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https://doi.org/10.2140/apde.2020.13.2259

PROPAGATION PROPERTIES OF
REACTION-DIFFUSION EQUATIONS IN PERIODIC DOMAINS

ROMAIN DUCASSE

We study the phenomenon of invasion for heterogeneous reaction-diffusion equations in periodic domains
with monostable and combustion reaction terms. We give an answer to a question raised by Berestycki,
Hamel and Nadirashvili concerning the connection between the speed of invasion and the critical speed of
fronts. To do so, we extend the classical Freidlin—Gértner formula to such equations and we derive some
bounds on the speed of invasion using estimates on the heat kernel. We also give geometric conditions on
the domain that ensure that the spreading occurs at the critical speed of fronts.

1. Introduction and results

1.1. Introduction. This paper deals with the spreading properties of the reaction-diffusion equation

{ oru =div(Ax)Vu) +q(x)-Vu+ f(x,u), t>0,xeq, 0

v-A(x)Vu =0, t>0, x € 0.

Throughout the paper, the domain 2 and the coefficients are assumed to be periodic. Here, v stands for
the exterior normal. Reaction-diffusion equations arise in the study of various phenomena in biology
(propagation of genes, epidemics), physics (combustion), and more recently in social sciences (rioting
models). A particular emphasis is given here to the case where the equation is homogeneous but the
domain is not the whole space:

u=Au+ f(u), t>0,xeq,

dyu =0, >0, x €0Q.
In such a case, we provide an answer to a question asked by Berestycki, Hamel and Nadirashvili [Berestycki
et al. 2005] concerning the relation between the speed of invasion and the speed of fronts for this problem.

Reaction-diffusion equations have been extensively studied since the seminal paper of Kolmogorov,
Petrovski and Piskunov [Kolmogorov et al. 1937]. There, the authors dealt with the homogeneous equation

oru = Au+ f(u), t>0,x€[R§N, 2)

with f(#) = u(1 —u). The results of [Kolmogorov et al. 1937] were extended in [Aronson and Weinberger
1978] to more general reaction terms f. The basic assumption is that f(0) = f(1) =0, so that the constant
MSC2020: 35K57, 35B40, 35K05, 35B51, 35B06.
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states # = 0 and u = 1 are stationary solutions. We shall pay a particular attention to the following two
types of nonlinearities:

(monostable) f > 01in (0, 1).
(combustion) There exists 6 € (0, 1) such that f =01in [0,60], f > 01in (0, 1).

These two notions extend to the case where f can depend on x; see Definition 1 below. Two important
features of reaction-diffusion equations were derived in [Aronson and Weinberger 1978]. First, (2) admits
particular solutions called traveling fronts. These are positive entire (i.e., defined for all # € R) solutions
of the form u(t, x) = ¢ (x - e — ct), for some e € S¥~!, ¢ € R, ¢ decreasing and satisfying ¢ (s) — 1 as
s — —oo and ¢ (s) — 0 as s — 4o00. The unit vector e is the direction of propagation, c is the speed of
propagation and ¢ is the profile of the traveling front. More specifically, there exists a quantity ¢* such
that there are fronts with speed c for every ¢ > c* if f is of monostable type, whereas there are traveling
fronts only with speed ¢ = c¢* if f is of combustion type. Of course, the homogeneity of (2) implies that
the quantity ¢* does not depend on the direction of the fronts e. We mention that, if f is of KPP type
(i.e., if it is monostable and satisfies f/(0) > 0 and f(u) < f'(0)u for u € [0, 1]), then it is proved in
[Kolmogorov et al. 1937] that ¢* = 2./ f7(0). The quantity c* is called the critical (or minimal) speed of
fronts. We consider this quantity in a more general context in Section 1.2.

The second important feature of reaction-diffusion equations is the property of invasion. If u(t, x) is a
solution of (2) arising from the initial datum uq such that

u(t,x) ;55> 1 locally uniformly in x,

we say that invasion occurs for the initial datum ug. Of course, this depends on the nonlinearity f. For
instance, if f is of combustion type, and if ug is a compactly supported nonnegative initial datum and is
such that uy < 6, then the problem (2) boils down to the heat equation, and then u(¢, x) — 0 as ¢ goes to
o0 uniformly in x. However, it is shown in [Aronson and Weinberger 1978] that, for every n € (0, 1),
there is R > 0 such that any initial datum such that uo(x) > nlp, (where By is the ball of center O and of
radius R) satisfies the invasion property. In contrast, if f is of KPP type, then invasion occurs for any
nonnegative nonzero initial datum.

Once we know that invasion occurs for some initial data, we can define the speed of invasion. We say
that w(e) > 0 is the speed of invasion for (2) in the direction e € SV —1if, for any solution u(¢, x) of (2)
emerging from a compactly supported nonnegative initial datum that converges to 1 as ¢ goes to +o0,
locally uniformly in x, the following holds:

for all ¢ > w(e), u(t,x+cte) >0 ast— 400,

for all ¢ € [0, w(e)), u(t,x+cte)—>1 ast— +oo,
locally uniformly in x € RY. The homogeneity of (2) yields that the speed of invasion is actually
independent of the direction e. Moreover, if f is of KPP type, it is proved in [Kolmogorov et al. 1937]

that w(e) = 2/77(0) for all e € S¥~!. Hence, in this case ¢* = w. In other terms, this means that the
invasion occurs at the critical speed of fronts in every direction.
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One of the main motivations behind the present paper is to understand to what extent this is still satisfied
in more general domains, in which case closed formulas for the speeds are not available. Berestycki,
Hamel and Nadirashvili [Berestycki et al. 2005] conjectured that the geometry of the domain could give
that the invasion does not occur at the critical speed of fronts in every direction (see Question 4 below).
We shall construct such domains. We shall also give geometric conditions on the domain that ensure that
the invasion speed coincides with the critical speed of fronts in some directions.

In order to state our main results, we first present how the notions of fronts and invasion extend to the
case of spatially periodic heterogeneous equations.

1.2. Pulsating traveling fronts. The notion of pulsating traveling fronts was first introduced in dimension
N =1 in periodic media by Shigesada, Kawasaki and Teramoto [Shigesada et al. 1986] to generalize
the notion of traveling fronts available in the homogenous case. Berestycki and Hamel [2002] extended
this notion to the more general framework of (1). Throughout the paper, we assume that A, g, f, Q2 are
periodic, with the same period; i.e, there are Ly, ..., Ly > 0 such that

N
forallke [[Liz. Q+{k}=q.
v i=1
for all k € ]_[L,z, fC-+k,)=f q(-+k)=q, A(-+k) =A.
i=1
We shall denote by C := ]—[fv: 1[0, L;) the periodicity cell. Typical examples of such domains 2 are
domains with “obstacles”: if K C R" is a smooth compact set, we can define the periodic domain
Q:= (K + LZN)¢, with L > 0 large enough so that the resulting domain is smooth and connected. This
domain can be seen as the whole space with K -shaped obstacles periodically distributed.

To simplify the notation, unless otherwise stated, we shall assume that the period is 1,i.e., Ly =--- =
Ly = 1. In order to apply the results of [Berestycki and Hamel 2002], we make the following assumptions
on the domain:

Q2 is a periodic, connected open subset of RN of class C3, 3)

and the following hypotheses on the coefficients:
AeC3 Q) is symmetric and uniformly elliptic and periodic,
g € C"(Q) forsome o € (0,1), divg=0, [, q=0, g is periodic, )
f:Qx[0,1]— Ris of class 1% for some « € O, 1).
We also assume that the nonlinearity f satisfies the following:
forallx e Q, f(x,0)= f(x,1)=0,
there exists S € (0, 1) such that for all x € Q, f(x,-)is nonincreasing in [S, 1], 5)
forall s € (0,1), f(-,s) is periodic.

By analogy with the homogeneous case f = f(u), we define monostable, KPP and combustion
nonlinearities f(x, u):



2262 ROMAIN DUCASSE

Definition 1. We say that f is of monostable type if

forall s € (0,1), min f(x,s)>0, max f(x,s)>0. (6)

xeQ xeR

Among monostable nonlinearities, there is the special class of KPP nonlinearities. In addition to being
monostable, they satisfy

forall x € Q, forall s € [0, 1], f(x,s) <05 f(x,0)s. (7)

We say that f is of combustion type if
there exists 6 € (0, 1) such that for all (x,s) € 2 x[0,0], f(x,s)=0,
forall s € (,1), minf(x,s)>0, max f(x,s)> 0. (®)

xe xe

The important difference between combustion and monostable nonlinearities (from which stems the
nonuniqueness of speeds of fronts for monostable equation) is that, when f is of combustion type,

there exists 6 € (0, 1] such that for all x € 2,  f(x, -) is nonincreasing in [0, 6]. 9)

In the periodic framework, the notion of traveling fronts can be generalized by pulsating traveling

fronts.

Definition 2. A pulsating traveling front in the direction e € SV~! of speed ¢ € R\ {0} connecting 1 to 0
is an entire (i.e., defined for all # € R) solution v of (1) satisfying

forallk e ZV forall x € Q, v(it+(k-e)/c,x)=v(t,x —k),

{v(t,x)—>1 as x-e —> —o9, v(t,x) >0 asx-e— +oo.

Such fronts are known to exist in several situations. For instance, it is proved in [Berestycki and Hamel
2002] that, under hypotheses (4)—(5), for every e € SV ~1 there is ¢*(e) > 0, called again the critical
(or minimal) speed of fronts in direction e, such that pulsating traveling fronts in the direction e with
speed c exist if, and only if, ¢ > ¢*(e) when f is of monostable type (6) or only if ¢ = c*(e) when f is of
combustion type (8); see [Berestycki and Hamel 2002, Theorems 1.13-1.14].

1.3. The speed of invasion. The results of Kolmogorov, Petrovski, Piskunov [Kolmogorov et al. 1937]
and Aronson and Weinberger [1978] concerning the invasion have also been extended to a more general
framework than the homogeneous one. First, consider the periodic equation on R"

du =div(A(x)Vu) +qx)-Vu+ f(x,u), t>0,x¢€ RV. (10)

Then, one can define the speed of invasion w as a function from the unit sphere S¥~! to R* such that,
for every u solution of (1) arising from a compactly supported nonnegative initial datum which converges
to 1 as ¢ goes to +00, locally uniformly in x € RN, we have, for e € SN ~1,

for all ¢ > w(e), u(t,x+cte) >0 as t— +oo,
forall c € [0, w(e)), u(t,x-+cte)—1 as t— +o0o,

locally uniformly in x € RY.
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Using probabilistic techniques, Gértner and Freidlin [1979] showed the existence of a speed of invasion
for (10) when f is of KPP type (7) and A, ¢, f are x-periodic. They showed that invasion occurs for
every nonnegative nonnull compactly supported initial datum and proved what is now known as the

Freidlin—Gdrtner formula:

w(e) := min @, (1D
SERN e -
e-£>0

where k(&) is the periodic principal eigenvalue of the operator
Leu :=div(AVu) =28 -AVu+q -Eu+ (—div(A§) —q-E+& - AE+ 0, f(x,0)u.

This formula was also proved by Berestycki, Hamel and Nadin [Berestycki et al. 2008] using a PDE
approach. Similar properties of spreading for heterogeneous reaction-diffusion equations have been
studied with other approaches: the viscosity solution/singular perturbation method was adopted by Evans
and Souganidis [1989] and Barles, Soner and Souganidis [1993]. Weinberger [2002] used an abstract
discrete system approach.

Berestycki, Hamel and Nadirashvili [Berestycki et al. 2005] showed that, if one considers KPP
nonlinearities, the critical speed of pulsating traveling fronts in the direction e for (10) is given by
c*(e) = min,~qg k(Ae)/A, where k is the principal eigenvalue introduced before (if the equation were set
on a periodic domain 2 instead of RY, this relation still holds true with k being the periodic principal
eigenvalue of the same operator but with the additional boundary condition v- AVu = A(v - e)u on 02,
see [Berestycki et al. 2005] for the details). Consequently, in the KPP case, the Freidlin—Girtner formula
(11) can be rewritten as

w(e) = min c*(“;‘)‘
e-£>0 e-";‘

(12)

The fact that pulsating traveling fronts exist not only in the KPP case but also for other reaction terms,
and hence that the formula (12) could make sense in more general frameworks than the KPP one, led
Rossi [2017] to extend the Freidlin—-Gértner formula to much more general equations in the whole space,
essentially, all those for which pulsating traveling fronts are known to exist.

In this paper, we deal with invasion in domains € that are not necessarily RY. In this case, it is
convenient to introduce the notion of asymptotic set of spreading.

Definition 3. Let )W C R" be a closed set coinciding with the closure of its interior. We say that W
is the asymptotic set of spreading for a reaction-diffusion equation if, for any bounded solution u(¢, x)
emerging from a nonnegative compactly supported initial datum such that u (¢, x) — 1 as t — 400, locally
uniformly in x € ©, we have

for all K compact, K C int(WV), ing(u(t, x)—>1 ast— 400, (13)
xXet
for all C closed, CNW =@, supu(t,x)—0 ast— +oo. (14)
xetC

If only (13) holds, W is said to be an asymptotic subset of spreading, and if only (14) holds, W is said to
be an asymptotic superset of spreading.
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The asymptotic set of spreading relates to the notion of speed of invasion previously described. Indeed,
assume that )V is an asymptotic set of spreading and that we can write W = {r& :£ e SV, 0 <r <w (&)}
with w a continuous function. Then, if Q@ = RY, w(e) is the speed of spreading in the direction e, as
defined before. For example, if f is a KPP nonlinearity independent of x, then the asymptotic set of
spreading associated with the homogeneous equation (2) is the ball of center 0 and of radius 2,/ f7(0).

Observe that, for the definition of the asymptotic set of spreading to be meaningful, it is necessary that
there are compactly supported initial data ug for which the invasion property holds. Rossi and the author
[Ducasse and Rossi 2018] gave necessary and sufficient conditions to have invasion for (1). In particular,
we showed there that, if f is of monostable or combustion type, in the sense of Definition 1, and if the
drift term ¢ is “not too large” (see [Ducasse and Rossi 2018] for the details), then, setting

0 :=max{s € [0, 1) : there exists x € Q such that f(x,s) =0},

we have that, for all n € (6, 1), there is r > 0 such that any solution of (1) with an initial datum ug
satisfying
up>n inNAB,

converges to 1 as t goes to 400, locally uniformly in x € Q.

1.4. Statement of the main results. One of the main motivations behind the present paper is to answer
the following question, raised by Berestycki, Hamel and Nadirashvili [Berestycki et al. 2005]:

Question 4. Consider the homogeneous equation set on a periodic domain <2

{B,M—Au:f(u), t>0,xeQ,

15)
avu:07 t>0,x€3§2

Are there domains 2 such that c* # w?

We recall that ¢* is the critical speed of pulsating traveling fronts and w is the speed of invasion.
Originally, this question was asked for f of KPP type (7), but it also makes sense if f is a monostable (6)
or a combustion (8) nonlinearity.

As we already mentioned, if the domain € is the whole space R and if f is of KPP type, then w
and c* are independent of the direction and are both equal to 2./df’(0). In general periodic domains, the
propagation may not be isotropic anymore: w and c¢* can depend on the direction.

Let us mention that, if we considered the equation with general coefficients (1), it would be actually
much easier to have ¢* # w with Q@ = R". For instance, in dimension 2, when the Laplace operator is
)%x + bayzy’
compute ¢* and w, see [Berestycki et al. 2005, Remark 1.12], and one could observe that, if a 7~ b, then

replaced by ad with a, b > 0, and when the nonlinearity f is of KPP type, one could explicitly
¢* # w. What was not known is whether the geometry of the domain alone could give that ¢* % w. We
prove that this is the case.

Theorem 5. Let f be a monostable (6) or a combustion (8) nonlinearity independent of x. There are
smooth periodic domains 2 such that the critical speed of pulsating traveling fronts c* and the invasion
speed w for (15) are not everywhere equal, that is, c* # w.
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This provides a positive answer to Question 4. When the nonlinearity f is of monostable or combustion
type, then the domains we exhibit are L-periodic, with L large enough. If f is a KPP nonlinearity, then
we can construct domains with any periodicity.

Let us emphasize that Theorem 5 does not say that we can construct domains where c*(e) # w(e) for
every e € SV~!: we shall explain after why this is actually impossible. Finding directions where the two
speeds coincide is the object of Theorem 7 below.

A first step in proving Theorem 5 will be to give a formula for the speed of invasion. We show that the
Freidlin—Girtner formula (12) still holds true for the general equation (1) in the periodic domain €2 with
combustion and monostable nonlinearities.

Theorem 6. Let A, q, f, Q be periodic, satisfying (4)—(5). Assume that f is a monostable (6) or a
combustion (8) nonlinearity. Then, (1) has the asymptotic set of spreading

W={rg:£eS" 1 0<r <w(®), (16)

where w(§) :=inf,.£-0c*(e)/(e - &), and c*(e) is the critical speed of pulsating traveling fronts in the
direction e.

This result extends the one by Rossi to the case where the domain is not RY anymore. We shall follow
the same strategy of proof. As this result is crucial to carry through our investigations, and as the result is
of independent interest, we shall prove it in detail in Section 2.

Once Theorem 6 is established, we employ it to derive a simple criterion ensuring that c* # w. We show
that if ¢* = w, then ¢* and w are necessarily constant; see Proposition 12 below. To answer Question 4 is
then tantamount to finding domains where w or c¢* are not constant. Intuitively, we may think that, if a
domain is “very obstructed” in a direction, then the speed should be small in this direction.

In order to make this intuition rigorous, we derive new estimates on the invasion speed that take into
account the geometry of the domain. This is the subject of Section 3.3. The main tool is an upper bound
on the heat kernel in 2. Once we have these estimates at hand, we are able to construct domains where
¢* and w are not constant, and hence are different. This is done in Section 3.4, proving then Theorem 5.

The remainder of the paper is dedicated to giving conditions under which ¢* and w coincide in some
directions. Indeed, observe that, though we can construct domains 2 where c* # w, there is always at least
one direction e € S¥~! such that ¢*(e) = w(e): it is readily seen from the Freidlin—Gértner formula (12)
that any direction ey, that minimizes c* satisfies c¢*(emin) = w(emin). The only other characterization of
directions e where ¢*(e) = w(e) we are aware of holds true in the KPP case: it is proved in [Berestycki et al.
2005] that c¢*(einy) = w(einy) if 2 is invariant in the direction e,y (i.e., Q + {Aeiny} = Q for every A € R).

Our next theorem, proved in Section 4, shows that, if the domain €2 is symmetric, then there are
directions where ¢* and w coincide. This result requires u — f(u)/u to be nonincreasing (strong KPP
property).

Theorem 7. Assume that f satisfies (4), (5) and that u — f(u)/u is nonincreasing. Let c* and w be
the critical speed of fronts and the speed of invasion for (15). Then, assume that there is an orthogonal
transformation T such that:
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o T leaves Q2 invariant; i.e., TQ = Q.
o Thereis e € SN~ such that Te = e, and Ker(T — Iy) = Re.

Then
c*(e) = w(e).

This result implies for instance that, if a periodic domain in R? is symmetric with respect to an axis,
then ¢* and w coincide in the direction of this axis; see Corollary 24 for more examples.

As we shall explain in Remark 25, the hypothesis that Ker(7T — Iy) = Re is necessary.

Let us conclude this section with some questions that are still open. The set W given by (16) is
sometimes called the Wulff shape associated with the surface tension c*. It appears in crystallography and
in isoperimetric problems. A natural question is whether the function w parametrizing the boundary of
W is regular. Rossi [2017] proved that it is continuous. We are not aware of further regularity results. We
conjecture that, at least in the KPP case (where ¢* is known to be smooth), w is smooth.

Theorem 5 states that there are domains €2 such that ¢* £ w. One may wonder on the contrary if there
are periodic domains € # RV such that ¢* = w. Thanks to our Proposition 12 below, this is equivalent to
finding domains where c* is constant. As far as we know, the existence of such domains is still open.

Let us also mention that, although the construction of the domain €2 where ¢* £ w in Theorem 5 will
be explicit, our proof will not tell in which direction(s) the two speeds indeed differ. We leave this as an
open question.

Remark 8. In addition to the monostable and combustion cases, there is another class of reaction
terms f that is widely studied in the literature, namely the bistable nonlinearities. The prototype is
f@)=u(l —u)(u —a), with a € (0, 1). In this paper, we do not consider such nonlinearities; indeed,
the main tool we use is the existence of pulsating traveling fronts with positive speed. If Q@ = RY, there
are results in some particular cases; see [Ducrot 2016; Xin 1991a; 1991b] for instance. If  # R", the
situation is yet to be explored, and the geometry of the domain can yield phenomena that do not appear
in the combustion or monostable case. For instance, Rossi and the author showed in [Ducasse and Rossi
2018] that invasion can occur in some directions but not in others. However, we mention that the strategy
used to derive Theorem 5 still applies if f is bistable, provided there exist pulsating traveling fronts with
positive speeds in every direction e € SV.

2. Freidlin—Gértner formula for a periodic domain

This section is dedicated to the proof of Theorem 6; i.e., we show that the Freidlin—Gértner formula (12)
relating the critical speeds of fronts to the speed of invasion still holds true when the domain is not R
but a periodic domain €2 and with monostable or combustion nonlinearities. Our proof is based on the
same strategy as the one used in [Rossi 2017]. We start by stating some preliminary technical results. For
simplicity, we assume throughout this section that the domain and the coefficients are 1-periodic, i.e.,
Li=---=Ly=1.

2.1. Preliminary results. In the proof of Theorem 6, we will need some technical lemmas. They gen-
eralize those of [Rossi 2017, Section 2.1] to the case where the domain is not RV anymore. The main
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technical difficulty is that €2 is not invariant under translations in general. The proofs follow the same lines
as in [Rossi 2017] and can be found for completeness in the Appendix. We say that u is a subsolution
(respectively supersolution) if it satisfies (1) with the symbols = replaced by < (respectively >).

The first lemma states that every entire solution that is “large enough” in some direction is actually
“front-like” in this direction.

Lemma9. Let y > 0. Assume that (4) and (5) hold. Let u € C'T/>2T(R x Q) for some a € (0, 1) be
an entire supersolution of (1) such that

inf u(t,x)>S,
t<0

x-e<yt
xeQ

where S is defined in (5). Then
liminf inf u(z, x) > 1.
§—+400 <0
x-e<yt—§
xeQ
The following lemma is a comparison principle for front-like solutions.

Lemma 10. Assume that (4) and (5) hold. Let i, u € C'1*/22+%(R x Q), for some a € (0, 1), be

respectively an entire supersolution and subsolution of (1). Assume that there are e € SN~ y > 0 such that

ii>0, liminf inf (t, x)> 1. (17)
d—>+4o00  t<0
x-e<yt—§
xe

Moreover, assume that u < 1 and that there is n > 0 such that the following hold:

o The nonlinearity f is of combustion type (8) and
forall s > 0, there exists L € R, u(t,x) <s suchthatift <0,thenx-e>(y +nt+L, x € 2, (18)

or

e the nonlinearity f is of monostable type (6) and
there exists L € R, u(t, x) <0 such that ift <0,thenx-e> (y +n)t+ L, x € Q2. (19)
Then, the following comparison result holds:
u(t,x) <u(t,x), forallteR, forallx e Q.
In addition to those two technical lemmas, we shall need the following result, stating that, in our

framework, the speed of invasion w is a continuous function:

Lemma 11. Let A, q, f, 2 be periodic, satisfying (4)—(5). Assume that f is of monostable type (6) or of
combustion type (8). Let w be defined by (12). Then w is a continuous function from the sphere SV=1
to R+.

This lemma is proved in [Rossi 2017] in the case € = R", but the proof directly works in our case, so
we omit it. It relies on the fact that ¢* is lower semicontinuous. Additionally, we mention that it is proved
in [Alfaro and Giletti 2016] that ¢* is actually continuous.
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2.2. Proof of Theorem 6. This section is dedicated to the proof Theorem 6. We show that the Freidlin—
Girtner formula (12) still holds in the context of periodic domains €2 considered in this paper. The proof
is divided into several steps. We use a geometric argument, introduced in [Rossi 2017]. The idea is to
argue by contradiction: we will consider a solution that invades space, and we will translate our solution
in time and space to keep track with the transition zone. Our solution will converge to a “fast” front-like
solution, which we shall compare to a pulsating traveling front to get a contradiction.

Proof. We start to prove that W, defined by (16), is an asymptotic subset of spreading. We argue by

contradiction. We assume that JV is not an asymptotic subset of spreading; then, there is a compact set

K C int(W) such that (13) does not hold. Now, we take W C W, W star-shaped with respect to the

origin, compact and C* such that K C int(W). We assume that W is the graph of a function w, i.e.,
={ré:£ e SV, 0 <r <w(&)}, with @ smooth and W < w, so that W is strictly contained in W.

We take w strictly positive. This is possible because the function w is continuous thanks to Lemma 11.
The set W satisfies the uniform interior ball estimates

there exists p > 0 such that for all x € W, there exists y € W such that Ep (y)CWandx €dB,(y),

where B, (y) is the ball of center y and of radius p. In the course of the proof, u(#, x) denotes a solution
of (1) arising from a nonnegative, compactly supported initial datum such that invasion occurs; i.e.,
u(t, x) — 1 as t goes to +o0, locally uniform in x € Q.

Step I: Definition of R". Let 0 < n < 1. We define
RM(t) :=sup{r >0:forallx € *W)NQ, u(t,x) > n}.

For ¢ > 0, this quantity is well-defined because u(, x) decays to zero as |x| goes to +oo (this is readily
seen by comparison with pulsating traveling fronts) implying that R"(¢) < 4+00. Moreover, we have that
R'"(t) — +o00 as t goes to 400 (because of the assumption that u (¢, x) — 1 locally uniformly in x when
t — +00).
Remembering that we assumed, by contradiction, that there is a compact set K C int(W) such that
(13) does not hold, we can infer that there are n, k € (0, 1) such that
lim inf RO

t——+00

<k. (20)

Indeed, if this were not the case, then for every n € (0, 1), we would have liminf,_, ;o R"(¢)/t > 1.
Hence, taking & € (0, 1) such that K C AW, we have

n <liminf inf wu(¢, x) <liminf inf u(z, x) <liminf inf u(z, x).
t—+400 xeR"(t)W t—>—+00 xehtW t—>400 xetK

If this were true for each n € (0, 1), it would yield that K satisfies (13), which we assumed not to be the
case. Hence, (20) holds. Observe that (20) still holds if we increase n. We do so, and in the following we
assume that n € (S, 1), where S is defined in (5).

From now on, we simplify our notation by writing R instead of R". Observe that R is lower semicon-
tinuous. Indeed, let 7, be a sequence such that ¢, — #y as n goes to +oo and such that R(#,) - R € R.



PROPAGATION PROPERTIES OF REACTION-DIFFUSION EQUATIONS IN PERIODIC DOMAINS 2269

Consider r > R. Then, for n large enough, we have that r > R(¢,), and, by the definition of R(#,), there
is x, € (r W) N Q such that u(z,, x,,) < 1. By the continuity of u, there is some xo € (r W) N Q such that
u(ty, xo) < n. This implies that R(#yp) < r, and then that R(#)) < R by the arbitrariness of r > R, and
hence the semicontinuity.

Step 2: Shifting the function. By definition of R we have that lim inf,_, ;oo (R(¢) — kt) = —o0. We define,
forn e N,
t, :=inf{t > 0:R(t) — kt < —n}.

The lower semicontinuity of R, proved in the first step, gives us that the above infimum is a minimum,
i.e., that R(t,) — kt, < —n < R(t) — kt for all r < t,,, and that ¢, — +00 as n goes to +o00. Hence, the
sequence (f,),en satisfies

lim 1, =+o00 and foralln e N, forallt € [0,1,), R(t,)—k(t,—1t) <R(®).

n—-+o0o

Now, by the definition of R(¢), we have that for all » > R(¢) there exists x, € (¥ W N Q)\((R(H)W) N Q)
such that u(¢, x,) < n. Up to extraction, we can assume that x, — xo as r goes to R(¢), where
Xoo € QNIA(R(W). By continuity, we have that u (¢, x») = 1.

Hence, we can consider a sequence (x,),en € Q such that u(t,, x,,) = n, with the additional property
that x,, € 9(R(t,)W). Clearly, |x,| — +o00 as n goes to +oo. If x € dW, let v(x) be the outer unit normal
to W at the point x. We define

~ Xn

Xy =
R(tn)

and y, =%, — pv(X,).

By definition, x, € W and y, is the center of the interior ball tangent to W at the point x,, of radius p
(we recall that W satisfies the uniform interior ball estimate with radius p).

For every n, we define k,, € ZN and z, € [0, DV by x, = k, + z,,. Up to extraction, we can assume that
there is z € [0, 1]V such that z,, — z as n — +00. We also assume that there is X such that %, converges
to X, whence V(x,) converges to V(x). We now define, for n € N, the translated functions

up(t,x) =u(t +ty, x +ky).

Thanks to the periodicity and regularity hypotheses on €2, we can apply the usual interior and portion
boundary parabolic estimates (see, for instance [Ladyzhenskaya et al. 1968, Theorems 5.2, 5.3]) to get
that u,, converges uniformly locally to an entire solution u* of (1). Moreover u*(0, z) = n.

Step 3: Properties of u*. We show here that u* is a front-like solution, in the sense that it satisfies, writing
Hr ={xeQ:x-v(x) < —kx-v(x)T},

forall T >0, forall x € Hy +{z}, u*(-=T,x)>n. (21)

To show this, take T € [0, t,] and x € (R(t,) —kT)W N Q. As R(t,) —kT < R(t, — T), we have that
x € R(t, — T)W N Q. Therefore, by the definition of R, we have u(¢, — T, x) > n. Then, we have

forall T € [0, t,], forall x € (R(t,) —kT)W)NQ —{k,}, u,(=T,x)=>n.
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From that, we infer
forall 7 >0, forallx € QN | [ (R(tn) —kT)W — {ka}).  u*(=T.,x) = .
MeNn>M

To prove (21), it suffices to show that Hr + {z} C QN sen ﬂnzM((R(tn) —kT)W — {k,}). To see this,
take x € Hr + {z}. We start by computing

x +kp _ _ x+kn_(R(tn)_kT)()%n_pﬁ()en))

Ry —kT " R(ty) — kT
R +kT£n + (kn —x,) + (R(tn) - kT)pﬁ(in)
N R(ty) — kT

A x+kTx, —z,
ey
Let us write
x+kTx, —z,
wy = ————
R(t,) — kT

This goes to zero as n goes to infinity. The last term in the above equality can be rewritten

2/0‘7()@1) : wn>

[wy | + [why|

|/0‘7(xAn)+wn| =\/,02+ |wn|<

Now, observe that
2p0(%p) - wy x+kTx—z

n—+00 |wy| 4 [wp| V() |x +kT% —z|

This limit is strictly negative. Indeed, if x € Hr + {z}, then (x —z) - V(X) < —kTx - D(x). Therefore,
we have, for n large enough,

Yn

‘ X +ky, -

R(t,) —kT

which means (x+k,)/(R(t,)—kT) € W by the definition of y, and p. That is, x € (R(¢,)—kT)W —{k,},
which concludes this step.

Step 4. Comparison. We now compare the function u* constructed in the previous steps to the pulsating
traveling front in the direction v(X) with critical speed ¢*(v(X)). Combining Lemma 9 and (21), we have
liminf  inf  uw*(f,x) > 1,

d——+o0 t<0

xD(X)<yr—6
xeQ

with y := kX - (X) > 0. Hence u* satisfies the hypotheses of Lemma 10. Observe that we have
f s o (X ro x <
y=kx -v(X) =k—- V(x)w(T) < =" V(x)w(T> < (X)),
x| x| x| x|

where the last inequality follows from the definition of w in Theorem 6.
Assume first that f is of combustion type (8). Let v be a pulsating traveling front in the direction v(X),
with critical speed ¢*(v(x)). Up to a time translation, we normalize it so that v(0, 0) > u*(0, 0). Then, v
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satisfies the hypotheses of Lemma 10 (with n = ¢*(v(X)) — y in the hypotheses of Lemma 10), giving
v < u*, which is in contradiction with the fact that v(0, 0) > u*(0, 0).

Now, if the nonlinearity is of monostable type (6), we have to construct a function v satisfying (19) to
apply Lemma 10. This can be done exactly as in [Rossi 2017, Proposition 2.6]; the fact that the domain
is not RY adds no difficulty here. This proves that W is an asymptotic subset of spreading, and then, so
is W. Now, we show that it is an asymptotic superset of spreading.

Step 5: Superset of spreading. Let C be a closed set such that WNC = @. Then, because w is continuous,
we can find & > 0 so that W, 1= {r& : £ e S¥~1, 0 <r < w(&) + ¢} is such that W, N C = @. To prove
that W is an asymptotic superset of spreading, it is sufficient to show that sup, erwe u(t, x) = 0 as t goes
to +00. To do so, we take a sequence (#;),eN € (RN such that 7, goes to infinity as n goes to infinity
and a sequence x, € 1, W such that
u(t,, x,) > % sup u(t,, x).
XELWE

Up to extraction, we take e € S¥~! such that x,,/|x,| — e as n goes to +00. Let £ € S~ be such that
w(e) =c*(&)/(& -e), and let v be a pulsating traveling front in the direction & with critical speed c*(§).
Up to some translation in time, we can assume, thanks to the parabolic comparison principle, that
u(t,x) <v(t,x) forall t >0, for all x € Q2. Let us show that v(¢,, x,) goes to zero as n — +00.

We write x,, := (x,/|xn| - §)|x,|& + d,,, where d,, is orthogonal to £. Because x,/|x,| — e as n goes
to 400, using the continuity of w, for n large enough, we have

Xn Xn Xn &
( -S)IxnIZ( é)(w< )+8)tn2(C*(§)+(e-§)—)tn.
|| 2| |2 2

So, we get that, for n € N large enough, there is some X, such that 1, > ¢*(&) + (e - £)(¢/2) and
Xn = A&ty +d,. Now, observe that the definition of the pulsating traveling fronts, Definition 2, implies
that v(¢,, A1, +d,) — 0 as n goes to +00; hence

lim % sup u(ty,x) < lim u(t,,x,) < lim v(t,x,) =0,
n—-+o00o xethg n—-+o00o n——+00

which implies the result. O

Now that we have the Freidlin—Gartner formula (12) at our disposal, we use it to answer Question 4.

3. Invasion and the critical speed of fronts

This whole section is dedicated to the proof of Theorem 5. We consider here the problem (15), with
nonlinearity f independent of x of monostable or combustion type. In the following, for f and €2 given,
we denote by ¢* and w the critical speed of fronts and the speed of invasion respectively, for (15).

The proof of Theorem 5 is done in several steps: first, we show that w = ¢* is equivalent to saying that
w and ¢* are actually constant. This is the object of Section 3.1. Then, we exhibit in Section 3.3 some
estimates on the spreading speed that take into account the geometry of the domain. Gathering all this,
we will be able to prove Theorem 5.
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3.1. Comparison between w and c*. This section is dedicated to proving that, if the critical speed of
fronts ¢* and the speed of invasion w are everywhere equal, then they are constant. This uses only the
Freidlin—Girtner formula (12) proved in Section 2.

Proposition 12. Assume that Q2 is a smooth periodic domain satisfying (3) and that f is a nonlinearity
satisfying (5) of the monostable (6) or combustion (8) type. Assume that c* = w. Then, the functions w
and c* are constant.

Proof. Because of the hypotheses on 2 and f, we can apply Theorem 6 to get that for all e € SV !
w(e) = infg..~0c*(€)/(€ - ). Assume that w = ¢* and take &), & € SV ! so that & - & > 0, and let w be
the angle between those two vectors. Let us take M € N. We define a sequence (§x)xefo, M) € SN~ to be
equidistributed on the arc joining &y to & on the sphere; i.e., & - &+ = cos(w/M) and &y = &. Then, we

have 1 1 !
w(&) < w(gl)éo-él < w(Sz)& EE
Iterating and using that & - &1 = cos(w/M), we get
M—1 1 1
weo <w®) [ g =v @ o mmm:

Because 1/cos(w/M)M — 1 as M goes to +00, passing to the limit yields

w(&o) < w(f).

Inverting the roles of &y and &, we get w(&y) = w(&). Hence, w is constant, and so is c*. O

Observe that, in the course of the proof, we did not use the particular form of (15), only the Freidlin—
Girtner formula; hence Proposition 12 holds true also for the general equation (1).

As mentioned in the Introduction, we shall use this result to construct domains where ¢* # w. Indeed,
Proposition 12 reduces the problem to finding domains where w or ¢* are not constants. Intuitively, it
seems that, if in a certain direction e there are many obstacles, then the speeds w and c¢* should be small.
On the contrary, if in a certain direction, there are few obstacles, then the speeds should be larger. Hence,
if the domain €2 is very “obstructed” in some direction and not in another, then the speeds should not be
constants, and so they would be different.

To construct such domains is actually quite easy if f is KPP and if the dimension is greater than or
equal to 3: in this case, domains that are invariants in one direction provide an answer to Question 4.
We shall focus on such domains in the next Section 3.2. There, we shall also prove a lemma that will
be useful in Section 4. If the nonlinearity is not KPP or if the dimension is equal to 2, things are much
more involved. To overcome this difficulty, we introduce estimates for w that do take into account the
geometry of the domain. This is done in Section 3.3.

3.2. Invasion in domains that are invariant in one direction. In this section, f is a KPP nonlinearity
independent of x and €2 is invariant in the direction e € SN-1.je., for all A € R, we have Q + Le = Q.
Let us answer Question 4 in this specific case by proving the following:
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Proposition 13. Let Q be a periodic domain in RN, N > 3, satisfying (3) and suppose that there
is e € SN~ such that Q is invariant in the direction e. Let f satisfying (5) be a KPP nonlinearity
independent of x. Denoting by c* and w the critical speed of fronts and the speed of invasion respectively
for problem (15), we have

w=c &= Q=RY

This comes directly by combining our Proposition 12 with the following result from [Berestycki et al.
2005]:

Theorem 14. Let c¢* be the critical speed of fronts for the problem (15) with f KPP independent of x.
Then c*(e) < 24/ f'(0) and the equality holds if and only if Q2 is invariant in the direction e.

If Q is a periodic domain satisfying hypothesis (3) and invariant in a direction  # RY, then this
theorem implies that ¢* is not a constant function of the direction. Then, Proposition 12 implies that
¢* # w. This answers Question 4 in the special case where f is KPP and the dimension greater than 3.
The general setting is more involved and is addressed after.

Before ending this section, we prove a result concerning domains invariant in a direction that will be use-
ful in Section 4. When considering such domains, we can actually give further information about the shape
of the asymptotic set of spreading V. The next result shows that, if €2 is invariant in the direction e, then
the spreading speed in a direction orthogonal to e only depends on the part of the domain orthogonal to e.

Proposition 15. Let Q be a periodic domain satisfying (3), invariant in the direction e € SN~ Let W
be the asymptotic set of spreading of (15) set on Q with f satisfying (5) and such that u — f(u)/u is
decreasing (this implies that f is KPP). Let H be the hyperplane in RN orthogonal to e. Then, if Wynq
is the asymptotic set of spreading for the equation restricted to H N L2, i.e.,

{a,u—Auzf(u), t>0, xeHNQ,

(22)
dyu =0, t>0, x € d(HNQY),

where v\ € SN2 denotes the exterior normal to H N 2, we have
Wauna = WNH.

Proof. To simplify the notation, we denote by wy the spreading speed for the Fisher-KPP equation (15)
set on Q@ C RY and wy_; the spreading speed for (22) set on # N Q c RVN~L Similarly, we denote
by ¢ and c},_, the critical speeds of fronts for (15) and (22) respectively. Up to some rotation of the
coordinates, we write the points of 2 in the form (x, y), where x e HN Q2 and y € R.

Step 1: WNH C Wynq. We start by showing that, for each ¢ € S¥-2 we have wy((£,0) <wy_1(2).
To do so, take £ € S¥2 such that £ - ¢ > 0. Let ¢e(t, x) be a pulsating traveling front solution of
(22) in the direction & with critical speed c},_,(§). For (x, y) € 2, we define ®(z, x, y) := ¢: (¢, x).
Then @ is solution of (15) on the whole of Q. If ug(x, y) is a nonnegative compactly supported initial
datum and if u(t, x, y) is the solution of (15) arising from it, we can assume that (up to translation)
up(x,y) < ®(0, x, y). Hence, the parabolic comparison principle gives us that

u(t,x,y) <®d(t,x,y) forallt>0, forall (x,y) € Q.
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Observe that ® moves in the direction (¢, 0) € S¥~! with speed cy,_;(§)/(& - ¢). This means that
wy((£,0)) <cy_;()/(& -¢), and because this is true for all £ such that & - ¢ > 0, Theorem 6 implies
that wy ((£, 0)) < wy-1(%).
Step 2: Wyna C WNH. We now prove the reverse inequality. To start, let ¢ > 0 be fixed such that £2 <
f'(0). We define a KPP nonlinearity f(u):= f(u)— e2u. Let ug(x) be a smooth, nonnegative, compactly
supported function in HN 2. Let u, (¢, x) be the solution arising from uq of (15) but with f replaced by f-.
Define the cut-off function
cos(ey) for |y| <7 /(2¢),
0 for |y| > m/(2¢).
Now, let v(t, x,y) := u.(t,x)¢(y). Let us show that v is a (generalized) subsolution. An easy
computation shows that, for (x, y) € Q such that v(¢, x, y) > 0, we have

v —Av— f(v) = fe(u)p () +eu0(y) — f )
_ <fs(ue) _ fusd) +82>Mg¢ <.
Ug us¢

The last inequality comes from the fact that z — f(z)/z is decreasing. One can then check that d,v =0

¢@%={

on 9€2. This comes from d,yu, = 0 on d(2NH) together with the fact that €2 is invariant in the direction e.

Hence, u.¢ is a (generalized) subsolution of (15) (with nonlinearity f). We can observe that u,
spreads in 2 N in the direction ¢ € S¥~2 with speed wy_;(¢) — £2. Hence, by comparison, we get
that wy_1(¢) — &2 < wy((¢, 0)). Taking the limit ¢ — 0 yields the result. Il

Observe that the same result holds in what concerns the critical speed of fronts: using the same notation
as in the proof, we can prove that ¢}, ((e, 0)) = c¢},_, (e) for every e € SN=2: one inequality is proved in
the first step, and the second inequality can be proved as in the second step just by taking u. to be front.

Now, we turn to the full proof of Theorem 5, answering then Question 4.

3.3. Geodesic estimates. This aim of this section is to establish estimates on w(e) that do take into
account the geometry of the domain. The key tool is an estimate on the heat kernel from [Berestycki
et al. 2010], following from general results on the heat kernel from [Davies 1989; Grigoryan 1997]. This
estimate is valid for domains satisfying the extension property. Denoting by W7 (2) the usual Sobolev
space over 2, a nonempty subset of RV satisfies the extension property if, for all 1 < p < +o0, there is a
bounded linear map E from WLr(Q) to WP (RN) such that E(f) is an extension of f from Q to RV
for all f € WP (). For our purpose, we mention that the smooth periodic domains we consider here
satisfy the extension property; see [Stein 1970].

Proposition 16. Let Q be a locally C? nonempty connected open subset of RN satisfying the extension
property. Let p(t, x, y) be the heat kernel in Q with Neumann boundary condition on dS2. Then, for every
& > 0, there are two positive constants C and & such that

_ da(z, x)*
orallt >0, forall (z,x) € Qx Q, p(t,z,x) <CA+8V?)exp _da X1 . (23)
A+t
&

where do(z, x) denotes the geodesic distance in SQ.
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See [Berestycki et al. 2010, Proposition 2.5] for the proof. We use this to get upper estimates on the
spreading speed w(e). To do so, we introduce the following coefficient for e € SV ~1:

Cale) := liminf — .
ale):=lmint - 0. 7e)

For notational simplicity and without loss of generality, we assume in the following that the point O is

(24)

in €2 (this is always possible up to translation).
This coefficient represents how much the domain is obstructed in the direction e. The geodesic
distance dg is always greater than the euclidean distance; hence Cq(e) < 1.

Proposition 17. Let Q2 be a domain satisfying (3) and [ a monostable (6) or a combustion (8) nonlinearity
independent of x. We denote by w the speed of invasion associated to problem (15). Then, we have

w(e) <2Ca(e)y] max L. (25)
uel0,1] u

Observe that, if f is a KPP nonlinearity, then this formula boils down to w(e) < 2Cq(e)/ f'(0). In
the case where Q = RY, the upper bound is actually the KPP speed 2./ f7(0).

Proof. Let us observe that it is sufficient to prove the result in the KPP case. Indeed, if f is a monostable
or a combustion nonlinearity, then we can find a KPP nonlinearity £ such that f/(0) = maxyepo,1] f (u)/u
and f > f. If ug is an initial datum, denoting by u, respectively i, the solution of (15) with nonlinearity f,
respectively £, arising from u, the parabolic comparison principle tells us that

u(t,x) <u(t,x) forallt >0, forall x € Q2.

Then, w(e) < w(e), for all e € SV~ where w, respectively w, is the invasion speed for (15) with nonlin-
earity f, respectively f Then, it is sufficient to prove the estimate (25) for fbecause maxyefo,1] f(u) Ju=
maxyeo,1] f (u)/u. Hence, in the rest of the proof, we assume that f is KPP, and then max,¢[o,17 f (1) /u =
1'(0).

Let u(t, x) be the solution of the parabolic problem (15) arising from a compactly supported nonnegative
initial smooth datum ug. Let K be a compact set of €2 such that the support of ug is in K. We denote by
p(t, x, z) the heat kernel with Neumann condition on 2. Then, we first observe that

u(t,x) < ef/(o)’/sz p(t, x, Duo(z) dz. (26)

Indeed, /'O fQ p(t, x, 2)uo(z) dz is the solution of the linearized problem
v—Av=f'(0Ov, t>0, xeQ,
d,v =0, t>0, x€eod, 27
v(0, x) =ug(x), xe,
and hence is a supersolution of (15), thanks to the KPP property. Then, the inequality (26) follows by the
parabolic comparison principle. Now, let ¢ > 0 be fixed. Using the estimate (23) in (26), we get

, da(z, x)?
u(t,x) <C(148t7N?)e/ <°>ff exp(—M

Q

G1o) )uo(z)dz (28)
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for some positive constants C and § (depending on ¢). This gives us

(min ek do(z, X))z)t>

(29)

u(t, x) < Cllugll 1 (148772 e"p<<f O =

Now, take e € S¥~! and @ > 0 such that @ < w(e). Then, u(r, wte) — 1 as t — +o0, by the definition
of w(e). Then, necessarily, we have

e dote
lim sup ek do@-01€) _ /ammSEm,

t— 400 t

if this were not the case, up to subsequence the right-hand term of (29) would go to zero along some
time sequence (,)neN, tn —> 400 as n goes to 400, which would be in contradiction with the fact that
u(t,, ot,e) goes to 1. Using the triangular inequality for dg and the fact that K is compact we eventually get

e JEFTO)

~ limsup,_, |, do(0, wte)/(wt)

Recalling the definition of Cq(e) and that the above inequality is true for every ¢ > 0, we have
w <2Cq(e)v f'(0),
and the result follows. 0
We are now in position to answer Question 4.

3.4. Domains where c* # w. In this section, we construct periodic domains £ such that ¢* # w. If f is
a KPP nonlinearity, we exhibit a 1-periodic domain (but the periodicity can be chosen arbitrary). If f is a
monostable or a combustion nonlinearity, we construct an L-periodic domain, where L > 0 can be large.
For clarity, we do this in dimension N = 2, but these constructions can be easily generalized to larger
dimensions.

In the following, we define e, :=(1,0), ¢, :=(0,1) € S! the unit vectors of the canonical basis of R2.
Moreover, we define ¢; := (l/ﬁ)(l, 1)eS.

3.4.1. The KPP case. We show here the following:

Proposition 18. Let f be a KPP nonlinearity (7). There is a smooth periodic domain Q C R* such that
c*(ex) > w(ea),

where c* and w are the critical speed of fronts and the speed of invasion respectively for (15) set in 2

with nonlinearity f.

We see that in this domain, it is not possible that w = ¢*, thanks to Proposition 12. Hence, this answers
Question 4 in the KPP case.

Proof. For « € (%, 1), B e (O, %), we define 2, g to be a smooth periodic domain such that

7+ (1 —a,0) x [B,1—B1C QL czz+(1_7“, ”T“) x [B,1— Bl (30)
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This domain is simply R? with “almost square” obstacles. For «, 8 given we denote by cs. p(e) the critical
speed of fronts in this domain in the direction e. If 8 is fixed and if we let « — 1, then the domain
“converges” in some sense to an array of parallel disconnected strips in the direction e,. This observation
is made rigorous by [Berestycki et al. 2005, Theorem 1.4], where it is proved that

¢ plex) =7 2/ 0).

Now, let « € (1, +/2) and take « close enough to 1 so that ch plex) > (1/)2/ F(0).

Take n € N. Denoting by dg, , the geodesic distance in €2, g, it is easy to see that dg,, ,(0, n/2eq) >
2n(a — B). Plotting this in (24) yields Cq, ,(eq) < 1/(«/5(05 — B)). Taking B small enough, and increasing
a if needed, we can assume that Cq, ,(es) < 1/k. Denoting by wg g the speed of invasion in the
domain Q, g, Proposition 17 implies that wy g(eq) < (1/k)2+/f7(0). Hence, ¢} p(ex) > we,p(eq) when
« is close enough to 1 and B close enough to 0. This yields the result. O

3.4.2. Combustion and monostable case. Now, we answer Question 4 in the case where f is a combustion
or a monostable nonlinearity. We do it for f combustion first, and then we explain how this yields the
result for monostable nonlinearities.

Proposition 19. Let f be a combustion nonlinearity (8). Then, there are L > 0 and a family of smooth
L-periodic domains (2¢)ae(0,1) such that wy(ex) > K, where K > 0 is independent of a, and wy (ey) — 0
as o goes to 0.

If @ > 0 is chosen small enough so that w,(ey) < K, we see that w, cannot be constant, and then
Proposition 12 implies that ¢* # w on €2, for « small. This answers Question 4 and proves Theorem 5
when f is a combustion nonlinearity.

Before turning to the proof of Proposition 19, we state the following technical lemma. We recall that
we denote by By the ball of radius R and of center 0.

Lemma 20. Let f be a combustion nonlinearity (8) independent of x. Then, there are R, ¢ > 0 and
¢ € W2®(R?), ¢ > 0in Bg and ¢ =0 on 3 Bg such that, on Bg we have

Ap+cip+ f(p) = 0.

Proof. We construct ¢ to be radial. We set ¢ (x) := h(|x|). Now, take R, Ry, R3 > 0 to be chosen after,
such that Ry < R < R3. Wesetc:=c+ 1/Ry. Let C € (8, 1), and «, 8 > 0. We define A as follows:

C, r €0, Ry],
h(r) = { h(r) = (@/2)(r — R))*+C, r€[Ry, Ryl (€29)
h(r)B(e=c—R) 1), r € [Ry, R3l.
We can choose R;, R», R3, ¢, a, B, C such that
he W2 [RY),
h(R,) =K, where K € (9, C) will be chosen after, (32)

B'(r)+¢h'(r)+ f(h(r)) >0 forr > 0.
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The existence of such a function proves our result, indeed
1
Ap+cdp+ f(d)=h"+ (c + ;)h’ + f(h)
1 1 /
>h"+ c+R— h + f(h).
1

We used the fact that £ is nonincreasing and 4'(r) = 0 if r € [0, R;] here.
Let us define

F:= inf f(s)>0.
se(K,C)

Because h(R;) = K, we can bound from behind f (4 (r)) by F when r € [R{, R,] and by 0 elsewhere.
Some easy computations show that (32) boils down to verifying the following algebraic system:
BlefBs=R) —1) = K,
(@/2)(Ry— R))*=C —K,

. 33
a(Ry — Ry) = peet o=k, 53
F > a(l+¢(Ry— Ry)).
Up to some computations, it is readily seen that (33) admits positive solutions, for instance
F 1
o= ) Rl =
1+(C—-K)/(2K) c
1 /2a(C—K) 2(C-K)
c=g——— Ry =/ — + Ry,
8 K o
Joa(C—K 1 K
p YUK o R3:—ln(l+—>+R2.
2¢\/2 2¢ p
Hence, ¢ (x) := h(|x|) satisfies the lemma with R := Rj3. O

Now, we use this lemma to prove Proposition 19.

Proof of Proposition 19. Step 1: Construction of the domain. Let R > 0 be large enough, so that we can
apply Lemma 20. Let o € (0, 1), € € [0, «R/2] and define

K :={(x,y) €R? suchthatax + R+¢ <y <ax+(1+a)R—¢, y €[R,2R]}.
Now, let K, be a smooth connected compact set such that
KR®/* c Kk, c KD.
We define 2, to be the smooth 3 R-periodic domain
Qq = (Ko +3RZ);

see Figure 1. Observe that, if k, [ € Z? are such that k # [, then (K, + 3Rk) N (Ko +3RI]) = @.
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3R
7 - N —

e

Figure 1. The domain €2, used in the proof of Proposition 19.
Step 2: Lower bound on wy (e, ). For a > 0 given, we denote by w, the speed of invasion for (15) set on
the smooth periodic domain €2,. Let us show that there is K > 0 independent of « such that
wq(ex) > K. (34)

Because of the choice of R, we can apply Lemma 20 to find ¢ > 0 and ¢ € W>*(Bg), ¢ > 0 on Bg
and ¢ =0 on d Bg such that A¢ + cd,¢ + f(¢) > 0. Now, we define

¢(X_Ct’y) if(xsy)EBR(Ctex)s
v(t, x,y) =
0 elsewhere.
Then, the support of v(z, -, - ) never intersects the boundary of €2,, and because

v —Av— f(v) = —cdrp — Ap — f(¢) <O for (x,y) €suppv(t,-,-),

we have that v is a nonnegative compactly supported generalized subsolution of (15).

Now, take ug a compactly supported initial datum such that ug(x, y) > ¢(x, y) and such that the
solution arising from it, say u(¢, x, y), converges to 1 (as we mentioned earlier, such initial datum always
exists, see [Ducasse and Rossi 2018]). The parabolic comparison principle yields

u(t,x,y)>¢(x—ct,y) forallt >0, forall (x,y) € Q.

By the definition of wy (e, ), this implies that w, (e,) > ¢, where ¢, given by Lemma 20, is independent
of a. Hence, (34) holds with K :=c.

Step 3: Upper bound on wy (ey). We now show that wy (ey) — 0 as o goes to 0. To do so, we first apply
Proposition 17, to get

(u)
wy(ey) <2Cq,(ey) urggﬁl fu .

Let us estimate Cq, (ey). If we take n € N, we see that, if o is small enough, dq (0, 4Rney) >
2Rn+/1+ (1 —1/a)?. Then, if « is small enough, Cq, (ey) < 3a. Thus

S (u)
Wy (ey) < 6aq/ max =0 0,
uel0,11 u

and hence the result. O
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Now, Proposition 19 is proved, and answers Question 4 in the combustion case: in 4, ¢* # w, for
o > 0 small enough.

Let us now explain how this also answers Question 4 in the monostable case. Take f to be a monostable
nonlinearity and let f be a combustion nonlinearity and let f be a KPP nonlinearity, both independent
of x, such that -

f<r<r.

Let @y, Wy, wy be the invasion speed for the problem (15) with nonlinearity f, f, J respectively. Then,
by comparison, we have
foralle € S!,  wey(e) < wy(e) < Wy(e). (35)

Now, we can apply Lemma 20 to find ¢ > 0 and ¢ € W>»*(R?), ¢ > 0 in Bg and ¢ =0 on d Bg such
that, on By we have

A +coxd + f(¢) = 0.

Then, consider the domain €2, constructed in the proof of Proposition 19, but with this new R > 0.

On this domain, we have a lower bound on w,(e,) independent of &. Moreover, we can show that
Wy (ey) goes to zero as o goes to 0, as in the proof of Proposition 19.

Hence, (35) yields that there is K > 0 independent of « such that wy(ey) > K, and wy(ey) — 0 as «
goes to 0. This means that Proposition 19 still holds if f is monostable; hence this answers Question 4 in
the monostable case and concludes the proof of Theorem 5.

4. Symmetries of the domain and relation with ¢* and w

This section is dedicated to the proof of Theorem 7. As we mentioned earlier, even in a domain €2 where
c* # w, the Freidlin—Girtner formula yields that any direction ¢ € S¥~! minimizing c* satisfies the
equality c¢*(e) = w(e). Theorem 7 gives a geometrical condition that ensures the existence of directions
where ¢* and w coincide. To prove it, we first state the following lemma:

Lemma 21. Let ¢* and w be respectively the critical speed of fronts and the speed of invasion for (15)
with the nonlinearity f satisfying (4), (5) and such that u — f (u)/u is nonincreasing. For any k € N and
e c SN_I, (gi)ie[[l,k]] (< (SN_I)k such that
k
ec {x eRN :x :Zkiéi, Ai ZO},
i=1

the following holds:

c* (&
c*(e) < max (Sl).
iel[Lkl e-§&;

Proof. For i € [[1, k]|, we denote by ¢, (¢, x) a pulsating traveling front solution of (1) in the direction §;

with critical speed c*(§;). Let

k
v(t, x) = Z¢Ei (t, x).
i=1
Now, the hypotheses on f imply that f(v) < Zle f(¢¢), and then v is a supersolution of (1).
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Now, for ¢ > 0, let f; be a combustion nonlinearity satisfying

0< fe(x,u) < f(x,u) forallue]l0,1], forall x € L,
fe(x,u)= f(x,u) forallue[0,1—2¢], forall x € 2,
fe(x,u)=0 for all u € [—¢, 0], for all x € 2,

fex,1—¢)=0 for all x € Q.

Now, take ¢ € SV~! such that e = Zle Ai&i, with A; > 0 for all i € [[1, k], and let ¢; be a pulsating
traveling front connecting 1 — ¢ to —¢, a solution of (1) with the combustion nonlinearity f,, in the
direction e with critical speed c}(e).

Up to some translation in time, we can assume that ¢ (0, x) <0 if x -e > 0 and, for all i € [1, k]|,
050, x)>1—¢cifx-& <O.

Moreover, if x € €2 is such that x - e < 0, then there is at least one of the &; such that x - §; < 0. Hence,
v(0,x)>1—¢ifx-e<0.If x-e >0, we have v(0, x) > 0> ¢2(0, x). Hence

v(0,x) > ¢S (0, x) forall x € Q.
Because f; < f, the parabolic comparison principle yields
v(t,x) > ¢i(t,x) forallz >0, forall x € Q. (36)

Now, if we take ¢ > max;¢ vy ¢*(&)/(e - &), we have that v(z, cte) — 0 as ¢ goes to 4-o00. It then
follows from (36) that c}(e) < max;¢i,nyc*(&)/(e-&;). Now, it is classical that ¢} (e) — c*(e) as € goes
to O (see, for instance, [Rossi 2017, Proposition 2.6]). Taking the limit ¢ — 0 then yields the result. [

Remark 22. Lemma 21 yields a very strong geometrical condition on c*, and prevents it from being any
arbitrary function. Consider

Ci={r(®)E eR*:r(&) [0, c"®)]}.
In the case of (15) with @ = R", ¢* is constant and then C is a ball. In general, it is not clear what “shapes”

C can adopt. Lemma 21 prevents it from being some natural candidates; for instance, C cannot be an
ellipse with eccentricity larger than 1/+/2. We recall that an ellipse of equation x2/a® + y2/b% = 1, with

a > b, has eccentricity /1 — b%/a?.
Before turning to the proof of Theorem 7, we need another technical lemma.

Lemma 23. Let 2 be a periodic domain, and let T be an orthogonal transformation that leaves T
invariant; i.e., T Q = Q2. Then, at least one of the two possibilities below holds true:

(1) T is of finite order; i.e., there is m € N* such that T™ = I, where Iy is the identity matrix.

(i) The domain 2 is invariant in a direction orthogonal to the eigenvectors associated with the eigen-
value 1.
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Proof. Assume that T leaves the domain €2 invariant and that it is not of finite order. Then, there is at
least one vector e of the canonical basis of R such that

T*e) £e forall k € Z*.

It is then readily seen that each point of the set {T*(e) : k € Z} is a point of accumulation. Therefore, up
to extraction,

Ui = Tk(e) —e m) 0.

Moreover, because €2 is left invariant by 7 and because 2 4 e = €2, there holds

Q+T*e)=Q+e forallkeN,
ie.,
Q+4u, = forall k e N.

Now, we can find v € SV~! such that uy /|ux| converges up to another extraction to v. It is then readily
seen that

Q+riv=8 forall A eR;

i.e., 2 is invariant in the direction v. Observe now that, if y is an eigenvector associated to the eigenvalue 1,
then uy - y = 0, from which we get that v - y = 0, and this concludes the result. O

We are now in position to prove Theorem 7.

Proof of Theorem 7. Let T be an orthogonal transformation as in the theorem and let e € S¥~! be such
that Te =e.

Step 1: Reduction to the case of a finite-order orthogonal transformation. Assume that 7' is not of finite
order. Then, owing to Lemma 23, the domain €2 is invariant in at least one direction orthogonal to e. We
denote by S the set of all such directions. It is a subspace of R" orthogonal to e such that T(S) = S. We
define

Q:=Qnst,
where S+ denotes the orthogonal of S. Then, e € Q and

T(Q) = Q.
Consider now the problem _
{Btu—Au:f(u), t>0, xeq, 37)

oyu =0, t>0,x68§2.

We denote by W the asymptotic set of spreading for (15). Then, owing to Proposition 15, the asymptotic
set of spreading for (37) is W N S=. In particular, the speed of invasion and the critical speed of fronts in
the direction e for (15) and for (37) are the same. It is then sufficient to prove our result in the domain 52,
which is not invariant in any direction orthogonal to e. Because € is left invariant by T and owing to
Lemma 23, the restriction of T to € is of finite order.
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Step 2: Proof when T is of finite order. Let us now restrict our attention to the case where 7 is of finite
order; i.e, there is m € N* such that 7" = Iy.
Let &y be such that w(e) = c*(&y)/(&p-e) and &y - e > 0. If &y = e, then w(e) = ¢*(e) and we are done.
If not, we define
& :=Trg fork e[[0,m—1].

Let us show that the vector e is in the positive cone spanned by the (§x)kefo,m—17. To do so, observe first
that

k=m—1 k=m—1
(T™ — Iy) (&) = (T — IN)( > T"so) = (T - IN)( > sk) =0.
k=0 k=0
Owing to the hypotheses on 7, this implies that there is A € R such that
k=m—1
> &= (38)
k=0

Moreover, because T is orthogonal, we see that, for k € [0, m — 1],
§r-e =8 -e>0, (39)

and then, (38) yields that A > 0; i.e., e is in the positive cone spanned by the (§¢)refo.m—17-
Now, owing to Lemma 21, we have

C*
c*(e) < max (Ek).
kel0,m—17 & -e

(40)
Observe that, because T2 = 2, we have

G =c"E)=--=c"CEn-1). (41)

Indeed, if ¢ (¢, x) is a pulsating traveling front solution of (15) in the direction £ € SN~! with speed
c*(&), then ¢ (¢, Tx) is a pulsating traveling front solution of (15) in the direction 7§ with speed c*(§).
Then, by definition of the critical speed, c*(T€) < ¢*(&). The same reasoning but with T£ instead of &
and with 7~ ! instead of T yields the reverse inequality and then ¢*(§) = ¢*(T&). Hence, (41) follows
from the definition of the &, k € [0, m — 1]].

Now, combining (39) and (41) with (40), we see that

c* (%)

0-€

c*(e) < =w(e).

Because w(e) < c*(e), thanks to the Freidlin—-Gértner formula (12), we finally get
c*(e) = w(e),
and hence the result. O
We can deduce from this theorem the following:

Corollary 24. Assume that f satisfies (4)—(5) and that u — f (u)/u is nonincreasing. Let Q@ C RN be a
periodic domain. Then, c*(e) = w(e) in the following cases:
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o If N =2 and if Q is symmetric with respect to the line Re.
o If N =3 and if Q is stable with respect to the rotation of angle w and of axis directed by e.

e If N € N and if Q is symmetric with respect to N — 1 hyperplanes whose intersection is the line
directed by e.

The cases N =2 and N = 3 are straightforward. For the general case N € N, one may observe that the
composition of N — 1 symmetries whose stable hyperplanes have a one-dimensional intersection satisfies
the hypotheses of Theorem 7.

A typical domain to which we could apply Corollary 24 is the whole space with ball-shaped obstacles,i.e.,

Q= (Bia+7V)".

In this domain, Corollary 24 yields that w(e) = c*(e) for any e € SN~1 in the canonical basis. We
conclude this section with two remarks.

Remark 25. Let us observe that the hypothesis Ker(T — Iy) = Re is necessary in Theorem 7. Indeed,
consider  C R? to be the periodic domain constructed in Proposition 18 and define

Q:=QxR.

Let T be the symmetry with respect to the hyperplane orthogonal to u := (0, 0, 1). The domain Q
is invariant in the direction u := (0, 0, 1); therefore we can apply Proposition 15 to see that there are
directions orthogonal to # where ¢* and w do not coincide, although these directions are left invariant
by T.

Remark 26. Observe that, if one considers the general equation (1), then Theorem 7 still holds provided
the coefficients satisfy the same symmetry as the domain; i.e., we need the coefficients to satisfy

A(Tx)=TAX)T*, ¢q(Tx)=Tq(x) and f(Tx, )= f(x,-),

where T is the transformation considered in Theorem 7.

Appendix

Proof of Lemma 9. As we mentioned, Lemma 9 is the natural extension of [Rossi 2017, Lemma 2.1], in
the case of a periodic domain.

Proof. Let u be taken as in the lemma. We define

h:=liminf inf u(¢, x).
§——+00 t<0
x-e<yt—3§
xeQ

Assume that, by contradiction, /& € (S, 1). We can find two sequences (x,), € QN ), € (—o0, )N
such that x,, - e — yt, — —oo and u(t,, x,) — h as n goes to +00. Let us define k, € ZV, z, € [0, DV
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so that x,, = k, + z,. Up to extraction, we assume that z,, — z as n goes to 400 for some z € [0, 17V
Consider the sequence of translated functions

Uy :=u(- +1,,- +k,).

These functions are supersolutions of (1), by periodicity of the domain. As before, we can use the usual
parabolic estimates to get local uniform convergence of the sequence (u,), to a function u., supersolution
of (1). Moreover, we have

Uso(0,2) =h <ux(t,x) forallt <0, forall x € Q. 42)
Indeed, for t <0, x € 2, we have

up(t,x) =u(t +1ty, x +ky) > lng u(z,y), (43)
<

y'e_yffgn

where 8, :==x-e —yt —z,-e+x, -e — yt, goes to —oo as n goes to +-00. Hence, passing to the limit
n — 400 in (43) yields (42). Because f > 0, it follows from the parabolic maximum principle and Hopf
principle that u is actually equal to & if ¢+ < 0 and x € . This implies that f(x, ) = 0, which is in
contradiction with the fact that & € (S, 1) together with hypothesis (5); hence the result. O

Proof of Lemma 10. We now turn to the proof of Lemma 10. Again, it is the natural extension of [Rossi
2017, Lemma 2.2] to the case of a periodic domain.

Proof. Let us define u, := i + ¢, where ¢ > 0. The hypotheses on u« yield that there is § > 0 such that
Ug(t,x)>14¢/2ift <Oand x-e < yt — 5, x € Q. The hypotheses on u give us that there is L > 0
such that u(z, x) <eift <0Oand x-e > (y +n)t + L. Hence, there is T, < 0 such that u. (¢, x) > u(¢, x)
for t < T, for all x € Q. Indeed, if ¢ is negative enough, we have nt + L < —§; hence we can take
T.:=(—6—L)/n.

In order to prove the result, we shall argue by contradiction. Hence, we will assume that there is g9 > 0
such that

for all € € (0, gg) there exist T € (T, 0) and x; € Q such that i, (7, x;) < u(z, x;). (44)

Indeed, if (44) does not hold, our result follows by letting ¢ — 0. Now, we define ¢, € [T, 0) to be the
infimum of all the t such that (44) holds true. Hence

ug(t,x)>u(t,x) forallr <t,, forall x € Q,

and by continuity we have
inf (e — u)(te, x) = 0.
xeQ

Thanks to the hypotheses, we can find p. € R such that

inf (it — u)(t,, x) = 0.

X-e=pPg

Depending on the behavior of p,., we now consider three cases.
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First case: (pg)ec(0,¢) 1S bounded. We can find a sequence of points (x¢)ee(0,s,), With x, € £ such that
Xe-e=p; and  ug(le, x) —u(te, xe) <é.

We define k, € ZV, y, € [0, 1)V to be such that x, = k, + y,. Up to extraction,we can find y € [0, nHy
such that y. — y as ¢ goes to 0.

We now consider the translated functions . (t +1t., x + k), u(t+1t., x +k.). Using parabolic estimates
and extracting, these functions converge locally uniformly as ¢ goes to 0 to 1, U0, @ supersolution and
a subsolution respectively of (1).

Moreover, i, U Satisfy

Uso(0, ¥) = us(0, y) and Uso(t,X) > Uoo(t,x) fort <0, x € Q.

Hence, the strong comparison principle and the Hopf lemma (see [Protter and Weinberger 1967, Chapter 3])
imply that i, = U for ¢+ < 0. But the boundedness of x, - e = p, implies that we still have

liminf inf (2, x)>1.

§—>+o00 <0

x-e<yt—§
xeQ

However, the hypotheses on u yield that there is K € R such that
Uso(t, x) < % forall t <0, for all x € Q such that x -e > (y +n)t + K.

Taking ¢t < 0 small enough yields a contradiction.

Second case: infge(o ¢y pe = —00. Let us take ¢ such that —p, is large enough to have

ing u(t,x) > S.
x-e—t)</t<p£
Because f(x, -) is decreasing in (S, 1), we have that u, = i + ¢ is a supersolution of (1) for {(¢, x) €
RxQ:x-e—yt < p}
We can find a sequence (x,), € QN such that x,, - e = 0 and

lim (u; —u)(t, pee + x,) = 0.

n—+00o

We write as before x, = k, + y,, where k,, € ZN and yn € [0, DY, and up to extraction we can find
y € [0, 11V such that y, — y as n goes to +o0.

We define u; (¢, x) := u(t, x +k,) and u, (¢, x) := u(t, x + k,). Observe that iz}, is a supersolution in
{(t,x) eRx Q:x-e—yt < p, — 1}. Again, using parabolic estimates and extracting as n goes to 400,
we get two functions u¢ and u, that are respectively a supersolution and a subsolution of (1) on the
same set. Moreover, they satisfy u_(f:, pse +y) = oo (s, ps€ +y); we have a contact point.

Observe that (., pce +y)isin {(t,x) e Rx Q:x-e—yt < p. —2}. Hence, we can apply the Hopf
lemma [Protter and Weinberger 1967, Theorem 6] to (1) on {(f,x) e Rx Q:x-e—yt < p. — 1} to get
that (7., p.e + y) is not on a boundary point. Therefore, it is an interior contact point and the parabolic
comparison principle yields that 5 (¢, x) = uso(t, x) on {(t,x) e Rx Q:x -e — yt < p, — 1}. But this
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is not possible, because the hypotheses on & imply that there is § large enough so that uf_(t, x) > 14+¢/2
if x-e—yt < —4. Because u < 1, we are led to a contradiction.

Third case: Sup,¢ s, Pe = +00. If we are in the case (19), this cannot happen because u, > 0 and
u(te, x) < 0if x - e is large enough. Then, we are left to assume that f satisfies (9) and u satisfies (18). In
particular, we can take & small enough so that p. is large enough to have u(z, x) <6 on {(¢,x) e R x Q:
x-e—yt > p}, where 0 is from (9). Hence, u, := u — ¢ is a subsolution of (1) on this set. Arguing as in
the previous case, we get a contradiction, and hence the result. U
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AN ELEMENTARY APPROACH TO
FREE ENTROPY THEORY FOR CONVEX POTENTIALS

DAVID JEKEL

We present an alternative approach to the theory of free Gibbs states with convex potentials. Instead
of solving SDEs, we combine PDE techniques with a notion of asymptotic approximability by trace
polynomials for a sequence of functions on My (C)¥: to prove the following. Suppose py is a probability
measure on My (C)Z given by uniformly convex and semiconcave potentials Vy, and suppose that the
sequence D Vy is asymptotically approximable by trace polynomials. Then the moments of uy converge
to a noncommutative law A. Moreover, the free entropies x (1), X (A), and x*(A) agree and equal the limit
of the normalized classical entropies of .
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1. Introduction

1A. Motivation and main ideas. Since Voiculescu [1993; 1994; 1998] introduced the free entropy of a
noncommutative law, a number of open problems have prevented a satisfying unification of the theory
(as explained in [Voiculescu 2002]). The free entropy x was defined by taking the lim sup as N — o0
of the normalized log volume of the space of microstates, where the microstates are certain tuples of
N x N self-adjoint matrices having approximately the correct distribution. It is unclear whether using the
lim inf instead of the lim sup would yield the same quantity. Voiculescu also defined a nonmicrostates
free entropy x* by integrating the free Fisher information of X +¢!/2S, where S is a free semicircular
family free from X, and conjectured that xy = x*

Biane, Capitaine, and Guionnet [Biane et al. 2003] showed that y < x™* as a consequence of their large
deviation principle for the GUE (see also [Cabanal Duvillard and Guionnet 2001]). The proof relied

MSC2020: primary 46L.53; secondary 35K10, 37A35, 46L52, 46L.54, 60B20.
Keywords: free entropy, free Fisher information, free Gibbs state, trace polynomials, invariant ensembles.
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on stochastic differential equations relative to Hermitian Brownian motion and analyzed exponential
functionals of Brownian motion. Recent work of Dabrowski [2016] combined these ideas with stochastic
control theory and ultraproduct analysis in order to show that x = x™* for free Gibbs states defined by a
convex and sufficiently regular potential. This resolves this part of the unification problem for a significant
class of noncommutative laws.

This paper will prove a result similar to Dabrowski’s using deterministic rather than stochastic methods.
We want to argue as directly as possible that the classical entropy and Fisher’s information of a sequence
of random matrix models converge to their free counterparts. Let us motivate and sketch the main ideas,
beginning with the heuristics behind Voiculescu’s nonmicrostates entropy x*.

Consider a noncommutative law A of an m-tuple and suppose A is the limit of a sequence of random
N x N matrix distributions py given by convex, semiconcave potentials Vy : My (C)7, — R. Let o; v be
the distribution of m independent GUE matrices which each have normalized variance ¢, and let o; be
the noncommutative law of m free semicircular variables which each have variance ¢. Let Vi ; be the
potential corresponding to the convolution uy * 0; y. The classical Fisher information Z satisfies

a1
dt N2
and from this we deduce that

1 m 1
mh(MN)‘FElOgN—i/(

1
h(uy * o N) = WI(MN *0; N) = /”DVNJ(X)”%d(MN *07 N)(X),

m

_m_ m
141

> log2me.

1
— 3T *o,,N)) di +

As N — oo, we expect the left-hand side to converge to the microstates free entropy x (1) because the
distribution py should be concentrated on the microstate spaces of the law A. On the other hand, we
expect the right-hand side to converge to the Voiculescu’s nonmicrostates free entropy x*(A) defined by

X*0) = %/(1%: _ cb*(,\Eaa,)) dr+ % log2e,

where ®* is the free Fisher information and H denotes the free convolution [Voiculescu 1998].

Under suitable assumptions on Vy, the microstates free entropy x (1) is the lim sup of normalized
classical entropies of 1. On the right-hand side, we want to show that N 3Z(uy * o, y) — ®*(ABo;)
for all r > 0. Since the Fisher information is the L?(uy) norm squared of the score function or (classical)
conjugate variable DVy ;(x), we want to prove that the classical conjugate variables DVy ;(x) behave
asymptotically like the free conjugate variables for A H o, for all 7.

This would not be surprising because classical objects associated to invariant random matrix ensembles
often behave asymptotically like their free counterparts. For instance, Biane [1997] showed that the
entrywise Segal-Bargmann transform of noncommutative functions evaluated on N x N matrices can
be approximated by the free Segal-Bargmann transform computed through analytic functional calculus.
Similarly, Guionnet and Shlyakhtenko [2014, Theorem 4.7] showed that classical monotone transport
maps for certain random matrix models approximate the free monotone transport. Moreover, Dabrowski’s
approach [2016] to proving x = x* involved constructing solutions to free SDEs as ultraproducts of the
solutions to classical SDEs.
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noncommutative asymptotic behavior” by defining asymptotic approximability by trace polynomials

In Section 3D, we make precise the idea that a sequence of functions on My (C) has a “well-defined,
(Definition 3.24). We assume that D Vy at time zero has the approximation property and must show that
the same is true for DVy , for all ¢.

First, we show that this property is preserved under several operations on sequences, including
composition and convolution with the Gaussian law oy ; (see Section 3D). Then in Section 6 we analyze
the PDE that describes the evolution of Vy ;. We show that for all ¢ the solution Vyy ; can be approximated
in a dimension-independent way by applying a sequence of simpler operations, each of which preserves
asymptotic approximability by trace polynomials. In other words, if the initial data D Vy is asymptotically
approximable by trace polynomials, then so is D Vy ;, and hence we obtain convergence of the classical
Fisher information to the free Fisher information.

This proves the equality x (1) = x*(A) whenever a sequence of log-concave random matrix models uy
converges to A in an appropriate sense (Theorem 7.1). Another result (Theorem 4.1), proved by similar
techniques, establishes sufficient conditions for a sequence of log-concave random matrix models uy to
converge in moments to a noncommutative law A, so that Theorem 7.1 can be applied. As a consequence,
we show that x = x* for a class of free Gibbs states.

1B. Main results. To fix notation, let My (C)7, be space of m-tuples x = (x1, ..., x,,) of self-adjoint
N x N matrices and let ||x ||, = (Zj rN(sz))l/z, where Ty = (1/N) Tr. We denote by || x| s the maximum
of the operator norms || x;||. Recall that a trace polynomial f(xi, ..., x,) is a linear combination of terms
of the form
n
P[]0,
j=1
where p and p; are noncommutative polynomials in xy, ..., x,, (see Section 3A).

Consider a sequence of potentials Vy : My (C)2, — R such that Vy(x) — (c/2)||x||% is convex and
Vn(x)—(C/2)|x ||% is concave for some 0 < ¢ < C. Define the associated probability measure py by

d,uN(x):Le_NzVN(x) dx, ZN:/ e NIVNE) gy

Zy My(©Y
Assume that the sequence of normalized gradients DVy (x) = NV Vy(x) is asymptotically approximable
by trace polynomials in the sense that for every € > 0 and R > O there exists a trace polynomial f (x)
such that

limsup sup [[DVy(x)— f(x)ll2 <e,

N—>oo |xllo=<R
where || x || denotes the maximum of the operator norms of the x;. Also, assume that f (x—tnv(x))dunx)
is bounded in operator norm as N — oo (it will be zero if upy is unitarily invariant or has expectation
zero). In this case, we have the following:

(1) There exists a constant Ry such that (X ]leo = Ro +8) < me=<N/2 for § > 0.
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(2) There exists a noncommutative law A such that

Tim. / v (p(x)) dpy (x) = A(p)

for every noncommutative polynomial p.

(3) The measures uy exhibit exponential concentration around A in the sense that

. 1
lim —slogun(l|xllec < R, |tn(p(x)) —A(p)[=6) <O
N—oo N

for every R > 0 and every noncommutative polynomial p.

(4) The law A has finite free entropy and we have

X0 =x0) = x*0) = lim = (h(un) + 2 log V),

N—o0 ]\72

where x and x are respectively the lim sup and lim inf versions of microstates free entropy, x* is the
nonmicrostates free entropy, and 4 is the classical entropy.

(5) The same holds for py *o; y and A Ho;, where o; y is the law of m independent GUE matrices with
variance ¢t and o; is the law of m free semicircular variables with variance ¢.

(6) The law A has finite free Fisher information. If 7 is the classical Fisher information and ®* is the
free Fisher information, then

. 1
Nh_gnoo FI(MN x0y ) =P (A Hoy).

(7) The functions 7 — (1/N3)Z(uy * o:,n) and t — ®*(LHo;) are decreasing and Lipschitz in ¢ with
the absolute value of the derivative bounded by C Zm(14Ct)~2.

Claims (1) and (3) are standard concentration estimates (see Section 2E), which we do not prove in this
paper, but we include them in the statement to clarify the big picture. Claim (2) is proved in Theorem 4.1,
which is similar to the earlier results [Guionnet and Shlyakhtenko 2009, Theorem 4.4; Dabrowski et al.
2016, Proposition 50 and Theorem 51; Dabrowski 2016, Theorem 4.4]. Claims (4) through (7) come
from Theorem 7.1, which is similar to [Dabrowski 2016, Theorem A].

In particular, we recover [Dabrowski 2016, Theorem A] that y (A) = x (1) = x*(A) when the law A
is a free Gibbs state given by a sufficiently regular convex noncommutative potential V (X), because
taking Vy = V will define a sequence of random matrix models uy which concentrate around the
noncommutative law A.

Unlike Dabrowski, we do not provide an explicit formula for (d/d¢)® (1 Ho;). However, we are able
to prove that ®(A B o,) is Lipschitz in ¢ rather than merely having a derivative in L?(dt) (and hence
being %—Hélder continuous) as shown by Dabrowski. Our results also allow slightly more flexibility in
the choice of random matrix models, so that we do not have to assume that Vy is given by exactly the
same formula for every N or that Vi is exactly unitarily invariant.
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1C. Organization of paper. Section 2 establishes notation and reviews basic facts from noncommutative
probability and random matrix theory.

Section 3 defines the algebra of trace polynomials and describes how they behave under differentiation
and convolution with Gaussians. We then introduce the notion that a sequence {¢y} of functions
My(C) — My(C)Z of C is asymptotically approximable by trace polynomials. We show that this
approximation property is preserved under several operations including composition and Gaussian
convolution.

Section 4 proves Theorem 4.1 concerning the convergence of moments for the measure py (claims
(1)-(3) of Section 1B). We evaluate [ u duy for a Lipschitz function u as lim,_, oo TtVN u, where T,VN is the
semigroup such that u, = T,VN u solves the equation d,u; = (2N) "' Au, — DV - Vu,. We approximate T,VN
by iterating simpler operations in order to show that if NVV, and uy are asymptotically approximable
by trace polynomials, then so is TtvN uy, and hence that limy_, oo f uyn duy exists.

Section 5 reviews the definitions of free entropy and Fisher’s information. We also show that the
microstates free entropies x (1) and x (%) are the lim sup and lim inf of normalized classical entropies
of uy, provided that ;y concentrates around A and satisfies some mild operator norm tail bounds, and
that {Vy} is asymptotically approximable by trace polynomials. Similarly, if {DVy} is asymptotically
approximable by trace polynomials, then the normalized classical Fisher information converges to the
free Fisher information.

Section 6 considers the evolution of the potential Vi (x, t) corresponding to iy * oy y, Where oy y is
the law of m independent GUE of variance ¢. Our goal is to show that if DV (x, 0) is asymptotically
approximable by trace polynomials, then so is NV Vy (x, t) for all # > 0, so that we can apply our previous
result that the classical Fisher information converges to the free Fisher information. As in Section 4, we
construct the semigroup R, which solves the PDE as a limit of iterates of simpler operations which are
known to preserve asymptotic approximation by trace polynomials.

In Section 7 we conclude the proof of our main theorem on free entropy and Fisher’s information
(Theorem 7.1), which establishes claims (4)—(7) of Section 1B, assuming a weakened version of the
hypothesis and conclusion of Theorem 4.1.

In Section 8, we characterize the limiting noncommutative laws A which arise in Theorem 4.1 as the
free Gibbs states for a certain class of potentials. In particular, we apply Theorem 7.1 to show that y = x*
for several types of free Gibbs states considered in previous literature.

2. Preliminaries

Here we fix notation and discuss background results that will be used throughout the paper.

2A. Notation for matrix algebras. Let My (C) denote the N xN matrices over C and let My (C)q,
be the self-adjoint elements. Note that My (C)¢; is a real inner product space with the inner product
(x, y)r := 27’:1 Tr(x;y;) for x = (x1,...,x,) and y = (y1,..., ym). Moreover, My (C)™ can be
canonically identified with the complexification C g My (C)Z: by decomposing each matrix into its
self-adjoint and anti-self-adjoint parts.
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Being a real inner product space, My (C)s, is isomorphic to R™Y " An explicit choice of coordinates
can be made using the following orthonormal basis for My (C)s,:

1 1 i i
By ={Ei}ey U {—Ek,z + —Ee,k} U {—Ek,z - _E(Z,k} : (2-1)
=2 V2 T e V2 V2 T i
This basis has the property that for all x, y, z € My (C), we have
> xbybz = xz Tr(y), (2-2)
bEBN

which follows from an elementary computation.

We denote the norm corresponding to Tr by |- | (essentially the Euclidean norm). We denote the normal-
ized trace by ty = (1/N) Tr. We denote the corresponding inner product by (x, y), = ZTzl Ty (x;y;) and
the norm by || - ||». For x € My (C), we denote the operator norm by | x||. Similarly, if x = (x, ..., xy) €
My (O)™", we write ||x ||oo = max;||x;||.

The symbols V and A will represent the gradient and Laplacian operators with respect to the coordinates
of My (C)s, in the nonnormalized inner product (-, - ). The symbols D and Ly will denote the normal-
ized versions NV and (1/N)A respectively, as well as the corresponding linear transformations on the
algebra of trace polynomials. This normalization and notation will be explained and justified in Section 3B.

2B. Noncommutative probability spaces and laws. The following are standard definitions and facts in
noncommutative probability. For further background, see [Voiculescu et al. 1992; Nica and Speicher
2006; Anderson et al. 2010, §5].

Definition 2.1. A von Neumann algebra is a unital C-algebra M of bounded operators on a Hilbert
space ‘H which is closed under adjoints and closed in the weak operator topology.

Definition 2.2. A tracial von Neumann algebra or noncommutative probability space is a von Neumann
algebra M together with a bounded linear map 7 : M — C which is continuous in the weak operator
topology and satisfies 7(1) =1, 7(xy) = t(yx), and 7(x*x) > 0. The map t is called a trace.

Definition 2.3. For m > 1, we denote by NCP,, = C(Xy, ..., X,;) the algebra of noncommutative poly-
nomials in X1, ..., X,,, equipped with conjugate-linear involution * such that X;f = Xj and (pg)* =q*p*.
A noncommutative law (for an m-tuple) is a map A : NCP,, — C such that

(1) A is linear,

(2) A is unital (that is, A(1) = 1),

(3) A is positive, that is, for every p(X) € C(X1, ..., Xn), we have A(p(X)*p(X)) >0,
(4) A is tracial, that is, A(p(X)g(X)) = A(g(X) p(X)).

We denote by X, the space of noncommutative laws equipped with the topology of pointwise convergence
on C(Xy, ..., X,;), that is, convergence in noncommutative moments.

Definition 2.4. We say that a noncommutative law X is bounded by R if we have

A(Xi, ..., Xi)l < R".

We denote the space of such laws by X, g.
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Definition 2.5. Suppose that x1, ...x, are bounded self-adjoint elements of a tracial von Neumann
algebra (M, 7). Then the law of x = (x1, ..., X,) is the map

At C(Xq, o, X)) = C: p(X) > T(px)).

Definition 2.6. Let My (C) be the algebra of N x N matrices over C. Let Ty = (1/N) Tr be the normalized
trace. Then (My (C), ty) is a tracial von Neumann algebra, and hence, for every m-tuple of self-adjoint
matrices x = (xy, ..., X»), the law A, is defined by Definition 2.5.

Proposition 2.7. The space X, r is compact, separable, and metrizable. Moreover, every (L € L r
can be realized as \y for some tuple x = (x1, ..., x) of self-adjoint elements of a tracial von Neumann
algebra (M, t) with ||x]lco < R.

For the proof of the claim that every noncommutative law can be realized by operators, see [Anderson
et al. 2010, Proposition 5.2.14].

2C. Noncommutative L*-norms. On several occasions, we will need to use the noncommutative L* norms

for o €[1, +oc]. (Here we use « rather than p since the letter p will often be used for a polynomial.) If y is

any element of a tracial von Neumann algebra (M, ), then we define |y|=(y*y)!/?

l/a.

using continuous func-

tional calculus. For ¢ €[0, 4-00), we define || y|o=7(]¥|¥)"/* We also define || y| « to be the operator norm.

Proposition 2.8. If (M, 1) is a tracial von Neumann algebra and o € [1, +0<], then || - ||, defines a norm.
Moreover, we have the noncommutative Holder’s inequality

llxy -« xplle < llx1 ||oc1 tee ”xn”an

whenever
1 1

o, 01, ...,0, €1, +00], —+-~-+—:l.
ol o, o
Moreover, we have [T (y)| < ||¥ll1-

A standard proof of the Holder inequality uses polar decomposition, complex interpolation, and the three
lines lemma. We will in fact only need this inequality for the trace T on My (C). Modulo renormalization
of the trace, the inequality for matrices follows from the treatment of trace-class operators in [Simon
2005]; see especially Theorems 1.15 and 2.8, as well as the references cited on p. 31. For the setting of
von Neumann algebras, a convenient proof can be found in [Correa da Silva 2018, Theorems 2.4-2.6];
for an overview and further history see [Pisier and Xu 2003, §2].

Remark 2.9. One can define the noncommutative L* norm for a tuple (yy, ..., y,) as
(Il 4+ Y, aell, +00),
||(Y1, e ym)”a =
max; | ;1] o = +oo.

However, for tuples, we will only need to use the 2 and co norms.

2D. Free independence, semicircular law, and GUE. We will use the following standard definitions
and facts from free probability. For further background, refer to [Voiculescu 1986; 1991; Voiculescu et al.
1992; Nica and Speicher 2006; Anderson et al. 2010].
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Let (M, 7) be a tracial von Neumann algebra, and let Ay, ..., A, be unital x-subalgebras of M. Then
we say that Ay, ..., A, are freely independent if given ay, ..., a; witha; € Aij andij #i;41and t(a;) =0
for each j, we have also t(a; - --a;) =0.

In particular, if Sy, ..., S, are subsets of M, then we say that they are freely independent if the unital
x-subalgebras they generate are freely independent. Thus, for instance, self-adjoint elements xi, ..., X,
of M are freely independent if given polynomials fi, ..., fi and indices iy, ..., iy withi; #i;;1 such
that r(fj(X,-J.)) =0, we have also 7(f1(X;,) - fi(X;,)) =0.

The free convolution of two noncommutative laws u and v (of self-adjoint m-tuples) is defined
as the noncommutative law of (x; + y1, ..., Xm + Ym), given that {xi, ..., x,,} and {y, ..., y,} are
freely independent and the noncommutative law of (xy, ..., x,;) is i, and the noncommutative law of
(¥15 - - -» ym) is v. Then H is well-defined, independent of the particular choice of operators that realize
the laws © and v. Moreover, H is commutative and associative.

If Xy, ..., X, are freely independent, then their joint law is determined by the individual laws of
the X, each of which is represented by a compactly supported probability measure on R. The semicircle
law (of mean zero and variance 1) is the probability measure given by density

%\/ 4 — x2 1[_2,2]()6) dx.

We denote by o; the noncommutative law of m freely independent semicircular random variables which
each have mean zero and variance ¢ (that is, o;(X;) = 0 and ot(Xj?) =1).

These free semicircular families play the role of multivariable Gaussians in free probability. Moreover,
the noncommutative laws {o;};>0 form a semigroup under free convolution, that is, oy H o; = o4, for
s, t>0.

We denote by o; y the probability distribution on My (C)%: for m independent GUE matrices of
normalized variance ¢, that is,

" Tr(x?)
J )dx,
2t

1
do; N(Xx) = —— exp(—N
ZNt —
j=1
where Zy ; is chosen so that o; y is a probability measure. It is well known that the independent GUE
matrices behave in the large-N limit like freely independent semicircular random variables; in Section 3,
we shall directly state and prove the specific results we will use.

2E. Concentration and operator norm tail bounds. The following is a standard concentration estimate
for uniformly log-concave random matrix models. The best known proof goes through the log-Sobolev
inequality and Herbst’s argument (see [Anderson et al. 2010, §4.4.2]), although it can also be proved by
directly using the heat semigroup associated to V as in [Ledoux 1992]. We state the theorem here with
free probabilistic normalizations.

Theorem 2.10. Suppose that V : My(C)%, — R is a potential such that V (x) — (c/ 2)||x||% is convex.
Define

a’,u(x):%exp(—NZV(x))dx, Z:/exp(—NZV(x))dx.
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Suppose that f : My (C)% — R is K-Lipschitz with respect to | - ||>. Then

M(x (X)) — / fdu> 8) < e N 2K

and since the same estimate can be applied to — f, we have also

M(x:‘f(X)—/fdu

In particular, this concentration estimate applies to the GUE law o, y with ¢ =1/¢. In addition to the

- 3) < 2e—cN252/2K2.

concentration estimate, we will also use the fact that such uniformly convex random matrix models have
subgaussian moments and therefore have good tail bounds on the probability of large operator norm. The
following theorem is a special case of [Hargé 2004, Theorem 1.1] and the application to random matrix
models is taken from the proof of [Guionnet and Maurel-Segala 2006, Theorem 3.4].

Theorem 2.11. Let V and p be as in Theorem 2.10, and suppose that f : My (C)2: — R is convex. Let
a= fxdu(x). Then

f Flx—a) dp(x) < f FO) ot v ().

In particular, if || x ||« denotes the L* norm from Section 2C, then for every o € [1, +00] and B € [1, +00)
we have

/llxj —a;llf dp(x) < /||yj||gd0cl,N(y)-

Proof. The convexity assumption on V means that u has a log-concave density with respect to the
Gaussian measure o.-1 y(y). Therefore, the first claim follows from [Hargé 2004, Theorem 1.1]. The
second claim follows because norms on vector spaces are convex functions, and the function > ¢# on
[0, 400) is convex for 8 > 1. O

Corollary 2.12. Let Vi : My (C)sa — R be a function such that Vy (x) — (c¢/2)||x ||§ is convex and let
be the corresponding measure. Let ay j = f xjdun(x). Then

1im5up/||xj —ay jllduy(x) <2712

N—o0

and

_ 82
MN(X A Z/Hyjll dmv(yj)JrS) <e N2,

Proof. In light of Theorem 2.11, for the first claim of the corollary, it suffices to check the special
case 0,1 y. This special case is a standard result in random matrix theory; see for instance the proof of
[Anderson et al. 2010, Theorem 2.1.22]. The second claim follows from Theorem 2.10 after we observe
that the function on My (C)Qg given by x > [|xj[loc is N 1/ 2—Lipschi‘[z with respect to || - ||2. O
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2F. Semiconvex and semiconcave functions. We recall the following terminology and facts about semi-
convex and semiconcave functions. These results are typically applied to functions from R* — R, but
of course they hold equally well if R" is replaced by a finite-dimensional real inner product space. In
particular, we focus on the case of My (C)Z.

A function u : My (C)%; — R is semiconvex if there exists some ¢ € R such that u(x) — (c/2)||x||§ is
convex. If this holds for some ¢ > 0, then u is said to be uniformly convex. Similarly, u : My (C)%; — R is
said to be semiconcave if there exists C € R such that u(x) — (C/2)||x ||% is concave, and it is uniformly
concave if this holds for some C < 0.

Fix m and N. Let ¢ < C be real numbers. Then we define
Emnic, C)= {u My (O — Riu(x) — %||x||§ is convex and u(x) — %||x||§ is concave}.

We will often suppress m and N in the notation and simply write £(c, C). Throughout the paper, we rely
on the following basic properties of functions in £(c, C).

Proposition 2.13. (1) The space E(c, C) is closed under translation, averaging with respect to probabil-
ity measures, and pointwise limits.
(2) A function u is in E(c, C) if and only if for every point xo € My (C)¢; there exists some p € My(C)7,
such that

u(x0) + (p, x — xo)2 + cllx —xol3 < u(x) < uxo) + (p, x —x0)2 + 1Cllx — xo13-

(3) In particular, if u € £(c, C), then u is differentiable everywhere.
@) Ifu € &(c, C), then the gradient Du is max(|c|, |C|)-Lipschitz with respect to || - ||».
S) Ifueé&(c, C), then

cllx — ylI3 < (Du(x) — Du(y), x — y)2 < Cllx — y|3.

(6) Ifu € E(c, C) for some ¢ > 0, then u is bounded below and achieves a global minimum at its unique

critical point.

Sketch of proof. (1) This follows from elementary computation and the fact that the same holds for the
class of convex functions.

(2), (3) Suppose that u € £(c, C). The convex functions u(x) — (c/2)||x ||§ and (C/2)||x||§ — u(x) must
have supporting hyperplanes at xg. This yields one vector p which satisfies the left inequality of (2) and
another vector p’ satisfying the right inequality. Then one checks that p must equal p’ and this implies
that u is differentiable at xo. The converse direction of (2) follows again from the characterization of
convexity using supporting hyperplanes.

(4), (5) For smooth functions in £(c, C), one can check these properties directly using calculus. Now
consider a general u € £(c, C). Let u,, = u * p,, where p, is a smooth probability density supported in the
ball of radius 1/n around 0. Then u,, is smooth and u,, — u locally uniformly. Also, u, € £(c, C) by (1);
hence Du, is max(|c|, |C|)-Lipschitz. By the Arzela—Ascoli theorem, after passing to a subsequence,
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we may assume that Du, converges locally uniformly to some F. It follows from this local uniform
convergence that F = Du. Moreover, since (4) and (5) hold for Du,, they also hold for Du.

(6) This is left as an exercise. O

3. Trace polynomials

In this section, we consider the algebra of trace polynomials in noncommutative variables X1, ..., X,
first defined in [Razmyslov 1974; 1985]. As in [Rains 1997; Cébron 2013; Driver et al. 2013], we
describe how trace polynomials behave under differentiation (Section 3B) and convolution with Gaussian
(Section 3C). Finally, in Section 3D, we define the property of asymptotic approximability by trace
polynomials for a sequence of functions on My (C)y;, which is one of the key technical tools in our proof.

3A. Definitions.

Definition 3.1. We define the x-algebra of scalar-valued trace polynomials, or TrPB,, as follows. Let V
be the vector space NCP,, / Span(pg —gp : p, g € NCP,,). We define the vector space

0
Pl = Prer, (3-1)
n=0

where © is the symmetric tensor power over C. Then TrP,% forms a commutative algebra with the tensor
operator ® as the multiplication. We denote the element p; ®--- ©® p, by t(p1) - - - T(pn), Where t is a
formal symbol.

To state the definition more suggestively, an element of TrP,?1 is a linear combination of terms of the
form t(p1(X)) - - - t(pu (X)), where py, ..., p, are noncommutative polynomials in X1, ..., X,, and T
is a formal symbol thought of as the trace. By forming a quotient vector space, we identify 7(pg) with
t(gp). The trace polynomials form a commutative *-algebra TrPf)n over C where the x-operation is

(T(p1 (X)) - (P (XN = T(P1(X)") -+ - T(pa (X)) (3-2)

and the multiplication operation is the one suggested by the notation.
We define TrP¥, to be the vector space

O QC(X1, ..., X%k,

k.
TrP,, :=TrP,,
We call the elements of TrP,ln operator-valued trace polynomials. We use the term trace polynomials
more generally to describe elements of TrPX, or tuples of elements from TrPX . Note that TrP!, forms a

x-algebra because it is the tensor product of two x-algebras.

Definition 3.2. Suppose that M is a von Neumann algebra with trace o. Given f € TrP,ln and a self-
adjoint tuple x = (xq, ..., x,;) of elements of M, we define f(x) to be the element of M given by
replacing the formal symbols X; and 7 in f by the operator x; and the trace o on M. For instance, if
FX) = po(X) @ T(p1(X)) - - - T(pa(X)) in TrP,,, then

f(x) = po(x)o(p1(x)) - -0 (pa(x)).
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In particular, we define f(x) when x is an m-tuple of self-adjoint N x N matrices by setting t = ty.

Definition 3.3. If f € TrP,?l and A is a noncommutative law, we define the evaluation A(f) to be the
number obtained by replacing the symbol T with A everywhere in f. For example, if f (X, X2, X3) =
T( X1 (X2X3) + t(X%), then we define

AP =M KX1s o X)) = MXDAMX2X3) + M(X3).

Definition 3.4. We define the degree for elements of NCP,, and Tran as follows. If p € NCP,, is a
monomial p(Xy, ..., X,) =X;, -+ X;,, then we define deg'(p)=d. If p1, ..., peand qy, ..., qi are
noncommutative monomials, then consider the element T(p;) - - T(pr)g1 Q- - R qx € TrP’,,Z, and define

deg'(t(p1) - t(p)q1 ® -+ - @ qi) =deg'(p1) - - - deg(pe) deg' (1) - - - deg' (k).

For general f € TrP],‘n, we define the degree, deg(f), as the infimum of max(deg'(f1), ..., deg'(fr)),
where f = fi +---+ fy and each f; is a product of noncommutative monomials and traces of noncom-
mutative monomials as above. Similarly, for general f € NCP,,, we define deg(f) as the infimum of
max(deg'(f1), ..., deg (fr)), where f = f; +---+ f; and each fj 1s a noncommutative monomial.

Remark 3.5. One can check that if f is a product of monomials as above, then deg(f) = deg(f).
Moreover, the degree makes TrP,?l and TrP,ln into graded algebras. Finally, we observe that if f €
TrP,?1 or TrP,ln, then the function on My (C)7; defined by x — f(x) is a polynomial in the entries of
X1, ..., Xm, and the degree of x — f(x) with respect to the entries is bounded above by the degree of f
in TrP? or TrP. . None of these facts will be used in what follows, so we omit the proofs.

We also observe that there is a composition operation (TrP,ln)’" X (TrP,ln)m — (TrP,ln)’" defined just as
one would expect from manipulations in My (C). If f, g € (TrP,ln)m, we define f(g(x)) by substituting
gj(x) as the j-th argument of f. Then we multiply elements out by treating the terms of the form 7 (p) like
scalars. For instance, if f (Y, Y2) = (t(Y1Y2) Y2, Y1 + r(le)Yz) and g(X1, Xp) = (t (X)) X2 + X1, X1),
then f o g(X1, X») = (Z1, Z3), where

Zy=t([t(XD) X2 + X11XDX1 = t(XD)T (XX D) X1 + T (XD X,
and
Zy =t(XD) X2+ X1 + X1t[(r(X ) X2+ X1)?]

= T(X) X2+ X1+ t[t(X1)?X] + (XD X2 X1 + (X)) X1 X2 + X71X)

= T(XD) X2+ X1 +[1(X)?T(X3) + (XD T (X2 X)) + T (X)) T(X1 X2) + T(XD)IX,

= T(XD) X2+ X1 + T (X)) T (XD X1 +20(X DT (X2 XD X1 + T (XD X
One can check that composition on (TrP,L)’" is well-defined and associative. Moreover, if f and g
are self-adjoint elements of (TrP,L)’", then they define functions My (C)y; — My (C)Z:, and the element

foge (TrP,ln)’" defined abstractly will produce a function My (C)2: — My (C)Z; which is the composition
of the corresponding functions for f and g.
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3B. Differentiation of trace polynomials. In this section, we give explicit formulas for the gradient and
Laplacian of trace polynomials and in particular show that these operations have a well-defined limit
as N — oo (see [Rains 1997; Cébron 2013; Driver et al. 2013, §3]). We first recall the free difference
quotients of [Voiculescu 1998].

Definition 3.6. We define the free difference quotient (or simply noncommutative derivative) D; :NCP,, —
NCP,, ® NCP,, by

DilXi - Xil= D Xiy-o Xi ® Xiyyy - X,
k:ik=j

We also define D; : NCP$" — NCPE"+! by
n
Dilp1 ® - ® pal =Zp1 Q- @pk-10Djpk ® pry1® -+ @ pu.
k=1
Then of course Dj’.‘ is a well-defined map NCP®" — NCP&" ¥,

Remark 3.7. We caution the reader that the notation used in Voiculescu’s papers is d; rather than D;.
Moreover, the normalization for D}“ f here differs from that of [Voiculescu 1998] by a factor of n!.

Definition 3.8. We define the cyclic derivative D; :NCP,, — NCP,, as the linear map given by
D](')[Xil e Xl = Z Kigar = Xiy Xiy - Xiy
k:ik:j
Definition 3.9. Given an algebra A (e.g., NCP,,), we define the n-th hash operation as the multilinear
map A®UHD 5 A®" 5 A given by
(@ ®- - ®an) # (b1 ®---®by) =apbiay - - - byay.
Example 3.10. Let X = (X, X», X3) and define f(X) = XleXfX3X2. Then

Dif(X)=1® X2 X1 X3X2+ X1 X2 ® X1 X3X2+ X1 X2 X1 ® X3Xa,
DS f(X) = XoX7X3X2 4+ X1 X3 X2 X1 Xa + X3 X2 X1 X2 X1,
Dif(X)#Y = YX2X%X3X2 + X1 XY X1 X5 X+ X1 X0 X1 Y X5X0.

To compute D% f(X) =D1[D; f(X)], we would add together the three terms

DIl @ X2 X1X3X2]=1®@ X2 @ X1 X3X2 + 1 ® X2 X1 ® X3X2,
Di[X1 X2 @ X1 X3X2] =10 X2 @ X1 X3X2 + X1 X2 ®1® X3X»,
Di[X1 X2 X1 ® X3X2] =1® X2 X1 @ X3X2 + X1 X2 Q1 ® X3X5.

Now we will define several “derivative” operators on the spaces of scalar-valued and noncommutative
trace polynomials which will correspond to differentiation with respect to the standard coordinates on
My (C)Y;. We begin with the gradient.

To fix notation, recall that in Section 2A we gave a canonical orthonormal basis for My (C)s, with respect
to the inner product (x, y) = Tr(x*y). Using these coordinates, we may identify My (C)s, with RY ?



2302 DAVID JEKEL

and hence identify My (C)" with RN ’ Similarly, we identify the complexification C ® My (C)7}
with My (C)™ and with "N, For fiMy©O) — Cand x = (x1,...,x,) € My(C)Z,, we denote by

sa’

V f(x) € My(C)™ the gradient computed in these coordinates; similarly, we denote by V; f(x) € My (C)
the gradient with respect to x; computed in these coordinates.

Definition 3.11. Define the j-th gradient operator TrP,?1 — TrP,ln by

D; []_[ T(Pk):| => "D [[rpo). (3-3)
k=1 k=1

0k

Note that D; is defined so as to obey the Leibniz rule (that is, it is a derivation).

Lemma3.12. If f € TrP,?l is viewed as a function My (C)%; — C, then we have

VL0l = 1D, F100). 34)

Similarly, for F : My (C)g; — My (C)™, let J; F denote the Jacobian linear transformation (a.k.a. Fréchet
derivative) with respect to x;. Then for a noncommutative polynomial p, we have

[Jip()]1(y) =[Djpl(x) #y, (3-5)

and hence by the product rule for p € NCP,, and f € TrP,(,)l, we have
i (pH)]1(y) = (D;plx) #y) f (x) + p(x) Ty ([D; f1(x)y). (3-6)
Proof. By standard computations, for a noncommutative polynomial p and y € My (C)s,, we have
[Jip()]1(y) = [Djplx) #y,
v, Loy (PI) = 1D 1o,
The claims (3-4) and (3-6) now follow from the product rule. O

Next, we can define the algebraic Laplacian operators on TrP? and TrP!,, which correspond to com-
puting the Laplacian on scalar-valued or vector-valued functions on My (C)¥, still using the coordinates
given in Section 2A.

For f: My(C)%; — C, let A; f be the Laplacian with respect to the coordinates of the j-th matrix x;.
Note that Af = Z?:l A; f. Similarly, if f : My(C)y; — My(C) is an operator-valued function, we
define A; f and Af by applying A; and A entrywise (as is standard notation for the Laplacian of a
vector-valued function).

Motivated by (2-2) and the computation in Lemma 3.18 below, we define the map n : NCP%3 — TrP;1 by

n(p1® p2® p3) = p1p3t(p2).
Definition 3.13. We define L; and Ly ; : TrP? — TrP? to be the unique linear operators such that

Lilt(p)l =Ly jlt(p)l =t on[Djp] for p € NCP,, (3-7)
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and such that the following product rule is satisfied:
Lilf-gl=L;l[f]-g+f Ljlgl (3-8)
2
Lylf-81=Ln,jlf1-g+ f Ln;lgl+ mf(Djf -Djg). (3-9)
Then we define L =3 """, Ly and Ly = 3", Ly ;.

Remark 3.14. To show the existence of operators Ly ; and L; satisfying (3-7) and the product rule, one
can define Ly ; more explicitly as the linear operator TrP,?l — TrP,?1 given by

Lyl e o)l = Y tontD?ped - [ [ e(m) + 55 30 3 t@ipi- D po) [ 2o,
k=1

ik k=1 t£k ikt

and check that this operator is well-defined and satisfies the product rule. Moreover, the uniqueness of
the operator Ly ; satisfying (3-7) and the product rule follows from the fact that TrP,?l is spanned by
products of terms of the form 7 (p) for p € NCP,,. The argument for the existence and uniqueness of L;
is the same.

Example 3.15. Let X = (X, X»). Consider f(X) = t(f1(X))t(f2(X)), where f1(X) = X1 X>X X3
and f>(X) = X3X;. Then
Di[t(fO)l=D; fi = X2 X1 X3+ X3X1 X2,
Di[t(f)]="D5fr= X5,
and
Lilt(f)l=Ly[t(fDl=ton[D] fil = t[n[l ® X> ® X3]] = 7[1- X3]- 7[X2],
Lyt (f2)]= Lyl (f2)]=0.

Therefore, we have
Lilf1=Lilt(f)le () + (D LilT ()] = 1(X3)T(X2)T(X3X1) 40,
Lalf1= Lyale(OTe(f) + T( Lyale ()] + 51D ADL £
=1(X3)T(X2)T(X3X1) + %r[(xle& + X3X1X2) X31.
One can carry out a similar computation for Ly[ f] and Ly o[ f] and thus find L[ f] and Ly 5[ f1.

Since we will also deal with the Laplacians of matrix-valued functions on matrices, we also need to
define the algebraic Laplacian on operator-valued trace polynomials.

Definition 3.16. We also define L; and Ly, ; : TrP) — TrP}, to be the unique linear operators on the
space of operator-valued trace polynomials such that

Lilpl =Ly jlpl=nlD;jp] for p € NCP,, (3-10)
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and the following product rule is satisfied for p € NCP,, and f € TrP,%:
Lilp- f1=L;lpl- f+p-L;[f], (3-11)
Ly jlp- f1=Lujlpl- £+ p- Ly If1+ 5D p# D; . (3-12)
where L;[f] and Ly ;[f] are given by Definition 3.13. Then we define L = Z’;?:] Ljand Ly =
Z?:l Ly.j.
Remark 3.17. The argument for the existence and uniqueness of the operators L; and Ly ; on TrP,ln is

similar to the argument for TrP,?w only it relies on the previous scalar-valued case since the scalar-valued
case was used in the product rule.

Lemma 3.18. Ler f € TrP,%. Viewing f as a function My (C)2: — C, we have

Ajf(x)=NI[Ly,jf1x), Af(x)=N[Ly[f1(x). (3-13)
The same formula holds if f € TrP,ln and f is viewed as a function My (C)%, — My (C).

Proof. We begin with the special case of computing the Laplacian of p € NCP,, (as a matrix-valued
function). To differentiate, we use the basis By given by (2-1). Note that

d2
Ajp(x) = Z s SO, oo xjo, x5 +th, X, -y X))
beBy =0
= Y Dip(x)#(b®b) =Nn(D;p)I(x) =L, p]x),
bEBN

where the second-to-last equality follows from (2-2).
Next, we consider the case of computing the Laplacian of ty(p) (as a scalar-valued function) for
p € NCP,,. Since ty is a linear map My (C) — C, we have

Ajltn(p(x)] = v (A p(x)),

where the Laplacian A; on the left-hand side is applied to a scalar-valued function and on the right-hand
side it is applied to a matrix-valued function. Therefore, it follows from the previous computation that

Ajlen (p(x)] = Ny ([n(D; p)l(x) = [L, [T (p)1(x).

For the general case of scalar-valued trace polynomials, recall that the vector space of trace polynomials
is spanned by elements of the form f =1t (py)---t(pn), where p; € NCP,%. Let fj=1(pj) € TrP,(,),. The
Laplacian A; of a product of functions can be computed using the product rule of differentiation as

Ajf@) =Y NILy ;i fd@ [[ev () +) D TV fi)V; fo ) [T £

j=I i#k k=1 £k i#k,t
The special case proved above shows that A;[ fi(x)] = N[Ly,; f1(x). Moreover, by (3-4), we have
Vil fk(x)] = (1/N)[D; fx](x). Thus, we have

Ajf@)=Y NILy;fld) ][] A0+ % O (D fdOID; f ) [T fi.
k=1

i#k k=1 £k ikl
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Because of the product rule in the definition of Ly ;, the right-hand side equals N[Ly ; f1(x). This
completes the proof of (3-13) in the scalar-valued case. The proof for the operator-valued case is similar,
using the cases proved above, as well as (3-4) and (3-6). O

Corollary 3.19. Let f € Ter,(,)1 or TrP,lw. If we view f as a function on My (C)g,, then (1/N)Af is a trace
polynomial of lower degree than f, and we have coefficientwise

lim CAfC) = lim Ly f() = Lf (o).

Remark 3.20. We have shown that if f is a scalar-valued trace polynomial, then viewed as a map
My(C)Z — C, we have

Du=NV, LNf:%Af.

Therefore, in the rest of the paper, we will freely write Df and Ly f for NV f and (1/N)Af for general
functions f : My (C)Z: — C. The same considerations apply to the Laplacian for operator-valued trace
polynomials, viewed as maps My (C): — My (C).

3C. Convolution of trace polynomials and gaussians. Let [ € TrP,% or f € TrP,ln. Then viewing f as
a function defined on My (C)y;, we may define the convolution of f with the probability measure oy y
(the law of an m-tuple of independent GUE). This is equivalent to the classical convolution of f with the
function My (C)t — R giving the density of the measure o; . Moreover, f; = f * oy y is the solution to

the heat equation with initial condition f, or more precisely

1
0 fi = 5 O

(The integral formula for the solution to the heat equation with the Laplacian A is well known [Evans
2010, §2.3], and to solve the equation with 2N )~1 A one renormalizes time by a factor of (2N y~1, and
this corresponds precisely to our normalizations in the definition of oy ;. We leave this computation to
the reader.)

We showed in the last subsection that Ly = (1/N)A on trace polynomials is given by a purely algebraic
computation. Moreover, examining the construction of Ly, one can see that it maps trace polynomials
of degree < d to trace polynomials of degree < d. We can view Ly and L as linear transformations
on the finite-dimensional vector space of trace polynomials of degree < d and define exp(#Ly/2) and
exp(¢L/2) by the matrix exponential.

Because this holds for any d, we know that exp(¢ Ly /2) and exp(tL/2) define linear transformations
TrP? — TrP? and TrP!, — TrP! . Moreover, a standard computation shows that f; = exp(t Ly /2) f satis-
fies the heat equation 9, f; = L f; /2. These observations, together with Corollary 3.19 yield the following.
0

m

o £ ) = [exp(15L) £ oo, (3-14)
with deg(exp(tLy/2) f) < deg(f), and we have

lim exp(tL—N>f = exp(i)f coefficientwise. (3-15)
N—oo 2 2

Lemma 3.21. Let f be a trace polynomial in TtP, or TrP,ln. Then we have



2306 DAVID JEKEL

Example 3.22. Let X = (X1, ..., X,;) and define f(X)=)"7_, X}. Note that D}[f(X)] =2(1®1®1)
for each j, and hence L[t (f)] =2m = Ly[t(f)]. We also have D]‘?f =2X;. Hence,

Llz(f)*1 = 2Lt (O]t (f) = 4mT(f),

Lyle(fP1 = 2LIE (e () +2 3 e (Df £ D5 f) = 4me(f) + oy e(f).

j=1

Therefore, (L/2)[r(f)2] =2mt(f) and (L/2)[t(f)] = m. Thus, the span of r(f)z, 7(f), and 1 is
invariant under the operator (L/2), and (L/2) is given by a nilpotent matrix on this subspace. Direct
computation then shows that

e PO =T (f) 4+ 2meT(f) +m*t2.

A similar computation shows that

—tLy 2 2\ 12
() = (2 2m (14 55 e (D +mP (14 55) 5

Thus, as N — +o00, we have e I8/ 2[t(£)?] — e "L/2[t(f)?].

The probabilistic interpretation of fxo; y =exp(¢tLy/2) f, which follows from a standard computation,
is that o, y % f(x) is the expectation of f(x +¢!/2Y), where Y is an m-tuple of independent GUE of
variance 1. Moreover, for every probability measure 1 on My (C)7; with finite moments, we have

[rwdwsomm = [ nwdnm = [[eo(5Y) flwdne. G0

In the free setting, the operator exp(#L/2) has a similar relationship with the free convolution with o;.
This fact is standard in free probability, but because we need it for Lemmas 3.28 and 7.4 below, we
include a sketch of the proof here.

Lemma 3.23. Let A € X, g be a noncommutative law. Then for any trace polynomial f € TrPBl, we have

Ao, (f) = A(exp(%)f). (3-17)

Proof. Because free convolution with o, forms a semigroup and exp(¢L/2) is also a semigroup, it suffices

to prove that

d _A
o _xBen) =5

By the product rule, it suffices to handle the case of f = t(p) for p € NCP,, by showing that
d

dt

A
_FBoi(p)=501(D}p)).

Letx =(x1,...,xy,) and y = (y1, ..., ym) be freely independent m-tuples of self-adjoint elements of
a tracial von Neumann algebra (M, t), such that the law of x is A and the law of y is o1. We want to
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compute (d/dt)|;—ot(p(x + t'/2y)). But note that

m m
t
pa+t2y) = p)+1'2Y " Dipx) #y; + 3 > DiDepx) # (3 @ yi) + 012,
j=1 Jik=1
A moment computation with free independence shows that the terms of order ¢!/? have expectation zero,
and so do the terms of order ¢ with j # k. We are left with

L e Py =3 3 e # 0y @ ),

dt = ,
j=1

which using freeness evaluates to % Z?:l r(n(D}p(x))) =t(Lp(x)/2). O

3D. Asymptotic approximation by trace polynomials. Now we are ready to define the approximation
property which captures the asymptotic behavior of functions on My (C)Z.

Definition 3.24. A sequence of functions ¢y : My (C)gy — My (C)™ is said to be asymptotically approx-
imable by trace polynomials if for every € > 0 and R > 0 there exists some f € (TrP,ln)m (an m-tuple of
operator-valued trace polynomials) such that

limsup sup [lgy(x) — f(ll2 <e.

N—oo |x[leo<R

In this case, we call f an (e, R)-approximation of {¢n}. We make the same definitions for functions
on : My (C) — C, except that we use scalar-valued trace polynomials (elements of TrP,%) and apply the
absolute value rather than the 2-norm.

Observation 3.25. If f € (TrP
then fy is asymptotically approximable by trace polynomials. Also, asymptotically approximable

Lym and if fn denotes the map My (C)Zi — My (C)™ given by x — f(x),

m

sequences form a vector space over C.
Observation 3.26. Let {¢1(§) }~.een be a sequence of functions where ¢1(§) :My(C)%, — My (C)™. Suppose

that {¢y} is another sequence such that for every R > 0

lim limsup sup ||¢1(§) (x) —on(x)]2=0.

=500 Nooo |xlle<R

If {¢1(§)} NeN 18 asymptotically approximable by trace polynomials for each ¢, then so is {¢n}yen. The
same holds in the case of scalar-valued functions and scalar-valued trace polynomials.

Lemma 3.27. Let ¢y, Yn : My (C)2 — My (C)gi. Suppose that {¢n} and {yn} are both asymptotically
approximable by trace polynomials, and furthermore suppose that {¢n}neN is uniformly Lipschitz in
| - |2, that is, for some K > 0,

lon(x) —pn W2 < Kllx = yll2 forallx,y, forall N.

Then {¢pn o ¥y} is asymptotically approximable by trace polynomials.
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Proof. 1t is straightforward to check that if {¢x} is a sequence of functions that map self-adjoint tuples to
self-adjoint tuples and if (f1, ..., fin) is an (e, R)-approximation of {¢ }, then so is %(fl—l—fl*, v S L)
Thus, we may assume without loss of generality that the operator-valued trace polynomials used in our
approximations for {¢y} and {yx} are self-adjoint, so it makes sense to compose them with ¢ or Yy .

Choose € > 0 and R > 0. Choose an m-tuple of self-adjoint trace polynomials g whichis an (¢/(2K), R)-
approximation of {¥x}. Since g is a trace polynomial, there exists some R’ > 0 such that for any tuple x
of self-adjoint matrices of any size, we have

Ixllc <R = llg()le <R

Now because ¢ is asymptotically approximable by trace polynomials, we can choose a polynomial f
which is an (¢/2, R")-approximation of {¢5 }. Now we observe that when || x ||oo < R (hence ||g(x)|lc0 < R'),
we have

lon o ¥yn(x) = fog)ll2 < ¢y o ¥n(x) — Py og(X)ll2+ [Py 0 g(x) — fogx)l2

<K sup [[Yn(x)—gX)ll2+ sup [[pn(Y) = fFDM)2-
Ixllc<R IYlo=R’

Therefore,

limsup sup ||¢Now<x>—fog<x>nzsK-§+g=e. 0
N—>o0 [xlcc<R

Lemma 3.28. Suppose that ¢ : My (C)2: — My (C)Z is asymptotically approximable by trace polyno-
mials and that

llon ()12 < A<l +ZTN(XJ-2”)) (3-18)
i

for some A > 0 and some integer n > 0. If {¢n} is asymptotically approximable by trace polynomials,
then so is {¢n *o; N}

Proof. Fix R > 0 and € > 0. Choose a trace polynomial f which is an (¢, R + 3¢'/%) approximation
for {¢n}. Now for x with || x|l < R, we estimate

llo,n % oy (x) —or v * f(X)l2 S/I|¢N(x+y)—f(x-i-y)llzdm,zv(y)-

We break this integral into two pieces: The integral over the region where ||y|ls < 3¢!/? is bounded
by € as N — oo by our choice of f. Furthermore, we claim that the integral over the region where
[ ¥lloo > 3t'/% vanishes as N — oo. Using assumption (3-18) and the fact that f is a trace polynomial,
we see that there exists a C > 0 and integer d > 0, depending only on R, A, n, and f, such that

sup [llgw (x + 2+ I1f (x +y)l2] < C(l +y m(y}d))

xllc<R j

Therefore, we have

/”” - ||¢N(X+y)—f(x+y)||2do-t’N(y)SC/
Vo= t1/2

I¥lloo=321/2

(1 +>° rN(ijd)) doy N ().
J
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This vanishes as N — oo by Corollary 2.12 applied to the GUE. Therefore, we have

limsup sup |loyn *¢n(x) —opr N * f(X)ll2 <e.
N—oo |xl=R

On the other hand, by Lemma 3.21, we have o, y * f =exp(tLy/2) f — exp(tL/2) f coefficientwise,
and therefore,

limsup sup ||(71N*f(x)_|:exp< )f](X)IIz—

N—>0oo [x[leo<R

so that .
. t
timsup sup_Jlor,y by (x) - [exp(2) F] ol <e. O

N—oco [x[leo=<R

Lemma 3.29. Suppose that ¢ : My(C)y; — C and suppose that {D¢y} = {NVey} is asymptotically
approximable by trace polynomials and that ¢ (0) = 0. Then {¢py} is asymptotically approximable by
trace polynomials.

Proof. Given a trace polynomial F € (TrP,ln)’", we can define

1
fX)= / T(F(X)X)dt
0

in TrP?. Then we have

sup ¢y (x) = f(x)|= sup

xllc<R lIxllc<R

< R|| iupRIINquN(y)—F(y)IIz- 0
Ylloo=

1
/ (Don(tx) — F(tx), x)p dt
0

4. Convergence of moments

Our goal in this section is prove the following theorem. The convergence of moments is related to [Guionnet
and Shlyakhtenko 2009, Theorem 4.4; Dabrowski et al. 2016, Proposition 50 and Theorem 51; Dabrowski
2016, Theorem 4.4], and we include versions of standard concentration estimates (see Section 2E) in the
statement.

Theorem 4.1. Let Vi : My (C)Z — R be a sequence of potentials such that Vi (x) — (c/2)||x ||% is convex
and Vy(x)—(C/2)|x ||% is concave. Let Ly be the associated measure. Suppose that the sequence {DVy}
is asymptotically approximable by trace polynomials, and assume that

/ (o — T () 1) djay ()

= lim sup max
N—o0

where 1 denotes the N X N identity matrix.

< 400, (4-1)

(1) We have the following bounds on the operator norm: if Ry = max; fllxj | din(x), then

limsup Ry < —5 Yz + — lim sup max /IN(xj)d,uN(x) + M
N—o0 / C Nooo J
C—c
< m‘i‘ hmsupllDVN(O)||2+ +M,

2¢3/2
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and as a consequence of concentration we have for each j that
_ 2
(Il > Ry +8) <e N/,

(2) There exists a noncommutative law A € X, g, where R, = limsupy_, ., Ry, such that for every
noncommutative polynomial p

Nli_I)noo/rN(p(x))dMN(X)=k(p)-

(3) The sequence {jLy} exhibits exponential concentration around A in the sense that, for every R > 0
and every neighborhood U of A in Xy,

. 1

lim sup Nz logun(x € My(C)g : lIxlloo < R, Ay €U) <O.

N—o0

Remark 4.2. The rather artificial hypothesis that lim supy, _, ., max; H f (xj — v (x))) d i (x) H < 400 is
trivially satisfied if either py has expectation zero or p is invariant under unitary conjugation and hence
[ xjdun(x) is equal to [ Ty (x;) duy(x) times the identity matrix.

We have already seen in Section 2E that concentration estimates and operator norm tail bounds are
standard. To prove that the moments converge, something more is needed; indeed, the only assumption
relating the measures uy for different values of N is the fact that D Vy is asymptotically approximable by
trace polynomials. But even if D Vyy is given by the same “trace analytic-function” for different values of N,
it is not immediate that the measure would concentrate in the same regions for matrices of different sizes.

To prove convergence of moments, we want to express [ u duy in terms of DVy for a Lipschitz
function u. One of the standard techniques is to show uy is the unique stationary distribution for a
process X, that satisfies the SDE
DVs(Xd) gy, (4-2)

where Y, is a GUE Brownian motion. This machinery lies behind the log-Sobolev inequality and concen-

Xm :dYt -

tration results, as well as earlier theorems about convergence of moments for general convex potentials.

Specifically, Dabrowski, Guionnet, and Shylakhtenko [Dabrowski et al. 2016, Proposition 5] used
the free version of this SDE to show that for a noncommutative potential V satisfying certain convexity
assumptions, there exists a free Gibbs law for V which is the unique stationary distribution. As an
application, they showed convergence of moments for random matrix models given by Vy =V [Dabrowski
et al. 2016, Proposition 50 and Theorem 51], essentially a special case of our Theorem 4.1.

Dabrowski [2016, Theorem 4.4] was able to show convergence of moments under weaker convexity
assumptions by constructing the solution to the free SDE as an ultralimit of the finite-dimensional solutions.
Our theorem has convexity assumptions similar to Dabrowski’s, but we consider a more general sequence
of potentials V. Like Dabrowski, we analyze the free case by taking the limit of finite-dimensional
results, but we use deterministic rather than stochastic methods.

Instead of the solving the SDE, we study the associated semigroup TtVN, acting on Lipschitz functions u,
given by

TN u(x) = Exfu(X))],
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where X; is the process solving the SDE (4-2) with initial condition x. The semigroup provides the
solution to a certain PDE; that is, if u(x, t) = T;uo(x), then we have

1 AM—EVVN-VM _ LNu _ (DVN, Du)2.

=35 2 2 2

The semigroup T,VN will decrease the Lipschitz norms of functions and thus, if « is Lipschitz, then T,V’V u
will converge to [uduy as t — oo.

Solving the differential equation and taking 1 — oo provides a way to evaluate [ u duy in terms
of DVy. We will describe a construction of the semigroup 7,” through iterating simpler operations
(Section 4A), and then we will show (Lemma 4.10) that the iteration procedure preserves approximability
by trace polynomials and hence conclude that limy_, f uduy exists.

4A. Iterative construction of the semigroup. To simplify notation in this section, we fix N and fix a
potential V : My (€)% — R such that V(x) — (c/2)]lx ||% is convex and V (x) — (C/2)||x||§ is concave for
some 0 < ¢ < C. We also write 7; rather than 7.

We will construct 7; by combining two simpler semigroups corresponding to the stochastic and
deterministic terms of dY; —(DV /2)(X,) dt. Recall that the solution to the heat equation d,u = (2N Y Au
with initial data uq is given by the heat semigroup:

Potg(x) = / wo(x +y) oy ().

Meanwhile, the solution to d,u = —% (DV, Du), with initial data ug is given by
Siuo(x) = uo(W(x, 1)),
where W (x, t) is the solution to the ODE
8,W(x,t)=—%DV(W(x,t)), W(x,0)=x. (4-3)

We want to define 7; = lim,,—, o (P;/,S:/»)". This is motivated by Trotter’s product formula which asserts
that ¢/ A*+8) = lim,,_, . (e'4/"¢'B/™)" for nice enough self-adjoint operators A and B (see [Trotter 1959;
Kato 1978; Simon 1979, pp. 4-6]). In our case, we must show that (P, S;/,)" converges as n — oo and
derive dimension-independent error bounds.

We use the following basic properties of the semigroups P; and S;. Here if u : My (C)y; — C, then
llu||Lip denotes the Lipschitz norm with respect to the normalized L? metric || - || on My (O and ||u|| 1~
denotes the standard L* norm. We are only concerned with Lipschitz functions, so in the following
estimates, the reader may always assume u is Lipschitz, but of course ||u ||~ may be infinite for Lipschitz
functions.

Lemma 4.3. (1) [[Pullr < [lull L.

) 1Prulluip =< [lullLip-

(3) I1Pr — ull e < m' 202 Ju]|ip.
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Proof. (1) and (2) follow from the fact that P;u is u convolved with a probability measure. To prove (3),
suppose ||u||Lip < +00. Then

| Pru(x) —u(x)| = 'f(u(x +) —M(X))dGI,N()’)‘
S/IM(X+y)—u(x)|dGz,N(y)

< iy / 1112 doyx (7).

12
/ Iy ll2 dorn (y) < ( / 1dat,N<y))( f ||y||%da,,N<y)) = ()2,

since y is an m-tuple (yi, ..., yn) and [ rN(ij) doy n(y) =t for each j. O

Meanwhile,

Lemma 4.4. (1) The solution W(x, t) to (4-3) exists for all t.

Q) W, 1) =Wy, D)2 < e llx =yl

) IW(x, 1) —xl2 = /2 IIDV (x)]l2.

@) (W, 1) —x) = (W(y, ) = ylla < (C/e)(1 —e ) [x =yl
(5) ISiullLip < e/ lu|Lip-

(6) IS;ullre < |lull L= if u is continuous.

Proof. (1) The convexity and semiconcavity assumptions on V imply that DV is C-Lipschitz (see
Proposition 2.13(4)) and therefore global existence of the solution follows from the Picard—Lindelof
theorem.

(2) Let V(x) =V (x) — (c/2)||x||§. By Proposition 2.13(5),
(DV(x) =DV (y), x = y)a = cllx = yl3.
Now observe that
d
1w 1) =Wy, D3 =—(DV(W(x,1) = DV(W(y, 1)), W(x,1) — W(y, 1))
< =W, ) =W, nl3,
and hence by Gronwall’s inequality, ||W (x, t) — W (y, t)||§ <e “W(x,0)—W(y, 0)||% =e |x— y||%.
(3) Note that
d
JIWG D = x5 =—(DV(W(x,0), W(x, 1) = x)
=—(DV(W(x,1)) =DV (x), W(x,1) —x)s —(DV(x), W(x, 1) —x)»
=DV 2lW (x, 1) — x]l2.

Meanwhile, || W (x, t) — x||2 is Lipschitz in ¢ and hence differentiable almost everywhere and we have

d d
SAW G0 = xXI3 =20 W(x, 1) = X2 LW Cr, 1) = .
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Thus, we have

L w0 —xla < LDV 0l
which proves (3).
(4) We observe that

(W, 1) —x) =(W(y, 1) =y)ll2 < %/0 [DV(W(x,s)) =DV (W(y,s)ll2ds

C t
=$ [IWesn =W ds
0

t

C - C —c
<5 [ eOPlx—ylads = (1= ) x = yllo.
0 C
(5) This follows from (2).
(6) This is immediate because S;u is u precomposed with another function. O

Now we combine P; and S; as in Trotter’s formula, except that for technical convenience we define
our approximations using dyadic time intervals rather than subdividing [0, ¢] into intervals of size ¢/n.
Weset N={1,2,3,...} and Ny = {0, 1, 2, ...}. We also denote by @; = U£>o 2-tNy the nonnegative
dyadic rationals. B
Lemma 4.5. Fort € 27N, define

Ty ou = (PytSy-0) 2 u.

Fort e @;, the limit Tyu := limy_, oo T; ¢u exists and we have

le/Z 3
ITsen = Tyl < =72 P lulp:

We also have || TyullLip < e=""?||ulLip-

Proof. We want to show that the sequence {7; (u}, is Cauchy by estimating the difference between consec-
utive terms. Suppose that t € 27Ny and write # =n/2¢ and § =271, Note the telescoping series identity
n—1
Tiev1u —Treu = Z(P(;S,;)zj P5(S5 Ps — P5S5) S5 (P25 S25)" ™' /. (4-4)
j=0
Thus, we want to estimate SsPs — PsSs and then control the propagation of the errors through the
applications of the other operators. Note that for a Lipschitz function v, we have using Lemma 4.4(4) that

S5 Psv(x) — PsSsu(x)| sf|v(W(x,a)+y)—v(W(x+y,6>>|doa,N<y)
< ||v||Lip/||<W<x,a)—x)—(W(x+y,5)—(x+y))||zdas,N<y>
< ollp S (1 — e~ / I¥l2dos v ()

C _
< llvllup (1 —e /2y (ms)'/?,



2314 DAVID JEKEL

where the last inequality follows by the same reasoning as Lemma 4.3(3). Therefore,
C _
1S5 Psv = PySsvll e < ~=m' 26121 — =) vl (4-5)

Therefore, we can estimate a single term in the telescoping series identity (4-4) by

|| (P5S5)%/ P5(Ss Ps — PsSs)S5(Pa5Sas)" "~ ul| oo < ||(Ss Ps — P5S5)Ss(P2sSas)" ' ~ul| 1
C . 1
< ;m‘/zs‘/z(l — e 2)|1S5( P25 Sas)" T utlLip

< %m1/251/2(1 _ e—cS/Z)e—ca/le—cB(n—j—1)/2”u”Lip.

Here we have first applied the fact that Ps and S5 are contractions with respect to the L° norm from
Lemmas 4.3(1) and 4.4(6); second, we used the estimate (4-5) for Ss Ps — PsSs; and third we used the
estimates || Psu||Lip < llullLip and [|SsullLip < e™“%/?||lu|lLip found in Lemmas 4.3(2) and 4.4(5). Now
summing up the telescoping series, we get

n—1

C e 68/ —e8(n—i—
||7’}’[+1u _ T;,eI/tHLoo S Z ?m1/261/2(1 —e 68/2)6 (,(S/ze cd(n J 1)/2||u||Llp
j=0

C 12:12 —c8/2y —c8)2 1
§?m 8§ (1 —e %) ¢ m”ﬂhip

C 1/251/2 ;=c8/2

_<¢. < C 12512
c

lelluip = 5 lle]|Lip-

In other words, we have

Cm'” i)
1T = Theulloe < =5 =27 02 ufuip.

It follows that the sequence is Cauchy with respect to || - || .~ and we have the desired estimate on
|77 ¢u — Trul|| L~ from summing the geometric series.
The estimate || T; ou|lrip < ™ 72 \|u |lLip follows from Lemmas 4.3(2) and 4.4(5), and then by taking

the limit as £ — ~+o00, we obtain || Tjullrip < e~ /?|Ju||Lip. O
Lemma 4.6. The semigroup T, defined above extends to a semigroup defined for positive t such that
fors <t

|T,u(x) — Tyu(x)| < e’”/z(%(3x/§+5)(t — )2 DV ()22 —s))uunup,

and || Tyul|Lip < e/ ||u|Lip-
Proof. We first prove the estimate on |7T;u — T;u| for dyadic values of s and ¢. First, consider the case
where t =27 and s = 0. Note that

(Ty = D= (T, = PuS)u + (P — DS+ (S, — D,

The first term can be estimated by Lemma 4.5 with £=1, the second term can be estimated by Lemmas 4.3(3)
and 4.4(5) as
1Py = DSpullzoe < m' 2 2| Sl < m' 222 uip,s
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and the third term can be estimated by Lemma 4.4(3). Altogether, we obtain
1/2

m
|Tiu(x) —u(x)| < (m

1
V2 m 21?4 EHDV(X)”Z) lluellLip-

In the case of general dyadic s and ¢, suppose ¢ > s and write ¢ — s in a binary expansion to obtain

[e.¢]
t=s+ Z aj2_j,

j=n+1
where a; € {0, 1} and a, | = 1. Note that 27"~ L<|s—t] <27 Let _s+ZJ nHaJ-Z_j. Then
o0
Tu(x) — Tu()| < ) | Tux) — T, u(x))|
j=n+1
Ccm!/? ‘ 27
/2 1/29=j/2 = .
< Z <C(2 qiy 2 Am PR = ||DV<x>||z>||Tfj1u||Llp

Cm 1
—(n+1)/2 —(n+1) .
= (<c(2—21/2) + 1) omip 2 DVl -2 )IITsullLlp

< Cm'” +1 1 (t — )2+ DV (0)ll2(t — ) )e " ||ul|L;
~\\c(2-21/2) 1—2-12 ip

Cm!/?
< —”/2( BV2+5)1 -9+ 1DV )20 —s)) leellLip,
where we used the crude estimate that 1 < Cm'/?/c to combine the first two terms. Because this
continuity estimate holds for dyadic values of s and ¢, we can extend the definition of T;u to all positive 7.
Furthermore, because || T;u||Lip < e 12 ||u llLip for dyadic ¢, the same must hold for real values of .
Now let us verify that T;7; = T, for all real . Choose dyadic s, \ s and 7, \( f and let u be a

Lipschitz function. We know that Ty, T; u = T, 1, u and that T, ; u — Ts4,u locally uniformly, so it
suffices to show that Ty, T; u — T;T;u. Observe that

Yﬂ
|\ Ty, Ti,u — T Tu| < |(Ts, — Ty) T, ul + | To (T, — T)ul.
The first term can be estimated by
—sp2(C
(T, =TT, u ()] < e™2(ZGV245) 0 =92+ 1DV @) 20 = ) 1Ty ullips
which goes to zero as n — oo. For the second term, we first note that

(T, = Tu] = (S GV2+5)t =02+ 1DV W) llatty = 1) Il

Let A, (x) be the right-hand side. Note that u < v implies that Tsu < T;v because this holds for the
operators P and S, (since P is given by convolution and S; is given by composition). Therefore,

1T (Th, — THu()| < T (T, — Tul(x) < Tshy(x).
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Because DV is C-Lipschitz, we know that &, is an e~'/?(t, — t)C ||ul|Lip-Lipschitz function and hence
| Tshn ()| < hn(x) + |(Ts — Dhn(x)]
< () + ety — z)cuuuup(%@ﬁ +5)s'2 4+ ||DV(x)||2s),
which goes to zero as n — 00. O]

Lemma 4.7. Let u(x) be Lipschitz. Then T,u is a weak solution of the equation

1 N
ﬁA(TtM) - 7VV . V(T,M)

in the sense that for ¢ € C°(My(C)%), we have

0;Tru =

I3 1 N
Ttl _Tto = —==V({Tu) - Vo — —(VV - V(T ds.
/Mw:)z;.[( W= o) /ro /MN«D);';[ oy B Ve =5 ( ”))¢] s

Proof. Recall that by Rademacher’s theorem if u is Lipschitz, then Vu exists almost everywhere and it is
in L*(My(C)Z). In particular, because V'V is Lipschitz, we also know that the second derivatives of V
exist almost everywhere and are in L*(My(C)72}).
We begin by considering [ (S5 Ps — 1)u - ¢ for a Lipschitz u : My (C)2 — Rand a ¢ € C°(My(C)™)
and § > 0. Note that
(SsPs — Du = (Ss — 1) Psu + (Ps — Du.

Now Psu is the convolution of # with the Gaussian and so V(Psu) = Ps(Vu). Because the gradient of the
Gaussian is O (8~!/?), we see that the first derivatives of Ps(Vu) are O(8~'/?) in L™ (here our estimates

may depend on N):
Psu(y) — Psu(x) = VPsu(x) - (x —y) + O |x — y|I3).

Now using (4-3) and Lemma 4.4(3), we have W(x, ) —x = (N§/2)VV (x) + 0(8?) uniformly on any
compact set K. Therefore,

(Ss — 1) Psu(x) = Psu(W(x, 8)) — Psu(x) = —NTSV(Pgu)(x) SVV(x)+ 0(8%).
Now we have

/(S(;PS—1)u-¢:/(S3—1)P5u¢+/(P5—1)u¢

:_%/[V(Pau)-VV]qﬁ—i-/u(Ps—1)¢+0(53/2)

= —NT‘S / Psu[(AV)¢ +VV -V¢] +/u%A¢ +0(5%?)
N§ )

— _1o . 0 3/2
=-5 /ng[(AVM)—i—VV V¢]+2N/MA¢+O(8 ),

where the error estimates depend only on C, N, |lu||Lip, the support of ¢, and the L° norms of its
derivatives. We also know from (4-5) that (S5 Ps — PsSs)u is bounded by [|u/||Lip(Cm'/?/c)(1 —e=%)81/2,
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which is O(83/?). Therefore,
Né 3/2
(PsSs — Du - ¢_—7 u PS[AVY+VV .-Ve] +— ulAp+ 0.

Now suppose that ¢ is a dyadic rational and write t = n8, where § = 2~¢ for some integer £. Recall
that 7; ¢ = (PsSs)". Then by a telescoping series argument

n—1
/(E,K—l)u-(ﬁ:Z(—NTs/T/g,gu Pa[(AV)(P-I—VV-V(p]_i_%/']}&(u A¢)+0(51/2).
j=0

We fix a dyadic ¢ and take ¢ — oo (and hence § — 0). The above sum over j may be viewed as a Riemann
sum for an integral from O to ¢, where § is the mesh size. Using Lemma 4.6, we know that 7;u is Holder
continuous in ¢. Also, by Lebesgue differentiation theory,

Ps[(AV)p+VV - Vo] — (AV)p+VV -V

1
in Ly,

compact support and all the functions we are integrating are bounded on compact sets. Thus, we obtain

(My(C)Z,). There is no difficulty in taking the limit as § — O inside the integral because ¢ has

/(T,—l)u ¢dx_/f ——Tu [(AV)p+VV - Vo] + TuA¢)dxds

We may extend this equality from dyadic ¢ to all positive ¢ using Lemma 4.6. Finally, after another
integration by parts (which is justified by approximation by smooth functions in the appropriate Sobolev
spaces), we have

/(T, —Du-pdx = // ——[V(T W) -VVip— —V(T ) - v¢) dx ds.
The asserted formula then follows by replacing u# with T; u and ¢ with #; — #. O

Lemma 4.8. If i is the measure given by the potential V and if u is Lipschitz, then we have

/deu:/ud,u.

Proof. By applying Lemma 4.7 and approximating (1/Z) exp(—N?V (x)) by compactly supported smooth
functions, we see that

/Ttudﬂ—/udﬂ— // ——V(Tu) Vie MV - %(VV-V(TSM))e_NZV]dsdx=O. O

Lemma 4.9. We have T;u(x) — f udp ast — oo and more precisely

o) — [[wdi] < P (A8 64+ 5V 4 24V 0l
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Proof. Fix t and fix r > ¢. Let n be an integer. Then using Lemma 4.6,

n—1
| Ttrt () = T (0] < D 1Tyt (1) = Trgrj e ()]

j=0

n—1 ] 1/2 1/2

- X:efcz/zefcmﬂn(C’“_(3\/§Jr 5)(1) n ||V(x)||2(5)) lullLip
=0 ‘ " !

- 1 Cm!/2 1/2

e e
w20 (C 12
< e (Cml? m' (3f+5)() IVl ()) el

Since r > t, we can choose n such that 1 /4 <r/n <t/2. Then we have
Toare) — T < (Y (6 1 5322 4 21V @)l iy,

Because this holds for all sufficiently large r, this shows that lim,_, o, Tu(x) exists. Because || T;u||Lip <
e 2| lILip» the limit must be constant and therefore equals [ u dj. Moreover, we have the asserted

rate of convergence by taking r — o0 in the above estimate. 0

4B. Approximability and convergence of moments. Now we are ready to show that the sequence of semi-
groups T,VN associated to a sequence of potentials Vy will preserve asymptotic approximability by trace
polynomials and as a consequence we will show that the moments of the associated measures @ converge.

Lemma 4.10. Let Viy : My (C)Zl — R be a sequence of potentials such that Vy (x) — (c/2)||x ||% is convex
and Vy(x) — (C/2)||1x ||2 is concave, where O < ¢ < C. For each N, let .y be the associated measure. Let
S; "V and T denote the semigroups defined in the previous section. Suppose that the sequence {DVy}
is asymptotically approximable by trace polynomials. Suppose that {uy} is a sequence of scalar-valued

K -Lipschitz functions which is asymptotically approximable by (scalar-valued) trace polynomials. Then:

@8 {S uy} is asymptotically approximable by trace polynomials for each t > 0.
2) {Tt uy} is asymptotically approximable by trace polynomials for each t > 0.
3) limy_ f un duy exists.

Proof. (1) Recall that S,VN uy =un(Wy(x,t)), where Wy is the solution to (4-3). Thus, by Lemma 3.27,
it suffices to show that Wy (x, ) is asymptotically approximable by trace polynomials for each ¢. To this
end, we write Wy (x, ¢) as the limit as £ — oo of Picard iterates Wy , given by

1 t
Wro(x, 1) =x, WN,Z+1(X,f)=X—§f DVi(Wn(x,s))ds.
0

Because DVy is C-Lipschitz, the standard Picard—-Lindelof arguments show that

S n—1.n
IWnele. ) =Wyl < 33—
n=~0+1

1DV (x)]l2-
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Because DVy is asymptotically approximable by trace polynomials, we know that || D Vy (x)||2 is uni-
formly bounded on || x| < R for any given R > 0, and therefore, for each T and R > 0, the convergence of
Wi ¢ to Wy as £ — oo is uniform for all || x| < R and # <T and N € N. Thus, by Observation 3.26, it suf-
fices to show that each Picard iterate {Wy ,(x, t)} 5 is asymptotically approximable by trace polynomials.

Fix T > 0. We claim that, for every ¢, for every R > 0 and € > 0, there exists a trace polynomial
f (X, t) with coefficients that are polynomial functions of ¢ such that

limsup sup sup [[Wwe(x,t)— f(x,0)]2 <e.
N—oo te[0,T]|xl<R

We proceed by induction on £, with the base case ¢ = 0 being trivial. For the inductive step, fix € and R,
and choose a trace polynomial f (X, t) which provides an (¢/(CT), R) approximation for Wy , for all
t<T. Let
R' = sup sup sup | f(x, D) < +o0.
t€l0,T1 N xeMy(©)2:||x[o<R
Choose another trace polynomial g(X) which is an (¢/ T, R’) approximation for {DVy}, and let 1(X, t) =
X — % Otg(f(X, s))ds. Then arguing as in Lemma 3.27, we have for ||x|| < R and ¢ € [0, T'] that

IWN.e41(x, 1) —h(x, D) < %/O IDVN (W e(x,5)) —g(f(x,5))2ds

1 Ct
=5 sup [[DVN(Y) —gWll2+ 7 sup sup [[Wye(x,5) — fx,9)2.
Iyll<R’ s€l0,T] x| <R

Taking N — oo, we see that i(x, t) is an (¢, R) approximation for {Wy ¢(x, t)}y forall t <T.

(2) We have shown that S,Vk preserves asymptotic approximability. Moreover, if the sequence uy :
My (C)7, — C is asymptotically approximable by trace polynomials and uy is K-Lipschitz, then the
sequence P;uy is also asymptotically approximable by trace polynomials by Lemma 3.28 (the hypothesis
(3-18) is satisfied since |uy (x)]| < |un(0)] 4+ K||x||2 and |u (0)] is bounded as N — +oo because u y is
asymptotically approximable by trace polynomials). Therefore, the iterated operator T[VEN = (Py—¢ Szvffz)zl’
preserves asymptotic approximability for dyadic values of z. Taking £ — oo, we see by Observation 3.26
and Lemma 4.5 that T,VN preserves asymptotic approximability for dyadic values of ¢. Finally, we extend

the approximability property to T,VN for all real ¢ using Observation 3.26 and Lemma 4.6.

(3) We know by Lemma 4.9 that TtVN uyx) — f uy duy as t — oo with estimates that are independent
of N. It follows by Observation 3.26 that the sequence of constant functions { Jundu N} is asymptotically
approximable by trace polynomials. But since these functions are constant, this simply means that the
limit of [‘uy dpy as N — oo exists. O

Proof of Theorem 4.1. (1) Letay = [ xduy(x) and ay,j = [ x;j dpy(x). Note that

/ o () dpiy ()

Ry < max [~ a1 dyuy (o) + max +max| [ Gy~ oy () daco)
J J J
When we take the lim sup as N — oo, the first term is bounded by 2/c!/? by Corollary 2.12, while the

last term is bounded by M. It remains to estimate f TN (X)) djy (x).
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Using integration by parts, we see that

/DVN(x)d,uN(x):—%/%V[e_VN(x)]dXZO.

On the other hand, we may estimate || D Vy (x) — (D Vn(0)4+ ((C+c)/2)x)]|, as follows. We assumed that
Vi (x) = (c/2)||x |13 is convex and Vy (x) — (C/2)||x 13 is concave. Let Vi (x) = Vi (x) — ((C+¢)/2)||x 3.
Then Vy (x) 4 ((C — ¢)/2)|1x||3 is convex and Vi (x) — ((C — ¢)/2)||x||3 is concave. Therefore, DVy is
(C — ¢)/2-Lipschitz with respect to || - ||» by Proposition 2.13(4). It follows that

C C—
| DV = (Dvw© + Sx) | = 107w ) = DTNl = Sl
Therefore,
|pvv @+ Fay| = |-pvven + (Dvv @ + <))

< T_f||x||2dMN(x)

c_ 12
< TC<||61N||2 + (/Hx —aN||%dM(X)> )

C— _
< =5 (llan 2+,
where the last step follows from Theorem 2.11. Altogether,

C+c

C—
3 Sllanlla + 1DV O) 2+ =5

C
2012

c
lanll2 <

Then we move ((C —c)/2)|lay]|2 to the left-hand side and divide the equation by c to obtain

1 C—-c
‘/ in(x)duny ()| < llanllz < E”DVN(O)H2+ TR

which proves the asserted estimate on Ry. The tail estimate on uy(|lx;|| > Ry + 8) follows from
Corollary 2.12.

(2) Fix a noncommutative polynomial p. Let R, = limsupy .y Ry, which we know is finite because
of (1) and suppose that R" > R,. Let ¥ € C>°(R) be such that y(t) = ¢ for |f| < R’, and define
W(xy, ..., Xm) = (x1), ..., ¥(xn)), where ¥ (x;) is defined through the continuous functional calculus
for self-adjoint operators. Now x — ¥ (x) is Lipschitzin || - || for x € My (C)s, with constants independent
of N (see for instance Proposition 8.8 below). It follows that p(W¥(x)) is globally Lipschitz in || - ||, and
it equals p(x) when || x| < R

Furthermore, we claim that the sequence 7y (p(W(x))) is asymptotically approximable by trace
polynomials. To see this, choose some radius r and § > 0. By the Weierstrass approximation theorem, there
exists a polynomial &(t) such that |y (f) — I/A/(t)| < ¢ for t € [—r, r]. By the spectral mapping theorem, we
have ||y (y) =¥ (»)|| <8 if y € My(C)sa and ||y|| < r. In particular, if we let U (x) = ((x1), . .., ¥ (xm))

for x € My (C);, then we have ||W(x) — li(x) | <& when || x|l <r. Given € > 0, we may choose  small
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enough to guarantee that |ty (p(¥ (x))) — T (p(W (x)))| < € for ||x[loo < r, and clearly Ty (p(¥ (x))) is
a trace polynomial. Thus, Ty (p(W(x))) is asymptotically approximable by trace polynomials.
Therefore, by Lemma 4.10, the limit

Mp) = lim f on (P () dpiy (x)

exists. Clearly, A satisfies all the conditions to be a noncommutative law (Definition 2.3). Furthermore,
because of the operator norm bounds (1), we know that foH> g IN(p(x)) duy (x) is finite and approaches
zero as N — oo and the same holds for the integral of 7y (p(W¥(x))). Therefore,

]\jli_I)noo/TN(p(x))dﬂN(x) :Nli_f)noo/TN(P(\IJ(X)))dMN(X):)\(P)-

Also, we have A(p) = limy_ oo f”x”<R, v (p(x))dun(x) and hence A € 3, g'. But since this holds for
every R’ > R,, we have L € X, g,.

(3) It suffices to prove the concentration claim (3) for sufficiently large R, say R > 2R,. Because the
topology of X, r is generated by the functions A — A(p) for noncommutative polynomials p, it suffices
to consider the case where U = {\": |A'(p) — A(p)| < €} for some noncommutative polynomial p. Choose
a function ¢ € C°(R) with ¥ (f) =t for |t| < R, and let ¥ be as above. Then by Theorem 2.10,

o

But by the same reasoning as in part (2), we know that large enough N, we have

o (P (x))) — / w(poW)duy

> %) < 2e VBl oWl

‘ / e (poW) diy —h(p)

<€,
-2
and hence !
lim sup N2 loguny (x|l < R, |tn(p(x)) —A(p)| =€) <O. O

N—o00
5. Entropy and Fisher’s information

S5A. Classical entropy. In this section, we will state sufficient conditions for the microstates free entropies
x and y to be evaluated as the lim sup and lim inf of renormalized classical entropies. Recall that the
(classical, continuous) entropy of a measure du(x) = p(x) dx on R" is defined as

h(p) = / —plogp,
Rn
whenever the integral makes sense. If © does not have a density, then we set 2(u) = —oo. We will later
use the following basic facts about the classical entropy, so for convenience we provide a proof.
Lemma 5.1. Assume that | is a probability measure on R" with density p and that f |x? dp(x) < +oo.
(1) The positive part of —p log p has finite integral and hence f —p log p is well-defined in [—o0, +).

(2) We have h(in) < (n/2)log2mae, where a = f |x |2 du(x)/n, and equality is achieved in the case of
a centered Gaussian with covariance matrix al.
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(3) Suppose {11} is a sequence of probability measures with density px. Suppose py — p pointwise
almost everywhere and that [ lx 12 d e (x) — f x> du(x) < +00. Then lim SUPy o0 (k) < h().

(4) If v is a probability measure with finite second moments, then h(j *v) > h(u).

Proof. (1) Leta = [ |x|*du(x)/n. Let g(x) = (2 a)~"2e /29 be the Gaussian of variance a, and
let y be the corresponding Gaussian measure. Let p = p/f be the density of u relative to the Gaussian.
We write
—px)log p(x) = —p(x)log p(x) - g(x) — p(x) log g (x) - g (x)
2
=~ log 50 ) + (EL 1 Zog 27a) p).

The second term has a finite integral by assumption. The function —¢ log ¢ is bounded above for ¢ € R, and
g(x) is a probability density; thus, the positive part of — 4 log 5 - g has finite integral. Hence, [ —p log p
is well-defined.

(2) The function —¢ log ¢ is concave and its tangent line at t =0 is 1 —¢, and hence —¢ log¢ < 1—t. Thus,

/—ﬁlogﬁdy s/(l—ﬁ)dy o0,
SO
n

h(p) < (ﬁ + n log 27Ta>p(x) dx =1 + = log2ma = n log2me.
- 2a 2 22 2

In the case where u = y, we have p = 1 and hence [ —plog p = 0.

(3) Let y be the Gaussian of covariance matrix / and g its density. Let o = p/g. As before,
~ ~ x>  n
W) = | —plog pedy + [ (F5-+ 5 log2m) duus.

By assumption, the second term converges to f (|x|? /24 (n/2)log2m)du as k — oo. Since the function
—tlogt is bounded above and y is a probability measure, the integral of the positive part of — oy log px
converges to the corresponding quantity for p. For the negative part, we can apply Fatou’s lemma. This

yields lim sup;_, o A (i) = h(p).

(4) We can assume without loss of generality that one of the measures, say 1, has finite entropy. Then
w * v has a density given almost everywhere by p(x) = f p(x —y)dv(y). Since —t logt is concave,
Jensen’s inequality implies that

5 log (x) = / o — y)log p(x — ) dv(y).
The right-hand side is

/f —p(x— ) log plx — ) dv(y) dx = // o (x — y) log p(x — y) dx dv(y) = h(w),

where the exchange of order is justified because we know that —p log p is integrable since 7 () > —oo.
Therefore, h(u*v) = [ —plogp > h(p). O
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5B. Microstates free entropy. Because there is no integral formula known for free entropy of multiple
noncommuting variables as in the classical case, Voiculescu [1993; 1994] defined the free analogue of
entropy using Boltzmann’s microstates viewpoint on entropy.

Definition 5.2. For U/ C ¥,,, we define the microstate space
TyU) = {x € My (O : hx €U,
Py rU) ={x € MN(O)g i Ay €U, |Ixlloo < R}
The microstates free entropy of a noncommutative law A is defined as

P 1 m
Xr(A) = Z}{l‘;g lim sup(m logvol 'y r(U) + 5 log N),

N—oo

X (A) = sup xgr(A).
R>0

Here vol denotes the Lebesgue measure with respect to the identification of My (C)™ with R™Y *asin
Section 2A, and U ranges over all open neighborhoods of A in X,,. Similarly, we denote
PO 1 m
)_(R(k) = Z}{gg l}vnilo%f<ﬁ logvol 'y r(U) + 5 log N),

X () = sup xz(h).
R>0

Remark 5.3. Note that ¢/ C V implies that
. 1 m . 1 m
il - < — —_
h]\r/n_f:op<N2 logvol I'y r(U) + 2 log N) < hzf/n—fgop(Nz logvol 'y (V) + ) log N).
Hence, to estimate the infimum over I/ (that is, xg(A)), we can always restrict our attention to neighbor-

hoods U contained inside some fixed V. The same holds for the lim inf variant of entropy.

Definition 5.4. A sequence of probability measures uy on My (C)%, is said to concentrate around the
noncommutative law A if Ay — X\ in probability when x is chosen according to wp, that is, for any
neighborhood U/ of X in %,,, we have

Iim puy(x eI'yW)) =1.
k— 00

Proposition 5.5. Let Vy : My (C)Y; — R be a potential with f exp(—N2 Vy(x))dx < 400 and let iy
be the associated measure. Assume:
(A) The sequence {y} concentrates around a noncommutative law A.
(B) The sequence {Vy} is asymptotically approximable by scalar-valued trace polynomials.
(C) For somen>1anda,b > 0we have |Vy| <a+b Z']’;l rN(sz").
(D) There exists Ry > 0 such that
m
lim (1 +> Ty (x}”)) duy(x) =0,

N=00 Jxlloc= Ry o

where n is the same number as in (C).
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Then )\ can be realized as the law of noncommutative random variables X = (X1, ..., X;) in a von
Neumann algebra (M, t) with || X;|| < Ro. Moreover, we have

. 1

X (3) = 2ty (%) = Timsup( (i) + 5 Tog N (5-1)
N—oo
. 1 m

X (%) = ko () = liminf( () + 5 Tog N). (5-2)

Proof. 1t follows from assumptions (A) and (D) that for every noncommutative polynomial p
lim v (p(x)) dun (x) = A(p).

N=2 J)x]l<Ro

In particular, this implies that [A(X;, ... X; )| < R’g for every iy, ..., iy, and hence A € X, g,. The fact
that A can be realized by operators in a von Neumann algebra is standard (Proposition 2.7).
Now let us evaluate xg and XR for R > Ry. Recall that

duy(x) = ZLNGXP(—NZVN(X))CIX, ZN Z/GXP(—NZVN(X)) dx,

and note that
h(uw) = N? / Vi () djun () +log Zy.

The assumptions (C) and (D) imply that

lim IVy ()| duy(x)=0 and lim py(x: ||x]lee > R) = 0.
N—o0

N=00 Jjix|ls>R

Therefore, if we let
1
dpy r(¥) = 1y < XP(—N*V () dx,  Zyg = / exp(—N?Vy (x)) dx,
N.R Xl <R
then, as N — oo, we have

/VNd/LN—/VNd,LLN,R—)O, logZN—logZN,R—>0,
and hence . .
mh(MN) - mh(MN,R) — 0.

Fix € > 0. By assumption (B), there is a scalar-valued trace polynomial f such that |Vy(x)— f(x)| <€/2
for ||x|lcc < R and for sufficiently large N. Now because the trace polynomial f is continuous with
respect to convergence in noncommutative moments, the set i = {)J M) =A< € /2} is open.
Now suppose that V C U/ is a neighborhood of A. Note that

) . V4
lim puy g(Tyg(V) = lim —uy(Cy V) Nix : x]lee < RY = 1,
N—oo N—oo ZN,R

where we have used that Zy/Zy g — 1 as shown above, that uy (I'y(V)) — 1 by assumption (A), and
that un (J|x||eoc < R) — 1 by assumption (D). Moreover, by our choice of f and U/, we have

xelyr(V) = [|Vy&x)—=A(f)| <Ze.
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Therefore,
Zy rin R(Cy.r(V)) = / exp(—N2Vy (x)) dx
I'v.r(V)
=vol Ty g(V) exp(—=N*(L(f) + O (€))).
Thus,

log Zy & +log iy g(Ty (V) = log vol Ty g(V) — N*(A(f) + O(€)).

Meanwhile, note that | f (x)| is bounded by some constant K whenever ||x ||coc < R (where K is independent
of N). Therefore,

/VN dMN,R=/ Vy dMN,R+/ Vydun,r
In.rV) v r(VE)

_ / AL Tdiy g+ / Ml fldiy g+ 0(€)
I'n.r(V) Iy r(V°)

=AM unrTy,rWV) + O0(e) + O(K Ty, r(V))).
Altogether,
1

1
2N R) = / Vvdpun g+ 5108 Zy R

N2
=3k Ty x (V) = 1) + 215 log vol Ty x(V)

+0(e)+ O(K un Ty r(V))) — % log un,r(Tn,r(V)).

Now we apply the fact that uy g(I'y r(V)) — 1 to obtain

. 1
lim sup WM(MN’R) —logvolT'y r(V)| = O(e).

N—o00

In light of Remark 5.3, because this holds for all sufficiently small neighborhoods V C U/ with the error
O (¢) only depending on U/, we have

. 1 m
xr (%) = limsup( 373, 2) + 5 1og N ) + O(e)

N—o0
1

= lim sup(N2

N—o0

h(w) + 3 log N) + 0 ().

Next, we take € — 0 and obtain xz (1) = lim sup]\,_wo(N_2 logh(un)+ (m/2)log N) for R > Ry. Now
x (X)) =supp xr(A) and xg(X) is an increasing function of R. Since our claim about xg(X) holds for
sufficiently large R, it also holds for x (A), so (5-1) is proved. The proof of (5-2) is identical. U

5C. Classical Fisher information. The classical Fisher information of a probability measure © on R”
describes how the entropy changes when p is convolved with a Gaussian. Suppose u is given by the
smooth density p > 0 on R” and let y; be the multivariable Gaussian measure on R"” with covariance
matrix ¢I. Then the density p,; for u, = u * y; evolves according to the heat equation d;p; = A /2p;.
Integration by parts shows that d,;h(u;) = % [ 1Vpi/ps 1> d, (which we justify in more detail below).
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The Fisher information of p represents the derivative at time zero and it is defined as

\Y%
I(w) :=f‘—p
0

The Fisher information is the L?(x) norm of the function —V p(x) /p(x), which is known as the score

2
du.

function. If X is a random variable with smooth density p, then the R"-valued random variable E =
—Vp(X)/p(X) satisfies the integration-by-parts relation
Vp(x)
p(x)
or equivalently E[E; f(X)] = E[9; f (X)] for each j.

In fact, the integration-by-parts relation E[E - f(X)] = E[V f(X)] makes sense even if we do not

E[E-f(X)]=—/ f(X)p(X)dx=/p(X)Vf(X)dx=E[Vf(X)] for f € C*(R"), (5-3)

assume that X has a smooth density. Following the terminology used by Voiculescu in the free case, if
X is an R"-valued random variable on the probability space (€2, P), we say that an R"-valued random
variable & € L?(S2, P) is a (classical) conjugate variable for X if E[Z - f(X)] = E[V f(X)] and if each
E; is in the closure of {f(X) : f € C(R")} in L*(2, P).

In other words, this means that E is a function of X (up to almost sure equivalence) and satisfies the
integration-by-parts relation. Since the integration-by-parts relation uniquely determines the L?($2, P)
inner product of E; and f(X) for all f € C°(R"), it follows that the conjugate variable is unique (up to
almost sure equivalence), and that it is given by f(X) for some f that only depends on the law of X. Thus,
we may unambiguously define the Fisher information Z(u) = E[|E|?] if X ~ u and E is a conjugate
variable to X, and Z(u) = +o0 if no conjugate variable exists.

The probabilistic viewpoint enables us to produce conjugate variables and estimate Fisher information
using conditional expectations. (See [Voiculescu 1998, Proposition 3.7] for the free case.)

Lemma 5.6. Suppose that X and Y are independent R"-valued random variables with X ~ p and Y ~ v.
If B is a conjugate variable for X, then E[E|X + Y] is a conjugate variable for X + Y. In particular,

Z(u*v) <min(Z(w), Z(v)).

Proof. Because X and Y are independent, we have for g € C(R" x R") that E[E;g(X,Y)] =
E[dx;g(X, Y)]. In particular, if f € CZ°(R"), then

E[E; f(X+Y)]=E[3x;(f(X+Y)]=E[(O; /)X +Y)]
But E[E;|X+Y] is the orthogonal projection onto the closed span of { f (X+Y): f € C>°(R")} and hence
E[E[E;|IX +Y1f (X +Y)] = E[3; f(X + Y)].
So I(uv) = E[|E[E|X + Y1)*] < E[|E|*] = Z(1). By symmetry, Z(u % v) < Z(v). O

The entropy of a measure wu can be recovered by integrating the Fisher information of w * y;. The
following integral formula was the motivation for Voiculescu’s definition of nonmicrostates free entropy x *.
For the reader’s convenience, we include a statement and proof in the random matrix setting with free
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probabilistic normalizations. See also [Barron 1986, Lemma 1; Voiculescu 1998, Proposition 7.6]. Recall
that we identify My (C)™ with R™Y ’ using the orthonormal basis given in Section 2A rather than entrywise
coordinates (since some entries are real and some are complex).

Lemma 5.7. Let ju be a probability measure on My (C)Y, with finite variance and with density p, and
let o; N be the law of m independent GUEs of normalized variance t. If a = (1/m) f||x||§du(x) =
(1/(mN)) f |x|? dp(x), then we have for t > 0 that

m 1 . (m 1
AL < = -
L < 5T (ko) < min( 5 —5TG0). (5-4)
Moreover,
! h I h(w) = L[] z d 5-5
N2 (M*@,N)—m (M)—z A N3 (* oy n)ds (5-5)
and
L +M0gN =1 oo(i (o N)) ds + P log 2e. (5-6)
N2 2 2 Jo \1+s N3 * 2

Proof. To prove (5-4), suppose ¢ > 0 and let X and Y be random variables with the laws © and o; y respec-
tively. The lower bound is trivial if Z(u * oy, y) = 400, so suppose that X + Y has a conjugate variable =.
Then after some computation, the integration-by-parts relation shows that E(Z, X + Y )1, = m N2 Thus,

|[E(E,X+Y)ul>  (mN*?* N’
E|IX+Y>?  N(na+mt) a-+t

E[|E[*] >

since the variance of Y with respect to the nonnormalized inner product is Nm¢ and the variance of
X is Na. The upper bound is trivial in the case where ¢t = 0. If > 0, then by the previous lemma
Z(p *o0r,.n) < min(Z(w), Z(oy,n)). Moreover, a direct computation shows that if ¥ ~ o; y, then the
conjugate variable is (N /)Y and the Fisher information is mN3/1.

Next, to prove (5-5), let u; := p * 0; n. By basic properties of convolving positive functions with the
Gaussian, u; has a smooth density p;. We claim that if 0 < § < ¢, then

1 [ 1 [ |V ps (x)]?
R(uy) — h(us) = — | T(u,) ds = — AP dx ds. 5.7
(pe) — h(ps) 2N/5 (us)ds 2N/8/MN(C)z; 5 (0) xds (5-7)

This will follow from integration by parts, but to give a complete justification, we first introduce a smooth
compactly supported “cutoff” function yg : My (C)y; — R such that 0 < g <1 and ¥g(x) =1 when
|x| < R and ¥g(x) = 0 when |x| > 2R. By taking ¥/ to be rescaling by R of some fixed function, we
can arrange that |Vyg(x)|l2 < C/R for some constant C. Because d; 05 = (2N Y~ Aps, we have

d 1
E[_/prs logps:| =_m/WR'(Aps 10gps+ApS)

|V 1

1 ps|*
—W/WRT‘FW Vg - Vg - (1 +1og py),
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where all the integrals are taken over My (C)7: with respect to dx. This implies
- / Vro:log p; +/ Vrps log ps

ZN//wR dpps = 2N//(

We must now take the limit of each term as R — +oo. For the first term on the right-hand side, the

Vs |°

)(1 +1og o) diss. (5-8)

monotone convergence theorem yields

t V 2
fim //wR Ps
R—+00 /5 Ps

The second term on the right-hand side of (5-8) can be estimated as follows. Note that u; = % o5 n

t
dusds = f T(us)ds.
)

and that o, y has a density that is bounded uniformly for s € [§, ] and x € My (C)Z.. Therefore, p;, is
uniformly bounded for s € [§, ] and x € My (C)7: and hence log p, is uniformly bounded above. To
obtain a lower bound on log py, first note that there is a K > 0 such that

nGetlx] <K)= L
Now if x € My(C)%, and |y| < K, then |x — y| > |x| — K and hence
e =y < e ? = 2K x| + K? = 2|x|* + 2K,

where the last inequality follows because 2K |x| < |x|? /2 + 2K 2 by the arithmetic-geometric mean
inequality. Therefore, letting Z be the normalizing constant for o y, we have

1 - 2 _ 2
p“'(x):E/ (N/@)lx—y] du(y)>— /e N1 g4()
IyI<K
_ 2
-1 Ty D I A
Z Jiyi<x

so that log p; > K’ — |x|? for some constant K. In particular, combining our upper and lower bounds,
there is a constant « such that for sufficiently large x, we have |1 + log ps| < «|x|* Recall that Vi (x)
is supported when R < |x| < 2R and bounded by C/R and thus |Vi{g(x)| < C/|x|. Altogether we have
IVyr(1+log ps)| < Blx| for some constant 8 when |x| is large enough. Thus, the second term on the
right-hand side of (5-8) is bounded by

7
/fww uv)(1+10gpc)|dusds<ﬂf/ Ix |’ 05 (x)
Ix|=R Ps(x)

_’3// ( 'V'OS() >dus(x)ds.
Ix|>R 0s(x)

The right-hand side is the tail of the convergent integral

e

ps(x)

and therefore it goes to zero as R — 400 by the dominated convergence theorem.

dus(x)ds

t
)dMS(X) ds = / [(a+ms)+I(us)]ds < +oo,
5
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As for the left-hand side of (5-8), we can apply the dominated convergence theorem to — f Vg o log p;
and — [ Ygpslog ps given our earlier estimate that p, is subquadratic for each s. Thus, after taking
R — o0 in (5-8), we obtain (5-7).

To complete the proof of (5-5), we must take § N\ 0 in (5-7). We can take the limit of the right-hand
side of (5-7) by the monotone convergence theorem. For the left-hand side of (5-7), Lemma 5.1(3) implies
that lim sups. o 7 (us) < h(n) because ps — p almost everywhere by Lebesgue differentiation theory.
On the other hand, A (s) > h(n) by Lemma 5.1(4); hence h(us) — h(w), so (5-5) is proved.

To prove (5-6), we follow [Voiculescu 1998, Proposition 7.6]. First, suppose that 4 (i) > —oo. Note that

1 ["/mN? 1 mN?
h(u)_zfo (1+s —NI(,LLS)>ds— S log(14+1) +h(uy).

1 2
mN 1
[ (s - ) s

is finite. In light of (5-4), the integral from 1 to oo is also finite and by the dominated convergence theorem

.1 ["/mN? 1 1 [®/mN? 1
tlggoifo <1—|—s _NI(MS)) ds = E/(; (H—s _NI(MS)) ds.

It remains to understand the behavior of #(u;) — (mN?/2) log(1+1). By Lemma 5.1(4) and (2),

2 2 2
h(u) = h(oyw) = "2 log €0 = M 109 ZT€ 1 I jog

On the other hand, by Lemma 5.1(2), since f |x|> ds (x) = N(a +tm), we have

If h(u) > —o0, then

2 2 2
() < mN log 2mwe(a—+t) :mN log 27're+mN log(a +1).

2 N 2 N 2

As t — oo, we have log(1 +¢) —log(a +t) — 0 and log(1 +¢) —logt — 0 and therefore

N? N2 2 N? N?

h(ug) — m2 log(1+1¢) — m2 log ;e = m2 log2me — m2 log N.

Hence,

1 [“/mN?> 1 mN? mN?

h(p) = 5/0 (m — NI(MS)> ds + > log2me — > log N,
which is equivalent to the asserted formula (5-6). In the case where 4(u) = —oo, we also have
1 2
mN 1
/0 (T — w2 ds = —o0

by (5-5), but the integral from 1 to oo is finite as shown above. So both sides of (5-6) are —oo. U

5D. Free Fisher information. The starting point for the definition of free Fisher information is the
integration-by-parts formula (5-3). Indeed, if we formally apply this to a noncommutative polynomial p
and renormalize, we obtain

[ (3 Ei@pe) duco = [ o @m@p e, (5:9)
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(and this integration by parts is justified under sufficient assumptions of finite moments). Voiculescu
therefore made the following definitions:

Definition 5.8 [Voiculescu 1998, §3]. Let X = (X1, ..., X;,) be a tuple of self-adjoint random variables
in a tracial von Neumann algebra (M, 7) and assume that M is generated by X as a von Neumann
algebra. We say that £ = (&1, ..., &,) € L2(M, ©)™ is a (free) conjugate variable of X if

(€ p(X)) =t ®@1(Djp(X)) (5-10)

for every noncommutative polynomial p. The free conjugate variable, if it exists, is unique. If it
exists, we say that X (or equivalently the law of X) has finite free Fisher information and define
P*(X) := d*(Ay) := Zj t(éjz). We also denote the conjugate variable & by J(X).

Definition 5.9 [Voiculescu 1998, Definition 7.1]. The nonmicrostates free entropy of a noncommutative
law A is

X*0) = & oo(i—cb*(waa,))Jrllogzne.
2 )y \1+1 2

Now we are ready to state conditions under which the classical Fisher information of a sequence of
measures (y converges to the free Fisher information of the law A. First, to clarify the normalization,
note that if duy(x) = (1/Zy) exp(—N 2Vn(x)) dx, then the classical conjugate variable is given by
Ey = N2V Vy. The normalized conjugate variable used in (5-9) is (1/N)Exy = NVVy = DVy. The
corresponding normalized Fisher information is then

2aun = | L|L
[1ovaizan = [ 414

which is the same normalization as in Lemma 5.7.

? 1
du = mI(MN),

[1]

N

Proposition 5.10. Let Vi : My (C)Z, — R be a potential with f exp(—N2 Vn(x))dx < 400 and let 1y
be the associated measure. Assume:

(A) The sequence |1y concentrates around a noncommutative law A.
(B) The sequence {DVy} is asymptotically approximable by trace polynomials.
(C) For somen >0anda,b > 0we have ||DVN||% <a+b Z'}’:l ‘L'N(szn).

(D) There exists Ry > 0 such that

m
lim (1 + rN(x-z”)> duy(x)=0.
N=>00 J xRy ; ’
Then:
(1) The law A can be realized by self-adjoint random variables X = (X1, ..., X;y) in a tracial von

Neumann algebra (M, ) with || X;|| < Ro.

(2) There exists a sequence of trace polynomials f® e (TrP,L)m such that

lim limsup sup |[DVy(x)— f® @) =0.

k=00 N—oo |lxllo<Ro
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(3) If {f P} is any sequence as in (2), then { fy(X)} converges in L>(M, T) and the limit is the conjugate
variable J (X).

(4) The law X has finite free Fisher information and N73Z(uy) = ®*(1) as N — oo.

Proof. (1) This follows from the same argument as Proposition 5.5.
(2) This follows from the definition of asymptotic approximability by trace polynomials.

(3) Let { f®} be a sequence as in (2). Because .y concentrates around A and gy ({x : X [lee < Ro}) = 1
as N — +o0 by (D), we have

MUY = O (9 = fO1 = lim vl (fD = FO D = FE T dpy ).
N=00 Jjxlles =Ry

For every € > 0, if j and N are large enough, then sup g [IDVy (x)— f(x) |2 < € by our assumption
on . In particular, if j and k are sufficiently large, then A[(f) — f®)*(f() — f®)] < (2¢)% This
shows that { f® (X)} is Cauchy in L*(M, 1) since X has the law A.

Let & = limy_, oo f® (X). We must show that £ is the conjugate variable for X. Let ¢ € C(R) such
that ¥ (y) = y when |y| < Ry. For x € My (C)%, let W(x) = (¥ (x1), ..., ¥ (xn)). By (5-9), because
DVy(x) is the classical conjugate variable for X, we have for every noncommutative polynomial p that

/ n[DjVn(x) - p(¥(x)]dun(x) = / Djltn(p(¥(x)]dpn (x).
It follows from our assumptions (C) and (D) that

lim IDVy )5 dpn (x) =0.

N=00 Jix|lo>Ro

Because p(¥(x)) and D;[ty(p(¥(x)))] are globally bounded in operator norm, the integral of these
quantities over ||x||~ > Ro will vanish as N — oo and therefore

/” | n[D;j Vy (x) p(W (x)) ] dpun (x) —/” H Di[t(p(¥(x))]dun(x) — 0.
X|loo<Ro X|loo<Ro
But since p(W(x)) = p(x) on this region, we have
/ n[D; VN (x) p(x)]dpn (x) — / v ® tn[Djp(x)]dun(x) — 0.
lx oo <Ro Ixlloc <Ro

Now the second term converges to A ® A[D; p] =1 ® t[D; p(X)] by our concentration assumption (A).
For the first term, we can replace D; Vy (x) by fj(k) (x) with an error bounded by

sup || f©x) = DVN )2

lxlloo<Ro

Then we apply concentration to conclude that

[ ot @ pwldun - O pi.
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Overall,
M) pl =2 @ AID; pl| <limsup sup || f ) (x) = DV (x) 2.

N—oo |Ixllcc=Ro
Taking k — oo, we obtain 7[§; p(X)] — 7 ® T[D; p(X)] = 0 as desired.
(4) We know from (3) that X has finite Fisher information. Assumptions (C) and (D) imply that

1
FiZm = [ DV B - o
Ixllco<Ro

By arguments similar to those before, we can approximate DVy by f® on ||x|ls < Ry, approximate

fI\XIIOOSRo | f® ||§ duy by A((f®)* £®) and then approximate A (( f ®)* f®)) by 7 (£*£) = &* (1), where
the error terms vanish as N — oo and then k — oo. This implies that N ST(uy) — D). O

6. Evolution of the conjugate variables

6A. Motivation and statement of the equation. In the last section, we stated conditions under which
the classical entropy and Fisher information of ux converge to their free counterparts for the limiting
noncommutative law A. In order to prove that x (1) = x*(1), we want to take the limit in the integral
formula (5-6), and therefore, we want N 3Z(uy * or.N) = ®*(AHoy) for all # > 0. In order to apply
Proposition 5.10 to py * o, 5, we need to show that {DVy ,}n is asymptotically approximable by trace
polynomials, where Vi ; is the potential corresponding to wy * oy y.

By adding a constant to each Vy if necessary, we may assume without loss of generality that Zy = 1.
We recall that Vi ;(x) is given by

exp(—N?Vy,(x)) = / exp(—=N>Vy (x + y)) doy x (). (6-1)
Then exp(—N 2 V.1 (x)) solves the normalized heat equation

d[exp(=N?Vy 1 (x))] [exp(— N2V . (x)], (6-2)

1

= ﬁ A
where (1/N)A = Ly is the normalized Laplacian. However, we do not know how to show that DV (-, t)
is asymptotically approximable by trace polynomials from a direct analysis of the heat equation because
of the dimension-dependent factor of N2 in the exponent. What we want is a dimension-independent and
“hands-on” way of producing Vy ; from Vy.

As in Section 4, we will analyze the PDE which describes the evolution of the function Vy ;. First, let
us derive the equation by rewriting (6-2) in terms of Vy , rather than e=""Y¥. By the chain rule,

3 [exp(—N*Vy,)]=—N?3Vy,, -exp(—N*Vy,)

and
Alexp(—=N?Vy )1 = [A(=N*Vy.) + [V(=N>Vy ) [Pl exp(—=N* Vi ;)

= (=N2AVy,+ N VVy, [P exp(—=N?Vy.,),
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where A and V denote the classical (nonnormalized) Laplacian and gradient, where My (C)7; has been
identified with R"™V’ using the coordinates in Section 2A. Thus, our equation becomes

1
=N, Vivs = 535 (=N AV + NV Vi),

1 N
8tVN,t - WAVN,Z - E|VVN,I|2'
Recall that (1/N)A is the normalized Laplacian discussed in Section 3B. The normalized gradient is

DVy ;= NVVy,, and the normalized Euclidean norm is

m m
2 2 1 n_ 1,1
||x||2— EITN(XJ‘)—N ‘§1Tr(xj)—ﬁ|x| .
Jj= Jj=

Then . |
NIVVy? = S INVV P = S DV P = DV,

and therefore we obtain the following equation that is normalized in a dimension-independent way:
8 VNt = 3LV — 3 IDVi 3. (6-3)

In the remainder of this section, we study a semigroup R, acting on convex and semiconcave functions
on My (C)7Z such that Vy ; = R, Vy (here R, depends implicitly on N). In Sections 6B—6F, we construct
R, from scratch by iterating the heat semigroup and Hopf-Lax semigroup. Next, in Section 6G, we verify
that R, Viy solves (6-3) in the viscosity sense (for background, see [Crandall et al. 1992]), and deduce that
R;Vxy must agree with the smooth solution Vy ; defined by (6-1). Finally, in Section 6H, we show that if
{DVy} is asymptotically approximable by trace polynomials, then so is {D(R;Vx)}.

6B. Strategy to approximate solutions. To construct the semigroup R, that solves (6-3), we view the
equation as a hybrid between the heat equation 34 = (2N)~!' Au and the Hamilton—Jacobi equation with
quadratic potential d,u = —% | Du ||%. The heat equation can be solved by the heat semigroup

Pou(x) = / u(x + ) doy n (3). (6-4)

while the Hamilton—Jacobi equation can be solved using the inf-convolution semigroup

Quu(x) = intlux + )+ oIy I3] (©5)

as a special case of the Hopf—Lax formula (see [Evans 2010, Chapter 3.3]).

In Dabrowski’s approach, the solution to (6-3) was expressed through a formula of Boué, Dupuis,
and Ustunel as the infimum of E [u (x + B; + fot Y ds) + % fot | Ys ||% ds] over a certain class of stochastic
processes Y; adapted to a standard Brownian motion B; (see [Dabrowski 2016, Theorem 3.1]). This
formula, roughly speaking, combines the Gaussian convolution and inf-convolution operations by replacing
the y in the definition of Q, by a stochastic process and allowing it to evolve with B,. Dabrowski [2016,
Section 5] then identifies the minimizing process Y; as a Brownian bridge and analyzes it using a
forward-backward SDE. Through the Picard iteration for solving the SDE, he shows that the solution is
well-approximated by noncommutative functions.
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We instead give a deterministic proof following the same strategy as in Section 4 that is motivated by
Trotter’s formula, we define a semigroup R,u at dyadic times ¢ by alternating between P,—¢ and Q,-¢ and
then letting £ — co. We establish convergence through a telescoping series argument after showing that
P;Q; — O, P, = o(t). Then we show that R,u depends continuously on ¢ in order to extend its definition
to all positive real 7.

In contrast to Section 4, we must understand how the semigroups P;, Q;, and R, affect Du as well
as u, and we want D(R,u) to be Lipschitz for all . We therefore view these operators as acting on spaces
of the form

E(c, C) ={u: My(C)" — R, u(x) — (c¢/2)||x||3 is convex and u(x) — (C/2)||x||3 is concave},

where 0 < ¢ < C < 400, where we suppress the dependence on m and N in the notation. These spaces
have the virtue that if u € £(c, C), then || Du|| jp < C automatically (see Proposition 2.13(4)).

At every step of the proof, we include estimates both for # and for Du. In addition, controlling the
error propagation requires more work because Q; and R; are not contractions with respect to || Du||p.

The following theorem summarizes the results of the construction. To clarify the notation, for a
measurable function u : My (C)7) — R, the notation ||u||z~ is the standard L*>° norm. If F: My (C)7} —
My (C)Y; (for instance F = Du for some u : My(C)% — R), then ||Fll~ = SqueMN(@)g;”F(x)”Z;
similarly, || F||Lip is the Lipschitz norm of F* when using || - ||2 in both the domain and the target space.
Note that || F ||, does not denote the L? norm of F with respect to any measure, but rather (Z'J’-’zl T (sz)) Y 2,
which is a function of x. Recall that @; denotes the nonnegative dyadic rationals, and Ny denote the
natural numbers with zero included. Moreover, we assume throughout the section that 0 < ¢ < C < 4o00.

Theorem 6.1. There exists a semigroup of nonlinear operators R; : | Jq-,E(0, C) = U £(0, C) with
the following properties:

(1) Change in convexity: If u € E(c, C) where 0 < ¢ < C, then Ruu € E(c(1 +ct)~!, Ct+Ct)™h).

(2) Approximation by iteration: For £ € Z and t € 27Ny, write R ju = (P Qz—z)zztu. Fix such a
value of t and fix u € £(0, C).

(@) If 271C < 1, then

3 C%mt
|Riu — Ry ou| < | =
’ 21+Ct

(b) ID(R; eu) — D(Riu)| L < [t/2+ C(1/2)*1C?m!/2(2- 2742 4 27342C),

+log(1 4+ Ct)(m +Cm + ||Du||§)>2—‘.

(3) Continuity in time: Suppose s <t € Ry and u € £(0, C).
(@) Riu < Ryu+ (m/2)[log(1+ Ct) —log(1+ Cs)].
(b) Riu > Ru— ((t —5)/2)(Cm + || Dul)3).
(©) If C(t —s) <1, then | D(Ryu) — D(Ryu) |2 < 5Cm'/2212(1 — $)!/2 + C(t — 5)|| Dul|>.

(4) Error estimates: Lett € Ry and u, v € £(0, C). Then:
(@ [[D(Ru) — D(Rv)|[L~ < (14 Ct)||Du — Dv|| .
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b) Ifu< v—i—a—i—bIIDvII%, where a € R and b > 0, then

2

Rou <R+ +met
u v a
= 1+Ct

+b| D(R)|I3.
(c) We have
2mt

DR < ="
2 =11t

Remark 6.2. Knowing that exp(—N 2(Ru)) = P, exp(—N 24), one can deduce (1) from the Brascamp—
Lieb and Holder inequalities, as in [Brascamp and Lieb 1976, Theorem 4.3]. But the proof of (1) given
here is independent of that work.

+ | Dull3.

We also point out that semigroups and discrete-time approximation schemes have been employed to
study Hamilton—Jacobi equations in Hilbert space (e.g., by [Barbu 1986]), another setting that requires
dimension-independent estimates.

6C. The Hopf-Lax semigroup, the heat semigroup, and convexity. We remind the reader of our stand-
ing assumption that 0 <c¢ < C.
Lemma 6.3. Suppose u € £(c, C). Then:

(1) Piueé&(c,C).

(2) |[D(Piu) — Dul|~ < Cm'/?!/2,

Proof. (1) This follows because £(c, C) is closed under translation and averaging, and hence convolution
by a probability measure.

(2) We know that Du is C-Lipschitz and thus
| D(Piu)(x) — Du(x)|l» < /||Du(x +y) — Du(x) |2 dor.n (y)
S/CIIyllsz;,N(y)Sle/zt‘/z. O

The following lemma gives basic properties of Q; from the PDE literature; see for instance [Ekeland
and Lasry 1980, pp. 309-311; Lasry and Lions 1986; Crandall et al. 1992, Lemma A.5; Evans 2010,
Section 3.3.2]. For completeness and convenience, we include a proof of all the facts we will use.
Lemma 6.4. (1) Ifu,v: My(C)Z, — Randu < v, then Piu < Piv and Q;u < Qv.

(2) Suppose that v(x) =a+% (p, x)2(Ax, x)2, wherea e R, pe My(C)Y,, and A is a positive semidefinite
linear map My (C)2: — My (C)%.. Then

t 1
Pro(x) =a+ 537 Tr(A) +(p, x) + 5 (Ax, x)a,

t 1 _
Q,v(x) =a—SIpI*+ (p. x) + 5 (AU +14) " (x —tp). x —1p).
Remark 6.5. Here Tr(A) denotes the trace of A as a linear transformation of the vector space My (C)Z:,
which is well-defined because the trace of a matrix is similarity-invariant. In particular, we may compute
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Tr(A) using an orthonormal basis of My (C)Z:, and the choice of basis and of the normalization of the

inner product does not matter. Note that the trace of the identity is m N2 which makes the normalization
in the above formula dimension-independent.

Proof of Lemma 6.4. (1) is immediate to check from the definition. We leave the first formula of (2) as an
exercise. To prove the last formula, fix > 0 and x € My (C)?} and note that u(y) + (1/(2t)) ||y — x ||% is

sa
a uniformly convex function of y and therefore it has a unique minimizer. The minimizer y must be a

critical point and hence

1 1
0=Du(y)+;(y—X)=p+Ay+;(y—x).

Thus, (1+tA)y=x —tp and y —x = —t(p + Ay), so that

1
Quu(x) =u(y)+ 5 lly = xIl3,
which reduces after several lines of manipulation to the claimed formula. 0
Lemma 6.6. Letu € E(c, C).

(1) The operators {Q,};>0 form a semigroup; that is, Qs Qu = Qg4u fors,t > 0.

(2) Foreach xy € Mn(C)g, and t > 0, the infimum Qu(xo) = infy[u(y) + (t/2)|ly — X0||%] is achieved
at a unique point yy satisfying yo = xo — t Du(yp).

(3) If xo € My(C)¢, and yo is the minimizer from (2), then D(Q;u)(x9) = Du(yo).
(4) We have Quu € E(c(1+ct)~!, C(1+Cr)7h.

(5) 1D(Q:u)(x0) 2 = 1 Du(yo)ll2 < (1 +ct) = Du(xo)l2.

Proof. (1) By definition

. 1 e 1 1
0, Quu(x) = inf| Quu(y) + 5-llx = yI3 | = infinf| (@) + 5 Iy = 213 + 5 Ix = ¥

_ A L W |
= inf[ () +inf| 51y = 213+ 5l = y13] |

But note that
el Loy oz Loy 2]
inf| 3711y = 13+ 5 Ix = 13

is by definition Q; f(z), where f(x) = (1/(2t))|lx — z||%. If g(x) = (1/(2t))||x||%, then by the previous
lemma, we have
1 !

P — 2 —
2115 x I

_ R B
0s8(x) = 364D llx1l3-

Since Qy is clearly translation-invariant, Qs f(x) = ((s +1)/2)||x — zll%. Therefore,

0, Qru(x) = influ(2) + 3—— ¥ = 2I13] = Qssru(x).

1
2(s+1)
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(2) Fix xg. Note that the function y — [u(y) + (1/(21))||y — x0||%] isinE(c+1/(2t),C+1/(2¢t)) and
hence it achieves a global minimum at the unique critical point. Thus, the infimum is achieved at the
point yg satisfying Du(yo) = (1/t)(yo — Xo), or in other words yg = xo — t Du(y).

(3), (4) Let xo and yg be as above. Let p = Du(yg). Because u € £(c, C), we have for all x that

C
u(yo) +(p, x —yo)2 + %(x —yo) S u(x) <u(yo) +(p,x —yo)2+ Ellx —yoll3.

Let v(y) and v(y) be the functions on the left and right-hand sides. Then by Lemma 6.4 (1), we have
Ov < Qiu < Qyv. To compute Q,v, we apply Lemma 6.4 (2) with A = ¢l and with a change of
coordinates to translate yg to the origin, and we obtain

0:1v(0) = u(y0) = 3 P15+ (p. ¥ = 30) + 51 +et) " x = yo — 1p]*.
Since yg+tp = xo and p = (yg — x¢)/¢, this becomes
0iv(0) =u(y0) = 5 IPIE+1lIpI3+ (P ¥ —x0) + 51 +et) ™ x — %o}
= u(30) + - o = x0ll3 + (p ¥ = x0) + S (1 4+ )~ = w013
= Quu(x0) + (p. x —x0) + 5 (1 + )™ Il — xoll3.

The analogous computation holds for Q,v as well. Thus, we have

- C -
Qrut(x0)+(p. x—x0) +5 (1)~ x —xol13 < Qru(x) < Quut(wo)+{p. x —x0) +5 (1+CD) ™ [x—xoll3.

This inequality implies that D(Q;u)(x9) = p = Du(yo). Since the above inequality holds for every x,
we see that Q,;u € E(c(1+ct)~!, C(1+ Ct)~") by Proposition 2.13(2).

(5) Let xg, yo, and p be as above. Then we have
(Du(yo) — Du(xo), yo — Xo)2 = cllyo — xoll3.
But recall that yg — xo = —t Du(yp) and hence

~t{Du(yo) — Du(xo), Du(yo)) > ct*|| Du(yo)|l3.

Rearranging produces
(1+ )| Du(yo) 15 < (Du(xo), Du(yo))2 < | Du(xo)ll2 | Dut(yo) 2.
and hence (1 + ct)||Du(yo)ll2 < || Du(xo) |l as desired. O
Corollary 6.7. Letu € E(c,C) and s, t > 0.
(1) For each x, the gradient D(Qu)(x) is the unique vector p satisfying p = Du(x — tp).
(2) We have Q,u(x) = u(x —tD(Quu)(x)) + (/2) [ D(Q;u) (x)|I5.
(3) u(x) = (1/2)(1+ C)D(Qu)0)|I* < Qsu(x) < u(x) — (t/2)(1 4 ct) | D(Qru) (x)]13-
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Proof. (1) and (2) follow from Lemma 6.6(2) and (3).
To prove (3), fix x and let y = x —tD(Q,u)(x). By Proposition 2.13(2),

w0+ (Du(), ¥ =)o+ Sl = I3 £ u() < u() +(Du(y), x =) + Sl = y13.
Hence,
u() = (Du(y), ¥ = )2 = S lx = ¥I3 £ u() = u(@) — (Du), x = )2 = SIx = vI3.

But from the previous lemma, we know that Du(y) = D(Q;u)(x) and x —y =t D(Q,u)(x), so that
u(0) ~ 11D WIE = SPIDQuWIE < u(y) < u() —11DQu@)IE — §1DQu )3
Finally, we substitute Q,u(x) = u(y) + (t/2)||D(Q:u)(x) ||§ and obtain (3). U

6D. Estimates for error propagation. To prepare for our iteration procedure, we first prove some esti-
mates to control the propagation of errors.

Lemma 6.8. Ifu,v € £(c, C), then we have:
(1) ID(Pru) — D(Prv)|L~ < |Du — Dvl| .
(2) ID(Qru) — D(Q:v)|lL> < (1+Ct)||Du — Dv|p=.

Proof. The first inequality follows because D(P;u) — D(P;v) is the convolution of Du — Dv with the
Gaussian density. To prove the second inequality, note that
I D(Qsu)(x) — D(Qrv)(x)ll2 = [[Du(x —tD(Qsu)(x)) — Dv(x —1D(Qv)(x))l2

< [1Du(x —1D(Q/v)(x)) — Dv(x —1D(Q/v)(x)) |2
+ 1Du(x —1D(Qu)(x)) — Du(x —tD(Q;v)(x))ll2

< [1Du = Dv|[z= + Ct[|D(Qu)(x) — D(Qv)(x)ll2,
where the last inequality follows because Du is C-Lipschitz. This implies that forr < 1/C
ID(Qsu) — D(Qv)lz= < (1 = Ct)~"(|Du — Dvl| .

Now we improve the estimate using the semigroup property of Q,. Fix a positive integer k and for
Jj=1,...,klettj=tj/k, and let C; = C(1 + Ctj)_l. Then Qyu and Qv are in £(0, C;). Thus, we
have

C. —1
I1D(Qy;, u) — D(Qyy V) lle < (1 - l) 1D(Qu) — D(Qyv) |,

k
and hence
k—1
ID(Qu) — D@l < D — Dol [ | o
t V) [Le = L I.Zol—cjl‘/k‘
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Now
k—1
C;t Cjt 1
1 =Y —log(1-—L|= 40
Ognl—cr/k Z Og( ) ;)(k+ < ))
—Z € -+ o(-
T Liycn Y k
j=0
/[ ¢ ds+ 0O ! log(1+Ct)+ O !
= S — =10 — 1.
o 1+Cs k g k
Hence,
1
I1D(Qsu) — D(Qv)lL> < (1 +Cr+ 0(%» [Du — Dvl| e,
and the proof is completed by taking k — oc. O

Lemma 6.9. Suppose that u : My (C); — Ris convex and let v € E(c,C) andu <v+a+ b||Dv||%f0r
some a € Rand b > 0.

(1) Puu < Pv+a+bC?mt +b|D(P)|5.
(2) Quu < Qv +a+b|D(Q)|3:
Proof. (1) Using monotonicity and linearity of P;, we have

Piu < P —I—a—i—b/lle(x—i—y)ll%da(y).

So it suffices to show that
/ | Dv(x + y)|I13 dor n () — | D(Pw)(x) 13 < CPmt.

In probabilistic terms, the left-hand side is the variance of the random variable Dv(x+Y), where Y ~ oy n.
Since the variance is translation-invariant, this is the same as the variance of Dv(x +Y) — Dv(x), and
this is bounded above by the second moment

E||Dv(x+Y)— Dv(x)|; < C*- E|[Y |5 = C*mt.
(2) Note that
_ 1o 2
Quu) =inf[u(y) + 5 Iy~ x13]
< u(x —tD(QV)(x) + 5 D2 ()3
< v(x —1D(Q)() + 5 ID(Q) ()3 +a +b] Dv(x = D(Q) (¥))|3

= Q,v(x) +a+b|D(Qw) ()3,
where the last equality follows from Corollary 6.7(1) and (2). O
Lemma 6.10. Let u € £(0, C). Then:
(1) 1D 3 < | Dull3.
) ID(Puw)ll3 < C?mt + || Dul3.
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Proof. The first claim follows from Lemma 6.6(5). To prove the second claim, note that by Minkowski’s

inequality
2
ID(Pru)(x)|5 = H/ Du(x +y)do; n(y)
2
< / 1Du(x + )3 dor,n (v) < Cmt + | Du(x) 3,
where the last inequality was shown in the proof of Lemma 6.9(1). O

Next, we iterate the previous inequalities to obtain our main lemma on error propagation.
Lemma 6.11. Letty, ..., t, > 0 and write
=ttty

RZP[,,Qt,,"‘Ptthl-
Letu,ve&(,C).

(1) Ru, Rve E(c(I+ct™)™ !, C(1+CrH™.
(2) ID(Ru) — D(Rv)||L=~ < (1+Ct*)||Du — Dv|| .
B) Ifu<v+4a +b||Dv||% with a € R and b > 0, then we have

2 *
Ru <R b b||D(Rv)|3.
u < Rvta+b e +bIDR)I
In particular, u < v implies Ru < Rv.
(4) We have
Cmr*
ID(Ru)|5 < +1Dull < Cm + || Dul}3.

14 Cr*
Proof. (1) Letu € E(c, C). Let t;" =t +---+tjand u; = Py Qy; -+ Ps, Qru. We show by induction
that u; € £(c(1 + ct;‘)_l, C(l1+ Ctj?“)_l). The base case j = 0 is trivial. For the induction step, note that

c(l4ct)™! c
Lle(+e) e (+et) +etjp
and the same holds with ¢ replaced by C. Hence, by Lemma 6.6(4), if u; € £(c(1 —i—ct;‘)_l, C(l +Ctj?“)_1),

then Qy,,,u; € E(c(1 +ctjfk+1)_1, Cc(1 +Ctjfk+1)—1), By Lemma 6.3, this implies that u; 1 = Py, Oy, u; €
E(e(1+ ct]?‘+1)_1, c(1+ Ct;‘H)_l). The same argument of course applies to v.

=c(l+ctf)™"

(2) Let tj’.“ and u; be as in the proof of (1) and define v; similarly to ;. We show by induction that
| Duj — Dvjllz~ < (14 Ct;‘)llDu — Dvl|p~. The base case j = 0 is trivial. For the induction step, recall
that u;, v; € E(c(1+ ct]fk)*l, C(l+ Ct]?")*l) and hence by Lemma 6.8 and the induction hypothesis
I1D(Qy;, uj) — D(Qyy vj)llLe = (1 +C(1+ th)_ltj+1)||Duj — Dvj[lz=
<(1+CA+CtH 41 +Ct)) || Du— Dv| 1=
=1+ Ct]T“+1)||Du — Dvl| .
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Then by Lemma 6.8 again, since u; 1 = Py, Oy uj and vjyy = Py, Oy v;, We have
| Dujr = Doyl < (1+Ctfy )| Du — Dol .

This completes the induction and the case j = n is the claim (2).

(3) First, we show by induction on j that

] 2
Cmt; b
Uuj = vj +a+b2m+bllej||2.
i=1 !

The base case j = 0is trivial. If the claim holds for «; and v;, then it also holds for Oy, ,u; and Q;;,,v;

by Lemma 6.9(2). Then we apply Lemma 6.9(1) together with the fact that Q;,,u; and Q,,,v; are in

Ec(+ctf, )™, C+Crf )7 to conclude that
J+1

C’mt;
Uiyl <vjy1+a+b E l
i=1

m +b||DUj+1 ”%
l

This completes the induction. Finally, we observe that ) ._; C Zmt; /(1+C ti*)2 is the lower Riemann sum
for the function C%m /(1 + Ct)? on the interval [0, £*] with respect to the partition {0, tf, ..., t;}. Thus,

" Clmy T Clm 1 Cmt*
Yo—— o< | ——dt=Cm(1- - = -
—~ (1+C1) o (I1+Cn) 1+Ct 1+Ct

This shows the main claim of (3), and the claim that u < v implies Ru < Rv is the special case when
a=0and b =0.

(4) By Lemma 6.10, we have || D(Qy, ,u;) [ < || Du; |3 and

szf'+1 szt'+1
Du; 1|7 < ——L = +ID(Q,.. . u)|3 < ——L— + || Du;|3.
I Duji1llz < o, I1D(Qy, upllz < r+ o, | Dujli;
We sum from j =0, ..., n — 1 and obtain the same lower Riemann sum as in the proof of (3). The final
estimate Cm + ||Du||% follows because szt/(l + Ct) < Cm. O

6E. Iterative construction of R; for dyadic t. We are now ready to carry out the Trotter’s formula
strategy and construct the semigroup for dyadic values of #. The next step is to show that the operators P,
and Q; almost commute when ¢ is small.

Lemma 6.12. Letu € E(c, C) and t > 0.

(1) [ID(Q; Pru) = D(P, Q)| < C?m'2(2 4 C)r’/%.

2) P,Q;u < Q;Pu.

(3) If Ct <1, then Q,; Pou < P, Q,u +2C>mt?> 4+ 2Ct?|| D(P, Q,u)||3-
Proof. (1) Applying Corollary 6.7(1) to P;u yields

D(Q; Pu)(x) = D(Piu)(x —tD(Q; Pu)(x)) = / Du(x +y—tD(Q; Pu)(x)) do; ().



2342 DAVID JEKEL
On the other hand,

D(PzQzu)(x)Z/D(Qzu)(x+y)d0t,n(y):/Du(x+y—ID(Qzu)(X+y))th,n(y)-

Because Du is C-Lipschitz, we have

I1D(Q; Piu)(x) — D(P; Quu)(x)|l2 < Ct fIID(Qzu)(x +¥) = D(Q: Pu)(x) |2 doi n ().
We can estimate the integrand by

I1D(Qru)(x +y) = D(Qru) (x)ll2 + [[D(Qru) (x) — D(Q; Pru) (x) ]2

Integrating the first term and using the fact that D(Q;u) is C-Lipschitz (since Q,u € £(0, C) by
Lemma 6.6(4)), we have

/IID(QM)(X +¥) = D(Qiu) (x)|l2doy n(y) < C/IIyllz doy, < Cm'/?t'/2.

Meanwhile, the second term is independent of y and thus it is unchanged when we integrate it against the
probability measure o, v, and this quantity can be estimated using Lemmas 6.8(2) and 6.3(2) as

ID(Q,u)(x) — D(Q; Piut)(x)|l2 < (1 + Ct)|| Du — D(Pu)| = < (14 Ct)Cm'?¢1/2,
Altogether, we obtain
ID(Q; Pu)(x) — D(P Quu)(x)|l2 < C?m'2(2+ Ct)1*/2.

(2) The idea is that the average of the infimum is less than or equal to the infimum of the average. More
precisely,

POt = [ int(ur) + e+~ y1B) do 2
= [[int(uy = 20+ 5 lx = ¥1B) dor.v(@)
<int [ (uy =2+ o I = 1) do 2

. 1
= inf(Piu() + ;¥ = y13) = Qs Pu(),

(3) By Corollary 6.7(3),
t
Q;Pru < P =51\ D(Q: Pat) 3. (6-6)
Also by Corollary 6.7(3),
t
u < Qi+ 5(1+COIDQu)]3.
Hence, by Lemma 6.9, since Q;u € E(c(1+ct)~!, C(1+Ct)~") C£(0, C), we have

C?mt?
2

P = PiQuu+ == (14 C1) + 2(1 +CDI D(P @) 3. (67)
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Plugging (6-7) into (6-6), we obtain

C?mit?

Q:Piu < PiQiu+ 2

(14+C0) = SIDQ PwI3+ 51+ COIDP QI3 (68)
By using part (1), we have
ID(Q Pun) 3 = LID(Pr Qoully — C2m! 22 + Co)PP

= | D(PQu) |13 = 2C*m' 122+ CO | D(P, Q) 2

> ID(P, Q)5 — 2+ COIC*mt* + Ct| D(P, Qw)3],
where the last step follows from the arithmetic-geometric mean inequality

2Cm' 1 2| D(P, @)l < C*mi + | D(P, Qo) |5

So substituting our estimate for ||D(Q,P,u)||% into (6-8), we see that P; Q,u — Q, P;u is bounded by

C’mt?
2
Now we cancel the first-order terms (¢ /2) || D(P; Q;u) ||% and we estimate 2+ Ct by 3 using our assumption
that Ct < 1. Thus, this is bounded by

+ 5@+ COICm? + CHIDE Q)31 = 5ID(P Q)3 + 51+ COID(R Q5.

C’mt* | 3t Ct?
5+ F[Cme 4 CHI D Qun) 51+ =5 1 D(P Quo) |3 < 2C%mi* +2CH| D(P, Quu) I3,

where we have again used our assumption Ct < 1 to cancel a factor of Ct from the term ¢ - C3mt% [

Finally, we can construct the semigroup R; for dyadic values of 7. As in the statement of Theorem 6.1,
we define R, yu = (Py—¢ sze)%u whenever £ € Z and 1 € 27N

Lemma 6.13. Let C > 0. Fort € @; and u € £(0, C), the limit Ryju = limy_, R, ¢u exists. Moreover,
we have for t € 27Ny that:

(1) R;eu < Rsu.
(2) IfC /2 < 1, then

Ry <R . 3 C?mt
u u —
# = Tt 21+Ct

(3) ID(R; ) = D(Ryw)ll 1 < [1/2+ C(1/2)*]1C?m'/?(2- 272 4-27342C).

+log(1 4+ Ct)(m +Cm + ||Du||§)>2—‘.

Proof. First, we prove some intermediate claims relating R; yu and R; ¢4 u. To this end, we fix £ € Z and
suppose t = 2~‘n for some n € Ny. Let § =27¢~!. For j =0, ..., n, define

uj = (PsQs)*" (P23 Q25) .
and note that
uo= Ry o411, Uy =Ry ou.
Let
v = Qs(Pas Q) u.
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Then for j =1, ..., n, we have

uj—1 = [(PsQ5)*" 7 Ps1(Qs Psvj 1),
uj = [(PsQ5)*" ) Ps1(Ps Qsvj-1).
We also define fork =1, ..., 2n,
Ci=CU+Ck&)™", c=c(+cks)™".
Thus, by Lemmas 6.11(1) and 6.6(4), we have v;_; € E(c2j-1, C2j-1).
First, we claim that
Riou < Rt ¢11u. (6-9)
Now by Lemma 6.12(2), we have
PsQsvj_1 < QsPsvj_1.
Hence, by monotonicity of P; and Q; (Lemma 6.11(3)), we have u; <u;_;. Hence, R; ju = u, <ug=

R; o41u, proving (6-9).
For an inequality in the other direction, we claim that
3 C?mt

R <R —
1 e+1U < Ry ot + (2 1+ Cr

+1log(1+ Ct)(m +Cm + ||Du||§)>2+‘. (6-10)
By Lemma 6.12(3), since vj_1 € £(c2j—1, C2j—1), we obtain
Qs Psvj—1 < PsQsvj—1 +2C5;_m8”> +2C2; 187 D(Ps Q50 1)I3.
Thus, by Lemma 6.9(1), since Qs Psv;_1 and PsQsv;_1 are in £(c2;, Cz;), we have
PsQsPsvj_1 < PysQsvj—1 +2Caj_1m8* + 2C2j—152(C§jm5 + I D(P2s Q5v;-1)113)-

Recalling that u; | and u; are obtained by applying (Ps 05)*"=) to PsQs Ps vj—1 and P»sQsv;_1, and
that PsQsPsv;_1 and Pys Qsv;_1 are in £(cz;, C2;), we may apply Lemma 6.11(3) and to conclude that
C3;m(n — j)s R
— +1Du;ll7).
14+2Ci(n—j)é

Uj—1 < uj —|—2C2j_1m82 +2C2j_182 (ngmS +

By our assumption, C;6 < Cd < 1, and thus

C2.m(n—j)é
2 < Cojm+

Czjm . 3C2]~m < 3C2j_1m
1+2C(n—j)s — B .

2
C3,mé + 5 ==

Therefore,
Uj—1 —uj < 2C2j_1m82 + 3C22j_1m82 + 2C2j_182||Duj ||%

By Lemma 6.11(4), we have || Duj|l, < Cm + ||Du||%, and hence

wj_1 —uj <3C3;_m8>+2Csj_18*(m + Cm + || Dul3).
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Therefore, summing from j =1, ..., n, we have

n n
Ry st — Rou <3m8> Y " C3,  +28%(m+Cm+ ||Du||§>(2 CZj1>
j=1 j=1

n n
- % (Z cgjl(za)) +8(m + Cm+ || Dul|3) (Z Caj-1 (25)).
j=l1 j=l1
Recalling the definition of C;_1, two times the first sum is Z’}:l C2(28)/(1 +CQ2j— 1)8)2 which is
the Riemann sum for the function ¢ (s) = C%/(1 + Cs)? on the interval [0, ] = [0, 21n8], where we use
a partition into subintervals of length 2§ and evaluate ¢ at the midpoint of each interval. Because ¢ is
convex, the value of ¢ at the midpoint is less than or equal to the average value over the subinterval and

therefore
n

Z C?(28) - /’ C? J C?t
S = .
= 1+C2j—-182 " Jy (1+Cs)? 1+Ct

By similar reasoning,

“ “ Cs tcC
Cyi—1(28) = < ds =log(l+ Ct).
JZ_; 2j-1(20) ;(1+C(2j—1)5)—/0 1y @ =loeti+Cn

Therefore,
2

R R - 3 C*mt
u— u —
1+1 n =\ 57 e

+log(1 4 Ct)(m + Cm + ||Du||§))5,

which proves (6-10).
Together, (6-9) and (6-10) show that

2

3 C*mt
IR ev1u— Ry pul < = m
’ ’ 214+Ct

+log(1 4+ Ct)(m +Cm + ||Du||§)>2—@—1.

Because the right-hand side is summable in £, we see that the sequence {R; ¢u(x)}¢en is Cauchy and
hence converges. Thus, lim,_, o R ¢u exists. Also, by (6-9) the convergence is monotone and thus
R; ou < R;u, establishing (1). On the other hand, we obtain (2) by summing up the estimate (6-10) from
£ to oo using the geometric series formula.

It remains to prove (3). We first claim that

2
ID(R; ¢+1u) — D(R; gu) | Lo < [% + C(%) ]C2m1/2(2 + 2_(€+1)C)2_(€+1)/2, 6-11)

By Lemma 6.11(1), we know Qs Psv;_; and PsQsvj_ are in E(c(1 +2¢j8)~!, C(1+2Cj§) ™), and
hence in £(0, C). Therefore, by Lemmas 6.11(2) and 6.12(1), we have

[Duj — Duj_illz~ < [14+2C(n — j)81IID(QsPsvj) — D(Ps Qsvj) | L~
<[142C(n—j)H8IC*m"* 2+ C8)8%2.
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Therefore,

n n
ID(Ree1u) = DR gw)l| e <D [[Duj — Duj_y|l= < Y _[142C(n — j)8IC*m' > (24 C5)83/?
j=1 j=1

=[n+4Cn(n — )81C*m'*2 + C8)5/*
2
Lic(l)]em e+ o'
% + C(%>2]C2m1/2(2 40D oy~ (HD/2
since 2né = t. This proves (6-11).

Because [t/2 + C(t/2)2]C2ml/2 (2 42D C)2=E+D/2 §s summable with respect to £, we see that
{D(R; ¢u)}¢en is Cauchy with respect to the L* norm (even though the individual functions may not be
in L°°) and hence converges uniformly to some function. We already know that R, yu converges to R;u,
so the limit of D(R; (u) must be D(R;u). We obtain the estimate (3) by summing (6-11) from £ to oo
using the geometric series formula. O

Corollary 6.14. Let 0 <c <C. Letu,v € E(c, C) and let t > 0 be a dyadic rational.
(1) R, Rw e E(c(1+ey™ ', cA+Cn™).
(2) ID(Riu) — D(Rv) |~ < (1 + Ct)||Du — Dvl|p~.
B) Ifu<v+a +b||Dv||% for some a € R and b > 0, then
2

C-mt
Riu<Rv+a+b

b|D(R,v)||3.
1+Ct+ I D(R )3

@) DRI} < (C?m1)/(1 +Ct) + | Dul3.
Proof. We know that these properties hold for R, by Lemma 6.11. By Lemma 6.13, they also hold in
the limit taking £ — oo. (For (1), we rely on Proposition 2.13(1).) O
6F. Continuity and semigroup property. In order to extend R, to all real ¢+ > 0, we prove estimates that
show that R, depends continuously on . We begin with some simple estimates for P, and Q.
Lemma 6.15. Let £ € 7 and suppose that t € 2~ Ny and u € £(0, C). Then:

(1) u<Pu<u+(C/2)mt.

(2) u—(t/2)||Dull3 < Qu <u.

(3) ID(Q:u) — Dull> < Ct||Dull>.

Proof. (1) Because u is convex and u(x) — (C/2) ||x||% is concave, we have

W)+ {Dux), y) < ulx +) < ul) +(Duo), ») + SIyIB.

Integrating with respect to do; y(y) yields

u(x) < Pu(x) <u(x)—+ % foru € £(0, C).
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(2) As for the operator Q,, it is immediate from the definition that Q,u < u. On the other hand, using
Corollary 6.7(2) and the convexity of u,

Qu(x) = u(x =t D(Qu0) () + 5| D(Qu) ()3
> u(x) = 1(D(Qu) (), Du(x))2+ 5 D(Qu) ()3
> u(x) - 2| Du)3,

where the last inequality follows because (D(Q;u)(x), Du(x)), < %||D(Q,u)(x)||% + %||Du(x)||%.
(3) Using the fact that Du is C-Lipschitz, together with Corollary 6.7(1) and Lemma 6.6(5),

I1D(Q:u)(x) — Du(x)|l2 = || Du(x —1D(Q;u)(x)) — Du(x)||2
< Ct|D(Qsu)(x) 12
< Ct[|Du(x)|l2. O

Lemma 6.16. Let s < t be two numbers in QF, and let u € £(0, C).

(1) Riu < Ryu+ (m/2)[log(1 + Ct) —log(1+ Cs)].
(2) Riu = Ryu— ((t —5)/2)(Cm + || Dul)3).
(3) IfC(t —s) <1, then | D(R;u) — D(Rsu)||» < 5Cm'/2212(t — )12 4 C(t — 5)|| Du|».

Moreover, if £ € Z and if s, t € 2~*Ny, then the same estimates hold with R, replaced by R ;.
Proof. (1) Fix £ € Z and let § =2~*. Suppose s =n8 and t =n'8, where n, n’ € Ny. By the previous lemma,

R(jy1ys,eu = PsQsRjs ou

< OsR N Cmé
: u
= 2T (1 C (i + DB)
Cmé
< Rjs,ou+

214+ CG+1)8)°

where we have used the fact that Qs R;s ju € £(0, C(1+C(j + 1)8)~1). Therefore,

n'—1

Cmé
Rn’ﬁ,éu =< RnS,u + Z
j=n

20+C3G+ D8’

Since the sum on the right-hand side is a lower Riemann sum for the function Cmd/(2(1 + Ct)) for
T € [s, t], we obtain

Reout < Ry ou + %[log(l +Ct) —log(1 + Cs)].

We obtain (1) by letting £ — 400 and using Lemma 6.13.
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(2) Let ¢,6,s,t,n,n be as above. By the previous lemma,

R(j+nys,eu = PsQsRjs eu > Q5Rjs ou

> Rys, o — S 1D (Rjs, )13
> Rysou— 5 (Cm+ | Dul),
where the last inequality follows from Lemma 6.11(4). So when we sum from j = n to n’ — 1, we obtain
Ru > Ryu — ’%S(Cm + (| Dul3).

Then (2) follows by taking ¢ — +o00.

(3) Assume that s, t € 27¢Ny. Choose k € Z such that 27%~! <t —5 < 2% Then we may write t — s
in a binary expansion

¢
o — =]
t—s = Z a2/,
j=k+1

where a; € {0, 1} for each j and a;41 = 1. Let
ti=s+a 2 4 a2

Letu; = Ry, ¢u. We will estimate || Du;(x) — Duj—1(x)||2 for each j. Of course, if a; =0, then u; =u;_1,
so there is nothing to prove. On the other hand, suppose that a; = 1. Now we estimate (at our given
point x, suppressed in the notation)
ID(Ry-; gutj—1) = Duj_1ll2 < [[D(Ry-j gutj—1) — D(Pp-j Qr-jutj—1)ll2
+ID(Py-j Qr-juj—1) — D(Qr-juj_1)l2
+ I1D(Qy-juj—1) — Duj_1ll>. (6-12)
The first term on the right-hand side may be estimated as follows. Recall that we proved Lemma 6.13(3)

from the estimate (6-11) by summing the geometric series. The same reasoning shows that if ¢ > j and
8 € 27N, then

k) S\2 . Y
ID(Rs.¢uj—1) = D(Rs juj1)lli~ =[5 +C(5) |2 2@- 2712 427307

since uj_1 € £(0, C). If we substitute § = 27/, then R,-; j is simply equal to P»-; Q5-;. Thus, at the point x,

2-J 272
2 ¥

ID(Rys ¢tj-1) = D(Py-s Qa2 < Com! 2| 25 4 =5

][2 L2724 973il .

By our assumption C27/ < C(t —s) < 1 and hence we may replace C27%/ /4 by 27/ /2 and replace
273//2C by 277/ and hence

ID(Ry-j gttj—1) — D(Py-j Qp-juj—1)|l2 < 3C*m'/2273/2 < 3Cm!/2271/2,
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The second term on the right-hand side of (6-12) can be estimated by Lemma 6.3(2) by
ID(Py-; Qp-jutj—1) = D(Qa-juj—1)ll2 < Cm'/?277/2
since Q,-juj—1 € £(0,C). The third term on the right-hand side of (6-12) can be estimated using

Lemma 6.15(3) by
ID(Qy-jutj—1) — Duj—1lla < C277 | Duj_q||>.

Meanwhile, by Lemma 6.11(4) and the triangle inequality
1Duj—1ll2 <V Cm+ || Dully < C'2m'" + || Dull>.

So using the fact C277 < 1, we have
ID(Qy-iuj-1) = Duj-illa < C¥?m' /2277 4 C277 || Dully < Cm'?2772 4 C (1 — t;-1) | Du| .
Therefore, plugging all our estimates into (6-12), we get
IDuj — Dujyilla < 5Cm'22772 4+ C(t; — 1 1) | Dul 2.
Then summing from j =k + 1 to £ we obtain

| Dug — Dug |l < 5Cm'/227%2 4 C(t — 5)|| Dull»
<5Cm'?2'2(t — )12+ C(t — 5)|| Du])>.

Because uy = R; yu and uy = R u, we have shown that (3) holds for R, ¢ and R, , instead of R, and R;.
Thus, (3) follows by taking £ — +4oc0. O

Proof of Theorem 6.1. Lemma 6.16 shows that if + > 0 and if #, is a sequence of dyadic rationals
converging to t as £ — oo, then R;,u converges to some function v and this function is independent of
the approximating sequence, so we define R,u = v. Claims (1), (3), and (4) of the theorem were proved
for dyadic ¢ in Corollary 6.14(1), Lemma 6.16, and Corollary 6.14(2)—(4) respectively, and each of these
claims can be extended to real ¢ > O in light of the continuity estimates Lemma 6.16. Claim (2) of the
theorem is Lemma 6.13.

Thus, it remains to show that R, is a semigroup. That is, we must show that R;R,u = R, ,u for
u € £(0, C) (and we have not even checked this for dyadic s, ¢ yet). First, we check this property for real
s, t > 0 under the additional restriction that Ct < % For each ¢ € Z, there exist s; and 7, € 27¢Nj such
thats —2 ¢ <s; <sandr —27% <t <t. By Lemma 6.16(1) and (2) we have

|te — 1]
2

since |log(1 4 Cty) —log(1 + Ct)| < Clty — t| (from computation of the derivative of log(1 + Ct)). By
Lemma 6.13(1) and (2), if C27¢"! <1, then

|R[(l/t - Rl‘u| =

1
(Cm+||Dul3) <2 ei(Cm + |1 Dul3),

3 C%mrt
214+ Ct

|R;,. o1 — Ryu| < 2—6( +1log(1 4 Cte)(m + Cm + ||Du||§)).
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Since t, < t, we can replace f; by ¢ on the right-hand side. By the triangle inequality, we obtain
| R, et = Ryu) <27 K (1 + (| Du3) (6-13)

for some constant K, depending on ¢ (and C). Using Lemma 6.16(3), or rather its extension to real values

of t,
| D(R;u) — Dulls < 5Cm'/?2'2¢12 4 Ct|| Dull,

<5Cm!'22'2¢12 4 Ct||D(R,u) — Dull» + Ct||D(R;u) .
Hence,
ID(R,u) — Dully < (1 —Ct)"'[5Cm!/22! 2112 1 Ct| D(R,u) 2],

so by the triangle inequality,
IDullz < |D(Ruw)ll2+ (1 — CY"' [SCm' 2212112 4+ Ct|| D(Ryu) ||2.
By squaring and applying the arithmetic-geometric mean inequality, we get
IDull < A+ B/ | D(Rw) |3

for some constants A; and B; depending on ¢. The same reasoning applies to R;, ; since Lemma 6.16(3)
holds for R;, , also. We thus obtain

IDull2 < DRy, e)ll2 + (1 — Ct) " [5Cm" 2221} > 4 Cty | D(Ry,.0u) |12

< ID(Ry, ¢u)ll2+ (1 — CtY" [SCm' 2212412 4 Ct||D(R,, ) |2
and so
I Dull3 < A; + B/||D(Ry,. )3

Overall,
Rt < Ry, qu+2""K,(1+ A, + B, | D(R,,.cw)3),

Ry ou < Ru+2""K,(1+ A; + B/ | D(Rw)||3).
So by Lemma 6.11(3) and (4)
Ry ¢ R < Ry, ¢ Re ot + 27Ky (1+ Ay + By | D(Ry, ¢ Ry, 0w)[13)
< Ry ¢Ry ou+2""K;(1+ A, +CmB, + B,| Dul3),
and the same holds with R; and R;, , switched, so that
|Rs, e Ritt — Ry, 1, 0tt] <27°K;(14+ A; +CmB, + B,IIDull%), (6-14)

where we have used that Ry, ;, eu = Ry, ¢ Ry, o1t
By the same token as (6-13), since R,u € £(0, C), we have

|Ryy.e Rt — Ry Rou] < 27 K (1+ [ D(Ru)|I3). (6-15)
Similarly, since (s +1) — (sg+ ;) <2- 27¢ we have

|Ryytp.0t — Ryl <27 2K (14 || Dull3). (6-16)
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Combining these with (6-14) using the triangle inequality, we get
|RsRiu = Ryl < 27K, (14 A+ CmB; + B || Dul$3)
+27 K (L ID(Ra)[13) +27° - 2K, (1 + || Dul[3).

Taking £ — 00, we get Ry R,u = R,1,u as desired. This completes the case when Ct < %
In the general case, suppose s, ¢t > 0 and u € £(0, C). Choose n large enough that Ct/n < % Then for
j=1,...,n—1, we have Rl"/;j u € £(0, C). Therefore, by the previous argument

n—j—1

_j i1
Ry ji/n R,n/nju = (Rs+jt/n Rt/n)(R;n/nj u) = RS+(j+1)t/nRt/nJ u,

so by induction Rgi,;u = Ry Rt”/nu. Since this also holds with s replaced by 0, we have Rl”/nu = R;u.

ThuS, Rs+tu == RSRtu. |:|

6G. Solution to the differential equation. It remains to show that the semigroup R; produces solutions
to the differential equation d,u = (2N) 'Au — %llDull%, and that the result agrees with the solution
produced by solving the heat equation for exp(—N2u). More precisely, we will prove the following.

Theorem 6.17. Let uy: My (C)Z: — R be a given function in E(c, C) for some ¢ > 0. Let u(x, t) = R;u(x).

Then u is a smooth function on My (C)% x (0, 4-00) and it solves the equation d,u = QN 'Au— % | Du ||%.
Moreover, exp(—N2 - Riug) = P, [exp(—Nzuo)].

At this point, we have not proved enough smoothness for R,u to show that it solves the equation
in the classical sense. Therefore, as an intermediate step, we show that u solves the equation in the
viscosity sense (for background on viscosity solutions, see [Crandall et al. 1992]). We will then deduce
that exp(—N?u) is a viscosity solution of the heat equation and hence show it agrees with the smooth
solution of the heat equation.

The definition of viscosity solution for parabolic equations is as follows. Here we continue to use
the vector space My (C)y; with the normalized inner product (rather than R" for some n). For smooth
u:My(C)Z% — R, we denote by Du and Hu the gradient and Hessian with respect to the inner product

(-, -)2; in other words, if xo € My (C)Y;, then Du(xp) is the vector in My (C)Y; and Hu(xp) is the linear
transformation My (C)7; — My (C)%, such that

u(x) = u(xo) + (Du(xo), x — x0)2 + 5 (Hu(x0)[x — xol, x — x0)2 + o(||x — xo[[3).
We denote the space of linear transformations My (C)g; — My (C)%: by B(My(C)%:), and we denote the
self-adjoint elements by B(My(C)%;)sa-

Definition 6.18. Let F' : B(My(C)%)sa X My(C)sa X R x My (C)sa — R be continuous, and consider the
partial differential equation
ou=F(Hu, Du,u, x). (6-17)

We say that a function u : My (C)%; x [0, +00) — R is a viscosity subsolution if it is upper semicontinuous
and if the following condition holds: Suppose that

xo € My(C)G, t0>0, AeBMy(OC)ys, peMyyg, oek,

sa’ sa’
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and suppose that u satisfies
u(x, 1) < u(xo, 1) +a(t —10) + (p, x — x0)2 + 5 {A(x — x0), x — x0)2 + 0|t — to| + [|lx — xo[[3). (6-18)
Then we also have

a < F(A, p,u(xp), x0). (6-19)

Definition 6.19. With the same setup as above, we say that u : My (C)g; x [0, +00) — R is a viscosity
supersolution if it is lower semicontinuous and the following condition holds: if xg, fy, A, p, a are as
above and if

u(x, 1) = u(xo, fo) + ot —10) + (p, x — x0)2 + 5 (A(x — x0), x — x0)2 + o(|t — 10| + lx — x0[13), (6-20)
then
(XEF(A,I’,M(XO),XO)- (6_21)
Definition 6.20. We say that u is a viscosity solution if it is both a subsolution and a supersolution.

Remark 6.21. Roughly speaking, being a viscosity solution means that whenever there exist upper or
lower second-order Taylor approximations to u, then we can evaluate the differential operator F on the
Taylor approximation and get an inequality in one direction.

Example 6.22. The heat equation d,u = (2N)~! Au is obtained by taking
1
F(A, p,u,x)= IN? Tr(A).

To understand why 1/N? is the correct normalization on the right-hand side, suppose that u is smooth
and A = Hu(xp) and p = Du(xg), so that

u(x) = u(xo) + (p, x — xo)2 + $(A(x — x0), x — x0)2 + o(||x — x0l13).

In terms of the nonnormalized inner product (which we denote by the dot product), this means that

() = 1(x0) + 1P+ (¥ = X0) + S (AG = 30)) - (¥ = o).

Thus, the Hessian with respect to the nonnormalized inner product is (1/N)A. Hence, (1/N)Au(xg) =
(1/N?) Tr(A). Similarly, the equation d,u = (2N)~!Au — 1| Dull3 is obtained by taking
F(A, p,u,x) = 51> Tr(A) - Spl.
2N?2 2
Proposition 6.23. Let ug € £(0, C) and define u(x,t) = Ryug(x). Then u is a viscosity solution of the
equation du = (2N)~'Au — 3| Dul|3.

Proof. First, note that u is continuous. Indeed, by Theorem 6.1(3), u is continuous in ¢ with a modulus
of continuity that is uniform for x in a bounded region (this follows because the term ||Duo||% on the
right-hand side of Lemma 6.16(2) is bounded on bounded regions since Du is C-Lipschitz). Also, u( -, t)
is continuous for each ¢ since it is in £(0, C). Together, this implies u is jointly continuous in (x, t).
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To show that u is a viscosity supersolution, suppose that we have a lower second-order approximation
at the point (xo, o), where xo € My (C)%: and 1y > 0, given by

u(x, 1) = u(xg, to) +a(t —to) + (p, x — x0) + 3 (A(x — x0), x — x0)2 + (|t — to| + |lx — x0l13).

Then we must show that & > 1/(2N?) Tr(A) — 1|l p|3.

Our first goal is to replace the soft bound o(|t — fp| + ||x — xoll%) by a more explicit error bound, at
the cost of modifying o and A by some positive €. Pick € > 0. Then there exists r > 0 such that if
|t —to| + [lx — x0l|3 < 2r, then we have

u(x, 1) > u(xo, to) + ot —to) — €t — to] + (p, x — x0) + 3 (A — ) (x — x0), x — Xo)2. (6-22)

Let us assume that f) — r < t < ty, so that the above inequality holds for ||x — x¢||> < r and we have
a(t —tg) — €|t —ty| = (¢ +€)(t — tp). For x such that ||x — x0||% > r, we may use Theorem 6.1(3b), the
fact that Du is C-Lipschitz, and the convexity of u to conclude that

u(x, 1) = uo(x) = 5(Cm+ | Dul3)
> ug(x0) + (Du(xo), X —x0)2 — %(Cm + (1 Duxo)ll2 + Cllx = x0l12)).

In other words, u is bounded below by a quadratic in x — x¢, and the estimate holds uniformly for ¢ in
a bounded interval. Moreover, the right-hand side of (6-22) is also bounded by a quadratic in x — xg
uniformly for ¢ € [ty —r, fo 4 r]. It follows that for a large enough constant K, we have

u(xo, o) + (0 +€)(t — 1) + (P, x —x0) + 2((A —e)(x — x0), x — x0)2 — u(x, 1) < Ke|lx — xoll3
whenever ¢ € (fo — t, fy] and ||x — xg||2 > r. Therefore, overall, assuming that ¢ € (¢t — r, tp], we have
u(x, 1) > u(xo, to) + (a +€)(t —10) + (p, x —xo) + 5 (A —€I)(x —x0), x —x0)2 — Ke|lx — xo 3. (6-23)

For t € R, let us write u,(x) = u(x,t) = Ryuo(x). Now the strategy for proving that o + ¢ >
(1/(2N2)) Tr(A—el)— % lp ||§ is roughly to use the fact that u,, (xo) = Rsut;,—s(x0) and estimate uy,—5(xo)
from above using the upper Taylor approximation for small § > 0. However, for the sake of computation,
it is easier to estimate Qs Psu,,—s rather than R;s (and then we will control the error between Rs and Qs Ps
using Lemmas 6.12 and 6.13).

Let 6 € (0, r). Then using the above inequality and monotonicity of Ps, we have

Psug—5(x) > ugy(x0) — (@ +€)3 + (p, x — xo)

+ 2%\/2 Tr(A — e1)8 + L((A — e1)(x — x0). x — x0)
2 2
- K€(||x —xold + 2(1 + m)maux —xol2 +m2(1 n m)52).

Here we have evaluated Ps applied to ||x — x0||g using Example 3.22 and the translation-invariance of Ps.
Now recall that Qs Psu;,—s(xo) is obtained by evaluating Psu,,—s at xo — 8D (Qs Psu;,—s)(x0). Also, in
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light of Lemma 6.11(4) and Corollary 6.14(4), || D(Qs Psu;,—s)(x0) ||% is bounded by ||Du0(xo)||§ plus
a constant. In particular, || D(Qs Psus,—s)(x0)ll2 is bounded as § — 0. Therefore,

Qs Psugy—s(xo) = Psugy—s(xo — 8D (Q5 Psuy—s)(xo)) + %”D(Q(SPSWO—B)(XO)”%

> 1, (x0) + 51 D(Qs Patty ) (x0)13 + (@ + ) (=)

—{(p, D(QsPsuy,—s)(x0))8 + # Tr(A —el)5 + 0(8). (6-24)

(Here the implicit constant in 0(8%) depends on €.)
Because u;,—s € £(0, C), Lemma 6.12(2) and (3) imply that if C§ < 1, then
| Qs Pstsy—s(x0) — Ps Qsttsy—s(x0)| < 2C°m8> +2C8%| D(Ps Qstsy—s) (x0) |2

Again by Lemma 6.11(4) and Theorem 6.1(4c¢), | D(Qs Pgu,o_(;)(xo)H% is bounded by ||Duo(x0)||§ plus
a constant, so that

Qs Psttry—s(x0) = Ps Qsttry—5(x0) + O(8%).
Also, if we let §; = 2¢ for £ € Z, then Lemma 6.13 implies that when 2C§, < 1 and §; < r, we have

| Ps, Qs,ury—s5(x0) — R, uzy—s,(x0)| = |Rs,, ettsy—s,(xX0) — Rs,usy—5,(x0)|
3 C’mé,

< =
—\21-C¢

+log(1 + C8¢)(m + Cm + IIDM(XO)H%))T[ =0(8)).

So overall
Qs, Ps,ttry—s5,(x0) = Rs,ttsy—5,(x0) + O(87) = gy (x0) + O(87). (6-25)

Using similar reasoning, Lemma 6.12(1) shows that
D(Qs, Ps,tt1y,—3,)(x0) = D(Ps, Qs,ur,—s,) (x0) + 0(5,"”).
Then using Lemma 6.13(3), we obtain
D(Ps, Qs,u1,—s,) (x0) = D(Rs, ut1,—s,) (x0) + O (87?).

Finally, because u;,—s € £(0, C), it is differentiable everywhere; the upper Taylor approximation (6-22) im-
plies that u,,(x) <u (x0)+(p, x —x0)2+0(||x —xpll2) and therefore p must equal Du,,(x¢). Thus, overall

D(Qs, Ps,try—5,)(x0) = p+ 0(8)"). (6-26)
Substituting (6-25) and (6-26) into (6-24), we obtain
1 1
iy (X0) = sy (x0) + 51| Pl138¢ + (o +€) (=80) = | P 1380 + 5775 Tr(A — e1)d¢ + O (57).

2N?
We cancel uy,(xo) from both sides, divide by §,, and move « + € to the left-hand side to conclude that

1 1 2
a+e> WTT(A —€l)ég — §||P||2+ O (8¢).

Then taking £ — oo, we get o + € > (1/(2N?)) Tr(A —€l) — %||p||%. Since € was arbitrary, we have
a > (1/(2N?)) Tr(A) — 3 || plI3. This shows that u is a viscosity supersolution.
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To show that the u is a viscosity subsolution, the argument is symmetrical for the most part. However,
to obtain the constant K. in (6-23), we used the one-sided estimate Theorem 6.1(3b) to show that u is
bounded below by a quadratic in x — x¢ that is independent of ¢, so long as ¢t € (o — r, tp]. To show that u
is a viscosity subsolution, we want to prove an analogous quadratic upper bound. But by Theorem 6.1(3a)
and semiconcavity of ug, we have for ¢t < 1 that

s (x) < up(x) + 5 log(1 + Cro)

m

C
< ug(x0) + (Dug(x0), x = x0) + 5 |Ix = xoll3 + 5 log(1 + Cto),
which is the desired upper bound. The rest of the argument is symmetrical except that « + € is replaced
by @ —e€ and A — €[ is replaced by A +€l. g

Lemma 6.24. Let u : My (C)7 x [0, +00) — R. Then u is a viscosity solution to d,u = QN) 'Au —
%llDuH% if and only ifexp(—NZM) is a viscosity solution to d,u = 2N)~! Au.

Proof. More precisely, we claim that u is a viscosity subsolution if and only if exp(—NZ2u) is viscosity
supersolution and vice versa. Suppose that u is a subsolution, and let us show that v = exp(—N2u) is a
supersolution. If u is upper semicontinuous, then v is lower semicontinuous. Now suppose that we have
a lower Taylor approximation at (xg, fg)

v(x, 1) > v(xo, o) +a(t — o) + (p, x — x0)2 + 2 (A(x — X0), x — X0)2 + 0(|t — o] + lx — x0]3).

Note that v > 0 and u = (—1/N?) log v. The function & > log & is increasing and analytic for 4 > 0 and

we have

log(h + 8) = log(h) +1og(1 + %) = log(h) + % - %(%)2 + 0.

Substituting & = v(xg, tp) = exp(—Nzu(xo, tp)) and

§=v(x, 1) —v(xo, o) = a(t —to) + (p, x — x)2 + 1 (A(x — x0), x — x0)2 + 0|t — to| + |x — x0/*),

we get
—N%u(x, 1) > —N*u(xo, to) + (t —to) + (P, x — X0)2
v(xo, fo) v(xo, fo)
1
— (A(x —xp), x — —— (pox—x0) 4ot =t —xol),
+2v(xo,to)< (e =%0), x =0} 2v(xo,to)2<px Xz +olle = tol 4 lx = xollz)

since (p, x — x0)2/v(xo, 10)? is the only term from —(8/h)?/2+ O(8%) that is not o(|t — to| + I|lx — xol|3)
(here we use the fact that |t — fp]||x — xg||2 < %lt — 1%+ %llx — xollg). Let us denote by P the linear
map P(x —xg) = p{p, x — x0)2. Then the above inequality becomes

u(x,t) <u(xp, to)— (P, x—xo0)2

o
N2v(xo, fo)( 0) N2v(xo, to)
1 1

—————(A(x—x0), x— ———— (P (x—x0), (x— t—t —x0l13).
2]\,ZU(XOJO)< (x—x0), x x0>2+2N2v(xo,to)2< (x—x0), (x—x0))Fo(|[t—1to[+[x—x0[l3)
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Because u is a subsolution, we have

Tr(P)

o 1
THA) + —
A T S oo

2
—_ < — .
N2v(xo. o) — 2N Ipllz

 2N*u(x0, 1)?

But Tr(P) = ||p||§, so the last two terms cancel. Thus,
o> 1 Tr(A)
~ 2N?
as desired. So v is a supersolution.
A symmetrical argument shows that if v is a supersolution, then « is a subsolution. The other two
claims are proved in the same way except using the Taylor expansion of the exponential function instead
of the logarithm. 0

Now we are ready to prove Theorem 6.17 in the special case where u( is bounded below.

Lemma 6.25. Suppose that ug € £(0, C) is bounded below. Then
exp(—N>Ruq) = P;[exp(—N>up)].

Proof. Letv(x,t)= exp(—NzR,uo(x)) andlet w(x, t)=P; [exp(—Nzuo)](x). Since u is bounded below
by some constant K, we have R;ug > K by monotonicity of R; (see Corollary 6.14(3)) and the fact that it
does not affect constant functions (since the same is true of P, and Q,). Hence, v = exp(—N 2R,up) <
exp(—NzK). We also have exp(—NZuo) < exp(—NzK) and hence w < exp(—NzK).

Thus, v and w are both bounded, w is a smooth solution to the heat equation, and v is a viscosity
solution by the previous lemma. We will conclude from this that v = w (and this is nothing but a standard
argument for the maximum principle together with the basic philosophy of viscosity solutions).

To show that v < w, choose € > 0, and consider the function

d(x, 1) =v(x, 1) —w(x,t) — §||x||§ — Qmet.

Suppose for contradiction that ¢ > 0 at some point. Since ¢ is continuous on My (C)7; x [0, +-00) and
since w and v are bounded, ¢ achieves a maximum at some (xg, fp). Since the maximum is strictly
positive, we have ry > 0. Let

Yx, 1) = wix, 1) + Sllxll3 + 2met,
so that ¢(x,t) =v(x,t) —¥(x,t). Then ¢(x,t) < ¢(x0, to) implies that

U(xv t) = U(.X(), tO) + l//(-xv t) - ‘//(XO» ZO)

= v(xo, to) + Y (x0, 20)(t — o) + (D (X0, t0), X — X0)2
+ S(HY (x0, t0) (x — x0), x — X0)2 +0(|t — fo| + |lx — x0[13),

where the last step follows because ¥ is smooth. Because v is a viscosity subsolution,

8 (xo. 1o) < %Aw(xo, 10).
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However, this is a contradiction because at every point (x, t), we have

1 1
o = d,w + 2me > mAw +me = ﬁAw,

by computation and the fact that w solves the heat equation. It follows that ¢ < 0 and hence v(x, t) <
w(x,t)+ (e /2)||x||% + 2met. Since € was arbitrary, v < w. Then a symmetrical argument shows that
V> w. O

Thus, to prove Theorem 6.17, it only remains to remove the boundedness assumption on uy. We
achieve this by replacing ug with the function

uo(x) = uo(x) — (Dug(0), x)2, (6-27)
which is nonnegative by the convexity of u#( and hence it is bounded below.
Lemma 6.26. Let ug e £(0, C) and let itg be given by (6-27). Let vy =exp(—N?uq) and vy =exp(—N?ii).
Then the integral defining P; exp(—N?ug) is well-defined and also
Pyvo(x) = exp(—N*(Duo(0), x) + Nth 1Du(0)113) P T (x — 1 Dug(0)).
Proof. We can write

1 N2
do; n(y) = Zn CXP(—THJ’”%) dy.
Also, set p = Duy(0). Then

1 N?
szo(X)=Z—N/eXp(—Nzuo(x+y))e><p(—7||yllﬁ) dy

1 . N?

= 5~ | exp(=NioGr +5) = N2(p.x 4+ 3) = G- I515) dy
1 . Nt N?

= 5= [ exp(=V2iioCx +3) = N2p.x) + L 1pIB = Ty +1p13) dy
1 . N2t N?

= —— [ exp(=N2io(x —1p+2) = N(p, x) + I pli3 = S-11z13) az
ZN 2 2t

= exp(=N(p. ) + 2L 1p1B) P —1p). =
Lemma 6.27. Let ug € £(0, C), let p € My(C)22, and let ig(x) = uo(x) — (p, x)2. Then:
(1) Pruo(x) = Priig(x) + (p, x)2.
(2) Quuto(x) = Qitg(x —1p) + (p, x)2 — (/)| pl3.
(3) Riuo(x) = Ridio(x —1p) + (p. x)2 = (t/D) | pII3-

Proof. (1) holds because P; is a linear operator and it also does not affect linear functions. To prove (2),
fix x and let y be the point where the infimum defining Qu¢(x) is achieved and let ¥ be the point where
the infimum defining Q,iio(x — tp) is achieved. By Corollary 6.7(1), the points y and y are characterized
respectively by the relations

y=x—1tDug(y), y=x—tp—1tDioy(y).
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But Diig(y) = Dug(y) — p. Thus, x —tDug(y) =y, so that y = y. Then
1
Quuo(x) = uo(y) + 5-lly = x113

~ 1
=io() + (P, Y2+ 5,1y — xl3

~ t 1
=io(y) + (P, )2 =Pl + 5.1y = (x = 1p)ll3

~ t
= Quiig(x —1p) +(p. x)2 = 5lIp I3
(3) It follows by iteration (after some computation) that for ¢ € 27tNp, we have

~ !
Ry otto(x) = Ryfio(x — 1p) +(p. x)2 = 51 P11

Then by Lemma 6.13, we may take £ — oo, and by Theorem 6.1(3), we may extend the inequality to all
real ¢. O

Proof of Theorem 6.17. We have already proved the case where ug is bounded. For the general case, let
ug € £(0, C). Define p = Duy(0) and i1g(x) = ug(x) — {p, x)2. As remarked above, i is bounded below
by zero. By Lemma 6.26, the bounded case, and Lemma 6.27,

Nt -
Py exp(=Nu0)(x) = exp(=N*(p, x) + =51 pI3) LPs exp(—N2i)]x — 1p)
Nt .
= exp(=N(p, ) + L 1pI) exp(—N? Redio(x — 1))

= exp(—N?(Ridio(x = tp) + (p, x) = 511 p1))
= exp(—N>R,uo(x)).

In particular, since P;exp(—N 2{io) is smooth for ¢+ > 0, we see that all the functions in the above
equation are smooth for ¢ > 0, and hence R,u((x) is smooth function of (x, ¢). Also, P;[exp(—N 2up)] =
exp(—NZR,uo) as desired. O

6H. Approximation by trace polynomials. Now we are ready to prove that R, preserves asymptotic
approximability by trace polynomials.

Proposition 6.28. Let {Vy} be a sequence of functions My(C)2: — R such that Vy is convex and
V(x) —(C/2)|x ||% is concave, and {DVy} is asymptotically approximable by trace polynomials. Then
for every t > 0, the sequences {D(P,Vy)}, {D(Q;Vn)}, and {D(R;Vy)} are asymptotically approximable

by trace polynomials.

Proof. The fact that {D(P;Vy)} is asymptotically approximable by trace polynomials follows from
Lemma 3.28.
Now consider D(Q, V). Note that by Corollary 6.7(1), D(Q;Vn)(x) is the solution of the fixed point
equation
y=DVy(x —ty).
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Butifr < 1/C, then y — DVy(x —ty) is a contraction and thus iterates of this function will converge to
the fixed point. Let us define ¢ o(x) = 0 and ¢y ¢41(x) = DVy(x —ton ¢(x)). By Lemma 6.6(5), the
distance from 0 to the fixed point D(Q;Vy)(x) is bounded by || D Vy(x)]|2; hence

llpn.¢(x) — D(Q; V) (x)ll2 < CEtY DV ()2

Because DVy ; is C-Lipschitz, Lemma 3.27 implies that {¢y ¢}y is asymptotically approximable by trace
polynomials.

Now || DVy(0)]; is bounded by some constant A as N — oo because D Vy is asymptotically approx-
imable by trace polynomials. Since DVy is also C-Lipschitz, | DVy(x)|2 < A+ C|/x]2. In particular,
lon.e(x)—D(Q; V) (x)|l2 < C*(A+C|x|2). Thus, by Observation 3.26, {D(Q;Vy)} is asymptotically
approximable by trace polynomials.

This holds whenever ¢ < 1/C. But for general 7, we can write Q; = Q7 /n» Where n is large enough that
t/n < 1/C, and then iterating the previous statement shows that { Q,Vx} is asymptotically approximable
by trace polynomials.

For the sequence {D(R;Vy)}, first note that when ¢ Q7 we know {D(R;¢Vy)} is asymptotically
approximable by trace polynomials (where £ is large enough that R, 4 is defined). By Theorem 6.1(1c)
and Observation 3.26, the sequence {D(R;Vy)} is asymptotically approximable by trace polynomials for
te @; . Finally, by Theorem 6.1(2d) and Observation 3.26, the sequence { D(R;Vy)} is asymptotically
approximable by trace polynomials for all 7 € R*. U

7. Main theorem on free entropy

We are now ready to prove the following theorem which shows that y = x* for a law which is the limit
of log-concave random matrix models.

Theorem 7.1. Let puy be a sequence of probability measures on My (C)7. given by the potential Vy.
Assume:

(A) The potential Vi (x) is convex and Vy(x) — (C/2)||x ||% is concave for some C > 0 independent of N.
(B) The sequence uy concentrates around some noncommutative law A with A(ng) > 0.

(C) For some Ry > 0, we have limy_, fl\XllzRo(l + ||x||%) duy(x)=0.

(D) The sequence {DVy} is asymptotically approximable by trace polynomials.

Then A € X, g, and moreover:

(1) The law M has finite Fisher information ®*(L), and for all t > 0, we have
. 1
Jim STy o) > OB oy).
(2) We have forallt >0

. 1 *
X0 Bo) = (L Boy) = lim 5 (hGuy x01y) + 5 log N) = x* (3 Bon).
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(3) The functions t — (1/N*)I(uy *0;.5) and t — ®*(ABo;) are decreasing and Lipschitz and the
absolute value of the derivative (where defined) is bounded by C m(14+Cn)~2.

Remark 7.2. If Vy(x) — (c/2)||x||% is convex and Vy(x) — (C/2)||x||% is concave and if {DVy} is
asymptotically approximable by trace polynomials, then Theorem 4.1 implies that py satisfies the
hypotheses of Theorem 7.1 for some noncommutative law A.

However, Theorem 7.1 holds in a slightly more general situation than Theorem 4.1 in that we do not
have to assume uniform convexity, finite moments, or exponential concentration.

In preparation for the proof of Theorem 7.1, we have already verified that the hypotheses (A), (C), and
(D) are preserved under Gaussian convolution. Now we show that (B) is preserved in Lemma 7.4. This
is straightforward apart from one subtlety — although we have assumed that for every noncommutative
polynomial p, the noncommutative moment 7y (p(x)) concentrates around A(p) under uy, we have not
assumed that |ty (p(x))]| has finite expectation. To deal with this issue, we first prove an auxiliary lemma.

Lemma 7.3. Let . be a noncommutative law in X, let p(X,Y) = p(X1, ..., Xm, Y1, ..., Ym) be a
noncommutative polynomial of 2m variables, and let R > 0. Then there exists a neighborhood V of A
in ¥, and a constant K such that, for all N € N, for all x € I'y(V), the function y — tn(p(x, y)) is
K -Lipschitz with respect to || - |2 for self-adjoint tuples y in the operator-norm ball {y : ||y;|| < R}.

Proof. To prove the lemma, it suffices to consider the case of a noncommutative monomial. Indeed, if
p= Z'/l: | Pj» where p; is a monomial, and if we find neighborhoods V; and Lipschitz constants K; for
each p;, then the result will also hold for p with V = ﬂ’}:1 Vjand K = Z?:l K;.

Thus, assume without loss of generality that p(X, Y) is a noncommutative monomial. Then it can be
written in the form

p(X,Y)=qo(X)Y;,q1(X)Y}, - - - qe—1(X)Y;,qe(X),

where i; € {1, ..., m} and g;(X) is a noncommutative monomial in X (which of course is allowed to
be 1). Consider x, y, y' € My (C)Z, and suppose that ||y;|lcc < R and | y/|lcc < R for each i. Then

sa’ —

¢
P, y) = pa, ¥ =Y qo()yi, -+ Vi 1 -1 iy = YD g )iy, -+ Yieqe(x).
j=l1
Recalling the noncommutative L* norms and Holder’s inequality (see Section 2C), we have
¢

IpCe, y) = plx, Y1 < (Z [ Thg; e llaeny T Tivaclioo T Tl ||oo) Ly = ¥}l

j=1k#j k<j k>j
This implies that

14

lTv (p(x, ) — T (p(x, YD) < (Z [ Tla (x)llz(z+1)> Ry =yl
=1 k]
Now

lg;i O ll2e+1) = (T l(g) (x)*qj (x))“’l ])1/(2(“_1)).
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We can define
V=12 g )T < M(gfgp T T+ 1 for j=0,.... ¢},

Then |gj(x)l2¢¢+1) is uniformly bounded for x € I'y (V) for each j =0, ..., £. Suppose that each of
these quantities is bounded by K. Then the above estimate shows that

v (e, ) = Ty (e, YD < LK TRy =yl
whenever x € Iy (V) and y, y’ are in the operator-norm ball of radius R. O

Lemma 7.4. Suppose that {{tn} concentrates around a noncommutative law \. Then {y * o n} concen-
trates around LB o, for everyt > Q.

Proof. Fix t. Let Xy = (Xn.1, ..., Xny.m) and Yy = (YN 1, ..., YN.m) be independent random variables
with the laws py and oy y respectively. Because the topology on the space X, of noncommutative laws
is generated by noncommutative moments, it suffices to show that for each noncommutative polynomial p
and 6 >0

Jim_P(ly(p(Xy +Yn) =1 B0y (p)] = 8) = 0.

Fix p and let d be its degree. By the previous lemma, there is a neighborhood V of A and a constant K
such that for every x € I'yy (1), the function y — ty(p(x +y)) is K-Lipschitz with respect to || - ||» on the
operator-norm ball {y : || y]|co < 4¢1/2y, By shrinking V if necessary, we may also assume that Ty (g (x))
is uniformly bounded for every noncommutative monomial g (x) of degree less than or equal to d.
Choose a C2° function ¥ : R — R such that ¥ (z) = z for |z| < 3t'/2 and | (z)| < 4t'/2. Then

Ve ) = (WO, Y (m))

is globally Lipschitz in || - ||> and it also maps My (C)7; into the operator-norm ball of radius 4¢'/2 (which
is the region where z — Tty (p(x, z)) was assumed to be K-Lipschitz with respect to || - ||, whenever
x € Ty (V)). This implies that there is some constant K’ such that y — x5 (p(x, ¥(y))) is K'-Lipschitz
forall x e 'y (V).
Let
ay(x) = E[tn(p(x + W (¥YN)))],

B0 = Eley (p(x + ¥ + M) =exp( 152 ) e ()]0,
Bx) =exp('2 )T (100,
By Theorem 2.10 applied to Yy,
xely® = P(Ion(pr+ BTN —an(0] > 3) < 267 N/IED,
On the other hand, we know by standard tail estimates on the GUE (see Corollary 2.12) that

Jm Elzy (q(Yn)) Ly, =321 =0
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for every noncommutative polynomial g. This implies that |y (x) — By (x)| = O uniformly for x € 'y (V).
On the other hand, by Lemma 3.21,

A () =exp( 50 ) (e (p1w) — exp(TE ) T (I0) = p)
where the convergence occurs coefficientwise. Now exp(t Ly /2)[t(p)] is a sum of products of traces
of noncommutative monomials g of degree < d and for every such g, we know 75 (g(x)) is uniformly
bounded on Iy (V) by our choice of V. Thus, coefficientwise convergence of Sy — B implies uniform
convergence for x € 'y (V). Therefore, for sufficiently large N we have |By(x) — B(x)| < §/3 for
x € I'y(V), and hence

P(Iev (O + Yi) = T(BXND| = 5, Xy € Ty(V), 1Yyl < 3¢1/2) < 275 W /08K,

where we have applied the Fubini—Tonelli theorem for the product measure p y ®o; x. By our concentration
assumption,

1)
P(|TN(/3(XN)) —x(B)|= §) -0, PXyelyW)—1,
and by Corollary 2.12 also P(||Y¢|| > 3¢!/?) — 0. Altogether, we have
P(ltn(p(Xn +YN)) —A(B)| = 6) > 0.

But note that A(8) = A(exp(tL/2)[t(p)]) = (AHoy)(p) by Lemma 3.23. Thus, the proof is complete. [

Proof of Theorem 7.1. Let Vi ; = R;Vx be the potential associated to wuy * oy y. Let us verify that Vi ;
satisfies the assumptions (A)—(D) for every ¢ > O.

(A) This follows from Theorem 6.1(1) because Vi ; = R;Vn; hence Vy, € £(0, C).
(B) This follows from Lemma 7.4.

(C) This follows from tail bounds on the GUE (Corollary 2.12).

(D) This follows from Proposition 6.28.

Next, the fact that A € X, g, follows from Proposition 5.5 with n = 1.
Claim (1) of the theorem follows by applying Proposition 5.10 to puy *o; y withn = 1.
For claim (2), recall that by Lemma 5.7, (5-6),

1 m 1 [ m 1 m
~ah(un) + 5 logN =3 /0 (1_+z — Ll *o,,N)) ds + " log 2me. (7-1)
Because N 3Z(uy) converges as N — oo, there is some constant K with N73Z(uy) < K for all N.
Also, because of assumptions (B) and (C), we have f I|x ||§ duy(x)— Z;": LA (XJZ) > 0. Therefore, there
is a constant a such that f [|x ||§ duy(x) > ma for large enough N. Thus, (5-4), we have for sufficiently

large N that

m 1 . m
P < FI(MN * 07 N) =< mln(M, 7>.
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Thus, we can apply the dominated convergence theorem to take the limit as N — oo inside the integral
on the right-hand side of (7-1) and apply claim (1) to conclude that

. 1 m
Jim (<5han) + 2 log N) = x*().

On the left-hand side of (7-1), we will apply Proposition 5.5 with n = 1. We may replace Vy by
Vy — Vn(0) without changing ux (because the definition of wy includes the normalizing constant Zy
anyway). Then because {DVy} is asymptotically approximable by trace polynomials, we know that
{Vn} is asymptotically approximable by trace polynomials (Lemma 3.29). Therefore, the hypotheses of
Proposition 5.5 are satisfied and so

X () —hmsup( h(w) + 3 log N) = x*"(0)

N2
and the same holds for X (A). Moreover, this holds for py * o, just as well as uy because py *o; n
satisfies the same assumptions (A)—(D).

For claim (3), first fix N and let X be a random variable with law p, and let Y, be an independent
Hermitian Brownian motion (here Y; ~ o; ). Let E; = DVy ;(X 4 Y;), which is the conjugate variable
of X +Y;. Then

1
N3I(MN *0p N) = E||ut||2

Suppose 0 < s <t < T. Then X + Y, is the sum of the independent random variables X + Y, and
Y; —Y,, and thus E; = E[E,|X + Y;] by Lemma 5.6. In other words, E; is the orthogonal projection of
DVy (X +Y;) onto the space of L? random variables that are functions of X + Y;, or in other words it
is the function of X + Y, that is closest to E; in L2 This implies that

1€ — E/l3] < E[I DV s(X 4+ Y,) = DVy (X + Y)) 3]

C2
< E[m” Yt||2j|

2

= A3 cspmt =9

using the fact that Vy ; € £(0, C(1 + Cs)~ 1) and hence DVysis C(1+ Cs)_l-Lipschitz. Since E; is
the orthogonal projection of E; onto this subspace, we know E; — &, is orthogonal to E, and hence

E[IIE 31— ELIE |31 = E[IIE; — EII3]-

Overall,
2

c
= Ugcsp™t =)

1
0< WI(MN*O—S,N) I(MN *0y N) <

This immediately proves that # — N 3T (uy * o0:,n) 18 a decreasing function of ¢, it is Lipschitz, and the
absolute value of the derivative is bounded by C?m /(1 + Ct)% The same holds for ®*(1 B ;) by taking
the limit as N — oo. O
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8. Free Gibbs laws

In the situation of Theorem 4.1, we want to interpret the law A as the free Gibbs state for a potential
which is the limit of the V. To this end, we will define a noncommutative function space where each
element is a limit of functions on My (C)7;. We will then give several characterizations of the closure of
trace polynomials in this space, as well as the class of potentials to which our previous results apply.

8A. Asymptotic approximation and function spaces. Let Y, = {Yn} be a sequence of normed vector
spaces. We define a (possibly infinite) seminorm on sequences ¢, = {¢x} of functions My (C)2: — Yy by

¢.llr.y, =1limsup sup [[gn(x)]y,-
N—oo |x[|<R

Let F,,(Y,) be the vector space
{#.: [P.llr.y, < +o0 forall R}/{¢. : [}.llr.y, = O for all R}.

For a sequence ¢,, we denote its equivalence class by [¢.].
We equip F,,(Y,) with the topology generated by the seminorms || - || gy, or equivalently given by the
metric

oo
A5 @ V) = - min(lg, = vullny, 1. (8-1)
n=1
Note that F,(Y,) is a complete metric space in this metric and is a locally convex topological vector
space.

There is a canonical map from the vector space of scalar-valued trace polynomials TrP,?l into ]-"n? =
Fu(C) by the map that sends a trace polynomial to the corresponding sequence of functions it defines on
My (C)Z. A sequence ¢, is asymptotically approximable by trace polynomials if and only if [¢,] is in
the closure of the image of TrP? in F,°, which we will denote by 7,°. (Unfortunately, we do not know
whether the map TrP,?1 — ]-',2 is injective, but this point is irrelevant for our purposes.)

Similarly, let M,(C)™ be the sequence { My (C)™} equipped with || - ||». There is a canonical map from
TrP,111 into ]-'nll = Fm(M,(C)) given by mapping a trace polynomial to the corresponding sequence of

functions on matrices. A sequence ¢, of functions My (C)Z; — My (C)s, is asymptotically approximable
1

m>

by trace polynomials if and only if [@,] is in the closure of the image of TrP, , which we denote by 7,!.
The spaces 7,° and 7,! can be viewed as noncommutative function spaces through the following
alternative characterization. Here R denotes the hyperfinite II; factor and R® denotes its ultrapower; for

an explanation, see [Anantharaman and Popa 2016, §1.6 and §5.4] or [Capraro 2010, pp. 5-7].

Lemma 8.1. Let f € TrPY. Then we have

limsup sup [f()|=sup sup [f()= sup [f(x)l. (8-2)
N—oo xeMy(C)F N xeMy(©)Y xe(RE™
lxllo<R lxllo<R lxllo<R

If we denote the common value by || f |70, g, then this family of seminorms defines a metrizable topology
on TrP,?1 with the metric given as in (8-1), and Tmo is the completion of TrP,?l in this metric. The same
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result holds for 7;11 using the seminorm

limsup sup [[f(x)la=sup sup [[f(xX)ll2= sup [f(x)l2. (8-3)
N—oo xeMpy (O N xeMy(©)F xe(RLI™
lxllo<R lxllo<R lxllo<R

Proof. Fix f and let A, B, and C be the three quantities in (8-2) from left to right. It is clear that A < B.
Moreover, B < C because there is an isometric trace-preserving embedding of My (C) into R®. To show
that C < A, pick x € (Rg)™ with ||x|| < R. Then there exists x, € Rf, with |x,|| < R and x =lim,_,, x,.
For each n, we can choose an N,, an embedding My, (C) — R and a y, € My, (C) such that ||y,|| < R and
lXn — ynll2 < 1/2" and lim,,— oo N, = 4+00. Then x =lim,_,,, y, and | f (x)| =lim,—, | f ()| < A. This
shows that the three seminorms in (8-2) are equal, and the other claims follow because these seminorms
are the same as the seminorms for F.. O

From this point of view, every f € 7;n0 has a canonical sequence that represents its equivalence class
in F?, constructed as follows. If we write f as the limit of a sequence of trace polynomials f®), then
S |lmycyn converges locally uniformly on My (C)g; as k — oo and the limit is independent of the
approximating sequence f®). We can therefore define f| My(©)n to be this limit.

Similarly, f* defines a function on (R{))™. Moreover, if (M, 7) is a tracial von Neumann algebra and
there is a trace-preserving embedding ¢ : M — R, then we may define f|y = f ot. Itis easy to see that
this is independent of the choice of trace-preserving embedding if f is a trace polynomial, and this holds
for general f € 7,% or 7.! by density of trace polynomials. In this sense, 7,0 and 7,! represent spaces
of universal scalar- or operator-valued functions that can be applied to self-adjoint operators in every
R -embeddable tracial von Neumann algebra.

In the scalar-valued case, we have yet another characterization of 7,:

Lemma 8.2. Let X, vdd = Ug-¢ Zm,r- Let C(,, paa) be the space of functions g : X, paa — C such
that g € C(Zn,R) for every R, equipped with the family of seminorms || - | c(x,, x)- Then ’Tmo is isomorphic
to C(Z bdd) as a topological vector space.

Proof. For a scalar-valued trace polynomial f, the value f(x) only depends on the law of x, so that
f(x) = g(A,) for some function g : X,, — R such that g € C(%,, g) for all R, and we have

I fllr0r = lgllcEmr)-

m

Passing to the completion with respect to the metric defined as in (8-1), we have a map ¢ : 7;10 — C(Z.pdd)
which is an isomorphism onto its image. To show that ¢ is surjective, note the algebra of trace polynomials is
self-adjoint and separates points in X,, g, and hence by the Stone—Weierstrass theorem, trace polynomials
are dense in C(X,, r) for every R. Therefore, if g € C(%,, gr), we can choose a trace polynomial
g® () = F®(x) such that ||g — g(k)”C(Em‘k) < 1/2k Then % converges to some f in 7%, and we

m>

have ((f) = g. O

8B. Convex differentiable functions. Now we are ready to characterize the type of convex functions
which occur in Theorem 7.1. First of all, we let 7,*! be the completion of the trace polynomials with
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respect to the metric

o0
1 . .
d(f.8) =) zzlmin(L, IIf = gllzp,) +min(L, | Df = Dgllizaym,n)].

n=1

Observe that if f € 7,%! and f® is a sequence of trace polynomials converging to f in 7,%! as k — oo,
then Df® converges in (7,1)™ and the limit is independent of the choice of approximating sequence.
We denote this limit by Df.

Remark 8.3. If f and f® are as above, then since Df® is a tuple of trace polynomials, it is continuous
on the operator norm ball {y € My(C)%, : [|ylloc < R} with a modulus of continuity that only depends on
R and does not depend on N. Because Df®) — Df uniformly on the operator-norm ball (with rate of
convergence independent of N), we know Df is also continuous on this operator-norm ball with modulus
of continuity independent of N.

It follows that for every x, y € My (C)Z with |lx|[, [[y]| < R we have

FO) = fx)=(Df(x), y —x)2+o(ly —xl2),

where the error estimate only depends on R and not on N. In particular, this shows Df is uniquely
determined by f. Also, it shows that Df |y, cyn is equal to the normalized gradient of [, (c)n in
the ordinary sense of functions on My (C)" = R™N ’

Lemma 84. Let f € 7;,,0*1 be real-valued. The following are equivalent:

(1) The function f|py@cyn is convex for every N.
(2) The function f is convex as a function on (Rg)™.

(3) There exists a sequence of differentiable convex functions Vy : My (C)%: — R such that [V,] = f
and [DV,] = Df. (Here DYV, denotes the sequence (DVy)nenN, Wwhere D is the normalized gradient
understood in the standard sense of calculus.)

Proof. The implication (1) => (2) follows from an argument similar to the proof of Lemma 8.1.

The implication (1) = (3) holds because we can take Vy = f[u,cym-

Now we will prove (3) = (1). Fix N. To prove that f|, c)n is convex, it suffices to show that
(Df(x) — Df(y),x —y)2 > 0 for every x,y € My(C)%;. For k € N, consider x ® I and y ® I} in
My (C)g;. Then, as k — oo,

(Df(x) =Df(y), x =y)2=(Df(x @ Ik) = Df (y ® I), x @ Iy — y ® Ok)2;

meanwhile, if R = max(||x]|, ||¥]|), then since DVy — Df — 0 in || - || uniformly on the operator norm
ball of radius R, we have as k — oo that

(DfxR@L)—Df(y® i), xQ@Lr —yQIt) o —(DVNi(x @ It) = DVNi (YR I}), x @ I — y @ Ii)2 — 0.

Because Vyy is convex, the second inner product is > 0 and therefore (Df (x) — Df(y),x —y)2, > 0. U
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Let &, (c, C)%! denote the class of V € 7;,10’1 such that V(x) — (c/2)||x||% is convex and V (x) —
(C/2)||x||% is concave. If 0 < ¢ < Cand V € &,(c, C)*! and Vy = V|my©ymn, then the sequence of
normalized gradients DVy is asymptotically approximable by trace polynomials. If we let py be the
corresponding measure on My (C)Z:, then Theorem 4.1 (the hypothesis (4-1) being trivially satisfied by
unitary invariance) implies that py concentrates around a noncommutative law Ay, which we will call
the free Gibbs state for the potential V.

Furthermore, the free Gibbs state Ay is independent of the choice of representative sequence in the
following sense. Let wuy be the measure on My (C)Z given by the potential Vy = V| My Let Wy
be another sequence of potentials satisfying the hypotheses of Theorem 4.1 such that [W,] = V in Tmo’l,
and let vy be the sequence of random matrix measures given by Wy. By Theorem 4.1, vy concentrates
around some noncommutative law A. We claim that A = Ay. To prove this, consider the sequence Vy
which equals Vy for odd N and Wy for even N. Then [‘7,] =Vin 7;”0’1, which means that {D VN} NeN 18
asymptotically approximable by trace polynomials. Therefore,

Av(p) = lim / tv(p)dpy = lim f tv(p)dvy = A(p).
N even N odd
N—>oo N—o0
In fact, Lemma 8.4 implies that the noncommutative laws A which occur as limits in Theorem 4.1
are precisely the free Gibbs laws for potentials V € &, (c, C)%!. In particular, Theorem 7.1 implies that
X = x = x* for every such law.

Remark 8.5. We have not proved that the law Ay is uniquely characterized by the Schwinger—Dyson
equation A[DV (X) f(X)] =AQA[D f(X)], although something like this is implied by [Dabrowski 2016].
One could hope to prove this by letting the semigroup 7,” act on an abstract space of Lipschitz functions
which is the completion of trace polynomials (where the metric now allows x to come from any tracial
von Neumann algebra rather than only the R“-embeddable algebras). We would want to show that if A
satisfies the Schwinger-Dyson equation, then A(7," u) = A(u), but to justify the computation, we need to
show more regularity of 7,¥u than we have done in this paper. In the SDE approach as well, the proof
that Ay is characterized by Schwinger—Dyson is subtle when we do not assume more regularity for V
(see [Dabrowski 2010; 2016]).

8C. Examples of convex potentials. A natural class of examples of functions in &, (c, C)*! are those
of the form

V(x) = gl +ef ()
where € is a small positive parameter,
_ Xj + 4i
o )Cj —4i ’

u= Uy, ...,up), Uj

and f is a real-valued trace polynomial in u and u*. Computations similar to those of Section 3B show
that the normalized Hessian of Jac(Df (u(x))) with respect to x is bounded uniformly in N. Therefore,
Veéy (% %)O’l for sufficiently small €. Similar examples are described in the introduction of [Dabrowski
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2016]. More generally, we can replace the trace polynomial f(u) by a power series where the individual
terms are trace monomials in u.

The class &, (c, C)! does not include trace polynomials in x because if g is a trace polynomial of
degree > 3, then we cannot have g(x) convex and g(x) — (C /2)||x||§ concave (globally). However, if
we consider a potential which is a small perturbation of a quadratic (as considered in [Guionnet and
Maurel-Segala 2006; Guionnet and Shlyakhtenko 2014]), we can fix this problem by introducing an
operator-norm cut-off as follows.

Let f be a scalar-valued trace polynomial and let us define

V@) = [Ix]I3 + €f (x). (8-4)

Let ¢ : R — R be a C2° function such that ¢(¢) =t for |[f| < R and ¢(t) = O for |[t| > 2R. Let
D : My(O)g — My(C), be given by @y (x) = (¢ (x1), ..., ¢ (xm)).

Vi (@) = X113 + efn (D (x)). (8-5)

We will prove the following.

Proposition 8.6. Let Vli,e) be given as above. Then [f/:(e)] e Tl Moreover, given § > 0, we have
[\7.(6)] € En(1 =6, 1+ 8)%! for sufficiently small € (depending on f, R, and ).

As a consequence, we will deduce the following result about measures defined by V(© restricted to an
operator-norm ball (without the smooth cut-off ®).

Proposition 8.7. Let 2 < R’ < R, let f be a trace polynomial, and let V') be as in (8-4). Let

1
dug\e,)(x) = Z_N exp(—Nlesé)(x))l”x”SR dx.
For sufficiently small € (depending on f, R, and R'), we have the following. The measure ,ugs) exhibits
exponential concentration around a noncommutative law 1) e Ymr- If X € (M, 1) is a noncommutative
m-tuple realizing the law \©, then the conjugate variable is given by DV © (X). Moreover, we have

Oy — 3Oy — ©y _ 1 1 €y, m
x(xf>—>_<(x€>—x*<xf>_ngnoo(mhw>+§10gzv).

To fix notation for the remainder of this section, functions without a subscript, such as f, will denote
elements of 7,9 or 7,91, and Df will denote the “gradient” defined in the abstract space 7,%! as the limit
of the “gradients” of trace polynomials approximating f. However, fy will denote f |y, and Dfy
will denote the normalized gradient NV fy defined in the usual sense of calculus with respect to (-, - )2
on My (C)z.. Moreover, H fy = Jac(Dfy) will denote the Hessian of fy with respect to (-, - ).

In order to prove Proposition 8.6, we must understand D[ fy o ®y] and H[ fy o ®y]. To this end, we
recall some results of [Peller 2006] on noncommutative derivatives of ¢ (x), where ¢ is a smooth function
on the real line.
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For a polynomial ¢ in one variable, the noncommutative derivative D¢ € C(X) ® C(X) defined by
Definition 3.6 can be written as the difference quotient

¢(s) — ()
——

Do (s, t) = —

where we view C(X) ® C(X) as a subset of functions on R? with the variables s and . However, the
above difference quotient makes sense whenever ¢ : R — C is smooth. Thus, it defines an extension of D
to continuously differentiable functions ¢ of one variable.

Similarly, if ¢ is a polynomial, then the higher-order noncommutative derivatives D"¢ can be viewed
as functions of n + 1 variables, which are obtained through iterated difference quotients and thus their
definition can be extended to smooth functions ¢. (However, beware that we have not defined D}1¢ if ¢ is
a nonpolynomial function of multiple variables.)

If ¢ is a polynomial, then to estimate ¢ (X) —¢ (Y for operators X and Y with norm bounded by R, one
seeks to control the norm of D¢ in the projective tensor product L¥[—R, R]® L®[—R, R]. Similarly,
if ¢ is a smooth function and ¢ (X) and ¢ (Y) are defined through functional calculus, one can estimate
the operator norm ||¢(X) — ¢ (Y)|| by representing ¢ as an integral of simpler functions (e.g., by Fourier
analysis) whose noncommutative derivatives are easier to analyze. In this case, it is convenient to write
D¢ as an integral rather than a sum of simple tensors.

We thus consider the integral projective tensor powers of the space of bounded Borel functions B(R).
The integral projective tensor product B([RR)@"” consists of Borel functions G on R” which admit a

representation
G(xl,...,xn)zf Gi(x1, @)+ Gn(xp, ®) dp(w) (8-6)
Q
for some measure space (€2, n) such that
/ 1G1(-, D) lsw) - 1G1(+, @) 5w dir(w) < +00 (8-7)
Q
and we define |G || B®)sin 1O be the infimum of (8-7) over all representations (8-6).
Given G € B([R{)‘?"' " bounded self-adjoint operators xo, ..., x, and bounded operators yi, ..., y,, we
define
G(xo, .., x)# (N1 ®---Qyn) = / Go(xo, @)y1G1(x1, ®) - yn Gy (xn, @) d (), (8-8)
Q

where Gy, ..., G, satisfy (8-6). This is well-defined by [Peller 2006, Lemma 3.1]. If the x; and y; are
elements of a tracial von Neumann algebra (M, 7), we have by the noncommutative Holder’s inequality
(see Section 2C) that if 1 /o = 1/ay + - - - + 1 /oy, then

G (xo, ..., x)# (1@ - Q@ yu)lla = Gl gzt Iyille - ynlle,- (8-9)

Moreover, we have the following bounds on the noncommutative derivatives of ¢ as a corollary of the
results of [Peller 2006].
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Proposition 8.8. There exists a constant K,, such that for all ¢ € C>°(R)
D" Bl < Ko [ 1B©IE"1 (8-10)
R

Proof. As in [Peller 2006, §2], choose w € C2° such that 0 < w < x;—1/2,2) and ZkeZ w(7kE) =1 for
& > 0. Let Wy and W,f be given by Wk(s) =w(27"¢) and W,f(g) = w(—27%x), where ° denotes the
Fourier transform. It is shown in [Peller 2006, Theorem 5.5] that

1Dl ymrnsn < Kn Y 2" (IWic % bl ooy + W] % bl Lmy)-
kez

This can be estimated by the right-hand side of (8-10) (for a possibly different constant) by a standard
Fourier analysis computation. O

Proof of Proposition 8.6. Recall that Vlif)(x) = %Hx ||§ + € fn o @ . Thus, to show that the sequence V]ff)
defines an element of 7", it suffices to prove this for fy o ®y. To this end, it is sufficient to show that
for each r > 0 there is a sequence of trace polynomials {g®};cn such that
lim sup sup [g900) = fy o Py ()| =0
k=00 NeN xe My (C):]|x [l <r
and
lim sup sup [|Dg®(x) = DI fx o Px()]ll2.
k=00 NeN xeMy (C)7:|x o <r
Fix r > 0. By standard approximation techniques, there exist Schwarz functions ¢ : R — R such that
#®1|;_,. is a polynomial and ¥ — ¢ in the Schwarz space as k — 0o. By Proposition 8.8, we have
D% — D¢ in B(R)® " +D as k — oo for every n.
Let CDX,C) X1, .. xm) = (@R (x1), ..., % (x,)). Then fy o QDE\],() is given by a trace polynomial g%
on {||x|lco <r}. Because of the spectral mapping theorem,

sup |®% (x) = Py ()llo <m sup [¢® 1) — (1),

lx]l<r te[—r,r]

which is independent of N and vanishes as k — oco. Thus, our trace polynomials g*) approximate fyo®y
uniformly on the operator norm ball {x : ||x]c <r}.

Next, we must show that Dg® approximates D[ fy o ®x] uniformly in | - ||> on the operator-norm
ball {||x||co < r}. By the chain rule, we have

Dj[ fn o ®n]=1Jac;(®n)'[D; fn],

where D; and Jac; are the normalized gradient and Jacobian with respect to the variable x; € My (C)g,.
Now

Jac; (@) (x)y = Dp (x)) # .

Now D¢ viewed as an element of the tensor product C[X] ® C[X] is invariant under the flip map that
switches the order of the tensorands; this is because D¢ is represented as a difference quotient for
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one-variable functions. Flip invariance implies that
tn[(Do (x)) # y)z] = e[y (D (x)) #2)],
which means that the operator Jac; (®y)(x) on My (C)s, is self-adjoint. Hence,
D;[fn o @n]1(x) =Jac;(Pn (x))[D; fn](x) =D (x;) # D;j fn(Pn(x)).

This function is given by a trace polynomial on {||x|- <}, and it is also equal to the trace polynomial
ng(k) when evaluated on any tuple of matrices because both functions are equal to the gradient of
g(k)|MN(@)g‘5. Moreover, for ||x]|s < r, we have

Dy (xj) # Dj f (Pi(x)) = Dy (x;) # Dj f (P (x)) + Dy (x) #[D; f (Pi(x)) — D; f(P(x))].

The first term converges to D¢ (x;) # D; f(P(x)) in || - ||z uniformly on {||x|lcc < r} using (8-9) with
estimates independent of N. Similarly, because the images of ®; and @ are contained in an operator norm
ball and D; f is K-Lipschitz in || - || on this ball for some K > 0, we have D; f(®y(x))—D; f(®(x)) — 0
uniformly. This in turn implies that the second term goes to zero because D¢y (x;) is uniformly bounded
in B(R) ®; B(R). Thus, for every r > 0, there is a sequence of trace polynomials g such that gy — fo®
and Dg®) — D(f o ®) uniformly on {||x s < r}. This means that f o ® € 7,1:C.

It follows that the sequence V;f) defines a function in 7,%:! for every €. It remains to show that this
function is in &, (1 — 8, 1 +8)%! for sufficiently small €. To this end, it suffices to show that fy o @y
defines a function in &, (—a, a)*! for some real a > 0. Thus, we only need to obtain some upper and
lower bounds on the operator norm of H|[ f o @] that are independent of N. However, this is equivalent
to showing that D;(fy o ®y) = Dpn(x;) # D; fn(Py(x)) is Lipschitz in || - ||, for each j (uniformly
in N). Because D?¢ is bounded in B(R) ®i B(R) ®; B(R), we see that

D¢ (xj) #y —Dp(x)) #yll2 < Kllxj — xj ]2l ¥lloo

for some constant K; we may apply this to y = D; fy(®y(x)), which is bounded in | - [|oc because
D; fy is a trace polynomial and ®y (x) is bounded in || - ||o. Together with the fact that D; fx (P y(x))
is Lipschitz in || - [|2, this implies that D;(fy o ®y) is Lipschitz in || - [|2 as desired. Il

Proof of Proposition 8.7. Let [Lgf,) be the measure on My (C)y; given by the potential Vlff). Let § be

a number in (0, 1) to be chosen later. By Proposition 8.6, we have that Ve ¢ En(1 —68,1+8)%!
for sufficiently small €. By Theorem 4.1, the laws fi concentrate around a noncommutative law A.
Furthermore, in Theorem 4.1(1), we can take M =0 andc=1—36 and C =1+ §, so that
2 DV©(0 8
limsup Ry < ARIO |
N—oo (1-8)12 -3 (1—8)32

Note that DV(E)(O) =DVE(0)=€D £(0) is a scalar multiple of the identity matrix since f is a trace
polynomial. Because R’ > 2, we may choose § sufficiently small that

2 )

/
A=o2 T a=spr - %




2372 DAVID JEKEL

Then by choosing € (and hence || DV(E)(O) |l2) sufficiently small, we can arrange that
R, =limsup Ry < R’
N—oo

This implies that the measures ﬁgf,)concentrate on the ball {||x|lcoc < R’}. For ||x||lsc < R, we have
V©(x) = V©(x), and therefore ;¢ is the (normalized) restriction of ,&5;) to {||x]lc < R}. It follows
that ,u%) concentrates around the law A(€) as well.

If X € (M, 1) realizes the law A(©, then || X||o < R’ since A € %, g,  Z,n.g’ by Theorem 4.1(2).
Moreover, by Proposition 5.10, the conjugate variables for A are given by DV (X) = DV(X). Moreover,
by Theorem 7.1 applied to ,&5\;), we have

©) = y (1) = y* (L) = i L, n©ym
(O = 20 = (1) = Tim (Sh () + 75 log V).

In the last equality, we can replace fiy by py as in the proof of Proposition 5.5 because iy concentrates
on {[lxflec < R'}. o

Remark 8.9. The approach given here probably does not give the optimal range of € for Proposition 8.7.
To get the best result, one would want a more direct way to extend the potential V© : {|x[lc < R} = R
to a potential V© defined everywhere. This leads us to ask the following question.

Suppose that V is a real-valued function in the closure of trace polynomials with respect to the norm
||f||Tm°,R + ||Df||7;n1’R, and hence V defines a function {x : ||x[loc < R} — R for x € My(C)2:. If
Vx)— (c/2)||x||% is convex and V (x) — (C/2)||x||% is concave on {||x|| < R}, then does V extend to a
potential Veé, (c, C)*1? What if we allow V to have slightly worse constants ¢ and C?

The construction of extensions that preserve the convexity properties is not difficult, but it is less obvious

how to construct an extension that one can verify preserves the approximability by trace polynomials.
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Note added in proof

Since this paper was first submitted, the author has extended the techniques to cover conditional ex-
pectations and entropy in [Jekel 2020a] and in particular obtained an alternative proof of Theorem 7.1.
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Moreover, the Ph.D. thesis [Jekel 2020b] contains the results of this paper and [Jekel 2020a] with more
detail and historical background.
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PARAMETRIX FOR A SEMICLASSICAL SUBELLIPTIC OPERATOR

HART F. SMITH

We demonstrate a parametrix construction, together with associated pseudodifferential operator calculus,
for an operator of sum-of-squares type with semiclassical parameter. The form of operator we consider
includes the generator of kinetic Brownian motion on the cosphere bundle of a Riemannian manifold.
Regularity estimates in semiclassical Sobolev spaces are proven by establishing mapping properties for
the parametrix.

1. Introduction

We deal in this paper with a class of second order, subelliptic partial differential operators of the sum-of-
squares form

d d
Py=Xo—hY X;—h)» c;X;, he(0,1], (1-1)
j=1 j=l1
where the X; for 0 < j < d are smooth vector fields, the c¢; are smooth functions, and & > 0 is considered
as a semiclassical parameter. We work in 2d + 1 dimensions, either on a compact manifold or an open

RZd-H

subset of , and make the following assumptions throughout this paper.

Assumption 1.  « The collection of 2d 4 1 vectors {Xo, X1, ..., X4, [X0, X1], ..., [X0, X4]} spans
the tangent space at each base point.

e The collection {X1, ..., X4} is involutive (closed under commutation of vector fields).

For each h > 0 the operator P, is subelliptic by a result of [Hormander 1967], and by [Roth-
schild and Stein 1976] the operator Pj, controls %—derivatives in the Sobolev space sense. In the
semiclassical setting it is natural to work with a semiclassical notion of Sobolev spaces; we refer
to [Zworski 2012] for a treatment of semiclassical analysis. The question of interest in this paper is the
dependence on £ of the various constants in a priori inequalities for P, both in L? and semiclassical
Sobolev spaces.

Our work is motivated by that of Alexis Drouot [2017], who studied such an operator on the cosphere
bundle S*(M) of a (d+1)-dimensional Riemannian manifold M. The paper [Drouot 2017] considers the
operator P, = H 4+ hAs, with H the generator of the Hamiltonian/geodesic flow and As the nonnegative
Laplace—Beltrami operator along the fibers of the cosphere bundle. In local coordinate charts this operator
can be represented in the form (1-1), where X¢ = H, and {X J-}?:l is any local orthonormal frame for the
This material is based upon work supported by the National Science Foundation under Grant DMS-1500098.
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tangent space of the fibers of S*(M). In [Drouot 2017] it is shown that, if M is negatively curved, then as
h — 0 the eigenvalues of —i P, converge to the Pollicott—Ruelle resonances of M. The analogous result
was proven in [Dyatlov and Zworski 2015] for P, = H + hA, where A is the Laplacian on $*(M). The
interest in taking P, = H +hAg is that this operator generates what is known as kinetic Brownian motion
on M. For a treatment of this process we refer to [Franchi and Le Jan 2007; Grothaus and Stilgenbauer
2013; Angst, Bailleul, and Tardif 2015; Li 2016].

A key step in the proof of convergence in [Drouot 2017] was controlling the subelliptic estimates for
P, as h — 0. We emphasize that the estimates we prove are the same as in that paper, with an occasional
improvement in the remainder terms. The aim here is to obtain a finer microlocal understanding of the
parametrix. We obtain a parametrix valid on the region 2A > 1, strictly larger than the semiclassical
region h’A > 1. The restriction hA > 1 arises from the largest region of phase space on which the
uncertainty principle holds for the parametrix. The estimates in [Drouot 2017] were obtained through
commutator methods, analogous to the work of [Hormander 1967]. Our approach is more similar to
that of [Rothschild and Stein 1976], in that we use an approximation to the operator at each point by a
model nilpotent Lie group, and construct a parametrix from the inverse of the model operator on that
group. Estimates are then obtained from mapping properties for the parametrix. In contrast to [Rothschild
and Stein 1976], which lifted the operator to a higher-dimensional Lie group on which the parametrix
is represented as a singular integral kernel, we construct the parametrix in pseudodifferential form on
the space itself. This procedure is motivated by the author’s work [Smith 1994] on the 8}, problem on
three-dimensional CR manifolds of finite type.

When constructing a parametrix for Pj, of the form (1-1), it is more natural from the semiclassical
viewpoint to consider h P, = hXg+ Z?: 1(hX j)z, and quantize symbols in terms of /7. This leads to
placing an extra factor of 4 on the variables n” dual to Xjford+1<j<2d,since [hXo, hX;]~ thjer-
The quantization of symbols is naturally carried out using exponential coordinates with respect to an
extension of {X j}‘;zo to a frame {X J}ii@ We will require that:

Assumption 2. If 1 <i <d, then [Xg, X;] —2X;14 € span(Xo, ..., X4).

This can of course be arranged by setting X; ;s = 2[Xo, X;]. In the model nilpotent Lie group setting
where all other commutators vanish, there is a natural nonisotropic dilation structure using powers (2, 1, 3).
Precisely, we split € R?*! =R x R? x R? into (19, 1/, "), and similarly use X’ as abbreviation for
the collection (X1, ..., Xg4), and X” = (X441, ..., X24). Then the dilation that respects the fundamental
solution for the model operator is

2
8-(n) = (rno, r’s rn").
We now summarize the main result of this paper, leaving details to be expanded upon in later sections.
For simplicity consider an open set U C R?/*!, For a multi-index o € N2¢*!, Jet
order(a) = 200 + || + 3]a”|.

We use exp, (y) to denote the time-1 flow of x along Z?io yiX;j.
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Proposition 3. Given p(x) € C°(U), there is xo € Cé’o([RZdH) and an h-dependent family of symbols
a(x, n) satisfying
920%a(x, )] < Caph(h? +|o]2 + || + n"|3) =2 -order@)

with Cy g independent of h € (0, 1], so that the operator a,(x, hD) defined by

an(x, hD) = / =M a e, o, hn's 20" £ (exp, (9)) x0(») dy diy

(27T)2d+1

satisfies

ap(x, hD) o Py = p(x) +rp(x, hD),

where rj,(x, hD) is an operator that satisfies the following with C, ,, independent of h € (0, 1], for any
polynomials p;(n) on R24+1:

Ip1(Xo, h2 X' h2X") o ry(x, hD) 0 pa(Xo, h2 X' k2 X") fll 12 < Cpy ol £l 12-

For example, one can take p; or p; to yield the operator (1 + XE;XO)N (1 +hA)N2, where A is the

R2d+1

Laplacian on . These bounds roughly say that the parametrix inverts P, on the region

{A>h""YU{IXo| = 1}.

In particular, the remainder term r;, will be of order £ if the solution is localized to a region where
A > h~'=¢ for some € > 0.

We remark that in the calculus developed here Py, is of order 2, and thus distinct from the standard
semiclassical calculus where £ Py, is of order 2. This is related to the fact that we are working on the region
|n| > h'/? rather than || > 1. Symbols of order j are weighted by a factor 2 ~//2 to ensure that symbols of
negative order (but not necessarily their derivatives) remain bounded as 4 — 0. With this accounting, X
is an operator of order 2, hl/sz isof order 1 for 1 < j <d, and hl/sz isof order 3ford+1 < j <2d.

Together with the composition calculus, pseudolocality arguments, and L?> mapping bounds for
operators, we deduce the regularity results on S*(M) for Py, that were established in [Drouot 2017]. These
are stated in Theorems 20 and 21.

The outline of this paper is as follows. In Section 2 we introduce a model operator of P, on a step-2
nilpotent group, and discuss the homogeneous fundamental solution in this setting. In Section 3 we study
the degree to which the model operator, attached to M by exponential coordinates, approximates Pj,.
Careful estimates of the Taylor expansion of vector fields and exponential coordinates are needed to
obtain uniform estimates as 7 — 0. In Section 4 we prove that operators of the form a;(x, 2 D) form
an algebra under composition. This allows for the construction of parametrices from the inverse for
the model operator on the nilpotent Lie group. In Section 5 we establish L? boundedness of order-0
operators in local coordinates, using a nonisotropic Littlewood—Paley decomposition of the operator
and the Cotlar—Stein lemma. Finally, in Section 6 we establish the main regularity estimates for Py, in
h-Sobolev spaces, leading to the proof of the bounds in [Drouot 2017].
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2. Operators on model domains

In this section we consider a nilpotent Lie group structure on R>*! that captures the commutation relations
of the vector fields X;, and we introduce a left-invariant model of Pj,. The top-order term in the parametrix
for P, at a point x € U will be given by the fundamental solution for the model operator, attached to U via
exponential coordinates at x relative to the frame {X j}i‘i o- In subsequent sections we show that the model
operator agrees to leading order with the expression of Py, in exponential coordinates, and develop a graded
pseudodifferential calculus that allows us to produce a parametrix for P, modulo a smoothing operator.
We start by considering 7 = 1, and then obtain the fundamental solution for all / by a suitable dilation.

We use the variables y = (yp, ¥, ¥”) € R x R x R?, with dual variables n = (170, 17, ), and introduce
the dilation structure

8r(m) = (o, rif rn"), 8,1 (3) = Pyo, r YL Y.
We also introduce a corresponding nonisotropic homogeneous weight m € C*®(R*+1\{0}),
1
m(n) = (Inol® + 0’12 + 115 =,

so that m(8,(n)) = rm(n), and 372> <m(n) < 1 when |n| = 1.
Consider the frame of vector fields on R*?*! given by

Vo=t 0, 3500
¢ Yj=0;+yodj4qfor1<j<d,
e Yj=09,forj>d+1,

and observe that

[Yo,Y;1=2Y;44 if1<j<d,

with all other commutators equal to 0. The collection {Y j}%iO forms a nilpotent (step-2) Lie algebra.
These are left-invariant vector fields associated to the nilpotent Lie group structure on R2?*! with product
y X W = (yO + wo’ y/ + w/, y// + w//+y0w/ _ woy/)
The exponential map at base point y, and corresponding exponential coordinates, are given by
expy(w) = (yo + wo, y' +w', y" +w” + yow' —woy"), @1
Oy(2) = (20— 0,2 =¥\ 2" =" = yoz' + 20,

S0 in particular Op(w) = w.
The vector field Y is homogeneous of order 2 under §, in that

Yo(for ) =r"2(Yof)o8.,

which we summarize by writing order(Yy) = 2. Similarly, order(Y;) =1 for 1 < j <d, and order(Y;) =3
ford + 1 < j <2d. More generally, if we define the order of a multi-index « by

order(ar) = 2ag +ay + - - - +og +3gp1 + - - -+ 300g = 200 + || + 3|,



PARAMETRIX FOR A SEMICLASSICAL SUBELLIPTIC OPERATOR 2379

then the monomial differential operator y# dy will be homogeneous, with order given by

order(y”? 8;’,‘) = order(«) — order(B). (2-2)
The left-invariant differential operator Yy — Z?: 1 sz is subelliptic and homogeneous of order 2. By
[Folland 1975], it has a unique homogeneous fundamental solution K (y) € C 2 (R2+1\{0}),

d

(Yo -2 Yf) Ky =380, K@-1(y)=r®I72K(y).

j=1
The homogeneous inverse for Yy — Z?:l sz is given by convolution with K, which we will express in
pseudodifferential form. Precisely, if we let go(n) = K , then go(8,1) = r~2qo(n), and the operator

qo(D) f(y) = e O @M g () £ (2) dz dn

1
(27)2d+1 /,;gw

is a left and right inverse for Yy — Z?: 1 sz on the space of Schwartz functions.

To conclude this section we consider the semiclassical subelliptic operator 2Yy — Z?:l thjz. This is
naturally associated to dilating y and y’ by &, and y” by k2, in that

d d
(Yo -> Yﬁ) (f (hyo, hy', h?y")) = <hYof -3 thff) (hyo, hy', h*y").
Jj=1 j=1

Consequently, if we introduce the operation on symbols

an(m) =a(no, n', hn"),

then the inverse for 1Yy — 27:1 thjz is given by the semiclassical quantization of gy,

qos(hD) f(y) = e 1O @01k () f(2) dz dE

1
(2 h)2d+1 /Rw

! —i R
T @mne /R e 5 qo () f @XPy (h2)) dz d¢.

3. Approximation by the model domain

Recall that we consider a spanning collection {Xg, X1, ..., Xo4} of vector fields on an open subset U of
R24+1 satisfying the following conditions:

e The collection {X1, ..., Xy} is involutive (closed under commutation of vector fields).

e If 1 <i <d, then [Xo, X;] —2X;14 € span(Xyp, ..., Xg).
We will use x, x to denote variables in U and y, z to denote variables in R2d+1

Letexp, (y) be exponential coordinates with base point x in the frame { Xy, ..., X24}. Thatis, exp, (y) =

y (1), where y(0) = x and y'(¢) = Z?io v;X;(y(t)). Define exponential coordinates ®, as the local
inverse of exp, in a neighborhood of x:

Ox(exp,(y)) =y, exp,(O,(X)) =x.
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Recall the definition (2-2) of the order of a monomial differential operator in y. Consistent with this
we have order(Yy) =2, order(Y;) =1if 1 < j <d, and order(Y;) =3ifd +1 < j < 2d.

Lemma 4. For 0 < j <2d, we can write

(X; ) exp, () =Y;(f(exp, () + R;(x,y, dy) f (exp,(¥)),

where order(R ;) < order(Y;), in the sense that the Taylor expansion

Rj(x.y.9,) =) cjax(x)y*d
ok
includes only terms with order(y*dy) < order(Y;).
Additionally, co ok (x) = 0 unless there is at least one factor of y; with j > 1 occurring in y°.

Proof. Any term y* 9 with || > 2 is of order < 0, so we need examine the Taylor expansion of X; in
exponential coordinates only to second power in y. Additionally, order(y;y;dx) < 1, and equals 1 only if
1 <i,j<dandk>d+1. To see that such a term cannot arise in R; for 1 < j <d, the only case where
order(Y;) < I, we use involutivity of {X1, ..., X4} and the Frobenius theorem to see that this collection
remains tangent to the flowout of the subspace yo = y” =0, and hence we can write X; = ZZZI ck(x, y)o
ifyg=y"=0and 1 <j <d.

Thus, we need show that in the expansion of R; about y = 0 the terms linear in y are of order strictly
less than order(Y;). For j > d + 1 this is immediate, since X; = d; = Y; at y = 0, and any vector field
that vanishes at 0 includes terms of order at most 2. For 0 < j < d we expand

Xj=0j+ Y cjiu(®)yi+ (o,
ik

Since radial lines in exponential coordinates are integral curves of Z?io y;X;, we have

2d 2d
Do viXi=) i), (3-1)
j=0 j=0
from which we deduce
Cijk = —Cjik

Also, since [Xo, X;] —2X ;14 € span(Xo, ..., X4), we deduce for j =1, ..., d that

1, k=j+d,
Cjok = .
0, k>dandk # j+d.

Since order(y;dx) < 2 unless k > d, we deduce order(Ro(x, y, d,)) < 2.

By involutivity of {X, ..., X4}, if 1 <i, j <d then cjj;x =0 unless also 1 < k < d, in which case
order(y;dx) =0. And if i > d then order(y;0r) <0 for all k. Soif 1 < j <d then all terms c;xy; d for
i # 0 have order < 0, and since ¢ o = &, j+-« We conclude order(R;(x, y, dy)) <0if 1 < j <d.

To conclude the lemma, we note by (3-1) that if y’ = y” = 0 then X = 9y,, from which we obtain
Ro=0along yy =y" =0. O
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For x € U, and y, z in a neighborhood of 0 in R%**!, we introduce the functions

®(x7 Y, Z) = ®expx(y) (expx (Z))a @(-xv Y, 'UJ) = ®x (expexpx(y)(w))’ (3'2)

where we recall ®,(X) denotes exponential coordinates in X; centered at x. For fixed x and y these are
inverse functions of each other on their domains:

7= @(x, y,w) <<= w=0(%,y,2).

To invert in the y-variable we note that v = @(x, vy, w) implies y = @(x, v, —w).

Observe that O (x, v, z) = —0O(x, z, y), and O(x, y, z7) =z — y +O(y, z)>. For more precise estimates
on © and © we consider their Taylor expansions in exponential coordinates at x. We first assign a notion
of order to a smooth function f(x, y, z). Consistent with (2-2), we make the following definition.

Definition 5. For a smooth function f(x, y, z) defined on an open subset of U x R**! x R?¢*+! containing
U x {0, 0}, we say that order(f) < —j ifforallx e U

(B;f‘aff)(x, 0,0)=0 forall «, 8:order(e+ B) < j.

Equivalently, the Taylor expansion of f in y, z about y = z = 0 contains only monomials y*z# with
order(a + B) > j. We let order( f) be the least n € Z such that order(f) <n + 1.

Recalling the definition (2-1) of @y (2), which are exponential coordinates in the frame Y; on the model
domain, we have the following.

Lemma 6. We have ©(x, y, z7) = @y(z) + R(x,y, z), where order(R ) < order(y;) for each j. Similarly,
@(x, y, w) = @_y(w) + ﬁ(x, v, w), where order(ﬁj) < order(y;) for each j.

Proof. We work in exponential coordinates y = ©,(-) centered at x, and use Lemma 4 to consider X
as a vector field in y. Then z = (:j(x, y, w) means that z = y (1), where y (¢) is the integral curve of
w-X =) wiX; with y(0) = y. Taking the Taylor expansion of y (¢) about # = 0 and evaluating at 7 = 1
gives the following expansion of z = O(x, y, w) in terms of w:

(w- X)) w-X); (), (3-3)

=1
&=y X)) +
J J J kXZI:(k'i_l)’

where (w - X)(y, dy) acts on y and (w - X);(y) is its d; coefficient as a function of y. It is seen from
Lemma 4 that w - X does not increase the order of a function f(x, y, w), and w- X — w - Y decreases the
order of f(x,y, w) by at least 1. Also, as functions of (y, w)

order((w-Y);(y)) =order(y;), order((w-X);(y)—(w-Y);(y)) < order(y;).

Thus, if we replace w - X by w - Y in the expansion (3-3) then the right-hand side is changed by terms of
strictly lower order than y;. It follows that we can write

(20,2 7") = Yo+ wo, y +w’, ¥y 4+ w” + yow' —woy’) + (Ro, R, R"), (3-4)

where order(Ry) < —2, order(R’) < —1, and order(R”) < —3 as functions of (v, w). Recalling the
formula (2-1), this completes the second statement of the lemma.
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We next invert the map w — z to express w = w(y, z) = O(x, y, z), and use (3-4) to write
w(y.2) = 0y(2) — (Ro, R, —yoR' +y'Ry+ R") = ©,(z) — R(x. y. 2).

where R = E(y, w(y, z)). Since w is equal to z — y plus quadratic terms in (y, z), we see that R(x, y, z)
has no linear terms in y or z, and hence order(wg) < —2 and order(w’) < —1, since quadratic terms are
of order at most —2. This also shows that order(—yoﬁ’ + y/ﬁo) < -3.

To conclude the lemma it suffices to show that order(ﬁ/ "(y, 2)) < —3, since together with the preceding
this shows that order(w;(y, z)) < order(y;) for all j, from which it follows that order(ﬁj v, w(y,2) <
order(ﬁ i(y, w)) < order(y;). We know that order(w”(y, z)) < —2 since quadratic terms are order < —2,
and by the above that order(w;(y, z)) < order(y;) for j < d. Since order(ﬁ”) < —3 as a function of
(y, w), it is easy to see by examining terms in (y, w) of order < —4 that order(ﬁ’ "y < —3 as a function
of (y, z), concluding the proof. U

We make a few important additional observations about the terms that can occur in the Taylor expansion
of ®(x, y, z) about y =z =0 and O(x, y, w) about y = w = 0. First, we have

@(X,y,z)zzo_yo ify/=Z/=y”=z":O,
@(x7y9w):y0+w0 ify/:w/:y//:w//:()-

Consequently, every nonvanishing term in the Taylor expansion of R(x, y, z) about y = z = 0 must
include a factor of either y’, 7/, y”, or z”. Similarly, every nonvanishing term in the Taylor expansion of
R(x, y, w) about y = w = 0 must include a factor of either y’, w’, ", or w”.

Additionally, since the collection {X j}?: , is involutive it follows that Ry and R” vanish if yg = z9 =
y" = 7" =0, and hence every nonvanishing term in the Taylor expansions of Ry and R” must contain a
factor other than (y’, z'). Similarly Ry and R” must each contain a factor other than (v, w’). Combining
this with the fact that R(x, y, z) =0 if z = y, we can write

Ri(x,y, 0= Y €iapy*@=+ Y cjapk,y, 0y"@—y"° (3-5)
loe|+|B1=2 loe|+18]=3
1B1=1 1B1=1

for smooth functions c; g, Where c; o g = 0 unless order(y*z?) < order(y ), and also unless one of o/,
B', a”, or B” is nonzero. Additionally, if j =0 or j > d + 1 then c; o g = 0 unless one of «, By, a”, or B”
is nonzero.

The same conditions also hold on ¢; 4 g in the following expansion of R(x, y, w):

Rj(x,y,w)= Z Ej’a,ﬂ(x)yawﬁ—i- Z Ciap(x,y, w)y“w’s.
oe|+[B|=2 lee]+]8|=3
B1=1 1B1=1

4. The semiclassical calculus on U
In this section we introduce the nonisotropic semiclassical quantization and /-dependent symbol classes

that we use to construct the parametrix for P,. As seen for the model operator, the phase variables
associated to X” need to be scaled by A2, as opposed to the i-scaling for variables associated to X,
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and X'. The symbol classes are naturally associated to the nonisotropic dilation structure §,. We will
define them using the nonisotropic norm

1

1 1
m(n) = (nol®+ 101"+ 1n"1H72 ~ [nolz + |0/l + 10”3,

which is smooth for n # 0 and homogeneous of degree 1, in that m(3,(n)) = rm(n).
We assume that K is compactly contained in U, and choose r; so that the exponential map y — exp, (y)
is a diffeomorphism on the ball {|y| < r;} for all x € K. We also fix rg < r| such that

U exp);(ErO) C exp,(B)).

ieepr(E,‘o)
We fix functions x; € CZ°(B;) with xo(y) =1 for [y| < %ro and

X1(®;(-)) =1 on a neighborhood of U expi(E,O).

Xeexp, (Bry)
Given a symbol a(x, n) € C*°(U x R24+1) supported where x € K, we let
(lh(x, 77) = a(-xv 1o, 77/, h’?”)»

and define a nonisotropic semiclassical quantization of a by the rule

1 iy
ap(x,hD) f(x) = Q2 /[R4d+2 e~ My (x, m)xo(y) f (exp, () dy dn
1 .
= o€ e o) fexp Gy dydn. @D

Thus the Schwartz kernel of ay(x, hD) is supported in K x K,,, where K,, is the image of K X Ero

under (x, y) — exp,(y). In contrast to the usual semiclassical scaling n — A7, the nonisotropic scaling

(hno, hn', h?>n") arises from the missing directions X” being obtained from commutators of X and X'.
If p(x,m) = 41<n Ca(x)n* is a polynomial in 7, then

(pn(x, hD) f)(x) = pu(x, (—i8y)) f (exp, (hy))],_,.
In particular, we have the following correspondence of symbols to operators:
inj hX;, 0<j<d, in;:h’X;, d+1<j<2d. (4-2)
Suppose that the symbol a satisfies homogeneous order-0 type estimates of the form
1929%a(x, n)| < Cq,pm ()~ @,

The uncertainty principle, needed for example for proving L continuity of ay(x, h D), requires uniform
bounds on ¢ (hd,)*a,(x, n). On the other hand,

8% (hdy)ap (x, )| = K207 3% gy, (x, )|

’ ” _ P
< Cahlaol+|a [+2]e Im(no, ,7/’ hn”) 2| —le’ | =3

//l
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To have uniform bounds as 4 — 0 for every @ would require truncating a(x, n) to where m(n) > /2. 1t

is convenient to work with bounded symbols; hence for symbols of order n we will multiply by a factor

of h™"/? to ensure that symbols of any order be of size < 1 when m(n) < h'/2.

Definition 7. Let m(h, n) = (h'/?> +m(n)). A h-dependent family of symbols a(x, n) belongs to S"(m)
if, for all o, B, there is Cy g independent of 4 such that, for 0 < h <1,

020%a(x, n)| < Coph™2m(h, 7)oM),

We let W}/ (m) denote the collection of operators ay (x, hD) as in (4-1) with a € S}/ (m).
We also define S™°(m) = (e S~*(m), and let v, °(m) denote operators that can be written in the
form (4-1) with xo replaced by i, and a € S~ (m).

Remark 8. We define W, °°(m) using x; in the quantization rule (4-1) since the composition of operators
defined using xo need not have Schwartz kernel supported inside B,, (in local exponential coordinates).
We also note that results below concerning continuity and composition of symbols are independent of the
particular choice of xo. We show in Lemma 13 that replacing xo by another function in C°(B,,) that
equals 1 on B,/ changes a;(x, hD) by a term in lI/h_oo(m).

For polynomial symbols we note that
hf% order(a) n(x c Sordcr(a) (m) (4_3)
By (4-2) we then have the following examples, which will show that P;, € lIl,% (m):

Xo € W7 (m),
h2X;eWi(m), 1<j<d, (4-4)
hiX; e Wi(m), d+1<j<2d.
A more general example of a symbol in §"(m) is h="2a(m)(1 — ¢ (h~"2m(n))), where ¢ € CSO(RMH)
equals 1 on a neighborhood of 0, and a € C*®°(R*¥+1\{0}) satisfies a(8,1) = r"a(n).
It is easy to verify the following properties:
$"(m) - S" (m) C $"" (m),
§"(m) D §" (m) ifn’ <n, (4-5)
acS" (m) = /’l% order(a)ar(;(afa c Snforder(a).

Definition 9. Given a sequence of symbols a; € $"~/(m) we say thata ~ Y jaj if for all N

N-1

a— Zaj e " Nm).

Jj=0

Consequently, a is uniquely determined up to a symbol in §™%°(m).
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We note the following simple example of a symbol in S~ (m):
If ¢ € S(R) and ¢ (s) = 1 when |s| <1 then ¢(h_%m(n)) € S (m). (4-6)
That this symbol belongs to $™°°(m) is seen by noting that
A+ 2m) ™ =h>mh,m~~,

together with the bounds [9;'m ()| < Com () 7074er@) where we use that all derivatives vanish unless
m(n) > h'/?; hence m(n) ~ m(h, n), since ¢ is assumed constant near 0.

Lemma 10. Suppose that a; € S"=i(m), j € N. Then there exists a € S"(m) with a ~ Zj aj.

Proof. Fix ¢ € C°((—2, 2)) with ¢ =1 for |s| < 1. We will construct a sequence of real numbers R; > 1
with R; — oo such that for all N

Z(l — ¢(Rj_1h*%m(n)))aj(x, 1) converges in S”*N(m). 4-7)
j=N

Defining a to be this sum for N = 0 then gives the result since by (4-6), for each j,
1,1 _
¢(R;'h™2m(m)a;(x, n) € S~ (m).

The proof of (4-6) shows that the S%(m) seminorms of ¢(R~'h=12m(n)) are uniformly bounded inde-
pendent of R for R > 1. The result (4-7) follows if we choose R; so that for all ||+ [B| < j

n+l—j

|a;fa;‘(1 — ¢(R;1h_%m(7])))aj (x,n)| < 2=ip—"3 m(h, n)n—i-l—j—order(a)‘

Such R; can be chosen by observing that on the support of 1 — ¢>(Rj_lh*1/ 2m(n)) we have the bound

R 2mh, )~ <A+ R~ O

We now turn to the composition result for operators. Due to support considerations of the Schwartz
kernels involved, expressing the composition of two operators quantized using the cutoff x( requires
quantizing the symbol of the composition using the cutoff x;, but we shall later see that the difference is
an operator with symbol in S™°°. For simplicity we consider the case where the order of the composition
is negative, which is the case needed to produce an inverse for P, modulo W, > (m).

In the proof we decompose an operator a,(x, 2 D) into a sum of nonisotropic dilates of unit-scale
convolution kernels. This decomposition is also used in establishing L? bounds for order 0 operators. Let
¢ and ¢ generate a smooth Littlewood—Paley decomposition of [0, co):

L=¢(s)+ Y ¥@27s). supp(9) C [0.2), supp(¥) C (1.2). (4-8)

j=1

Given a symbol a € §"(m), we make the decomposition

a(x,n) = ph~Imm)a, )+ Y Y h 2 m)ate, n) =Y a;(x.n). (4-9)

=1 j=0
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Then a; is supported where m(h, ) ~ 2/h'/2, and thus
18£0%a;(x, )| < Co 527" (27 13)~Oer@,
It follows that ag(x, 8,12(n)) € CZ(K x {|n] < 8}) with bounds uniform over /4, and for j > 1 that
27/"a;(x, 83ip112(n)) is uniformly bounded in CSO(K X {% <|nl < 8}) over h and j.
Theorem 11. Givena € §"(m) and b € S”/(m), withn +n' <0, there is c € S"+"/(m) so that

1

an(x kD)0 by (e, hD) [ () = oy

/ e ey (x, )1 () £ exp, (1)) dydE. (4-10)

Proof. For x € K and h > 0 we can write

X1(0x () f(X) = e OB A= 8)/hy ) (y) f(exp, (v)) dy dE.

1
(27‘[h)2d+1 /
Since aj(x, hD)by(x, hD) f(x) = ap(x, hD)by(x, hD)(Xl(G)x( . ))f)(x), we know (4-10) holds with

cn(x, &) = (an(x, hD)by (x, hD)e' (O 15/ 1) ().

We thus need to show that c(x, £) = ¢, (x, &, £, h1€") € " (m).
Let a; and b; be the nonisotropic Littlewood—Paley decomposition of a and b as in (4-9), and define
cij by
(cijn(x, &) = ((@)n(x, kD) (b (x, hD)e O 19/1) (),

so that ¢ = Zij c;j. From (4-1) we can write (c;;);(x, &) as

1

_ " _: . 71 ~
It / e = RO (a7, (x, 1) (b)) (€xp, (hy), ) xo(hy) Xo(hw) dw dE dy dy.
Consider first the case i > j. We substitute w = h_1®(x, hy, hz), defined in (3-2), to write this as

1

. a1 X .
(27_[)—4,14_2/6 i(y,n)—ih <®(x,hy,hz),§>+l(z,§)ai(x’ 10, 77/7 hn”)bj(expx(hy), %o, é./’ h{”)

X x0(hy) xo(®(x, hy, hz))| D:®O|(x, hy, hz) dzd{ dy dn.
By the comments following (4-9) applied to b;, we write

bj(exp, (hy), o, &', he") xo(hy) xo(O©(x, hy, hz))|D.O|(x, hy, hz)
=27"h;(x, hy, hz, 81412 (o, ¢ he")),

where b ;i € C°(K x By, x B, x Bg), with bounds uniform over % and j, and a similar representation
holds for a; with 2/ replaced by 2/ and n’ replaced by n. We make a nonisotropic dilation of ¢ and 5 by
the factors (22/h, 27 h1/2, 237 p1/ 2), and of z and y by the reciprocal factors, to write

cij(x, €) =27 ME (x, 855 112(8)),



PARAMETRIX FOR A SEMICLASSICAL SUBELLIPTIC OPERATOR 2387

where ¢;;(x, ) is given by

1

2(i=jn
(27.[)4d+2

/ei(y,n)i((“)y(z)+R(h,x,y,Z),C>+i(Z,é)éi(x’32ji(n))
x bj(x, 85 (yo, h2y, h3y"), 853 (z0, h2Z, 32", ¢) dzdi dydn, (4-11)
where, recalling Lemma 6,
(R(h, x.,2), §) =22 Ro(x. 855 (yo. h* ¥, h2 "), 851 (z0, 32 h32")) o
i —1 o Ly Loy Ly 1y ’
+2/h72IR (x,az,j(yo,hzy,hzy ), 6p-i(z0, h2z', h2z ))-C
+ 25T R R (x, 801 (yo, h2 Y, h2y"), 855 (zo, 22 h22")) - ¢

By the support condition on Ej we have |¢] < 8. Also, if i > 1 then a;(x, n) =0 when |n| < %
We next apply the expansion (3-5) to the right-hand side. The condition on order(y*z?) ensures that
we bring out strictly more powers of 27/ than needed to cancel the powers of 2/ in front, and since there

is at least one factor of (y/, z/, ¥, z”") we also bring out a factor 4'/? to cancel off the 2~!/? in front. We
conclude that, on the support of the integrand,
IR(h, x,y,2)| = C27 [z = y|(Iyl + |z = ¥+ [y + |z = yI*),
and also
107 80F R(h. x, y.2)| < Cpap2 /(14 yP + 12— yP). (4-12)

Additionally, if we let w = O(x, v, z2)+ R(h, x, y, z), then with analogous notation we see from (3-2)
and Lemma 6 that z = C:)_y(w) + ﬁ(h, X, y, w), where

[R(R, x, y, )| < C27 wl(Iyl +wl + [y + [w]).
Consequently, since © is the inverse function to © for fixed y, uniformly over j we have

1©y(z) + R(h, x,y,2)| < Clz—y|(1+|y]* + 1z — y[»,
12— ] < Cl®y(2) + R(h, x, y, DI(1+ [y +10,(z) + R(h, x, y, 2)|*),

and hence
I+ 1y Nz =y <C1Oy(2) + R(h, x, ¥, D)1+ 0y (2) + R(h, x, y, 2)|%). (4-13)

Considering the function

gij(x,y) = f e 1M (x, 85 (n)) dny,

(27.[)4d+2

simple estimates show that

1098, (x, Y)| < Cy.q. 242D (1 4 220D yg | 42077 |y/| 4 230Dy )=V, (4-14)
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Additionally, if i > j, hence i > 1, then a; (x, ) vanishes for |n| < 1. and thus can be assumed to be of
the form |n|%a; (x, n) for similar &; (x, n). Thus, if i > j then for all k € N we can write

gij(x,y)= Yy _ 22U yre,  (x, ), (4-15)
ly|=2k

where g;; ,, (x, y) satisfies the same estimates (4-14) as g;;(x, y). On the other hand, if we set

fite,y,2) = / TIOR8, (yo, h2y' h2Y"), 851 (20, h72 h22"), £) dE.
then
f]('x’ y’Z) :p(xv y,Zv@y(Z)"i‘R(h’x’ y7Z))a

where p(x, y, z, w) is smooth in (x, y, z) and Schwartz in w. By (4-12) and (4-13) we have

1029207 £;(x, v, )| < Cn.apo(L+ |y + 1y — 2D WHEHOD Q4 (14 [y~ Hy —zp V.

x Y%y Y%

Applying (4-15) and integrating by parts in y leads to the bound, for all N, «, 8,

595 / 2 (6 1) £50xs 3 2) dy| < Cva 5224001 412N,

Since ¢;j(x, &), defined in (4-11), is 2= times the Fourier transform in z of this integral, we obtain
uniform (over i and j) Schwartz bounds on 2!~/ ¢; j(x, &), with compact support in x.

In the case j > i, we can similarly write ¢;; (x, £) = 2!+, (x, 8,-1,-1/2(£)), where we have uniform
Schwartz bounds over i and j on 2/7/¢; j(x, ). The analysis is similar to the case i > j, using instead
the following representation for ¢;; (x, &§):

1

a1 ~ _ o .
(27.[)74—2/6 ik~ YO (x,hv,—hw),n) z(w,§)+t(v,$)al.(x’ 10, 77/’hn//)bj(expexpx(hu)(_hw)’ %o, ' he")

X XQ((:j(x, hv, —hw))XO(hw)|Dv@|(x, hv, —hw)dwd dvdn.

It thus suffices to show that Zizj 2j(”+”/)5,-j (x, 8y-jp-12(8)) € S (m). We prove that

<CU+h"2mE)+".

Z 21 G (x, 8y ip-12(E))

i>j

Estimates on derivatives will follow similarly since applying o' has the effect of multiplying the j-th
term by (27/h~1/2)0rder@) We use the uniform Schwartz bounds on &; ;j to bound the sum by

Cy Y 202i- (1427 im(E)) V.
i>j>0
The sum over i is trivial. Given &, take jo so that 2/0 = h~!/2m(&). We then split

D2 L2 p i) TN < Y 2000 3 N (= ) 7N

j=z0 Jzjo J<jo
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Recall that we assume n +n’ < 0. We take N so N +n+n’ > 0. If =1/?m (&) < 1, we have only the first

sum, which is bounded by a constant. If 2~'/?m(£) > 1, then the two terms are convergent geometric

sums that both are bounded by (h~'/2m (&))"t -

Remark 12. The result of Theorem 11 still holds if one replaces the function xo(y) used in quantizing a
or b by any function y (x, y) € C°(K x B,,), since this is harmlessly absorbed into l;.,- without changing
the estimates for b ; nor the condition on the support of the Schwartz kernel.

Lemma 13. Suppose that B, x € CX°(By,), and B(y) = 0 for |y| < &, where § > 0. Suppose also that

x = 1 on supp(B). Then if a € §"(m) for some n, one can write

1 .
Gt f e 10 gy (x, £)B(y) f (exp, () dy dE
1

= (271h)2d+1

/ eIy (x, €)X (9) £ (exp, (7)) dy dE,
where r € S (m).
Proof. We write B(y) = |y|*¥ By (y) for By € C°(B,,). Since xfy = Bv, following the first part of

Theorem 11 we have equality of the two sides if r, is the symbol

rh(x, £) = / e VETII (WP Ay + 1A )N @) (x, ) By () dy dy.

(27‘[h)2d+1
By (4-5), ay = (h? Ay +h*Ay)Na € S"72V (m). We then write

1 s (So—mo &' —n" & —n"
r(X,S)waﬂN( o n )aN(x,n)dn.

We have |ay(x,n)] < Cy(1+ m(éhfl/z(n)))”_m, and Peetre’s inequality yields

L+ 185 12E =D 2N A+ m(S- 122N < Cy(1+m(8,-12(8)" 2N,

which shows that |r(x, £)| < CyhNm(h, )N for all N. The term 8fagr(x, £) comes from the same
convolution applied to 8f 8,‘;‘ ay(x,n), and we conclude r € S~°. O

Corollary 14. Suppose Py is as in (1-1). Given p € C°(K?), there is a symbol q(x, &) € S™2(m), with
principal symbol hp(x)(1 — ¢ (h™'2m(&)))qo(£), so that

gh(x,hD)o P, =p(x)+ R, RE€ \I‘h_oo(m).
Proof. Fix p(x) € C°(K) with p = 1 on a neighborhood of supp(p). Define
Go(§) = h(1— §(h™2m(£))qo(&),

where go(€) is the Fourier transform of the fundamental solution for Yy — Z?:l sz, as defined in Section 2,
and ¢ is as in (4-8). Then p(x)Go(£) € S2(m). We first show that

p(X)Go.n(hD) o Py = p(x) —ry(x, hD), r'eS'(m).
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By the construction of go(§) we have

1

d
o [ hana @) (-1 3 1) o0 0 d d = 7,
j=1

where the Y; are the model vector fields acting in the y-variable. Replacing hgo by go changes the
composition by an order-0 symbol supported where m(£) < 2h!/2, hence by a symbol in S~
Generally, we see that for f(x, y) compactly supported in y we can write

/e_"<y’5>/h§0,h(E)y"’aff(x,y) dy dg :/e""yf>/hbh($)f(x,y) dy dg,
where
b(x,&) = i|/3\—Ialhao+|a’\+2\a”|—|ﬁ|agéﬂqo(s).

By (4-3) and (4-5), we know that
h% order(a)fé order(8) 8;(%_/3&0 (5) c Sorder(ﬂ)forder(a)72(m)‘

Recall that
(X; f)exp, () = (Y; + Rj(x,y,9y)) f(exp,(¥)),

where the Taylor expansion of R; contains terms y* 85 of order strictly less than order(Y;), and where
|B] = 1. Since commutators of X; with xo lead to terms of order —oo, we need show that

1

T f e Mgy (€) Ro(x, v, 3y) xo(v) f (exp, () dy d&

is an operator of order —1 in f. For the terms that arise in the Taylor expansion of Ry we have
order(8) — order(«) < 1, so we need check for such terms we also have

oo + || +2la”| = | B| = 5 order(e) — 5 order(),

in order to match up the powers of &. Since |8| =1 and order(«) = 2 + |’ | + 3]e”’|, this holds provided
that |o’| + |a”| > 1, which is the case for Ry by Lemma 4.

We similarly need check that this is an operator of order —2 if Ry is replaced by 2!/ R jwithl <j<d.
Since order(8) — order(c) < 0 in this case, this reduces to verifying that

ao+ || +2]a”| — |B] +% > %order(a) - % order(B),

which always holds if |8] = 1.

We note that the remainder term in the Taylor expansion will also be of the desired order, but with
xo(y) replaced by ¢; o x(x, ¥) xo(y). By Remark 12 this does not affect the conclusion of the corollary,
since the form for g, will involve composition with r}l (x, hD).

By Theorem 11 we can recursively define symbols 7/ € S~/ (m) for j > 2 by the rule

rl(x,hD)or)(x, hD) f (x) = e ST ()41 () f (exp, (7)) dy dE,

1
(zﬂh)Zd—H /



PARAMETRIX FOR A SEMICLASSICAL SUBELLIPTIC OPERATOR 2391

where we recall that r;{ (x, hD) is quantized using xo. Let r ~ > 72, rd, sor e S™'(m). Also define
q € S$72(m) so that

1 .
PO+, RD)A@)GonhD) f () = (s / e 0 gy (x, &) x1 () f (exp, (1)) dy d§.

By the above and Lemma 13, the following operator is in W, *°(m):

Rf(x)= / e 0 g (o €)Y (1 (9) — X0 () (Po f)(exp, () dy dE.

(Znh)z‘“']
Thus, modulo W, *(m) we have
qn(x, hD) o Py = p(x)(I +r;(x, hD))(p(x) — ri(x, hD)).

Next we choose 6§ > 0 so that p(exp,(y)) = 1 if x € supp(p) and |y| <4, and take x5 € C°(B;) with
X5 = 1 on 35/2. Then

p()rp(x, hD)((1 = p) f)(x)
1

= Oy / e OB p ) (x, £) (X0 (y) — xs () ((1 = ) £)(exp, () dy d&,

so by Lemma 13 we have, modulo \l/h_oo (m),
gn(x,hD)o P, =p(x){ +rp(x, hD))(I — r,ll(x, hD)).

Finally, since the difference between using x; instead of xq in the quantization of /*! gives a term in
W, °(m), we see that g;,(x, hD) o P, = p(x) modulo W, *°(m). O
Remark 15. The above proof shows the following composition result concerning partial differential
operators. Suppose
Y N T RN 00
Pi= Y ca®X"(hZX) (h2 X", co(x) € CX(K).
order(a)<n’

Then if a € §"(m), we can write a,(x, hD) o P, f and P, oay(x, hD) f in the form

1

i / e 0 My (x, £)x () f (exp, (v)) dy dE

for x € C2°(B,,) and b € §"+" (m).

5. L? boundedness for order-0 operators

Given a symbol in $"(m) we decompose a = ) jaj asin (4-9). The operator a; ;(x, h D) is given by the
following integral kernel on U x U with respect to the measure dm (x), where w(x, X)dm(x) = exp}(dy):

K (x, 8) = wix, 5005 (©) / OO (e hap) dy.
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We can write a;;(x, hn) = 2/"a;(x, 272 no, 27/ h'/2y, 2737 n1/2y"), where a;(x, n) € CX(K x Bs),
with uniform bounds over j. Furthermore, a; vanishes for |n| < % if j>1.

Consequently, there are Schwartz functions p;(x, y), supported for x € K with Schwartz norms
independent of j, so that

(™ K ) (x, exp, () = 2720 D= (22 yo 27072y, 23Ry ") xo(y), (5-1)
and in particular, for all N,
K j(x, £)] < Cy2/m2i CHDp=d (1 422110, (F)o| + 27873 |0, (B) |+ 27 h 210, (®)") V. (5-2)
If a € ST then (5-1) holds for all » € Z, and summing over j we obtain the following.

Corollary 16. Ifa € S°°(m), then a,(x, h D) is given by a smooth integral kernel K (x, X) in the measure
dm(X), so that for some Schwartz function p(x,y), supported for x € supp(a),

_ _ _1 _1
(w ' K)(x, exp, (7)) = p(x, yo, B2y, B2y ) x0(y)-

We next observe that the vector fields 272/Y,, 27/h!/2Y’, and 273/ h'/2Y" acting as differential
operators in y all preserve the form (5-1) of w™!K j» that is, they give an expression of the same form
with p; uniformly bounded over j in each Schwartz seminorm.

The same holds for the operators 272/ X, 277 h'/2 X', and 273/ h'/2 X", acting on K j(x, X) as differential
operators in either the x- or X-variable. For action in the X-variable, this follows by Lemma 4, where
we use that there is at least one factor of y’ or y” in the expansion of Ry(x, y, d,) to compensate for the
factor of h~!/2 coming from the 0y and d,~ terms in the expansion of X(. For action in the x-variable we
work in coordinates x = exp;(y), hence x = exp, (—y), to write

(™ K ) (exps (), ) = 27121 CHD R~ o (expr (), =22 yo, =2Th 2y, =2 h 72y ) xo(—=y). (5-3)
To summarize, for a € §" (m), we can write
Q¥ X2 Thr Xy 2 ¥ hi X" K j(x, ¥)
=2/ T = (x, 220, (R)0, 2 h 20, (R), 2 R3O, () ) (X, ), (5-4)
where the functions p; o and y, satisfy seminorm bounds that depend on «, but are uniform over j and h.
This holds with any given vector X in the product acting as a vector field in x or X.

Conversely, suppose that j > 1, so that a;(x, n) € C¥ (K X {% <In|l < 8}) Then for any ¢, dividing

aj by |n|>¢ shows that we can write

(w™ 'K ;) (x,exp, ()

=2/ CHDR= Ny (e, @M, 29" 27 R0 0y (6,2 y0, 27071y, 25 1y
|a|=2¢

for Schwartz functions p; , that are uniformly bounded over j, and x, € C°(K x By)).
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Using Lemma 4, we write

dy, = Xo+y - X" — Ro(x,y, dy) — y - R"(x,y, dy),
0y = X"—yoX" = R'(x, y,0,) +yoR"(x, y, dy),
B = X' = R'(x. 3,8,

where the X; act in y. Substituting this into R(x, y, d,), and using that the X; form a smooth frame, we
can expand each dy; as a finite sum over 2 < || < 3:

dyy=Xo+y - X"+ Z co.ak(x, y)y* Xy,  order(Y;) — order(a) < 2,

o,k
Byj =X; —yoXjia +ch,a,k(x, VY* Xy, order(Yy)—order(a) <1, 1<j<d,
ok
dy, = X, + Zc,-,a,k(x, WY X, order(Yy) —order(a) <3, d+ 1< j <2d.

o,k

Additionally, cg 4 x = 0 unless either &’ # 0 or & # 0.
Let X ;j denote the transpose of the differential operator X; with respect to dy. Taking the transpose of
the above identities, it follows that, with the X ;j acting on y, we can write

(W™ K ) (x,exp, (1))

—2ImiCHD =0 3™ (32 X)X @I REX Y (6,250, 20h 2y, DYy,
loe|=2¢

where the p; , may depend on A, but with uniform Schwartz bounds over 0 </ <1 and j € N. Expressing

the action of X in terms of X, this leads to the expansion

Kj(x.5) = Z Z 9= Order(a)()_(o)ﬂo(h%)_(/)ﬂ/(h%)?//)ﬂ”Kj,a,ﬂ(X, %)
la|=2¢ B=a
for kernels K ; o g satisfying (5-2) with Cy depending on £ but uniform over j, o, 8. Here we can take
X ; to be the transpose of X; with respect to dm(x), since that differs from the transpose with respect to
dy by a smooth function.

Theorem 17. Ifa € SO(m), then ay(x, hD) is a bounded linear operator on L%(U), with operator norm
depending on only a finite number of seminorm bounds for a(x, &). In particular, the operator norm is
uniformly bounded over 0 < h < 1.

Proof. We decompose ay, (x, hD) = Z?io ajp(x, hD). Using (5-1) and (5-3) it is easily verified that the

kernel K (x, X) of a;;(x, hD) satisfies the Schur test,

sup/Kj(x,f)dm(i)fc, sqp/Kj(x,)E)dm(x)fc.

X
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We deduce L? boundedness from the Cotlar—Stein lemma (see [Knapp and Stein 1971; Stein 1993]), by
showing that, for any N € N,

llain(x, ADY*a; 5 (x, AD) || 2 12 + llain(x, AD)aj p(x, RD)*|| 2, 2 < €27 NI (5-5)

for a constant C uniform over 4 and j. If i = j this follows from L? boundedness of each term, so
without loss of generality we consider j > i > 0, and in particular j > 1. Given £ € N we then write the
integral kernel of a; 5, (x, hD)a; ;(x, hD)* as

/K,-(x, w)K;(x, w)dm(w)

= f KiGrow) Y3 277 oder@ X o)bo 2 XF (h2 X" K (r, w) dim (w)

la|=2¢ f<c

= Z Zziorder(ﬂ)_jorder(a)/Ki,ﬂ(x, w)Kj o p(x, w)dm(w),

la|=2¢ B<a

where K, g(x, w) = (272 Xo)Po (2~ h'/2X") (273 h'/2X")P"K;(x, w), and in all cases X acts on w.
Since i order(B) — j order(o) <2£(i — j), by using (5-4) and the Schur test on the composition we obtain
the bound (5-5) with N = 2¢ for the term a; ha;" »- To handle the term a;f »a;j.n We use the same argument,
together with symmetry of the derivative estimates in x and x. O

We note the following result for a € $"(m), which holds since 277" j(x,n) e SO(m),

sup2™"[laj n(x, AD) fll 2wy < Cll fll 2wy, @ € S™(m). (5-6)
Jj=0

6. Estimates on S*(M)

Let (M, g) be a compact Riemannian manifold of dimension d + 1, and $*(M) C T*(M) its unit cosphere

bundle. We consider the Hamiltonian function %I;‘ Ié(z) = % ﬁil gik (2)¢i &y, and recall that S*(M) is
the level set |¢[g;) = 1. We use Xo = H to denote the Hamiltonian field for %|§ |§(Z),
d+1 d+1
Xo= Y g @i — 5 Y 0,8 @Gz,
ik=1 i jk=1

which is tangent to S*(M).

We cover S*(M) by a finite collection of open coordinate charts as follows. Let {V,} form a finite
covering of M by coordinate charts, over which we can identity 7*(M) with V,, x R¢*! and §*(M) with
Vo x S%. We cover S by two coordinate charts W over each of which there is a section of the frame
bundle. We thus obtain a cover of §*(M) by open charts {V, x W}, which by counting each V,, twice
we can label as U,, such that on U, there is an orthonormal collection {X j}?=1 of vertical vector fields
that span the tangent space to (M) over each z € V. The collection {X; }?:1 is involutive, since it
spans the vertical vector fields on U,,.
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There is a natural isometric identification T, (7.*(M)) ~ T,(M), which identifies {X |, ;)}?:1 with an
orthonormal collection of vectors {)? j}?zl C T,(M), which are also orthogonal to 7. (Xol(,¢)). We let
Xyl be —% times the horizontal lift of X ;. We observe that

d+1
TX), Xol = Y g% () X6, = Xj,
i k=1
so that [ Xy, X;]1 —2X ;4 € span{X j}?:r Thus the assumptions of the Introduction are satisfied for the
collection {X j}i‘i 0

Let As be the induced nonnegative Laplacian acting on the fibers S¥(M) of the bundle, and let A be
the nonnegative Laplacian on $*(M). See for example [Drouot 2017, Section 2.1] for details, where it is
shown that A and Ag commute. One verifies that, over each U,, one has

d d
Ag = — Zx}+zc,~(z, OX;.
j=1 j=1

We now use x € R??*! to denote the variables on U,, and define

d d
Pi=H+hAs=Xo— Y hX;+ ) c;(x)hX;.
j=l1 Jj=1
Thus on each Uy, the operator P}, differs from the sum of squares considered previously by an operator in
h'/ Z‘I’;l, (m), and the pseudodifferential calculus shows that, given x, € CS°(Uy), there exists a symbol g, €
S~2(m), the quantization of which depends on ¥, through the choice of g in (4-1), so that on U, we have

Go,h(x, hD) o Ppu = xo(x)u + Ryu, Ry € LIjh_oo(””)

Note that both gy j,(x, D) and R, are properly supported in U,. We now take a partition of unity xq
subordinate to the cover U,, and define

Qnv=> qan(x.hD)v, Rv=> Ryv.
o o

Then Q0 P, = I + R, and for all Ni, N, we have
1AM R(AYNull 125+ aay) < Cwviows el 225 (ary) - (6-1)

This follows from Theorems 11 and 17 and the fact that A A € \IJ}?(UO[) for each o, which follows from (4-4).
More generally, we define W) (m) on $*(M) as sums > o Ga,n(x, hD) with a, € S?(m) on Uy. The
function yo in the quantization (4-1) depends on the x-support of a, (x, ), which is always assumed to
be a compact subset of U,.
The semiclassical Sobolev spaces are defined on S*(M) using the spectral decomposition of A, with
norm

L e = (1412 A2 £l 2.
We will consider cutoffs p(s) satisfying, for some ¢’ > ¢ > 0,

p(s) € C*(R), p(s)=0 ifs<c, ps)=1 ifs>c. (6-2)
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The operator p(h?A) is then defined as a spectral multiplier. We observe the following simple result for
R € ¥, *(m) on S*(M). For all N and o we have

lo(B* A)Rull e + | Rp (> Aull g < Cn.oh™ llull 2. (6-3)

This follows by writing p (h2A)(1 +h>A)° = f(h*A) o (h* A)N, where the function f(s) is a bounded
function provided N > o, and using (6-1).

Theorem 18. Suppose that o < 0, that A, € Y} (m), and that p satisfies (6-2). Then
o (h* A) Apal yors + | Anp (> Ayl yors < Ch™O ] 2.
Proof. Choose k so 6k + o > 0. For each i € (0, 1], we show that A, = Ay ; + A1, where
12 2)* Ag pull 2 + 1 Ao (h* D) ul 2 + A ptel yos < Ch™ Ol 2.

The result then follows since p(s) < min(s¥, 1). Using the Littlewood—Paley decomposition as in the
proof of Theorem 17, applied to each a, in the sum defining a, we let

Aon= Y aju(x,hD), A= > ajs(x,hD).

2/ <h=1/6 2/>p=1/6

Recalling the form (5-4), we see that applying h?A to a j,n(x, hD) is equivalent to multiplying it by at
most 2% /1. As in the proof of (5-5) we conclude that

(1 +h2A)a;,(x, hD)a; (x, hD)*(1 4+ k> A || 2 12 < (1425 ) (1 4287 pykpo GHD=li=il,
Js ,
For 27,2/ > h~1/6 we interpolate with the L? bounds (5-6) to obtain
1L+ A2 A) = %a; (e, hDYay (e, DY (14> A) ™| 2, 12 < Ch™7/P27 1L,

This estimate also holds for the transposed operators. The Cotlar—Stein lemma then implies the bounds
for Al,h .
Similarly, we have

(> AY aj e, DY 2o 12+ llajn (e, ADY(R* A)* | 20, 2 < C 2% ) 2%,
which we may sum over 2/ < h~!/% to conclude the bounds involving Ag . O
Corollary 19. Suppose that o <0 and Ay, € ¥} (m). Then
I +hA) 77 Apull 2 < Cllull 2.
Proof. As in the proof of Theorem 18 we observe that, for k =0, 1,2, ...,
I(1+RA)Y ajp(x, hD)ai (e, RDY*(1+h A o, g2 < 20D 20 GHD=IT
We interpolate between k = 0 and any k > —o/6 to obtain
(1 +hA) % (x, hD)a; y(x, AD)*(1 +hA) /0| 12, 2 < €271,

This estimate also holds for the transposed operators. The Cotlar—Stein lemma then implies the result. []
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Theorem 20. The following bound holds for h € (0, 1] and all N € N:
1 _
IHull2 4+ hll Asull 2 + (1 +hA)3ull 2 < Cll Pyull 2 4+ Cyll(A+2A)Nul 2.

Proof. Write u = Qj, P,u+ Ru, where Qj, € \llh_z(m), and note that H Qj, hAsQj € \IJ}?(m) by Remark 15.
Also, for all N we have HR(1 +hA)N, hAsR(1+hA)N € WP (m); hence

IHRull 2 + Rl AsRull 2 < Cyll(1+hA)Vul 2.
Since Qp, R(1+hA)N € \D,Z_Z(m), the result then follows by Corollary 19. Il
Theorem 21. Suppose that p; and p; satisfy (6-2), and p» = 1 on a neighborhood of supp(p1). Given
Ao > 0, the following holds for all N, and all |)| < o and h € (0, 1]:

d

_1 2 1 2 2 2

W3 o1 (B> Ml o +h3 Y 1 X1 (W2 A)ull s + 11 Xopr (B Aul 2 + | hAspr (W2 A2

j=1

< Cnao (o2 (B> APy = Ml 2 + Y el 2).
Proof. We follow the scheme of the proof of Theorem 2 of [Drouot 2017], using the parametrix Qy of Py
to replace the positive commutator arguments. Write
pr(R* Dyu = Q11 (B> A) (P = M+ QnlPr, o1 (B> A)1u+ 1011 (0> A)u + Rpi (0> A)u.

To handle the commutator term, we use that [As, p1 (h2A)] = 0; hence [Py, p1 (h*A)] = [Xo, p1(h2A)].
Now let p;(s) be any function satisfying (6-2) which equals 1 on a neighborhood of supp(p;). Then
following [Drouot 2017], we use that the essential support of [ Xy, p1(h?A)] is contained within the
elliptic set of p(h*A), and we can thus bound

ILPx, 1 (R* M) Jul 2 < Cll A1 (B M) ull 2+ Cvh™ ul] 2.
Applying Theorem 18 and (6-3) we obtain

d
1 1 1
W3 (W Aull s +h78 Y 1A X (W2 Aull i + [ Xopr (W2 Aull 2 + [ As pr (0 Al 2
j=1

< C(lp1(W*A)(Py — Mull 2 + 151 (R Mull 2 + (1 + [AD o1 (B> Al 2) + CnhN [Jul 2.

For & bounded away from 0 we can absorb the term (1 + |A|) ||,01(h2A)u||Lz into CyhN lu]l;2, and for A
small we can subtract it from both sides.
From this we deduce the following bound for any such p;:

1 |
o1 (B* Aull 2 < Cwv g (B3 192 (W2 AY(Py — Mull 2 + 13 1|51 (2 A)ull 2 + 1" llul 12).

We now choose a sequence of cutoffs p; for 1 < j <3N, satisfying (6-2), such that for all j we have
pj+1 =1 on a neighborhood of supp(p;), and p, = 1 on a neighborhood of supp(o;). Then replacing p;
by p;, the preceding estimate shows that

~ 1 .
15 (h*A)ullz2 < C g (h3 12 (B> A)(Py — Mull g2 4+ h3 1541 (W A)ull 2 + AN [Jull 2).
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We conclude by iteration that
- 1
151 (h* Aull 2 < Ci g (R3 1 p2(h* AY (P — Mull g2 +hV || o2 (B Ayull 2 + hV |ull .2)
1
< C o (B3l p2 (B2 DY (Py — Mull 2 + AN [lull .2).

Together with the above this yields the statement of the theorem. U
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ON THE PROPAGATION OF REGULARITY FOR SOLUTIONS OF
THE DISPERSION GENERALIZED BENJAMIN-ONO EQUATION

ARGENIS J. MENDEZ

To my parents

We study some properties of propagation of regularity of solutions of the dispersive generalized Benjamin—
Ono (BO) equation. This model defines a family of dispersive equations that can be seen as a dispersive
interpolation between the Benjamin—Ono equation and the Korteweg—de Vries (KdV) equation.

Recently, it has been shown that solutions of the KdV and BO equations satisfy the following property:
if the initial data has some prescribed regularity on the right-hand side of the real line, then this regularity
is propagated with infinite speed by the flow solution.

In this case the nonlocal term present in the dispersive generalized Benjamin—Ono equation is more
challenging that the one in the BO equation. To deal with this a new approach is needed. The new
ingredient is to combine commutator expansions into the weighted energy estimate. This allows us to
obtain the property of propagation and explicitly the smoothing effect.
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1. Introduction

The aim of this work is to study some special regularity properties of solutions to the initial value problem
(IVP) associated to the dispersive generalized Benjamin—Ono equation

{8,u—D§‘+18xu—|—u3xu=0, x,teR, 0<a <, (1)

u(x,0) =uo(x),
where DY, denotes the homogeneous derivative of order s € R,
D} =(=3)% thus Djf=c, (& f(€)),

This work was partially supported by CNPq, Brazil.
MSC2010: primary 35Q53; secondary 35Q05.
Keywords: dispersive generalized Benjamin—Ono equation, well-posedness, propagation of regularity, refined Strichartz.
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which in its polar form is decomposed as D} = (H0d,)’, where H denotes the Hilbert transform

Hf(x) =~ lim T 4y (Cisen() f&)) o),

T e—>0" Jiy|>e y
where © denotes the Fourier transform and ~ denotes its inverse. These equations model vorticity waves
in the coastal zone; see [Molinet et al. 2001].

Our starting point is a property established by Isaza, Linares and Ponce [Isaza et al. 2015] concerning
the solutions of the IVP associated to the k-generalized KdV equation

du+du+ufdu=0, x,teR, keN,
u(x,0) =up(x).

It was shown in [Isaza et al. 2015] that the unidirectional dispersion of the k-generalized KdV equation

(1.2)

gives the following propagation of regularity phenomena.

Theorem 1.3 [Isaza et al. 2015]. Ifug € H34" (R) and for somel € 7, | > 1 and xo € R

o
80001 = [ 10t P < o0, (1.4
X0
then the solution of the IVP associated to (1.2) satisfies that for any v > 0 and € > 0
oo
sup / @Ju)?(x,)dx < ¢ (1.5)
0<t<T Jxp+e—vt

forj=0,1,2,...,lwithc=c(l, ””0”H3/4+(IR3); ”a)lcu()”Lz((xo,oo)); v; €; T). In particular, forallt € (0, T],

the restriction of u( -, t) to any interval (xg, 00) belongs to H'((xq, 00)).
Moreover, forany v >0, € >0and R > 0

xo+R—vt
/ / 81+1u)2(x, t)dxdr <c,

o+e—vt

with ¢ = c(l; uol s gys 185101 12((x0,00))3 Vs €5 R; T).

The proof of Theorem 1.3 is based on weighted energy estimates. In particular, the iterative process in
the induction argument is based on a property discovered originally by T. Kato [1983] in the context of
the KdV equation. More precisely, he showed that solution of the KdV equation satisfies

T rR
f f @) (x, 1) dx dr < ¢(R: T lugl 2). (1.6)
0J—R

where this is the fundamental fact in his proof of existence of the global weak solutions of (1.2) for k =1
and initial data in L2(R).

This result was also obtained for the Benjamin—Ono equation [Isaza et al. 2016a] but it does not follow
as the KdV case because of the presence of the Hilbert transform.

Later on, [Kenig et al. 2018] extended the results in Theorem 1.3 to the case when the local regularity
of the initial data ug in (1.4) is measured with fractional indices. The scope of this case is much more
involved, and its proof is mainly based in weighted energy estimates combined with techniques involving
pseudodifferential operators and singular integrals. The property described in Theorem 1.3 is intrinsic
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to suitable solutions of some nonlinear dispersive models; see also [Linares et al. 2017]. In the context
of two-dimensional models, analogous results for the Kadomtsev—Petviashvili II equation [Isaza et al.
2016b] and the Zakharov—Kuznetsov [Linares and Ponce 2018] equation were proved.
Before stating our main result we will give an overview of the local well-posedness of the IVP (1.1).
Following [Kato 1983] we have that the initial value problem IVP (1.1) is locally well-posed (LWP) in
the Banach space X if for every initial condition ug € X there exists 7 > 0 and a unique solution u(t)
satisfying
ueC(0, T]: X)NAr, (1.7)

where A7 is an auxiliary function space. Moreover, the solution map ug + u is continuous from X into
the class (1.7). If T can be taken arbitrarily large, one says that the IVP (1.1) is globally well-posed
(GWP) in the space X.

It is natural to study the IVP (1.1) in the Sobolev space

H'®R)=(1-0)"2L*R), seR.

There exist remarkable differences between the KdV (1.2) and the IVP (1.1). In case of KdV, e.g., it
possesses infinite conserved quantities, defines a Hamiltonian system, has multisoliton solutions and is a
completely integrable system by the inverse scattering method [Coifman and Wickerhauser 1990; Fokas
and Ablowitz 1983]. Instead, in the case of the IVP (1.1) there is no integrability, but three conserved
quantities (see [Sidi et al. 1986]), specifically
I _ / _ / 2 _ 1 / oo 1 / 3
[ul(t) = | udx, Mul(t)= | u"dx, Hlul()= |Dy? ul|”dx u’ dx,
R R 2 Jr 6 Jr

are satisfied at least for smooth solutions.

Another property in which these two models differ resides in the fact that one can obtain a local
existence theory for the KdV equation in H*(R), based on the contraction principle. On the contrary,
this cannot be done in the case of the IVP (1.1). This is a consequence of the fact that dispersion is not
enough to deal with the nonlinear term. In this direction, Molinet, Saut and Tzvetkov [Molinet et al.
2001] showed that for 0 < o < 1 the IVP (1.1) with the assumption ug € H*(R) is not enough to prove
local well-posedness by using fixed-point arguments or the Picard iteration method.

Nevertheless, Molinet and Ribaud [2006] proved global well-posedness by considering initial data in a
weighted low-frequency Sobolev space. Later, using suitable spaces of Bourgain type, Herr [2007] proved
local well-posedness for initial data in H*(R)N H~(R) for any s > —37“, w= a—}rl — % where H ™ “(R) is

a weighted low-frequency Sobolev space (for more details see [Herr 2007]); next by using a conservation

1 1
atl 2
In this sense, an improvement was obtained by Herr, Ionescu, Kenig and Koch [Herr et al. 2010], who

law, these results are extended to global well-posedness in H*(R) N H ““(R), fors >0, w =

showed that the IVP (1.1) is globally well-posed in the space of the real-valued L?(R)-functions by using
a renormalization method to control the strong low-high frequency interactions. However, it is not clear
that these results described above can be used to establish our main result. Thus a local theory obtained
by using energy estimates in addition to dispersive properties of the smooth solutions is required.
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In the first step, we obtain the following a priori estimate for solutions of IVP (1.1):

c||Oxul|
lullzeoms S llugllpse HrEes

T “x Y

part of this estimate is based on the Kato—Ponce commutator estimate [1988].

The inequality above reads as follows: in order for the solution « to lie in the Sobolev space H*(R),
continuously in time, we must control the term ||y u/||; 1L

First, we use results of Kenig, Ponce and Vega [Kenig et al. 1991a] concerning oscillatory integrals in

order to obtain the classical Strichartz estimates associated to the group S(z) = ¢’ Dyl

, corresponding to
the linear part of the equation in (1.1).

Additionally, the technique introduced in [Koch and Tzvetkov 2003] related to the refined Strichartz
estimate is fundamental in our analysis. Specifically, their method is mainly based in a decomposition
of the time interval into small pieces whose lengths depends on the spatial frequencies of the solution.
This approach allowed Koch and Tzvetkov to prove local well-posedness for the Benjamin—Ono equation
in H5/*" (R). Then, Kenig and Koenig [2003] enhanced this estimate, which led to proving local well-
posedness for the Benjamin—Ono equation in H%/3" (R).

Several issues arise when handling the nonlinear part of the equation in (1.1); nevertheless, following
the work of Kenig, Ponce and Vega [Kenig et al. 1993], we manage the loss of derivatives by combining
the local smoothing effect and a maximal function estimate of the group S(t) = e'% o,
These observations lead us to present our first result.

Theorem A. Let 0 < a < 1. Set s(x) = % — %“ and assume that s > s(a). Then, for any ug € H*(R),

there exists a positive time T =T (||uo|| usw)) > 0 and a unique solution u satisfying (1.1) such that
ueC(0,T]: H*(R)) and d.u e L'([0,T]: L®(R)). (1.8)

Moreover, for any r > 0, the map uo — u(t) is continuous from the ball {ug € H*(R) : luollgsw) <1}
to C([0, T]: H*(R)).

Theorem A is the base result to describe the propagation of regularity phenomena. As we mentioned
above, the propagation of regularity phenomena is satisfied by the BO and KdV equations. These two
models correspond to particular cases of the IVP (1.1), specifically by taking « =0 and o = 1.

A question that arises naturally is to determine whether the propagation of regularity phenomena is
satisfied for a model with an intermediate dispersion between these two models mentioned above.

Our main result gives answer to this problem and it is summarized in the following:

Theorem B. Let ug € H*(R), with s = 3%"‘, and u = u(x, t) be the corresponding solution of the IVP
(1.1) provided by Theorem A.
If for some xo € R and for some m € Z*, m > 2,

0'uo € L*({x = xo}), (1.9)
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then foranyv >0, T >0, e >0andt > €

o
sup / (8u)?(x, 1) dx
0<t<T Jxg+e—vt

T pxo+t—0t atl xXo+T— vt il
+f/ (Dy? Bfu) (x, t)dxdt—i—// 2 Hafu) (x,t)dxdr <c (1.10)
X X

o0+e—vt o+e—vt
for j=1,2,....m,withc=c(T; €; v;a; fuollms; 1197 uoll £2((xg,00))) > 0.
If in addition to (1.9) there exists xo € R* with
1—

D,” 8"ug € L2({x > xo}) (1.11)

then foranyv >0, € >0andt > €
o0 l—a
sup / (Dy* 3™u)*(x, 1) dx
X

0<t<T Jxp+e—vt
T pxo+t—0t T pxo+t—0t
+/f (8;”+1u)2(x,t)dxdt+// @™ Hu)? (x, ) dx dr < ¢, (1.12)
0 Jx 0 Jx

0+€—vt 0+e—vt

1—a)/2
D~/ Ay uoll 2((xp,00))) > 0.

with ¢ = c(T; €; v a5 |luoll as; |
Although the argument of the proof of Theorem B follows in spirit that of KdV, i.e., an induction
process combined with weighted energy estimates, the presence of the nonlocal operator D;‘“ax in the
term providing the dispersion, makes the proof much harder. More precisely, two difficulties appear, the
most important of which is to obtain explicitly the Kato smoothing effect [1983], which in the proof of
Theorem 1.3 is fundamental.
In contrast to the KdV equation, the gain of the local smoothing in solutions of the dispersive generalized

Benjamin—Ono equation is just 3= O‘+1

derivatives, so as occurs in the case of the Benjamin—Ono equation
[Isaza et al. 2016a], the iterative argument in the induction process is carried out in two steps, one for
positive integers m and another one for m 4 15¢ 5> derivatives.

In the case of the BO equation [Isaza et al. 2016a], the authors obtain the smoothing effect basing their
analysis on several commutator estimates, such as the extension of Calderén’s first commutator for the
Hilbert transform [Baishanski and Coifman 1967]. However, their method of proof does not allow them
to obtain explicitly the local smoothing as in [Kato 1983].

The advantage of our method is that it allows us to obtain explicitly the smoothing effect for any
a € (0,1) in the IVP (1.1). Roughly, we rewrite the term modeling the dispersive part of the equation in
(1.1) in terms of an expression involving [7—{,D§‘+2; Xz »]. At this point, we incorporate results of [Ginibre
and Velo 1991] about commutator decomposition. This allows us to obtain explicitly the smoothing effect
as in [Kato 1983] at every step of the induction process in the energy estimate. Additionally, this approach
allows us to study the propagation of regularity phenomena in models where the dispersion is lower in
comparison with that of IVP (1.1). We address this issue in a forthcoming work; specifically we study the
propagation of regularity phenomena in real solutions of the model

o — DY ou+udyu=0, x,teR, O<a<]l.
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As a direct consequence of Theorem B, one has that for an appropriate class of initial data the singularity
of the solution travels with infinite speed to the left as time evolves. Also, the time reversibility property
implies that the solution cannot have had some regularity in the past.

Concerning the nonlinear part of IVP (1.1) in the weighted energy estimate, several issues arise.
Nevertheless, following the approach of [Kenig et al. 2018], combined with [Kato and Ponce 1988; Li
2019] on the generalization of several commutator estimates, allows us to overcome these difficulties.

Remark 1.13. (I) It will be clear from our proof that the requirement on the initial data, that is, ug €
HG~9/2(R) in Theorem B, can be lowered to H(©—30/8)+(R).

(II) Also it is worth highlighting that the proof of Theorem B can be extended to solutions of the IVP

{8tu—D;‘+18xu+uk8xu=0, x,teR O0<a<l, keZt,

(1.14)
u(x,0) =ug(x).
(II) The results in Theorem B still hold for solutions of the defocusing generalized dispersive Benjamin—

Ono equation

du— DM u—udu=0, xteR 0<a<l,

u(x,0) =uop(x).
This can be seen applying Theorem B to the function v(x, t) = u(—x, —t), where u(x, t) is a solution of
(1.1). In short, Theorem B remains valid, backward in time for initial data u( satisfying (1.9) and (1.11).

Next, we present some immediate consequences of Theorem B.

Corollary 1.15. Letu € C([—-T,T]: HOG=9/2(R)) be a solution of the equation in (1.1) described by
Theorem B. If there exist n, m € Z+ with m < n such that for some 11, 7, € Rwith 1) < 1

/ 10" uo(x)|*dx < oo but 3Mug ¢ L*((t1, 00)),
2]

then forany t € (0, T) and any v > 0and e > 0

o0
/ 18" u(x, 1)|* dx < oo,
T

2t+e—vt
and for any t € (=T, 0) and any 13 € R
o.¢]
/ 18™u(x, t)|* dx = oo.
73

The rest of the paper is organized as follows: in the Section 2 we fix the notation to be used throughout
the document. Section 3 contains a brief summary of commutator estimates involving fractional derivatives.
Section 4 deals with the local well-posedness. Finally, in Sections 5 and 6 we prove Theorems A and B.

2. Notation

The following notation will be used extensively throughout this article. The operator J* = (1 — 32)%/2
denotes the Bessel potentials of order —s.
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For 1 < p < oo, L?(R) is the usual Lebesgue space with the norm || - || »; additionally for s € R, we
consider the Sobolev space H*(R) is defined via its usual norm || f||gs = ||J* f||;2. In this context, we
define

H®R) =) H' ).
s>0

Let f = f(x, t) be a function defined for x € R and 7 in the time interval [0, T'], with T > 0, or in the
whole line R. Then if A denotes any of the spaces defined above, we define the spaces L’T’Ax and LY A,
by the norms

T 7 7
||f||L;AX=</O ||f<-,r>||zdr) and ||f||L,pr=(fRnf(-,nnzdz)

for 1 < p < oo with the natural modification in the case p = co. Moreover, we use similar definitions for
the mixed spaces LYL? and L?CL; with 1 < p, g < oo.

For two quantities A and B, we write A < B if A < ¢B for some constant ¢ > 0. Similarly, A 2 B if
A > ¢B for some ¢ > 0. We write A ~ B if A < B and B < A. The dependence of the constant ¢ on
other parameters or constants is usually clear from the context and we will often suppress this dependence
whenever possible.

For a real number a we will write a™ instead of a + € whenever € is a positive number whose value is
small enough.

3. Preliminaries

In this section, we state several inequalities to be used in the next sections.
First, we have an extension of the Calderon commutator theorem [1965] established in [Baishanski
and Coifman 1967].

Theorem 3.1. Forany p € (1, 00) and any I, m € Z U {0} there exists c = c(p; I; m) > 0 such that

0L 1M 19" fliee < clld™ Wl fllLo. (3.2)

For a different proof see [Dawson et al. 2008, Lemma 3.1].

In our analysis the Leibniz rule for fractional derivatives, established in [Grafakos and Oh 2014; Kato
and Ponce 1988; Kenig et al. 1994], will be crucial. Even though most of these estimates are valid in
several dimensions, we will restrict our attention to the one-dimensional case.

Lemma 3.3. Fors >0, p €[1, 0c0),

ID*(f)llie S Uf e 1D gllir +lIgllLes I1D* fll Lo, (3.4)

with
L1 L ool j=1,2.34
P P1 P2 p3 P4

Also, we will state the fractional Leibniz rule proved by Kenig, Ponce and Vega [Kenig et al. 1993].
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Lemma 3.5. Let s =51+ 52 € (0, 1), with sy, s € (0, 5), and p, p1, p2 € (1, 00), satisfy

i_1_ .1
p J 2T %)
Then,
ID*(fg)— fD'g—gD* fliLr SID™ fllLrn [ID™gllLr:. (3.6)

Moreover, the case sy = 0 and py = o0 is allowed.

A natural question about Lemma 3.5 is to investigate the possible generalization of the estimate (3.6)
when s > 1. The answer to this question was given recently by D. Li [2019]; he established new fractional
Leibniz rules for the nonlocal operator D*, s > 0, and related ones, including various endpoint situations.

Theorem 3.7. Let s > 0 and 1 < p < 0o. Then for any sy, s > 0 with s = 51 + 52, and any f, g € S(R"),
the following hold:

(1) If 1< p1, p2 < 0o with 5 = - + -, then

SID™ fllee [ID>glle. (3-8)
Lr

H D*(f8)~ ﬁaﬁfn‘*“g -Y gDy

! B! x8
a=<s] B=<s2

(2) If p1 = p, p2 =00, then

SIDY flle I D> gllBmo,
LP

! 1 : .
HD‘(fg) =D D=y Eaf gD*P f

a<s; B<s>
where | - |[smo denotes the norm in the BMO space.'
(3) If pr =00, pr = p, then

HDS(fg)—Zaia“ D*g— Zﬁ—aﬁ

a=s| B<s2

S ID* fllsmoll D*gll e

The operator D% is defined via Fourier transform*
Dheg(€) = D" ()88,
D¥(§) =i~ 3¢ (€.
Remark 3.9. As usual empty summation (such as o, o) is defined as zero.
Proof. For a detailed proof of this theorem and related results, see [Li 2019]. O

Next we have the following commutator estimates involving nonhomogeneous fractional derivatives,
established by Kato and Ponce.

For any f € LIOC([R{”) the BMO seminorm is given by || f|lpmo = SUPQ 101 f [f(y) —(f)oldy, where (f) is the
average of f on Q, and the supreme is taken over all cubes Q in R"™.
2The precise form of the Fourier transform does not matter.
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Lemma 3.10 [Kato and Ponce 1988]. Lets > 0 and p, ps, p3 € (1, 00) and p1, ps € (1, 0o] be such that
1 1 1 1 n 1

p pop2 E E'
Then,
15 Flglr SO iz 1 gllie +119° fllLrsllglLrs (3.11)
12O Ne SN flleeliglioem + 17 glees 1f Nl Les. (3.12)
There are many other reformulations and generalizations of the Kato—Ponce commutator inequalities;

see [Bényi and Oh 2014]. Recently Li [2019] has obtained a family of refined Kato—Ponce-type inequalities
for the operator D*. In particular he showed that:

Lemma 3.13. Let 1 < p < o0. Let 1 < py, p2, p3, pa < 00 satisfy
11 1 1 1

P P P2 ps o pa
Therefore:

(@) If 0 <s <1, then
ID*(f8) — fD°gllLr SIID* " ox fllm llgliLr.
(b) If s > 1, then

ID*(fg) — fD*gllr SUD* ™ ax fllreiliglor + 18 fllrs 1D gllLrs. (3.14)

For a more detailed exposition on these estimates see [Li 2019, Section 5].
In addition, we have the following inequality of Gagliardo—Nirenberg type:

Lemma3.15. Letl <q,p <00, l <r <ocoand0 <o < B. Then,

ID* fllr Sl Fll-21DP £11G,

with
1 1 1 o
S—a=-0+0(,-8). 0e|5.1]
p )y q P B
Proof. See [Bergh and Lofstrdom 1976, Chapter 4]. U

Now, we present a result that will help us to establish the propagation of regularity of solutions of (1.1).
A previous result [Kenig et al. 2018, Corollary 2.1] was proved using the fact that J, r € R, can be seen
as a pseudodifferential operator. Thus, this approach allows us to obtain an expression for J” in terms of
a convolution with a certain kernel k(x, y) which enjoys some properties on localized regions in R2. In
fact, this is known as the singular integral realization of a pseudodifferential operator, whose proof can be
found in [Stein 1993, Chapter 4].

The estimate we consider here involves the nonlocal operator D° instead of J°.
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Lemma 3.16. Letm € Z+ and s > 0. If f € L>(R) and g € LP(R), 2 < p < oo, with

dist(supp(f), supp(g)) > 6 > 0. (3.17)
Then

g 37D fllz2 S glerllfllz2-

Proof. Let f, g be functions in the Schwartz class satisfying (3.17).
Notice that

g(x) (DAY f)(x) = g( )

g(x)

2m)2 JR

e |£°m £ (£) dg =

/ EFCLOTNE & (18)

where 7, is the translation operator.’
Moreover, the last expression in (3.18) defines a tempered distribution for s in a suitable class, which
will be speciﬁed later. Indeed, for z € C with —1 < Re(z) <0

am
/ EF (000 &) dE = ¢(2) f ﬂdy forallp e S®),  (3.19)

(27_[) 2 |1+z
with ¢(z) is independent of ¢. In fact, evaluating ¢ (x) = e~*"/2in (3.19) yields
22 (&L
c(z) = %22)
72T (=35)

Thus, for every ¢ € S(R) the right-hand side in (3.19) defines a meromorphic function for every test
function, which can be extended analytically to a wider range of complex numbers z, specifically z with
Im(z) = 0 and Re(z) = s > 0, which is the case that pertains to us. By an abuse of notation, we will
denote the meromorphic extension and the original as the same.

Thus, combining (3.17), (3.18) and (3.19) it follows that

= 1
g(x)(fwﬂf)(y) dy:c(s)g(x)<f Srrr flﬁ'mil)( ).

Notice that the kernel in the integral expression is not anymore singular due to the condition (3.17). In

()DL £)(x) = (s) fR

fact, in the particular case that m is even, we obtain after apply integration by parts
DL ) = s, mg)( £+ 220 ()
8 XX - Mg ly |s+m+1
and in the case m being odd
Y1yi=s
gD F)(x) = (s, m)g(x)(f H#Q)( ).
Finally, in both cases combining Young’s inequality and Holder’s inequality one gets

Liyi)
g 0y Dy fllz2 S ligleell fllzz ||||S}mllu Shglzell fllze,

1

where the index p satisfies % =5t }, which clearly implies p € [2, oo], as was required. g

3For h € R the translation operator 1y, is defined as (7, f)(x) = f(x — h).
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Further in the paper we will use extensively some results about the commutator beyond those presented
in this section. Next, we will study the smoothing effect for solutions of the dispersive generalized
Benjamin—Ono equation (1.1) following Kato’s ideas [1983].

3A. Commutator expansions. In this section we present several new main tools obtained in [Ginibre
and Velo 1989; 1991] which will be the cornerstone of the proof of Theorem B. They include commutator
expansions together with their estimates. The basic problem is to handle the nonlocal operator D* for
noninteger s and in particular to obtain representations of its commutator with multiplication operators by
functions that exhibit as much locality as possible.

Leta=2u+1 > 1, let n be a nonnegative integer and 4 be a smooth function with suitable decay at
infinity, for instance with 4’ € C3°(R).

We define the operator

R.(a) =[HD" h]— (P,(a) — HP,(a)H), (3.20)
P.(a)=a Z c2j1(=1)/ 47 DI (BT pr=iy (3.21)
0<j<n
where
1

]_[ @*—Q2k+1)% and H=-H.
0<k<j

cr =1, C2j+1 = m

It was shown in [Ginibre and Velo 1989] that the operator R,(a) can be represented in terms of anticom-
mutators* as follows:

Ru(a) = S([H; Qn(@)ls +[D% [H; hll4), (3.22)

where the operator O, (a) is represented in the Fourier space variables by the integral kernel

0.(a) - Qm)2h(E —&)|EE'|52ag,(a, 1), (3.23)
with |€| = |&'| e* and

gna, 1) = é(a2 — 2n+D>ecomp / sinh®"*! 7 sinh((a(r — 1))) dr. (3.24)
0

Based on (3.22) and (3.23), Ginibre and Velo [1991] obtained the following properties of boundedness
and compactness of the operator R, (a).

Proposition 3.25. Let n be a nonnegative integer, a > 1, and o > 0 be such that

2n+1<a+20 <2n+3. (3.26)
Then:

(a) The operator D° R,(a)D°? is bounded in L? with norm
1 T
D Ry (@)D fll12 < C(2mr) ™2 II(D“”"h)IlLé I fllzz- (3.27)
Ifa > 2n+ 1, one can take C = 1.

4For any two operators P and Q we denote the anticommutator by [P; Q]+ = PQ + QP.
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(b) Assume in addition that
2n+1<a+20 <2n+3.

Then the operator D° R, (a)D° is compact in L>(R).
Proof. See Proposition 2.2 in [Ginibre and Velo 1991].

g

In fact Proposition 3.25 is a generalization of a previous result, where the derivatives of the operator

R, (a) are not considered; see [Ginibre and Velo 1989, Proposition 1].
The estimate (3.27) yields the following identity of localization of derivatives.

Lemma 3.28. Assume 0 <« < 1. Let be ¢ € C*(R) with ¢’ € C§°(R). Then,

/sofD““axfdx=<“12)/(|D“¥‘f|2+|D“?1Hf|2>w/dx+§/ fRo(a+2) f dx.
R R R

Proof. The proof follows the ideas presented in Proposition 2.12 in [Linares et al. 2014].

4. The linear problem

The aim of this section is to obtain Strichartz estimates associated to solutions of the IVP (1.1).

First, consider the linear problem
du—D*hu=0, x,teR 0<a<l,
u(x,0) =up(x),
whose solution is given by
u(x, 1) = S(Ouo = (" 1" o).
We begin studying estimates of the unitary group obtained in (4.2).
Proposition 4.3. Assume that 0 <« < 1. Let q, p satisfy % + % = % with2 < p <oo.
Then .
DY S@uollpapr < lluollz2
for all ug € L*(R).
Proof. The proof follows as an application of Theorem 2.1 in [Kenig et al. 1991a].

(3.29)

4.1)

(4.2)

4.4)

O

Remark 4.5. Notice that the condition on p implies g € [4, co], which in one of the extremal cases

(p, q) = (00, 4) yields
| Dy SOuollpape S lluoll 22,

which shows the gain of § derivatives globally in time for solutions of (4.1).

Lemma 4.6. Assume that 0 < a < 1. Let Y, be a C*(R) function supported in the interval [2F=1, 2K+1],

where k € Z*. Then, the function HY defined as
2k iflxl <1,
HE()={25x[72  if 1< x| < 2",
(1 +X2)_1 lf |X| - Czk((x-l—l)
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satisfies

‘/ma@“””@m@mﬂsHﬁw *.7)

for |t| <2, where the constant ¢ does not depend on t or k.
Moreover, we have

oo
S HE( $ 246, (4.8)
[=—00
Proof. The proof of estimate (4.7) is given in [Kenig et al. 1991b, Proposition 2.6] and it uses arguments of

localization and the classical Van der Corput lemma. Meanwhile, (4.8) follows exactly that of Lemma 2.6
in [Linares et al. 2014]. O

Theorem 4.9. Assume O <a < 1. Let s > % Then,

1

[e.¢]
2
uwwwmﬁﬁ(prwpwwmﬂgmm

j=—oo =1 j=x<j+l

for any ug € H* (R).
Proof. See Theorem 2.7 in [Kenig et al. 1991b]. O

Next, we recall a maximal function estimate proved by Kenig, Ponce and Vega [Kenig et al. 1991b].

3

Corollary 4.10. Assume that 0 < o < 1. Then, for any s > % and any n > 3

00 1
2
(Z sup  sup |S(I)UO|2) S A+ 1) voll s -

JETe ST jsx<j+l

Proof. See Corollary 2.8 in [Kenig et al. 1991b]. O

4A. The nonlinear problem. This section is devoted to studying general properties of solutions of the
nonlinear problem

{atu—Dg+18xu+u8xu=0, x,teR, 0<a<l, 4.11)

u(x,0) =uo(x).

We begin this section by stating the following local existence theorem proved in [Kato 1975; Saut and
Temam 1976].

Theorem 4.12. (1) For any ug € H*(R) with s > % there exists a unique solution u to (4.11) in the class
C(-T,T]: H*(R)) with T =T (|lug|lgs) > O.

(2) Forany T' < T there exists a neighborhood V of ug in H* (R) such that the map iio +— i(t) from V
into C([—T', T'] : H*(R)) is continuous.

3) Ifupe H S,([R{) with s’ > s, then the time of existence T can be taken to depend only on ||ug|| pgs.

Our first goal will be to obtain some energy estimates satisfied by smooth solutions of the IVP (4.11).
We firstly present a result that arises as a consequence of commutator estimates.
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Lemma 4.13. Suppose that 0 < o < 1. Let u € C([0, T] : H*(R)) be a smooth solution of (4.11). If
s > 0 is given, then

clloxull, 1

o0
lullLsems S luollms e bt (4.14)

Proof. Let s > 0. By a standard energy estimate argument we have
%% /R(J;u)zdx + /R[J;; uldyu Jiudx +/Ru Jiu J; 9 udx =0.
Hence integration by parts, Gronwall’s inequality and the commutator estimate (3.11) lead to (4.14). [

Remark 4.15. In view of the energy estimate (4.14), the key point to obtaining a priori estimates in
H} (R) is to control ||8xu||L1TLoo at the H; (R)-level.

In addition to this estimate, we will present the smoothing effect provided by solutions of the dispersive
generalized Benjamin—Ono equation. In fact, the smoothing effect was first observed by Kato [1983] in
the context of the Korteweg—de Vries equation. Following Kato’s approach joint with the commutator
expansions, we present a result proved by Kenig, Ponce and Vega [Kenig et al. 1991b, Lemma 5.1].

Proposition 4.16. Let ¢ denote a nondecreasing smooth function such that supp ¢’ C (—1,2) and
¢'lo,1y = 1. For j € Z, we define ¢;(-) =¢@(- — j). Letu € C([0, T]: H*(R)) be a real smooth solution
of (1.1) with O < @ < 1. Assume also that s > 0 and r > % Then,

1

T atl atl 2
(/ f(UDi+ S u DP+IDyT T Hulx, P (x) dxdr)
0JR
1
SU+T + 100l oo+ Tllll o) lullpser. (4.17)

In addition to the smoothing effect presented above, we will need the following localized version of
the H*®(R)-norm. For this purpose we will consider a cutoff function ¢ with the same characteristics as
those in Proposition 4.16.

Proposition 4.18. Let s > 0. Then, for any f € H*(R)

1

o 2
2
1 sy ~ ( > IIfw}Ilir»v(R)) :

j=—00

Hence our first goal in establishing the local well-posedness of (4.11) is to obtain Strichartz estimates
associated to solutions of

du—DT9u=F. (4.19)

Proposition 4.20. Assume that0 <o <1, T > 0and o € [0, 1]. Let u be a smooth solution to (4.19)
defined on the time interval [0, T]. Then there exist 0 < puy, uy < % such that

1—249 1—2_3¢
Nocull 2 o S T =35 Ul o + T2 5 12 4.21)

forany € > 0.



REGULARITY FOR SOLUTIONS OF THE DISPERSION GENERALIZED BENJAMIN-ONO EQUATION 2413

Remark 4.22. The optimal choice in the parameters present in the estimate (4.21) corresponds to o = 1_7"‘

Indeed, as is pointed out by Kenig and Koenig [2003, Proposition 2.8] in the case of the Benjamin—Ono
equation (case o = 0) given a linear estimate of the form

b
10xtull 2 oo S THIT “ullpgerz + T Fll 22

the idea is to apply the smoothing effect (4.17) and absorb as many as derivatives as possible of the

function F. Concerning to our case, the approach requires the choice a = b + 1_7“; this particular choice,

o= 1_7"‘, in the estimate (4.21) provides the regularity s > % — %‘)‘ in Theorem A.

Proof. Let f =), fi denote the Littlewood—Paley decomposition of a function f. More precisely we
choose functions 1, x € C*(R) with supp(n) C {S : % < |&] < 2} and supp(x) < {§ : |§| < 2} such that

Zn(%)ﬂ((é):l

k=1

and fi = Pi(f), where (Pof) (&) = x(§) f(§) and (P, f)(&) = n(§/2°) f (€) for all k > 1.
Fix € > 0. Let p > % By Sobolev embedding and the Littlewood—Paley theorem it follows that

00 3 00 00 1
€ 2 € 2 € 2
(;u Pif| ) ;u PSP S (; I/ PkfnL,;) :

Therefore, to obtain (4.21) it enough to prove that for p > 2

1
2
LY

Il S W fllpe ~ ’

LY

a_ 30, a—0

4 4 2p

o, 0

) B AT 1
10wkl 2 S 1 Dx ukllpger2 + 11 Dx

Fllzge, k=1,

The estimate for the case k = 0 follows using Holder’s inequality and (4.4). For such reason we fix k > 1,
and at this level of frequencies we have

iUy — D;‘Haxuk = F.

Consider a partition of the interval [0, T] = |_J I, where I; =[aj,bj],and T = b; for some j. Indeed,

jeJ
we choose a quantity ~ 2K T1=# of intervals, with length |1 i~ 27k TI where u is a positive number
to be fixed.

Let g be such that

SRS
+
| —

S =

Using that u solves the integral equation

u(t) = S(t)uo+/ St —t)F()dt, (4.23)
0

1
2 )2
q
L,ij

we deduce that

/ S(t —5)0, Fr(s)ds

J

1_1
Butall 2 g S (#2747 7D (Z 15 = apdeunaply 1p + ‘
jeJ ’
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In this sense, it follows from (4.4) that

241
11 _a _a 2
”axuk“LzTLf S (Tuz_ka)(2 ‘1){ E | Dy qaxuk(aj)”iz + E (/ | D qaka(t)”L% dt) }
X I

jedJ jedJ J
n~—ko (l,l) 1_% 2 % nn—ko ]_% 2 %
S@ OO H D Dy Tuilliga) (D T2 ID; * Fi@II7, de
jeJ jeJ Ij '

1_1 -2
< @# 27+ G (1R 2 Dy gl 2

T _a
+<T“2—"“>(5‘5)<T“2—"”>%( f 1Dy ‘), dz)
0 X

1

_a

1_p 1 < 1 1-242 o
ST il + T OUD T Rl s
since ;
|_%, 0 __ o, 0 a=0 _e 0 __,_o_ 30 a—0
7" q s tgt S, wd e 4 ° 44T,

We recall that € > %, o €[0,1]and @ € (0, 1); then

et a—o a—0o+2 = 0.

2p 2p
Next, we choose puj = 5 — L = n(l— é) with the particular choice = 3.
Gathering the inequalities above, the proposition follows. g

Now we turn our attention to the proof of Theorem A. Our starting point will be the energy estimate
(4.14), where, as was remarked above, the key point is to establish a priori control of ||d,u|| Lir:

5. Proof of Theorem A

SA. A priori estimates. First notice that by scaling, it is enough to deal with small initial data in the
H*-norm. Indeed, if u(x, ¢) is a solution of (1.1) defined on a time interval [0, T'], for some positive time 7,
then, for all A > 0, uy (x, £) = A T%u(Ax, A>T%¢) is also solution with initial data ug 3 (x) = A T%ug(Ax),
and time interval [0, T/A>1¢].

For any § > 0, we define B;(0) as the ball with center at the origin in H*(R) and radius §.

Since

luosllz =27 luollz and [IDjuo,llz2 = A7+ Diuoll 2.
we have
luo.allmy S A2+ +22) ol s

so we can force u, (-, 0) to belong to the ball Bs(0) by choosing the parameter A with the condition
2

o - T 1+2a
A~ min{d T2 |lug | s, 1}
X

Thus, the existence and uniqueness of a solution to (1.1) on the time interval [0, 1] for small initial data
luoll s will ensure the existence and uniqueness of a solution to (1.1) for arbitrary large initial data on a

time interval [0, T'] with e
T ~ min{1, ||ug] ;" }.

s
X
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Thus, without loss of generality we will assume that 7 < 1 and that
A = luoll 2 + I D uoll 2 <6,

where § is a small positive number to be fixed later.

Weﬁxssuchthats(oz) ——%‘" <s<%—%andsete=s—s(a)>0.

Next, taking o = T >0, F = —ud,u in (4.21) together with (4.14) yields

|—2_30
1,ull 2 oo < T ull oz + T2 1T 55 @) 2

el 2 0

a—1
SA+Ae HIDY 7 @bl 220 G.1)

Now, to analyze the product coming from the nonlinear term we use the Leibniz rule for fractional
derivatives (3.6) together with the energy estimate (4.14) as follows:

s+t s+t
IDx 2 Woy)ll 22 S lu Dy 2 dxtll 2 2 + || 1192 u(t)IILoollD M(t)||L2 ||L2

sl 3 00

<MD} Bl o+ Alldul 2 e (52)

To handle the first term in the right-hand side above, we incorporate Kato’s smoothing effect estimate

obtained in (4.17) in the following way:
1

S+ S+ 2
D, = O < 1S D, + Hu(t dr
lu ull 22 < (Zf lu@®IZs Ol )

j=—00
1
< 2 14 AA &SIl s
< Z Il ) M)A T (53)
j==00

In summary, gathering the estimates (5.1)—(5.3) yields

1

o0
clldvull2 ;00 2
loxull 200 S AL+ A) e it ( E ||M||%<;°Lf;j+l)) +A+Ae

j=—00

C‘lax””L%_L)t;c

(5.4)

Since u is a solution to (4.11), by Duhamel’s formula it follows that

u(t) =S)ug —/ St —s)(uoyu)(s)ds,
0

a+1
where S(t) = /P57 0x,

Now, we fix n > 0 such that n < 1+°‘ ; this choice implies that 7, + < s+ %—. Hence, Sobolev’s
o0

} z 2 }
(Z lull gz ) (Z IS@uolzz ) +( > fo S(t — ) (ud,u)(s) ds )
LPL>®

Jj=—00 Jj=—00 T “[j.j+1)

SA+T)A+ 1+ Dylludull ) g2

embedding, Holder’s 1nequa11ty and Corollary 4.10 produce

n+3
S A+ ”uaxu”LlTL}[ + | Dy 2(“ 8xu)||L1TL§

41
S A+ Al 3 o + 1D (u B0)] 132 (55)
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Employing an argument similar to the one applied in (5.2) and (5.4) it is possible to bound the last term
in the right-hand side as follows:

00 1
n+3 > 2 clldvull,2 oo clldvull,2 o0
1D i)l 22 S ( > ||u||L<;oL[o;j+l)) AA+Te T LA T L (5.6)

j=—o

Next, we define 1

T 5 3 o0 5 %
$(T) = ( /0 3.0 (s)70 ds) + (.Z ||”||L?°Li’7ij+l>> ,
j=—0o0
which is a continuous, nondecreasing function of 7.
From (5.4), (5.5) and (5.6) it follows that

(1) S AN+ D(T)e D 4 Ae?D ¢(T) + Ae?D LA+ Ap(T).
Now, if we suppose that A < § < 1, we obtain

& (T) <cA+chAe?D
for some constant ¢ > 0.
To complete the proof we will show that if there exists 6 > 0 such that A < §, then ¢ (1) < A for some
constant A > 0.
To do this, we define the function

Y(x,y)=x—cy—cye™. 5.7
First notice that ¥ (0, 0) =0 and 9,V (0, 0) = 1. Then the implicit function theorem asserts that there
exists § > 0 and a smooth function &(y) such that £(0) =0, and ¥ (£(y), y) =0 for |y| <4.
Notice that the condition W (£(y), y) =0 implies that £(y) > 0 for y > 0. Moreover, since 9, W (0, 0) =1,
the function W (-, y) is increasing close to £(y) whenever ¢ is chosen sufficiently small.
Let us suppose that A <4, and set A = &(A). Then, combining interpolation and Proposition 4.18 we

obtain
00 1

2 2
¢<0)=(Z( sup |u<x,0>|)) S lluoll s @y < crlluoll 2 + crll Duoll 2,

Jo0 xeli+D

where we take ¢ > c;.
Therefore

$0) <ciA <cA+cAeD® =,
Suppose that ¢ (T') > A for some T € (0, 1) and define
To=inf{T € (0,1) | ¢(T) > A}

Hence, Ty > 0 and ¢ (7p) = A; additionally, there exists a decreasing sequence {7, },>1 converging to Tp
such that ¢ (7,,) > X. In addition, notice that (5.7) implies V(¢ (T), A) <0 forall T € [0, 1].
Since the function W (-, A) is increasing near A, we have

V(p(Th), A) > V(Pp(To), A) =W (A, A) =V (), A) =0

for n sufficiently large.
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This is a contradiction with the fact that ¢ (7)) > A. So we conclude ¢(T) < A forall T € (0, 1), as
was claimed. Thus, ¢ (1) < A.
In conclusion we have proved that

r b %
_ 2 2 < .
¢(T) = (/0 ||8)Cu(s)||L3Q ds) + ( Z ||M||L%0Lfﬁj+])> S lluoll s forall T € [0, 1]. (5.8)

j=—00
At this stage, the existence, uniqueness, and continuous dependence on the initial data follows from the
standard compactness and Bona—Smith approximation arguments; see for example [Kenig et al. 1991b;
Ponce 1991].

6. Proof of Theorem B

The aim of this section is to prove Theorem B. To achieve this goal is necessary to take into account
two important aspects of our analysis: first, the ambient space, which in our case is the Sobolev space
where the theorem is valid together with the properties satisfied by the real solutions of the dispersive
generalized Benjamin—Ono equation; and second, the auxiliary weight functions involved in the energy
estimates, which we will describe in detail.
The following is a summary of the local well-posedness and Kato’s smoothing effect presented in the

previous sections.
Theorem C. Ifug e H*(R), s > 3_7“, o € (0, 1), then there exist a positive time T =T (||ugll gs) > 0 and
a unique solution of the IVP (1.1) such that

(@ ueC(-T,T]: H'(R)),

(b) (Strichartz) dxu € L' ([—T, T]: L®(R)),

(c) (smoothing effect) for R > 0,

T pR ppail ppetl
f/ <|axDx > u|? + |Ho Dy 2u|2)dxdt§C (6.1)
~TJ—R

withr € (9;;3“,s] and C = C(a; R; T'; |luollgs) > O.

Since we have set the Sobolev space where we will work, the next step is the description of the cutoff
functions to be used in the proof.

In this part we consider families of cutoff functions that will be used systematically in the proof of
Theorem B. This collection of weight functions was constructed originally in [Isaza et al. 2015; Kenig
et al. 2018] in the proof of Theorem 1.3.

More precisely, for € > 0 and b > 5¢ define the families of functions

Xe,bs ¢e,b7 (Z)e,ba Ve, Neb € COO(R)
satisfying the following properties:
(1) xy =0.
(2) xep(x)=0ifx <€, and xcp(x) =1if x > b.
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(3) supp(xe,p) < [€, 00).

4 x.,x) > ml[ze,b—ze](x)-

(5) supp(x; ) < l€, b].

(6) There exists a real number c; such that

D@ < ¢x 4 () forall xeR, je7*,

(7) For x € (3¢, 00)
1 €

Xep(X) > 2h—3¢

(8) Forx e R
Xipie 0 = 55
(9) Given € > 0 and b > 5S¢ there exist ¢, ¢ > 0 such that
Xep(x) < ClXéb+€(x)X§,b+é(x)s
XLy () < caxs e ().

(10) For € > 0 given and b > 5¢, we define the function

Neb =V Xe,bXé,b'

(11) supp(¢e.»). supp(de.s) C [§. 0]
(12) pe(x) =Pep(x) =1, x €[5, €]
(13) supp(¥e) € (—o0, §].

(14) Forx e R

Xeb(X) + e p(x) +Pe(x) =1,
X2 (0) + 2, () + Ye(x) = 1.

The family {x. | € > 0, b > 5¢} is constructed as follows: let p € C°(R), p(x) > 0, even, with
supp(p) € (=1, 1) and | p| 1 = 1.

Then define
0, x < 2e,
X 2¢
Ve,p(X) = b—3  b_3¢’ 2¢e <x <b—e,
1, x>b—e¢,
and

Xe,b(x) = Pe * Ve,b(x):

where p.(x) = 6_1,0(“1).

€
Now that we have described all the required estimates and tools necessary, we present the proof of our

main result.
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Proof of Theorem B. Since the argument is translation invariant, without loss of generality we will consider
the case xo = 0.

First, we will describe the formal calculations assuming as much as regularity as possible; later we
provide the justification using a limiting process.

The proof will be established by induction; however, in every step of the induction we will subdivide
every case into steps, due to the nonlocal nature of the operator involving the dispersive part in the
equation in (1.1).

Case j = 1. Step I: First we apply one spatial derivative to the equation in (1.1); after that we multiply
by d,u(x,1t) Xi »(x +v1), and finally we integrate in the x-variable to obtain the identity

1d
Ea/(BXM)zxihdx—%/(8xu)2(xib)’dx—/(8XD;‘+1 axu)axuxihdx+/ Ay udsu) dyux2 ,dx =0.
R R R R

A (1) Ax (1) A3 (1)

Step 1.1: Combining the local theory we obtain the following

T T
1% 2 2
/O Aroldr< /0 /R (B0 (c2) dx di S o

Step 1.2: Integration by parts and Plancherel’s identity allow us to rewrite the term A; as
As(t) = % /R Qu[ DI 05 %2, 10 u dx = —% /R 9 u[HDI*; x2,105u dx. (6.2)

Since « + 2 > 1, we have by (3.20) that the commutator [HD?”; X 52 »] can be decomposed as
[HDYT%; 42,1 = —3Pu(a+2) + 3H Py (@ +2)H — Ry(a +2) (6.3)
for some positive integer n, which will be fixed later.
Inserting (6.3) into (6.2)

Az(t):%/&cu Rn(a+2)8xudx+%/8xu Pn(a+2)8xudx—}l/ oxu HP,(a +2)Hou dx
R R R

= A1 (1) + Az a(t) + Ar3(1).

Now, we proceed to fix the value of n present in the terms Aj |, A2 > and Aj 3, according to a determinate
condition.
First, notice that

Ar(t) = %/ D, HuR,(a +2)D, Hudx = %/ HuD {R, (o +2)D,Hu}dx.
R R

Then we fix n such that 2n + 1 < a + 20 < 2n 4+ 3, which according to the case we are studying (j = 1),
corresponds to a = o + 2 and ¢ = 1. This produces n = 1.

For this 7 in particular we have by Proposition 3.25 that R;(« +2) maps L? into L2.

Hence,

—

2 dta 2 2 dta 2
T T
A1 (1) S IHu(@)17 | Dx “xe,bllLé = clluollz2 I Dx axg,bllLé,
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which after integrating in time yields

T 5 4/\
+ 2
| 101 S ol s 152, .

0<t<T

Next, we turn our attention to A, ». Replacing Pj (o 4 2) into A >

1 1
Aa(t) =¢ / (D,* du)*(x2,) dx — 3 / (Dy* Hu)*(x2,)" dx
R R

=A221(t) + Az 22(1).

at at
2 2

We shall underline that A, (¢) is positive; additionally it represents explicitly the smoothing effect for
the case j = 1.
Regarding A» 7, the local theory combined with interpolation leads to

T
/(; [A222(01d1 S Hlull o - (6.4)

After substituting (3.21) into A 3 and using the fact that the Hilbert transform is skew-symmetric

+1

~ 1+t - el
Ars(t) =6 / (Dy" 7 u)*(x2,) dx — & / (HDx* u)*(x2,)" dx = Ax 31 (1) + A2 32().
R R

Notice that the term Aj 3 1 is positive and represents the smoothing effect. In contrast, the term Aj 35 is
estimated as we did with A, 5, in (6.4). So, after integration in the time variable

T
<
/0 1232001 A1 Sl .

Finally, after apply integration by parts

1 1
A3y = 3 [ @y dx = [ u@an2,) ar = A0+ Az,
R R

On one hand,

431 (D] < IIBxM(t)IIL;o/(axu)zxf,b dx,
R

where the integral expression on the right-hand side is the quantity to be estimated by means of Gronwall’s
inequality.
On the other hand,

T
|A32(0) < () 1 /O @) (2, dx.

By Sobolev embedding we have after integrating in time

T T
/ |A32(2)|dr S ( sup ||u(t)||H;<a>+) / /(axu)z(xib)/ dxdr <c.
0 0 JR

0<t<T
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Since |0 ull, L1 < 00, after gathering all estimates above and applying Gronwall’s inequality we
obtain
a+l

+
sup ||, uxeb||Lz+||D 0, unesllzs o +1Dx T unesllia o <€y (6.5)
0<t<T

where ¢ | = cf ((o; €; T |luoll jyo-wr2; [9xuoXe,pllz2) > O for any € > 0, b > 5¢ and v > 0.
This estimate finishes step 1 corresponding to the case j = 1.
4o
2

The local smoothing effect obtained above is just derivatives; see [Isaza et al. 2016a]. So, the

iterative argument is carried out in two steps, the first step for positive integers m and the second one for
: (-a)/2
Step 2: After applying the operator Dy
D(l—a)/ 2
X

dy to the equation in (1.1) and multiplying the result by
8xu)(€2’b(x + vt) one gets

1—

17 1= 1= 1= 1=« 17
2 Oy duDy? dyuxZ, — Dy o, Dy ™9,uDy? dcuxZ,+ Dy? 9, (udu)D,? duxl, =0,
which after integrating in the spatial variable becomes

1o 1 /
2dt /(D 29, u)Qxebdx—v/(D 2 ) (x2,) dx

A1 (1)

1« i« 17
/(D28D1+“8u)D28uxibdx+/ 2a(uau)D 8ux€bdx 0.

A (1) A3 (1)

Step 2.1: First observe that by the local theory

/ |[A1(r)|dt < |v| / /(D28 u)Z(XGZ’b)/dx dr < ”M”L%CH(S—Q)/Z.
O X
Step 2.2: Concerning the term Aj, integration by parts and Plancherel’s identity yield

la l-a
Ay(1) = _%/ D.? T'Hu[HDZ: x2 51Dy’ 9u dx. (6.6)
R

Since 2 + o > 1, we have by (3.20) that the commutator [HD)‘?”; X 62 »] can be decomposed as
[HDY%; x 2,1+ 3 Pa(e +2) + Ry(a +2) = SHP, (a + 2)H (6.7)

for some positive integer n, which as in the previous cases will be fixed suitably.
Substituting (6.7) into (6.6)

Aﬂ;):%/@ D.E Hu(R, (a+2)D3T7-[u)dx

e 3 3
+i/ D,? Hu(P (¢ +2)D,* ’Hu)dx—}l/ 2 Hu(HP,(e +2)HD,* Hu)dx

= A2 1(t) + Az 2(t) + A2 3(1).
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Fixing the value of n present in the terms A 1, A2 > and A 3 requires an argument almost similar to the
one used in step 1. First, we deal with A, ; where a simple computation produces

3= 3=«
Azﬁl(t):%/Hqu2 {Ry(¢+2)D,*> Hu}dx.
R
We fix n € Z" in such a way that
2n+1<a+20 <2n+3,
wherea =a+2and o = 3%“ in order to obtain n = 1 or n = 2. For the sake of simplicity we choose n = 1.

Hence, by construction R; (o + 2) satisfies the hypothesis of Proposition 3.25, and

— —

A2 1 (D] S IIHu(t)IILgIIDi(Xf,,,)IIL; S ||M0|IL§||D)SC(X€2,b)I|Lé-
Thus

T —
/ |A2,1(H)]dt < lluollz2 sup IIDi(xf,;,)IILé-
0 0<t<T

Next, after replacing Pj(a +2) in Aj

2 ’ 2 n
Axa(t) = (%) /(Ha)%u)z(xib) dx_c3<a1—2 )/(8)6“)2()(62,17) dx
R R

=A221(t) +Az22(1).

The smoothing effect corresponds to the term A > ; and it will be bounded after integrating in time. In

contrast, bounding A, > requires only the local theory; in fact

T
| 1422200101 Sl o
0 X

Concerning the term A 3 we have after replacing P;(« + 2) and using the properties of the Hilbert
transform that

2 2
Ans(t) = (%) / (aﬁu)z(xib)’dx—@(“; ) [ a2,y as

=A23,1(1) +Az32(0).

As before, A3 3.1 > 0 and represents the smoothing effect. Additionally, the local theory and interpolation

yield
T
/ [A232(01dr S Hlull o -
0 X

Step 2.3: It only remains to handle the term A3. We can write

1-a 1-a ~
D% 9, udct) xep = —3[Dx? 355 Xep] dx((Xe ptt) + (Pe ptt)* + (Yeu?))

I

o 1-a
+[Dx? 3ys txep] dc((Xep) + (Uepe p) + ) +uxe s Dy d2u
= A3.1(1) + As (1) 4+ A3 3(t) + A3 4(1) + As5() + Az 6(t) + Az 7(2). (6.8)
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First, we rewrite A3 | as
11—«

~ 14152 14152
A3 1(0) = caHIDy 7 5 Xewl 0 (xen)?) +calH; xew] Dy 2 3 ((xestt)?),

where ¢, denotes a non-null constant. Next, combining (3.4), (3.14) and Lemma 3.15 one gets

l—a

~ 141z
IA3 1D 2 S I1Dx 2 uxe )2 llullie + luoll 2 lull Lo,
l—a
2

~ 1+ ~
14322 S IDx * (ugep)llz2llullige + luoll 2 llull g

Next, we recall that by construction

dist(supp(xe.o). SUpp(¥e)) = 5.
so, by Lemma 3.16

~ 1-a
1A3 302 = N2 8 xel ez S ol 2l

We can rewrite A3z 4 as

-« 1—a

~ 1+ 14152
A3,4(t) = cH[Dy : 5 uXe,b] Ox (uXe,b) —c[H; uXe,b] 0x Dy ? (MXe,b)

for some non-null constant c.
Thus, by the commutator estimates (3.2) and Lemma 3.13

1—

~ 1+
A3l z2 S N0x Wxep) e llD 2 (uxen)llp2-

Applying the same procedure to 23, s yields

~ 1+1z2 1+1z2
[A35z2 SN0x@xep) LoDy * e p)llzz + 10x e p)llLellDx > (uxen)llr2-

Since the supports of ., and ¥ are separated, we obtain by Lemma 3.16

~ 2 141z
1A3.6(0 2 = luxesd2 Dy > @l S ol 2 lull e
To finish with the estimates above we use the relation

Xeb(X) + e p(x) +Yc(x) =1 forall x e R.
Then
+1e +152

1+ 1+1=2 1
D, : (uXe,b) =D, : UXep T+ [D,

=h+h+ 5L+ 14
Notice that ||11||L3 is the quantity to estimate. In contrast, | 1>|| 2 and || I3]| 2 can be handled by

s XenlWXxep +udpe p +upe)

Lemma 3.13 combined with the local theory. Meanwhile /3 can be bounded by using Lemma 3.16.
We notice that the gain of regularity obtained in the step 1 implies that ||D;+(l+“)/ 2(ud)e,l,)ll L2 < 0.
To show this we use Theorem 3.7 and Holder’s inequality as follows:

14+ 142 1+ 15 L
1D el S ol + el +12p- ) Dy wllpz +Iqe )My ull iz (69)
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The second term on the right-hand side after we integrate in time is controlled by using Sobolev’s
embedding. Meanwhile, the third term can be handled after integrating in time and using (6.5) with
(e,0) = (5. b+ %%).
The fourth term in the right-hand side can be bounded by combining the local theory and interpolation.
Hence, after integration in time

1+ 132

| Dx (e p)llp2p2 < 00, (6.10)
which clearly implies | Dy "' ™"* (u¢p,. p)lI2 2 < 00, as required. We can handle | Dyt “>/2(u¢§€,,,)||L§
similarly.

Finally,
1 Ia 1 Ia
A3’7(t)=—§/ 0y uxeb(D 29 u)zdx—E/ u(xeb) (Dy? 9cu)? dx
= A37.1(8) + Az 7.2(0).

We have

1-a
A1 (O] < 18, u<t>||Loc/<D B2 x2, dx.

where the right-hand side can be estimated using Gronwall’s inequality and the local theory ||y u || L L0 <O
Sobolev’s embedding leads us to

T la
f |Az72(¢)|dt <( sup ||u(t)||H5<a>+ //Xe hXeb(D 7 9,u)? dx dr.
0 0<t<T

Gathering all the information corresponding to this step combined with Gronwall’s inequality yields

sup 1D, 9 uxeslzz + 102uncsll7s o +IHuNeb T 2 <o (6.11)
0<t<T

with CT,z = CT,Z(OI; € T;v; ||M0||H;3fa>/2§ ||D;(cl_a)/28xuox6,b||L§) for any € > 0, b > 5¢ and v > 0.
This finishes step 2, corresponding to the case j = 1 in the induction process.
Next, we present the case j = 2, to show how we proceed in the case j even.

Case j =2. Step I: First we apply two spatial derivatives to the equation in (1.1); after that we multiply
by 0%u(x, t) XEZ »(x +v1), and finally we integrate in the x-variable to obtain the identity

2dt /(azu)zxe’b dx

E/;(afu)z(xf’b)’dx—/R(afDi‘Haxu) afuxibdx+/Ra§(uaxu)a§ux§bdx:0. (6.12)

A1) Ax (1) A3(1)
As was done in the previous steps, we first proceed to estimate Aj.

Step 1.1: By (6.11) it follows that

T T
f |A1(t)|dt5//(aﬁu)z(xgb)’dxdtgcfz. (6.13)
0 0 JR
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Step 1.2: To extract information from the term A, we use integration by parts and Plancherel’s identity
to obtain

1 1
Az(t)=§/ dul DI, %2, 8§udx:—§/ Ou[HD*?; x2,19%u dx. (6.14)
R R

Although this stage of the process is related to the one performed in step 1 (for j = 1),we will use
again the commutator expansion in (3.20), taking into account in this case thata =«a +2 > 1 and n is
a nonnegative integer whose value will be fixed later.

Then,

As(t) = % / 82u Ry(s +2) 02u dx + -
R

f 32u Py(s +2) 0%u dx —
4 R

}L/I;E)quPn(s—l—Z)’Hafudx

= A1 (1) + Axa(t) + Ax3(1).

Essentially, the key term which allows us to fix the value of n is A5 ;. Indeed, after some integration by parts

A2,1<z)=%/ua§Rn(a+2) afudxzéfuaf{Rn(a—i-Z) d%u} dx.
R R

We fix n such that it satisfies
2n+1<a+20 <2n+3.

In this case witha =a +2 > 1 and o0 =2, we obtain n = 2.
Hence by construction Proposition 3.25 guarantees that DR, (« +2) D? is bounded in L2.
Thus

A2 1] S 72 D7 R (e +2) Diull 2 < clluoli 2 1DF 0 (k2 )1l

Since we fixed n = 2, we proceed to handle the contribution coming from A, > and Aj 3.
Next,

Aot = 1 f (D 02u) (42, dx—3s f (DI 1253 h><3>dx+cs< ) / (DeF )2 (x2,)® dx

=A221(1)+A222(t)+A223(1).

Notice that A5 > 1 > 0 represents the smoothing effect.
We recall that
KRN S 1 o) forallx eR, jeZt,

r r 14 4=
/ |A220(1)| dt N / /(Dx ’ ”) E b+€dth
0 0 JR

Taking (e, b) = (g b+ %) in (6.5) combined with the properties of the cutoff function we have

Then

T
/ |A222@)|dt Sy
0

To finish the terms that make A, we proceed to estimate A 7 3.
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As usual the low regularity is controlled by interpolation and the local theory. Therefore

T
/0 [A223(0]d1 S Hlull o -

Next,

~ glo 2,0y
Ar3(1) =61/(7'l0x2 dcu)”(xeép) dx
R 5 atl a+2 atl
—03/(Dx2 Bxu)z(xéb)(3) dx+( aa >C5/(Dx2 %M)Z(Xzb)(s) dx
R R

= A23,1(t) +Az32(t) + Az 33(1).

A» 31 is positive and it will provide the smoothing effect after being integrated in time.
The terms A, 32 and A3 33 can be handled exactly in the same way that we treated A> 7, and A3 3
respectively, so we will omit the proof.

Step 1.3: Finally,

5 1
130 =3 [ d@iuis,ar =3 [ u@rod,) i

= A31(t) + A32(0).
First,

A1 S 100z | G2y d, (6.15)
R
by the local theory d,u € L'([0, T] : L°(R)) (see Theorem C(b)), and the integral expression is the

quantity we want estimate.
Next,

A2 < )l /R (02u)*(x2,) dx. (6.16)

After applying the Sobolev embedding and integrating in the time variable we obtain

T T
f |Az2(¢)| dt S ( sup ||M(t)||H;(a)+) f f(afu)z(xz’b)/dx dr,
0 0<t<T 0JR
and the integral term in the right-hand side was estimated previously in (6.13).
Thus, after grouping all the terms and applying Gronwall’s inequality we obtain

2 2 Y 2 ot 2
Sup ”aquE,b”LZ + ”DJC2 axuné,b”LZ L2 + ||D)C2 Haxun&b”LZ L2 S C;]? (617)
0<t<T * T™x Thx

where c}"l = c;l(a; € T; v; |luoll jo-wr; ||83uoxg,b||L%) for any € > 0, b > 5¢ and v > 0.
Step 2: From equation in (1.1) one gets after applying the operator chl )/ 28)% and multiplying the result

by Dy "282ux2, (x +vr)

1o 1o 1o 1o 1o 1o
D,? 320,uDy* dfux2,— Dy? 9D uDy? dfux2,+ Dy’ 05 (udu)Dy® uyl, =0,
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which after integration in the spatial variable becomes

2dt /(D ) dx——/(D 2 90u)*(x2,) dx

Ar(1)
/(D 292Dy u) (D, 7 82u)xebdx+/(D 2 92(udu))(Dy . 7wy xZ, dx =0.

Ax(1) A3(1)

To estimate A; we will use different techniques from the ones implemented to bound A in the previous
step. The main difficulty we have to face is dealing with the nonlocal character of the operator D for
s € RT\2N; the case s € 2N is less complicated because DS becomes local, so we can integrate by parts.

The strategy to solve this issue will be the following. In (6.17) we proved that u has a gain of “T“ deriva-
tives (local), which in total sum to 2+ H—“ . This suggests that if we can find an appropriate channel where
we can localize the smoothing effect, we shall be able to recover all the local derivatives rwith r <24 -3%= 1+°‘

Henceforth we will employ recurrently a technique of localization of the commutator used by Kemg,
Linares, Ponce and Vega [Kenig et al. 2018] in the study of propagation of regularity (fractional) for
solutions of the k-generalized KdV equation. Indeed, the idea consists in constructing an appropriate
system of smooth partitions of unit length, localizing the regions where the information obtained in the
previous cases is available.

We recall that for € > 0 and b > 5S¢

Ne,b =V Xe,bXe/,b and Xe,b +¢e,b + e =1. (6.18)
Step 2.1: We claim
I+a
ID* 32 une p)ll 22 < 00, (6.19)

Combining the commutator estimate (3.14), (6.18), Holder’s inequality and (6.17) yields
IID “92 L @nep)ll2 g2

4 14 1+
= “D : Une, b||L2L2+||[D 5 Ne, b](MXe pTUde, b‘H“/fe)”L?LZ

1+ 2414
S(e3)? +1," (uXe o)z 2 +11Dx 3 (eIl 1212 Fluoll 2+ 11ne.b Dx (utlfe)lleLz- (6.20)

B B B3

Since x5, = 1 on the support of x. , we have
Xeb (X5 () = xep(x) forallx € R,
Thus, combining Lemma 3.15 and Young’s inequality we obtain
1+1 o
IDx" % (uxes)lr2 SUOZuxesllzz + N0xuxs cllz2 + lluoli 2. (6.21)

Then, an application of (6.17) adapted to every case yields

2
By S 1102uxenll iz 2 + 10cuxs ellperz + luoll 2 S €5y + 5y + luoll - (6.22)
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Notice that B, was estimated in the case j = 1, step 2, see (6.10), so we will omit the proof. Next, we
recall that by construction

™

dist(supp(7e,5), supp(¥e)) >
Hence by Lemma 3.16

1+

2 “+a
By=lnesDx * @y¥l2r2 S lnesliigrglluolipz. (6.23)

The claim follows by gathering the calculations above.

At this point we have proved that locally in the interval [e, b] there exist 2 + =5~ “+1

derivatives. By
Lemma 3.15 we get

2+1 o
1D = wnep)lizrz SIDx * nep)llp2 2 + lluolipz < oo

As before . . 1
24152 2+ 24154
Dy unep = = Wnep) = D27 3 ne sl e + ude s+ uto).
The argument used in the proof of the claim yields

I—a

24150
Dy 2 u’?e,bHLZTL}[ < 0.

Therefore,

/ A1) dr < IUI//(D 2 97u)*(x2,) dx dt < ok = unehlleLz < o0. (6.24)
0

Step 2.2: Now we focus our attention on the term A;. Notice that after integration by parts and Plancherel’s
identity
S 5=
M) = -3 / S U[HDH; x2,1D,? uds. (6.25)
R
The procedure to decompose the commutator will be similar to that in the previous step; the main
difference relies on the fact that the quantity of derivatives is higher in comparison with step 1.
Concerning this, we notice that 2 + « > 1 and by (3.20) the commutator [’HDjf”; Xi »] can be
decomposed as
[HDZ™2; X2, 1+ S Pu(e +2) + Ru(a +2) = YHP, (@ +2)H (6.26)

for some positive integer n. We shall fix the value of n satisfying a suitable condition.
Substituting (6.26) into (6.25) produces

Az(t)=%/R DT u(R, (@ +2)Du7 u)dx

5—a S5—a S—a 5—
+411/ D% u(P, (a+2)D2u)dx—%f D% u(HP, (o +2)HD> u)dx
R R

= A2 1(t) + A2 2(2) + Az 3(2). (6.27)
Now we proceed to fix the value of n present in Ay 1, A2 2 and Aj 3.

First we deal with the term that determines the value n in the decomposition associated to A;. In this
case it corresponds to Ay 1.
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Applying Plancherel’s identity, A, ; becomes

S5—a S—a
2

As i (t) = %f uDy* {Ry(a+2)Dy? u)dx.
R
We fix n such that it satisfies (3.26); i.e.,

2n+1<a+20 <2n+3,

witha=o+2and o = 5%"‘, which produces n = 2 or n = 3. Nevertheless, for the sake of simplicity

we take n = 2.
Hence, by construction R,(« + 2) is bounded in Li (see Proposition 3.25).

Thus,

T T —
2
| 1401dr < [ IO IDT0E,C ey dr S ok sup DTG

Y 0<t<T

Since we have fixed n = 2, we obtain, after substituting P,(« 4 2) into A5 2,

Aa(t) =& f (Hoju)*(x2,) dx — &3 / @Zu)*(x2 ) dx + &5 / (Howu)*(x2 ) dx
R R R

=A221(t) +Ax22(t) + A 3(1).

We underline that A; > 1 is positive and represents the smoothing effect.
On the other hand, by (6.11) with (¢, b) = (£, €) we have

T T
/ |A2,2,2(t)|dt=c/ f(afu)zxg,e(xf’b)”’dxdtfl sup /(afu)zxgye dx Scf (6.28)
0 0 JR R

0<t<T

Next, by the local theory

T

< —0/2. .
fo 4223014t 5l oo (6.29)
After replacing P»(« 4 2) into Aj 3, and using the fact that the Hilbert transform is skew adjoint
a+2
Ar3(1) = (T) / @7 (x2,) dx
R

a+2 o+2
—e / (HO2u) (425" dx + s / @) (x2)® dx
16 R 64 R

=A231(t)+Ax32(t) + Ax33(2).

Notice that A3 3,1 > 0 and it represents the smoothing effect. However, A 3 2 can be handled if we take
(e, b) = (£, €) in (6.5) as follows:

Apa(t) = /R @222, (12" dx € fR @222, dr.
Thus,
T
| 1wt s s [0 s,

0<t<T
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To finish the estimate of A, it only remains to bound A 3. To do this we recall that

FEAEINES Xippe(x) forall x eR, jeZ*,

which together with property (9) of x., yields

T
2.N2.,/ 2 2 *
f()/R(Haxu) X< be dxdr < ”Haxun%,lﬁ%”@p% Sclas

where the last inequality is obtained taking (¢, b) = (g b+ %) in (6.11). The term A5 3 3 can be handled
by interpolation and the local theory.
Step 2.3: Finally we turn our attention to A3.We start rewriting the nonlinear part as

-«

1-a ~
Dy 35 (u dxt) e = —2[Dy7 833 Xep] dx ((xep)? + (Ue ) + (Ye?))
1o 1-a
+ 1D 825 uxe p] 85 (Uxep) + (Ue ) + W) +uxep Di* 3lu
= A3.1(0) + As2(t) 4+ A3 3(t) + A3 4(1) + A3 5(t) + A3 6(0) + Az 7(2). (6.30)

Hence, after substituting (6.29) into A3 and applying Holder’s inequality
~ 1-—a ~ 1-a
YHOESY f Asm(t) Dy 0Fuxepdx + / A3 7(t) D* uxep dx
1<m<6 R R

—a

~ 24 15¢ ~ 1o
< Y Al IDE 2w xes(- + o)l + f A37(t) Dy uyep dx
’ R

1<m<6

1—a
=

= 1D 7 u@Oxen(- +o0llz Y Asw(@)+ Az ().

1<m=<6

Notice that the first factor in the right-hand side is the quantity to be estimated by Gronwall’s inequality.
So, we shall focus on establishing control of the remaining terms.
First,combining (3.4), (3.14) and Lemma 3.15 one gets that

11Ol S IDE 7 ez el + ol 2 el e, (6.31)
1o 0)ll2 S IDE 7 e 2 Nl e + ol 2 1l e (6.32)
To finish with the quadratic terms, we employ Lemma 3.16:
1433022 S Nuol g2 lull e
Combining (3.2) and (3.14) we obtain

~ 241z
IA34@ 12 S 10x xep) e llDx * (uxen)ll 2.

Meanwhile,

l—a

~ 24152 24432
A5z S 10x @xep)lLellDx * (ugep)llpz + 10x e p)llLe | Dx - > (uxen)lz2-
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Next, we recall that by construction

dist(supp(xe.). SupP(Ve)) = 5.
Thus by Lemma 3.16
143602 S lluoll 2 llull e

24+(1—a)/2

To complete the estimates in (6.31)—(6.32) it only remains for us to bound || Dy @xep)llz2,
24(1—a)/2, 2+(1—a)/2 *
1D "2 e )N 2, and |DFT 7P e ) 2.
For the first term we proceed by writing
24152 24152 24 1¢
Dy (uxep) =Dy 7 uxep+[Dx 7 5 XeplWXep +upep +uipe)

=hLh+hL+5L+1.

Notice that ||1; || L2 is the quantity to be estimated by Gronwall’s inequality. Meanwhile, || 7 || L2 I 13]| 2
and || 14]| 2 were estimated previously in the case j = 1, step 2.
Next, we focus on estimating the term ||D§+(l+“)/ 2(u¢e,;,)|| 12> which will be treated by means of

Holder’s inequality and Theorem 3.7 as follows:

I+o 1

2455 3 3 2413
| Dy (Uupep)llr2 < ||M0||L%||M||L§>o + 1 e py2e Dx

ullgz + 0 e pyze D Bl + 107 ullye.

After integrating in time, the second and third terms on the right-hand side can be estimated taking
(e,b) = (25—4, b+ ;—Z) in (6.17) and (6.5) respectively. Hence, after integrating in time it follows by
interpolation that ||D,%+(l_a)/2(u¢€,b)||Lz 12 < 00.

We can bound ||D§+(1_a)/2(uq§€,b)||L; aAnalogously.

Finally, after integrating by parts

2
= A37,1(t) + A372(1).

1 1-a 1-a
A37(t) =—> / deuxZy(Dy® 97u)*dx — f UXeb Xl p(Di? 3u)* dx
R R

First,
1-a
32001 S 10O iz [ (D o, .
R
where the last integral is the quantity that will be estimated using Gronwall’s inequality, and the other

factor will be controlled after integration in time.
After integration in time and Sobolev’s embedding it follows that

T T 1o
f |A37.2(t)]dr < f f u(x2,) (Dx? dgu)*dx dt
0 0JR

r I-a
< ( sup ||u(t)||H;<a>+)/ /(sz 02u)% (x2,) dx dt
0 JR

0<t<T

and the last term was already estimated in (6.24).
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Thus, after collecting all the information in this step and applying Gronwall’s inequality together with
hypothesis (1.11), we obtain
sup || Dy 2 3 UXe, b”Lz + ”a Une, b”Lz 2 + ||Ha Une, b”Lsz = C;Q’
0<t<T

| D02

where c;,z = czz(oz; €; T;v; ”M()”HY(S—a)/Z; x”OXe,bHLg) for any € > 0, b > 5¢ and v > 0.

According to the induction argument we shall assume that (1.12) holds for j < m with j € Z and

j=2;1e.,
. 1+a
sup 1931xes % +1Ds> 0funeslls , + 11D, “oluncsllZ . <y (6.33)
0<t<T rex
for j=1,2,...,m withm > 1, forany € > 0, b > 5¢ v >0.

Step 3: We will assume j an even integer. The case where j is odd follows by an argument similar to
the case j = 1.
By reasoning analogous to that employed in the case j=2it follows that

2 0 9,u Dy " afuxeb—D - 81D1+°‘8 u D, 2 afuxeb—i-D - Bf(ua u)D 8 u)(eb_O
which after integrating in time yields the identity

2 2 2
2dt/(D 8Ju) X dx——/(D 8Ju) (Xeh) dx

A1)

; I—a . 17
f(D 2 3D, u)(D,? a;uxgb)dx+/ 00 (u yu) (Dy? duyZ,)dx=0. (6.34)

Ax(1) As3(1)
Step 3.1: We claim that

+

+l a
IDY @nep)llp2 g2 < oo, (6.35)

We proceed as in the case j = 2. A combination of the commutator estimate (3.14), (6.18), Holder’s
inequality and (6.33) yields

I4a 14+a 14+a

e +
D, 3] (une, pi2ge < 1D une, pllgz2 + D 2 e plWxep + Ude Fuyl e

2 j1HHe
,f, (ij,l) + || Dx ’ (”Xe,b)”LZTL%

31
+l+a

+l+a
+ ||”0||L2 + ||D : (U e, b)”L2 L2 + 17, bD ’ (”l//e)”LZTLE . (6.36)

B B3

Since x¢/5.. = 1 on the support of x. , we have

Xeb(X)X5,e(X) = Yep(x) forall x € R.
Combining Lemma 3.15 and Young’s inequality
1D el

j 2 -k k
Sofuxesllis+ Do veilxey e ldfuxs.ellz + el o yo-or + luoll sz (6.37)
2<k<j—1
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Hence, taking (¢, b) = (£, €) in (6.33) yields

BiSciit D egcia + lull o ye-or + lluoll sz (6.38)
2<k<j-1
B> can be estimated as in step 2 of the case j = 1, so it is bounded by the induction hypothesis.
Next, since

dist(supp(7e ). SUpp(e)) = 5.
we have by Lemma 3.16
14

J+e JHEE <
InesDi™ 7 @elle = nesDi’ > @ellz S Ingpeellze luoll 2.
Gathering the estimates above, (6.35) follows.

We have proved that locally in the interval [e, b] there exist j + “T“ derivatives. So, by Lemma 3.15

we obtain 1

< J
’ (une,b)”LZTL% S, | Dx

j+ e
| Dx (unep)ll g2 2 + lluoll 23

then, as before

D

l—a

unep=c;Dy * unep) —c;[Dy 7 5 neplxep + udep +upe),

where c; is a constant depending only on j.

AR
X

Hence, if we proceed as in the proof of the claim (6.35) above, we have
.+1;a
1D 2 unepll 312 < oo (6.39)
Therefore

—o

T 21
j+ 2
/ A0 dt = o DL uney . ., < oo,
0 T™x

Step 3.2: To handle the term A, we use the same procedure as in the previous steps. First,

1 2j+l—a 2 5 2j+1-a
Ar(t) = —3 / Dy > u[HD>*®; x2, 1Dy > udx (6.40)
since "
[HDY%; x 2,1+ 2Pyl +2) + Ry(a +2) = SHP, (. +2)H (6.41)

for some positive integer n. Substituting (6.41) into (6.40) produces

1 2j+1-a 2j+1-a
Az(t):E/Dx > u(R,(a+2)D, * u)dx
R

1 2j+1—«a 2j+1—a 1 2j+1—a 2jtl-«a
+4—1/Dx 2 u(Py(a+2)D, *? u)dx—Z/Dx 2 u(HP,(a+2)HD, * u)dx
R R
= Ao 1(t) + Ax (1) + A 3(1). (6.42)

As above we deal first with the crucial term in the decomposition associated to A,, that is, A3 ;.
Applying Plancherel’s identity yields

1 2j+1—a 2j+1—a
Az,l(t)ZE/qu ” {Ry(@+2)Dy * u}dx.
R

We fix n such that (3.26) is satisfied. In this case we have to take a =« +2 and 0 = W to getn = j.

As occurs in the previous cases it is possible for n = j + 1.
Thus, by construction R (« +2) is bounded in L)zC (see Proposition 3.25).
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Then —
2 2j43
A2 1 ()] S ||M0||L%||ij (Xib)||L;
and

T
2 3
/ Ana@1dr S ol sup IDFZ 021,
0 Y 0<t<T ¢

Substituting P;(a +2) into Aj >

a2 = (U [orturae,y e (452 )Zczz+1( D4 [ 1) as

j-1
=A221() + Z A (1) + Az, j(1).
I=1
Note that A; 5 1 is positive and it gives the smoothing effect after integration in time, and A; > ; is bounded
by using the local theory. To handle the remainder terms we recall that by construction
|Oten) VO S A e (0 S e a0 (OXE 10 (¥) (6.43)
3 9° 9 9 9
forxeR, jeZ
Hence for j > 2

T T
141 )2
fo |A2’2’l(t)|dt§./o./qu(l)){ )X oy dx di

T
< JoIHL 2, o .
N/(;/R(Dx u) Xg,b+%xg,b+% dx dr; (6.44)

thus if we apply (6.33) with (%, b+ 4{) instead of (e, b) we obtain

T
j—I141 32 / *
/O/R(Dx u) (X%’H%X%’H%)dxdtfcl,z
fori=1,2,...,j—1.

Meanwhile,
@+2 : a+2) <& B .
A2’3(t) = <T) /(3){+1”)2(X62,b)/dx+( 1 )2021+1(—])l4 l/('HD)JC l+1u)2(X€2’b)(21+1)dx
R _ R
i1 =1
= Apz1()+ ) A3t + Az (). (6.45)

I=1
As we can see A 31 > 0 and it represents the smoothing effect. Additionally, applying an argument
similar to that employed in (6.43)—(6.44), it is possible to bound the remainder terms in (6.45). Anyway,
T
/ A2z (O)]dt Sy, 1<I<j—1
0
Step 3.3: It only remains to estimate Aj to finish step 3.
l—a

DxTa;{(uaxu)Xe,b—_‘[D 7 !5 xe. b]a ((Uxep)* + (Upe p)* + (Yeu?))
+[D, ) 375 uxe ) (Uxep) + (e, b)+(uwe))+uxebD78j(8xu)

= A31(1) + A3 (1) + A3 3(t) + Az 4(1) + As5(t) + Az 6(1) + A3 7(2). (6.46)
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Substituting (6.46) into Az and applying Holder’s inequality

~ l—a ~ 1—a .
YHOEY / A3 (1) Dy dfuxepdx + / A37(6) Dy 0fuxedx
1<k<6 /R R

—o

~ j+1 ~ l1—a .
= 3 1A IDL T uOreal + 00l + [ Bar D dues d.
R
1<k<6

1—a

T uxen(- o0l Y Ask(@) +As ().

1<m<6

Jj+
= ”Dx

The first factor on the right-hand side is the quantity to be estimated.
We will start by estimating the easiest term:

1 JE JE
Azq() = =5 / dux?y (Dy* )’ dx — / uxebXip(Dy’ 3fu)? dx
R R
= A37.1(1) + A372(7).
We have that

l-a
A3 71 (0] < 13501 / (Dy” 9iu)x2, dx,
R

2435

where the last integral is the quantity that we want to estimate, and the another factor will be controlled

after integration in time.
After integration in time and Sobolev’s embedding

T T lma
/ A 720 dr < / / u (2, (Dy 8u)dx dr
0 0JR

—a

r lma
S (s o)l o) [ [ O 0002 G2, dxar,
’ 0 JR

0<t<T

where the integral expression on the right-hand side was already estimated in (6.39).

To handle the contribution coming from AV3, 1 and 23,2, we apply a combination of (3.4), (3.14) and

Lemma 3.15 to obtain

—a

~ j+1

IA31 N2 SIDx * (uxen)llzzlullie + luoll 2 llull e,
~ j_.’_l*J ~

143202 SIDx * (uep)llzzllulliee + luoll 2 llull .

The condition on the supports of x. 5 and ¥, combined with Lemma 3.16 implies

1433122 S lluoll g2 llull e
By using (3.2) and (3.14)

~ j+ﬂ
A4 N2 S 10y @xe )Ll Dy (Uxen)lr2,

~ j_;,_ﬂ j+1*7°‘
A3 N2 SN0 Wxep) e lDx - * (ugep)lli2 + 10x (udep)lie Dy 2 (uxep)lr2-

(6.47)
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An application of Lemma 3.16 leads to

||ZS,6(t)||L§ = ||t Xe b Ox pl* = @¥llzz < luollzz llull oo (6.48)
To complete the estimate in (6.47)—(6.48) we write

Xeb(X) + e p(x) +Ye(x) =1 forall x € R;
then

. l—a —

+
(uXe b) = )Jc : UXeb + [D 5 Xe, plWXep +udpe p +upe)
=hLh+hL+1L+14.

1
+T

Notice that ||1;]|z2 is the quantity to be estimated. In contrast, /4 is handled by using Lemma 3.16. In
regards to || [2]|z2 and | /3]|z2, Lemma 3.13 combined with the local theory, and the step 2 in the case
Jj = 1 produces the required bounds.

By Theorem 3.7 and Holder’s inequality

jHE
| Dx : (u¢e,b) ”L)ZC

1
> — 0l s Dy u

j+ige
SllullzallDx - * Peplis + a1

B=j L
12, 172 B+ B+e5
S lluoll S el + —||aﬂ¢ebD’ Tulp+ Y —||aﬁ¢é DI e, (6.49)
BeQ1(j) Bea(j)
where 0 (j), 2(j) denote odd integers and even integers in {0, 1, ..., j} respectively.

To estimate the second term in (6.49), note that 32 ¢, , is supported in [, b]' then
g+ B+
> L o8¢ s Dl a1 < > —||1 DL il

| |
BeQi(j) A BeQi(j) p!
1 j—Bregt
< . € € 2 .
NMZ silngsg D ully
€Qi())

Hence, after integrating in time and applying (6.33) with (€, b) = (55, b+ %) we obtain

J—B+F 1
Z E”’)f b+Z4D £ M”L%L% S Z (Cj_,s,l)z <00
BeQ1()j) BeQ1(j)
by the induction hypothesis.

Analogously, we can handle the third term in (6.49):

=B+ 1
> 5 L 108 . 1D u||Lz 2SS Y @ p ) lull g yen < oo
BeQx()).B#) Be@2(j).B#]
Therefore, after integrating in time and applying Holder’s inequality we have

jH
1D gen)llz 2 < 0o,
Next, by interpolation and Young’s inequality

J+E J+
IDx % (uoep)llzr2 SIDx * (udep)ll 22 + lluollpz < oo (6.50)
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If we apply (6.49)—(6.50) then

JHRE
1Dy * (ugep)llp2r2 < 0o.

Finally, after collecting all of the information and applying Gronwall’s inequality we obtain

1—a
2 aj 2 i+1 2 i+1 2
sup 1Dx” dfuxenlZs + 195 une sl o + 1M unepI2, < 5o,
0<t<T X T™x T™=x h
1—a)/2 o j
where c;f’z = c;,z(a; €, T;v; ||M0||H’£3—a)/2; ||D)(C 0/ 3){”0X6,b||L§) forany € > 0, b > 5¢ and v > 0.
This finishes the induction process.
To justify the previous estimates we shall follow the following argument of regularization. For
arbitrary initial data up € H*(R) s > 3=¢ we consider the regularized initial data ug = pyu * ug with

p € CyP(R), suppp C (=1, 1), p=0, [lpllyr =1 and
pu(x) = uf”o(i) for u > 0.
The solution " of the IVP (1.1) corresponding to the smoothed data ug = Py * U satisfies
ut* € C([0, T1: H®(R));

we note that the time of existence is independent of w.

Therefore, the smoothness of u* allows us to conclude that
1+a I+o
m 2 m+= 2 m+=5- 2 *
sup |9y uMXe,b”LZ_ + || Dx MM”LZ 2T |H Dy u”ﬂe,blle 2 =0
0<t<T * Tox Thx

where c* =c*(a; ¢; T; v; || ug“ (PR oy ugxe,b ||L%). In fact our next task is to prove that the constant c*
is independent of the parameter w.
The independence from the parameter i > 0 can be reached first noticing that

" A~
[l ||HX<3—a>/2 = ||uo||HX<3—a)/2||,OM||L§o = ||u0||HX<3—a>/2||Pu||L; = ||M0||HX<3—a)/2-

Next, since e p(x) = 0 for x <€, restricting to u € (0, €) it follows by Young’s inequality

oo
2
f (87 ug)” dx < 12wl L 195 01l 2 0,00y = 197" 40l L2 ((0,001)-
€
Using the continuous dependence of the solution upon the data we have that
sup ||u“(t) — u(l)”HX(sfa)/z MTO) 0.

1€[0,T]
Combining this fact with the independence of the constant ¢* from the parameter u, weak compactness
and Fatou’s lemma, the theorem holds for all ug € H*(R), s > 3%"‘ O

Remark 6.51. The proof of Theorem B remains valid for the defocusing dispersive generalized Benjamin—

Ono equation
{a,u—Dg“axu—uaxu:o, x,teR, 0<a<l,

u(x,0) =ugp(x).
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In this direction, the propagation of regularity holds for u(—x, —t), where u(x, t) a solution of (1.1). In
other words, this means that for initial data satisfying the conditions (1.9) and (1.11) on the left-hand side
of the real line, Theorem B remains valid backward in time.

A consequence of the Theorem B is the following corollary, which describes the asymptotic behavior
of the function in (1.10).

Corollary 6.52. Letu € C([—T, T]: H®~9/2(R)) be a solution of the equation in (1.1) described by
Theorem B.
Then, foranyt € (0, T]and § > 0

v @Ju)(x,t)dx < € (6.53)
oo (xo )i ’ -t '
where x_ = max{0, —x}, c is a positive constant and (x) := ~/1+ x2.

For the proof of (6.53) we use the following lemma provided in [Segata and Smith 2017].

Lemma 6.54. Let f : [0, 00) — [0, 00) be a continuous function. If for a > 0

a
f f(x)dx <ca”,
0

then for every § > 0

o

Sfx)
/0 W dx <c(p).

Proof. The proof follows by using a smooth dyadic partition of unit of RT. O

Remark 6.55. Observe that the lemma also applies when integrating a nonnegative function on the
interval [—(a + €), —e], implying decay on the left half-line.

Proof of Corollary 6.52. We shall recall that Theorem B with xo = 0 asserts that any € > 0

o0
sup / (@Ju)*(x, 1) dx < c*.
tel0,T] Je—vt

For fixed ¢ € [0, T'] we split the integral term as follows:

/Oo (a;u)2(x,z)dx=/€ (3u)?(x, 1) dx+/oo(a;u)2(x,t)dx.
€ €—vt €

—vt
The second term in the right-hand side is easily bounded by using Theorem B with v = 0. Hence, we just
need to estimate the first integral in the right-hand side.
Notice that after making a change of variables,

/ (3}{14)2()(, 1) dx :/ (a;u)z(x +2¢,1)dx < c*.
€—vt -

(e—vt)

Thus by using Lemma 6.54 and Remark 6.55 we find

h ! 0t +2e ydr = [ —L(@iu)? dx < &
" m( u) (x +2¢,1)dx = = (x)j+3(xu) (x,1) X =05
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In summary, we have proved that for all j € 7%, j>2and any § >0

€ 1 . o
/_oo v (@/u)?(x, 1) dx < - (6.56)

f 00(8;{ u)*(x, 1) dx < c*. (6.57)

If we apply the Lemma 6.54 to (6.57) we obtain extra decay in the right-hand side. This allow us to
obtain a uniform expression that combines (6.56) and (6.57); that is, there exists a constant ¢ such that for
anyt € (0,7T]and § > 0

/_Oo m(a){u) (. ) dx <~ .
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Regularity estimates in time and space for solutions to the porous medium equation are shown in the scale
of Sobolev spaces. In addition, higher spatial regularity for powers of the solutions is obtained. Scaling
arguments indicate that these estimates are optimal. In the linear limit, the proven regularity estimates are
consistent with the optimal regularity of the linear case.
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1. Introduction

We prove estimates on the time and space regularity of solutions to porous medium equations

du—Aul™ =8 in(0,T) xR,

u(0) = ug in R4, (-1

where ul™! := |u "1y with m > 1, up € LY(R%) and S € L1 ((0, T) x R?). Solutions to porous medium
equations are known to exhibit nonlinear phenomena like slow diffusion or filling up of holes at finite rate:
If the initial data is compactly supported, then the support of the solution evolves with a free boundary
that has finite speed of propagation. The solution close to the boundary is not smooth even for smooth
initial data and zero forcing.

Despite many works on the problem of regularity of solutions to porous medium equations, until
recently, established regularity results in the literature in terms of Holder or Sobolev spaces were restricted
to spatial differentiability of order less than 1; see [Ebmeyer 2005; Tadmor and Tao 2007]. For m \( 1
this is in stark contrast to the limiting case m = 1, where u is up to twice weakly differentiable in space.
Very recently, the first author has proven optimal spatial regularity for (1-1) in [Gess 2020] for initial data

MSC2010: 35K59, 35B65, 35D30, 76S05.
Keywords: porous medium equation, entropy solutions, kinetic formulation, velocity averaging, regularity results.
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up € (L' N L'*)(R?) for some ¢ > 0. This leaves open three main aspects addressed in the present
work: first, the derivation of optimal! space-time regularity, second, the limit case ug € L' (R%), which
is of particular importance since it covers the case of the Barenblatt solution for which the estimates are
shown to be optimal, see Section 3 below, and third, higher-order integrability. Solving these three open
problems is the purpose of the present paper.

The first main result provides optimal space-time regularity for L! data.

Theorem 1.1. Ler ug € LY(R?), S € LY((0,T) x R?) and m € (1,00). Let u be the unique entropy
solution to (1-1) on [0, T] x R,
(1) Let p € (1, m] and define

m—p 1 p—1 2

Kt = —————, Ky'i=———.
p m—1 p m—1

Then for all oy € [0, k;) U{0} and o € [0, k) we have

u € WP (0, T; WP (RY)).

Moreover, we have the estimate
ullwor.po,1:wox.r@ayy < lluoll7y +ISI7: +1. 1-2
” ” 1.2 (0,T;Wox-P(R4)) ” Olll)lc ” ”[tl.x ( )

(ii) Suppose ¢ € R Let s € [0, 1] and define

1—s 2s
= =TT Kx 1= S D1
Then for all oy € [0,k:) U{0}, 0x € [0, k%) U{0} and q € [1, p] we have

pi=sm—1)+1, «;:

uewerd(0, T, Wo1(0)).

Moreover, we have the estimate
lullwora,riwoxa(ey < lluolys +ISI7H + 1. (1-3)
X t.x

In [Tadmor and Tao 2007; Ebmeyer 2005] initial data in L' N L> was considered. However, the
methods employed in these works did not allow a systematic analysis of the order of integrability of the
solutions. For example, the results of [Ebmeyer 2005] are restricted to the particular order of integrability
p = 2/(m + 1), while [Tadmor and Tao 2007] is restricted to p = 1. In the second main result we
provide a systematic treatment of higher-order integrability. In particular, this includes and generalizes
the corresponding results of [Ebmeyer 2005] in terms of regularity in Sobolev spaces.

Noting that the regularity of ul™l contains information on the time regularity of u in light of (1-1), in
addition, we analyze the spatial regularity of powers of the solution u* for u € [1, m].

Theorem 1.2. Let ug € L' (R?) N LP(RY), S € L1([0, T] x R?) N LP([0, T] x R?) for some p € (1, o0)

and assume m € (1, 00). Let u be the unique entropy solution to (1-1) on [0, T] x R%.

1Optimality is indicated by scaling arguments in Section 3 below, and the derived estimates are consistent with the optimal
space-time regularity in the linear case m = 1.
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(1) Let u € [1,m]. Then for all

—1 -1 2
pE (1,—m +'O), Ox € |:O, 1P )
W p m—=2+p

ulil ¢ LP(0,T; ch,p(Rd)),

we have

and we have the estimate
1 oo, rsweosn@ay < Moyt o +ISIGT o +1. (1-4)

(ii) Let p € (p,m — 1 + p) and define
m—1l+p—p 1 p—p 2

Ky = , Ky = ———.
! p m—1 * p m—1

Then for all o7 € [0, k¢) and ox € [0, k) we have
u e WP, T; WoxP (R?)).
Moreover, we have the estimate
”M”WGt-I’(O,T;W‘TXsP(Rd)) < ””0”2)1an§ + ”SHZ}’XHL?X + 1. (1-5)

Much as in Theorem 1.1, if one restricts to estimates that are localized in space, the rigid interdependency
of the coefficients in Theorem 1.2 can be relaxed.
Corollary 1.3. Under the assumptions of Theorem 1.2, suppose 0 € R
(1) Let u € [1,m]. Then for all o € [0,2u/m) and g € [1, m/ ] we have

ultl e L9(0, T; w4 (0)),

and we have the estimate

BN oo iworaon < luollfy o HISIGY o +1. (1-6)

(ii) Let s € [0, 1] and define
1—s 2s

= —1 1, =—— :
pimstn=D+1 K= K

= s(m—1)+1°
Then for all o7 € [0, k;) U{0}, ox € [0,k5) U{0} and g € [1, p] we have

ue WL, T; Wo4(6)).

Moreover, we have the estimate
lullworsio.ravocaion S Mol o + IS, 0 +1. (1-7)

The methods employed in this work are inspired by [Tadmor and Tao 2007] and rely on the kinetic
form of (1-1), that is, with f(z,x,v) := Ly<y(,x) — lv<o,

O f —m|u|™ Ay f = 0pq + S(t,X)8u( ) (V) (1-8)
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for a nonnegative measure ¢, which allows the use of averaging lemmas and real interpolation. There is a
relatively short yet intense history of applying such velocity-averaging techniques to deduce regularizing
effects in nonlinear PDEs — from the early works [DiPerna, Lions, and Meyer 1991; Golse, Lions,
Perthame, and Sentis 1988; Lions, Perthame, and Tadmor 1994a; 1994b; 1996] to the more recent
[Arsénio and Masmoudi 2019; DeVore and Petrova 2001; Golse and Perthame 2013; Golse and Saint-
Raymond 2004; Jabin 2009; Jabin and Vega 2004; Perthame 2002]. An essential difference to purely
spatial regularity consists in the necessity to work with anisotropic fractional Sobolev spaces, which only
in their homogeneous form are nicely adapted to the Fourier analytic methods of this work, much in
contrast to the purely spatial case in [Gess 2020]. This leads to the so-called dominating mixed anisotropic
Besov spaces introduced in [Schmeisser and Triebel 1987]. Passing from these homogeneous anisotropic
spaces to standard inhomogeneous fractional Sobolev spaces is delicate and treated in detail below. A
main ingredient in the proof of optimal regularity in [Gess 2020] was the existence of singular moments
|, {30 |v|=q for y € (0, 1). This ceases to be true for general L !-initial data. This difficulty is overcome
in the present work by treating separately the degeneracy at |[v| = 0 and the singularity at |v| = oo as
they appear in (1-8). This also necessitates making use of (1-8) in the case of small spatial modes & in
order to obtain optimal time regularity; see Corollary 4.7 below.

Comments on the literature. The (spatial) regularity of solutions to porous medium equations in Sobolev
spaces has previously been considered in [Ebmeyer 2005; Gess 2020; Tadmor and Tao 2007]. Since
our main focus is on time-space regularity, we refer to [Gess 2020] for a more detailed account on the
available literature in this regard.

In the case of nonnegative solutions the spatial regularity of special types of powers of solutions
has been investigated in the literature. For example, much work is devoted to the pressure defined by
vi=(m/(m—1))u""1; see, e.g., [Vazquez 2007]. In the recent work [Gianazza and Schwarzacher 2019]
the authors proved higher integrability for nonnegative, local weak solutions to forced porous medium
equations in the sense that um+1/2 ¢ LIZO“CL'B((O, T); WI;C’ZJ“S
generalized in [Bogelein, Duzaar, Korte, and Scheven 2019].

) for all & > 0 small enough. This result was

The analysis of regularity in time of solutions to porous medium equations (without forcing) has a
long history initiated in [1979] and continued in [Crandall, Pazy, and Tartar 1979; Bénilan and Crandall
1981], where it was shown that

dru € Lie((0,00); L' (R?)) (1-9)

forug € L' (R?). Subsequently, Crandall and Pierre [1982a; 1982b] devoted considerable effort to relaxing
the required assumptions on the nonlinearity ¥ in the case of generalized porous medium equations

du—AYu)=0 in(0,T)xR%. (1-10)

More precisely, in [Crandall and Pierre 1982a] assuming the global generalized homogeneity condition
"

vwe[m,M] (1-11)
(W'(r)

forsome 0 <m < M, v e {£1} and all r € R, (1-9) was recovered.
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It should be noted that the methods developed in these works are restricted to the nonforced case S = 0.
In fact, for S £ 0, the linear case m = 1 demonstrates that (1-9) should not be expected. We are not aware
of results proving regularity in time in Sobolev spaces for porous medium equations with nonvanishing
forcing. In this sense, restricting to regularity in time alone, the results of the present work can be
regarded as the (partial) extension of the results of [Aronson and Bénilan 1979; Bénilan and Crandall
1981; Crandall, Pazy, and Tartar 1979; Crandall and Pierre 1982a; 1982b] to nonvanishing forcing.

We are not aware of previous results on mixed time and space regularity in Sobolev spaces for solutions
to porous medium equations.

For simplicity of the presentation we restrict to the nonlinearity ¥ (1) = 1 in this work. However,
the methods that we present are not restricted to this case, as long as ¥ satisfies a nonlinearity condition
as in [Gess 2020]. In addition, by means of a velocity decomposition, i.e., writing

K K
u(t,x) = Zui(t,x) = Z @' (v) f(t,x,v)dv,
i=1 i=1""
where ¢’, i =1,..., K, is a smooth decomposition of the unity, such a nonlinearity condition only needs
to be supposed locally at points of degeneracy. This is in contrast to the assumptions, such as (1-11),
supposed in the series of works [Aronson and Bénilan 1979; Bénilan and Crandall 1981; Crandall, Pazy,
and Tartar 1979; Crandall and Pierre 1982a; 1982b] mentioned above, which can be regarded as global
generalized homogeneity conditions.

Structure of this work. In Section 2 we collect information on the class of homogeneous and inhomo-
geneous anisotropic, dominating mixed-derivative spaces employed in this work. The optimality of the
obtained estimates is indicated in Section 3 by scaling arguments and by explicit computations in case of
the Barenblatt solution. In Section 4 we provide general averaging lemmas (Lemmas 4.2 and 4.4) in the
framework of homogeneous dominating mixed-derivative spaces and translate them to more standard
inhomogeneous anisotropic fractional Sobolev spaces (Corollaries 4.5, 4.6 and 4.7). In this formulation,
they imply the main result by their application to the porous medium equation in Section 5.

2. Preliminaries, notation and function spaces

We use the notation @ < b if there is a universal constant C > 0 such that a < Ch. We introduce
a Z b in a similar manner, and write ¢ ~ b if a < b and a = b. For a Banach space X and / C R we
denote by C(/; X) the space of bounded and continuous X -valued functions endowed with the norm
| fllca:x) := supsey | f(O)llx. If X = R we write C(/). For k € N U {oo}, the space of k-times
continuously differentiable functions is denoted by C¥(1; X). The subspace of C¥(; X) consisting of
compactly supported functions is denoted by C f (I; X). Moreover, we write .Z7y for the space of all
measures with finite total variation. Throughout this article we use several types of L?-based function
spaces. For a Banach space X and p € [1, oo], we endow the Bochner-Lebesgue space L?(R; X) with
the usual norm

=

T ( /R T dt) ,
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with the standard modification in the case of p = co. For k € Ng := N U {0}, the corresponding X -valued
Sobolev space is denoted by WX:?(R; X). If o € (0, 00) is noninteger (say o = k + r, with k € Ng and
r € (0, 1)), then we define the X -valued Sobolev—Slobodecki space W?(R; X) as the space of functions
in WkP(R; X) with

k Nk D 5
| DF f(&) —D* f(9)y dsdt) <. (2-1)

1f oo ::(/
WP R:X) RxR |t —s|rPHl

again with the usual modification in the case of p = co. Further, let W2 (R; X)) be the space of all locally
integrable X -valued functions f for which (2-1) is finite. If we factor out the equivalence relation ~,
where f ~ gif || f — g||Wo,p(R;X) = 0, the space W2 (R; X) equipped with the norm || - ||Wo,p(R;X) is
a Banach space.

Moreover, in order to treat regularity results in both time and space efficiently, we introduce spaces
with dominating mixed derivatives set in the framework of Fourier analysis, that is, corresponding Besov
spaces. These spaces have a long history in the literature, beginning with [Nikolsky 1962; 1963a; 1963b].
We refer the reader to [Schmeisser and Triebel 1987]. We adopt the notation of [Schmeisser and Triebel
1987] for the nonhomogeneous spaces. Corresponding homogeneous Besov spaces are treated in [Triebel
1977a; 1977b]; we adapt the notation to be consistent with that of [Schmeisser and Triebel 1987]. We
recall from [Triebel 1977a] the definition of the spaces 2 and 2" replacing the standard Schwartz space
7 =.7(R4+1) and the space of tempered distributions .7 = .’ (R4+1) in the definition of homogeneous
spaces. As we are concerned with function spaces in the time variable t € R and the spatial variable
X € [Rd, we introduce, in addition to RIt1 = R; x [F\Rg, also the subset

R = {(r,x) e R¥*1: 1]x| #£ 0.

Note that in [Triebel 1977a], the notation [E{z is used, which gives a better geometrical intuition of the set
taken out of R2. However, for typesetting reasons, we have decided on the notation R4+1 Then we let
2 be the subset of the standard space of test functions 2, consisting of functions with compact support in
R+ and view itas a locally convex space equipped with the canonical topology. Its dual space is denoted
by ' and is referred to as distributions over R9+1 We define % as the image of 9 C . under the Fourier
transform .Z in time and space, equipped with the inherited topology from %. The corresponding dual
space is denoted by 2. Since .Z : 9 — %, we can define by duality the Fourier transform .% : &/ — &

It holds 2 C . with a continuous embedding, but the fact that 2 is not densely embedded in .
prevents one from stating .%’ C 2. However, we note that for p € (1, 00), the space L? (R?*+1) can be
viewed both as subspace of .7’ and as a subspace of 2”; see Theorem 3.3 in [Triebel 1977a].

Let ¢ be a smooth function supported in the annulus {é cR?: % <lE < 2} and such that

D€ =) 9@ =1 forall§eR\{0}.
jez jez
Similarly, let n be a smooth function supported in (—2, —%) U (% 2) with

Yo=Y n@ ') =1 forallteR\{0}.

lez lez
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Moreover, define ¢; := ¢; for j = 1 and ¢9 := 1 — ZjZI ¢j, as well as Yy :=n; for [ = 1 and
Vo :=1—7 ;5 n;. We will use the shorthand notation 7;¢; for the function (z, §) = 1;(t)¢; (§), and
similarly for combinations of ; and ¢;.

Definition 2.1. Let 0; € (—00,00), i =t,x, and p € [1, 00]. Set ¢ := (07, 0%).

(1) The homogeneous Besov space with dominating mixed derivatives S ‘_’OOB([R{‘Z *1) is given by

SpooB = Spoc BRIT = {f € 2" || fllgz _p <00},
with the norm

l
”f”sU B _lsup 201120xJ ”thnl(PjJt xf”LP(Rd‘H)
,JEZ

Similarly, the space S B(R4+1) is given via the norm

P,00,(00)

. 1 j -1
”f”Sgoo(oo)B = lsup 20[ ZGXJ”yt,xn](pjyt,xf||Lp,oo(Rd+l)-
e ,JEZ

(i) The homogeneous Chemin-Lerner spaces Lp Bg’f,o (R4+1y and L? Bg ‘o (R4+1) are given by
LY Bse =LY BRse R = {f € 7" |1/ Iy gy, < o0k,
LEBJ = LBy o) = {f € 7" | fllpppor < o0},

with the norms

I 27 5, = S0 271707 Zf o

: I g—1
1f izegor, = ?UPT” 17: " Ze f 1l Lo @a+1y.
’ €z
respectively.

(iii) The nonhomogeneous Besov space with dominating mixed derivatives SC __B RA+1) jg given by
P,00

ST 0B =83 o BRITYH = {f e 7' RIT): 1/ sz 5 < o0},
with the norm
1 fllsg o= sup 2720|2391 Fex f ll Lo a1y

l,] =0
(iv) The nonhomogeneous Chemin—Lerner space LY By, (R4 *1) is given by
LY Bl =LY B R = {f € 7"+ | flIgppge. <00k
with the norm ”f”Z{’BZ?‘oo = sup;>o 205) |7y 1¢>j</xf||Lp(Rd+1).

Remark 2.2. All spaces considered in Definition 2.1 are Banach spaces; see [Triebel 1977a]. Note that
for ¥ € R, we use the notation #6 = (o, $0y). In this note, we restrict ourselves to the third index
of the Besov-type space being infinity, in which case the spaces SI‘;” oo B are sometimes called Nikolsky
spaces of dominating mixed derivatives in the literature. However, there is no conceptual limitation to
consider also third indices ¢ € [1, oo]. By the same token, one could also consider spaces with different
indices p and ¢ in different directions. We refer the reader to [Schmeisser and Triebel 1987] for more
details concerning such spaces.
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Lemma 2.3. Let k; = 0and p € [1,00]. Then
LPBKX-FE(Rd-i-I) c LP(R; WKX,p(Rd)) c LPBKX—S(RCZ-FI)
whenever ¢ > 0 and § € (0, kx].
Proof. This follows from [Bahouri, Chemin, and Danchin 2011, p. 98]. O

Lemma 2.4. Let ks, kx >0and p €[1,00). Then Sg’ooB C WOuP(R; WoxP(R%)) whenever o, € [0, k;)
and oy € [0, kx).

Proof. The proof is a combination of results in [Schmeisser and Triebel 1987], which are written for
R x R but also true for R x R¢ by an inspection of their respective proofs: Without loss of general-
ity, we can assume that o; and o, are noninteger. By [loc. cit., Section 2.3.4, Remark 4], we have
WP (R; WoxP(R?)) = SBY ;

space. Since by [loc. cit., Section 2.2.3, Proposition 2] we have S, i B C SBI;)7 .

see [loc. cit., Section 2.2.1, Definition 2] for a definition of the latter
this yields the claim. [

Lemma 2.5. Let 04,0 > 0and p €[1, 00]. Then
d X 3\ _ QO
(LPR*TYNL2BS  NLYBI NSS  B) =SS, B
with equivalent norms.

Proof. As smooth and compactly supported functions, Yo and ¢o extend to L? multipliers for all
p € [1, 00]; see, e.g., [Bergh and Lofstrom 1976].
For f € (LP(RI*Y) N LY BYls N LY Bpo N ST B) C #'(RF1) we obtain

—1 [ —1
||f||sgoo3 < ”g\z,x@[’o‘ﬁog‘\t,xf”L” +Sup2<’z ||§txnl¢oﬁt,xf”L”
’ >0

+ sup2‘7” ”fthO(PJJt xf”L" + sup ZUtZZUXJ ||¢/tx771‘Pj</t Xf”L”
j>0 1,j>0
SIS ler, +7up2“f’||ﬂ mZ Sy,
0

+ sup 27/ ||. 7! ¢jFxfllLr, + sup 20110 IIthmw]fzxfllLP
j>0 1,j>0

p ||f||L;1x + ||f||Z§BZ,’oo I zrage, +1/ sz 5

Conversely, for f € SJ B, we estimate the four contributions corresponding to L? (RE+1), L? Bp 505
Zf ng‘oo, and S7 " separately We start by noting that due to oy, ox > 0, the invariance of multiplier
norms with respect to dilation, n; = ;Yo for [ <0 and Qi =@ $o for j <0, where Vg := Yo + V1 and
$o 1= ¢o + ¢1, we have
?up2"”||3‘71771%f||L,ﬂx <17 o e

<0 . :

sup02"xJ |75 gDJfo”L” N B2 ¢09xf||L” .
]<
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Furthermore we use the fact that for o > 0 one has the estimate ) - |an| < sup, ¢ 2°"|a,| for any
sequence (a,) C R with a constant depending on o. With this, we obtain

l
I lr, < Do 1Zidvidi e flipr, < up 27 2T iy Fex Sy < fllsg _pe
1,j=0 iz

Next, we compute
1/ 22500, \supz"f’nﬁ mZf e, +sup2"fl||f, ViZif e,
sllzr Woftf||Lﬁ_x+Sup2U’l||9t_ ViZifllpr,

<D Tt V0d Fex iy, +sup22””||f,xm,%xfny

Jj=0 >0;>0
l
<SUPZUXJ||</thO¢j</t xf”L” + sup 2% 20/ IIJ‘th/e/t xf“Lfp < ||f||S‘7
j=0 X [>0,j=0

By analogy, ”f”Zf’Bg,’éo < ”f”Sg,ooB' Hence, it remains to control ||f||sg,ooi;- We split this term into
the four contributions

I /
||f||5goo ; _lsup 27 2”“||=/th1¢th xf”L” +l sup 2% 26X]||</txwl‘pj</t xf”L”
’ ,j>0 >0,;<0

+ sup 2"’12"””%xm¢,ﬁzxf||Lp + sup 29712 IIﬁ,xme%xflle :
1<0,7>0 1,j<0

The first contribution is immediately estimated by || f'|| ST ooB For the second contribution, we have

l I
,sup 2720\ T 19 Fux e <Sup2‘” 17 vidoFex fllr <1 flsg p
>0,7<0 s

and a similar estimate holds for the third contribution. For the fourth contribution, we have

lsup 2"”2"”||</,xmwjfzxfllyﬂ < IIthl/fo%mfllm : O
,J <0

3. Optimality of estimates via scaling

It is well known that in the linear case m = 1 one has estimates of the form

lell L 1yiroxn < clox)(luolly + ST Ly ). 3-1)

for all o, < 2. In the case m > 1, such an estimate cannot be true for any o, > 0 anymore. Intuitively,
this is due to the linear nature of (3-1) (observe that the integrability exponent is equal on both sides of
the inequality), which is not compatible with the nonlinear equation (1-1). We will make this intuition
more precise by the following lemma based on a scaling argument.
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Lemma3.1. LetT >0, m>1, we[l,m], pe[l,o0) and o¢,05 = 0. Assume that there is a constant
c=c(m,u, p,os,0x) > 0 such that

[l 2

Wor.r(0,T;Wox-»(R4)) < c(lluoll 1wy + 1SN 210, 7:01 (R))) (3-2)

for all solutions u to (1-1). Then

m m _m—pp _m—p _pp—1 2 <2(M_Ut)§2_li.

<" <M ogs ey < 3-3
w+m—0o; p ot pm—1) m—1 x p m—1 m m (3-3)

p

In particular, ifo; = (m—u)/(m —1),then p=1and ox =2(u—1)/(m —1).

m—1

Proof. For positive constants ,y = 1 with 5 = y and a fixed triple (u, ug, S) such that u satisfies

(1-1) with initial condition u¢ and forcing S we consider the rescaled quantities (i, g, S ) defined via
u(t, x):=nu(yt,x), uop(x):=nue(x), §(t,x) =n"S(yt, x),
where we have tacitly extended S on (T, yT) by 0. Then i satisfies (1-1) with @i € L'(R?) and
S e L1(0, T; LY(R?)), so that (3-2) gives
”ﬁ[ﬂ] ||pWUt~p(O,T;WUX’p(Rd)) < C(”ﬁ()”Ll(Rd) + ||§||L1(0,T;L1(Rd)))' (3_4)
We observe

T — D0 p—1 . [W]) P
”u ||Wgt!p(0’T;ng,p(Rd)) - ]7 y ||u ”Wa[’p(o,}/T;WUx'p(Rd))’

as well as |[tio|| L1 (gay = nlluoll L1 (gay and ||§||LI(O’T;L1(Rd)) =Sl L1(0,y7:L1 (re))- Thus, it follows
from (3-4) that

[u]y P 1— 1—
[ ||Wg,,,,(0,T;W(,X,,,(Rd)) <en Py 0 P (uoll L ey + IS 10,7501 (ReY))

= ey "D (ug || oy + IS L1, iz ay)- (B-5)
As long as ug or S are nontrivial and unless
(m—1)(—orp)+1—pp=0, (3-6)

this gives the contradiction u = 0 by sending n — oo (and consequently also y — 00). Since o; = 0,

(3-6) gives
m

§ -

u+ (m—1)oy
By the same token, since p = 1, (3-6) gives

o< —HP TR

pm—1) m-—1

p <"
u

m

Next, we rescale in space. More precisely, for positive constants 7, y > 0 with !~ = y2 and a fixed

triple (u, ug, S) as above we consider the rescaled quantities (, o, S ) defined via

u(t,x):=nu(t,yx), uo(x):=nue(yx), S(t,x) = nS(t, yx).
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Then 7 satisfies (1-1) with fig € L'(R¢) and § € L1(0, T; L'(R%)), so that (3-2) gives

T2, 0 s oeon ayy < CU0NL @) + 11107321y (3-7)

We have

||u[’“‘]|| = P Ox P d”u[M]H

Wor.-p(0,T;Wox.»(Rd)) Wor.p(0,T;Wox.P(RA))’
as well as [[fiol 1 ey = 17~ luoll 1 ey and 1Sl 110,721 @ayy = 17~ US N 21 0,711 (rey)- Thus, it
follows from (3-7) and the relation !~ = y? that

YN, oz reen gy < NPV (ol iy + 11 210,75 ery)

oxp(m—1) _
=cn 2 TP (ol gay + 1S 12107501 mey))- (3-8)
As long as ug or S are nontrivial and unless

oxp(m—1 -1 2
L-i—l—up:O = oy = add
2 p m—1

(3-9)

this gives the contradiction u = 0 by sending n — 0 or n — oo (and consequently y — oo or y — O,
respectively). Plugging into (3-9) the restrictions on p and o;, we obtain the result. O

Remark 3.2. Ifonesets u =1, p =1 and o; =0, Lemma 3.1 tells us that ox cannot be positive, which is
what we claimed following (3-1). Moreover, we emphasize that Lemma 3.1 shows that in the case of the
whole space, the regularity exponent ox € [2(u —1)/(m — 1),2u/m] is in a one-to-one correspondence
to the integrability exponent p € [1,m/u] via

_pup—1 2 2

— d = ——,
p m—1 e p 2u—ox(m—1)

The Barenblatt solution. Consider the Barenblatt solution

_1
upp(t,x):=1"%(C —klxt P )T,

where
d _a(m—1) o

17 = S v ~> — T A 7 - -
"= dm—1)+2 omad P

d 9
and C > 0 is a free constant. Then, for u € [1, m], u[“’] LM, T; W™/ (R2Y)) implies s < 2u/m.

Proof. With F(x):=(C —k|x|2)’_f_/(m_1) we have u[“’] (t,x) =t~ F(xt~P). We next observe that,
for s € (0, 1) and each ¢ = 0,

/ b, x) =l @))%
Wem/m®d) " Jpa pa |x — J’|vm+d

t—(xm ﬂ(vm +d)+2dﬂ ”F”

)

dx dy

Ws m/u (Rd )
Hence,

m

i = e BCRFD+2aB) R

L’”/M(O T; Ws ,u/m(Rd)) Ws m/u,([Rd)
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which is finite if and only if
sm L gm
—am—ﬁ(— +d) +2dB>—1 and F e WSu(R?).
I

1 1 dim—1 2
m+_(ﬂ+d)_2<_=u,
d\ u o d

which is equivalent to s < 2u/m. In the case s € (1,2) we observe that it holds

Hence, necessarily

Ol (1, x) = 1By F(xiP),

so that analogous arguments may be applied. O

4. Averaging lemma approach

In [Gess 2020], an averaging lemma was introduced that can be applied directly to the porous medium
equations (1-1) to obtain estimates on the spatial regularity of u, but so far, no corresponding estimates
for powers of the solution u* or its time regularity could be obtained. In this section, we provide an
averaging lemma that gives a comprehensive answer to both of these questions. To this end, we recall
the definition of the anisotropic and isotropic truncation properties from [Gess 2020], which extend the
truncation property introduced in [Tadmor and Tao 2007, Definition 2.1].

Definition 4.1. (i) Let m be a complex-valued Fourier multiplier. We say that m has the truncation
property if, for any locally supported bump function ¥ on C and any 1 < p < oo, the multiplier with
symbol ¥ (m(£)/8) is an LP-multiplier as well as an .#Zry-multiplier uniformly in § > 0, that is, its
L?-multiplier norm (.#Z7y-multiplier norm resp.) depends only on the support and C Isize of Y (for
some large / that may depend on m) but otherwise is independent of §.

(ii) Letm : [R? x Ry — C be a Carathéodory function such that m (-, v) is radial for all v € R. Then m is
said to satisfy the isotropic truncation property if, for every bump function ¥ supported on a ball in C,
every bump function ¢ supported in {E eC: % << 2} and every 1 < p < oo,

m(§,v)

2
My, j f(x,v):= 9;1¢(€—|2)1ﬂ( 5 )ﬁxf(X)

is an Lf-multiplier forallveR, J =2/, j€Z, and, forallr > 1,

1
MMy, gllarllLy < 12m(J.8)[7,

where
m(J,v)

Qm(J,S):z{ve[R{:‘

esuppw}.

Here we use an abuse of notation
m(J,v)
]

g1
5 .?GSUPPQD .

,_ {‘m(& v)
1= sup
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We recall that for m (&, v) := |€|?|v|, the anisotropic truncation property is satisfied uniformly in v by
Example A.2 in [Gess 2020] and the isotropic truncation property is satisfied by Example 3.2 in [Gess
2020], albeit only in the case J = 1. However, the proof given there can be used without any changes to
obtain the full assertion for general J € Z.

Lemma 4.2. Assume m € (1,00), y € (—oo,m), pw€[l,m+1—y)andlet f € L’Zx,v, where B’ =1/p
with p € (0, 1), be a solution to

L0, Vi, v) f(t,x,0) = go(t, x,v) + dpg1(t, x,v) on Ry X R;‘g x Ry. 4-1)
Here, the differential operator £ (9, V, V) that is given in terms of its symbol
Llivigv) =it + o Vg2, (4-2)
and g; are Radon measures satisfying

g0l x, )[V|' Y + |g1|(t, x, V)| € Mry (R x RE X Ry).

Suppose
-2
c (“—” 1} n[o, 1].
m—1
Then f € Sg’oo’(oo)l.?, where f(t,x) = [ f@t, x,v)v|* tdv, ik := (k¢, kx) and
s(m—1)+1—-y+p (1—=s)(u—14+p) 2s(u—1+p)
p = ,  Kpi= , Ky = . (4-3)
o+ (1—p)(s(m—1)+1—y) s(m—1)+1-y+p s(m—1)+1-y+p
Moreover, we have the estimate
1£0sz 5 S WO gollary + Mol gllry + 1716 - (4-4)

If additionally f € L}, p #r1 €[l,00], then for all g € (min{p,r}, max{p,r}) it holds fe S}z’goB,
where ¥ € (0, 1) is such that

1 1-9 ¢
N + —.
q r p
In this case we have
IIfIISggOB Sl gollary + 0177 g1 llary + 1A ls  + ||f_||L§!x- (4-5)

Finally, if s = 1 and consequently k; = 0, then (4-5) remains true if we replace the space Sg ’goB =
(0.0kx) p 1 T4 pPkx ’
Sg.50 B by L; By 5.

Remark 4.3. Observe that for

1—v—
pe(w,l)
m+1—y

one may prescribe a specific integrability exponent. More precisely, given

. [ l—y+p m+1—y] ( m+1—)/]
pe , N1, ——=
pp+(1—p)(1=7y) W W
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choose

_moptpU—p)d—y)—l+y+p (u—2+y
(m—=1)(1=p(1—=p)) m—1

Then (4-3) reads p = p, as well as
m+p—y—pupp+p(l—p)(y—m) 1

, 1} N 1o, 1].

Ky = s

pp m—1
_mpp+pd—pd—y)=l+y—p 2

* pp m—1"

Observe that in the limiting case p — 1 and y — 1, these orders of differentiability correspond to the
ones found in (3-3).

Proof of Lemma 4.2. We first assume that f is compactly supported with respect to the variable v. This
condition will enter only qualitatively, and never appears in quantitative form. Therefore, at the end of
the proof, we can again remove this additional assumption.

Since we are interested in regularity in terms of homogeneous Besov spaces, we decompose f into
Littlewood—Paley blocks with respect to the ¢-variable and the x-variable. Let {n;};c7 be a partition of
unity on R\ {0} and {¢; };ez a partition of unity on R4 \ {0} as in Section 2. Then we define for [, j € Z

fl j —th[nlfpjftxf]

where % x f1,j (7., v) is supported on frequencies || ~ 27, |t| ~2! forl, j € Z. Similarly, we define
the decompositions gq; ; and gy 7 ; of go and g1, respectively. We consider a microlocal decomposition
of f}, ; connected to the degeneracy of the operator . (d;, Vy, v). Let ¥ € C2°(R) be a smooth function
supported in B> (0) and set 1 := 1 —vo. For § > 0 to be specified later we write

2 2
M) 5 (1

Since f is a solution to (4-1), we have

fl:j:yx_lwo( )yxﬁj flj+flj

2
Ft it Zin o =7 (UED) 2 (s 0 g ) @6

and thus

2
fl’lj(t,x,v)= ,xllf (|v||$| )X(zrlzé ) Ft.x80,1,;(t,x,0)

+Fx 1 vllEr 1 F1,x0v81,1,j (1, x,v)
. ) Lt ik v) )
= S x,0) + f2 @, x,0). (4-7)
In conclusion, we have arrived at the decomposition

fij /flj|v|” 1dv_/f° lo|# 1dv+/fﬁ lo|#= 1du+fffjle‘ldv::ﬁ?j+ﬂ?j+ﬁ?j.

We aim to estimate the regularity of these three contributions separately.
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Step 1: f°. We note that we have the estimate ||.7; 11,7 f|| L8 <\ 7 L8 with a constant independent
of [, since ||n;|| 4,8 = lInoll 48 < oo. Letl, j € Z be arbitrary, ﬁxed Thenxwe have that |v| <2-27%/§
on the support of (277 E)yo(|v]|€]?/6), so that |2,,(27,8)| < |[[-2-272768,2-272/8]| < 272/§. Hence,
by the isotropic truncation property and Minkowski’s and Holder’s inequality it holds

0, u—1 _ a—1 |v||€§|2 u—1 o
Sl de L F. VYo —5 " Ty f1,; dv

Lt,)c
L (PEPY, e
§/Hgé’xl‘”ﬂ(T I Sy,
Lt.x
" |v||s|2)
Fx 11, dv
(22/) / ” ( 8 Bl 178
§ n=
< (27]) / 1My il sl Sl dv
5\
< (z_j) 1My 2 Ll 1 F s
§ =1 . 1 ) potte
J B’
< (2_]) Q2w @O Sl S (27,) 170z,

where we have used g/ = 1/p.
Step 2: 2 Letl, j € Z be arbitrary, fixed. Since s € [0, 1], we clearly have
' VI < |2 ig ).

Moreover, in light of s > 1 —2+y/(m— 1) we have on the support of n;¢;v1 (|v]|€]?/8) (so that |t| ~ 2!
|E| ~ 2/, and |v| = 272/ 6)
|v|u—2+y |U|M—2+y (2—2j8),u—2+y—s(m—1) 22j(s(m—2)—p+2-y)
|g(i1—’ i%', v)| ~ |.L-|1—s|v|s(m—1)|§_-|2s ~ 2l(1—s5)p2js = §sm—1)—pu+2—yol(1—s) "

Hence, by Theorem B.1 and Lemma B.4, [v|#~2%Y / £ (i, i, v) acts on the support of n;¢; 1 (|v] [€]2/8)
as a constant multiplier of order
22j(s(m—2)—pu+2-y)

§sm—D)—u+2-ypl(1—s)"

Consequently, by the anisotropic truncation property

2 (a1 N[, (PHEPY o 1—y
Sl du = | Fx¥1 5 ) ZariE U)Jt,x|v| go,1,j dv
th ’ ’

22j(s(m—2)—p+2—-y) 1y
S sy 1 gollary

Ll

t.x
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Here, we have used that with ¥ (|v||£]?/8) also

2 2
wl(lvllél )zl_wo(lvl(lgél )

is a bounded .#7y -multiplier independent of § > 0.

Step 3: f3. Letl, j € Z arbitrary, fixed. We observe (recall Z(it,i&,v) =it + |v|" |£]?)

_ _ v[ €2 segn(v)|€]? p|t—l
/fl,sjlvw ldvz_/g\t,;‘/’{(l 1€ ) g (8)|€| || : Frxgr; dv

Zit, i, v)
|v][§]* ) sgn(v)|v[*~2
(n 1)/’/txw ( 2t ik, )yt,xgl,l,J dv
1y, (PHERY T 0, L (T i v) .
+/9,’x1ﬂ1( § ZL(it,i€,v)? Frxgup,j v

o (WIERY [0l sen() o2y
=—/9,,;w1( S ) e Bl Vg o

_ |[v] 1§12 ) sgn(v)|v |2 +Y -
_(“_1)/%”2%( T B LA

_ V] [§12 [o|tm—3+7|g|2
+(m—1)/y“ ( L(it,i§,v)? Frxlole.; dv.

Observe that ] is supported on an annulus. Therefore, we have as before || ~ 2L, €] ~ 2/ and
|v] = 272/ 8 on the support of me;v1(|v||€]?/8), and additionally also |v| ~ 272/ § on the support of
me; ¥ ([v]|€]%/8). This last observation allows us to estimate the expression |v||€|?/8 appearing in the
first integral on the right-hand side by

2
olle? _
)
As in Step 2, we obtain
|v|u—2+y 22j(s(m=2)—p+2-y)
<

|ZGt,iE,v)| ™~ §sm=D—put+2-y2l(1=s)’

and, similarly,

[uptm=3ty (g2 2ty g2
|2t iE )2 |26t iEv)| | L3t iE V)|
|v|u—2+y 22j(s(m—2)—p+2-y)

YL, iE v)| T §sm—D—put2—yol(1=s)"
In light of these estimates, the expressions

|v] [€17 sgn()[v[*2FY sgn(u)|v[#2HY oY g2
b ZLit, i€ v) ZLit,iEv) ZL(it,iE v)?
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extend by Theorem B.1 and Lemma B.4 to constant multipliers of order
22j(s(m—2)—p+2-y)
5s(m—1)—u+2—y21(1—s)
on supports of 7;¢; V1 (|v]|€|2/8) and n;;¥1(|v] |€]%/8), respectively. Hence, by the anisotropic trunca-
tion property, we obtain

H[ Sfiylol v

Step 4: Conclusion. We aim to conclude by real interpolation. We set, for z > 0,
oy =i i1 70 . 70 B 71 1 £ _ 70 i1
K frpy=infll Ry + 21000 2 0 € Liw Yy € L Juy = 12+ T}
By the above estimates we obtain

_ 22j(s(m—2)—p+2-y) 1y _, u—1+p
KG 11 = vz U E 7 gollary +liv glumwz(ﬁ) 170,

22j(s(m—2)—pu+2-y)

< -y .
o ~ 5s(m—1)—,u+2—y21(1—s) ” |U| &1,j ”//ZTV .
t.x

We now equilibrate the first and the second term on the right-hand side: we choose § > 0 such that

El

22j(s(m—2)—u+2-y) § \Mlte
§sm—1)—u+2—yol(1-s) = Z(QT/) ;

that is,
S—acl—sd—a-i-s — Zdeb
witha :=s(m—1)—pu+2—y, b:=pu—1+p, c:=2"" and d := 272/, This yields

s—a—>b

1 1—s
§ =z atbcatbd a+b

and further

(1—s5)b s b
§acl=sg=ats — ;s atb Jath .

Hence, with
b a _sm—1)—pu+2-y
Ta+b sm—1D+1—y+p

we obtain

_ = - v(lfS)(uflﬂ)) —pj_su=1+p) _ _
2K, fig) <27 s 2 5= = (1] 7 oLy A 11017 81y + 1)

= 27 (10 gollary + 101 81llary + 1S s ).

Observe that 1 —60 + 6/ =1—0+46(1—p) =1—0p, so that (L] , L?’x)g,oo = L7 with
1 a+b _ sm—1)+1—-y+p

1—-6p a(l—p)+b pu+(A—=p)(s(m—1)+1-y)

Hence, we may take the supremum over z > 0 to obtain

I/l pee < 27 (1] gollagy + 1077 1y + 1AW e ) (4-8)

p:

Multiplying by 2/%:2/%x and taking the supremum over j, ! € Z yields (4-4).
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If we assume additionally f € L} ., r # p, we choose for g € (min{p, r}, max{p, r}) a corresponding

¥ € (0, 1) subjectto 1/g = (1 —7)/r +1/p. Then using (L} ,, Lf”;o)@’q = L?’x, together with (4-8),
we obtain
1 il S WAL N7 pee
SIAIE 2725 (1o gollary + M1 1llary + 1 g, ,)?

<271 (1 goll gy + 0177 &1Ly + Iflps  + 1 ey )

Multiplying by 2Pk /kx and taking the supremum over j,/ € Z yields (4-5).

Finally we note that if s = 1 and consequently x; = 0, then the partition of unity {#;};<7 in the Fourier
space connected to the time variable ¢ is not necessary. Hence, if we set «; = 0 whenever Lemma B.4 is
invoked and replace Theorem B.1 by its isotropic variant (see Remark B.3), we obtain

155l2g, S 27701 gollry + 11017 g1 llary + 1S s+ 17 lez,).
which shows f € L4 BJ%s.
It remains to consider the case when f is not localized in v. We observe that for a smooth cut-off
function ¥ € C2(R), the function (¢, x,v) — (¢, x,v)¥(v) =: f¥ (¢, x,v) is a solution to
L@, Ve, 0) [V (1x,0) = g8 (t,x,0) + g7 (6%, 0) + dug) (1.,x,0)  on Ry xRE x Ry,
where gg’ , g;/’/ and g;/’ are defined analogously. Hence, estimate (4-8) reads in this case

1/ g ee < 2722 P (1) (88 + &Y Ml + 1017 Y Nty + 1Y N s )

Since |v|™Y g1 € 4Ty by assumption, there exists for ¢, | 0 a sequence r, 1 oo such that

/ Xirn<ppplvl Y grdvdxdr <ep
Rtx[Rngv

for all n € N. For n € N and a smooth cut-off function ¢ € C>°(R) with ¥ = 1 on B1(0) and
supp ¥ C B»(0), we define ¥, via ¥, (v) := ¥ (v/rn). Hence v, is supported on r, < |v] < 2r, and
takes values in [0, 1/r,], so that we may estimate

eV Ly = [ WAl dodrar

Ry XRE XRy

- / Ko <tol<any [V @) [0l (0] 7 g1) dv dx di
R, xR xR,

S/Xr,lslv|$2r,1|v|_yg1 dv < ¢gy.

Thus, taking the limit » — oo and using Fatou’s lemma, we obtain (4-8) also for general f. Multiplying
by 2/%k127%kx and taking the supremum over j, ! € Z, we may conclude as before. O
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Lemma 4.4. Assume y € (—o00,1), me (1,00), we€[l,2—v), p€(0,1], B’ =1/p,and let f, go, g1,
and f be as in Lemma 4.2. Define

l1—y+p - u—1+p
== N t - — .
ppn+ (1—=p)(1=7y) l—y+p

(4-9)

If f e L}, p #r €[l,00], then for all ¢ € (min{p, r}, max{p,r}) we have feLlB q <, where
¥ € (0, 1) is such that

1 1-0 ¢
q r p
Moreover,
IIfIILq oxs S vl gollary + lllvI~ VglllvarllfllLB +||f||L;,x- (4-10)

Proof. By the same arguments as in the proof of Lemma 4.2, we may assume that f is localized in v. In
fact, the whole proof of Lemma 4.4 is similar to the one of Lemma 4.2, with the modification that here
we consider a microlocal decomposition of f* depending on the size of v only and do not localize in the
Fourier space connected to the spatial variable x. More precisely, let {n; };cz be a partition of unity on
R\ {0} as in Section 2. Then we define for / € Z

fi =7 m T £,

where .Z; fj(, x, v) is supported on frequencies |t| ~ 2! for [ € Z. Similarly, we define the decompositions
go,; and g1 ; of go and g1, respectively. Moreover, we again consider a smooth function ¥ € C2°(R)
supported in B;(0) and set 1 := 1 — . For § > 0 to be specified later we write

fi=wo( ) s () =g
Since f is a solution to (4-1), we have
7, (it iE )T, xf[ (t,x,v) = (';—') (g0.1(t. x,v) + yg1,1(, X, v))
and thus
fll(t,x v)

[v] 1 | | 1
= T — z, F —_— t,
Wl( 201k 0) F1,x80,1(1.X,0) + F; 1Y ZGr i) F1x0pg1 (L, X, V)
=: fl2(z,x,v)+fl (t,x,v),
so that we arrive at the decomposition
fi =/fl|U|’“L_1dv=[f,0|v|”_1dv+[f12|v|“_ldv+/fl3|v|“_1dv
= 4+ [+ 5

Again, we treat the three contributions separately.
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Step 1: fO. Let! € Z be arbitrary, fixed. Since |v| < § on the support of Y¥o(|v|/8), using Minkowski’s

and Holder’s inequalities, we have
S v = el Il frdv
L 8 Lt,x
< [v] n—1
< | [vol 5 [v] ”fl”fo dv

<o [ ivol (5 )1l a0
B\
so sty (fwo() @)

ST s
r.x,v

Step 2: f2. Let [ € Z be arbitrary, fixed. Since i <2 —y, we have on the support of 7;¥1(|v|/8) (so
that |z] ~ 2! and |v| = §)
|v|u—2+y |v|u—2+y SH—2+Yy
< <

B I | R £ B

By Lemma B.4 applied with ¢ = 0 and the isotropic variant of Theorem B.1 (see Remark B.3),
|v|#=2%Y /| (i T, i, v)| acts as a constant multiplier of order §4~2%Y /2! on the support of n; 1 (Jv|/$).

Consequently
—2+y
2 u—1 _ ao—1 |U| |U|M o 1—y
v dv = F — | x|V dv
[ rvra] =] [ () Sy et s
SH— 24y

<
2!
Step 3: f3. Let [ € Z be arbitrary, fixed. We observe (recall Z(it,i§,v) =it + [v|" 1|£]?)

_ _ v|\ sgn(v p|H1
[ vrta=— [ ot () B gy P

Ll

t,x

1—
vl goll.azy -

ZL(it,i&,v)
n—2
_(:u_l)/'gztxw (|v|)% Z1,x81,1 dv
—1 |U | |M 181)3(1‘[’1%-71))
+/3‘},x%(7) ZGriE 07 F1,x81,1 dv
n—2+y
- [ 7 wl('”')'g'sgj;,f’g}i”l'.g 5 Pl gy
uw—2+y
- [ #in (' ')ng;f'gl)'f lg STl e

_ | |,u+m 3+y|§|2
+(m—l)/9 (7) L(it,iE v)? Frxll T gnsdy
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Observe that v/{ is supported on an annulus. Therefore, we have as before |7] ~ 2! and |v| = § on the
support of 1;y1(|v|/8), and additionally also |v| ~ & on the support of n;v{(|v|/§). This last observation
allows us to estimate the expression |v|/§ appearing in the first integral on the right-hand side by |v|/§ < 1.
As in Step 2, we obtain

hﬂ”_2+y SH—2+Yy

|Gt i v)| "~ 20 7

and, similarly,
 maad T s N PR s A o
= < — <
|Z(@it,iE,v)|? | L3t iEv)| | L0, iEv)] ™ | L3, i€ V)| 2!

In light of these estimates, Lemma B.4 applied with a¢ = 0 and the isotropic variant of Theorem B.1 (see
Remark B.3) show that the expressions

[vlsgn@)[v[* 7> sgn(u)[p[T2FY [t g
5§ 2t itv)  Zinitv) | 2Lt iE )2

extend to constant multipliers of order §#~2%7 /2! on the supports of myi(Jv|/8) and n;y1(Jv]/6),
respectively. Hence, we obtain

e

Step 4: Conclusion. We aim to conclude by real interpolation. We set, for z > 0,

K fy=inf{l gy 420700 70 € Lix i € Liy fi=£0+ 7}

Sn—2+y
< 1
L, 2

o™ g1l -

By the above estimates we obtain
M=2+y
2!

We now equilibrate the first and the second term on the right-hand side: we choose § > 0 such that

_ 8
K(z, f1) <

(N0l ol + 10177 g1l ) + 28572 fl o

Sh—2+y

— ngb—l-i-p.
2! ’

that is,

-1 I
$:=z T=v¥p2 T—v¥n,

Hence, with
g — —u+2—y
T l—y+p
we obtain

Ny

_ = _ju=1+0 _ —
OK(z, ) S 2SI gollary + M1 g1y +1F s )

=27 (1 golLary + 017 g1 llar + 1 f s ).
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As in Step 4 of the proof of Lemma 4.2 we use (L}’x, Lf’x)g’oo = Lf”’xoo with

b= I I-y+p
1-6p pp+(1—p)(1-y)
to obtain
Ifillppeo S 27 (101" g0l + N0 g1l + 1Al e ) (4-11)

For ¢ € (min{p, r}, max{p, r}) we choose a corresponding ¢ € (0, 1) subjectto 1/q = (1 —3)/r + 1/ p.
Then using (L} ., LT)s,q = L1 . together with (4-11), we obtain

t,x° t,x°
7 WA A WAL
1 fillg, SWAIZIANE poo
SIANE 27 (1o Y gollary + 1017 g1l + 1 f Lo )®
~ L 8oll.ary S1ll.ary LY,
<27 (1" gollary + 110177 €1y + 1 Lo, + 1712 ).
Multiplying by 2/%%: and taking the supremum over [ € Z yields (4-10). O

Corollary 4.5. Letm € (1,00), y € (—oo,m), p€[l,m+1—y), f €L}, NL  beasolution to

(4-1), and let gy, g1 and f be as in Lemma 4.2. Let g € (1,(m + 1 —y)/ ) and define
_ . pug—1 2

Kx. -

q m—y
If f € LY(R4Y) N LY(R; LY(RY)), then f € LY(R; Wo~4(R?)) for all o € [0, &y). Furthermore,

] N ) _
17 s weeay < W01 gollary + 1017 gt lary +1F0Lsazee  + 170 azegt  @-12)

Proof. We recall the decomposition f; = .%_ 0 i Fx f introduced in the proof of Lemma 4.2. We argue

that it suffices to consider the case when fj = 0 for all j < 0. Indeed, the part f<:=3,;_, f; can be

estimated in view of Bernstein’s lemma, see [Bahouri, Chemin, and Danchin 2011, Lemma 2.1], via

If<lLewexay SN fllpapr

We aim to control f in Z? Bqﬁ, 5 where 1 € (0, 1) is sufficiently large such that o, < ¥k, and then use
Lemma 2.3 to the effect of

I N Lswgeay S NS Nz goee = 1 Iza goess

where the last equality is apparent from the definition of the homogeneous and nonhomogeneous Chemin—
Lerner spaces and the fact that the low frequencies of f vanish. Thus, it remains to establish

) _ . i
170 z0 s S W01 gollagy + Mol ¥ g1y + 1700y ouge,, + 000y @13)

For pe(l,(m+1—y)/un), choose

_ (-Dm—y)
I+ pm—p—y)
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We claim that p is positive and well-defined: Since the numerator is positive due to p > 1 and m > y, it
remains to check that the denominator is positive. This is obvious for u <m —y. For u > m —y, we
observe that due to u <m + 1 —y we have

. m4+1-y 1

P < < ;

M mty—m

which implies 1 4+ p(m —pu—7y) > 0. Moreover, p < (m+ 1—y)/u can be rewritten as (p—1)(m—7y) <
1+ p(m—pu—y),sothat p € (0,1). Hence, we may apply Lemma 4.2 with this choice of p and with
s = 1. One checks that in this case the integrability and differentiability exponents in (4-3) read

- up—1 2
p=p, k=0, Kkx=—"———.
p m-—y
Choose p € (q,(m+1—y)/ 1) so that Ky < ky and define ¥ € (0, 1) through
1 v
—=1-9+—.
q p

We may choose p € (¢, (im+1—1y)/ ) sufficiently small so that I € (0, 1) is so large that o < ¥icx < Dky.
In view of (4-5) (with the space S g ’goB = Sé?{,g “) g replaced by Z?Bg £X) we obtain

) e i} ]
15lzs, S 277 (Ml gollary + 1101 &1llay +17 05 +1 712y ),

where we recall the notation f; = [ F e Fx f1lv|* " dv. If we multiply by 2/%%x and take the
supremum over j € Z, this yields

o . i
17 0zo goss S N0 ollary + 1017 81llry + £ 1,6 +1 715y

By the estimate ”f”Lf SISl A+ f s, - this gives (4-13). O
Corollary 4.6. Let m € (1,00), y € (=o0,1), f € L}, ,NL, , be a solution to (4-1), and let go

and g1 be as in Lemma 4.2. AssumefeL;,xforallr e[l,m+1—y), where f(t,x) = [ f(t,x,v)dv.
Let p € 2—y,m+1—1y) and define
_m+1l-y—p 1 . p—2+y 2

Kx. - -

p m—1’ p m—1

Ky

Then f € WO P(R; Wo~P(R2)) for all o; € [0,k;) and ox € [0,Kx). Furthermore, there is an r €
(p,m +1—1y) such that

| lwor.sqwor.sy < W01 gollagy + 107 g1 lary + 10y opoe + 170z, (@14)

Proof. As we need to pass from homogeneous spaces (the output of Lemmas 4.2 and 4.4) to a nonho-
mogeneous space, our strategy is to invoke Lemmas 2.5 and 2.4. The input to Lemma 2.5 requires four
pieces of informat}on, namely control of f in LZ(R4+1) L2 Bgfoo, L? ng‘oo and Sg’OOB. Since the
control of f in L?(R4*1) is ensured by assumption, we concentrate on the other three contributions.
Note that the main difficulty lies in the condition that both the integrability exponent and the orders of

differentiability have to match exactly.
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Step I: f € Sg OOB. Let r € (p,m 4+ 1 —1y) to be chosen in Step 3. We claim that there exist functions
k¢ kx 2 (0,00) — (0, 00) with ks (g), kx(g) — 0 as ¢ — 0 such that it holds for all ¢ < 1

170z s S W0l ollry + W01 g1llary + 1702y o, + W ey @15)

where we have used the notation o; := k; — k¢ (¢) and oy := k' — kx(€).

We apply Lemma 4.2 with u =1, p=1—¢, and s := s, € (0, 1), where s, is chosen so that the
integrability assertion in (4-3) reads p = p; this is possible for p close to 1 in view of Remark 4.3.
Moreover, we may choose 9 € (0, 1) such that x; and kx defined through (4-3) satisfy dk; = k; — k¢ (&)
and Uk = Kx —kx (&) for some functions k; and k. as above. Then for 1 <go < p <gqy <m+1—1y so
that

i=1—19+i, i: 1—19+z9
q0 V2 r

we obtain in view of (4-5) that

r -y —jo 1— — r
1l 2722 ol goll iy + 017 &1ty +1F s+ 17 N2y s )

t,x
fori =0, 1, where we recall the notation f; ; := [ Z; 1[ni¢; Z1.x f]dv. Since (L%, LT )g 5 = Lgx
for an appropriate 6 € (0, 1), we thus obtain

3 —1%Kk;H—jO 1- - ; ;
”fl,j ”Lﬁ <27 R TIVE (| |v] yg()”///TV o7 g1 I.arv “f”LL" ”f”Ll ”f”L?x)’
r.x t.x.v t.x .

which after multiplying by 2/%¥:2/%%x and taking the supremum over [, j € Z yields
1 Nl goer o g S W01 gollry + 11017 g1llary + 1Al + I/l + 0 0 (4-16)
p.oo X,V WX >

By the estimate /1, + 171y, SIf 1y, + 1/ luss, - this gives (@-15)

t,x,v
Step 2: f € Zf ngoo' In this step we establish
17 1zs 5o < W01 8ollary + 1017 81lary + 1S ey, oz, + 1 l2s, @D

Choose _

_ _@=Dm=y)

T4+ pm—1—y)
We claim that p is positive and well-defined: Since the numerator is positive due to p > 1 and m > vy, it
remains to check that the denominator is positive. This is obvious for y <m —1. For y >m — 1, we

observe that |

p<m+1l—y< ———,
P + v l+y—m

which implies 1 + p(m —1 —y) > 0. Moreover, p <m + 1 — y can be rewritten as (p — 1)(m —y) <
1+ p(m—1—y), so that p € (0, 1). Hence, we may apply Lemma 4.2 with this choice of p and with

s = 1. One checks that in this case the integrability and differentiability exponents in (4-3) read

- p—1 2
p=p, k=0, ky=———"-—.
p m—y
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We observe that kx = kx and hence we find ¥ € (0, 1) such that ¥« = Kx —kx(¢). The same interpolation
argument as in Step 1 gives now the estimate (4-17).

Step 3: f € Zf?l?gfoo. In this step we show that there is some r € (p, m + 1 —y) such that

+1 Az - (4-18)

t,x,v

_ . B
||f||z)z§3qz Sl Y gollary + Mol 7Y gllary + I1f llLes
Do

We apply Lemma 4.4 with &t = 1 and p = 1. In this case, (4-9) reads p =2—y and k; = 1/(2—). Since
p >2—7y, we have k; < k;. Hence, we can choose ¢ € (0, 1) such that ¥x; = ik; — k;(¢). In particular,

Kt m+1—j/ pP2—y 2_7/

D < — —,
Kt P —1 p
so that
_e-n0-9)
2—y—0p

is well-defined. Since r is increasing in ¢ due to p > 2 —y, we see that r € (p,m + 1 —y). We have
1/p=(1-=9)/r +9/p, and hence Lemma 4.4 gives estimate (4-18).

Step 4: Conclusion. Since f elL by assumption, Lemma 2.5 combined with Lemma 2.4 yields the
result. O
Corollary 4.7. Let m € (1,00), y € (—oo,m), and let [ € Lt x,v VL7 be asolution to (4-1). Let go

and g1 be as in Lemma 4.2 and assume additionally
190l (7. %, v) € My (Ry x RE X Ry).

Assume pe 2—y,m+1—y)N(1,m+1—7y) and define
. m+l-y—p 1 . p—2+y 2

= F; m—1 T 5 m—1

If f e "R N LYR; LP(RY)) for all r € [L,m + 1 —y), where f(t,x) := [ f(t,x,v)dv, and
if [o|™1fdve LYRITY), then f € WoOP(R; WoxP(RY)) for all o, € [0,%;) and o5 € [0, &x).
Furthermore, there is anr € (p,m + 1 — y) such that

1 I worswox.ry S g0 lary + 101" gollary + 110177 €11y
r ~ m—1
Iy, s, + 1 I poery + H / I d] L @19)
r.x
7D
Proof- 1t suffices to adapt Step 3 of the proof of Corollary 4.6, that is, the control of f in L2 B%' Froo’
Step 3: f € L,’éB‘f’OO. In this step we show that there is some r € (p, m + 1 —y) such that
IIfIIZ jor | S Igollary + 101" goll.ary + 11017 11y
BN ons, A1 gy, 4| [0 o] @20
L

t.x
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We split f into three contributions

[ =F W@ S + Fy (L= Yo(@) (1= ¢o(E)Frx f + F; (1= Yo())do(€) Fr.x f
= f1+ 2+
The low time-frequency part f! can be estimated in view of Lemma 2.3 and Bernstein’s lemma, see
[Bahouri, Chemin, and Danchin 2011, Lemma 2.1], via

r1 | 1 r
17z g0 SN M zopoe S parenepy S 17020 (4-21)
p,oo p.,oo

Next, we apply Lemma 4.2 with u = 1, sufficiently large p € (0,1) and sufficiently small s €
((y = 1)/(m — 1), 1] so that (4-3) implies p < p and k; > k;. Hence, we can choose ¢ € (0, 1)
such that iy > ks > iy — k¢ (&). In particular, in light of Remark 4.3

9 <= mlzy=p p—f)<£i
ke m+p—y—pp+pd—p)y—m)p
sothat r = pp(1 —19)/(p — ¥ p) is well-defined. Since r is increasing in ¢ due to p > p, we see that
re(p,m+1—y). Wehave 1/p = (1 —9)/r + v/ p, and hence Lemma 4.2 gives

if1—p <1,

_ N i ]
17 0s25_g < WOl golluery + W01 g1llary + 10z ozgs,., + 17 s,

Thus, since f2 is supported only on 7;¢ ; for nonnegative /, j € Z, Lemmas 2.3 and 2.4 show, in view of
the definition of the homogeneous and nonhomogeneous Besov spaces and o; < tk; as well as 0 < Pxy,

P20 N2 < A2 e — I Fl .
1720z gor_ = 172N pe <17 20595 5 = 1 lsoe_s-

Thus,
1721z 50 S I gollary + W07 g1llary + 1SNy, ores,, + 1 e, (@22)

It remains to estimate the contribution of 3. For [ € Z, we introduce f13 = 7, n,(v)7: f3. Since
fl3 =0 for / < 0, we may concentrate on the case / = 0. Observe that fl3 solves the equation

1'?' 0@ 7 f + Fd P 7, g0+ 717D 5, e

3 1y
fr=—m|™"
Integrating in v, we obtain

- / o[t 7 ;'?' WEPE) Fre f O+ F) L G0(E) i / g0z do.

Since |£|? acts as a constant multiplier on the support of ¢ and ! acts as a constant multiplier of
order 2~/ on the support of 1y, it follows by Bernstein’s lemma

1

= -, = —J1 _
17205, 520Dy 5270 (| [ ot

+ ||go||kmv)-
Ll

t1.x



OPTIMAL REGULARITY IN TIME AND SPACE FOR THE POROUS MEDIUM EQUATION 2467

Since p > 2 —y, we have

m+l—y—p 1 1
p m—1 p

'/Ivl’"‘lfdv

Multiplying by 2!o1 and taking the supremum over / € Z, we conclude

0,</€t=

In view of / = 0 this yields

r3 _ <2—10[
170, 527

+ ||go||hm).
Ll

t.x

+ ”g()“///TV' (4‘23)
L

12N zegor S| [ /™! fdv
X" p.oo

Collecting (4-21), (4-22) and (4-23), we arrive at (4-20). O

5. Application to porous medium equations

In this section, we provide proofs of our main results by applying the averaging lemmas obtained in the
previous section to entropy solutions to (1-1).

Proof of Theorem 1.2. We first argue that we have u € Lj , forall s € [l,m — 1 + p). Since T < oo,
Theorem A.2 gives

<

hells S sup Ju@)l 1 < luolly + 1Sl - (5-1)

S
t€l0,T]
so that we may concentrate on s > 1. Let f be the kinetic function corresponding to u and solving (1-8).
In order to apply Corollary 4.5 with & = 1 and o = 0, we need to extend (1-8) to all times ¢ € R, which
can be achieved by multiplication with a smooth cut-off function ¢ € C2°(0, T') with 0 < ¢ < 1. Hence,
we set g0 := 8y—y(,x)S +0:¢f and g1 :=¢q. Let y :=2—p, sothat s € (1, m + 1 —y). From (4-12) we
obtain

-1 -2
lpulles , <M1 gollary + 0P "g1llary +10f It aree  +loullL) Azset

1.X,v 1,X,v
—1 —2
< WP gollary + 102Gt lary + 15 Ls  apoe + sup [u@)lpy.

t€[0,T]
We note that since trivially /€ L7% , with norm bounded by 1, estimate (5-1) gives

1L azee  + sup [u@lpy S lullg +1+ sup Ju@lgy < luolly + 1S,y +1.
. o tel0,7T] ' t€l0,7T] ’

Next, we check that |v|°~!go € .#7y. Indeed, we observe that (p — 1)p’ := p, and hence, applying
Lemma A.3,

110177 g0y = 11017 Gomutt,0S + 8e0 ) larry < MulP7' SNy + 10rlullls
SRl Y NSl + 8elul?ly

< lluoll7, + IISIIZ;)X + 0ol -
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Utilizing Lemma A.3 once more to the effect of

o281 lary = Mol 2qlary < ol + 1S5, .
we obtain
loully., <ol o + SN2, 0 +100plully +1.
We may set ¢,(t) = ¥ (nt) — ¥ (nt —T/2), where ¢ € C*°(R) with 0 < ¢ < 1, suppy C (0, 00),
Y (t)=1fort >T/2and ||d;¥| 11 = 1. For n — oo, ¢, converges to [ 7 in the supremum norm,

while 9;¢y is a smooth approximation of 8y;—o} — 8¢s=r}. Therefore, ||@au| s — |u]Ls and by an
application of Lemma A.3

P o _ 4 < 4 14
19:@nlul®lLy = M0 = e[ (T) L1 < Mol + 1570 -

so that u € L*([0, T] x R?) and
lullzy < Mol qpe +1SI7) e +1- (5-2)

(i) We apply Corollary 4.5 once more. Let f, ¢, go, g1 and y be as above. Then, in particular
pe(l,(m+1—y)/un). From (4-12) we obtain
leu N pwor.oy S W01 gollary + 1017 g1 llary + 1S zs  azee , + 1% apepn

The first three contributions on the right-hand side are estimated as above. For the last contribution, we
note 1 < u < pu and thus

¥y arprn S 1 pp g = 1l gy S (el gy + el o)

S Csup Ju@lps + lullr)® < sup Ju(@%, + ullép + 1.
t€f0,T] - t€l0,T] x 1.x

Furthermore, (5-1) together with (5-2) applied with s = pu € (1, m — 1 + p) shows

sup (I, + s + 15 Nuollf o + IS4

+ 1.
o)
t€0,T] rxNL7 x

Hence, arguing as above by taking the limit ¢, — 1[o, 7], we obtain ultl ¢ LP(R; WoxP(R?)) and (1-4).

(i) The proof is similar to the first part, but we use Corollary 4.6 instead of Corollary 4.5. Again we
localize in time by multiplying with a smooth cut-off function ¢ € C2°(0, T) with 0 < ¢ < 1 and set go
and g as before. Choose y :=2—p, sothat p € (2—y,m + 1 —y). From (4-14) in Corollary 4.6 we
obtain

1_ —
lpuliworoqwes.ry S W01 gollary + 10177 81llary +1F0Lr res + s .

where r € (p,m — 1 + p). The terms involving gg, g1 and f can be estimated as above, while the
L} -norm of u can be estimated by (5-2). Choosing ¢, as above, we hence infer that ¢, u is bounded in
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WP (0, T; Wo~P(R?)) and
< P 1Y
'sllelgllwnu Iweer@wosry S luollyy o 1SI7y pe +1

Since ppu — ul[p 77 in the sense of distributions, we obtain the result by the weak lower semicontinuity
of the norm in WP (0, T; WoxP (R?)). O

Proof of Corollary 1.3. (i) Let ox € [0,2un/m). We apply Theorem 1.2(i) with p = m/u for sufficiently
small 1 € (1, p] so that

p m—=24+n mm—2+n
and observe that for all g € [1, p] we have the embedding L? (0, T; WP (R%)) c L9(0, T; W4 (5)).
(ii) For s > 0 we have, with p =s(m—1)+ 1 € (1, m],

-1 2 2 ~1
o < 1P 2 m

1—s m—p 1 2s p—1 2
= = y Ky = = .
s(m—1)+1 p m—1 T sm=1)+1 p m—1

Kt

Hence, in this case the assertion follows by an application of Theorem 1.2(ii) with sufficiently small
n € (1, p] such that p > p and
- 2
o< PP <2
p m-—1
combined with the embedding

WGt,P(()’ T; WGx,P(Rd)) C Wo-t,q(()’ T; WGx,Q(ﬁ))‘

If s =0 and o; € [0, 1), we may choose s > 0 such that

< 1— S0 ( )
0 < ——— =1 k+(S0),
! so(m—1)+1 o
and the result follows by the embedding
WK[(SO),SO(m—1)+1 (0’ T; Lso(m—1)+l (ﬁ)) C WU,,I (0’ T, Ll (ﬁ)) n

Proof of Theorem 1.1. The proof is similar to that of Theorem 1.2(ii), but we discriminate between small
and large velocity contributions to the kinetic function. Let f be the kinetic function corresponding to u
and solving (1-8). We extend again to all times ¢ € R by multiplying with a smooth cut-off function
@ € C°(0,T) with 0 < ¢ < 1. Further, we split f =: f~+ f~ and ¢ =: ¢~ + ¢~ into a small-velocity
and a large-velocity part by multiplying with a smooth cut-off function ¢ respectively ¥; :=1— g
in v. This gives rise to the two equations

At (@f =) —m|v|™ T Ax(@f =) = 0¥0Spmu(r.)S + v (9 ™) — pqdyu o + drpf .
A (@f 7)) —m|u|™ P Ax(0f7) = 0V18p=u@.x)S + 0v(9q”) + 9qdy Vo + 0,0,

Integrating /= and f~ in v, we obtain a decomposition of u = u~ +u~.
The proof proceeds in several steps: In first the three steps, we argue that u € L5(0, T'; L® (R%)) for all
se[l,m+2/d)ifd =2ands € [l,m+ 1) if d = 1. With this additional bound, we can conclude the
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higher-order estimates in the last three steps of the proof. We only detail the proof for d = 2, the case

d =1 being similar.

Step 1: In this step we establish for p € (m,md /(d —2)) the bound
el ng < ol + 18T +1.
Set g0 1= @V0Sy=u(t,x)S + 0:9f = —9qdvo. g1 := ¢q~, and

d d ( 2)
oy =———€(0,— ).
m p m

Consequently, we may choose y € (0, 1) so large that
|: m—1 2 )
Ux € O, - |-

From Corollary 4.5 applied with & = 1 and ¢ = m we obtain

(5-3)

1_ —
lou=lpmwerm S 101 gollary + 1017 gtlary +lef <l aree  +10u=lps apmry

1— —
S gollary + 1017 gtllary + 15 0s  apee  + sup [u(@llpy.

t€[0,T]

We note that since trivially /= € L%, with norm bounded by 1 we have by Theorem A.2

Iz Azee , + sup
toxv M rx 1€[0,T] t€[0,T]

@Iy < lullpy + 14 sup Ju@lipy < llwollpy + 1SNy +1.

Next, we check that |v|!™7go € .#ry. Indeed, since |v|!™7 can be estimated by a constant on the

supports of ¢ and 9,19, we may apply Lemma A.4 to the effect of
111" goll.ary = 101" Y (©¥08u=ur.)S + 3:0 = = 9qdu¥o)l.ary
SUSHLy + Ideglully +1g00¥ollry
< Ncplullly + ol +1Slp -
Utilizing Lemma A.4 once more to the effect of
o177 g1llary SWVITYG" iy < ol +1S1gs s

we obtain by Sobolev embedding

loulimze S Nou=lpmwesm < luolly + 1rohulllyy +1SI,y +1.

With the same construction ¢, — 1{o,7] as in the proof of Theorem 1.2, this gives (5-3).
Step 2: Next, we investigate u~ and establish for € (1, m) and
* Ud(m B 1)
dim—1)—-2(n—1)

the bound

14 e < ol + 1SN +1.

(5-4)

(5-5)
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Set g0 := @V18y=u(r,x)S + 9:0f ~ + ¢qdyo and g1 := ¢g~. Choose y € (1, m) sufficiently small, so
that n € (1, m + 1 — y), and define

-1 2 -1 2
ox;:"__e(o,"__).
n m—1 n m-—y

We apply Corollary 4.5 with © = 1 and ¢ = 7, which gives
lou lpwesn S N1 ollry + 1017 1 llary + 1977 anse +lou” ot apn

t.x,v 1.x,v

1_ —
S0l ol + e grllary + 1712y, oz, + 02 IOl
o ” t€|0,

The terms involving f and u are estimated as in Step 1. Further, since |v|!™” can be estimated by a
constant on the support of ¥; and 9,19, we have by Lemma A.4

11017 goll.ary = 101" (@V18vmue)S + 300 + 0400 ¥0) iz
SUSILy +deglully -+ 1gdu¥ollary
S Ndeglullly + ol e+ 1S,
and, again due to Lemma A.4,
1017 g1llary S W77 a Ny < ol + 1S 1L -
Since n* = nd/(d — ox1n), we have by Sobolev embedding W¢~"" C LZ*, and hence
o™l < low lgwesr S oy + 9eglullly + 1SNy +1.
With the same construction ¢, — 1o 77 as before, this yields (5-5).

Step 3: In this step, we show that for s € [1,m + 2/d) we have
luellzg , < oy + 1Sl +1. (5-6)

Observe that it suffices to show the assertion for s > m, since u € L1(0, T'; L1 (R?)) is already established

by Theorem A.2.
m c md
=—¢€|m—).
P m+1-—s d-—2

Define
For ¢ € (0,1), it holds [L°LL, L™ L8]y = LP? LY with

1 s 1 v
—=— and —=1-0+—.
Py m qs P
Choosing
=" 0,1,
mp—+p—m

we obtain py = gy = s, and hence by (5-3) and Theorem A.2

=Ny, S lpsepy + = lpmpe S luollipy + 1Sl +1. (5-7)
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Next, we define
_sdim—1)+2

X nd
1= dm—1)+2

S and = G D)

and observe that for ¥ € (0, 1), it holds [L° L1, LTL" 1y = LP? LY with

1 s 1 s
—=— and —=I1-9+—.
Py 1N gy n
Choosing
_ nd(m—1)
T opdm—1)+2(n—1)

we obtain py = gy = s, and hence by (5-5) and Theorem A.2

€ (0,1),

™y, Sl peept + ||u>||L;7L;* S luollpy +UISHLy  + 1 (5-8)
Combining (5-7) and (5-8), we obtain (5-6).
Step 4: In this step we argue that
lou=llwor.rqwox.ry S 19e@ullL) + luollf) + IISIIZ;X + 1.

Indeed, we choose y € (0, 1) so large that

-2 2
=2ty 2
p m—1

Ox

andm+1—y <m+2/d. Then we apply Corollary 4.7 with go := @Y00y=y @ x)S + 0:0f = —@qduo,
g1:=¢q~ and p = p. We obtain by (4-19) some r € (p,m + 1 —y) such that

~ _
lou=lwor.rqwos.ry S Igollary + 101" goll.ary + 1017 &1Ly
I ozes,, Flullpipeans  + ™l

The first four terms on the right-hand side can be estimated as in Step 1 (indeed, we did not use the
coefficient |v|!~7 in the estimate of gg) via

Igollary + 1101 7 gollary + 110178 1lary + f Ly e, SIelulllyy +luol y+1S1zy +1.
while the last two terms are estimated in light of r <m + 1 —y <m + 2/d through (5-6) as
el gy peny ™y, S Tely o, + el S ol +ISI7, +1.
Step 5: In this step we establish
lou™ llwor.pqwox.ry S 19cplulllLy  + ol 7'y +ISIF, +1. (5-9)

Assume first p < m. Choose y € (1, m) so small that p € (1, m +1—7y) and
m+l—y—p 1
p m—1

o <
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and apply Corollary 4.7 with go := @ V18, —yu(r,x)S +0:9f ~ +9q0y Vo, g1:=¢q”~ and p = p. Estimate
(4-19) gives
lo™ llwor.owox.ry S I€0llary + 101" gollary + 110177 g1llary

+ ||f||L},x‘me°° + Hu”L}LJ’?ﬂL?x + |||“|m||L}x

t,x,v

The first four terms on the right-hand side are estimated as in Step 2 via

1— —
180l ary + 10" 780l iy + 10178t Ly +0F Uy e SHBeglulllpy ol +1SHpy +1.

while the last two terms are estimated through (5-6) as
el zgnr, + Mhal™ Iy, S Wullzp ooy, + Il gy, < luollfy +1SI7: +1.

Hence, we have shown (5-9) in the case p € (1,m). If p =m, we choose pg € (1, m) sufficiently large

such that for
po—1 2

po m—1

kx(po) :=

it holds

d
Kx(po) — — > 0x — —.
Po m

We observe that for
m—po 1

po m—1

k¢ (po) :=
it holds

1 1
kt(po) — — > 0¢ — —
Po m

due to po < m (indeed, we have necessarily o; = 0). Choosing sufficiently large o (po) < kx(po) and
ot (po) < k:(po), we conclude by Sobolev embedding

lpu~ ||L;"(W;’X~m) < lou” lworwo).ro(woxro).ro)
S 10cplully  + luollfy +1ISIZ, +1,

which is (5-9) in the case p = m.

Step 6: Conclusion. With the same construction ¢, — 1,7} as in the proof of Theorem 1.2, Steps 4
and 5 combine to

sup|@nullwor.o(wox.ry < supllgnu=llwor.rwox.ry + supllgnt” |wor.rwox.r)

neN neN neN

< luollfy + ISIFy +1.

Since gnu — u 1o 7 in the sense of distributions, we obtain (1-2) by the weak lower semicontinuity of the
norm in W2 (0, T; WP (R%)). Estimate (1-3) follows analogously to the proof of Corollary 1.3(ii). OI
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Appendix A: Kinetic solutions

In this section we recall some details of the concept of entropy/kinetic solutions and their well-posedness

for partial differential equations of the type
dru 4 div A(u) = div(b(u)Vu) + S(z.x) on (0,T) x RY A
u(0) =ug on [Rff,

where

up € LY(RY), SeL'([0.T]xRY), T =0,

a:=A e C(R;:RY) N CLR\ {0}; RY), (A-2)
b= (bj)jk=1,..a € CRST) N CIR\{0}: ST,
J€ Sixd
weseto =h1/2, thatis, b; ; = Y9_, 0; kO, ;- For alocally bounded function b:R— S9*4 we let ; . be
such that 87, (v) = 0; & (v). Similarly, for ¥ € C2°(Ry) we let ,B;/fj be such that (,B;ﬁk)’(v) =Y (v)o; k (V).
The corresponding kinetic form of (A-1) reads, see [Chen and Perthame 2003],

Z(0:, Vx,v) f(t,x,0) = 0; [ +a(v) -V f —div(b(v) Vx f)
= avq + S(tv x)gu(t,x)=v(v)’

Here, S _‘f_Xd denotes the space of symmetric, nonnegative definite matrices. For b = (b); j—1

.....

where g € .47 and ¢ is identified with the symbol
Lit,i&v):=it+a@)-iE—((bW)EE). (A-3)

We will use the terms kinetic and entropy solution synonymously. From [Chen and Perthame 2003] we
recall the definition of entropy/kinetic solutions to (A-1).

Definition A.1. We say that u € C([0, T']; L' (R?)) is an entropy solution to (A-1) if the corresponding
kinetic function f satisfies:

(i) For any nonnegative ¥ € 2(R), k=1,...,d,
d

> 0 Bl () € L2([0. T] x RY).

i=1
(ii) For any two nonnegative functions ¥1,¥» € 2(R), k =1,....,d,

d d

Vi @(e.x)) > 0w B2 (. x) = > 05 B2 (. x)  ae.
i=1 i=1

(iii) There are nonnegative measures m,n € .# ™ such that, in the sense of distributions,

3 f +a() V[ —div(b(v) Vs f) = dy(m +n) + 8ymyr.xy)S  on (0, T) x RE x Ry,
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where n is defined by

d 2
> o, Bl ue.)

i=1

d
[ y)n(t, x,v)dv = Z(

k=1
for any ¥ € 2(R) with ¢ = 0.
(iv) We have
/(m +n)dxdr < pu(v) € LF(R),

where Lg° is the space of L°°-functions vanishing for [v| — oo.

The well-posedness of entropy solutions to (A-1) follows along the same lines as [Chen and Perthame
2003]. In this form, it can be found in [Gess 2020].

Theorem A.2. Let ug € LY (R%) and S € L'([0, T] x R?). Then there is a unique entropy solution u to

(A-1) satisfying u € C([0, T]; L! R%)Y). For two entropy solutions u', u? with initial conditions u}, u?
0 %o

and forcing S, S? we have

S[UP | lut (1) = )| g1 @y < g —uglor@ay + 18" = S22 0. 77xm4)-
tel0,T

Furthermore, the following a priori estimate was given in Lemma 2.3 in [Gess 2020].
Lemma A.3. Let u be the unique entropy solution to (A-1) with ug € (L' N Lz_y)([Rz) and S €
(LY N L%7)([0,T] x Ri)for some y € (—oo, 1). Then, there is a constant C = C(T, g) = 0 such that

T

2—y —y 2—y 2—y
su u(t o+ (1= v dvdxdr < C(||u 2o+ SE,0,).
sup O}, + (=) /0 /R Lo (o327, +1S127,)

In the case of L! initial data a different proof for the existence of singular moments of the kinetic
measure ¢ is needed.

Lemma A.4. Let u be the unique entropy solution to (A-1) with ug € L! (R;‘g) and S € L1([0, T] x R;‘g).

Then, the map
T
v|—>/ / q(r,x,v)dxdr
o JrY

is continuous and, for all vy € Ry, we have

T T
/(; /55 q(r,x,vo)dxdr < /R% (sgn(vo)(up —vo))+ dx + /0 /R% sgn, (sgn(vo)(u —vg))S dx dr

T
§/ |u0|dx—|—// |S|dx dr. (A-4)
RY¢ 0 JRY

Proof. In the proof, we use the short-hand notation g(v) := fOT ng g(r,x,v)dxdr for a generic g :
(r,x,v) — g(r, x,v). We first argue that g has left and right limits. Indeed, by a standard approximation
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argument, the kinetic formulation yields, for every n € C>°(Ry),

/ r/c]dvz—/ n( fdxlg) dv +n(u)S
Ry Ry R¢

Ry R% Ry

Since v »—>fR§ f(r,x,v) dxlg is in L'(R,), this implies § — I,<uS € WY1(R,). Since 1y<yS €
B Vioc(Ry), this shows g € BVjo.(Ry) and thus the existence of left and right limits.

Next we claim that (A-5) continues to holds for all n € C*°(R,) with " € C°(R,). For R > 0 let
@R € CZ°(Ry) be such that pg(v) = 1 for [v| < R, supppr C [-(R+ 1), R+ 1] and |pr| + |¢k] < 1.
Defining ng := negr, we have by (A-5)

/(n/¢R+n<p}g)édv=—[ nR(/ fdx|§)dv+nR(u>S.
Ry Ry R)Cg

Since ng is uniformly bounded in R, ng — n locally uniformly, v ng f(r,x,v) dx|g is in L1(Ry,)
and S € L1([0, T] x ng), we may take the limit R — oo on the right-hand side by dominated convergence.

Again by dominated convergence the contribution from the term n’¢g to the left-hand side converges,

1
loc

n¢ vanishes for R — oo, since both 7 and ¢, are bounded, supp ¢ C [-(R + 1), —R]U[R, R + 1]
and ¢ € L§°(Ry) by Definition A.1(iv).

since n” has compact support and § € BVjoc(Ry) C L, .(R,). Moreover, the contribution from the term

We are now in the position to conclude. Assume first vg € Ry. Let ¢+ € C°(Ry) with ¢4+ = 0,
supp ¢+ C [0, 1], suppop— C [—1,0], va ¢+ dv = 1 and define ¢ (v) = e g (e7 ) for & > 0.
Moreover let 7%, be such that (n%.)"(v) = ¢4 (v —vo) and (7% )(vo) = 0. Observe that (%) — Sy=y,
and 7 (v) — sgn (v —vg) as & \ 0 independent of the choice of £. Choosing now 7 := 7¢_in (A-5)
and using dominated convergence to take the limit ¢ ~\ 0, we obtain

T
é(vozl:):—/ (u—vo)+ dx|g+// sgn (u —vp)S dx dr
R% 0 JRY

T
< (uo —vo)+ dx-l—// sgny (1 —vo)S dxdr.
R4 0 JrRY

In particular ¢g(vo—) = G(vo+), so that g is continuous. The case vy € R_ is treated analogously
replacing the conditions ¢+ = 0 and va ¢+ dv=1by s <0and flRu ¢+ dv = —1, respectively, so that
n% (v) — sgn, (v — o) is replaced by 7% (v) — sgn (—(v — vo)). |

Appendix B: Fourier multipliers

In this section, we provide some Fourier multiplier results well-adapted to our averaging lemma,
Lemma 4.2. We recall the definition of R ! and of the functions 7; and ¢; given in Section 2, and
define 7, := n;_1 +n; + 141 and §j 1= ;1 +@; +@j+1. We observe 7, (2! -) = fjo and $(27 ) = Go.
Moreover, 7j; and ¢; are identically unity on the support of n; and ¢;, respectively.
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Theorem B.1. Let k =2+ 2[1 +d/2]. Let m : R — C be k-times differentiable and such that for all
a = (a7, ag) € Ng x Ng with |ot| < k there is a constant Cq, such that for all (t, £) € R4 +1

0% 05 m(z,£)| < Colr| 7|1, (B-1)

Then there is a constant C > 0, depending only on the constants Cy, such that for any p € [1, 0o] and all
l,j €Z,we have
In1@jmll.ar < C: (B-2)

i.e., ;¢;m (more precisely the mapping (t,§) — 171 (1)@, (§)m(t, §)) extends to an Lf’x-multiplier with
a norm independent of | and j. Furthermore, this mapping extends to an .4y -multiplier with the same

norm bound.

Proof. Since | - ||.s» < |- |1, it suffices to estimate the L' multiplier norm of 7;@;m in order to obtain
(B-2). Since multiplier norms are invariant under dilation and since |m|| ,1 is equal to the total mass of
Z 7 m, see [Bergh and Lofstrom 1976, Theorem 6.1.2], we have

17 @imll_ = lliio@oma,j |l g1 = 1 7; g floGomi il .
where m;_;(t,§) := m(2lr, 2j§). Let M :=[1+ d/2]. We observe
1+ )0+ |xHM.7; Hiogom;, ;1. x)

=cg / (id — 32)(id — Ap)M (/" E)fio (1) @0 (£)m (2! 7,27 £) dE de
Ry xR%

— ey / EHIE (1 32)(id — Ap)™ (o (1) o (E)m (211,27 £)) dE dr
R, xR4

= Y caap2ProlFl / e"”“xfa‘;rﬁo(z)ag‘%o(s)affagém(zlr,2f§) dé dr,
ar+Br<2 Ry xRS
g |+1Bs|<2M

where ¢4 and ¢4 4 g are constants that do not depend on / and j. On suppijo X supp ¢o we have
|8ft ngm(er, 2/8)| < CBZ_ZBT 2~ /1P¢l and hence we obtain

1+ )1+ [x)M |2 Hiogomy ;1(t. )] < c.

Since 2M > d, it follows ||fi,j§ [F)ogboml,j]HL} < C, which yields (B-2). In particular, 7;@;m is an
L!-multiplier with a norm bound independent of  and j, and as such extends to a multiplier on .ZTy
with the same norm bound. O

Remark B.2. In Theorem B.1, the assumptions on the differentiability of 77 may be relaxed: Indeed, the
proof shows that it suffices to assume that 7 is a continuous function such that 97 m, ngm and 9%° ang
exist for all & = (a¢, ag) with ar <2 and |ag| < 2[1 + d/2], and that (B-1) holds for these choices of a.

Remark B.3. Clearly, Theorem B.1 has an isotropic variant; see [Bahouri, Chemin, and Danchin 2011,
Lemma 2.2]. More precisely, a simple adaptation of the proof shows the following: Let k = 2[1 4+ d/2].
Let m : R4 \ {0} — C be k-times differentiable and such that for all o € Ng with |a| < k there is a
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constant C, such that for all £ € R4 \ {0} we have |3%m (£)] < Cg|&|~1%!. Then there is a constant C > 0,
depending only on the constants Cy such that for any p € [1,00] and all j € Z we have ||¢;m|. ,» < C.
Again, ¢;m extends to an .#ry-multiplier (in §) with the same norm bound.

Lemma B.4. Let £ be defined as in (4-2) and fix a = (az, o) € No x Ng. Then we have for all
(r,8,v) € RA+1 x R the estimate

1 1
80!-[ g —Ur _|a8|.
& 2@t ik v)|”~ |$(it,i§, v)||r| i
Proof. The proof rests on the identity
1 By|(m—1)Ng
855 Zcﬂ §.|U|. ’
Z(it, i, v) L(it, ik v)1tNs

B

where cg are constants, Ng := (|ag| + |B|)/2, and the sum runs over those 8 € Ng with [B] < |og| such
that |ag| + |B| is even. The identity can be proven easily by induction on the order of og. From this and
0: Z(it,i&,v) =i, it immediately follows

gB|y|m—DNg
Z'ﬁ(lt ZE’ U)H-Olr+N3 )

8011 g
§ f(zt 15 v)| "~

which in view of
|Bl},,|(m—1)Ng 1Bl},,|(m—1)Ng
|E["P o] _ [§[*v]

LG e S (g T =l

~

and
1 el
| LT ik v)or
yields the assertion. O
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