Vol. 13, No. 6, 2020

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 10, 3371–3670
Issue 9, 2997–3369
Issue 8, 2619–2996
Issue 7, 2247–2618
Issue 6, 1871–2245
Issue 5, 1501–1870
Issue 4, 1127–1500
Issue 3, 757–1126
Issue 2, 379–756
Issue 1, 1–377

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1948-206X (online)
ISSN 2157-5045 (print)
 
Author index
To appear
 
Other MSP journals
On uniqueness results for Dirichlet problems of elliptic systems without de Giorgi–Nash–Moser regularity

Pascal Auscher and Moritz Egert

Vol. 13 (2020), No. 6, 1605–1632
Abstract

We study uniqueness of Dirichlet problems of second-order divergence-form elliptic systems with transversally independent coefficients on the upper half-space in the absence of regularity of solutions. To this end, we develop a substitute for the fundamental solution used to invert elliptic operators on the whole space by means of a representation via abstract single-layer potentials. We also show that such layer potentials are uniquely determined.

Keywords
Dirichlet problems, uniqueness of solutions, elliptic systems, single-layer operators
Mathematical Subject Classification 2010
Primary: 35J57, 35A02
Secondary: 35J50, 42B25, 35C15
Milestones
Received: 28 March 2017
Accepted: 13 August 2019
Published: 12 September 2020
Authors
Pascal Auscher
Université Paris-Saclay
CNRS
Laboratoire de Mathématiques d’Orsay
Orsay
France
Laboratoire Amiénois de Mathématique Fondamentale et Appliquée
CNRS-UMR 7352
Université de Picardie-Jules Verne
Amiens
France
Moritz Egert
Université Paris-Saclay
CNRS
Laboratoire de Mathématiques d’Orsay
Orsay
France