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PROPAGATION PROPERTIES OF
REACTION-DIFFUSION EQUATIONS IN PERIODIC DOMAINS

ROMAIN DUCASSE

We study the phenomenon of invasion for heterogeneous reaction-diffusion equations in periodic domains
with monostable and combustion reaction terms. We give an answer to a question raised by Berestycki,
Hamel and Nadirashvili concerning the connection between the speed of invasion and the critical speed of
fronts. To do so, we extend the classical Freidlin–Gärtner formula to such equations and we derive some
bounds on the speed of invasion using estimates on the heat kernel. We also give geometric conditions on
the domain that ensure that the spreading occurs at the critical speed of fronts.

1. Introduction and results

1.1. Introduction. This paper deals with the spreading properties of the reaction-diffusion equation{
∂t u = div(A(x)∇u)+ q(x) · ∇u+ f (x, u), t > 0, x ∈�,

ν · A(x)∇u = 0, t > 0, x ∈ ∂�.
(1)

Throughout the paper, the domain � and the coefficients are assumed to be periodic. Here, ν stands for
the exterior normal. Reaction-diffusion equations arise in the study of various phenomena in biology
(propagation of genes, epidemics), physics (combustion), and more recently in social sciences (rioting
models). A particular emphasis is given here to the case where the equation is homogeneous but the
domain is not the whole space: {

∂t u =1u+ f (u), t > 0, x ∈�,
∂νu = 0, t > 0, x ∈ ∂�.

In such a case, we provide an answer to a question asked by Berestycki, Hamel and Nadirashvili [Berestycki
et al. 2005] concerning the relation between the speed of invasion and the speed of fronts for this problem.

Reaction-diffusion equations have been extensively studied since the seminal paper of Kolmogorov,
Petrovski and Piskunov [Kolmogorov et al. 1937]. There, the authors dealt with the homogeneous equation

∂t u =1u+ f (u), t > 0, x ∈ RN , (2)

with f (u)= u(1−u). The results of [Kolmogorov et al. 1937] were extended in [Aronson and Weinberger
1978] to more general reaction terms f . The basic assumption is that f (0)= f (1)= 0, so that the constant

MSC2020: 35K57, 35B40, 35K05, 35B51, 35B06.
Keywords: propagation, spreading, reaction-diffusion equations, heat kernel, domains with obstacles, periodic domains,

parabolic equations, elliptic equations, speed of propagation, geometry of the domain.
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states u ≡ 0 and u ≡ 1 are stationary solutions. We shall pay a particular attention to the following two
types of nonlinearities:

(monostable) f > 0 in (0, 1).

(combustion) There exists θ ∈ (0, 1) such that f = 0 in [0, θ], f > 0 in (θ, 1).

These two notions extend to the case where f can depend on x ; see Definition 1 below. Two important
features of reaction-diffusion equations were derived in [Aronson and Weinberger 1978]. First, (2) admits
particular solutions called traveling fronts. These are positive entire (i.e., defined for all t ∈ R) solutions
of the form u(t, x)= φ(x · e− ct), for some e ∈ SN−1, c ∈ R, φ decreasing and satisfying φ(s)→ 1 as
s→−∞ and φ(s)→ 0 as s→+∞. The unit vector e is the direction of propagation, c is the speed of
propagation and φ is the profile of the traveling front. More specifically, there exists a quantity c? such
that there are fronts with speed c for every c ≥ c? if f is of monostable type, whereas there are traveling
fronts only with speed c = c? if f is of combustion type. Of course, the homogeneity of (2) implies that
the quantity c? does not depend on the direction of the fronts e. We mention that, if f is of KPP type
(i.e., if it is monostable and satisfies f ′(0) > 0 and f (u) ≤ f ′(0)u for u ∈ [0, 1]), then it is proved in
[Kolmogorov et al. 1937] that c? = 2

√
f ′(0). The quantity c? is called the critical (or minimal) speed of

fronts. We consider this quantity in a more general context in Section 1.2.
The second important feature of reaction-diffusion equations is the property of invasion. If u(t, x) is a

solution of (2) arising from the initial datum u0 such that

u(t, x) t→+∞−−−→ 1 locally uniformly in x,

we say that invasion occurs for the initial datum u0. Of course, this depends on the nonlinearity f . For
instance, if f is of combustion type, and if u0 is a compactly supported nonnegative initial datum and is
such that u0 ≤ θ , then the problem (2) boils down to the heat equation, and then u(t, x)→ 0 as t goes to
+∞ uniformly in x . However, it is shown in [Aronson and Weinberger 1978] that, for every η ∈ (θ, 1),
there is R > 0 such that any initial datum such that u0(x)≥ η1BR (where BR is the ball of center 0 and of
radius R) satisfies the invasion property. In contrast, if f is of KPP type, then invasion occurs for any
nonnegative nonzero initial datum.

Once we know that invasion occurs for some initial data, we can define the speed of invasion. We say
that w(e) > 0 is the speed of invasion for (2) in the direction e ∈ SN−1 if, for any solution u(t, x) of (2)
emerging from a compactly supported nonnegative initial datum that converges to 1 as t goes to +∞,
locally uniformly in x , the following holds:

for all c >w(e), u(t, x + cte)→ 0 as t→+∞,

for all c ∈ [0, w(e)), u(t, x + cte)→ 1 as t→+∞,

locally uniformly in x ∈ RN. The homogeneity of (2) yields that the speed of invasion is actually
independent of the direction e. Moreover, if f is of KPP type, it is proved in [Kolmogorov et al. 1937]
that w(e) = 2

√
f ′(0) for all e ∈ SN−1. Hence, in this case c? ≡ w. In other terms, this means that the

invasion occurs at the critical speed of fronts in every direction.
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One of the main motivations behind the present paper is to understand to what extent this is still satisfied
in more general domains, in which case closed formulas for the speeds are not available. Berestycki,
Hamel and Nadirashvili [Berestycki et al. 2005] conjectured that the geometry of the domain could give
that the invasion does not occur at the critical speed of fronts in every direction (see Question 4 below).
We shall construct such domains. We shall also give geometric conditions on the domain that ensure that
the invasion speed coincides with the critical speed of fronts in some directions.

In order to state our main results, we first present how the notions of fronts and invasion extend to the
case of spatially periodic heterogeneous equations.

1.2. Pulsating traveling fronts. The notion of pulsating traveling fronts was first introduced in dimension
N = 1 in periodic media by Shigesada, Kawasaki and Teramoto [Shigesada et al. 1986] to generalize
the notion of traveling fronts available in the homogenous case. Berestycki and Hamel [2002] extended
this notion to the more general framework of (1). Throughout the paper, we assume that A, q, f, � are
periodic, with the same period; i.e, there are L1, . . . , L N > 0 such that

for all k ∈
N∏

i=1

L i Z, �+{k} =�,

for all k ∈
N∏

i=1

L i Z, f ( · + k, · )= f, q( · + k)= q, A( · + k)= A.

We shall denote by C :=
∏N

i=1[0, L i ) the periodicity cell. Typical examples of such domains � are
domains with “obstacles”: if K ⊂ RN is a smooth compact set, we can define the periodic domain
� := (K + LZN )c, with L > 0 large enough so that the resulting domain is smooth and connected. This
domain can be seen as the whole space with K -shaped obstacles periodically distributed.

To simplify the notation, unless otherwise stated, we shall assume that the period is 1, i.e., L1 = · · · =

L N = 1. In order to apply the results of [Berestycki and Hamel 2002], we make the following assumptions
on the domain:

� is a periodic, connected open subset of RN of class C3, (3)

and the following hypotheses on the coefficients:

A ∈ C3(�) is symmetric and uniformly elliptic and periodic,

q ∈ C1,α(�) for some α ∈ (0, 1), div q = 0,
∫
C∩� q = 0, q is periodic,

f :�×[0, 1] 7→ R is of class C1,α for some α ∈ (0, 1).

(4)

We also assume that the nonlinearity f satisfies the following:

for all x ∈�, f (x, 0)= f (x, 1)= 0,

there exists S ∈ (0, 1) such that for all x ∈�, f (x, · ) is nonincreasing in [S, 1],

for all s ∈ (0, 1), f ( · , s) is periodic.

(5)

By analogy with the homogeneous case f = f (u), we define monostable, KPP and combustion
nonlinearities f (x, u):
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Definition 1. We say that f is of monostable type if

for all s ∈ (0, 1), min
x∈�

f (x, s)≥ 0, max
x∈�

f (x, s) > 0. (6)

Among monostable nonlinearities, there is the special class of KPP nonlinearities. In addition to being
monostable, they satisfy

for all x ∈�, for all s ∈ [0, 1], f (x, s)≤ ∂s f (x, 0)s. (7)

We say that f is of combustion type if

there exists θ ∈ (0, 1) such that for all (x, s) ∈�×[0, θ], f (x, s)= 0,

for all s ∈ (θ, 1), min
x∈�

f (x, s)≥ 0, max
x∈�

f (x, s) > 0. (8)

The important difference between combustion and monostable nonlinearities (from which stems the
nonuniqueness of speeds of fronts for monostable equation) is that, when f is of combustion type,

there exists θ ∈ (0, 1] such that for all x ∈�, f (x, · ) is nonincreasing in [0, θ]. (9)

In the periodic framework, the notion of traveling fronts can be generalized by pulsating traveling
fronts.

Definition 2. A pulsating traveling front in the direction e ∈ SN−1 of speed c ∈ R\{0} connecting 1 to 0
is an entire (i.e., defined for all t ∈ R) solution v of (1) satisfying{

for all k ∈ ZN for all x ∈�, v(t + (k · e)/c, x)= v(t, x − k),
v(t, x)→ 1 as x · e→−∞, v(t, x)→ 0 as x · e→+∞.

Such fronts are known to exist in several situations. For instance, it is proved in [Berestycki and Hamel
2002] that, under hypotheses (4)–(5), for every e ∈ SN−1, there is c?(e) > 0, called again the critical
(or minimal) speed of fronts in direction e, such that pulsating traveling fronts in the direction e with
speed c exist if, and only if, c ≥ c?(e) when f is of monostable type (6) or only if c= c?(e) when f is of
combustion type (8); see [Berestycki and Hamel 2002, Theorems 1.13–1.14].

1.3. The speed of invasion. The results of Kolmogorov, Petrovski, Piskunov [Kolmogorov et al. 1937]
and Aronson and Weinberger [1978] concerning the invasion have also been extended to a more general
framework than the homogeneous one. First, consider the periodic equation on RN

∂t u = div(A(x)∇u)+ q(x) · ∇u+ f (x, u), t > 0, x ∈ RN . (10)

Then, one can define the speed of invasion w as a function from the unit sphere SN−1 to R+ such that,
for every u solution of (1) arising from a compactly supported nonnegative initial datum which converges
to 1 as t goes to +∞, locally uniformly in x ∈ RN, we have, for e ∈ SN−1,

for all c >w(e), u(t, x + cte)→ 0 as t→+∞,

for all c ∈ [0, w(e)), u(t, x + cte)→ 1 as t→+∞,

locally uniformly in x ∈ RN.
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Using probabilistic techniques, Gärtner and Freidlin [1979] showed the existence of a speed of invasion
for (10) when f is of KPP type (7) and A, q, f are x-periodic. They showed that invasion occurs for
every nonnegative nonnull compactly supported initial datum and proved what is now known as the
Freidlin–Gärtner formula:

w(e) := min
ξ∈RN

e·ξ>0

k(ξ)
e · ξ

, (11)

where k(ξ) is the periodic principal eigenvalue of the operator

Lξu := div(A∇u)− 2ξ · A∇u+ q · ξu+ (− div(Aξ)− q · ξ + ξ · Aξ + ∂u f (x, 0))u.

This formula was also proved by Berestycki, Hamel and Nadin [Berestycki et al. 2008] using a PDE
approach. Similar properties of spreading for heterogeneous reaction-diffusion equations have been
studied with other approaches: the viscosity solution/singular perturbation method was adopted by Evans
and Souganidis [1989] and Barles, Soner and Souganidis [1993]. Weinberger [2002] used an abstract
discrete system approach.

Berestycki, Hamel and Nadirashvili [Berestycki et al. 2005] showed that, if one considers KPP
nonlinearities, the critical speed of pulsating traveling fronts in the direction e for (10) is given by
c?(e)=minλ>0 k(λe)/λ, where k is the principal eigenvalue introduced before (if the equation were set
on a periodic domain � instead of RN, this relation still holds true with k being the periodic principal
eigenvalue of the same operator but with the additional boundary condition ν · A∇u = λ(ν · e)u on ∂�,
see [Berestycki et al. 2005] for the details). Consequently, in the KPP case, the Freidlin–Gärtner formula
(11) can be rewritten as

w(e)= min
e·ξ>0

c?(ξ)
e · ξ

. (12)

The fact that pulsating traveling fronts exist not only in the KPP case but also for other reaction terms,
and hence that the formula (12) could make sense in more general frameworks than the KPP one, led
Rossi [2017] to extend the Freidlin–Gärtner formula to much more general equations in the whole space,
essentially, all those for which pulsating traveling fronts are known to exist.

In this paper, we deal with invasion in domains � that are not necessarily RN. In this case, it is
convenient to introduce the notion of asymptotic set of spreading.

Definition 3. Let W ⊂ RN be a closed set coinciding with the closure of its interior. We say that W
is the asymptotic set of spreading for a reaction-diffusion equation if, for any bounded solution u(t, x)
emerging from a nonnegative compactly supported initial datum such that u(t, x)→ 1 as t→+∞, locally
uniformly in x ∈�, we have

for all K compact, K ⊂ int(W), inf
x∈t K

u(t, x)→ 1 as t→+∞, (13)

for all C closed, C ∩W =∅, sup
x∈tC

u(t, x)→ 0 as t→+∞. (14)

If only (13) holds, W is said to be an asymptotic subset of spreading, and if only (14) holds, W is said to
be an asymptotic superset of spreading.
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The asymptotic set of spreading relates to the notion of speed of invasion previously described. Indeed,
assume that W is an asymptotic set of spreading and that we can write W ={rξ : ξ ∈SN−1, 0≤ r ≤w(ξ)}
with w a continuous function. Then, if � = RN, w(e) is the speed of spreading in the direction e, as
defined before. For example, if f is a KPP nonlinearity independent of x , then the asymptotic set of
spreading associated with the homogeneous equation (2) is the ball of center 0 and of radius 2

√
f ′(0).

Observe that, for the definition of the asymptotic set of spreading to be meaningful, it is necessary that
there are compactly supported initial data u0 for which the invasion property holds. Rossi and the author
[Ducasse and Rossi 2018] gave necessary and sufficient conditions to have invasion for (1). In particular,
we showed there that, if f is of monostable or combustion type, in the sense of Definition 1, and if the
drift term q is “not too large” (see [Ducasse and Rossi 2018] for the details), then, setting

θ :=max{s ∈ [0, 1) : there exists x ∈� such that f (x, s)= 0},

we have that, for all η ∈ (θ, 1), there is r > 0 such that any solution of (1) with an initial datum u0

satisfying
u0 > η in �∩ Br

converges to 1 as t goes to +∞, locally uniformly in x ∈�.

1.4. Statement of the main results. One of the main motivations behind the present paper is to answer
the following question, raised by Berestycki, Hamel and Nadirashvili [Berestycki et al. 2005]:

Question 4. Consider the homogeneous equation set on a periodic domain �{
∂t u−1u = f (u), t > 0, x ∈�,

∂νu = 0, t > 0, x ∈ ∂�.
(15)

Are there domains � such that c? 6≡ w?

We recall that c? is the critical speed of pulsating traveling fronts and w is the speed of invasion.
Originally, this question was asked for f of KPP type (7), but it also makes sense if f is a monostable (6)
or a combustion (8) nonlinearity.

As we already mentioned, if the domain � is the whole space RN and if f is of KPP type, then w
and c? are independent of the direction and are both equal to 2

√
d f ′(0). In general periodic domains, the

propagation may not be isotropic anymore: w and c? can depend on the direction.
Let us mention that, if we considered the equation with general coefficients (1), it would be actually

much easier to have c? 6≡ w with �= RN. For instance, in dimension 2, when the Laplace operator is
replaced by a∂2

xx + b∂2
yy , with a, b > 0, and when the nonlinearity f is of KPP type, one could explicitly

compute c? and w, see [Berestycki et al. 2005, Remark 1.12], and one could observe that, if a 6= b, then
c? 6≡ w. What was not known is whether the geometry of the domain alone could give that c? 6≡ w. We
prove that this is the case.

Theorem 5. Let f be a monostable (6) or a combustion (8) nonlinearity independent of x. There are
smooth periodic domains � such that the critical speed of pulsating traveling fronts c? and the invasion
speed w for (15) are not everywhere equal, that is, c? 6≡ w.
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This provides a positive answer to Question 4. When the nonlinearity f is of monostable or combustion
type, then the domains we exhibit are L-periodic, with L large enough. If f is a KPP nonlinearity, then
we can construct domains with any periodicity.

Let us emphasize that Theorem 5 does not say that we can construct domains where c?(e) 6= w(e) for
every e ∈ SN−1: we shall explain after why this is actually impossible. Finding directions where the two
speeds coincide is the object of Theorem 7 below.

A first step in proving Theorem 5 will be to give a formula for the speed of invasion. We show that the
Freidlin–Gärtner formula (12) still holds true for the general equation (1) in the periodic domain � with
combustion and monostable nonlinearities.

Theorem 6. Let A, q, f, � be periodic, satisfying (4)–(5). Assume that f is a monostable (6) or a
combustion (8) nonlinearity. Then, (1) has the asymptotic set of spreading

W = {rξ : ξ ∈ SN−1, 0≤ r ≤ w(ξ)}, (16)

where w(ξ) := infe·ξ>0 c?(e)/(e · ξ), and c?(e) is the critical speed of pulsating traveling fronts in the
direction e.

This result extends the one by Rossi to the case where the domain is not RN anymore. We shall follow
the same strategy of proof. As this result is crucial to carry through our investigations, and as the result is
of independent interest, we shall prove it in detail in Section 2.

Once Theorem 6 is established, we employ it to derive a simple criterion ensuring that c? 6≡w. We show
that if c? ≡w, then c? and w are necessarily constant; see Proposition 12 below. To answer Question 4 is
then tantamount to finding domains where w or c? are not constant. Intuitively, we may think that, if a
domain is “very obstructed” in a direction, then the speed should be small in this direction.

In order to make this intuition rigorous, we derive new estimates on the invasion speed that take into
account the geometry of the domain. This is the subject of Section 3.3. The main tool is an upper bound
on the heat kernel in �. Once we have these estimates at hand, we are able to construct domains where
c? and w are not constant, and hence are different. This is done in Section 3.4, proving then Theorem 5.

The remainder of the paper is dedicated to giving conditions under which c? and w coincide in some
directions. Indeed, observe that, though we can construct domains� where c? 6≡w, there is always at least
one direction e ∈ SN−1 such that c?(e)= w(e): it is readily seen from the Freidlin–Gärtner formula (12)
that any direction emin that minimizes c? satisfies c?(emin)= w(emin). The only other characterization of
directions e where c?(e)=w(e)we are aware of holds true in the KPP case: it is proved in [Berestycki et al.
2005] that c?(einv)= w(einv) if � is invariant in the direction einv (i.e., �+{λeinv} =� for every λ ∈ R).

Our next theorem, proved in Section 4, shows that, if the domain � is symmetric, then there are
directions where c? and w coincide. This result requires u 7→ f (u)/u to be nonincreasing (strong KPP
property).

Theorem 7. Assume that f satisfies (4), (5) and that u 7→ f (u)/u is nonincreasing. Let c? and w be
the critical speed of fronts and the speed of invasion for (15). Then, assume that there is an orthogonal
transformation T such that:
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• T leaves � invariant; i.e., T�=�.
• There is e ∈ SN−1 such that T e = e, and Ker(T − IN )= Re.

Then
c?(e)= w(e).

This result implies for instance that, if a periodic domain in R2 is symmetric with respect to an axis,
then c? and w coincide in the direction of this axis; see Corollary 24 for more examples.

As we shall explain in Remark 25, the hypothesis that Ker(T − IN )= Re is necessary.
Let us conclude this section with some questions that are still open. The set W given by (16) is

sometimes called the Wulff shape associated with the surface tension c?. It appears in crystallography and
in isoperimetric problems. A natural question is whether the function w parametrizing the boundary of
W is regular. Rossi [2017] proved that it is continuous. We are not aware of further regularity results. We
conjecture that, at least in the KPP case (where c? is known to be smooth), w is smooth.

Theorem 5 states that there are domains � such that c? 6≡ w. One may wonder on the contrary if there
are periodic domains � 6= RN such that c? ≡w. Thanks to our Proposition 12 below, this is equivalent to
finding domains where c? is constant. As far as we know, the existence of such domains is still open.

Let us also mention that, although the construction of the domain � where c? 6≡ w in Theorem 5 will
be explicit, our proof will not tell in which direction(s) the two speeds indeed differ. We leave this as an
open question.

Remark 8. In addition to the monostable and combustion cases, there is another class of reaction
terms f that is widely studied in the literature, namely the bistable nonlinearities. The prototype is
f (u)= u(1− u)(u− a), with a ∈ (0, 1). In this paper, we do not consider such nonlinearities; indeed,
the main tool we use is the existence of pulsating traveling fronts with positive speed. If �= RN, there
are results in some particular cases; see [Ducrot 2016; Xin 1991a; 1991b] for instance. If � 6= RN, the
situation is yet to be explored, and the geometry of the domain can yield phenomena that do not appear
in the combustion or monostable case. For instance, Rossi and the author showed in [Ducasse and Rossi
2018] that invasion can occur in some directions but not in others. However, we mention that the strategy
used to derive Theorem 5 still applies if f is bistable, provided there exist pulsating traveling fronts with
positive speeds in every direction e ∈ SN.

2. Freidlin–Gärtner formula for a periodic domain

This section is dedicated to the proof of Theorem 6; i.e., we show that the Freidlin–Gärtner formula (12)
relating the critical speeds of fronts to the speed of invasion still holds true when the domain is not RN

but a periodic domain � and with monostable or combustion nonlinearities. Our proof is based on the
same strategy as the one used in [Rossi 2017]. We start by stating some preliminary technical results. For
simplicity, we assume throughout this section that the domain and the coefficients are 1-periodic, i.e.,
L1 = · · · = L N = 1.

2.1. Preliminary results. In the proof of Theorem 6, we will need some technical lemmas. They gen-
eralize those of [Rossi 2017, Section 2.1] to the case where the domain is not RN anymore. The main
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technical difficulty is that� is not invariant under translations in general. The proofs follow the same lines
as in [Rossi 2017] and can be found for completeness in the Appendix. We say that u is a subsolution
(respectively supersolution) if it satisfies (1) with the symbols = replaced by ≤ (respectively ≥).

The first lemma states that every entire solution that is “large enough” in some direction is actually
“front-like” in this direction.

Lemma 9. Let γ > 0. Assume that (4) and (5) hold. Let u ∈ C1+α/2,2+α(R×�) for some α ∈ (0, 1) be
an entire supersolution of (1) such that

inf
t<0

x ·e<γ t
x∈�

u(t, x) > S,

where S is defined in (5). Then
lim inf
δ→+∞

inf
t<0

x ·e<γ t−δ
x∈�

u(t, x)≥ 1.

The following lemma is a comparison principle for front-like solutions.

Lemma 10. Assume that (4) and (5) hold. Let u, u ∈ C1+α/2,2+α(R × �), for some α ∈ (0, 1), be
respectively an entire supersolution and subsolution of (1). Assume that there are e ∈ SN−1, γ > 0 such that

u > 0, lim inf
δ→+∞

inf
t<0

x ·e<γ t−δ
x∈�

u(t, x)≥ 1. (17)

Moreover, assume that u ≤ 1 and that there is η > 0 such that the following hold:

• The nonlinearity f is of combustion type (8) and

for all s > 0, there exists L ∈ R, u(t, x)≤ s such that if t ≤ 0, then x · e ≥ (γ + η)t + L , x ∈�, (18)

or

• the nonlinearity f is of monostable type (6) and

there exists L ∈ R, u(t, x)≤ 0 such that if t ≤ 0, then x · e ≥ (γ + η)t + L , x ∈�. (19)

Then, the following comparison result holds:

u(t, x)≤ u(t, x), for all t ∈ R, for all x ∈�.

In addition to those two technical lemmas, we shall need the following result, stating that, in our
framework, the speed of invasion w is a continuous function:

Lemma 11. Let A, q, f, � be periodic, satisfying (4)–(5). Assume that f is of monostable type (6) or of
combustion type (8). Let w be defined by (12). Then w is a continuous function from the sphere SN−1

to R+.

This lemma is proved in [Rossi 2017] in the case �= RN, but the proof directly works in our case, so
we omit it. It relies on the fact that c? is lower semicontinuous. Additionally, we mention that it is proved
in [Alfaro and Giletti 2016] that c? is actually continuous.
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2.2. Proof of Theorem 6. This section is dedicated to the proof Theorem 6. We show that the Freidlin–
Gärtner formula (12) still holds in the context of periodic domains � considered in this paper. The proof
is divided into several steps. We use a geometric argument, introduced in [Rossi 2017]. The idea is to
argue by contradiction: we will consider a solution that invades space, and we will translate our solution
in time and space to keep track with the transition zone. Our solution will converge to a “fast” front-like
solution, which we shall compare to a pulsating traveling front to get a contradiction.

Proof. We start to prove that W , defined by (16), is an asymptotic subset of spreading. We argue by
contradiction. We assume that W is not an asymptotic subset of spreading; then, there is a compact set
K ⊂ int(W ) such that (13) does not hold. Now, we take W ⊂W , W star-shaped with respect to the
origin, compact and C∞ such that K ⊂ int(W ). We assume that W is the graph of a function w̃, i.e.,
W = {rξ : ξ ∈ SN−1, 0 ≤ r ≤ w̃(ξ)}, with w̃ smooth and w̃ < w, so that W is strictly contained in W .
We take w̃ strictly positive. This is possible because the function w is continuous thanks to Lemma 11.

The set W satisfies the uniform interior ball estimates

there exists ρ > 0 such that for all x ∈ ∂W, there exists y ∈W such that Bρ(y)⊂W and x ∈ ∂Bρ(y),

where Bρ(y) is the ball of center y and of radius ρ. In the course of the proof, u(t, x) denotes a solution
of (1) arising from a nonnegative, compactly supported initial datum such that invasion occurs; i.e.,
u(t, x)→ 1 as t goes to +∞, locally uniform in x ∈�.

Step 1: Definition of Rη. Let 0< η < 1. We define

Rη(t) := sup{r ≥ 0 : for all x ∈ (r W )∩�, u(t, x) > η}.

For t ≥ 0, this quantity is well-defined because u(t, x) decays to zero as |x | goes to +∞ (this is readily
seen by comparison with pulsating traveling fronts) implying that Rη(t) <+∞. Moreover, we have that
Rη(t)→+∞ as t goes to +∞ (because of the assumption that u(t, x)→ 1 locally uniformly in x when
t→+∞).

Remembering that we assumed, by contradiction, that there is a compact set K ⊂ int(W ) such that
(13) does not hold, we can infer that there are η, k ∈ (0, 1) such that

lim inf
t→+∞

Rη(t)
t

< k. (20)

Indeed, if this were not the case, then for every η ∈ (0, 1), we would have lim inft→+∞Rη(t)/t ≥ 1.
Hence, taking h ∈ (0, 1) such that K ⊂ hW, we have

η ≤ lim inf
t→+∞

inf
x∈Rη(t)W

u(t, x)≤ lim inf
t→+∞

inf
x∈htW

u(t, x)≤ lim inf
t→+∞

inf
x∈t K

u(t, x).

If this were true for each η ∈ (0, 1), it would yield that K satisfies (13), which we assumed not to be the
case. Hence, (20) holds. Observe that (20) still holds if we increase η. We do so, and in the following we
assume that η ∈ (S, 1), where S is defined in (5).

From now on, we simplify our notation by writing R instead of Rη. Observe that R is lower semicon-
tinuous. Indeed, let tn be a sequence such that tn→ t0 as n goes to +∞ and such that R(tn)→ R ∈ R.
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Consider r > R. Then, for n large enough, we have that r >R(tn), and, by the definition of R(tn), there
is xn ∈ (r W )∩� such that u(tn, xn)≤ η. By the continuity of u, there is some x0 ∈ (r W )∩� such that
u(t0, x0) ≤ η. This implies that R(t0) ≤ r , and then that R(t0) ≤ R by the arbitrariness of r > R, and
hence the semicontinuity.

Step 2: Shifting the function. By definition of R we have that lim inft→+∞(R(t)−kt)=−∞. We define,
for n ∈ N,

tn := inf{t ≥ 0 :R(t)− kt ≤−n}.

The lower semicontinuity of R, proved in the first step, gives us that the above infimum is a minimum,
i.e., that R(tn)− ktn ≤−n <R(t)− kt for all t < tn , and that tn→+∞ as n goes to +∞. Hence, the
sequence (tn)n∈N satisfies

lim
n→+∞

tn =+∞ and for all n ∈ N, for all t ∈ [0, tn), R(tn)− k(tn − t) <R(t).

Now, by the definition of R(t), we have that for all r >R(t) there exists xr ∈ (r W ∩�)\((R(t)W )∩�)

such that u(t, xr ) ≤ η. Up to extraction, we can assume that xr → x∞ as r goes to R(t), where
x∞ ∈�∩ ∂(R(t)W ). By continuity, we have that u(t, x∞)= η.

Hence, we can consider a sequence (xn)n∈N ∈� such that u(tn, xn)= η, with the additional property
that xn ∈ ∂(R(tn)W ). Clearly, |xn|→+∞ as n goes to +∞. If x ∈ ∂W, let ν̃(x) be the outer unit normal
to W at the point x . We define

x̂n =
xn

R(tn)
and yn = x̂n − ρν̃(x̂n).

By definition, x̂n ∈ ∂W and yn is the center of the interior ball tangent to W at the point x̂n , of radius ρ
(we recall that W satisfies the uniform interior ball estimate with radius ρ).

For every n, we define kn ∈ ZN and zn ∈ [0, 1)N by xn = kn+ zn . Up to extraction, we can assume that
there is z ∈ [0, 1]N such that zn→ z as n→+∞. We also assume that there is x̂ such that x̂n converges
to x̂ , whence ν̃(x̂n) converges to ν̃(x̂). We now define, for n ∈ N, the translated functions

un(t, x)= u(t + tn, x + kn).

Thanks to the periodicity and regularity hypotheses on �, we can apply the usual interior and portion
boundary parabolic estimates (see, for instance [Ladyzhenskaya et al. 1968, Theorems 5.2, 5.3]) to get
that un converges uniformly locally to an entire solution u? of (1). Moreover u?(0, z)= η.

Step 3: Properties of u?. We show here that u? is a front-like solution, in the sense that it satisfies, writing
HT := {x ∈� : x · ν̃(x̂) <−kx̂ · ν̃(x̂)T },

for all T ≥ 0, for all x ∈ HT +{z}, u?(−T, x)≥ η. (21)

To show this, take T ∈ [0, tn] and x ∈ (R(tn)− kT )W ∩�. As R(tn)− kT ≤R(tn − T ), we have that
x ∈R(tn − T )W ∩�. Therefore, by the definition of R, we have u(tn − T, x)≥ η. Then, we have

for all T ∈ [0, tn], for all x ∈ ((R(tn)− kT )W )∩�−{kn}, un(−T, x)≥ η.
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From that, we infer

for all T ≥ 0, for all x ∈�∩
⋃

M∈N

⋂
n≥M

((R(tn)− kT )W −{kn}), u?(−T, x)≥ η.

To prove (21), it suffices to show that HT +{z} ⊂�∩
⋃

M∈N

⋂
n≥M((R(tn)− kT )W −{kn}). To see this,

take x ∈ HT +{z}. We start by computing∣∣∣∣ x + kn

R(tn)− kT
− yn

∣∣∣∣= ∣∣∣∣ x + kn − (R(tn)− kT )(x̂n − ρν̃(x̂n))

R(tn)− kT

∣∣∣∣
=

∣∣∣∣ x + kT x̂n + (kn − xn)+ (R(tn)− kT )ρν̃(x̂n)

R(tn)− kT

∣∣∣∣
=

∣∣∣∣ρν̃(x̂n)+
x + kT x̂n − zn

R(tn)− kT

∣∣∣∣.
Let us write

wn :=
x + kT x̂n − zn

R(tn)− kT
.

This goes to zero as n goes to infinity. The last term in the above equality can be rewritten

|ρν̃(x̂n)+wn| =

√
ρ2
+ |wn|

(
2ρν̃(x̂n) ·wn

|wn| + |wn|

)
.

Now, observe that

lim
n→+∞

2ρν̃(x̂n) ·wn

|wn| + |wn|
= 2ρν̃(x̂) ·

x + kT x̂ − z
|x + kT x̂ − z|

.

This limit is strictly negative. Indeed, if x ∈ HT +{z}, then (x − z) · ν̃(x̂) < −kT x̂ · ν̃(x̂). Therefore,
we have, for n large enough, ∣∣∣∣ x + kn

R(tn)− kT
− yn

∣∣∣∣< ρ,
which means (x+kn)/(R(tn)−kT )∈W by the definition of yn and ρ. That is, x ∈ (R(tn)−kT )W−{kn},
which concludes this step.

Step 4: Comparison. We now compare the function u? constructed in the previous steps to the pulsating
traveling front in the direction ν̃(x̂) with critical speed c?(ν̃(x̂)). Combining Lemma 9 and (21), we have

lim inf
δ→+∞

inf
t<0

x ·ν̃(x̂)<γ t−δ
x∈�

u?(t, x)≥ 1,

with γ := kx̂ · ν̃(x̂) > 0. Hence u? satisfies the hypotheses of Lemma 10. Observe that we have

γ = kx̂ · ν̃(x̂)= k
x̂
|x̂ |
· ν̃(x̂)w̃

(
x̂
|x̂ |

)
<

x̂
|x̂ |
· ν̃(x̂)w

(
x̂
|x̂ |

)
≤ c?(ν̃(x̂)),

where the last inequality follows from the definition of w in Theorem 6.
Assume first that f is of combustion type (8). Let v be a pulsating traveling front in the direction ν(x̂),

with critical speed c?(ν(x̂)). Up to a time translation, we normalize it so that v(0, 0) > u?(0, 0). Then, v
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satisfies the hypotheses of Lemma 10 (with η = c?(ν(x̂))− γ in the hypotheses of Lemma 10), giving
v ≤ u?, which is in contradiction with the fact that v(0, 0) > u?(0, 0).

Now, if the nonlinearity is of monostable type (6), we have to construct a function v satisfying (19) to
apply Lemma 10. This can be done exactly as in [Rossi 2017, Proposition 2.6]; the fact that the domain
is not RN adds no difficulty here. This proves that W is an asymptotic subset of spreading, and then, so
is W . Now, we show that it is an asymptotic superset of spreading.

Step 5: Superset of spreading. Let C be a closed set such that W∩C =∅. Then, because w is continuous,
we can find ε > 0 so that Wε := {rξ : ξ ∈ SN−1, 0≤ r ≤ w(ξ)+ ε} is such that Wε ∩C =∅. To prove
that W is an asymptotic superset of spreading, it is sufficient to show that supx∈tWc

ε
u(t, x)→ 0 as t goes

to +∞. To do so, we take a sequence (tn)n∈N ∈ (R
+)N such that tn goes to infinity as n goes to infinity

and a sequence xn ∈ tnWc
ε such that

u(tn, xn)≥
1
2 sup

x∈tnWc
ε

u(tn, x).

Up to extraction, we take e ∈ SN−1 such that xn/|xn| → e as n goes to +∞. Let ξ ∈ SN−1 be such that
w(e)= c?(ξ)/(ξ · e), and let v be a pulsating traveling front in the direction ξ with critical speed c?(ξ).
Up to some translation in time, we can assume, thanks to the parabolic comparison principle, that
u(t, x)≤ v(t, x) for all t ≥ 0, for all x ∈�. Let us show that v(tn, xn) goes to zero as n→+∞.

We write xn := (xn/|xn| · ξ)|xn|ξ + dn , where dn is orthogonal to ξ . Because xn/|xn| → e as n goes
to +∞, using the continuity of w, for n large enough, we have(

xn

|xn|
· ξ

)
|xn| ≥

(
xn

|xn|
· ξ

)(
w

(
xn

|xn|

)
+ ε

)
tn ≥

(
c?(ξ)+ (e · ξ)

ε

2

)
tn.

So, we get that, for n ∈ N large enough, there is some λn such that λn ≥ c?(ξ) + (e · ξ)(ε/2) and
xn = λnξ tn + dn . Now, observe that the definition of the pulsating traveling fronts, Definition 2, implies
that v(tn, λntnξ + dn)→ 0 as n goes to +∞; hence

lim
n→+∞

1
2 sup

x∈tnWc
ε

u(tn, x)≤ lim
n→+∞

u(tn, xn)≤ lim
n→+∞

v(tn, xn)= 0,

which implies the result. �

Now that we have the Freidlin–Gärtner formula (12) at our disposal, we use it to answer Question 4.

3. Invasion and the critical speed of fronts

This whole section is dedicated to the proof of Theorem 5. We consider here the problem (15), with
nonlinearity f independent of x of monostable or combustion type. In the following, for f and � given,
we denote by c? and w the critical speed of fronts and the speed of invasion respectively, for (15).

The proof of Theorem 5 is done in several steps: first, we show that w ≡ c? is equivalent to saying that
w and c? are actually constant. This is the object of Section 3.1. Then, we exhibit in Section 3.3 some
estimates on the spreading speed that take into account the geometry of the domain. Gathering all this,
we will be able to prove Theorem 5.
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3.1. Comparison between w and c?. This section is dedicated to proving that, if the critical speed of
fronts c? and the speed of invasion w are everywhere equal, then they are constant. This uses only the
Freidlin–Gärtner formula (12) proved in Section 2.

Proposition 12. Assume that � is a smooth periodic domain satisfying (3) and that f is a nonlinearity
satisfying (5) of the monostable (6) or combustion (8) type. Assume that c? ≡ w. Then, the functions w
and c? are constant.

Proof. Because of the hypotheses on � and f , we can apply Theorem 6 to get that for all e ∈ SN−1

w(e)= infξ ·e>0 c?(ξ)/(ξ · e). Assume that w ≡ c? and take ξ0, ξ ∈ SN−1 so that ξ0 · ξ > 0, and let ω be
the angle between those two vectors. Let us take M ∈N. We define a sequence (ξk)k∈[[0,M]] ∈ SN−1 to be
equidistributed on the arc joining ξ0 to ξ on the sphere; i.e., ξk · ξk+1 = cos(ω/M) and ξM = ξ . Then, we
have

w(ξ0)≤ w(ξ1)
1

ξ0 · ξ1
≤ w(ξ2)

1
ξ2 · ξ1

1
ξ1 · ξ0

.

Iterating and using that ξk · ξk+1 = cos(ω/M), we get

w(ξ0)≤ w(ξ)

M−1∏
k=0

1
ξk+1 · ξk

= w(ξ)
1

cos(ω/M)M .

Because 1/cos(ω/M)M
→ 1 as M goes to +∞, passing to the limit yields

w(ξ0)≤ w(ξ).

Inverting the roles of ξ0 and ξ , we get w(ξ0)= w(ξ). Hence, w is constant, and so is c?. �

Observe that, in the course of the proof, we did not use the particular form of (15), only the Freidlin–
Gärtner formula; hence Proposition 12 holds true also for the general equation (1).

As mentioned in the Introduction, we shall use this result to construct domains where c? 6≡ w. Indeed,
Proposition 12 reduces the problem to finding domains where w or c? are not constants. Intuitively, it
seems that, if in a certain direction e there are many obstacles, then the speeds w and c? should be small.
On the contrary, if in a certain direction, there are few obstacles, then the speeds should be larger. Hence,
if the domain � is very “obstructed” in some direction and not in another, then the speeds should not be
constants, and so they would be different.

To construct such domains is actually quite easy if f is KPP and if the dimension is greater than or
equal to 3: in this case, domains that are invariants in one direction provide an answer to Question 4.
We shall focus on such domains in the next Section 3.2. There, we shall also prove a lemma that will
be useful in Section 4. If the nonlinearity is not KPP or if the dimension is equal to 2, things are much
more involved. To overcome this difficulty, we introduce estimates for w that do take into account the
geometry of the domain. This is done in Section 3.3.

3.2. Invasion in domains that are invariant in one direction. In this section, f is a KPP nonlinearity
independent of x and � is invariant in the direction e ∈ SN−1; i.e., for all λ ∈ R, we have �+ λe =�.
Let us answer Question 4 in this specific case by proving the following:
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Proposition 13. Let � be a periodic domain in RN, N ≥ 3, satisfying (3) and suppose that there
is e ∈ SN−1 such that � is invariant in the direction e. Let f satisfying (5) be a KPP nonlinearity
independent of x. Denoting by c? and w the critical speed of fronts and the speed of invasion respectively
for problem (15), we have

w ≡ c? ⇐⇒ �= RN .

This comes directly by combining our Proposition 12 with the following result from [Berestycki et al.
2005]:

Theorem 14. Let c? be the critical speed of fronts for the problem (15) with f KPP independent of x.
Then c?(e)≤ 2

√
f ′(0) and the equality holds if and only if � is invariant in the direction e.

If � is a periodic domain satisfying hypothesis (3) and invariant in a direction � 6= RN, then this
theorem implies that c? is not a constant function of the direction. Then, Proposition 12 implies that
c? 6≡ w. This answers Question 4 in the special case where f is KPP and the dimension greater than 3.
The general setting is more involved and is addressed after.

Before ending this section, we prove a result concerning domains invariant in a direction that will be use-
ful in Section 4. When considering such domains, we can actually give further information about the shape
of the asymptotic set of spreading W . The next result shows that, if � is invariant in the direction e, then
the spreading speed in a direction orthogonal to e only depends on the part of the domain orthogonal to e.

Proposition 15. Let � be a periodic domain satisfying (3), invariant in the direction e ∈ SN−1. Let W
be the asymptotic set of spreading of (15) set on � with f satisfying (5) and such that u 7→ f (u)/u is
decreasing (this implies that f is KPP). Let H be the hyperplane in RN orthogonal to e. Then, if WH∩�

is the asymptotic set of spreading for the equation restricted to H∩�, i.e.,{
∂t u−1u = f (u), t > 0, x ∈H∩�,

∂ν′u = 0, t > 0, x ∈ ∂(H∩�),
(22)

where ν ′ ∈ SN−2 denotes the exterior normal to H∩�, we have

WH∩� =W ∩H.

Proof. To simplify the notation, we denote by wN the spreading speed for the Fisher-KPP equation (15)
set on � ⊂ RN and wN−1 the spreading speed for (22) set on H ∩� ⊂ RN−1. Similarly, we denote
by c?N and c?N−1 the critical speeds of fronts for (15) and (22) respectively. Up to some rotation of the
coordinates, we write the points of � in the form (x, y), where x ∈H∩� and y ∈ R.

Step 1: W ∩H⊂WH∩�. We start by showing that, for each ζ ∈ SN−2, we have wN ((ζ, 0))≤ wN−1(ζ ).
To do so, take ξ ∈ SN−2 such that ξ · ζ > 0. Let φξ (t, x) be a pulsating traveling front solution of
(22) in the direction ξ with critical speed c?N−1(ξ). For (x, y) ∈ �, we define 8(t, x, y) := φξ (t, x).
Then 8 is solution of (15) on the whole of �. If u0(x, y) is a nonnegative compactly supported initial
datum and if u(t, x, y) is the solution of (15) arising from it, we can assume that (up to translation)
u0(x, y)≤8(0, x, y). Hence, the parabolic comparison principle gives us that

u(t, x, y)≤8(t, x, y) for all t ≥ 0, for all (x, y) ∈�.
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Observe that 8 moves in the direction (ζ, 0) ∈ SN−1 with speed c?N−1(ξ)/(ξ · ζ ). This means that
wN ((ζ, 0)) ≤ c?N−1(ξ)/(ξ · ζ ), and because this is true for all ξ such that ξ · ζ > 0, Theorem 6 implies
that wN ((ζ, 0))≤ wN−1(ζ ).

Step 2: WH∩� ⊂W ∩H. We now prove the reverse inequality. To start, let ε > 0 be fixed such that ε2 <

f ′(0). We define a KPP nonlinearity fε(u) := f (u)−ε2u. Let u0(x) be a smooth, nonnegative, compactly
supported function in H∩�. Let uε(t, x) be the solution arising from u0 of (15) but with f replaced by fε.

Define the cut-off function

φ(y) :=
{

cos(εy) for |y| ≤ π/(2ε),
0 for |y| ≥ π/(2ε).

Now, let v(t, x, y) := uε(t, x)φ(y). Let us show that v is a (generalized) subsolution. An easy
computation shows that, for (x, y) ∈� such that v(t, x, y) > 0, we have

∂tv−1v− f (v)= fε(uε)φ(y)+ ε2uεφ(y)− f (uεφ)

=

(
fε(uε)

uε
−

f (uεφ)
uεφ

+ ε2
)

uεφ ≤ 0.

The last inequality comes from the fact that z 7→ f (z)/z is decreasing. One can then check that ∂νv = 0
on ∂�. This comes from ∂ν′uε = 0 on ∂(�∩H) together with the fact that � is invariant in the direction e.

Hence, uεφ is a (generalized) subsolution of (15) (with nonlinearity f ). We can observe that uε
spreads in �∩H in the direction ζ ∈ SN−2 with speed wN−1(ζ )− ε

2. Hence, by comparison, we get
that wN−1(ζ )− ε

2
≤ wN ((ζ, 0)). Taking the limit ε→ 0 yields the result. �

Observe that the same result holds in what concerns the critical speed of fronts: using the same notation
as in the proof, we can prove that c?N ((e, 0))= c?N−1(e) for every e ∈ SN−2: one inequality is proved in
the first step, and the second inequality can be proved as in the second step just by taking uε to be front.

Now, we turn to the full proof of Theorem 5, answering then Question 4.

3.3. Geodesic estimates. This aim of this section is to establish estimates on w(e) that do take into
account the geometry of the domain. The key tool is an estimate on the heat kernel from [Berestycki
et al. 2010], following from general results on the heat kernel from [Davies 1989; Grigoryan 1997]. This
estimate is valid for domains satisfying the extension property. Denoting by W 1,p(�) the usual Sobolev
space over �, a nonempty subset of RN satisfies the extension property if, for all 1≤ p ≤+∞, there is a
bounded linear map E from W 1,p(�) to W 1,p(RN ) such that E( f ) is an extension of f from � to RN

for all f ∈W 1,p(�). For our purpose, we mention that the smooth periodic domains we consider here
satisfy the extension property; see [Stein 1970].

Proposition 16. Let � be a locally C2 nonempty connected open subset of RN satisfying the extension
property. Let p(t, x, y) be the heat kernel in � with Neumann boundary condition on ∂�. Then, for every
ε > 0, there are two positive constants C and δ such that

for all t > 0, for all (z, x) ∈�×�, p(t, z, x)≤ C(1+ δt−N/2) exp
(
−

d�(z, x)2

(4+ ε)t

)
, (23)

where d�(z, x) denotes the geodesic distance in �.
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See [Berestycki et al. 2010, Proposition 2.5] for the proof. We use this to get upper estimates on the
spreading speed w(e). To do so, we introduce the following coefficient for e ∈ SN−1:

C�(e) := lim inf
λ→+∞

λ

d�(0, λe)
. (24)

For notational simplicity and without loss of generality, we assume in the following that the point 0 is
in � (this is always possible up to translation).

This coefficient represents how much the domain is obstructed in the direction e. The geodesic
distance d� is always greater than the euclidean distance; hence C�(e)≤ 1.

Proposition 17. Let� be a domain satisfying (3) and f a monostable (6) or a combustion (8) nonlinearity
independent of x. We denote by w the speed of invasion associated to problem (15). Then, we have

w(e)≤ 2C�(e)

√
max

u∈[0,1]

f (u)
u
. (25)

Observe that, if f is a KPP nonlinearity, then this formula boils down to w(e)≤ 2C�(e)
√

f ′(0). In
the case where �= RN, the upper bound is actually the KPP speed 2

√
f ′(0).

Proof. Let us observe that it is sufficient to prove the result in the KPP case. Indeed, if f is a monostable
or a combustion nonlinearity, then we can find a KPP nonlinearity f such that f ′(0)=maxu∈[0,1] f (u)/u
and f ≥ f . If u0 is an initial datum, denoting by u, respectively u, the solution of (15) with nonlinearity f ,
respectively f , arising from u0, the parabolic comparison principle tells us that

u(t, x)≤ u(t, x) for all t ≥ 0, for all x ∈�.

Then, w(e)≤w(e), for all e ∈ SN−1, where w, respectively w, is the invasion speed for (15) with nonlin-
earity f , respectively f . Then, it is sufficient to prove the estimate (25) for f because maxu∈[0,1] f (u)/u=
maxu∈[0,1] f (u)/u. Hence, in the rest of the proof, we assume that f is KPP, and then maxu∈[0,1] f (u)/u=
f ′(0).

Let u(t, x) be the solution of the parabolic problem (15) arising from a compactly supported nonnegative
initial smooth datum u0. Let K be a compact set of � such that the support of u0 is in K . We denote by
p(t, x, z) the heat kernel with Neumann condition on �. Then, we first observe that

u(t, x)≤ e f ′(0)t
∫
�

p(t, x, z)u0(z) dz. (26)

Indeed, e f ′(0)t
∫
�

p(t, x, z)u0(z) dz is the solution of the linearized problem
∂tv−1v = f ′(0)v, t > 0, x ∈�,

∂νv = 0, t > 0, x ∈ ∂�,
v(0, x)= u0(x), x ∈�,

(27)

and hence is a supersolution of (15), thanks to the KPP property. Then, the inequality (26) follows by the
parabolic comparison principle. Now, let ε > 0 be fixed. Using the estimate (23) in (26), we get

u(t, x)≤ C(1+ δt−N/2)e f ′(0)t
∫
�

exp
(
−

d�(z, x)2

(4+ ε)t

)
u0(z) dz (28)
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for some positive constants C and δ (depending on ε). This gives us

u(t, x)≤ C‖u0‖L1(1+ δt−N/2) exp
((

f ′(0)−
(minz∈K d�(z, x))2

(4+ ε)t2

)
t
)
. (29)

Now, take e ∈ SN−1 and ω > 0 such that ω < w(e). Then, u(t, ωte)→ 1 as t→+∞, by the definition
of w(e). Then, necessarily, we have

lim sup
t→+∞

minz∈K d�(z, ωte)
t

≤
√
(4+ ε) f ′(0),

if this were not the case, up to subsequence the right-hand term of (29) would go to zero along some
time sequence (tn)n∈N, tn→+∞ as n goes to +∞, which would be in contradiction with the fact that
u(tn, ωtne) goes to 1. Using the triangular inequality for d� and the fact that K is compact we eventually get

ω ≤

√
(4+ ε) f ′(0)

lim supt→+∞ d�(0, ωte)/(ωt)
.

Recalling the definition of C�(e) and that the above inequality is true for every ε > 0, we have

ω ≤ 2C�(e)
√

f ′(0),

and the result follows. �

We are now in position to answer Question 4.

3.4. Domains where c? 6≡w. In this section, we construct periodic domains � such that c? 6≡w. If f is
a KPP nonlinearity, we exhibit a 1-periodic domain (but the periodicity can be chosen arbitrary). If f is a
monostable or a combustion nonlinearity, we construct an L-periodic domain, where L > 0 can be large.
For clarity, we do this in dimension N = 2, but these constructions can be easily generalized to larger
dimensions.

In the following, we define ex := (1, 0), ey := (0, 1) ∈ S1 the unit vectors of the canonical basis of R2.
Moreover, we define ed := (1/

√
2)(1, 1) ∈ S1.

3.4.1. The KPP case. We show here the following:

Proposition 18. Let f be a KPP nonlinearity (7). There is a smooth periodic domain �⊂ R2 such that

c?(ex) > w(ed),

where c? and w are the critical speed of fronts and the speed of invasion respectively for (15) set in �
with nonlinearity f .

We see that in this domain, it is not possible that w= c?, thanks to Proposition 12. Hence, this answers
Question 4 in the KPP case.

Proof. For α ∈
(1

2 , 1
)
, β ∈

(
0, 1

2

)
, we define �α,β to be a smooth periodic domain such that

Z2
+ (1−α, α)×[β, 1−β] ⊂�c

α,β ⊂ Z2
+

(1−α
2
,

1+α
2

)
×[β, 1−β]. (30)
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This domain is simply R2 with “almost square” obstacles. For α, β given we denote by c?α,β(e) the critical
speed of fronts in this domain in the direction e. If β is fixed and if we let α→ 1, then the domain
“converges” in some sense to an array of parallel disconnected strips in the direction ex . This observation
is made rigorous by [Berestycki et al. 2005, Theorem 1.4], where it is proved that

c?α,β(ex) α→1−−→ 2
√

f ′(0).

Now, let κ ∈ (1,
√

2) and take α close enough to 1 so that c?α,β(ex) > (1/κ)2
√

f ′(0).
Take n ∈ N. Denoting by d�α,β the geodesic distance in �α,β , it is easy to see that d�α,β (0, n

√
2ed)≥

2n(α−β). Plotting this in (24) yields C�α,β (ed)≤ 1/(
√

2(α−β)). Taking β small enough, and increasing
α if needed, we can assume that C�α,β (ed) ≤ 1/κ . Denoting by wα,β the speed of invasion in the
domain �α,β , Proposition 17 implies that wα,β(ed)≤ (1/κ)2

√
f ′(0). Hence, c?α,β(ex) > wα,β(ed) when

α is close enough to 1 and β close enough to 0. This yields the result. �

3.4.2. Combustion and monostable case. Now, we answer Question 4 in the case where f is a combustion
or a monostable nonlinearity. We do it for f combustion first, and then we explain how this yields the
result for monostable nonlinearities.

Proposition 19. Let f be a combustion nonlinearity (8). Then, there are L > 0 and a family of smooth
L-periodic domains (�α)α∈(0,1) such that wα(ex)≥ K , where K > 0 is independent of α, and wα(ey)→ 0
as α goes to 0.

If α > 0 is chosen small enough so that wα(ey) < K , we see that wα cannot be constant, and then
Proposition 12 implies that c? 6≡ w on �α for α small. This answers Question 4 and proves Theorem 5
when f is a combustion nonlinearity.

Before turning to the proof of Proposition 19, we state the following technical lemma. We recall that
we denote by BR the ball of radius R and of center 0.

Lemma 20. Let f be a combustion nonlinearity (8) independent of x. Then, there are R, c > 0 and
φ ∈W 2,∞(R2), φ > 0 in BR and φ = 0 on ∂BR such that, on BR we have

1φ+ c∂xφ+ f (φ)≥ 0.

Proof. We construct φ to be radial. We set φ(x) := h(|x |). Now, take R1, R2, R3 > 0 to be chosen after,
such that R1 < R2 < R3. We set c̃ := c+ 1/R1. Let C ∈ (θ, 1), and α, β > 0. We define h as follows:

h(r)=


C, r ∈ [0, R1],

h(r)− (α/2)(r − R1)
2
+C, r ∈ [R1, R2],

h(r)β(e−c̃(r−R3)− 1), r ∈ [R2, R3].

(31)

We can choose R1, R2, R3, c, α, β,C such that

h ∈W 2,∞(R+),

h(R2)= K , where K ∈ (θ,C) will be chosen after,

h′′(r)+ c̃h′(r)+ f (h(r))≥ 0 for r ≥ 0.

(32)



2278 ROMAIN DUCASSE

The existence of such a function proves our result, indeed

1φ+ c∂xφ+ f (φ)≥ h′′+
(

c+
1
r

)
h′+ f (h)

≥ h′′+
(

c+
1
R1

)
h′+ f (h).

We used the fact that h is nonincreasing and h′(r)= 0 if r ∈ [0, R1] here.
Let us define

F := inf
s∈(K ,C)

f (s) > 0.

Because h(R2) = K , we can bound from behind f (h(r)) by F when r ∈ [R1, R2] and by 0 elsewhere.
Some easy computations show that (32) boils down to verifying the following algebraic system:

β(ec̃(R3−R2)− 1)= K ,
(α/2)(R2− R1)

2
= C − K ,

α(R2− R1)= β c̃ec̃(R3−R2),

F ≥ α(1+ c̃(R2− R1)).

(33)

Up to some computations, it is readily seen that (33) admits positive solutions, for instance

α =
F

1+ (C − K )/(2K )
, R1 =

1
c
,

c =
1
8

√
2α(C − K )

K
, R2 =

√
2(C − K )

α
+ R1,

β =

√
α(C − K )

2c
√

2
− K , R3 =

1
2c

ln
(

1+
K
β

)
+ R2.

Hence, φ(x) := h(|x |) satisfies the lemma with R := R3. �

Now, we use this lemma to prove Proposition 19.

Proof of Proposition 19. Step 1: Construction of the domain. Let R > 0 be large enough, so that we can
apply Lemma 20. Let α ∈ (0, 1), ε ∈ [0, αR/2] and define

K̃ ε
α := {(x, y) ∈ R2 such that αx + R+ ε ≤ y ≤ αx + (1+α)R− ε, y ∈ [R, 2R]}.

Now, let Kα be a smooth connected compact set such that

K̃ αR/4
α ⊂ Kα ⊂ K̃ 0

α.

We define �α to be the smooth 3R-periodic domain

�α := (Kα + 3RZ2)c;

see Figure 1. Observe that, if k, l ∈ Z2 are such that k 6= l, then (Kα + 3Rk)∩ (Kα + 3Rl)=∅.
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�α

3R
2R

R

x

y

Figure 1. The domain �α used in the proof of Proposition 19.

Step 2: Lower bound on wα(ex). For α > 0 given, we denote by wα the speed of invasion for (15) set on
the smooth periodic domain �α. Let us show that there is K > 0 independent of α such that

wα(ex)≥ K . (34)

Because of the choice of R, we can apply Lemma 20 to find c > 0 and φ ∈W 2,∞(BR), φ > 0 on BR

and φ = 0 on ∂BR such that 1φ+ c∂xφ+ f (φ)≥ 0. Now, we define

v(t, x, y) :=
{
φ(x − ct, y) if (x, y) ∈ BR(ctex),

0 elsewhere.

Then, the support of v(t, · , · ) never intersects the boundary of �α, and because

∂tv−1v− f (v)=−c∂xφ−1φ− f (φ)≤ 0 for (x, y) ∈ supp v(t, · , · ),

we have that v is a nonnegative compactly supported generalized subsolution of (15).
Now, take u0 a compactly supported initial datum such that u0(x, y) ≥ φ(x, y) and such that the

solution arising from it, say u(t, x, y), converges to 1 (as we mentioned earlier, such initial datum always
exists, see [Ducasse and Rossi 2018]). The parabolic comparison principle yields

u(t, x, y)≥ φ(x − ct, y) for all t ≥ 0, for all (x, y) ∈�α.

By the definition of wα(ex), this implies that wα(ex)≥ c, where c, given by Lemma 20, is independent
of α. Hence, (34) holds with K := c.

Step 3: Upper bound on wα(ey). We now show that wα(ey)→ 0 as α goes to 0. To do so, we first apply
Proposition 17, to get

wα(ey)≤ 2C�α (ey)

√
max

u∈[0,1]

f (u)
u
.

Let us estimate C�α (ey). If we take n ∈ N, we see that, if α is small enough, d�α (0, 4Rney) ≥

2Rn
√

1+ (1− 1/α)2. Then, if α is small enough, C�α (ey)≤ 3α. Thus

wα(ey)≤ 6α

√
max

u∈[0,1]

f (u)
u α→0−−→ 0,

and hence the result. �
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Now, Proposition 19 is proved, and answers Question 4 in the combustion case: in �α, c? 6≡ w, for
α > 0 small enough.

Let us now explain how this also answers Question 4 in the monostable case. Take f to be a monostable
nonlinearity and let f be a combustion nonlinearity and let f be a KPP nonlinearity, both independent
of x , such that

f ≤ f ≤ f .

Let wα , wα , wα be the invasion speed for the problem (15) with nonlinearity f , f , f respectively. Then,
by comparison, we have

for all e ∈ S1, wα(e)≤ wα(e)≤ wα(e). (35)

Now, we can apply Lemma 20 to find c > 0 and φ ∈ W 2,∞(R2), φ > 0 in BR and φ = 0 on ∂BR such
that, on BR we have

1φ+ c∂xφ+ f (φ)≥ 0.

Then, consider the domain �α constructed in the proof of Proposition 19, but with this new R > 0.
On this domain, we have a lower bound on wα(ex) independent of α. Moreover, we can show that

wα(ey) goes to zero as α goes to 0, as in the proof of Proposition 19.
Hence, (35) yields that there is K > 0 independent of α such that wα(ex)≥ K , and wα(ey)→ 0 as α

goes to 0. This means that Proposition 19 still holds if f is monostable; hence this answers Question 4 in
the monostable case and concludes the proof of Theorem 5.

4. Symmetries of the domain and relation with c? and w

This section is dedicated to the proof of Theorem 7. As we mentioned earlier, even in a domain � where
c? 6≡ w, the Freidlin–Gärtner formula yields that any direction e ∈ SN−1 minimizing c? satisfies the
equality c?(e)= w(e). Theorem 7 gives a geometrical condition that ensures the existence of directions
where c? and w coincide. To prove it, we first state the following lemma:

Lemma 21. Let c? and w be respectively the critical speed of fronts and the speed of invasion for (15)
with the nonlinearity f satisfying (4), (5) and such that u 7→ f (u)/u is nonincreasing. For any k ∈N and
e ∈ SN−1, (ξi )i∈[[1,k]] ∈ (S

N−1)k such that

e ∈
{

x ∈ RN
: x =

k∑
i=1

λiξi , λi ≥ 0
}
,

the following holds:

c?(e)≤ max
i∈[[1,k]]

c?(ξi )

e · ξi
.

Proof. For i ∈ [[1, k]], we denote by φξi (t, x) a pulsating traveling front solution of (1) in the direction ξi

with critical speed c?(ξi ). Let

v(t, x) :=
k∑

i=1

φξi (t, x).

Now, the hypotheses on f imply that f (v)≤
∑k

i=1 f (φξi ), and then v is a supersolution of (1).
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Now, for ε > 0, let fε be a combustion nonlinearity satisfying

0≤ fε(x, u)≤ f (x, u) for all u ∈ [0, 1], for all x ∈�,

fε(x, u)= f (x, u) for all u ∈ [0, 1− 2ε], for all x ∈�,

fε(x, u)= 0 for all u ∈ [−ε, 0], for all x ∈�,

fε(x, 1− ε)= 0 for all x ∈�.

Now, take e ∈ SN−1 such that e =
∑k

i=1 λiξi , with λi ≥ 0 for all i ∈ [[1, k]], and let φεe be a pulsating
traveling front connecting 1− ε to −ε, a solution of (1) with the combustion nonlinearity fε, in the
direction e with critical speed c?ε(e).

Up to some translation in time, we can assume that φεe (0, x) < 0 if x · e > 0 and, for all i ∈ [[1, k]],
φξi (0, x)≥ 1− ε if x · ξi < 0.

Moreover, if x ∈� is such that x · e < 0, then there is at least one of the ξi such that x · ξi < 0. Hence,
v(0, x) > 1− ε if x · e < 0. If x · e ≥ 0, we have v(0, x) > 0≥ φεe (0, x). Hence

v(0, x)≥ φεe (0, x) for all x ∈�.

Because fε ≤ f , the parabolic comparison principle yields

v(t, x)≥ φεe (t, x) for all t ≥ 0, for all x ∈�. (36)

Now, if we take c̄ > maxi∈[[1,N ]] c?(ξi )/(e · ξi ), we have that v(t, c̄te)→ 0 as t goes to +∞. It then
follows from (36) that c?ε(e)≤maxi∈[[1,N ]] c?(ξi )/(e · ξi ). Now, it is classical that c?ε(e)→ c?(e) as ε goes
to 0 (see, for instance, [Rossi 2017, Proposition 2.6]). Taking the limit ε→ 0 then yields the result. �

Remark 22. Lemma 21 yields a very strong geometrical condition on c?, and prevents it from being any
arbitrary function. Consider

C := {r(ξ)ξ ∈ R2
: r(ξ) ∈ [0, c?(ξ)]}.

In the case of (15) with �=RN, c? is constant and then C is a ball. In general, it is not clear what “shapes”
C can adopt. Lemma 21 prevents it from being some natural candidates; for instance, C cannot be an
ellipse with eccentricity larger than 1/

√
2. We recall that an ellipse of equation x2/a2

+ y2/b2
= 1, with

a > b, has eccentricity
√

1− b2/a2.

Before turning to the proof of Theorem 7, we need another technical lemma.

Lemma 23. Let � be a periodic domain, and let T be an orthogonal transformation that leaves T
invariant; i.e., T�=�. Then, at least one of the two possibilities below holds true:

(i) T is of finite order; i.e., there is m ∈ N? such that T m
= IN , where IN is the identity matrix.

(ii) The domain � is invariant in a direction orthogonal to the eigenvectors associated with the eigen-
value 1.
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Proof. Assume that T leaves the domain � invariant and that it is not of finite order. Then, there is at
least one vector e of the canonical basis of RN such that

T k(e) 6= e for all k ∈ Z?.

It is then readily seen that each point of the set {T k(e) : k ∈ Z} is a point of accumulation. Therefore, up
to extraction,

uk := T k(e)− e k→+∞−−−−→ 0.

Moreover, because � is left invariant by T and because �+ e =�, there holds

�+ T k(e)=�+ e for all k ∈ N,

i.e.,
�+ uk =� for all k ∈ N.

Now, we can find v ∈ SN−1 such that uk/|uk | converges up to another extraction to v. It is then readily
seen that

�+ λv =� for all λ ∈ R;

i.e.,� is invariant in the direction v. Observe now that, if y is an eigenvector associated to the eigenvalue 1,
then uk · y = 0, from which we get that v · y = 0, and this concludes the result. �

We are now in position to prove Theorem 7.

Proof of Theorem 7. Let T be an orthogonal transformation as in the theorem and let e ∈ SN−1 be such
that T e = e.

Step 1: Reduction to the case of a finite-order orthogonal transformation. Assume that T is not of finite
order. Then, owing to Lemma 23, the domain � is invariant in at least one direction orthogonal to e. We
denote by S the set of all such directions. It is a subspace of RN orthogonal to e such that T (S)= S. We
define

�̃ :=�∩S⊥,

where S⊥ denotes the orthogonal of S. Then, e ∈ �̃ and

T (�̃)= �̃.

Consider now the problem {
∂t u−1u = f (u), t > 0, x ∈ �̃,

∂νu = 0, t > 0, x ∈ ∂�̃.
(37)

We denote by W the asymptotic set of spreading for (15). Then, owing to Proposition 15, the asymptotic
set of spreading for (37) is W ∩S⊥. In particular, the speed of invasion and the critical speed of fronts in
the direction e for (15) and for (37) are the same. It is then sufficient to prove our result in the domain �̃,
which is not invariant in any direction orthogonal to e. Because �̃ is left invariant by T and owing to
Lemma 23, the restriction of T to �̃ is of finite order.



PROPAGATION PROPERTIES OF REACTION-DIFFUSION EQUATIONS IN PERIODIC DOMAINS 2283

Step 2: Proof when T is of finite order. Let us now restrict our attention to the case where T is of finite
order; i.e, there is m ∈ N? such that T m

= IN .
Let ξ0 be such that w(e)= c?(ξ0)/(ξ0 · e) and ξ0 · e > 0. If ξ0 = e, then w(e)= c?(e) and we are done.

If not, we define
ξk := T kξ0 for k ∈ [[0,m− 1]].

Let us show that the vector e is in the positive cone spanned by the (ξk)k∈[[0,m−1]]. To do so, observe first
that

(T m
− IN )(ξ0)= (T − IN )

(k=m−1∑
k=0

T kξ0

)
= (T − IN )

(k=m−1∑
k=0

ξk

)
= 0.

Owing to the hypotheses on T, this implies that there is λ ∈ R such that
k=m−1∑

k=0

ξk = λe. (38)

Moreover, because T is orthogonal, we see that, for k ∈ [[0,m− 1]],

ξk · e = ξ0 · e > 0, (39)

and then, (38) yields that λ > 0; i.e., e is in the positive cone spanned by the (ξk)k∈[[0,m−1]].
Now, owing to Lemma 21, we have

c?(e)≤ max
k∈[[0,m−1]]

c?(ξk)

ξk · e
. (40)

Observe that, because T�=�, we have

c?(ξ0)= c?(ξ1)= · · · = c?(ξm−1). (41)

Indeed, if φ(t, x) is a pulsating traveling front solution of (15) in the direction ξ ∈ SN−1 with speed
c?(ξ), then φ(t, T x) is a pulsating traveling front solution of (15) in the direction T ξ with speed c?(ξ).
Then, by definition of the critical speed, c?(T ξ)≤ c?(ξ). The same reasoning but with T ξ instead of ξ
and with T−1 instead of T yields the reverse inequality and then c?(ξ)= c?(T ξ). Hence, (41) follows
from the definition of the ξk , k ∈ [[0,m− 1]].

Now, combining (39) and (41) with (40), we see that

c?(e)≤
c?(ξ0)

ξ0 · e
= w(e).

Because w(e)≤ c?(e), thanks to the Freidlin–Gärtner formula (12), we finally get

c?(e)= w(e),

and hence the result. �

We can deduce from this theorem the following:

Corollary 24. Assume that f satisfies (4)–(5) and that u 7→ f (u)/u is nonincreasing. Let �⊂ RN be a
periodic domain. Then, c?(e)= w(e) in the following cases:
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• If N = 2 and if � is symmetric with respect to the line Re.

• If N = 3 and if � is stable with respect to the rotation of angle π and of axis directed by e.

• If N ∈ N and if � is symmetric with respect to N − 1 hyperplanes whose intersection is the line
directed by e.

The cases N = 2 and N = 3 are straightforward. For the general case N ∈N, one may observe that the
composition of N − 1 symmetries whose stable hyperplanes have a one-dimensional intersection satisfies
the hypotheses of Theorem 7.

A typical domain to which we could apply Corollary 24 is the whole space with ball-shaped obstacles, i.e.,

� := (B1/4+ZN )c.

In this domain, Corollary 24 yields that w(e) = c?(e) for any e ∈ SN−1 in the canonical basis. We
conclude this section with two remarks.

Remark 25. Let us observe that the hypothesis Ker(T − IN )= Re is necessary in Theorem 7. Indeed,
consider �⊂ R2 to be the periodic domain constructed in Proposition 18 and define

�̃ :=�×R.

Let T be the symmetry with respect to the hyperplane orthogonal to u := (0, 0, 1). The domain �̃
is invariant in the direction u := (0, 0, 1); therefore we can apply Proposition 15 to see that there are
directions orthogonal to u where c? and w do not coincide, although these directions are left invariant
by T.

Remark 26. Observe that, if one considers the general equation (1), then Theorem 7 still holds provided
the coefficients satisfy the same symmetry as the domain; i.e., we need the coefficients to satisfy

A(T x)= T A(x)T ?, q(T x)= T q(x) and f (T x, · )= f (x, · ),

where T is the transformation considered in Theorem 7.

Appendix

Proof of Lemma 9. As we mentioned, Lemma 9 is the natural extension of [Rossi 2017, Lemma 2.1], in
the case of a periodic domain.

Proof. Let u be taken as in the lemma. We define

h := lim inf
δ→+∞

inf
t<0

x ·e<γ t−δ
x∈�

u(t, x).

Assume that, by contradiction, h ∈ (S, 1). We can find two sequences (xn)n ∈�
N, (tn)n ∈ (−∞, 0)N

such that xn · e− γ tn→−∞ and u(tn, xn)→ h as n goes to +∞. Let us define kn ∈ ZN, zn ∈ [0, 1)N
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so that xn = kn + zn . Up to extraction, we assume that zn → z as n goes to +∞ for some z ∈ [0, 1]N.
Consider the sequence of translated functions

un := u( · + tn, · + kn).

These functions are supersolutions of (1), by periodicity of the domain. As before, we can use the usual
parabolic estimates to get local uniform convergence of the sequence (un)n to a function u∞ supersolution
of (1). Moreover, we have

u∞(0, z)= h ≤ u∞(t, x) for all t ≤ 0, for all x ∈�. (42)

Indeed, for t ≤ 0, x ∈�, we have

un(t, x)= u(t + tn, x + kn)≥ inf
τ<0

y·e−γ τ≤δ̃n

u(τ, y), (43)

where δ̃n := x · e− γ t − zn · e+ xn · e− γ tn goes to −∞ as n goes to +∞. Hence, passing to the limit
n→+∞ in (43) yields (42). Because f ≥ 0, it follows from the parabolic maximum principle and Hopf
principle that u∞ is actually equal to h if t ≤ 0 and x ∈ �. This implies that f (x, h) = 0, which is in
contradiction with the fact that h ∈ (S, 1) together with hypothesis (5); hence the result. �

Proof of Lemma 10. We now turn to the proof of Lemma 10. Again, it is the natural extension of [Rossi
2017, Lemma 2.2] to the case of a periodic domain.

Proof. Let us define uε := u+ ε, where ε > 0. The hypotheses on u yield that there is δ > 0 such that
uε(t, x) ≥ 1+ ε/2 if t < 0 and x · e < γ t − δ, x ∈ �. The hypotheses on u give us that there is L > 0
such that u(t, x)≤ ε if t < 0 and x · e ≥ (γ +η)t + L . Hence, there is Tε ≤ 0 such that uε(t, x) > u(t, x)
for t < Tε, for all x ∈ �. Indeed, if t is negative enough, we have ηt + L < −δ; hence we can take
Tε := (−δ− L)/η.

In order to prove the result, we shall argue by contradiction. Hence, we will assume that there is ε0 > 0
such that

for all ε ∈ (0, ε0) there exist τ ∈ (Tε, 0) and xτ ∈� such that uε(τ, xτ ) < u(τ, xτ ). (44)

Indeed, if (44) does not hold, our result follows by letting ε→ 0. Now, we define tε ∈ [Tε, 0) to be the
infimum of all the τ such that (44) holds true. Hence

uε(t, x)≥ u(t, x) for all t ≤ tε, for all x ∈�,

and by continuity we have
inf
x∈�

(uε − u)(tε, x)= 0.

Thanks to the hypotheses, we can find ρε ∈ R such that

inf
x ·e=ρε

(uε − u)(tε, x)= 0.

Depending on the behavior of ρε, we now consider three cases.
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First case: (ρε)ε∈(0,ε0) is bounded. We can find a sequence of points (xε)ε∈(0,ε0), with xε ∈� such that

xε · e = ρε and uε(tε, xε)− u(tε, xε) < ε.

We define kε ∈ ZN, yε ∈ [0, 1)N to be such that xε = kε + yε. Up to extraction,we can find y ∈ [0, 1)N

such that yε→ y as ε goes to 0.
We now consider the translated functions uε(t+ tε, x+kε), u(t+ tε, x+kε). Using parabolic estimates

and extracting, these functions converge locally uniformly as ε goes to 0 to u∞, u∞, a supersolution and
a subsolution respectively of (1).

Moreover, u∞, u∞ satisfy

u∞(0, y)= u∞(0, y) and u∞(t, x)≥ u∞(t, x) for t ≤ 0, x ∈�.

Hence, the strong comparison principle and the Hopf lemma (see [Protter and Weinberger 1967, Chapter 3])
imply that u∞ = u∞ for t ≤ 0. But the boundedness of xε · e = ρε implies that we still have

lim inf
δ→+∞

inf
t<0

x ·e<γ t
x∈�

−δ

u∞(t, x)≥ 1.

However, the hypotheses on u yield that there is K ∈ R such that

u∞(t, x)≤ 1
2 for all t < 0, for all x ∈� such that x · e ≥ (γ + η)t + K .

Taking t < 0 small enough yields a contradiction.

Second case: infε∈(0,ε0) ρε =−∞. Let us take ε such that −ρε is large enough to have

inf
t<0

x ·e−γ t<ρε

u(t, x) > S.

Because f (x, · ) is decreasing in (S, 1), we have that uε = u+ ε is a supersolution of (1) for {(t, x) ∈
R×� : x · e− γ t < ρε}.

We can find a sequence (xn)n ∈�
N such that xn · e = 0 and

lim
n→+∞

(uε − u)(tε, ρεe+ xn)= 0.

We write as before xn = kn + yn , where kn ∈ ZN and yn ∈ [0, 1)N, and up to extraction we can find
y ∈ [0, 1]N such that yn→ y as n goes to +∞.

We define uεn(t, x) := uε(t, x + kn) and un(t, x) := u(t, x + kn). Observe that uεn is a supersolution in
{(t, x) ∈ R×� : x · e− γ t < ρε − 1}. Again, using parabolic estimates and extracting as n goes to +∞,
we get two functions uε

∞
and u∞ that are respectively a supersolution and a subsolution of (1) on the

same set. Moreover, they satisfy uε
∞
(tε, ρεe+ y)= u∞(tε, ρεe+ y); we have a contact point.

Observe that (tε, ρεe+ y) is in {(t, x) ∈ R×� : x · e− γ t < ρε − 2}. Hence, we can apply the Hopf
lemma [Protter and Weinberger 1967, Theorem 6] to (1) on {(t, x) ∈ R×� : x · e− γ t < ρε− 1} to get
that (tε, ρεe+ y) is not on a boundary point. Therefore, it is an interior contact point and the parabolic
comparison principle yields that uε

∞
(t, x)= u∞(t, x) on {(t, x) ∈ R×� : x · e− γ t < ρε − 1}. But this
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is not possible, because the hypotheses on u imply that there is δ large enough so that uε
∞
(t, x)≥ 1+ ε/2

if x · e− γ t <−δ. Because u ≤ 1, we are led to a contradiction.

Third case: supε∈(0,ε0)
ρε = +∞. If we are in the case (19), this cannot happen because uε ≥ 0 and

u(tε, x) < 0 if x · e is large enough. Then, we are left to assume that f satisfies (9) and u satisfies (18). In
particular, we can take ε small enough so that ρε is large enough to have u(t, x)≤ θ on {(t, x) ∈ R×� :

x · e−γ t > ρε}, where θ is from (9). Hence, uε := u− ε is a subsolution of (1) on this set. Arguing as in
the previous case, we get a contradiction, and hence the result. �
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AN ELEMENTARY APPROACH TO
FREE ENTROPY THEORY FOR CONVEX POTENTIALS

DAVID JEKEL

We present an alternative approach to the theory of free Gibbs states with convex potentials. Instead
of solving SDEs, we combine PDE techniques with a notion of asymptotic approximability by trace
polynomials for a sequence of functions on MN (C)

m
sa to prove the following. Suppose µN is a probability

measure on MN (C)
m
sa given by uniformly convex and semiconcave potentials VN , and suppose that the

sequence DVN is asymptotically approximable by trace polynomials. Then the moments of µN converge
to a noncommutative law λ. Moreover, the free entropies χ(λ), χ(λ), and χ∗(λ) agree and equal the limit
of the normalized classical entropies of µN .
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1. Introduction

1A. Motivation and main ideas. Since Voiculescu [1993; 1994; 1998] introduced the free entropy of a
noncommutative law, a number of open problems have prevented a satisfying unification of the theory
(as explained in [Voiculescu 2002]). The free entropy χ was defined by taking the lim sup as N →∞
of the normalized log volume of the space of microstates, where the microstates are certain tuples of
N×N self-adjoint matrices having approximately the correct distribution. It is unclear whether using the
lim inf instead of the lim sup would yield the same quantity. Voiculescu also defined a nonmicrostates
free entropy χ∗ by integrating the free Fisher information of X + t1/2S, where S is a free semicircular
family free from X , and conjectured that χ = χ∗.

Biane, Capitaine, and Guionnet [Biane et al. 2003] showed that χ ≤ χ∗ as a consequence of their large
deviation principle for the GUE (see also [Cabanal Duvillard and Guionnet 2001]). The proof relied
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on stochastic differential equations relative to Hermitian Brownian motion and analyzed exponential
functionals of Brownian motion. Recent work of Dabrowski [2016] combined these ideas with stochastic
control theory and ultraproduct analysis in order to show that χ = χ∗ for free Gibbs states defined by a
convex and sufficiently regular potential. This resolves this part of the unification problem for a significant
class of noncommutative laws.

This paper will prove a result similar to Dabrowski’s using deterministic rather than stochastic methods.
We want to argue as directly as possible that the classical entropy and Fisher’s information of a sequence
of random matrix models converge to their free counterparts. Let us motivate and sketch the main ideas,
beginning with the heuristics behind Voiculescu’s nonmicrostates entropy χ∗.

Consider a noncommutative law λ of an m-tuple and suppose λ is the limit of a sequence of random
N×N matrix distributions µN given by convex, semiconcave potentials VN : MN (C)

m
sa→ R. Let σt,N be

the distribution of m independent GUE matrices which each have normalized variance t , and let σt be
the noncommutative law of m free semicircular variables which each have variance t . Let VN ,t be the
potential corresponding to the convolution µN ∗ σt,N . The classical Fisher information I satisfies

d
dt

1
N 2 h(µN ∗ σt,N )=

1
N 3 I(µN ∗ σt,N )=

∫
‖DVN ,t(x)‖22 d(µN ∗ σt,N )(x),

and from this we deduce that

1
N 2 h(µN )+

m
2

log N = 1
2

∫ ( m
1+t
−

1
N 3 I(µN ∗ σt,N )

)
dt + m

2
log 2πe.

As N →∞, we expect the left-hand side to converge to the microstates free entropy χ(λ) because the
distribution µN should be concentrated on the microstate spaces of the law λ. On the other hand, we
expect the right-hand side to converge to the Voiculescu’s nonmicrostates free entropy χ∗(λ) defined by

χ∗(λ)=
1
2

∫ ( m
1+t
−8∗(λ� σt)

)
dt + m

2
log 2πe,

where 8∗ is the free Fisher information and � denotes the free convolution [Voiculescu 1998].
Under suitable assumptions on VN , the microstates free entropy χ(λ) is the lim sup of normalized

classical entropies of µN . On the right-hand side, we want to show that N−3I(µN ∗ σt,N )→8∗(λ� σt)

for all t ≥ 0. Since the Fisher information is the L2(µN ) norm squared of the score function or (classical)
conjugate variable DVN ,t(x), we want to prove that the classical conjugate variables DVN ,t(x) behave
asymptotically like the free conjugate variables for λ� σt for all t .

This would not be surprising because classical objects associated to invariant random matrix ensembles
often behave asymptotically like their free counterparts. For instance, Biane [1997] showed that the
entrywise Segal–Bargmann transform of noncommutative functions evaluated on N×N matrices can
be approximated by the free Segal–Bargmann transform computed through analytic functional calculus.
Similarly, Guionnet and Shlyakhtenko [2014, Theorem 4.7] showed that classical monotone transport
maps for certain random matrix models approximate the free monotone transport. Moreover, Dabrowski’s
approach [2016] to proving χ = χ∗ involved constructing solutions to free SDEs as ultraproducts of the
solutions to classical SDEs.
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In Section 3D, we make precise the idea that a sequence of functions on MN (C)
m
sa has a “well-defined,

noncommutative asymptotic behavior” by defining asymptotic approximability by trace polynomials
(Definition 3.24). We assume that DVN at time zero has the approximation property and must show that
the same is true for DVN ,t for all t .

First, we show that this property is preserved under several operations on sequences, including
composition and convolution with the Gaussian law σN ,t (see Section 3D). Then in Section 6 we analyze
the PDE that describes the evolution of VN ,t . We show that for all t the solution VN ,t can be approximated
in a dimension-independent way by applying a sequence of simpler operations, each of which preserves
asymptotic approximability by trace polynomials. In other words, if the initial data DVN is asymptotically
approximable by trace polynomials, then so is DVN ,t , and hence we obtain convergence of the classical
Fisher information to the free Fisher information.

This proves the equality χ(λ)= χ∗(λ) whenever a sequence of log-concave random matrix models µN

converges to λ in an appropriate sense (Theorem 7.1). Another result (Theorem 4.1), proved by similar
techniques, establishes sufficient conditions for a sequence of log-concave random matrix models µN to
converge in moments to a noncommutative law λ, so that Theorem 7.1 can be applied. As a consequence,
we show that χ = χ∗ for a class of free Gibbs states.

1B. Main results. To fix notation, let MN (C)
m
sa be space of m-tuples x = (x1, . . . , xm) of self-adjoint

N×N matrices and let ‖x‖2=
(∑

j τN (x2
j )
)1/2, where τN = (1/N )Tr. We denote by ‖x‖∞ the maximum

of the operator norms ‖x j‖. Recall that a trace polynomial f (x1, . . . , xm) is a linear combination of terms
of the form

p(x)
n∏

j=1

τ(pj (x)),

where p and pj are noncommutative polynomials in x1, . . . , xm (see Section 3A).
Consider a sequence of potentials VN : MN (C)

m
sa→ R such that VN (x)− (c/2)‖x‖22 is convex and

VN (x)− (C/2)‖x‖22 is concave for some 0< c < C. Define the associated probability measure µN by

dµN (x)=
1

Z N
e−N 2VN (x) dx, Z N =

∫
MN (C)msa

e−N 2VN (x) dx .

Assume that the sequence of normalized gradients DVN (x)= N∇VN (x) is asymptotically approximable
by trace polynomials in the sense that for every ε > 0 and R > 0 there exists a trace polynomial f (x)
such that

lim sup
N→∞

sup
‖x‖∞≤R

‖DVN (x)− f (x)‖2 ≤ ε,

where ‖x‖∞ denotes the maximum of the operator norms of the x j . Also, assume that
∫
(x−τN (x)) dµN (x)

is bounded in operator norm as N →∞ (it will be zero if µN is unitarily invariant or has expectation
zero). In this case, we have the following:

(1) There exists a constant R0 such that µN (‖x‖∞ ≥ R0+ δ)≤ me−cNδ2/2 for δ > 0.
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(2) There exists a noncommutative law λ such that

lim
N→∞

∫
τN (p(x)) dµN (x)= λ(p)

for every noncommutative polynomial p.

(3) The measures µN exhibit exponential concentration around λ in the sense that

lim
N→∞

1
N 2 logµN (‖x‖∞ ≤ R, |τN (p(x))− λ(p)| ≥ δ) < 0

for every R > 0 and every noncommutative polynomial p.

(4) The law λ has finite free entropy and we have

χ(λ)= χ(λ)= χ∗(λ)= lim
N→∞

1
N 2

(
h(µN )+

m
2

log N
)
,

where χ and χ are respectively the lim sup and lim inf versions of microstates free entropy, χ∗ is the
nonmicrostates free entropy, and h is the classical entropy.

(5) The same holds for µN ∗σt,N and λ�σt , where σt,N is the law of m independent GUE matrices with
variance t and σt is the law of m free semicircular variables with variance t .

(6) The law λ has finite free Fisher information. If I is the classical Fisher information and 8∗ is the
free Fisher information, then

lim
N→∞

1
N 3 I(µN ∗ σt,N )=8

∗(λ� σt).

(7) The functions t 7→ (1/N 3)I(µN ∗ σt,N ) and t 7→8∗(λ� σt) are decreasing and Lipschitz in t with
the absolute value of the derivative bounded by C2m(1+Ct)−2.

Claims (1) and (3) are standard concentration estimates (see Section 2E), which we do not prove in this
paper, but we include them in the statement to clarify the big picture. Claim (2) is proved in Theorem 4.1,
which is similar to the earlier results [Guionnet and Shlyakhtenko 2009, Theorem 4.4; Dabrowski et al.
2016, Proposition 50 and Theorem 51; Dabrowski 2016, Theorem 4.4]. Claims (4) through (7) come
from Theorem 7.1, which is similar to [Dabrowski 2016, Theorem A].

In particular, we recover [Dabrowski 2016, Theorem A] that χ(λ)= χ(λ)= χ∗(λ) when the law λ

is a free Gibbs state given by a sufficiently regular convex noncommutative potential V (X), because
taking VN = V will define a sequence of random matrix models µN which concentrate around the
noncommutative law λ.

Unlike Dabrowski, we do not provide an explicit formula for (d/dt)8(λ� σt). However, we are able
to prove that 8(λ� σt) is Lipschitz in t rather than merely having a derivative in L2(dt) (and hence
being 1

2 -Hölder continuous) as shown by Dabrowski. Our results also allow slightly more flexibility in
the choice of random matrix models, so that we do not have to assume that VN is given by exactly the
same formula for every N or that VN is exactly unitarily invariant.
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1C. Organization of paper. Section 2 establishes notation and reviews basic facts from noncommutative
probability and random matrix theory.

Section 3 defines the algebra of trace polynomials and describes how they behave under differentiation
and convolution with Gaussians. We then introduce the notion that a sequence {φN } of functions
MN (C)

m
sa → MN (C)

m
sa of C is asymptotically approximable by trace polynomials. We show that this

approximation property is preserved under several operations including composition and Gaussian
convolution.

Section 4 proves Theorem 4.1 concerning the convergence of moments for the measure µN (claims
(1)–(3) of Section 1B). We evaluate

∫
u dµN for a Lipschitz function u as limt→∞ T VN

t u, where T VN
t is the

semigroup such that ut = T VN
t u solves the equation ∂t ut = (2N )−11ut−DV ·∇ut . We approximate T VN

t

by iterating simpler operations in order to show that if N∇Vn and uN are asymptotically approximable
by trace polynomials, then so is T VN

t uN , and hence that limN→∞
∫

uN dµN exists.
Section 5 reviews the definitions of free entropy and Fisher’s information. We also show that the

microstates free entropies χ(λ) and χ(λ) are the lim sup and lim inf of normalized classical entropies
of µN , provided that µN concentrates around λ and satisfies some mild operator norm tail bounds, and
that {VN } is asymptotically approximable by trace polynomials. Similarly, if {DVN } is asymptotically
approximable by trace polynomials, then the normalized classical Fisher information converges to the
free Fisher information.

Section 6 considers the evolution of the potential VN (x, t) corresponding to µN ∗ σt,N , where σt,N is
the law of m independent GUE of variance t . Our goal is to show that if DVN (x, 0) is asymptotically
approximable by trace polynomials, then so is N∇VN (x, t) for all t > 0, so that we can apply our previous
result that the classical Fisher information converges to the free Fisher information. As in Section 4, we
construct the semigroup Rt which solves the PDE as a limit of iterates of simpler operations which are
known to preserve asymptotic approximation by trace polynomials.

In Section 7 we conclude the proof of our main theorem on free entropy and Fisher’s information
(Theorem 7.1), which establishes claims (4)–(7) of Section 1B, assuming a weakened version of the
hypothesis and conclusion of Theorem 4.1.

In Section 8, we characterize the limiting noncommutative laws λ which arise in Theorem 4.1 as the
free Gibbs states for a certain class of potentials. In particular, we apply Theorem 7.1 to show that χ = χ∗

for several types of free Gibbs states considered in previous literature.

2. Preliminaries

Here we fix notation and discuss background results that will be used throughout the paper.

2A. Notation for matrix algebras. Let MN (C) denote the N×N matrices over C and let MN (C)sa

be the self-adjoint elements. Note that MN (C)
m
sa is a real inner product space with the inner product

〈x, y〉Tr :=
∑m

j=1 Tr(x j yj ) for x = (x1, . . . , xm) and y = (y1, . . . , ym). Moreover, MN (C)
m can be

canonically identified with the complexification C⊗R MN (C)
m
sa by decomposing each matrix into its

self-adjoint and anti-self-adjoint parts.
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Being a real inner product space, MN (C)sa is isomorphic to Rm N 2
. An explicit choice of coordinates

can be made using the following orthonormal basis for MN (C)sa:

BN = {Ek,k}
N
k=1 ∪

{
1
√

2
Ek,`+

1
√

2
E`,k

}
k<`
∪

{
i
√

2
Ek,`−

i
√

2
E`,k

}
k<`
. (2-1)

This basis has the property that for all x, y, z ∈ MN (C), we have∑
b∈BN

xbybz = xz Tr(y), (2-2)

which follows from an elementary computation.
We denote the norm corresponding to Tr by | · | (essentially the Euclidean norm). We denote the normal-

ized trace by τN = (1/N )Tr. We denote the corresponding inner product by 〈x, y〉2=
∑m

j=1 τN (x j yj ) and
the norm by ‖ · ‖2. For x ∈ MN (C), we denote the operator norm by ‖x‖. Similarly, if x = (x1, . . . , xm)∈

MN (C)
m, we write ‖x‖∞ =maxj‖x j‖.

The symbols∇ and1will represent the gradient and Laplacian operators with respect to the coordinates
of MN (C)sa in the nonnormalized inner product 〈 · , · 〉Tr. The symbols D and L N will denote the normal-
ized versions N∇ and (1/N )1 respectively, as well as the corresponding linear transformations on the
algebra of trace polynomials. This normalization and notation will be explained and justified in Section 3B.

2B. Noncommutative probability spaces and laws. The following are standard definitions and facts in
noncommutative probability. For further background, see [Voiculescu et al. 1992; Nica and Speicher
2006; Anderson et al. 2010, §5].

Definition 2.1. A von Neumann algebra is a unital C-algebra M of bounded operators on a Hilbert
space H which is closed under adjoints and closed in the weak operator topology.

Definition 2.2. A tracial von Neumann algebra or noncommutative probability space is a von Neumann
algebra M together with a bounded linear map τ :M→ C which is continuous in the weak operator
topology and satisfies τ(1)= 1, τ(xy)= τ(yx), and τ(x∗x)≥ 0. The map τ is called a trace.

Definition 2.3. For m ≥ 1, we denote by NCPm = C〈X1, . . . , Xm〉 the algebra of noncommutative poly-
nomials in X1, . . . , Xm , equipped with conjugate-linear involution ∗ such that X∗j = X j and (pq)∗= q∗ p∗.
A noncommutative law (for an m-tuple) is a map λ : NCPm→ C such that

(1) λ is linear,

(2) λ is unital (that is, λ(1)= 1),

(3) λ is positive, that is, for every p(X) ∈ C〈X1, . . . , Xm〉, we have λ(p(X)∗ p(X))≥ 0,

(4) λ is tracial, that is, λ(p(X)q(X))= λ(q(X)p(X)).

We denote by6m the space of noncommutative laws equipped with the topology of pointwise convergence
on C〈X1, . . . , Xm〉, that is, convergence in noncommutative moments.

Definition 2.4. We say that a noncommutative law λ is bounded by R if we have

|λ(X i1, . . . , X in )| ≤ Rn.

We denote the space of such laws by 6m,R .
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Definition 2.5. Suppose that x1, . . . xm are bounded self-adjoint elements of a tracial von Neumann
algebra (M, τ ). Then the law of x = (x1, . . . , xm) is the map

λx : C〈X1, . . . , Xn〉 → C : p(X) 7→ τ(p(x)).

Definition 2.6. Let MN (C) be the algebra of N×N matrices over C. Let τN = (1/N )Tr be the normalized
trace. Then (MN (C), τN ) is a tracial von Neumann algebra, and hence, for every m-tuple of self-adjoint
matrices x = (x1, . . . , xm), the law λx is defined by Definition 2.5.

Proposition 2.7. The space 6m,R is compact, separable, and metrizable. Moreover, every µ ∈ 6m,R

can be realized as λx for some tuple x = (x1, . . . , xm) of self-adjoint elements of a tracial von Neumann
algebra (M, τ ) with ‖x‖∞ ≤ R.

For the proof of the claim that every noncommutative law can be realized by operators, see [Anderson
et al. 2010, Proposition 5.2.14].

2C. Noncommutative Lα-norms. On several occasions, we will need to use the noncommutative Lα norms
for α∈[1,+∞]. (Here we use α rather than p since the letter p will often be used for a polynomial.) If y is
any element of a tracial von Neumann algebra (M, τ ), then we define |y|=(y∗y)1/2 using continuous func-
tional calculus. For α∈[0,+∞), we define ‖y‖α=τ(|y|α)1/α. We also define ‖y‖∞ to be the operator norm.

Proposition 2.8. If (M, τ ) is a tracial von Neumann algebra and α ∈ [1,+∞], then ‖ · ‖α defines a norm.
Moreover, we have the noncommutative Hölder’s inequality

‖x1 · · · xn‖α ≤ ‖x1‖α1 · · · ‖xn‖αn

whenever

α, α1, . . . , αn ∈ [1,+∞],
1
α1
+ · · ·+

1
αn
=

1
α
.

Moreover, we have |τ(y)| ≤ ‖y‖1.

A standard proof of the Hölder inequality uses polar decomposition, complex interpolation, and the three
lines lemma. We will in fact only need this inequality for the trace τN on MN (C). Modulo renormalization
of the trace, the inequality for matrices follows from the treatment of trace-class operators in [Simon
2005]; see especially Theorems 1.15 and 2.8, as well as the references cited on p. 31. For the setting of
von Neumann algebras, a convenient proof can be found in [Correa da Silva 2018, Theorems 2.4–2.6];
for an overview and further history see [Pisier and Xu 2003, §2].

Remark 2.9. One can define the noncommutative Lα norm for a tuple (y1, . . . , ym) as

‖(y1, . . . , ym)‖α =

{
τ(|y1|

α
+ · · ·+ |ym |

α)1/α, α ∈ [1,+∞),
maxj‖yj‖, α =+∞.

However, for tuples, we will only need to use the 2 and∞ norms.

2D. Free independence, semicircular law, and GUE. We will use the following standard definitions
and facts from free probability. For further background, refer to [Voiculescu 1986; 1991; Voiculescu et al.
1992; Nica and Speicher 2006; Anderson et al. 2010].



2296 DAVID JEKEL

Let (M, τ ) be a tracial von Neumann algebra, and let A1, . . . , An be unital ∗-subalgebras of M. Then
we say that A1, . . . , Am are freely independent if given a1, . . . , ak with aj ∈Ai j and i j 6= i j+1 and τ(aj )= 0
for each j , we have also τ(a1 · · · ak)= 0.

In particular, if S1, . . . , Sn are subsets of M, then we say that they are freely independent if the unital
∗-subalgebras they generate are freely independent. Thus, for instance, self-adjoint elements x1, . . . , xm

of M are freely independent if given polynomials f1, . . . , fk and indices i1, . . . , ik with i j 6= i j+1 such
that τ( f j (X i j ))= 0, we have also τ( f1(X i1) · · · fk(X ik ))= 0.

The free convolution of two noncommutative laws µ and ν (of self-adjoint m-tuples) is defined
as the noncommutative law of (x1 + y1, . . . , xm + ym), given that {x1, . . . , xm} and {y1, . . . , ym} are
freely independent and the noncommutative law of (x1, . . . , xm) is µ, and the noncommutative law of
(y1, . . . , ym) is ν. Then � is well-defined, independent of the particular choice of operators that realize
the laws µ and ν. Moreover, � is commutative and associative.

If X1, . . . , Xm are freely independent, then their joint law is determined by the individual laws of
the X j , each of which is represented by a compactly supported probability measure on R. The semicircle
law (of mean zero and variance 1) is the probability measure given by density

1
2π

√
4− x2 1[−2,2](x) dx .

We denote by σt the noncommutative law of m freely independent semicircular random variables which
each have mean zero and variance t (that is, σt(X j )= 0 and σt(X2

j )= t).
These free semicircular families play the role of multivariable Gaussians in free probability. Moreover,

the noncommutative laws {σt }t≥0 form a semigroup under free convolution, that is, σs � σt = σs+t for
s, t ≥ 0.

We denote by σt,N the probability distribution on MN (C)
m
sa for m independent GUE matrices of

normalized variance t , that is,

dσt,N (x)=
1

Z N ,t
exp

(
−N

m∑
j=1

Tr(x2
j )

2t

)
dx,

where Z N ,t is chosen so that σt,N is a probability measure. It is well known that the independent GUE
matrices behave in the large-N limit like freely independent semicircular random variables; in Section 3,
we shall directly state and prove the specific results we will use.

2E. Concentration and operator norm tail bounds. The following is a standard concentration estimate
for uniformly log-concave random matrix models. The best known proof goes through the log-Sobolev
inequality and Herbst’s argument (see [Anderson et al. 2010, §4.4.2]), although it can also be proved by
directly using the heat semigroup associated to V as in [Ledoux 1992]. We state the theorem here with
free probabilistic normalizations.

Theorem 2.10. Suppose that V : MN (C)
m
sa → R is a potential such that V (x)− (c/2)‖x‖22 is convex.

Define

dµ(x)= 1
Z

exp(−N 2V (x)) dx, Z =
∫

exp(−N 2V (x)) dx .
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Suppose that f : MN (C)
m
sa→ R is K -Lipschitz with respect to ‖ · ‖2. Then

µ

(
x : f (x)−

∫
f dµ≥ δ

)
≤ e−cN 2δ2/2K 2

,

and since the same estimate can be applied to − f , we have also

µ

(
x :
∣∣∣∣ f (x)−

∫
f dµ

∣∣∣∣≥ δ)≤ 2e−cN 2δ2/2K 2
.

In particular, this concentration estimate applies to the GUE law σt,N with c = 1/t . In addition to the
concentration estimate, we will also use the fact that such uniformly convex random matrix models have
subgaussian moments and therefore have good tail bounds on the probability of large operator norm. The
following theorem is a special case of [Hargé 2004, Theorem 1.1] and the application to random matrix
models is taken from the proof of [Guionnet and Maurel-Segala 2006, Theorem 3.4].

Theorem 2.11. Let V and µ be as in Theorem 2.10, and suppose that f : MN (C)
m
sa→ R is convex. Let

a =
∫

x dµ(x). Then ∫
f (x − a) dµ(x)≤

∫
f (y) dσc−1,N (y).

In particular, if ‖x‖α denotes the Lα norm from Section 2C, then for every α ∈ [1,+∞] and β ∈ [1,+∞)
we have ∫

‖x j − aj‖
β
α dµ(x)≤

∫
‖yj‖

β
α dσc−1,N (y).

Proof. The convexity assumption on V means that µ has a log-concave density with respect to the
Gaussian measure σc−1,N (y). Therefore, the first claim follows from [Hargé 2004, Theorem 1.1]. The
second claim follows because norms on vector spaces are convex functions, and the function t 7→ tβ on
[0,+∞) is convex for β ≥ 1. �

Corollary 2.12. Let VN : MN (C)sa→R be a function such that VN (x)− (c/2)‖x‖22 is convex and let µN

be the corresponding measure. Let aN , j =
∫

x j dµN (x). Then

lim sup
N→∞

∫
‖x j − aN , j‖ dµN (x)≤ 2c−1/2,

and

µN

(
x : ‖x j‖ ≥

∫
‖yj‖ dµN (yj )+ δ

)
≤ e−cδ2 N/2.

Proof. In light of Theorem 2.11, for the first claim of the corollary, it suffices to check the special
case σc−1,N . This special case is a standard result in random matrix theory; see for instance the proof of
[Anderson et al. 2010, Theorem 2.1.22]. The second claim follows from Theorem 2.10 after we observe
that the function on MN (C)

N
sa given by x 7→ ‖x j‖∞ is N 1/2-Lipschitz with respect to ‖ · ‖2. �
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2F. Semiconvex and semiconcave functions. We recall the following terminology and facts about semi-
convex and semiconcave functions. These results are typically applied to functions from Rn

→ R, but
of course they hold equally well if Rn is replaced by a finite-dimensional real inner product space. In
particular, we focus on the case of MN (C)

m
sa.

A function u : MN (C)
m
sa→ R is semiconvex if there exists some c ∈ R such that u(x)− (c/2)‖x‖22 is

convex. If this holds for some c> 0, then u is said to be uniformly convex. Similarly, u : MN (C)
m
sa→R is

said to be semiconcave if there exists C ∈ R such that u(x)− (C/2)‖x‖22 is concave, and it is uniformly
concave if this holds for some C < 0.

Fix m and N. Let c ≤ C be real numbers. Then we define

Em,N (c,C)=
{

u : MN (C)
m
sa→ R : u(x)− c

2
‖x‖22 is convex and u(x)− C

2
‖x‖22 is concave

}
.

We will often suppress m and N in the notation and simply write E(c,C). Throughout the paper, we rely
on the following basic properties of functions in E(c,C).

Proposition 2.13. (1) The space E(c,C) is closed under translation, averaging with respect to probabil-
ity measures, and pointwise limits.

(2) A function u is in E(c,C) if and only if for every point x0 ∈ MN (C)
m
sa there exists some p ∈ MN (C)

m
sa

such that

u(x0)+〈p, x − x0〉2+
1
2 c‖x − x0‖

2
2 ≤ u(x)≤ u(x0)+〈p, x − x0〉2+

1
2C‖x − x0‖

2
2.

(3) In particular, if u ∈ E(c,C), then u is differentiable everywhere.

(4) If u ∈ E(c,C), then the gradient Du is max(|c|, |C |)-Lipschitz with respect to ‖ · ‖2.

(5) If u ∈ E(c,C), then

c‖x − y‖22 ≤ 〈Du(x)− Du(y), x − y〉2 ≤ C‖x − y‖22.

(6) If u ∈ E(c,C) for some c > 0, then u is bounded below and achieves a global minimum at its unique
critical point.

Sketch of proof. (1) This follows from elementary computation and the fact that the same holds for the
class of convex functions.

(2), (3) Suppose that u ∈ E(c,C). The convex functions u(x)− (c/2)‖x‖22 and (C/2)‖x‖22− u(x) must
have supporting hyperplanes at x0. This yields one vector p which satisfies the left inequality of (2) and
another vector p′ satisfying the right inequality. Then one checks that p must equal p′ and this implies
that u is differentiable at x0. The converse direction of (2) follows again from the characterization of
convexity using supporting hyperplanes.

(4), (5) For smooth functions in E(c,C), one can check these properties directly using calculus. Now
consider a general u ∈ E(c,C). Let un = u ∗ρn , where ρn is a smooth probability density supported in the
ball of radius 1/n around 0. Then un is smooth and un→ u locally uniformly. Also, un ∈ E(c,C) by (1);
hence Dun is max(|c|, |C |)-Lipschitz. By the Arzelà–Ascoli theorem, after passing to a subsequence,
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we may assume that Dun converges locally uniformly to some F. It follows from this local uniform
convergence that F = Du. Moreover, since (4) and (5) hold for Dun , they also hold for Du.

(6) This is left as an exercise. �

3. Trace polynomials

In this section, we consider the algebra of trace polynomials in noncommutative variables X1, . . . , Xm ,
first defined in [Razmyslov 1974; 1985]. As in [Rains 1997; Cébron 2013; Driver et al. 2013], we
describe how trace polynomials behave under differentiation (Section 3B) and convolution with Gaussian
(Section 3C). Finally, in Section 3D, we define the property of asymptotic approximability by trace
polynomials for a sequence of functions on MN (C)

m
sa, which is one of the key technical tools in our proof.

3A. Definitions.

Definition 3.1. We define the ∗-algebra of scalar-valued trace polynomials, or TrP0
m , as follows. Let V

be the vector space NCPm /Span(pq − qp : p, q ∈ NCPm). We define the vector space

TrP0
m =

∞⊕
n=0

V�n, (3-1)

where � is the symmetric tensor power over C. Then TrP0
m forms a commutative algebra with the tensor

operator � as the multiplication. We denote the element p1� · · ·� pn by τ(p1) · · · τ(pn), where τ is a
formal symbol.

To state the definition more suggestively, an element of TrP0
m is a linear combination of terms of the

form τ(p1(X)) · · · τ(pn(X)), where p1, . . . , pn are noncommutative polynomials in X1, . . . , Xm and τ
is a formal symbol thought of as the trace. By forming a quotient vector space, we identify τ(pq) with
τ(qp). The trace polynomials form a commutative ∗-algebra TrP0

m over C where the ∗-operation is

(τ (p1(X)) · · · τ(pn(X)))∗ = τ(p1(X)∗) · · · τ(pn(X)∗) (3-2)

and the multiplication operation is the one suggested by the notation.
We define TrPk

m to be the vector space

TrPk
m := TrP0

m ⊗C〈X1, . . . , Xm〉
⊗k .

We call the elements of TrP1
m operator-valued trace polynomials. We use the term trace polynomials

more generally to describe elements of TrPk
m or tuples of elements from TrPk

m . Note that TrP1
m forms a

∗-algebra because it is the tensor product of two ∗-algebras.

Definition 3.2. Suppose that M is a von Neumann algebra with trace σ . Given f ∈ TrP1
m and a self-

adjoint tuple x = (x1, . . . , xm) of elements of M, we define f (x) to be the element of M given by
replacing the formal symbols X j and τ in f by the operator x j and the trace σ on M. For instance, if
f (X)= p0(X)⊗ τ(p1(X)) · · · τ(pn(X)) in TrP1

m , then

f (x)= p0(x)σ (p1(x)) · · · σ(pn(x)).
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In particular, we define f (x) when x is an m-tuple of self-adjoint N×N matrices by setting τ = τN .

Definition 3.3. If f ∈ TrP0
m and λ is a noncommutative law, we define the evaluation λ( f ) to be the

number obtained by replacing the symbol τ with λ everywhere in f . For example, if f (X1, X2, X3)=

τ(X1)τ (X2 X3)+ τ(X2
2), then we define

λ( f )= λ( f (X1, . . . , Xm))= λ(X1)λ(X2 X3)+ λ(X2
2).

Definition 3.4. We define the degree for elements of NCPm and TrPk
m as follows. If p ∈ NCPm is a

monomial p(X1, . . . , Xm) = X i1 · · · X id , then we define deg′(p) = d. If p1, . . . , p` and q1, . . . , qk are
noncommutative monomials, then consider the element τ(p1) · · · τ(p`)q1⊗ · · ·⊗ qk ∈ TrPk

m , and define

deg′(τ (p1) · · · τ(p`)q1⊗ · · ·⊗ qk)= deg′(p1) · · · deg′(p`) deg′(q1) · · · deg′(qk).

For general f ∈ TrPk
m , we define the degree, deg( f ), as the infimum of max(deg′( f1), . . . , deg′( f`)),

where f = f1+ · · ·+ f` and each f j is a product of noncommutative monomials and traces of noncom-
mutative monomials as above. Similarly, for general f ∈ NCPm , we define deg( f ) as the infimum of
max(deg′( f1), . . . , deg′( f`)), where f = f1+ · · ·+ f` and each f j is a noncommutative monomial.

Remark 3.5. One can check that if f is a product of monomials as above, then deg( f ) = deg′( f ).
Moreover, the degree makes TrP0

m and TrP1
m into graded algebras. Finally, we observe that if f ∈

TrP0
m or TrP1

m , then the function on MN (C)
m
sa defined by x 7→ f (x) is a polynomial in the entries of

x1, . . . , xm , and the degree of x 7→ f (x) with respect to the entries is bounded above by the degree of f
in TrP0

m or TrP1
m . None of these facts will be used in what follows, so we omit the proofs.

We also observe that there is a composition operation (TrP1
m)

m
× (TrP1

m)
m
→ (TrP1

m)
m defined just as

one would expect from manipulations in MN (C). If f, g ∈ (TrP1
m)

m, we define f (g(x)) by substituting
gj (x) as the j -th argument of f . Then we multiply elements out by treating the terms of the form τ(p) like
scalars. For instance, if f (Y1, Y2)= (τ (Y1Y2)Y2, Y1+ τ(Y 2

1 )Y2) and g(X1, X2)= (τ (X1)X2+ X1, X1),
then f ◦ g(X1, X2)= (Z1, Z2), where

Z1 = τ([τ(X1)X2+ X1]X1)X1 = τ(X1)τ (X2 X1)X1+ τ(X2
1)X1

and

Z2 = τ(X1)X2+ X1+ X1τ [(τ (X1)X2+ X1)
2
]

= τ(X1)X2+ X1+ τ [τ(X1)
2 X2

2 + τ(X1)X2 X1+ τ(X1)X1 X2+ X2
1]X1

= τ(X1)X2+ X1+ [τ(X1)
2τ(X2

2)+ τ(X1)τ (X2 X1)+ τ(X1)τ (X1 X2)+ τ(X2
1)]X1

= τ(X1)X2+ X1+ τ(X1)
2τ(X2

2)X1+ 2τ(X1)τ (X2 X1)X1+ τ(X2
1)X1.

One can check that composition on (TrP1
m)

m is well-defined and associative. Moreover, if f and g
are self-adjoint elements of (TrP1

m)
m, then they define functions MN (C)

m
sa→ MN (C)

m
sa, and the element

f ◦g ∈ (TrP1
m)

m defined abstractly will produce a function MN (C)
m
sa→MN (C)

m
sa which is the composition

of the corresponding functions for f and g.
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3B. Differentiation of trace polynomials. In this section, we give explicit formulas for the gradient and
Laplacian of trace polynomials and in particular show that these operations have a well-defined limit
as N →∞ (see [Rains 1997; Cébron 2013; Driver et al. 2013, §3]). We first recall the free difference
quotients of [Voiculescu 1998].

Definition 3.6. We define the free difference quotient (or simply noncommutative derivative) Dj :NCPm→

NCPm ⊗NCPm by
Dj [X i1 · · · X in ] =

∑
k:ik= j

X i1 · · · X ik−1 ⊗ X ik+1 · · · X in .

We also define Dj : NCP⊗n
m → NCP⊗n+1

m by

Dj [p1⊗ · · ·⊗ pn] =

n∑
k=1

p1⊗ · · ·⊗ pk−1⊗Dj pk ⊗ pk+1⊗ · · ·⊗ pn.

Then of course Dk
j is a well-defined map NCP⊗n

m → NCP⊗n+k
m .

Remark 3.7. We caution the reader that the notation used in Voiculescu’s papers is ∂j rather than Dj .
Moreover, the normalization for Dn

j f here differs from that of [Voiculescu 1998] by a factor of n!.

Definition 3.8. We define the cyclic derivative D◦j : NCPm→ NCPm as the linear map given by

D◦j [X i1 · · · X in ] =

∑
k:ik= j

X ik+1 · · · X in X i1 · · · X ik−1 .

Definition 3.9. Given an algebra A (e.g., NCPm), we define the n-th hash operation as the multilinear
map A⊗(n+1)

×A⊗n
→A given by

(a0⊗ · · ·⊗ an) # (b1⊗ · · ·⊗ bn)= a0b1a1 · · · bnan.

Example 3.10. Let X = (X1, X2, X3) and define f (X)= X1 X2 X2
1 X3 X2. Then

D1 f (X)= 1⊗ X2 X2
1 X3 X2+ X1 X2⊗ X1 X3 X2+ X1 X2 X1⊗ X3 X2,

D◦1 f (X)= X2 X2
1 X3 X2+ X1 X3 X2 X1 X2+ X3 X2 X1 X2 X1,

D1 f (X) # Y = Y X2 X2
1 X3 X2+ X1 X2Y X1 X3 X2+ X1 X2 X1Y X3 X2.

To compute D2
1 f (X)= D1[D1 f (X)], we would add together the three terms

D1[1⊗ X2 X2
1 X3 X2] = 1⊗ X2⊗ X1 X3 X2+ 1⊗ X2 X1⊗ X3 X2,

D1[X1 X2⊗ X1 X3 X2] = 1⊗ X2⊗ X1 X3 X2+ X1 X2⊗ 1⊗ X3 X2,

D1[X1 X2 X1⊗ X3 X2] = 1⊗ X2 X1⊗ X3 X2+ X1 X2⊗ 1⊗ X3 X2.

Now we will define several “derivative” operators on the spaces of scalar-valued and noncommutative
trace polynomials which will correspond to differentiation with respect to the standard coordinates on
MN (C)

m
sa. We begin with the gradient.

To fix notation, recall that in Section 2A we gave a canonical orthonormal basis for MN (C)sa with respect
to the inner product 〈x, y〉 = Tr(x∗y). Using these coordinates, we may identify MN (C)sa with RN 2
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and hence identify MN (C)
m
sa with Rm N 2

. Similarly, we identify the complexification C ⊗ MN (C)
m
sa

with MN (C)
m and with Cm N 2

. For f : MN (C)
m
sa→ C and x = (x1, . . . , xm) ∈ MN (C)

m
sa, we denote by

∇ f (x) ∈ MN (C)
m the gradient computed in these coordinates; similarly, we denote by ∇j f (x) ∈ MN (C)

the gradient with respect to x j computed in these coordinates.

Definition 3.11. Define the j -th gradient operator TrP0
m→ TrP1

m by

Dj

[ n∏
k=1

τ(pk)

]
=

n∑
k=1

D◦j pk

∏
`6=k

τ(p`). (3-3)

Note that Dj is defined so as to obey the Leibniz rule (that is, it is a derivation).

Lemma 3.12. If f ∈ TrP0
m is viewed as a function MN (C)

m
sa→ C, then we have

∇j [ f (x)] =
1
N
[Dj f ](x). (3-4)

Similarly, for F : MN (C)
m
sa→ MN (C)

m, let Jj F denote the Jacobian linear transformation (a.k.a. Fréchet
derivative) with respect to x j . Then for a noncommutative polynomial p, we have

[Jj p(x)](y)= [Dj p](x) # y, (3-5)

and hence by the product rule for p ∈ NCPm and f ∈ TrP0
m , we have

[Jj (p f )(x)](y)= ([Dj p](x) # y) f (x)+ p(x)τN ([Dj f ](x)y). (3-6)

Proof. By standard computations, for a noncommutative polynomial p and y ∈ MN (C)sa, we have

[Jj p(x)](y)= [Dj p](x) # y,

∇j [τN (p)](x)=
1
N
[D◦j p](x).

The claims (3-4) and (3-6) now follow from the product rule. �

Next, we can define the algebraic Laplacian operators on TrP0
m and TrP1

m , which correspond to com-
puting the Laplacian on scalar-valued or vector-valued functions on MN (C)

m
sa, still using the coordinates

given in Section 2A.
For f : MN (C)

m
sa→ C, let 1j f be the Laplacian with respect to the coordinates of the j-th matrix x j .

Note that 1 f =
∑m

j=11j f . Similarly, if f : MN (C)
m
sa → MN (C) is an operator-valued function, we

define 1j f and 1 f by applying 1j and 1 entrywise (as is standard notation for the Laplacian of a
vector-valued function).

Motivated by (2-2) and the computation in Lemma 3.18 below, we define the map η :NCP⊗3
m →TrP1

m by

η(p1⊗ p2⊗ p3)= p1 p3τ(p2).

Definition 3.13. We define L j and L N , j : TrP0
m→ TrP0

m to be the unique linear operators such that

L j [τ(p)] = L N , j [τ(p)] = τ ◦ η[D2
j p] for p ∈ NCPm (3-7)



AN ELEMENTARY APPROACH TO FREE ENTROPY THEORY FOR CONVEX POTENTIALS 2303

and such that the following product rule is satisfied:

L j [ f · g] = L j [ f ] · g+ f · L j [g], (3-8)

L N , j [ f · g] = L N , j [ f ] · g+ f · L N , j [g] +
2

N 2 τ(Dj f · Dj g). (3-9)

Then we define L =
∑m

j=1 L j and L N =
∑m

j=1 L N , j .

Remark 3.14. To show the existence of operators L N , j and L j satisfying (3-7) and the product rule, one
can define L N , j more explicitly as the linear operator TrP0

m→ TrP0
m given by

L N , j [τ(p1) · · · τ(pn)] =

n∑
k=1

τ ◦ η[D2 pk] ·
∏
i 6=k

τ(pi )+
1

N 2

n∑
k=1

∑
`6=k

τ(D◦j pk ·D◦j p`)
∏

i 6=k,`

τ(pi ),

and check that this operator is well-defined and satisfies the product rule. Moreover, the uniqueness of
the operator L N , j satisfying (3-7) and the product rule follows from the fact that TrP0

m is spanned by
products of terms of the form τ(p) for p ∈ NCPm . The argument for the existence and uniqueness of L j

is the same.

Example 3.15. Let X = (X1, X2). Consider f (X) = τ( f1(X))τ ( f2(X)), where f1(X) = X1 X2 X1 X3

and f2(X)= X2
2 X1. Then

D1[τ( f1)] = D◦1 f1 = X2 X1 X3+ X3 X1 X2,

D1[τ( f2)] = D◦2 f2 = X2
2,

and
L1[τ( f1)] = L N ,1[τ( f1)] = τ ◦ η[D2

1 f1] = τ [η[1⊗ X2⊗ X3]] = τ [1 · X3] · τ [X2],

L1[τ( f2)] = L N ,1[τ( f2)] = 0.

Therefore, we have

L1[ f ] = L1[τ( f1)]τ( f2)+ τ( f1)L1[τ( f2)] = τ(X3)τ (X2)τ (X2
2 X1)+ 0,

L N ,1[ f ] = L N ,1[τ( f1)]τ( f2)+ τ( f1)L N ,1[τ( f2)] +
2

N 2 τ [D
◦

1 f1D◦1 f2]

= τ(X3)τ (X2)τ (X2
2 X1)+

2
N 2 τ [(X2 X1 X3+ X3 X1 X2)X2

2].

One can carry out a similar computation for L2[ f ] and L N ,2[ f ] and thus find L[ f ] and L N ,2[ f ].

Since we will also deal with the Laplacians of matrix-valued functions on matrices, we also need to
define the algebraic Laplacian on operator-valued trace polynomials.

Definition 3.16. We also define L j and L N , j : TrP1
m → TrP1

m to be the unique linear operators on the
space of operator-valued trace polynomials such that

L j [p] = L N , j [p] = η[D2
j p] for p ∈ NCPm (3-10)
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and the following product rule is satisfied for p ∈ NCPm and f ∈ TrP0
m :

L j [p · f ] = L j [p] · f + p · L j [ f ], (3-11)

L N , j [p · f ] = L N , j [p] · f + p · L N , j [ f ] +
2

N 2Dj p # Dj f, (3-12)

where L j [ f ] and L N , j [ f ] are given by Definition 3.13. Then we define L =
∑m

j=1 L j and L N =∑m
j=1 L N , j .

Remark 3.17. The argument for the existence and uniqueness of the operators L j and L N , j on TrP1
m is

similar to the argument for TrP0
m , only it relies on the previous scalar-valued case since the scalar-valued

case was used in the product rule.

Lemma 3.18. Let f ∈ TrP0
m . Viewing f as a function MN (C)

m
sa→ C, we have

1j f (x)= N [L N , j f ](x), 1 f (x)= N [L N f ](x). (3-13)

The same formula holds if f ∈ TrP1
m and f is viewed as a function MN (C)

m
sa→ MN (C).

Proof. We begin with the special case of computing the Laplacian of p ∈ NCPm (as a matrix-valued
function). To differentiate, we use the basis BN given by (2-1). Note that

1j p(x)=
∑

b∈BN

d2

dt2

∣∣∣∣
t=0

f (x1, . . . , x j−1, x j + tb, x j+1, . . . , xm)

=

∑
b∈BN

D2
j p(x) # (b⊗ b)= N [η(D2

j p)](x)= [L N , j p](x),

where the second-to-last equality follows from (2-2).
Next, we consider the case of computing the Laplacian of τN (p) (as a scalar-valued function) for

p ∈ NCPm . Since τN is a linear map MN (C)→ C, we have

1j [τN (p(x))] = τN (1j p(x)),

where the Laplacian 1j on the left-hand side is applied to a scalar-valued function and on the right-hand
side it is applied to a matrix-valued function. Therefore, it follows from the previous computation that

1j [τN (p(x))] = NτN ([η(D2
j p)](x))= [L N , j [τ(p)]](x).

For the general case of scalar-valued trace polynomials, recall that the vector space of trace polynomials
is spanned by elements of the form f = τ(p1) · · · τ(pN ), where pj ∈NCP0

m . Let f j = τ(pj ) ∈ TrP0
m . The

Laplacian 1j of a product of functions can be computed using the product rule of differentiation as

1j f (x)=
n∑

j=1

N [L N , j fk](x)
∏
i 6=k

τN ( fi (x))+
n∑

k=1

∑
`6=k

Tr(∇j fk(x)∇j f`(x))
∏

i 6=k,`

fi (x).

The special case proved above shows that 1j [ fk(x)] = N [L N , j f ](x). Moreover, by (3-4), we have
∇j [ fk(x)] = (1/N )[Dj fk](x). Thus, we have

1j f (x)=
n∑

k=1

N [L N , j fk](x)
∏
i 6=k

fi (x)+
1
N

n∑
k=1

∑
`6=k

τN ([Dj fk](x)[Dj f`](x))
∏

i 6=k,`

fi (x).
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Because of the product rule in the definition of L N , j , the right-hand side equals N [L N , j f ](x). This
completes the proof of (3-13) in the scalar-valued case. The proof for the operator-valued case is similar,
using the cases proved above, as well as (3-4) and (3-6). �

Corollary 3.19. Let f ∈ TrP0
m or TrP1

m . If we view f as a function on MN (C)
m
sa, then (1/N )1 f is a trace

polynomial of lower degree than f , and we have coefficientwise

lim
N→∞

1
N
1 f (x)= lim

N→∞
L N f (x)= L f (x).

Remark 3.20. We have shown that if f is a scalar-valued trace polynomial, then viewed as a map
MN (C)

m
sa→ C, we have

Du = N∇ f, L N f = 1
N
1 f.

Therefore, in the rest of the paper, we will freely write D f and L N f for N∇ f and (1/N )1 f for general
functions f : MN (C)

m
sa→ C. The same considerations apply to the Laplacian for operator-valued trace

polynomials, viewed as maps MN (C)
m
sa→ MN (C).

3C. Convolution of trace polynomials and gaussians. Let f ∈ TrP0
m or f ∈ TrP1

m . Then viewing f as
a function defined on MN (C)

m
sa, we may define the convolution of f with the probability measure σt,N

(the law of an m-tuple of independent GUE). This is equivalent to the classical convolution of f with the
function MN (C)

m
sa→R giving the density of the measure σt,N . Moreover, ft = f ∗σt,N is the solution to

the heat equation with initial condition f , or more precisely

∂t ft =
1

2N
1 ft .

(The integral formula for the solution to the heat equation with the Laplacian 1 is well known [Evans
2010, §2.3], and to solve the equation with (2N )−11 one renormalizes time by a factor of (2N )−1, and
this corresponds precisely to our normalizations in the definition of σN ,t . We leave this computation to
the reader.)

We showed in the last subsection that L N = (1/N )1 on trace polynomials is given by a purely algebraic
computation. Moreover, examining the construction of L N , one can see that it maps trace polynomials
of degree ≤ d to trace polynomials of degree ≤ d. We can view L N and L as linear transformations
on the finite-dimensional vector space of trace polynomials of degree ≤ d and define exp(t L N/2) and
exp(t L/2) by the matrix exponential.

Because this holds for any d , we know that exp(t L N/2) and exp(t L/2) define linear transformations
TrP0

m→ TrP0
m and TrP1

m→ TrP1
m . Moreover, a standard computation shows that ft = exp(t L N/2) f satis-

fies the heat equation ∂t ft = L N ft/2. These observations, together with Corollary 3.19 yield the following.

Lemma 3.21. Let f be a trace polynomial in TrP0
m or TrP1

m . Then we have

σt,N ∗ f (x)=
[
exp

( t L N
2

)
f
]
(x), (3-14)

with deg(exp(t L N/2) f )≤ deg( f ), and we have

lim
N→∞

exp
( t L N

2

)
f = exp

( t L
2

)
f coefficientwise. (3-15)
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Example 3.22. Let X = (X1, . . . , Xm) and define f (X)=
∑m

j=1 X2
j . Note that D2

j [ f (X)] = 2(1⊗1⊗1)
for each j , and hence L[τ( f )] = 2m = L N [τ( f )]. We also have D◦j f = 2X j . Hence,

L[τ( f )2] = 2L[τ( f )]τ( f )= 4mτ( f ),

L N [τ( f )2] = 2L[τ( f )]τ( f )+ 2
m∑

j=1

τ(D◦j f ·D◦j f )= 4mτ( f )+ 8m
N 2 τ( f ).

Therefore, (L/2)[τ( f )2] = 2mτ( f ) and (L/2)[τ( f )] = m. Thus, the span of τ( f )2, τ( f ), and 1 is
invariant under the operator (L/2), and (L/2) is given by a nilpotent matrix on this subspace. Direct
computation then shows that

e−t L/2
[τ( f )2] = τ( f )2+ 2mtτ( f )+m2t2.

A similar computation shows that

e−t L N /2[τ( f )2] = τ( f )2+ 2m
(
1+ 2

N 2

)
tτ( f )+m2

(
1+ 2

N 2

) t2

2
.

Thus, as N →+∞, we have e−t L N /2[τ( f )2] → e−t L/2
[τ( f )2].

The probabilistic interpretation of f ∗σt,N = exp(t L N/2) f , which follows from a standard computation,
is that σt,N ∗ f (x) is the expectation of f (x + t1/2Y ), where Y is an m-tuple of independent GUE of
variance 1. Moreover, for every probability measure µ on MN (C)

m
sa with finite moments, we have∫

f (x) d(µ ∗ σt,N )(x)=
∫
(σt,N ∗ f )(x) dµ(x)=

∫ [
exp

( t L N
2

)
f
]
(x) dµ(x). (3-16)

In the free setting, the operator exp(t L/2) has a similar relationship with the free convolution with σt .
This fact is standard in free probability, but because we need it for Lemmas 3.28 and 7.4 below, we
include a sketch of the proof here.

Lemma 3.23. Let λ ∈6n,R be a noncommutative law. Then for any trace polynomial f ∈ TrP0
m , we have

λ� σt( f )= λ
(

exp
( t L

2

)
f
)
. (3-17)

Proof. Because free convolution with σt forms a semigroup and exp(t L/2) is also a semigroup, it suffices
to prove that

d
dt

∣∣∣
t=0
λ� σt( f )= λ

2
(L f ).

By the product rule, it suffices to handle the case of f = τ(p) for p ∈ NCPm by showing that

d
dt

∣∣∣
t=0
λ� σt(p)=

λ

2
(η(D2

j p)).

Let x = (x1, . . . , xm) and y = (y1, . . . , ym) be freely independent m-tuples of self-adjoint elements of
a tracial von Neumann algebra (M, τ ), such that the law of x is λ and the law of y is σ1. We want to
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compute (d/dt)|t=0τ(p(x + t1/2 y)). But note that

p(x + t1/2 y)= p(x)+ t1/2
m∑

j=1

Dj p(x) # yj +
t
2

m∑
j,k=1

DjDk p(x) # (yj ⊗ yk)+ O(t3/2).

A moment computation with free independence shows that the terms of order t1/2 have expectation zero,
and so do the terms of order t with j 6= k. We are left with

d
dt

∣∣∣
t=0
τ(p(x + t1/2 y))= 1

2

n∑
j=1

τ(D2
j p(x) # (yj ⊗ yj )),

which using freeness evaluates to 1
2

∑n
j=1 τ(η(D

2
j p(x)))= τ(Lp(x)/2). �

3D. Asymptotic approximation by trace polynomials. Now we are ready to define the approximation
property which captures the asymptotic behavior of functions on MN (C)

m
sa.

Definition 3.24. A sequence of functions φN : MN (C)
m
sa→ MN (C)

m is said to be asymptotically approx-
imable by trace polynomials if for every ε > 0 and R > 0 there exists some f ∈ (TrP1

m)
m (an m-tuple of

operator-valued trace polynomials) such that

lim sup
N→∞

sup
‖x‖∞≤R

‖φN (x)− f (x)‖2 ≤ ε.

In this case, we call f an (ε, R)-approximation of {φN }. We make the same definitions for functions
φN : MN (C)

m
sa→ C, except that we use scalar-valued trace polynomials (elements of TrP0

m) and apply the
absolute value rather than the 2-norm.

Observation 3.25. If f ∈ (TrP1
m)

m and if fN denotes the map MN (C)
m
sa→ MN (C)

m given by x 7→ f (x),
then fN is asymptotically approximable by trace polynomials. Also, asymptotically approximable
sequences form a vector space over C.

Observation 3.26. Let {φ(`)N }N ,`∈N be a sequence of functions where φ(`)N :MN (C)
m
sa→MN (C)

m. Suppose
that {φN } is another sequence such that for every R > 0

lim
`→∞

lim sup
N→∞

sup
‖x‖∞≤R

‖φ
(`)
N (x)−φN (x)‖2 = 0.

If {φ(`)N }N∈N is asymptotically approximable by trace polynomials for each `, then so is {φN }N∈N. The
same holds in the case of scalar-valued functions and scalar-valued trace polynomials.

Lemma 3.27. Let φN , ψN : MN (C)
m
sa→ MN (C)

m
sa. Suppose that {φN } and {ψN } are both asymptotically

approximable by trace polynomials, and furthermore suppose that {φN }N∈N is uniformly Lipschitz in
‖ · ‖2, that is, for some K > 0,

‖φN (x)−φN (y)‖2 ≤ K‖x − y‖2 for all x, y, for all N .

Then {φN ◦ψN } is asymptotically approximable by trace polynomials.
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Proof. It is straightforward to check that if {φN } is a sequence of functions that map self-adjoint tuples to
self-adjoint tuples and if ( f1, . . . , fm) is an (ε,R)-approximation of {φN }, then so is 1

2( f1+ f ∗1 , . . . , fm+ f ∗m).
Thus, we may assume without loss of generality that the operator-valued trace polynomials used in our
approximations for {φN } and {ψN } are self-adjoint, so it makes sense to compose them with φN or ψN .

Choose ε>0 and R>0. Choose an m-tuple of self-adjoint trace polynomials g which is an (ε/(2K ), R)-
approximation of {ψN }. Since g is a trace polynomial, there exists some R′ > 0 such that for any tuple x
of self-adjoint matrices of any size, we have

‖x‖∞ ≤ R =⇒ ‖g(x)‖∞ ≤ R′.

Now because φN is asymptotically approximable by trace polynomials, we can choose a polynomial f
which is an (ε/2, R′)-approximation of {φN }. Now we observe that when ‖x‖∞≤ R (hence ‖g(x)‖∞≤ R′),
we have

‖φN ◦ψN (x)− f ◦ g(x)‖2 ≤ ‖φN ◦ψN (x)−φN ◦ g(x)‖2+‖φN ◦ g(x)− f ◦ g(x)‖2

≤ K sup
‖x‖∞≤R

‖ψN (x)− g(x)‖2+ sup
‖y‖∞≤R′

‖φN (y)− f (y)‖2.

Therefore,
lim sup

N→∞
sup
‖x‖∞≤R

‖φN ◦ψN (x)− f ◦ g(x)‖2 ≤ K · ε
2K
+
ε

2
= ε. �

Lemma 3.28. Suppose that φN : MN (C)
m
sa→ MN (C)

m
sa is asymptotically approximable by trace polyno-

mials and that

‖φN (x)‖2 ≤ A
(

1+
∑

j

τN (x2n
j )

)
(3-18)

for some A > 0 and some integer n ≥ 0. If {φN } is asymptotically approximable by trace polynomials,
then so is {φN ∗ σt,N }.

Proof. Fix R > 0 and ε > 0. Choose a trace polynomial f which is an (ε, R + 3t1/2) approximation
for {φN }. Now for x with ‖x‖∞ ≤ R, we estimate

‖σt,N ∗φN (x)− σt,N ∗ f (x)‖2 ≤
∫
‖φN (x + y)− f (x + y)‖2 dσt,N (y).

We break this integral into two pieces: The integral over the region where ‖y‖∞ ≤ 3t1/2 is bounded
by ε as N →∞ by our choice of f . Furthermore, we claim that the integral over the region where
‖y‖∞ > 3t1/2 vanishes as N →∞. Using assumption (3-18) and the fact that f is a trace polynomial,
we see that there exists a C > 0 and integer d > 0, depending only on R, A, n, and f , such that

sup
‖x‖∞≤R

[‖φN (x + y)‖2+‖ f (x + y)‖2] ≤ C
(

1+
∑

j

τN (y2d
j )

)
.

Therefore, we have∫
‖y‖∞≥3t1/2

‖φN (x + y)− f (x + y)‖2 dσt,N (y)≤ C
∫
‖y‖∞≥3t1/2

(
1+

∑
j

τN (y2d
j )

)
dσt,N (y).
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This vanishes as N →∞ by Corollary 2.12 applied to the GUE. Therefore, we have

lim sup
N→∞

sup
‖x‖∞≤R

‖σt,N ∗φN (x)− σt,N ∗ f (x)‖2 ≤ ε.

On the other hand, by Lemma 3.21, we have σt,N ∗ f = exp(t L N/2) f → exp(t L/2) f coefficientwise,
and therefore,

lim sup
N→∞

sup
‖x‖∞≤R

‖σt,N ∗ f (x)−
[
exp

( t L
2

)
f
]
(x)‖2 = 0,

so that
lim sup

N→∞
sup
‖x‖∞≤R

‖σt,N ∗φN (x)−
[
exp

( t L
2

)
f
]
(x)‖2 ≤ ε. �

Lemma 3.29. Suppose that φN : MN (C)
m
sa→ C and suppose that {DφN } = {N∇φN } is asymptotically

approximable by trace polynomials and that φN (0)= 0. Then {φN } is asymptotically approximable by
trace polynomials.

Proof. Given a trace polynomial F ∈ (TrP1
m)

m, we can define

f (X)=
∫ 1

0
τ(F(t X)X) dt

in TrP0
m . Then we have

sup
‖x‖∞≤R

|φN (x)− f (x)| = sup
‖x‖∞≤R

∣∣∣∣∫ 1

0
〈DφN (t x)− F(t x), x〉2 dt

∣∣∣∣
≤ R sup

‖y‖∞≤R
‖N∇φN (y)− F(y)‖2. �

4. Convergence of moments

Our goal in this section is prove the following theorem. The convergence of moments is related to [Guionnet
and Shlyakhtenko 2009, Theorem 4.4; Dabrowski et al. 2016, Proposition 50 and Theorem 51; Dabrowski
2016, Theorem 4.4], and we include versions of standard concentration estimates (see Section 2E) in the
statement.

Theorem 4.1. Let VN : MN (C)
m
sa→R be a sequence of potentials such that VN (x)− (c/2)‖x‖22 is convex

and VN (x)−(C/2)‖x‖22 is concave. Let µN be the associated measure. Suppose that the sequence {DVN }

is asymptotically approximable by trace polynomials, and assume that

M = lim sup
N→∞

max
j

∥∥∥∥∫ (x j − τN (x j )1) dµN (x)
∥∥∥∥<+∞, (4-1)

where 1 denotes the N×N identity matrix.

(1) We have the following bounds on the operator norm: if RN =maxj
∫
‖x j‖ dµN (x), then

lim sup
N→∞

RN ≤
2

c1/2 +
1
c

lim sup
N→∞

max
j

∣∣∣∣∫ τN (x j ) dµN (x)
∣∣∣∣+M

≤
2

c1/2 +
1
c

lim sup
N→∞

‖DVN (0)‖2+
C − c
2c3/2 +M,
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and as a consequence of concentration we have for each j that

µN (‖x j‖ ≥ RN + δ)≤ e−cNδ2/2.

(2) There exists a noncommutative law λ ∈ 6m,R∗ , where R∗ = lim supN→∞ RN , such that for every
noncommutative polynomial p

lim
N→∞

∫
τN (p(x)) dµN (x)= λ(p).

(3) The sequence {µN } exhibits exponential concentration around λ in the sense that, for every R > 0
and every neighborhood U of λ in 6m ,

lim sup
N→∞

1
N 2 logµN (x ∈ MN (C)

m
sa : ‖x‖∞ ≤ R, λx 6∈ U) < 0.

Remark 4.2. The rather artificial hypothesis that lim supN→∞maxj
∥∥∫ (x j − τN (x j )) dµk(x)

∥∥<+∞ is
trivially satisfied if either µN has expectation zero or µN is invariant under unitary conjugation and hence∫

x j dµN (x) is equal to
∫
τN (x j ) dµN (x) times the identity matrix.

We have already seen in Section 2E that concentration estimates and operator norm tail bounds are
standard. To prove that the moments converge, something more is needed; indeed, the only assumption
relating the measures µN for different values of N is the fact that DVN is asymptotically approximable by
trace polynomials. But even if DVN is given by the same “trace analytic-function” for different values of N,
it is not immediate that the measure would concentrate in the same regions for matrices of different sizes.

To prove convergence of moments, we want to express
∫

u dµN in terms of DVN for a Lipschitz
function u. One of the standard techniques is to show µN is the unique stationary distribution for a
process X t that satisfies the SDE

d X t = dYt −
DVN (X t)

2
dt, (4-2)

where Yt is a GUE Brownian motion. This machinery lies behind the log-Sobolev inequality and concen-
tration results, as well as earlier theorems about convergence of moments for general convex potentials.

Specifically, Dabrowski, Guionnet, and Shylakhtenko [Dabrowski et al. 2016, Proposition 5] used
the free version of this SDE to show that for a noncommutative potential V satisfying certain convexity
assumptions, there exists a free Gibbs law for V which is the unique stationary distribution. As an
application, they showed convergence of moments for random matrix models given by VN =V [Dabrowski
et al. 2016, Proposition 50 and Theorem 51], essentially a special case of our Theorem 4.1.

Dabrowski [2016, Theorem 4.4] was able to show convergence of moments under weaker convexity
assumptions by constructing the solution to the free SDE as an ultralimit of the finite-dimensional solutions.
Our theorem has convexity assumptions similar to Dabrowski’s, but we consider a more general sequence
of potentials VN . Like Dabrowski, we analyze the free case by taking the limit of finite-dimensional
results, but we use deterministic rather than stochastic methods.

Instead of the solving the SDE, we study the associated semigroup T VN
t , acting on Lipschitz functions u,

given by
T VN

t u(x)= Ex [u(X t)],
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where X t is the process solving the SDE (4-2) with initial condition x . The semigroup provides the
solution to a certain PDE; that is, if u(x, t)= Tt u0(x), then we have

∂t u =
1

2N
1u− N

2
∇VN · ∇u = L N u

2
−
〈DVN , Du〉2

2
.

The semigroup T VN
t will decrease the Lipschitz norms of functions and thus, if u is Lipschitz, then T VN

t u
will converge to

∫
u dµN as t→∞.

Solving the differential equation and taking t →∞ provides a way to evaluate
∫

u dµN in terms
of DVN . We will describe a construction of the semigroup T V

t through iterating simpler operations
(Section 4A), and then we will show (Lemma 4.10) that the iteration procedure preserves approximability
by trace polynomials and hence conclude that limN→∞

∫
u dµN exists.

4A. Iterative construction of the semigroup. To simplify notation in this section, we fix N and fix a
potential V : MN (C)

m
sa→ R such that V (x)− (c/2)‖x‖22 is convex and V (x)− (C/2)‖x‖22 is concave for

some 0< c ≤ C. We also write Tt rather than T V
t .

We will construct Tt by combining two simpler semigroups corresponding to the stochastic and
deterministic terms of dYt−(DV/2)(X t) dt . Recall that the solution to the heat equation ∂t u= (2N )−11u
with initial data u0 is given by the heat semigroup:

Pt u0(x)=
∫

u0(x + y) dσt,N (y).

Meanwhile, the solution to ∂t u =− 1
2〈DV, Du〉2 with initial data u0 is given by

St u0(x)= u0(W (x, t)),

where W (x, t) is the solution to the ODE

∂t W (x, t)=− 1
2 DV (W (x, t)), W (x, 0)= x . (4-3)

We want to define Tt = limn→∞(Pt/n St/n)
n. This is motivated by Trotter’s product formula which asserts

that et (A+B)
= limn→∞(et A/net B/n)n for nice enough self-adjoint operators A and B (see [Trotter 1959;

Kato 1978; Simon 1979, pp. 4–6]). In our case, we must show that (Pt/n St/n)
n converges as n→∞ and

derive dimension-independent error bounds.
We use the following basic properties of the semigroups Pt and St . Here if u : MN (C)

m
sa→ C, then

‖u‖Lip denotes the Lipschitz norm with respect to the normalized L2 metric ‖ · ‖2 on MN (C)
m
sa and ‖u‖L∞

denotes the standard L∞ norm. We are only concerned with Lipschitz functions, so in the following
estimates, the reader may always assume u is Lipschitz, but of course ‖u‖L∞ may be infinite for Lipschitz
functions.

Lemma 4.3. (1) ‖Pt u‖L∞ ≤ ‖u‖L∞ .

(2) ‖Pt u‖Lip ≤ ‖u‖Lip.

(3) ‖Pt u− u‖L∞ ≤ m1/2t1/2
‖u‖Lip.
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Proof. (1) and (2) follow from the fact that Pt u is u convolved with a probability measure. To prove (3),
suppose ‖u‖Lip <+∞. Then

|Pt u(x)− u(x)| =
∣∣∣∣∫ (u(x + y)− u(x)) dσt,N (y)

∣∣∣∣
≤

∫
|u(x + y)− u(x)| dσt,N (y)

≤ ‖u‖Lip

∫
‖y‖2 dσt,N (y).

Meanwhile, ∫
‖y‖2 dσt,N (y)≤

(∫
1 dσt,N (y)

)(∫
‖y‖22 dσt,N (y)

)1/2

= (mt)1/2,

since y is an m-tuple (y1, . . . , ym) and
∫
τN (y2

j ) dσt,N (y)= t for each j . �

Lemma 4.4. (1) The solution W (x, t) to (4-3) exists for all t .

(2) ‖W (x, t)−W (y, t)‖2 ≤ e−ct/2
‖x − y‖2.

(3) ‖W (x, t)− x‖2 ≤ (t/2)‖DV (x)‖2.

(4) ‖(W (x, t)− x)− (W (y, t)− y)‖2 ≤ (C/c)(1− e−ct/2)‖x − y‖2.

(5) ‖St u‖Lip ≤ e−ct/2
‖u‖Lip.

(6) ‖St u‖L∞ ≤ ‖u‖L∞ if u is continuous.

Proof. (1) The convexity and semiconcavity assumptions on V imply that DV is C-Lipschitz (see
Proposition 2.13(4)) and therefore global existence of the solution follows from the Picard–Lindelöf
theorem.

(2) Let Ṽ (x)= V (x)− (c/2)‖x‖22. By Proposition 2.13(5),

〈DV (x)− DV (y), x − y〉2 ≥ c‖x − y‖22.

Now observe that
d
dt
‖W (x, t)−W (y, t)‖22 =−〈DV (W (x, t))− DV (W (y, t)),W (x, t)−W (y, t)〉2

≤−c‖W (x, t)−W (y, t)‖22,

and hence by Grönwall’s inequality, ‖W (x, t)−W (y, t)‖22 ≤ e−ct
‖W (x, 0)−W (y, 0)‖22 = e−ct

‖x− y‖22.

(3) Note that

d
dt
‖W (x, t)− x‖22 =−〈DV (W (x, t)),W (x, t)− x〉2

=−〈DV (W (x, t))− DV (x),W (x, t)− x〉2−〈DV (x),W (x, t)− x〉2

≤ ‖DV (x)‖2‖W (x, t)− x‖2.

Meanwhile, ‖W (x, t)− x‖2 is Lipschitz in t and hence differentiable almost everywhere and we have

d
dt
‖W (x, t)− x‖22 = 2‖W (x, t)− x‖2

d
dt
‖W (x, t)− x‖2.
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Thus, we have
d
dt
‖W (x, t)− x‖2 ≤ 1

2‖DV (x)‖2,

which proves (3).

(4) We observe that

‖(W (x, t)− x)− (W (y, t)− y)‖2 ≤
1
2

∫ t

0
‖DV (W (x, s))− DV (W (y, s))‖2 ds

≤
C
2

∫ t

0
‖W (x, s)−W (y, s)‖2 ds

≤
C
2

∫ t

0
e−cs/2

‖x − y‖2 ds = C
c
(1− e−ct/2)‖x − y‖2.

(5) This follows from (2).

(6) This is immediate because St u is u precomposed with another function. �

Now we combine Pt and St as in Trotter’s formula, except that for technical convenience we define
our approximations using dyadic time intervals rather than subdividing [0, t] into intervals of size t/n.
We set N= {1, 2, 3, . . . } and N0 = {0, 1, 2, . . . }. We also denote by Q+2 =

⋃
`≥0 2−`N0 the nonnegative

dyadic rationals.

Lemma 4.5. For t ∈ 2−`N0, define
Tt,`u = (P2−`S2−`)

2`t u.

For t ∈Q+2 , the limit Tt u := lim`→∞ Tt,`u exists and we have

‖Tt,`u− Tt u‖L∞ ≤
Cm1/2

c(2− 21/2)
2−`/2‖u‖Lip.

We also have ‖Tt u‖Lip ≤ e−ct/2
‖u‖Lip.

Proof. We want to show that the sequence {Tt,`u}` is Cauchy by estimating the difference between consec-
utive terms. Suppose that t ∈ 2−`N0 and write t = n/2` and δ= 2−`−1. Note the telescoping series identity

Tt,`+1u− Tt,`u =
n−1∑
j=0

(PδSδ)2 j Pδ(SδPδ − PδSδ)Sδ(P2δS2δ)
n−1− j u. (4-4)

Thus, we want to estimate SδPδ − PδSδ and then control the propagation of the errors through the
applications of the other operators. Note that for a Lipschitz function v, we have using Lemma 4.4(4) that

|SδPδv(x)− PδSδv(x)| ≤
∫
|v(W (x, δ)+ y)− v(W (x + y, δ))| dσδ,N (y)

≤ ‖v‖Lip

∫
‖(W (x, δ)− x)− (W (x + y, δ)− (x + y))‖2 dσδ,N (y)

≤ ‖v‖Lip
C
c
(1− e−cδ/2)

∫
‖y‖2 dσδ,N (y)

≤ ‖v‖Lip
C
c
(1− e−cδ/2)(mδ)1/2,
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where the last inequality follows by the same reasoning as Lemma 4.3(3). Therefore,

‖SδPδv− PδSδv‖L∞ ≤
C
c

m1/2δ1/2(1− e−cδ/2)‖v‖Lip. (4-5)

Therefore, we can estimate a single term in the telescoping series identity (4-4) by

‖(PδSδ)2 j Pδ(SδPδ − PδSδ)Sδ(P2δS2δ)
n−1− j u‖L∞ ≤ ‖(SδPδ − PδSδ)Sδ(P2δS2δ)

n−1− j u‖L∞

≤
C
c

m1/2δ1/2(1− e−cδ/2)‖Sδ(P2δS2δ)
n−1− j u‖Lip

≤
C
c

m1/2δ1/2(1− e−cδ/2)e−cδ/2e−cδ(n− j−1)/2
‖u‖Lip.

Here we have first applied the fact that Pδ and Sδ are contractions with respect to the L∞ norm from
Lemmas 4.3(1) and 4.4(6); second, we used the estimate (4-5) for SδPδ − PδSδ; and third we used the
estimates ‖Pδu‖Lip ≤ ‖u‖Lip and ‖Sδu‖Lip ≤ e−cδ/2

‖u‖Lip found in Lemmas 4.3(2) and 4.4(5). Now
summing up the telescoping series, we get

‖Tt,`+1u− Tt,`u‖L∞ ≤

n−1∑
j=0

C
c

m1/2δ1/2(1− e−cδ/2)e−cδ/2e−cδ(n− j−1)/2
‖u‖Lip

≤
C
c

m1/2δ1/2(1− e−cδ/2)e−cδ/2 1
1−e−cδ/2 ‖u‖Lip

=
C
c

m1/2δ1/2e−cδ/2
‖u‖Lip ≤

C
2c

m1/2δ1/2
‖u‖Lip.

In other words, we have

‖Tt,`+1u− Tt,`u‖L∞ ≤
Cm1/2

2c
2−(`+1)/2

‖u‖Lip.

It follows that the sequence is Cauchy with respect to ‖ · ‖L∞ and we have the desired estimate on
‖Tt,`u− Tt u‖L∞ from summing the geometric series.

The estimate ‖Tt,`u‖Lip ≤ e−ct/2
‖u‖Lip follows from Lemmas 4.3(2) and 4.4(5), and then by taking

the limit as `→+∞, we obtain ‖Tt u‖Lip ≤ e−ct/2
‖u‖Lip. �

Lemma 4.6. The semigroup Tt defined above extends to a semigroup defined for positive t such that
for s ≤ t

|Tt u(x)− Tsu(x)| ≤ e−cs/2
(C

c
(3
√

2+ 5)(t − s)1/2+‖DV (x)‖2(t − s)
)
‖u‖Lip,

and ‖Tt u‖Lip ≤ e−ct/2
‖u‖Lip.

Proof. We first prove the estimate on |Tt u− Tsu| for dyadic values of s and t . First, consider the case
where t = 2−` and s = 0. Note that

(Tt − 1)u = (Tt − Pt St)u+ (Pt − 1)St u+ (St − 1)u.

The first term can be estimated by Lemma 4.5 with `=1, the second term can be estimated by Lemmas 4.3(3)
and 4.4(5) as

‖(Pt − 1)St u‖L∞ ≤ m1/2t1/2
‖St u‖Lip ≤ m1/2t1/2

‖u‖Lip,
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and the third term can be estimated by Lemma 4.4(3). Altogether, we obtain

|Tt u(x)− u(x)| ≤
(

Cm1/2

c(2− 21/2)
t1/2
+m1/2t1/2

+
t
2
‖DV (x)‖2

)
‖u‖Lip.

In the case of general dyadic s and t , suppose t > s and write t − s in a binary expansion to obtain

t = s+
∞∑

j=n+1

aj 2− j ,

where aj ∈ {0, 1} and an+1 = 1. Note that 2−n−1
≤ |s− t | ≤ 2−n. Let tk = s+

∑k
j=n+1 aj 2− j. Then

|Tt u(x)− Tsu(x)| ≤
∞∑

j=n+1

|Ttj u(x)− Ttj−1u(x)|

≤

∞∑
j=n+1

(
Cm1/2

c(2− 21/2)
2− j/2

+m1/22− j/2
+

2− j

2
‖DV (x)‖2

)
‖Ttj−1u‖Lip

≤

((
Cm1/2

c(2− 21/2)
+ 1
)

1
1− 2−1/2 · 2

−(n+1)/2
+‖DV (x)‖2 · 2−(n+1)

)
‖Tsu‖Lip

≤

((
Cm1/2

c(2− 21/2)
+ 1
)

1
1− 2−1/2 (t − s)1/2+‖DV (x)‖2(t − s)

)
e−cs/2

‖u‖Lip

≤ e−cs/2
(

Cm1/2

c
(3
√

2+ 5)(t − s)1/2+‖DV (x)‖2(t − s)
)
‖u‖Lip,

where we used the crude estimate that 1 ≤ Cm1/2/c to combine the first two terms. Because this
continuity estimate holds for dyadic values of s and t , we can extend the definition of Tt u to all positive t .
Furthermore, because ‖Tt u‖Lip ≤ e−ct/2

‖u‖Lip for dyadic t , the same must hold for real values of t .
Now let us verify that Ts Tt = Ts+t for all real t . Choose dyadic sn ↘ s and tn ↘ t and let u be a

Lipschitz function. We know that Tsn Ttn u = Tsn+tn u and that Tsn+tn u→ Ts+t u locally uniformly, so it
suffices to show that Tsn Ttn u→ Ts Tt u. Observe that

|Tsn Ttn u− Ts Tt u| ≤ |(Tsn − Ts)Ttn u| + |Ts(Ttn − Tt)u|.

The first term can be estimated by

|(Tsn − Ts)Ttn u(x)| ≤ e−s/2
(C

c
(3
√

2+ 5)(sn − s)1/2+‖DV (x)‖2(sn − s)
)
‖Ttn u‖Lip,

which goes to zero as n→∞. For the second term, we first note that

|(Ttn − Tt)u(x)| ≤ e−t/2
(C

c
(3
√

2+ 5)(tn − t)1/2+‖DV (x)‖2(tn − t)
)
‖u‖Lip.

Let hn(x) be the right-hand side. Note that u ≤ v implies that Tsu ≤ Tsv because this holds for the
operators Ps and Ss (since Ps is given by convolution and Ss is given by composition). Therefore,

|Ts(Ttn − Tt)u(x)| ≤ Ts |(Ttn − Tt)u|(x)≤ Tshn(x).
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Because DV is C-Lipschitz, we know that hn is an e−t/2(tn − t)C‖u‖Lip-Lipschitz function and hence

|Tshn(x)| ≤ hn(x)+ |(Ts − 1)hn(x)|

≤ hn(x)+ e−t/2(tn − t)C‖u‖Lip

(C
c
(3
√

2+ 5)s1/2
+‖DV (x)‖2s

)
,

which goes to zero as n→∞. �

Lemma 4.7. Let u(x) be Lipschitz. Then Tt u is a weak solution of the equation

∂t Tt u =
1

2N
1(Tt u)−

N
2
∇V · ∇(Tt u)

in the sense that for φ ∈ C∞c (MN (C)
m
sa), we have∫

MN (C)msa

[(Tt1u)φ− (Tt0u)φ] =
∫ t1

t0

∫
MN (C)msa

[
−

1
2N
∇(Tsu) · ∇φ− N

2
(∇V · ∇(Tsu))φ

]
ds.

Proof. Recall that by Rademacher’s theorem if u is Lipschitz, then ∇u exists almost everywhere and it is
in L∞(MN (C)

m
sa). In particular, because ∇V is Lipschitz, we also know that the second derivatives of V

exist almost everywhere and are in L∞(MN (C)
m
sa).

We begin by considering
∫
(SδPδ − 1)u ·φ for a Lipschitz u : MN (C)

m
sa→ R and a φ ∈ C∞c (MN (C)

m
sa)

and δ > 0. Note that
(SδPδ − 1)u = (Sδ − 1)Pδu+ (Pδ − 1)u.

Now Pδu is the convolution of u with the Gaussian and so ∇(Pδu)= Pδ(∇u). Because the gradient of the
Gaussian is O(δ−1/2), we see that the first derivatives of Pδ(∇u) are O(δ−1/2) in L∞ (here our estimates
may depend on N):

Pδu(y)− Pδu(x)=∇Pδu(x) · (x − y)+ O(δ−1/2
‖x − y‖22).

Now using (4-3) and Lemma 4.4(3), we have W (x, δ)− x = (Nδ/2)∇V (x)+ O(δ2) uniformly on any
compact set K . Therefore,

(Sδ − 1)Pδu(x)= Pδu(W (x, δ))− Pδu(x)=−
Nδ
2
∇(Pδu)(x) · ∇V (x)+ O(δ3/2).

Now we have∫
(SδPδ − 1)u ·φ =

∫
(Sδ − 1)Pδu φ+

∫
(Pδ − 1)u φ

=−
Nδ
2

∫
[∇(Pδu) · ∇V ]φ+

∫
u (Pδ − 1)φ+ O(δ3/2)

=−
Nδ
2

∫
Pδu[(1V )φ+∇V · ∇φ] +

∫
u δ

2N
1φ+ O(δ3/2)

=−
Nδ
2

∫
u Pδ[(1V )φ+∇V · ∇φ] + δ

2N

∫
u1φ+ O(δ3/2),

where the error estimates depend only on C, N, ‖u‖Lip, the support of φ, and the L∞ norms of its
derivatives. We also know from (4-5) that (SδPδ− PδSδ)u is bounded by ‖u‖Lip(Cm1/2/c)(1− e−cδ)δ1/2,
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which is O(δ3/2). Therefore,∫
(PδSδ − 1)u ·φ =−Nδ

2

∫
u Pδ[1Vφ+∇V · ∇φ] + δ

2N

∫
u1φ+ O(δ3/2).

Now suppose that t is a dyadic rational and write t = nδ, where δ = 2−` for some integer `. Recall
that Tt,` = (PδSδ)n. Then by a telescoping series argument∫

(Tt,`− 1)u ·φ =
n−1∑
j=0

(
−

Nδ
2

∫
Tjδ,`u Pδ[(1V )φ+∇V · ∇φ] + δ

2N

∫
Tjδ,`u1φ

)
+ O(δ1/2).

We fix a dyadic t and take `→∞ (and hence δ→ 0). The above sum over j may be viewed as a Riemann
sum for an integral from 0 to t , where δ is the mesh size. Using Lemma 4.6, we know that Tt u is Hölder
continuous in t . Also, by Lebesgue differentiation theory,

Pδ[(1V )φ+∇V · ∇φ] → (1V )φ+∇V · ∇φ

in L1
loc(MN (C)

m
sa). There is no difficulty in taking the limit as δ→ 0 inside the integral because φ has

compact support and all the functions we are integrating are bounded on compact sets. Thus, we obtain∫
(Tt − 1)u ·φ dx =

∫ t

0

∫ (
−

N
2

Tsu[(1V )φ+∇V · ∇φ] + 1
2N

Tsu1φ
)

dx ds.

We may extend this equality from dyadic t to all positive t using Lemma 4.6. Finally, after another
integration by parts (which is justified by approximation by smooth functions in the appropriate Sobolev
spaces), we have∫

(Tt − 1)u ·φ dx =
∫ t

0

∫ (
−

N
2
[∇(Tsu) · ∇V ]φ− 1

2N
∇(Tsu) · ∇φ

)
dx ds.

The asserted formula then follows by replacing u with Tt0u and t with t1− t0. �

Lemma 4.8. If µ is the measure given by the potential V and if u is Lipschitz, then we have∫
Tt u dµ=

∫
u dµ.

Proof. By applying Lemma 4.7 and approximating (1/Z) exp(−N 2V (x)) by compactly supported smooth
functions, we see that∫

Tt u dµ−
∫

u dµ= 1
Z

∫∫ t

0

[
−

1
2N
∇(Tsu) · ∇[e−N 2V

] −
N
2
(∇V · ∇(Tsu))e−N 2V

]
ds dx = 0. �

Lemma 4.9. We have Tt u(x)→
∫

u dµ as t→∞ and more precisely∣∣∣Tt u(x)−
∫

u dµ
∣∣∣≤ e−ct/2

(4Cm1/2

c2 (6+ 5
√

2)t−1/2
+

2
c
‖V (x)‖2

)
‖u‖Lip.
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Proof. Fix t and fix r ≥ t . Let n be an integer. Then using Lemma 4.6,

|Tt+r u(x)− Tt u(x)| ≤
n−1∑
j=0

|Tt+r( j+1)/nu(x)− Tt+r j/nu(x)|

≤

n−1∑
j=0

e−ct/2e−cr j/2n
(Cm1/2

c
(3
√

2+ 5)
( r

n

)1/2
+‖V (x)‖2

( r
n

))
‖u‖Lip

≤ e−ct/2 1
1− e−cr/2n

(Cm1/2

c
(3
√

2+ 5)
( r

n

)1/2
+‖V (x)‖2

( r
n

))
‖u‖Lip

≤ e−ct/2 2n
cr

(Cm1/2

c
(3
√

2+ 5)
( r

n

)1/2
+‖V (x)‖2

( r
n

))
‖u‖Lip.

Since r ≥ t , we can choose n such that t/4≤ r/n ≤ t/2. Then we have

|Tt+r u(x)− Tt u(x)| ≤ e−ct/2
(4Cm1/2

c2 (6+ 5
√

2)t−1/2
+

2
c
‖V (x)‖2

)
‖u‖Lip.

Because this holds for all sufficiently large r , this shows that limt→∞ Tt u(x) exists. Because ‖Tt u‖Lip ≤

e−ct/2
‖u‖Lip, the limit must be constant and therefore equals

∫
u dµ. Moreover, we have the asserted

rate of convergence by taking r→∞ in the above estimate. �

4B. Approximability and convergence of moments. Now we are ready to show that the sequence of semi-
groups T VN

t associated to a sequence of potentials VN will preserve asymptotic approximability by trace
polynomials and as a consequence we will show that the moments of the associated measures µN converge.

Lemma 4.10. Let VN : MN (C)
m
sa→R be a sequence of potentials such that VN (x)− (c/2)‖x‖22 is convex

and VN (x)− (C/2)‖x‖22 is concave, where 0< c ≤ C. For each N, let µN be the associated measure. Let
SVN

t and T VN
t denote the semigroups defined in the previous section. Suppose that the sequence {DVN }

is asymptotically approximable by trace polynomials. Suppose that {uN } is a sequence of scalar-valued
K -Lipschitz functions which is asymptotically approximable by (scalar-valued) trace polynomials. Then:

(1) {SVN
t uN } is asymptotically approximable by trace polynomials for each t ≥ 0.

(2) {T VN
t uN } is asymptotically approximable by trace polynomials for each t ≥ 0.

(3) limN→∞
∫

uN dµN exists.

Proof. (1) Recall that SVN
t uN = uN (WN (x, t)), where WN is the solution to (4-3). Thus, by Lemma 3.27,

it suffices to show that WN (x, t) is asymptotically approximable by trace polynomials for each t . To this
end, we write WN (x, t) as the limit as `→∞ of Picard iterates WN ,` given by

WN ,0(x, t)= x, WN ,`+1(x, t)= x − 1
2

∫ t

0
DVk(WN (x, s)) ds.

Because DVN is C-Lipschitz, the standard Picard–Lindelöf arguments show that

‖WN ,`(x, t)−WN (x, t)‖2 ≤
∞∑

n=`+1

Cn−1tn

2nn!
‖DVN (x)‖2.
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Because DVN is asymptotically approximable by trace polynomials, we know that ‖DVN (x)‖2 is uni-
formly bounded on ‖x‖≤ R for any given R> 0, and therefore, for each T and R> 0, the convergence of
WN ,` to WN as `→∞ is uniform for all ‖x‖≤ R and t ≤ T and N ∈N. Thus, by Observation 3.26, it suf-
fices to show that each Picard iterate {WN ,`(x, t)}N is asymptotically approximable by trace polynomials.

Fix T > 0. We claim that, for every `, for every R > 0 and ε > 0, there exists a trace polynomial
f (X, t) with coefficients that are polynomial functions of t such that

lim sup
N→∞

sup
t∈[0,T ]

sup
‖x‖∞≤R

‖WN ,`(x, t)− f (x, t)‖2 ≤ ε.

We proceed by induction on `, with the base case `= 0 being trivial. For the inductive step, fix ε and R,
and choose a trace polynomial f (X, t) which provides an (ε/(CT ), R) approximation for WN ,` for all
t ≤ T. Let

R′ = sup
t∈[0,T ]

sup
N

sup
x∈MN (C)msa:‖x‖∞≤R

‖ f (x, t)‖<+∞.

Choose another trace polynomial g(X) which is an (ε/T, R′) approximation for {DVN }, and let h(X, t)=
X − 1

2

∫ t
0 g( f (X, s)) ds. Then arguing as in Lemma 3.27, we have for ‖x‖ ≤ R and t ∈ [0, T ] that

‖WN ,`+1(x, t)− h(x, t)‖ ≤ 1
2

∫ t

0
‖DVN (WN ,`(x, s))− g( f (x, s))‖2 ds

≤
t
2

sup
‖y‖≤R′

‖DVN (y)− g(y)‖2+
Ct
2

sup
s∈[0,T ]

sup
‖x‖≤R

‖WN ,`(x, s)− f (x, s)‖2.

Taking N →∞, we see that h(x, t) is an (ε, R) approximation for {WN ,`(x, t)}N for all t ≤ T.

(2) We have shown that SVk
t preserves asymptotic approximability. Moreover, if the sequence uN :

MN (C)
m
sa→ C is asymptotically approximable by trace polynomials and uN is K -Lipschitz, then the

sequence Pt uN is also asymptotically approximable by trace polynomials by Lemma 3.28 (the hypothesis
(3-18) is satisfied since |uN (x)| ≤ |uN (0)| + K‖x‖2 and |uN (0)| is bounded as N →+∞ because uN is
asymptotically approximable by trace polynomials). Therefore, the iterated operator T VN

t,` = (P2−`S
VN
2−`)

2`t

preserves asymptotic approximability for dyadic values of t . Taking `→∞, we see by Observation 3.26
and Lemma 4.5 that T VN

t preserves asymptotic approximability for dyadic values of t . Finally, we extend
the approximability property to T VN

t for all real t using Observation 3.26 and Lemma 4.6.

(3) We know by Lemma 4.9 that T VN
t uN (x)→

∫
uN dµN as t→∞ with estimates that are independent

of N. It follows by Observation 3.26 that the sequence of constant functions
{∫

uN dµN
}

is asymptotically
approximable by trace polynomials. But since these functions are constant, this simply means that the
limit of

∫
uN dµN as N →∞ exists. �

Proof of Theorem 4.1. (1) Let aN =
∫

x dµN (x) and aN , j =
∫

x j dµN (x). Note that

RN ≤max
j

∫
‖x j − aN , j‖ dµN (x)+max

j

∣∣∣∣∫ τN (x j ) dµN (x)
∣∣∣∣+max

j

∥∥∥∥∫ (x j − τN (x j )) dµ(x)
∥∥∥∥.

When we take the lim sup as N →∞, the first term is bounded by 2/c1/2 by Corollary 2.12, while the
last term is bounded by M. It remains to estimate

∫
τN (x j ) dµN (x).
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Using integration by parts, we see that∫
DVN (x) dµN (x)=−

1
Z

∫
1
N
∇[e−VN (x)] dx = 0.

On the other hand, we may estimate ‖DVN (x)−(DVN (0)+((C+c)/2)x)‖2 as follows. We assumed that
VN (x)−(c/2)‖x‖22 is convex and VN (x)−(C/2)‖x‖22 is concave. Let ṼN (x)= VN (x)−((C+c)/2)‖x‖22.
Then ṼN (x)+ ((C − c)/2)‖x‖22 is convex and ṼN (x)− ((C − c)/2)‖x‖22 is concave. Therefore, DṼN is
(C − c)/2-Lipschitz with respect to ‖ · ‖2 by Proposition 2.13(4). It follows that∥∥∥DVN (x)−

(
DVN (0)+

C+c
2

x
)∥∥∥

2
= ‖DṼN (x)− DṼN (0)‖2 ≤

C−c
2
‖x‖2.

Therefore, ∥∥∥DVN (0)+
C+c

2
aN

∥∥∥
2
=

∥∥∥−DVN (x)+
(

DVN (0)+
C+c

2
x
)∥∥∥

2

≤
C−c

2

∫
‖x‖2 dµN (x)

≤
C−c

2

(
‖aN‖2+

(∫
‖x − aN‖

2
2 dµ(x)

)1/2)
≤

C−c
2

(‖aN‖2+ c−1/2),

where the last step follows from Theorem 2.11. Altogether,

C+c
2
‖aN‖2 ≤

C−c
2
‖aN‖2+‖DVN (0)‖2+

C − c
2c1/2 .

Then we move ((C − c)/2)‖aN‖2 to the left-hand side and divide the equation by c to obtain∣∣∣∣∫ τN (x j ) dµN (x)
∣∣∣∣≤ ‖aN‖2 ≤

1
c
‖DVN (0)‖2+

C − c
2c3/2 ,

which proves the asserted estimate on RN . The tail estimate on µN (‖x j‖ ≥ RN + δ) follows from
Corollary 2.12.

(2) Fix a noncommutative polynomial p. Let R∗ = lim supN∈N RN , which we know is finite because
of (1) and suppose that R′ > R∗. Let ψ ∈ C∞c (R) be such that ψ(t) = t for |t | ≤ R′, and define
9(x1, . . . , xm)= (ψ(x1), . . . , ψ(xm)), where ψ(x j ) is defined through the continuous functional calculus
for self-adjoint operators. Now x 7→ψ(x) is Lipschitz in ‖ · ‖2 for x ∈MN (C)sa with constants independent
of N (see for instance Proposition 8.8 below). It follows that p(9(x)) is globally Lipschitz in ‖ · ‖2 and
it equals p(x) when ‖x‖ ≤ R′.

Furthermore, we claim that the sequence τN (p(9(x))) is asymptotically approximable by trace
polynomials. To see this, choose some radius r and δ>0. By the Weierstrass approximation theorem, there
exists a polynomial ψ̂(t) such that |ψ(t)−ψ̂(t)| ≤ δ for t ∈ [−r, r ]. By the spectral mapping theorem, we
have ‖ψ(y)−ψ̂(y)‖≤ δ if y ∈MN (C)sa and ‖y‖≤ r . In particular, if we let 9̂(x)= (ψ̂(x1), . . . , ψ̂(xm))

for x ∈MN (C)
m
sa, then we have ‖9(x)−9̂(x)‖≤ δ when ‖x‖∞≤ r . Given ε > 0, we may choose δ small
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enough to guarantee that |τN (p(9(x)))− τN (p(9̂(x)))| ≤ ε for ‖x‖∞ ≤ r , and clearly τN (p(9̂(x))) is
a trace polynomial. Thus, τN (p(9(x))) is asymptotically approximable by trace polynomials.

Therefore, by Lemma 4.10, the limit

λ(p)= lim
N→∞

∫
τN (p(9(x))) dµN (x)

exists. Clearly, λ satisfies all the conditions to be a noncommutative law (Definition 2.3). Furthermore,
because of the operator norm bounds (1), we know that

∫
‖x‖≥R′ τN (p(x)) dµN (x) is finite and approaches

zero as N →∞ and the same holds for the integral of τN (p(9(x))). Therefore,

lim
N→∞

∫
τN (p(x)) dµN (x)= lim

N→∞

∫
τN (p(9(x))) dµN (x)= λ(p).

Also, we have λ(p)= limN→∞
∫
‖x‖≤R′ τN (p(x)) dµN (x) and hence λ ∈6m,R′ . But since this holds for

every R′ > R∗, we have λ ∈6m,R∗ .

(3) It suffices to prove the concentration claim (3) for sufficiently large R, say R > 2R∗. Because the
topology of 6m,R is generated by the functions λ 7→ λ(p) for noncommutative polynomials p, it suffices
to consider the case where U = {λ′ : |λ′(p)−λ(p)|< ε} for some noncommutative polynomial p. Choose
a function ψ ∈ C∞c (R) with ψ(t)= t for |t | ≤ R, and let 9 be as above. Then by Theorem 2.10,

µN

(∣∣∣∣τN (p(9(x)))−
∫
τN (p ◦9) dµN

∣∣∣∣≥ ε2
)
≤ 2e−N 2ε2/8‖τN (p◦9)‖2Lip .

But by the same reasoning as in part (2), we know that large enough N, we have∣∣∣∣∫ τN (p ◦9) dµN − λ(p)
∣∣∣∣≤ ε2 ,

and hence
lim sup

N→∞

1
N 2 logµN (‖x‖ ≤ R, |τN (p(x))− λ(p)| ≥ ε) < 0. �

5. Entropy and Fisher’s information

5A. Classical entropy. In this section, we will state sufficient conditions for the microstates free entropies
χ and χ to be evaluated as the lim sup and lim inf of renormalized classical entropies. Recall that the
(classical, continuous) entropy of a measure dµ(x)= ρ(x) dx on Rn is defined as

h(µ) :=
∫

Rn
−ρ log ρ,

whenever the integral makes sense. If µ does not have a density, then we set h(µ)=−∞. We will later
use the following basic facts about the classical entropy, so for convenience we provide a proof.

Lemma 5.1. Assume that µ is a probability measure on Rn with density ρ and that
∫
|x |2 dµ(x) <+∞.

(1) The positive part of −ρ log ρ has finite integral and hence
∫
−ρ log ρ is well-defined in [−∞,+).

(2) We have h(µ)≤ (n/2) log 2πae, where a =
∫
|x |2 dµ(x)/n, and equality is achieved in the case of

a centered Gaussian with covariance matrix a I.
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(3) Suppose {µk} is a sequence of probability measures with density ρk . Suppose ρk → ρ pointwise
almost everywhere and that

∫
|x |2 dµk(x)→

∫
|x |2 dµ(x) <+∞. Then lim supk→∞ h(µk)≤ h(µ).

(4) If ν is a probability measure with finite second moments, then h(µ ∗ ν)≥ h(µ).

Proof. (1) Let a =
∫
|x |2 dµ(x)/n. Let g(x)= (2πa)−n/2e−|x |

2/(2a) be the Gaussian of variance a, and
let γ be the corresponding Gaussian measure. Let ρ̃ = ρ/ f be the density of µ relative to the Gaussian.
We write

−ρ(x) log ρ(x)=−ρ̃(x) log ρ̃(x) · g(x)− ρ̃(x) log g(x) · g(x)

=−ρ̃(x) log ρ̃(x) · g(x)+
(
|x |2

2a
+

n
2

log 2πa
)
ρ(x).

The second term has a finite integral by assumption. The function −t log t is bounded above for t ∈R, and
g(x) is a probability density; thus, the positive part of −ρ̃ log ρ̃ · g has finite integral. Hence,

∫
−ρ log ρ

is well-defined.

(2) The function −t log t is concave and its tangent line at t = 0 is 1− t , and hence −t log t ≤ 1− t . Thus,∫
−ρ̃ log ρ̃ dγ ≤

∫
(1− ρ̃) dγ = 0,

so

h(µ)≤
∫ (
|x |2

2a
+

n
2

log 2πa
)
ρ(x) dx = n

2
+

n
2

log 2πa = n
2

log 2πe.

In the case where µ= γ , we have ρ̃ = 1 and hence
∫
−ρ̃ log ρ̃ = 0.

(3) Let γ be the Gaussian of covariance matrix I and g its density. Let ρ̃k = ρk/g. As before,

h(µk)=

∫
−ρ̃k log ρ̃k dγ +

∫ (
|x |2

2
+

n
2

log 2π
)

dµk .

By assumption, the second term converges to
∫
(|x |2/2+ (n/2) log 2π) dµ as k→∞. Since the function

−t log t is bounded above and γ is a probability measure, the integral of the positive part of −ρ̃k log ρ̃k

converges to the corresponding quantity for ρ. For the negative part, we can apply Fatou’s lemma. This
yields lim supk→∞ h(µk)= h(µ).

(4) We can assume without loss of generality that one of the measures, say µ, has finite entropy. Then
µ ∗ ν has a density given almost everywhere by ρ̃(x) =

∫
ρ(x − y) dν(y). Since −t log t is concave,

Jensen’s inequality implies that

−ρ̃(x) log ρ̃(x)≥
∫
−ρ(x − y) log ρ(x − y) dν(y).

The right-hand side is∫∫
−ρ(x − y) log ρ(x − y) dν(y) dx =

∫∫
−ρ(x − y) log ρ(x − y) dx dν(y)= h(µ),

where the exchange of order is justified because we know that −ρ log ρ is integrable since h(µ) >−∞.
Therefore, h(µ ∗ ν)=

∫
−ρ̃ log ρ̃ ≥ h(µ). �
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5B. Microstates free entropy. Because there is no integral formula known for free entropy of multiple
noncommuting variables as in the classical case, Voiculescu [1993; 1994] defined the free analogue of
entropy using Boltzmann’s microstates viewpoint on entropy.

Definition 5.2. For U ⊆6m , we define the microstate space

0N (U)= {x ∈ MN (C)
m
sa : λx ∈ U},

0N ,R(U)= {x ∈ MN (C)
m
sa : λx ∈ U, ‖x‖∞ ≤ R}.

The microstates free entropy of a noncommutative law λ is defined as

χR(λ)= inf
U3λ

lim sup
N→∞

( 1
N 2 log vol0N ,R(U)+

m
2

log N
)
,

χ(λ)= sup
R>0

χR(λ).

Here vol denotes the Lebesgue measure with respect to the identification of MN (C)
m
sa with Rm N 2

as in
Section 2A, and U ranges over all open neighborhoods of λ in 6m . Similarly, we denote

χ R(λ)= inf
U3λ

lim inf
N→∞

( 1
N 2 log vol0N ,R(U)+

m
2

log N
)
,

χ(λ)= sup
R>0

χR(λ).

Remark 5.3. Note that U ⊆ V implies that

lim sup
N→∞

( 1
N 2 log vol0N ,R(U)+

m
2

log N
)
≤ lim sup

N→∞

( 1
N 2 log vol0N ,R(V)+

m
2

log N
)
.

Hence, to estimate the infimum over U (that is, χR(λ)), we can always restrict our attention to neighbor-
hoods U contained inside some fixed V . The same holds for the lim inf variant of entropy.

Definition 5.4. A sequence of probability measures µN on MN (C)
m
sa is said to concentrate around the

noncommutative law λ if λx → λ in probability when x is chosen according to µN , that is, for any
neighborhood U of λ in 6m , we have

lim
k→∞

µN (x ∈ 0N (U))= 1.

Proposition 5.5. Let VN : MN (C)
m
sa→ R be a potential with

∫
exp(−N 2VN (x)) dx < +∞ and let µN

be the associated measure. Assume:

(A) The sequence {µN } concentrates around a noncommutative law λ.

(B) The sequence {VN } is asymptotically approximable by scalar-valued trace polynomials.

(C) For some n ≥ 1 and a, b > 0 we have |VN | ≤ a+ b
∑m

j=1 τN (x2n
j ).

(D) There exists R0 > 0 such that

lim
N→∞

∫
‖x‖∞≥R0

(
1+

m∑
j=1

τN (x2n
j )

)
dµN (x)= 0,

where n is the same number as in (C).
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Then λ can be realized as the law of noncommutative random variables X = (X1, . . . , Xm) in a von
Neumann algebra (M, τ ) with ‖X j‖ ≤ R0. Moreover, we have

χ(λ)= χR0(λ)= lim sup
N→∞

( 1
N 2 h(µN )+

m
2

log N
)
, (5-1)

χ(λ)= χ R0(λ)= lim inf
N→∞

( 1
N 2 h(µN )+

m
2

log N
)
. (5-2)

Proof. It follows from assumptions (A) and (D) that for every noncommutative polynomial p

lim
N→∞

∫
‖x‖∞≤R0

τN (p(x)) dµN (x)= λ(p).

In particular, this implies that |λ(X i1 . . . X ik )| ≤ Rk
0 for every i1, . . . , ik , and hence λ ∈6m,R0 . The fact

that λ can be realized by operators in a von Neumann algebra is standard (Proposition 2.7).
Now let us evaluate χR and χ R for R ≥ R0. Recall that

dµN (x)=
1

Z N
exp(−N 2VN (x)) dx, Z N =

∫
exp(−N 2VN (x)) dx,

and note that
h(µN )= N 2

∫
VN (x) dµN (x)+ log Z N .

The assumptions (C) and (D) imply that

lim
N→∞

∫
‖x‖∞≥R

|VN (x)| dµN (x)= 0 and lim
N→∞

µN (x : ‖x‖∞ ≥ R)= 0.

Therefore, if we let

dµN ,R(x)=
1

Z N ,R
1‖x‖∞≤R exp(−N 2VN (x)) dx, Z N ,R =

∫
‖x‖∞≤R

exp(−N 2VN (x)) dx,

then, as N →∞, we have∫
VN dµN −

∫
VN dµN ,R→ 0, log Z N − log Z N ,R→ 0,

and hence
1

N 2 h(µN )−
1

N 2 h(µN ,R)→ 0.

Fix ε>0. By assumption (B), there is a scalar-valued trace polynomial f such that |VN (x)− f (x)|≤ε/2
for ‖x‖∞ ≤ R and for sufficiently large N. Now because the trace polynomial f is continuous with
respect to convergence in noncommutative moments, the set U =

{
λ′ : |λ′( f )− λ( f )| < ε/2

}
is open.

Now suppose that V ⊆ U is a neighborhood of λ. Note that

lim
N→∞

µN ,R(0N ,R(V))= lim
N→∞

Z N

Z N ,R
µN (0N (V)∩ {x : ‖x‖∞ ≤ R})= 1,

where we have used that Z N/Z N ,R→ 1 as shown above, that µN (0N (V))→ 1 by assumption (A), and
that µN (‖x‖∞ ≤ R)→ 1 by assumption (D). Moreover, by our choice of f and U , we have

x ∈ 0N ,R(V) =⇒ |VN (x)− λ( f )| ≤ ε.
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Therefore,

Z N ,RµN ,R(0N ,R(V))=
∫
0N ,R(V)

exp(−N 2VN (x)) dx

= vol0N ,R(V) exp(−N 2(λ( f )+ O(ε))).
Thus,

log Z N ,R + logµN ,R(0N ,R(V))= log vol0N ,R(V)− N 2(λ( f )+ O(ε)).

Meanwhile, note that | f (x)| is bounded by some constant K whenever ‖x‖∞≤ R (where K is independent
of N ). Therefore,∫

VN dµN ,R =

∫
0N ,R(V)

VN dµN ,R +

∫
0N ,R(Vc)

VN dµN ,R

=

∫
0N ,R(V)

λ[ f ] dµN ,R +

∫
0N ,R(Vc)

λx [ f ] dµN ,R + O(ε)

= λ( f )µN ,R(0N ,R(V))+ O(ε)+ O
(
K µN (0N ,R(Vc))

)
.

Altogether,

1
N 2 h(µN ,R)=

∫
VN dµN ,R +

1
N 2 log Z N ,R

=λ( f )(µN ,R(0N ,R(V))− 1)+ 1
N 2 log vol0N ,R(V)

+ O(ε)+ O(K µN (0N ,R(Vc)))−
1

N 2 logµN ,R(0N ,R(V)).

Now we apply the fact that µN ,R(0N ,R(V))→ 1 to obtain

lim sup
N→∞

1
N 2 |h(µN ,R)− log vol0N ,R(V)| = O(ε).

In light of Remark 5.3, because this holds for all sufficiently small neighborhoods V ⊆ U with the error
O(ε) only depending on U , we have

χR(λ)= lim sup
N→∞

( 1
N 2 h(µN ,R)+

m
2

log N
)
+ O(ε)

= lim sup
N→∞

( 1
N 2 h(µN )+

m
2

log N
)
+ O(ε).

Next, we take ε→ 0 and obtain χR(λ)= lim supN→∞(N
−2 log h(µN )+ (m/2) log N ) for R ≥ R0. Now

χ(λ) = supR χR(λ) and χR(λ) is an increasing function of R. Since our claim about χR(λ) holds for
sufficiently large R, it also holds for χ(λ), so (5-1) is proved. The proof of (5-2) is identical. �

5C. Classical Fisher information. The classical Fisher information of a probability measure µ on Rn

describes how the entropy changes when µ is convolved with a Gaussian. Suppose µ is given by the
smooth density ρ > 0 on Rn, and let γt be the multivariable Gaussian measure on Rn with covariance
matrix t I. Then the density ρt for µt = µ ∗ γt evolves according to the heat equation ∂tρt = 1/2ρt .
Integration by parts shows that ∂t h(µt)=

1
2

∫
|∇ρt/ρt |

2 dµt (which we justify in more detail below).
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The Fisher information of µ represents the derivative at time zero and it is defined as

I(µ) :=
∫ ∣∣∣∣∇ρρ

∣∣∣∣2 dµ.

The Fisher information is the L2(µ) norm of the function −∇ρ(x)/ρ(x), which is known as the score
function. If X is a random variable with smooth density ρ, then the Rn-valued random variable 4 =
−∇ρ(X)/ρ(X) satisfies the integration-by-parts relation

E[4 · f (X)] = −
∫
∇ρ(x)
ρ(x)

f (x)ρ(x) dx =
∫
ρ(x)∇ f (x) dx = E[∇ f (X)] for f ∈ C∞c (R

n), (5-3)

or equivalently E[4j f (X)] = E[∂j f (X)] for each j .
In fact, the integration-by-parts relation E[4 · f (X)] = E[∇ f (X)] makes sense even if we do not

assume that X has a smooth density. Following the terminology used by Voiculescu in the free case, if
X is an Rn-valued random variable on the probability space (�, P), we say that an Rn-valued random
variable 4 ∈ L2(�, P) is a (classical) conjugate variable for X if E[4 · f (X)] = E[∇ f (X)] and if each
4j is in the closure of { f (X) : f ∈ C∞c (R

n)} in L2(�, P).
In other words, this means that 4 is a function of X (up to almost sure equivalence) and satisfies the

integration-by-parts relation. Since the integration-by-parts relation uniquely determines the L2(�, P)
inner product of 4j and f (X) for all f ∈ C∞c (R

n), it follows that the conjugate variable is unique (up to
almost sure equivalence), and that it is given by f (X) for some f that only depends on the law of X . Thus,
we may unambiguously define the Fisher information I(µ) = E[|4|2] if X ∼ µ and 4 is a conjugate
variable to X , and I(µ)=+∞ if no conjugate variable exists.

The probabilistic viewpoint enables us to produce conjugate variables and estimate Fisher information
using conditional expectations. (See [Voiculescu 1998, Proposition 3.7] for the free case.)

Lemma 5.6. Suppose that X and Y are independent Rn-valued random variables with X ∼ µ and Y ∼ ν.
If 4 is a conjugate variable for X , then E[4|X + Y ] is a conjugate variable for X + Y. In particular,

I(µ ∗ ν)≤min(I(µ), I(ν)).

Proof. Because X and Y are independent, we have for g ∈ C∞c (R
n
× Rn) that E[4j g(X, Y )] =

E[∂X j g(X, Y )]. In particular, if f ∈ C∞c (R
n), then

E[4j f (X + Y )] = E[∂X j ( f (X + Y ))] = E[(∂j f )(X + Y )].

But E[4j |X+Y ] is the orthogonal projection onto the closed span of { f (X+Y ) : f ∈C∞c (R
n)} and hence

E[E[4j |X + Y ] f (X + Y )] = E[∂j f (X + Y )].

So I(µ ∗ ν)= E[|E[4|X + Y ]|2] ≤ E[|4|2] = I(µ). By symmetry, I(µ ∗ ν)≤ I(ν). �

The entropy of a measure µ can be recovered by integrating the Fisher information of µ ∗ γt . The
following integral formula was the motivation for Voiculescu’s definition of nonmicrostates free entropy χ∗.
For the reader’s convenience, we include a statement and proof in the random matrix setting with free



AN ELEMENTARY APPROACH TO FREE ENTROPY THEORY FOR CONVEX POTENTIALS 2327

probabilistic normalizations. See also [Barron 1986, Lemma 1; Voiculescu 1998, Proposition 7.6]. Recall
that we identify MN (C)

m
sa with Rm N 2

using the orthonormal basis given in Section 2A rather than entrywise
coordinates (since some entries are real and some are complex).

Lemma 5.7. Let µ be a probability measure on MN (C)
m
sa with finite variance and with density ρ, and

let σt,N be the law of m independent GUEs of normalized variance t. If a = (1/m)
∫
‖x‖22 dµ(x) =

(1/(m N ))
∫
|x |2 dµ(x), then we have for t ≥ 0 that

m
a+t
≤

1
N 3 I(µ ∗ σt,N )≤min

(m
t
,

1
N 3 I(µ)

)
. (5-4)

Moreover,

1
N 2 h(µ ∗ σt,N )−

1
N 2 h(µ)= 1

2

∫ t

0

1
N 3 I(µ ∗ σs,N ) ds (5-5)

and
1

N 2 h(µ)+ m
2

log N = 1
2

∫
∞

0

( m
1+s
−

1
N 3 I(µ ∗ σs,N )

)
ds+ m

2
log 2πe. (5-6)

Proof. To prove (5-4), suppose t ≥ 0 and let X and Y be random variables with the laws µ and σt,N respec-
tively. The lower bound is trivial if I(µ∗σt,N )=+∞, so suppose that X +Y has a conjugate variable 4.
Then after some computation, the integration-by-parts relation shows that E〈4, X + Y 〉Tr = m N 2. Thus,

E[|4|2] ≥
|E〈4, X + Y 〉Tr|

2

E |X + Y |2
=

(m N 2)2

N (ma+mt)
=

N 3

a+ t

since the variance of Y with respect to the nonnormalized inner product is Nmt and the variance of
X is Na. The upper bound is trivial in the case where t = 0. If t > 0, then by the previous lemma
I(µ ∗ σt,N ) ≤ min(I(µ), I(σt,N )). Moreover, a direct computation shows that if Y ∼ σt,N , then the
conjugate variable is (N/t)Y and the Fisher information is m N 3/t .

Next, to prove (5-5), let µt := µ ∗ σt,N . By basic properties of convolving positive functions with the
Gaussian, µt has a smooth density ρt . We claim that if 0< δ < t , then

h(µt)− h(µδ)=
1

2N

∫ t

δ

I(µs) ds = 1
2N

∫ t

δ

∫
MN (C)msa

|∇ρs(x)|2

ρs(x)
dx ds. (5-7)

This will follow from integration by parts, but to give a complete justification, we first introduce a smooth
compactly supported “cutoff” function ψR : MN (C)

m
sa→ R such that 0≤ ψR ≤ 1 and ψR(x)= 1 when

|x | ≤ R and ψR(x)= 0 when |x | ≥ 2R. By taking ψR to be rescaling by R of some fixed function, we
can arrange that ‖∇ψR(x)‖2 ≤ C/R for some constant C. Because ∂sρs = (2N )−11ρs , we have

d
dt

[
−

∫
ψRρs log ρs

]
=−

1
2N

∫
ψR · (1ρs log ρs +1ρs)

=
1

2N

∫
ψR
|∇ρs |

2

ρs
+

1
2N

∫
∇ψR · ∇ρs · (1+ log ρs),
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where all the integrals are taken over MN (C)
m
sa with respect to dx . This implies

−

∫
ψRρt log ρt +

∫
ψRρδ log ρδ

=
1

2N

∫ t

δ

∫
ψR

∣∣∣∣∇ρs

ρs

∣∣∣∣2 dµs −
1

2N

∫ t

δ

∫ (
∇ψR ·

∇ρs

ρs

)
(1+ log ρs) dµs . (5-8)

We must now take the limit of each term as R→+∞. For the first term on the right-hand side, the
monotone convergence theorem yields

lim
R→+∞

∫ t

δ

∫
ψR

∣∣∣∣∇ρs

ρs

∣∣∣∣2 dµs ds =
∫ t

δ

I(µs) ds.

The second term on the right-hand side of (5-8) can be estimated as follows. Note that µs = µ ∗ σs,N

and that σs,N has a density that is bounded uniformly for s ∈ [δ, t] and x ∈ MN (C)
m
sa. Therefore, ρs is

uniformly bounded for s ∈ [δ, t] and x ∈ MN (C)
m
sa and hence log ρs is uniformly bounded above. To

obtain a lower bound on log ρs , first note that there is a K > 0 such that

µ(x : |x | ≤ K )≥ 1
2 .

Now if x ∈ MN (C)
m
sa and |y| ≤ K , then |x − y| ≥ |x | − K and hence

|x − y|2 ≤ |x |2− 2K |x | + K 2
≥ 2|x |2+ 2K 2,

where the last inequality follows because 2K |x | ≤ |x |2/2 + 2K 2 by the arithmetic-geometric mean
inequality. Therefore, letting Z be the normalizing constant for σt,N , we have

ρs(x)=
1
Z

∫
e−(N/(2t))|x−y|2 dµ(y)≥ 1

Z

∫
|y|≤K

∫
e−(N/(2t))|x−y|2 dµ(y)

≥
1
Z

∫
|y|≤K

e−(N/t)(|x |2+K 2) dµ(y)≥ e−N K 2/t

2Z
e−(N/t)|x |2,

so that log ρs ≥ K ′− |x |2 for some constant K ′. In particular, combining our upper and lower bounds,
there is a constant α such that for sufficiently large x , we have |1+ log ρs | ≤ α|x |2. Recall that ∇ψR(x)
is supported when R ≤ |x | ≤ 2R and bounded by C/R and thus |∇ψR(x)| ≤ C/|x |. Altogether we have
|∇ψR(1+ log ρs)| ≤ β|x | for some constant β when |x | is large enough. Thus, the second term on the
right-hand side of (5-8) is bounded by∫ t

δ

∫
|(∇ψR ·4s)(1+ log ρs)| dµs ds ≤ β

∫ t

δ

∫
|x |≥R
|x |
∣∣∣∣∇ρs(x)
ρs(x)

∣∣∣∣ dµs(x) ds

≤
β

2

∫ t

δ

∫
|x |≥R

(
|x |2+

∣∣∣∣∇ρs(x)
ρs(x)

∣∣∣∣2) dµs(x) ds.

The right-hand side is the tail of the convergent integral∫ t

δ

∫ (
|x |2+

∣∣∣∣∇ρs(x)
ρs(x)

∣∣∣∣2) dµs(x) ds =
∫ t

δ

[(a+ms)+ I(µs)] ds <+∞,

and therefore it goes to zero as R→+∞ by the dominated convergence theorem.
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As for the left-hand side of (5-8), we can apply the dominated convergence theorem to −
∫
ψRρt log ρt

and −
∫
ψRρδ log ρδ given our earlier estimate that ρs is subquadratic for each s. Thus, after taking

R→∞ in (5-8), we obtain (5-7).
To complete the proof of (5-5), we must take δ↘ 0 in (5-7). We can take the limit of the right-hand

side of (5-7) by the monotone convergence theorem. For the left-hand side of (5-7), Lemma 5.1(3) implies
that lim supδ↘0 h(µδ) ≤ h(µ) because ρδ → ρ almost everywhere by Lebesgue differentiation theory.
On the other hand, h(µδ)≥ h(µ) by Lemma 5.1(4); hence h(µδ)→ h(µ), so (5-5) is proved.

To prove (5-6), we follow [Voiculescu 1998, Proposition 7.6]. First, suppose that h(µ)>−∞. Note that

h(µ)= 1
2

∫ t

0

(m N 2

1+s
−

1
N
I(µs)

)
ds− m N 2

2
log(1+ t)+ h(µt).

If h(µ) >−∞, then ∫ 1

0

(m N 2

1+s
−

1
N
I(µs)

)
ds

is finite. In light of (5-4), the integral from 1 to∞ is also finite and by the dominated convergence theorem

lim
t→∞

1
2

∫ t

0

(m N 2

1+s
−

1
N
I(µs)

)
ds = 1

2

∫
∞

0

(m N 2

1+s
−

1
N
I(µs)

)
ds.

It remains to understand the behavior of h(µt)− (m N 2/2) log(1+ t). By Lemma 5.1(4) and (2),

h(µt)≥ h(σt,N )=
m N 2

2
log 2πet

N
=

m N 2

2
log 2πe

N
+

m N 2

2
log t.

On the other hand, by Lemma 5.1(2), since
∫
|x |2 dµt(x)= N (a+ tm), we have

h(µt)≤
m N 2

2
log 2πe(a+t)

N
=

m N 2

2
log 2πe

N
+

m N 2

2
log(a+ t).

As t→∞, we have log(1+ t)− log(a+ t)→ 0 and log(1+ t)− log t→ 0 and therefore

h(µt)−
m N 2

2
log(1+ t)→

m N 2

2
log

2πe
N
=

m N 2

2
log 2πe−

m N 2

2
log N .

Hence,

h(µ)= 1
2

∫
∞

0

(m N 2

1+s
−

1
N
I(µs)

)
ds+ m N 2

2
log 2πe− m N 2

2
log N ,

which is equivalent to the asserted formula (5-6). In the case where h(µ)=−∞, we also have∫ 1

0

(m N 2

1+s
−

1
N
I(µs)

)
ds =−∞

by (5-5), but the integral from 1 to∞ is finite as shown above. So both sides of (5-6) are −∞. �

5D. Free Fisher information. The starting point for the definition of free Fisher information is the
integration-by-parts formula (5-3). Indeed, if we formally apply this to a noncommutative polynomial p
and renormalize, we obtain∫

τN

( 1
N
4j (x)p(x)

)
dµ(x)=

∫
τN ⊗ τN (Dj p(x)) dµ(x), (5-9)
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(and this integration by parts is justified under sufficient assumptions of finite moments). Voiculescu
therefore made the following definitions:

Definition 5.8 [Voiculescu 1998, §3]. Let X = (X1, . . . , Xm) be a tuple of self-adjoint random variables
in a tracial von Neumann algebra (M, τ ) and assume that M is generated by X as a von Neumann
algebra. We say that ξ = (ξ1, . . . , ξm) ∈ L2(M, τ )m is a (free) conjugate variable of X if

τ(ξj p(X))= τ ⊗ τ(Dj p(X)) (5-10)

for every noncommutative polynomial p. The free conjugate variable, if it exists, is unique. If it
exists, we say that X (or equivalently the law of X ) has finite free Fisher information and define
8∗(X) :=8∗(λX ) :=

∑
j τ(ξ

2
j ). We also denote the conjugate variable ξ by J (X).

Definition 5.9 [Voiculescu 1998, Definition 7.1]. The nonmicrostates free entropy of a noncommutative
law λ is

χ∗(λ) :=
1
2

∫
∞

0

( m
1+t
−8∗(λ� σt)

)
+

1
2

log 2πe.

Now we are ready to state conditions under which the classical Fisher information of a sequence of
measures µN converges to the free Fisher information of the law λ. First, to clarify the normalization,
note that if dµN (x) = (1/Z N ) exp(−N 2VN (x)) dx , then the classical conjugate variable is given by
4N = N 2

∇VN . The normalized conjugate variable used in (5-9) is (1/N )4N = N∇VN = DVN . The
corresponding normalized Fisher information is then∫

‖DVN‖
2
2 dµN =

∫
1
N

∣∣∣∣ 1
N
4N

∣∣∣∣2 dµ= 1
N 3 I(µN ),

which is the same normalization as in Lemma 5.7.

Proposition 5.10. Let VN : MN (C)
m
sa→ R be a potential with

∫
exp(−N 2VN (x)) dx <+∞ and let µN

be the associated measure. Assume:

(A) The sequence µN concentrates around a noncommutative law λ.

(B) The sequence {DVN } is asymptotically approximable by trace polynomials.

(C) For some n ≥ 0 and a, b > 0 we have ‖DVN‖
2
2 ≤ a+ b

∑m
j=1 τN (x2n

j ).

(D) There exists R0 > 0 such that

lim
N→∞

∫
‖x‖∞≥R0

(
1+

m∑
j=1

τN (x2n
j )

)
dµN (x)= 0.

Then:

(1) The law λ can be realized by self-adjoint random variables X = (X1, . . . , Xm) in a tracial von
Neumann algebra (M, τ ) with ‖X j‖ ≤ R0.

(2) There exists a sequence of trace polynomials f (k) ∈ (TrP1
m)

m such that

lim
k→∞

lim sup
N→∞

sup
‖x‖∞≤R0

‖DVN (x)− f (k)(x)‖2 = 0.
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(3) If { f (k)} is any sequence as in (2), then { fk(X)} converges in L2(M, τ ) and the limit is the conjugate
variable J (X).

(4) The law λ has finite free Fisher information and N−3I(µN )→8∗(λ) as N →∞.

Proof. (1) This follows from the same argument as Proposition 5.5.

(2) This follows from the definition of asymptotic approximability by trace polynomials.

(3) Let { f (k)} be a sequence as in (2). Because µN concentrates around λ and µN ({x : ‖x‖∞ ≤ R0})→ 1
as N →+∞ by (D), we have

λ[( f ( j)
− f (k))∗( f ( j)

− f (k))] = lim
N→∞

∫
‖x‖∞≤R0

τN [( f ( j)
− f (k))∗( f ( j)

− f (k))(x)] dµN (x).

For every ε >0, if j and N are large enough, then sup‖x‖∞≤R0
‖DVN (x)− f ( j)(x)‖2<ε by our assumption

on f ( j). In particular, if j and k are sufficiently large, then λ[( f ( j)
− f (k))∗( f ( j)

− f (k))]< (2ε)2. This
shows that { f (k)(X)} is Cauchy in L2(M, λ) since X has the law λ.

Let ξ = limk→∞ f (k)(X). We must show that ξ is the conjugate variable for X . Let ψ ∈ C∞c (R) such
that ψ(y) = y when |y| ≤ R0. For x ∈ MN (C)

m
sa, let 9(x) = (ψ(x1), . . . , ψ(xm)). By (5-9), because

DVN (x) is the classical conjugate variable for X , we have for every noncommutative polynomial p that∫
τN [Dj VN (x) · p(9(x))] dµN (x)=

∫
Dj [τN (p(9(x)))] dµN (x).

It follows from our assumptions (C) and (D) that

lim
N→∞

∫
‖x‖∞≥R0

‖DVN (x)‖22 dµN (x)= 0.

Because p(9(x)) and Dj [τN (p(9(x)))] are globally bounded in operator norm, the integral of these
quantities over ‖x‖∞ ≥ R0 will vanish as N →∞ and therefore∫

‖x‖∞≤R0

τN [Dj VN (x)p(9(x))] dµN (x)−
∫
‖x‖∞≤R0

Dj [τ(p(9(x)))] dµN (x)→ 0.

But since p(9(x))= p(x) on this region, we have∫
‖x‖∞≤R0

τN [Dj VN (x)p(x)] dµN (x)−
∫
‖x‖∞<R0

τN ⊗ τN [Dj p(x)] dµN (x)→ 0.

Now the second term converges to λ⊗ λ[Dj p] = τ ⊗ τ [Dj p(X)] by our concentration assumption (A).
For the first term, we can replace Dj VN (x) by f (k)j (x) with an error bounded by

sup
‖x‖∞≤R0

‖ f (k)(x)− DVN (x)‖2.

Then we apply concentration to conclude that∫
τN [ f

(k)
j (x)∗ p(x)] dµN (x)→ λ[( f (k)j )∗ p].
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Overall, ∣∣λ[( f (k)j )∗ p] − λ⊗ λ[Dj p]
∣∣≤ lim sup

N→∞
sup

‖x‖∞≤R0

‖ f (k)(x)− DVN (x)‖2.

Taking k→∞, we obtain τ [ξj p(X)] − τ ⊗ τ [Dj p(X)] = 0 as desired.

(4) We know from (3) that λ has finite Fisher information. Assumptions (C) and (D) imply that

1
N 3 I(µN )−

∫
‖x‖∞≤R0

‖DVN (x)‖22 dµN (x)→ 0.

By arguments similar to those before, we can approximate DVN by f (k) on ‖x‖∞ ≤ R0, approximate∫
‖x‖∞≤R0

‖ f (k)‖22 dµN by λ(( f (k))∗ f (k)), and then approximate λ(( f (k))∗ f (k)) by τ(ξ∗ξ)=8∗(λ), where
the error terms vanish as N →∞ and then k→∞. This implies that N−3I(µN )→8∗(λ). �

6. Evolution of the conjugate variables

6A. Motivation and statement of the equation. In the last section, we stated conditions under which
the classical entropy and Fisher information of µN converge to their free counterparts for the limiting
noncommutative law λ. In order to prove that χ(λ) = χ∗(λ), we want to take the limit in the integral
formula (5-6), and therefore, we want N−3I(µN ∗ σt,N )→8∗(λ� σt) for all t ≥ 0. In order to apply
Proposition 5.10 to µN ∗ σt,N , we need to show that {DVN ,t }N is asymptotically approximable by trace
polynomials, where VN ,t is the potential corresponding to µN ∗ σt,N .

By adding a constant to each VN if necessary, we may assume without loss of generality that Z N = 1.
We recall that VN ,t(x) is given by

exp(−N 2VN ,t(x))=
∫

exp(−N 2VN (x + y)) dσt,N (y). (6-1)

Then exp(−N 2VN ,t(x)) solves the normalized heat equation

∂t [exp(−N 2VN ,t(x))] =
1

2N
1[exp(−N 2VN ,t(x))], (6-2)

where (1/N )1= L N is the normalized Laplacian. However, we do not know how to show that DVN ( · , t)
is asymptotically approximable by trace polynomials from a direct analysis of the heat equation because
of the dimension-dependent factor of N 2 in the exponent. What we want is a dimension-independent and
“hands-on” way of producing VN ,t from VN .

As in Section 4, we will analyze the PDE which describes the evolution of the function VN ,t . First, let
us derive the equation by rewriting (6-2) in terms of VN ,t rather than e−N 2VN ,t. By the chain rule,

∂t [exp(−N 2VN ,t)] = −N 2∂t VN ,t · exp(−N 2VN ,t)

and
1[exp(−N 2VN ,t)] = [1(−N 2VN ,t)+ |∇(−N 2VN ,t)|

2
] exp(−N 2VN ,t)

= (−N 21VN ,t + N 4
|∇VN ,t |

2) exp(−N 2VN ,t),
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where 1 and ∇ denote the classical (nonnormalized) Laplacian and gradient, where MN (C)
m
sa has been

identified with Rm N 2
using the coordinates in Section 2A. Thus, our equation becomes

−N 2∂t VN ,t =
1

2N
(−N 21VN ,t + N 4

|∇VN ,t |
2),

∂t VN ,t =
1

2N
1VN ,t −

N
2
|∇VN ,t |

2.

Recall that (1/N )1 is the normalized Laplacian discussed in Section 3B. The normalized gradient is
DVN ,t = N∇VN ,t , and the normalized Euclidean norm is

‖x‖22 =
m∑

j=1

τN (x2
j )=

1
N

m∑
j=1

Tr(x2
j )=

1
N
|x |2.

Then
N |∇VN ,t |

2
=

1
N
|N∇VN ,t |

2
=

1
N
|DVN ,t |

2
= ‖DVN ,t‖

2
2,

and therefore we obtain the following equation that is normalized in a dimension-independent way:

∂t VN ,t =
1
2 L N VN ,t −

1
2‖DVN ,t‖

2
2. (6-3)

In the remainder of this section, we study a semigroup Rt acting on convex and semiconcave functions
on MN (C)

m
sa such that VN ,t = Rt VN (here Rt depends implicitly on N ). In Sections 6B–6F, we construct

Rt from scratch by iterating the heat semigroup and Hopf–Lax semigroup. Next, in Section 6G, we verify
that Rt VN solves (6-3) in the viscosity sense (for background, see [Crandall et al. 1992]), and deduce that
Rt VN must agree with the smooth solution VN ,t defined by (6-1). Finally, in Section 6H, we show that if
{DVN } is asymptotically approximable by trace polynomials, then so is {D(Rt VN )}.

6B. Strategy to approximate solutions. To construct the semigroup Rt that solves (6-3), we view the
equation as a hybrid between the heat equation ∂t u = (2N )−11u and the Hamilton–Jacobi equation with
quadratic potential ∂t u =− 1

2‖Du‖22. The heat equation can be solved by the heat semigroup

Pt u(x) :=
∫

u(x + y) dσt,N (y), (6-4)

while the Hamilton–Jacobi equation can be solved using the inf-convolution semigroup

Qt u(x) := inf
[
u(x + y)+ 1

2t
‖y‖22

]
(6-5)

as a special case of the Hopf–Lax formula (see [Evans 2010, Chapter 3.3]).
In Dabrowski’s approach, the solution to (6-3) was expressed through a formula of Boué, Dupuis,

and Üstunel as the infimum of E
[
u
(
x + Bt +

∫ t
0 Ys ds

)
+

1
2

∫ t
0‖Ys‖

2
2 ds

]
over a certain class of stochastic

processes Yt adapted to a standard Brownian motion Bt (see [Dabrowski 2016, Theorem 3.1]). This
formula, roughly speaking, combines the Gaussian convolution and inf-convolution operations by replacing
the y in the definition of Qt by a stochastic process and allowing it to evolve with Bt . Dabrowski [2016,
Section 5] then identifies the minimizing process Yt as a Brownian bridge and analyzes it using a
forward-backward SDE. Through the Picard iteration for solving the SDE, he shows that the solution is
well-approximated by noncommutative functions.
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We instead give a deterministic proof following the same strategy as in Section 4 that is motivated by
Trotter’s formula, we define a semigroup Rt u at dyadic times t by alternating between P2−` and Q2−` and
then letting `→∞. We establish convergence through a telescoping series argument after showing that
Pt Qt − Qt Pt = o(t). Then we show that Rt u depends continuously on t in order to extend its definition
to all positive real t .

In contrast to Section 4, we must understand how the semigroups Pt , Qt , and Rt affect Du as well
as u, and we want D(Rt u) to be Lipschitz for all t . We therefore view these operators as acting on spaces
of the form

E(c,C)= {u : MN (C)
m
sa→ R, u(x)− (c/2)‖x‖22 is convex and u(x)− (C/2)‖x‖22 is concave},

where 0≤ c ≤ C <+∞, where we suppress the dependence on m and N in the notation. These spaces
have the virtue that if u ∈ E(c,C), then ‖Du‖Lip ≤ C automatically (see Proposition 2.13(4)).

At every step of the proof, we include estimates both for u and for Du. In addition, controlling the
error propagation requires more work because Qt and Rt are not contractions with respect to ‖Du‖L∞ .

The following theorem summarizes the results of the construction. To clarify the notation, for a
measurable function u : MN (C)

m
sa→ R, the notation ‖u‖L∞ is the standard L∞ norm. If F : MN (C)

m
sa→

MN (C)
m
sa (for instance F = Du for some u : MN (C)

m
sa → R), then ‖F‖L∞ = supx∈MN (C)msa

‖F(x)‖2;
similarly, ‖F‖Lip is the Lipschitz norm of F when using ‖ · ‖2 in both the domain and the target space.
Note that ‖F‖2 does not denote the L2 norm of F with respect to any measure, but rather

(∑m
j=1 τ(F

2
j )
)1/2,

which is a function of x . Recall that Q+2 denotes the nonnegative dyadic rationals, and N0 denote the
natural numbers with zero included. Moreover, we assume throughout the section that 0≤ c ≤ C <+∞.

Theorem 6.1. There exists a semigroup of nonlinear operators Rt :
⋃

C>0 E(0,C)→
⋃

C>0 E(0,C) with
the following properties:

(1) Change in convexity: If u ∈ E(c,C) where 0≤ c ≤ C, then Rt u ∈ E(c(1+ ct)−1,C(t +Ct)−1).

(2) Approximation by iteration: For ` ∈ Z and t ∈ 2−`N0, write Rt,`u = (P2−` Q2−`)
2`t u. Fix such a

value of t and fix u ∈ E(0,C).

(a) If 2−`−1C ≤ 1, then

|Rt u− Rt,`u| ≤
(

3
2

C2mt
1+Ct

+ log(1+Ct)(m+Cm+‖Du‖22)
)

2−`.

(b) ‖D(Rt,`u)− D(Rt u)‖L∞ ≤ [t/2+C(t/2)2]C2m1/2(2 · 2−`/2+ 2−3`/2C).

(3) Continuity in time: Suppose s ≤ t ∈ R+ and u ∈ E(0,C).

(a) Rt u ≤ Rsu+ (m/2)[log(1+Ct)− log(1+Cs)].
(b) Rt u ≥ Rsu− ((t − s)/2)(Cm+‖Du‖22).
(c) If C(t − s)≤ 1, then ‖D(Rt u)− D(Rsu)‖2 ≤ 5Cm1/221/2(t − s)1/2+C(t − s)‖Du‖2.

(4) Error estimates: Let t ∈ R+ and u, v ∈ E(0,C). Then:

(a) ‖D(Rt u)− D(Rtv)‖L∞ ≤ (1+Ct)‖Du− Dv‖L∞ .
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(b) If u ≤ v+ a+ b‖Dv‖22, where a ∈ R and b ≥ 0, then

Rt u ≤ Rtv+ a+ b
C2mt
1+Ct

+ b‖D(Rtv)‖
2
2.

(c) We have

‖D(Rt u)‖22 ≤
C2mt
1+Ct

+‖Du‖22.

Remark 6.2. Knowing that exp(−N 2(Rt u))= Pt exp(−N 2u), one can deduce (1) from the Brascamp–
Lieb and Hölder inequalities, as in [Brascamp and Lieb 1976, Theorem 4.3]. But the proof of (1) given
here is independent of that work.

We also point out that semigroups and discrete-time approximation schemes have been employed to
study Hamilton–Jacobi equations in Hilbert space (e.g., by [Barbu 1986]), another setting that requires
dimension-independent estimates.

6C. The Hopf–Lax semigroup, the heat semigroup, and convexity. We remind the reader of our stand-
ing assumption that 0≤ c ≤ C.

Lemma 6.3. Suppose u ∈ E(c,C). Then:

(1) Pt u ∈ E(c,C).

(2) ‖D(Pt u)− Du‖L∞ ≤ Cm1/2t1/2.

Proof. (1) This follows because E(c,C) is closed under translation and averaging, and hence convolution
by a probability measure.

(2) We know that Du is C-Lipschitz and thus

‖D(Pt u)(x)− Du(x)‖2 ≤
∫
‖Du(x + y)− Du(x)‖2 dσt,N (y)

≤

∫
C‖y‖2 dσt,N (y)≤ Cm1/2t1/2. �

The following lemma gives basic properties of Qt from the PDE literature; see for instance [Ekeland
and Lasry 1980, pp. 309–311; Lasry and Lions 1986; Crandall et al. 1992, Lemma A.5; Evans 2010,
Section 3.3.2]. For completeness and convenience, we include a proof of all the facts we will use.

Lemma 6.4. (1) If u, v : MN (C)
m
sa→ R and u ≤ v, then Pt u ≤ Ptv and Qt u ≤ Qtv.

(2) Suppose that v(x)=a+ 1
2〈p, x〉2〈Ax, x〉2, where a∈R, p∈MN (C)

m
sa, and A is a positive semidefinite

linear map MN (C)
m
sa→ MN (C)

m
sa. Then

Ptv(x)= a+ t
2N 2 Tr(A)+〈p, x〉+ 1

2
〈Ax, x〉2,

Qtv(x)= a− t
2
‖p‖2+〈p, x〉+ 1

2
〈A(1+ t A)−1(x − tp), x − tp〉.

Remark 6.5. Here Tr(A) denotes the trace of A as a linear transformation of the vector space MN (C)
m
sa,

which is well-defined because the trace of a matrix is similarity-invariant. In particular, we may compute
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Tr(A) using an orthonormal basis of MN (C)
m
sa, and the choice of basis and of the normalization of the

inner product does not matter. Note that the trace of the identity is m N 2, which makes the normalization
in the above formula dimension-independent.

Proof of Lemma 6.4. (1) is immediate to check from the definition. We leave the first formula of (2) as an
exercise. To prove the last formula, fix t > 0 and x ∈ MN (C)

m
sa and note that u(y)+ (1/(2t))‖y− x‖22 is

a uniformly convex function of y and therefore it has a unique minimizer. The minimizer y must be a
critical point and hence

0= Du(y)+ 1
t
(y− x)= p+ Ay+ 1

t
(y− x).

Thus, (1+ t A)y = x − tp and y− x =−t (p+ Ay), so that

Qt u(x)= u(y)+ 1
2t
‖y− x‖22,

which reduces after several lines of manipulation to the claimed formula. �

Lemma 6.6. Let u ∈ E(c,C).

(1) The operators {Qt }t≥0 form a semigroup; that is, Qs Qt u = Qs+t u for s, t ≥ 0.

(2) For each x0 ∈ MN (C)
m
sa and t ≥ 0, the infimum Qt u(x0)= infy[u(y)+ (t/2)‖y− x0‖

2
2] is achieved

at a unique point y0 satisfying y0 = x0− t Du(y0).

(3) If x0 ∈ MN (C)
m
sa and y0 is the minimizer from (2), then D(Qt u)(x0)= Du(y0).

(4) We have Qt u ∈ E(c(1+ ct)−1,C(1+Ct)−1).

(5) ‖D(Qt u)(x0)‖2 = ‖Du(y0)‖2 ≤ (1+ ct)−1
‖Du(x0)‖2.

Proof. (1) By definition

Qs Qt u(x)= inf
y

[
Qt u(y)+

1
2s
‖x − y‖22

]
= inf

y
inf

z

[
u(z)+ 1

2t
‖y− z‖22+

1
2s
‖x − y‖22

]
= inf

z

[
u(z)+ inf

y

[ 1
2t
‖y− z‖22+

1
2s
‖x − y‖22

]]
.

But note that

inf
y

[ 1
2t
‖y− z‖22+

1
2s
‖x − y‖22

]
is by definition Qs f (z), where f (x)= (1/(2t))‖x − z‖22. If g(x)= (1/(2t))‖x‖22, then by the previous
lemma, we have

Qs g(x)= 1
2

t−1

1+t−1s
‖x‖22 =

1
2(s+t)

‖x‖22.

Since Qs is clearly translation-invariant, Qs f (x)= ((s+ t)/2)‖x − z‖22. Therefore,

Qs Qt u(x)= inf
z

[
u(z)+ 1

2(s+t)
‖x − z‖22

]
= Qs+t u(x).
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(2) Fix x0. Note that the function y 7→ [u(y)+ (1/(2t))‖y− x0‖
2
2] is in E(c+ 1/(2t),C + 1/(2t)) and

hence it achieves a global minimum at the unique critical point. Thus, the infimum is achieved at the
point y0 satisfying Du(y0)= (1/t)(y0− x0), or in other words y0 = x0− t Du(y0).

(3), (4) Let x0 and y0 be as above. Let p = Du(y0). Because u ∈ E(c,C), we have for all x that

u(y0)+〈p, x − y0〉2+
c
2
〈x − y0〉 ≤ u(x)≤ u(y0)+〈p, x − y0〉2+

C
2
‖x − y0‖

2
2.

Let v(y) and v̄(y) be the functions on the left and right-hand sides. Then by Lemma 6.4 (1), we have
Qtv ≤ Qt u ≤ Qt v̄. To compute Qtv, we apply Lemma 6.4 (2) with A = cI and with a change of
coordinates to translate y0 to the origin, and we obtain

Qtv(x)= u(y0)−
t
2
‖p‖22+〈p, x − y0〉+

c
2
(1+ ct)−1

‖x − y0− tp‖2.

Since y0+ tp = x0 and p = (y0− x0)/t , this becomes

Qtv(x)= u(y0)−
t
2
‖p‖22+ t‖p‖22+〈p, x − x0〉+

c
2
(1+ ct)−1

‖x − x0‖
2
2

= u(y0)+
1
2t
‖y0− x0‖

2
2+〈p, x − x0〉+

c
2
(1+ ct)−1

‖x − x0‖
2
2

= Qt u(x0)+〈p, x − x0〉+
c
2
(1+ ct)−1

‖x − x0‖
2
2.

The analogous computation holds for Qt v̄ as well. Thus, we have

Qt u(x0)+〈p, x−x0〉+
c
2
(1+ct)−1

‖x−x0‖
2
2≤ Qt u(x)≤ Qt u(x0)+〈p, x−x0〉+

C
2
(1+Ct)−1

‖x−x0‖
2
2.

This inequality implies that D(Qt u)(x0)= p = Du(y0). Since the above inequality holds for every x0,
we see that Qt u ∈ E(c(1+ ct)−1,C(1+Ct)−1) by Proposition 2.13(2).

(5) Let x0, y0, and p be as above. Then we have

〈Du(y0)− Du(x0), y0− x0〉2 ≥ c‖y0− x0‖
2
2.

But recall that y0− x0 =−t Du(y0) and hence

−t〈Du(y0)− Du(x0), Du(y0)〉 ≥ ct2
‖Du(y0)‖

2
2.

Rearranging produces

(1+ ct)‖Du(y0)‖
2
2 ≤ 〈Du(x0), Du(y0)〉2 ≤ ‖Du(x0)‖2‖Du(y0)‖2,

and hence (1+ ct)‖Du(y0)‖2 ≤ ‖Du(x0)‖2 as desired. �

Corollary 6.7. Let u ∈ E(c,C) and s, t ≥ 0.

(1) For each x , the gradient D(Qt u)(x) is the unique vector p satisfying p = Du(x − tp).

(2) We have Qt u(x)= u(x − t D(Qt u)(x))+ (t/2)‖D(Qt u)(x)‖22.

(3) u(x)− (t/2)(1+Ct)‖D(Qt u)(x)‖2 ≤ Qt u(x)≤ u(x)− (t/2)(1+ ct)‖D(Qt u)(x)‖22.
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Proof. (1) and (2) follow from Lemma 6.6(2) and (3).
To prove (3), fix x and let y = x − t D(Qt u)(x). By Proposition 2.13(2),

u(y)+〈Du(y), x − y〉2+
c
2
‖x − y‖22 ≤ u(x)≤ u(y)+〈Du(y), x − y〉+ C

2
‖x − y‖22.

Hence,

u(x)−〈Du(y), x − y〉2−
C
2
‖x − y‖22 ≤ u(y)≤ u(x)−〈Du(y), x − y〉2−

c
2
‖x − y‖22.

But from the previous lemma, we know that Du(y)= D(Qt u)(x) and x − y = t D(Qt u)(x), so that

u(x)− t‖D(Qt u)(x)‖22−
C
2

t2
‖D(Qt u)(x)‖22 ≤ u(y)≤ u(x)− t‖D(Qt u)(x)‖22−

c
2
‖D(Qt u)(x)‖22.

Finally, we substitute Qt u(x)= u(y)+ (t/2)‖D(Qt u)(x)‖22 and obtain (3). �

6D. Estimates for error propagation. To prepare for our iteration procedure, we first prove some esti-
mates to control the propagation of errors.

Lemma 6.8. If u, v ∈ E(c,C), then we have:

(1) ‖D(Pt u)− D(Ptv)‖L∞ ≤ ‖Du− Dv‖L∞ .

(2) ‖D(Qt u)− D(Qtv)‖L∞ ≤ (1+Ct)‖Du− Dv‖L∞ .

Proof. The first inequality follows because D(Pt u)− D(Ptv) is the convolution of Du− Dv with the
Gaussian density. To prove the second inequality, note that

‖D(Qt u)(x)− D(Qtv)(x)‖2 = ‖Du(x − t D(Qt u)(x))− Dv(x − t D(Qtv)(x))‖2

≤ ‖Du(x − t D(Qtv)(x))− Dv(x − t D(Qtv)(x))‖2
+‖Du(x − t D(Qt u)(x))− Du(x − t D(Qtv)(x))‖2

≤ ‖Du− Dv‖L∞ +Ct‖D(Qt u)(x)− D(Qtv)(x)‖2,

where the last inequality follows because Du is C-Lipschitz. This implies that for t < 1/C

‖D(Qt u)− D(Qtv)‖L∞ ≤ (1−Ct)−1
‖Du− Dv‖L∞ .

Now we improve the estimate using the semigroup property of Qt . Fix a positive integer k and for
j = 1, . . . , k, let tj = t j/k, and let C j = C(1+Ctj )

−1. Then Qtj u and Qtjv are in E(0,C j ). Thus, we
have

‖D(Qtj+1u)− D(Qtj+1v)‖L∞ ≤

(
1−

C j t
k

)−1

‖D(Qtj u)− D(Qtjv)‖L∞,

and hence

‖D(Qt u)− D(Qtv)‖L∞ ≤ ‖Du− Dv‖L∞

k−1∏
j=0

1
1−C j t/k

.
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Now

log
k−1∏
j=0

1
1−C j t/k

=

k−1∑
j=0

− log
(

1−
C j t
k

)
=

k−1∑
j=0

(
C j t
k
+ O

(
1
k2

))

=

k−1∑
j=0

C
1+Ctj

(tj+1− tj )+ O
(

1
k

)
=

∫ t

0

C
1+Cs

ds+ O
(

1
k

)
= log(1+Ct)+ O

(
1
k

)
.

Hence,

‖D(Qt u)− D(Qtv)‖L∞ ≤

(
1+Ct + O

(
1
k

))
‖Du− Dv‖L∞,

and the proof is completed by taking k→∞. �

Lemma 6.9. Suppose that u : MN (C)
m
sa→ R is convex and let v ∈ E(c,C) and u ≤ v+ a+ b‖Dv‖22 for

some a ∈ R and b ≥ 0.

(1) Pt u ≤ Ptv+ a+ bC2mt + b‖D(Ptv)‖
2
2.

(2) Qt u ≤ Qtv+ a+ b‖D(Qtv)‖
2
2.

Proof. (1) Using monotonicity and linearity of Pt , we have

Pt u ≤ Ptv+ a+ b
∫
‖Dv(x + y)‖22 dσ(y).

So it suffices to show that∫
‖Dv(x + y)‖22 dσt,N (y)−‖D(Ptv)(x)‖22 ≤ C2mt.

In probabilistic terms, the left-hand side is the variance of the random variable Dv(x+Y ), where Y ∼ σt,N .
Since the variance is translation-invariant, this is the same as the variance of Dv(x + Y )− Dv(x), and
this is bounded above by the second moment

E‖Dv(x + Y )− Dv(x)‖22 ≤ C2
· E‖Y‖22 = C2mt.

(2) Note that

Qt u(x)= inf
y

[
u(y)+ 1

2t
‖y− x‖22

]
≤ u(x − t D(Qtv)(x))+

t
2
‖D(Qtv)(x)‖22

≤ v(x − t D(Qtv)(x))+
t
2
‖D(Qtv)(x)‖22+ a+ b‖Dv(x − t D(Qtv)(x))‖22

= Qtv(x)+ a+ b‖D(Qtv)(x)‖22,

where the last equality follows from Corollary 6.7(1) and (2). �

Lemma 6.10. Let u ∈ E(0,C). Then:

(1) ‖D(Qt u)‖22 ≤ ‖Du‖22.

(2) ‖D(Pt u)‖22 ≤ C2mt +‖Du‖22.
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Proof. The first claim follows from Lemma 6.6(5). To prove the second claim, note that by Minkowski’s
inequality

‖D(Pt u)(x)‖22 =
∥∥∥∥∫ Du(x + y) dσt,N (y)

∥∥∥∥2

2

≤

∫
‖Du(x + y)‖22 dσt,N (y)≤ C2mt +‖Du(x)‖22,

where the last inequality was shown in the proof of Lemma 6.9(1). �

Next, we iterate the previous inequalities to obtain our main lemma on error propagation.

Lemma 6.11. Let t1, . . . , tn > 0 and write

t∗ = t1+ · · ·+ tn,

R = Ptn Qtn · · · Pt1 Qt1 .

Let u, v ∈ E(c,C).

(1) Ru, Rv ∈ E(c(1+ ct∗)−1,C(1+Ct∗)−1).

(2) ‖D(Ru)− D(Rv)‖L∞ ≤ (1+Ct∗)‖Du− Dv‖L∞ .

(3) If u ≤ v+ a+ b‖Dv‖22 with a ∈ R and b ≥ 0, then we have

Ru ≤ Rv+ a+ b
C2mt∗

1+Ct∗
+ b‖D(Rv)‖22.

In particular, u ≤ v implies Ru ≤ Rv.

(4) We have

‖D(Ru)‖22 ≤
C2mt∗

1+Ct∗
+‖Du‖22 ≤ Cm+‖Du‖22.

Proof. (1) Let u ∈ E(c,C). Let t∗j = t1+ · · · + tj and u j = Psj Qtj · · · Ps1 Qt1u. We show by induction
that u j ∈ E(c(1+ ct∗j )

−1,C(1+Ct∗j )
−1). The base case j = 0 is trivial. For the induction step, note that

c(1+ ct∗j )
−1

1+ [c(1+ ct∗j )−1]tj+1
=

c
(1+ ct∗j )+ ctj+1

= c(1+ ct∗j+1)
−1

and the same holds with c replaced by C. Hence, by Lemma 6.6(4), if u j ∈ E(c(1+ct∗j )
−1,C(1+Ct∗j )

−1),
then Qtj+1u j ∈ E(c(1+ct∗j+1)

−1,C(1+Ct∗j+1)
−1). By Lemma 6.3, this implies that u j+1= Ptj+1 Qtj+1u j ∈

E(c(1+ ct∗j+1)
−1,C(1+Ct∗j+1)

−1). The same argument of course applies to v.

(2) Let t∗j and u j be as in the proof of (1) and define vj similarly to u j . We show by induction that
‖Du j − Dvj‖L∞ ≤ (1+Ct∗j )‖Du− Dv‖L∞ . The base case j = 0 is trivial. For the induction step, recall
that u j , vj ∈ E(c(1+ ct∗j )

−1,C(1+Ct∗j )
−1) and hence by Lemma 6.8 and the induction hypothesis

‖D(Qtj+1u j )− D(Qtj+1vj )‖L∞ ≤ (1+C(1+Ct∗j )
−1tj+1)‖Du j − Dvj‖L∞

≤ (1+C(1+Ct∗j )
−1tj+1)(1+Ct∗j )‖Du− Dv‖L∞

= (1+Ct∗j+1)‖Du− Dv‖L∞ .
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Then by Lemma 6.8 again, since u j+1 = Ptj+1 Qtj+1u j and vj+1 = Ptj+1 Qtj+1vj , we have

‖Du j+1− Dvj+1‖L∞ ≤ (1+Ct∗j+1)‖Du− Dv‖L∞ .

This completes the induction and the case j = n is the claim (2).

(3) First, we show by induction on j that

u j ≤ vj + a+ b
j∑

i=1

C2mti
(1+Ct∗i )2

+ b‖Dvj‖
2
2.

The base case j = 0 is trivial. If the claim holds for u j and vj , then it also holds for Qtj+1u j and Qtj+1vj

by Lemma 6.9(2). Then we apply Lemma 6.9(1) together with the fact that Qtj+1u j and Qtj+1vj are in
E(c(1+ ct∗j+1)

−1,C(t +Ct∗j+1)
−1) to conclude that

u j+1 ≤ vj+1+ a+ b
j+1∑
i=1

C2mti
(1+Ct∗i )2

+ b‖Dvj+1‖
2
2.

This completes the induction. Finally, we observe that
∑n

i=1 C2mti/(1+Ct∗i )
2 is the lower Riemann sum

for the function C2m/(1+Ct)2 on the interval [0, t∗] with respect to the partition {0, t∗1 , . . . , t∗n }. Thus,
n∑

i=1

C2mti
(1+Ct∗i )2

≤

∫ t∗

0

C2m
(1+Ct)2

dt = Cm
(

1−
1

1+Ct∗

)
=

C2mt∗

1+Ct∗
.

This shows the main claim of (3), and the claim that u ≤ v implies Ru ≤ Rv is the special case when
a = 0 and b = 0.

(4) By Lemma 6.10, we have ‖D(Qtj+1u j )‖
2
2 ≤ ‖Du j‖

2
2 and

‖Du j+1‖
2
2 ≤

C2mtj+1

1+Ct∗j+1
+‖D(Qtj+1u j )‖

2
2 ≤

C2mtj+1

1+Ct∗j+1
+‖Du j‖

2
2.

We sum from j = 0, . . . , n− 1 and obtain the same lower Riemann sum as in the proof of (3). The final
estimate Cm+‖Du‖22 follows because C2mt/(1+Ct)≤ Cm. �

6E. Iterative construction of Rt for dyadic t. We are now ready to carry out the Trotter’s formula
strategy and construct the semigroup for dyadic values of t . The next step is to show that the operators Pt

and Qt almost commute when t is small.

Lemma 6.12. Let u ∈ E(c,C) and t > 0.

(1) ‖D(Qt Pt u)− D(Pt Qt u)‖L∞ ≤ C2m1/2(2+Ct)t3/2.

(2) Pt Qt u ≤ Qt Pt u.

(3) If Ct ≤ 1, then Qt Pt u ≤ Pt Qt u+ 2C2mt2
+ 2Ct2

‖D(Pt Qt u)‖22.

Proof. (1) Applying Corollary 6.7(1) to Pt u yields

D(Qt Pt u)(x)= D(Pt u)(x − t D(Qt Pt u)(x))=
∫

Du(x + y− t D(Qt Pt u)(x)) dσt,n(y).
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On the other hand,

D(Pt Qt u)(x)=
∫

D(Qt u)(x + y) dσt,n(y)=
∫

Du(x + y− t D(Qt u)(x + y)) dσt,n(y).

Because Du is C-Lipschitz, we have

‖D(Qt Pt u)(x)− D(Pt Qt u)(x)‖2 ≤ Ct
∫
‖D(Qt u)(x + y)− D(Qt Pt u)(x)‖2 dσt,n(y).

We can estimate the integrand by

‖D(Qt u)(x + y)− D(Qt u)(x)‖2+‖D(Qt u)(x)− D(Qt Pt u)(x)‖2.

Integrating the first term and using the fact that D(Qt u) is C-Lipschitz (since Qt u ∈ E(0,C) by
Lemma 6.6(4)), we have∫

‖D(Qt u)(x + y)− D(Qt u)(x)‖2 dσt,n(y)≤ C
∫
‖y‖2 dσt,n ≤ Cm1/2t1/2.

Meanwhile, the second term is independent of y and thus it is unchanged when we integrate it against the
probability measure σt,N , and this quantity can be estimated using Lemmas 6.8(2) and 6.3(2) as

‖D(Qt u)(x)− D(Qt Pt u)(x)‖2 ≤ (1+Ct)‖Du− D(Pt u)‖L∞ ≤ (1+Ct)Cm1/2t1/2.

Altogether, we obtain

‖D(Qt Pt u)(x)− D(Pt Qt u)(x)‖2 ≤ C2m1/2(2+Ct)t3/2.

(2) The idea is that the average of the infimum is less than or equal to the infimum of the average. More
precisely,

Pt Qt u(x)=
∫

inf
y

(
u(y)+ 1

2t
‖(x + z)− y‖22

)
dσt,N (z)

=

∫
inf

y

(
u(y− z)+ 1

2t
‖x − y‖22

)
dσt,N (z)

≤ inf
y

∫ (
u(y− z)+ 1

2t
‖x − y‖22

)
dσt,N (z)

= inf
y

(
Pt u(y)+

1
2t
‖x − y‖22

)
= Qt Pt u(x).

(3) By Corollary 6.7(3),
Qt Pt u ≤ Pt u−

t
2
‖D(Qt Pt u)‖22. (6-6)

Also by Corollary 6.7(3),
u ≤ Qt u+

t
2
(1+Ct)‖D(Qt u)‖22.

Hence, by Lemma 6.9, since Qt u ∈ E(c(1+ ct)−1,C(1+Ct)−1)⊆ E(0,C), we have

Pt u ≤ Pt Qt u+
C2mt2

2
(1+Ct)+ t

2
(1+Ct)‖D(Pt Qt)‖

2
2. (6-7)
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Plugging (6-7) into (6-6), we obtain

Qt Pt u ≤ Pt Qt u+
C2mt2

2
(1+Ct)− t

2
‖D(Qt Pt u)‖22+

t
2
(1+Ct)‖D(Pt Qt)‖

2
2. (6-8)

By using part (1), we have

‖D(Qt Pt u)‖22 ≥ [‖D(Pt Qt)u‖2−C2m1/2t3/2(2+Ct)]2

≥ ‖D(Pt Qt u)‖22− 2C2m1/2t3/2(2+Ct)‖D(Pt Qt u)‖2

≥ ‖D(Pt Qt u)‖22− (2+Ct)[C3mt2
+Ct‖D(Pt Qt u)‖22],

where the last step follows from the arithmetic-geometric mean inequality

2Cm1/2t1/2
‖D(Pt Qt u)‖2 ≤ C2mt +‖D(Pt Qt u)‖22.

So substituting our estimate for ‖D(Qt Pt u)‖22 into (6-8), we see that Pt Qt u− Qt Pt u is bounded by

C2mt2

2
+

t
2
(2+Ct)[C3mt2

+Ct‖D(Pt Qt u)‖22] −
t
2
‖D(Pt Qt u)‖22+

t
2
(1+Ct)‖D(Pt Qt)‖

2
2.

Now we cancel the first-order terms (t/2)‖D(Pt Qt u)‖22 and we estimate 2+Ct by 3 using our assumption
that Ct ≤ 1. Thus, this is bounded by

C2mt2

2
+

3t
2
[C3mt2

+Ct‖D(Pt Qt u)‖22] +
Ct2

2
‖D(Pt Qt u)‖22 ≤ 2C2mt2

+ 2Ct2
‖D(Pt Qt u)‖22,

where we have again used our assumption Ct ≤ 1 to cancel a factor of Ct from the term t ·C3mt2. �

Finally, we can construct the semigroup Rt for dyadic values of t . As in the statement of Theorem 6.1,
we define Rt,`u = (P2−` Q2−`)

2`t u whenever ` ∈ Z and t ∈ 2−`N0.

Lemma 6.13. Let C ≥ 0. For t ∈Q+2 and u ∈ E(0,C), the limit Rt u = lim`→∞ Rt,`u exists. Moreover,
we have for t ∈ 2−`N0 that:

(1) Rt,`u ≤ Rt u.

(2) If C/2`+1
≤ 1, then

Rt u ≤ Rt,`u+
(

3
2

C2mt
1+Ct

+ log(1+Ct)(m+Cm+‖Du‖22)
)

2−`.

(3) ‖D(Rt,`u)− D(Rt u)‖L∞ ≤ [t/2+C(t/2)2]C2m1/2(2 · 2−`/2+ 2−3`/2C).

Proof. First, we prove some intermediate claims relating Rt,`u and Rt,`+1u. To this end, we fix ` ∈ Z and
suppose t = 2−`n for some n ∈ N0. Let δ = 2−`−1. For j = 0, . . . , n, define

u j = (PδQδ)
2(n− j)(P2δQ2δ)

j u.

and note that
u0 = Rt,`+1u, un = Rt,`u.

Let
vj = Qδ(P2δQ2δ)

j u.
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Then for j = 1, . . . , n, we have

u j−1 = [(PδQδ)
2(n− j)Pδ](QδPδvj−1),

u j = [(PδQδ)
2(n− j)Pδ](PδQδvj−1).

We also define for k = 1, . . . , 2n,

Ck = C(1+Ckδ)−1, ck = c(1+ ckδ)−1.

Thus, by Lemmas 6.11(1) and 6.6(4), we have vj−1 ∈ E(c2 j−1,C2 j−1).
First, we claim that

Rt,`u ≤ Rt,`+1u. (6-9)

Now by Lemma 6.12(2), we have

PδQδvj−1 ≤ QδPδvj−1.

Hence, by monotonicity of Pt and Qt (Lemma 6.11(3)), we have u j ≤ u j−1. Hence, Rt,`u = un ≤ u0 =

Rt,`+1u, proving (6-9).
For an inequality in the other direction, we claim that

Rt,`+1u ≤ Rt,`u+
(

3
2

C2mt
1+Ct

+ log(1+Ct)(m+Cm+‖Du‖22)
)

2−`−1. (6-10)

By Lemma 6.12(3), since vj−1 ∈ E(c2 j−1,C2 j−1), we obtain

QδPδvj−1 ≤ PδQδvj−1+ 2C2
2 j−1mδ2

+ 2C2 j−1δ
2
‖D(PδQδvj−1)‖

2
2.

Thus, by Lemma 6.9(1), since QδPδvj−1 and PδQδvj−1 are in E(c2 j ,C2 j ), we have

PδQδPδvj−1 ≤ P2δQδvj−1+ 2C2 j−1mδ2
+ 2C2 j−1δ

2(C2
2 j mδ+‖D(P2δQδvj−1)‖

2
2).

Recalling that u j−1 and u j are obtained by applying (PδQδ)
2(n− j) to PδQδPδvj−1 and P2δQδvj−1, and

that PδQδPδvj−1 and P2δQδvj−1 are in E(c2 j ,C2 j ), we may apply Lemma 6.11(3) and to conclude that

u j−1 ≤ u j + 2C2 j−1mδ2
+ 2C2 j−1δ

2
(

C2
2 j mδ+

C2
2 j m(n− j)δ

1+ 2C2 j (n− j)δ
+‖Du j‖

2
2

)
.

By our assumption, C2 jδ ≤ Cδ ≤ 1, and thus

C2
2 j mδ+

C2
2 j m(n− j)δ

1+ 2C2 j (n− j)δ
≤ C2 j m+

C2 j m
2
=

3C2 j m
2
≤

3C2 j−1m
2

.

Therefore,

u j−1− u j ≤ 2C2 j−1mδ2
+ 3C2

2 j−1mδ2
+ 2C2 j−1δ

2
‖Du j‖

2
2.

By Lemma 6.11(4), we have ‖Du j‖2 ≤ Cm+‖Du‖22, and hence

u j−1− u j ≤ 3C2
2 j−1mδ2

+ 2C2 j−1δ
2(m+Cm+‖Du‖22).
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Therefore, summing from j = 1, . . . , n, we have

Rt,`+1u− Rt,`u ≤ 3mδ2
n∑

j=1

C2
2 j−1+ 2δ2(m+Cm+‖Du‖22)

( n∑
j=1

C2 j−1

)

=
3mδ

2

( n∑
j=1

C2
2 j−1(2δ)

)
+ δ(m+Cm+‖Du‖22)

( n∑
j=1

C2 j−1(2δ)
)
.

Recalling the definition of C2 j−1, two times the first sum is
∑n

j=1 C2(2δ)/(1+C(2 j − 1)δ)2, which is
the Riemann sum for the function φ(s)= C2/(1+Cs)2 on the interval [0, t] = [0, 2nδ], where we use
a partition into subintervals of length 2δ and evaluate φ at the midpoint of each interval. Because φ is
convex, the value of φ at the midpoint is less than or equal to the average value over the subinterval and
therefore

n∑
j=1

C2(2δ)
(1+C(2 j − 1)δ)2

≤

∫ t

0

C2

(1+Cs)2
ds =

C2t
1+Ct

.

By similar reasoning,

n∑
j=1

C2 j−1(2δ)=
n∑

j=1

Cδ
(1+C(2 j − 1)δ)

≤

∫ t

0

C
1+Cs

ds = log(1+Ct).

Therefore,

Rt,`+1u− Rt,`u ≤
(

3
2

C2mt
1+Ct

+ log(1+Ct)(m+Cm+‖Du‖22)
)
δ,

which proves (6-10).
Together, (6-9) and (6-10) show that

|Rt,`+1u− Rt,`u| ≤
(

3
2

C2mt
1+Ct

+ log(1+Ct)(m+Cm+‖Du‖22)
)

2−`−1.

Because the right-hand side is summable in `, we see that the sequence {Rt,`u(x)}`∈N is Cauchy and
hence converges. Thus, lim`→∞ Rt,`u exists. Also, by (6-9) the convergence is monotone and thus
Rt,`u ≤ Rt u, establishing (1). On the other hand, we obtain (2) by summing up the estimate (6-10) from
` to∞ using the geometric series formula.

It remains to prove (3). We first claim that

‖D(Rt,`+1u)− D(Rt,`u)‖L∞ ≤

[ t
2
+C

( t
2

)2]
C2m1/2(2+ 2−(`+1)C)2−(`+1)/2. (6-11)

By Lemma 6.11(1), we know QδPδvj−1 and PδQδvj−1 are in E(c(1+ 2cjδ)−1,C(1+ 2C jδ)−1), and
hence in E(0,C). Therefore, by Lemmas 6.11(2) and 6.12(1), we have

‖Du j − Du j−1‖L∞ ≤ [1+ 2C(n− j)δ]‖D(QδPδvj )− D(PδQδvj )‖L∞

≤ [1+ 2C(n− j)δ]C2m1/2(2+Cδ)δ3/2.
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Therefore,

‖D(Rt,`+1u)− D(Rt,`u)‖L∞ ≤

n∑
j=1

‖Du j − Du j−1‖L∞ ≤

n∑
j=1

[1+ 2C(n− j)δ]C2m1/2(2+Cδ)δ3/2

= [n+Cn(n− 1)δ]C2m1/2(2+Cδ)δ3/2

≤

[ t
2
+C

( t
2

)2]
C2m1/2(2+Cδ)δ1/2

=

[ t
2
+C

( t
2

)2]
C2m1/2(2+ 2−(`+1)C)2−(`+1)/2

since 2nδ = t . This proves (6-11).
Because [t/2+C(t/2)2]C2m1/2(2+ 2−(`+1)C)2−(`+1)/2 is summable with respect to `, we see that
{D(Rt,`u)}`∈N is Cauchy with respect to the L∞ norm (even though the individual functions may not be
in L∞) and hence converges uniformly to some function. We already know that Rt,`u converges to Rt u,
so the limit of D(Rt,`u) must be D(Rt u). We obtain the estimate (3) by summing (6-11) from ` to∞
using the geometric series formula. �

Corollary 6.14. Let 0≤ c ≤ C. Let u, v ∈ E(c,C) and let t ≥ 0 be a dyadic rational.

(1) Rt u, Rtv ∈ E(c(1+ ct)−1,C(1+Ct)−1).

(2) ‖D(Rt u)− D(Rtv)‖L∞ ≤ (1+Ct)‖Du− Dv‖L∞ .

(3) If u ≤ v+ a+ b‖Dv‖22 for some a ∈ R and b ≥ 0, then

Rt u ≤ Rtv+ a+ b
C2mt
1+Ct

+ b‖D(Rtv)‖
2
2.

(4) ‖D(Rt u)‖22 ≤ (C
2mt)/(1+Ct)+‖Du‖22.

Proof. We know that these properties hold for Rt,` by Lemma 6.11. By Lemma 6.13, they also hold in
the limit taking `→∞. (For (1), we rely on Proposition 2.13(1).) �

6F. Continuity and semigroup property. In order to extend Rt to all real t ≥ 0, we prove estimates that
show that Rt depends continuously on t . We begin with some simple estimates for Pt and Qt .

Lemma 6.15. Let ` ∈ Z and suppose that t ∈ 2−`N0 and u ∈ E(0,C). Then:

(1) u ≤ Pt u ≤ u+ (C/2)mt.

(2) u− (t/2)‖Du‖22 ≤ Qt u ≤ u.

(3) ‖D(Qt u)− Du‖2 ≤ Ct‖Du‖2.

Proof. (1) Because u is convex and u(x)− (C/2)‖x‖22 is concave, we have

u(x)+〈Du(x), y〉 ≤ u(x + y)≤ u(x)+〈Du(x), y〉+ C
2
‖y‖22.

Integrating with respect to dσt,N (y) yields

u(x)≤ Pt u(x)≤ u(x)+ Cmt
2

for u ∈ E(0,C).
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(2) As for the operator Qt , it is immediate from the definition that Qt u ≤ u. On the other hand, using
Corollary 6.7(2) and the convexity of u,

Qt u(x)= u(x − t D(Qt u)(x))+
t
2
‖D(Qt u)(x)‖22

≥ u(x)− t〈D(Qt u)(x), Du(x)〉2+
t
2
‖D(Qt u)(x)‖22

≥ u(x)− t
2
‖Du(x)‖22,

where the last inequality follows because 〈D(Qt u)(x), Du(x)〉2 ≤ 1
2‖D(Qt u)(x)‖22+

1
2‖Du(x)‖22.

(3) Using the fact that Du is C-Lipschitz, together with Corollary 6.7(1) and Lemma 6.6(5),

‖D(Qt u)(x)− Du(x)‖2 = ‖Du(x − t D(Qt u)(x))− Du(x)‖2

≤ Ct‖D(Qt u)(x)‖2

≤ Ct‖Du(x)‖2. �

Lemma 6.16. Let s ≤ t be two numbers in Q+2 , and let u ∈ E(0,C).

(1) Rt u ≤ Rsu+ (m/2)[log(1+Ct)− log(1+Cs)].

(2) Rt u ≥ Rsu− ((t − s)/2)(Cm+‖Du‖22).

(3) If C(t − s)≤ 1, then ‖D(Rt u)− D(Rsu)‖2 ≤ 5Cm1/221/2(t − s)1/2+C(t − s)‖Du‖2.

Moreover, if ` ∈ Z and if s, t ∈ 2−`N0, then the same estimates hold with Rt replaced by Rt,`.

Proof. (1) Fix `∈Z and let δ= 2−`. Suppose s= nδ and t = n′δ, where n, n′ ∈N0. By the previous lemma,

R( j+1)δ,`u = PδQδRjδ,`u

≤ QδRjδ,`u+
Cmδ

2(1+C( j + 1)δ)

≤ Rjδ,`u+
Cmδ

2(1+C( j + 1)δ)
,

where we have used the fact that QδRjδ,`u ∈ E(0,C(1+C( j + 1)δ)−1). Therefore,

Rn′δ,`u ≤ Rnδ,u +

n′−1∑
j=n

Cmδ
2(1+C( j + 1)δ)

.

Since the sum on the right-hand side is a lower Riemann sum for the function Cmδ/(2(1+Cτ)) for
τ ∈ [s, t], we obtain

Rt,`u ≤ Rs,`u+
m
2
[log(1+Ct)− log(1+Cs)].

We obtain (1) by letting `→+∞ and using Lemma 6.13.
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(2) Let `, δ, s, t, n, n′ be as above. By the previous lemma,

R( j+1)δ,`u = PδQδRjδ,`u ≥ QδRjδ,`u

≥ Rjδ,`u−
δ

2
‖D(Rjδ,`u)‖22

≥ Rjδ,`u−
δ

2
(Cm+‖Du‖22),

where the last inequality follows from Lemma 6.11(4). So when we sum from j = n to n′− 1, we obtain

Rt u ≥ Rsu− t−s
2
(Cm+‖Du‖22).

Then (2) follows by taking `→+∞.

(3) Assume that s, t ∈ 2−`N0. Choose k ∈ Z such that 2−k−1
≤ t − s ≤ 2−k. Then we may write t − s

in a binary expansion

t − s =
∑̀

j=k+1

aj 2− j ,

where aj ∈ {0, 1} for each j and ak+1 = 1. Let

tj = s+ ak+12−k−1
+ · · ·+ aj 2− j .

Let u j = Rtj ,`u. We will estimate ‖Du j (x)−Du j−1(x)‖2 for each j . Of course, if aj = 0, then u j = u j−1,
so there is nothing to prove. On the other hand, suppose that aj = 1. Now we estimate (at our given
point x , suppressed in the notation)

‖D(R2− j ,`u j−1)− Du j−1‖2 ≤ ‖D(R2− j ,`u j−1)− D(P2− j Q2− j u j−1)‖2

+‖D(P2− j Q2− j u j−1)− D(Q2− j u j−1)‖2

+‖D(Q2− j u j−1)− Du j−1‖2. (6-12)

The first term on the right-hand side may be estimated as follows. Recall that we proved Lemma 6.13(3)
from the estimate (6-11) by summing the geometric series. The same reasoning shows that if `≥ j and
δ ∈ 2−`N0, then

‖D(Rδ,`u j−1)− D(Rδ, j u j−1)‖L∞ ≤

[
δ

2
+C

(
δ

2

)2]
C2m1/2(2 · 2− j/2

+ 2−3 j/2C)

since u j−1∈E(0,C). If we substitute δ=2− j, then R2− j , j is simply equal to P2− j Q2− j . Thus, at the point x ,

‖D(R2− j ,`u j−1)− D(P2− j Q2− j u j−1)‖2 ≤ C2m1/2
[2− j

2
+

C2−2 j

4

]
[2 · 2− j/2

+ 2−3 j/2C].

By our assumption C2− j
≤ C(t − s) ≤ 1 and hence we may replace C2−2 j/4 by 2− j/2 and replace

2−3 j/2C by 2− j/2 and hence

‖D(R2− j ,`u j−1)− D(P2− j Q2− j u j−1)‖2 ≤ 3C2m1/22−3 j/2
≤ 3Cm1/22− j/2.
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The second term on the right-hand side of (6-12) can be estimated by Lemma 6.3(2) by

‖D(P2− j Q2− j u j−1)− D(Q2− j u j−1)‖2 ≤ Cm1/22− j/2

since Q2− j u j−1 ∈ E(0,C). The third term on the right-hand side of (6-12) can be estimated using
Lemma 6.15(3) by

‖D(Q2− j u j−1)− Du j−1‖2 ≤ C2− j
‖Du j−1‖2.

Meanwhile, by Lemma 6.11(4) and the triangle inequality

‖Du j−1‖2 ≤
√

Cm+‖Du‖22 ≤ C1/2m1/2
+‖Du‖2.

So using the fact C2− j
≤ 1, we have

‖D(Q2− j u j−1)− Du j−1‖2 ≤ C3/2m1/22− j
+C2− j

‖Du‖2 ≤ Cm1/22− j/2
+C(tj − tj−1)‖Du‖2.

Therefore, plugging all our estimates into (6-12), we get

‖Du j − Du j+1‖2 ≤ 5Cm1/22− j/2
+C(tj − tj−1)‖Du‖2.

Then summing from j = k+ 1 to ` we obtain

‖Du`− Duk‖2 ≤ 5Cm1/22−k/2
+C(t − s)‖Du‖2

≤ 5Cm1/221/2(t − s)1/2+C(t − s)‖Du‖2.

Because u` = Rt,`u and uk = Rs,`u, we have shown that (3) holds for Rs,` and Rt,` instead of Rs and Rt .
Thus, (3) follows by taking `→+∞. �

Proof of Theorem 6.1. Lemma 6.16 shows that if t ≥ 0 and if t` is a sequence of dyadic rationals
converging to t as `→∞, then Rt`u converges to some function v and this function is independent of
the approximating sequence, so we define Rt u = v. Claims (1), (3), and (4) of the theorem were proved
for dyadic t in Corollary 6.14(1), Lemma 6.16, and Corollary 6.14(2)–(4) respectively, and each of these
claims can be extended to real t ≥ 0 in light of the continuity estimates Lemma 6.16. Claim (2) of the
theorem is Lemma 6.13.

Thus, it remains to show that Rt is a semigroup. That is, we must show that Rs Rt u = Rs+t u for
u ∈ E(0,C) (and we have not even checked this for dyadic s, t yet). First, we check this property for real
s, t ≥ 0 under the additional restriction that Ct ≤ 1

2 . For each ` ∈ Z, there exist s` and t` ∈ 2−`N0 such
that s− 2−` < s` ≤ s and t − 2−` < t` ≤ t . By Lemma 6.16(1) and (2) we have

|Rt`u− Rt u| ≤
|t`− t |

2
(Cm+‖Du‖22)≤ 2−`

1
2
(Cm+‖Du‖22),

since | log(1+Ct`)− log(1+Ct)| ≤ C |t`− t | (from computation of the derivative of log(1+Ct)). By
Lemma 6.13(1) and (2), if C2−`−1

≤ 1, then

|Rt`,`u− Rt`u| ≤ 2−`
(

3
2

C2mt
1+Ct

+ log(1+Ct`)(m+Cm+‖Du‖22)
)
.
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Since t` ≤ t , we can replace t` by t on the right-hand side. By the triangle inequality, we obtain

|Rt`,`u− Rt u| ≤ 2−`Kt(1+‖Du‖22) (6-13)

for some constant Kt depending on t (and C). Using Lemma 6.16(3), or rather its extension to real values
of t ,

‖D(Rt u)− Du‖2 ≤ 5Cm1/221/2t1/2
+Ct‖Du‖2

≤ 5Cm1/221/2t1/2
+Ct‖D(Rt u)− Du‖2+Ct‖D(Rt u)‖2.

Hence,
‖D(Rt u)− Du‖2 ≤ (1−Ct)−1

[5Cm1/221/2t1/2
+Ct‖D(Rt u)‖2],

so by the triangle inequality,

‖Du‖2 ≤ ‖D(Rt u)‖2+ (1−Ct)−1
[5Cm1/221/2t1/2

+Ct‖D(Rt u)‖2.

By squaring and applying the arithmetic-geometric mean inequality, we get

‖Du‖22 ≤ At + Bt‖D(Rt u)‖22

for some constants At and Bt depending on t . The same reasoning applies to Rt`,` since Lemma 6.16(3)
holds for Rt`,` also. We thus obtain

‖Du‖2 ≤ ‖D(Rt`,`u)‖2+ (1−Ct`)−1
[5Cm1/221/2t1/2

` +Ct`‖D(Rt`,`u)‖2

≤ ‖D(Rt`,`u)‖2+ (1−Ct)−1
[5Cm1/221/2t1/2

+Ct‖D(Rt`,`u)‖2
and so

‖Du‖22 ≤ At + Bt‖D(Rt`,`u)‖
2
2.

Overall,
Rt u ≤ Rt`,`u+ 2−`Kt(1+ At + Bt‖D(Rt`,`u)‖

2
2),

Rt`,`u ≤ Rt u+ 2−`Kt(1+ At + Bt‖D(Rt u)‖22).

So by Lemma 6.11(3) and (4)

Rs`,`Rt u ≤ Rs`,`Rt`,`u+ 2−`Kt(1+ At + Bt‖D(Rs`,`Rt`,`u)‖
2
2)

≤ Rs`,`Rt`,`u+ 2−`Kt(1+ At +Cm Bt + Bt‖Du‖22),

and the same holds with Rt and Rt`,` switched, so that

|Rs`,`Rt u− Rs`+t`,`u| ≤ 2−`Kt(1+ At +Cm Bt + Bt‖Du‖22), (6-14)

where we have used that Rs`+t`,`u = Rs`,`Rt`,`u.
By the same token as (6-13), since Rt u ∈ E(0,C), we have

|Rs`,`Rt u− Rs Rt u| ≤ 2−`Ks(1+‖D(Rt u)‖22). (6-15)

Similarly, since (s+ t)− (s`+ t`)≤ 2 · 2−`, we have

|Rs`+t`,`u− Rs+t u| ≤ 2−` · 2Ks+t(1+‖Du‖22). (6-16)
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Combining these with (6-14) using the triangle inequality, we get

|Rs Rt u− Rs+t u| ≤ 2−`Kt(1+ At +Cm Bt + Bt‖Du‖22)

+ 2−`Ks(1+‖D(Rt u)‖22)+ 2−` · 2Ks+t(1+‖Du‖22).

Taking `→∞, we get Rs Rt u = Rs+t u as desired. This completes the case when Ct ≤ 1
2 .

In the general case, suppose s, t ≥ 0 and u ∈ E(0,C). Choose n large enough that Ct/n ≤ 1
2 . Then for

j = 1, . . . , n− 1, we have Rn− j
t/n u ∈ E(0,C). Therefore, by the previous argument

Rs+ j t/n Rn− j
t/n u = (Rs+ j t/n Rt/n)(R

n− j−1
t/n u)= Rs+( j+1)t/n Rn− j−1

t/n u,

so by induction Rs+t u = Rs Rn
t/nu. Since this also holds with s replaced by 0, we have Rn

t/nu = Rt u.
Thus, Rs+t u = Rs Rt u. �

6G. Solution to the differential equation. It remains to show that the semigroup Rt produces solutions
to the differential equation ∂t u = (2N )−11u − 1

2‖Du‖22, and that the result agrees with the solution
produced by solving the heat equation for exp(−N 2u). More precisely, we will prove the following.

Theorem 6.17. Let u0 :MN (C)
m
sa→R be a given function in E(c,C) for some c≥ 0. Let u(x, t)= Rt u(x).

Then u is a smooth function on MN (C)
m
sa×(0,+∞) and it solves the equation ∂t u= (2N )−11u− 1

2‖Du‖22.
Moreover, exp(−N 2

· Rt u0)= Pt [exp(−N 2u0)].

At this point, we have not proved enough smoothness for Rt u to show that it solves the equation
in the classical sense. Therefore, as an intermediate step, we show that u solves the equation in the
viscosity sense (for background on viscosity solutions, see [Crandall et al. 1992]). We will then deduce
that exp(−N 2u) is a viscosity solution of the heat equation and hence show it agrees with the smooth
solution of the heat equation.

The definition of viscosity solution for parabolic equations is as follows. Here we continue to use
the vector space MN (C)

m
sa with the normalized inner product (rather than Rn for some n). For smooth

u : MN (C)
m
sa→ R, we denote by Du and Hu the gradient and Hessian with respect to the inner product

〈 · , · 〉2; in other words, if x0 ∈ MN (C)
m
sa, then Du(x0) is the vector in MN (C)

m
sa and Hu(x0) is the linear

transformation MN (C)
m
sa→ MN (C)

m
sa such that

u(x)= u(x0)+〈Du(x0), x − x0〉2+
1
2〈Hu(x0)[x − x0], x − x0〉2+ o(‖x − x0‖

2
2).

We denote the space of linear transformations MN (C)
m
sa→ MN (C)

m
sa by B(MN (C)

m
sa), and we denote the

self-adjoint elements by B(MN (C)
m
sa)sa.

Definition 6.18. Let F : B(MN (C)
m
sa)sa×MN (C)sa×R×MN (C)sa→R be continuous, and consider the

partial differential equation
∂t u = F(Hu, Du, u, x). (6-17)

We say that a function u :MN (C)
m
sa×[0,+∞)→R is a viscosity subsolution if it is upper semicontinuous

and if the following condition holds: Suppose that

x0 ∈ MN (C)
m
sa, t0 > 0, A ∈ B(MN (C)

m
sa)sa, p ∈ MN (C)

m
sa, α ∈ R,
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and suppose that u satisfies

u(x, t)≤ u(x0, t0)+α(t − t0)+〈p, x − x0〉2+
1
2〈A(x − x0), x − x0〉2+ o(|t − t0|+ ‖x − x0‖

2
2). (6-18)

Then we also have
α ≤ F(A, p, u(x0), x0). (6-19)

Definition 6.19. With the same setup as above, we say that u : MN (C)
m
sa×[0,+∞)→ R is a viscosity

supersolution if it is lower semicontinuous and the following condition holds: if x0, t0, A, p, α are as
above and if

u(x, t)≥ u(x0, t0)+α(t − t0)+〈p, x − x0〉2+
1
2〈A(x − x0), x − x0〉2+ o(|t − t0|+‖x − x0‖

2
2), (6-20)

then
α ≥ F(A, p, u(x0), x0). (6-21)

Definition 6.20. We say that u is a viscosity solution if it is both a subsolution and a supersolution.

Remark 6.21. Roughly speaking, being a viscosity solution means that whenever there exist upper or
lower second-order Taylor approximations to u, then we can evaluate the differential operator F on the
Taylor approximation and get an inequality in one direction.

Example 6.22. The heat equation ∂t u = (2N )−11u is obtained by taking

F(A, p, u, x)= 1
2N 2 Tr(A).

To understand why 1/N 2 is the correct normalization on the right-hand side, suppose that u is smooth
and A = Hu(x0) and p = Du(x0), so that

u(x)= u(x0)+〈p, x − x0〉2+
1
2〈A(x − x0), x − x0〉2+ o(‖x − x0‖

2
2).

In terms of the nonnormalized inner product (which we denote by the dot product), this means that

u(x)= u(x0)+
1
N

p · (x − x0)+
1

2N
(A(x − x0)) · (x − x0).

Thus, the Hessian with respect to the nonnormalized inner product is (1/N )A. Hence, (1/N )1u(x0)=

(1/N 2)Tr(A). Similarly, the equation ∂t u = (2N )−11u− 1
2‖Du‖22 is obtained by taking

F(A, p, u, x)= 1
2N 2 Tr(A)− 1

2
‖p‖22.

Proposition 6.23. Let u0 ∈ E(0,C) and define u(x, t) = Rt u0(x). Then u is a viscosity solution of the
equation ∂t u = (2N )−11u− 1

2‖Du‖22.

Proof. First, note that u is continuous. Indeed, by Theorem 6.1(3), u is continuous in t with a modulus
of continuity that is uniform for x in a bounded region (this follows because the term ‖Du0‖

2
2 on the

right-hand side of Lemma 6.16(2) is bounded on bounded regions since Du0 is C-Lipschitz). Also, u( · , t)
is continuous for each t since it is in E(0,C). Together, this implies u is jointly continuous in (x, t).
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To show that u is a viscosity supersolution, suppose that we have a lower second-order approximation
at the point (x0, t0), where x0 ∈ MN (C)

m
sa and t0 > 0, given by

u(x, t)≥ u(x0, t0)+α(t − t0)+〈p, x − x0〉+
1
2〈A(x − x0), x − x0〉2+ o(|t − t0| + ‖x − x0‖

2
2).

Then we must show that α ≥ 1/(2N 2)Tr(A)− 1
2‖p‖22.

Our first goal is to replace the soft bound o(|t − t0| + ‖x − x0‖
2
2) by a more explicit error bound, at

the cost of modifying α and A by some positive ε. Pick ε > 0. Then there exists r > 0 such that if
|t − t0| + ‖x − x0‖

2
2 < 2r , then we have

u(x, t)≥ u(x0, t0)+α(t − t0)− ε|t − t0| + 〈p, x − x0〉+
1
2〈(A− ε I )(x − x0), x − x0〉2. (6-22)

Let us assume that t0 − r < t ≤ t0, so that the above inequality holds for ‖x − x0‖
2 < r and we have

α(t − t0)− ε|t − t0| = (α+ ε)(t − t0). For x such that ‖x − x0‖
2
2 ≥ r , we may use Theorem 6.1(3b), the

fact that Du is C-Lipschitz, and the convexity of u to conclude that

u(x, t)≥ u0(x)−
t
2
(Cm+‖Du‖22)

≥ u0(x0)+〈Du(x0), x − x0〉2−
t
2
(Cm+ (‖Du(x0)‖2+C‖x − x0‖2)

2).

In other words, u is bounded below by a quadratic in x − x0, and the estimate holds uniformly for t in
a bounded interval. Moreover, the right-hand side of (6-22) is also bounded by a quadratic in x − x0

uniformly for t ∈ [t0− r, t0+ r ]. It follows that for a large enough constant Kε , we have

u(x0, t0)+ (α+ ε)(t − t0)+〈p, x − x0〉+
1
2〈(A− ε I )(x − x0), x − x0〉2− u(x, t)≤ Kε‖x − x0‖

4
2

whenever t ∈ (t0− t, t0] and ‖x − x0‖2 ≥ r . Therefore, overall, assuming that t ∈ (t0− r, t0], we have

u(x, t)≥ u(x0, t0)+ (α+ε)(t− t0)+〈p, x− x0〉+
1
2〈(A−ε I )(x− x0), x− x0〉2−Kε‖x− x0‖

4
2. (6-23)

For t ∈ R, let us write ut(x) = u(x, t) = Rt u0(x). Now the strategy for proving that α + ε ≥
(1/(2N 2))Tr(A−ε I )− 1

2‖p‖22 is roughly to use the fact that ut0(x0)= Rδut0−δ(x0) and estimate ut0−δ(x0)

from above using the upper Taylor approximation for small δ > 0. However, for the sake of computation,
it is easier to estimate QδPδut0−δ rather than Rδ (and then we will control the error between Rδ and QδPδ
using Lemmas 6.12 and 6.13).

Let δ ∈ (0, r). Then using the above inequality and monotonicity of Pδ, we have

Pδut0−δ(x)≥ ut0(x0)− (α+ ε)δ+〈p, x − x0〉

+
1

2N 2 Tr(A− ε I )δ+ 1
2〈(A− ε I )(x − x0), x − x0〉

− Kε

(
‖x − x0‖

4
2+ 2

(
1+ 2

N 2

)
mδ‖x − x0‖

2
2+m2

(
1+ 2

N 2

)
δ2
)
.

Here we have evaluated Pδ applied to ‖x − x0‖
4
2 using Example 3.22 and the translation-invariance of Pδ .

Now recall that QδPδut0−δ(x0) is obtained by evaluating Pδut0−δ at x0− δD(QδPδut0−δ)(x0). Also, in
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light of Lemma 6.11(4) and Corollary 6.14(4), ‖D(QδPδut0−δ)(x0)‖
2
2 is bounded by ‖Du0(x0)‖

2
2 plus

a constant. In particular, ‖D(QδPδut0−δ)(x0)‖2 is bounded as δ→ 0. Therefore,

QδPδut0−δ(x0)= Pδut0−δ(x0− δD(QδPδut0−δ)(x0))+
δ

2
‖D(QδPδut0−δ)(x0)‖

2
2

≥ ut0(x0)+
δ

2
‖D(QδPδut0−δ)(x0)‖

2
2+ (α+ ε)(−δ)

−〈p, D(QδPδut0−δ)(x0)〉δ+
1

2N 2 Tr(A− ε I )δ+ O(δ2). (6-24)

(Here the implicit constant in O(δ2) depends on ε.)
Because ut0−δ ∈ E(0,C), Lemma 6.12(2) and (3) imply that if Cδ ≤ 1, then

|QδPδut0−δ(x0)− PδQδut0−δ(x0)| ≤ 2C2mδ2
+ 2Cδ2

‖D(PδQδut0−δ)(x0)‖2.

Again by Lemma 6.11(4) and Theorem 6.1(4c), ‖D(QδPδut0−δ)(x0)‖
2
2 is bounded by ‖Du0(x0)‖

2
2 plus

a constant, so that
QδPδut0−δ(x0)= PδQδut0−δ(x0)+ O(δ2).

Also, if we let δ` = 2−` for ` ∈ Z, then Lemma 6.13 implies that when 2Cδ` ≤ 1 and δ` < r , we have

|Pδ` Qδ`ut0−δ(x0)− Rδ`ut0−δ`(x0)| = |Rδ`,`ut0−δ`(x0)− Rδ`ut0−δ`(x0)|

≤

(
3
2

C2mδ`
1−Cδ`

+ log(1+Cδ`)(m+Cm+‖Du(x0)‖
2
2)

)
2−` = O(δ2

`).

So overall
Qδ` Pδ`ut0−δ`(x0)= Rδ`ut0−δ`(x0)+ O(δ2

`)= ut0(x0)+ O(δ2
`). (6-25)

Using similar reasoning, Lemma 6.12(1) shows that

D(Qδ` Pδ`ut0−δ`)(x0)= D(Pδ` Qδ`ut0−δ`)(x0)+ O(δ3/2
` ).

Then using Lemma 6.13(3), we obtain

D(Pδ` Qδ`ut0−δ`)(x0)= D(Rδ`ut0−δ`)(x0)+ O(δ3/2).

Finally, because ut0−δ ∈ E(0,C), it is differentiable everywhere; the upper Taylor approximation (6-22) im-
plies that ut0(x)≤ut0(x0)+〈p, x−x0〉2+o(‖x−x0‖2) and therefore p must equal Dut0(x0). Thus, overall

D(Qδ` Pδ`ut0−δ`)(x0)= p+ O(δ3/2
` ). (6-26)

Substituting (6-25) and (6-26) into (6-24), we obtain

ut0(x0)≥ ut0(x0)+
1
2
‖p‖22δ`+ (α+ ε)(−δ`)−‖p‖22δ`+

1
2N 2 Tr(A− ε I )δ`+ O(δ2

`).

We cancel ut0(x0) from both sides, divide by δ`, and move α+ ε to the left-hand side to conclude that

α+ ε ≥
1

2N 2 Tr(A− ε I )δ`−
1
2
‖p‖22+ O(δ`).

Then taking `→∞, we get α+ ε ≥ (1/(2N 2))Tr(A− ε I )− 1
2‖p‖22. Since ε was arbitrary, we have

α ≥ (1/(2N 2))Tr(A)− 1
2‖p‖22. This shows that u is a viscosity supersolution.
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To show that the u is a viscosity subsolution, the argument is symmetrical for the most part. However,
to obtain the constant Kε in (6-23), we used the one-sided estimate Theorem 6.1(3b) to show that u is
bounded below by a quadratic in x− x0 that is independent of t , so long as t ∈ (t0− r, t0]. To show that u
is a viscosity subsolution, we want to prove an analogous quadratic upper bound. But by Theorem 6.1(3a)
and semiconcavity of u0, we have for t ≤ t0 that

ut(x)≤ u0(x)+
m
2

log(1+Ct0)

≤ u0(x0)+〈Du0(x0), x − x0〉+
C
2
‖x − x0‖

2
2+

m
2

log(1+Ct0),

which is the desired upper bound. The rest of the argument is symmetrical except that α+ ε is replaced
by α− ε and A− ε I is replaced by A+ ε I. �

Lemma 6.24. Let u : MN (C)
m
sa × [0,+∞)→ R. Then u is a viscosity solution to ∂t u = (2N )−11u −

1
2‖Du‖22 if and only if exp(−N 2u) is a viscosity solution to ∂t u = (2N )−11u.

Proof. More precisely, we claim that u is a viscosity subsolution if and only if exp(−N 2u) is viscosity
supersolution and vice versa. Suppose that u is a subsolution, and let us show that v = exp(−N 2u) is a
supersolution. If u is upper semicontinuous, then v is lower semicontinuous. Now suppose that we have
a lower Taylor approximation at (x0, t0)

v(x, t)≥ v(x0, t0)+α(t − t0)+〈p, x − x0〉2+
1
2〈A(x − x0), x − x0〉2+ o(|t − t0| + ‖x − x0‖

2
2).

Note that v > 0 and u = (−1/N 2) log v. The function h 7→ log h is increasing and analytic for h > 0 and
we have

log(h+ δ)= log(h)+ log
(
1+ δ

h

)
= log(h)+ δ

h
−

1
2

(
δ

h

)2
+ O(δ3).

Substituting h = v(x0, t0)= exp(−N 2u(x0, t0)) and

δ = v(x, t)− v(x0, t0)= α(t − t0)+〈p, x − x0〉2+
1
2〈A(x − x0), x − x0〉2+ o(|t − t0| + |x − x0|

2),

we get

−N 2u(x, t)≥−N 2u(x0, t0)+
α

v(x0, t0)
(t − t0)+

1
v(x0, t0)

〈p, x − x0〉2

+
1

2v(x0, t0)
〈A(x − x0), x − x0〉2−

1
2v(x0, t0)2

〈p, x − x0〉
2
2+ o(|t − t0| + ‖x − x0‖

2
2),

since 〈p, x− x0〉2/v(x0, t0)2 is the only term from −(δ/h)2/2+O(δ3) that is not o(|t − t0|+‖x− x0‖
2
2)

(here we use the fact that |t − t0|‖x − x0‖2 ≤
2
3 |t − t0|3/2+ 1

3‖x − x0‖
3
2). Let us denote by P the linear

map P(x − x0)= p〈p, x − x0〉2. Then the above inequality becomes

u(x, t)≤ u(x0, t0)−
α

N 2v(x0, t0)
(t−t0)−

1
N 2v(x0, t0)

〈p, x−x0〉2

−
1

2N 2v(x0, t0)
〈A(x−x0), x−x0〉2+

1
2N 2v(x0, t0)2

〈P(x−x0), (x−x0)〉+o(|t−t0|+‖x−x0‖
2
2).
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Because u is a subsolution, we have

−
α

N 2v(x0, t0)
≤−

1
2N 4 Tr(A)+

1
2N 4v(x0, t0)2

Tr(P)−
1

2N 4v(x0, t0)2
‖p‖22.

But Tr(P)= ‖p‖22, so the last two terms cancel. Thus,

α ≥
1

2N 2 Tr(A)

as desired. So v is a supersolution.
A symmetrical argument shows that if v is a supersolution, then u is a subsolution. The other two

claims are proved in the same way except using the Taylor expansion of the exponential function instead
of the logarithm. �

Now we are ready to prove Theorem 6.17 in the special case where u0 is bounded below.

Lemma 6.25. Suppose that u0 ∈ E(0,C) is bounded below. Then

exp(−N 2 Rt u0)= Pt [exp(−N 2u0)].

Proof. Let v(x, t)= exp(−N 2 Rt u0(x)) and letw(x, t)= Pt [exp(−N 2u0)](x). Since u0 is bounded below
by some constant K , we have Rt u0 ≥ K by monotonicity of Rt (see Corollary 6.14(3)) and the fact that it
does not affect constant functions (since the same is true of Pt and Qt ). Hence, v = exp(−N 2 Rt u0)≤

exp(−N 2K ). We also have exp(−N 2u0)≤ exp(−N 2K ) and hence w ≤ exp(−N 2K ).
Thus, v and w are both bounded, w is a smooth solution to the heat equation, and v is a viscosity

solution by the previous lemma. We will conclude from this that v =w (and this is nothing but a standard
argument for the maximum principle together with the basic philosophy of viscosity solutions).

To show that v ≤ w, choose ε > 0, and consider the function

φ(x, t)= v(x, t)−w(x, t)− ε
2
‖x‖22− 2mεt.

Suppose for contradiction that φ > 0 at some point. Since φ is continuous on MN (C)
m
sa×[0,+∞) and

since w and v are bounded, φ achieves a maximum at some (x0, t0). Since the maximum is strictly
positive, we have t0 > 0. Let

ψ(x, t)= w(x, t)+ ε
2
‖x‖22+ 2mεt,

so that φ(x, t)= v(x, t)−ψ(x, t). Then φ(x, t)≤ φ(x0, t0) implies that

v(x, t)≤ v(x0, t0)+ψ(x, t)−ψ(x0, t0)

= v(x0, t0)+ ∂tψ(x0, t0)(t − t0)+〈Dψ(x0, t0), x − x0〉2

+
1
2〈Hψ(x0, t0)(x − x0), x − x0〉2+ o(|t − t0| + ‖x − x0‖

2
2),

where the last step follows because ψ is smooth. Because v is a viscosity subsolution,

∂tψ(x0, t0)≤
1

2N
1ψ(x0, t0).
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However, this is a contradiction because at every point (x, t), we have

∂tψ = ∂tw+ 2mε > 1
2N

1w+mε = 1
2N

1ψ,

by computation and the fact that w solves the heat equation. It follows that φ ≤ 0 and hence v(x, t)≤
w(x, t)+ (ε/2)‖x‖22+ 2mεt . Since ε was arbitrary, v ≤ w. Then a symmetrical argument shows that
v ≥ w. �

Thus, to prove Theorem 6.17, it only remains to remove the boundedness assumption on u0. We
achieve this by replacing u0 with the function

ũ0(x)= u0(x)−〈Du0(0), x〉2, (6-27)

which is nonnegative by the convexity of u0 and hence it is bounded below.

Lemma 6.26. Let u0∈E(0,C) and let ũ0 be given by (6-27). Let v0=exp(−N 2u0) and ṽ0=exp(−N 2ũ0).
Then the integral defining Pt exp(−N 2u0) is well-defined and also

Ptv0(x)= exp(−N 2
〈Du0(0), x〉+ N 2t

2
‖Du0(0)‖22)Pt ṽ0(x − t Du0(0)).

Proof. We can write

dσt,N (y)=
1

Z N
exp

(
−

N 2

2t
‖y‖22

)
dy.

Also, set p = Du0(0). Then

Ptv0(x)=
1

Z N

∫
exp(−N 2u0(x + y)) exp

(
−

N 2

2t
‖y‖22

)
dy

=
1

Z N

∫
exp

(
−N 2ũ0(x + y)− N 2

〈p, x + y〉− N 2

2t
‖y‖22

)
dy

=
1

Z N

∫
exp

(
−N 2ũ0(x + y)− N 2

〈p, x〉+ N 2t
2
‖p‖22−

N 2

2t
‖y+ tp‖22

)
dy

=
1

Z N

∫
exp

(
−N 2ũ0(x − tp+ z)− N 2

〈p, x〉+ N 2t
2
‖p‖22−

N 2

2t
‖z‖22

)
dz

= exp
(
−N 2
〈p, x〉+ N 2t

2
‖p‖22

)
Pt ṽ0(x − tp). �

Lemma 6.27. Let u0 ∈ E(0,C), let p ∈ MN (C)
m
sa, and let ũ0(x)= u0(x)−〈p, x〉2. Then:

(1) Pt u0(x)= Pt ũ0(x)+〈p, x〉2.

(2) Qt u0(x)= Qt ũ0(x − tp)+〈p, x〉2− (t/2)‖p‖22.

(3) Rt u0(x)= Rt ũ0(x − tp)+〈p, x〉2− (t/2)‖p‖22.

Proof. (1) holds because Pt is a linear operator and it also does not affect linear functions. To prove (2),
fix x and let y be the point where the infimum defining Qt u0(x) is achieved and let ỹ be the point where
the infimum defining Qt ũ0(x − tp) is achieved. By Corollary 6.7(1), the points y and ỹ are characterized
respectively by the relations

y = x − t Du0(y), ỹ = x − tp− t Dũ0(ỹ).
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But Dũ0(ỹ)= Du0(ỹ)− p. Thus, x − t Du0(ỹ)= ỹ, so that y = ỹ. Then

Qt u0(x)= u0(y)+
1
2t
‖y− x‖22

= ũ0(y)+〈p, y〉2+
1
2t
‖y− x‖22

= ũ0(y)+〈p, x〉2−
t
2
‖p‖22+

1
2t
‖y− (x − tp)‖22

= Qt ũ0(x − tp)+〈p, x〉2−
t
2
‖p‖22.

(3) It follows by iteration (after some computation) that for t ∈ 2−`N0, we have

Rt,`u0(x)= Rt ũ0(x − tp)+〈p, x〉2−
t
2
‖p‖22.

Then by Lemma 6.13, we may take `→∞, and by Theorem 6.1(3), we may extend the inequality to all
real t . �

Proof of Theorem 6.17. We have already proved the case where u0 is bounded. For the general case, let
u0 ∈ E(0,C). Define p= Du0(0) and ũ0(x)= u0(x)−〈p, x〉2. As remarked above, ũ0 is bounded below
by zero. By Lemma 6.26, the bounded case, and Lemma 6.27,

Pt exp(−N 2u0)(x)= exp
(
−N 2
〈p, x〉+ N 2t

2
‖p‖22

)
[Pt exp(−N 2ũ0)](x − tp)

= exp
(
−N 2
〈p, x〉+ N 2t

2
‖p‖22

)
exp(−N 2 Rt ũ0(x − tp))

= exp
(
−N 2

(
Rt ũ0(x − tp)+〈p, x〉− t

2
‖p‖22

))
= exp(−N 2 Rt u0(x)).

In particular, since Pt exp(−N 2ũ0) is smooth for t > 0, we see that all the functions in the above
equation are smooth for t > 0, and hence Rt u0(x) is smooth function of (x, t). Also, Pt [exp(−N 2u0)] =

exp(−N 2 Rt u0) as desired. �

6H. Approximation by trace polynomials. Now we are ready to prove that Rt preserves asymptotic
approximability by trace polynomials.

Proposition 6.28. Let {VN } be a sequence of functions MN (C)
m
sa → R such that VN is convex and

VN (x)− (C/2)‖x‖22 is concave, and {DVN } is asymptotically approximable by trace polynomials. Then
for every t ≥ 0, the sequences {D(Pt VN )}, {D(Qt VN )}, and {D(Rt VN )} are asymptotically approximable
by trace polynomials.

Proof. The fact that {D(Pt VN )} is asymptotically approximable by trace polynomials follows from
Lemma 3.28.

Now consider D(Qt VN ). Note that by Corollary 6.7(1), D(Qt VN )(x) is the solution of the fixed point
equation

y = DVN (x − t y).
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But if t < 1/C, then y 7→ DVN (x − t y) is a contraction and thus iterates of this function will converge to
the fixed point. Let us define φN ,0(x)= 0 and φN ,`+1(x)= DVN (x − tφN ,`(x)). By Lemma 6.6(5), the
distance from 0 to the fixed point D(Qt VN )(x) is bounded by ‖DVN (x)‖2; hence

‖φN ,`(x)− D(Qt VN )(x)‖2 ≤ C`t`‖DVN (x)‖2.

Because DVN ,t is C-Lipschitz, Lemma 3.27 implies that {φN ,`}N is asymptotically approximable by trace
polynomials.

Now ‖DVN (0)‖2 is bounded by some constant A as N →∞ because DVN is asymptotically approx-
imable by trace polynomials. Since DVN is also C-Lipschitz, ‖DVN (x)‖2 ≤ A+C‖x‖2. In particular,
‖φN ,`(x)−D(Qt VN )(x)‖2≤C`t`(A+C‖x‖2). Thus, by Observation 3.26, {D(Qt VN )} is asymptotically
approximable by trace polynomials.

This holds whenever t < 1/C. But for general t , we can write Qt = Qn
t/n , where n is large enough that

t/n < 1/C, and then iterating the previous statement shows that {Qt VN } is asymptotically approximable
by trace polynomials.

For the sequence {D(Rt VN )}, first note that when t ∈ Q+2 , we know {D(Rt,`VN )} is asymptotically
approximable by trace polynomials (where ` is large enough that Rt,` is defined). By Theorem 6.1(1c)
and Observation 3.26, the sequence {D(Rt VN )} is asymptotically approximable by trace polynomials for
t ∈Q+2 . Finally, by Theorem 6.1(2d) and Observation 3.26, the sequence {D(Rt VN )} is asymptotically
approximable by trace polynomials for all t ∈ R+. �

7. Main theorem on free entropy

We are now ready to prove the following theorem which shows that χ = χ∗ for a law which is the limit
of log-concave random matrix models.

Theorem 7.1. Let µN be a sequence of probability measures on MN (C)
m
sa given by the potential VN .

Assume:

(A) The potential VN (x) is convex and VN (x)− (C/2)‖x‖22 is concave for some C > 0 independent of N.

(B) The sequence µN concentrates around some noncommutative law λ with λ(X2
j ) > 0.

(C) For some R0 > 0, we have limN→∞
∫
‖x‖≥R0

(1+‖x‖22) dµN (x)= 0.

(D) The sequence {DVN } is asymptotically approximable by trace polynomials.

Then λ ∈6m,R0 and moreover:

(1) The law λ has finite Fisher information 8∗(λ), and for all t ≥ 0, we have

lim
N→∞

1
N 3 I(µN ∗ σt,N )→8∗(λ� σt).

(2) We have for all t ≥ 0

χ(λ� σt)= χ(λ� σt)= lim
N→∞

1
N 2

(
h(µN ∗ σt,N )+

m
2

log N
)
= χ∗(λ� σt).
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(3) The functions t 7→ (1/N 3)I(µN ∗ σt,N ) and t 7→8∗(λ� σt) are decreasing and Lipschitz and the
absolute value of the derivative (where defined) is bounded by C2m(1+Ct)−2.

Remark 7.2. If VN (x) − (c/2)‖x‖22 is convex and VN (x) − (C/2)‖x‖22 is concave and if {DVN } is
asymptotically approximable by trace polynomials, then Theorem 4.1 implies that µN satisfies the
hypotheses of Theorem 7.1 for some noncommutative law λ.

However, Theorem 7.1 holds in a slightly more general situation than Theorem 4.1 in that we do not
have to assume uniform convexity, finite moments, or exponential concentration.

In preparation for the proof of Theorem 7.1, we have already verified that the hypotheses (A), (C), and
(D) are preserved under Gaussian convolution. Now we show that (B) is preserved in Lemma 7.4. This
is straightforward apart from one subtlety — although we have assumed that for every noncommutative
polynomial p, the noncommutative moment τN (p(x)) concentrates around λ(p) under µN , we have not
assumed that |τN (p(x))| has finite expectation. To deal with this issue, we first prove an auxiliary lemma.

Lemma 7.3. Let λ be a noncommutative law in 6m , let p(X, Y ) = p(X1, . . . , Xm, Y1, . . . , Ym) be a
noncommutative polynomial of 2m variables, and let R > 0. Then there exists a neighborhood V of λ
in 6m and a constant K such that, for all N ∈ N, for all x ∈ 0N (V), the function y 7→ τN (p(x, y)) is
K -Lipschitz with respect to ‖ · ‖2 for self-adjoint tuples y in the operator-norm ball {y : ‖yj‖ ≤ R}.

Proof. To prove the lemma, it suffices to consider the case of a noncommutative monomial. Indeed, if
p =

∑n
j=1 pj , where pj is a monomial, and if we find neighborhoods Vj and Lipschitz constants K j for

each pj , then the result will also hold for p with V =
⋂n

j=1 Vj and K =
∑n

j=1 K j .
Thus, assume without loss of generality that p(X, Y ) is a noncommutative monomial. Then it can be

written in the form
p(X, Y )= q0(X)Yi1q1(X)Yi2 · · · q`−1(X)Yi`q`(X),

where i j ∈ {1, . . . ,m} and qj (X) is a noncommutative monomial in X (which of course is allowed to
be 1). Consider x, y, y′ ∈ MN (C)

m
sa, and suppose that ‖yi‖∞ ≤ R and ‖y′i‖∞ ≤ R for each i . Then

p(x, y)− p(x, y′)=
∑̀
j=1

q0(x)yi1 · · · yi j−1qj−1(x)(yi j − y′i j
)qi (x)yi j+1 · · · yi`q`(x).

Recalling the noncommutative Lα norms and Hölder’s inequality (see Section 2C), we have

‖p(x, y)− p(x, y′)‖1 ≤
(∑̀

j=1

∏
k 6= j

‖qj (x)‖2(`+1)
∏
k< j

‖yik‖∞

∏
k> j

‖y′ik
‖∞

)
‖yj − y′j‖2.

This implies that

|τN (p(x, y))− τN (p(x, y′))| ≤
(∑̀

j=1

∏
k 6= j

‖qj (x)‖2(`+1)

)
R`−1
‖y− y′‖2.

Now
‖qj (x)‖2(`+1) = (τN [(qj (x)∗qj (x))`+1

])1/(2(`+1)).
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We can define

V = {λ′ : λ′[(q∗j qj )
`+1
]< λ[(q∗j qj )

`+1
] + 1 for j = 0, . . . , `}.

Then ‖qj (x)‖2(`+1) is uniformly bounded for x ∈ 0N (V) for each j = 0, . . . , `. Suppose that each of
these quantities is bounded by K . Then the above estimate shows that

|τN (p(x, y))− τN (p(x, y))| ≤ `K `+1 R`−1
‖y− y′‖2

whenever x ∈ 0N (V) and y, y′ are in the operator-norm ball of radius R. �

Lemma 7.4. Suppose that {µN } concentrates around a noncommutative law λ. Then {µN ∗ σt,N } concen-
trates around λ� σt for every t > 0.

Proof. Fix t . Let X N = (X N ,1, . . . , X N ,m) and YN = (YN ,1, . . . , YN ,m) be independent random variables
with the laws µN and σt,N respectively. Because the topology on the space 6m of noncommutative laws
is generated by noncommutative moments, it suffices to show that for each noncommutative polynomial p
and δ > 0

lim
N→∞

P(|τN (p(X N + YN ))− λ� σt(p)| ≥ δ)= 0.

Fix p and let d be its degree. By the previous lemma, there is a neighborhood V of λ and a constant K
such that for every x ∈0N (V), the function y 7→ τN (p(x+ y)) is K -Lipschitz with respect to ‖ · ‖2 on the
operator-norm ball {y : ‖y‖∞ ≤ 4t1/2

}. By shrinking V if necessary, we may also assume that τN (q(x))
is uniformly bounded for every noncommutative monomial q(x) of degree less than or equal to d.

Choose a C∞c function ψ : R→ R such that ψ(z)= z for |z| ≤ 3t1/2 and |ψ(z)| ≤ 4t1/2. Then

9 : (y1, . . . , ym) 7→ (ψ(y1), . . . , ψ(ym))

is globally Lipschitz in ‖ · ‖2 and it also maps MN (C)
m
sa into the operator-norm ball of radius 4t1/2 (which

is the region where z 7→ τN (p(x, z)) was assumed to be K -Lipschitz with respect to ‖ · ‖2 whenever
x ∈ 0N (V)). This implies that there is some constant K ′ such that y 7→ τN (p(x, 9(y))) is K ′-Lipschitz
for all x ∈ 0N (V).

Let
αN (x)= E[τN (p(x +9(YN )))],

βN (x)= E[τN (p(x + Y + N ))] = exp
( t L N

2

)
[τ(p)](x),

β(x)= exp
( t L

2

)
[τ(p)](x).

By Theorem 2.10 applied to YN ,

x ∈ 0N (V) =⇒ P
(
|τN (p(x +9(YN )))−αN (x)| ≥

δ

3

)
≤ 2e−δ

2 N 2/(18t (K ′)2).

On the other hand, we know by standard tail estimates on the GUE (see Corollary 2.12) that

lim
N→∞

E[τN (q(YN ))1‖YN ‖≥3t1/2] = 0
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for every noncommutative polynomial q . This implies that |αN (x)−βN (x)|→ 0 uniformly for x ∈0N (V).
On the other hand, by Lemma 3.21,

βN (x)= exp
( t L N

2

)
[τ(p)](x)→ exp

( t L
2

)
[τ(p)](x)= β(x)

where the convergence occurs coefficientwise. Now exp(t L N/2)[τ(p)] is a sum of products of traces
of noncommutative monomials q of degree ≤ d and for every such q, we know τN (q(x)) is uniformly
bounded on 0N (V) by our choice of V . Thus, coefficientwise convergence of βN → β implies uniform
convergence for x ∈ 0N (V). Therefore, for sufficiently large N we have |βN (x) − β(x)| ≤ δ/3 for
x ∈ 0N (V), and hence

P
(
|τN (p(X N + YN ))− τ(β(X N ))| ≥

2δ
3
, X N ∈ 0N (V), ‖YN‖ ≤ 3t1/2

)
≤ 2e−δ

2 N 2/(18t (K ′)2),

where we have applied the Fubini–Tonelli theorem for the product measureµN⊗σt,N . By our concentration
assumption,

P
(
|τN (β(X N ))− λ(β)| ≥

δ

3

)
→ 0, P(X N ∈ 0N (V))→ 1,

and by Corollary 2.12 also P(‖Yk‖ ≥ 3t1/2)→ 0. Altogether, we have

P(|τN (p(X N + YN ))− λ(β)| ≥ δ)→ 0.

But note that λ(β)= λ(exp(t L/2)[τ(p)])= (λ�σt)(p) by Lemma 3.23. Thus, the proof is complete. �

Proof of Theorem 7.1. Let VN ,t = Rt VN be the potential associated to µN ∗ σt,N . Let us verify that VN ,t

satisfies the assumptions (A)–(D) for every t > 0.

(A) This follows from Theorem 6.1(1) because VN ,t = Rt VN ; hence VN ,t ∈ E(0,C).

(B) This follows from Lemma 7.4.

(C) This follows from tail bounds on the GUE (Corollary 2.12).

(D) This follows from Proposition 6.28.

Next, the fact that λ ∈6m,R0 follows from Proposition 5.5 with n = 1.
Claim (1) of the theorem follows by applying Proposition 5.10 to µN ∗ σt,N with n = 1.
For claim (2), recall that by Lemma 5.7, (5-6),

1
N 2 h(µN )+

m
2

log N = 1
2

∫
∞

0

( m
1+t
−

1
N 3 I(µN ∗ σt,N )

)
ds+ m

2
log 2πe. (7-1)

Because N−3I(µN ) converges as N →∞, there is some constant K with N−3I(µN ) ≤ K for all N.
Also, because of assumptions (B) and (C), we have

∫
‖x‖22 dµN (x)→

∑m
j=1 λj (X2

j ) > 0. Therefore, there
is a constant a such that

∫
‖x‖22 dµN (x)≥ ma for large enough N. Thus, (5-4), we have for sufficiently

large N that
m

a+t
≤

1
N 3 I(µN ∗ σt,N )≤min

(
M, m

t

)
.
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Thus, we can apply the dominated convergence theorem to take the limit as N →∞ inside the integral
on the right-hand side of (7-1) and apply claim (1) to conclude that

lim
N→∞

( 1
N 2 h(µN )+

m
2

log N
)
→ χ∗(λ).

On the left-hand side of (7-1), we will apply Proposition 5.5 with n = 1. We may replace VN by
VN − VN (0) without changing µN (because the definition of µN includes the normalizing constant Z N

anyway). Then because {DVN } is asymptotically approximable by trace polynomials, we know that
{VN } is asymptotically approximable by trace polynomials (Lemma 3.29). Therefore, the hypotheses of
Proposition 5.5 are satisfied and so

χ(λ)= lim sup
N→∞

( 1
N 2 h(µN )+

m
2

log N
)
= χ∗(λ)

and the same holds for χ(λ). Moreover, this holds for µN ∗ σt,N just as well as µN because µN ∗ σt,N

satisfies the same assumptions (A)–(D).
For claim (3), first fix N and let X be a random variable with law µN , and let Yt be an independent

Hermitian Brownian motion (here Yt ∼ σt,N ). Let 4t = DVN ,t(X + Yt), which is the conjugate variable
of X + Yt . Then

1
N 3 I(µN ∗ σt,N )= E‖4t‖

2
2

Suppose 0 ≤ s ≤ t ≤ T. Then X + Yt is the sum of the independent random variables X + Ys and
Yt − Ys , and thus 4t = E[4s |X + Yt ] by Lemma 5.6. In other words, 4t is the orthogonal projection of
DVN ,s(X + Ys) onto the space of L2 random variables that are functions of X + Yt , or in other words it
is the function of X + Yt that is closest to 4s in L2. This implies that

[‖4s −4t‖
2
2] ≤ E[‖DVN ,s(X + Ys)− DVN ,s(X + Yt)‖

2
2]

≤ E
[

C2

(1+Cs)2
‖Ys − Yt‖

2
2

]
=

C2

(1+Cs)2
m(t − s)

using the fact that VN ,s ∈ E(0,C(1+Cs)−1) and hence DVN ,s is C(1+Cs)−1-Lipschitz. Since 4t is
the orthogonal projection of 4s onto this subspace, we know 4s −4t is orthogonal to 4t and hence

E[‖4s‖
2
2] − E[‖4t‖

2
2] = E[‖4s −4t‖

2
2].

Overall,

0≤ 1
N 3 I(µN ∗ σs,N )−

1
N 3 I(µN ∗ σt,N )≤

C2

(1+Cs)2
m(t − s).

This immediately proves that t 7→ N−3I(µN ∗ σt,N ) is a decreasing function of t , it is Lipschitz, and the
absolute value of the derivative is bounded by C2m/(1+Ct)2. The same holds for 8∗(λ� σt) by taking
the limit as N →∞. �
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8. Free Gibbs laws

In the situation of Theorem 4.1, we want to interpret the law λ as the free Gibbs state for a potential
which is the limit of the VN . To this end, we will define a noncommutative function space where each
element is a limit of functions on MN (C)

m
sa. We will then give several characterizations of the closure of

trace polynomials in this space, as well as the class of potentials to which our previous results apply.

8A. Asymptotic approximation and function spaces. Let Y• = {YN } be a sequence of normed vector
spaces. We define a (possibly infinite) seminorm on sequences φ• = {φN } of functions MN (C)

m
sa→ YN by

‖φ•‖R,Y• = lim sup
N→∞

sup
‖x‖≤R

‖φN (x)‖YN .

Let Fm(Y•) be the vector space

{φ• : ‖φ•‖R,Y• <+∞ for all R}/{φ• : ‖φ•‖R,Y• = 0 for all R}.

For a sequence φ•, we denote its equivalence class by [φ•].
We equip Fm(Y•) with the topology generated by the seminorms ‖ · ‖R,Y• , or equivalently given by the

metric

dFm(Y•)(φ•, ψ•)=

∞∑
n=1

1
2n min(‖φ•−ψ•‖n,Y , 1). (8-1)

Note that Fm(Y•) is a complete metric space in this metric and is a locally convex topological vector
space.

There is a canonical map from the vector space of scalar-valued trace polynomials TrP0
m into F 0

m :=

Fm(C) by the map that sends a trace polynomial to the corresponding sequence of functions it defines on
MN (C)

m
sa. A sequence φ• is asymptotically approximable by trace polynomials if and only if [φ•] is in

the closure of the image of TrP0
m in F 0

m , which we will denote by T 0
m . (Unfortunately, we do not know

whether the map TrP0
m→ F 0

m is injective, but this point is irrelevant for our purposes.)
Similarly, let M•(C)

m be the sequence {MN (C)
m
} equipped with ‖ · ‖2. There is a canonical map from

TrP1
m into F 1

m := Fm(M•(C)) given by mapping a trace polynomial to the corresponding sequence of
functions on matrices. A sequence φ• of functions MN (C)

m
sa→ MN (C)sa is asymptotically approximable

by trace polynomials if and only if [φ•] is in the closure of the image of TrP1
m , which we denote by T 1

m .
The spaces T 0

m and T 1
m can be viewed as noncommutative function spaces through the following

alternative characterization. Here R denotes the hyperfinite II1 factor and Rω denotes its ultrapower; for
an explanation, see [Anantharaman and Popa 2016, §1.6 and §5.4] or [Capraro 2010, pp. 5–7].

Lemma 8.1. Let f ∈ TrP0
m . Then we have

lim sup
N→∞

sup
x∈MN (C)

m
sa

‖x‖∞≤R

| f (x)| = sup
N

sup
x∈MN (C)

m
sa

‖x‖∞≤R

| f (x)| = sup
x∈(Rω

sa)
m

‖x‖∞≤R

| f (x)|. (8-2)

If we denote the common value by ‖ f ‖T 0
m ,R , then this family of seminorms defines a metrizable topology

on TrP0
m with the metric given as in (8-1), and T 0

m is the completion of TrP0
m in this metric. The same
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result holds for T 1
m using the seminorm

lim sup
N→∞

sup
x∈MN (C)

m
sa

‖x‖∞≤R

‖ f (x)‖2 = sup
N

sup
x∈MN (C)

m
sa

‖x‖∞≤R

‖ f (x)‖2 = sup
x∈(Rω

sa)
m

‖x‖∞≤R

‖ f (x)‖2. (8-3)

Proof. Fix f and let A, B, and C be the three quantities in (8-2) from left to right. It is clear that A ≤ B.
Moreover, B ≤ C because there is an isometric trace-preserving embedding of MN (C) into Rω. To show
that C ≤ A, pick x ∈ (Rω

sa)
m with ‖x‖ ≤ R. Then there exists xn ∈Rm

sa with ‖xn‖ ≤ R and x = limn→ω xn .
For each n, we can choose an Nn , an embedding MNn (C)→R and a yn ∈MNn (C) such that ‖yn‖≤ R and
‖xn− yn‖2 ≤ 1/2n and limn→∞ Nn =+∞. Then x = limn→ω yn and | f (x)| = limn→ω | f (yn)| ≤ A. This
shows that the three seminorms in (8-2) are equal, and the other claims follow because these seminorms
are the same as the seminorms for F 0

m . �

From this point of view, every f ∈ T 0
m has a canonical sequence that represents its equivalence class

in F 0
m , constructed as follows. If we write f as the limit of a sequence of trace polynomials f (k), then

f(k)|MN (C)msa
converges locally uniformly on MN (C)

m
sa as k → ∞ and the limit is independent of the

approximating sequence f (k). We can therefore define f |MN (C)msa
to be this limit.

Similarly, f defines a function on (Rω
sa)

m. Moreover, if (M, τ ) is a tracial von Neumann algebra and
there is a trace-preserving embedding ι :M→Rω, then we may define f |M = f ◦ ι. It is easy to see that
this is independent of the choice of trace-preserving embedding if f is a trace polynomial, and this holds
for general f ∈ T 0

m or T 1
m by density of trace polynomials. In this sense, T 0

m and T 1
m represent spaces

of universal scalar- or operator-valued functions that can be applied to self-adjoint operators in every
Rω

sa-embeddable tracial von Neumann algebra.
In the scalar-valued case, we have yet another characterization of T 0

m :

Lemma 8.2. Let 6m,bdd =
⋃

R>06m,R . Let C(6m,bdd) be the space of functions g : 6m,bdd→ C such
that g ∈ C(6m,R) for every R, equipped with the family of seminorms ‖ · ‖C(6m,R). Then T 0

m is isomorphic
to C(6m,bdd) as a topological vector space.

Proof. For a scalar-valued trace polynomial f , the value f (x) only depends on the law of x , so that
f (x)= g(λx) for some function g :6m→ R such that g ∈ C(6m,R) for all R, and we have

‖ f ‖T 0
m ,R = ‖g‖C(6m,R).

Passing to the completion with respect to the metric defined as in (8-1), we have a map ι : T 0
m →C(6m,bdd)

which is an isomorphism onto its image. To show that ι is surjective, note the algebra of trace polynomials is
self-adjoint and separates points in 6m,R , and hence by the Stone–Weierstrass theorem, trace polynomials
are dense in C(6m,R) for every R. Therefore, if g ∈ C(6m,R), we can choose a trace polynomial
g(k)(λx) = f (k)(x) such that ‖g− g(k)‖C(6m,k) ≤ 1/2k. Then f (k) converges to some f in T 0

m , and we
have ι( f )= g. �

8B. Convex differentiable functions. Now we are ready to characterize the type of convex functions
which occur in Theorem 7.1. First of all, we let T 0,1

m be the completion of the trace polynomials with
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respect to the metric

d( f, g)=
∞∑

n=1

1
2n [min(1, ‖ f − g‖T 0

m ,n)+min(1, ‖D f − Dg‖(T 1
m )

m ,n)].

Observe that if f ∈ T 0,1
m and f (k) is a sequence of trace polynomials converging to f in T 0,1

m as k→∞,
then D f (k) converges in (T 1

m )
m and the limit is independent of the choice of approximating sequence.

We denote this limit by D f .

Remark 8.3. If f and f (k) are as above, then since D f (k) is a tuple of trace polynomials, it is continuous
on the operator norm ball {y ∈ MN (C)

m
sa : ‖y‖∞ ≤ R} with a modulus of continuity that only depends on

R and does not depend on N. Because D f (k)→ D f uniformly on the operator-norm ball (with rate of
convergence independent of N ), we know D f is also continuous on this operator-norm ball with modulus
of continuity independent of N.

It follows that for every x, y ∈ MN (C)
m
sa with ‖x‖, ‖y‖ ≤ R we have

f (y)− f (x)= 〈D f (x), y− x〉2+ o(‖y− x‖2),

where the error estimate only depends on R and not on N. In particular, this shows D f is uniquely
determined by f . Also, it shows that D f |MN (C)msa

is equal to the normalized gradient of f |MN (C)msa
in

the ordinary sense of functions on MN (C)
m
sa
∼= Rm N 2

.

Lemma 8.4. Let f ∈ T 0,1
m be real-valued. The following are equivalent:

(1) The function f |MN (C)msa
is convex for every N.

(2) The function f is convex as a function on (Rω
sa)

m.

(3) There exists a sequence of differentiable convex functions VN : MN (C)
m
sa→ R such that [V•] = f

and [DV•] = D f. (Here DV• denotes the sequence (DVN )N∈N, where D is the normalized gradient
understood in the standard sense of calculus.)

Proof. The implication (1) =⇒ (2) follows from an argument similar to the proof of Lemma 8.1.
The implication (1) =⇒ (3) holds because we can take VN = f |MN (C)msa

.
Now we will prove (3) =⇒ (1). Fix N. To prove that f |MN (C)msa

is convex, it suffices to show that
〈D f (x)− D f (y), x − y〉2 ≥ 0 for every x, y ∈ MN (C)

m
sa. For k ∈ N, consider x ⊗ Ik and y ⊗ Ik in

MNk(C)
m
sa. Then, as k→∞,

〈D f (x)− D f (y), x − y〉2 = 〈D f (x ⊗ Ik)− D f (y⊗ Ik), x ⊗ Ik − y⊗ Ok〉2;

meanwhile, if R =max(‖x‖, ‖y‖), then since DVN − D f → 0 in ‖ · ‖2 uniformly on the operator norm
ball of radius R, we have as k→∞ that

〈D f (x⊗ Ik)− D f (y⊗ Ik), x⊗ Ik − y⊗ Ik〉2−〈DVNk(x⊗ Ik)− DVNk(y⊗ Ik), x⊗ Ik − y⊗ Ik〉2→ 0.

Because VNk is convex, the second inner product is ≥ 0 and therefore 〈D f (x)− D f (y), x − y〉2 ≥ 0. �
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Let Em(c,C)0,1 denote the class of V ∈ T 0,1
m such that V (x) − (c/2)‖x‖22 is convex and V (x) −

(C/2)‖x‖22 is concave. If 0 < c < C and V ∈ Em(c,C)0,1 and VN = V |MN (C)msa
, then the sequence of

normalized gradients DVN is asymptotically approximable by trace polynomials. If we let µN be the
corresponding measure on MN (C)

m
sa, then Theorem 4.1 (the hypothesis (4-1) being trivially satisfied by

unitary invariance) implies that µN concentrates around a noncommutative law λV , which we will call
the free Gibbs state for the potential V.

Furthermore, the free Gibbs state λV is independent of the choice of representative sequence in the
following sense. Let µN be the measure on MN (C)

m
sa given by the potential VN = V |MN (C)msa

. Let WN

be another sequence of potentials satisfying the hypotheses of Theorem 4.1 such that [W•] = V in T 0,1
m ,

and let νN be the sequence of random matrix measures given by WN . By Theorem 4.1, νN concentrates
around some noncommutative law λ. We claim that λ = λV . To prove this, consider the sequence ṼN

which equals VN for odd N and WN for even N. Then [Ṽ•] = V in T 0,1
m , which means that {DṼN }N∈N is

asymptotically approximable by trace polynomials. Therefore,

λV (p)= lim
N even
N→∞

∫
τN (p) dµN = lim

N odd
N→∞

∫
τN (p) dνN = λ(p).

In fact, Lemma 8.4 implies that the noncommutative laws λ which occur as limits in Theorem 4.1
are precisely the free Gibbs laws for potentials V ∈ Em(c,C)0,1. In particular, Theorem 7.1 implies that
χ = χ = χ∗ for every such law.

Remark 8.5. We have not proved that the law λV is uniquely characterized by the Schwinger–Dyson
equation λ[DV (X) f (X)] = λ⊗λ[D f (X)], although something like this is implied by [Dabrowski 2016].
One could hope to prove this by letting the semigroup T V

t act on an abstract space of Lipschitz functions
which is the completion of trace polynomials (where the metric now allows x to come from any tracial
von Neumann algebra rather than only the Rω-embeddable algebras). We would want to show that if λ
satisfies the Schwinger–Dyson equation, then λ(T V

t u)= λ(u), but to justify the computation, we need to
show more regularity of T V

t u than we have done in this paper. In the SDE approach as well, the proof
that λV is characterized by Schwinger–Dyson is subtle when we do not assume more regularity for V
(see [Dabrowski 2010; 2016]).

8C. Examples of convex potentials. A natural class of examples of functions in Em(c,C)0,1 are those
of the form

V (x)= 1
2‖x‖

2
2+ ε f (u)

where ε is a small positive parameter,

u = (u1, . . . , um), u j =
x j + 4i
x j − 4i

,

and f is a real-valued trace polynomial in u and u∗. Computations similar to those of Section 3B show
that the normalized Hessian of Jac(D f (u(x))) with respect to x is bounded uniformly in N. Therefore,
V ∈ Em

( 1
2 ,

3
2

)0,1 for sufficiently small ε. Similar examples are described in the introduction of [Dabrowski
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2016]. More generally, we can replace the trace polynomial f (u) by a power series where the individual
terms are trace monomials in u.

The class Em(c,C)0,1 does not include trace polynomials in x because if g is a trace polynomial of
degree ≥ 3, then we cannot have g(x) convex and g(x)− (C/2)‖x‖22 concave (globally). However, if
we consider a potential which is a small perturbation of a quadratic (as considered in [Guionnet and
Maurel-Segala 2006; Guionnet and Shlyakhtenko 2014]), we can fix this problem by introducing an
operator-norm cut-off as follows.

Let f be a scalar-valued trace polynomial and let us define

V (ε)(x)= ‖x‖22+ ε f (x). (8-4)

Let φ : R → R be a C∞c function such that φ(t) = t for |t | ≤ R and φ(t) = 0 for |t | ≥ 2R. Let
8 : MN (C)

m
sa→ MN (C)

m
sa be given by 8N (x)= (φ(x1), . . . , φ(xm)).

Ṽ (ε)
N (x)= ‖x‖22+ ε fN (8N (x)). (8-5)

We will prove the following.

Proposition 8.6. Let Ṽ (ε)
N be given as above. Then [Ṽ (ε)

•
] ∈ T 0,1

m . Moreover, given δ > 0, we have
[Ṽ (ε)
•
] ∈ Em(1− δ, 1+ δ)0,1 for sufficiently small ε (depending on f , R, and δ).

As a consequence, we will deduce the following result about measures defined by V (ε) restricted to an
operator-norm ball (without the smooth cut-off 8).

Proposition 8.7. Let 2< R′ < R, let f be a trace polynomial, and let V (ε) be as in (8-4). Let

dµ(ε)N (x)=
1

Z N
exp(−N 2V (ε)

N (x))1‖x‖≤R dx .

For sufficiently small ε (depending on f , R, and R′), we have the following. The measure µ(ε)N exhibits
exponential concentration around a noncommutative law λ(ε) ∈6m,R′ . If X ∈ (M, τ ) is a noncommutative
m-tuple realizing the law λ(ε), then the conjugate variable is given by DV (ε)(X). Moreover, we have

χ(λ(ε))= χ(λ(ε))= χ∗(λ(ε))= lim
N→∞

( 1
N 2 h(µ(ε)N )+

m
2

log N
)
.

To fix notation for the remainder of this section, functions without a subscript, such as f , will denote
elements of T 0

m or T 0,1
m , and D f will denote the “gradient” defined in the abstract space T 0,1

m as the limit
of the “gradients” of trace polynomials approximating f . However, fN will denote f |MN (C)msa

, and D fN

will denote the normalized gradient N∇ fN defined in the usual sense of calculus with respect to 〈 · , · 〉2
on MN (C)

m
sa. Moreover, H fN = Jac(D fN ) will denote the Hessian of fN with respect to 〈 · , · 〉2.

In order to prove Proposition 8.6, we must understand D[ fN ◦8N ] and H [ fN ◦8N ]. To this end, we
recall some results of [Peller 2006] on noncommutative derivatives of φ(x), where φ is a smooth function
on the real line.
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For a polynomial φ in one variable, the noncommutative derivative Dφ ∈ C〈X〉 ⊗C〈X〉 defined by
Definition 3.6 can be written as the difference quotient

Dφ(s, t)=
φ(s)−φ(t)

s− t
,

where we view C〈X〉 ⊗C〈X〉 as a subset of functions on R2 with the variables s and t . However, the
above difference quotient makes sense whenever φ : R→ C is smooth. Thus, it defines an extension of D
to continuously differentiable functions φ of one variable.

Similarly, if φ is a polynomial, then the higher-order noncommutative derivatives Dnφ can be viewed
as functions of n+ 1 variables, which are obtained through iterated difference quotients and thus their
definition can be extended to smooth functions φ. (However, beware that we have not defined Dn

j φ if φ is
a nonpolynomial function of multiple variables.)

If φ is a polynomial, then to estimate φ(X)−φ(Y ) for operators X and Y with norm bounded by R, one
seeks to control the norm of Dφ in the projective tensor product L∞[−R, R] ⊗̂ L∞[−R, R]. Similarly,
if φ is a smooth function and φ(X) and φ(Y ) are defined through functional calculus, one can estimate
the operator norm ‖φ(X)−φ(Y )‖ by representing φ as an integral of simpler functions (e.g., by Fourier
analysis) whose noncommutative derivatives are easier to analyze. In this case, it is convenient to write
Dφ as an integral rather than a sum of simple tensors.

We thus consider the integral projective tensor powers of the space of bounded Borel functions B(R).
The integral projective tensor product B(R)⊗̂i n consists of Borel functions G on Rn which admit a
representation

G(x1, . . . , xn)=

∫
�

G1(x1, ω) · · ·Gn(xn, ω) dµ(ω) (8-6)

for some measure space (�,µ) such that∫
�

‖G1( · , ω)‖B(R) · · · ‖G1( · , ω)‖B(R) dµ(ω) <+∞ (8-7)

and we define ‖G‖B(R)⊗̂i n to be the infimum of (8-7) over all representations (8-6).
Given G ∈ B(R)ω̂i n, bounded self-adjoint operators x0, . . . , xn and bounded operators y1, . . . , yn , we

define

G(x0, . . . , xn) # (y1⊗ · · ·⊗ yn)=

∫
�

G0(x0, ω)y1G1(x1, ω) · · · ynGn(xn, ω) dµ(ω), (8-8)

where G0, . . . , Gn satisfy (8-6). This is well-defined by [Peller 2006, Lemma 3.1]. If the x j and yj are
elements of a tracial von Neumann algebra (M, τ ), we have by the noncommutative Hölder’s inequality
(see Section 2C) that if 1/α = 1/α1+ · · ·+ 1/αn , then

‖G(x0, . . . , xn) # (y1⊗ · · ·⊗ yn)‖α ≤ ‖G‖B(R)⊗̂i (n+1)‖y1‖α1 · · · ‖yn‖αn . (8-9)

Moreover, we have the following bounds on the noncommutative derivatives of φ as a corollary of the
results of [Peller 2006].
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Proposition 8.8. There exists a constant Kn such that for all φ ∈ C∞c (R)

‖Dnφ‖B(R)⊗̂i (n+1) ≤ Kn

∫
R

|φ̂(ξ)ξ n
| dξ. (8-10)

Proof. As in [Peller 2006, §2], choose w ∈ C∞c such that 0≤ w ≤ χ[−1/2,2] and
∑

k∈Zw(2
−kξ)= 1 for

ξ > 0. Let Wk and W #
k be given by Ŵk(ξ) = w(2−nξ) and Ŵ #

k (ξ) = w(−2−k x), where ·̂ denotes the
Fourier transform. It is shown in [Peller 2006, Theorem 5.5] that

‖Dnφ‖B(R)⊗̂i (n+1) ≤ Kn

∑
k∈Z

2nk(‖Wk ∗φ‖L∞(R)+‖W #
k ∗φ‖L∞(R)).

This can be estimated by the right-hand side of (8-10) (for a possibly different constant) by a standard
Fourier analysis computation. �

Proof of Proposition 8.6. Recall that Ṽ (ε)
N (x)= 1

2‖x‖
2
2+ ε fN ◦8N . Thus, to show that the sequence V (ε)

N
defines an element of T m

0 , it suffices to prove this for fN ◦8N . To this end, it is sufficient to show that
for each r > 0 there is a sequence of trace polynomials {g(k)}k∈N such that

lim
k→∞

sup
N∈N

sup
x∈MN (C)msa:‖x‖∞≤r

|g(k)(x)− fN ◦8N (x)| = 0

and
lim

k→∞
sup
N∈N

sup
x∈MN (C)msa:‖x‖∞≤r

‖Dg(k)(x)− D[ fN ◦8N (x)]‖2.

Fix r > 0. By standard approximation techniques, there exist Schwarz functions φ(k) : R→ R such that
φ(k)|[−r,r ] is a polynomial and φ(k)→ φ in the Schwarz space as k→∞. By Proposition 8.8, we have
Dnφ(k)→ Dnφ in B(R)⊗̂i (n+1) as k→∞ for every n.

Let 8(k)N (x1, . . . , xm)= (φ
(k)(x1), . . . , φ

(k)(xm)). Then fN ◦8
(k)
N is given by a trace polynomial g(k)

on {‖x‖∞ ≤ r}. Because of the spectral mapping theorem,

sup
‖x‖≤r
‖8

(k)
N (x)−8N (x)‖∞ ≤ m sup

t∈[−r,r ]
|φ(k)(t)−φ(t)|,

which is independent of N and vanishes as k→∞. Thus, our trace polynomials g(k) approximate fN ◦8N

uniformly on the operator norm ball {x : ‖x‖∞ ≤ r}.
Next, we must show that Dg(k) approximates D[ fN ◦8N ] uniformly in ‖ · ‖2 on the operator-norm

ball {‖x‖∞ ≤ r}. By the chain rule, we have

Dj [ fN ◦8N ] = Jacj (8N )
t
[Dj fN ],

where Dj and Jacj are the normalized gradient and Jacobian with respect to the variable x j ∈ MN (C)sa.
Now

Jacj (8N )(x)y = Dφ(x j ) # y.

Now Dφ viewed as an element of the tensor product C[X ] ⊗C[X ] is invariant under the flip map that
switches the order of the tensorands; this is because Dφ is represented as a difference quotient for
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one-variable functions. Flip invariance implies that

τN [(Dφ(x j ) # y)z] = τN [y(Dφ(x j ) # z)],

which means that the operator Jacj (8N )(x) on MN (C)sa is self-adjoint. Hence,

Dj [ fN ◦8N ](x)= Jacj (8N (x))[Dj fN ](x)= Dφ(x j ) # Dj fN (8N (x)).

This function is given by a trace polynomial on {‖x‖∞ ≤ r}, and it is also equal to the trace polynomial
Dj g(k) when evaluated on any tuple of matrices because both functions are equal to the gradient of
g(k)|MN (C)msa

. Moreover, for ‖x‖∞ ≤ r , we have

Dφk(x j ) # Dj f (8k(x))= Dφk(x j ) # Dj f (8(x))+Dφk(x j ) # [Dj f (8k(x))− Dj f (8(x))].

The first term converges to Dφ(x j ) # Dj f (8(x)) in ‖ · ‖2 uniformly on {‖x‖∞ ≤ r} using (8-9) with
estimates independent of N. Similarly, because the images of 8k and 8 are contained in an operator norm
ball and Dj f is K -Lipschitz in ‖ · ‖2 on this ball for some K > 0, we have Dj f (8k(x))−Dj f (8(x))→ 0
uniformly. This in turn implies that the second term goes to zero because Dφk(x j ) is uniformly bounded
in B(R)⊗̂i B(R). Thus, for every r > 0, there is a sequence of trace polynomials g(k) such that gk→ f ◦8
and Dg(k)→ D( f ◦8) uniformly on {‖x‖∞ ≤ r}. This means that f ◦8 ∈ T 1,0

m .
It follows that the sequence Ṽ (ε)

N defines a function in T 0,1
m for every ε. It remains to show that this

function is in Em(1− δ, 1+ δ)0,1 for sufficiently small ε. To this end, it suffices to show that fN ◦8N

defines a function in Em(−a, a)0,1 for some real a > 0. Thus, we only need to obtain some upper and
lower bounds on the operator norm of H [ fN ◦8N ] that are independent of N. However, this is equivalent
to showing that Dj ( fN ◦8N ) = DφN (x j ) # Dj fN (8N (x)) is Lipschitz in ‖ · ‖2 for each j (uniformly
in N ). Because D2φ is bounded in B(R) ⊗̂i B(R) ⊗̂i B(R), we see that

‖Dφ(x j ) # y−Dφ(x ′j ) # y‖2 ≤ K‖x j − x ′j‖2‖y‖∞

for some constant K ; we may apply this to y = D j fN (8N (x)), which is bounded in ‖ · ‖∞ because
D j fN is a trace polynomial and 8N (x) is bounded in ‖ · ‖∞. Together with the fact that Dj fN (8N (x))
is Lipschitz in ‖ · ‖2, this implies that Dj ( fN ◦8N ) is Lipschitz in ‖ · ‖2 as desired. �

Proof of Proposition 8.7. Let µ̃(ε)N be the measure on MN (C)
m
sa given by the potential Ṽ (ε)

N . Let δ be
a number in (0, 1) to be chosen later. By Proposition 8.6, we have that Ṽ (ε)

∈ Em(1 − δ, 1 + δ)0,1

for sufficiently small ε. By Theorem 4.1, the laws µ̃N concentrate around a noncommutative law λ.
Furthermore, in Theorem 4.1(1), we can take M = 0 and c = 1− δ and C = 1+ δ, so that

lim sup
N→∞

RN ≤
2

(1− δ)1/2
+
‖DṼ (ε)(0)‖2

1− δ
+

δ

(1− δ)3/2
.

Note that DṼ (ε)(0)= DV (ε)(0)= εD f (0) is a scalar multiple of the identity matrix since f is a trace
polynomial. Because R′ > 2, we may choose δ sufficiently small that

2
(1− δ)1/2

+
δ

(1− δ)3/2
< R′.
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Then by choosing ε (and hence ‖DṼ (ε)(0)‖2) sufficiently small, we can arrange that

R∗ = lim sup
N→∞

RN < R′.

This implies that the measures µ̃(ε)N concentrate on the ball {‖x‖∞ ≤ R′}. For ‖x‖∞ ≤ R, we have
Ṽ (ε)(x)= V (ε)(x), and therefore µ(ε)N is the (normalized) restriction of µ̃(ε)N to {‖x‖∞ ≤ R}. It follows
that µ(ε)N concentrates around the law λ(ε) as well.

If X ∈ (M, τ ) realizes the law λ(ε), then ‖X‖∞ ≤ R′ since λ ∈ 6m,R∗ ⊆ 6m,R′ by Theorem 4.1(2).
Moreover, by Proposition 5.10, the conjugate variables for λ are given by DṼ (X)= DV (X). Moreover,
by Theorem 7.1 applied to µ̃(ε)N , we have

χ(λ(ε))= χ(λ(ε))= χ∗(λ(ε))= lim
N→∞

( 1
N 2 h(µ̃(ε)N )+

m
2

log N
)
.

In the last equality, we can replace µ̃N by µN as in the proof of Proposition 5.5 because µ̃N concentrates
on {‖x‖∞ ≤ R′}. �

Remark 8.9. The approach given here probably does not give the optimal range of ε for Proposition 8.7.
To get the best result, one would want a more direct way to extend the potential V (ε)

: {‖x‖∞ ≤ R} → R

to a potential Ṽ (ε) defined everywhere. This leads us to ask the following question.
Suppose that V is a real-valued function in the closure of trace polynomials with respect to the norm
‖ f ‖T 0

m ,R + ‖D f ‖T 1
m ,R , and hence V defines a function {x : ‖x‖∞ ≤ R} → R for x ∈ MN (C)

m
sa. If

V (x)− (c/2)‖x‖22 is convex and V (x)− (C/2)‖x‖22 is concave on {‖x‖ ≤ R}, then does V extend to a
potential Ṽ ∈ Em(c,C)0,1? What if we allow Ṽ to have slightly worse constants c and C?

The construction of extensions that preserve the convexity properties is not difficult, but it is less obvious
how to construct an extension that one can verify preserves the approximability by trace polynomials.

Acknowledgements

I thank Timothy Austin, Guillaume Cébron, Yoann Dabrowski, Alice Guionnet, Benjamin Hayes, Dimitri
Shlyakhtenko, Terence Tao, Yoshimichi Ueda, and Dan Voiculescu for various useful conversations. I
especially thank Shlyakhtenko for his mentorship and ongoing conversations about free entropy, and
Dabrowski for detailed discussions of his own results and other recent literature. I acknowledge the support
of the NSF grants DMS-1344970, DMS-1500035, and DMS-1762360. I thank the Institute for Pure and
Applied Mathematics for hospitality and a stimulating research environment during the long program
on quantitative linear algebra in Spring 2018, and I thank the Centre de Recherches Mathématiques in
Montréal for their hospitality during the free probability workshop on March 4–8, 2019. I also thank the
referee for detailed feedback that improved the clarity and correctness of the paper throughout. Collin
Cranston also helped correct some typos.

Note added in proof

Since this paper was first submitted, the author has extended the techniques to cover conditional ex-
pectations and entropy in [Jekel 2020a] and in particular obtained an alternative proof of Theorem 7.1.
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Moreover, the Ph.D. thesis [Jekel 2020b] contains the results of this paper and [Jekel 2020a] with more
detail and historical background.
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PARAMETRIX FOR A SEMICLASSICAL SUBELLIPTIC OPERATOR

HART F. SMITH

We demonstrate a parametrix construction, together with associated pseudodifferential operator calculus,
for an operator of sum-of-squares type with semiclassical parameter. The form of operator we consider
includes the generator of kinetic Brownian motion on the cosphere bundle of a Riemannian manifold.
Regularity estimates in semiclassical Sobolev spaces are proven by establishing mapping properties for
the parametrix.

1. Introduction

We deal in this paper with a class of second order, subelliptic partial differential operators of the sum-of-
squares form

Ph = X0− h
d∑

j=1

X2
j − h

d∑
j=1

c j X j , h ∈ (0, 1], (1-1)

where the X j for 0≤ j ≤ d are smooth vector fields, the c j are smooth functions, and h > 0 is considered
as a semiclassical parameter. We work in 2d + 1 dimensions, either on a compact manifold or an open
subset of R2d+1, and make the following assumptions throughout this paper.

Assumption 1. • The collection of 2d + 1 vectors {X0, X1, . . . , Xd , [X0, X1], . . . , [X0, Xd ]} spans
the tangent space at each base point.

• The collection {X1, . . . , Xd} is involutive (closed under commutation of vector fields).

For each h > 0 the operator Ph is subelliptic by a result of [Hörmander 1967], and by [Roth-
schild and Stein 1976] the operator Ph controls 2

3 -derivatives in the Sobolev space sense. In the
semiclassical setting it is natural to work with a semiclassical notion of Sobolev spaces; we refer
to [Zworski 2012] for a treatment of semiclassical analysis. The question of interest in this paper is the
dependence on h of the various constants in a priori inequalities for Ph , both in L2 and semiclassical
Sobolev spaces.

Our work is motivated by that of Alexis Drouot [2017], who studied such an operator on the cosphere
bundle S∗(M) of a (d+1)-dimensional Riemannian manifold M. The paper [Drouot 2017] considers the
operator Ph = H +h1S, with H the generator of the Hamiltonian/geodesic flow and 1S the nonnegative
Laplace–Beltrami operator along the fibers of the cosphere bundle. In local coordinate charts this operator
can be represented in the form (1-1), where X0 = H, and {X j }

d
j=1 is any local orthonormal frame for the

This material is based upon work supported by the National Science Foundation under Grant DMS-1500098.
MSC2010: primary 35H20; secondary 35S05.
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tangent space of the fibers of S∗(M). In [Drouot 2017] it is shown that, if M is negatively curved, then as
h→ 0 the eigenvalues of −i Ph converge to the Pollicott–Ruelle resonances of M. The analogous result
was proven in [Dyatlov and Zworski 2015] for Ph = H + h1, where 1 is the Laplacian on S∗(M). The
interest in taking Ph = H+h1S is that this operator generates what is known as kinetic Brownian motion
on M. For a treatment of this process we refer to [Franchi and Le Jan 2007; Grothaus and Stilgenbauer
2013; Angst, Bailleul, and Tardif 2015; Li 2016].

A key step in the proof of convergence in [Drouot 2017] was controlling the subelliptic estimates for
Ph as h→ 0. We emphasize that the estimates we prove are the same as in that paper, with an occasional
improvement in the remainder terms. The aim here is to obtain a finer microlocal understanding of the
parametrix. We obtain a parametrix valid on the region h1 ≥ 1, strictly larger than the semiclassical
region h21 ≥ 1. The restriction h1 ≥ 1 arises from the largest region of phase space on which the
uncertainty principle holds for the parametrix. The estimates in [Drouot 2017] were obtained through
commutator methods, analogous to the work of [Hörmander 1967]. Our approach is more similar to
that of [Rothschild and Stein 1976], in that we use an approximation to the operator at each point by a
model nilpotent Lie group, and construct a parametrix from the inverse of the model operator on that
group. Estimates are then obtained from mapping properties for the parametrix. In contrast to [Rothschild
and Stein 1976], which lifted the operator to a higher-dimensional Lie group on which the parametrix
is represented as a singular integral kernel, we construct the parametrix in pseudodifferential form on
the space itself. This procedure is motivated by the author’s work [Smith 1994] on the ∂̄b problem on
three-dimensional CR manifolds of finite type.

When constructing a parametrix for Ph of the form (1-1), it is more natural from the semiclassical
viewpoint to consider h Ph = h X0+

∑d
j=1(h X j )

2, and quantize symbols in terms of hη. This leads to
placing an extra factor of h on the variables η′′ dual to X j for d+1≤ j ≤ 2d , since [h X0, h X j ] ∼ h2 X j+d .
The quantization of symbols is naturally carried out using exponential coordinates with respect to an
extension of {X j }

d
j=0 to a frame {X j }

2d
j=0. We will require that:

Assumption 2. If 1≤ i ≤ d, then [X0, X i ] − 2X i+d ∈ span(X0, . . . , Xd).

This can of course be arranged by setting X i+d = 2[X0, X i ]. In the model nilpotent Lie group setting
where all other commutators vanish, there is a natural nonisotropic dilation structure using powers (2, 1, 3).
Precisely, we split η ∈ R2d+1

= R×Rd
×Rd into (η0, η

′, η′′), and similarly use X ′ as abbreviation for
the collection (X1, . . . , Xd), and X ′′ = (Xd+1, . . . , X2d). Then the dilation that respects the fundamental
solution for the model operator is

δr (η)= (r2η0, rη′, r3η′′).

We now summarize the main result of this paper, leaving details to be expanded upon in later sections.
For simplicity consider an open set U ⊂ R2d+1. For a multi-index α ∈ N2d+1, let

order(α)= 2α0+ |α
′
| + 3|α′′|.

We use expx(y) to denote the time-1 flow of x along
∑2d

j=0 y j X j .
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Proposition 3. Given ρ(x) ∈ C∞c (U ), there is χ0 ∈ C∞c (R
2d+1) and an h-dependent family of symbols

a(x, η) satisfying

|∂βx ∂
α
η a(x, η)| ≤ Cα,βh(h

1
2 + |η0|

1
2 + |η′| + |η′′|

1
3 )−2−order(α),

with Cα,β independent of h ∈ (0, 1], so that the operator ah(x, h D) defined by

ah(x, h D)=
1

(2π)2d+1

∫
e−i〈y,η〉a(x, hη0, hη′, h2η′′) f (expx(y))χ0(y) dy dη

satisfies

ah(x, h D) ◦ Ph = ρ(x)+ rh(x, h D),

where rh(x, h D) is an operator that satisfies the following with C p1,p2 independent of h ∈ (0, 1], for any
polynomials p j (η) on R2d+1:

‖p1(X0, h
1
2 X ′, h

1
2 X ′′) ◦ rh(x, h D) ◦ p2(X0, h

1
2 X ′, h

1
2 X ′′) f ‖L2 ≤ C p1,p2‖ f ‖L2 .

For example, one can take p1 or p2 to yield the operator (1+ X∗0 X0)
N1(1+ h1)N2, where 1 is the

Laplacian on R2d+1. These bounds roughly say that the parametrix inverts Ph on the region

{1≥ h−1
} ∪ {|X0| ≥ 1}.

In particular, the remainder term rh will be of order h∞ if the solution is localized to a region where
1≥ h−1−ε for some ε > 0.

We remark that in the calculus developed here Ph is of order 2, and thus distinct from the standard
semiclassical calculus where h Ph is of order 2. This is related to the fact that we are working on the region
|η| ≥ h1/2 rather than |η| ≥ 1. Symbols of order j are weighted by a factor h− j/2 to ensure that symbols of
negative order (but not necessarily their derivatives) remain bounded as h→ 0. With this accounting, X0

is an operator of order 2, h1/2 X j is of order 1 for 1≤ j ≤ d , and h1/2 X j is of order 3 for d+ 1≤ j ≤ 2d .
Together with the composition calculus, pseudolocality arguments, and L2 mapping bounds for

operators, we deduce the regularity results on S∗(M) for Ph that were established in [Drouot 2017]. These
are stated in Theorems 20 and 21.

The outline of this paper is as follows. In Section 2 we introduce a model operator of Ph on a step-2
nilpotent group, and discuss the homogeneous fundamental solution in this setting. In Section 3 we study
the degree to which the model operator, attached to M by exponential coordinates, approximates Ph .
Careful estimates of the Taylor expansion of vector fields and exponential coordinates are needed to
obtain uniform estimates as h→ 0. In Section 4 we prove that operators of the form ah(x, h D) form
an algebra under composition. This allows for the construction of parametrices from the inverse for
the model operator on the nilpotent Lie group. In Section 5 we establish L2 boundedness of order-0
operators in local coordinates, using a nonisotropic Littlewood–Paley decomposition of the operator
and the Cotlar–Stein lemma. Finally, in Section 6 we establish the main regularity estimates for Ph in
h-Sobolev spaces, leading to the proof of the bounds in [Drouot 2017].
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2. Operators on model domains

In this section we consider a nilpotent Lie group structure on R2d+1 that captures the commutation relations
of the vector fields X j , and we introduce a left-invariant model of Ph . The top-order term in the parametrix
for Ph at a point x ∈U will be given by the fundamental solution for the model operator, attached to U via
exponential coordinates at x relative to the frame {X j }

2d
j=0. In subsequent sections we show that the model

operator agrees to leading order with the expression of Ph in exponential coordinates, and develop a graded
pseudodifferential calculus that allows us to produce a parametrix for Ph modulo a smoothing operator.
We start by considering h = 1, and then obtain the fundamental solution for all h by a suitable dilation.

We use the variables y = (y0, y′, y′′) ∈R×Rd
×Rd, with dual variables η= (η0, η

′, η′′), and introduce
the dilation structure

δr (η)= (r2η0, rη′, r3η′′), δr−1(y)= (r−2 y0, r−1 y′, r−3 y′′).

We also introduce a corresponding nonisotropic homogeneous weight m ∈ C∞(R2d+1
\{0}),

m(η)= (|η0|
6
+ |η′|12

+ |η′′|4)
1
12 ,

so that m(δr (η))= rm(η), and 3−12/5
≤ m(η)≤ 1 when |η| = 1.

Consider the frame of vector fields on R2d+1 given by

• Y0 = ∂0−
∑d

j=1 y j∂ j+d ,

• Yj = ∂ j + y0∂ j+d for 1≤ j ≤ d ,

• Yj = ∂ j for j ≥ d + 1,

and observe that
[Y0, Yj ] = 2Y j+d if 1≤ j ≤ d,

with all other commutators equal to 0. The collection {Y j }
2d
j=0 forms a nilpotent (step-2) Lie algebra.

These are left-invariant vector fields associated to the nilpotent Lie group structure on R2d+1 with product

y×w = (y0+w0, y′+w′, y′′+w′′+ y0w
′
−w0 y′).

The exponential map at base point y, and corresponding exponential coordinates, are given by

expy(w)= (y0+w0, y′+w′, y′′+w′′+ y0w
′
−w0 y′),

2y(z)= (z0− y0, z′− y′, z′′− y′′− y0z′+ z0 y′),
(2-1)

so in particular 20(w)= w.
The vector field Y0 is homogeneous of order 2 under δr in that

Y0( f ◦ r−1)= r−2(Y0 f ) ◦ δr−1,

which we summarize by writing order(Y0)= 2. Similarly, order(Yj )= 1 for 1≤ j ≤ d , and order(Yj )= 3
for d + 1≤ j ≤ 2d . More generally, if we define the order of a multi-index α by

order(α)= 2α0+α1+ · · ·+αd + 3αd+1+ · · ·+ 3α2d = 2α0+ |α
′
| + 3|α′′|,
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then the monomial differential operator yβ∂αy will be homogeneous, with order given by

order(yβ∂αy )= order(α)− order(β). (2-2)

The left-invariant differential operator Y0−
∑d

j=1 Y 2
j is subelliptic and homogeneous of order 2. By

[Folland 1975], it has a unique homogeneous fundamental solution K (y) ∈ C∞(R2d+1
\{0}),(

Y0−

d∑
j=1

Y 2
j

)
K (y)= δ(y), K (δr−1(y))= r (2+4d)−2K (y).

The homogeneous inverse for Y0−
∑d

j=1 Y 2
j is given by convolution with K , which we will express in

pseudodifferential form. Precisely, if we let q0(η)= K̂ , then q0(δrη)= r−2q0(η), and the operator

q0(D) f (y)=
1

(2π)2d+1

∫
R2d+1

e−i〈2y(z),η〉q0(η) f (z) dz dη

is a left and right inverse for Y0−
∑d

j=1 Y 2
j on the space of Schwartz functions.

To conclude this section we consider the semiclassical subelliptic operator hY0−
∑d

j=1 h2Y 2
j . This is

naturally associated to dilating y0 and y′ by h, and y′′ by h2, in that(
Y0−

d∑
j=1

Y 2
j

)
( f (hy0, hy′, h2 y′′))=

(
hY0 f −

d∑
j=1

h2Y 2
j f
)
(hy0, hy′, h2 y′′).

Consequently, if we introduce the operation on symbols

ah(η)= a(η0, η
′, hη′′),

then the inverse for hY0−
∑d

j=1 h2Y 2
j is given by the semiclassical quantization of qh ,

q0,h(h D) f (y)=
1

(2πh)2d+1

∫
R4d+2

e−i〈2y(z),ζ 〉/hq0,h(η) f (z) dz dζ

=
1

(2π)2d+1

∫
R4d+2

e−i〈z,ζ 〉q0,h(η) f (expy(hz)) dz dζ.

3. Approximation by the model domain

Recall that we consider a spanning collection {X0, X1, . . . , X2d} of vector fields on an open subset U of
R2d+1 satisfying the following conditions:

• The collection {X1, . . . , Xd} is involutive (closed under commutation of vector fields).

• If 1≤ i ≤ d , then [X0, X i ] − 2X i+d ∈ span(X0, . . . , Xd).

We will use x, x̃ to denote variables in U and y, z to denote variables in R2d+1.
Let expx(y) be exponential coordinates with base point x in the frame {X0, . . . , X2d}. That is, expx(y)=

γ (1), where γ (0) = x and γ ′(t) =
∑2d

j=0 y j X j (γ (t)). Define exponential coordinates 2x as the local
inverse of expx in a neighborhood of x :

2x(expx(y))= y, expx(2x(x̃))= x̃ .
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Recall the definition (2-2) of the order of a monomial differential operator in y. Consistent with this
we have order(Y0)= 2, order(Yj )= 1 if 1≤ j ≤ d , and order(Yj )= 3 if d + 1≤ j ≤ 2d .

Lemma 4. For 0≤ j ≤ 2d , we can write

(X j f )(expx(y))= Yj ( f (expx(y)))+ R j (x, y, ∂y) f (expx(y)),

where order(R j ) < order(Yj ), in the sense that the Taylor expansion

R j (x, y, ∂y)=
∑
α,k

c j,α,k(x)yα∂k

includes only terms with order(yα∂k) < order(Yj ).
Additionally, c0,α,k(x)≡ 0 unless there is at least one factor of y j with j ≥ 1 occurring in yα.

Proof. Any term yα∂k with |α|> 2 is of order ≤ 0, so we need examine the Taylor expansion of X j in
exponential coordinates only to second power in y. Additionally, order(yi y j∂k)≤ 1, and equals 1 only if
1≤ i, j ≤ d and k ≥ d+ 1. To see that such a term cannot arise in R j for 1≤ j ≤ d , the only case where
order(Yj )≤ 1, we use involutivity of {X1, . . . , Xd} and the Frobenius theorem to see that this collection
remains tangent to the flowout of the subspace y0= y′′= 0, and hence we can write X j =

∑d
k=1 ck(x, y)∂k

if y0 = y′′ = 0 and 1≤ j ≤ d .
Thus, we need show that in the expansion of R j about y = 0 the terms linear in y are of order strictly

less than order(Yj ). For j ≥ d + 1 this is immediate, since X j = ∂ j = Yj at y = 0, and any vector field
that vanishes at 0 includes terms of order at most 2. For 0≤ j ≤ d we expand

X j = ∂ j +
∑
i,k

c j ik(x)yi + (y2)∂y .

Since radial lines in exponential coordinates are integral curves of
∑2d

j=0 y j X j , we have

2d∑
j=0

y j X j =

2d∑
j=0

y j∂ j , (3-1)

from which we deduce
ci jk =−c j ik .

Also, since [X0, X j ] − 2X j+d ∈ span(X0, . . . , Xd), we deduce for j = 1, . . . , d that

c j0k =

{
1, k = j + d,
0, k > d and k 6= j + d.

Since order(yi∂k) < 2 unless k > d , we deduce order(R0(x, y, ∂y)) < 2.
By involutivity of {X1, . . . , Xd}, if 1 ≤ i, j ≤ d then c j ik = 0 unless also 1 ≤ k ≤ d, in which case

order(yi∂k)= 0. And if i > d then order(yi∂k)≤ 0 for all k. So if 1≤ j ≤ d then all terms c j ik yi∂k for
i 6= 0 have order ≤ 0, and since c j0k = δk, j+d we conclude order(R j (x, y, ∂y))≤ 0 if 1≤ j ≤ d .

To conclude the lemma, we note by (3-1) that if y′ = y′′ = 0 then X0 = ∂y0 , from which we obtain
R0 ≡ 0 along y′ = y′′ = 0. �
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For x ∈U, and y, z in a neighborhood of 0 in R2d+1, we introduce the functions

2(x, y, z)=2expx (y)(expx(z)), 2̃(x, y, w)=2x(expexpx (y)
(w)), (3-2)

where we recall 2x(x̃) denotes exponential coordinates in X j centered at x . For fixed x and y these are
inverse functions of each other on their domains:

z = 2̃(x, y, w) ⇐⇒ w =2(x, y, z).

To invert in the y-variable we note that v = 2̃(x, y, w) implies y = 2̃(x, v,−w).
Observe that 2(x, y, z)=−2(x, z, y), and 2(x, y, z)= z− y+O(y, z)2. For more precise estimates

on 2 and 2̃ we consider their Taylor expansions in exponential coordinates at x . We first assign a notion
of order to a smooth function f (x, y, z). Consistent with (2-2), we make the following definition.

Definition 5. For a smooth function f (x, y, z) defined on an open subset of U×R2d+1
×R2d+1 containing

U ×{0, 0}, we say that order( f ) <− j if for all x ∈U

(∂αy ∂
β
z f )(x, 0, 0)= 0 for all α, β : order(α+β)≤ j.

Equivalently, the Taylor expansion of f in y, z about y = z = 0 contains only monomials yαzβ with
order(α+β) > j . We let order( f ) be the least n ∈ Z such that order( f ) < n+ 1.

Recalling the definition (2-1) of 2y(z), which are exponential coordinates in the frame Yj on the model
domain, we have the following.

Lemma 6. We have 2(x, y, z)=2y(z)+ R(x, y, z), where order(R j ) < order(y j ) for each j . Similarly,
2̃(x, y, w)=2−y(w)+ R̃(x, y, w), where order(R̃ j ) < order(y j ) for each j .

Proof. We work in exponential coordinates y =2x( · ) centered at x , and use Lemma 4 to consider X j

as a vector field in y. Then z = 2̃(x, y, w) means that z = γ (1), where γ (t) is the integral curve of
w · X ≡

∑
wk Xk with γ (0)= y. Taking the Taylor expansion of γ (t) about t = 0 and evaluating at t = 1

gives the following expansion of z = 2̃(x, y, w) in terms of w:

z j = y j + (w · X) j (y)+
∞∑

k=1

1
(k+ 1)!

(w · X)k(w · X) j (y), (3-3)

where (w · X)(y, ∂y) acts on y and (w · X) j (y) is its ∂ j coefficient as a function of y. It is seen from
Lemma 4 that w · X does not increase the order of a function f (x, y, w), and w · X −w ·Y decreases the
order of f (x, y, w) by at least 1. Also, as functions of (y, w)

order((w · Y ) j (y))= order(y j ), order((w · X) j (y)− (w · Y ) j (y)) < order(y j ).

Thus, if we replace w · X by w ·Y in the expansion (3-3) then the right-hand side is changed by terms of
strictly lower order than y j . It follows that we can write

(z0, z′, z′′)= (y0+w0, y′+w′, y′′+w′′+ y0w
′
−w0 y′)+ (R̃0, R̃′, R̃′′), (3-4)

where order(R̃0) < −2, order(R̃′) < −1, and order(R̃′′) < −3 as functions of (y, w). Recalling the
formula (2-1), this completes the second statement of the lemma.
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We next invert the map w→ z to express w = w(y, z)=2(x, y, z), and use (3-4) to write

w(y, z)=2y(z)− (R̃0, R̃′,−y0 R̃′+ y′ R̃0+ R̃′′)≡2y(z)− R(x, y, z),

where R̃ = R̃(y, w(y, z)). Since w is equal to z− y plus quadratic terms in (y, z), we see that R(x, y, z)
has no linear terms in y or z, and hence order(w0)≤−2 and order(w′)≤−1, since quadratic terms are
of order at most −2. This also shows that order(−y0 R̃′+ y′ R̃0)≤−3.

To conclude the lemma it suffices to show that order(R̃′′(y, z))≤−3, since together with the preceding
this shows that order(w j (y, z))≤ order(y j ) for all j , from which it follows that order(R̃ j (y, w(y, z)))≤
order(R̃ j (y, w)) < order(y j ). We know that order(w′′(y, z))≤−2 since quadratic terms are order ≤−2,
and by the above that order(w j (y, z)) ≤ order(y j ) for j ≤ d. Since order(R̃′′) < −3 as a function of
(y, w), it is easy to see by examining terms in (y, w) of order ≤−4 that order(R̃′′)≤−3 as a function
of (y, z), concluding the proof. �

We make a few important additional observations about the terms that can occur in the Taylor expansion
of 2(x, y, z) about y = z = 0 and 2̃(x, y, w) about y = w = 0. First, we have

2(x, y, z)= z0− y0 if y′ = z′ = y′′ = z′′ = 0,

2̃(x, y, w)= y0+w0 if y′ = w′ = y′′ = w′′ = 0.

Consequently, every nonvanishing term in the Taylor expansion of R(x, y, z) about y = z = 0 must
include a factor of either y′, z′, y′′, or z′′. Similarly, every nonvanishing term in the Taylor expansion of
R̃(x, y, w) about y = w = 0 must include a factor of either y′, w′, y′′, or w′′.

Additionally, since the collection {X j }
d
j=1 is involutive it follows that R0 and R′′ vanish if y0 = z0 =

y′′ = z′′ = 0, and hence every nonvanishing term in the Taylor expansions of R0 and R′′ must contain a
factor other than (y′, z′). Similarly R̃0 and R̃′′ must each contain a factor other than (y′, w′). Combining
this with the fact that R(x, y, z)= 0 if z = y, we can write

R j (x, y, z)=
∑

|α|+|β|=2
|β|≥1

c j,α,β(x)yα(z− y)β +
∑

|α|+|β|=3
|β|≥1

c j,α,β(x, y, z)yα(z− y)β (3-5)

for smooth functions c j,α,β , where c j,α,β ≡ 0 unless order(yαzβ) < order(y j ), and also unless one of α′,
β ′, α′′, or β ′′ is nonzero. Additionally, if j = 0 or j ≥ d+1 then c j,α,β ≡ 0 unless one of α0, β0, α′′, or β ′′

is nonzero.
The same conditions also hold on c̃ j,α,β in the following expansion of R̃(x, y, w):

R̃ j (x, y, w)=
∑

|α|+|β|=2
|β|≥1

c̃ j,α,β(x)yαwβ +
∑

|α|+|β|=3
|β|≥1

c̃ j,α,β(x, y, w)yαwβ .

4. The semiclassical calculus on U

In this section we introduce the nonisotropic semiclassical quantization and h-dependent symbol classes
that we use to construct the parametrix for Ph . As seen for the model operator, the phase variables
associated to X ′′ need to be scaled by h2, as opposed to the h-scaling for variables associated to X0
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and X ′. The symbol classes are naturally associated to the nonisotropic dilation structure δr . We will
define them using the nonisotropic norm

m(η)= (|η0|
6
+ |η′|12

+ |η′′|4)
1
12 ≈ |η0|

1
2 + |η′| + |η′′|

1
3 ,

which is smooth for η 6= 0 and homogeneous of degree 1, in that m(δr (η))= rm(η).
We assume that K is compactly contained in U, and choose r1 so that the exponential map y→ expx(y)

is a diffeomorphism on the ball {|y| ≤ r1} for all x ∈ K . We also fix r0 < r1 such that⋃
x̃∈expx (Br0 )

expx̃(Br0)⊂ expx(Br1).

We fix functions χ j ∈ C∞c (Br j ) with χ0(y)= 1 for |y| ≤ 1
2r0 and

χ1(2x( · ))= 1 on a neighborhood of
⋃

x̃∈expx (Br0 )

expx̃(Br0).

Given a symbol a(x, η) ∈ C∞(U ×R2d+1) supported where x ∈ K , we let

ah(x, η)= a(x, η0, η
′, hη′′),

and define a nonisotropic semiclassical quantization of a by the rule

ah(x, h D) f (x)=
1

(2πh)2d+1

∫
R4d+2

e−i〈y,η〉/hah(x, η)χ0(y) f (expx(y)) dy dη

=
1

(2π)2d+1

∫
R4d+2

e−i〈y,η〉ah(x, η)χ0(hy) f (expx(hy)) dy dη. (4-1)

Thus the Schwartz kernel of ah(x, h D) is supported in K × Kr0 , where Kr0 is the image of K × Br0

under (x, y)→ expx(y). In contrast to the usual semiclassical scaling η→ hη, the nonisotropic scaling
(hη0, hη′, h2η′′) arises from the missing directions X ′′ being obtained from commutators of X0 and X ′.

If p(x, η)=
∑
|α|≤n cα(x)ηα is a polynomial in η, then

(ph(x, h D) f )(x)= ph(x, (−i∂y)) f (expx(hy))
∣∣

y=0.

In particular, we have the following correspondence of symbols to operators:

iη j : h X j , 0≤ j ≤ d, iη j : h2 X j , d + 1≤ j ≤ 2d. (4-2)

Suppose that the symbol a satisfies homogeneous order-0 type estimates of the form

|∂βx ∂
α
η a(x, η)| ≤ Cα,βm(η)− order(α).

The uncertainty principle, needed for example for proving L2 continuity of ah(x, h D), requires uniform
bounds on ∂αx (h∂η)

αah(x, η). On the other hand,

|∂αx (h∂η)
αah(x, η)| = h|α0|+|α

′
|+2|α′′|

|(∂αx ∂
α
η a)h(x, η)|

≤ Cαh|α0|+|α
′
|+2|α′′|m(η0, η

′, hη′′)−2|α0|−|α
′
|−3|α′′|.
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To have uniform bounds as h→ 0 for every α would require truncating a(x, η) to where m(η)≥ h1/2. It
is convenient to work with bounded symbols; hence for symbols of order n we will multiply by a factor
of h−n/2 to ensure that symbols of any order be of size . 1 when m(η)≤ h1/2.

Definition 7. Let m(h, η)= (h1/2
+m(η)). A h-dependent family of symbols a(x, η) belongs to Sn(m)

if, for all α, β, there is Cα,β independent of h such that, for 0< h ≤ 1,

|∂βx ∂
α
η a(x, η)| ≤ Cα,βh−

n
2 m(h, η)n−order(α).

We let 9n
h (m) denote the collection of operators ah(x, h D) as in (4-1) with a ∈ Sn

h (m).
We also define S−∞(m)=

⋂
k∈N S−k(m), and let 9−∞h (m) denote operators that can be written in the

form (4-1) with χ0 replaced by χ1, and a ∈ S−∞(m).

Remark 8. We define 9−∞h (m) using χ1 in the quantization rule (4-1) since the composition of operators
defined using χ0 need not have Schwartz kernel supported inside Br0 (in local exponential coordinates).
We also note that results below concerning continuity and composition of symbols are independent of the
particular choice of χ0. We show in Lemma 13 that replacing χ0 by another function in C∞c (Br0) that
equals 1 on Br0/2 changes ah(x, h D) by a term in 9−∞h (m).

For polynomial symbols we note that

h−
1
2 order(α)ηα ∈ Sorder(α)(m). (4-3)

By (4-2) we then have the following examples, which will show that Ph ∈9
2
h (m):

X0 ∈9
2
h (m),

h
1
2 X j ∈9

1
h (m), 1≤ j ≤ d,

h
1
2 X j ∈9

3
h (m), d + 1≤ j ≤ 2d.

(4-4)

A more general example of a symbol in Sn(m) is h−n/2a(η)(1−φ(h−1/2m(η))), where φ ∈ C∞c (R
2d+1)

equals 1 on a neighborhood of 0, and a ∈ C∞(R2d+1
\{0}) satisfies a(δrη)= rna(η).

It is easy to verify the following properties:

Sn(m) · Sn′(m)⊂ Sn+n′(m),

Sn(m)⊃ Sn′(m) if n′ < n,

a ∈ Sn(m) =⇒ h
1
2 order(α)∂αη ∂

β
x a ∈ Sn−order(α).

(4-5)

Definition 9. Given a sequence of symbols a j ∈ Sn− j (m) we say that a ∼
∑

j a j if for all N

a−
N−1∑
j=0

a j ∈ Sn−N (m).

Consequently, a is uniquely determined up to a symbol in S−∞(m).
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We note the following simple example of a symbol in S−∞(m):

If φ ∈ S(R) and φ(s)= 1 when |s| ≤ 1 then φ(h−
1
2 m(η)) ∈ S−∞(m). (4-6)

That this symbol belongs to S−∞(m) is seen by noting that

(1+ h−
1
2 m(η))−N

= h
N
2 m(h, η)−N ,

together with the bounds |∂αη m(η)| ≤ Cαm(η)1−order(α), where we use that all derivatives vanish unless
m(η)≥ h1/2; hence m(η)≈ m(h, η), since φ is assumed constant near 0.

Lemma 10. Suppose that a j ∈ Sn− j (m), j ∈ N. Then there exists a ∈ Sn(m) with a ∼
∑

j a j .

Proof. Fix φ ∈ C∞c ((−2, 2)) with φ = 1 for |s|< 1. We will construct a sequence of real numbers R j ≥ 1
with R j →∞ such that for all N

∞∑
j=N

(1−φ(R−1
j h−

1
2 m(η)))a j (x, η) converges in Sn−N (m). (4-7)

Defining a to be this sum for N = 0 then gives the result since by (4-6), for each j ,

φ(R−1
j h−

1
2 m(η))a j (x, η) ∈ S−∞(m).

The proof of (4-6) shows that the S0(m) seminorms of φ(R−1h−1/2m(η)) are uniformly bounded inde-
pendent of R for R ≥ 1. The result (4-7) follows if we choose R j so that for all |α| + |β| ≤ j

|∂βx ∂
α
η (1−φ(R

−1
j h−

1
2 m(η)))a j (x, η)| ≤ 2− j h−

n+1− j
2 m(h, η)n+1− j−order(α).

Such R j can be chosen by observing that on the support of 1− φ(R−1
j h−1/2m(η)) we have the bound

h1/2m(h, η)−1
≤ (1+ R j )

−1. �

We now turn to the composition result for operators. Due to support considerations of the Schwartz
kernels involved, expressing the composition of two operators quantized using the cutoff χ0 requires
quantizing the symbol of the composition using the cutoff χ1, but we shall later see that the difference is
an operator with symbol in S−∞. For simplicity we consider the case where the order of the composition
is negative, which is the case needed to produce an inverse for Ph modulo 9−∞h (m).

In the proof we decompose an operator ah(x, h D) into a sum of nonisotropic dilates of unit-scale
convolution kernels. This decomposition is also used in establishing L2 bounds for order 0 operators. Let
φ and ψ generate a smooth Littlewood–Paley decomposition of [0,∞):

1= φ(s)+
∞∑
j=1

ψ(2− j s), supp(φ)⊂ [0, 2), supp(ψ)⊂
( 1

2 , 2
)
. (4-8)

Given a symbol a ∈ Sn(m), we make the decomposition

a(x, η)= φ(h−
1
2 m(η))a(x, η)+

∞∑
j=1

ψ(h−
1
2 2− j m(η))a(x, η)=

∞∑
j=0

a j (x, η). (4-9)
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Then a j is supported where m(h, η)≈ 2 j h1/2, and thus

|∂βx ∂
α
η a j (x, η)| ≤ Cα,β2 jn(2 j h

1
2 )− order(α).

It follows that a0(x, δh1/2(η)) ∈ C∞c (K × {|η| < 8}) with bounds uniform over h, and for j ≥ 1 that
2− jna j (x, δ2 j h1/2(η)) is uniformly bounded in C∞c

(
K ×

{ 1
8 < |η|< 8

})
over h and j .

Theorem 11. Given a ∈ Sn(m) and b ∈ Sn′(m), with n+ n′ < 0, there is c ∈ Sn+n′(m) so that

ah(x, h D) ◦ bh(x, h D) f (x)=
1

(2πh)2d+1

∫
e−i〈y,ξ〉/hch(x, ξ)χ1(y) f (expx(y)) dy dξ. (4-10)

Proof. For x ∈ K and h > 0 we can write

χ1(2x(x̃)) f (x̃)=
1

(2πh)2d+1

∫
ei〈2x (x̃),ξ〉/h−i〈y,ξ〉/hχ1(y) f (expx(y)) dy dξ.

Since ah(x, h D)bh(x, h D) f (x)= ah(x, h D)bh(x, h D)
(
χ1(2x( · )) f

)
(x), we know (4-10) holds with

ch(x, ξ)=
(
ah(x, h D)bh(x, h D)ei〈2x ( · ),ξ〉/h)(x).

We thus need to show that c(x, ξ)= ch(x, ξ0, ξ
′, h−1ξ ′′) ∈ Sn+n′(m).

Let ai and b j be the nonisotropic Littlewood–Paley decomposition of a and b as in (4-9), and define
ci j by

(ci j )h(x, ξ)=
(
(ai )h(x, h D)(b j )h(x, h D)ei〈2x ( · ),ξ〉/h)(x),

so that c =
∑

i j ci j . From (4-1) we can write (ci j )h(x, ξ) as

1
(2π)4d+2

∫
e−i〈y,η〉−i〈w,ζ 〉+ih−1

〈2̃(x,hy,hw),ξ〉(ai )h(x, η)(b j )h(expx(hy), ζ )χ0(hy)χ0(hw) dw dζ dy dη.

Consider first the case i ≥ j . We substitute w = h−12(x, hy, hz), defined in (3-2), to write this as

1
(2π)4d+2

∫
e−i〈y,η〉−ih−1

〈2(x,hy,hz),ζ 〉+i〈z,ξ〉ai (x, η0, η
′, hη′′)b j (expx(hy), ζ0, ζ

′, hζ ′′)

×χ0(hy)χ0(2(x, hy, hz))|Dz2|(x, hy, hz) dz dζ dy dη.

By the comments following (4-9) applied to b j , we write

b j (expx(hy), ζ0, ζ
′, hζ ′′)χ0(hy)χ0(2(x, hy, hz))|Dz2|(x, hy, hz)

= 2 jn′ b̃ j (x, hy, hz, δ2− j h−1/2(ζ0, ζ
′, hζ ′′)),

where b̃ j ∈ C∞c (K × Br0 × Br1 × B8), with bounds uniform over h and j , and a similar representation
holds for ai with 2 j replaced by 2i and n′ replaced by n. We make a nonisotropic dilation of ζ and η by
the factors (22 j h, 2 j h1/2, 23 j h1/2), and of z and y by the reciprocal factors, to write

ci j (x, ξ)= 2 j (n+n′)c̃i j (x, δ2− j h−1/2(ξ)),
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where c̃i j (x, ξ) is given by

2(i− j)n 1
(2π)4d+2

∫
e−i〈y,η〉−i〈2y(z)+R(h,x,y,z),ζ 〉+i〈z,ξ〉ãi (x, δ2 j−i (η))

× b̃ j
(
x, δ2− j (y0, h

1
2 y′, h

1
2 y′′), δ2− j (z0, h

1
2 z′, h

1
2 z′′), ζ

)
dz dζ dy dη, (4-11)

where, recalling Lemma 6,

〈R(h, x, y, z), ζ 〉 =22 j R0
(
x, δ2− j (y0, h

1
2 y′, h

1
2 y′′), δ2− j (z0, h

1
2 z′, h

1
2 z′′)

)
ζ0

+ 2 j h−
1
2 R′

(
x, δ2− j (y0, h

1
2 y′, h

1
2 y′′), δ2− j (z0, h

1
2 z′, h

1
2 z′′)

)
· ζ ′

+ 23 j h−
1
2 R′′

(
x, δ2− j (y0, h

1
2 y′, h

1
2 y′′), δ2− j (z0, h

1
2 z′, h

1
2 z′′)

)
· ζ ′′.

By the support condition on b̃ j we have |ζ | ≤ 8. Also, if i ≥ 1 then ãi (x, η)= 0 when |η| ≤ 1
8 .

We next apply the expansion (3-5) to the right-hand side. The condition on order(yαzβ) ensures that
we bring out strictly more powers of 2− j than needed to cancel the powers of 2 j in front, and since there
is at least one factor of (y′, z′, y′′, z′′) we also bring out a factor h1/2 to cancel off the h−1/2 in front. We
conclude that, on the support of the integrand,

|R(h, x, y, z)| ≤ C2− j
|z− y|(|y| + |z− y| + |y|2+ |z− y|2),

and also

|∂γx ∂
α
y ∂

β
z R(h, x, y, z)| ≤ Cγ,α,β2− j (1+ |y|3+ |z− y|3). (4-12)

Additionally, if we let w =2(x, y, z)+ R(h, x, y, z), then with analogous notation we see from (3-2)
and Lemma 6 that z =2−y(w)+ R̃(h, x, y, w), where

|R̃(h, x, y, w)| ≤ C2− j
|w|(|y| + |w| + |y|2+ |w|2).

Consequently, since 2̃ is the inverse function to 2 for fixed y, uniformly over j we have

|2y(z)+ R(h, x, y, z)| ≤ C |z− y|(1+ |y|2+ |z− y|2),

|z− y| ≤ C |2y(z)+ R(h, x, y, z)|(1+ |y|2+ |2y(z)+ R(h, x, y, z)|2),

and hence

(1+ |y|2)−1
|z− y| ≤ C |2y(z)+ R(h, x, y, z)|(1+ |2y(z)+ R(h, x, y, z)|2). (4-13)

Considering the function

gi j (x, y)=
1

(2π)4d+2

∫
e−i〈y,η〉ãi (x, δ2 j−i (η)) dη,

simple estimates show that

|∂αx gi j (x, y)| ≤ CN ,α,β2(4d+2)(i− j)(1+ 22(i− j)
|y0| + 2i− j

|y′| + 23(i− j)
|y′′|)−N . (4-14)
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Additionally, if i > j , hence i ≥ 1, then ãi (x, η) vanishes for |η| ≤ 1
8 , and thus can be assumed to be of

the form |η|2k ãi (x, η) for similar ãi (x, η). Thus, if i > j then for all k ∈ N we can write

gi j (x, y)=
∑
|γ |=2k

2( j−i) order(γ )∂γy gi j,γ (x, y), (4-15)

where gi j,γ (x, y) satisfies the same estimates (4-14) as gi j (x, y). On the other hand, if we set

f j (x, y, z)=
∫

e−i〈2y(z)+R(h,x,y,z),ζ 〉b̃ j
(
x, δ2− j (y0, h

1
2 y′, h

1
2 y′′), δ2− j (z0, h

1
2 z′, h

1
2 z′′), ζ

)
dζ,

then

f j (x, y, z)= ρ(x, y, z,2y(z)+ R(h, x, y, z)),

where ρ(x, y, z, w) is smooth in (x, y, z) and Schwartz in w. By (4-12) and (4-13) we have

|∂αx ∂
β
y ∂

θ
z f j (x, y, z)| ≤ CN ,α,β,θ (1+ |y| + |y− z|)3(|α|+|β|+|θ |)(1+ (1+ |y|2)−1

|y− z|)−N .

Applying (4-15) and integrating by parts in y leads to the bound, for all N , α, β,∣∣∣∣∂αx ∂βz ∫ gi j (x, y) f j (x, y, z) dy
∣∣∣∣≤ CN ,α,β22k( j−i)(1+ |z|)−N .

Since c̃i j (x, ξ), defined in (4-11), is 2(i− j)n times the Fourier transform in z of this integral, we obtain
uniform (over i and j) Schwartz bounds on 2i− j c̃i j (x, ξ), with compact support in x .

In the case j ≥ i , we can similarly write ci j (x, ξ)= 2i(n+n′)c̃i j (x, δ2−i h−1/2(ξ)), where we have uniform
Schwartz bounds over i and j on 2 j−i c̃i j (x, ξ). The analysis is similar to the case i ≥ j , using instead
the following representation for ci j (x, ξ):

1
(2π)4d+2

∫
e−ih−1

〈2̃(x,hv,−hw),η〉−i〈w,ζ 〉+i〈v,ξ〉ai (x, η0, η
′, hη′′)b j (expexpx (hv)

(−hw), ζ0, ζ
′, hζ ′′)

×χ0(2̃(x, hv,−hw))χ0(hw)|Dv2̃|(x, hv,−hw) dw dζ dv dη.

It thus suffices to show that
∑

i≥ j 2 j (n+n′)c̃i j (x, δ2− j h−1/2(ξ)) ∈ Sn+n′(m). We prove that∣∣∣∣∑
i≥ j

2 j (n+n′)c̃i j (x, δ2− j h−1/2(ξ))

∣∣∣∣≤ C(1+ h−
1
2 m(ξ))n+n′ .

Estimates on derivatives will follow similarly since applying ∂αξ has the effect of multiplying the j-th
term by (2− j h−1/2)order(α). We use the uniform Schwartz bounds on c̃i j to bound the sum by

CN

∑
i≥ j≥0

2 j (n+n′)2 j−i (1+ 2− j h−
1
2 m(ξ))−N .

The sum over i is trivial. Given ξ , take j0 so that 2 j0 = h−1/2m(ξ). We then split∑
j≥0

2 j (n+n′)(1+ 2− j h−
1
2 m(ξ))−N

≤

∑
j≥ j0

2 j (n+n′)
+

∑
j< j0

2 j (n+n′+N )(h−
1
2 m(ξ))−N .
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Recall that we assume n+n′ < 0. We take N so N +n+n′ > 0. If h−1/2m(ξ)≤ 1, we have only the first
sum, which is bounded by a constant. If h−1/2m(ξ) > 1, then the two terms are convergent geometric
sums that both are bounded by (h−1/2m(ξ))n+n′. �

Remark 12. The result of Theorem 11 still holds if one replaces the function χ0(y) used in quantizing a
or b by any function χ(x, y) ∈ C∞c (K × Br0), since this is harmlessly absorbed into b̃ j without changing
the estimates for b̃ j nor the condition on the support of the Schwartz kernel.

Lemma 13. Suppose that β, χ ∈ C∞c (Br1), and β(y) = 0 for |y| ≤ δ, where δ > 0. Suppose also that
χ = 1 on supp(β). Then if a ∈ Sn(m) for some n, one can write

1
(2πh)2d+1

∫
e−i〈y,ξ〉/hah(x, ξ)β(y) f (expx(y)) dy dξ

=
1

(2πh)2d+1

∫
e−i〈y,ξ〉/hrh(x, ξ)χ(y) f (expx(y)) dy dξ,

where r ∈ S−∞(m).

Proof. We write β(y) = |y|2NβN (y) for βN ∈ C∞c (Br1). Since χβN = βN , following the first part of
Theorem 11 we have equality of the two sides if rh is the symbol

rh(x, ξ)=
1

(2πh)2d+1

∫
e−i〈y,ξ−η〉/h((h21η0,η′ + h41η′′)

N a)h(x, η)βN (y) dy dη.

By (4-5), aN = (h21η0,η′ + h41η′′)
N a ∈ Sn−2N (m). We then write

r(x, ξ)=
1

(2π)2d+1h3d+1

∫
β̂N

(
ξ0− η0

h
,
ξ ′− η′

h
,
ξ ′′− η′′

h2

)
aN (x, η) dη.

We have |aN (x, η)| ≤ CN (1+m(δh−1/2(η)))n−2N, and Peetre’s inequality yields

(1+ |δh−1/2(ξ − η)|)−|n|−2N (1+m(δh−1/2(η)))n−2N
≤ CN (1+m(δh−1/2(ξ)))n−2N ,

which shows that |r(x, ξ)| ≤ CN hN m(h, ξ)−2N for all N. The term ∂
β
x ∂

α
ξ r(x, ξ) comes from the same

convolution applied to ∂βx ∂αη aN (x, η), and we conclude r ∈ S−∞. �

Corollary 14. Suppose Ph is as in (1-1). Given ρ ∈ C∞c (K
o), there is a symbol q(x, ξ) ∈ S−2(m), with

principal symbol hρ(x)(1−φ(h−1/2m(ξ)))q0(ξ), so that

qh(x, h D) ◦ Ph = ρ(x)+ R, R ∈9−∞h (m).

Proof. Fix ρ̃(x) ∈ C∞c (K ) with ρ̃ = 1 on a neighborhood of supp(ρ). Define

q̃0(ξ)= h(1−φ(h−
1
2 m(ξ)))q0(ξ),

where q0(ξ) is the Fourier transform of the fundamental solution for Y0−
∑d

j=1 Y 2
j , as defined in Section 2,

and φ is as in (4-8). Then ρ̃(x)q̃0(ξ) ∈ S−2(m). We first show that

ρ̃(x)q̃0,h(h D) ◦ Ph = ρ̃(x)− r1
h (x, h D), r1

∈ S−1(m).
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By the construction of q0(ξ) we have

1
(2πh)2d+1

∫
e−i〈y,ξ 〉/hhq0,h(ξ)

(
Y0− h

d∑
j=1

Y 2
j

)
χ0(y) f (expx(y)) dy dξ = f (x),

where the Yj are the model vector fields acting in the y-variable. Replacing hq0 by q̃0 changes the
composition by an order-0 symbol supported where m(ξ)≤ 2h1/2, hence by a symbol in S−∞.

Generally, we see that for f (x, y) compactly supported in y we can write∫
e−i〈y,ξ〉/h q̃0,h(ξ)yα∂βy f (x, y) dy dξ =

∫
e−i〈y,ξ〉/hbh(ξ) f (x, y) dy dξ,

where
b(x, ξ)= i |β|−|α|hα0+|α

′
|+2|α′′|−|β|∂αξ ξ

β q̃0(ξ).

By (4-3) and (4-5), we know that

h
1
2 order(α)− 1

2 order(β)∂αξ ξ
β q̃0(ξ) ∈ Sorder(β)−order(α)−2(m).

Recall that
(X j f )(expx(y))= (Yj + R j (x, y, ∂y)) f (expx(y)),

where the Taylor expansion of R j contains terms yα∂βy of order strictly less than order(Yj ), and where
|β| = 1. Since commutators of X j with χ0 lead to terms of order −∞, we need show that

1
(2πh)2d+1

∫
e−i〈y,ξ〉/hhq0,h(ξ)R0(x, y, ∂y)χ0(y) f (expx(y)) dy dξ

is an operator of order −1 in f . For the terms that arise in the Taylor expansion of R0 we have
order(β)− order(α)≤ 1, so we need check for such terms we also have

α0+ |α
′
| + 2|α′′| − |β| ≥ 1

2 order(α)− 1
2 order(β),

in order to match up the powers of h. Since |β| = 1 and order(α)= 2α0+|α
′
|+3|α′′|, this holds provided

that |α′| + |α′′| ≥ 1, which is the case for R0 by Lemma 4.
We similarly need check that this is an operator of order −2 if R0 is replaced by h1/2 R j with 1≤ j ≤ d .

Since order(β)− order(α)≤ 0 in this case, this reduces to verifying that

α0+ |α
′
| + 2|α′′| − |β| + 1

2 ≥
1
2 order(α)− 1

2 order(β),

which always holds if |β| = 1.
We note that the remainder term in the Taylor expansion will also be of the desired order, but with

χ0(y) replaced by c j,α,k(x, y)χ0(y). By Remark 12 this does not affect the conclusion of the corollary,
since the form for qh will involve composition with r1

h (x, h D).
By Theorem 11 we can recursively define symbols r j

∈ S− j (m) for j ≥ 2 by the rule

r j
h (x, h D) ◦ r1

h (x, h D) f (x)=
1

(2πh)2d+1

∫
e−i〈y,ξ〉/hr j+1

h (x, ξ)χ1(y) f (expx(y)) dy dξ,



PARAMETRIX FOR A SEMICLASSICAL SUBELLIPTIC OPERATOR 2391

where we recall that r j
h (x, h D) is quantized using χ0. Let r ∼

∑
∞

j=0 r j, so r ∈ S−1(m). Also define
q ∈ S−2(m) so that

ρ(x)(I + rh(x, h D))ρ̃(x)q̃0,h(h D) f (x)=
1

(2πh)2d+1

∫
e−i〈y,ξ〉/hqh(x, ξ)χ1(y) f (expx(y)) dy dξ.

By the above and Lemma 13, the following operator is in 9−∞h (m):

R f (x)=
1

(2πh)2d+1

∫
e−i〈y,ξ〉/hqh(x, ξ)(χ1(y)−χ0(y))(Ph f )(expx(y)) dy dξ.

Thus, modulo 9−∞h (m) we have

qh(x, h D) ◦ Ph = ρ(x)(I + rh(x, h D))(ρ̃(x)− r1
h (x, h D)).

Next we choose δ > 0 so that ρ̃(expx(y)) = 1 if x ∈ supp(ρ) and |y| ≤ δ, and take χδ ∈ C∞c (Bδ) with
χδ = 1 on Bδ/2. Then

ρ(x)rh(x, h D)((1− ρ̃) f )(x)

=
1

(2πh)2d+1

∫
e−i〈y,ξ〉/hρ(x)rh(x, ξ)(χ0(y)−χδ(y))((1− ρ̃) f )(expx(y)) dy dξ,

so by Lemma 13 we have, modulo 9−∞h (m),

qh(x, h D) ◦ Ph = ρ(x)(I + rh(x, h D))(I − r1
h (x, h D)).

Finally, since the difference between using χ1 instead of χ0 in the quantization of r j+1 gives a term in
9−∞h (m), we see that qh(x, h D) ◦ Ph = ρ(x) modulo 9−∞h (m). �

Remark 15. The above proof shows the following composition result concerning partial differential
operators. Suppose

Ph =
∑

order(α)≤n′
cα(x)X

α0
0 (h

1
2 X ′)α

′

(h
1
2 X ′′)α

′′

, cα(x) ∈ C∞c (K ).

Then if a ∈ Sn(m), we can write ah(x, h D) ◦ Ph f and Ph ◦ ah(x, h D) f in the form

1
(2πh)2d+1

∫
e−i〈y,ξ〉/hbh(x, ξ)χ(y) f (expx(y)) dy dξ

for χ ∈ C∞c (Br0) and b ∈ Sn+n′(m).

5. L2 boundedness for order-0 operators

Given a symbol in Sn(m) we decompose a =
∑

j a j as in (4-9). The operator a j,h(x, h D) is given by the
following integral kernel on U×U with respect to the measure dm(x̃), where w(x, x̃)dm(x̃)= exp∗x(dy):

K j (x, x̃)= w(x, x̃)χ0(2x(x̃))
∫

e−i〈2x (x̃),η〉a j,h(x, hη) dη.
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We can write a j,h(x, hη) = 2 jn ã j (x, 2−2 jη0, 2− j h1/2η′, 2−3 j h1/2η′′), where ã j (x, η) ∈ C∞c (K × B8),
with uniform bounds over j . Furthermore, ã j vanishes for |η| ≤ 1

8 if j ≥ 1.
Consequently, there are Schwartz functions ρ j (x, y), supported for x ∈ K with Schwartz norms

independent of j , so that

(w−1K j )(x, expx(y))= 2 jn2 j (2+4d)h−dρ j (x, 22 j y0, 2 j h−
1
2 y′, 23 j h−

1
2 y′′)χ0(y), (5-1)

and in particular, for all N,

|K j (x, x̃)| ≤ CN 2 jn2 j (2+4d)h−d(1+ 22 j
|2x(x̃)0| + 2 j h−

1
2 |2x(x̃)′| + 23 j h−

1
2 |2x(x̃)′′|

)−N
. (5-2)

If a ∈ S−∞ then (5-1) holds for all n ∈ Z, and summing over j we obtain the following.

Corollary 16. If a ∈ S−∞(m), then ah(x, h D) is given by a smooth integral kernel K (x, x̃) in the measure
dm(x̃), so that for some Schwartz function ρ(x, y), supported for x ∈ supp(a),

(w−1K )(x, expx(y))= h−dρ(x, y0, h−
1
2 y′, h−

1
2 y′′)χ0(y).

We next observe that the vector fields 2−2 j Y0, 2− j h1/2Y ′, and 2−3 j h1/2Y ′′ acting as differential
operators in y all preserve the form (5-1) of w−1K j ; that is, they give an expression of the same form
with ρ j uniformly bounded over j in each Schwartz seminorm.

The same holds for the operators 2−2 j X0, 2− j h1/2 X ′, and 2−3 j h1/2 X ′′, acting on K j (x, x̃) as differential
operators in either the x- or x̃-variable. For action in the x̃-variable, this follows by Lemma 4, where
we use that there is at least one factor of y′ or y′′ in the expansion of R0(x, y, ∂y) to compensate for the
factor of h−1/2 coming from the ∂y′ and ∂y′′ terms in the expansion of X0. For action in the x-variable we
work in coordinates x = expx̃(y), hence x̃ = expx(−y), to write

(w−1K j )(expx̃(y), x̃)= 2 jn2 j (2+4d)h−dρ j
(
expx̃(y),−22 j y0,−2 j h−

1
2 y′,−23 j h−

1
2 y′′

)
χ0(−y). (5-3)

To summarize, for a ∈ Sn(m), we can write

(2−2 j X0)
α0(2− j h

1
2 X ′)α

′

(2−3 j h
1
2 X ′′)α

′′

K j (x, x̃)

= 2 jn2 j (2+4d)h−dρ j,α
(
x, 22 j2x(x̃)0, 2 j h−

1
22x(x̃)′, 23 j h−

1
22x(x̃)′′

)
χα(x, x̃), (5-4)

where the functions ρ j,α and χα satisfy seminorm bounds that depend on α, but are uniform over j and h.
This holds with any given vector X in the product acting as a vector field in x or x̃ .

Conversely, suppose that j ≥ 1, so that ã j (x, η) ∈ C∞c
(
K ×

{1
8 ≤ |η| ≤ 8

})
. Then for any `, dividing

ã j by |η|2` shows that we can write

(w−1K j )(x,expx(y))

= 2 jn2 j (2+4d)h−d
∑
|α|=2`

χα(x, y)(2−2 j∂y0)
α0(2− jh

1
2 ∂y′)

α′(2−3 j h
1
2 ∂y′′)

α′′ρ j,α(x,22 j y0,2 j h−
1
2 y′,23 j h−

1
2 y′′)

for Schwartz functions ρ j,α that are uniformly bounded over j , and χα ∈ C∞c (K × Br0).
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Using Lemma 4, we write

∂y0 = X0+ y′ · X ′′− R0(x, y, ∂y)− y′ · R′′(x, y, ∂y),

∂y′ = X ′− y0 X ′′− R′(x, y, ∂y)+ y0 R′′(x, y, ∂y),

∂y′′ = X ′′− R′′(x, y, ∂y),

where the X j act in y. Substituting this into R(x, y, ∂y), and using that the X j form a smooth frame, we
can expand each ∂y j as a finite sum over 2≤ |α| ≤ 3:

∂y0 = X0+ y′ · X ′′+
∑
α,k

c0,α,k(x, y)yαXk, order(Yk)− order(α) < 2,

∂y j = X j − y0 X j+d +
∑
α,k

c j,α,k(x, y)yαXk, order(Yk)− order(α) < 1, 1≤ j ≤ d,

∂y j = X j +
∑
α,k

c j,α,k(x, y)yαXk, order(Yk)− order(α) < 3, d + 1≤ j ≤ 2d.

Additionally, c0,α,k ≡ 0 unless either α′ 6= 0 or α′′ 6= 0.
Let X j denote the transpose of the differential operator X j with respect to dy. Taking the transpose of

the above identities, it follows that, with the X j acting on y, we can write

(w−1K j )(x,expx(y))

=2 jn2 j (2+4d)h−d
∑
|α|=2`

χα(x, y)(2−2 j X0)
α0(2− jh

1
2 X ′)α

′

(2−3 j h
1
2 X
′′
)α
′′

ρ j,α(x,22 j y0,2 j h−
1
2 y′,23 j h−

1
2 y′′),

where the ρ j,α may depend on h, but with uniform Schwartz bounds over 0≤ h≤ 1 and j ∈N. Expressing
the action of X in terms of x̃ , this leads to the expansion

K j (x, x̃)=
∑
|α|=2`

∑
β≤α

2− j order(α)(X0)
β0(h

1
2 X ′)β

′

(h
1
2 X
′′
)β
′′

K j,α,β(x, x̃)

for kernels K j,α,β satisfying (5-2) with CN depending on ` but uniform over j, α, β. Here we can take
X j to be the transpose of X j with respect to dm(x̃), since that differs from the transpose with respect to
dy by a smooth function.

Theorem 17. If a ∈ S0(m), then ah(x, h D) is a bounded linear operator on L2(U ), with operator norm
depending on only a finite number of seminorm bounds for a(x, ξ). In particular, the operator norm is
uniformly bounded over 0< h ≤ 1.

Proof. We decompose ah(x, h D)=
∑
∞

j=0 a j,h(x, h D). Using (5-1) and (5-3) it is easily verified that the
kernel K j (x, x̃) of a j,h(x, h D) satisfies the Schur test,

sup
x

∫
K j (x, x̃) dm(x̃)≤ C, sup

x̃

∫
K j (x, x̃) dm(x)≤ C.
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We deduce L2 boundedness from the Cotlar–Stein lemma (see [Knapp and Stein 1971; Stein 1993]), by
showing that, for any N ∈ N,

‖ai,h(x, h D)∗a j,h(x, h D)‖L2→L2 +‖ai,h(x, h D)a j,h(x, h D)∗‖L2→L2 ≤ C2−N |i− j | (5-5)

for a constant C uniform over h and j . If i = j this follows from L2 boundedness of each term, so
without loss of generality we consider j > i ≥ 0, and in particular j ≥ 1. Given ` ∈ N we then write the
integral kernel of ai,h(x, h D)a j,h(x, h D)∗ as∫

Ki (x, w)K j (x̃, w) dm(w)

=

∫
Ki (x, w)

∑
|α|=2`

∑
β≤α

2− j order(α)(X0)
β0(h

1
2 X ′)β

′

(h
1
2 X
′′
)β
′′

K j,α,β(x, w) dm(w)

=

∑
|α|=2`

∑
β≤α

2i order(β)− j order(α)
∫

Ki,β(x, w)K j,α,β(x, w) dm(w),

where Ki,β(x, w) = (2−2i X0)
β0(2−i h1/2 X ′)β

′

(2−3i h1/2 X ′′)β
′′

Ki (x, w), and in all cases X acts on w.
Since i order(β)− j order(α)≤ 2`(i− j), by using (5-4) and the Schur test on the composition we obtain
the bound (5-5) with N = 2` for the term ai,ha∗j,h . To handle the term a∗i,ha j,h we use the same argument,
together with symmetry of the derivative estimates in x and x̃ . �

We note the following result for a ∈ Sn(m), which holds since 2− jna j (x, η) ∈ S0(m),

sup
j≥0

2− jn
‖a j,h(x, h D) f ‖L2(U ) ≤ C‖ f ‖L2(U ), a ∈ Sn(m). (5-6)

6. Estimates on S∗(M)

Let (M, g) be a compact Riemannian manifold of dimension d+1, and S∗(M)⊂ T ∗(M) its unit cosphere
bundle. We consider the Hamiltonian function 1

2 |ζ |
2
g(z) =

1
2

∑d+1
i,k=1 gik(z)ζiζk , and recall that S∗(M) is

the level set |ζ |g(z) = 1. We use X0 = H to denote the Hamiltonian field for 1
2 |ζ |

2
g(z),

X0 =

d+1∑
i,k=1

gik(z)ζi∂zk −
1
2

d+1∑
i, j,k=1

∂z j g
ik(z)ζiζk∂ζ j ,

which is tangent to S∗(M).
We cover S∗(M) by a finite collection of open coordinate charts as follows. Let {Vα} form a finite

covering of M by coordinate charts, over which we can identity T ∗(M) with Vα×Rd+1 and S∗(M) with
Vα ×Sd. We cover Sd by two coordinate charts W± over each of which there is a section of the frame
bundle. We thus obtain a cover of S∗(M) by open charts {Vα ×W±}, which by counting each Vα twice
we can label as Uα, such that on Uα there is an orthonormal collection {X j }

d
j=1 of vertical vector fields

that span the tangent space to S∗z (M) over each z ∈ Vα. The collection {X j }
d
j=1 is involutive, since it

spans the vertical vector fields on Uα.
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There is a natural isometric identification Tζ (T ∗z (M))∼ Tz(M), which identifies {X j |(z,ζ )}
d
j=1 with an

orthonormal collection of vectors {X̃ j }
d
j=1 ⊂ Tz(M), which are also orthogonal to π∗(X0|(z,ζ )). We let

X j+d |(z,ζ ) be − 1
2 times the horizontal lift of X̃ j . We observe that

π∗[X j , X0] =

d+1∑
i,k=1

gik(z)X j (ζi )∂zk = X̃ j ,

so that [X0, X j ] − 2X j+d ∈ span{X j }
d
j=1. Thus the assumptions of the Introduction are satisfied for the

collection {X j }
2d
j=0.

Let 1S be the induced nonnegative Laplacian acting on the fibers S∗z (M) of the bundle, and let 1 be
the nonnegative Laplacian on S∗(M). See for example [Drouot 2017, Section 2.1] for details, where it is
shown that 1 and 1S commute. One verifies that, over each Uα, one has

1S =−

d∑
j=1

X2
j +

d∑
j=1

c j (z, ζ )X j .

We now use x ∈ R2d+1 to denote the variables on Uα, and define

Ph = H + h1S = X0−

d∑
j=1

h X2
j +

d∑
j=1

c j (x)h X j .

Thus on each Uα , the operator Ph differs from the sum of squares considered previously by an operator in
h1/291

h (m), and the pseudodifferential calculus shows that, given χα ∈C∞c (Uα), there exists a symbol qα ∈
S−2(m), the quantization of which depends on χα through the choice of χ0 in (4-1), so that on Uα we have

qα,h(x, h D) ◦ Phu = χα(x)u+ Rαu, Rα ∈9−∞h (m).

Note that both qα,h(x, h D) and Rα are properly supported in Uα. We now take a partition of unity χα
subordinate to the cover Uα, and define

Qhv =
∑
α

qα,h(x, h D)v, Rv =
∑
α

Rαv.

Then Qh ◦ Ph = I + R, and for all N1, N2 we have

‖(h1)N1 R(h1)N2u‖L2(S∗(M)) ≤ CN1,N2‖u‖L2(S∗(M)). (6-1)

This follows from Theorems 11 and 17 and the fact that h1∈96
h (Uα) for each α, which follows from (4-4).

More generally, we define 9σ
h (m) on S∗(M) as sums

∑
α aα,h(x, h D) with aα ∈ Sσ (m) on Uα. The

function χ0 in the quantization (4-1) depends on the x-support of aα(x, η), which is always assumed to
be a compact subset of Uα.

The semiclassical Sobolev spaces are defined on S∗(M) using the spectral decomposition of 1, with
norm

‖ f ‖Hσ
h
= ‖(1+ h21)σ/2 f ‖L2 .

We will consider cutoffs ρ(s) satisfying, for some c′ > c > 0,

ρ(s) ∈ C∞(R), ρ(s)= 0 if s ≤ c, ρ(s)= 1 if s ≥ c′. (6-2)
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The operator ρ(h21) is then defined as a spectral multiplier. We observe the following simple result for
R ∈9−∞h (m) on S∗(M). For all N and σ we have

‖ρ(h21)Ru‖Hσ
h
+‖Rρ(h21)u‖Hσ

h
≤ CN ,σhN

‖u‖L2 . (6-3)

This follows by writing ρ(h21)(1+ h21)σ = f (h21) ◦ (h21)N, where the function f (s) is a bounded
function provided N > σ , and using (6-1).

Theorem 18. Suppose that σ ≤ 0, that Ah ∈9
σ
h (m), and that ρ satisfies (6-2). Then

‖ρ(h21)Ahu‖H−σ/3h
+‖Ahρ(h21)u‖H−σ/3h

≤ Ch−σ/6‖u‖L2 .

Proof. Choose k so 6k+ σ > 0. For each h ∈ (0, 1], we show that Ah = A0,h + A1,h , where

‖(h21)k A0,hu‖L2 +‖A0,h(h21)ku‖L2 +‖A1,hu‖H−σ/3h
≤ Ch−σ/6‖u‖L2 .

The result then follows since ρ(s) ≤ min(sk, 1). Using the Littlewood–Paley decomposition as in the
proof of Theorem 17, applied to each aα in the sum defining a, we let

A0,h =
∑

2 j≤h−1/6

a j,h(x, h D), A1,h =
∑

2 j>h−1/6

a j,h(x, h D).

Recalling the form (5-4), we see that applying h21 to a j,h(x, h D) is equivalent to multiplying it by at
most 26 j h. As in the proof of (5-5) we conclude that

‖(1+ h21)ka j,h(x, h D)ai,h(x, h D)∗(1+ h21)k‖L2→L2 ≤ (1+ 26i h)k(1+ 26 j h)k2σ(i+ j)−|i− j |.

For 2 j , 2i
≥ h−1/6, we interpolate with the L2 bounds (5-6) to obtain

‖(1+ h21)−σ/6a j,h(x, h D)ai,h(x, h D)∗(1+ h21)−σ/6‖L2→L2 ≤ Ch−σ/32−|i− j |.

This estimate also holds for the transposed operators. The Cotlar–Stein lemma then implies the bounds
for A1,h .

Similarly, we have

‖(h21)ka j,h(x, h D)‖L2→L2 +‖a j,h(x, h D)(h21)k‖L2→L2 ≤ C(26 j h)k2σ j ,

which we may sum over 2 j
≤ h−1/6 to conclude the bounds involving A0,h . �

Corollary 19. Suppose that σ ≤ 0 and Ah ∈9
σ
h (m). Then

‖(1+ h1)−σ/6 Ahu‖L2 ≤ C‖u‖L2 .

Proof. As in the proof of Theorem 18 we observe that, for k = 0, 1, 2, . . . ,

‖(1+ h1)ka j,h(x, h D)ai,h(x, h D)∗(1+ h1)k‖L2→L2 ≤ 26k(i+ j)2σ(i+ j)−|i− j |.

We interpolate between k = 0 and any k >−σ/6 to obtain

‖(1+ h1)−σ/6a j,h(x, h D)ai,h(x, h D)∗(1+ h1)−σ/6‖L2→L2 ≤ C2−|i− j |.

This estimate also holds for the transposed operators. The Cotlar–Stein lemma then implies the result. �
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Theorem 20. The following bound holds for h ∈ (0, 1] and all N ∈ N:

‖Hu‖L2 + h‖1Su‖L2 +‖(1+ h1)
1
3 u‖L2 ≤ C‖Phu‖L2 +CN‖(1+ h1)−N u‖L2 .

Proof. Write u= Qh Phu+Ru, where Qh ∈9
−2
h (m), and note that H Qh, h1S Qh ∈9

0
h (m) by Remark 15.

Also, for all N we have H R(1+ h1)N, h1S R(1+ h1)N
∈90

h (m); hence

‖H Ru‖L2 + h‖1S Ru‖L2 ≤ CN‖(1+ h1)−N u‖L2 .

Since Qh, R(1+ h1)N
∈9−2

h (m), the result then follows by Corollary 19. �

Theorem 21. Suppose that ρ1 and ρ2 satisfy (6-2), and ρ2 = 1 on a neighborhood of supp(ρ1). Given
λ0 > 0, the following holds for all N, and all |λ| ≤ λ0 and h ∈ (0, 1]:

h−
1
3 ‖ρ1(h21)u‖H2/3

h
+ h

1
3

d∑
j=1

‖X jρ1(h21)u‖H1/3
h
+‖X0ρ1(h21)u‖L2 +‖h1Sρ1(h21)u‖L2

≤ CN ,λ0(‖ρ2(h21)(Ph − λ)u‖L2 + hN
‖u‖L2).

Proof. We follow the scheme of the proof of Theorem 2 of [Drouot 2017], using the parametrix Qh of Ph

to replace the positive commutator arguments. Write

ρ1(h21)u = Qhρ1(h21)(Ph − λ)u+ Qh[Ph, ρ1(h21)]u+ λQhρ1(h21)u+ Rρ1(h21)u.

To handle the commutator term, we use that [1S, ρ1(h21)] = 0; hence [Ph, ρ1(h21)] = [X0, ρ1(h21)].
Now let ρ̃1(s) be any function satisfying (6-2) which equals 1 on a neighborhood of supp(ρ1). Then
following [Drouot 2017], we use that the essential support of [X0, ρ1(h21)] is contained within the
elliptic set of ρ̃(h21), and we can thus bound

‖[Ph, ρ1(h21)]u‖L2 ≤ C‖ρ̃1(h21)]u‖L2 +CN hN
‖u‖L2 .

Applying Theorem 18 and (6-3) we obtain

h−
1
3 ‖ρ1(h21)u‖H2/3

h
+ h−

1
6

d∑
j=1

‖h
1
2 X jρ1(h21)u‖H1/3

h
+‖X0ρ1(h21)u‖L2 +‖h1Sρ1(h21)u‖L2

≤ C
(
‖ρ1(h21)(Ph − λ)u‖L2 +‖ρ̃1(h21)u‖L2 + (1+ |λ|)‖ρ1(h21)u‖L2

)
+CN hN

‖u‖L2 .

For h bounded away from 0 we can absorb the term (1+ |λ|)‖ρ1(h21)u‖L2 into CN hN
‖u‖L2 , and for h

small we can subtract it from both sides.
From this we deduce the following bound for any such ρ̃1:

‖ρ1(h21)u‖L2 ≤ CN ,λ0

(
h

1
3 ‖ρ2(h21)(Ph − λ)u‖L2 + h

1
3 ‖ρ̃1(h21)u‖L2 + hN

‖u‖L2
)
.

We now choose a sequence of cutoffs ρ̃ j for 1 ≤ j ≤ 3N, satisfying (6-2), such that for all j we have
ρ̃ j+1 = 1 on a neighborhood of supp(ρ̃ j ), and ρ2 = 1 on a neighborhood of supp(ρ̃ j ). Then replacing ρ1

by ρ̃ j , the preceding estimate shows that

‖ρ̃ j (h21)u‖L2 ≤ CN ,λ0

(
h

1
3 ‖ρ2(h21)(Ph − λ)u‖L2 + h

1
3 ‖ρ̃ j+1(h21)u‖L2 + hN

‖u‖L2
)
.
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We conclude by iteration that

‖ρ̃1(h21)u‖L2 ≤ CN ,λ0

(
h

1
3 ‖ρ2(h21)(Ph − λ)u‖L2 + hN

‖ρ2(h21)u‖L2 + hN
‖u‖L2

)
≤ CN ,λ0

(
h

1
3 ‖ρ2(h21)(Ph − λ)u‖L2 + hN

‖u‖L2
)
.

Together with the above this yields the statement of the theorem. �
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ON THE PROPAGATION OF REGULARITY FOR SOLUTIONS OF
THE DISPERSION GENERALIZED BENJAMIN–ONO EQUATION

ARGENIS J. MENDEZ

To my parents

We study some properties of propagation of regularity of solutions of the dispersive generalized Benjamin–
Ono (BO) equation. This model defines a family of dispersive equations that can be seen as a dispersive
interpolation between the Benjamin–Ono equation and the Korteweg–de Vries (KdV) equation.

Recently, it has been shown that solutions of the KdV and BO equations satisfy the following property:
if the initial data has some prescribed regularity on the right-hand side of the real line, then this regularity
is propagated with infinite speed by the flow solution.

In this case the nonlocal term present in the dispersive generalized Benjamin–Ono equation is more
challenging that the one in the BO equation. To deal with this a new approach is needed. The new
ingredient is to combine commutator expansions into the weighted energy estimate. This allows us to
obtain the property of propagation and explicitly the smoothing effect.
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1. Introduction

The aim of this work is to study some special regularity properties of solutions to the initial value problem
(IVP) associated to the dispersive generalized Benjamin–Ono equation{

∂t u− Dα+1
x ∂x u+ u ∂x u = 0, x, t ∈ R, 0< α < 1,

u(x, 0)= u0(x),
(1.1)

where Ds
x , denotes the homogeneous derivative of order s ∈ R,

Ds
x = (−∂

2
x )

s
2 thus Ds

x f = cs(|ξ |
s f̂ (ξ))q,
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which in its polar form is decomposed as Ds
x = (H∂x)

s, where H denotes the Hilbert transform

H f (x)= 1
π

lim
ε→0+

∫
|y|≥ε

f (x − y)
y

dy = (−i sgn(ξ) f̂ (ξ))q(x),

where ·̂ denotes the Fourier transform and q denotes its inverse. These equations model vorticity waves
in the coastal zone; see [Molinet et al. 2001].

Our starting point is a property established by Isaza, Linares and Ponce [Isaza et al. 2015] concerning
the solutions of the IVP associated to the k-generalized KdV equation{

∂t u+ ∂3
x u+ uk ∂x u = 0, x, t ∈ R, k ∈ N,

u(x, 0)= u0(x).
(1.2)

It was shown in [Isaza et al. 2015] that the unidirectional dispersion of the k-generalized KdV equation
gives the following propagation of regularity phenomena.

Theorem 1.3 [Isaza et al. 2015]. If u0 ∈ H 3/4+(R) and for some l ∈ Z, l ≥ 1 and x0 ∈ R

‖∂ l
x u0‖

2
L2((x0,∞))

=

∫
∞

x0

|∂ l
x u0(x)|2 dx <∞, (1.4)

then the solution of the IVP associated to (1.2) satisfies that for any v > 0 and ε > 0

sup
0≤t≤T

∫
∞

x0+ε−vt
(∂ j

x u)2(x, t) dx < c (1.5)

for j=0, 1, 2, . . . , l with c=c(l; ‖u0‖H3/4+ (R); ‖∂
l
x u0‖L2((x0,∞)); v; ε; T ). In particular, for all t ∈ (0, T ],

the restriction of u( · , t) to any interval (x0,∞) belongs to H l((x0,∞)).
Moreover, for any v ≥ 0, ε > 0 and R > 0∫ T

0

∫ x0+R−vt

x0+ε−vt
(∂ l+1

x u)2(x, t) dx dt < c,

with c = c(l; ‖u0‖H3/4+ (R); ‖∂
l
x u0‖L2((x0,∞)); v; ε; R; T ).

The proof of Theorem 1.3 is based on weighted energy estimates. In particular, the iterative process in
the induction argument is based on a property discovered originally by T. Kato [1983] in the context of
the KdV equation. More precisely, he showed that solution of the KdV equation satisfies∫ T

0

∫ R

−R
(∂x u)2(x, t) dx dt ≤ c(R; T ; ‖u0‖L2

x
), (1.6)

where this is the fundamental fact in his proof of existence of the global weak solutions of (1.2) for k = 1
and initial data in L2(R).

This result was also obtained for the Benjamin–Ono equation [Isaza et al. 2016a] but it does not follow
as the KdV case because of the presence of the Hilbert transform.

Later on, [Kenig et al. 2018] extended the results in Theorem 1.3 to the case when the local regularity
of the initial data u0 in (1.4) is measured with fractional indices. The scope of this case is much more
involved, and its proof is mainly based in weighted energy estimates combined with techniques involving
pseudodifferential operators and singular integrals. The property described in Theorem 1.3 is intrinsic
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to suitable solutions of some nonlinear dispersive models; see also [Linares et al. 2017]. In the context
of two-dimensional models, analogous results for the Kadomtsev–Petviashvili II equation [Isaza et al.
2016b] and the Zakharov–Kuznetsov [Linares and Ponce 2018] equation were proved.

Before stating our main result we will give an overview of the local well-posedness of the IVP (1.1).
Following [Kato 1983] we have that the initial value problem IVP (1.1) is locally well-posed (LWP) in

the Banach space X if for every initial condition u0 ∈ X there exists T > 0 and a unique solution u(t)
satisfying

u ∈ C([0, T ] : X)∩ AT , (1.7)

where AT is an auxiliary function space. Moreover, the solution map u0 7→ u is continuous from X into
the class (1.7). If T can be taken arbitrarily large, one says that the IVP (1.1) is globally well-posed
(GWP) in the space X .

It is natural to study the IVP (1.1) in the Sobolev space

H s(R)= (1− ∂2
x )
−

s
2 L2(R), s ∈ R.

There exist remarkable differences between the KdV (1.2) and the IVP (1.1). In case of KdV, e.g., it
possesses infinite conserved quantities, defines a Hamiltonian system, has multisoliton solutions and is a
completely integrable system by the inverse scattering method [Coifman and Wickerhauser 1990; Fokas
and Ablowitz 1983]. Instead, in the case of the IVP (1.1) there is no integrability, but three conserved
quantities (see [Sidi et al. 1986]), specifically

I[u](t)=
∫

R

u dx, M[u](t)=
∫

R

u2 dx, H[u](t)= 1
2

∫
R

|D
1+α

2
x u|2 dx − 1

6

∫
R

u3 dx,

are satisfied at least for smooth solutions.
Another property in which these two models differ resides in the fact that one can obtain a local

existence theory for the KdV equation in H s(R), based on the contraction principle. On the contrary,
this cannot be done in the case of the IVP (1.1). This is a consequence of the fact that dispersion is not
enough to deal with the nonlinear term. In this direction, Molinet, Saut and Tzvetkov [Molinet et al.
2001] showed that for 0≤ α < 1 the IVP (1.1) with the assumption u0 ∈ H s(R) is not enough to prove
local well-posedness by using fixed-point arguments or the Picard iteration method.

Nevertheless, Molinet and Ribaud [2006] proved global well-posedness by considering initial data in a
weighted low-frequency Sobolev space. Later, using suitable spaces of Bourgain type, Herr [2007] proved
local well-posedness for initial data in H s(R)∩ Ḣ−ω(R) for any s>−3α

4 , ω=
1
α+1−

1
2 , where Ḣ−ω(R) is

a weighted low-frequency Sobolev space (for more details see [Herr 2007]); next by using a conservation
law, these results are extended to global well-posedness in H s(R)∩ Ḣ−ω(R), for s ≥ 0, ω = 1

α+1 −
1
2 .

In this sense, an improvement was obtained by Herr, Ionescu, Kenig and Koch [Herr et al. 2010], who
showed that the IVP (1.1) is globally well-posed in the space of the real-valued L2(R)-functions by using
a renormalization method to control the strong low-high frequency interactions. However, it is not clear
that these results described above can be used to establish our main result. Thus a local theory obtained
by using energy estimates in addition to dispersive properties of the smooth solutions is required.
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In the first step, we obtain the following a priori estimate for solutions of IVP (1.1):

‖u‖L∞T H s
x
. ‖u0‖H s

x
e

c‖∂x u‖L1
T L∞x ;

part of this estimate is based on the Kato–Ponce commutator estimate [1988].
The inequality above reads as follows: in order for the solution u to lie in the Sobolev space H s(R),

continuously in time, we must control the term ‖∂x u‖L1
T L∞x

.
First, we use results of Kenig, Ponce and Vega [Kenig et al. 1991a] concerning oscillatory integrals in

order to obtain the classical Strichartz estimates associated to the group S(t)= et Dα+1
x ∂x, corresponding to

the linear part of the equation in (1.1).
Additionally, the technique introduced in [Koch and Tzvetkov 2003] related to the refined Strichartz

estimate is fundamental in our analysis. Specifically, their method is mainly based in a decomposition
of the time interval into small pieces whose lengths depends on the spatial frequencies of the solution.
This approach allowed Koch and Tzvetkov to prove local well-posedness for the Benjamin–Ono equation
in H 5/4+(R). Then, Kenig and Koenig [2003] enhanced this estimate, which led to proving local well-
posedness for the Benjamin–Ono equation in H 9/8+(R).

Several issues arise when handling the nonlinear part of the equation in (1.1); nevertheless, following
the work of Kenig, Ponce and Vega [Kenig et al. 1993], we manage the loss of derivatives by combining
the local smoothing effect and a maximal function estimate of the group S(t)= et Dα+1

x ∂x.
These observations lead us to present our first result.

Theorem A. Let 0 < α < 1. Set s(α) = 9
8 −

3α
8 and assume that s > s(α). Then, for any u0 ∈ H s(R),

there exists a positive time T = T (‖u0‖H s(R)) > 0 and a unique solution u satisfying (1.1) such that

u ∈ C([0, T ] : H s(R)) and ∂x u ∈ L1([0, T ] : L∞(R)). (1.8)

Moreover, for any r > 0, the map u0 7→ u(t) is continuous from the ball {u0 ∈ H s(R) : ‖u0‖H s(R) < r}
to C([0, T ] : H s(R)).

Theorem A is the base result to describe the propagation of regularity phenomena. As we mentioned
above, the propagation of regularity phenomena is satisfied by the BO and KdV equations. These two
models correspond to particular cases of the IVP (1.1), specifically by taking α = 0 and α = 1.

A question that arises naturally is to determine whether the propagation of regularity phenomena is
satisfied for a model with an intermediate dispersion between these two models mentioned above.

Our main result gives answer to this problem and it is summarized in the following:

Theorem B. Let u0 ∈ H s(R), with s = 3−α
2 , and u = u(x, t) be the corresponding solution of the IVP

(1.1) provided by Theorem A.
If for some x0 ∈ R and for some m ∈ Z+, m ≥ 2,

∂m
x u0 ∈ L2({x ≥ x0}), (1.9)
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then for any v ≥ 0, T > 0, ε > 0 and τ > ε

sup
0≤t≤T

∫
∞

x0+ε−vt
(∂ j

x u)2(x, t) dx

+

∫ T

0

∫ x0+τ−vt

x0+ε−vt
(D

α+1
2

x ∂ j
x u)2(x, t) dx dt +

∫ T

0

∫ x0+τ−vt

x0+ε−vt
(D

α+1
2

x H∂ j
x u)2(x, t) dx dt ≤ c (1.10)

for j = 1, 2, . . . ,m, with c = c(T ; ε; v;α; ‖u0‖H s ; ‖∂m
x u0‖L2((x0,∞))) > 0.

If in addition to (1.9) there exists x0 ∈ R+ with

D
1−α

2
x ∂m

x u0 ∈ L2({x ≥ x0}) (1.11)

then for any v ≥ 0, ε > 0 and τ > ε

sup
0≤t≤T

∫
∞

x0+ε−vt
(D

1−α
2

x ∂m
x u)2(x, t) dx

+

∫ T

0

∫ x0+τ−vt

x0+ε−vt
(∂m+1

x u)2(x, t) dx dt +
∫ T

0

∫ x0+τ−vt

x0+ε−vt
(∂m+1

x Hu)2(x, t) dx dt ≤ c, (1.12)

with c = c(T ; ε; v;α; ‖u0‖H s ; ‖D(1−α)/2
x ∂m

x u0‖L2((x0,∞))) > 0.

Although the argument of the proof of Theorem B follows in spirit that of KdV, i.e., an induction
process combined with weighted energy estimates, the presence of the nonlocal operator Dα+1

x ∂x in the
term providing the dispersion, makes the proof much harder. More precisely, two difficulties appear, the
most important of which is to obtain explicitly the Kato smoothing effect [1983], which in the proof of
Theorem 1.3 is fundamental.

In contrast to the KdV equation, the gain of the local smoothing in solutions of the dispersive generalized
Benjamin–Ono equation is just α+1

2 derivatives, so as occurs in the case of the Benjamin–Ono equation
[Isaza et al. 2016a], the iterative argument in the induction process is carried out in two steps, one for
positive integers m and another one for m+ 1−α

2 derivatives.
In the case of the BO equation [Isaza et al. 2016a], the authors obtain the smoothing effect basing their

analysis on several commutator estimates, such as the extension of Calderón’s first commutator for the
Hilbert transform [Baishanski and Coifman 1967]. However, their method of proof does not allow them
to obtain explicitly the local smoothing as in [Kato 1983].

The advantage of our method is that it allows us to obtain explicitly the smoothing effect for any
α ∈ (0, 1) in the IVP (1.1). Roughly, we rewrite the term modeling the dispersive part of the equation in
(1.1) in terms of an expression involving [HDα+2

x ;χ2
ε,b]. At this point, we incorporate results of [Ginibre

and Velo 1991] about commutator decomposition. This allows us to obtain explicitly the smoothing effect
as in [Kato 1983] at every step of the induction process in the energy estimate. Additionally, this approach
allows us to study the propagation of regularity phenomena in models where the dispersion is lower in
comparison with that of IVP (1.1). We address this issue in a forthcoming work; specifically we study the
propagation of regularity phenomena in real solutions of the model

∂t u− Dα
x ∂x u+ u∂x u = 0, x, t ∈ R, 0< α < 1.
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As a direct consequence of Theorem B, one has that for an appropriate class of initial data the singularity
of the solution travels with infinite speed to the left as time evolves. Also, the time reversibility property
implies that the solution cannot have had some regularity in the past.

Concerning the nonlinear part of IVP (1.1) in the weighted energy estimate, several issues arise.
Nevertheless, following the approach of [Kenig et al. 2018], combined with [Kato and Ponce 1988; Li
2019] on the generalization of several commutator estimates, allows us to overcome these difficulties.

Remark 1.13. (I) It will be clear from our proof that the requirement on the initial data, that is, u0 ∈

H (3−α)/2(R) in Theorem B, can be lowered to H ((9−3α)/8)+(R).

(II) Also it is worth highlighting that the proof of Theorem B can be extended to solutions of the IVP{
∂t u− Dα+1

x ∂x u+ uk ∂x u = 0, x, t ∈ R, 0< α < 1, k ∈ Z+,

u(x, 0)= u0(x).
(1.14)

(III) The results in Theorem B still hold for solutions of the defocusing generalized dispersive Benjamin–
Ono equation {

∂t u− Dα+1
x ∂x u− u ∂x u = 0, x, t ∈ R, 0< α < 1,

u(x, 0)= u0(x).

This can be seen applying Theorem B to the function v(x, t)= u(−x,−t), where u(x, t) is a solution of
(1.1). In short, Theorem B remains valid, backward in time for initial data u0 satisfying (1.9) and (1.11).

Next, we present some immediate consequences of Theorem B.

Corollary 1.15. Let u ∈ C([−T, T ] : H (3−α)/2(R)) be a solution of the equation in (1.1) described by
Theorem B. If there exist n,m ∈ Z+ with m ≤ n such that for some τ1, τ2 ∈ R with τ1 < τ2∫

∞

τ2

|∂n
x u0(x)|2 dx <∞ but ∂m

x u0 /∈ L2((τ1,∞)),

then for any t ∈ (0, T ) and any v > 0 and ε > 0∫
∞

τ2+ε−vt
|∂n

x u(x, t)|2 dx <∞,

and for any t ∈ (−T, 0) and any τ3 ∈ R∫
∞

τ3

|∂m
x u(x, t)|2 dx =∞.

The rest of the paper is organized as follows: in the Section 2 we fix the notation to be used throughout
the document. Section 3 contains a brief summary of commutator estimates involving fractional derivatives.
Section 4 deals with the local well-posedness. Finally, in Sections 5 and 6 we prove Theorems A and B.

2. Notation

The following notation will be used extensively throughout this article. The operator J s
= (1− ∂2

x )
s/2

denotes the Bessel potentials of order −s.
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For 1≤ p ≤∞, L p(R) is the usual Lebesgue space with the norm ‖ · ‖L p ; additionally for s ∈ R, we
consider the Sobolev space H s(R) is defined via its usual norm ‖ f ‖H s = ‖J s f ‖L2 . In this context, we
define

H∞(R)=
⋂
s≥0

H s(R).

Let f = f (x, t) be a function defined for x ∈ R and t in the time interval [0, T ], with T > 0, or in the
whole line R. Then if A denotes any of the spaces defined above, we define the spaces L p

T Ax and L p
t Ax

by the norms

‖ f ‖L p
T Ax
=

(∫ T

0
‖ f ( · , t)‖p

A dt
)1

p

and ‖ f ‖L p
t Ax
=

(∫
R

‖ f ( · , t)‖p
A dt

)1
p

for 1≤ p ≤∞ with the natural modification in the case p =∞. Moreover, we use similar definitions for
the mixed spaces Lq

x L p
t and Lq

x L p
T with 1≤ p, q ≤∞.

For two quantities A and B, we write A . B if A ≤ cB for some constant c > 0. Similarly, A & B if
A ≥ cB for some c > 0. We write A ∼ B if A . B and B . A. The dependence of the constant c on
other parameters or constants is usually clear from the context and we will often suppress this dependence
whenever possible.

For a real number a we will write a+ instead of a+ ε whenever ε is a positive number whose value is
small enough.

3. Preliminaries

In this section, we state several inequalities to be used in the next sections.
First, we have an extension of the Calderón commutator theorem [1965] established in [Baishanski

and Coifman 1967].

Theorem 3.1. For any p ∈ (1,∞) and any l,m ∈ Z+ ∪ {0} there exists c = c(p; l;m) > 0 such that

‖∂ l
x [H;ψ] ∂

m
x f ‖L p ≤ c‖∂m+l

x ψ‖L∞‖ f ‖L p . (3.2)

For a different proof see [Dawson et al. 2008, Lemma 3.1].
In our analysis the Leibniz rule for fractional derivatives, established in [Grafakos and Oh 2014; Kato

and Ponce 1988; Kenig et al. 1994], will be crucial. Even though most of these estimates are valid in
several dimensions, we will restrict our attention to the one-dimensional case.

Lemma 3.3. For s > 0, p ∈ [1,∞),

‖Ds( f g)‖L p . ‖ f ‖L p1‖Ds g‖L p2 +‖g‖L p3‖Ds f ‖L p4 , (3.4)

with
1
p
=

1
p1
+

1
p2
=

1
p3
+

1
p4
, p j ∈ (1,∞], j = 1, 2, 3, 4.

Also, we will state the fractional Leibniz rule proved by Kenig, Ponce and Vega [Kenig et al. 1993].
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Lemma 3.5. Let s = s1+ s2 ∈ (0, 1), with s1, s2 ∈ (0, s), and p, p1, p2 ∈ (1,∞), satisfy

1
p
=

1
p1
+

1
p2
.

Then,

‖Ds( f g)− f Ds g− gDs f ‖L p . ‖Ds1 f ‖L p1‖Ds2 g‖L p2 . (3.6)

Moreover, the case s2 = 0 and p2 =∞ is allowed.

A natural question about Lemma 3.5 is to investigate the possible generalization of the estimate (3.6)
when s ≥ 1. The answer to this question was given recently by D. Li [2019]; he established new fractional
Leibniz rules for the nonlocal operator Ds, s > 0, and related ones, including various endpoint situations.

Theorem 3.7. Let s > 0 and 1< p <∞. Then for any s1, s2 ≥ 0 with s = s1+ s2, and any f, g ∈ S(Rn),
the following hold:

(1) If 1< p1, p2 <∞ with 1
p =

1
p1
+

1
p2

, then∥∥∥∥Ds( f g)−
∑
α≤s1

1
α!
∂αx f Ds,αg−

∑
β≤s2

1
β!
∂βx gDs,β f

∥∥∥∥
L p
. ‖Ds1 f ‖L p1‖Ds2 g‖L p2 . (3.8)

(2) If p1 = p, p2 =∞, then∥∥∥∥Ds( f g)−
∑
α<s1

1
α!
∂αx f Ds,αg−

∑
β≤s2

1
β!
∂βx gDs,β f

∥∥∥∥
L p
. ‖Ds1 f ‖L p‖Ds2 g‖BMO,

where ‖ · ‖BMO denotes the norm in the BMO space.1

(3) If p1 =∞, p2 = p, then∥∥∥∥Ds( f g)−
∑
α≤s1

1
α!
∂α f Ds,αg−

∑
β<s2

1
β!
∂βgDs,β f

∥∥∥∥
L p
. ‖Ds1 f ‖BMO‖Ds2 g‖L p .

The operator Ds,α is defined via Fourier transform2

D̂s,αg(ξ)= D̂s,α(ξ)ĝ(ξ),

D̂s,α(ξ)= i−α∂αξ (|ξ |
s).

Remark 3.9. As usual empty summation (such as
∑

0≤α<0) is defined as zero.

Proof. For a detailed proof of this theorem and related results, see [Li 2019]. �

Next we have the following commutator estimates involving nonhomogeneous fractional derivatives,
established by Kato and Ponce.

1For any f ∈ L1
loc(R

n), the BMO seminorm is given by ‖ f ‖BMO = supQ
1
|Q|

∫
Q | f (y)− ( f )Q | dy, where ( f )Q is the

average of f on Q, and the supreme is taken over all cubes Q in Rn.
2The precise form of the Fourier transform does not matter.
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Lemma 3.10 [Kato and Ponce 1988]. Let s > 0 and p, p2, p3 ∈ (1,∞) and p1, p4 ∈ (1,∞] be such that

1
p
=

1
p1
+

1
p2
=

1
p3
+

1
p4
.

Then,

‖[J s
; f ]g‖L p . ‖∂x f ‖L p1‖J s−1g‖L p2 +‖J s f ‖L p3‖g‖L p4 (3.11)

‖J s( f g)‖L p . ‖J s f ‖L p1‖g‖L p2 +‖J s g‖L p3‖ f ‖L p4 . (3.12)

There are many other reformulations and generalizations of the Kato–Ponce commutator inequalities;
see [Bényi and Oh 2014]. Recently Li [2019] has obtained a family of refined Kato–Ponce-type inequalities
for the operator Ds. In particular he showed that:

Lemma 3.13. Let 1< p <∞. Let 1< p1, p2, p3, p4 ≤∞ satisfy

1
p
=

1
p1
+

1
p2
=

1
p3
+

1
p4
.

Therefore:

(a) If 0< s ≤ 1, then

‖Ds( f g)− f Ds g‖L p . ‖Ds−1∂x f ‖L p1‖g‖L p2 .

(b) If s > 1, then

‖Ds( f g)− f Ds g‖L p . ‖Ds−1∂x f ‖L p1‖g‖L p2 +‖∂x f ‖L p3‖Ds−1g‖L p4 . (3.14)

For a more detailed exposition on these estimates see [Li 2019, Section 5].
In addition, we have the following inequality of Gagliardo–Nirenberg type:

Lemma 3.15. Let 1< q, p <∞, 1< r ≤∞ and 0< α < β. Then,

‖Dα f ‖L p . c‖ f ‖1−θLr ‖Dβ f ‖θLq

with
1
p
−α = (1− θ)1

r
+ θ

(1
q
−β

)
, θ ∈

[
α

β
, 1
]
.

Proof. See [Bergh and Löfström 1976, Chapter 4]. �

Now, we present a result that will help us to establish the propagation of regularity of solutions of (1.1).
A previous result [Kenig et al. 2018, Corollary 2.1] was proved using the fact that J r, r ∈ R, can be seen
as a pseudodifferential operator. Thus, this approach allows us to obtain an expression for J r in terms of
a convolution with a certain kernel k(x, y) which enjoys some properties on localized regions in R2. In
fact, this is known as the singular integral realization of a pseudodifferential operator, whose proof can be
found in [Stein 1993, Chapter 4].

The estimate we consider here involves the nonlocal operator Ds instead of J s.
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Lemma 3.16. Let m ∈ Z+ and s ≥ 0. If f ∈ L2(R) and g ∈ L p(R), 2≤ p ≤∞, with

dist(supp( f ), supp(g))≥ δ > 0. (3.17)
Then

‖g ∂m
x Ds f ‖L2 . ‖g‖L p‖ f ‖L2 .

Proof. Let f , g be functions in the Schwartz class satisfying (3.17).
Notice that

g(x)(Ds
x∂

m
x f )(x)=

g(x)

(2π)
1
2

∫
R

ei xξ
|ξ |s ∂̂m

x f (ξ) dξ =
g(x)

(2π)
1
2

∫
R

|ξ |s ̂(τ−x∂m
x f )(ξ) dξ, (3.18)

where τh is the translation operator.3

Moreover, the last expression in (3.18) defines a tempered distribution for s in a suitable class, which
will be specified later. Indeed, for z ∈ C with −1< Re(z) < 0

1

(2π)
1
2

∫
R

|ξ |z ̂(τ−x∂m
x ϕ)(ξ) dξ = c(z)

∫
R

(τ−x∂
m
x ϕ)(y)
|y|1+z dy for all ϕ ∈ S(R), (3.19)

with c(z) is independent of ϕ. In fact, evaluating ϕ(x)= e−x2/2 in (3.19) yields

c(z)=
2z 0

( z+1
2

)
π

1
20
(
−

z
2

) .
Thus, for every ϕ ∈ S(R) the right-hand side in (3.19) defines a meromorphic function for every test
function, which can be extended analytically to a wider range of complex numbers z, specifically z with
Im(z) = 0 and Re(z) = s > 0, which is the case that pertains to us. By an abuse of notation, we will
denote the meromorphic extension and the original as the same.

Thus, combining (3.17), (3.18) and (3.19) it follows that

g(x)(Ds
x∂

m
x f )(x)= c(s)

∫
R

g(x)(τ−x∂
m
x f )(y)

|y|1+s dy = c(s)g(x)
(

f ∗
1{|y|≥δ}
|y|s+m+1

)
(x).

Notice that the kernel in the integral expression is not anymore singular due to the condition (3.17). In
fact, in the particular case that m is even, we obtain after apply integration by parts

g(x)(Ds
x∂

m
x f )(x)= c(s,m)g(x)

(
f ∗

1{|y|≥δ}
|y|s+m+1

)
(x)

and in the case m being odd

g(x)(Ds
x∂

m
x f )(x)= c(s,m)g(x)

(
f ∗

y1{|y|≥δ}
|y|s+m+2

)
(x).

Finally, in both cases combining Young’s inequality and Hölder’s inequality one gets

‖g ∂m
x Ds

x f ‖L2 . ‖g‖L p‖ f ‖L2‖
1{|y|≥δ}
| · |s+m+1 ‖Lr . ‖g‖L p‖ f ‖L2,

where the index p satisfies 1
2 =

1
p +

1
r , which clearly implies p ∈ [2,∞], as was required. �

3For h ∈ R the translation operator τh is defined as (τh f )(x)= f (x − h).
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Further in the paper we will use extensively some results about the commutator beyond those presented
in this section. Next, we will study the smoothing effect for solutions of the dispersive generalized
Benjamin–Ono equation (1.1) following Kato’s ideas [1983].

3A. Commutator expansions. In this section we present several new main tools obtained in [Ginibre
and Velo 1989; 1991] which will be the cornerstone of the proof of Theorem B. They include commutator
expansions together with their estimates. The basic problem is to handle the nonlocal operator Ds for
noninteger s and in particular to obtain representations of its commutator with multiplication operators by
functions that exhibit as much locality as possible.

Let a = 2µ+ 1> 1, let n be a nonnegative integer and h be a smooth function with suitable decay at
infinity, for instance with h′ ∈ C∞0 (R).

We define the operator

Rn(a)= [H Da
; h] − 1

2(Pn(a)− H Pn(a)H), (3.20)

Pn(a)= a
∑

0≤ j≤n

c2 j+1(−1) j 4− j Dµ− j (h(2 j+1)Dµ− j ), (3.21)

where

c1 = 1, c2 j+1 =
1

(2 j + 1)!

∏
0≤k< j

(a2
− (2k+ 1)2) and H =−H.

It was shown in [Ginibre and Velo 1989] that the operator Rn(a) can be represented in terms of anticom-
mutators4 as follows:

Rn(a)= 1
2([H ; Qn(a)]++ [Da

; [H ; h]]+), (3.22)

where the operator Qn(a) is represented in the Fourier space variables by the integral kernel

Qn(a)→ (2π)
1
2 ĥ(ξ − ξ ′)|ξξ ′|

a
2 2aqn(a, t), (3.23)

with |ξ | = |ξ ′| e2t and

qn(a, t)= 1
a
(a2
− (2n+ 1)2)c2n+1

∫ t

0
sinh2n+1 τ sinh((a(t − τ))) dτ. (3.24)

Based on (3.22) and (3.23), Ginibre and Velo [1991] obtained the following properties of boundedness
and compactness of the operator Rn(a).

Proposition 3.25. Let n be a nonnegative integer, a ≥ 1, and σ ≥ 0 be such that

2n+ 1≤ a+ 2σ ≤ 2n+ 3. (3.26)
Then:

(a) The operator Dσ Rn(a)Dσ is bounded in L2 with norm

‖Dσ Rn(a)Dσ f ‖L2 ≤ C(2π)−
1
2 ‖ ̂(Da+2σh)‖L1

ξ
‖ f ‖L2 . (3.27)

If a ≥ 2n+ 1, one can take C = 1.

4For any two operators P and Q we denote the anticommutator by [P; Q]+ = P Q+ Q P.



2410 ARGENIS J. MENDEZ

(b) Assume in addition that
2n+ 1≤ a+ 2σ < 2n+ 3.

Then the operator Dσ Rn(a)Dσ is compact in L2(R).

Proof. See Proposition 2.2 in [Ginibre and Velo 1991]. �

In fact Proposition 3.25 is a generalization of a previous result, where the derivatives of the operator
Rn(a) are not considered; see [Ginibre and Velo 1989, Proposition 1].

The estimate (3.27) yields the following identity of localization of derivatives.

Lemma 3.28. Assume 0< α < 1. Let be ϕ ∈ C∞(R) with ϕ′ ∈ C∞0 (R). Then,∫
R

ϕ f Dα+1∂x f dx =
(
α+ 2

4

)∫
R

(|D
α+1

2 f |2+ |D
α+1

2 H f |2)ϕ′ dx + 1
2

∫
R

f R0(α+ 2) f dx . (3.29)

Proof. The proof follows the ideas presented in Proposition 2.12 in [Linares et al. 2014]. �

4. The linear problem

The aim of this section is to obtain Strichartz estimates associated to solutions of the IVP (1.1).
First, consider the linear problem{

∂t u− Dα+1
x ∂x u = 0, x, t ∈ R, 0< α < 1,

u(x, 0)= u0(x),
(4.1)

whose solution is given by
u(x, t)= S(t)u0 = (ei t |ξ |α+1ξ û0)q. (4.2)

We begin studying estimates of the unitary group obtained in (4.2).

Proposition 4.3. Assume that 0< α < 1. Let q, p satisfy 2
q +

1
p =

1
2 with 2≤ p ≤∞.

Then
‖D

α
q
x S(t)u0‖Lq

t L p
x
. ‖u0‖L2

x
(4.4)

for all u0 ∈ L2(R).

Proof. The proof follows as an application of Theorem 2.1 in [Kenig et al. 1991a]. �

Remark 4.5. Notice that the condition on p implies q ∈ [4,∞], which in one of the extremal cases
(p, q)= (∞, 4) yields

‖D
α
4
x S(t)u0‖L4

t L∞x
. ‖u0‖L2

x
,

which shows the gain of α
4 derivatives globally in time for solutions of (4.1).

Lemma 4.6. Assume that 0< α < 1. Let ψk be a C∞(R) function supported in the interval [2k−1, 2k+1
],

where k ∈ Z+. Then, the function Hα
k defined as

Hα
k (x)=


2k if |x | ≤ 1,
2

k
2 |x |−

1
2 if 1≤ |x | ≤ c2k(α+1),

(1+ x2)−1 if |x |> c2k(α+1)
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satisfies ∣∣∣∣∫ ∞
−∞

ei(tξ |ξ |α+1
+xξ) ψk(ξ) dξ

∣∣∣∣. Hα
k (x) (4.7)

for |t | ≤ 2, where the constant c does not depend on t or k.
Moreover, we have

∞∑
l=−∞

Hα
k (|l|). 2k( α+1

2 ). (4.8)

Proof. The proof of estimate (4.7) is given in [Kenig et al. 1991b, Proposition 2.6] and it uses arguments of
localization and the classical Van der Corput lemma. Meanwhile, (4.8) follows exactly that of Lemma 2.6
in [Linares et al. 2014]. �

Theorem 4.9. Assume 0< α < 1. Let s > 1
2 . Then,

‖S(t)u0‖L2
x L∞t ([−1,1]) ≤

( ∞∑
j=−∞

sup
|t |≤1

sup
j≤x< j+1

|S(t)u0(x)|2
)1

2

. ‖u0‖H s
x

for any u0 ∈ H s(R).

Proof. See Theorem 2.7 in [Kenig et al. 1991b]. �

Next, we recall a maximal function estimate proved by Kenig, Ponce and Vega [Kenig et al. 1991b].

Corollary 4.10. Assume that 0< α < 1. Then, for any s > 1
2 and any η > 3

4( ∞∑
j=−∞

sup
|t |≤T

sup
j≤x< j+1

|S(t)v0|
2
)1

2

. (1+ T )η‖v0‖H s
x
.

Proof. See Corollary 2.8 in [Kenig et al. 1991b]. �

4A. The nonlinear problem. This section is devoted to studying general properties of solutions of the
nonlinear problem {

∂t u− Dα+1
x ∂x u+ u ∂x u = 0, x, t ∈ R, 0< α < 1,

u(x, 0)= u0(x).
(4.11)

We begin this section by stating the following local existence theorem proved in [Kato 1975; Saut and
Temam 1976].

Theorem 4.12. (1) For any u0 ∈ H s(R) with s > 3
2 there exists a unique solution u to (4.11) in the class

C([−T, T ] : H s(R)) with T = T (‖u0‖H s ) > 0.

(2) For any T ′ < T there exists a neighborhood V of u0 in H s(R) such that the map ũ0 7→ ũ(t) from V
into C([−T ′, T ′] : H s(R)) is continuous.

(3) If u0 ∈ H s′(R) with s ′ > s, then the time of existence T can be taken to depend only on ‖u0‖H s .

Our first goal will be to obtain some energy estimates satisfied by smooth solutions of the IVP (4.11).
We firstly present a result that arises as a consequence of commutator estimates.
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Lemma 4.13. Suppose that 0 < α < 1. Let u ∈ C([0, T ] : H∞(R)) be a smooth solution of (4.11). If
s > 0 is given, then

‖u‖L∞T H s
x
. ‖u0‖H s

x
e

c‖∂x u‖L1
T L∞x . (4.14)

Proof. Let s > 0. By a standard energy estimate argument we have

1
2

d
dt

∫
R

(J s
x u)2 dx +

∫
R

[J s
x ; u]∂x u J s

x u dx +
∫

R

u J s
x u J s

x ∂x u dx = 0.

Hence integration by parts, Gronwall’s inequality and the commutator estimate (3.11) lead to (4.14). �

Remark 4.15. In view of the energy estimate (4.14), the key point to obtaining a priori estimates in
H s

x (R) is to control ‖∂x u‖L1
T L∞x

at the H s
x (R)-level.

In addition to this estimate, we will present the smoothing effect provided by solutions of the dispersive
generalized Benjamin–Ono equation. In fact, the smoothing effect was first observed by Kato [1983] in
the context of the Korteweg–de Vries equation. Following Kato’s approach joint with the commutator
expansions, we present a result proved by Kenig, Ponce and Vega [Kenig et al. 1991b, Lemma 5.1].

Proposition 4.16. Let ϕ denote a nondecreasing smooth function such that suppϕ′ ⊂ (−1, 2) and
ϕ′|[0,1) = 1. For j ∈ Z, we define ϕ j ( · )= ϕ( · − j). Let u ∈C([0, T ] : H∞(R)) be a real smooth solution
of (1.1) with 0< α < 1. Assume also that s ≥ 0 and r > 1

2 . Then,(∫ T

0

∫
R

(|D
s+ α+1

2
x u(x, t)|2+ |D

s+ α+1
2

x Hu(x, t)|2)ϕ′j (x) dx dt
)1

2

. (1+ T +‖∂x u‖L1
T L∞x
+ T ‖u‖L∞T H r

x
)

1
2 ‖u‖L∞T H s

x
. (4.17)

In addition to the smoothing effect presented above, we will need the following localized version of
the H s(R)-norm. For this purpose we will consider a cutoff function ϕ with the same characteristics as
those in Proposition 4.16.

Proposition 4.18. Let s ≥ 0. Then, for any f ∈ H s(R)

‖ f ‖H s(R) ∼

( ∞∑
j=−∞

‖ f ϕ′j‖
2
H s(R)

)1
2

.

Hence our first goal in establishing the local well-posedness of (4.11) is to obtain Strichartz estimates
associated to solutions of

∂t u− D1+α
x ∂x u = F. (4.19)

Proposition 4.20. Assume that 0 < α < 1, T > 0 and σ ∈ [0, 1]. Let u be a smooth solution to (4.19)
defined on the time interval [0, T ]. Then there exist 0≤ µ1, µ2 <

1
2 such that

‖∂x u‖L2
T L∞x
. T µ1‖J 1− α4+

σ
4+εu‖L∞T L2

x
+ T µ2‖J 1− α4−

3σ
4 +εF‖L2

T L2
x

(4.21)

for any ε > 0.
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Remark 4.22. The optimal choice in the parameters present in the estimate (4.21) corresponds to σ = 1−α
2 .

Indeed, as is pointed out by Kenig and Koenig [2003, Proposition 2.8] in the case of the Benjamin–Ono
equation (case α = 0) given a linear estimate of the form

‖∂x u‖L2
T L∞x
. T µ1‖J au‖L∞T L2

x
+ T µ2‖J b F‖L2

T L2
x

the idea is to apply the smoothing effect (4.17) and absorb as many as derivatives as possible of the
function F. Concerning to our case, the approach requires the choice a = b+ 1−α

2 ; this particular choice,
σ = 1−α

2 , in the estimate (4.21) provides the regularity s > 9
8 −

3α
8 in Theorem A.

Proof. Let f =
∑

k fk denote the Littlewood–Paley decomposition of a function f . More precisely we
choose functions η, χ ∈ C∞(R) with supp(η)⊆

{
ξ : 1

2 < |ξ |< 2
}

and supp(χ)⊆ {ξ : |ξ |< 2} such that
∞∑

k=1

η

(
ξ

2k

)
+χ(ξ)= 1

and fk = Pk( f ), where (̂P0 f )(ξ)= χ(ξ) f̂ (ξ) and (̂Pk f )(ξ)= η(ξ/2k) f̂ (ξ) for all k ≥ 1.
Fix ε > 0. Let p > 1

ε
. By Sobolev embedding and the Littlewood–Paley theorem it follows that

‖ f ‖L∞x . ‖J ε f ‖L p
x
∼

∥∥∥∥( ∞∑
k=0

|J εPk f |2
)1

2
∥∥∥∥

L p
x

=

∥∥∥∥ ∞∑
k=0

|J εPk f |2
∥∥∥∥ 1

2

L p/2
x

.

( ∞∑
k=0

‖J εPk f ‖2L p
x

)1
2

.

Therefore, to obtain (4.21) it enough to prove that for p > 2

‖∂x uk‖L2
T L p

x
. ‖D

1− α4+
σ
4+

α−σ
2p

x uk‖L∞T L2
x
+‖D

1− α4−
3σ
4 +

α−σ
2p

x Fk‖L2
T L2

x
, k ≥ 1.

The estimate for the case k = 0 follows using Hölder’s inequality and (4.4). For such reason we fix k ≥ 1,
and at this level of frequencies we have

∂t uk − Dα+1
x ∂x uk = Fk .

Consider a partition of the interval [0, T ] =
⋃

j∈J I j , where I j = [a j , b j ], and T = b j for some j . Indeed,
we choose a quantity ∼ 2kσT 1−µ of intervals, with length |I j | ∼ 2−kσT µ, where µ is a positive number
to be fixed.

Let q be such that
2
q
+

1
p
=

1
2
.

Using that u solves the integral equation

u(t)= S(t)u0+

∫ t

0
S(t − t ′)F(t ′) dt ′, (4.23)

we deduce that

‖∂x uk‖L2
T L p

x
. (T µ2−kσ )

( 1
2−

1
q )
(∑

j∈J

‖S(t − a j )∂x uk(a j )‖
2
Lq

I j
L p

x
+

∥∥∥∥∫ t

a j

S(t − s)∂x Fk(s) ds
∥∥∥∥2

Lq
I j

L p
x

)1
2

.
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In this sense, it follows from (4.4) that

‖∂x uk‖L2
T L p

x
. (T µ2−kσ )

( 1
2−

1
q )
{∑

j∈J

‖D
−
α
q

x ∂x uk(a j )‖
2
L2

x
+

∑
j∈J

(∫
I j

‖D
−
α
q

x ∂x Fk(t)‖L2
x

dt
)2} 1

2

. (T µ2−kσ )
( 1

2−
1
q )
{(∑

j∈J

‖D
1− αq
x uk‖

2
L∞T L2

x

)1
2

+

(∑
j∈J

T µ2−kσ
∫

I j

‖D
1− αq
x Fk(t)‖2L2

x
dt
)1

2
}

. (T µ2−kσ )
( 1

2−
1
q )(T 1−µ2kσ )

1
2 ‖D

1− αq
x uk‖L∞T L2

x

+ (T µ2−kσ )
( 1

2−
1
q )(T µ2−kσ )

1
2

(∫ T

0
‖D

1− αq
x Fk(t)‖2L2

x
dt
)1

2

. T
1
2−

µ
q ‖D

1− αq+
σ
q

x uk‖L∞T L2
x
+ T µ(1− 1

q )‖D
1− αq+

σ
q −σ

x Fk‖L2
T L2

x
,

since
1− α

q
+
σ

q
= 1− α

4
+
σ

4
+
α−σ

2p
and 1− α

q
+
σ

q
− σ = 1− α

4
−

3σ
4
+
α−σ

2p
.

We recall that ε > 1
p , σ ∈ [0, 1] and α ∈ (0, 1); then

ε+
α−σ

2p
>
α−σ+2

2p
> 0.

Next, we choose µ1 =
1
2 −

µ
q , µ2 = µ

(
1− 1

q

)
with the particular choice µ= 1

2 .
Gathering the inequalities above, the proposition follows. �

Now we turn our attention to the proof of Theorem A. Our starting point will be the energy estimate
(4.14), where, as was remarked above, the key point is to establish a priori control of ‖∂x u‖L1

T L∞x
.

5. Proof of Theorem A

5A. A priori estimates. First notice that by scaling, it is enough to deal with small initial data in the
H s-norm. Indeed, if u(x, t) is a solution of (1.1) defined on a time interval [0, T ], for some positive time T,
then, for all λ > 0, uλ(x, t)= λ1+αu(λx, λ2+αt) is also solution with initial data u0,λ(x)= λ1+αu0(λx),
and time interval [0, T/λ2+α

].
For any δ > 0, we define Bδ(0) as the ball with center at the origin in H s(R) and radius δ.
Since

‖u0,λ‖L2
x
= λ

1+2α
2 ‖u0‖L2

x
and ‖Ds

x u0,λ‖L2
x
= λ

1
2+α+s

‖Ds
x u0‖L2

x
,

we have
‖u0,λ‖H s

x
. λ

1
2+α(1+ λs)‖u0‖H s

x
,

so we can force uλ( · , 0) to belong to the ball Bδ(0) by choosing the parameter λ with the condition

λ∼min{δ
2

1+2α ‖u0‖
−

2
1+2α

H s
x

, 1}.

Thus, the existence and uniqueness of a solution to (1.1) on the time interval [0, 1] for small initial data
‖u0‖H s

x
will ensure the existence and uniqueness of a solution to (1.1) for arbitrary large initial data on a

time interval [0, T ] with
T ∼min{1, ‖u0‖

−
2(2+α)
1+2α

H s
x
}.
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Thus, without loss of generality we will assume that T ≤ 1 and that

3 := ‖u0‖L2 +‖Dsu0‖L2 ≤ δ,

where δ is a small positive number to be fixed later.
We fix s such that s(α)= 9

8 −
3α
8 < s < 3

2 −
α
2 and set ε = s− s(α) > 0.

Next, taking σ = 1−α
2 > 0, F =−u ∂x u in (4.21) together with (4.14) yields

‖∂x u‖L2
T L∞x
. T µ1‖J su‖L∞T L2

x
+ T µ2‖J 1− α4−

3σ
4 +ε(u∂x u)‖L2

T L2
x

.3+3 e
c‖∂x u‖L2

T L∞x +‖D
s+ α−1

2
x (u∂x u)‖L2

T L2
x
. (5.1)

Now, to analyze the product coming from the nonlinear term we use the Leibniz rule for fractional
derivatives (3.6) together with the energy estimate (4.14) as follows:

‖D
s+ α−1

2
x (u∂x u)‖L2

T L2
x
. ‖u D

s+ α−1
2

x ∂x u‖L2
T L2

x
+
∥∥‖∂x u(t)‖L∞x ‖D

s+ α−1
2

x u(t)‖L2
x

∥∥
L2

T

. ‖u D
s+ α−1

2
x ∂x u‖L2

T L2
x
+3‖∂x u‖L2

T L∞x
e

c‖∂x u‖L2
T L∞x . (5.2)

To handle the first term in the right-hand side above, we incorporate Kato’s smoothing effect estimate
obtained in (4.17) in the following way:

‖u D
s+ α−1

2
x ∂x u‖L2

T L2
x
≤

( ∞∑
j=−∞

∫ T

0
‖u(t)‖2L∞

[ j, j+1)
‖D

s+ α+1
2

x Hu(t)‖2L2
[ j, j+1)

dt
)1

2

.

( ∞∑
j=−∞

‖u‖2L∞T L∞
[ j, j+1)

)1
2

(1+3)3 e
c‖∂x u‖L2

T L∞x . (5.3)

In summary, gathering the estimates (5.1)–(5.3) yields

‖∂x u‖L2
T L∞x
.3(1+3) e

c‖∂x u‖L2
T L∞x

( ∞∑
j=−∞

‖u‖2L∞T L∞
[ j, j+1)

)1
2

+3+3 e
c‖∂x u‖L2

T L∞x . (5.4)

Since u is a solution to (4.11), by Duhamel’s formula it follows that

u(t)= S(t)u0−

∫ t

0
S(t − s)(u ∂x u)(s) ds,

where S(t)= et Dα+1
x ∂x.

Now, we fix η > 0 such that η < 1+α
8 ; this choice implies that η+ 1

2 < s + α−1
2 . Hence, Sobolev’s

embedding, Hölder’s inequality and Corollary 4.10 produce( ∞∑
j=−∞

‖u‖2L∞T L∞
[ j, j+1)

)1
2

.

( ∞∑
j=−∞

‖S(t)u0‖
2
L∞T L∞

[ j, j+1)

)1
2

+

( ∞∑
j=−∞

∥∥∥∥∫ t

0
S(t − s)(u∂x u)(s) ds

∥∥∥∥2

L∞T L∞
[ j, j+1)

)1
2

. (1+ T )3+ (1+ T )‖u∂x u‖L1
T Hη+1/2

x

.3+‖u∂x u‖L1
T L2

x
+‖D

η+ 1
2

x (u ∂x u)‖L1
T L2

x

.3+3‖∂x u‖L2
T L∞x
+‖D

η+ 1
2

x (u ∂x u)‖L2
T L2

x
. (5.5)
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Employing an argument similar to the one applied in (5.2) and (5.4) it is possible to bound the last term
in the right-hand side as follows:

‖D
η+ 1

2
x (u∂x u)‖L2

T L2
x
.

( ∞∑
j=−∞

‖u‖2L∞T L∞
[ j, j+1)

)1
2

3(3+ 1) e
c‖∂x u‖L2

T L∞x +3 e
c‖∂x u‖L2

T L∞x . (5.6)

Next, we define

φ(T )=
(∫ T

0
‖∂x u(s)‖2L∞x ds

)1
2

+

( ∞∑
j=−∞

‖u‖2L∞T L∞
[ j, j+1)

)1
2

,

which is a continuous, nondecreasing function of T.
From (5.4), (5.5) and (5.6) it follows that

φ(T ).3(3+ 1)φ(T ) ec φ(T )
+3 ec φ(T ) φ(T )+3 ec φ(T )

+3+3φ(T ).

Now, if we suppose that 3≤ δ ≤ 1, we obtain

φ(T )≤ c3+ c3 ecφ(T )

for some constant c > 0.
To complete the proof we will show that if there exists δ > 0 such that 3≤ δ, then φ(1)≤ A for some

constant A > 0.
To do this, we define the function

9(x, y)= x − cy− cy ecx . (5.7)

First notice that 9(0, 0)= 0 and ∂x9(0, 0)= 1. Then the implicit function theorem asserts that there
exists δ > 0 and a smooth function ξ(y) such that ξ(0)= 0, and 9(ξ(y), y)= 0 for |y| ≤ δ.

Notice that the condition9(ξ(y), y)=0 implies that ξ(y)>0 for y>0. Moreover, since ∂x9(0, 0)=1,
the function 9( · , y) is increasing close to ξ(y) whenever δ is chosen sufficiently small.

Let us suppose that 3≤ δ, and set λ= ξ(3). Then, combining interpolation and Proposition 4.18 we
obtain

φ(0)=
( ∞∑

j=−∞

(
sup

x∈[ j, j+1)
|u(x, 0)|

)2
)1

2

. ‖u0‖H s(R) ≤ c1‖u0‖L2 + c1‖Ds
x u0‖L2

x
,

where we take c > c1.
Therefore

φ(0)≤ c13< c3+ c3 ecξ(3)
= λ.

Suppose that φ(T ) > λ for some T ∈ (0, 1) and define

T0 = inf{T ∈ (0, 1) | φ(T ) > λ}.

Hence, T0 > 0 and φ(T0)= λ; additionally, there exists a decreasing sequence {Tn}n≥1 converging to T0

such that φ(Tn) > λ. In addition, notice that (5.7) implies 9(φ(T ),3)≤ 0 for all T ∈ [0, 1].
Since the function 9( · ,3) is increasing near λ, we have

9(φ(Tn),3) > 9(φ(T0),3)=9(λ,3)=9(ξ(3),3)= 0

for n sufficiently large.
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This is a contradiction with the fact that φ(T ) > λ. So we conclude φ(T ) ≤ A for all T ∈ (0, 1), as
was claimed. Thus, φ(1)≤ A.

In conclusion we have proved that

φ(T )=
(∫ T

0
‖∂x u(s)‖2L∞x ds

)1
2

+

( ∞∑
j=−∞

‖u‖2L∞T L∞
[ j, j+1)

)1
2

. ‖u0‖H s
x

for all T ∈ [0, 1]. (5.8)

At this stage, the existence, uniqueness, and continuous dependence on the initial data follows from the
standard compactness and Bona–Smith approximation arguments; see for example [Kenig et al. 1991b;
Ponce 1991].

6. Proof of Theorem B

The aim of this section is to prove Theorem B. To achieve this goal is necessary to take into account
two important aspects of our analysis: first, the ambient space, which in our case is the Sobolev space
where the theorem is valid together with the properties satisfied by the real solutions of the dispersive
generalized Benjamin–Ono equation; and second, the auxiliary weight functions involved in the energy
estimates, which we will describe in detail.

The following is a summary of the local well-posedness and Kato’s smoothing effect presented in the
previous sections.

Theorem C. If u0 ∈ H s(R), s ≥ 3−α
2 , α ∈ (0, 1), then there exist a positive time T = T (‖u0‖H s ) > 0 and

a unique solution of the IVP (1.1) such that

(a) u ∈ C([−T, T ] : H s(R)),

(b) (Strichartz) ∂x u ∈ L1([−T, T ] : L∞(R)),

(c) (smoothing effect) for R > 0,∫ T

−T

∫ R

−R

(
|∂x D

r+ α+1
2

x u|2+ |H∂x D
r+ α+1

2
x u|2

)
dx dt ≤ C (6.1)

with r ∈
( 9−3α

8 , s
]

and C = C(α; R; T ; ‖u0‖H s
x
) > 0.

Since we have set the Sobolev space where we will work, the next step is the description of the cutoff
functions to be used in the proof.

In this part we consider families of cutoff functions that will be used systematically in the proof of
Theorem B. This collection of weight functions was constructed originally in [Isaza et al. 2015; Kenig
et al. 2018] in the proof of Theorem 1.3.

More precisely, for ε > 0 and b ≥ 5ε define the families of functions

χε,b, φε,b, φ̃ε,b, ψε, ηε,b ∈ C∞(R)

satisfying the following properties:

(1) χ ′ε,b ≥ 0.

(2) χε,b(x)= 0 if x ≤ ε, and χε,b(x)= 1 if x ≥ b.
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(3) supp(χε,b)⊆ [ε,∞).

(4) χ ′ε,b(x)≥
1

10(b−ε)1[2ε,b−2ε](x).

(5) supp(χ ′ε,b)⊆ [ε, b].

(6) There exists a real number c j such that

|χ
( j)
ε,b (x)| ≤ c jχ

′
ε
3 ,b+ε

(x) for all x ∈ R, j ∈ Z+.

(7) For x ∈ (3ε,∞)

χε,b(x)≥
1
2

ε

b−3ε
.

(8) For x ∈ R

χ ′ε
3 ,b+ε

(x)≤ ε

b−3ε
.

(9) Given ε > 0 and b ≥ 5ε there exist c1, c2 > 0 such that

χ ′ε,b(x)≤ c1χ
′
ε
3 ,b+ε

(x)χ ε
3 ,b+ε(x),

χ ′ε,b(x)≤ c2χ ε
5 ,ε
(x).

(10) For ε > 0 given and b ≥ 5ε, we define the function

ηε,b =
√
χε,bχ

′

ε,b.

(11) supp(φε,b), supp(φ̃ε,b)⊂
[
ε
4 , b

]
.

(12) φε(x)= φ̃ε,b(x)= 1, x ∈
[
ε
2 , ε

]
.

(13) supp(ψε)⊆
(
−∞, ε2

]
.

(14) For x ∈ R

χε,b(x)+φε,b(x)+ψε(x)= 1,

χ2
ε,b(x)+ φ̃

2
ε,b(x)+ψε(x)= 1.

The family {χε,b | ε > 0, b ≥ 5ε} is constructed as follows: let ρ ∈ C∞0 (R), ρ(x) ≥ 0, even, with
supp(ρ)⊆ (−1, 1) and ‖ρ‖L1 = 1.

Then define

νε,b(x)=


0, x ≤ 2ε,

x
b−3ε

−
2ε

b−3ε
, 2ε ≤ x ≤ b− ε,

1, x ≥ b− ε,
and

χε,b(x)= ρε ∗ νε,b(x),

where ρε(x)= ε−1ρ
( x
ε

)
.

Now that we have described all the required estimates and tools necessary, we present the proof of our
main result.
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Proof of Theorem B. Since the argument is translation invariant, without loss of generality we will consider
the case x0 = 0.

First, we will describe the formal calculations assuming as much as regularity as possible; later we
provide the justification using a limiting process.

The proof will be established by induction; however, in every step of the induction we will subdivide
every case into steps, due to the nonlocal nature of the operator involving the dispersive part in the
equation in (1.1).

Case j = 1. Step 1: First we apply one spatial derivative to the equation in (1.1); after that we multiply
by ∂x u(x, t)χ2

ε,b(x + vt), and finally we integrate in the x-variable to obtain the identity

1
2

d
dt

∫
R

(∂x u)2χ2
ε,b dx−v

2

∫
R

(∂x u)2(χ2
ε,b)
′ dx︸ ︷︷ ︸

A1(t)

−

∫
R

(∂x Dα+1
x ∂x u)∂x uχ2

ε,b dx︸ ︷︷ ︸
A2(t)

+

∫
R

∂x(u∂x u)∂x uχ2
ε,b dx︸ ︷︷ ︸

A3(t)

= 0.

Step 1.1: Combining the local theory we obtain the following∫ T

0
|A1(t)| dt ≤ v

2

∫ T

0

∫
R

(∂x u)2(χ2
ε,b)
′ dx dt . ‖u‖L∞T H (3−α)/2

x
.

Step 1.2: Integration by parts and Plancherel’s identity allow us to rewrite the term A2 as

A2(t)=
1
2

∫
R

∂x u[Dα+1
x ∂x ;χ

2
ε,b]∂x u dx =−1

2

∫
R

∂x u[HDα+2
x ;χ2

ε,b]∂x u dx . (6.2)

Since α+ 2> 1, we have by (3.20) that the commutator [HDα+2
x ;χ2

ε,b] can be decomposed as

[HDα+2
x ;χ2

ε,b] = −
1
2 Pn(α+ 2)+ 1

2HPn(α+ 2)H− Rn(α+ 2) (6.3)

for some positive integer n, which will be fixed later.
Inserting (6.3) into (6.2)

A2(t)=
1
2

∫
R

∂x u Rn(α+ 2)∂x u dx + 1
4

∫
R

∂x u Pn(α+ 2)∂x u dx − 1
4

∫
R

∂x u HPn(α+ 2)H∂x u dx

= A2,1(t)+ A2,2(t)+ A2,3(t).

Now, we proceed to fix the value of n present in the terms A2,1, A2,2 and A2,3, according to a determinate
condition.

First, notice that

A2,1(t)=
1
2

∫
R

DxHu Rn(α+ 2)DxHu dx = 1
2

∫
R

Hu Dx{Rn(α+ 2)DxHu} dx .

Then we fix n such that 2n+ 1≤ a+ 2σ ≤ 2n+ 3, which according to the case we are studying ( j = 1),
corresponds to a = α+ 2 and σ = 1. This produces n = 1.

For this n in particular we have by Proposition 3.25 that R1(α+ 2) maps L2
x into L2

x .
Hence,

A2,1(t). ‖Hu(t)‖2L2
x
‖

̂D4+α
x χ2

ε,b‖L1
ξ
= c‖u0‖

2
L2

x
‖

̂D4+α
x χ2

ε,b‖L1
ξ
,
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which after integrating in time yields∫ T

0
|A2,1(t)| dt . ‖u0‖

2
L2

x
sup

0≤t≤T
‖

̂D4+α
x χ2

ε,b‖L1
ξ
.

Next, we turn our attention to A2,2. Replacing P1(α+ 2) into A2,2

A2,2(t)= c̃1

∫
R

(D
α+1

2
x ∂x u)2(χ2

ε,b)
′ dx − c̃3

∫
R

(D
α+1

2
x Hu)2(χ2

ε,b)
′′′ dx

= A2,2,1(t)+ A2,2,2(t).

We shall underline that A2,2,1(t) is positive; additionally it represents explicitly the smoothing effect for
the case j = 1.

Regarding A2,2,2, the local theory combined with interpolation leads to∫ T

0
|A2,2,2(t)| dt . ‖u‖L∞T H (3−α)/2

x
. (6.4)

After substituting (3.21) into A2,3 and using the fact that the Hilbert transform is skew-symmetric

A2,3(t)= c̃1

∫
R

(D
1+ α+1

2
x u)2(χ2

ε,b)
′ dx − c̃3

∫
R

(HD
α+1

2
x u)2(χ2

ε,b)
′′′ dx = A2,3,1(t)+ A2,3,2(t).

Notice that the term A2,3,1 is positive and represents the smoothing effect. In contrast, the term A2,3,2 is
estimated as we did with A2,2,2 in (6.4). So, after integration in the time variable∫ T

0
|A2,3,2(t)| dt . ‖u‖L∞T H (3−α)/2

x
.

Finally, after apply integration by parts

A3(t)=
1
2

∫
R

∂x u (∂x u)2χ2
ε,b dx − 1

2

∫
R

u(∂x u)2(χ2
ε,b)
′ dx = A3,1(t)+ A3,2(t).

On one hand,

|A3,1(t)|. ‖∂x u(t)‖L∞x

∫
R

(∂x u)2χ2
ε,b dx,

where the integral expression on the right-hand side is the quantity to be estimated by means of Gronwall’s
inequality.

On the other hand,

|A3,2(t). ‖u(t)‖L∞x

∫ T

0
(∂x u)2(χ2

ε,b)
′ dx .

By Sobolev embedding we have after integrating in time∫ T

0
|A3,2(t)| dt .

(
sup

0≤t≤T
‖u(t)‖H s(α)+

x

) ∫ T

0

∫
R

(∂x u)2(χ2
ε,b)
′ dx dt ≤ c.
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Since ‖∂x u‖L1
T L∞x

<∞, after gathering all estimates above and applying Gronwall’s inequality we
obtain

sup
0≤t≤T

‖∂x uχε,b‖2L2
x
+‖D

α+1
2

x ∂x uηε,b‖2L2
T L2

x
+‖D

1+ α+1
2

x uηε,b‖2L2
T L2

x
≤ c∗1,1, (6.5)

where c∗1,1 = c∗1,1(α; ε; T ; ‖u0‖H (3−α)/2
x
; ‖∂x u0χε,b‖L2

x
) > 0 for any ε > 0, b ≥ 5ε and v ≥ 0.

This estimate finishes step 1 corresponding to the case j = 1.
The local smoothing effect obtained above is just 1+α

2 derivatives; see [Isaza et al. 2016a]. So, the
iterative argument is carried out in two steps, the first step for positive integers m and the second one for
m+ 1−α

2 .

Step 2: After applying the operator D(1−α)/2
x ∂x to the equation in (1.1) and multiplying the result by

D(1−α)/2
x ∂x uχ2

ε,b(x + vt) one gets

D
1−α

2
x ∂x∂t u D

1−α
2

x ∂x uχ2
ε,b− D

1−α
2

x ∂x D1+α
x ∂x u D

1−α
2

x ∂x uχ2
ε,b+ D

1−α
2

x ∂x(u∂x u)D
1−α

2
x ∂x uχ2

ε,b = 0,

which after integrating in the spatial variable becomes

1
2

d
dt

∫
R

(D
1−α

2
x ∂x u)2χ2

ε,b dx −v
∫

R

(D
1−α

2
x ∂x u)2(χ2

ε,b)
′

dx︸ ︷︷ ︸
A1(t)

−

∫
R

(D
1−α

2
x ∂x D1+α

x ∂x u) D
1−α

2
x ∂x uχ2

ε,b dx︸ ︷︷ ︸
A2(t)

+

∫
R

D
1−α

2
x ∂x(u∂x u)D

1−α
2

x ∂x uχ2
ε,b dx︸ ︷︷ ︸

A3(t)

= 0.

Step 2.1: First observe that by the local theory∫ T

0
|A1(t)| dt ≤ |v|

∫ T

0

∫
R

(D
1−α

2
x ∂x u)2(χ2

ε,b)
′ dx dt . ‖u‖L∞T H (3−α)/2

x
.

Step 2.2: Concerning the term A2, integration by parts and Plancherel’s identity yield

A2(t)=−
1
2

∫
R

D
1−α

2 +1
x Hu[HD2+α

x ;χ2
ε,b]D

1−α
2 +1

x Hu dx . (6.6)

Since 2+α > 1, we have by (3.20) that the commutator [HDα+2
x ;χ2

ε,b] can be decomposed as

[HDα+2
x ;χ2

ε,b] +
1
2 Pn(α+ 2)+ Rn(α+ 2)= 1

2HPn(α+ 2)H (6.7)

for some positive integer n, which as in the previous cases will be fixed suitably.
Substituting (6.7) into (6.6)

A2(t)=
1
2

∫
R

D
3−α

2
x Hu(Rn(α+ 2)D

3−α
2

x Hu) dx

+
1
4

∫
R

D
3−α

2
x Hu(Pn(α+ 2)D

3−α
2

x Hu) dx − 1
4

∫
R

D
3−α

2
x Hu(HPn(α+ 2)HD

3−α
2

x Hu) dx

= A2,1(t)+ A2,2(t)+ A2,3(t).
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Fixing the value of n present in the terms A2,1, A2,2 and A2,3 requires an argument almost similar to the
one used in step 1. First, we deal with A2,1 where a simple computation produces

A2,1(t)=
1
2

∫
R

Hu D
3−α

2
x {Rn(α+ 2)D

3−α
2

x Hu} dx .

We fix n ∈ Z+ in such a way that
2n+ 1≤ a+ 2σ ≤ 2n+ 3,

where a=α+2 and σ = 3−α
2 in order to obtain n= 1 or n= 2. For the sake of simplicity we choose n= 1.

Hence, by construction R1(α+ 2) satisfies the hypothesis of Proposition 3.25, and

|A2,1(t)|. ‖Hu(t)‖L2
x
‖D̂5

x(χ
2
ε,b)‖L1

ξ
. ‖u0‖L2

x
‖D̂5

x(χ
2
ε,b)‖L1

ξ
.

Thus ∫ T

0
|A2,1(t)| dt . ‖u0‖L2

x
sup

0≤t≤T
‖D̂5

x(χ
2
ε,b)‖L1

ξ
.

Next, after replacing P1(α+ 2) in A2,2

A2,2(t)=
(
α+ 2

4

)∫
R

(H∂2
x u)2(χ2

ε,b)
′

dx − c3

(
α+ 2

16

)∫
R

(∂x u)2(χ2
ε,b)

′′′

dx

= A2,2,1(t)+ A2,2,2(t).

The smoothing effect corresponds to the term A2,2,1 and it will be bounded after integrating in time. In
contrast, bounding A2,2,2 requires only the local theory; in fact∫ T

0
|A2,2,2(t)| dt . ‖u‖L∞T H (3−α)/2

x
.

Concerning the term A2,3 we have after replacing P1(α + 2) and using the properties of the Hilbert
transform that

A2,3(t)=
(
α+ 2

4

)∫
R

(∂2
x u)2(χ2

ε,b)
′ dx − c3

(
α+ 2

16

)∫
R

(Dx u)2(χ2
ε,b)
′′′ dx

= A2,3,1(t)+ A2,3,2(t).

As before, A2,3,1 ≥ 0 and represents the smoothing effect. Additionally, the local theory and interpolation
yield ∫ T

0
|A2,3,2(t)| dt . ‖u‖L∞T H (3−α)/2

x
.

Step 2.3: It only remains to handle the term A3. We can write

D
1−α

2
x ∂x(u∂x u)χε,b =− 1

2 [D
1−α

2
x ∂x ;χε,b] ∂x((χε,bu)2+ (φ̃ε,bu)2+ (ψεu2))

+ [D
1−α

2
x ∂x ; uχε,b] ∂x((χε,bu)+ (uφε,b)+ (uψε))+ uχε,b D

1−α
2

x ∂2
x u

= Ã3,1(t)+ Ã3,2(t)+ Ã3,3(t)+ Ã3,4(t)+ Ã3,5(t)+ Ã3,6(t)+ Ã3,7(t). (6.8)
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First, we rewrite Ã3,1 as

Ã3,1(t)= cαH[D
1+ 1−α

2
x ;χε,b] ∂x((uχε,b)2)+ cα[H;χε,b] D

1+ 1−α
2

x ∂x((χε,bu)2),

where cα denotes a non-null constant. Next, combining (3.4), (3.14) and Lemma 3.15 one gets

‖ Ã3,1(t)‖L2
x
. ‖D

1+ 1−α
2

x (uχε,b)‖L2
x
‖u‖L∞x +‖u0‖L2

x
‖u‖L∞x ,

‖ Ã3,2(t)‖L2
x
. ‖D

1+ 1−α
2

x (uφ̃ε,b)‖L2
x
‖u‖L∞x +‖u0‖L2

x
‖u‖L∞x .

Next, we recall that by construction

dist(supp(χε,b), supp(ψε))≥
ε

2
,

so, by Lemma 3.16

‖ Ã3,3(t)‖L2
x
= ‖[D

1−α
2

x ∂x ;χε] ∂x(ψεu2)‖L2
x
. ‖u0‖L2

x
‖u‖L∞x .

We can rewrite Ã3.4 as

Ã3,4(t)= cH[D1+ 1−α
2

x ; uχε,b] ∂x(uχε,b)− c[H; uχε,b] ∂x D
1+ 1−α

2
x (uχε,b)

for some non-null constant c.
Thus, by the commutator estimates (3.2) and Lemma 3.13

‖ Ã3,4(t)‖L2
x
. ‖∂x(uχε,b)‖L∞x ‖D

1+ 1−α
2

x (uχε,b)‖L2
x
.

Applying the same procedure to Ã3,5 yields

‖ Ã3,5(t)‖L2
x
. ‖∂x(uχε,b)‖L∞x ‖D

1+ 1−α
2

x (uφε,b)‖L2
x
+‖∂x(uφε,b)‖L∞x ‖D

1+ 1−α
2

x (uχε,b)‖L2
x
.

Since the supports of χε,b and ψε are separated, we obtain by Lemma 3.16

‖ Ã3,6(t)‖L2
x
= ‖uχε,b∂2

x D
1+ 1−α

2
x (uψε)‖L2

x
. ‖u0‖L2

x
‖u‖L∞x .

To finish with the estimates above we use the relation

χε,b(x)+φε,b(x)+ψε(x)= 1 for all x ∈ R.

Then
D

1+ 1−α
2

x (uχε,b)= D
1+ 1−α

2
x uχε,b+ [D

1+ 1−α
2

x ;χε,b](uχε,b+ uφε,b+ uψε)

= I1+ I2+ I3+ I4.

Notice that ‖I1‖L2
x

is the quantity to estimate. In contrast, ‖I2‖L2
x

and ‖I3‖L2
x

can be handled by
Lemma 3.13 combined with the local theory. Meanwhile I3 can be bounded by using Lemma 3.16.

We notice that the gain of regularity obtained in the step 1 implies that ‖D1+(1+α)/2
x (uφε,b)‖L2

x
<∞.

To show this we use Theorem 3.7 and Hölder’s inequality as follows:

‖D
1+ 1+α

2
x (uφε,b)‖L2

x
. ‖u0‖L2

x
+‖u‖L∞x +‖1[ ε4 ,b]

D
1+ 1+α

2
x u‖L2

x
+‖1[ ε4 ,b]

HD
1+α

2
x u‖L2

x
. (6.9)
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The second term on the right-hand side after we integrate in time is controlled by using Sobolev’s
embedding. Meanwhile, the third term can be handled after integrating in time and using (6.5) with
(ε, b)=

(
ε

24 , b+ 7ε
24

)
.

The fourth term in the right-hand side can be bounded by combining the local theory and interpolation.
Hence, after integration in time

‖D
1+ 1+α

2
x (uφε,b)‖L2

T L2
x
<∞, (6.10)

which clearly implies ‖D1+(1−α)/2
x (uφε,b)‖L2

T L2
x
<∞, as required. We can handle ‖D1+(1−α)/2

x (uφ̃ε,b)‖L2
x

similarly.
Finally,

A3,7(t)=−
1
2

∫
R

∂x uχ2
ε,b(D

1−α
2

x ∂x u)2 dx − 1
2

∫
R

u(χ2
ε,b)
′(D

1−α
2

x ∂x u)2 dx

= A3,7,1(t)+ A3,7,2(t).
We have

|A3,7,1(t)|. ‖∂x u(t)‖L∞x

∫
R

(D
1−α

2
x ∂x u)2χ2

ε,b dx,

where the right-hand side can be estimated using Gronwall’s inequality and the local theory ‖∂x u‖L1
T L∞x

<∞.
Sobolev’s embedding leads us to∫ T

0
|A3,7,2(t)| dt .

(
sup

0≤t≤T
‖u(t)‖H s(α)+

x

) ∫ T

0

∫
R

χε,bχ
′

ε,b(D
1−α

2
x ∂x u)2 dx dt.

Gathering all the information corresponding to this step combined with Gronwall’s inequality yields

sup
0≤t≤T

‖D
1−α

2
x ∂x uχε,b‖2L2

x
+‖∂2

x uηε,b‖2L2
T L2

x
+‖H∂x uηε,b‖2L2

T L2
x
≤ c∗1,2, (6.11)

with c∗1,2 = c∗1,2(α; ε; T ; v; ‖u0‖H (3−α)/2
x
; ‖D(1−α)/2

x ∂x u0χε,b‖L2
x
) for any ε > 0, b ≥ 5ε and v ≥ 0.

This finishes step 2, corresponding to the case j = 1 in the induction process.
Next, we present the case j = 2, to show how we proceed in the case j even.

Case j = 2. Step 1: First we apply two spatial derivatives to the equation in (1.1); after that we multiply
by ∂2

x u(x, t)χ2
ε,b(x + vt), and finally we integrate in the x-variable to obtain the identity

1
2

d
dt

∫
R

(∂2
x u)2χ2

ε,b dx

−
v

2

∫
R

(∂2
x u)2(χ2

ε,b)
′ dx︸ ︷︷ ︸

A1(t)

−

∫
R

(∂2
x Dα+1

x ∂x u) ∂2
x uχ2

ε,b dx︸ ︷︷ ︸
A2(t)

+

∫
R

∂2
x (u∂x u)∂2

x uχ2
ε,b dx︸ ︷︷ ︸

A3(t)

= 0. (6.12)

As was done in the previous steps, we first proceed to estimate A1.

Step 1.1: By (6.11) it follows that∫ T

0
|A1(t)| dt ≤

∫ T

0

∫
R

(∂2
x u)2(χ2

ε,b)
′ dx dt ≤ c∗1,2. (6.13)
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Step 1.2: To extract information from the term A2 we use integration by parts and Plancherel’s identity
to obtain

A2(t)=
1
2

∫
R

∂2
x u[Dα+1

x ∂x ;χ
2
ε,b] ∂

2
x u dx =−1

2

∫
R

∂2
x u[HDα+2

x ;χ2
ε,b] ∂

2
x u dx . (6.14)

Although this stage of the process is related to the one performed in step 1 (for j = 1),we will use
again the commutator expansion in (3.20), taking into account in this case that a = α+ 2> 1 and n is
a nonnegative integer whose value will be fixed later.

Then,

A2(t)=
1
2

∫
R

∂2
x u Rn(s+ 2) ∂2

x u dx + 1
4

∫
R

∂2
x u Pn(s+ 2) ∂2

x u dx − 1
4

∫
R

∂2
x u HPn(s+ 2)H∂2

x u dx

= A2,1(t)+ A2,2(t)+ A2,3(t).

Essentially, the key term which allows us to fix the value of n is A2,1. Indeed, after some integration by parts

A2,1(t)=
1
2

∫
R

u ∂2
x Rn(α+ 2) ∂2

x u dx = 1
2

∫
R

u ∂2
x {Rn(α+ 2) ∂2

x u} dx .

We fix n such that it satisfies
2n+ 1≤ a+ 2σ ≤ 2n+ 3.

In this case with a = α+ 2> 1 and σ = 2, we obtain n = 2.
Hence by construction Proposition 3.25 guarantees that D2

x R2(α+ 2)D2
x is bounded in L2

x .
Thus

|A2,1(t)|. ‖u(t)‖2L2
x
‖D2

x R2(α+ 2)D2
x u‖L2

x
≤ c‖u0‖

2
L2

x
‖

̂Dα+6
x (χ2

ε,b)‖L1
ξ
.

Since we fixed n = 2, we proceed to handle the contribution coming from A2,2 and A2,3.
Next,

A2,2(t)= c̃1

∫
R

(D
α+1

2
x ∂2

x u)2(χ2
ε,b)
′ dx−c̃3

∫
R

(D
1+ α+1

2
x u)2(χ2

ε,b)
(3) dx+c5

(
α+2
64

)∫
R

(D
α+1

2
x u)2(χ2

ε,b)
(5) dx

= A2,2,1(t)+A2,2,2(t)+A2,2,3(t).

Notice that A2,2,1 ≥ 0 represents the smoothing effect.
We recall that

|χ
( j)
ε,b (x)|. χ

′
ε
3 ,b+ε

(x) for all x ∈ R, j ∈ Z+.

Then ∫ T

0
|A2,2,2(t)| dt .

∫ T

0

∫
R

(D
1+ 1+α

2
x u)2χ ′ε

3 ,b+ε
dx dt.

Taking (ε, b)=
(
ε
9 , b+ 10ε

9

)
in (6.5) combined with the properties of the cutoff function we have∫ T

0
|A2,2,2(t)| dt . c∗1,1.

To finish the terms that make A2 we proceed to estimate A2,2,3.
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As usual the low regularity is controlled by interpolation and the local theory. Therefore∫ T

0
|A2,2,3(t)| dt . ‖u‖L∞T H (3−α)/2

x
.

Next,

A2,3(t)= c̃1

∫
R

(HD
α+1

2
x ∂2

x u)2(χ2
ε,b)
′ dx

− c̃3

∫
R

(D
α+1

2
x ∂x u)2(χ2

ε,b)
(3) dx +

(
α+ 2

64

)
c5

∫
R

(D
α+1

2
x Hu)2(χ2

ε,b)
(5) dx

= A2,3,1(t)+ A2,3,2(t)+ A2,3,3(t).

A2,3,1 is positive and it will provide the smoothing effect after being integrated in time.
The terms A2,3,2 and A2,3,3 can be handled exactly in the same way that we treated A2,2,2 and A2,2,3

respectively, so we will omit the proof.

Step 1.3: Finally,

A3(t)=
5
2

∫
R

∂x u(∂2
x u)2χ2

ε,b dx − 1
2

∫
R

u(∂2
x u)2(χ2

ε,b)
′ dx

= A3,1(t)+ A3,2(t).

First,

|A3,1(t)|. ‖∂x u(t)‖L∞x

∫
R

(∂2
x u)2χ2

ε,b dx, (6.15)

by the local theory ∂x u ∈ L1([0, T ] : L∞x (R)) (see Theorem C(b)), and the integral expression is the
quantity we want estimate.

Next,

|A3,2(t)|. ‖u(t)‖L∞x

∫
R

(∂2
x u)2(χ2

ε,b)
′ dx . (6.16)

After applying the Sobolev embedding and integrating in the time variable we obtain∫ T

0
|A3,2(t)| dt .

(
sup

0≤t≤T
‖u(t)‖H s(α)+

x

) ∫ T

0

∫
R

(∂2
x u)2(χ2

ε,b)
′ dx dt,

and the integral term in the right-hand side was estimated previously in (6.13).
Thus, after grouping all the terms and applying Gronwall’s inequality we obtain

sup
0≤t≤T

‖∂2
x uχε,b‖2L2

x
+‖D

α+1
2

x ∂2
x uηε,b‖2L2

T L2
x
+‖D

α+1
2

x H∂2
x uηε,b‖2L2

T L2
x
≤ c∗2,1, (6.17)

where c∗2,1 = c∗2,1(α; ε; T ; v; ‖u0‖H (3−α)/2
x
; ‖∂2

x u0χε,b‖L2
x
) for any ε > 0, b ≥ 5ε and v ≥ 0.

Step 2: From equation in (1.1) one gets after applying the operator D(1−α)/2
x ∂2

x and multiplying the result
by D(1−α)/2

x ∂2
x uχ2

ε,b(x + vt)

D
1−α

2
x ∂2

x ∂t u D
1−α

2
x ∂2

x uχ2
ε,b− D

1−α
2

x ∂2
x D1+α

x ∂x u D
1−α

2
x ∂2

x uχ2
ε,b+ D

1−α
2

x ∂2
x (u∂x u)D

1−α
2

x ∂2
x uχ2

ε,b = 0,



REGULARITY FOR SOLUTIONS OF THE DISPERSION GENERALIZED BENJAMIN–ONO EQUATION 2427

which after integration in the spatial variable becomes

1
2

d
dt

∫
R

(D
1−α

2
x ∂2

x u)2χ2
ε,b dx −v

2

∫
R

(D
1−α

2
x ∂2

x u)2(χ2
ε,b)
′ dx︸ ︷︷ ︸

A1(t)

−

∫
R

(D
1−α

2
x ∂2

x D1+α
x ∂x u)(D

1−α
2

x ∂2
x u)χ2

ε,b dx︸ ︷︷ ︸
A2(t)

+

∫
R

(D
1−α

2
x ∂2

x (u∂x u))(D
1−α

2
x ∂2

x u)χ2
ε,b dx︸ ︷︷ ︸

A3(t)

= 0.

To estimate A1 we will use different techniques from the ones implemented to bound A1 in the previous
step. The main difficulty we have to face is dealing with the nonlocal character of the operator Ds

x for
s ∈ R+\2N; the case s ∈ 2N is less complicated because Ds

x becomes local, so we can integrate by parts.
The strategy to solve this issue will be the following. In (6.17) we proved that u has a gain of α+1

2 deriva-
tives (local), which in total sum to 2+ 1+α

2 . This suggests that if we can find an appropriate channel where
we can localize the smoothing effect, we shall be able to recover all the local derivatives rwith r ≤ 2+ 1+α

2 .
Henceforth we will employ recurrently a technique of localization of the commutator used by Kenig,

Linares, Ponce and Vega [Kenig et al. 2018] in the study of propagation of regularity (fractional) for
solutions of the k-generalized KdV equation. Indeed, the idea consists in constructing an appropriate
system of smooth partitions of unit length, localizing the regions where the information obtained in the
previous cases is available.

We recall that for ε > 0 and b ≥ 5ε

ηε,b =
√
χε,bχ

′

ε,b and χε,b+φε,b+ψε = 1. (6.18)

Step 2.1: We claim

‖D
1+α

2
x ∂2

x (uηε,b)‖L2
T L2

x
<∞. (6.19)

Combining the commutator estimate (3.14), (6.18), Hölder’s inequality and (6.17) yields

‖D
1+α

2
x ∂2

x (uηε,b)‖L2
T L2

x

≤‖D
2+ 1+α

2
x uηε,b‖L2

T L2
x
+‖[D

2+ 1+α
2

x ;ηε,b](uχε,b+uφε,b+uψε)‖L2
T L2

x

. (c∗2,1)
2
+‖D

1+ 1+α
2

x (uχε,b)‖L2
T L2

x︸ ︷︷ ︸
B1

+‖D
1+ 1+α

2
x (uφε,b)‖L2

T L2
x︸ ︷︷ ︸

B2

+‖u0‖L2
x
+‖ηε,b D

2+ 1+α
2

x (uψε)‖L2
T L2

x︸ ︷︷ ︸
B3

. (6.20)

Since χε/5,ε = 1 on the support of χε,b we have

χε,b(x)χ ε
5 ,ε
(x)= χε,b(x) for all x ∈ R.

Thus, combining Lemma 3.15 and Young’s inequality we obtain

‖D
1+ 1+α

2
x (uχε,b)‖L2

x
. ‖∂2

x uχε,b‖L2
x
+‖∂x uχ ε

5 ,ε
‖L2

x
+‖u0‖L2

x
. (6.21)

Then, an application of (6.17) adapted to every case yields

B1 . ‖∂
2
x uχε,b‖L∞T L2

x
+‖∂x uχ ε

5 ,ε
‖L∞T L2

x
+‖u0‖L2

x
. c∗2,1+ c∗1,1+‖u0‖L2

x
. (6.22)
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Notice that B2 was estimated in the case j = 1, step 2, see (6.10), so we will omit the proof. Next, we
recall that by construction

dist(supp(ηε,b), supp(ψε))≥
ε

2
.

Hence by Lemma 3.16

B3 = ‖ηε,b D
2+ 1+α

2
x (uψε)‖L2

T L2
x
. ‖ηε,b‖L∞T L∞x ‖u0‖L2

x
. (6.23)

The claim follows by gathering the calculations above.
At this point we have proved that locally in the interval [ε, b] there exist 2+ α+1

2 derivatives. By
Lemma 3.15 we get

‖D
2+ 1−α

2
x (uηε,b)‖L2

T L2
x
. ‖D

2+ 1+α
2

x (uηε,b)‖L2
T L2

x
+‖u0‖L2

x
<∞.

As before
D

2+ 1−α
2

x uηε,b = D
2+ 1−α

2
x (uηε,b)− [D

2+ 1−α
2

x ; ηε,b](uχε,b+ uφε,b+ uψε).

The argument used in the proof of the claim yields

‖D
2+ 1−α

2
x uηε,b‖L2

T L2
x
<∞.

Therefore, ∫ T

0
|A1(t)| dt ≤ |v|

∫ T

0

∫
R

(D
1−α

2
x ∂2

x u)2(χ2
ε,b)
′ dx dt . ‖D

2+ 1−α
2

x uηε,b‖2L2
T L2

x
<∞. (6.24)

Step 2.2: Now we focus our attention on the term A2. Notice that after integration by parts and Plancherel’s
identity

A2(t)=−
1
2

∫
R

D
5−α

2
x u[HD2+α

x ;χ2
ε,b]D

5−α
2

x u dx . (6.25)

The procedure to decompose the commutator will be similar to that in the previous step; the main
difference relies on the fact that the quantity of derivatives is higher in comparison with step 1.

Concerning this, we notice that 2 + α > 1 and by (3.20) the commutator [HDα+2
x ;χ2

ε,b] can be
decomposed as

[HDα+2
x ;χ2

ε,b] +
1
2 Pn(α+ 2)+ Rn(α+ 2)= 1

2HPn(α+ 2)H (6.26)

for some positive integer n. We shall fix the value of n satisfying a suitable condition.
Substituting (6.26) into (6.25) produces

A2(t)=
1
2

∫
R

D
5−α

2
x u(Rn(α+ 2)D

5−α
2

x u) dx

+
1
4

∫
R

D
5−α

2
x u(Pn(α+ 2)D

5−α
2

x u) dx − 1
4

∫
R

D
5−α

2
x u(HPn(α+ 2)HD

5−α
2

x u) dx

= A2,1(t)+ A2,2(t)+ A2,3(t). (6.27)

Now we proceed to fix the value of n present in A2,1, A2,2 and A2,3.
First we deal with the term that determines the value n in the decomposition associated to A2. In this

case it corresponds to A2,1.



REGULARITY FOR SOLUTIONS OF THE DISPERSION GENERALIZED BENJAMIN–ONO EQUATION 2429

Applying Plancherel’s identity, A2,1 becomes

A2,1(t)=
1
2

∫
R

u D
5−α

2
x {Rn(α+ 2)D

5−α
2

x u} dx .

We fix n such that it satisfies (3.26); i.e.,

2n+ 1≤ a+ 2σ ≤ 2n+ 3,

with a = α+ 2 and σ = 5−α
2 , which produces n = 2 or n = 3. Nevertheless, for the sake of simplicity

we take n = 2.
Hence, by construction R2(α+ 2) is bounded in L2

x (see Proposition 3.25).
Thus,∫ T

0
|A2,1(t)| dt ≤ c

∫ T

0
‖u(t)‖2L2

x
‖

∧

D7
x(χ

2
ε,b( · + vt))‖L1

ξ
dt . ‖u0‖

2
L2

x
sup

0≤t≤T
‖D̂7

x(χ
2
ε,b)‖L1

ξ
.

Since we have fixed n = 2, we obtain, after substituting P2(α+ 2) into A2,2,

A2,2(t)= c̃1

∫
R

(H∂3
x u)2(χ2

ε,b)
′ dx − c̃3

∫
R

(∂2
x u)2(χ2

ε,b)
(3) dx + c̃5

∫
R

(H∂x u)2(χ2
ε,b)

(5) dx

= A2,2,1(t)+ A2,2,2(t)+ A2,2,3(t).

We underline that A2,2,1 is positive and represents the smoothing effect.
On the other hand, by (6.11) with (ε, b)=

(
ε
5 , ε

)
we have∫ T

0
|A2,2,2(t)| dt = c

∫ T

0

∫
R

(∂2
x u)2χ2

ε
5 ,ε
(χ2
ε,b)
′′′ dx dt . sup

0≤t≤T

∫
R

(∂2
x u)2χ2

ε
5 ,ε

dx . c∗1,2. (6.28)

Next, by the local theory ∫ T

0
|A2,2,3(t)| dt . ‖u‖L∞T H (3−α)/2

x
. (6.29)

After replacing P2(α+ 2) into A2,3, and using the fact that the Hilbert transform is skew adjoint

A2,3(t)=
(
α+ 2

4

)∫
R

(∂3
x u)2(χ2

ε,b)
′ dx

− c3

(
α+ 2

16

)∫
R

(H∂2
x u)2(χ2

ε,b)
′′′ dx + c5

(
α+ 2

64

)∫
R

(∂x u)2(χ2
ε,b)

(5) dx

= A2,3,1(t)+ A2,3,2(t)+ A2,3,3(t).

Notice that A2,3,1 ≥ 0 and it represents the smoothing effect. However, A2,3,2 can be handled if we take
(ε, b)=

(
ε
5 , ε

)
in (6.5) as follows:

A2,3,3(t)=
∫

R

(∂2
x u)2χ2

ε
5 ,ε
(χ2
ε,b)
′′′ dx .

∫
R

(∂2
x u)2χ2

ε
5 ,ε

dx .

Thus, ∫ T

0
|A2,3,3(t)| dt . sup

0≤t≤T

∫
R

(∂x u)2χ2
ε
5 ,ε

dx . c∗1,1.
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To finish the estimate of A2 it only remains to bound A2,3,2. To do this we recall that

|χ
( j)
ε,b (x)|. χ

′
ε
3 ,b+ε

(x) for all x ∈ R, j ∈ Z+,

which together with property (9) of χε,b yields∫ T

0

∫
R

(H∂2
x u)2χ ′ε

3 ,b+ε
dx dt . ‖H∂2

x uη ε
9 ,b+

10ε
9
‖

2
L2

T L2
x
. c∗1,2,

where the last inequality is obtained taking (ε, b)=
(
ε
9 , b+ 10ε

9

)
in (6.11). The term A2,3,3 can be handled

by interpolation and the local theory.

Step 2.3: Finally we turn our attention to A3.We start rewriting the nonlinear part as

D
1−α

2
x ∂2

x (u ∂x u)χε,b =− 1
2 [D

1−α
2

x ∂2
x ;χε,b] ∂x((uχε,b)2+ (uφ̃ε,b)2+ (ψεu2))

+ [D
1−α

2
x ∂2

x ; uχε,b] ∂x((uχε,b)+ (uφε,b)+ (uψε))+ uχε,b D
1−α

2
x ∂3

x u

= Ã3,1(t)+ Ã3,2(t)+ Ã3,3(t)+ Ã3,4(t)+ Ã3,5(t)+ Ã3,6(t)+ Ã3,7(t). (6.30)

Hence, after substituting (6.29) into A3 and applying Hölder’s inequality

A3(t)=
∑

1≤m≤6

∫
R

Ã3,m(t) D
1−α

2
x ∂2

x uχε,b dx +
∫

R

Ã3,7(t) D
1−α

2
x ∂2

x uχε,b dx

≤

∑
1≤m≤6

‖ Ã3,m(t)‖L2
x
‖D

2+ 1−α
2

x u(t)χε,b( · + vt)‖L2
x
+

∫
R

Ã3,7(t) D
1−α

2
x ∂2

x uχε,b dx

= ‖D
2+ 1−α

2
x u(t)χε,b( · + vt)‖L2

x

∑
1≤m≤6

A3,m(t)+ A3,7(t).

Notice that the first factor in the right-hand side is the quantity to be estimated by Gronwall’s inequality.
So, we shall focus on establishing control of the remaining terms.

First,combining (3.4), (3.14) and Lemma 3.15 one gets that

‖ Ã3,1(t)‖L2
x
. ‖D

2+ 1−α
2

x (uχε,b)‖L2
x
‖u‖L∞x +‖u0‖L2

x
‖u‖L∞x , (6.31)

‖ Ã3,2(t)‖L2
x
. ‖D

2+ 1−α
2

x (uφ̃ε,b)‖L2
x
‖u‖L∞x +‖u0‖L2

x
‖u‖L∞x . (6.32)

To finish with the quadratic terms, we employ Lemma 3.16:

‖ Ã3,3(t)‖L2
x
. ‖u0‖L2

x
‖u‖L∞x .

Combining (3.2) and (3.14) we obtain

‖ Ã3,4(t)‖L2
x
. ‖∂x(uχε,b)‖L∞x ‖D

2+ 1−α
2

x (uχε,b)‖L2
x
.

Meanwhile,

‖ Ã3,5(t)‖L2
x
. ‖∂x(uχε,b)‖L∞x ‖D

2+ 1−α
2

x (uφε,b)‖L2
x
+‖∂x(uφε,b)‖L∞x ‖D

2+ 1−α
2

x (uχε,b)‖L2
x
.
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Next, we recall that by construction

dist(supp(χε,b), supp(ψε))≥
ε

2
.

Thus by Lemma 3.16

‖ Ã3,6(t)‖L2
x
. ‖u0‖L2

x
‖u‖L∞x .

To complete the estimates in (6.31)–(6.32) it only remains for us to bound ‖D2+(1−α)/2
x (uχε,b)‖L2

x
,

‖D2+(1−α)/2
x (uφ̃ε,b)‖L2

x
, and ‖D2+(1−α)/2

x (uφε,b)‖L2
x
.

For the first term we proceed by writing

D
2+ 1−α

2
x (uχε,b)= D

2+ 1−α
2

x uχε,b+ [D
2+ 1−α

2
x ;χε,b](uχε,b+ uφε,b+ uψε)

= I1+ I2+ I3+ I4.

Notice that ‖I1‖L2
x

is the quantity to be estimated by Gronwall’s inequality. Meanwhile, ‖I2‖L2
x
, ‖I3‖L2

x

and ‖I4‖L2
x

were estimated previously in the case j = 1, step 2.
Next, we focus on estimating the term ‖D2+(1+α)/2

x (uφε,b)‖L2
x
, which will be treated by means of

Hölder’s inequality and Theorem 3.7 as follows:

‖D
2+ 1+α

2
x (uφε,b)‖L2

x
. ‖u0‖

1
2
L2

x
‖u‖

1
2
L∞x
+‖η ε

24 ,b+
7ε
24

D
2+ 1+α

2
x u‖L2

x
+‖η ε

24 ,b+
7ε
24

D
1+α

2
x ∂x u‖L2

x
+‖D

1+α
2

x u‖L2
x
.

After integrating in time, the second and third terms on the right-hand side can be estimated taking
(ε, b) =

(
ε

24 , b + 7ε
24

)
in (6.17) and (6.5) respectively. Hence, after integrating in time it follows by

interpolation that ‖D2+(1−α)/2
x (uφε,b)‖L2

T L2
x
<∞.

We can bound ‖D2+(1−α)/2
x (uφ̃ε,b)‖L2

x
analogously.

Finally, after integrating by parts

A3,7(t)=−
1
2

∫
R

∂x uχ2
ε,b(D

1−α
2

x ∂2
x u)2 dx −

∫
R

uχε,bχ ′ε,b(D
1−α

2
x ∂2

x u)2 dx

= A3,7,1(t)+ A3,7,2(t).

First,

|A3,7,1(t)|. ‖∂x u(t)‖L∞x

∫
R

(D
1−α

2
x ∂2

x u)2χ2
ε,b dx,

where the last integral is the quantity that will be estimated using Gronwall’s inequality, and the other
factor will be controlled after integration in time.

After integration in time and Sobolev’s embedding it follows that∫ T

0
|A3,7,2(t)| dt .

∫ T

0

∫
R

u (χ2
ε,b)
′(D

1−α
2

x ∂2
x u)2 dx dt

.
(

sup
0≤t≤T

‖u(t)‖H s(α)+
x

) ∫ T

0

∫
R

(D
1−α

2
x ∂2

x u)2 (χ2
ε,b)
′ dx dt

and the last term was already estimated in (6.24).
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Thus, after collecting all the information in this step and applying Gronwall’s inequality together with
hypothesis (1.11), we obtain

sup
0≤t≤T

‖D
1−α

2
x ∂2

x uχε,b‖2L2
x
+‖∂3

x uηε,b‖2L2
T L2

x
+‖H∂3

x uηε,b‖2L2
T L2

x
≤ c∗2,2,

where c∗2,2 = c∗2,2(α; ε; T ; v; ‖u0‖H (3−α)/2
x
; ‖D(1−α)/2

x ∂2
x u0χε,b‖L2

x
) for any ε > 0, b ≥ 5ε and v > 0.

According to the induction argument we shall assume that (1.12) holds for j ≤ m with j ∈ Z and
j ≥ 2; i.e.,

sup
0≤t≤T

‖∂ j
x uχε,b‖2L2

x
+‖D

1+α
2

x ∂ j
x uηε,b‖2L2

T L2
x
+‖HD

1+α
2

x ∂ j
x uηε,b‖2L2

T L2
x
≤ c∗j,1 (6.33)

for j = 1, 2, . . . ,m with m ≥ 1, for any ε > 0, b ≥ 5ε v ≥ 0.

Step 3: We will assume j an even integer. The case where j is odd follows by an argument similar to
the case j = 1.

By reasoning analogous to that employed in the case j = 2 it follows that

D
1−α

2
x ∂ j

x ∂t u D
1−α

2
x ∂ j

x uχ2
ε,b− D

1−α
2

x ∂ j
x D1+α

x ∂x u D
1−α

2
x ∂ j

x uχ2
ε,b+ D

1−α
2

x ∂ j
x (u ∂x u) D

1−α
2

x ∂ j
x uχ2

ε,b = 0,

which after integrating in time yields the identity
1
2

d
dt

∫
R

(D
1−α

2
x ∂ j

x u)2χ2
ε,b dx −v

2

∫
R

(D
1−α

2
x ∂ j

x u)2(χ2
ε,b)
′ dx︸ ︷︷ ︸

A1(t)

−

∫
R

(D
1−α

2
x ∂ j

x D1+α
x ∂x u)(D

1−α
2

x ∂ j
x uχ2

ε,b) dx︸ ︷︷ ︸
A2(t)

+

∫
R

D
1−α

2
x ∂ j

x (u ∂x u)(D
1−α

2
x ∂ j

x uχ2
ε,b) dx︸ ︷︷ ︸

A3(t)

= 0. (6.34)

Step 3.1: We claim that
‖D

j+ 1+α
2

x (uηε,b)‖L2
T L2

x
<∞. (6.35)

We proceed as in the case j = 2. A combination of the commutator estimate (3.14), (6.18), Hölder’s
inequality and (6.33) yields

‖D
1+α

2
x ∂ j

x (uηε,b)‖L2
T L2

x
≤ ‖D

j+ 1+α
2

x uηε,b‖L2
T L2

x
+‖[D

j+ 1+α
2

x ; ηε,b](uχε,b+ uφε,b+ uψε)‖L2
T L2

x

. (c∗j,1)
2
+‖D

j−1+ 1+α
2

x (uχε,b)‖L2
T L2

x︸ ︷︷ ︸
B1

+‖u0‖L2
x
+‖D

j−1+ 1+α
2

x (uφε,b)‖L2
T L2

x︸ ︷︷ ︸
B2

+‖ηε,b D
j+ 1+α

2
x (uψε)‖L2

T L2
x︸ ︷︷ ︸

B3

. (6.36)

Since χε/5,ε = 1 on the support of χε,b we have

χε,b(x)χ ε
5 ,ε
(x)= χε,b(x) for all x ∈ R.

Combining Lemma 3.15 and Young’s inequality

‖D
j+ α−1

2
x (uχε,b)‖L2

x

. ‖∂ j
x uχε,b‖2L2

x
+

∑
2≤k≤ j−1

γk, j‖χ
( j−k)
ε,b ‖L∞x ‖∂

k
x uχ ε

5 ,ε
‖L2

x
+‖u‖L∞T H (3−α)/2

x
+‖u0‖L2

x
. (6.37)
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Hence, taking (ε, b)=
(
ε
5 , ε

)
in (6.33) yields

B1 . c∗j,1+
∑

2≤k≤ j−1

γk, j c∗k,1+‖u‖L∞T H (3−α)/2
x

+‖u0‖L2
x
. (6.38)

B2 can be estimated as in step 2 of the case j = 1, so it is bounded by the induction hypothesis.
Next, since

dist(supp(ηε,b), supp(ψε))≥
ε

2
,

we have by Lemma 3.16

‖ηε,b D
j+ α+1

2
x (uψε)‖L2

x
= ‖ηε,b D

j+ 1+α
2

x (uψε)‖L2
x
. ‖η ε

8 ,b+ε‖L∞x ‖u0‖L2
x
.

Gathering the estimates above, (6.35) follows.
We have proved that locally in the interval [ε, b] there exist j + α+1

2 derivatives. So, by Lemma 3.15
we obtain

‖D
j+ 1−α

2
x (uηε,b)‖L2

T L2
x
. ‖D

j+ 1+α
2

x (uηε,b)‖L2
T L2

x
+‖u0‖L2

x
;

then, as before

D
j+ 1−α

2
x uηε,b = c j D

j+ 1−α
2

x (uηε,b)− c j [D
j+ 1−α

2
x ; ηε,b](uχε,b+ uφε,b+ uψε),

where c j is a constant depending only on j .
Hence, if we proceed as in the proof of the claim (6.35) above, we have

‖D
j+ 1−α

2
x uηε,b‖L2

T L2
x
<∞. (6.39)

Therefore ∫ T

0
|A1(t)| dt = v‖D

j+ 1−α
2

x uηε,b‖2L2
T L2

x
<∞.

Step 3.2: To handle the term A2 we use the same procedure as in the previous steps. First,

A2(t)=−
1
2

∫
R

D
2 j+1−α

2
x u[HD2+α

x ;χ2
ε,b]D

2 j+1−α
2

x u dx (6.40)
since

[HDα+2
x ;χ2

ε,b] +
1
2 Pn(α+ 2)+ Rn(α+ 2)= 1

2HPn(α+ 2)H (6.41)

for some positive integer n. Substituting (6.41) into (6.40) produces

A2(t)=
1
2

∫
R

D
2 j+1−α

2
x u(Rn(α+ 2)D

2 j+1−α
2

x u) dx

+
1
4

∫
R

D
2 j+1−α

2
x u(Pn(α+ 2)D

2 j+1−α
2

x u) dx − 1
4

∫
R

D
2 j+1−α

2
x u(HPn(α+ 2)HD

2 j+1−α
2

x u) dx

= A2,1(t)+ A2,2(t)+ A2,3(t). (6.42)

As above we deal first with the crucial term in the decomposition associated to A2, that is, A2,1.
Applying Plancherel’s identity yields

A2,1(t)=
1
2

∫
R

u D
2 j+1−α

2
x {Rn(α+ 2)D

2 j+1−α
2

x u} dx .

We fix n such that (3.26) is satisfied. In this case we have to take a = α+ 2 and σ = 2 j+1−α
2 to get n = j .

As occurs in the previous cases it is possible for n = j + 1.
Thus, by construction R j (α+ 2) is bounded in L2

x (see Proposition 3.25).
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Then

|A2,1(t)|. ‖u0‖
2
L2

x
‖

̂D2 j+3
x (χ2

ε,b)‖L1
ξ

and ∫ T

0
|A2,1(t)| dt . ‖u0‖

2
L2

x
sup

0≤t≤T
‖

̂D2 j+3
x (χ2

ε,b)‖L1
ξ
.

Substituting Pj (α+ 2) into A2,2

A2,2(t)=
(
α+ 2

4

)∫
R

(H∂ j+1
x u)2(χ2

ε,b)
′ dx +

(
α+ 2

2

) j∑
l=1

c2l+1(−1)l4−l
∫

R

(D j−l+1
x u)2(χ2

ε,b)
(2l+1) dx

= A2,2,1(t)+
j−1∑
l=1

A2,2,l(t)+ A2,2, j (t).

Note that A2,2,1 is positive and it gives the smoothing effect after integration in time, and A2,2, j is bounded
by using the local theory. To handle the remainder terms we recall that by construction

|(χε,b)
( j)(x)|. χ ′ε

3 ,b+ε
(x). χ ε

9 ,b+
10ε
9
(x)χ ′ε

9 ,b+
10ε
9
(x) (6.43)

for x ∈ R, j ∈ Z+.
Hence for j > 2 ∫ T

0
|A2,2,l(t)| dt .

∫ T

0

∫
R

(D j−l+1
x u)2χ ′ε

3 ,b+ε
dx dt

.
∫ T

0

∫
R

(D j−l+1
x u)2χ ε

9 ,b+
10ε
9
χ ′ε

9 ,b+
10ε
9

dx dt; (6.44)

thus if we apply (6.33) with
(
ε
9 , b+ 4ε

3

)
instead of (ε, b) we obtain∫ T

0

∫
R

(D j−l+1
x u)2(χ ε

9 ,b+
10ε
9
χ ′ε

9 ,b+
10ε
9
) dx dt ≤ c∗l,2

for l = 1, 2, . . . , j − 1.
Meanwhile,

A2,3(t)=
(
α+ 2

4

)∫
R

(∂ j+1
x u)2(χ2

ε,b)
′ dx +

(
α+ 2

4

) j∑
l=1

c2l+1(−1)l4−l
∫

R

(HD j−l+1
x u)2(χ2

ε,b)
(2l+1) dx

= A2,3,1(t)+
j−1∑
l=1

A2,3,l(t)+ A2,3, j (t). (6.45)

As we can see A2,3,1 ≥ 0 and it represents the smoothing effect. Additionally, applying an argument
similar to that employed in (6.43)–(6.44), it is possible to bound the remainder terms in (6.45). Anyway,∫ T

0
|A2,3,l(t)| dt . c∗l,2, 1≤ l ≤ j − 1.

Step 3.3: It only remains to estimate A3 to finish step 3.

D
1−α

2
x ∂ j

x (u∂x u)χε,b =− 1
2 [D

1−α
2

x ∂ j
x ;χε,b]∂x((uχε,b)2+ (uφ̃ε,b)2+ (ψεu2))

+ [D
1−α

2
x ∂ j

x ; uχε,b]∂x((uχε,b)+ (uφε,b)+ (uψε))+ uχε,b D
1−α

2
x ∂ j

x (∂x u)

= Ã3,1(t)+ Ã3,2(t)+ Ã3,3(t)+ Ã3,4(t)+ Ã3,5(t)+ Ã3,6(t)+ Ã3,7(t). (6.46)
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Substituting (6.46) into A3 and applying Hölder’s inequality

A3(t)=
∑

1≤k≤6

∫
R

Ã3,k(t) D
1−α

2
x ∂ j

x uχε,b dx +
∫

R

Ã3,7(t) D
1−α

2
x ∂ j

x uχε,b dx

≤

∑
1≤k≤6

‖ Ã3,k(t)‖L2
x
‖D

j+ 1−α
2

x u(t)χε,b( · + vt)‖L2
x
+

∫
R

Ã3,7(t)D
1−α

2
x ∂ j

x uχε,b dx .

= ‖D
j+ 1−α

2
x u(t)χε,b( · + vt)‖L2

x

∑
1≤m≤6

A3,k(t)+ A3,7(t).

The first factor on the right-hand side is the quantity to be estimated.
We will start by estimating the easiest term:

A3,7(t)=−
1
2

∫
R

∂x uχ2
ε,b (D

1−α
2

x ∂ j
x u)2 dx −

∫
R

uχε,bχ ′ε,b(D
1−α

2
x ∂ j

x u)2 dx

= A3,7,1(t)+ A3,7,2(t).

We have that

|A3,7,1(t)|. ‖∂x u(t)‖L∞x

∫
R

(D
1−α

2
x ∂ j

x u)2χ2
ε,b dx,

where the last integral is the quantity that we want to estimate, and the another factor will be controlled
after integration in time.

After integration in time and Sobolev’s embedding∫ T

0
|A3,7,2(t)| dt .

∫ T

0

∫
R

u (χ2
ε,b)
′(D

1−α
2

x ∂ j
x u)dx dt

.
(

sup
0≤t≤T

‖u(t)‖H s(α)+
x

) ∫ T

0

∫
R

(D
1−α

2
x ∂ j

x u)2 (χ2
ε,b)
′ dx dt,

where the integral expression on the right-hand side was already estimated in (6.39).
To handle the contribution coming from Ã3,1 and Ã3,2, we apply a combination of (3.4), (3.14) and

Lemma 3.15 to obtain

‖ Ã3,1(t)‖L2
x
. ‖D

j+ 1−α
2

x (uχε,b)‖L2
x
‖u‖L∞x +‖u0‖L2

x
‖u‖L∞x ,

‖ Ã3,2(t)‖L2
x
. ‖D

j+ 1−α
2

x (uφ̃ε,b)‖L2
x
‖u‖L∞x +‖u0‖L2

x
‖u‖L∞x .

(6.47)

The condition on the supports of χε,b and ψε combined with Lemma 3.16 implies

‖ Ã3,3(t)‖L2
x
. ‖u0‖L2

x
‖u‖L∞x .

By using (3.2) and (3.14)

‖ Ã3,4(t)‖L2
x
. ‖∂x(uχε,b)‖L∞x ‖D

j+ 1−α
2

x (uχε,b)‖L2
x
,

‖ Ã3,5(t)‖L2
x
. ‖∂x(uχε,b)‖L∞x ‖D

j+ 1−α
2

x (uφε,b)‖L2
x
+‖∂x(uφε,b)‖L∞x ‖D

j+ 1−α
2

x (uχε,b)‖L2
x
.
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An application of Lemma 3.16 leads to

‖ Ã3,6(t)‖L2
x
= ‖uχε,b∂x D

j+ 1−α
2

x (uψε)‖L2
x
. ‖u0‖L2

x
‖u‖L∞x . (6.48)

To complete the estimate in (6.47)–(6.48) we write

χε,b(x)+φε,b(x)+ψε(x)= 1 for all x ∈ R;

then

D
j+ 1−α

2
x (uχε,b)= D

j+ 1−α
2

x uχε,b+ [D
j+ 1−α

2
x ;χε,b](uχε,b+ uφε,b+ uψε)

= I1+ I2+ I3+ I4.

Notice that ‖I1‖L2
x

is the quantity to be estimated. In contrast, I4 is handled by using Lemma 3.16. In
regards to ‖I2‖L2

x
and ‖I3‖L2

x
, Lemma 3.13 combined with the local theory, and the step 2 in the case

j = 1 produces the required bounds.
By Theorem 3.7 and Hölder’s inequality

‖D
j+ 1+α

2
x (uφε,b)‖L2

x

. ‖u‖L4
x
‖D

j+ 1+α
2

x φε,b‖L4
x
+

∥∥∥∥∑
β≤ j

1
β!
∂βx φε,b Ds,β

x u
∥∥∥∥

L2
x

. ‖u0‖
1/2
L2

x
‖u‖1/2L∞x

+

∑
β∈Q1( j)

1
β!
‖∂βx φε,b D

j−β+ α+1
2

x u‖L2
x
+

∑
β∈Q2( j)

1
β!
‖∂βx φε,bHD

j−β+ α+1
2

x u‖L2
x
, (6.49)

where Q1( j),Q2( j) denote odd integers and even integers in {0, 1, . . . , j} respectively.
To estimate the second term in (6.49), note that ∂βx φε,b is supported in

[
ε
4 , b

]
; then∑

β∈Q1( j)

1
β!
‖∂βx φε,b D

j−β+ α+1
2

x u‖L2
x
.

∑
β∈Q1( j)

1
β!
‖1[ ε8 ,b]

D
j−β+ α+1

2
x u‖L2

x

.
∑

β∈Q1( j)

1
β!
‖η ε

24 ,b+
7ε
24

D
j−β+ α+1

2
x u‖L2

x
.

Hence, after integrating in time and applying (6.33) with (ε, b)=
(
ε

24 , b+ 7ε
24

)
we obtain∑

β∈Q1( j)

1
β!
‖η ε

24 ,b+
7ε
24

D
j−β+ α+1

2
x u‖L2

T L2
x
.

∑
β∈Q1( j)

(c∗j−β,1)
1
2 <∞

by the induction hypothesis.
Analogously, we can handle the third term in (6.49):∑

β∈Q2( j),β 6= j

1
β!
‖∂βx φε,bHD

j−β+ α+1
2

x u‖L2
T L2

x
.

∑
β∈Q2( j),β 6= j

(c∗j−β,1)
1
2 +‖u‖L∞T H (3−α)/2

x
<∞.

Therefore, after integrating in time and applying Hölder’s inequality we have

‖D
j+ 1+α

2
x (uφε,b)‖L2

T L2
x
<∞.

Next, by interpolation and Young’s inequality

‖D
j+ 1−α

2
x (uφε,b)‖L2

T L2
x
. ‖D

j+ 1+α
2

x (uφε,b)‖L2
T L2

x
+‖u0‖L2

x
<∞. (6.50)
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If we apply (6.49)–(6.50) then

‖D
j+ 1−α

2
x (uφ̃ε,b)‖L2

T L2
x
<∞.

Finally, after collecting all of the information and applying Gronwall’s inequality we obtain

sup
0≤t≤T

‖D
1−α

2
x ∂ j

x uχε,b‖2L2
x
+‖∂ j+1

x uηε,b‖2L2
T L2

x
+‖H∂ j+1

x uηε,b‖2L2
T L2

x
≤ c∗j,2,

where c∗j,2 = c∗j,2(α; ε; T ; v; ‖u0‖H (3−α)/2
x
; ‖D(1−α)/2

x ∂
j
x u0χε,b‖L2

x
) for any ε > 0, b ≥ 5ε and v ≥ 0.

This finishes the induction process.
To justify the previous estimates we shall follow the following argument of regularization. For

arbitrary initial data u0 ∈ H s(R) s > 3−α
2 , we consider the regularized initial data uµ0 = ρµ ∗ u0 with

ρ ∈ C∞0 (R), supp ρ ⊂ (−1, 1), ρ ≥ 0, ‖ρ‖L1 = 1 and

ρµ(x)= µ−1ρ
( x
µ

)
for µ > 0.

The solution uµ of the IVP (1.1) corresponding to the smoothed data uµ0 = ρµ ∗ u0 satisfies

uµ ∈ C([0, T ] : H∞(R));

we note that the time of existence is independent of µ.
Therefore, the smoothness of uµ allows us to conclude that

sup
0≤t≤T

‖∂m
x uµχε,b‖2L2

x
+‖D

m+ 1+α
2

x uµ‖2L2
T L2

x
+‖HD

m+ 1+α
2

x uµηε,b‖2L2
T L2

x
≤ c∗,

where c∗=c∗(α; ε; T ; v; ‖uµ0 ‖H (3−α)/2
x
; ‖∂m

x uµ0 χε,b‖L2
x
). In fact our next task is to prove that the constant c∗

is independent of the parameter µ.
The independence from the parameter µ > 0 can be reached first noticing that

‖uµ0 ‖H (3−α)/2
x

≤ ‖u0‖H (3−α)/2
x
‖ρ̂µ‖L∞ξ = ‖u0‖H (3−α)/2

x
‖ρµ‖L1

x
= ‖u0‖H (3−α)/2

x
.

Next, since χε,b(x)= 0 for x ≤ ε, restricting to µ ∈ (0, ε) it follows by Young’s inequality∫
∞

ε

(∂m
x uµ0 )

2 dx ≤ ‖ρµ‖L1
ξ
‖∂m

x u0‖L2
x ((0,∞)) = ‖∂

m
x u0‖L2

x ((0,∞)).

Using the continuous dependence of the solution upon the data we have that

sup
t∈[0,T ]

‖uµ(t)− u(t)‖H (3−α)/2
x µ→0−−→ 0.

Combining this fact with the independence of the constant c∗ from the parameter µ, weak compactness
and Fatou’s lemma, the theorem holds for all u0 ∈ H s(R), s > 3−α

2 . �

Remark 6.51. The proof of Theorem B remains valid for the defocusing dispersive generalized Benjamin–
Ono equation {

∂t u− Dα+1
x ∂x u− u ∂x u = 0, x, t ∈ R, 0< α < 1,

u(x, 0)= u0(x).
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In this direction, the propagation of regularity holds for u(−x,−t), where u(x, t) a solution of (1.1). In
other words, this means that for initial data satisfying the conditions (1.9) and (1.11) on the left-hand side
of the real line, Theorem B remains valid backward in time.

A consequence of the Theorem B is the following corollary, which describes the asymptotic behavior
of the function in (1.10).

Corollary 6.52. Let u ∈ C([−T, T ] : H (3−α)/2(R)) be a solution of the equation in (1.1) described by
Theorem B.

Then, for any t ∈ (0, T ] and δ > 0∫
∞

−∞

1
〈x−〉 j+δ

(∂ j
x u)2(x, t) dx ≤ c

t
, (6.53)

where x− =max{0,−x}, c is a positive constant and 〈x〉 :=
√

1+ x2.

For the proof of (6.53) we use the following lemma provided in [Segata and Smith 2017].

Lemma 6.54. Let f : [0,∞)→ [0,∞) be a continuous function. If for a > 0∫ a

0
f (x) dx ≤ ca p,

then for every δ > 0 ∫
∞

0

f (x)
〈x〉p+δ

dx ≤ c(p).

Proof. The proof follows by using a smooth dyadic partition of unit of R+. �

Remark 6.55. Observe that the lemma also applies when integrating a nonnegative function on the
interval [−(a+ ε),−ε], implying decay on the left half-line.

Proof of Corollary 6.52. We shall recall that Theorem B with x0 = 0 asserts that any ε > 0

sup
t∈[0,T ]

∫
∞

ε−vt
(∂ j

x u)2(x, t) dx ≤ c∗.

For fixed t ∈ [0, T ] we split the integral term as follows:∫
∞

ε−vt
(∂ j

x u)2(x, t) dx =
∫ ε

ε−vt
(∂ j

x u)2(x, t) dx +
∫
∞

ε

(∂ j
x u)2(x, t) dx .

The second term in the right-hand side is easily bounded by using Theorem B with v = 0. Hence, we just
need to estimate the first integral in the right-hand side.

Notice that after making a change of variables,∫ ε

ε−vt
(∂ j

x u)2(x, t) dx =
∫
−ε

−(ε−vt)
(∂ j

x u)2(x + 2ε, t) dx ≤ c∗.

Thus by using Lemma 6.54 and Remark 6.55 we find∫
−ε

−∞

1
〈x + 2ε〉 j+δ

(∂ j
x u)2(x + 2ε, t) dx =

∫ ε

−∞

1
〈x〉 j+δ

(∂ j
x u)2(x, t) dx ≤ c∗

t j .
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In summary, we have proved that for all j ∈ Z+, j ≥ 2 and any δ > 0∫ ε

−∞

1
〈x〉 j+δ

(∂ j
x u)2(x, t) dx ≤ c∗

t
, (6.56)∫

∞

ε

(∂ j
x u)2(x, t) dx ≤ c∗. (6.57)

If we apply the Lemma 6.54 to (6.57) we obtain extra decay in the right-hand side. This allow us to
obtain a uniform expression that combines (6.56) and (6.57); that is, there exists a constant c such that for
any t ∈ (0, T ] and δ > 0 ∫

∞

−∞

1
〈x−〉 j+δ

(∂ j
x u)2(x, t) dx ≤ c

t
. �
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1. Introduction

We prove estimates on the time and space regularity of solutions to porous medium equations�
@tu��u

Œm� D S in .0; T /�Rd ;

u.0/D u0 in Rd ;
(1-1)

where uŒm� WD jujm�1u with m>1, u0 2L1.Rd / and S 2L1..0; T /�Rd /. Solutions to porous medium
equations are known to exhibit nonlinear phenomena like slow diffusion or filling up of holes at finite rate:
If the initial data is compactly supported, then the support of the solution evolves with a free boundary
that has finite speed of propagation. The solution close to the boundary is not smooth even for smooth
initial data and zero forcing.

Despite many works on the problem of regularity of solutions to porous medium equations, until
recently, established regularity results in the literature in terms of Hölder or Sobolev spaces were restricted
to spatial differentiability of order less than 1; see [Ebmeyer 2005; Tadmor and Tao 2007]. For m& 1

this is in stark contrast to the limiting case mD 1, where u is up to twice weakly differentiable in space.
Very recently, the first author has proven optimal spatial regularity for (1-1) in [Gess 2020] for initial data
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u0 2 .L
1 \L1C"/.Rd / for some " > 0. This leaves open three main aspects addressed in the present

work: first, the derivation of optimal1 space-time regularity, second, the limit case u0 2 L1.Rd /, which
is of particular importance since it covers the case of the Barenblatt solution for which the estimates are
shown to be optimal, see Section 3 below, and third, higher-order integrability. Solving these three open
problems is the purpose of the present paper.

The first main result provides optimal space-time regularity for L1 data.

Theorem 1.1. Let u0 2 L1.Rd /, S 2 L1..0; T / � Rd / and m 2 .1;1/. Let u be the unique entropy
solution to (1-1) on Œ0; T ��Rd.

(i) Let p 2 .1;m� and define

�t WD
m�p

p

1

m� 1
; �x WD

p� 1

p

2

m� 1
:

Then for all �t 2 Œ0; �t /[f0g and �x 2 Œ0; �x/ we have

u 2W �t ;p.0; T IW �x ;p.Rd //:

Moreover, we have the estimate

kukW �t ;p.0;T IW �x;p.Rd // . ku0kmL1x CkSk
m

L1t;x
C 1: (1-2)

(ii) Suppose O b Rd. Let s 2 Œ0; 1� and define

p WD s.m� 1/C 1; �t WD
1� s

s.m� 1/C 1
; �x WD

2s

s.m� 1/C 1
:

Then for all �t 2 Œ0; �t /[f0g, �x 2 Œ0; �x/[f0g and q 2 Œ1; p� we have

u 2W �t ;q.0; T IW �x ;q.O//:

Moreover, we have the estimate

kukW �t ;q.0;T IW �x;q.O// . ku0kmL1x CkSk
m

L1t;x
C 1: (1-3)

In [Tadmor and Tao 2007; Ebmeyer 2005] initial data in L1 \L1 was considered. However, the
methods employed in these works did not allow a systematic analysis of the order of integrability of the
solutions. For example, the results of [Ebmeyer 2005] are restricted to the particular order of integrability
p D 2=.mC 1/, while [Tadmor and Tao 2007] is restricted to p D 1. In the second main result we
provide a systematic treatment of higher-order integrability. In particular, this includes and generalizes
the corresponding results of [Ebmeyer 2005] in terms of regularity in Sobolev spaces.

Noting that the regularity of uŒm� contains information on the time regularity of u in light of (1-1), in
addition, we analyze the spatial regularity of powers of the solution u� for � 2 Œ1;m�.

Theorem 1.2. Let u0 2L1.Rd /\L�.Rd /, S 2L1.Œ0; T ��Rd /\L�.Œ0; T ��Rd / for some � 2 .1;1/
and assume m 2 .1;1/. Let u be the unique entropy solution to (1-1) on Œ0; T ��Rd.

1Optimality is indicated by scaling arguments in Section 3 below, and the derived estimates are consistent with the optimal
space-time regularity in the linear case mD 1.
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(i) Let � 2 Œ1;m�. Then for all

p 2

�
1;
m� 1C �

�

�
; �x 2

�
0;
�p� 1

p

2

m� 2C �

�
we have

uŒ�� 2 Lp.0; T IW �x ;p.Rd //;

and we have the estimate

kuŒ��kLp.0;T IW �x;p.Rd // . ku0k
��

L1x\L
�
x

CkSk
��

L1t;x\L
�
t;x

C 1: (1-4)

(ii) Let p 2 .�;m� 1C �/ and define

�t WD
m� 1C ��p

p

1

m� 1
; �x WD

p� �

p

2

m� 1
:

Then for all �t 2 Œ0; �t / and �x 2 Œ0; �x/ we have

u 2W �t ;p.0; T IW �x ;p.Rd //:

Moreover, we have the estimate

kukW �t ;p.0;T IW �x;p.Rd // . ku0k
�

L1x\L
�
x

CkSk
�

L1t;x\L
�
t;x

C 1: (1-5)

Much as in Theorem 1.1, if one restricts to estimates that are localized in space, the rigid interdependency
of the coefficients in Theorem 1.2 can be relaxed.

Corollary 1.3. Under the assumptions of Theorem 1.2, suppose O b Rd.

(i) Let � 2 Œ1;m�. Then for all �x 2 Œ0; 2�=m/ and q 2 Œ1;m=�� we have

uŒ�� 2 Lq.0; T IW �x ;q.O//;

and we have the estimate

kuŒ��kLq.0;T IW �x;q.O// . ku0k
��

L1x\L
�
x

CkSk
��

L1t;x\L
�
t;x

C 1: (1-6)

(ii) Let s 2 Œ0; 1� and define

p WD s.m� 1/C 1; �t WD
1� s

s.m� 1/C 1
; �x WD

2s

s.m� 1/C 1
:

Then for all �t 2 Œ0; �t /[f0g, �x 2 Œ0; �x/[f0g and q 2 Œ1; p� we have

u 2W �t ;q.0; T IW �x ;q.O//:

Moreover, we have the estimate

kukW �t ;q.0;T IW �x;q.O// . ku0k
�

L1x\L
�
x

CkSk
�

L1t;x\L
�
t;x

C 1: (1-7)

The methods employed in this work are inspired by [Tadmor and Tao 2007] and rely on the kinetic
form of (1-1), that is, with f .t; x; v/ WD 1v<u.t;x/� 1v<0,

@tf �mjvj
m�1�xf D @vqCS.t; x/ıu.t;x/.v/ (1-8)
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for a nonnegative measure q, which allows the use of averaging lemmas and real interpolation. There is a
relatively short yet intense history of applying such velocity-averaging techniques to deduce regularizing
effects in nonlinear PDEs — from the early works [DiPerna, Lions, and Meyer 1991; Golse, Lions,
Perthame, and Sentis 1988; Lions, Perthame, and Tadmor 1994a; 1994b; 1996] to the more recent
[Arsénio and Masmoudi 2019; DeVore and Petrova 2001; Golse and Perthame 2013; Golse and Saint-
Raymond 2004; Jabin 2009; Jabin and Vega 2004; Perthame 2002]. An essential difference to purely
spatial regularity consists in the necessity to work with anisotropic fractional Sobolev spaces, which only
in their homogeneous form are nicely adapted to the Fourier analytic methods of this work, much in
contrast to the purely spatial case in [Gess 2020]. This leads to the so-called dominating mixed anisotropic
Besov spaces introduced in [Schmeisser and Triebel 1987]. Passing from these homogeneous anisotropic
spaces to standard inhomogeneous fractional Sobolev spaces is delicate and treated in detail below. A
main ingredient in the proof of optimal regularity in [Gess 2020] was the existence of singular momentsR
t;x;v jvj

�
q for 
 2 .0; 1/. This ceases to be true for general L1-initial data. This difficulty is overcome
in the present work by treating separately the degeneracy at jvj D 0 and the singularity at jvj D 1 as
they appear in (1-8). This also necessitates making use of (1-8) in the case of small spatial modes � in
order to obtain optimal time regularity; see Corollary 4.7 below.

Comments on the literature. The (spatial) regularity of solutions to porous medium equations in Sobolev
spaces has previously been considered in [Ebmeyer 2005; Gess 2020; Tadmor and Tao 2007]. Since
our main focus is on time-space regularity, we refer to [Gess 2020] for a more detailed account on the
available literature in this regard.

In the case of nonnegative solutions the spatial regularity of special types of powers of solutions
has been investigated in the literature. For example, much work is devoted to the pressure defined by
v WD .m=.m�1//um�1; see, e.g., [Vázquez 2007]. In the recent work [Gianazza and Schwarzacher 2019]
the authors proved higher integrability for nonnegative, local weak solutions to forced porous medium
equations in the sense that u.mC1/=2 2 L2C"loc ..0; T /IW

1;2C"
loc / for all " > 0 small enough. This result was

generalized in [Bögelein, Duzaar, Korte, and Scheven 2019].
The analysis of regularity in time of solutions to porous medium equations (without forcing) has a

long history initiated in [1979] and continued in [Crandall, Pazy, and Tartar 1979; Bénilan and Crandall
1981], where it was shown that

@tu 2 L
1
loc..0;1/IL

1.Rd // (1-9)

for u02L1.Rd /. Subsequently, Crandall and Pierre [1982a; 1982b] devoted considerable effort to relaxing
the required assumptions on the nonlinearity  in the case of generalized porous medium equations

@tu�� .u/D 0 in .0; T /�Rd : (1-10)

More precisely, in [Crandall and Pierre 1982a] assuming the global generalized homogeneity condition

�
 .r/ 00.r/

. 0.r//2
2 Œm;M� (1-11)

for some 0 < m <M , � 2 f˙1g and all r 2 R, (1-9) was recovered.
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It should be noted that the methods developed in these works are restricted to the nonforced case S � 0.
In fact, for S 6� 0, the linear case mD 1 demonstrates that (1-9) should not be expected. We are not aware
of results proving regularity in time in Sobolev spaces for porous medium equations with nonvanishing
forcing. In this sense, restricting to regularity in time alone, the results of the present work can be
regarded as the (partial) extension of the results of [Aronson and Bénilan 1979; Bénilan and Crandall
1981; Crandall, Pazy, and Tartar 1979; Crandall and Pierre 1982a; 1982b] to nonvanishing forcing.

We are not aware of previous results on mixed time and space regularity in Sobolev spaces for solutions
to porous medium equations.

For simplicity of the presentation we restrict to the nonlinearity  .u/D uŒm� in this work. However,
the methods that we present are not restricted to this case, as long as  satisfies a nonlinearity condition
as in [Gess 2020]. In addition, by means of a velocity decomposition, i.e., writing

u.t; x/D

KX
iD1

ui .t; x/ WD

KX
iD1

Z
v

'i .v/f .t; x; v/ dv;

where 'i, i D 1; : : : ; K, is a smooth decomposition of the unity, such a nonlinearity condition only needs
to be supposed locally at points of degeneracy. This is in contrast to the assumptions, such as (1-11),
supposed in the series of works [Aronson and Bénilan 1979; Bénilan and Crandall 1981; Crandall, Pazy,
and Tartar 1979; Crandall and Pierre 1982a; 1982b] mentioned above, which can be regarded as global
generalized homogeneity conditions.

Structure of this work. In Section 2 we collect information on the class of homogeneous and inhomo-
geneous anisotropic, dominating mixed-derivative spaces employed in this work. The optimality of the
obtained estimates is indicated in Section 3 by scaling arguments and by explicit computations in case of
the Barenblatt solution. In Section 4 we provide general averaging lemmas (Lemmas 4.2 and 4.4) in the
framework of homogeneous dominating mixed-derivative spaces and translate them to more standard
inhomogeneous anisotropic fractional Sobolev spaces (Corollaries 4.5, 4.6 and 4.7). In this formulation,
they imply the main result by their application to the porous medium equation in Section 5.

2. Preliminaries, notation and function spaces

We use the notation a . b if there is a universal constant C > 0 such that a 6 Cb. We introduce
a & b in a similar manner, and write a � b if a . b and a & b. For a Banach space X and I � R we
denote by C.I IX/ the space of bounded and continuous X-valued functions endowed with the norm
kf kC.I IX/ WD supt2I kf .t/kX . If X D R we write C.I /. For k 2 N [ f1g, the space of k-times
continuously differentiable functions is denoted by C k.I IX/. The subspace of C k.I IX/ consisting of
compactly supported functions is denoted by C kc .I IX/. Moreover, we write MTV for the space of all
measures with finite total variation. Throughout this article we use several types of Lp-based function
spaces. For a Banach space X and p 2 Œ1;1�, we endow the Bochner–Lebesgue space Lp.RIX/ with
the usual norm

kf kLp.RIX/ WD

�Z
R

kf .t/k
p
X dt

�1
p

;
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with the standard modification in the case of pD1. For k 2N0 WDN[f0g, the corresponding X -valued
Sobolev space is denoted by W k;p.RIX/. If � 2 .0;1/ is noninteger (say � D kC r , with k 2 N0 and
r 2 .0; 1/), then we define the X -valued Sobolev–Slobodecki space W �;p.RIX/ as the space of functions
in W k;p.RIX/ with

kf k PW �;p.RIX/
WD

�Z
R�R

kDkf .t/�Dkf .s/k
p
X

jt � sjrpC1
ds dt

�1
p

<1; (2-1)

again with the usual modification in the case of pD1. Further, let PW �;p.RIX/ be the space of all locally
integrable X-valued functions f for which (2-1) is finite. If we factor out the equivalence relation �,
where f � g if kf �gk PW �;p.RIX/

D 0, the space PW �;p.RIX/ equipped with the norm k � k PW �;p.RIX/
is

a Banach space.
Moreover, in order to treat regularity results in both time and space efficiently, we introduce spaces

with dominating mixed derivatives set in the framework of Fourier analysis, that is, corresponding Besov
spaces. These spaces have a long history in the literature, beginning with [Nikolsky 1962; 1963a; 1963b].
We refer the reader to [Schmeisser and Triebel 1987]. We adopt the notation of [Schmeisser and Triebel
1987] for the nonhomogeneous spaces. Corresponding homogeneous Besov spaces are treated in [Triebel
1977a; 1977b]; we adapt the notation to be consistent with that of [Schmeisser and Triebel 1987]. We
recall from [Triebel 1977a] the definition of the spaces Z and Z 0 replacing the standard Schwartz space
S DS .RdC1/ and the space of tempered distributions S 0DS 0.RdC1/ in the definition of homogeneous
spaces. As we are concerned with function spaces in the time variable t 2 R and the spatial variable
x 2 Rd, we introduce, in addition to RdC1 D Rt �Rdx , also the subset

PRdC1 WD f.t; x/ 2 RdC1 W t jxj ¤ 0g:

Note that in [Triebel 1977a], the notation
C

R2 is used, which gives a better geometrical intuition of the set
taken out of R2. However, for typesetting reasons, we have decided on the notation PRdC1. Then we let
PD be the subset of the standard space of test functions D , consisting of functions with compact support in
PRdC1 and view it as a locally convex space equipped with the canonical topology. Its dual space is denoted
by PD 0, and is referred to as distributions over PRdC1. We define Z as the image of PD �S under the Fourier
transform F in time and space, equipped with the inherited topology from PD . The corresponding dual
space is denoted by Z 0. Since F W PD!Z , we can define by duality the Fourier transform F WZ 0! PD 0.

It holds Z � S with a continuous embedding, but the fact that Z is not densely embedded in S

prevents one from stating S 0 �Z 0. However, we note that for p 2 .1;1/, the space Lp.RdC1/ can be
viewed both as subspace of S 0 and as a subspace of Z 0; see Theorem 3.3 in [Triebel 1977a].

Let ' be a smooth function supported in the annulus
˚
� 2 Rd W 1

2
6 j�j6 2

	
and such thatX

j2Z

'j .�/ WD
X
j2Z

'.2�j �/D 1 for all � 2 Rd n f0g:

Similarly, let � be a smooth function supported in
�
�2;�1

2

�
[
�
1
2
; 2
�

withX
l2Z

�l.�/ WD
X
l2Z

�.2�l�/D 1 for all � 2 R n f0g:
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Moreover, define �j WD 'j for j > 1 and �0 WD 1 �
P
j>1 �j , as well as  l WD �l for l > 1 and

 0 WD 1�
P
l>1 �l . We will use the shorthand notation �l'j for the function .�; �/ 7! �l.�/'j .�/, and

similarly for combinations of  l and �j .

Definition 2.1. Let �i 2 .�1;1/, i D t; x, and p 2 Œ1;1�. Set N� WD .�t ; �x/.

(i) The homogeneous Besov space with dominating mixed derivatives S N�p;1 PB.R
dC1/ is given by

S N�p;1
PB WD S N�p;1

PB.RdC1/ WD ff 2Z 0 W kf k
S N�p;1 PB

<1g;

with the norm
kf k

S N�p;1 PB
WD sup

l;j2Z

2�t l2�xj kF�1t;x�l'jFt;xf kLp.RdC1/:

Similarly, the space S N�
p;1;.1/

PB.RdC1/ is given via the norm

kf k
S N�
p;1;.1/

PB
WD sup

l;j2Z

2�t l2�xj kF�1t;x�l'jFt;xf kLp;1.RdC1/:

(ii) The homogeneous Chemin–Lerner spaces zLpt PB
�x
p;1.R

dC1/ and zLpx PB
�t
p;1.R

dC1/ are given by

zL
p
t
PB�xp;1 WD

zL
p
t
PB�xp;1.R

dC1/ WD ff 2S 0 W kf kzLpt PB
�x
p;1

<1g;

zLpx
PB�tp;1 WD

zLpx
PB�tp;1.R

dC1/ WD ff 2S 0 W kf kzLpx PB
�t
p;1

<1g;

with the norms
kf kzLpt PB

�x
p;1
WD sup

j2Z

2�xj kF�1x 'jFxf kLp.RdC1/;

kf kzLpx PB
�t
p;1
WD sup

l2Z

2�t lkF�1t �lFtf kLp.RdC1/;

respectively.

(iii) The nonhomogeneous Besov space with dominating mixed derivatives S N�p;1B.R
dC1/ is given by

S N�p;1B WD S
N�
p;1B.R

dC1/ WD ff 2S 0.RdC1/ W kf kS N�p;1B <1g;

with the norm
kf kS N�p;1B WD sup

l;j>0

2�t l2�xj kF�1t;x l�jFt;xf kLp.RdC1/:

(iv) The nonhomogeneous Chemin–Lerner space zLpt B
�x
p;1.R

dC1/ is given by

zL
p
t B

�x
p;1 WD

zL
p
t B

�x
p;1.R

dC1/ WD ff 2S 0 W kf kzLpt B
�x
p;1

<1g;

with the norm kf kzLpt B�xp;1 WD supj>0 2
�xj kF�1x �jFxf kLp.RdC1/.

Remark 2.2. All spaces considered in Definition 2.1 are Banach spaces; see [Triebel 1977a]. Note that
for # 2 R, we use the notation # N� D .#�t ; #�x/. In this note, we restrict ourselves to the third index
of the Besov-type space being infinity, in which case the spaces S N�p;1B are sometimes called Nikolsky
spaces of dominating mixed derivatives in the literature. However, there is no conceptual limitation to
consider also third indices q 2 Œ1;1�. By the same token, one could also consider spaces with different
indices p and q in different directions. We refer the reader to [Schmeisser and Triebel 1987] for more
details concerning such spaces.
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Lemma 2.3. Let �x > 0 and p 2 Œ1;1�. Then

zL
p
t B

�xC"
p;1 .RdC1/� Lp.RIW �x ;p.Rd //� zL

p
t B

�x�ı
p;1 .RdC1/;

whenever " > 0 and ı 2 .0; �x�.

Proof. This follows from [Bahouri, Chemin, and Danchin 2011, p. 98]. �

Lemma 2.4. Let �t ; �x >0 and p 2 Œ1;1/. Then S N�p;1B �W
�t ;p.RIW �x ;p.Rd // whenever �t 2 Œ0; �t /

and �x 2 Œ0; �x/.

Proof. The proof is a combination of results in [Schmeisser and Triebel 1987], which are written for
R � R but also true for R � Rd by an inspection of their respective proofs: Without loss of general-
ity, we can assume that �t and �x are noninteger. By [loc. cit., Section 2.3.4, Remark 4], we have
W �t ;p.RIW �x ;p.Rd //D SB N�p;p; see [loc. cit., Section 2.2.1, Definition 2] for a definition of the latter
space. Since by [loc. cit., Section 2.2.3, Proposition 2] we have S N�p;1B � SB

N�
p;p , this yields the claim. �

Lemma 2.5. Let �t ; �x > 0 and p 2 Œ1;1�. Then

.Lp.RdC1/\ zLpx
PB�tp;1\

zL
p
t
PB�xp;1\S

N�
p;1
PB/D S N�p;1B

with equivalent norms.

Proof. As smooth and compactly supported functions,  0 and �0 extend to Lp multipliers for all
p 2 Œ1;1�; see, e.g., [Bergh and Löfström 1976].
For f 2 .Lp.RdC1/\ zLpx PB

�t
p;1\

zL
p
t
PB
�x
p;1\S

N�
p;1
PB/�S 0.RdC1/ we obtain

kf kS N�p;1B 6 kF
�1
t;x 0�0Ft;xf kLpt;x

C sup
l>0

2�t lkF�1t;x�l�0Ft;xf kLpt;x

C sup
j>0

2�xj kF�1t;x 0'jFt;xf kLpt;x
C sup
l;j>0

2�t l2�xj kF�1t;x�l'jFt;xf kLpt;x

. kf kLpt;x C sup
l>0

2�t lkF�1t �lFtf kLpt;x

C sup
j>0

2�xj kF�1x 'jFxf kLpt;x
C sup
l;j>0

2�t l2�xj kF�1t;x�l'jFt;xf kLpt;x

. kf kLpt;x Ckf kzLpx PB�tp;1 Ckf kzLpt PB�xp;1 Ckf kS N�p;1 PB :

Conversely, for f 2 S N�p;1B , we estimate the four contributions corresponding to Lp.RdC1/, zLpx PB
�t
p;1,

zL
p
t
PB
�x
p;1, and S N�p;1 PB separately. We start by noting that due to �t ; �x > 0, the invariance of multiplier

norms with respect to dilation, �l D �l Q 0 for l 6 0 and 'j D 'j Q�0 for j 6 0, where Q 0 WD  0C 1 and
Q�0 WD �0C�1, we have

sup
l60

2�t lkF�1t �lFtf kLpt;x
. kF�1t Q 0Ftf kLpt;x

;

sup
j60

2�xj kF�1x 'jFxf kLpt;x
. kF�1x Q�0Fxf kLpt;x

:
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Furthermore we use the fact that for � > 0 one has the estimate
P
n>0 janj. supn>0 2

�njanj for any
sequence .an/� R with a constant depending on � . With this, we obtain

kf kLpt;x
6
X
l;j>0

kF�1t;x l�jFt;xf kLpt;x
. sup
l;j>0

2�t l2�xj kF�1t;x l�jFt;xf kLpt;x
6 kf kS N�p;1B :

Next, we compute

kf kzLpx PB
�t
p;1
6 sup
l60

2�t lkF�1t �lFtf kLpt;x
Csup
l>0

2�t lkF�1t  lFtf kLpt;x

. kF�1t Q 0Ftf kLpt;x
Csup
l>0

2�t lkF�1t  lFtf kLpt;x

6
X
j>0

kF�1t;x
Q 0�jFt;xf kLpt;x

Csup
l>0

X
j>0

2�t lkF�1t;x l�jFt;xf kLpt;x

. sup
j>0

2�xj kF�1t;x
Q 0�jFt;xf kLpt;x

C sup
l>0;j>0

2�t l2�xj kF�1t;x l�jFt;xf kLpt;x
. kf kS N�p;1B :

By analogy, kf kzLpt PB�xp;1 . kf kS N�p;1B . Hence, it remains to control kf k
S N�p;1 PB

. We split this term into
the four contributions

kf k
S N�p;1 PB

D sup
l;j>0

2�t l2�xj kF�1t;x l�jFt;xf kLpt;x
C sup
l>0;j60

2�t l2�xj kF�1t;x l'jFt;xf kLpt;x

C sup
l60;j>0

2�t l2�xj kF�1t;x�l�jFt;xf kLpt;x
C sup
l;j60

2�t l2�xj kF�1t;x�l'jFt;xf kLpt;x
:

The first contribution is immediately estimated by kf kS N�p;1B . For the second contribution, we have

sup
l>0;j60

2�t l2�xj kF�1t;x l'jFt;xf kLpt;x
. sup
l>0

2�t lkF�1t;x l
Q�0Ft;xf kLpt;x

6 kf kS N�p;1B ;

and a similar estimate holds for the third contribution. For the fourth contribution, we have

sup
l;j60

2�t l2�xj kF�1t;x�l'jFt;xf kLpt;x
. kF�1t;x Q 0 Q�0Ft;xf kLpt;x

: �

3. Optimality of estimates via scaling

It is well known that in the linear case mD 1 one has estimates of the form

kuk
L1t
PW
�x;1
x
6 c.�x/.ku0kL1x CkSkL1t;x /; (3-1)

for all �x < 2. In the case m> 1, such an estimate cannot be true for any �x > 0 anymore. Intuitively,
this is due to the linear nature of (3-1) (observe that the integrability exponent is equal on both sides of
the inequality), which is not compatible with the nonlinear equation (1-1). We will make this intuition
more precise by the following lemma based on a scaling argument.
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Lemma 3.1. Let T > 0, m> 1, � 2 Œ1;m�, p 2 Œ1;1/ and �t ; �x > 0. Assume that there is a constant
c D c.m;�; p; �t ; �x/ > 0 such that

kuŒ��k
p

PW �t ;p.0;T I PW �x;p.Rd //
6 c.ku0kL1.Rd /CkSkL1.0;T IL1.Rd /// (3-2)

for all solutions u to (1-1). Then

p6
m

�C .m� 1/�t
6
m

�
; �t 6

m��p

p.m� 1/
6
m��

m� 1
; �xD

�p� 1

p

2

m� 1
6
2.�� �t /

m
6
2�

m
: (3-3)

In particular, if �t D .m��/=.m� 1/, then p D 1 and �x D 2.�� 1/=.m� 1/.

Proof. For positive constants �; 
 > 1 with �m�1 D 
 and a fixed triple .u; u0; S/ such that u satisfies
(1-1) with initial condition u0 and forcing S we consider the rescaled quantities . Qu; Qu0; zS/ defined via

Qu.t; x/ WD �u.
 t; x/; Qu0.x/ WD �u0.x/; zS.t; x/ WD �mS.
 t; x/;

where we have tacitly extended S on .T; 
T / by 0. Then Qu satisfies (1-1) with Qu0 2 L1.Rd / and
zS 2 L1.0; T IL1.Rd //, so that (3-2) gives

k QuŒ��k
p

PW �t ;p.0;T I PW �x;p.Rd //
6 c.k Qu0kL1.Rd /Ck zSkL1.0;T IL1.Rd ///: (3-4)

We observe

k QuŒ��k
p

PW �t ;p.0;T I PW �x;p.Rd //
D ��p
�tp�1kuŒ��k

p

PW �t ;p.0;
T I PW �x;p.Rd //
;

as well as k Qu0kL1.Rd / D �ku0kL1.Rd / and k zSkL1.0;T IL1.Rd // D �kSkL1.0;
T IL1.Rd //. Thus, it follows
from (3-4) that

kuŒ��k
p

PW �t ;p.0;T I PW �x;p.Rd //
6 c�1��p
1��tp.ku0kL1.Rd /CkSkL1.0;
T IL1.Rd ///

D c�.m�1/.1��tp/C1��p.ku0kL1.Rd /CkSkL1.0;T IL1.Rd ///: (3-5)

As long as u0 or S are nontrivial and unless

.m� 1/.1� �tp/C 1��p > 0; (3-6)

this gives the contradiction u D 0 by sending �!1 (and consequently also 
 !1). Since �t > 0,
(3-6) gives

p 6
m

�C .m� 1/�t
6
m

�
:

By the same token, since p > 1, (3-6) gives

�t 6
m��p

p.m� 1/
6
m��

m� 1
:

Next, we rescale in space. More precisely, for positive constants �; 
 > 0 with �1�m D 
2 and a fixed
triple .u; u0; S/ as above we consider the rescaled quantities . Qu; Qu0; zS/ defined via

Qu.t; x/ WD �u.t; 
x/; Qu0.x/ WD �u0.
x/; zS.t; x/ WD �S.t; 
x/:
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Then Qu satisfies (1-1) with Qu0 2 L1.Rd / and zS 2 L1.0; T IL1.Rd //, so that (3-2) gives

k QuŒ��k
p

PW �t ;p.0;T I PW �x;p.Rd //
6 c.k Qu0kL1.Rd /Ck zSkL1.0;T IL1.Rd ///: (3-7)

We have
k QuŒ��k

p

PW �t ;p.0;T I PW �x;p.Rd //
D ��p
�xp�dkuŒ��k

p

PW �t ;p.0;T I PW �x;p.Rd //
;

as well as k Qu0kL1.Rd / D �

�dku0kL1.Rd / and k zSkL1.0;T IL1.Rd // D �


�dkSkL1.0;T IL1.Rd //. Thus, it
follows from (3-7) and the relation �1�m D 
2 that

kuŒ��k
p

PW �t ;p.0;T I PW �x;p.Rd //
6 c�1��p
��xp.ku0kL1.Rd /CkSkL1.0;T IL1.Rd ///

D c�
�xp.m�1/

2
C1��p.ku0kL1.Rd /CkSkL1.0;T IL1.Rd ///: (3-8)

As long as u0 or S are nontrivial and unless

�xp.m� 1/

2
C 1��p D 0 () �x D

�p� 1

p

2

m� 1
; (3-9)

this gives the contradiction u D 0 by sending �! 0 or �!1 (and consequently 
 !1 or 
 ! 0,
respectively). Plugging into (3-9) the restrictions on p and �t , we obtain the result. �

Remark 3.2. If one sets �D 1, pD 1 and �t D 0, Lemma 3.1 tells us that �x cannot be positive, which is
what we claimed following (3-1). Moreover, we emphasize that Lemma 3.1 shows that in the case of the
whole space, the regularity exponent �x 2 Œ2.�� 1/=.m� 1/; 2�=m� is in a one-to-one correspondence
to the integrability exponent p 2 Œ1;m=�� via

�x D
�p� 1

p

2

m� 1
and p D

2

2�� �x.m� 1/
:

The Barenblatt solution. Consider the Barenblatt solution

uBB.t; x/ WD t
�˛.C � kjxt�ˇ j2/

1
m�1

C
;

where

m> 1; ˛ WD
d

d.m� 1/C 2
; k D

˛.m� 1/

2md
; ˇ D

˛

d
;

and C > 0 is a free constant. Then, for � 2 Œ1;m�, uŒ��BB 2 L
m=�.0; T I PW s;m=�.Rd // implies s < 2�=m.

Proof. With F.x/ WD .C � kjxj2/�=.m�1/
C

we have uŒ��BB.t; x/D t
�˛�F.xt�ˇ /. We next observe that,

for s 2 .0; 1/ and each t > 0,

ku
Œ��
BB.t; � /k

m
�

PW s;m=�.Rd /
D

Z
Rd�Rd

ju
Œ��
BB.t; x/�u

Œ��
BB.t; y/j

m
�

jx�yj
sm
�
Cd

dx dy

D t�˛m�ˇ.
sm
�
Cd/C2dˇ

kF k
m
�

PW s;m=�.Rd /
:

Hence,

ku
Œ��
BBk

m
�

Lm=�.0;T I PW s;�=m.Rd //
D kt�˛m�ˇ.

sm
�
Cd/C2dˇ

kL1.0;T /kF k
m
�

PW s;m=�.Rd /
;
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which is finite if and only if

�˛m�ˇ

�
sm

�
C d

�
C 2dˇ > �1 and F 2 PW s;m

� .Rd /:

Hence, necessarily

mC
1

d

�
sm

�
C d

�
� 2 <

1

˛
D
d.m� 1/C 2

d
;

which is equivalent to s < 2�=m. In the case s 2 .1; 2/ we observe that it holds

@xiu
Œ��
BB.t; x/D t

�˛�Cˇ@xiF.xt
�ˇ /;

so that analogous arguments may be applied. �

4. Averaging lemma approach

In [Gess 2020], an averaging lemma was introduced that can be applied directly to the porous medium
equations (1-1) to obtain estimates on the spatial regularity of u, but so far, no corresponding estimates
for powers of the solution u� or its time regularity could be obtained. In this section, we provide an
averaging lemma that gives a comprehensive answer to both of these questions. To this end, we recall
the definition of the anisotropic and isotropic truncation properties from [Gess 2020], which extend the
truncation property introduced in [Tadmor and Tao 2007, Definition 2.1].

Definition 4.1. (i) Let m be a complex-valued Fourier multiplier. We say that m has the truncation
property if, for any locally supported bump function  on C and any 1 6 p <1, the multiplier with
symbol  .m.�/=ı/ is an Lp-multiplier as well as an MTV -multiplier uniformly in ı > 0, that is, its
Lp-multiplier norm (MTV -multiplier norm resp.) depends only on the support and C l size of  (for
some large l that may depend on m) but otherwise is independent of ı.

(ii) Let m W Rd
�
�Rv! C be a Carathéodory function such that m. � ; v/ is radial for all v 2 R. Then m is

said to satisfy the isotropic truncation property if, for every bump function  supported on a ball in C,
every bump function ' supported in

˚
� 2 C W 1

2
6 j�j6 2

	
and every 1 < p <1,

M ;Jf .x; v/ WDF�1x '

�
j�j2

J 2

�
 

�
m.�; v/

ı

�
Fxf .x/

is an Lpx -multiplier for all v 2 R, J D 2j, j 2 Z, and, for all r > 1,

kkM ;J kMpkLrv . j�m.J; ı/j
1
r ;

where

�m.J; ı/ WD

�
v 2 R W

ˇ̌̌̌
m.J; v/

ı

ˇ̌̌̌
2 supp 

�
:

Here we use an abuse of notationˇ̌̌̌
m.J; v/

ı

ˇ̌̌̌
WD sup

�ˇ̌̌̌
m.�; v/

ı

ˇ̌̌̌
W
j�j2

J 2
2 supp'

�
:
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We recall that for m.�; v/ WD j�j2jvj, the anisotropic truncation property is satisfied uniformly in v by
Example A.2 in [Gess 2020] and the isotropic truncation property is satisfied by Example 3.2 in [Gess
2020], albeit only in the case J > 1. However, the proof given there can be used without any changes to
obtain the full assertion for general J 2 Z.

Lemma 4.2. Assume m 2 .1;1/, 
 2 .�1; m/, � 2 Œ1;mC1�
/ and let f 2Lˇt;x;v , where ˇ0 D 1=�
with � 2 .0; 1/, be a solution to

L .@t ;rx; v/f .t; x; v/D g0.t; x; v/C @vg1.t; x; v/ on Rt �Rdx �Rv: (4-1)

Here, the differential operator L .@t ;rx; v/ that is given in terms of its symbol

L .i�; i�; v/ WD i� Cjvjm�1j�j2; (4-2)

and gi are Radon measures satisfying

jg0j.t; x; v/jvj
1�

Cjg1j.t; x; v/jvj

�

2MTV .Rt �Rdx �Rv/:

Suppose

s 2

�
�� 2C 


m� 1
; 1

�
\ Œ0; 1�:

Then Nf 2 S N�
p;1;.1/

PB , where Nf .t; x/ WD
R
f .t; x; v/jvj��1 dv, N� WD .�t ; �x/ and

p WD
s.m�1/C1�
C�

��C.1��/.s.m�1/C1�
/
; �t WD

.1�s/.��1C�/

s.m�1/C1�
C�
; �x WD

2s.��1C�/

s.m�1/C1�
C�
: (4-3)

Moreover, we have the estimate

k Nf k
S N�
p;1;.1/

PB
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v

: (4-4)

If additionally Nf 2 Lrt;x , p ¤ r 2 Œ1;1�, then for all q 2 .minfp; rg;maxfp; rg/ it holds Nf 2 S# N�q;1 PB ,
where # 2 .0; 1/ is such that

1

q
D
1�#

r
C
#

p
:

In this case we have

k Nf k
S# N�q;1 PB

. kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf k
L
ˇ
t;x;v
Ck Nf kLrt;x : (4-5)

Finally, if s D 1 and consequently �t D 0, then (4-5) remains true if we replace the space S# N�q;1 PB D
S
.0;#�x/
q;1

PB by zLqt PB
#�x
q;1.

Remark 4.3. Observe that for

� 2

�
mC 1� 
 ��

mC 1� 

; 1

�
one may prescribe a specific integrability exponent. More precisely, given

Qp 2

�
1� 
 C �

��C .1� �/.1� 
/
;
mC 1� 


�

�
\

�
1;
mC 1� 


�

�
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choose

s WD
� Qp�C Qp.1� �/.1� 
/� 1C 
 C �

.m� 1/.1� Qp.1� �//
2

�
�� 2C 


m� 1
; 1

�
\ Œ0; 1�:

Then (4-3) reads p D Qp, as well as

�t WD
mC �� 
 ��p�Cp.1� �/.
 �m/

p�

1

m� 1
;

�x WD
�p�Cp.1� �/.1� 
/� 1C 
 � �

p�

2

m� 1
:

Observe that in the limiting case �! 1 and 
 ! 1, these orders of differentiability correspond to the
ones found in (3-3).

Proof of Lemma 4.2. We first assume that f is compactly supported with respect to the variable v. This
condition will enter only qualitatively, and never appears in quantitative form. Therefore, at the end of
the proof, we can again remove this additional assumption.

Since we are interested in regularity in terms of homogeneous Besov spaces, we decompose f into
Littlewood–Paley blocks with respect to the t-variable and the x-variable. Let f�lgl2Z be a partition of
unity on R n f0g and f'j gj2Z a partition of unity on Rd n f0g as in Section 2. Then we define for l; j 2 Z

fl;j WDF�1t;x Œ�l'jFt;xf �;

where Ft;xfl;j .�; �; v/ is supported on frequencies j�j � 2j , j� j � 2l for l; j 2 Z. Similarly, we define
the decompositions g0;l;j and g1;l;j of g0 and g1, respectively. We consider a microlocal decomposition
of fl;j connected to the degeneracy of the operator L .@t ;rx; v/. Let  0 2C1c .R/ be a smooth function
supported in B2.0/ and set  1 WD 1� 0. For ı > 0 to be specified later we write

fl;j DF�1x  0

�
jvjj�j2

ı

�
Fxfl;j CF�1x  1

�
jvjj�j2

ı

�
Fxfl;j DW f

0
l;j Cf

1
l;j :

Since f is a solution to (4-1), we have

F�1t;xL .i�; i�; v/Ft;xf
1
l;j .t; x; v/DF�1x  1

�
jvjj�j2

ı

�
Fx

�
g0;l;j .t; x; v/C @vg1;l;j .t; x; v/

�
(4-6)

and thus

f 1l;j .t; x; v/DF�1t;x 1

�
jvjj�j2

ı

�
1

L .i�; i�; v/
Ft;xg0;l;j .t; x; v/

CF�1t;x 1

�
jvjj�j2

ı

�
1

L .i�; i�; v/
Ft;x@vg1;l;j .t; x; v/

DW f 2l;j .t; x; v/Cf
3
l;j .t; x; v/: (4-7)

In conclusion, we have arrived at the decomposition

Nfl;j WD

Z
fl;j jvj

��1 dvD
Z
f 0l;j jvj

��1 dvC
Z
f 2l;j jvj

��1 dvC
Z
f 3l;j jvj

��1 dvDW Nf 0l;jC Nf
2
l;jC

Nf 3l;j :

We aim to estimate the regularity of these three contributions separately.
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Step 1: f 0. We note that we have the estimate kF�1t �lFf kLˇt;x
. kf k

L
ˇ
t;x

with a constant independent
of l , since k�lkMˇ D k�0kMˇ <1. Let l; j 2 Z be arbitrary, fixed. Then, we have that jvj6 2 � 2�2j ı
on the support of '.2�j �/ 0.jvjj�j2=ı/, so that j�m.2j ; ı/j. jŒ�2 � 2�2j ı; 2 � 2�2j ı�j. 2�2j ı. Hence,
by the isotropic truncation property and Minkowski’s and Hölder’s inequality it holds



Z f 0l;j jvj

��1 dv





L
ˇ
t;x

D





Z F�1x  0

�
jvjj�j2

ı

�
jvj��1Fxfl;j dv






L
ˇ
t;x

.
Z 



F�1x  0

�
jvjj�j2

ı

�
jvj��1Fxfl;j






L
ˇ
t;x

dv

.
�
ı

22j

���1 Z 



F�1x  0

�
jvjj�j2

ı

�
Fxfl;j






L
ˇ
t;x

dv

.
�
ı

22j

���1 Z
kM 0;2�j

kMˇkf k
L
ˇ
t;x

dv

6
�
ı

22j

���1
kkM 0;2�j

kMˇk
L
ˇ0

v
kf k

L
ˇ
t;x;v

.
�
ı

22j

���1
j�m.2

j ; ı/j
1
ˇ0 kf k

L
ˇ
t;x;v
.
�
ı

22j

���1C�
kf k

L
ˇ
t;x;v

;

where we have used ˇ0 D 1=�.

Step 2: f 2. Let l; j 2 Z be arbitrary, fixed. Since s 2 Œ0; 1�, we clearly have

j� j1�sjvjs.m�1/j�j2s 6 jL .i�; i�; v/j:

Moreover, in light of s >��2C
=.m�1/ we have on the support of �l'j 1.jvjj�j2=ı/ (so that j� j � 2l,
j�j � 2j, and jvj& 2�2j ı)

jvj��2C


jL .i�; i�; v/j
.

jvj��2C


j� j1�sjvjs.m�1/j�j2s
.
.2�2j ı/��2C
�s.m�1/

2l.1�s/22js
D

22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/
:

Hence, by Theorem B.1 and Lemma B.4, jvj��2C
=L .i�; i�; v/ acts on the support of �l'j 1.jvjj�j2=ı/
as a constant multiplier of order

22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/
:

Consequently, by the anisotropic truncation property



Z f 2l;j jvj
��1 dv






L1t;x

D





Z F�1t;x 1

�
jvjj�j2

ı

�
jvj��2C


L .i�; i�; v/
Ft;xjvj

1�
g0;l;j dv





L1t;x

.
22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/
kjvj1�
g0kMTV

:
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Here, we have used that with  0.jvjj�j2=ı/ also

 1

�
jvjj�j2

ı

�
D 1� 0

�
jvjj�j2

ı

�
is a bounded MTV -multiplier independent of ı > 0.

Step 3: f 3. Let l; j 2 Z arbitrary, fixed. We observe (recall L .i�; i�; v/D i� Cjvjm�1j�j2)Z
f 3l;j jvj

��1 dv D�
Z

F�1t;x 
0
1

�
jvjj�j2

ı

�
sgn.v/j�j2

ı

jvj��1

L .i�; i�; v/
Ft;xg1;l;j dv

� .�� 1/

Z
F�1t;x 1

�
jvjj�j2

ı

�
sgn.v/jvj��2

L .i�; i�; v/
Ft;xg1;l;j dv

C

Z
F�1t;x 1

�
jvjj�j2

ı

�
jvj��1@vL .i�; i�; v/

L .i�; i�; v/2
Ft;xg1;l;j dv

D�

Z
F�1t;x 

0
1

�
jvjj�j2

ı

�
jvjj�j2

ı

sgn.v/jvj��2C


L .i�; i�; v/
Ft;xjvj

�
g1;l;j dv

� .�� 1/

Z
F�1t;x 1

�
jvjj�j2

ı

�
sgn.v/jvj��2C


L .i�; i�; v/
Ft;xjvj

�
g1;l;j dv

C .m� 1/

Z
F�1t;x 1

�
jvjj�j2

ı

�
jvj�Cm�3C
 j�j2

L .i�; i�; v/2
Ft;xjvj

�
g1;l;j dv:

Observe that  01 is supported on an annulus. Therefore, we have as before j� j � 2l, j�j � 2j and
jvj & 2�2j ı on the support of �l'j 1.jvjj�j2=ı/, and additionally also jvj � 2�2j ı on the support of
�l'j 

0
1.jvjj�j

2=ı/. This last observation allows us to estimate the expression jvjj�j2=ı appearing in the
first integral on the right-hand side by

jvjj�j2

ı
. 1:

As in Step 2, we obtain

jvj��2C


jL .i�; i�; v/j
.

22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/
;

and, similarly,

jvj�Cm�3C
 j�j2

jL .i�; i�; v/j2
D
jvj��2C


jL .i�; i�; v/j

jvjm�1j�j2

jL .i�; i�; v/j

.
jvj��2C


jL .i�; i�; v/j
.

22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/
:

In light of these estimates, the expressions

jvjj�j2

ı

sgn.v/jvj��2C


L .i�; i�; v/
;

sgn.v/jvj��2C


L .i�; i�; v/
;
jvj�Cm�3C
 j�j2

L .i�; i�; v/2
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extend by Theorem B.1 and Lemma B.4 to constant multipliers of order

22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/

on supports of �l'j 01.jvjj�j
2=ı/ and �l'j 1.jvjj�j2=ı/, respectively. Hence, by the anisotropic trunca-

tion property, we obtain



Z f 3l;j jvj
��1 dv






L1t;x

.
22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/
kjvj�
g1;j kMTV

:

Step 4: Conclusion. We aim to conclude by real interpolation. We set, for z > 0,

K.z; Nfl;j / WD inf
˚
k Nf 1l;j kL1t;x

C zk Nf 0l;j kLˇt;x
W Nf 0l;j 2 L

ˇ
t;x;
Nf 1l;j 2 L

1
t;x;

Nfl;j D Nf
0
l;j C

Nf 1l;j
	
:

By the above estimates we obtain

K.z; Nfl;j /.
22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/
.kjvj1�
g0kMTV

Ckjvj�
g1kMTV
/C z

�
ı

22j

���1C�
kf k

L
ˇ
t;x;v

:

We now equilibrate the first and the second term on the right-hand side: we choose ı > 0 such that

22j.s.m�2/��C2�
/

ıs.m�1/��C2�
2l.1�s/
D z

�
ı

22j

���1C�
I

that is,

ı�ac1�sd�aCs D zıbdb;

with a WD s.m� 1/��C 2� 
 , b WD �� 1C �, c WD 2�l and d WD 2�2j. This yields

ı D z�
1

aCb c
1�s
aCb d

s�a�b
aCb ;

and further

ı�ac1�sd�aCs D z
a
aCb c

.1�s/b
aCb d

sb
aCb :

Hence, with

� WD
a

aC b
D
s.m� 1/��C 2� 


s.m� 1/C 1� 
 C �

we obtain

z��K.z; Nfl;j /. 2�l
.1�s/.��1C�/
s.m�1/C1�
C� 2�2j

s.��1C�/
s.m�1/C1�
C� .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v

/

D 2�l�t2�j�x .kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf k
L
ˇ
t;x;v

/:

Observe that 1� � C �=ˇ D 1� � C �.1� �/D 1� ��, so that .L1t;x; L
ˇ
t;x/�;1 D L

p;1
t;x with

p D
1

1� ��
D

aC b

a.1� �/C b
D

s.m� 1/C 1� 
 C �

��C .1� �/.s.m� 1/C 1� 
/
:

Hence, we may take the supremum over z > 0 to obtain

k Nfl;j kLp;1t;x
. 2�l�t2�j�x .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v

/: (4-8)

Multiplying by 2l�t2j�x and taking the supremum over j; l 2 Z yields (4-4).
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If we assume additionally Nf 2Lrt;x , r ¤p, we choose for q 2 .minfp; rg;maxfp; rg/ a corresponding
# 2 .0; 1/ subject to 1=q D .1�#/=r C#=p. Then using .Lrt;x; L

p;1
t;x /#;q D L

q
t;x , together with (4-8),

we obtain

k Nfl;j kLqt;x
. k Nfl;j k1�#Lrt;x

k Nfl;j k
#
L
p;1
t;x

. k Nf k1�#Lrt;x
2�l#�t2�j#�x .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v /

#

6 2�l#�t2�j#�x .kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf k
L
ˇ
t;x;v
Ck Nf kLrt;x /:

Multiplying by 2l#�t2j#�x and taking the supremum over j; l 2 Z yields (4-5).
Finally we note that if sD 1 and consequently �t D 0, then the partition of unity f�lgl2Z in the Fourier

space connected to the time variable t is not necessary. Hence, if we set ˛� D 0 whenever Lemma B.4 is
invoked and replace Theorem B.1 by its isotropic variant (see Remark B.3), we obtain

k Nfj kLqt;x
. 2�j#�x .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v
Ck Nf kLrt;x /;

which shows Nf 2 zLq PB#�xq;1.
It remains to consider the case when f is not localized in v. We observe that for a smooth cut-off

function  2 C1c .R/, the function .t; x; v/! f .t; x; v/ .v/DW f  .t; x; v/ is a solution to

L .@t ;rx; v/f
 .t; x; v/D g

 
0 .t; x; v/Cg

 0

1 .t; x; v/C @vg
 
1 .t; x; v/ on Rt �Rdx �Rv;

where g 0 , g 
0

1 and g 1 are defined analogously. Hence, estimate (4-8) reads in this case

k Nf
 

l;j
kLp;1t;x

6 2�l#�t2�j#�x .kjvj1�
 .g 0 Cg
 0

1 /kMTV
Ckjvj�
g

 
1 kMTV

Ckf  k
L
ˇ
t;x;v

/:

Since jvj�
g1 2MTV by assumption, there exists for "n # 0 a sequence rn "1 such thatZ
Rt�Rdx�Rv

�frn6jvjgjvj
�
g1 dv dx dt 6 "n

for all n 2 N. For n 2 N and a smooth cut-off function  2 C1c .R/ with  D 1 on B1.0/ and
supp � B2.0/, we define  n via  n.v/ WD  .v=rn/. Hence  0n is supported on rn 6 jvj 6 2rn and
takes values in Œ0; 1=rn�, so that we may estimate

kjvj1�
g
 0n
1 kMTV

D

Z
Rt�Rdx�Rv

j 0n.v/jjvj.jvj
�
g1/ dv dx dt

D

Z
Rt�Rdx�Rv

�frn6jvj62rngj 
0
n.v/jjvj.jvj

�
g1/ dv dx dt

.
Z
�rn6jvj62rn jvj

�
g1 dv 6 "n:

Thus, taking the limit n!1 and using Fatou’s lemma, we obtain (4-8) also for general f . Multiplying
by 2l#�t2j#�x and taking the supremum over j; l 2 Z, we may conclude as before. �
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Lemma 4.4. Assume 
 2 .�1; 1/, m 2 .1;1/, � 2 Œ1; 2� 
/, � 2 .0; 1�, ˇ0 D 1=�, and let f , g0, g1,
and Nf be as in Lemma 4.2. Define

p WD
1� 
 C �

��C .1� �/.1� 
/
; �t WD

�� 1C �

1� 
 C �
: (4-9)

If Nf 2 Lrt;x , p ¤ r 2 Œ1;1�, then for all q 2 .minfp; rg;maxfp; rg/ we have Nf 2 zLqx PB
#�t
q;1, where

# 2 .0; 1/ is such that
1

q
D
1�#

r
C
#

p
:

Moreover,

k Nf kzLqx PB
#�t
q;1
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v
Ck Nf kLrt;x : (4-10)

Proof. By the same arguments as in the proof of Lemma 4.2, we may assume that f is localized in v. In
fact, the whole proof of Lemma 4.4 is similar to the one of Lemma 4.2, with the modification that here
we consider a microlocal decomposition of f depending on the size of v only and do not localize in the
Fourier space connected to the spatial variable x. More precisely, let f�lgl2Z be a partition of unity on
R n f0g as in Section 2. Then we define for l 2 Z

fl WDF�1x Œ�lFtf �;

where Ftfl.�; x; v/ is supported on frequencies j� j�2l for l 2Z. Similarly, we define the decompositions
g0;l and g1;l of g0 and g1, respectively. Moreover, we again consider a smooth function  0 2 C1c .R/
supported in B2.0/ and set  1 WD 1� 0. For ı > 0 to be specified later we write

fl D  0

�
jvj

ı

�
fl C 1

�
jvj

ı

�
fl DW f

0
l Cf

1
l :

Since f is a solution to (4-1), we have

F�1t;xL .i�; i�; v/Ft;xf
1
l .t; x; v/D  1

�
jvj

ı

��
g0;l.t; x; v/C @vg1;l.t; x; v/

�
and thus

f 1l .t; x; v/

DF�1t;x 1

�
jvj

ı

�
1

L .i�; i�; v/
Ft;xg0;l.t; x; v/CF�1t;x 1

�
jvj

ı

�
1

L .i�; i�; v/
Ft;x@vg1;l.t; x; v/

DW f 2l .t; x; v/Cf
3
l .t; x; v/;

so that we arrive at the decomposition

Nfl WD

Z
fl jvj

��1 dv D
Z
f 0l jvj

��1 dvC
Z
f 2l jvj

��1 dvC
Z
f 3l jvj

��1 dv

DW Nf 0l C
Nf 2l C

Nf 3l :

Again, we treat the three contributions separately.
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Step 1: f 0. Let l 2 Z be arbitrary, fixed. Since jvj. ı on the support of  0.jvj=ı/, using Minkowski’s
and Hölder’s inequalities, we have



Z f 0l jvj

��1 dv





L
ˇ
t;x

D





Z  0

�
jvj

ı

�
jvj��1fl dv






L
ˇ
t;x

6
Z
j 0j

�
jvj

ı

�
jvj��1kflkLˇt;x

dv

. ı��1
Z
j 0j

�
jvj

ı

�
kflkLˇt;x

dv

. ı��1kf k
L
ˇ
t;x;v

�Z
j 0j

�
jvj

ı

�̌ 0
dv
� 1
ˇ0

. ı��1C�kf k
L
ˇ
t;x;v

:

Step 2: f 2. Let l 2 Z be arbitrary, fixed. Since � 6 2� 
 , we have on the support of �l 1.jvj=ı/ (so
that j� j � 2l and jvj> ı)

jvj��2C


jL .i�; i�; v/j
.
jvj��2C


j� j
.
ı��2C


2l
:

By Lemma B.4 applied with ˛� D 0 and the isotropic variant of Theorem B.1 (see Remark B.3),
jvj��2C
=jL .i�; i�; v/j acts as a constant multiplier of order ı��2C
=2l on the support of �l 1.jvj=ı/.
Consequently



Z f 2l jvj

��1 dv





L1t;x

D





Z F�1t;x 1

�
jvj

ı

�
jvj��2C


L .i�; i�; v/
Ft;xjvj

1�
g0;l dv





L1t;x

.
ı��2C


2l
kjvj1�
g0kMTV

:

Step 3: f 3. Let l 2 Z be arbitrary, fixed. We observe (recall L .i�; i�; v/D i� Cjvjm�1j�j2)Z
f 3l jvj

��1 dv D�
Z

F�1t;x 
0
1

�
jvj

ı

�
sgn.v/
ı

jvj��1

L .i�; i�; v/
Ft;xg1;l dv

� .�� 1/

Z
F�1t;x 1

�
jvj

ı

�
sgn.v/jvj��2

L .i�; i�; v/
Ft;xg1;l dv

C

Z
F�1t;x 1

�
jvj

ı

�
jvj��1@vL .i�; i�; v/

L .i�; i�; v/2
Ft;xg1;l dv

D�

Z
F�1t;x 

0
1

�
jvj

ı

�
jvj

ı

sgn.v/jvj��2C


L .i�; i�; v/
Ft;xjvj

�
g1;l dv

� .�� 1/

Z
F�1t;x 1

�
jvj

ı

�
sgn.v/jvj��2C


L .i�; i�; v/
Ft;xjvj

�
g1;l dv

C .m� 1/

Z
F�1t;x 1

�
jvj

ı

�
jvj�Cm�3C
 j�j2

L .i�; i�; v/2
Ft;xjvj

�
g1;l dv
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Observe that  01 is supported on an annulus. Therefore, we have as before j� j � 2l and jvj > ı on the
support of �l 1.jvj=ı/, and additionally also jvj � ı on the support of �l 01.jvj=ı/. This last observation
allows us to estimate the expression jvj=ı appearing in the first integral on the right-hand side by jvj=ı. 1.
As in Step 2, we obtain

jvj��2C


jL .i�; i�; v/j
.
ı��2C


2l
;

and, similarly,

jvj�Cm�3C
 j�j2

jL .i�; i�; v/j2
D
jvj��2C


jL .i�; i�; v/j

jvjm�1j�j2

jL .i�; i�; v/j
.
jvj��2C


jL .i�; i�; v/j
.
ı��2C


2l
:

In light of these estimates, Lemma B.4 applied with ˛� D 0 and the isotropic variant of Theorem B.1 (see
Remark B.3) show that the expressions

jvj

ı

sgn.v/jvj��2C


L .i�; i�; v/
;

sgn.v/jvj��2C


L .i�; i�; v/
;
jvj�Cm�3C
 j�j2

L .i�; i�; v/2

extend to constant multipliers of order ı��2C
=2l on the supports of �l 01.jvj=ı/ and �l 1.jvj=ı/,
respectively. Hence, we obtain



Z f 3l jvj

��1 dv





L1t;x

.
ı��2C


2l
kjvj�
g1;j kMTV

:

Step 4: Conclusion. We aim to conclude by real interpolation. We set, for z > 0,

K.z; Nfl/ WD inf
˚
k Nf 1l kL1t;x

C zk Nf 0l kLˇt;x
W Nf 0l 2 L

ˇ
t;x;
Nf 1l 2 L

1
t;x;

Nfl D Nf
0
l C

Nf 1l
	
:

By the above estimates we obtain

K.z; Nfl/.
ı��2C


2l
.kjvj1�
g0kMTV

Ckjvj�
g1kMTV
/C zı��1C�kf k

L
ˇ
t;x;v

:

We now equilibrate the first and the second term on the right-hand side: we choose ı > 0 such that

ı��2C


2l
D zı��1C�I

that is,

ı WD z�
1

1�
C� 2�
l

1�
C� :

Hence, with

� WD
��C 2� 


1� 
 C �

we obtain

z��K.z; Nfl/. 2�l
��1C�
1�
C� .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v

/

D 2�l�t .kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf k
L
ˇ
t;x;v

/:
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As in Step 4 of the proof of Lemma 4.2 we use .L1t;x; L
ˇ
t;x/�;1 D L

p;1
t;x with

p D
1

1� ��
D

1� 
 C �

��C .1� �/.1� 
/

to obtain

k NflkLp;1t;x
. 2�l�t .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v

/: (4-11)

For q 2 .minfp; rg;maxfp; rg/ we choose a corresponding # 2 .0; 1/ subject to 1=q D .1�#/=rC#=p.
Then using .Lrt;x; L

p;1
t;x /#;q D L

q
t;x , together with (4-11), we obtain

k NflkLqt;x
. k Nflk1�#Lrt;x

k Nflk
#
L
p;1
t;x

. k Nf k1�#Lrt;x
2�l#�t .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v /

#

6 2�l#�t .kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf kL1t;x;v Ck
Nf kLrt;x /:

Multiplying by 2l#�t and taking the supremum over l 2 Z yields (4-10). �

Corollary 4.5. Let m 2 .1;1/, 
 2 .�1; m/, � 2 Œ1;mC 1� 
/, f 2 L1t;x;v \L
1
t;x;v be a solution to

(4-1), and let g0, g1 and Nf be as in Lemma 4.2. Let q 2 .1; .mC 1� 
/=�/ and define

Q�x WD
�q� 1

q

2

m� 

:

If Nf 2 L1.RdC1/\Lq.RIL1.Rd //, then Nf 2 Lq.RIW �x ;q.Rd // for all �x 2 Œ0; Q�x/. Furthermore,

k Nf kLqt .W
�x;q
x / . kjvj

1�
g0kMTV
Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
Ck Nf kL1t;x\L

q
t L
1
x
: (4-12)

Proof. We recall the decomposition fj DF�1x 'jFxf introduced in the proof of Lemma 4.2. We argue
that it suffices to consider the case when fj D 0 for all j < 0. Indeed, the part f< WD

P
j<0 fj can be

estimated in view of Bernstein’s lemma, see [Bahouri, Chemin, and Danchin 2011, Lemma 2.1], via

k Nf<kLqt .W
�x;q
x / . k Nf kLqt L1x :

We aim to control Nf in zLqt PB
#�x
q;1 where # 2 .0; 1/ is sufficiently large such that �x < #�x , and then use

Lemma 2.3 to the effect of

k Nf kLqt .W
�x;q
x / . k Nf kzLqt B#�xq;1

D k Nf kzLqt PB
#�x
q;1

;

where the last equality is apparent from the definition of the homogeneous and nonhomogeneous Chemin–
Lerner spaces and the fact that the low frequencies of f vanish. Thus, it remains to establish

k Nf kzLq PB#�xq;1
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v\L

1
t;x;v
Ck Nf kL1t;x

: (4-13)

For Qp 2 .1; .mC 1� 
/=�/, choose

� WD
. Qp� 1/.m� 
/

1C Qp.m��� 
/
:
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We claim that � is positive and well-defined: Since the numerator is positive due to Qp > 1 and m> 
 , it
remains to check that the denominator is positive. This is obvious for � 6m� 
 . For � > m� 
 , we
observe that due to � <mC 1� 
 we have

Qp <
mC 1� 


�
<

1

�C 
 �m
;

which implies 1C Qp.m���
/ > 0. Moreover, Qp < .mC1�
/=� can be rewritten as . Qp�1/.m�
/ <
1C Qp.m��� 
/, so that � 2 .0; 1/. Hence, we may apply Lemma 4.2 with this choice of � and with
s D 1. One checks that in this case the integrability and differentiability exponents in (4-3) read

p D Qp; �t D 0; �x D
� Qp� 1

Qp

2

m� 

:

Choose Qp 2 .q; .mC 1� 
/=�/ so that Q�x < �x and define # 2 .0; 1/ through

1

q
D 1�# C

#

Qp
:

We may choose Qp 2 .q; .mC1�
/=�/ sufficiently small so that # 2 .0; 1/ is so large that �x <# Q�x <#�x .
In view of (4-5) (with the space S# N�q;1 PB D S

.0;#�x/
q;1

PB replaced by zLqt PB
#�x
q;1) we obtain

k Nfj kLqt;x
. 2�j#�x .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v
Ck Nf kL1t;x

/;

where we recall the notation Nfj WD
R

F�1x Œ'jFxf �jvj
��1 dv. If we multiply by 2j#�x and take the

supremum over j 2 Z, this yields

k Nf kzLqt PB
#�x
q;1
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v
Ck Nf kL1t;x

:

By the estimate kf k
L
ˇ
t;x;v
. kf kL1t;x;v Ckf kL1t;x;v , this gives (4-13). �

Corollary 4.6. Let m 2 .1;1/, 
 2 .�1; 1/, f 2 L1t;x;v \L
1
t;x;v be a solution to (4-1), and let g0

and g1 be as in Lemma 4.2. Assume Nf 2Lrt;x for all r 2 Œ1;mC1�
/, where Nf .t; x/ WD
R
f .t; x; v/ dv.

Let Qp 2 .2� 
;mC 1� 
/ and define

Q�t WD
mC 1� 
 � Qp

Qp

1

m� 1
; Q�x WD

Qp� 2C 


Qp

2

m� 1
:

Then Nf 2 W �t ; Qp.RIW �x ; Qp.Rd // for all �t 2 Œ0; Q�t / and �x 2 Œ0; Q�x/. Furthermore, there is an r 2
. Qp;mC 1� 
/ such that

k Nf kW �t ; Qp.W �x; Qp/ . kjvj
1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v\L

1
t;x;v
Ck Nf kLrt;x : (4-14)

Proof. As we need to pass from homogeneous spaces (the output of Lemmas 4.2 and 4.4) to a nonho-
mogeneous space, our strategy is to invoke Lemmas 2.5 and 2.4. The input to Lemma 2.5 requires four
pieces of information, namely control of Nf in L Qp.RdC1/, zL Qpx PB

�t
Qp;1

, zL Qpt PB
�x
Qp;1

and S N�
Qp;1
PB . Since the

control of Nf in L Qp.RdC1/ is ensured by assumption, we concentrate on the other three contributions.
Note that the main difficulty lies in the condition that both the integrability exponent and the orders of
differentiability have to match exactly.
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Step 1: Nf 2 S N�
Qp;1
PB . Let r 2 . Qp;mC 1� 
/ to be chosen in Step 3. We claim that there exist functions

kt ; kx W .0;1/! .0;1/ with kt ."/; kx."/! 0 as "! 0 such that it holds for all "� 1

k Nf k
S N�
Qp;1
PB
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v\L

1
t;x;v
Ck Nf kLrt;x ; (4-15)

where we have used the notation �t WD Q�t � kt ."/ and �x WD Q�x � kx."/.
We apply Lemma 4.2 with � D 1, � D 1� ", and s WD s" 2 .0; 1/, where s" is chosen so that the

integrability assertion in (4-3) reads p D Qp; this is possible for � close to 1 in view of Remark 4.3.
Moreover, we may choose # 2 .0; 1/ such that �t and �x defined through (4-3) satisfy #�t D Q�t � kt ."/
and #�x D Q�x �kx."/ for some functions kt and kx as above. Then for 1 < q0 < Qp < q1 <mC1�
 so
that

1

q0
D 1�# C

#

Qp
;

1

q1
D
1�#

r
C
#

Qp
;

we obtain in view of (4-5) that

k Nfl;j kL
qi
t;x
. 2�l#�t2�j#�x .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v
Ck Nf kL1t;x\L

r
t;x
/;

for i D 0; 1, where we recall the notation Nfl;j WD
R

F�1t;x Œ�l'jFt;xf � dv. Since .Lq0t;x; L
q1
t;x/�; Qp D L

Qp
t;x

for an appropriate � 2 .0; 1/, we thus obtain

k Nfl;j kL Qpt;x
. 2�l#�t2�j#�x .kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v
Ck Nf kL1t;x

Ck Nf kLrt;x /;

which after multiplying by 2l#�t2j#�x and taking the supremum over l; j 2 Z yields

k Nf k
S
#.�t ;�x/

Qp;1
PB
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf k

L
ˇ
t;x;v
Ck Nf kL1t;x

Ck Nf kLrt;x : (4-16)

By the estimate kf k
L
ˇ
t;x;v
Ck Nf kL1t;x

. kf kL1t;x;v Ckf kL1t;x;v , this gives (4-15).

Step 2: Nf 2 zL Qpt PB
�x
Qp;1

. In this step we establish

k Nf kzL Qp PB�x
Qp;1

. kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
Ck Nf kLrt;x : (4-17)

Choose

� WD
. Qp� 1/.m� 
/

1C Qp.m� 1� 
/
:

We claim that � is positive and well-defined: Since the numerator is positive due to Qp > 1 and m> 
 , it
remains to check that the denominator is positive. This is obvious for 
 6 m� 1. For 
 > m� 1, we
observe that

Qp <mC 1� 
 <
1

1C 
 �m
;

which implies 1C Qp.m� 1� 
/ > 0. Moreover, Qp < mC 1� 
 can be rewritten as . Qp� 1/.m� 
/ <
1C Qp.m� 1� 
/, so that � 2 .0; 1/. Hence, we may apply Lemma 4.2 with this choice of � and with
s D 1. One checks that in this case the integrability and differentiability exponents in (4-3) read

p D Qp; �t D 0; �x D
p� 1

p

2

m� 

:
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We observe that �x > Q�x and hence we find # 2 .0; 1/ such that #�x D Q�x�kx."/. The same interpolation
argument as in Step 1 gives now the estimate (4-17).

Step 3: Nf 2 zL Qpx PB
�t
Qp;1

. In this step we show that there is some r 2 . Qp;mC 1� 
/ such that

k Nf kzL Qpx PB
�t
Qp;1

. kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf kL1t;x;v Ck
Nf kLrt;x : (4-18)

We apply Lemma 4.4 with �D 1 and �D 1. In this case, (4-9) reads pD 2�
 and �t D 1=.2�
/. Since
Qp > 2� 
 , we have Q�t < �t . Hence, we can choose # 2 .0; 1/ such that #�t D Q�t � kt ."/. In particular,

# <
Q�t

�t
D
mC 1� 
 � Qp

Qp

2� 


m� 1
<
2� 


Qp
;

so that

r D
Qp.2� 
/.1�#/

2� 
 �# Qp

is well-defined. Since r is increasing in # due to Qp > 2� 
 , we see that r 2 . Qp;mC 1� 
/. We have
1= Qp D .1�#/=r C#=p, and hence Lemma 4.4 gives estimate (4-18).

Step 4: Conclusion. Since Nf 2 L Qpt;x by assumption, Lemma 2.5 combined with Lemma 2.4 yields the
result. �

Corollary 4.7. Let m 2 .1;1/, 
 2 .�1; m/, and let f 2 L1t;x;v \L
1
t;x;v be a solution to (4-1). Let g0

and g1 be as in Lemma 4.2 and assume additionally

jg0j.t; x; v/ 2MTV .Rt �Rdx �Rv/:

Assume Qp 2 .2� 
;mC 1� 
/\ .1;mC 1� 
/ and define

Q�t WD
mC 1� 
 � Qp

Qp

1

m� 1
; Q�x WD

Qp� 2C 


Qp

2

m� 1
:

If Nf 2 Lr.RdC1/\L1.RIL Qp.Rd // for all r 2 Œ1;mC 1� 
/, where Nf .t; x/ WD
R
f .t; x; v/ dv, and

if
R
jvjm�1f dv 2 L1.RdC1/, then Nf 2 W �t ; Qp.RIW �x ; Qp.Rd // for all �t 2 Œ0; Q�t / and �x 2 Œ0; Q�x/.

Furthermore, there is an r 2 . Qp;mC 1� 
/ such that

k Nf kW �t ; Qp.W �x; Qp/ . kg0kMTV
Ckjvj1�
g0kMTV

Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
Ck Nf k

L1tL
Qp
x\L

r
t;x

C





Z jvjm�1f dv





L1t;x

: (4-19)

Proof. It suffices to adapt Step 3 of the proof of Corollary 4.6, that is, the control of Nf in zL Qpx PB
�t
Qp;1

.

Step 3: Nf 2 zL Qpx PB
�t
Qp;1

. In this step we show that there is some r 2 . Qp;mC 1� 
/ such that

k Nf kzL Qpx PB
�t
Qp;1

. kg0kMTV
Ckjvj1�
g0kMTV

Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
Ck Nf k

L1tL
Qp
x\L

r
t;x

C





Z jvjm�1f dv





L1t;x

: (4-20)
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We split f into three contributions

f DF�1t  0.�/Ftf CF�1t;x .1� 0.�//.1��0.�//Ft;xf CF�1t;x .1� 0.�//�0.�/Ft;xf

DW f 1Cf 2Cf 3:

The low time-frequency part f 1 can be estimated in view of Lemma 2.3 and Bernstein’s lemma, see
[Bahouri, Chemin, and Danchin 2011, Lemma 2.1], via

k Nf 1kzL Qpx PB
�t
Qp;1

. k Nf 1kzL QpxB�tQp;1
. k Nf 1k

W �tC"; Qp.L
Qp
x /
. k Nf k

L1tL
Qp
x
: (4-21)

Next, we apply Lemma 4.2 with � D 1, sufficiently large � 2 .0; 1/ and sufficiently small s 2
..
 � 1/=.m � 1/; 1� so that (4-3) implies p < Qp and �t > Q�t . Hence, we can choose # 2 .0; 1/
such that Q�t > #�t > Q�t � kt ."/. In particular, in light of Remark 4.3

# <
Q�t

�t
D

mC 1� 
 � Qp

mC �� 
 �p�Cp.1� �/.
 �m/

p�

Qp
<
p

Qp
if 1� �� 1;

so that r D Qpp.1�#/=.p�# Qp/ is well-defined. Since r is increasing in # due to Qp > p, we see that
r 2 . Qp;mC 1� 
/. We have 1= Qp D .1�#/=r C#=p, and hence Lemma 4.2 gives

k Nf k
S# N�
Qp;1
PB
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v\L

1
t;x;v
Ck Nf kLrt;x :

Thus, since f 2 is supported only on �l'j for nonnegative l; j 2 Z, Lemmas 2.3 and 2.4 show, in view of
the definition of the homogeneous and nonhomogeneous Besov spaces and �t < #�t as well as 0 < #�x ,

k Nf 2kzL Qpx PB
�t
Qp;1

D k Nf 2kzL QpxB
�t
Qp;1

. k Nf 2kS# N�
Qp;1

B D k
Nf k
S# N�
Qp;1
PB
:

Thus,

k Nf 2kzL Qpx PB
�t
Qp;1

. kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
Ck Nf kLrt;x : (4-22)

It remains to estimate the contribution of f 3. For l 2 Z, we introduce f 3
l
WD F�1t �l.�/Ftf

3. Since
f 3
l
D 0 for l < 0, we may concentrate on the case l > 0. Observe that f 3

l
solves the equation

f 3l D�mjvj
m�1F�1t;x

j�j2

i�
�l.�/�0.�/Ft;xf CF�1t;x

�0.�/

i�
Ft;xg0;l CF�1t;x

�0.�/

i�
Ft;x@vg1;l :

Integrating in v, we obtain

Nf 3l D�m

Z
jvjm�1F�1t;x

j�j2

i�
�l.�/�0.�/Ft;xf dvCF�1t;x

1

i�
�0.�/Ft;x

Z
g0;l;j dv:

Since j�j2 acts as a constant multiplier on the support of �0 and ��1 acts as a constant multiplier of
order 2�l on the support of �l , it follows by Bernstein’s lemma

k Nf 3l kL Qpt;x
. 2l.1�

1
Qp
/
k Nf 3l kL1t;x

. 2�l
1
Qp

�



Z jvjm�1f dv





L1t;x

Ckg0kMTV

�
:
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Since Qp > 2� 
 , we have

�t < Q�t D
mC 1� 
 � Qp

Qp

1

m� 1
<
1

Qp
:

In view of l > 0 this yields

k Nf 3l kL Qpt;x
. 2�l�t

�



Z jvjm�1f dv





L1t;x

Ckg0kMTV

�
:

Multiplying by 2l�t and taking the supremum over l 2 Z, we conclude

k Nf 3kzL Qpx PB
�t
Qp;1

.




Z jvjm�1f dv






L1t;x

Ckg0kMTV
: (4-23)

Collecting (4-21), (4-22) and (4-23), we arrive at (4-20). �

5. Application to porous medium equations

In this section, we provide proofs of our main results by applying the averaging lemmas obtained in the
previous section to entropy solutions to (1-1).

Proof of Theorem 1.2. We first argue that we have u 2 Lst;x for all s 2 Œ1;m� 1C �/. Since T <1,
Theorem A.2 gives

kukL1t;x
. sup
t2Œ0;T �

ku.t/kL1x . ku0kL1x CkSkL1t;x ; (5-1)

so that we may concentrate on s > 1. Let f be the kinetic function corresponding to u and solving (1-8).
In order to apply Corollary 4.5 with �D 1 and �x D 0, we need to extend (1-8) to all times t 2 R, which
can be achieved by multiplication with a smooth cut-off function ' 2 C1c .0; T / with 06 ' 6 1. Hence,
we set g0 WD ıvDu.t;x/SC@t'f and g1 WD q. Let 
 WD 2��, so that s 2 .1;mC1�
/. From (4-12) we
obtain

k'ukLst;x . kjvj
��1g0kMTV

Ckjvj��2g1kMTV
Ck'f kL1t;x;v\L

1
t;x;v
Ck'ukL1t;x\L

s
tL
1
x

. kjvj��1g0kMTV
Ckjvj��2g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
C sup
t2Œ0;T �

ku.t/kL1x :

We note that since trivially f 2 L1t;x;v with norm bounded by 1, estimate (5-1) gives

kf kL1t;x;v\L
1
t;x;v
C sup
t2Œ0;T �

ku.t/kL1x . kukL1t;x C 1C sup
t2Œ0;T �

ku.t/kL1x . ku0kL1x CkSkL1t;x C 1:

Next, we check that jvj��1g0 2MTV . Indeed, we observe that .� � 1/�0 WD �, and hence, applying
Lemma A.3,

kjvj��1g0kMTV
D kjvj��1.ıvDu.t;x/S C @t'f /kMTV

. kjuj��1SkL1t;x Ck@t'juj
�
kL1t;x

. kjuj.��1/�
0

kL1t;x
CkjS j�kL1t;x

Ck@t'juj
�
kL1t;x

. ku0k�L�x CkSk
�

L
�
t;x

Ck@t'juj
�
kL1t;x

:
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Utilizing Lemma A.3 once more to the effect of

kjvj��2g1kMTV
D kjvj��2qkMTV

. ku0k�L�x CkSk
�

L
�
t;x

;

we obtain

k'ukLst;x . ku0k
�

L1x\L
�
x

CkSk
�

L1t;x\L
�
t;x

Ck@t'juj
�
kL1t;x

C 1:

We may set 'n.t/ D  .nt/ �  .nt � T=2/, where  2 C1.R/ with 0 6  6 1, supp � .0;1/,
 .t/D 1 for t > T=2 and k@t kL1 D 1. For n!1, 'n converges to 1Œ0;T � in the supremum norm,
while @t'n is a smooth approximation of ıftD0g� ıftDT g. Therefore, k'nukLst;x !kukLst;x and by an
application of Lemma A.3

k@t'njuj
�
kL1t;x

!kjuj.0/� � juj.T /�kL1x . ku0k
�

L
�
x
CkSk

�

L
�
t;x

;

so that u 2 Ls.Œ0; T ��Rd / and

kukLst;x . ku0k
�

L1x\L
�
x

CkSk
�

L1t;x\L
�
t;x

C 1: (5-2)

(i) We apply Corollary 4.5 once more. Let f , ', g0, g1 and 
 be as above. Then, in particular
p 2 .1; .mC 1� 
/=�/. From (4-12) we obtain

k'uŒ��kLpt .W �x;p/ . kjvj
1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v\L

1
t;x;v
CkuŒ��kL1t;x\L

p
t L

1
x
:

The first three contributions on the right-hand side are estimated as above. For the last contribution, we
note 16 � < p� and thus

kuŒ��kL1t;x\L
p
t L

1
x
. kuŒ��kLpt L1x D kuk

�

L
p�
t L

�
x
. .kukLp�t L1x

CkukLp�t;x
/�

. . sup
t2Œ0;T �

ku.t/kL1x CkukL
p�
t;x
/� . sup

t2Œ0;T �

ku.t/k
�

L1x
Ckuk

�

L
p�
t;x

C 1:

Furthermore, (5-1) together with (5-2) applied with s D p� 2 .1;m� 1C �/ shows

sup
t2Œ0;T �

ku.t/k
�

L1x
Ckuk

�

L
p�
t;x

C 1. ku0k��
L1x\L

�
x

CkSk
��

L1t;x\L
�
t;x

C 1:

Hence, arguing as above by taking the limit 'n! 1Œ0;T �, we obtain uŒ�� 2Lp.RIW �x ;p.Rd // and (1-4).

(ii) The proof is similar to the first part, but we use Corollary 4.6 instead of Corollary 4.5. Again we
localize in time by multiplying with a smooth cut-off function ' 2 C1c .0; T / with 06 ' 6 1 and set g0
and g1 as before. Choose 
 WD 2� �, so that p 2 .2� 
;mC 1� 
/. From (4-14) in Corollary 4.6 we
obtain

k'ukW �t ;p.W �x;p/ . kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
CkukLrt;x ;

where r 2 .�;m � 1C �/. The terms involving g0, g1 and f can be estimated as above, while the
Lrt;x-norm of u can be estimated by (5-2). Choosing 'n as above, we hence infer that 'nu is bounded in
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W �t ;p.0; T IW �x ;p.Rd // and

sup
n2N

k'nukW �t ;p.W �x;p/ . ku0k
�

L1x\L
�
x

CkSk
�

L1t;x\L
�
t;x

C 1:

Since 'nu! u1Œ0;T � in the sense of distributions, we obtain the result by the weak lower semicontinuity
of the norm in W �t ;p.0; T IW �x ;p.Rd //. �

Proof of Corollary 1.3. (i) Let �x 2 Œ0; 2�=m/. We apply Theorem 1.2(i) with p Dm=� for sufficiently
small � 2 .1; �� so that

�x <
�p� 1

p

2

m� 2C �
D
2�

m

m� 1

m� 2C �

and observe that for all q 2 Œ1; p� we have the embedding Lp.0; T IW �x ;p.Rd //�Lq.0; T IW �x ;q.O//.

(ii) For s > 0 we have, with p D s.m� 1/C 1 2 .1;m�,

�t D
1� s

s.m� 1/C 1
D
m�p

p

1

m� 1
; �x D

2s

s.m� 1/C 1
D
p� 1

p

2

m� 1
:

Hence, in this case the assertion follows by an application of Theorem 1.2(ii) with sufficiently small
� 2 .1; �� such that p > � and

�x <
p� �

p

2

m� 1

combined with the embedding

W �t ;p.0; T IW �x ;p.Rd //�W �t ;q.0; T IW �x ;q.O//:

If s D 0 and �t 2 Œ0; 1/, we may choose s0 > 0 such that

�t <
1� s0

s0.m� 1/C 1
DW �t .s0/;

and the result follows by the embedding

W �t .s0/;s0.m�1/C1.0; T ILs0.m�1/C1.O//�W �t ;1.0; T IL1.O//: �

Proof of Theorem 1.1. The proof is similar to that of Theorem 1.2(ii), but we discriminate between small
and large velocity contributions to the kinetic function. Let f be the kinetic function corresponding to u
and solving (1-8). We extend again to all times t 2 R by multiplying with a smooth cut-off function
' 2 C1c .0; T / with 06 ' 6 1. Further, we split f DW f <Cf > and q DW q<C q> into a small-velocity
and a large-velocity part by multiplying with a smooth cut-off function  0 respectively  1 WD 1� 0
in v. This gives rise to the two equations

@t .'f
</�mjvjm�1�x.'f

</D ' 0ıvDu.t;x/S C @v.'q
</�'q@v 0C @t'f

<;

@t .'f
>/�mjvjm�1�x.'f

>/D ' 1ıvDu.t;x/S C @v.'q
>/C'q@v 0C @t'f

>;

Integrating f < and f > in v, we obtain a decomposition of uD u<Cu>.
The proof proceeds in several steps: In first the three steps, we argue that u 2Ls.0; T ILs.Rd // for all

s 2 Œ1;mC 2=d/ if d > 2 and s 2 Œ1;mC 1/ if d D 1. With this additional bound, we can conclude the
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higher-order estimates in the last three steps of the proof. We only detail the proof for d > 2, the case
d D 1 being similar.

Step 1: In this step we establish for � 2 .m;md=.d � 2// the bound

ku<kLmt L
�
x
. ku0kL1x CkSkL1t;x C 1: (5-3)

Set g0 WD ' 0ıvDu.t;x/S C @t'f <�'q@v 0, g1 WD 'q<, and

�x WD
d

m
�
d

�
2

�
0;
2

m

�
:

Consequently, we may choose 
 2 .0; 1/ so large that

�x 2

�
0;
m� 1

m

2

m� 


�
:

From Corollary 4.5 applied with �D 1 and q Dm we obtain

k'u<kLmt W
�x;m
x
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ck'f <kL1t;x;v\L

1
t;x;v
Ck'u<kL1t;x\L

m
t L

1
x

. kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
C sup
t2Œ0;T �

ku.t/kL1x :

We note that since trivially f < 2 L1t;x;v with norm bounded by 1 we have by Theorem A.2

kf kL1t;x;v\L
1
t;x;v
C sup
t2Œ0;T �

ku.t/kL1x . kukL1t;x C 1C sup
t2Œ0;T �

ku.t/kL1x . ku0kL1x CkSkL1t;x C 1:

Next, we check that jvj1�
g0 2 MTV . Indeed, since jvj1�
 can be estimated by a constant on the
supports of  0 and @v 0, we may apply Lemma A.4 to the effect of

kjvj1�
g0kMTV
D kjvj1�
 .' 0ıvDu.t;x/S C @t'f

<
�'q@v 0/kMTV

. kSkL1t;x Ck@t'jujkL1t;x Ckq@v 0kMTV

. k@t'jujkL1t;x Cku0kL1x CkSkL1t;x :

Utilizing Lemma A.4 once more to the effect of

kjvj�
g1kMTV
. kjvj�
q<kMTV

. ku0kL1x CkSkL1t;x ;

we obtain by Sobolev embedding

k'u<kLmt L
�
x
. k'u<kLmt W �x;m

x
. ku0kL1x Ck@t'jujkL1t;x CkSkL1t;x C 1: (5-4)

With the same construction 'n! 1Œ0;T � as in the proof of Theorem 1.2, this gives (5-3).

Step 2: Next, we investigate u> and establish for � 2 .1;m/ and

�� D
�d.m� 1/

d.m� 1/� 2.�� 1/

the bound
ku>k

L
�
tL
��

x
. ku0kL1x CkSkL1t;x C 1: (5-5)
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Set g0 WD ' 1ıvDu.t;x/S C @t'f >C'q@v 0 and g1 WD 'q>. Choose 
 2 .1;m/ sufficiently small, so
that � 2 .1;mC 1� 
/, and define

�x WD
�� 1

�

2

m� 1
2

�
0;
�� 1

�

2

m� 


�
:

We apply Corollary 4.5 with �D 1 and q D �, which gives

k'u>kL�tW
�x;�
x
. kjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ck'f >kL1t;x;v\L

1
t;x;v
Ck'u>kL1t;x\L

�
tL
1
x

. kjvj1�
g0kMTV
Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
C sup
t2Œ0;T �

ku.t/kL1x :

The terms involving f and u are estimated as in Step 1. Further, since jvj1�
 can be estimated by a
constant on the support of  1 and @v 0, we have by Lemma A.4

kjvj1�
g0kMTV
D kjvj1�
 .' 1ıvDu.t;x/S C @t'f

>
C'q@v 0/kMTV

. kSkL1t;x Ck@t'jujkL1t;x Ckq@v 0kMTV

. k@t'jujkL1t;x Cku0kL1x CkSkL1t;x ;

and, again due to Lemma A.4,

kjvj�
g1kMTV
. kjvj�
q>kMTV

. ku0kL1x CkSkL1t;x :

Since �� D �d=.d � �x�/, we have by Sobolev embedding W �x ;�
x � L

��

x , and hence

k'u>k
L
�
tL
��

x
. k'u>kL�tW �x;�

x
. ku0kL1x Ck@t'jujkL1t;x CkSkL1t;x C 1:

With the same construction 'n! 1Œ0;T � as before, this yields (5-5).

Step 3: In this step, we show that for s 2 Œ1;mC 2=d/ we have

kukLst;x . ku0kL1x CkSkL1t;x C 1: (5-6)

Observe that it suffices to show the assertion for s >m, since u2L1.0; T IL1.Rd // is already established
by Theorem A.2.

Define

� WD
m

mC 1� s
2

�
m;

md

d � 2

�
:

For # 2 .0; 1/, it holds ŒL1t L
1
x; L

m
t L

�
x�# D L

p#
t L

q#
x with

1

p#
D
#

m
and

1

q#
D 1�# C

#

�
:

Choosing
# WD

m�

m�C ��m
2 .0; 1/;

we obtain p# D q# D s, and hence by (5-3) and Theorem A.2

ku<kLst;x . ku
<
kL1t L

1
x
Cku<kLmt L

�
x
. ku0kL1x CkSkL1t;x C 1: (5-7)
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Next, we define

� WD
sd.m� 1/C 2

d.m� 1/C 2
2 .1;m/ and �� D

�d

d � 2.�� 1/=.m� 1/

and observe that for # 2 .0; 1/, it holds ŒL1t L
1
x; L

�
t L

��

x �# D L
p#
t L

q#
x with

1

p#
D
#

�
and

1

q#
D 1�# C

#

��
:

Choosing

# WD
�d.m� 1/

�d.m� 1/C 2.�� 1/
2 .0; 1/;

we obtain p# D q# D s, and hence by (5-5) and Theorem A.2

ku>kLst;x . ku
>
kL1t L

1
x
Cku>k

L
�
tL
��

x
. ku0kL1x CkSkL1t;x C 1: (5-8)

Combining (5-7) and (5-8), we obtain (5-6).

Step 4: In this step we argue that

k'u<kW �t ;p.W �x;p/ . k@t'jujkL1t;x Cku0k
m
L1x
CkSkm

L1t;x
C 1:

Indeed, we choose 
 2 .0; 1/ so large that

�x <
p� 2C 


p

2

m� 1

and mC1�
 <mC2=d . Then we apply Corollary 4.7 with g0 WD ' 0ıvDu.t;x/SC@t'f <�'q@v 0,
g1 WD 'q

< and Qp D p. We obtain by (4-19) some r 2 .p;mC 1� 
/ such that

k'u<kW �t ;p.W �x;p/ . kg0kMTV
Ckjvj1�
g0kMTV

Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
CkukL1tL

p
x\L

r
t;x
CkjujmkL1t;x

:

The first four terms on the right-hand side can be estimated as in Step 1 (indeed, we did not use the
coefficient jvj1�
 in the estimate of g0) via

kg0kMTV
Ckjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v\L

1
t;x;v
.k@t'jujkL1t;xCku0kL1xCkSkL1t;xC1;

while the last two terms are estimated in light of r < mC 1� 
 < mC 2=d through (5-6) as

kukL1tL
p
x\L

r
t;x
CkjujmkL1t;x

. kukLpt;x\Lrt;x Ckuk
m
Lmt;x
. ku0kmL1x CkSk

m
L1t;x
C 1:

Step 5: In this step we establish

k'u>kW �t ;p.W �x;p/ . k@t'jujkL1t;x Cku0k
m
L1x
CkSkm

L1t;x
C 1: (5-9)

Assume first p <m. Choose 
 2 .1;m/ so small that p 2 .1;mC 1� 
/ and

�t <
mC 1� 
 �p

p

1

m� 1
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and apply Corollary 4.7 with g0 WD' 1ıvDu.t;x/SC@t'f >C'q@v 0, g1 WD'q> and QpDp. Estimate
(4-19) gives

k'u>kW �t ;p.W �x;p/ . kg0kMTV
Ckjvj1�
g0kMTV

Ckjvj�
g1kMTV

Ckf kL1t;x;v\L
1
t;x;v
CkukL1tL

p
x\L

r
t;x
CkjujmkL1t;x

:

The first four terms on the right-hand side are estimated as in Step 2 via

kg0kMTV
Ckjvj1�
g0kMTV

Ckjvj�
g1kMTV
Ckf kL1t;x;v\L

1
t;x;v
.k@t'jujkL1t;xCku0kL1xCkSkL1t;xC1;

while the last two terms are estimated through (5-6) as

kukL1tL
p
x\L

r
t;x
CkjujmkL1t;x

. kukLpt;x\Lrt;x Ckuk
m
Lmt;x
. ku0kmL1x CkSk

m

L1t;x
C 1:

Hence, we have shown (5-9) in the case p 2 .1;m/. If p Dm, we choose p0 2 .1;m/ sufficiently large
such that for

�x.p0/ WD
p0� 1

p0

2

m� 1

it holds

�x.p0/�
d

p0
> �x �

d

m
:

We observe that for

�t .p0/ WD
m�p0

p0

1

m� 1

it holds

�t .p0/�
1

p0
> �t �

1

m

due to p0 <m (indeed, we have necessarily �t D 0). Choosing sufficiently large �x.p0/ < �x.p0/ and
�t .p0/ < �t .p0/, we conclude by Sobolev embedding

k'u>kLmt .W
�x;m
x / . k'u

>
kW �t .p0/;p0 .W �x.p0/;p0 /

. k@t'jujkL1t;x Cku0k
m
L1x
CkSkm

L1t;x
C 1;

which is (5-9) in the case p Dm.

Step 6: Conclusion. With the same construction 'n! 1Œ0;T � as in the proof of Theorem 1.2, Steps 4
and 5 combine to

sup
n2N

k'nukW �t ;p.W �x;p/ . sup
n2N

k'nu
<
kW �t ;p.W �x;p/C sup

n2N

k'nu
>
kW �t ;p.W �x;p/

. ku0kmL1x CkSk
m
L1t;x
C 1:

Since 'nu!u1Œ0;T � in the sense of distributions, we obtain (1-2) by the weak lower semicontinuity of the
norm inW �t ;p.0; T IW �x ;p.Rd //. Estimate (1-3) follows analogously to the proof of Corollary 1.3(ii). �
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Appendix A: Kinetic solutions

In this section we recall some details of the concept of entropy/kinetic solutions and their well-posedness
for partial differential equations of the type

@tuC divA.u/D div.b.u/ru/CS.t; x/ on .0; T /�Rdx

u.0/D u0 on Rdx ;
(A-1)

where

u0 2 L
1.Rdx /; S 2 L1.Œ0; T ��Rdx /; T > 0;

a WD A0 2 C.RIRd /\C 1.R n f0gIRd /;

b D .bjk/j;kD1;:::;d 2 C.RIS
d�d
C /\C 1.R n f0gISd�dC /:

(A-2)

Here, Sd�d
C

denotes the space of symmetric, nonnegative definite matrices. For bD .b/i;jD1;:::;d 2 Sd�dC

we set �Db1=2, that is, bi;j D
Pd
kD1 �i;k�k;j . For a locally bounded function b WR!Sd�d

C
we let ˇi;k be

such that ˇ0
i;k
.v/D�i;k.v/. Similarly, for  2C1c .Rv/ we let ˇ i;j be such that .ˇ 

i;k
/0.v/D .v/�i;k.v/.

The corresponding kinetic form of (A-1) reads, see [Chen and Perthame 2003],

L .@t ;rx; v/f .t; x; v/D @tf C a.v/ � rxf � div.b.v/rxf /

D @vqCS.t; x/ıu.t;x/Dv.v/;

where q 2MC and L is identified with the symbol

L .i�; i�; v/ WD i� C a.v/ � i� � .b.v/�; �/: (A-3)

We will use the terms kinetic and entropy solution synonymously. From [Chen and Perthame 2003] we
recall the definition of entropy/kinetic solutions to (A-1).

Definition A.1. We say that u 2 C.Œ0; T �IL1.Rd // is an entropy solution to (A-1) if the corresponding
kinetic function f satisfies:

(i) For any nonnegative  2 D.R/, k D 1; : : : ; d ,

dX
iD1

@xiˇ
 

ik
.u/ 2 L2.Œ0; T ��Rd /:

(ii) For any two nonnegative functions  1;  2 2 D.R/, k D 1; : : : ; d ,

p
 1.u.t; x//

dX
iD1

@xiˇ
 2
ik
.u.t; x//D

dX
iD1

@xiˇ
 1 2
ik

.u.t; x// a.e.

(iii) There are nonnegative measures m; n 2MC such that, in the sense of distributions,

@tf C a.v/ � rxf � div.b.v/rxf /D @v.mCn/C ıvDu.t;x/S on .0; T /�Rdx �Rv;
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where n is defined by Z
 .v/n.t; x; v/ dv D

dX
kD1

� dX
iD1

@xiˇ
 

ik
.u.t; x//

�2
for any  2 D.R/ with  > 0.

(iv) We have Z
.mCn/ dx dt 6 �.v/ 2 L10 .R/;

where L10 is the space of L1-functions vanishing for jvj !1.

The well-posedness of entropy solutions to (A-1) follows along the same lines as [Chen and Perthame
2003]. In this form, it can be found in [Gess 2020].

Theorem A.2. Let u0 2 L1.Rd / and S 2 L1.Œ0; T ��Rd /. Then there is a unique entropy solution u to
(A-1) satisfying u 2 C.Œ0; T �IL1.Rd //. For two entropy solutions u1, u2 with initial conditions u10; u

2
0

and forcing S1; S2 we have

sup
t2Œ0;T �

ku1.t/�u2.t/kL1.Rd / 6 ku10�u
2
0kL1.Rd /CkS

1
�S2kL1.Œ0;T ��Rd /:

Furthermore, the following a priori estimate was given in Lemma 2.3 in [Gess 2020].

Lemma A.3. Let u be the unique entropy solution to (A-1) with u0 2 .L1 \ L2�
 /.Rdx / and S 2
.L1\L2�
 /.Œ0; T ��Rdx / for some 
 2 .�1; 1/. Then, there is a constant C D C.T; g/> 0 such that

sup
t2Œ0;T �

ku.t/k
2�


L
2�

x

C .1� 
/

Z T

0

Z
RdC1

jvj�
q dv dx dr 6 C.ku0k2�

L
2�

x

CkSk
2�


L
2�

t;x

/:

In the case of L1 initial data a different proof for the existence of singular moments of the kinetic
measure q is needed.

Lemma A.4. Let u be the unique entropy solution to (A-1) with u0 2 L1.Rdx / and S 2 L1.Œ0; T ��Rdx /.
Then, the map

v 7!

Z T

0

Z
Rdx

q.r; x; v/ dx dr

is continuous and, for all v0 2 Rv, we haveZ T

0

Z
Rdx

q.r; x; v0/ dx dr 6
Z

Rdx

.sgn.v0/.u0� v0//C dxC
Z T

0

Z
Rdx

sgnC.sgn.v0/.u� v0//S dx dr

6
Z

Rdx

ju0j dxC
Z T

0

Z
Rdx

jS j dx dr: (A-4)

Proof. In the proof, we use the short-hand notation Ng.v/ WD
R T
0

R
Rdx
g.r; x; v/ dx dr for a generic g W

.r; x; v/ 7! g.r; x; v/. We first argue that Nq has left and right limits. Indeed, by a standard approximation
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argument, the kinetic formulation yields, for every � 2 C1c .Rv/,Z
Rv

�0 Nq dv D�
Z

Rv

�

�Z
Rdx

f dxjT0

�
dvC �.u/S

D�

Z
Rv

�

�Z
Rdx

f dxjT0

�
dvC

Z
Rv

�0 1v<uS dv: (A-5)

Since v 7!
R

Rdx
f .r; x; v/ dxjT0 is in L1.Rv/, this implies Nq � 1v<uS 2 PW 1;1.Rv/. Since 1v<uS 2

BVloc.Rv/, this shows Nq 2 BVloc.Rv/ and thus the existence of left and right limits.

Next we claim that (A-5) continues to holds for all � 2 C1.Rv/ with �0 2 C1c .Rv/. For R > 0 let
'R 2 C

1
c .Rv/ be such that 'R.v/D 1 for jvj6R, supp'R � Œ�.RC 1/; RC 1� and j'RjC j'0Rj. 1.

Defining �R WD �'R, we have by (A-5)Z
Rv

.�0'RC �'
0
R/ Nq dv D�

Z
Rv

�R

�Z
Rdx

f dxjT0

�
dvC �R.u/S:

Since �R is uniformly bounded in R, �R! � locally uniformly, v 7!
R

Rdx
f .r; x; v/ dxjT0 is in L1.Rv/

and S 2L1.Œ0; T ��Rdx /, we may take the limit R!1 on the right-hand side by dominated convergence.
Again by dominated convergence the contribution from the term �0'R to the left-hand side converges,
since �0 has compact support and Nq 2 BVloc.Rv/� L

1
loc.Rv/. Moreover, the contribution from the term

�'0R vanishes for R!1, since both � and '0R are bounded, supp'0R � Œ�.RC 1/;�R�[ ŒR;RC 1�
and Nq 2 L10 .Rv/ by Definition A.1(iv).

We are now in the position to conclude. Assume first v0 2 RC. Let �˙ 2 C1c .Rv/ with �˙ > 0,
supp�C � Œ0; 1�, supp�� � Œ�1; 0�,

R
Rv
�˙ dv D 1 and define �"

˙
.v/ D "�1�˙."

�1v/ for " > 0.
Moreover let �"

˙
be such that .�"

˙
/0.v/D �"

˙
.v � v0/ and .�"

˙
/.v0/D 0. Observe that .�"

˙
/0! ıvDv0

and �"
˙
.v/! sgnC.v� v0/ as "& 0 independent of the choice of ˙. Choosing now � WD �"

˙
in (A-5)

and using dominated convergence to take the limit "& 0, we obtain

Nq.v0˙/D�

Z
Rdx

.u� v0/C dxjT0 C
Z T

0

Z
Rdx

sgnC.u� v0/S dx dr

6
Z

Rdx

.u0� v0/C dxC
Z T

0

Z
Rdx

sgnC.u� v0/S dx dr:

In particular Nq.v0�/ D Nq.v0C/, so that Nq is continuous. The case v0 2 R� is treated analogously
replacing the conditions �˙ > 0 and

R
Rv
�˙ dvD 1 by �˙ 6 0 and

R
Rv
�˙ dvD�1, respectively, so that

�"
˙
.v/! sgnC.v� v0/ is replaced by �"

˙
.v/! sgnC.�.v� v0//. �

Appendix B: Fourier multipliers

In this section, we provide some Fourier multiplier results well-adapted to our averaging lemma,
Lemma 4.2. We recall the definition of PRdC1 and of the functions �l and 'j given in Section 2, and
define Q�l WD �l�1C�lC�lC1 and Q'j WD 'j�1C'j C'jC1. We observe Q�l.2l � /D Q�0 and Q'.2j � /D Q'0.
Moreover, Q�l and Q'j are identically unity on the support of �l and 'j , respectively.
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Theorem B.1. Let k D 2C2Œ1Cd=2�. Let m W PRdC1! C be k-times differentiable and such that for all
˛ D .˛� ; ˛�/ 2 N0 �Nd0 with j˛j6 k there is a constant C˛ such that for all .�; �/ 2 PRdC1

j@˛�� @
˛�
�
m.�; �/j6 C˛j� j�˛� j�j�j˛� j: (B-1)

Then there is a constant C > 0, depending only on the constants C˛ , such that for any p 2 Œ1;1� and all
l; j 2 Z, we have

k Q�l Q'jmkMp 6 C I (B-2)

i.e., Q�l Q'jm (more precisely the mapping .�; �/ 7! Q�l.�/ Q'j .�/m.�; �/) extends to an Lpt;x-multiplier with
a norm independent of l and j . Furthermore, this mapping extends to an MTV -multiplier with the same
norm bound.

Proof. Since k � kMp 6 k � kM1 , it suffices to estimate the L1 multiplier norm of Q�l Q'jm in order to obtain
(B-2). Since multiplier norms are invariant under dilation and since kmkM1 is equal to the total mass of
F�1m, see [Bergh and Löfström 1976, Theorem 6.1.2], we have

k Q�l Q'jmkM1 D kQ�0 Q'0ml;j kM1 D kF�1t;x Q�0 Q'0ml;j kL1t;x
;

where ml;j .�; �/ WDm.2l�; 2j �/. Let M WD Œ1C d=2�. We observe

.1C t2/.1Cjxj2/MF�1t;x Œ Q�0 Q'0ml;j �.t; x/

D cd

Z
Rt�Rdx

.id� @2� /.id���/
M .eit�Cix��/ Q�0.�/ Q'0.�/m.2

l�; 2j �/ d� d�

D cd

Z
Rt�Rdx

eit�Cix��.id� @2� /.id���/
M . Q�0.�/ Q'0.�/m.2

l�; 2j �// d� d�

D

X
˛�Cˇ�62

j˛� jCjˇ� j62M

cd;˛;ˇ2
lˇ�2j jˇ� j

Z
Rt�Rdx

eit�Cix��@˛�� Q�0.�/@
˛�
�
Q'0.�/@

ˇ�
� @

ˇ�
�
m.2l�; 2j �/ d� d�;

where cd and cd;˛;ˇ are constants that do not depend on l and j . On supp Q�0 � supp Q'0 we have
j@
ˇ�
� @

ˇ�
�
m.2l�; 2j �/j6 Cˇ2�lˇ�2�j jˇ� j, and hence we obtain

.1C t2/.1Cjxj2/M jF�1t;x Œ Q�0 Q'0ml;j �.t; x/j6 c:

Since 2M > d , it follows kF�1t;x Œ Q�0 Q'0ml;j �kL1t;x 6 C , which yields (B-2). In particular, Q�l Q'jm is an
L1-multiplier with a norm bound independent of l and j , and as such extends to a multiplier on MTV

with the same norm bound. �

Remark B.2. In Theorem B.1, the assumptions on the differentiability of m may be relaxed: Indeed, the
proof shows that it suffices to assume that m is a continuous function such that @˛�� m, @˛x

�
m and @˛�� @

˛x
�
m

exist for all ˛ D .˛� ; ˛�/ with ˛� 6 2 and j˛� j6 2Œ1C d=2�, and that (B-1) holds for these choices of ˛.

Remark B.3. Clearly, Theorem B.1 has an isotropic variant; see [Bahouri, Chemin, and Danchin 2011,
Lemma 2.2]. More precisely, a simple adaptation of the proof shows the following: Let k D 2Œ1C d=2�.
Let m W Rd n f0g ! C be k-times differentiable and such that for all ˛ 2 Nd0 with j˛j 6 k there is a
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constant C˛ such that for all � 2 Rd n f0g we have j@˛m.�/j6 C˛j�j�j˛j. Then there is a constant C > 0,
depending only on the constants C˛ such that for any p 2 Œ1;1� and all j 2 Z we have k Q'jmkMp 6 C .
Again, Q'jm extends to an MTV -multiplier (in �) with the same norm bound.

Lemma B.4. Let L be defined as in (4-2) and fix ˛ D .˛� ; ˛�/ 2 N0 � Nd0 . Then we have for all
.�; �; v/ 2 PRdC1 �R the estimateˇ̌̌̌

@˛�� @
˛�
�

1

L .i�; i�; v/

ˇ̌̌̌
.

1

jL .i�; i�; v/j
j� j�˛� j�j�j˛� j:

Proof. The proof rests on the identity

@
˛�
�

1

L .i�; i�; v/
D

X
ˇ

cˇ
�ˇ jvj.m�1/Nˇ

L .i�; i�; v/1CNˇ
;

where cˇ are constants, Nˇ WD .j˛� jC jˇj/=2, and the sum runs over those ˇ 2 Nd0 with jˇj6 j˛� j such
that j˛� jC jˇj is even. The identity can be proven easily by induction on the order of ˛� . From this and
@�L .i�; i�; v/D i , it immediately followsˇ̌̌̌

@˛�� @
˛�
�

1

L .i�; i�; v/

ˇ̌̌̌
.
X
ˇ

ˇ̌̌̌
�ˇ jvj.m�1/Nˇ

L .i�; i�; v/1C˛�CNˇ

ˇ̌̌̌
;

which in view of

j�jjˇ jjvj.m�1/Nˇ

jL .i�; i�; v/jNˇ
6
j�jjˇ jjvj.m�1/Nˇ

.jvjm�1j�j2/Nˇ
D j�j�.2Nˇ�jˇ j/ D j�j�j˛� j

and
1

jL .i�; i�; v/j˛�
6 j� j�˛�

yields the assertion. �
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