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PARAMETRIX FOR A SEMICLASSICAL SUBELLIPTIC OPERATOR

HART F. SMITH

We demonstrate a parametrix construction, together with associated pseudodifferential operator calculus,
for an operator of sum-of-squares type with semiclassical parameter. The form of operator we consider
includes the generator of kinetic Brownian motion on the cosphere bundle of a Riemannian manifold.
Regularity estimates in semiclassical Sobolev spaces are proven by establishing mapping properties for
the parametrix.

1. Introduction

We deal in this paper with a class of second order, subelliptic partial differential operators of the sum-of-
squares form

d d
Py=Xo—hY X;—h)» c;X;, he(0,1], (1-1)
j=1 j=l1
where the X; for 0 < j < d are smooth vector fields, the c¢; are smooth functions, and & > 0 is considered
as a semiclassical parameter. We work in 2d + 1 dimensions, either on a compact manifold or an open

RZd-H

subset of , and make the following assumptions throughout this paper.

Assumption 1.  « The collection of 2d 4 1 vectors {Xo, X1, ..., X4, [X0, X1], ..., [X0, X4]} spans
the tangent space at each base point.

e The collection {X1, ..., X4} is involutive (closed under commutation of vector fields).

For each h > 0 the operator P, is subelliptic by a result of [Hormander 1967], and by [Roth-
schild and Stein 1976] the operator Pj, controls %—derivatives in the Sobolev space sense. In the
semiclassical setting it is natural to work with a semiclassical notion of Sobolev spaces; we refer
to [Zworski 2012] for a treatment of semiclassical analysis. The question of interest in this paper is the
dependence on £ of the various constants in a priori inequalities for P, both in L? and semiclassical
Sobolev spaces.

Our work is motivated by that of Alexis Drouot [2017], who studied such an operator on the cosphere
bundle S*(M) of a (d+1)-dimensional Riemannian manifold M. The paper [Drouot 2017] considers the
operator P, = H 4+ hAs, with H the generator of the Hamiltonian/geodesic flow and As the nonnegative
Laplace—Beltrami operator along the fibers of the cosphere bundle. In local coordinate charts this operator
can be represented in the form (1-1), where X¢ = H, and {X J-}?:l is any local orthonormal frame for the
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tangent space of the fibers of S*(M). In [Drouot 2017] it is shown that, if M is negatively curved, then as
h — 0 the eigenvalues of —i P, converge to the Pollicott—Ruelle resonances of M. The analogous result
was proven in [Dyatlov and Zworski 2015] for P, = H + hA, where A is the Laplacian on $*(M). The
interest in taking P, = H +hAg is that this operator generates what is known as kinetic Brownian motion
on M. For a treatment of this process we refer to [Franchi and Le Jan 2007; Grothaus and Stilgenbauer
2013; Angst, Bailleul, and Tardif 2015; Li 2016].

A key step in the proof of convergence in [Drouot 2017] was controlling the subelliptic estimates for
P, as h — 0. We emphasize that the estimates we prove are the same as in that paper, with an occasional
improvement in the remainder terms. The aim here is to obtain a finer microlocal understanding of the
parametrix. We obtain a parametrix valid on the region 2A > 1, strictly larger than the semiclassical
region h’A > 1. The restriction hA > 1 arises from the largest region of phase space on which the
uncertainty principle holds for the parametrix. The estimates in [Drouot 2017] were obtained through
commutator methods, analogous to the work of [Hormander 1967]. Our approach is more similar to
that of [Rothschild and Stein 1976], in that we use an approximation to the operator at each point by a
model nilpotent Lie group, and construct a parametrix from the inverse of the model operator on that
group. Estimates are then obtained from mapping properties for the parametrix. In contrast to [Rothschild
and Stein 1976], which lifted the operator to a higher-dimensional Lie group on which the parametrix
is represented as a singular integral kernel, we construct the parametrix in pseudodifferential form on
the space itself. This procedure is motivated by the author’s work [Smith 1994] on the 8}, problem on
three-dimensional CR manifolds of finite type.

When constructing a parametrix for Pj, of the form (1-1), it is more natural from the semiclassical
viewpoint to consider h P, = hXg+ Z?: 1(hX j)z, and quantize symbols in terms of /7. This leads to
placing an extra factor of 4 on the variables n” dual to Xjford+1<j<2d,since [hXo, hX;]~ thjer-
The quantization of symbols is naturally carried out using exponential coordinates with respect to an
extension of {X j}‘;zo to a frame {X J}ii@ We will require that:

Assumption 2. If 1 <i <d, then [Xg, X;] —2X;14 € span(Xo, ..., X4).

This can of course be arranged by setting X; ;s = 2[Xo, X;]. In the model nilpotent Lie group setting
where all other commutators vanish, there is a natural nonisotropic dilation structure using powers (2, 1, 3).
Precisely, we split € R?*! =R x R? x R? into (19, 1/, "), and similarly use X’ as abbreviation for
the collection (X1, ..., Xg4), and X” = (X441, ..., X24). Then the dilation that respects the fundamental
solution for the model operator is

2
8-(n) = (rno, r’s rn").
We now summarize the main result of this paper, leaving details to be expanded upon in later sections.
For simplicity consider an open set U C R?/*!, For a multi-index o € N2¢*!, Jet
order(a) = 200 + || + 3]a”|.

We use exp, (y) to denote the time-1 flow of x along Z?io yiX;j.
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Proposition 3. Given p(x) € C°(U), there is xo € Cé’o([RZdH) and an h-dependent family of symbols
a(x, n) satisfying
920%a(x, )] < Caph(h? +|o]2 + || + n"|3) =2 -order@)

with Cy g independent of h € (0, 1], so that the operator a,(x, hD) defined by

an(x, hD) = / =M a e, o, hn's 20" £ (exp, (9)) x0(») dy diy

(27T)2d+1

satisfies

ap(x, hD) o Py = p(x) +rp(x, hD),

where rj,(x, hD) is an operator that satisfies the following with C, ,, independent of h € (0, 1], for any
polynomials p;(n) on R24+1:

Ip1(Xo, h2 X' h2X") o ry(x, hD) 0 pa(Xo, h2 X' k2 X") fll 12 < Cpy ol £l 12-

For example, one can take p; or p; to yield the operator (1 + XE;XO)N (1 +hA)N2, where A is the

R2d+1

Laplacian on . These bounds roughly say that the parametrix inverts P, on the region

{A>h""YU{IXo| = 1}.

In particular, the remainder term r;, will be of order £ if the solution is localized to a region where
A > h~'=¢ for some € > 0.

We remark that in the calculus developed here Py, is of order 2, and thus distinct from the standard
semiclassical calculus where £ Py, is of order 2. This is related to the fact that we are working on the region
|n| > h'/? rather than || > 1. Symbols of order j are weighted by a factor 2 ~//2 to ensure that symbols of
negative order (but not necessarily their derivatives) remain bounded as 4 — 0. With this accounting, X
is an operator of order 2, hl/sz isof order 1 for 1 < j <d, and hl/sz isof order 3ford+1 < j <2d.

Together with the composition calculus, pseudolocality arguments, and L?> mapping bounds for
operators, we deduce the regularity results on S*(M) for Py, that were established in [Drouot 2017]. These
are stated in Theorems 20 and 21.

The outline of this paper is as follows. In Section 2 we introduce a model operator of P, on a step-2
nilpotent group, and discuss the homogeneous fundamental solution in this setting. In Section 3 we study
the degree to which the model operator, attached to M by exponential coordinates, approximates Pj,.
Careful estimates of the Taylor expansion of vector fields and exponential coordinates are needed to
obtain uniform estimates as 7 — 0. In Section 4 we prove that operators of the form a;(x, 2 D) form
an algebra under composition. This allows for the construction of parametrices from the inverse for
the model operator on the nilpotent Lie group. In Section 5 we establish L? boundedness of order-0
operators in local coordinates, using a nonisotropic Littlewood—Paley decomposition of the operator
and the Cotlar—Stein lemma. Finally, in Section 6 we establish the main regularity estimates for Py, in
h-Sobolev spaces, leading to the proof of the bounds in [Drouot 2017].
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2. Operators on model domains

In this section we consider a nilpotent Lie group structure on R>*! that captures the commutation relations
of the vector fields X;, and we introduce a left-invariant model of Pj,. The top-order term in the parametrix
for P, at a point x € U will be given by the fundamental solution for the model operator, attached to U via
exponential coordinates at x relative to the frame {X j}i‘i o- In subsequent sections we show that the model
operator agrees to leading order with the expression of Py, in exponential coordinates, and develop a graded
pseudodifferential calculus that allows us to produce a parametrix for P, modulo a smoothing operator.
We start by considering 7 = 1, and then obtain the fundamental solution for all / by a suitable dilation.

We use the variables y = (yp, ¥, ¥”) € R x R x R?, with dual variables n = (170, 17, ), and introduce
the dilation structure

8r(m) = (o, rif rn"), 8,1 (3) = Pyo, r YL Y.
We also introduce a corresponding nonisotropic homogeneous weight m € C*®(R*+1\{0}),
1
m(n) = (Inol® + 0’12 + 115 =,

so that m(8,(n)) = rm(n), and 372> <m(n) < 1 when |n| = 1.
Consider the frame of vector fields on R*?*! given by

Vo=t 0, 3500
¢ Yj=0;+yodj4qfor1<j<d,
e Yj=09,forj>d+1,

and observe that

[Yo,Y;1=2Y;44 if1<j<d,

with all other commutators equal to 0. The collection {Y j}%iO forms a nilpotent (step-2) Lie algebra.
These are left-invariant vector fields associated to the nilpotent Lie group structure on R2?*! with product
y X W = (yO + wo’ y/ + w/, y// + w//+y0w/ _ woy/)
The exponential map at base point y, and corresponding exponential coordinates, are given by
expy(w) = (yo + wo, y' +w', y" +w” + yow' —woy"), @1
Oy(2) = (20— 0,2 =¥\ 2" =" = yoz' + 20,

S0 in particular Op(w) = w.
The vector field Y is homogeneous of order 2 under §, in that

Yo(for ) =r"2(Yof)o8.,

which we summarize by writing order(Yy) = 2. Similarly, order(Y;) =1 for 1 < j <d, and order(Y;) =3
ford + 1 < j <2d. More generally, if we define the order of a multi-index « by

order(ar) = 2ag +ay + - - - +og +3gp1 + - - -+ 300g = 200 + || + 3|,
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then the monomial differential operator y# dy will be homogeneous, with order given by

order(y”? 8;’,‘) = order(«) — order(B). (2-2)
The left-invariant differential operator Yy — Z?: 1 sz is subelliptic and homogeneous of order 2. By
[Folland 1975], it has a unique homogeneous fundamental solution K (y) € C 2 (R2+1\{0}),

d

(Yo -2 Yf) Ky =380, K@-1(y)=r®I72K(y).

j=1
The homogeneous inverse for Yy — Z?:l sz is given by convolution with K, which we will express in
pseudodifferential form. Precisely, if we let go(n) = K , then go(8,1) = r~2qo(n), and the operator

qo(D) f(y) = e O @M g () £ (2) dz dn

1
(27)2d+1 /,;gw

is a left and right inverse for Yy — Z?: 1 sz on the space of Schwartz functions.

To conclude this section we consider the semiclassical subelliptic operator 2Yy — Z?:l thjz. This is
naturally associated to dilating y and y’ by &, and y” by k2, in that

d d
(Yo -> Yﬁ) (f (hyo, hy', h?y")) = <hYof -3 thff) (hyo, hy', h*y").
Jj=1 j=1

Consequently, if we introduce the operation on symbols

an(m) =a(no, n', hn"),

then the inverse for 1Yy — 27:1 thjz is given by the semiclassical quantization of gy,

qos(hD) f(y) = e 1O @01k () f(2) dz dE

1
(2 h)2d+1 /Rw

! —i R
T @mne /R e 5 qo () f @XPy (h2)) dz d¢.

3. Approximation by the model domain

Recall that we consider a spanning collection {Xg, X1, ..., Xo4} of vector fields on an open subset U of
R24+1 satisfying the following conditions:

e The collection {X1, ..., Xy} is involutive (closed under commutation of vector fields).

e If 1 <i <d, then [Xo, X;] —2X;14 € span(Xyp, ..., Xg).
We will use x, x to denote variables in U and y, z to denote variables in R2d+1

Letexp, (y) be exponential coordinates with base point x in the frame { Xy, ..., X24}. Thatis, exp, (y) =

y (1), where y(0) = x and y'(¢) = Z?io v;X;(y(t)). Define exponential coordinates ®, as the local
inverse of exp, in a neighborhood of x:

Ox(exp,(y)) =y, exp,(O,(X)) =x.
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Recall the definition (2-2) of the order of a monomial differential operator in y. Consistent with this
we have order(Yy) =2, order(Y;) =1if 1 < j <d, and order(Y;) =3ifd +1 < j < 2d.

Lemma 4. For 0 < j <2d, we can write

(X; ) exp, () =Y;(f(exp, () + R;(x,y, dy) f (exp,(¥)),

where order(R ;) < order(Y;), in the sense that the Taylor expansion

Rj(x.y.9,) =) cjax(x)y*d
ok
includes only terms with order(y*dy) < order(Y;).
Additionally, co ok (x) = 0 unless there is at least one factor of y; with j > 1 occurring in y°.

Proof. Any term y* 9 with || > 2 is of order < 0, so we need examine the Taylor expansion of X; in
exponential coordinates only to second power in y. Additionally, order(y;y;dx) < 1, and equals 1 only if
1 <i,j<dandk>d+1. To see that such a term cannot arise in R; for 1 < j <d, the only case where
order(Y;) < I, we use involutivity of {X1, ..., X4} and the Frobenius theorem to see that this collection
remains tangent to the flowout of the subspace yo = y” =0, and hence we can write X; = ZZZI ck(x, y)o
ifyg=y"=0and 1 <j <d.

Thus, we need show that in the expansion of R; about y = 0 the terms linear in y are of order strictly
less than order(Y;). For j > d + 1 this is immediate, since X; = d; = Y; at y = 0, and any vector field
that vanishes at 0 includes terms of order at most 2. For 0 < j < d we expand

Xj=0j+ Y cjiu(®)yi+ (o,
ik

Since radial lines in exponential coordinates are integral curves of Z?io y;X;, we have

2d 2d
Do viXi=) i), (3-1)
j=0 j=0
from which we deduce
Cijk = —Cjik

Also, since [Xo, X;] —2X ;14 € span(Xo, ..., X4), we deduce for j =1, ..., d that

1, k=j+d,
Cjok = .
0, k>dandk # j+d.

Since order(y;dx) < 2 unless k > d, we deduce order(Ro(x, y, d,)) < 2.

By involutivity of {X, ..., X4}, if 1 <i, j <d then cjj;x =0 unless also 1 < k < d, in which case
order(y;dx) =0. And if i > d then order(y;0r) <0 for all k. Soif 1 < j <d then all terms c;xy; d for
i # 0 have order < 0, and since ¢ o = &, j+-« We conclude order(R;(x, y, dy)) <0if 1 < j <d.

To conclude the lemma, we note by (3-1) that if y’ = y” = 0 then X = 9y,, from which we obtain
Ro=0along yy =y" =0. O
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For x € U, and y, z in a neighborhood of 0 in R%**!, we introduce the functions

®(x7 Y, Z) = ®expx(y) (expx (Z))a @(-xv Y, 'UJ) = ®x (expexpx(y)(w))’ (3'2)

where we recall ®,(X) denotes exponential coordinates in X; centered at x. For fixed x and y these are
inverse functions of each other on their domains:

7= @(x, y,w) <<= w=0(%,y,2).

To invert in the y-variable we note that v = @(x, vy, w) implies y = @(x, v, —w).

Observe that O (x, v, z) = —0O(x, z, y), and O(x, y, z7) =z — y +O(y, z)>. For more precise estimates
on © and © we consider their Taylor expansions in exponential coordinates at x. We first assign a notion
of order to a smooth function f(x, y, z). Consistent with (2-2), we make the following definition.

Definition 5. For a smooth function f(x, y, z) defined on an open subset of U x R**! x R?¢*+! containing
U x {0, 0}, we say that order(f) < —j ifforallx e U

(B;f‘aff)(x, 0,0)=0 forall «, 8:order(e+ B) < j.

Equivalently, the Taylor expansion of f in y, z about y = z = 0 contains only monomials y*z# with
order(a + B) > j. We let order( f) be the least n € Z such that order(f) <n + 1.

Recalling the definition (2-1) of @y (2), which are exponential coordinates in the frame Y; on the model
domain, we have the following.

Lemma 6. We have ©(x, y, z7) = @y(z) + R(x,y, z), where order(R ) < order(y;) for each j. Similarly,
@(x, y, w) = @_y(w) + ﬁ(x, v, w), where order(ﬁj) < order(y;) for each j.

Proof. We work in exponential coordinates y = ©,(-) centered at x, and use Lemma 4 to consider X
as a vector field in y. Then z = (:j(x, y, w) means that z = y (1), where y (¢) is the integral curve of
w-X =) wiX; with y(0) = y. Taking the Taylor expansion of y (¢) about # = 0 and evaluating at 7 = 1
gives the following expansion of z = O(x, y, w) in terms of w:

(w- X)) w-X); (), (3-3)

=1
&=y X)) +
J J J kXZI:(k'i_l)’

where (w - X)(y, dy) acts on y and (w - X);(y) is its d; coefficient as a function of y. It is seen from
Lemma 4 that w - X does not increase the order of a function f(x, y, w), and w- X — w - Y decreases the
order of f(x,y, w) by at least 1. Also, as functions of (y, w)

order((w-Y);(y)) =order(y;), order((w-X);(y)—(w-Y);(y)) < order(y;).

Thus, if we replace w - X by w - Y in the expansion (3-3) then the right-hand side is changed by terms of
strictly lower order than y;. It follows that we can write

(20,2 7") = Yo+ wo, y +w’, ¥y 4+ w” + yow' —woy’) + (Ro, R, R"), (3-4)

where order(Ry) < —2, order(R’) < —1, and order(R”) < —3 as functions of (v, w). Recalling the
formula (2-1), this completes the second statement of the lemma.
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We next invert the map w — z to express w = w(y, z) = O(x, y, z), and use (3-4) to write
w(y.2) = 0y(2) — (Ro, R, —yoR' +y'Ry+ R") = ©,(z) — R(x. y. 2).

where R = E(y, w(y, z)). Since w is equal to z — y plus quadratic terms in (y, z), we see that R(x, y, z)
has no linear terms in y or z, and hence order(wg) < —2 and order(w’) < —1, since quadratic terms are
of order at most —2. This also shows that order(—yoﬁ’ + y/ﬁo) < -3.

To conclude the lemma it suffices to show that order(ﬁ/ "(y, 2)) < —3, since together with the preceding
this shows that order(w;(y, z)) < order(y;) for all j, from which it follows that order(ﬁj v, w(y,2) <
order(ﬁ i(y, w)) < order(y;). We know that order(w”(y, z)) < —2 since quadratic terms are order < —2,
and by the above that order(w;(y, z)) < order(y;) for j < d. Since order(ﬁ”) < —3 as a function of
(y, w), it is easy to see by examining terms in (y, w) of order < —4 that order(ﬁ’ "y < —3 as a function
of (y, z), concluding the proof. U

We make a few important additional observations about the terms that can occur in the Taylor expansion
of ®(x, y, z) about y =z =0 and O(x, y, w) about y = w = 0. First, we have

@(X,y,z)zzo_yo ify/=Z/=y”=z":O,
@(x7y9w):y0+w0 ify/:w/:y//:w//:()-

Consequently, every nonvanishing term in the Taylor expansion of R(x, y, z) about y = z = 0 must
include a factor of either y’, 7/, y”, or z”. Similarly, every nonvanishing term in the Taylor expansion of
R(x, y, w) about y = w = 0 must include a factor of either y’, w’, ", or w”.

Additionally, since the collection {X j}?: , is involutive it follows that Ry and R” vanish if yg = z9 =
y" = 7" =0, and hence every nonvanishing term in the Taylor expansions of Ry and R” must contain a
factor other than (y’, z'). Similarly Ry and R” must each contain a factor other than (v, w’). Combining
this with the fact that R(x, y, z) =0 if z = y, we can write

Ri(x,y, 0= Y €iapy*@=+ Y cjapk,y, 0y"@—y"° (3-5)
loe|+|B1=2 loe|+18]=3
1B1=1 1B1=1

for smooth functions c; g, Where c; o g = 0 unless order(y*z?) < order(y ), and also unless one of o/,
B', a”, or B” is nonzero. Additionally, if j =0 or j > d + 1 then c; o g = 0 unless one of «, By, a”, or B”
is nonzero.

The same conditions also hold on ¢; 4 g in the following expansion of R(x, y, w):

Rj(x,y,w)= Z Ej’a,ﬂ(x)yawﬁ—i- Z Ciap(x,y, w)y“w’s.
oe|+[B|=2 lee]+]8|=3
B1=1 1B1=1

4. The semiclassical calculus on U
In this section we introduce the nonisotropic semiclassical quantization and /-dependent symbol classes

that we use to construct the parametrix for P,. As seen for the model operator, the phase variables
associated to X” need to be scaled by A2, as opposed to the i-scaling for variables associated to X,
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and X'. The symbol classes are naturally associated to the nonisotropic dilation structure §,. We will
define them using the nonisotropic norm

1

1 1
m(n) = (nol®+ 101"+ 1n"1H72 ~ [nolz + |0/l + 10”3,

which is smooth for n # 0 and homogeneous of degree 1, in that m(3,(n)) = rm(n).
We assume that K is compactly contained in U, and choose r; so that the exponential map y — exp, (y)
is a diffeomorphism on the ball {|y| < r;} for all x € K. We also fix rg < r| such that

U exp);(ErO) C exp,(B)).

ieepr(E,‘o)
We fix functions x; € CZ°(B;) with xo(y) =1 for [y| < %ro and

X1(®;(-)) =1 on a neighborhood of U expi(E,O).

Xeexp, (Bry)
Given a symbol a(x, n) € C*°(U x R24+1) supported where x € K, we let
(lh(x, 77) = a(-xv 1o, 77/, h’?”)»

and define a nonisotropic semiclassical quantization of a by the rule

1 iy
ap(x,hD) f(x) = Q2 /[R4d+2 e~ My (x, m)xo(y) f (exp, () dy dn
1 .
= o€ e o) fexp Gy dydn. @D

Thus the Schwartz kernel of ay(x, hD) is supported in K x K,,, where K,, is the image of K X Ero

under (x, y) — exp,(y). In contrast to the usual semiclassical scaling n — A7, the nonisotropic scaling

(hno, hn', h?>n") arises from the missing directions X” being obtained from commutators of X and X'.
If p(x,m) = 41<n Ca(x)n* is a polynomial in 7, then

(pn(x, hD) f)(x) = pu(x, (—i8y)) f (exp, (hy))],_,.
In particular, we have the following correspondence of symbols to operators:
inj hX;, 0<j<d, in;:h’X;, d+1<j<2d. (4-2)
Suppose that the symbol a satisfies homogeneous order-0 type estimates of the form
1929%a(x, n)| < Cq,pm ()~ @,

The uncertainty principle, needed for example for proving L continuity of ay(x, h D), requires uniform
bounds on ¢ (hd,)*a,(x, n). On the other hand,

8% (hdy)ap (x, )| = K207 3% gy, (x, )|

’ ” _ P
< Cahlaol+|a [+2]e Im(no, ,7/’ hn”) 2| —le’ | =3

//l
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To have uniform bounds as 4 — 0 for every @ would require truncating a(x, n) to where m(n) > /2. 1t

is convenient to work with bounded symbols; hence for symbols of order n we will multiply by a factor

of h™"/? to ensure that symbols of any order be of size < 1 when m(n) < h'/2.

Definition 7. Let m(h, n) = (h'/?> +m(n)). A h-dependent family of symbols a(x, n) belongs to S"(m)
if, for all o, B, there is Cy g independent of 4 such that, for 0 < h <1,

020%a(x, n)| < Coph™2m(h, 7)oM),

We let W}/ (m) denote the collection of operators ay (x, hD) as in (4-1) with a € S}/ (m).
We also define S™°(m) = (e S~*(m), and let v, °(m) denote operators that can be written in the
form (4-1) with xo replaced by i, and a € S~ (m).

Remark 8. We define W, °°(m) using x; in the quantization rule (4-1) since the composition of operators
defined using xo need not have Schwartz kernel supported inside B,, (in local exponential coordinates).
We also note that results below concerning continuity and composition of symbols are independent of the
particular choice of xo. We show in Lemma 13 that replacing xo by another function in C°(B,,) that
equals 1 on B,/ changes a;(x, hD) by a term in lI/h_oo(m).

For polynomial symbols we note that
hf% order(a) n(x c Sordcr(a) (m) (4_3)
By (4-2) we then have the following examples, which will show that P;, € lIl,% (m):

Xo € W7 (m),
h2X;eWi(m), 1<j<d, (4-4)
hiX; e Wi(m), d+1<j<2d.
A more general example of a symbol in §"(m) is h="2a(m)(1 — ¢ (h~"2m(n))), where ¢ € CSO(RMH)
equals 1 on a neighborhood of 0, and a € C*®°(R*¥+1\{0}) satisfies a(8,1) = r"a(n).
It is easy to verify the following properties:
$"(m) - S" (m) C $"" (m),
§"(m) D §" (m) ifn’ <n, (4-5)
acS" (m) = /’l% order(a)ar(;(afa c Snforder(a).

Definition 9. Given a sequence of symbols a; € $"~/(m) we say thata ~ Y jaj if for all N

N-1

a— Zaj e " Nm).

Jj=0

Consequently, a is uniquely determined up to a symbol in §™%°(m).
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We note the following simple example of a symbol in S~ (m):
If ¢ € S(R) and ¢ (s) = 1 when |s| <1 then ¢(h_%m(n)) € S (m). (4-6)
That this symbol belongs to $™°°(m) is seen by noting that
A+ 2m) ™ =h>mh,m~~,

together with the bounds [9;'m ()| < Com () 7074er@) where we use that all derivatives vanish unless
m(n) > h'/?; hence m(n) ~ m(h, n), since ¢ is assumed constant near 0.

Lemma 10. Suppose that a; € S"=i(m), j € N. Then there exists a € S"(m) with a ~ Zj aj.

Proof. Fix ¢ € C°((—2, 2)) with ¢ =1 for |s| < 1. We will construct a sequence of real numbers R; > 1
with R; — oo such that for all N

Z(l — ¢(Rj_1h*%m(n)))aj(x, 1) converges in S”*N(m). 4-7)
j=N

Defining a to be this sum for N = 0 then gives the result since by (4-6), for each j,
1,1 _
¢(R;'h™2m(m)a;(x, n) € S~ (m).

The proof of (4-6) shows that the S%(m) seminorms of ¢(R~'h=12m(n)) are uniformly bounded inde-
pendent of R for R > 1. The result (4-7) follows if we choose R; so that for all ||+ [B| < j

n+l—j

|a;fa;‘(1 — ¢(R;1h_%m(7])))aj (x,n)| < 2=ip—"3 m(h, n)n—i-l—j—order(a)‘

Such R; can be chosen by observing that on the support of 1 — ¢>(Rj_lh*1/ 2m(n)) we have the bound

R 2mh, )~ <A+ R~ O

We now turn to the composition result for operators. Due to support considerations of the Schwartz
kernels involved, expressing the composition of two operators quantized using the cutoff x( requires
quantizing the symbol of the composition using the cutoff x;, but we shall later see that the difference is
an operator with symbol in S™°°. For simplicity we consider the case where the order of the composition
is negative, which is the case needed to produce an inverse for P, modulo W, > (m).

In the proof we decompose an operator a,(x, 2 D) into a sum of nonisotropic dilates of unit-scale
convolution kernels. This decomposition is also used in establishing L? bounds for order 0 operators. Let
¢ and ¢ generate a smooth Littlewood—Paley decomposition of [0, co):

L=¢(s)+ Y ¥@27s). supp(9) C [0.2), supp(¥) C (1.2). (4-8)

j=1

Given a symbol a € §"(m), we make the decomposition

a(x,n) = ph~Imm)a, )+ Y Y h 2 m)ate, n) =Y a;(x.n). (4-9)

=1 j=0
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Then a; is supported where m(h, ) ~ 2/h'/2, and thus
18£0%a;(x, )| < Co 527" (27 13)~Oer@,
It follows that ag(x, 8,12(n)) € CZ(K x {|n] < 8}) with bounds uniform over /4, and for j > 1 that
27/"a;(x, 83ip112(n)) is uniformly bounded in CSO(K X {% <|nl < 8}) over h and j.
Theorem 11. Givena € §"(m) and b € S”/(m), withn +n' <0, there is c € S"+"/(m) so that

1

an(x kD)0 by (e, hD) [ () = oy

/ e ey (x, )1 () £ exp, (1)) dydE. (4-10)

Proof. For x € K and h > 0 we can write

X1(0x () f(X) = e OB A= 8)/hy ) (y) f(exp, (v)) dy dE.

1
(27‘[h)2d+1 /
Since aj(x, hD)by(x, hD) f(x) = ap(x, hD)by(x, hD)(Xl(G)x( . ))f)(x), we know (4-10) holds with

cn(x, &) = (an(x, hD)by (x, hD)e' (O 15/ 1) ().

We thus need to show that c(x, £) = ¢, (x, &, £, h1€") € " (m).
Let a; and b; be the nonisotropic Littlewood—Paley decomposition of a and b as in (4-9), and define
cij by
(cijn(x, &) = ((@)n(x, kD) (b (x, hD)e O 19/1) (),

so that ¢ = Zij c;j. From (4-1) we can write (c;;);(x, &) as

1

_ " _: . 71 ~
It / e = RO (a7, (x, 1) (b)) (€xp, (hy), ) xo(hy) Xo(hw) dw dE dy dy.
Consider first the case i > j. We substitute w = h_1®(x, hy, hz), defined in (3-2), to write this as

1

. a1 X .
(27_[)—4,14_2/6 i(y,n)—ih <®(x,hy,hz),§>+l(z,§)ai(x’ 10, 77/7 hn”)bj(expx(hy), %o, é./’ h{”)

X x0(hy) xo(®(x, hy, hz))| D:®O|(x, hy, hz) dzd{ dy dn.
By the comments following (4-9) applied to b;, we write

bj(exp, (hy), o, &', he") xo(hy) xo(O©(x, hy, hz))|D.O|(x, hy, hz)
=27"h;(x, hy, hz, 81412 (o, ¢ he")),

where b ;i € C°(K x By, x B, x Bg), with bounds uniform over % and j, and a similar representation
holds for a; with 2/ replaced by 2/ and n’ replaced by n. We make a nonisotropic dilation of ¢ and 5 by
the factors (22/h, 27 h1/2, 237 p1/ 2), and of z and y by the reciprocal factors, to write

cij(x, €) =27 ME (x, 855 112(8)),
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where ¢;;(x, ) is given by

1

2(i=jn
(27.[)4d+2

/ei(y,n)i((“)y(z)+R(h,x,y,Z),C>+i(Z,é)éi(x’32ji(n))
x bj(x, 85 (yo, h2y, h3y"), 853 (z0, h2Z, 32", ¢) dzdi dydn, (4-11)
where, recalling Lemma 6,
(R(h, x.,2), §) =22 Ro(x. 855 (yo. h* ¥, h2 "), 851 (z0, 32 h32")) o
i —1 o Ly Loy Ly 1y ’
+2/h72IR (x,az,j(yo,hzy,hzy ), 6p-i(z0, h2z', h2z ))-C
+ 25T R R (x, 801 (yo, h2 Y, h2y"), 855 (zo, 22 h22")) - ¢

By the support condition on Ej we have |¢] < 8. Also, if i > 1 then a;(x, n) =0 when |n| < %
We next apply the expansion (3-5) to the right-hand side. The condition on order(y*z?) ensures that
we bring out strictly more powers of 27/ than needed to cancel the powers of 2/ in front, and since there

is at least one factor of (y/, z/, ¥, z”") we also bring out a factor 4'/? to cancel off the 2~!/? in front. We
conclude that, on the support of the integrand,
IR(h, x,y,2)| = C27 [z = y|(Iyl + |z = ¥+ [y + |z = yI*),
and also
107 80F R(h. x, y.2)| < Cpap2 /(14 yP + 12— yP). (4-12)

Additionally, if we let w = O(x, v, z2)+ R(h, x, y, z), then with analogous notation we see from (3-2)
and Lemma 6 that z = C:)_y(w) + ﬁ(h, X, y, w), where

[R(R, x, y, )| < C27 wl(Iyl +wl + [y + [w]).
Consequently, since © is the inverse function to © for fixed y, uniformly over j we have

1©y(z) + R(h, x,y,2)| < Clz—y|(1+|y]* + 1z — y[»,
12— ] < Cl®y(2) + R(h, x, y, DI(1+ [y +10,(z) + R(h, x, y, 2)|*),

and hence
I+ 1y Nz =y <C1Oy(2) + R(h, x, ¥, D)1+ 0y (2) + R(h, x, y, 2)|%). (4-13)

Considering the function

gij(x,y) = f e 1M (x, 85 (n)) dny,

(27.[)4d+2

simple estimates show that

1098, (x, Y)| < Cy.q. 242D (1 4 220D yg | 42077 |y/| 4 230Dy )=V, (4-14)
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Additionally, if i > j, hence i > 1, then a; (x, ) vanishes for |n| < 1. and thus can be assumed to be of
the form |n|%a; (x, n) for similar &; (x, n). Thus, if i > j then for all k € N we can write

gij(x,y)= Yy _ 22U yre,  (x, ), (4-15)
ly|=2k

where g;; ,, (x, y) satisfies the same estimates (4-14) as g;;(x, y). On the other hand, if we set

fite,y,2) = / TIOR8, (yo, h2y' h2Y"), 851 (20, h72 h22"), £) dE.
then
f]('x’ y’Z) :p(xv y,Zv@y(Z)"i‘R(h’x’ y7Z))a

where p(x, y, z, w) is smooth in (x, y, z) and Schwartz in w. By (4-12) and (4-13) we have

1029207 £;(x, v, )| < Cn.apo(L+ |y + 1y — 2D WHEHOD Q4 (14 [y~ Hy —zp V.

x Y%y Y%

Applying (4-15) and integrating by parts in y leads to the bound, for all N, «, 8,

595 / 2 (6 1) £50xs 3 2) dy| < Cva 5224001 412N,

Since ¢;j(x, &), defined in (4-11), is 2= times the Fourier transform in z of this integral, we obtain
uniform (over i and j) Schwartz bounds on 2!~/ ¢; j(x, &), with compact support in x.

In the case j > i, we can similarly write ¢;; (x, £) = 2!+, (x, 8,-1,-1/2(£)), where we have uniform
Schwartz bounds over i and j on 2/7/¢; j(x, ). The analysis is similar to the case i > j, using instead
the following representation for ¢;; (x, &§):

1

a1 ~ _ o .
(27.[)74—2/6 ik~ YO (x,hv,—hw),n) z(w,§)+t(v,$)al.(x’ 10, 77/’hn//)bj(expexpx(hu)(_hw)’ %o, ' he")

X XQ((:j(x, hv, —hw))XO(hw)|Dv@|(x, hv, —hw)dwd dvdn.

It thus suffices to show that Zizj 2j(”+”/)5,-j (x, 8y-jp-12(8)) € S (m). We prove that

<CU+h"2mE)+".

Z 21 G (x, 8y ip-12(E))

i>j

Estimates on derivatives will follow similarly since applying o' has the effect of multiplying the j-th
term by (27/h~1/2)0rder@) We use the uniform Schwartz bounds on &; ;j to bound the sum by

Cy Y 202i- (1427 im(E)) V.
i>j>0
The sum over i is trivial. Given &, take jo so that 2/0 = h~!/2m(&). We then split

D2 L2 p i) TN < Y 2000 3 N (= ) 7N

j=z0 Jzjo J<jo
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Recall that we assume n +n’ < 0. We take N so N +n+n’ > 0. If =1/?m (&) < 1, we have only the first

sum, which is bounded by a constant. If 2~'/?m(£) > 1, then the two terms are convergent geometric

sums that both are bounded by (h~'/2m (&))"t -

Remark 12. The result of Theorem 11 still holds if one replaces the function xo(y) used in quantizing a
or b by any function y (x, y) € C°(K x B,,), since this is harmlessly absorbed into l;.,- without changing
the estimates for b ; nor the condition on the support of the Schwartz kernel.

Lemma 13. Suppose that B, x € CX°(By,), and B(y) = 0 for |y| < &, where § > 0. Suppose also that

x = 1 on supp(B). Then if a € §"(m) for some n, one can write

1 .
Gt f e 10 gy (x, £)B(y) f (exp, () dy dE
1

= (271h)2d+1

/ eIy (x, €)X (9) £ (exp, (7)) dy dE,
where r € S (m).
Proof. We write B(y) = |y|*¥ By (y) for By € C°(B,,). Since xfy = Bv, following the first part of

Theorem 11 we have equality of the two sides if r, is the symbol

rh(x, £) = / e VETII (WP Ay + 1A )N @) (x, ) By () dy dy.

(27‘[h)2d+1
By (4-5), ay = (h? Ay +h*Ay)Na € S"72V (m). We then write

1 s (So—mo &' —n" & —n"
r(X,S)waﬂN( o n )aN(x,n)dn.

We have |ay(x,n)] < Cy(1+ m(éhfl/z(n)))”_m, and Peetre’s inequality yields

L+ 185 12E =D 2N A+ m(S- 122N < Cy(1+m(8,-12(8)" 2N,

which shows that |r(x, £)| < CyhNm(h, )N for all N. The term 8fagr(x, £) comes from the same
convolution applied to 8f 8,‘;‘ ay(x,n), and we conclude r € S~°. O

Corollary 14. Suppose Py is as in (1-1). Given p € C°(K?), there is a symbol q(x, &) € S™2(m), with
principal symbol hp(x)(1 — ¢ (h™'2m(&)))qo(£), so that

gh(x,hD)o P, =p(x)+ R, RE€ \I‘h_oo(m).
Proof. Fix p(x) € C°(K) with p = 1 on a neighborhood of supp(p). Define
Go(§) = h(1— §(h™2m(£))qo(&),

where go(€) is the Fourier transform of the fundamental solution for Yy — Z?:l sz, as defined in Section 2,
and ¢ is as in (4-8). Then p(x)Go(£) € S2(m). We first show that

p(X)Go.n(hD) o Py = p(x) —ry(x, hD), r'eS'(m).
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By the construction of go(§) we have

1

d
o [ hana @) (-1 3 1) o0 0 d d = 7,
j=1

where the Y; are the model vector fields acting in the y-variable. Replacing hgo by go changes the
composition by an order-0 symbol supported where m(£) < 2h!/2, hence by a symbol in S~
Generally, we see that for f(x, y) compactly supported in y we can write

/e_"<y’5>/h§0,h(E)y"’aff(x,y) dy dg :/e""yf>/hbh($)f(x,y) dy dg,
where
b(x,&) = i|/3\—Ialhao+|a’\+2\a”|—|ﬁ|agéﬂqo(s).

By (4-3) and (4-5), we know that
h% order(a)fé order(8) 8;(%_/3&0 (5) c Sorder(ﬂ)forder(a)72(m)‘

Recall that
(X; f)exp, () = (Y; + Rj(x,y,9y)) f(exp,(¥)),

where the Taylor expansion of R; contains terms y* 85 of order strictly less than order(Y;), and where
|B] = 1. Since commutators of X; with xo lead to terms of order —oo, we need show that

1

T f e Mgy (€) Ro(x, v, 3y) xo(v) f (exp, () dy d&

is an operator of order —1 in f. For the terms that arise in the Taylor expansion of Ry we have
order(8) — order(«) < 1, so we need check for such terms we also have

oo + || +2la”| = | B| = 5 order(e) — 5 order(),

in order to match up the powers of &. Since |8| =1 and order(«) = 2 + |’ | + 3]e”’|, this holds provided
that |o’| + |a”| > 1, which is the case for Ry by Lemma 4.

We similarly need check that this is an operator of order —2 if Ry is replaced by 2!/ R jwithl <j<d.
Since order(8) — order(c) < 0 in this case, this reduces to verifying that

ao+ || +2]a”| — |B] +% > %order(a) - % order(B),

which always holds if |8] = 1.

We note that the remainder term in the Taylor expansion will also be of the desired order, but with
xo(y) replaced by ¢; o x(x, ¥) xo(y). By Remark 12 this does not affect the conclusion of the corollary,
since the form for g, will involve composition with r}l (x, hD).

By Theorem 11 we can recursively define symbols 7/ € S~/ (m) for j > 2 by the rule

rl(x,hD)or)(x, hD) f (x) = e ST ()41 () f (exp, (7)) dy dE,

1
(zﬂh)Zd—H /
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where we recall that r;{ (x, hD) is quantized using xo. Let r ~ > 72, rd, sor e S™'(m). Also define
q € S$72(m) so that

1 .
PO+, RD)A@)GonhD) f () = (s / e 0 gy (x, &) x1 () f (exp, (1)) dy d§.

By the above and Lemma 13, the following operator is in W, *°(m):

Rf(x)= / e 0 g (o €)Y (1 (9) — X0 () (Po f)(exp, () dy dE.

(Znh)z‘“']
Thus, modulo W, *(m) we have
qn(x, hD) o Py = p(x)(I +r;(x, hD))(p(x) — ri(x, hD)).

Next we choose 6§ > 0 so that p(exp,(y)) = 1 if x € supp(p) and |y| <4, and take x5 € C°(B;) with
X5 = 1 on 35/2. Then

p()rp(x, hD)((1 = p) f)(x)
1

= Oy / e OB p ) (x, £) (X0 (y) — xs () ((1 = ) £)(exp, () dy d&,

so by Lemma 13 we have, modulo \l/h_oo (m),
gn(x,hD)o P, =p(x){ +rp(x, hD))(I — r,ll(x, hD)).

Finally, since the difference between using x; instead of xq in the quantization of /*! gives a term in
W, °(m), we see that g;,(x, hD) o P, = p(x) modulo W, *°(m). O
Remark 15. The above proof shows the following composition result concerning partial differential
operators. Suppose
Y N T RN 00
Pi= Y ca®X"(hZX) (h2 X", co(x) € CX(K).
order(a)<n’

Then if a € §"(m), we can write a,(x, hD) o P, f and P, oay(x, hD) f in the form

1

i / e 0 My (x, £)x () f (exp, (v)) dy dE

for x € C2°(B,,) and b € §"+" (m).

5. L? boundedness for order-0 operators

Given a symbol in $"(m) we decompose a = ) jaj asin (4-9). The operator a; ;(x, h D) is given by the
following integral kernel on U x U with respect to the measure dm (x), where w(x, X)dm(x) = exp}(dy):

K (x, 8) = wix, 5005 (©) / OO (e hap) dy.
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We can write a;;(x, hn) = 2/"a;(x, 272 no, 27/ h'/2y, 2737 n1/2y"), where a;(x, n) € CX(K x Bs),
with uniform bounds over j. Furthermore, a; vanishes for |n| < % if j>1.

Consequently, there are Schwartz functions p;(x, y), supported for x € K with Schwartz norms
independent of j, so that

(™ K ) (x, exp, () = 2720 D= (22 yo 27072y, 23Ry ") xo(y), (5-1)
and in particular, for all N,
K j(x, £)] < Cy2/m2i CHDp=d (1 422110, (F)o| + 27873 |0, (B) |+ 27 h 210, (®)") V. (5-2)
If a € ST then (5-1) holds for all » € Z, and summing over j we obtain the following.

Corollary 16. Ifa € S°°(m), then a,(x, h D) is given by a smooth integral kernel K (x, X) in the measure
dm(X), so that for some Schwartz function p(x,y), supported for x € supp(a),

_ _ _1 _1
(w ' K)(x, exp, (7)) = p(x, yo, B2y, B2y ) x0(y)-

We next observe that the vector fields 272/Y,, 27/h!/2Y’, and 273/ h'/2Y" acting as differential
operators in y all preserve the form (5-1) of w™!K j» that is, they give an expression of the same form
with p; uniformly bounded over j in each Schwartz seminorm.

The same holds for the operators 272/ X, 277 h'/2 X', and 273/ h'/2 X", acting on K j(x, X) as differential
operators in either the x- or X-variable. For action in the X-variable, this follows by Lemma 4, where
we use that there is at least one factor of y’ or y” in the expansion of Ry(x, y, d,) to compensate for the
factor of h~!/2 coming from the 0y and d,~ terms in the expansion of X(. For action in the x-variable we
work in coordinates x = exp;(y), hence x = exp, (—y), to write

(™ K ) (exps (), ) = 27121 CHD R~ o (expr (), =22 yo, =2Th 2y, =2 h 72y ) xo(—=y). (5-3)
To summarize, for a € §" (m), we can write
Q¥ X2 Thr Xy 2 ¥ hi X" K j(x, ¥)
=2/ T = (x, 220, (R)0, 2 h 20, (R), 2 R3O, () ) (X, ), (5-4)
where the functions p; o and y, satisfy seminorm bounds that depend on «, but are uniform over j and h.
This holds with any given vector X in the product acting as a vector field in x or X.

Conversely, suppose that j > 1, so that a;(x, n) € C¥ (K X {% <In|l < 8}) Then for any ¢, dividing

aj by |n|>¢ shows that we can write

(w™ 'K ;) (x,exp, ()

=2/ CHDR= Ny (e, @M, 29" 27 R0 0y (6,2 y0, 27071y, 25 1y
|a|=2¢

for Schwartz functions p; , that are uniformly bounded over j, and x, € C°(K x By)).
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Using Lemma 4, we write

dy, = Xo+y - X" — Ro(x,y, dy) — y - R"(x,y, dy),
0y = X"—yoX" = R'(x, y,0,) +yoR"(x, y, dy),
B = X' = R'(x. 3,8,

where the X; act in y. Substituting this into R(x, y, d,), and using that the X; form a smooth frame, we
can expand each dy; as a finite sum over 2 < || < 3:

dyy=Xo+y - X"+ Z co.ak(x, y)y* Xy,  order(Y;) — order(a) < 2,

o,k
Byj =X; —yoXjia +ch,a,k(x, VY* Xy, order(Yy)—order(a) <1, 1<j<d,
ok
dy, = X, + Zc,-,a,k(x, WY X, order(Yy) —order(a) <3, d+ 1< j <2d.

o,k

Additionally, cg 4 x = 0 unless either &’ # 0 or & # 0.
Let X ;j denote the transpose of the differential operator X; with respect to dy. Taking the transpose of
the above identities, it follows that, with the X ;j acting on y, we can write

(W™ K ) (x,exp, (1))

—2ImiCHD =0 3™ (32 X)X @I REX Y (6,250, 20h 2y, DYy,
loe|=2¢

where the p; , may depend on A, but with uniform Schwartz bounds over 0 </ <1 and j € N. Expressing

the action of X in terms of X, this leads to the expansion

Kj(x.5) = Z Z 9= Order(a)()_(o)ﬂo(h%)_(/)ﬂ/(h%)?//)ﬂ”Kj,a,ﬂ(X, %)
la|=2¢ B=a
for kernels K ; o g satisfying (5-2) with Cy depending on £ but uniform over j, o, 8. Here we can take
X ; to be the transpose of X; with respect to dm(x), since that differs from the transpose with respect to
dy by a smooth function.

Theorem 17. Ifa € SO(m), then ay(x, hD) is a bounded linear operator on L%(U), with operator norm
depending on only a finite number of seminorm bounds for a(x, &). In particular, the operator norm is
uniformly bounded over 0 < h < 1.

Proof. We decompose ay, (x, hD) = Z?io ajp(x, hD). Using (5-1) and (5-3) it is easily verified that the

kernel K (x, X) of a;;(x, hD) satisfies the Schur test,

sup/Kj(x,f)dm(i)fc, sqp/Kj(x,)E)dm(x)fc.

X
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We deduce L? boundedness from the Cotlar—Stein lemma (see [Knapp and Stein 1971; Stein 1993]), by
showing that, for any N € N,

llain(x, ADY*a; 5 (x, AD) || 2 12 + llain(x, AD)aj p(x, RD)*|| 2, 2 < €27 NI (5-5)

for a constant C uniform over 4 and j. If i = j this follows from L? boundedness of each term, so
without loss of generality we consider j > i > 0, and in particular j > 1. Given £ € N we then write the
integral kernel of a; 5, (x, hD)a; ;(x, hD)* as

/K,-(x, w)K;(x, w)dm(w)

= f KiGrow) Y3 277 oder@ X o)bo 2 XF (h2 X" K (r, w) dim (w)

la|=2¢ f<c

= Z Zziorder(ﬂ)_jorder(a)/Ki,ﬂ(x, w)Kj o p(x, w)dm(w),

la|=2¢ B<a

where K, g(x, w) = (272 Xo)Po (2~ h'/2X") (273 h'/2X")P"K;(x, w), and in all cases X acts on w.
Since i order(B) — j order(o) <2£(i — j), by using (5-4) and the Schur test on the composition we obtain
the bound (5-5) with N = 2¢ for the term a; ha;" »- To handle the term a;f »a;j.n We use the same argument,
together with symmetry of the derivative estimates in x and x. O

We note the following result for a € $"(m), which holds since 277" j(x,n) e SO(m),

sup2™"[laj n(x, AD) fll 2wy < Cll fll 2wy, @ € S™(m). (5-6)
Jj=0

6. Estimates on S*(M)

Let (M, g) be a compact Riemannian manifold of dimension d + 1, and $*(M) C T*(M) its unit cosphere

bundle. We consider the Hamiltonian function %I;‘ Ié(z) = % ﬁil gik (2)¢i &y, and recall that S*(M) is
the level set |¢[g;) = 1. We use Xo = H to denote the Hamiltonian field for %|§ |§(Z),
d+1 d+1
Xo= Y g @i — 5 Y 0,8 @Gz,
ik=1 i jk=1

which is tangent to S*(M).

We cover S*(M) by a finite collection of open coordinate charts as follows. Let {V,} form a finite
covering of M by coordinate charts, over which we can identity 7*(M) with V,, x R¢*! and §*(M) with
Vo x S%. We cover S by two coordinate charts W over each of which there is a section of the frame
bundle. We thus obtain a cover of §*(M) by open charts {V, x W}, which by counting each V,, twice
we can label as U,, such that on U, there is an orthonormal collection {X j}?=1 of vertical vector fields
that span the tangent space to (M) over each z € V. The collection {X; }?:1 is involutive, since it
spans the vertical vector fields on U,,.
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There is a natural isometric identification T, (7.*(M)) ~ T,(M), which identifies {X |, ;)}?:1 with an
orthonormal collection of vectors {)? j}?zl C T,(M), which are also orthogonal to 7. (Xol(,¢)). We let
Xyl be —% times the horizontal lift of X ;. We observe that

d+1
TX), Xol = Y g% () X6, = Xj,
i k=1
so that [ Xy, X;]1 —2X ;4 € span{X j}?:r Thus the assumptions of the Introduction are satisfied for the
collection {X j}i‘i 0

Let As be the induced nonnegative Laplacian acting on the fibers S¥(M) of the bundle, and let A be
the nonnegative Laplacian on $*(M). See for example [Drouot 2017, Section 2.1] for details, where it is
shown that A and Ag commute. One verifies that, over each U,, one has

d d
Ag = — Zx}+zc,~(z, OX;.
j=1 j=1

We now use x € R??*! to denote the variables on U,, and define

d d
Pi=H+hAs=Xo— Y hX;+ ) c;(x)hX;.
j=l1 Jj=1
Thus on each Uy, the operator P}, differs from the sum of squares considered previously by an operator in
h'/ Z‘I’;l, (m), and the pseudodifferential calculus shows that, given x, € CS°(Uy), there exists a symbol g, €
S~2(m), the quantization of which depends on ¥, through the choice of g in (4-1), so that on U, we have

Go,h(x, hD) o Ppu = xo(x)u + Ryu, Ry € LIjh_oo(””)

Note that both gy j,(x, D) and R, are properly supported in U,. We now take a partition of unity xq
subordinate to the cover U,, and define

Qnv=> qan(x.hD)v, Rv=> Ryv.
o o

Then Q0 P, = I + R, and for all Ni, N, we have
1AM R(AYNull 125+ aay) < Cwviows el 225 (ary) - (6-1)

This follows from Theorems 11 and 17 and the fact that A A € \IJ}?(UO[) for each o, which follows from (4-4).
More generally, we define W) (m) on $*(M) as sums > o Ga,n(x, hD) with a, € S?(m) on Uy. The
function yo in the quantization (4-1) depends on the x-support of a, (x, ), which is always assumed to
be a compact subset of U,.
The semiclassical Sobolev spaces are defined on S*(M) using the spectral decomposition of A, with
norm

L e = (1412 A2 £l 2.
We will consider cutoffs p(s) satisfying, for some ¢’ > ¢ > 0,

p(s) € C*(R), p(s)=0 ifs<c, ps)=1 ifs>c. (6-2)
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The operator p(h?A) is then defined as a spectral multiplier. We observe the following simple result for
R € ¥, *(m) on S*(M). For all N and o we have

lo(B* A)Rull e + | Rp (> Aull g < Cn.oh™ llull 2. (6-3)

This follows by writing p (h2A)(1 +h>A)° = f(h*A) o (h* A)N, where the function f(s) is a bounded
function provided N > o, and using (6-1).

Theorem 18. Suppose that o < 0, that A, € Y} (m), and that p satisfies (6-2). Then
o (h* A) Apal yors + | Anp (> Ayl yors < Ch™O ] 2.
Proof. Choose k so 6k + o > 0. For each i € (0, 1], we show that A, = Ay ; + A1, where
12 2)* Ag pull 2 + 1 Ao (h* D) ul 2 + A ptel yos < Ch™ Ol 2.

The result then follows since p(s) < min(s¥, 1). Using the Littlewood—Paley decomposition as in the
proof of Theorem 17, applied to each a, in the sum defining a, we let

Aon= Y aju(x,hD), A= > ajs(x,hD).

2/ <h=1/6 2/>p=1/6

Recalling the form (5-4), we see that applying h?A to a j,n(x, hD) is equivalent to multiplying it by at
most 2% /1. As in the proof of (5-5) we conclude that

(1 +h2A)a;,(x, hD)a; (x, hD)*(1 4+ k> A || 2 12 < (1425 ) (1 4287 pykpo GHD=li=il,
Js ,
For 27,2/ > h~1/6 we interpolate with the L? bounds (5-6) to obtain
1L+ A2 A) = %a; (e, hDYay (e, DY (14> A) ™| 2, 12 < Ch™7/P27 1L,

This estimate also holds for the transposed operators. The Cotlar—Stein lemma then implies the bounds
for Al,h .
Similarly, we have

(> AY aj e, DY 2o 12+ llajn (e, ADY(R* A)* | 20, 2 < C 2% ) 2%,
which we may sum over 2/ < h~!/% to conclude the bounds involving Ag . O
Corollary 19. Suppose that o <0 and Ay, € ¥} (m). Then
I +hA) 77 Apull 2 < Cllull 2.
Proof. As in the proof of Theorem 18 we observe that, for k =0, 1,2, ...,
I(1+RA)Y ajp(x, hD)ai (e, RDY*(1+h A o, g2 < 20D 20 GHD=IT
We interpolate between k = 0 and any k > —o/6 to obtain
(1 +hA) % (x, hD)a; y(x, AD)*(1 +hA) /0| 12, 2 < €271,

This estimate also holds for the transposed operators. The Cotlar—Stein lemma then implies the result. []
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Theorem 20. The following bound holds for h € (0, 1] and all N € N:
1 _
IHull2 4+ hll Asull 2 + (1 +hA)3ull 2 < Cll Pyull 2 4+ Cyll(A+2A)Nul 2.

Proof. Write u = Qj, P,u+ Ru, where Qj, € \llh_z(m), and note that H Qj, hAsQj € \IJ}?(m) by Remark 15.
Also, for all N we have HR(1 +hA)N, hAsR(1+hA)N € WP (m); hence

IHRull 2 + Rl AsRull 2 < Cyll(1+hA)Vul 2.
Since Qp, R(1+hA)N € \D,Z_Z(m), the result then follows by Corollary 19. Il
Theorem 21. Suppose that p; and p; satisfy (6-2), and p» = 1 on a neighborhood of supp(p1). Given
Ao > 0, the following holds for all N, and all |)| < o and h € (0, 1]:

d

_1 2 1 2 2 2

W3 o1 (B> Ml o +h3 Y 1 X1 (W2 A)ull s + 11 Xopr (B Aul 2 + | hAspr (W2 A2

j=1

< Cnao (o2 (B> APy = Ml 2 + Y el 2).
Proof. We follow the scheme of the proof of Theorem 2 of [Drouot 2017], using the parametrix Qy of Py
to replace the positive commutator arguments. Write
pr(R* Dyu = Q11 (B> A) (P = M+ QnlPr, o1 (B> A)1u+ 1011 (0> A)u + Rpi (0> A)u.

To handle the commutator term, we use that [As, p1 (h2A)] = 0; hence [Py, p1 (h*A)] = [Xo, p1(h2A)].
Now let p;(s) be any function satisfying (6-2) which equals 1 on a neighborhood of supp(p;). Then
following [Drouot 2017], we use that the essential support of [ Xy, p1(h?A)] is contained within the
elliptic set of p(h*A), and we can thus bound

ILPx, 1 (R* M) Jul 2 < Cll A1 (B M) ull 2+ Cvh™ ul] 2.
Applying Theorem 18 and (6-3) we obtain

d
1 1 1
W3 (W Aull s +h78 Y 1A X (W2 Aull i + [ Xopr (W2 Aull 2 + [ As pr (0 Al 2
j=1

< C(lp1(W*A)(Py — Mull 2 + 151 (R Mull 2 + (1 + [AD o1 (B> Al 2) + CnhN [Jul 2.

For & bounded away from 0 we can absorb the term (1 + |A|) ||,01(h2A)u||Lz into CyhN lu]l;2, and for A
small we can subtract it from both sides.
From this we deduce the following bound for any such p;:

1 |
o1 (B* Aull 2 < Cwv g (B3 192 (W2 AY(Py — Mull 2 + 13 1|51 (2 A)ull 2 + 1" llul 12).

We now choose a sequence of cutoffs p; for 1 < j <3N, satisfying (6-2), such that for all j we have
pj+1 =1 on a neighborhood of supp(p;), and p, = 1 on a neighborhood of supp(o;). Then replacing p;
by p;, the preceding estimate shows that

~ 1 .
15 (h*A)ullz2 < C g (h3 12 (B> A)(Py — Mull g2 4+ h3 1541 (W A)ull 2 + AN [Jull 2).
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We conclude by iteration that
- 1
151 (h* Aull 2 < Ci g (R3 1 p2(h* AY (P — Mull g2 +hV || o2 (B Ayull 2 + hV |ull .2)
1
< C o (B3l p2 (B2 DY (Py — Mull 2 + AN [lull .2).

Together with the above this yields the statement of the theorem. U
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