‖ψ‖L2‖G‖L2
t L2

x
(4-12)

uniformly in T > 0. On the other hand, we have by the dual estimate of (4-5) that

|〈V1 Pac(H)e−i t Hψ, V20
∗

0 G〉T |. ‖V1 Pac(H)e−i t Hψ‖L2
t L2

x
‖G‖L2

t L2
x

(4-13)

uniformly in T > 0. For the term ‖V1 Pac(H)e−i t Hψ‖L2
t L2

x
, we use Lemma 4.2 to deduce

‖V1 Pac(H)e−i t Hψ‖L2
t L2

x
. ‖ψ‖L2

x
(4-14)

from the following uniform weighted resolvent estimate

sup
z∈C\R

‖V1 Pac(H)R(z)Pac(H)V1‖B(L2) <∞,

which is a consequence of Theorem 3.8 and Hölder’s inequality (A-1), where we note that Pac(H)2=Pac(H)
since Pac(H) is an orthogonal projection. Finally, (4-12)–(4-14) imply

|〈〈x〉−ρ |D|1/2e−i t H Pac(H)ψ,G〉T |. ‖ψ‖L2‖G‖L2
t L2

x
,

which, together with duality and density arguments, gives us the assertion. �
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In order to prove Strichartz estimates, we need one more lemma.

Lemma 4.6. Assume E ∩ [0,∞) = ∅. Then, for any 1
2 < s < 3

2 there exists C > 0 such that, for all
w ∈ Ln/(2−s),∞, χ ∈ C∞0 (R

n) and T > 0,

‖χ0H Pac(H)wF‖L2
T L2

x
≤ C‖χ‖Ln/s,∞‖w‖Ln/(2−s),∞‖F‖L2

T L2
x
. (4-15)

Proof. The proof is essentially based on the argument in [D’Ancona 2015, Theorem 2.3]. At first note
that it suffices to show (4-15) with [−T, T ] replaced by R. Indeed, since s ∈ [−T, T ] if t ∈ [−T, T ] and
s ∈ [0, t] (or s ∈ [t, 0]), (4-15) with [−T, T ] replaced by R implies

‖χ0H Pac(H)wF‖L2
T L2

x
. ‖1[−T,T ](s)F‖L2

t L2
x
= ‖F‖L2

T L2
x
.

We may assume, by a density argument, that F(t) : R→ S is a simple function. Set A1 = χ(x)Pac(H)
and A2 = wPac(H). For a function v(t) : R→ L2, ṽ denotes its Laplace transform:

ṽ(z)=±
∫
±∞

0
ei ztv(t) dz, ± Im z > 0.

A direct calculation yields that if v(t) = 0H A∗2 F(t) then ṽ(z) = −i R(z)A∗2 F̃(z), where the identity
Ã∗2 F = A∗2 F̃ follows from the estimate ‖A2 F‖L1

loc L2
x
. ‖w‖Ln/(2−s),∞‖F‖L1

locH
2−s <∞ and Hille’s theorem

[Hille and Phillips 1957, Theorem 3.7.12]. Also we see that v(t) ∈ D(A1) for each t . Indeed, writing
F(t)=

∑N
j=1 1E j (t) f j with some f j ∈ S(R

n), we have for each t

‖A1v(t)‖L2 ≤

N∑
j=1

∫
|t |

0
‖A1eis H e−i t H Pac(H)w f j‖L2 ds . |t |‖w‖Ln/(2−s),∞

N∑
j=1

‖ f j‖H2−s <∞.

Then one can use Parseval’s theorem to obtain

±

∫
±∞

0
e−2ε|t |

〈v(t), A∗1G(t)〉 dt = 2π
∫

R

〈ṽ(λ± iε), A∗1G̃(λ± iε)〉 dλ, ε > 0,

for any simple function G : R→ S. By virtue of uniform Sobolev estimates (3-10) with

(p, q)=
( 2n

n+2(2−s)
,

2n
n−2s

)
and Hölder’s inequality (A-1), the integrand of the right-hand side obeys

|〈ṽ(λ± iε), A∗1G̃(λ± iε)〉| ≤ ‖χ‖Ln/2,∞‖w‖Ln/(2−s),∞‖F̃(λ± iε)‖L2
x
‖G̃(λ± iε)‖L2

x
.

Applying again Parseval’s theorem, we have∣∣∣∣∫ ±∞
0

e−2ε|t |
〈v(t), A∗1G(t)〉dt

∣∣∣∣=∣∣∣∣∫
R

〈ṽ(λ±iε), A∗1G̃(λ±iε)〉dλ
∣∣∣∣

.‖χ‖Ln/2,∞‖w‖Ln/(2−s),∞‖F̃(λ±iε)‖L2
λL2

x
‖G̃(λ±iε)‖L2

λL2
x

.‖χ‖Ln/2,∞‖w‖Ln/(2−s),∞‖e−ε|t |F(t)‖L2(R±;L2(Rn))‖e
−ε|t |G(t)‖L2(R±;L2(Rn)),
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which, together with the density of simple functions with values in S, shows

‖e−ε|t |A10H A2 F‖L2
t L2

x
. ‖χ‖Ln/2,∞‖w‖Ln/(2−s),∞‖e−ε|t |F‖L2

t L2
x
, F ∈ L2

t L2
x .

The result then follows by letting ε→ 0. �

Remark 4.7. If 1
2 < s ≤ 1, (4-15) also holds for any χ ∈ Ln/s,∞. The proof is completely the same.

When 1< s < 3
2 , we do not, a priori, know χe−i t H Pac(H)wF(s) ∈ L2

x for each t, s under the condition
χ ∈ Ln/s,∞ only, even if F : R→ S. This is the reason why we have assumed χ ∈ C∞0 . We however
stress that Lemma 4.6 is sufficient for our purpose.

We are now ready to show our Strichartz estimates.

Proof of Theorem 1.12. Using (4-1) and (4-2) with s = 1 instead of (4-4) and (4-5), respectively, one can
see that the proof of the homogeneous endpoint Strichartz estimate of the form

‖e−i t H Pac(H)ψ‖L2
t L2n/(n−2),2

x
. ‖ψ‖L2 (4-16)

is similar to that of Theorem 1.10 and even easier than that of (1-14). We thus omit the proof.
We shall show (1-14). Let

n
2(n−1)

< s < 3n−4
2(n−1)

,

and V1 ∈ Ln/s,∞
0 and V2 ∈ Ln/(2−s),∞

0 be real-valued such that V = V1V2. Take a sequence V1, j ∈ C∞0
such that ‖V1− V1, j‖Ln/s,∞→ 0. Let F : R→ S be a simple function in t . As in the proof of Lemma 4.4,
we see that 0H Pac(H)F ∈ L2

T Lqs ,2
x for each T > 0 by Lemma 4.3. Then, by the duality argument, we

have
‖0H Pac(H)F‖L2

T Lqs ,2
x
. sup{|〈0H Pac(H)F,G〉T | | ‖G‖L2

T Lq′s ,2
x
= 1}, (4-17)

where we may assume by a density argument that G : R→ S is a simple function. Then, it follows from
Duhamel’s formula (4-8), (4-2), Lemma 3.9 and Hölder’s inequality (A-1) that

|〈0H Pac(H)F,G〉T |. ‖Pac(H)‖B(L ps ,2)‖F‖L2
t L ps ,2

x
+‖V1, j0H Pac(H)F‖L2

T L2
x
‖V2‖Ln/(2−s),∞

+‖V1− V1, j‖Ln/s,∞‖0H Pac(H)F‖L2
T Lqs ,2

x

uniformly in T > 0. Taking j large enough (which can be taken independently of T ), the last term can be
absorbed into the left-hand side of (4-17), implying

‖0H Pac(H)F‖L2
T Lqs ,2

x
. ‖F‖L2

t L ps ,2
x
+‖V1, j0H Pac(H)F‖L2

T L2
x

uniformly in T > 0. To deal with the term ‖V1, j0H Pac(H)F‖L2
T L2

x
, we use (4-9) to write

〈V1, j0H Pac(H)F, G̃〉T = 〈00 F, Pac(H)V1, j G̃〉T − i〈V200 F, V10
∗

H Pac(H)V1, j G̃〉T

for all simple functions G̃ : R→ S satisfying ‖G̃‖L2
T L2

x=1 = 1. By (4-2) the first term enjoys

|〈00 F, Pac(H)V1, j G̃〉T |. ‖V1, j‖Ln/s,∞‖F‖L2
t L ps ,2

x
. ‖F‖L2

t L ps ,2
x
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uniformly in T > 0 and j . On the other hand, since V20
∗

H Pac(H)V1, j G̃ ∈ L2
T L2

x by Lemma 4.6 and
V100 F ∈ L2

T L2
x by (4-2), the last term can be rewritten in the form

〈V200 F, V10
∗

H Pac(H)V1, j G̃〉T = 〈V100 F, V20
∗

H Pac(H)V1, j G̃〉T .

Using (4-2), Lemma 4.6 and a duality argument, we then obtain

|〈V100 F, V20
∗

H Pac(H)V1, j G̃〉T |. ‖F‖L2
t L ps ,2

x
.

Putting it all together, we conclude that

‖0H Pac(H)F‖L2
T Lqs ,2

x
. ‖F‖L2

t L ps ,2
x

uniformly in T > 0, which implies the desired estimates (1-14) for

n
2(n−1)

< s < 3n−4
2(n−1)

.

The cases s = n/(2(n− 1)) and (3n− 4)/(2(n− 1)) can be obtained analogously by using (4-3) instead
of (4-2). �

5. Spectral multiplier theorem

This section is devoted to the proof of Lemma 4.3 and Theorem 1.15. Proofs are based on an abstract
method in [Chen, Ouhabaz, Sikora, and Yan 2016], which, in the Euclidean case, can be stated as follows.

Proposition 5.1 [Chen, Ouhabaz, Sikora, and Yan 2016, Theorem A]. Let 1≤ p0 < 2 and 1≤ q ≤∞.
Let L be a nonnegative self-adjoint operator on L2(Rn) satisfying the following two conditions:

• Davies–Gaffney’s estimate: for any open sets U j ⊂ Rn and ψ j ∈ L2(U j ), j = 1, 2,

|〈e−t Lψ1, ψ2〉| ≤ exp
(
−

d(U1,U2)
2

4t

)
‖ψ1‖L2‖ψ2‖L2, (5-1)

where d(U1,U2) := infx1∈U1,x2∈U2 |x1− x2| is the distance between U1 and U2.

• Stein–Tomas-type restriction estimate: for any a > 0 and any bounded Borel function F0 on R supported
in [0, a], we have F0(

√
L) ∈ B(L p0, L2) and

‖F0(
√

L)1B(x,r)‖B(L p0 ,L2) . an(1/p0−1/2)
‖F0(a · )‖Lq (5-2)

for all x ∈ Rn and r ≥ a−1, where B(x, r)= {y | |y− x |< r}.

Then, for any bounded Borel function F on R satisfying

|F |W(β,q) := sup
t>0
‖ψ( · )F(t · )‖Wβ,q (R) <∞, (5-3)

with some nontrivial ψ ∈ C∞0 supported in (0,∞) and

β >max
{

n
( 1

p 0
−

1
2

)
,

1
q

}
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such that β is an integer if q =∞, we have F(
√

L) is bounded on L p for all p0 < p < p′0 and satisfies

‖F(
√

L)‖B(L p) ≤ Cβ(|F |W(β,q)+ |F(0)|).

Strictly speaking, instead of Davies–Gaffney’s estimate, it was assumed in [Chen, Ouhabaz, Sikora,
and Yan 2016] that L satisfies the so-called finite-speed propagation property; see (FS) on page 229
of [loc. cit.]. However, these two conditions are known to be equivalent; see [loc. cit., Theorem 3.4].
Moreover, (5-1) is always satisfied for nonnegative Schrödinger operators −1 + V (x) as shown in
[Coulhon and Sikora 2008].

Lemma 5.2 [Coulhon and Sikora 2008, Theorem 3.3]. Let L =−1+V (x) with real-valued V ∈ L1
loc(R

n)

such that L ≥ 0 as a quadratic form. Then (5-1) is satisfied.

When q =∞, (5-2) can be replaced by an L p-L2 estimate of the Schrödinger semigroup.

Lemma 5.3. Let 1≤ p0 < 2. Then (5-2) with q =∞ follows from

‖e−t2 L
‖B(L p0 ,L2) . t−n(1/p0−1/2), t > 0. (5-4)

Proof. By [Chen, Ouhabaz, Sikora, and Yan 2016, Proposition 1.3], (5-2) with q =∞ is equivalent to

‖e−t2 L1B(x,r)‖B(L p0 ,L2) . |B(x, r)|
1/p0−1/2(r t−1)n(1/p0−1/2), t > 0, x ∈ Rn, r ≥ t,

which clearly follows from (5-4) since |B(x, r)| ≤ Cnrn. �

Now we show Lemma 4.3 whose proof is classical and based on Stein’s complex interpolation theorem.
Let us fix M > | inf σ(H)| + 1 so that H +M ≥ I. A key observation is the following.

Lemma 5.4. For any α ∈ R and
2n

n+3
< p < 2n

n−3
,

we have
‖(H +M)iα‖B(L p) ≤ CM〈α〉

n.

Proof. It is easy to see that F(x)= x2iα satisfies |F |W(n,∞) ≤ Cn〈α〉
n and |F(0)| = 1. Let us fix

2n
n+3

< p0 ≤
2n

n+2
arbitrarily. By virtue of Proposition 5.1 and Lemmas 5.2 and 5.3, it suffices to show that L := H +M
satisfies (5-4). Decompose e−t2 L into the absolutely continuous part e−t2 L Pac(H) and the discrete part∑N

j=1 e−t2 L Pj .
For the discrete part, since λ j +M ≥ 1, we know by Lemma 3.9 that

‖e−t2 L Pj f ‖L2 = ‖e−t2(λ j+M)Pj f ‖L2 ≤ e−t2
‖ϕ j‖L2‖ϕ j‖L p′0

‖ f ‖L p0 . e−t2
‖ f ‖L p0 .

On the other hand, it follows from the spectral decomposition theorem that

e−t2 L Pac(H)(e−t2 L Pac(H))∗ = e−2t2 L Pac(H)=
∫
∞

0
e−2t2(λ+M) d EH (λ).
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Theorem 1.8 then implies

‖e−2t2 L Pac(H)‖
B(L p0 ,L p′0 )

.
∫
∞

0
e−2t2(λ+M)λ(n/2)(1/p0−1/p′0)−1 dλ. t−n(1/p0−1/p′0) = t−2n(1/p0−1/2).

Since ‖e−t2 L Pac(H)‖B(L p0 ,L2) ≤ ‖e−2t2 L Pac(H)‖
1/2

B(L p0 ,L p′0 )
by the duality, (5-4) follows. �

Proof of Lemma 4.3. We may assume 1< s < 3
2 without loss of generality since the case when 0≤ s ≤ 1

follows from Stein’s complex interpolation [1956] and the estimate

‖(−1+M)1/2(H +M)−1/2
‖B(L2)+‖(−1+M)−1/2(H +M)1/2‖B(L2) <∞,

which is a consequence of the fact that the form domain of H is H1.
For f, g ∈ S, we consider a function G(z) = 〈(H + M)−z f, (−1+ M)zg〉 which is continuous on

0≤ Re z ≤ 1 and analytic in 0< Re z < 1. By Corollary 1.6 and Lemma 5.4, for

2n
n+3

< r1 <
2n

n−3
and 2n

n+3
< r2 <

2n
n+1

,

we have

|G(i t)| ≤ ‖(H +M)−i t f ‖Lr1‖(−1+M)i t g‖
Lr ′1
. 〈t〉2n

‖ f ‖Lr1‖g‖Lr ′1
,

|G(1+ i t)| ≤ ‖(−1+M)(H +M)−1−i t f ‖Lr2‖(−1+M)i t g‖
Lr ′2
. 〈t〉2n

‖ f ‖Lr2‖g‖Lr ′2
,

where, since (−1+M)(H +M)−1
= 1− V (H +M)−1, the second estimate can be verified as

‖(−1+M)(H +M)−1
‖B(Lr2 ) ≤ 1+‖V (H +M)−1

‖B(Lr2 ) ≤ 1+CM‖V ‖Ln/2,∞ .

Let

r1 =
2n

n−2s
and r2 =

2n
n+2(2−s)

.

Since
1
2
=

(
1− s

2

)(1
r 1

)
+

s
2
·

1
r 2
,

we apply Stein’s complex interpolation theorem to G, implying |G(s/2)| ≤Ct‖ f ‖L2‖g‖L2 . This gives us

‖(−1+M)s/2(H +M)−s/2
‖B(L2) <∞.

Applying the same argument to a function G(z)= 〈(−1+M)−z f, (H +M)zg〉, we also have

‖(H +M)s/2(−1+M)−s/2
‖B(L2) <∞. �

Next we shall show Theorem 1.15.

Proof of Theorem 1.15. Since H is assumed to be nonnegative, the Davies–Gaffney estimate (5-1) is
satisfied. It thus remains to check the Stein–Tomas-type restriction estimate (5-2) with q = 2. Let

2n
n+3

< p0 <
2n

n+2
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and F0 ∈ L∞(R) be such that supp F0 ⊂ [0, a]. By Theorem 1.8,

‖F0(
√

H)2‖
B(L p0 ,L p′0 )

.
∫ a2

0
|F0(
√
λ)|2λ(n/2)(1/p0−1/p′0)−1 dλ

. ‖F0‖
2
L2([0,a])a

n(1/p0−1/p′0)−1 . an(1/p0−1/p′0)‖F0(a · )‖2L2 .

Finally, by the duality, we have ‖F0(
√

H)‖B(L p0 ,L2) ≤ ‖F0(
√

H)2‖
1/2

B(L p0 ,L p′0 )
, which, combined with the

above estimate for ‖F0(
√

H)2‖
B(L p0 ,L p′0 )

, implies (5-2) with q = 2. �

We conclude this section with two immediate consequences of Theorem 1.15.

Corollary 5.5. Suppose that E∩ [0,∞)=∅, H ≥ 0 and 0≤ s < 3
2 . Then

‖(−1)s/2 H−s/2
‖B(L2)+‖H

s/2(−1)−s/2
‖B(L2) <∞.

Proof. The proof is analogous to that of Lemma 2.8. �

Corollary 5.6. Suppose that E∩ [0,∞)=∅ and H ≥ 0. Let ϕ ∈ C∞0 (R) be such that suppϕ ⊂
(1

2 , 2
)
,

0≤ ϕ ≤ 1 and
∑

j∈Z ϕ(2
− jλ)= 1 for all λ > 0. Then, for any

2n
n+3

< p < 2n
n−3

,

there exists C p > 0 such that

C−1
p ‖ f ‖L p ≤

∥∥∥∥(∑
j∈Z

|ϕ(2− j H) f (x)|2
)1/2∥∥∥∥

L p

≤ C p‖ f ‖L p .

In particular, if 2≤ p < 2n/(n− 3), then

‖ f ‖L p .

(∑
j∈Z

‖ϕ(2− j H) f ‖
2
L p

)1/2

.

Proof. With Theorem 1.15 at hand, the corollary follows from a standard method in [Stein 1970]. The
proof is completely the same as that for the usual Littlewood–Paley estimate and we omit it. �

6. Eigenvalue bounds

This section is devoted to the proof of Theorem 1.19. The proof is based on a method of Frank [2011;
2018]. Recall that W ∈ Ln/2+γ (Rn

;C) with 0 < γ <∞. Then W is H -form compact. Indeed, taking
M > − inf σ(H), we see that |W |1/2(1−1)−1/2 is compact and (1−1)1/2(H + M)−1/2 is bounded.
Hence |W |1/2(H+M)−1/2

=|W |1/2(1−1)−1/2(1−1)1/2(H+M)−1/2 is also compact. Then there exists
a unique m-sectorial operator HW such that D(HW ) ⊂ Q(HW ) =H1 and 〈HW u, v〉 = 〈(H +W )u, v〉
for u ∈ D(HW ) and v ∈ H1. We also have D(HW ) is dense in H1, and σ(HW ) is contained in a
sector {z ∈ C | | arg(z − z0)| ≤ θ} for some z0 ∈ R and θ ∈

[
0, π2

)
; see [Kato 1966, Theorems VI.3.9

and VI.2.1]. We fix a factorization W = W1W2 with W1 = |W |1/2 sgn W and W2 = |W |1/2, where
sgn W (x) = W (x)/|W (x)| if W (x) 6= 0 and sgn W (x) = 0 if W (x) = 0. Let d(z) = dist(z, [∞). We
begin with the following lemma.
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Lemma 6.1. Suppose that E ∈C\σ(H) is an eigenvalue of HW . Then−1 is an eigenvalue of W1 R(E)W2.
Moreover, if 0<γ ≤ 1

2 , the same statement also holds for E ∈ (0,∞)\E with R(E) replaced by R(E+i0).

Proof. We show the lemma for the case E ∈ (0,∞) \E only, since, in the case E ∈ C \ σ(H), the lemma
is a consequence of the well-known Birman–Schwinger principle (see, e.g., [Frank 2018, Section 4]), and
the proof is easier. Let f ∈ KerL2(HW − E). We let ϕ ∈ S and plug v = R(E − iε)W1ϕ ∈H

1 into the
identity 〈(H − E) f, v〉+ 〈W1 f,W2v〉 = 0, letting ε↘ 0 and then using Corollary 1.5(2) to obtain

〈W1 f, ϕ〉+ 〈W1 R(E + i0)W2W1 f, ϕ〉 = 0.

Since ‖W1 f ‖L2 . ‖W1‖Ln+2γ ‖ f ‖H1 <∞, this shows W1 f ∈ KerL2(I +W1 R(E + i0)W2). �

Since W1 R(E)W2 is a compact operator on L2, if −1 is an eigenvalue of W1 R(E)W2 then
‖W1 R(E)W2‖B(L2) ≥ 1 at least. With this remark at hand, it is easy to see that Theorem 1.19 follows
from the following lemma.

Lemma 6.2. For any δ > 0 and 0≤ γ ≤ 1
2 , one has

‖W1 R(z)W2‖B(L2) ≤ Cδ|z|−γ /(n/2+γ )‖W‖Ln/2+γ , z ∈ C \Eδ, (6-1)

where R(z) is replaced by R(z+ i0) if z ∈ (0,∞) \Eδ. Moreover, for any γ > 1
2 ,

‖W1 R(z)W2‖B(L2) ≤ Cγ,δ|z|−(1/2)/(n/2+γ )d(z)(γ−1/2)/(n/2+γ )
‖W‖Ln/2+γ , z ∈ C \ (Eδ ∪ [0,∞)). (6-2)

Proof. Inequality (6-1) is a direct consequence of (1-5) and (1-6) with

1
p
=

1
2
+

1
n+2γ

and q = p′.

For the proof of (6-2), we take

θ =
2γ−1
n+2γ

∈ (0, 1)

so that

1− θ = n+1
n+2γ

.

Interpolating between (1-5) with

p = 2(n+1)
n+3

and q = p′

and the trivial bound ‖R(z)‖B(L2) = dist(z, [0,∞))−1 and, then, using Hölder’s inequality, we obtain

‖W1 R(E)W2‖B(L2) ≤ Cγ,δ|z|−(1−θ)/(n+1)d(z)−θ‖W‖Ln/2+γ

= Cγ,δ|z|−1/2/(n/2+γ )d(z)(γ−1/2)/(n/2+γ )
‖W‖Ln/2+γ ,

which completes the proof. �
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Appendix: Real interpolation and Lorentz space

Here a brief summery of real interpolation spaces and Lorentz spaces is given without proofs. One can
find a much more detailed exposition in [Bergh and Löfström 1976; Grafakos 2008].

A pair of Banach spaces (A,B) is said to be a Banach couple if both A,B are algebraically and
topologically embedded in a Hausdorff topological vector space C. Note that one can always take C

to be a Banach space A0 + A1. Given a Banach couple (A0,A1) and 0 < θ < 1 and 1 ≤ q ≤ ∞,
one can define a Banach space Aθ,q = (A0,A1)θ,q by the so-called K -method, which satisfies that
(A0,A0)θ,q =A0 and (A0,A1)θ,q = (A1,A0)1−θ,q with equivalent norms and that if 1≤ q1 ≤ q2 ≤∞

then (A0,A1)θ,1 ↪→ (A0,A1)θ,q1 ↪→ (A0,A1)θ,q2 ↪→ (A0,A1)θ,∞. Then the following real interpolation
theorem is frequently used in this paper.

Theorem A.1 [Bergh and Löfström 1976, Theorem 3.1.2; Cobos, Edmunds, and Potter 1990]. Let
(A0,A1) and (B0,B1) be two Banach couples, 0 < θ < 1 and 1 ≤ q ≤ ∞. Suppose that T is a
bounded linear operator from (A0,A1) to (B0,B1) in the sense that T :A j→B j and ‖T ‖B(A j ,B j )

≤M j ,
j = 0, 1. Then T is bounded from Aθ,q to Bθ,q and satisfies ‖T ‖B(Aθ,q ,Bθ,q ) ≤ M1−θ

0 Mθ
1 . Moreover, if

both T :A0→B0 and T :A1→B1 are compact, then T :Aθ,q →Bθ,q is also compact.

Next we recall the definition and basic properties of Lorentz spaces. Given a µ-measurable function f
on Rn, we let µ f (α)= µ({x | | f (x)|> α}). If we define the decreasing rearrangement of f by f ∗(t)=
inf{α | µ f (α) ≤ t} then the Lorentz space L p,q(Rn) is the set of measurable f such that the following
quasinorm is finite:

‖ f ‖∗L p,q := ‖t1/p−1/q f ∗(t)‖Lq (R+,dt) = p1/q
‖αµ f (α)

1/p
‖Lq (R+,α−1dα) <∞.

Moreover, if 1< p <∞ and 1≤ q ≤∞ (which are sufficient for our purpose), then

‖ f ‖L p,q := ‖ f ∗∗‖∗L p,q , f ∗∗(t) := 1
t

∫ t

0
f ∗(α) dα,

becomes a norm on L p,q which makes L p,q a Banach space. Furthermore, ‖ · ‖L p,q is equivalent to
‖ · ‖

∗

L p,q in the sense that ‖ f ‖∗L p,q ≤ ‖ f ‖L p,q ≤ C(p, q)‖ f ‖∗L p,q with some constant C(p, q) > 0. Thus all
continuity estimates for linear operators can be expressed in terms of ‖ · ‖∗L p,q . L p,q is increasing in q:
L p,1 ↪→ L p,q1 ↪→ L p,p

= L p ↪→ L p,q2 ↪→ L p,∞ if 1< q1 < p< q2 <∞. Moreover, L p,q is characterized
by real interpolation: for 0< θ < 1, 1< p1 < p2 <∞ with

1
p
=

1−θ
p1
+
θ

p2

and 1≤ q ≤∞, one has (L p0, L p2)θ,q = L p,q with equivalent norms. If 1< p, q <∞ then L p,q(X;C)′=
L p′,q ′(X;C), where r ′ = r/(r − 1) is the Hölder conjugate of r .

Finally we record two inequalities used frequently in this paper. First, for 1 ≤ p, p j < ∞ and
1≤ q, q j ≤∞ with

1
p
=

1
p1
+

1
p2

and 1
q
=

1
q1
+

1
q2
,
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one has Hölder’s inequality

‖ f g‖L p,q ≤ C‖ f ‖L p1,q1‖g‖L p2,q2 , ‖ f g‖L p,q ≤ C‖ f ‖L∞‖g‖L p,q . (A-1)

Secondly, for 1< s < n, 1< p< q <∞, 1/p−1/q = 2/n and 1≤ r ≤∞, we have the HLS inequality

‖(−1)−s/2 f ‖Lq,r ≤ C‖ f ‖L p,r . (A-2)
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