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REFINED MASS-CRITICAL STRICHARTZ ESTIMATES
FOR SCHRODINGER OPERATORS

CASEY JAO

We develop refined Strichartz estimates at L2 regularity for a class of time-dependent Schrodinger
operators. Such refinements quantify near-optimizers of the Strichartz estimate and play a pivotal part
in the global theory of mass-critical NLS. On one hand, the harmonic analysis is quite subtle in the
L?-critical setting due to an enormous group of symmetries, while on the other hand, the space-time
Fourier analysis employed by the existing approaches to the constant-coefficient equation are not adapted
to nontranslation-invariant situations, especially with potentials as large as those considered in this article.

Using phase-space techniques, we reduce to proving certain analogues of (adjoint) bilinear Fourier
restriction estimates. Then we extend Tao’s bilinear restriction estimate for paraboloids to more general
Schrodinger operators. As a particular application, the resulting inverse Strichartz theorem and profile
decompositions constitute a key harmonic analysis input for studying large-data solutions to the L2-critical
NLS with a harmonic oscillator potential in dimensions > 2. This article builds on recent work of Killip,
Visan, and the author in one space dimension.

1. Introduction

We prove sharpened forms of the Strichartz inequality for nontranslation-invariant linear Schrédinger
equations with L? initial data. Recall that solutions to the linear constant-coefficient Schrodinger equation

iatuz—%Au, u(O,-)=uoeL2(Rd), (1)
satisfy the Strichartz inequality [1977]
||M||L§’<g+2>/d(Rde) < Cllu(0, )l L2 ga)- 2)

On the other hand, it is also known if u a solution that comes close to saturating this inequality, then it
must exhibit some “concentration”; see [Carles and Keraani 2007; Merle and Vega 1998; Moyua et al.
1999; Bégout and Vargas 2007]. Such inverse theorems may be equivalently formulated as a refined
estimate

lull 2270 < Nl 2000 1|72 a): 3)

where the norm X is weaker than the right side of (2) but measures the “microlocal concentration” of
the solution. We pursue analogues of such refinements when the right side of (1) is replaced by a more
general Schrodinger operator —%A + V(t, x).
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Inverse theorems for the Strichartz inequality have provided a key input to the study of the L2-critical
NLS

i = —LAu+ [uldu, u(,)e L2(RY), @)

so termed because the rescaling u > u (¢, x) := A%/2u(A2t, Ax) preserves both (1) and the L2-norm
Mlu] = |u@)l|L2ray = [[4(0) || 2(re)- Indeed, they are used to construct the profile decompositions
underpinning the Bourgain—Kenig—Merle concentration compactness and rigidity method by identifying
potential blowup scenarios for nonlinear solutions with large data. Using this method, the large-data
global regularity problem for (4) was recently settled by Dodson [2012; 2015; 2016a; 2016b], building
on earlier work of Killip, Visan, Tao, and Zhang [Killip et al. 2008; 2009; Tao et al. 2007]. For further
discussion of this equation we refer the interested reader to the lecture notes [Killip and Visan 2013].

The large group of symmetries for the inequality (2) is a significant obstruction to characterizing its
near-optimizers. Besides translation and scaling symmetry, both sides are also invariant under Galilei
transformations

w s g, (1, x) 1= el (R0 160Phy ¢ x —tgg), £ e RY.

This last symmetry emerges only at L? regularity and creates an additional layer of complexity. In
particular, while the Littlewood—Paley decomposition is extremely well-adapted to higher Sobolev
regularity variants of (2), such as the H !-critical estimate

ull} 2@+2)/@-2) < [[Vu(0)| 12 (wa).
t.x

it is useless for inverting the L2-critical estimate because one has no a priori knowledge of where
the solution is concentrated in frequency. Instead, the mass-critical refinements cited above combine
space-time Fourier-analytic arguments with restriction theory for the paraboloid.

In physical applications, one is naturally led to consider variants of the mass-critical equation (4) with
external potentials, such as the harmonic oscillator

id;u = (—%A+wax})u:l:|u|3u, u(O,-)ELZ(Rd). 5)
J

For instance, the cubic equation (with a |u|?u nonlinearity) has been proposed as a model for Bose—
Einstein condensates in a laboratory trap [Zhang 2000], where ||u(?)]|;2 represents the total number of
particles, and in two space dimensions the critical Sobolev norm for this equation is precisely L2,

While introducing the potential breaks scaling symmetry, one nonetheless expects solutions with
highly concentrated initial data to be approximated, for short times, by solutions to the scale-invariant
equation (4). Less obviously, the equation is invariant under “generalized” Galilei boosts, detailed in
Lemma 1.1 below, where the spatial and frequency parameters act together on the solutions; in the
constant-coefficient setting, this reduces to the usual independent space translation and Galilei boost
symmetries.
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This article develops refined Strichartz estimates for the linear equation
idu=(~2A+V)u, u(,)eL*RY),

for a class V of real-valued potentials V(¢, x) that merely satisfy similar bounds as the harmonic oscillator
and possibly also depend on time. Specifically, define

Vi={V:RxR? > R:[|0%V]||zoc < My for2 <|a| <N = N(d)} (6)
for fixed constants 0 < M1, M, ..., My. These estimates play a key role in the large-data theory for

nontranslation-invariant L2-critical Cauchy problems typified by (5). We briefly discuss the nonlinear
problem in the last section of the introduction.

The case of one space dimension was treated in a previous joint work with Killip and Visan [Jao et al.
2019]. This paper extends the methods introduced there to higher dimensions.

1A. The setup. To clarify the structure of our arguments we begin with a slightly more general setup.
Hence we consider time-dependent, real-valued symbols a(z, x, £) which are measurable in ¢ and satisfy

|8§8§a|§calg for all |x| + |B] > 2. 7
Further, we assume the characteristic curvature condition
||[detage| — 1| + [llagell — 1] <& ®)

for some small O < & < 1. For concreteness, all matrix norms in this article denote the Hilbert—Schmidt
norm, but the exact choice of norm is inessential.
These hypotheses encompass several interesting situations:

¢ Schrodinger Hamiltonians with time-dependent scalar potentials a = %|§ |2+ V(t,x), where V € V.

¢ Electromagnetic-type symbols a = %|E |2 4+ b(x, &) + V(t, x), where the first-order symbol b(x, )
is real and satisfies [0 aﬂb| < cqp forall ||+ |B] > 1,and V €V is a scalar potential as before.

¢ The frequency-1 portion of the Laplacian on a curved background.

For a symbol as defined above, write a” (¢, x, D) for its Weyl quantization. Let U(z, s) denote its
unitary propagator on L2(R%), so that u := U(t, s)u is the solution to the equation

(D +a¥(t,x,D)u=0, u(s,-)=use L>R?). )

Evolution equations of this type were studied in [Koch and Tataru 2005]. While translations and
modulations do not preserve (9), they do preserve the class of equations defined by our assumptions. For
an element (xo, &) of classical phase space, define the “phase-space translation” operator 7 (xg, &o) by

70(20) f(x) = e X050 £(x — xp).

Then a direct computation, as in the proof of [Koch and Tataru 2005, Proposition 4.3], yields:
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Lemma 1.1. IfU(t, s) is the propagator for the symbol a and o — z° = (x%,£9) is a bicharacteristic
of a, then

U(t,s)m(z5) f = ! @E:20)=0(20) (g Zo(z ),
where U%0 is the propagator for the equation
[Di + (a®)* (1, x. D)Ju =0,
a®(t,z) = a(t, zg +2) — {x, ax(t, z5)) — (£, ag (¢, z5)) — a(zg),

and the phase is defined by

t
6020 = [ ap(e.).65) ~a(e. ) d.

Observe that the transformed symbol ¢Z0 satisfies the same estimates assumed of a. As a special case,
symbols of the form a = %|§|2 + (A, x).§) +wji (t)x7 x* are themselves preserved by the mapping
ara’ if A= A;dx/ is a 1-form whose components are linear functions of the space variables with
time-dependent coefficients. In two and three space dimensions, such A are potentials for uniform
magnetic fields.

The preceding hypotheses imply that (9) satisfies a local-in-time dispersive estimate:

Lemma 1.2. If the symbol a satisfies the conditions (7) and (8), there exists To > 0 such that the
propagator U(t, ) for the evolution equation (9) satisfies the estimate

10 )10 S 1t =517 forall |t —s| < To. (10)

Hence, the solutions to (9) satisfy local-in-time Strichartz estimates

||u||L?L§C(1de) S| ||”s||L2(Rd)

for any compact time interval I, and for all Strichartz exponents (g, r) satisfying 2 <gq,r < oo, % + % = %,
and (q,r,d) # (2, 00, 2).

Proof sketch. The dispersive estimate is shown in [Koch and Tataru 2005, Proposition 4.7] using
wavepacket parametrices. Standard arguments (see [Ginibre and Velo 1995; Keel and Tao 1998]) then
yield the Strichartz estimates. O

It suffices to choose the time increment T so that
To <1, TOHaxE” + T()zllaxx” =7, (11)
where 1 = n(d) is a small parameter depending only on the dimension.

Remark. The concrete cases of scalar potentials and magnetic potentials were studied much earlier by
Fujiwara [1979] and Yajima [1991], respectively, who proved the dispersive bound using Fourier integral
parametrices.
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We seek refinements of the Strichartz inequality analogous to those for the constant-coefficient equation.
The earlier arguments for the constant-coefficient equation relied crucially on subtle bilinear estimates
from Fourier restriction theory. We isolate and reformulate the technical lynchpin in the present context.

Hypothesis 1. There exist To >0and 1 < p < % such that the following holds: if f, g € L2(R%) have
[frequency supports in sets of diameter < N which are separated by distance ~ N, then

IUZ @O FUZOEIL? (10, To]xre) < N7 fllz2@ay €l L2 ey (12)

foralls € [-1,1] and all 0 < A < 1, where U3 (t) = Uj (¢, 0) are the propagators for the time-translated
and rescaled symbols a3 := A2a(s + A%t Ax, A7LE).

When a = %|S |2, the scaling and translation parameters A, s are extraneous, and inequalities of the
form (12) are called (adjoint) bilinear Fourier restriction estimates. They were utilized in [Bégout and
Vargas 2007] to obtain mass-critical Strichartz refinements in dimension 3 and higher (the results in
dimensions 1 and 2, due to Carles and Keraani [2007], Merle and Vega [1998], and Moyua, Vargas and
Vega [Moyua et al. 1999] utilized linear restriction estimates). For further discussion of such estimates,
see for instance [Tao 2003].

In the first part of this paper, we connect (12) to Strichartz refinements. To measure concentration in
the solution we test it against scaled, modulated, and translated wavepackets. Set

¥

_lx2 _d _3d
Y(x) =cqge” 2, Yxog =7(x0.60)Y, cq=2"27m" 4, (13)
where S is the unitary rescaling S; f(x) := A~4/2 f(A~1x).
Theorem 1.3. If Hypothesis 1 holds, then there exists 0 < 6 < 1 such that for all initial data ug € L*(R?)
the solution u to (9) satisfies

0 —
lull z2ca+27a (—1,11xre) < ( sup [(S3Vxo.60 (D)) L2ma) ) ||u0||iz?Rd)- (14)
0<A<1,|t|<1, (x0,60)€T*RY

The generality of our hypotheses requires us to formulate the estimates locally in time. Indeed, for
most potentials the left side of the Strichartz estimate (14) is infinite if one integrates over R x R?; for
instance, the harmonic oscillator potential V = |x|? admits periodic-in-time solutions. Nonetheless, our
methods do yield (a new proof of) a global-in-time refined Strichartz estimate

6 1-
||M||L2(d+2)/d(Rde) < ( sup |<S)L‘//xo,$0’u(l))L2(Rd)|) ”uO”Lz(Rd)
- A>0, t€R, (x0,60)€T*RY

for solutions to the constant-coefficient equation (1).
In applications to PDEs, such a refined estimate is nowadays interpreted in the framework of concen-
tration compactness and yields profile decompositions via repeated application of the following:

Lemma 1.4. Assume the estimate (14) holds. Let u,, := U(t) f, be a sequence of linear solutions with

initial data u, (0) = f, € L*(R?) such that | fnllp2may < A < o0 and |[up || 2w@+2/a = & > 0. Then,
r.x

after passing to a subsequence, there exist parameters
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and a function 0 # ¢ € L2(R?) such that

—1¢—1 .12
wT(Xn, &n) SAn Uy, —~¢ inlL~,
1—6

& [
> =
ol ze(5) "
Further,

| fn ||iz = fu— U(fn)_IS)Ln”(xna Sn)SA,,‘P”iz - ||U([n)_ISAn7T(xnv En)S)Ln‘p”iz — 0.

Proof. By the estimate (14), there exist Ay, ¢, Xn, &, such that
1-6

(S Ve Ult) So)| = 10, 7 C6n. E0) 71 SN U ) S| 2 8(3) "

The sequence 7 (x,, &,) ! S;nl U(t,) f, is bounded in L2 and therefore converges weakly in L? to some ¢
after passing to a subsequence. The lower bound on ||¢||; 2 is immediate, while

I fall72 = I fo = Utn) ™ Sp, 0 (Xn s En) 17 2 — U (1) ™" S, 70 (X, 60) 17
= 2Re( fu = Utn) ™" Si, 7 (X, §n), U(tn) " S, 70 (. 60)9)
= 2Re( (xn, £n) 7" S3 Utn) fn — b, ) — 0. m
Further discussion of profile decompositions and inverse Strichartz theorems may be found in the

lecture notes [Killip and Visan 2013].
In the second part of this paper, we verify Hypothesis 1 for scalar potentials.

Theorem 1.5. Consider a Schridinger operator of the form H(t) = —%A + V(t,x), where V € V.
Suppose S1, S» C Rg are subsets of Fourier space with diam(S;) < N and cIN > dist(S1, S2) > cN
for some 0 < ¢ < 1. There exists a constant n = 1(c) > 0 such that if to > 0 satisfies

(to+ )02V |Loo <1,

then, for any f.g € L*(R?) with supp(f) C Sy and supp(g) C Sa, the corresponding linear solutions
u="U(,0)f and v = U(t,0)g satisfy the estimate

U
+

3 d+2
9<—g

qd—4t2
[0l oy oty Se N0 0 Sz lglpa forat G52 < Sy

foranye >0, N>1,andV € V.

For V = 0, the above estimate was conjectured by Klainerman and Machedon without the epsilon loss,
and first proved in [Wolff 2001] for the wave equation and subsequently in [Tao 2003] for the Schrédinger
equation (both with the epsilon loss). Strictly speaking, the time truncation is not present in the original
formulations of those estimates, but may be easily removed by a rescaling and limiting argument.

Finally, while we make no attempt to address general magnetic potentials, a simple case with some
physical relevance does essentially follow from the proof for scalar potentials. The necessary modifications
for the following theorem are sketched in the last section.
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Theorem 1.6. The conclusion of the previous theorem holds for Schrodinger operators of the form
H() = —%(V —iA)? + V(t,x), where A = A; dx’ is a 1-form whose components are linear in the
space variables (i.e., the vector potential for a uniform magnetic field), and the condition on the time

increment tg is replaced by

TOllaxSH + (70 + T(%)”“xx | <.

We remark that the restriction estimate (12) does not hold for all symbols satisfying the conditions (7)
and (8). For instance, it was observed by in [Vargas 2005] that when U(t) = '’ 9xy ig the “nonelliptic”
Schrodinger propagator in two space dimensions (thus a = ££,), the bilinear restriction estimate (7)
can fail unless the frequency supports of the two inputs are not only disjoint but also separated in both
Fourier coordinates. In fact, the refinement (14) as stated is false for the nonelliptic equation; for a correct
formulation, one should enlarge the symmetry group on the right side to include the hyperbolic rescalings
u(x, y) = u(ux, = 'y); see [Rogers and Vargas 2006].

While the classical bicharacteristics of elliptic and nonelliptic propagators seemingly have no qualitative
difference — and indeed the dispersive estimates hold equally well for both — the quantum propagators
have radically different behavior in terms of oscillations in time. If one compares the traveling wave
solutions

o X AYE—SEHE)]  ilxEetyEy —ticdy]

it is evident that unlike in the elliptic case two solutions to the nonelliptic equation which are well-separated
in spatial frequency need not decouple in time.

The lesson of this counterexample is that while the dispersive and Strichartz estimates follow directly
from properties of the classical Hamiltonian flow, an inverse Strichartz estimate depends more subtly
on the temporal oscillations of the quantum evolution, which is connected to the bilinear decoupling
estimates.

1B. The main ideas. Suppose one has initial data u¢ € L? such that the corresponding solution u has
nontrivial Strichartz norm. Then, we need to identify a bubble of concentration in u, characterized by
several parameters that reflect the underlying symmetries in the problem. In the L2-critical setting, the
relevant features consist of a significant length scale A¢ as well as the position xg, frequency &p, and
time 7y when concentration occurs.

The existing proofs of Strichartz refinements for the constant-coefficient equation first use space-time
Fourier analysis (including restriction estimates) to identify a cube Q in Fourier space accounting for a
significant portion of the space-time norm of u, which reveals the frequency center &y and scale A¢ of the
concentration. For example, [Bégout and Vargas 2007] first establishes an estimate of the form

] ©

iA L, . 1_

e Pl s (s 1015 [ 1F @1 ds) 1111502,
Q dyadic cubes 0

Then, the time 7o and position xo are recovered via a separate physical-space argument. These arguments
ultimately rely on the fact that when V' = 0, the equation is diagonalized by the Fourier transform.
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For equations with variable coefficients, it is more natural to consider position x¢ and frequency &g
together as a point in phase space, which propagates along the bicharacteristics for the equation. Following
the approach in [Jao et al. 2019] for the one-dimensional equation, we work in the physical space and first
isolate a significant time interval [t — A3, 7o + AZ], which also suggests a characteristic scale 4. Then
xo and & are recovered by phase-space techniques.

The first part of the argument in [Jao et al. 2019] carries over essentially unchanged; however, the
ensuing phase-space analysis in higher dimensions is more involved and occupies the bulk of this article.

1C. An application to mass-critical NLS. This article was originally motivated by the problem of
proving global well-posedness for the mass-critical quantum harmonic oscillator

idju= (—%A—I—wax})u:ﬂuﬁu. (16)
J
By spectral theory, the Cauchy problem for (16) is naturally posed in the “harmonic” Sobolev spaces

%
ug € H® := {uo el?: (—A—I—walxlz) , U GLZ}.
J

Global existence for data in the “energy” space H! was studied in [Zhang 2005]. More recently, Poiret,
Robert, and Thomann [Poiret et al. 2014] established probabilistic well-posedness in two space dimensions
for all subcritical cases 0 < s < 1, as well as for other supercritical problems. Another recent contribution
by Burq, Thomann, and Tzvetkov [Burq et al. 2013] constructs Gibbs measures and proves probabilistic
global well-posedness for the critical case in one dimension.

It is well-known that the isotropic harmonic oscillator w; = 1 may be “trivially” solved; to construct
solutions on unit-length time intervals for arbitrary L? data, it suffices to observe that u is a solution
of (4) on R; x R;‘g if and only if its Lens transform

1 X _ilxPant
Lu(t,x):= ———ultant, — |e 2
(cost)2

solves (16) on (—% X %) ;X [Rif with the same initial data. However, this trick relies on algebraic
cancellations that no longer hold for more general harmonic oscillators. For further discussion of
the nonlinear harmonic oscillator as well as its connection with the Lens transform, consult [Carles
2011].

To solve (16) for large data in the critical space L2, the concentration compactness and rigidity approach
is much more promising. Experience has shown that constructing suitable profile decompositions is a
core difficulty in implementing this strategy for dispersive equations with broken symmetries (e.g., loss
of translation-invariance). For instance, see [Jao 2016] for the energy-critical variant of the quantum
harmonic oscillator, as well as [Ionescu et al. 2012; Killip et al. 2016] for other energy-critical NLS on
non-Euclidean domains. Thus this article supplies the main harmonic analysis input for the deterministic

large-data theory of (16) at the critical regularity.
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2. Preliminaries

2A. Notation. We use the Japanese bracket notation (x) := (1 + |x|?)'/2

2B. Classical flow estimates. We collect some elementary properties of the classical Hamiltonian flow
x=ag x(0)=y,
§=—ax. £0)=n.
Solutions to this system are bicharacteristics. For a point z = (x, £) in phase space, let 0 — z? = (x°,£9)

denote the bicharacteristic initialized at (x, £). Write (v, n) = (x*(y, 1), €' (y, n)) for the flow map.
The linearization of (17) satisfies the following Gronwall estimates:

(17)

Lemma 2.1. Suppose |t| ||8)26 Sa||Lc>o < 1. Then

t
o =/0 age(T. X7 E) dt 4+ Ot |axe| llagell) + O |laxxll llage [|).

I I+ O(t)agxcl) + O llaxx |l lagel),

Ot (18)
—— =1+ 0(llaxe) + O ||axx] llagel),

t
o /0 —axx (T, x5, E0) dT + O [laxx | llaxe ) + O axx ] lagel)-
Proof. The linearized system takes the form

Y =agyy +agen,
nN=—daxxy —axgn.

A preliminary application of Gronwall implies |y (t)| + [7(¢)| < |y (0)| + [7(0)].
Consider initial data y(0) = I, n(0) = 0. Then

t t
e /0 v | dT + /0 laxen(0)] dr.

so |n(?)| < tllaxx||- Substituting this into the equation for y, we deduce

t t
Iy—IIS/O Iagxylder/O lagenl dv < tllagxll + 1> lagell laxxll.

This in turn yields the refinement

2 3 2
S tllaxx | llagx | + 27 laxx I lagell-

t
‘n(l)—i—/ Axx dT
0

The case y(0) =0, n(0) = I is similar. We have

t t
Iy(t)lsfo |assi7|df+/0 agylds = ()] < tllagel.
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which yields
t t
@O —1] < /O sl lagell 7 + /0 laxenlde < tllae ]l + 2 laxel lage].

S P |agx || lagell + 2 laxx || lage |- O

t
‘y(l)—/o aggdt
These imply, in view of the normalizations (8), the integrated estimates
xp—xy=x]—x3+[I'+ 0(e)](t —5)(E] —&3)
+ O(|t = slllaxg D(Ix1 — x3| + [t = s]1&] — &31)
+0(t = s laxx (] — 23] + It = s]1&] = &),
§1—8 =& — & + O(r = sllaxxID|x] — x3]
+O(lt = s llaxx| llaxg D1x{ — x31 + O(1t = s laxg D167 — &3
+0(|t = sPllaxx |?)|x = x5] + Ol = s [laxx )€ = £51,

(19)

where I’ is an orthogonal matrix which equals the identity if ag¢ is positive-definite. In particular, we

have:

Corollary 2.2. If |x{ —x5| <r, then |x} —x%| = Cr whenever 2Cr/|£{ — &5| < |t —s| < To.
Physically, this means that two particles colliding with sufficiently large relative velocity will only

interact once in the time window of interest.

Next, we record a technical lemma first proved in the 1-dimensional case [Jao et al. 2019, Lemma 2.2].
This is used in the proof of Lemma 4.3 below but the computations use the preceding estimates.

Lemma 2.3. There exists a constant C = C(]|0%a|)) > 0 so that if O, = (0, 1) + [-1,1]2¢ € T*R?¢ and
r >1, then
U D) (b +10y) C Do)z + CrQy).

|t—to|<min(In|~1,1)

In other words, if the bicharacteristic z! starting at z € T*R4 passes through the cube z)) + rQy in
phase space during some time window |t — 9| < min(|n|™!, 1), then it must lie in the dilate 260 +CrQy
at time 7q.

Proof. If z € ®(1)~(z} + rQy), by definition we have |x’ —x}| < r and |§’ — ] — | < r. Assuming
that || > 1, the estimates (19) imply
[xo—xg’l <+ (nl+n)+0(n " 2 a )+l  (nl+r)+0(n~219%a ) o+ 0l =" (1nl+7))

<Cr,

€0 —£0"—n| < r+ 00l Hlaxx Dr+(nl 2 llaxxl laxelDr+0 (0~ laxe D (nl+r)

+(nl 7> laxx I?)r+0(nl > laxx ) (Inl+r)
<Cr.

The case |n| < 1 is similar. O
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2C. Wavepackets. Let R > 1be ascale and zg = (xg, £9) be a point in phase space. A scale-R wavepacket
at zo is a Schwartz function ¢;, such that ¢, and its Fourier transform qASZO concentrate in the regions
|x —xo| < RY? and |€ — &y| < R™1/2, respectively:

-N —-N

1 X—X _1 A —
|(Riax)k¢zo<x)|sk,N< R1°> (R %ag)"¢zo<5)|sk,N<§R_f°> for all k, N = 0.
2 2

There are many ways to decompose L2 functions into linear combinations of wavepackets. For the first
part of this article, it is technically more convenient to use a continuous decomposition. Later on in
Section 6C, we switch to a discrete version which is more common in the restriction theory literature.

In this section we recall a standard continuous wavepacket transform. To keep things simple we work
at unit scale since that is all we shall need. For a function f € L2(R%), its Bargmann transform or FBI
transform is the function Tf € L2(T*R?) defined by

Tf(z) =(f.¥z2)12ra) Y, =m(z)y asin (13).

The transform satisfies a Plancherel identity ||7f ||, 2(7+ga) = |.f | 2(ra); dually, for any wavepacket
coefficients F € L?(T*R%), one has

i =< ||F||L§

IT*Fll2 = H [ Fev=d:
T*R4 L2

Indeed, 7 T* is the orthogonal projection onto TL2(R%). Then as T*T = I, any f € L2(R?) can be
resolved (nonuniquely) into a continuous superposition of wavepackets

=[S

Applying the propagator U(¢) to both sides and using linearity and the next lemma, one obtains a
wavepacket decomposition

u(t.x) = / w63y dz, uz(tox) = LIUOP:)).

of Schrédinger solutions. For brevity we sometimes omit the arguments and write f = [ f; dz, u =

Juzdz.

Lemma 2.4 (evolution of a packet). If Y, is a scale-1 wavepacket, U(t) is the propagator for (9), and
Zo > Z(t) is the bicharacteristic starting at zo, then U(t) Yz, is a scale-1 wavepacket concentrated at 26

forall |t| = O(1).

Proof sketch. Using Lemma 1.1 we reduce to the case zo = 0 and also ensure that the symbol a(¢, x, §)
vanishes to second order at (x, £) = (0, 0) in addition to satisfying the bounds (7). Then it suffices to
show that propagator U(¢) for such symbols maps Schwartz functions to Schwartz functions on unit time
scales. This is done using weighted Sobolev estimates as in [Koch and Tataru 2005, Section 4]. O
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The term wavepacket shall also refer to space-time functions of the form U(¢)y;, not just the fixed
time slices. Later it will be essential to exploit not just the space-time localization of wavepackets but
also their phase as described in Lemma 1.1.

3. Choosing a length scale

We begin with the following lemma from [Jao et al. 2019, Proposition 3.1], obtained by a variant of the
usual 7' T* derivation of the Strichartz estimates. While that article concerned just Schrodinger operators
with scalar potentials, the proof works equally well in the current more general setting.

Proposition 3.1. Suppose U(t, s) satisfies a local-in-time dispersive estimate as in Lemma 1.2. Let (q, 1)
be Strichartz exponents (i.e., satisfying the conditions in that lemma) with 2 < q < co. Assume that
f € LA(RY) satisfies I/ L2@way = 1 and

IU@) fllLe Ly —1,11xra) = €
Then there is a time interval J C [—1, 1] such that

_ 1  _a_
||U(t,s)f||L?_1L§(Jde) > |J|a@TDga—2,

Equivalently,

__ 1 1-2 2
”U(Z’S)f”LqL’S(JGS[EII) 1]|J| TN 5) [l o L rmay) 12y

Note that by pigeonholing we may always assume that |J| < Ty, where Ty is the time increment
selected in (11).
Now let (g, r) be the Strichartz exponents determined by the conditions % + % = % andg—1=r.It

2(d+2)
d

is easy to see that 2 < r < <q < 00.

For each J = [s — u,s + u] C [—1, 1], we write

weor=(2) 00 (5 7=(5) (/)

where U (¢, ) is the propagator for the rescaled equation (D; + a¥)u = 0, and

~ Iz i To
t’ l = _t’ P - .
a(,x,§) Toa(s—l—TO Tox ME)

Changing variables, we obtain

Y

1 ~
|J|"a@=D ||U(tvs)f||L't1_1Lr(JXRd) = ”U(t)f”L;’_lLfc([—To,To]x[Rd)'

By interpolating with L%, +([=To, To] x R%), which is bounded by unitarity, we see that Theorem 1.3

2(d+2)
d

would follow if we prove that for some 2 < gg < and 0 < 0 < 1, the scale-1 refined estimate

10300 oo 10, Tty S (09 149 INCNFILe (20)

holds for all s € [-1,1], 0 < A <1, where the notation U3 (¢) is as in Hypothesis 1.
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Over the next two sections we establish:

Proposition 3.2. If Hypothesis 1 holds, then so does the estimate (20).

4. A refined bilinear L2 estimate

In previous work [Jao et al. 2019], we proved (20) when d = 1 with go = 4 by viewing the inequality
as a bilinear L? estimate and exploit orthogonality. Such a direct approach fails in d > 2 dimensions;
since 2 < % < 4, the left side of (20) could well be infinite when go = 4. To obtain a refined linear

2(d+2)
d

L90 estimate for go < , we also begin by interpreting it as a refined bilinear L90/2 estimate, but

use dyadic decomposition and interpolate between two microlocalized estimates:

* A refined bilinear L2 estimate (“refined” in the sense of exhibiting a sup over wavepacket coefficients)
with some loss in the frequency separation of the inputs.

e A bilinear L? estimate for some p < % which yields gains in the frequency separation, essentially

the content of Hypothesis 1.

This section discusses the former. In the next section we put together the two estimates, and the
LP estimate is established in the remainder of the paper.

Proposition 4.1. Suppose [ = [ fz¥,dz and g = [ gV, dz are L>(R?) initial data with corre-
sponding Schrodinger evolutions u = [uz;dz and v = [v;dz, where uz(t,x) = f;[U@)y:](x),
vz(t,x) = g-[U(t)¥z](x). Then

H/ Uz Uz, dz1dzs
|&1—&2|~N

for some o =a(d)and 1 < p <2.

1 1 1 1
S N*(sup | f2177 | f21]2) (sup lgz1 7" gzl ],) 2D
L2([—To,To]xR4) z =z z

Proof. Square the left side and expand

/ fr1820 fo3824 KN (21,22, 23, 24) dz1 dz2 dz3 d 24,
where Ky := K)|g—g|~N, |g3—al~N > and

K(z1,22,23,24) = (UOV2, U0z, UOVUOV2)12 (1o 1ol
The estimate would follow if we could show that

N~%zy —23)%(z3 — 24)?| Ky (Z)| is a bounded operator on L; .z, for some 6 >0, (22)

as Young’s inequality would then imply

H/uzdz

2 ; ;
E ( f o gm0 — 22)20 dizy dzZ) ( / fongealP (2 —2a) 2 dzs d24)
L

2 2 2 2
Ssup | fz| 7" sup gz 7" | f [ llgll;> forsome 1 < p<2.
z z
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In view of the crude bound |K(Z)| < min; x(z; — z) L, which follows simply from the space-time
supports of the wavepackets, (22) would follow from:

Lemma 4.2. The localized kernel K y satisfies

1-6
KNI lge, pz,, SN

where o is a constant depending only on the dimension.

Proof of Lemma 4.2. In view of the unit scale spatial localization of the wavepackets and the propagation
estimates (19), we may further truncate the kernel to the phase-space region

R ={|x1 —x2| <4|&1 — &2, |x3 —xa| < 4[E3 —E4]}.

For instance, if |x] — x3| > 4|67 — &3] and |t —s| < T with the parameter 7 in (11) chosen sufficiently
small,

f = xhl = (1=t = s 03V oo P IRV L) et — 3]
— (It =sl+ 1t =5 |03V llpooel IRV o) ef g5
> 1] = x50 = 311 —s[1E] - &
> glxi —x3).
Therefore |Kn (1 — y )| <ar (x1 —x2) "M (x3 —x4) " N~M for any M > 0. Thus it suffices to prove
that
IKN xRl 222 S N

An estimate of this flavor was proved in the 1-dimensional case [Jao et al. 2019]. We shall argue
similarly, but the proof is somewhat simpler since we aim for a cruder bound at this stage, completely
ignoring temporal oscillations, and defer the more delicate analysis to the bilinear L? estimate.

Partition the 4-particle phase space (T*R?)* according to the degree of physical interaction between
the particles. Let

2 * 4. :
Eo = {z e (T*RY)*: ltr|n£19()r2:;1{x|x} —x,t€| < 1},

Ep =17 e (T*R%)* : 251 < min max|x! — x’| <2k},
e={Fel ) |t|sToj,k|’ =2

and decompose the kernel into Ky = > k>0 KN X E; - Then we have the pointwise bound

( i(z) + é—é(z) _ S;(E) _ E:.(E)>_M

(|61@ — g2 4 g1@ _ g2

where #(Z) is a time minimizing the “mutual distance” max;, ; |x; —x?|. Further, the additional localization

|K(Z)| Sy 27FM Z € Ey, (23)

to R implies, by the estimates (19), that

|61 — & — (1 — &2)| < 15161 — &2,
|65 — &4 — (53— Ea)| < 1q163 —&al
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t | e zh 421
Z 3“4
2 2 + QU«2
[
t z3+z
z 3'°4
1| o > T QMl

Figure 1. Z,,, ,, comprises all (z1,z2) such that z{ and z} belong to the depicted
phase-space boxes for ¢ in the interval I.

for all [t| < Ty. In particular [&; 1@ g?é(z)l ~ |&; 1@ gj(z)| ~ N; thus, while the & J’ may vary rapidly with
time if x’ | are extremely far from the origin, the relative frequencies retain the same order of magnitude.

Assuming the bound (23) for the moment, we apply Schur’s test to complete the proof of Lemma 4.2.
Fix (z3, z4) belonging to the projection Ej — T*[R{d x T*R,, define

Z4°
Ex(z3,z4) ={(21,22) : (21,22, 23, 24) € Ei},

and let #1 be the time minimizing |x;1 — xi‘ | <2k For any (z1,25) € Ex(z3, z4), the mutual distance
. t _ t t t t t . . . . . . .
max; i |x y xk| between x7, X5, X3, X, 1S minimized in the time window

2k
I=1t:0t—t| <min[1, ——— !
§t I “'Nmm( |s3—s4|)}

as for all other times we have |x} —x]| > 2K (Corollary 2.2).

We estimate the size of the level sets of |K|. For a momentum £ € R?, denote by Q¢ = (0,%) +
[—1,1]4 x [-1,1]¢ C T*R? the unit phase-space box centered at (0, £), and write ®' = ®(z, 0) for the
propagator on classical phase space relative to time O for the Hamiltonian A(x, §) = %|§ |2 4+ V(t, x). For
U1, U2 € [R{d, define

U(q)t®q)t) 1 3+th+2kQ % z3+z 4+2kQ
Ml,Mz 2 1 B w2
tel

This set is depicted schematically in Figure 1 when & = 0, and corresponds to the pairs of wave packets
(z1,22) € Em(z3,z4) with momenta (w1, o) relative to the wavepackets (z3,z4) at the “collision
time” 1(Z).
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We note that Ex (z3,24) CU,,, ypezd Ziur 10+ and recall the following estimate from the 1-dimensional
paper, whose proof we reproduce below for convenience:

Lemma 4.3. | Z 1 o] S 244K max(1, iy, | (2. (24)

Proof. Without loss assume |1| > |i2|. Partition the interval I into subintervals of length |uq| ™! if
11 # 0 and into subintervals of length 1 if yq = 0. For each ¢’ in the partition, Lemma 2.3 implies that
for some constant C > 0 we have

t t
U <I>(z)—1( st 4+2ka)Cq>(I) 1(%%2@“1),

|z—t/|<min(1,|w1|~1)
(25 +zh _ +z
U o0 (3572 +20m) co (B2 02t 0u)
[z—¢/|<min(1, |1 |~1)

and so

U omssnr (B mo,) < (3 m0,)

[t—¢/|<min(1, |1~ 1)
/ "y—1 Zg/ +Zfl/ k Zg +Zétl/ k
C(@(l‘)@q)(l‘ )) T+C2 Q,Ud X T+C2 QMZ .

By Liouville’s theorem, the right side has measure 0(2*%) in (T*R%)2 The claim follows by summing
over the partition. O

For each (z1, z2) € Ex(z3,24) N Z 4,1, We have by definition

t
c 42 4247

k
i 5 +2 QMj'
Thus 3 z
g0 4O g0 (@ _ w4002k,
1O -6 — = + O
Hence when (z1,22) € Z; . for any M we have

-M
KG)| sy 2 Mk T p2) . (25)

(1 — pa| + 16 — D))

To apply Schur’s test, we combine the estimates (24), (25), and evaluate

/|KN(21,22,Z3,24)|1_8)(Ek(2) dzydz < ) K\ xE, dzadzs
wi,ua€z4 Zuyuz
su27ME 3 MRy )M
w1 —p2| SN +2%
< Ndz—(M—d)k‘
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For fixed z1, z5, the integral over z3 and z4 is estimated the same way. This concludes the proof of
Lemma 4.2, modulo some remarks on the crucial pointwise bound (23).
To obtain that estimate, we use Lemma 1.1 to write

4
KGZ) = /e"‘l’ [TV v (x—xh)dxd,
j=1
O, x;2) = ) ojl(x = x}, &) + ¢ (2, x0, 60)],
J

where 0 = (4, +, —, —), and we set Hj Cj 1= C1€2C3C4.
It is convenient to partition the integral further, writing

US (O y(x—xh) =Y US (O (x —xhby, (x —x1),

e,-zo

where > ¢>0 O 1s a partition of unity with 6y supported on the dyadic annulus of radius ~ 2t ForZ e E >
only the terms
4
K;(Z) = / P TTU )y (x —x5)by, (x —x}) dx .,

j=1

with £* := max; {; 2 k, will be nonzero.
By Lemma 2.1, the integral is supported on the space-time region

2t

1(Z t(Z

i(Z) _ Sk(2)|

{(l,x):|t—t(§)|§min(l, ) and |x—x}|§2€f ,

max;,; |§
and for all such ¢ we have

o —xpls2Y lg -5 - P -5P) 52
Integrating by parts in x, we may produce as many factors of |§] + &5 — &5 —£1| ! as desired and freeze
t = t(Z) to obtain

(éi(g)_}_sé(z)_ ;(2)_54[1(2))_]”

|KZ(§)| <y 278M . . . = for any M > 0,
(1619 - 59 + 159 - )
and the bound (23) follows upon summing over . O
This completes the proof of Proposition 4.1. O

5. Proof of Theorem 1.3

We prove Proposition 3.2 and hence Theorem 1.3. Begin with a Whitney decomposition of

®RIxRH\ (¢8R = | ) | 0.

Ne2Z2 QeQn
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where Qy is the set of dyadic cubes in R? x R? with diameter ~ N and distance ~ N to the diagonal.
For each O € Qp, its characteristic function factors into

12 8) = 22 E) 197 6),

0,j

where x5’ are characteristic functions of d-dimensional cubes of width N. Then we can take the

decomposition

161 6) = roEr e + Y > xy 157 ®).

N>1Q€Qn

where yo (&1, &) is supported on the set [§7 —&| < 1.
Now suppose v and v are linear solutions with initial data f = [ f;Y,dz and g = [ g,V dz,

respectively, where f; = (f, ¥;) and g; = (g, V). Writingu, = fU@)¥,, v; = g, U()y¥,, we deduce
as a consequence of Hypothesis 1 that

H Z /uzlv22d21dzz

Q€N

SN fellpz gzl 2 (26)
L4([-To,To]xR4)

for each N > 1. Indeed, for each cube Q the integral has a product structure

/Q 2 s, dz1 dzs = ( / wz 2N (E) dsl) ( / 02,222 (E) dxzdsz)
= U(r)[ / fa xS EN Yz, dx dsl]U(z)[ / g X2 (€)Y, dxa dsz].

By the rapid decay of the Wavepackets we may harmlessly insert frequency cutoffs y 9.J (D), where
)( N are slightly fattened versions of X 7 and still have supports separated by distance ~ N, and apply

—8

f Fox 2V € dy d; / g0 22 (E2) dxz s

Hypothesis 1 to estimate
L2(R4)

H/ Uz Uz, dZ1d2Z2
o
SN a2 Ol g x5 x®)ll 2.

The left side of (26) is therefore bounded by

La L2(R9)

|—

SN fa T ©)g2 ||gz)(1%’2X(§)||L§§N_8( Yol ®©l1? ) ( > llgzx?v’z@llig)z

Qeon QeQy QeQn
)
<N ”fz”Lg ”gz”L%v

as claimed.
Now decompose the product uv into

uv—/uzlvzz)(o(él,éz)dzl dza+ > Y f Uz Uz, dz1 dz2,

N>1Q0eQn
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and estimate each group of terms in L4 for ¢ between p and 2. For the sum over Qn we interpolate
between the L? and L? bounds. Writing cl] = % + %, we have

‘ Z /Quzlv22dzld22 Z /Quzlv22dzld22

0Q€on 0€QnN

1-0 0
=

L4

/ Uz Vz,dz1d2Z2
0o

L»r L2

0eon
1
7

< NI (up £y )) 7 (sup (5. 1) 7 10112 gl )0

and for ¢ sufficiently close to p (hence 6 sufficiently small) the exponent of N is negative.

For the “near-diagonal” sum, we interpolate between L! and L2 For the L! bound we simply use
Minkowski’s inequality and the estimate |U(t)¥z, U(t)Vz, |11 <N (X1 —x2) N when |£; —&| <1 to
obtain

H/ Uz Uz, x0(61,62) dx1 dxp d§y dé>

1 5/|f21gzzl<xl_xz)_NXO(SI’sZ)dZI dzy
L

< Hf}HLgngHLg,
which when combined with Proposition 4.1 yields

1-¢ o’

H/uz,vm)(o(fl,éz)dzldzz < "/uzl vz, x0(§1,62)dz1dz2 /uzlvzzxo(él’SZ)dzleZ
La

L1 L2

S[Gsupl £z (supl=) 7 1" (1 2 Nzl =+
< Gup (£ sup g 2) D (1 g2 Igl) =47

1 _ 0’
forsome1<p<2,wherea—l—9/+7.

Summing in N, we conclude that
L Al 1-5
luvliLe < [Gup (£ vzD? (sup (g, ) D7 ] (N2 gl ) >
z z
for some 6 = 6(p) € (1, 432). Taking u = v we obtain Proposition 3.2.

6. The restriction-type estimate

This purpose of this section is to prove Theorem 1.5.
We shall systematically use the following notation. For N > 1 and a potential V, we consider the
rescaled potentials

Vn(t,x):= N"2V(N2t, N~ 1x).

Let U(t,s) and Uy (¢, s) denote the propagators for the corresponding Schrodinger operators H (¢) :=
—%A +Vand Hy(?) := —% A+ V. We will often use the letter U to write the propagators for different
potentials V' € V; this ambiguity will not cause any serious issue, however, since all the estimates we
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shall need are valid uniformly over V. Further, due to the time-translation invariance of our assumptions
we shall usually just consider the propagator from time 0 and write U(¢) := U(¢,0), Un(¢) := Upn(2,0).

In the sequel, the letter C will denote a constant, depending only on the dimension ¢, which may
change from line to line.

6A. Preliminary reductions. The hypotheses of Theorem 1.5 are invariant under various transformations
of u and v:

e Galilei boosts u(0) > 7(z)u(0), u +— m(zh)u?°, where u®° satisfies (D; — A + VZ0)u? =0,
u#°(0) = u(0).

e Spatial rotations: for an orthogonal matrix g, (g-u)(z,x) :=u(t, g~
[Di(g-u)—A+(g-V)](g-u)=0.

e Rescaling u > uy = A~4/2y(A=2¢, A1 x) for A > 1. Then u; satisfies (D; — A + Vj)u = 0 with
a smoother potential V3 (£, x) = A72V(A 72, A" 1x).

1. x) satisfies

We may and shall assume hereafter that I vanishes to second order at x = 0; that is, V(¢,0) = 0 and
dxV(t.0) = 0 for all 7. Indeed let z}) = (x}, &) be the bicharacteristic with (xo. &) = (0, 0). Then by
Lemma 1.1,

IU@) fUOglLwtnrarn = [[((z) U (0) )7 (2) U (1))l a+3/@+»
= U (0) fU () gl pa+3/@+n,
and the potential VZ0(z, x) = V(t,x{ + x) — V(t, x5) — xx V (¢, x})) vanishes to second order at x = 0.

Theorem 1.5 is equivalent by rescaling to:

Theorem 6.1. Given S1, S> C [RR? with diam(S;) < 1 and c7 1> dist(S1, S2) > ¢ for some 0 < ¢ < 1,
there exists a constant 1 = 1(c) > 0 such that if V € V and t¢ > 0 satisfies

(T + ) 103V llLgs, <. 27
then, for any f,g € L*(R?) with supp(f) C Sy and supp(g) C S3, the corresponding Schridinger
solutionsuy = Un () f and vy = Un (t)g satisfy the estimate
d+3 _ d+2

o o o2 o2ty Se NEIS o llgllze forall $53 <q <52 8
foranye>0and N > 1.
In fact it suffices to take S7 and S of the form
c
_Z S < — 29
{s ¢ 1_100} )= {s 's+ el_loo} 29)

General S; can be reduced to this case by decomposing f =) j f; and § =) ; & into pieces supported
in small balls and applying an appropriate Galilei boost and rotation for each pair (f;, gx) and possibly
also a rescaling to bring the Fourier supports closer, which only reduces ||32V || .o-. Henceforth we shall
assume (29).
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6B. General remarks. We use the induction-on-scales method pioneered in [Wolff 2001] for the cone
and adapted in [Tao 2003] to the paraboloid. Our proof is modeled closely on Tao’s treatment of the
V =0 case, and the reader may find it helpful to read the following exposition in parallel with [Tao 2003].
The main differences are as follows:

¢ The induction scheme (Section 6E) is complicated by the fact that frequency is not conserved, so one
cannot directly apply an induction hypothesis which involves assumptions on the frequency supports
at time O to a space-time ball at a later time.

e The low regularity of V in time makes the bilinear L? estimate (Section 6H) more delicate and we
obtain weaker decay from temporal oscillations.

e In the final Kakeya-type estimate, the tubes in the key combinatorial lemma (Lemma 6.11, the
analogue of Lemma 8.1 in Tao) are curved. Also, we need to be slightly more precise to compensate
for the weaker decay in the L? bound.

6C. Discrete wavepacket decomposition. While the first part of this paper employed continuous
wavepacket transforms, the following discrete decomposition, taken essentially from [Tao 2003], is more
conventional in restriction theory and convenient for the combinatorial arguments involved. To each zg =
(x0, £0) in classical phase space with bicharacteristic y;, (1) = (x§, &), we associate a space-time “tube”

Tz = {(t.x): [x —xj| < R, || < R}.

For such a tube T, let z(T) = (x(T), &(T)) denote the corresponding initial point in phase space. A
wavepacket ¢ associated to the bicharacteristic zo > z}) is essentially supported in space-time on the
tube T7,, and we shall often emphasize this fact by writing ¢7.

Lemma 6.2. Let u = Upn (¢t) f be a linear Schrodinger solution with Supp(f) C Sy. Foreach1 < R<N?,
there exists a collection of tubes T and a decomposition

u= Y ar¢r

TeT
into R X (Rl/ 2)d wave packets with the following properties:
e Each T € T satisfies (x(T),£(T)) € RY/274 x R~1/274

e Each wavepacket ¢ is a Schrodinger solution localized near the bicharacteristic (x(T)',£(T)), i.e.,
it satisfies the pointwise bounds

x—x(T)!
R2

<s —s<T)f>‘M
R_L

—M
(RE00) o7 (1) sk,M< > forall k, M >0,
(30)

(R™200) 7 (0)] Sk for all k, M > 0.

Moreover, (/ST [0] is supported in an R™Y2 neighborhood of §(T) € S1.
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e The complex coefficients at are square-summable:

2 2
Y larP s IfI13..
T

Moreover, for any subcollection of tubes T' C T and complex numbers at, one has

2
Z ar¢r| < Z lar|?.
L2

TeT’ TeT’

A similar decomposition also holds for v = Upn(t)g.

Proof sketch. We outline the main steps as this construction is fairly standard; consult for instance [Tao
2003, Lemma 4.1]. Begin with partitions of unity 1 =}, 'c7a 1(x — xo) and 1 =3 ¢ 74 x(§ —&o)
such that y and 7 are compactly supported. By rescaling and quantizing, we obtain a pseudodifferential
partition of unity used to decompose the initial data

f= 3 n(’“‘f“)x(R%(D—so))f

(x0-£0) z

The propagation estimates then follow from the next lemma. O

Lemma 6.3. If ¢, is a scale-R wavepacket concentrated at zq, and U (t) is the propagator for H(t) =
—%A + Vi, then Uy (t) is a scale- R wavepacket concentrated at z{ for all |t| < R.

Proof. By rescaling we reduce to R = 1 and replace V' by Vy,gi/2 which also belongs to V since
N/R'Y2 > 1. Then the symbol a = %|E|2 + Vi gr1/2(t, x) satisfies the estimates (7), and we can appeal
to Lemma 2.4. O

6D. Localization. The proof of Theorem 6.1 begins with the observation that it suffices to establish the
same estimate with the space-time norm restricted to a box of the form

Qn =[-N2, N2 x[-AN2, AN?)9.

Theorem 6.4. Assume the hypotheses and notation of Theorem 6.1 and replace ¢ by c¢/2 and take
diam(S;) < i—(l). Then there exists A = A(c) > 0 such that

lunvn | L@+aratn@yy Se NoILF L2 lglz2 (31)
forany e > 0.

Remark. In the wavepacket decomposition of u y and vy, the Fourier supports of the wavepackets are
contained in a slight dilate S; + B(0, CN~1) of S;. Hence at various junctures we need to adjust various
constants to accommodate this minor enlargement of Fourier supports.

The full theorem then follows from an approximate finite speed of propagation argument:

Lemma 6.5. Theorem 6.4 implies Theorem 6.1.
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Proof of Lemma 6.5. Partition physical space R = U jeza Q) into cubes of width ~ N 2, where
Q; denotes the cube with center N2%j e N27¢. Decompose u := uy and v := vy into N2 x (N)?
wavepackets, and group the terms in the product according to their relative initial positions. Write

M=ZQT¢T= Z Z ur,
T

jezd TET;
v = ZbT“f’T’ = Z Z vT”,
T/ j'ezd T'eT),
where T; ={T € T : x(T') € Q;} and similarly for T;,. Using the triangle inequality we estimate
luvlp@+3/@+n < Z Z Z uTVT!
k=07|j—j'|~2% TeT;, T'eT},
For the k-th sum, note from (19) that if (x1, 1) := (x(T), &(T)) and (x3, &) := (x(T"),E(T")), we have
] = x5 = (1= C2[[83 Vv [|Loo) lx1 — x2| = ([t + Cle]> |93 Vv Il o) |61 — &2
> (1= Cr3 |03V [[Loo) X1 — x2| = N2(1 + Cr3 |93V [[Loo) 61 — &2
> (1=Cn)|x1—x2| = N2(1 + Cn)|&1 — &),

where C hides the harmless Gronwall factor. As |1 —&,| < ¢\, there exists k(c) such that if [x; —x2| >
2K N2 and 7 is chosen small enough we obtain |xi — x5 2 2% N2 for k > k(c). Thus the tubes in T '/ and
T j’ are separated in space by distance 2 2% N2, and since each wavepacket ¢ decays rapidly away from
its tube 7 in units of N, we have

(32)

Ld+3)/d+1)

T o7 L@ +3r@+n S 27101k y—101d

and estimate crudely as follows:

)OD S

|j—j'|~2% Tel;,T'eT;

<~ 101dk y—101d Z Z larby|
|j—Jj'|~2k TeT;, T'eT},

i 1
< - 101dk —100d Z (Z |aT|2)2( Z |bT/|2)2

Ld+3)/d+1)

|j—j |~k \TET; T/eT),
1 1
2 2
52—100de—100d (Z Z |aT|2) (Z Z |bT’|2)
J TGT] J TGTJ{/

—100dk 5;—100d
<2 N A2 lgllzz-

For the “near diagonal” part of the sum (32), where |j — j'| < 2K we group the terms by their
average initial positions:

> Y e

lj=J'IS1 TeT; . T’eT),

Ld+3)/(d+1)

= X 2

mezd4zd |j—j'|1S1,j+j'=m

2, wrvr

TeT;, T/eTj’,

(33)

Ld+3)/d+1)
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For each pair (j, j’), we translate the initial data by the midpoint

. i+’
Xjjr = 5 N?

of Q; and Q;/, using Lemma 1.1 to write
t .= tNT .
Ur = n(zjj/)aTq&T =:ur, vr= bT/ﬂ(ij/)¢T/ =:0T,

where z;;» = (x;;+,0) and
$r (1) = U0 0)m (x50, 0)¢r[0]

is a wavepacket solution for the modified potential V' &;;7-9) The norm on the right side above therefore

> arr

TGTj,T/GT/

can be written as

Ld+3)/@d+1)

where the initial positions x (7') and x (7") of the tubes now belong to the translated cubes Q = Q i —Xjj’s
0 i+ —xjjs, which are now distance < N2 from the origin (note however that the tubes in T are not
simply translates of those in T ).

By simple bicharacteristic estimates and the wavepacket bounds (30), for large A the norm outside

Qu :=[-N2, N2 x [-AN2, AN??

is negligible:
3 3
Y i sv (3 o) (X P
TeT; T'eT] LAEDEFD(=N2, N2 (- AN2, ANZI) TeT; T'eT]
! :
sv (Y ) (X 1erk)
TeT; T'eT;

Inside 2 we invoke 6.4 using the fact that the v &j;7:0) also satisfies the hypothesis (27) and that
the wavepacket decompositions of uy and vy satisfy the relaxed Fourier support conditions in that
proposition. Altogether, the right side of (33) is bounded by

£ B, (e (g e

mezd 474 |j—J'|151, j+j'=m T'eT;

SNSZ( ) Zmﬁ)( D |bT/|2)5

=gl 7T ~4ls1 TeT;,

v (X |aT|2)2 (Z |be|2)5

SNONS N2 lgllze
thus recovering Theorem 6.1. O
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6E. Induction on scales. Our induction scheme is set up slightly differently from Tao’s to accommodate
the nonconservation of frequency support of solutions.

In this section, we explicitly display the dependence of the propagator on the potential, and write
U ]I\; Hy=U 1{,’ (¢, 0) for the propagator with potential Vy .

Let IH(«) denote the following statement:

There exists Cy > 0 such that for each N > 1 and for all potentials V' € V), the estimate

IUN ) fUS 08l L@tsratngy) < Ca NN f L2 1g]22 (34)
holds for all f,g € L2(R%) with f , & supported in S and Sy, respectively.
We prove:
Inductive Step: If TH(«) holds, then TH(max((1 — §), C§) + ¢) holds for all 0 < §, & < 1.
By choosing § and ¢ sufficiently small depending on o, we can always arrange that
max((1 —8)a, C8) + Ce < a — ca?

for some absolute constant ¢, and Theorem 6.4 follows.
The inductive hypothesis IH(«) shall be used to improve the estimate (34) over subregions Qr C Qn
at smaller scales diam(Q g) ~ N2(1=%) « N2,

Proposition 6.6. Suppose IH(«) holds. Then forall 1 < R < %N 2 and all space-time balls Qg C 2Q N

of diameter R, the estimate

IUN @) FUR gl L@@+ ) < CaREN flIL2 18] 2
holds for all f,g € L*(R%) with f, ¢ supported in Sy := Sy + B(0, 1&5) and Sy =8+ B(0, 155)
respectively.
Proof. We begin by estimating how much the Fourier supports can shift.

Lemma 6.7. For 1 < R < N2, let Qg C 2Qy be a space-time ball with center (to.x) and diameter R.
Suppose the initial data f, g satisfy supp(f) C Si and supp(g) C S». There exist decompositions
u(tp) = f1+ f2and v(tg) = g1 + g2, with the following properties:
e f1 and g, are supported in sets S/, S5 with diam(S/’-) < {5 and dist(S7{, S3) € [4?" %C]
o I f2ll2 S N7 2 and || g2l L2 S N 7100 g o

Proof. Begin by decomposing u = U II\; fandv=U 1{? g into N2 x (N)? wavepackets:

u= Y ar¢r. v= Y bror. (35)
TeT, TeT>
By the spatial localization (30), we may ignore in u and v the packets whose tubes 7" € T; do not intersect
20N :=[-N?2,N?]x[-2AN?,2AN?], as the portion of the sum involving those terms contributes at
most O(N_IOOd)||f||L2 llgllz2. Thus there are O(N?2%) remaining terms.
Suppose ¢7, and ¢, are wavepackets in the decomposition for u.
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Let (x!, &) and (x5, £)) be bicharacteristics with |x1], [x2] <2AN2 By (19), for |¢| < 7o N2 we have

&1 — &5 — (E1 —€2)| < CroN>N 4|02V ||Loe QAN? + 19 N2 |E1 — £2))
< C(r0A+13)[103V || < Ch.

Therefore, recalling the deﬁnitions of §; i, we see that we have |§ iQ — g;Q | < 55 +Cnif &1, & both belong
to S} or S, while |§iQ —E | € [?8, %] if £, € §) and & € S,. Choose 1 = 7(c) sufficiently small.
Consequently, if

S;i=18" 15 €5 x| = AN (36)

denotes the set of frequencies of the wavepackets at time ¢, then dlam(S H ) < diam(S;) + Cn and
dist(S?, §1) > d1$t(Sl S2). Now let S} denote O(N~ 9/10) nelghborhoods of S’ and take the
decomposmons

u(to) = fi+ f. vltp) =g1+ g2,

where fl is supported on S and f; on the complement, and similarly for g, g>. For N large enough

we have dist(S]S)) € [45—0, STC] The estimates in the second bullet point now follow from the rapid decay

of each wavepacket from its central frequency on the N ~! scale (the estimates (30) with R = N?). O

The proof of the proposition concludes with several applications of Lemma 1.1. Write

Ult.tg) fi = U(t.19)m(xg.0)m(~x0.0) fi = n(zp)U?2 (t,19) fi = m(z)ii(t + 1)

where Z = (x0,0). For [t —tp| < R and |xQ| < AN? we have |x —Xx Q| < 2|t —tg| < 2R provided
that 7 is sufﬁ01ently small. Therefore, letting Qg = 2(Qr — (to, xQ))

~~ —100d
luvllp@+3/@+0(0g) S 10l @+3/@rn (g +N (DAVEYFAVER

It remains to consider the first term on the right side. The initial data fl g1 for u and ¥ have Fourier
transforms supported in S, S5. We abuse notation and redefine

f::];l’ g::gl-

Cover S = Uk Bj x by finitely overlappmg balls of radius 5¢5 200 Using a subordinate partition of unity,
we reduce to the case where supp f C By, and suppg C B k,. Again using Lemma 1.1, we may
assume By x, = —B; i, and that their centers lie on the e;-axis.

Since 2¢ > dist(By k, . B2 x,) > 5. there exists some scaling factor A € [ ] such that )L_lBj,kj CS;.
Consider the rescalings

Uy = U%(t)f,l = U(gR)l/z(t)f)L’ vy = Ug(t)g)t = U(ZR)l/z(t)g,b
where

V(t,x) = 2RAEN"2VQ2RA2N 21, 2R)ZAN "1x).
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The potential V satisfies ||8)26V||Loo < |02V | Lo since 2RA2N "2 <8RN 2 < %, and 1 (0) and v (0)

are supported in S; and S». Hence we can apply IH(«) to conclude that

||L75||L<d+3>/(d+1)(Q‘R) < ||UAU)L||L<d+3>/(d+1>(Q2R) = CaR¥[ f2llL2lIgallL2 u

From here on the argument hews closely to Tao’s. We recall the following notation: write

ASB
if A <, N®B forall N > 1 and for all ¢ > 0.
To reiterate, we want to prove
|UN FUN 8llLa+aasngy) & N2V £l g2, (37)

assuming supp(f) C 1 and supp(g) C S with diam(S;) <1 and dist(S;, S2) > c.
Normalize f and g in L2 and take the decomposition

MIIUII\?f:ZaT(]ﬁT, UIIUII\?:ZbT(]ﬁT.
T T

As in the proof of Lemma 6.7, we discard all but the O(N2¢) wavepackets whose tubes intersect 2Q y .
We also throw away the terms where |az| = O(N~1909) or |br| = O(N~1904) 45 that portion of the
product can be bounded using the estimates (30) and Cauchy—Schwarz.

Consequently, in the decompositions of ¥ and v we only consider the tubes 7" with N —100d <
lat|,|br| < 1. Partitioning the interval [N ~199¢ 1] into log N' dyadic groups, we may further restrict
to the tubes with |a7| ~ y1 and |br| ~ y» for dyadic numbers N 1904 < 5w, < 1. Let Ty, T> be the
tubes for u and v, respectively, with this property. It therefore suffices to prove

Z ¢, Z ¢,

T €T, T>€T>

< (N20-Dar NZC‘S)#TI%#TZ%

LE+3/d+1(Qy)

(we have absorbed the complex phases into the wavepackets).

We have in effect reduced to considering the region of the phase space {(x, £):|x| < N2, |§| <1}, where
the potential makes only a small perturbation to the Euclidean flow. For if |x*| < N2 and |t —s| < N2,
one has

Ix'| < N2,
t t 1
|s’—5S|s/ |ax(vN)<r,x’>|drs/ |x’|[0 2V (5, 5x%)| ds dT < 0|2V l1oe < 1.
S S

Thus if £ € S, then &’ belongs to a small neighborhood of S; provided that n < c¢ is a small multiple
of c. For concreteness we choose 7 so that

t s C
&' —§& < 100" (38)
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6F. Coarse-scale decomposition. Following Tao, for small § > 0 we decompose Qn = | Jg¢r B into
O(N?2%4) smaller balls of radius N 2179 and estimate

Z Z ¢T1 ¢T2

T€T, T>€T>»

S
LE@+3)/@+1)(Qx)

Z Z ¢T1 ¢T2

T€T| T>€T>»

Bes L(@+3)/(d+1)(B)

Let ~ be a relation between tubes and balls to be specified later. Estimate the norm by the local part

YUY on D ¢r (39)

BeBT,~B T>~B L@+3)/d+1)(B)

and the global part

2

BeB

Z ¢T1 ¢T2

Ty»~BorTh~B

(40)

Ld+3)/(@+1)(B)

We use Proposition 6.6 with R = N 2(1-8) < 1—16N 2 to estimate the local term by

mep (5 ()

BeB T,~B T>~B
1 1
2 2
§(Z #{B:T1~B}) (Z #{B:T2~B}) <1
T,€T, T>eT>

if the relation ~ is chosen so that each T is associated to J 1 balls. Note that this step is why the Fourier
supports are enlarged in that proposition, as supp(</§Tl (0)) is not quite contained in Sj.

Heuristically, a judicious choice of ~ allows one to avoid the worst interactions that would otherwise
occur in the bilinear L2 estimate if one were to natively interpolate between L! and L2 For example, if
all the tubes were to intersect in a single ball B, it would be better to bound L@+3)/(d+1)(p) directly
using the inductive hypothesis rather than attempt to estimate L2(B).

The global piece (40) is controlled by interpolating between L! and L2 By Cauchy-Schwarz and
conservation of L2 norm,

Z Z ¢T1 ¢T2

B 'T\~BorTo+B L1(B)
(| X+ Tor) N X, +|Ter| )
B Ti~B L2(B) T, ~B L2(B) T>~B L2(B) To~B L2(B)
11
< N2 NZUT 24T, (41)
The remaining sections prove the L2 estimate
< =41 8 % %
> ¢non SN2 NOHWT2T,. (42)
L2(B)

Ti~BorTh~B
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6G. Fine scale decomposition. Cover Qy = qeq 9 by a finitely overlapping collection ¢ of balls of
radius N. It suffices to show

2

qe€q:qC2B

SN-@DNCIYT T,

Z ¢T1 ¢T2

Ty~BorTh+~B

2
L2(q)
We adopt the following notation from Tao. Fix ¢ € ¢ and let w1, 2, A1 be dyadic numbers:

e T;(q) is the set of tubes T € T} such that T N N 8q is nonempty, where N 5q denotes an N° neigh-
borhood of g.

« T7B(q) ={T € Tj(q): T ~ B}.

e q(u1, p2) is the set of balls g such that #{T; € T; : T; N N8qg # ¢} ~ Wi

o A(T, 1., t2) is the number of (N® neighborhoods of) balls g € ¢ (i1, jt2) that T’ intersects.
e Tj[A1, 1, 2] is the set of tubes T € T; such that A(T, w1, 2) ~ A1.

Pigeonholing dyadically in 1, (2, and A1, it suffices to show

2. > S énen

q€q(p1,12):qC2B T eT "B (@)NT1[A1,101,12] T2€T2(q)

2
SNOSN=E@DpT 4T,
L2(q)

6H. The L? bound. Fix aball ¢ = q(tg, xq) € q(1, 2) centered at (74, x4). Suppose want to estimate

an expression of the form
2

Z Z ¢T1 ¢T2

T T»

L%(q)
There are two main points to keep in mind:

o Only tubes that intersect N®¢g will make a nontrivial contribution; that is, tubes whose bicharacteristics
(x!, E") satisfy |x% —x,| < N1*¥9.

¢ To decouple the contributions of tubes that all overlap near ¢, one needs to exploit oscillation in space
and time. While Tao employs the space-time Fourier transform, we instead integrate by parts in space
and time. Expanding out the L? norm

> > (¢niéms drs6T) “3)

T,,T2 T3,Ty

and integrating by parts in both space and time, we shall obtain terms of the form

(NIE + &8 -ED7" WVIIE -6 —1g&-&1PD7

where (x]’.,éjt. ) are bicharacteristics with |x]t.q — x4 =N 148 Since, by (19), the relative frequencies
& jt —& ]tc vary by at most O(N ~2+2%) during the O(N'*?) time window when the wavepackets intersect
the ball N ‘Sq, we can freeze ¢ = 1, above; see Lemma 6.10 below.
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Hence, the integral (43) will be small unless |xjt." —Xxq| =N 148 for all J and the frequencies & Jt satisfy
both resonance conditions

t t t t _ t t t t _
|$1q + ézq - 3q _$4q| = O(N 1): |£§_1q _équz - |§3q _E4q|2 = O(N 1)- (44)
The preceding discussion motivates the following definition. Let
Zgj={(x,8):|x| <2AN% £ € S;, |x'1 —x4| < N1FO}.
For frequencies £; and &}, define the “space-time resonance” set

Z(51,8) = {(x/l, £1) € Zg,1: there exists (x2, £2) € Zg,2 such that
§1+E = ED" + & and |5 - &P = (€D - &)%),
(€1, &) = {(ED" 1 (x1, &) € Z (1, 6)}

This is a slight modification of Tao’s definition which reflects the time dependence of frequency.
The following lemma follows from elementary geometry.

Lemma 6.8. The set w(§1,&5) is contained in the hyperplane passing through & and orthogonal to
&}, — &1 and is therefore transverse to {5 — (1 if {1 and )y are small perturbations of &1 and &), respectively.

Due to the limited time regularity of the phase, we can actually integrate by parts just once in time.
The resulting weaker decay still turns out to be just enough provided that we slightly refine the analogue
of Tao’s main combinatorial estimate for tubes (estimate (48) below). Hence we need to account more
carefully for the contributions away from the “resonant set” .

For &1, £, and k > 0, define the “time nonresonance” sets

Zh(E1,8) = {(x}.€]) € Zg,1 : there exists (x2,2) € Zg,» such that |§; +£57 —(£])'7 —£| < N~1HC8
t _
and [|£1—£5 |2 = |(£])'7—£5]?| < NTITCSY,

Z/i(él,fé) = {(x/pfi) €Zy,1: forall (x2,8) € Z, > with |El+$£f1_(%-i)tq_%_é| < N_1+C5,
! - — —
|18 [P—(8])' 7 —£5)?| € @FTINTIFCE ok y—1HCE

the “space nonresonance” set
Z5(81,6) = {(x]. ) € Zg,1 - 61 + & — (ED + 8| > N7 forall (x2, &) € By},

and the corresponding frequencies at time 7,

mp(€1.83) = {(ED™  (x1.§) € Zp(E1.63)},
w* (€1.83) = {(ED™ 1 (x1. €] € Z7(51. 62)}.

An elementary computation shows that

dist(rrf, ) < 2K NT1FCS, (45)
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Indeed, writing §; := (£])" — &1, 82 := E;" — &), and decomposing §; = 8]“ + 814- into the components
parallel and orthogonal to &; — £/, we have

1 — 61> —1ED" — & = &1 — & — 62 — 61 + &1 — &5
= —2(k1 —&),81 +82) + 83— 8%
= —2(&1 —£. 8] + 81y + O(NT1HCF)  (since |81 —82] < N1HF)
= —4(k; — &80y + O(NTIHCE),
Thus |(£))% — &1, £1 —&})| < 2K N 7178 and the claim follows from Lemma 6.8.
For g € q(u1, 12) with ¢ C 2B, define
T B(q, 1, 1, pas 61,85, k)

to be the collection of tubes 7' € T;*B(q) N T1[A1, 1, 2] such that £(T) € m(€1,85). Set

ve(qo A pua pu2) = sup  #TTB (g A, . pa £, (85)" k), (46)
£1€851, /€S>

where |x;q —xg| + (X)) — xq| S NFS.
Then, the analogue of Tao’s Lemma 7.1 is:

Lemma 6.9. Foreach q € q(u1, (t2), we have

Z Z ¢T1 ¢T2

T eI B(@NT1[A.p1.02] T2€T2(q)

SNENT@D qup 27 v, (g, A, o, pa) (T8 () N Ta A, i, 12))#T2(q).
k

2

L2(q)

Proof. For conciseness, set
T :=T7B(q) N T1[A1. p1. pal,
T2 = Tz(q).

Then the norm L?(g) is bounded by the norm L2(ny dx dt), where ny (t) is a smooth weight equal to 1
on |t —t4| < N11% and supported in |z —14] < 2N1+8.

Z Z ¢T1 ¢T2

T, ET]/ T2€T2/

2

= D> (11 bribry) 12w dndr)-

L2(ndxdt) | TieT! T, TyeT}

By the bounds (30) and the transversality of the tubes in T and T, the integrand has magnitude N —2d
and is essentially supported on a space-time ball of width N. Thus we have the crude bound

(b7, 07 $1¢77)| S NONT2INTH = NI N1,

On the other hand, we may integrate by parts to obtain a more refined bound.
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Lemma 6.10. For each k1, k>,{ > 0 and for all tubes Ty, T3 € T{, T», T4 € T,, we have
|<¢T1 ¢T2’ ¢T3 ¢T4)|

§ nr—(d—1) - —0) .t t t tg1—0 nr—1] et t t tg21-1
Skt NONTO D min[ NH + 857 — 65 — g TN T8 -8 P - 18 80P
Proof. The proof has a similar flavor to the earlier estimate (23) but takes advantage of oscillation in both
space and time.

Let ZJ’- = (xJ’- , EJ’.) denote the bicharacteristic for ¢7;, j = 1,2,3,4. By Lemmas 1.1 and 6.2, we can
write

(@101, O150T1,) = [ "V p1¢adadann (1) dx dt, (47)
where ¢; is a Schrédinger solution which satisfies

(N3x) ) (1, %) S N™E(N " (x—xt)) ™™,
and
w= Zoj[u—x},s}-)—/o Ler V<r,x;)dz], o= (44— ).
j=1

Using the rapid decay of each ¢;, we may harmlessly (with O(N —100d) error) localize ¢; to an
N neighborhood of the tube 77, so that ¢; (¢) is supported in an O(N 1+8) neighborhood of the classical
path x7.

Then

1
0V => o€l -0,V = 3 D oilEP+ ) o [V(rxh) + (x —xk 0, V(e X)),
J J J

The first bound in the statement of the lemma results from integrating by parts in x, as in the proof of (23),
to gain factors of (N|& + &5 — &4 —&1])~L. Since

B 48—l — £l = + & — £y — &7+ O(N 72T

during the time window |f —#4] < O(N'*%) when |xjt —Xxq| < N1t3 we may replace ¢ by Iq.

As in our work in one space dimension (more specifically, the proof of [Jao et al. 2019, Lemma 4.4]),
instead of integrating by parts purely in time we use a vector field adapted to the average bicharacteristic
for the four wavepackets ¢r;. Defining

4 4
1 - .
xt ::ZZXI., %‘t =Z£~'t, L= 8t+($t’ax>’
j=1 i=1
we compute as in that paper that
1 z 5. - 5 . -

—LY = D oEP+ ) o [VEE XD + (x — x5, 0 (VA (. X)),

where
St._ t_ =t Et._ gt _ gt

denote the coordinates of ¢; (¢) in phase space relative to (%7, £"); see Figure 2.
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Figure 2. Phase space coordinates relative to the “center of mass”.

We cannot yet integrate by parts since that would require two time derivatives of the phase W, but the
assumptions on V' only allow W to be differentiated once in time. However, we can decompose W into
U = W, + W,, where W, has two time derivatives and accounts for the majority of the oscillation of el
indeed, we define W; and W, via the ODE

1 zr2 1.t tg 12 t tq 12 —2428
—szzzzajlsjq :Z(|§1q_szq| —1&" =&+ OWN ),
J

—LV; = ZO’]‘[VZ([, ) 4 (x —xf 0 (VA (. X)) = O(N~2+28),

As before we have frozen ¢ = ¢, in the main term with error at most O(N _2+28), and also used the
estimates |5cjt.| < max; g |xjt. — x| < NS |y — x]t.| < N3 on the support of the integrand (47). Note
also that the equation

d
gl =0V (1. x))

implies L2W, = O(N ~2). Now integrate by parts using the phase W, to obtain

. . , LW . -
RHS (47) = / V2 [y v dxdi =i / e"”2<L, | Lq,2|2>e””‘¢1¢2¢3¢4 nw () dx dt
. 2
J

1 L%V L\
; A 2 2 .
LW, |? W, |2’ L) |p192¢3¢ann (2) dx dt,

and the second bound in the lemma follows. O

Returning to the proof of Lemma 6.9, we decompose the sum into

> |+ ¥ x|

(T1,T3)eT{xT; "T{eT; T-T; 0<kslogN T|eT;| , T-€T;
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where T is the set of tubes in 7] whose bicharacteristic ((x}), (§1)") satisfies (£])" € ns(Eiq, (£5)1),
and we abbreviate
~ t,
T) o =T7P (g A pa. 67 ()" k).

The contribution from the “space nonresonance” terms T’ is O(N —100d)

Now consider the k-th sum. Lemma 6.10 implies
(b7, 07, ¢7/7y)| S NCONTE@-Do7k,

Foreach T{ e T I*B (g, A1, 1, u2, € i" , (€)', k), the possible tubes T> correspond to the bicharacteristics
(x5, x5) such that
z z t _
[0y —xg| < NTH g4 —(ED (5" = O(N T,

The preimage of this set under the time-z, Hamiltonian flow map is an (N 1TC%)2 5 (N~1+C8)=d pox
so there are O(N cs) choices of tubes 7. Therefore, the k-th sum is at most

NI N=@=Do=ky, 4T 4T,
whereupon the sum over k is replaced by the supremum at the cost of a log N factor. O

It remains to show that

Yoo 2R u(q A )BT B (@) N T A e o) #Ta(q) S NOOHTIHT,. (48)
g€q(in1,142):qC2B

61. Tube combinatorics. This section begins exactly as in [Tao 2003, Section 8]. We define the relation ~
between tubes and radius N2(1=9) palls. For a tube T € Ty [A1, 1, m2], let B(T, A1, i1, 2) be a ball
B € B that maximizes

#q € qui.pn2): TOAN°qg #¢: g0 B #¢}.

As T intersects roughly A; (neighborhoods of) balls g € g (i1, i2) in total and there are O(N 28 many
balls in B, B(T, A1, jt1, i2) must intersect at least N —28 )1 of those balls.

Declare T ~j, ., B'if T € T1[A1, u1, 2] and B” C 10B(T, Ay, i1, p2). Finally, for T € T set
T ~Bif T ~y, 4, ,u, B for some A1, 1, 2. Evidently T ~ B for at most (log N)? < 1 many balls.
The relation between tubes in T2 and balls in 5 is defined similarly.

Now we begin the proof of (48). On one hand,

> #Mhpnpd NTi@) = Y > I Ansg£0
q€q(i1,42) qg€q(ur,u2) Tr€T1[A1,11,02]NT1(q)
= ) Y ninnsgre S ) A =M#Th.
TeT[A1,1t1,12] g€q(er,42) Tel

On the other hand, by definition #75(g) < p». The claim (48) would therefore follow if we could show

#T,
Vi (qos Ay (1, f2) S 2"N08m2 (49)

for all gg € ¢ (w1, p2) such that go C 2B.
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Fix &1 € S1, &) € S», and a ball go = go (4. x4). Recalling the definition (46) of vy, we need to show
s #T>

HT P o, A i £ (6)'7. ) SN 22

For brevity write T{ := T} (qo. A1, 1, 2, £y, (€5)'. k).
Fix T7 € Tl’. Since T7 ~ B, the ball 2B(T1, A1, (11, 42) has distance > N21-8) from qo- Thus

#q €q(ui,p2) : TiNN°q # ¢, dist(g, q0) & N>V} 2 N72044.
As each g € g(u1, (u2) intersects approximately (o (N 5—neighborhoods of) tubes in 7>,
#(q.T2) €q(u1, p2) x T2 : T N N°q # ¢, TN NPq # ¢, dist(g, go) X N2 2 N2 % s
Therefore
#(q. 1. T2) g xT{x T : TiNNq £ ¢, T,NN°q # . dist(q.qo) T NP N?} Z N™2 0y juo#T|.
On the other hand, the cardinality can be bounded above by the following analogue of Tao’s Lemma 8.1:

Lemma 6.11. For each T, € T»,
#(q. T1) egxT{:TiNN°q, TN N3q # ¢, dist(q,q0) T NP N2} 525N C°.
Proof. We estimate in two steps:

e Forany tubes 71 € T 1/ and T, € T», the intersection N 8 TiNN § T> is contained in a ball of radius N cs,

e The number of tubes 71 € T 1’ such that 77 intersects N ‘STZ at distance g N “20 N2 from qo bounded
above by 2kNCS,

The first is evident from transversality. Hence we turn to the second claim.

In Tao’s situation, the tubes in T are all constrained to an O(N _1+C5) neighborhood of a space-time
hyperplane transverse to the tube 75 (basically because of Lemma 6.8), and there are O(N CS) many
such tubes that intersect 7 at distance g, N “20 N2 from qo. The extra 2k factor results from the fact that
we allow the tubes to deviate from that hyperplane by distance 2k N—1+C8  Also, since our tubes are
curved it is more convenient to work with their associated bicharacteristics instead of using Euclidean
geometry in space-time.

Fix a tube T, € T, with ray 7 > (x},€3). Then, the tubes Ty € T, such that NOT, N N8T, are
characterized by the property that

|x(T1)" — x4 S N' for some |1 —t4| % N™¥ N2,

We need to count the tubes in T with this property. The bicharacteristics for such tubes emanate from
the region

S = {(x.£) 1 dist(§. S1) < N7'TC £l e nf,
X’ —x4| < NYFO, |xf — x| < N3 for some |t —1,| 2 N"29 N2},

hence it suffices to bound the cardinality of the intersection (N 7% x N _IZd) nx.
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(¢, xzt)

!

3 , T
gxo(TR/'\/:.. (tq ) xO)
TR

Figure 3. {x,(t) € Ty, R? is the set of tangent (covectors) for rays passing through
(14, x0) that intersect the ray (z, x5) for the tube T, at times |t — 14| X N 2-28

Denote by X the image of X under the time-r Hamiltonian flow map (x,£) — (x*,&"). Recall
from (36) that S ]t denotes the image of the initial frequency set S; for initial positions x with |x| < N 2;
we saw earlier in (38) that S ]t is a small perturbation of S;.

Fix a basepoint xo with [xg —x4| < N 145 By Lemma 2.1 and the Hadamard global inverse function
theorem, when ¢ # 1, we can parametrize the graph of the flow map (x%, £%¢) > (x7, &) by the variables

(x%, x7) > (%, 5 (1, x1) > (L 8T (67, X)),

Let £(¢, x):=§"(xo, x) € Ty R be the initial momentum & (¢, x) € Ty, R? such that the bicharacteristic
with x’ = xo and £%¢ = £(¢, x) satisfies x! = x.

Lemma 6.12. Suppose at least one Ty € T intersects N®T,. For [t —t4] 2 N72N2 the curve
1> Cxo(t) :=&(t,xh) € T;‘O R¥ is transverse to the hyperplane containing (€1, &) forall & € S{" and
£ e S;q (see Figure 3). More precisely there exists C(n) > 0 such that

L(Ero(t), m(1,E5)) > C(n) forall & € Si, &) € S5,

where the angle Z(v, W) between a vector v and a subspace W is defined in the usual manner. Moreover,
for each t the image of an N1+8 neighborhood ofxé under the map x +— &(t, x) belongs to an N—1HC8

neighborhood of {x,(t).

Proof. By a slight abuse of notation we write (x’(y, ¢), £ (y, ¢)) for the bicharacteristic passing through
(y,¢) at time ¢ = ¢, instead of t = 0. Both claims are consequences of Lemma 2.1, which yields

X; :xt(xo’ZXO(t))v th(xo’é‘)co(t)) :é‘xQ(t),

xt . )
%cmm = £ (x0, Lxo (1)) + (t — 1g) (I + O()éxe (1)

d
55 = _Xé = Et(XO, Zxo(t)) +
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N—1+C8
B
A
148 _
N Sk p—1+C8
£(tx,)
T x
Y T
Figure 4. The phase-space region X7,
Therefore
Exo (1) = (1 —1g) ™' (I + O()(&5 — & (0, £xo (1))). (50)
We claim that for any C > 1,
dist(Lxo (1), 1) Sc N71HE0. (51)

Otherwise, as [t —t4| X N2(=8) for any ray (x}, &) with & € Sy and |xiq —Xxg| < N113_ the estimates (19)
would imply . .
X1 = x5 2 1t —tq 18,7 — o ()] — |77 — X0

so we get the contradiction that every 71 € T{ misses T, by at least N cs,

By the near-constancy (38) of the frequency variable and the definition (29) of S;, the covector
€5 — €' (x0, Lx, (1)) belongs a small perturbation (say, of magnitude at most SC_O) of the difference set
S» — 81 = —2ce; + B(O, 5“—0), and hence by Lemma 6.8 is transverse to the hyperplane containing
m(£1,&)). The first claim now follows from (50).

The argument just given also implies the second statement: a ray with x’¢ = xg and |x} —x’| < N 148
must satisfy |E% — ¢y, (1)) < N71HCS, O

By the second part of the lemma, the fiber of X in Ty, R? is contained in a “frequency tube”
Oo) = |J  B(lxp@). N7
|t—t,|ZN2(1—8)

As the basepoint xg varies in an N 148 neighborhood of x,, the estimate (19) implies that the curve {x, (¢)
shifts by at most O(N ~113%). Hence the tubes ©(x) are all contained in a dilate of ©(x4), which we
denote by

O(xy) := | B, (1), N71HC9)
t

with a larger C.
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Therefore, X% is contained in the region
Sl = {(x.8): |x —xg| < N' £ e mp N B(xy) C{E € O(xy) : dist(§, m) S 2NTIHE0,

where for the last containment we recall the estimate (45). The region $% s sketched in Figure 4. Using
the previous lemma for the central curve {y,,, the frequency projection (x, &) = §) of $% can be covered
by approximately 2k finitely overlapping cubes ( J; j<2k Qj of width N —1+C8, By (19), the preimage
of each box

B(xs, N'*) x Q;

under the flow map (x, &) > (x%, &%) is contained in a (CN11tC%)4 x (CN~1+C8)d pox. The union
of these preimages covers X and contains at most 0(2kNC?) points in N 7% x N~174. O

7. Remarks on magnetic potentials

We sketch the modifications needed to prove Theorem 1.6. The symbol for H(t) is

a= 3§+ (4,6 +V(t,x),
where A = A;(t, x)dx’ and A ;j are linear functions in the space variables with bounded time-dependent
coefficients.

¢ Easy computation shows that the symbol map a > ¢Z° in Lemma 1.1 is
a?0 = LIE[? + (AZ))(1.).€) + (AZ) (1.2). £5) + VE (2. %),

where Aff)(t,x) = A(t, x5 + x) — A(t, x§) and Afg)(t,x) = A(t, xh + x) — (x, 05 A(t, x5)) — A(x),

and similarly for V. Thus when A is linear, the first-order component of the symbol is exactly “Galilei-

invariant”, preserved by the transformation @ + a?° in Lemma 1.1.

¢ After rescaling, the inequality (15) takes the form

IUN fUNg | L@+3/@+0((—ron2,con21xre) Se NEILS L2182
where Uy (¢) is the propagator for the rescaled symbol
an:=N2a(N2,N"'x, N§) = 3|2 + N2 (A(x), ) + N 2V(N 21, N 'x).

¢ Exploiting Galilei-invariance, we may reduce to a spatially localized estimate as in Theorem 6.4. Note
that in the region of phase space corresponding to that estimate {(x, &) : |x| < N2, |£| < 1}, and over
an O(N?) time interval, both potential terms have strength O(1) when integrated over the time interval
|t| < N2 However the magnetic term dominates near x = 0.

¢ Then, the rest of the previous proof can be mimicked with essentially no change except for Lemma 6.10.
There, one argues essentially as before except the vector field L for integrating by parts should be
replaced by

L= at + (Clg(zjt-)7 8x>a



REFINED MASS-CRITICAL STRICHARTZ ESTIMATES FOR SCHRODINGER OPERATORS 1993
where z} = (xjt., Sjt) and ag(zjt.) =312 ag(z). Then one finds that
1 z - 5. - A
—LW =2 ) 0jlEf12+ D o (AG). ) + Do VEE) + (x = xf 0 (VE) (1. T,
J J J
and decomposes as before ¥ = W; + W,, where

—L¥ = % > o lEP = 16 — &P — I8 — &7 P+ O(N ),
j
—LWy =Y i (AED.E) + Y o [VEE R + (x —xh, 0 (VE) (. ¥))] = O(N TP,
J J

As in the proof of Lemma 6.10 the error terms are computed from the estimates (19), |t —#4| <N 144,
and |)E;| < N*3 The errors are larger than before due to the magnetic term a g = O(N ~2) but are still
acceptable.
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