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UNIFORM SOBOLEV ESTIMATES FOR SCHRODINGER OPERATORS
WITH SCALING-CRITICAL POTENTIALS AND APPLICATIONS

HARUYA MIZUTANI

We prove uniform Sobolev estimates for the resolvent of Schrodinger operators with large scaling-critical
potentials without any repulsive condition. As applications, global-in-time Strichartz estimates including
some nonadmissible retarded estimates, a Hormander-type spectral multiplier theorem, and Keller-type
eigenvalue bounds with complex-valued potentials are also obtained.

1. Introduction and main results

This paper is a continuation of [Bouclet and Mizutani 2018; Mizutani 2019], where uniform estimates
for the resolvent (H — z)~! of the Schrodinger operator H = —A + V(x) on R" with a real-valued
potential V (x) exhibiting one critical singularity were investigated under some repulsive conditions
so that H is nonnegative and its spectrum o (H) is purely absolutely continuous. In the present paper
we improve upon and extend those previous results to a class of scaling-critical potentials without any
repulsive condition such that H may have (finitely many) negative eigenvalues and multiple scaling-
critical singularities. Applications to Strichartz estimates, a Hormander-type multiplier theorem for H
and eigenvalue bounds for H + W with complex potential W are also established.

We first recall some known results in the free case, H = — A, describing the motivation of this paper.
The classical Hardy—Littlewood—Sobolev (HLS for short) inequality states that

(=AY Fll e <ClfllLo

for feSR"), 0<s<n, 1l <p<gqg<ooand 1/p—1/qg =s/n, where S(R") denotes the space of
Schwarz functions, (—A) /2 = 511|757 is the Riesz potential of order s and J stands for the Fourier
transform in R”. An equivalent form is Sobolev’s inequality

Il < CI=AY2 fllpn-

When s = 2, the HLS inequality can be regarded as the L”-L? boundedness of the free resolvent
(—A —z)"!at z = 0. In this context, the HLS inequality was extended to nonzero energies z # 0 in
[Kenig, Ruiz, and Sogge 1987; Kato and Yajima 1989; Gutiérrez 2004] as follows:
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Proposition 1.1 (uniform Sobolev estimates). Letn >3, 1 <r < oo and (p, q) satisfy

2 2n 2n 2n 2n
<

1 1 _2
< _— <z . 1-1
n+l —p g~ n’ nt3 PTurr w1973 (-
Then the free resolvent Ry(z) = (—A — 7)~ ! satisfies
1R0) fllar < Clz|PVP=VO=TY £, (1-2)

uniformly in f € LP"(R"), z € C\ [0, co) and r, where LP"(R") denotes the Lorentz space.

Sketch of proof. By virtue of real interpolation (see Theorem A.l in the Appendix), we may replace
without loss of generality L?" and L?" by L? and LY, respectively. Then the case 1/p+1/q =1 was
proved independently by [Kenig, Ruiz, and Sogge 1987, Theorem 2.3] and [Kato and Yajima 1989, (3.29),
p. 493]; the case 1/p — 1/q =2/n is due to [Kenig, Ruiz, and Sogge 1987, Theorem 2.2]; otherwise, we
refer to [Gutiérrez 2004, Theorem 6]. O

Note that, when 1/p — 1/g = 2/n, the estimate is uniform in z, as its name suggests.

Uniform Sobolev estimates can be used in the study of broad areas including the spectral and scattering
theory for Schrédinger operators. In [Kenig, Ruiz, and Sogge 1987], the authors applied (1-2) to study
unique continuation properties of —A 4V with V € L"/2. In [Kato and Yajima 1989; Goldberg and Schlag
2004; Ionescu and Schlag 2006], (1-2) was used to show the limiting absorption principle and asymptotic
completeness of wave operators for —A 4 L with a large class of singular perturbations L. In [Frank 2011],
(1-2) was used to prove the Keller-type inequality for —A + W (x) with a complex potential W € L? with
some p > n/2, which is a quantitative estimate of the spectral radius of o, (—A + W). In [Gutiérrez 2004],
(1-2) was applied to show the existence of L7-solutions for the stationary Ginzburg—Landau equation
under some radiation condition.

In a more abstract setting, the following observations are satisfied for not only A but also a general
nonnegative self-adjoint operator L on L?(X, u):

» The uniform Sobolev estimate with p =2n/(n 4+ 2) and g = 2n/(n — 2) implies that, for any w € L",
the weighted resolvent w(L — z)~'w is bounded on L? uniformly in z € C\ [0, co). As observed by
[Kato 1966; Kato and Yajima 1989; Rodnianski and Schlag 2004], such a weighted estimate is closely
connected with dispersive properties of the solution to (1-4) such as Kato-smoothing effects, time-decay
and Strichartz estimates, which are fundamental tools in the study of nonlinear Schrodinger equations;
see [Tao 2006].

» Uniform Sobolev estimates imply that the spectral measure d E; (A) associated with L is bounded from
L? to L?' for
2n <p< 2(n+1).
n+2 — "~ n+43

This is an important input to prove the Hormander-type theorem on the L? boundedness of the spectral
multiplier f(L); see [Chen, Ouhabaz, Sikora, and Yan 2016].
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Motivated by those observations, we are interested in extending (1-2) to the Schroédinger operator
H=—-A+4+V(x). If V is of very short range type in the sense that, with some ¢ > 0,

V)| <C+|x)72%, xeR", (1-3)

then there is a vast literature on uniform weighted L>-estimates for (H — z)~!' without any additional
repulsive condition such as suitable smallness of the negative part of V; see, e.g., [Jensen and Kato 1979;
Rodnianski and Tao 2015]. Weighted L>-estimates were also obtained for a class of potentials satisfying
|x|2V € L* under some additional repulsive conditions [Burq, Planchon, Stalker, and Tahvildar-Zadeh
2004; Barceld, Vega, and Zubeldia 2013]. In our previous works [Bouclet and Mizutani 2018; Mizutani
2019], we proved uniform Sobolev estimates for H with a class of critical potentials V € L"/?* under
some repulsive conditions so that H has purely absolutely continuous spectrum. However, in these works,
the range of (p, ¢) has been restricted on the line 1/p + 1/g = 1. Furthermore, the situation for (large)
critical potentials without any repulsive condition is less understood.

The main goal of this paper is to prove the full set of uniform Sobolev estimates for H = —A + V (x)
with a large scaling-critical potential V e Lg/ 2% without any repulsive condition. The following three

types of applications are also established in the paper:

(i) We prove global-in-time Strichartz estimates for the Schrédinger equation
idu(t,x)=Hu(t,x)+ F(t,x), (t,x)eR"™*", u@©,x)=v, xeR", (1-4)

for all admissible cases and several nonadmissible cases.
(i) A Hormander-type spectral multiplier theorem for f(H) is obtained provided that H is nonnegative.
(iii) We obtain Keller-type estimates for the eigenvalues (including possible embedded eigenvalues) of
the operator H + W with complex potentials W € L?, n/2 < p < (n+1)/2.

Finally, we mention that the results in this paper could be used to study spectral and scattering theory

for both linear and nonlinear Schrodinger equations with potentials V € Lg/ 200

Notation. A < B (resp. A 2 B) means A < c¢B (resp. A > ¢B) with some universal constant ¢ > 0.
By (x) we denote /1+ |x|? and we set C* := {z € C | £Imz > 0}. Given two Banach spaces X
and Y, B(X, Y) is the Banach space of bounded linear operators from X to Y and B(X) = B(X, X),
and Boo (X, Y) and Boo(X) are families of compact operators. By (f, g) = [ f§ dx we denote the inner
product in L2 We also use the same notation (-, -) for the dual coupling between L? and L”, where
p' = p/(p — 1) denotes the Holder conjugate of p. LYX, = L?(R; X) is the Bochner—Lebesgue space
with norm ||F||L,”x = [[[1F(, x)lx, ||Lrp. L’T’Lz =LP([-T,T]; LY(R")). Let (-, - ) be the inner product
in L3.L2 defined by
T
(F,G)r =/T<F(-,l), G(-,0)dt.

H5(R™) and s (R™) are inhomogeneous and homogeneous L?-Sobolev spaces, respectively. W*?(R")
is the LP-Sobolev space. L?-7(R") denotes the Lorentz space (see the Appendix).
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1A. Main results. Throughout the paper we assume that n» > 3 and that V € Lg/ 2’OO([R”) is a real-valued
function, where Lg "°(R") is the completion of C;°(R") with respect to the norm || - || .. It follows
from Holder’s and Sobolev’s inequalities for Lorentz norms (see the Appendix) that V is A-form compact.
Then the KLMN theorem [Reed and Simon 1975, Theorem X.17] yields that there exists a unique lower
semibounded self-adjoint operator H on L*(R") with form domain F('(R") such that

(Hu,v) = ((=A+V)u,v), ueD(H), veH R,

and that its domain D(H) = {u € H'(R") | Hu € L*(R")} is dense in H'(R"). In other words, H is
defined as the Friedrichs extension of the sesquilinear form ((—A + V)u, v).

Remark 1.2. Note that L"/>9 < Lg/z’oo for all 1 < g < oco. Also note that the class Lg/z’oo is scaling-

critical in the sense that the norm ||V || ;u/2. is invariant under the scaling V +> V;, where V; (x) =A%V (Ax).
In particular, if V itself is invariant under this scaling, the potential energy (Vu, u) has the same scale-
invariant structure as that for the kinetic energy (—Au, u).

Let & C o(H) be the exceptional set of H, the set of all eigenvalues and resonances of H (see
Definition 2.6). Note that £ N (—o0, 0) is equal to oq(H), the discrete spectrum of H, and that € is
bounded in R (see Remark 3.4). For the absence of embedded eigenvalues and resonances, we have the
following simple criterion (see also Remark 1.18):

Lemma 1.3. Let V be as above. Then the following statements are satisfied:
() IfV e L"? then there are no positive eigenvalues and resonances; that is, €N (0, 00) = &.
(2) If =A+V > —6A with some § > 0 in the sense of forms on C;° then 0 ¢ E.
Proof. The proof will be given in Section 2B. O

Define €5 :={z € C| dist(z, £) <8} if E A and &5 := T if E = @. For z € C\ o (H), we denote the
resolvent of H by R(z) = (H —z)~ L
Then the main result in this paper is as follows.

Theorem 1.4. Suppose that (p, q) satisfies (1-1). Then R(z) extends to a bounded operator from LP*> to
L2 for all z € C\ o (H). Moreover, for any 8 > 0 there exists Cs > 0 such that
IR(@) fll a2 < Cslz) ™2 P=HO £, (1-5)
forall z € C\ ([0, 00)UEy) and f € LP°% In particular, if € = @, then (1-5) holds uniformly with respect
toz € C\ [0, o0) and f € LP>
As a corollary, the limiting absorption principle in the same topology is derived.
Corollary 1.5. Let (p, q) satisfy (1-1). Then the following statements are satisfied:
(1) The boundary values R(} £i0) = lim o R(A £ ig) € B(LP2, L9?) exist for all A € (0, 00) \ €.
Moreover, for any & > 0 there exists Cs > 0 such that

IR(A£i0) fl g2 < CoAW/DWP=VO= ) g1 00 e LP2ARY), Ae(0,00)\Es.  (1-6)

In particular, if EN[0, 0o) = &, then (1-6) holds uniformly in A > 0.
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(2) Assume in addition that 1/p —1/q =2/n and 0 ¢ &. Then R(0 % i0) € B(LP-2, L1?) exist and
R(0+i0) = R(0—1i0). Moreover, HR(0+i0)f = f and R(0+i0)Hg = g forall f, g € 8 in the
sense of distributions. In particular, one has the HLS-type inequality

IH™ fllger < Clflpoas  f € L7PRY. (1-7)
As a byproduct of Theorem 1.4, we also obtain the L”-L9 boundedness of R(z) for fixed z with a
wider range than (1-1).
Corollary 1.6. For any z € C\ o (H), the resolvent R(z) is bounded from LP"* to L9 whenever

o<l_1_2
- p qg  n n+3

2n
. 1-
<p.g<5 (1-8)

In particular, D(H) C D(w) for any w € L"/® with0 < s < % Here D(w) denotes the domain of the
multiplication operator by w(x).
Remark 1.7. Since L? < LP? and L9 — L4 if p <2 < ¢q, one has B(L?2, L%?) c B(L?, L9).
Moreover, by virtue of real interpolation (see Theorem A.1), Theorem 1.4 and Corollaries 1.5 and 1.6
also hold with L?-? and L%? replaced respectively by LP" and L4 for any 1 < r < oo.

As explained in the Introduction, the resolvent R(z) has a close relation with the spectral measure E gy
associated with H through Stone’s formula

E () = L Iim(R(A+ig) — R(A —ig)), Xe(0,00)\o0p(H), (1-9)
271 e\0

where E}; (L) = (dEp/dA)(1) is the density of Ey. Using this formula and above theorems, we also
obtain the following restriction-type estimates.

Theorem 1.8. Assume that €N [0, co) = &. Then, for any

2n 2(n+1)
n+3 <P= n+3 "’

we have
IE llggpp, 1y < CLOPWP=UL 5 50, (1-10)
H B(L?,L")

Remark 1.9. The existence of R(A #£i0) in B(L2"+D/(+3) [ 20+D/(1=D)y for each A > 0 was proved
in [Ionescu and Schlag 2006] for the case when V € L? with n/2 < p < (n+ 1)/2. The uniform estimate
(1-6) in the high energy regime A > Ao > 0 was obtained in [Goldberg and Schlag 2004] for the case
whenn =3, Ve L3?NL" withr > % and (p,q) = (% 4). Recently, (1-6) for A > 0 and

_(2(n+1) 2(n+1)
(p,q)—( n—1 " n+3 )

was proved in [Huang, Yao, and Zheng 2018] provided that V € L"/?>N L"/>*¢ and 0 ¢ & (note that, in this
case, EN(0, o0) = & as in Lemma 1.3). Compared with those previous works, the main new contributions

of Theorem 1.4 and Corollary 1.5 are threefold. At first, we obtain the uniform estimates (1-5) and (1-6)
with respect to z or A in both high- and low-energy regimes, under the condition €N[0, co) = &. This is an
important input to prove global-in-time Strichartz estimates without any low- or high-energy cut-off. Next,
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the full set of uniform Sobolev estimates is obtained, while the above previous references considered the
case 1/p+1/g =1 only. In particular, (1-5) and (1-6) for (p, g) away from the line 1/p+1/g =1 seems
to be new even under the condition (1-3). Such “off-diagonal” estimates play an important role in the proof
of Strichartz estimates for nonadmissible pairs and L”-boundedness of the spectral multiplier f(H) for a
wider range of p than that obtained by the “diagonal” estimate on the line 1/p +1/g =1 (see Sections 4
and 5, respectively). Finally, we obtain the above results for large critical potentials V € Lg/ 2% without
any additional regularity or repulsive condition. Concerning L”-L9 boundedness of R(z) for each z € C\
[0, 00), a result similar to Corollary 1.6 was previously obtained in [Simon 1982] for Kato class potentials.

However, to our best knowledge, this corollary seems to be new for the present class of potentials.

In this paper we also study several applications of the above resolvent estimates to the time-dependent
problem, harmonic analysis and spectral theory associated with H.

We first consider global-in-time estimates for the Schrodinger equation (1-4). Let e /¥ be the unitary
group generated by H via Stone’s theorem. For F € L} (R; L(R")), we define

loc
t .
FHF(t)zf e {=IH F(5) ds.
0

For € L*(R") and F € L!

loc

(R; L%(R™)), a unique (mild) solution to (1-4) is then given by
u=e "y _iTyF. (1-11)

The next theorem generalizes a result in [Ben-Artzi and Klainerman 1992], where the case when |V (x)| <
(x)~27¢ was considered.

Theorem 1.10. Assume that € N[0, o0) = @. Then, for any p > %,
1) =P 1DIY2e™ ™ Pac (H) Y || 1212 < Coll ¥l 2,
where P,.(H) is the projection onto the absolutely continuous subspace associated with H.
To state the result on Strichartz estimates, we recall some standard notation.

Definition 1.11. When n > 3, a pair (p, q) € R2 is said to be admissible if
2 1 1
q>2, —=n(———). (1-12)
D.q D 2 ¢
Theorem 1.12. Suppose that £ N[0, o0) = &. Then, for any admissible pairs (p1, q1) and (p2, g2), the
solution u to (1-4) satisfies

| PucCEDull o S Iz +IFN g s W €L FeLPLE, (1-13)

For any
n << 3n—4
2(n—1) = — 2(n—1)’

we also obtain nonadmissible inhomogeneous Strichartz estimates:

IT PaC(H)F”LtZL)Z(”/(""z” < ||F||Lt2L)26n/(n+2(27s)), Fe L%Lin/(n+2(2—s))‘ (1-14)
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Remark 1.13. For the admissible case or the case when

n__,_3n=4
20i—1) 20i—1)°

we can actually obtain stronger estimates than (1-13) and (1-14):

1 PacCHul g2 S 12+ DF g s

_n __,_3n=4
2(n—1) 2(n—1)"

Inhomogeneous estimates for some other nonadmissible pairs may be also deduced from (1-14) and

|| FH PaC(H)F” LtzL.%n/(n—Z.v),Z S || F ” L%Liil/(n+2(2—x)).2,

usual inhomogeneous estimates. For instance, if we interpolate between (1-14) and the trivial estimate
”FHPaC(H)F”L,“L% =< ”F“L}L)% then

ITh PacFllrre SIFI

L7y
where 3n—4 1y 2 2 11
n n— n n
< —_ ) === =—=— =
-1 == 2oy s<2 q) B 2—s<2 q)'

Inhomogeneous Strichartz estimates with nonadmissible pairs for the free Schrodinger equation have
been studied by several authors [Kato 1994; Keel and Tao 1998; Foschi 2005; Vilela 2007; Koh and Seo
2016] under suitable conditions on (p, q); see [Foschi 2005; Koh and Seo 2016]. The estimates (1-14)
correspond to the endpoint cases for such conditions. It is also worth noting that, as well as the estimates
for admissible pairs, nonadmissible estimates can be used in the study of nonlinear Schrodinger equations;
see [Kato 1994].

Remark 1.14. There is a vast literature on Strichartz estimates for Schrodinger equations with potentials.
We refer to [Rodnianski and Schlag 2004; Goldberg 2009; Beceanu 2011; Bouclet and Mizutani 2018]. We
also note that the dispersive L'-L> estimate for e =/ P,.(H) and L”-boundedness of wave operators W,
which imply Strichartz estimates, have been also extensively studied; see [Rodnianski and Schlag 2004;
Beceanu and Goldberg 2012; Yajima 1995; Beceanu 2014]. In particular, Goldberg [2009] proved the
endpoint Strichartz estimates for e ™M p under the conditions V € L% 0 ¢ € and n > 3. When
n = 3, Strichartz estimates for all admissible cases and some nonadmissible cases (which are different
from (1-14)) for V € LS/ 2 were obtained in [Beceanu 2011]. Compared with those previous works, a
new contribution of this theorem is that we obtain the full set of admissible Strichartz estimates (1-13),
including the inhomogeneous double endpoint case for all n > 3. Moreover, nonadmissible estimates
(1-14) are new even for V e L™/,

The next application of resolvent estimates in this paper is the L?”-boundedness of the spectral multiplier
F(H), which is defined by the spectral decomposition theorem, namely

F(H):/ FA)dEpg(L).
o(H)

For the free case H = —A, Hormander’s multiplier theorem [1960] implies that if F € L™ satisfies

sup [ () F(t-)lg < 00, (1-15)

t>0
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with some nontrivial ¥ € C3°(R) supported in (0, 00) and 8 > n/2, then F(—A) is bounded on L?” for all
1 < p < o0o. The following theorem is a generalization of this result to nonnegative Schrodinger operators
with scaling-critical potentials.

Theorem 1.15. Suppose that EN [0, 00) = & and H > 0. Then, for any F € L>®(R) satisfying (1-15)
with some nontrivial € Cy°(R) supported in (0, 00) and B > %, F(\/ﬁ) is bounded on L? for all

2n 2n
<

n+3 p= n—3

and satisfies
IF(VEDllgrr < C(fu]g IV C)F @) llge + 1FO). (1-16)
>
It is easy to check that F satisfies (1-15) if and only if G(A) = F (A?) does. Therefore, (1-16) also holds
with F(vVH) replaced by F(H). Also note that, in the proof of this theorem, the restriction estimates
(1-10) will play an essential role and the restriction for the range of p when n > 4 is due to the condition
p > 2n/(n+ 3) for (1-10).

Remark 1.16. Some applications of Theorem 1.15 will be also established (see Section 5). First we
obtain the equivalence between the Sobolev norms || (—A)y lz2 and | H*%u |72 for0<s < % Then we
shall prove square function estimates for the Littlewood—Paley decomposition via the spectral multiplier
associated with H. These are known to play an important role in the study of nonlinear Schrodinger
equations with potentials; see, e.g., [Killip, Miao, Visan, Zhang, and Zheng 2018].

Remark 1.17. If the Schrodinger semigroup e~/

satisfies the Gaussian estimate or some generalized
Gaussian-type estimates, then Hormander’s multiplier theorem for F(H) has been extensively studied;
see [Chen, Ouhabaz, Sikora, and Yan 2016]. Compared with such cases, the interest of Theorem 1.15 is
that we obtain Hormander’s multiplier theorem under a scaling-critical condition V € Lg/ 22 while it is
not known for such a class of potentials whether H satisfies (generalized) Gaussian estimates or not, even

if H is assumed to be nonnegative.

Remark 1.18. To ensure the nonnegativity of H, it suffices to assume ||V_|[;n20 < S, 1 where V_ =
max{0, —V} is the negative part of V and
S, = n(n4—2) 22/n7_[1+1/n1—w(n;1>_2/n

is the best constant in Sobolev’s inequality. || f || z20/0-2 < Sy |V £l 2. Moreover, if |V_|; .2 < S, ! then
0 ¢ & by Lemma 1.3.

The last application of Theorem 1.4 in the paper is the Keller-type inequality for individual eigenvalues
of a non-self-adjoint Schrodinger operator. Let 0 < y < oo and W € L"/?*7 (R"; C) be a possibly complex-
valued potential. Then W is H-form compact and we define the operator Hy = H + W as a form sum.
Under this setting, it is known that o (Hy ) is contained in a sector {z € C| | arg(z—z¢)| <0} for some zp € R
and 0 € [(), %) (see [Kato 1966]), but the point spectrum o}, (Hy ) could be unbounded in C in general even
if V. =0 and W is smooth. The following theorem, however, shows that this is not the case if 0 < y < %
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Theorem 1.19. Let § > 0. If 0 <y < 1, any eigenvalue E € C\ &s of Hy satisfies

|E[Y < Cy sl W5 (1-17)

Ln/2+y

Moreover, if y > %, any eigenvalue E € C\ E;s of Hy satisfies

|E|'2 dist(E, [0, 00))” "2 < C, 5| W[5 (1-18)

Ln/2+y
Here the constant C, s = C(y, 8, n, V) > 0 may be taken uniformly in W.

Remark 1.20. Theorem 1.19 implies the following spectral consequence. If 0 < y < % then

op(Hw) C €5U{z € Ll < Cyal Wi ).

Ln/2+y
In particular, since € is bounded in R (see Remark 3.4), o,(Hy ) is bounded in C. On the other hand, if
y > % and Re £ > 0, then E satisfies

Ln/2+y

This implies that, for any sequence {E;} C op(Hw) \ [0, 00) satisfying Re E; — +00 as j — oo, we
have [ImE;| — O as j — oo.

Remark 1.21. For a complex potential W (x), the estimates (1-17) and (1-18) were first proved by Frank
[2011; 2018] for the case when —A + W (x) and then extended to the operator —A — alx| 72+ W)
witha < (n —2) — % by [Mizutani 2019]. In both cases, the free Hamiltonians —A and —A — alx|~? are
nonnegative and purely absolutely continuous. Theorem 1.19 shows that the same result still holds even
if the free Hamiltonian has (embedded) eigenvalues or resonances.

The rest of the paper is devoted to the proof of above results. We here outline the plan of the paper,
describing rough idea of the proofs. Following the classical scheme, the proof of the uniform Sobolev
estimates is based on the resolvent identity R(z) = (I + Ro(z)V) "' Ro(z).

In Section 2 we collect several properties on the free resolvent Ry(z) used throughout the paper and,
then, study basic properties of the exceptional set €. In particular, we show that Ry(z)V extends to a
Boo (L?)-valued continuous function on C+. This fact plays an important role to justify the above resolvent
identity. The proof of Lemma 1.3 is also given in Section 2.

Using materials prepared in Section 2 and the Fredholm alternative theorem, we prove Theorem 1.4,
Corollaries 1.5 and 1.6 and Theorem 1.8 in Section 3.

Section 4 is devoted to proving Theorems 1.10 and 1.12. The proof follows an abstract scheme by
[Rodnianski and Schlag 2004] (see also [Burq, Planchon, Stalker, and Tahvildar-Zadeh 2004; Bouclet
and Mizutani 2018]), which is based on Duhamel’s formulas

e—itH=eitA_l'1"0Vl"H7 ]"Hzl_‘o—ir()VFH,

where I'g = I'_A. Using these identities, the proof can be reduced to that of corresponding estimates for
the free propagators ¢'"® and Ty, which are well known, and LtzLi estimates for Vie " P,.(H) and
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ViI'yg P, (H)V, with a suitable decomposition V = V| V,. Kato’s smooth perturbation theory [1966]
allows us to deduce such L?L2-estimates from the resolvent estimate
sup |[|ViR(z) Pac(H)Vallg(r2) < 00,
zeC\R
which follows from uniform Sobolev estimates for P.(H)R(z) (which are also proved as a corollary
of Theorem 1.4 in the end of Section 3) and Hélder’s inequality. A rigorous justification of the above
Duhamel’s formulas in the sense of forms are also given in Section 4.

Proofs of the spectral multiplier theorem and its applications are given in Section 5. The proof of
Theorem 1.15 employs an abstract method by [Chen, Ouhabaz, Sikora, and Yan 2016], which allows us
to deduce Theorem 1.15 from the restriction estimates (1-10) and the so-called Davies—Gaffney estimate
for the Schrodinger semigroup e~"#. In the proof of the Davies—Gaffney estimate, we use the condition
that H is nonnegative.

Section 6 is devoted to the proof of Theorem 1.19, which follows basically the same line as in [Frank
2011; 2018] and is based on the estimates (1-5), (1-6) and the Birman—Schwinger principle.

The Appendix is devoted to a brief introduction of real interpolation and Lorentz spaces.

2. Preliminaries

In this section we first study several properties of the free resolvent, which will often appear in the sequel.
The second part is devoted to a detailed study of the exceptional set of H.

2A. The free resolvent. For z ¢ C\ [0, 00), Ro(z) = (—A —z)~! denotes the free resolvent, which is
defined as a Fourier multiplier with symbol (|&|> — z)~!. The integral kernel of Ry(z) is given by

i Z'”? "/ €] 1/2 172
Ro(Z,X,y)zz(m) Hn/zfl(Z lx—y]), Imz/“>0,
where Hrf};_l is the Hankel function of the first kind. The pointwise estimate

lw|~"/>1 - for |w| <1,

(D
H w)| <C
| ”/2_1( )= n{lwl_l/2 for |lw| > 1,

then implies that there exists C,, > 0 depending only on n such that
|Ro(z, x, )| < Ca(lx = y| 72 4 x — y| 707Dy () /%, -

see [Jensen 1980]. For s € R, we let L2 = L2(R", (x)**dx) and H?> = {u | 3%u € L2, |a| <2}. Then the
following limiting absorption principle in weighted L2-spaces is well known; see [Agmon 1975; Jensen
and Kato 1979; Jensen 1980; 1984].

Lemma 2.1. Let s > (n+ 1)/2. Then Ro(z) is bounded from L% to L?  uniformly in z € C\ [0, 00).

—S

Moreover, the following statements are satisfied:

e Boundary values Ry(A £ i0) = lim,_ o Ro(A £ ig) € [BOO(LE, L%S) exist on [0, c0) such that
Ro(0£i0) = (—A)~". Moreover, Ry(A £i0) € Boo (L2, H2 ) if 1 > 0.

s
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Q=

Figure 1. The set of (1/p, 1/q) satisfying (1-1) is the trapezium ABB’A’ with two
closed line segments AB, B’A’ removed. The set of (1/p, 1/g) satisfying (1-8) is the
trapezium ACC’A’ with two closed line segments AC, C’A’ removed.

e Define the extended free resolvent R(jf (z) by ROi (z) = Ro(2) if z€ C\ [0, co0) and R(:)t (z) = Ro(z£i0)
ifz>0. Then R(:)IE (z) are BOO(LE, L2_S)-valued continuous functions on C=.

o Foranyz € Ctand f € L?, we have (—A —z) RSE (z) f = f in the sense of distributions.

The following corollaries are immediate consequences of Lemma 2.1 and Proposition 1.1.

Corollary 2.2. Let (p, q) satisfy (1-1) and

2n < 2n
n+3 n+1’

see Figure 1. Then:
(D) ROjE (z) extend to elements in B(LP"?, L??) and satisfy
”Roi(z)”mul,ml) < Clzl("/Z)(l/”_‘/q)_l, ;eC* \ {0). (2-2)
(2) Forany f € LP2 and g € L1, we have (R(jf(z)f, g) are continuous on C* \ {0}.
(3) Forany z € C* and fe L2, we have (—A — 7) R(ﬂf (z) f = f in the sense of distributions.
Assuming in addition that 1/p — 1/q = 2/n, the statements (1) and (2) hold for all z € C*.

Throughout the paper, we frequently use the notation

. 2n . 2n
Tat20—s b

Ps (2-3)

Cn=2s
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Note that

1 3 . 1 12
<8< E} - {(p,q) ( (p.q) satisfies (1-1) and - — = ;}.
Corollary 2.3. Let 1 <5 <3, Vi € L}/ and Vs € LY/ ®R"). Then ViRE(2) Vs are Boo(L?)-
valued continuous functions of z € CE.

{(ps, qs)

Proof. Corollary 2.2(1) with (p, q) = (ps, gs) and Holder’s inequality (A-1) imply

+
sup [|ViRy () Vallg 2y S IVill pwsee I Vall prre-sio.
zeC+
Since C° is dense in Lg " forall 1 < p < oo and an operator norm limit of compact operators is compact,
we observe from this uniform bound and a standard /3 argument that it suffices to show the corollary
for Vi, V2 € C3°. In this case, the corollary follows from Lemma 2.1. |

The following proposition plays an essential role throughout the paper.

Proposition 2.4. Let w € Lg/z’oo([R{”), % <s < % and gy as above. Then Ry(z)w € Boo(HY) for all
z € C\ [0, 00). Moreover, RSE (2)w are Boo (LI%)-valued continuous functions on C=.

Remark 2.5. RSE (z)w are also By, (L% )-valued continuous functions on C*. The proof is completely
the same.

Proof. The facts Ro(z)w € B(H') N B(L%?) and Ry (z)w € B(L%?) follow from the continuity of
Ro(z) : H~! — (!, uniform Sobolev estimates (1-2) and Hélder’s inequality for Lorentz norms.

To prove the compactness and the continuity (in z), by virtue of these estimates and the same argument
as above, we may assume without loss of generality that w € C§° and w(x) = 0 for |x| > co with some
co > 0. Then it was proved by [Ionescu and Schlag 2006, Lemma 4.2] that there is a Banach space X
satisfying the continuous embedding X < F(~! such that w : X* — X is compact as a multiplication
operator. Ro(z)w is therefore compact on H! for z € C\ [0, 00).

Next we shall prove that ROi (z)w are compact on L9s2 for 7 € C*. As before, we only consider Rar (2).
By virtue of real interpolation (Theorem A.1), it suffices to show that RS’ (z)w is compact on L% for all
% <s< % Assume that f; € L% and || f]|;4 < 1. Extracting a subsequence if necessary we may assume
fi — 0 weakly in L%. Then it remains to show that there exists a subsequence { fj} C {f;} such that
Rar (Dw fj — 0 strongly in L%. To this end, we decompose R(}L (z)w into two regions Bf and B,, where
B, = {x € R" | |x| < r}. For the former case, the pointwise estimate (2-1) yields

IRy @wfj0)] < Co(@) " x| D2 w1 < Cozlx |7V wl] paian
uniformly in |x| > r, r > 2¢g and j > 0. Let us fix ¢ > 0 arbitrarily. Since
=D g ey < Crm 712,
we can find ro = ro(n, €, z, w) > 0 such that

||R8_(Z)wfj ”qu (Bfo) <é&. (2-4)
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For the latter case, we observe that RSF (2)w : L% (R") — W24 (R") is bounded since
(—A+ DRy @Qwf =(—A—2)Rj @Qwf + @+ DR; @Quwf =wf+ @+ DR @Quf (2-5)

forall f € L% by Corollary 2.2(3). In particular, {Rar (z)wf;}; is bounded in W?24s (By,)- Since W24 (Br,)
embeds compactly into L% (B,,) by the Rellich-Kondrachov compactness theorem, one can find a
subsequence { fj} C {f;} such that

. + F _ ;
jhm IRy (D)wf; “L‘IS(BVO) =0. (2-6)
It follows from (2-4) and (2-6) that

limsup | R} (2)w f;

”qu (Rn) S E.
j—00

By extracting further a subsequence, we conclude that Rar (Dw fj — 0 strongly in L%.
To prove the continuity, let us fix a bounded set A C C+ arbitrarily. We first show that, for any z, z JEA
and g, g; € L% satisfying zj — zand g; — g weakly in L2 as j — oo,
Rar(zj)ng — Rar(z)wg strongly in L% ag j — oo. 2-7)

To this end, we write
Ry (z))wg; — R (wg = (R{ (zj))w — R{ (D)w)g; + Ry (Dw(g; — 8).

The second term Rar (z)w(gj — g) converges to 0 strongly in L9? since Rar (z)w is compact on L952
and g; — g weakly. For the first part, we set h; = (R(J)r (zj)w — RS’ (z)w)g; and shall show that 2; — 0
strongly in L%2 Since {gj} C L% is bounded, say gl 4.2 < M with M > 0 being independent of j,

we have by the same argument as above that, with some y; = y;(s, n) > 0,
”R(J)r(;)wgf”m»z(g;') < Comu(O)Vr "

forall ¢ € G?F, Jj = 1and r > 2cg, where C,, jr,,, may be taken uniformly in j and r. This estimate yields
that, for any ¢ > 0, there exists 0 <r, =r(n, M, w, A, &) ~ e~ 1/72 guch that

su{) ”hj ”LLI:.Z(B;‘ ) = SUI;(||RJ(Z])wg] ”qu.Z(Bc ) + ”R(—)i_(z)ng ||qu,2(Bc )) <é. (2-8)
jz1, SE & &

On the other hand, it follows from Sobolev’s embedding on R" that
12l e,y < Con I (=A+ D)™ Rl 2y < Con )™ (A + DA 2y

for all N > 0, where we have used the fact that (—A 4 1)(x)"¥(=A 4+ 1)~!1(x)¥ is a pseudodifferential
operator of order 0 and thus bounded on L” for all 1 < p < co. Equation (2-5) then yields

1) ™ (= A+ Dhjll 2 < 1z =210 ™V RS @) () ™V llg o 1606) Y wg -

+ (2l + DI ™V (R () = Ry @) 0) Vg o 100 Y wegll -
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Let N > (n+ 1)/2. Since (x) "V R{ (z)(x)~" is bounded on L? uniformly in z € C* and continuous on
C+ in the operator norm topology of B(L?) by Lemma 2.1 and

1) N wg;ll . < CMIx)Nwl w202 < Cnome

uniformly in j, we see that lim;_, o || (x)™N(=A+ Dhj|l . =0, which, together with (2-8), shows that
there exists jo € N such that, for all j > j., we have ||A|| Las2(rmy < E- Since ¢ > 0 is arbitrarily small,
this shows that 4; — 0 strongly in L%2 and (2-7) follows.

Finally, we shall show Rar (z)w is continuous on C+ in the operator norm topology of B(L%+2). Assume
for contradiction that this is not the case. Then there exist z;, z € C+ with z j—zand g; € L42 with
llgjll ;g2 < 1 such that liminf;_, ||(Ra“(zj)w — R(T(z)w)gﬂlm_2 > (. Extracting a subsequence if
necessary we may assume g; — g with some g € L% weakly in L%. Then, by the argument as above
and the compactness of Rar (z)w, we have lim_, o, Rar (zj))wg; = Rar (Dwg =1lim;_ Rar (z)wg;, which
gives a contradiction, proving the desired assertion. ]

2B. The exceptional set. Having Proposition 2.4 in mind, we define the exceptional set of H as follows.

Definition 2.6. We say that A € € if there exist % <s< % and f € L92(R")\ {0} such that f = —Ro(A)V f,
where g; = 2n/(n — 2s) and Ro(}) is replaced by Ro(A +i0) if A > 0. € is said to be the exceptional set
of H, and z € £\ op(H) is called a resonance of H. For A € €, we denote the family of corresponding
solutions by Ny(X):

N = {f € L2 2R\ {0} | f = —Ro(MVf),

where Ry (A) is replaced by RO+ A if A >0.
Note that, since Ry(A —i0) f = Ro(A +i0) f , one has
Ns) ={f € L*®)H\{0} | f =—Ry (WVf}, A1=0. (2-9)
The next lemma collects some basic properties of €.

Proposition 2.7. (1) € C o (H), op(H) C € and E€N (=00, 0) = o4(H). Moreover, Ns(}) is finite-
dimensional.

(2) Ng(A) is independent of % <5< %; that is, Ny (L) = Ny (L) for any % <s,8 < %
Proof of Proposition 2.7(1). To prove € C o (H), we first claim that
Ny ={f €F | f=—RoMVf}, 1eC\(0,00). (2-10)

Indeed, if we set JA\JFS ) ={f € s | f =—Ro(A)V [} then the inclusion ﬂs (L) € Ng(X) is obvious
since F* C L2 by the HLS inequality (A-2). On the other hand, the HLS inequality (A-2) shows that
Ro(M)V € B(L%2, J:CS) for A € C\ (0, 0o) and the opposite inclusion N(A)S D N () thus holds. Next,
we let f € Ng(A) with some A € C\o(H). Then V[ € F2s O LPs:2 by the HLS and Holder’s inequalities
for Lorentz norms. Therefore, by Corollary 2.2(3), (—A — X) f = —V f holds in the distribution sense.
In particular, Af = (—A+V)f € H2S N HS C L? and thus f € D(H). Since o (H) C R, this shows
f = 0. Therefore, we obtain £ C o (H).
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The inclusion o, (H) C € is obvious since D(H) C ' ', This inclusion, together with the fact
o(H)N(—o00,0) =o04(H), implies €N (—o0, 0) = o4(H). Finally, since R(jf (z)V are compact operators
on L%2 one has dim N,(A) < o0. O

To prove the second part of Proposition 2.7, we need the following:

Lemma 2.8. For % <s§s< % and real-valued functions V| € Lg/s’oo, V) e Lg/(zfx)’oo with V. = V1 Va, we

set KF(A) := ViRT (L) Va. Then, for 1 € R,

dim N;(A) = dim Ker(I + K" (1)) = dimKer(I + K.;F (1)*) = dim Np_ ().
Remark 2.9. Such Vi, V, always exist. Indeed, one can take V| = |V[$/? and V5 = sgn V|V @972,
Proof. Holder’s inequality (A-1) and (2-2) yield that

IVifllze < CUVgmseoll fllpases IRG Q) Vaull g2 S N Vall prre-s.oe el 2,
from which one has two continuous maps

Ny > fi> VifeKer(I+K(W), Ker(I + K (W) s> ur> —Rf (M) Vau € Ny(A).
Furthermore, one also has, for f € N;(A) and u € Ker({ + K;(})),
—RIO)WVVif==RfWVf=Ff —ViRf(W)Vou=u.

Therefore, the multiplication by V| is a bijection between N (1) and Ker(/ + K S* (A)) and its inverse is
given by —Rar () V2. In particular, dim Ker( + K;F (1)) = dimN;(}).

Taking the facts ROi (2)* = R(T (z) and (2-9) into account, it can be seen from the same argument that
the multiplication by V; is a bijection between N,_;(A) and Ker(/ + K;r (A)*), and its inverse is given by
—Ry (M) V1. In particular, dim N, (1) = dim Ker(/ + K;F(1)*).

For the part dimKer(I + K;F(*)) = dimKer(I + K;"(2)*), since K;"(X) is compact on L? (see
Corollary 2.3), I + K (1) is Fredholm and its index satisfies

dimKer(I + K ()) — codimRan(/ + K} (1)) =ind({ + K" (1)) = indl = 0.
Therefore, taking the fact L? /Ran(I + K S* (M) E[Ran(I + K S‘L (M)]+ into account, one has
dimKer(/ + K" (1)) = dim[Ran(I + K ;" (\))]* = dimKer(I + K, (1)*),
which completes the proof. (|

Proof of Proposition 2.7(2). Let f € Ny(A) and § <s <s' < 3. Let V = v; 4 v, be such that v; € C§°
and ||v2]| g2 < €. Then f = —R{ (M)vi f — Ry (Mva f. By Proposition 2.4, the map I + Ry (A)vs :
L2/ (n=2r).2 _y [ 2n/(n=2r).2 is bounded and invertible for r = s, s’ and small & > 0. If E, denotes the
inverse of I + RJ(A)UZ D L2/ (=22 p2n)/(n=20).2 then E, = Ey on L2/ (=29).2 N L2/ (=252, Taking
the inequality s — s’ > —1 into account, the HLS inequality (A-2) implies

IRG Q)1 f 1l panji-ar2 S H0LF 2wz S 01l pwvasae—s | f 1l p2no-0.
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Thus R (Mvy f € L2/ (=292 0 [2/0=2).2 and f = E,RF (Mvi f = Ey R (Mvi f € L2/ =2):2)
which implies f € Ny (A). Therefore N ()) is monotonically increasing in s. Combined with the fact
dim Ny (&) =dimN,_ (1) < oo (see Lemma 2.8), this monotonicity implies N (L) = Ny (A). O

We conclude this subsection to prove Lemma 1.3. For the first part, we employ the following results of
[Ionescu and Jerison 2003; Ionescu and Schlag 2006].

Proposition 2.10 [Tonescu and Jerison 2003, Theorem 2.1]. Let n > 3 and V € L"/?. Suppose that
f el and (x)7V?T f € L? with some § > 0. If —Af + V f = Af for some X > 0, then f = 0.

Let us set X = W~1/(+D.204+D/(n+3) 1 g, (B), where B is the Agmon—Hormander space and S; (B)
is the image of B under S; = (1 — A)1/2; see [lonescu and Schlag 2006]. Then

and we have the continuous embeddings L?*/*+2 < X and X* c L*"/*=2_ Moreover, it was proved in
[Ionescu and Schlag 2006, Lemma 4.1(b)] that Rat M) e B(X, X*) for all L € R\ {0}.

Proposition 2.11 [Tonescu and Schlag 2006, Lemma 4.4]. Let n > 3 and V € L"/*. Assume that f
belongs to X* and satisfies f + R(:)t MV =0 for some ) € R\ {0}. Then, for any N > 0,

1Y Fllgs < Chall £y

Proof of Lemma 1.3. For the proof of the part (1), we let f € Nj(A) with A > 0. As observed in the
proof of Proposition 2.4, Rar (A)V maps from L2 =2 (R") into W2/ =2 (R") (see (2-5)) and thus
f= —R(")'“()L) Vfe U—Clloc. Moreover, since V f € L?*/"+2) < X and R(j)E(A) e B(X, X*), we have f € X*
Proposition 2.11 then implies that f € L2. Using Proposition 2.10, we conclude that f = 0. For part (2),
we let f € N (0). Since —Af+Vf € F1, the form (—Af + VS, f)is well-defined. By assumption,
we have 0 = (—=Af + V[, f) =8| fll5a, which implies f = 0. O

3. Uniform Sobolev estimates

This section is devoted to the proof of Theorem 1.4, Corollaries 1.5 and 1.6 and Theorem 1.8. We begin
with the following proposition which plays an important role in the proof.

Proposition 3.1. Assume 3 <s < 3 and let (py. q;) be as in (2-3). Then (I + Ry (2)V) ™! are B(L%%)-
valued continuous functions on CE \ €, respectively. Furthermore, for any § > 0,

sup (|1 + RG @ V)™ llg ey < 00 (3-1)
zeﬁ\&;

In particular, if € N[0, 00) = &, then sup, cc\g |(1 + Ro(z)V)~! B(Las2)y < 00

The proof of Proposition 3.1 is divided into a series of lemmas. Let us prove the proposition for
z € C+\ & only, as the proof for the case z € C~ \ & is analogous.

Lemma 3.2. (/ + RJ (2)V)~Vis a B(L9?)-valued continuous function on ct \ €.
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Proof. By Proposition 2.4, RO+ (z)V is compact. Since N;(z) = {0} for z € Cc+ \ € by definition, the
Fredholm alternative ensures the existence of (1 + R(J{ (z)V)~! € B(L4?). Moreover, since RJ (2)V is
continuous on C* in the operator norm topology of B(L%-2) by Proposition 2.4, (I + Rar (z)V)~!is also
continuous on C* \ & in the same topology. U

The proof of the uniform bound (3-1) is divided into high-, intermediate- and low-energy parts.

Lemma 3.3 (the high-energy estimate). There exists L > 1 such that (I + Rar (2)V)~ ! is bounded on
L2/ =292 ypitormly in z € CT N {|z| > L}.

Proof. Let Vi € CS°(R") be such that im0 |V — Vi |l n2 = 0 and set O} (z) := R (2)(V — Vi). By
Corollary 2.2 with (py, g5), one can find ky > 1 such that

+ 1
sup | O ()l a2y < 3-
zeCt

Hence (I + Qy,(z)) ! is defined by the Neumann series Z;’;O(—Q;{;(z))” and satisfies

My = sup (I + Q5 () MMl 0 < 2

7eC+
Next if we take ps and small § > 0 such that 1/ps = 1/p; — 8 and (ps, g,) satisfies (1-1), Corollary 2.2
implies
RS (@) Vig £l o S 121 1Vig Fll sz S 121 1 Vig o 1 f 1l a2

uniformly in |z| > 1 and f € L%?, where 1/r =1/ps —1/q; =2/n — 8. Hence one can find L = Ly, so

large that My := || R} (2) Vi, llg 02y < 1 for |z| > L. Then, writing

I+ R @V =1+ Q@) +R;@Vi, =T+ Q@) (I + I+ 0} (2) "Ry (2) V)

we see that (I + Rf (V)" = (I+ (U + Q,;(z))—le(z)ka)”(l + 0, (2) 7" and

o
Csup T+ R @OV Mg ey < MY (MiMy)" <4. O
zeCtN{|z|>L} n=1

Remark 3.4. This lemma particularly implies £ N[L, co) = & and thus € is bounded in R.

Lemma 3.5 (the intermediate-energy estimate). For any 8, L > 0, the function (I —i—Rar (2)V)~lis bounded
on L% uniformly in z € (C+ \Es)N{Ss < |z| < L}.

Proof. We follow the argument in [Ionescu and Schlag 2006, Lemma 4.6] closely. Let
AsL=(CH\&)N (8 <zl <L}
Note that A5z N € = @. Assume for contradiction that

sup (1 + R @ V)™ llg a2, = 00

Z€A5'L
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Then one can find f; € L%°2 with Il fill 42 =1and z; € As 1 such that
I+ RS GDV) fillganay = 0. J = 00, (3-2)

By passing to a subsequence, we may assume z; — Zoo € As.1 as j — oo. Since Ra“ (zoo)V is compact
on L2, by passing to a subsequence, we may assume without loss of generality that there exists g € L%2
such that RaL (200)V fj — g strongly in L4s:2, By virtue of (3-2) and the condition || f;l|,,.. = 1, we have
g #0. Now we claim that g belongs to N;(z+,), which implies 7, € €. This contradicts z € m

In order to prove the claim, we write f; as

fi=U+R@HV)fj— (R @) — Rf ze)) Vi — R (2) VS

By virtue of (3-2) and the continuity of R(J{ (2)V (see Proposition 2.4) and the fact || f;l,,.2 = 1, the
right-hand side converges to —g strongly in L%*? as j — oo. Therefore, we have g = —Rar (zo)Vg.
Moreover, since || ;|| = 1, we have g # 0 and hence g € N;(zoo) follows. [l

Lemmas 3.3 and 3.5 give the desired bound (3-1) for the case when 0 € €. When 0 ¢ &, we need the
following lemma to complete the proof of Proposition 3.1.

Lemma 3.6 (the low-energy estimate). Suppose that O ¢ E. Then there exists 6 > 0 such that the function
I+ Rg(z)V)_l is bounded on L2 uniformly in z € ctn {lz] < 8}.

Proof. Since I + RS’ (0)V is invertible if 0 ¢ £ by Lemma 3.2, one can write
I+ RV =+ R OVYT+ U+ Ry OV) ' (R] (2) — R (0)V).

Since C+ 5 z — RS’ (z)V € B(L%?) is continuous by Proposition 2.4, one has

1
2011 + Ry OV~

sup IRy (2) = R O) Vg a0y <
zeCHN{|z|<8}

for 6 > 0 small enough. Therefore, I + R(J)r (z)V is invertible on L%% and

sup I+ RF@V) lggany <2 sup U +REOV) g g0, < 00,

zeC*N{jz|<8) 2eC*N{jz|<d)
which completes the proof. U

By Lemmas 3.2-3.5, we have completed the proof of Proposition 3.1.
We next give a rigorous justification of the second resolvent equation.

Lemma 3.7. Let z € C\ o (H). Then, as a bounded operator from L? to D(H),
R(z) = (I + Ro(2)V) 'Ro(z) = Ro(z) — Ro(2) VR(2). (3-3)
Moreover, we also obtain for z,7' € C\ o (H),

R(x) — R() = (I + Ro(z)V) " (Ro(2) — Ro(z) (I — VR(2)). (3-4)
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Proof. Tt follows from Proposition 2.7(1) and the fact ! c L?/""=2:2 that Kersu (I + Ro(z)V) is
trivial. Since Ry(z)V € Boo(3!) by Proposition 2.4, I + Ry(z)V is invertible on H! by the Fredholm
alternative theorem. Thus (I + Ry(z) V)~ Ry(z) is a bounded operator from L? to H!. Let f € L? and
set g = (I 4+ Ro(2) V) 'Ry(z) f € K. Since

(I + Ro()V)(I + Ro(2)V) ™' Ro(2) = Ro(2)
as a bounded operator from L? to H{!, we see that
g§=Ro(@)f —Ro(x)Vg. (3-5)
Then, for any ¢ € H',
(A =2)g, 9) =(f.0) = (Vg, ) = (f, ) = (V1g, V29),

where V,, V, € Lg/ 2% (R1: R) satisfies V = V; V5. Therefore, we obtain

(H=2)g,9)=((—wA—-2g,9)+(Vig, Vap) = (f, ¢),

which shows (H — z)(I + Ro(z)V)"'Ro(z) = I on L?. For f € D(H), we similarly obtain
(I 4+ Ro@V) ' Ro)(H —2) f =+ Ro@)V) ™' f+ U+ Ro2)V) ' Ro)Vf = f,

which gives us (1 + Ro(2)V)"'Ro(z)(H —z) = I on D(H) and the first identity in (3-3) thus follows.
The second identity in (3-3) follows from the first identity and (3-5).
Now we shall show (3-4). It follows from (3-3) that

(I + Ro(Z)V)(R(2) — R(Z")) = (Ro(2) = Ro()) (I = VR(2))

on L2. Since Ry(z) — Ro(z'), R(z) — R(z') : L* — H! are continuous and I + Ry(z’)V is invertible on H',
we have the desired identity (3-4). O

Now we are in position to prove Theorem 1.4, Corollaries 1.5 and 1.6 and Theorem 1.8.

Proof of Theorem 1.4. Assume that (p, g) satisfies (1-1). It follows from Propositions 1.1 and 3.1 and
Lemma 3.7 that for any § > O there exists Cs > 0 such that

IR(Z) f ez < Cs(L+ I+ Ro(D) V) ligraz)IRo(@) fll Loz < Colz| PV P=VOT) £l 0

forall f € L>NLP2 and z € C\ ([0, 00) U &;). Since L? N LP? is dense in L?2 this implies that
R(z) € B(LP-?, L%?) and that (1-5) holds uniformly in z € C\ ([0, o0) U &). O

Proof of Corollary 1.5. As before, we shall prove the corollary for R(A 4-i0) only. We also consider
the case 1/p — 1/q = 2/n only, as the proofs for other cases are similar. At first, we claim that, for any
X1, X2 € C°(R™), x1R(z) x» defined for z € C* extends to a B(L?)-valued continuous function x; R*(2) x>
on C* \ €. It follows from this claim that, for any u, v € C3°(R"), (RT(2)u, v) is a continuous function
on C*\ &. Then, by letting & \ 0 in the estimate

KRG +ie)u, v)| S lullLr2llvll e,
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which follows from Theorem 1.4, and by using the density argument, we obtain that R(A +i0) extends to
an element in B(L?-%, L9°2) and satisfies

sup  [[R(A+i0)lgzr2, 142y < 00. (3-6)
re[0,00)\E

This shows the first statement (1). For the second statement (2), it follows by setting z = A +i¢ and then
letting & \ 0 in (3-3) that, for any f € L9>N L% and A € [0, o0) \ &,

RA£i0)f =Ro(A£i0)({ —VR(AXi0))f (3-7)
in the sense of distributions, which particularly implies that, under the condition 0 ¢ &, we have R(0+i0) =
R(0—i0) since Ry(0+i0) = (—A)~". Moreover, we also know by (3-7) that

(A+V-=MDRA+i0u=U+VRA+i0)I - VRA+i0))u
=u+ V[Ry(A+i0) — R(A+i0) — Ro(A+iO)VR(A+i0)]u=u
for all u € L> N LP-2 and that, for all v € 8,
RA+i0O)(—A+V —-2Dv=Ry(A+i0)(I —=VRA+i0)(—A+V —1v
=v—Ry(A+i0)Vv—Ry(A+i0)Vv=v

in the sense of distributions. These two identities and (3-6) imply (1-7).
It remains to show the above claim. Let Vi, V, € L(')"OO(IR"; R) be such that V = V|V, and set
K1(z) = V1 Ro(2) V. The resolvent identity (3-3) then yields

VIR(Z)x2 = ViRo(2) x2 — K1(2) ViR (2) x2

on L2 forall zeC \o(H). Since K(z) € Boo (L2) by Corollary 2.3 and Ker;2 (1 + K,(z)) = @ for all
z € C\ o (H) by Proposition 2.7 and Lemma 2.8, we have by this identity that

ViIR@x2 = +K1(2) 'ViRy(2)x2, z€C\o(H),

on L2. It follows from again Corollary 2.3 that V| Ry(z) x2 and K (z) extend to Boo (L?)-valued continuous
functions Vi Ry (2)x2 and K (z) = ViR{ (z)V> on C*. Since Ker(I + K (z)) = @ for z € C+ \ €,
(I + Ki(z))~"! also extends to a B(L?)-valued continuous function (I + Kfr(z))_1 on C+ \ €. Thus
Vi R(2) x> extends to a B(L?)-valued continuous function V; RT(z) x> on ct \ € satisfying Vi R"(2)x2 =
I+ K ;L(z))*1 Vi RO+ (z). Finally, the claim follows from the formula

X1R(2) x2 = x1Ro(2) x2 — x1Ro(2) V2VIR(2) x2

and the continuity of x1 Ry () x2, 1R (2)V2 and ViR{ (2)x2 on CF \ €. O

Proof of Corollary 1.6. Let us fix z € C\ o(H) and take § > 0 so small that z ¢ 5. Recall that
Ro(z) € B(LP) for all 1 < p < oo and thus Ry(z) € B(L?*?) for all 1 < p < oo by Theorem A.1.
The proof of the first assertion is divided into two cases:

2n< _ <2n
n+3 - PT9Tn
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and otherwise. In the first case one can find

2n e < 2n
n—1 0 n—3

such that 1/p — 1/go = 2/n. Applying Theorem 1.4 to the resolvent equation (3-3) implies that, for all
felL>nLr?,

IR@) fllLr2 S 1Ro@) fllr2 + 1R Ipwra) IV | Lo2e [ R() fll Lao.2 < Csll fll L2

Combined with a density argument, this implies R(z) € B(L” 2) for each z € C \o(H).
Next, by taking the adjoint and using the fact R(z)* = R(Z), we see that R(z) € B(L?*?) for all

2n - 2n
n—1 n—>3"

Interpolating these two cases yields that R(z) € B(LP-?) for all

2n 2n
<

n+3 p= n—3"

Then the other cases in the first assertion follow by interpolating between the estimates on the two lines
1/p—1/g=0and 1/p —1/q = 2/n under the conditions 2n/(n +3) < p and ¢ < 2n/(n — 3).
Finally, assuming % <8< % without loss of generality, the second assertion follows from

lwRM) fll 2 S Iwll s | ROM) fll prsm202 S Nwll passeo | f 1l 2
for M < info (H) — 1, which is a particular case of the first assertion. [l

Proof of Theorem 1.8. When
2n - < 2(n+1)
n+2 - 7 n43

(1-10) follows from (1-6) and Stone’s formula (1-9). When

2n< <2n
nt3 Py

9

there are two main ingredients.
At first, it is known that E’ , (1) € B(L”, L?") for all

< 2(n+1)

1<
=P= n+3

and satisfies
IE A g, 1y S AOPVPUO7L > 0. G-8)

Indeed, E’ , (1) can be brought to the form E’ (1) = (2;1)*")\("*”/2RT/XR\/X, where

Ry u(w) :=/ e 2O x y(xydx, w>0, we S
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Then the Stein—Tomas restriction theorem (see [Tomas 1975; Stein 1970]) and the T T *-argument show
that R} Ry is bounded from L?” to L” for all

< 2n+D)

<
I=p= n+3 "’

which particularly implies (3-8) by scaling.
Secondly, we claim that the following identity holds for all f, ¢ € 8 and A € (0, c0):

(Ey)f,g) = (I + Ro(A—i0)V)'EL ,()(I — VR(A+i0)) f, 8). (3-9)

Since VR(A +i0) € B(L?) and (I + Ry(A —i0)V)~! € B(L?") for

2n - p< 2n
n+3 P~

by Corollary 1.5 and Proposition 3.1, the desired assertion (1-10) follows from (3-8), (3-9) and a density
argument.
It remains to show the identity (3-9). Let f, g € 8 and set

F(z)=+(I+Ry@V) ' ImRy(2)(I - VR(z)), zeCY,
which is a bounded operator from L2 to 3! (see the proof of Lemma 3.7), where
Im Ry(z) = (2i) ™" (Ro(z) — Ro(2)).
By (3-4) with z = A +ig, 7/ =7, one has 7! Im R(z) = F(z). Moreover,
(Ey()f.g)=n"" lim(Im RO +ie) f. g)
exists by Corollary 1.5. For the operator F(z), we write
F@f =3 +Ro@V) ™ ImRo(2)(x) > = Im Ro(2) VR(2)(x) ) (x)° f.

By Proposition 2.4, all of (I + Ry(Z)V) ™!, Im Ro(z) (x) 3, Im Ry(z)V and R(z)(x)~> extend to B(L?)-
valued continuous function on C+ \ €. Therefore, (F(A+i0) f, g) = limg\o(F (A +ig) f, g) exists and
coincides with the right-hand side of (3-9). Therefore (3-9) follows. O

The remaining part of the section is devoted to the following theorem, which plays a crucial role in the
proof of Strichartz estimates.

Theorem 3.8. Suppose that €N [0, co) = &. Let (p, q) be such that

1_1_2 and 2n <p< 2n
p q n (n+3) P (n+1)
Then
sup ”Pac(H)R(Z)”B(Lp,Z’Lq,Z) < Q. (3-10)

zeC\[0,00)
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We first prove some L”-boundedness of the projection P,.(H). At first note that, under the condition
0 ¢ £, H may have at most finitely many negative eigenvalues of finite multiplicities. Indeed, since
op(H) N (=00, 0) = 04(H), each negative eigenvalue has finite multiplicity and their only possible
accumulation point is z = 0. Moreover, Lemma 3.6 and the Fredholm alternative show that, for sufficiently
small § > 0, (—8,5) NE = as long as 0 ¢ €. Therefore, H may have at most finitely many negative
eigenvalues. In this case P, (H) is written in the form

N
Pe(HY=1=Y Pj, Pj:= (-, ¥}y, (3-11)

j=1
where ; are eigenfunctions of H and N < oo.
Lemma 3.9. We have v; € L92 and P,.(H) € B(L9-?) for all

2n <q< 2n .
n+3 n—3
Proof. Let ¥ be an eigenfunction of H with an eigenvalue A < 0. By virtue of (3-11) and real interpolation,
it suffices to show ¥ € L4-2. For a given ¢ > 0, we decompose V as V = v; 4+ v, with v; € Co°(R") and
V2]l pr2o < €. We first let

2n g < 2n
n—1 n—3"

By Sobolev’s inequality and Proposition 1.1, one has

IRoM V1Yl e S NRoM) V1Y lgmar-10 < Crllvidrllzz < Callvill g 1| 12,
[RoM)v2llperay S vl prrzee.

For & > 0 small enough, I 4+ Ro(A)v, thus is invertible on L7 and
¥ =—Roy(MVY = RyMviyy — Ry(Mvayy = —(I + Ro(R)v2) ™' Ro()viyr € LY.

Next, since Ro(A) € B(L?) for all 1 < p < oo, we have by Holder’s inequality that

I1Lr = 1ROV e < CllVY Ly < Call VIl 2o 1Yl Lo

if 1/p—1/q =2/n. This shows ¢ € L? for all

2n 2n
<

nt3 P ) +1°
Interpolating these two cases, we conclude that ¥ € L? for all

2n 2n
<

n+3 1=7=3
Proof of Theorem 3.8. Assume that € N [0, co) = &. Then one can find § > 0 small enough such that
dist(Es, [0, 00)) > §/2. The proof is divided into two cases: z € C\ ([0, o0) U Es) and z € E;. For the
case when z € C\ ([0, 0co) U &), since

O

2n < /< 2n
1P =53
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and P;R(z) = (A; — )71, Y ;)¥j, Lemma 3.9 implies

IP;R@) fll e <87 NVl a1Vl ol fll Loz
which, together with Theorem 1.4 and the formula (3-11), gives us the desired bound

sup | Pac(HDR@) Igrre.pany S8 (3-12)
zeC\([0,00)UEs)

When z € &5, we use twice the first resolvent equation R(z) = R(z') — (z — ) R(z') R(z) to write
Pic(H)R(2) = Poc (H)R(M) + (z + M) Poc (H)R(M)? + (2 + M)*R(M) Poc (H)R(2) R(M),

where we have taken M < info (H) — 1. Note that |z + M| < 2|M| + § for z € € since € is a bounded
set in R. Moreover, we have by Lemma 3.9 and Corollary 1.6 and Theorem A.1 that
| Pac(H)R(M) grr2,10.2) < || Pac(H) lgza2) I RIM)Igrr2, 102y < Cmts
|R(M) |2, L2y + | R(IM) lgr2,12) < Cm

for some C); independent of z. It follows from these two bounds and the trivial L?-bound

sup || Pac(H)R(2)lpz2) < dist(Es, [0, 00)) ™' <267

1663

that there exists Cj s > 0, independent of z, such that

sup || Pac(H)R(2) lg(zr2,102) < Cim,s- (3-13)
ZEE(S
The assertion of the theorem then follows from (3-12) and (3-13). O

4. Kato smoothing and Strichartz estimates

This section is devoted to the proof of Theorems 1.10 and 1.12. We first prepare several lemmas. Let ¢//4
be the free Schrodinger unitary group and define

t
ToF (1) ;:/ e TIAF(s)ds, F e Ll (R; L*(R")).
0

The estimates for the free Schrodinger equation used in this section are summarized as follows:

Lemma 4.1. Let (p, q) satisfy (1-12), (ps, qs) be as in (2-3) and p > % Then

e B9l p a2 S 1N L2, 1)
< n 3n—4 i
”FOF”L%in‘z ~ ”F”LIZLJ,:’Y’Z for 2(7’1—1) <s< 2(”1—1)’ (4 2’)
< ) __n 3n—4 i
IToF 20 SIFIlz2pe fors =505 =Ty (4-3)
1)~ IDI1 el 22 S Il 2, (4-4)

1) PIDIY2 Lo Fll 212 S IF N2 vs202. (4-5)
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Proof. Inequality (4-1) for p > 2 is due to [Strichartz 1977; Ginibre and Velo 1985]. Inequality (4-1)
with p = 2 and (4-2) with s = 1 were settled in [Keel and Tao 1998]. Inequality (4-2) was proved
independently by [Foschi 2005] and [Vilela 2007]. Inequality (4-3) was settled recently in [Koh and Seo
2016]. Kato-smoothing (4-4) was proved in [Kenig, Ponce, and Vega 1991]. Finally, (4-5) can be found
in [Mizutani 2018, Lemma 3.2]. U

The following lemma, which was proved in [Kato 1966] (see also [Reed and Simon 1978; D’ Ancona
2015]), shows the equivalence of the uniform weighted resolvent estimate and the Kato smoothing
estimate.

Lemma 4.2. Let L be a self-adjoint operator on a Hilbert space 3, let A be a densely defined closed
operator on J(, and let a > 0. Then the following two estimates are equivalent to each other:

[(Im(L —2) "' A*u, A*u)scl <aluld,  ue DAY, z€C\R,
lAe™ " 0]l 29 < 2¢/allvllse, v € K.
The following concerns the equivalence of Sobolev norms generated by A and H.

Lemma 4.3. Assume that EN[0,00) =T and 0 <s < % Then
(= A+ M) *(H + M) |lg2) + (H + M) P (= A+ M) |Ig(12) < o0. (4-6)

Proof. The proof will be given in the next section. O

Recall that (-, - )7 is the inner product in LZTLi defined by (F, G)r = f_TT(F(t), G(t))dt. It is not
hard to check that (I'y F, G)r = (F, I'};;G)r with

T t
[5G (1) = 1[0.00)(7) / e I G(s) ds — L(—o0.0)(2) / e IR G(s) ds.
t -T

The following lemma gives the rigorous definition of Duhamel’s formula (in the sense of forms).

Lemma 4.4. Let % <5< % V€ Lg/‘y’oo([R”; R) and V, € Lg/(z_‘g)’oo([l%”; R) be such that V = V; V,.
Then, for all € L?* and all simple functions F, G : R — 8,

(e P (HYY, G)1 = (€'"® Poc (H)Y, G) 1 — i (V) Pac(H)e "oy, Val'§G)r, (4-7)
(T Poc(H)F, G)r = (ToPac(H)F, G)7 — i (ViT g Poc (H)F, VaT'}G) 7, (4-8)
= ([F, Pac(H)G)7 — i (VaToF, ViT% Poc(H)G) 7. (4-9)

Proof. The proof is basically same as that in [Bouclet and Mizutani 2018, Proposition 4.4], where the case
s = 1 was considered. We shall show (4-8), since the other proofs are similar. We start from the formula

t
(e7 " Pyc(H)u, v) — ("2 Poe(H)u, v) = —i / (VieT "1 Py (H)u, Voe! "2 v) dt (4-10)
0

for u, v € 8, which follows by computing % (e”""M P, .(H)u, e""*v). Here note that the HLS inequality
(A-2) and Lemma 4.3 yield

[(Vie ™ Poc(HDu, Vo' CD20) [ SNV pwse I Vall prre-soe (= A + D 2ull 2 [ (= A + D520 12 < 00
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and, hence, the right-hand side of (4-10) makes sense. Changing ¢ to t —s, plugging in u = F(s), v=G(¢)

and integrating in s over [0, ], we obtain

(P Pac(H)F (1), G(1)) — (To Pac(H) F (1), G(1)) .

= —i// (Vie 'C=9H p (HYF(s), V' T D2G (1)) dt dt,
0Js

where, by the same argument as above, the integrand of the right-hand side is finite and thus integrable in

(t, s) € [0, t]%. Therefore, by Fubini’s theorem,

(T Pac(H)F (1), G(1)) — (Do Pac (H)F (1), G(1))

:—i/ (ViT Puc(H)F (1), V2! T D2G (1)) dt.  (4-11)
0

Finally, observing from the same argument as above that [(V{[ 'y F(1), V,é' T=DAG(1))] is finite, we
integrate (4-11) in ¢ and use Fubini’s theorem to obtain the desired formula (4-8). U

Remark 4.5. When s = 1, the identities (4-7), (4-8) and (4-9) also hold for all F,G € LIIOCL2; see
[Bouclet and Mizutani 2018, Proposition 4.4].

Using these lemmas, we first prove Kato smoothing estimates.

Proof of Theorem 1.10. The following argument is basically same as that in [Burq, Planchon, Stalker, and
Tahvildar-Zadeh 2004]. With the above remark at hand, we use (4-7) with G replaced by | D] 12(x)=PG
to obtain

((x)~?|D|"2e™ " H P (H)Y, G) 1
= ((x) | D" 2" A Py (H)W, G)1 — i (Vi Poc(H)e "y, VT8 | DIV (x) ™ G) r

forall y € L?> and a simple function G(¢) : R — 8. By (4-4), the first term obeys
[((x) 7| D|' 2" P ()Y, G) 7| S 1112 1G22 (4-12)
uniformly in 7 > 0. On the other hand, we have by the dual estimate of (4-5) that
(Vi Pac(HDe™ "y, VTG G) 7| S IV Pac(HDe ™ 11 1212 1G22 (4-13)
uniformly in 7 > 0. For the term ||V} Poc (H)e ""H s ||L[zL§, we use Lemma 4.2 to deduce
V1 Pac(HDe™ ™l 22 S 1Yl .2 (4-14)
from the following uniform weighted resolvent estimate

sup || Vi Pac(H)R(2) Pac(H) Vi [lg(12) < 00,
zeC\R

which is a consequence of Theorem 3.8 and Holder’s inequality (A-1), where we note that P, (H V2=P,.(H)
since Pyc(H) is an orthogonal projection. Finally, (4-12)—(4-14) imply

[((x) | D2 Poc(H)Y, GYr) SN 201G 22,

which, together with duality and density arguments, gives us the assertion. U
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In order to prove Strichartz estimates, we need one more lemma.

Lemma 4.6. Assume € N[0, 00) = &. Then, for any % <s§s< % there exists C > 0 such that, for all
w e L(2=s).00, x € CPR") and T > 0,

IXTh Pac(HO)WF 1212 < Clix | prssce |wll prre-s.co [ Fll 12 2 (4-15)

Proof. The proof is essentially based on the argument in [D’Ancona 2015, Theorem 2.3]. At first note
that it suffices to show (4-15) with [T, T] replaced by R. Indeed, since s € [-T, T]if r € [-T, T] and
s €[0,¢t] (or s € [t, 0]), (4-15) with [T, T'] replaced by R implies

||XFHPac(H)WF”L?TL?r ,S ”:]-[—T,T](S)F”LfL)Zr = ||F||L2TL)2(
We may assume, by a density argument, that F(¢) : R — § is a simple function. Set A| = x (x) Py, (H)
and A, = wP,.(H). For a function v(¢) : R — L2, ¥ denotes its Laplace transform:

+oo
1(2) = :I:/ e“'v(t)dz, +Imz>0.
0

A direct calculation yields that if v(z) = 'y A F () then v(z) = —iR(z)A”Z‘f (z), where the identity
ASF = A;f follows from the estimate ”AZF”Ll' 12 S llwll pre-s.c ||F||L11 42-s < 00 and Hille’s theorem
[Hille and Phillips 1957, Theorem 3.7.12]. Also we see that v(¢) € D(A;) for each ¢. Indeed, writing
F() = Z?’:l 1g, (1) fj with some f; € S(R"), we have for each ¢

lt] N

N
isH —itH
lA@l2 <) /O 1A " e ™ Py (HYwjll 2 ds S1tllwl pwe-ose Y 1 fillgas < 00,
j=1 j=1

Then one can use Parseval’s theorem to obtain
+00 -
if e 21 v(r), ATG (1)) dt = 2;1/ (D(r%ie), ALG(A+ig))dr, &>0,
0 R

for any simple function G : R — 8. By virtue of uniform Sobolev estimates (3-10) with

2n 2n )

P, @)= (n+2(2—s)’ n—2s

and Holder’s inequality (A-1), the integrand of the right-hand side obeys
(B £ie), A{G(xie))| < x|l prsllwll pre—so |F(Eie) | 211G ie)| 2.

Applying again Parseval’s theorem, we have

+o0
/ e XM u(r), ATG (1)) dt
0

f(ﬁ(kiie),ATé(kiis))dA
R

Sl oo llwll pre-s.o | F(Aie) [l 22 11G (AEie) || 22

Sl lpnecllwll pre-selle MF @l 2@, 2@ le GO 2@y 200y
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which, together with the density of simple functions with values in 8, shows
le™"M AT 5 AaFll 212 S Ix g llwll ool Fll 22, F € L7L.
The result then follows by letting ¢ — 0. ]

Remark 4.7. If % < s <1, (4-15) also holds for any x € L™, The proof is completely the same.

When1<s<%,

x € L% only, even if F : R — 8. This is the reason why we have assumed x € Cg°. We however

we do not, a priori, know ye ""# P, .(H)wF(s) € Lﬁ for each ¢, s under the condition

stress that Lemma 4.6 is sufficient for our purpose.
We are now ready to show our Strichartz estimates.

Proof of Theorem 1.12. Using (4-1) and (4-2) with s = 1 instead of (4-4) and (4-5), respectively, one can
see that the proof of the homogeneous endpoint Strichartz estimate of the form

le™ ™ Pac (DY I 2 20022 S 1 2 (4-16)

is similar to that of Theorem 1.10 and even easier than that of (1-14). We thus omit the proof.
We shall show (1-14). Let

n__g_3n=4
2—1) 2—1)
and V| € Lg/ S and V, € Lg/ (@79):% pe real-valued such that V = V; V». Take a sequence VijeC

such that [[Vi — Vi jll pase0 = 0. Let F: R — S be a simple function in ¢. As in the proof of Lemma 4.4,
we see that I'y Py (H)F € LZTL?’2 for each T > 0 by Lemma 4.3. Then, by the duality argument, we
have

2 Ssup{l(Tu Puc(H)F, Gzl | Gl

1T Pac(H)F 2 1}, (4-17)

qs l2 =
L L2LY

where we may assume by a density argument that G : R — § is a simple function. Then, it follows from
Duhamel’s formula (4-8), (4-2), Lemma 3.9 and Holder’s inequality (A-1) that
(Cr Pac (H)F, G171 S [ Pac (H) s ) 1 Fll 2052 + V1Tl Pac (H) Fll 2 2 [1Vall prve-s0e

TV = Vil pwsoe 1T 1 Pac (HD) Fll 2 a2

uniformly in 7 > 0. Taking j large enough (which can be taken independently of T'), the last term can be
absorbed into the left-hand side of (4-17), implying

”FHPaC(H)F”L%LzS’Z S ”F”L,ZL,‘(’S'Z + ”‘/l,j1—‘1‘11)%10(I_I)Fw”L2TL)2C

uniformly in 7 > 0. To deal with the term ||V ;' Pic (H) F|| 122> We use (4-9) to write

L2
(Vi.;Tu Puc(H)F, G)1 = (ToF, Poc(H)V1 jG)1 — i (VaToF, Vil Puc(H)V1;G) 1

for all simple functions G:R—>3$ satisfying ||(~?|| L202=1 = 1. By (4-2) the first term enjoys

~

(Lo F, Pac(H)V1 i G) 1l S UV jll piscc 1F N 2o SIEN 252
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uniformly in 7 > 0 and j. On the other hand, since V,I'}; Poc(H) V7, jé € LZTLi by Lemma 4.6 and
ViloF e L2TL)2€ by (4-2), the last term can be rewritten in the form

(VaToF, Vil Pac(H) V1, G) 1 = (ViToF, Val'§y Pac (H) V1 G) .

Using (4-2), Lemma 4.6 and a duality argument, we then obtain

~

|(ViToF, Val'ly Pac (D1 G) 7| S TF N o2
Putting it all together, we conclude that
10w PacCHYF Il 2 a2 S IF 2 e

uniformly in T > 0, which implies the desired estimates (1-14) for

n < 3n—4
2(n—1) 2(n—1)"

The cases s =n/(2(n — 1)) and (3n —4)/(2(n — 1)) can be obtained analogously by using (4-3) instead
of (4-2). O

5. Spectral multiplier theorem
This section is devoted to the proof of Lemma 4.3 and Theorem 1.15. Proofs are based on an abstract

method in [Chen, Ouhabaz, Sikora, and Yan 2016], which, in the Euclidean case, can be stated as follows.

Proposition 5.1 [Chen, Ouhabaz, Sikora, and Yan 2016, Theorem A]. Let 1 < pg <2 and 1 < g < o0.
Let L be a nonnegative self-adjoint operator on L*(R") satisfying the following two conditions:

» Davies—Gaffney’s estimate: for any open sets U; C R" and ; € Lz(Uj), j=172,

dU,, Uy)?

(e " Ly, Yn)| < exp(— P

)IIlﬁlIlLZIIWzIILL (5-1)

where d(Uy, Uz) :=infy, cy, x,ev, |X1 — X2| is the distance between Uy and U,.

o Stein—Tomas-type restriction estimate: for any a > 0 and any bounded Borel function Fy on R supported
in [0, a], we have Fo(«/Z) e B(L™, L?) and

1Fo(VL)Lae.r llgrr. 12y S @772 | Fota )l (5-2)

forall x e R" andr > a~', where B(x,r) ={y | |y —x| <r}.

Then, for any bounded Borel function F on R satisfying
|Flwg.g) :=sup |¥ () F () llywsam < 00, (5-3)
t>0

with some nontrivial y» € C§° supported in (0, 00) and

pomala(l, 1)
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such that B is an integer if ¢ = 0o, we have F(~/L) is bounded on L? for all py < p < P, and satisfies
IFVD)llgwry < CF hog.q) + I FO)D.

Strictly speaking, instead of Davies—Gaffney’s estimate, it was assumed in [Chen, Ouhabaz, Sikora,
and Yan 2016] that L satisfies the so-called finite-speed propagation property; see (FS) on page 229
of [loc. cit.]. However, these two conditions are known to be equivalent; see [loc. cit., Theorem 3.4].
Moreover, (5-1) is always satisfied for nonnegative Schrodinger operators —A + V(x) as shown in
[Coulhon and Sikora 2008].

Lemma 5.2 [Coulhon and Sikora 2008, Theorem 3.3]. Let L = —A+V (x) with real-valued V € LIIOC(R")
such that L > 0 as a quadratic form. Then (5-1) is satisfied.

When g = 00, (5-2) can be replaced by an LP-L? estimate of the Schrodinger semigroup.
Lemma 5.3. Let 1 < pg < 2. Then (5-2) with g = oo follows from
le g gz S " 7YD >0, (5-4)
Proof. By [Chen, Ouhabaz, Sikora, and Yan 2016, Proposition 1.3], (5-2) with ¢ = oo is equivalent to
le ™ E g lgerror2) S 1B, )P0 2 yr A=l s 0 x e R, > 1,
which clearly follows from (5-4) since |B(x, r)| < C,r". O

Now we show Lemma 4.3 whose proof is classical and based on Stein’s complex interpolation theorem.
Let us fix M > |info (H)|+ 1 so that H + M > I. A key observation is the following.

Lemma 5.4. For any o € R and
2n 2n

n+3 =pP= n—3"

we have
1(H + M)“Ngry < Crler)”.

Proof. Tt is easy to see that F(x) = X2 satisfies | FlWn.00) < Cpia)" and |F(0)| = 1. Let us fix

2n <po< 2n
n+3 “n+2
arbitrarily. By virtue of Proposition 5.1 and Lemmas 5.2 and 5.3, it suffices to show that L := H + M
—’L into the absolutely continuous part e*tzLPaC(H ) and the discrete part

satisfies (5-4). Decompose e

N 2L p.
ijl e "t P;.

For the discrete part, since A; + M > 1, we know by Lemma 3.9 that
_ 2L _ 42 Ai+M _ 42 _ 42
le™ Py fll o = le™ S0P £l < e llojll sl I e S e 1 pro-

On the other hand, it follows from the spectral decomposition theorem that

o0

_42 _42 _n2 _942

e P (HY (e PP (H)) = e 2L P (H) _—f e M GE L (V).
0
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Theorem 1.8 then implies
2 o 2 / /
—2°L —2°(A+M) 4 (n/2)(1/po—1/py)—1 —n(1/po—1/py) — 4—2n(1/po—1/2)
||€ PaC(H)”B(Lpo’LP(/)) 5/ e )\. 0 d)\.st 0 =1 .

172

. _2 92
Since fle ™" Poc (D llp(zro.12) < le™"E PacCED g, 116,

by the duality, (5-4) follows. ]

Proof of Lemma 4.3. We may assume 1 < s < % without loss of generality since the case when 0 <s <1
follows from Stein’s complex interpolation [1956] and the estimate

I(=A+ MY2(H + M) g2y + 1(=A+ M) V2(H + M) P |g ) < o0,

which is a consequence of the fact that the form domain of H is F'.
For f, g € 8, we consider a function G(z) = ((H + M)~* f, (—A + M)*g) which is continuous on
0 <Rez <1 and analytic in 0 < Rez < 1. By Corollary 1.6 and Lemma 5.4, for

2n 2n 2n 2n
—— <ri<—— and —— <rp<-—,
n—+

n—3 n+3
we have

IGGOI < I(H +M) 7" fllpn [ (=A+ M) gl S O™ f I llgl
IGA+in)| < [(=A+M)YH+M) " Fllpnl(=A+ M) gl s SO N2 lgl,

where, since (—A + M)(H +M)~' =1— V(H 4+ M), the second estimate can be verified as

I(=A+M)Y(H+ M) ggny < 1+HIVH+M) gen <1+ CullV i gz,

Let
2n 2n

and r2=m.

ri =
! n—2s

1 Ky 1 s 1
z—(l—z)(;l)ﬁ';z’

we apply Stein’s complex interpolation theorem to G, implying |G (s/2)| < C¢|| fll;21lg|l ;2. This gives us
pply p p plying L L g

Since

I(=A+M)"2(H + M)l 12 < 0.
Applying the same argument to a function G(z) = ((—A+ M) * f, (H + M)*g), we also have
ICH + MY (=A + M)~ |2 < oo m
Next we shall show Theorem 1.15.

Proof of Theorem 1.15. Since H is assumed to be nonnegative, the Davies—Gaffney estimate (5-1) is
satisfied. It thus remains to check the Stein—Tomas-type restriction estimate (5-2) with ¢ = 2. Let

2n - o < 2n
n+3 Po n+2




1364 HARUYA MIZUTANI

and Fy € L*°(R) be such that supp Fy C [0, a]. By Theorem 1.8,

2

a
1EoCHY Nl 1) S / | Fo(W/a)Pal/2 A/ o=t/ g,
’ 0

2 1 —1/pp)—1 1 —1/p; 2
< ”FO”LZ([O,a])an( /po—1/pg) < a"/po /po)”Fo(a')HLz-

Finally, by the duality, we have ||F0(\/ﬁ)||B(L,,0’L2) < |Fo(VH)?|
above estimate for || Fo(v/H)?|

1/2 ) . .
/ , , which, combined with the
B(LP0,L70)

B(LP0,L70)’ implies (5-2) with g = 2. .
We conclude this section with two immediate consequences of Theorem 1.15.

Corollary 5.5. Suppose that EN[0,00) =2, H>0and0<s < % Then
I(=A)2H ™ gy + | H 2 (= 8) 7 |lg(r2) < 00
Proof. The proof is analogous to that of Lemma 2.8. (I

Corollary 5.6. Suppose that €N [0, 00) = & and H > 0. Let ¢ € C;°(R) be such that supp ¢ C (%, 2),
O0<p<land Zjez ©(27/1) =1 for all A > 0. Then, for any

2n < 2n
n+3 p n—>3’

there exists C,, > 0 such that

C, SNl < < Cpll fll -

1/2
(Z p27 H)f(x)lz)
Lp

jezZ

In particular, if2 < p < 2n/(n —3), then

1/2
iy 2
1fllze S (Z llp2 ’H)fIILp> .
jez
Proof. With Theorem 1.15 at hand, the corollary follows from a standard method in [Stein 1970]. The
proof is completely the same as that for the usual Littlewood—Paley estimate and we omit it. ]

6. Eigenvalue bounds

This section is devoted to the proof of Theorem 1.19. The proof is based on a method of Frank [2011;
2018]. Recall that W e L"/?*7(R"; C) with 0 < y < oco. Then W is H-form compact. Indeed, taking
M > —info (H), we see that [W|'/2(1 — A)~'/2 is compact and (1 — A)Y/2(H + M)~'/? is bounded.
Hence |W|V2(H+M)™ 12 =|W|'/2(1—=A)"12(1—A)YV2(H+ M)~ /2 is also compact. Then there exists
a unique m-sectorial operator Hy such that D(Hy) C Q(Hw) = KH! and (Hwu, v) = ((H + W)u, v)
for u € D(Hw) and v € H'. We also have D(Hy) is dense in ', and o (Hyw) is contained in a
sector {z € C | |arg(z — z0)| < 6} for some zp € R and 6 € [0, %), see [Kato 1966, Theorems VI.3.9
and VI.2.1]. We fix a factorization W = W, W, with W; = |W|/2sgn W and W, = |W|'/2, where
sgn W(x) = W(x)/IW(x)| if W(x) # 0 and sgn W(x) =0 if W(x) = 0. Let d(z) = dist(z, [c0). We
begin with the following lemma.
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Lemma 6.1. Suppose that E € C\o (H) is an eigenvalue of Hy. Then —1 is an eigenvalue of Wi R(E) W,.
Moreover,if 0 <y < % the same statement also holds for E € (0, 0c0)\ € with R(E) replaced by R(E +1i0).

Proof. We show the lemma for the case E € (0, 0o) \ € only, since, in the case £ € C\ o (H), the lemma
is a consequence of the well-known Birman—Schwinger principle (see, e.g., [Frank 2018, Section 4]), and
the proof is easier. Let f € Ker;2(Hy — E). We let ¢ € 8§ and plug v = R(E —ig)W;¢ € H! into the
identity ((H — E) f, v) + (W f, Wov) = 0, letting ¢ \( 0 and then using Corollary 1.5(2) to obtain

(Wif, o) +(WIR(E+i0O)WoW, f, ¢) =0.
Since |Wy fllz2 S IIWill g || fllge < 00, this shows Wy f € Kerj2 (I + Wi R(E +i0)W>). (Il

Since W R(E)W, is a compact operator on L%, if —1 is an eigenvalue of W R(E)W, then
[WiR(E)W:llgr2) > 1 at least. With this remark at hand, it is easy to see that Theorem 1.19 follows
from the following lemma.

Lemma 6.2. Forany § >0and0 <y < %, one has
IWIR@)Wallg2) < Csle ™/ @2 [ Wil ey, z€C\&s, (6-1)
where R(z) is replaced by R(z +i0) if z € (0, 00) \ €s. Moreover, for any y > %,
IW1 R(@)Wallg(2) < Cyslz) = V22D g ()0 1D/ Wl sy, 2 € C\ (E5U10, 00)). (6-2)

Proof. Inequality (6-1) is a direct consequence of (1-5) and (1-6) with

11 1 .
p_2+n+2y and g =p'.
For the proof of (6-2), we take
_2y—1
0= N1y €(0,1)
so that
_ n+l
o= n+2y’
Interpolating between (1-5) with
2(n+1) _
=3 and g=p

and the trivial bound || R(z) g2y = dist(z, [0, 00))~! and, then, using Holder’s inequality, we obtain

Wi R(EYWallg2) < Cy 51zl == a @)~ W[ Loy
= C, 5lz| VO () DB W s

which completes the proof. ([
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Appendix: Real interpolation and Lorentz space

Here a brief summery of real interpolation spaces and Lorentz spaces is given without proofs. One can
find a much more detailed exposition in [Bergh and Lofstrom 1976; Grafakos 2008].

A pair of Banach spaces (A, B) is said to be a Banach couple if both A, B are algebraically and
topologically embedded in a Hausdorff topological vector space C. Note that one can always take C
to be a Banach space Ay + A;. Given a Banach couple (Ap, A1) and 0 <6 <l and 1 < g < o0,
one can define a Banach space Ag , = (Ao, A1)e,4 by the so-called K-method, which satisfies that
(Ao, Ao)e,q = Ao and (Ao, A1), = (A1, Ap)1-9,4 With equivalent norms and that if 1 < g <g> <00
then (Ao, A1)e,1 = (Ao, A1)e,qy = (Ao, A1)a,q, = (Ao, A1)s,00. Then the following real interpolation
theorem is frequently used in this paper.

Theorem A.1 [Bergh and Lofstréom 1976, Theorem 3.1.2; Cobos, Edmunds, and Potter 1990]. Let
(Ao, A1) and (Bg, B) be two Banach couples, 0 < 6 < 1 and 1 < g < oo. Suppose that T is a
bounded linear operator from (Ao, A1) to (Bo, By) in the sense that T : A; — B; and ||T||B(Aj,3,-) <M;,
J =0,1. Then T is bounded from Ay 4 to By , and satisfies IT By, o) = M(;_QMIG. Moreover, if
both T : Ay — Boand T : Ay — By are compact, then T : Ag 4 — By 4 is also compact.

Next we recall the definition and basic properties of Lorentz spaces. Given a p-measurable function f
on R", we let ur(a) = pu({x | | f(x)| > a}). If we define the decreasing rearrangement of f by f*(¢) =
inf{a | ;g (a) <t} then the Lorentz space L?-9(R") is the set of measurable f such that the following
quasinorm is finite:

-1
L7 = 1PV 5O oy an = P et s @ P Lo, o 1da) < 09

Moreover, if 1 < p < oo and 1 < g < oo (which are sufficient for our purpose), then

t
s =17 e 7@ i= 1 [ 1@ de

becomes a norm on L”¢ which makes L?'? a Banach space. Furthermore, || - ||}, is equivalent to
|- 17 r.q in the sense that || |7 o0 < | fllzre < C(p, DI fI} rq With some constant C(p, g) > 0. Thus all
continuity estimates for linear operators can be expressed in terms of || - [|7,,. L?¢ is increasing in g:
LPl s [P0 s LPP =P s PP s [P if | < gy < p < g < 00. Moreover, L4 is characterized

by real interpolation: for0 <6 < 1, 1 < p; < p < 0o with

1:1—9+9

p P1 P2
and 1 <g < o0, one has (L7, LP?)y , = LP-1 with equivalent norms. If 1 < p, g < oo then LP9(X; C) =
Lp/’q/(X; C), where r' = r/(r — 1) is the Holder conjugate of r.

Finally we record two inequalities used frequently in this paper. First, for 1 < p, p; < oo and
1 <gq,q; < oo with
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one has Holder’s inequality

lfellppa Clfllprallglpra, Nfg&llrra < Clfllzellgllzra- (A-1)

Secondly, forl <s <n, l <p<g<oo, 1/p—1/g=2/nand 1 <r < 0o, we have the HLS inequality
I=2)" fllar < CUf lippr- (A-2)
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