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PARAMETRIX FOR A SEMICLASSICAL SUBELLIPTIC OPERATOR

HART F. SMITH

We demonstrate a parametrix construction, together with associated pseudodifferential operator calculus,
for an operator of sum-of-squares type with semiclassical parameter. The form of operator we consider
includes the generator of kinetic Brownian motion on the cosphere bundle of a Riemannian manifold.
Regularity estimates in semiclassical Sobolev spaces are proven by establishing mapping properties for
the parametrix.

1. Introduction

We deal in this paper with a class of second order, subelliptic partial differential operators of the sum-of-
squares form

Ph = X0− h
d∑

j=1

X2
j − h

d∑
j=1

c j X j , h ∈ (0, 1], (1-1)

where the X j for 0≤ j ≤ d are smooth vector fields, the c j are smooth functions, and h > 0 is considered
as a semiclassical parameter. We work in 2d + 1 dimensions, either on a compact manifold or an open
subset of R2d+1, and make the following assumptions throughout this paper.

Assumption 1. • The collection of 2d + 1 vectors {X0, X1, . . . , Xd , [X0, X1], . . . , [X0, Xd ]} spans
the tangent space at each base point.

• The collection {X1, . . . , Xd} is involutive (closed under commutation of vector fields).

For each h > 0 the operator Ph is subelliptic by a result of [Hörmander 1967], and by [Roth-
schild and Stein 1976] the operator Ph controls 2

3 -derivatives in the Sobolev space sense. In the
semiclassical setting it is natural to work with a semiclassical notion of Sobolev spaces; we refer
to [Zworski 2012] for a treatment of semiclassical analysis. The question of interest in this paper is the
dependence on h of the various constants in a priori inequalities for Ph , both in L2 and semiclassical
Sobolev spaces.

Our work is motivated by that of Alexis Drouot [2017], who studied such an operator on the cosphere
bundle S∗(M) of a (d+1)-dimensional Riemannian manifold M. The paper [Drouot 2017] considers the
operator Ph = H +h1S, with H the generator of the Hamiltonian/geodesic flow and 1S the nonnegative
Laplace–Beltrami operator along the fibers of the cosphere bundle. In local coordinate charts this operator
can be represented in the form (1-1), where X0 = H, and {X j }

d
j=1 is any local orthonormal frame for the
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tangent space of the fibers of S∗(M). In [Drouot 2017] it is shown that, if M is negatively curved, then as
h→ 0 the eigenvalues of −i Ph converge to the Pollicott–Ruelle resonances of M. The analogous result
was proven in [Dyatlov and Zworski 2015] for Ph = H + h1, where 1 is the Laplacian on S∗(M). The
interest in taking Ph = H+h1S is that this operator generates what is known as kinetic Brownian motion
on M. For a treatment of this process we refer to [Franchi and Le Jan 2007; Grothaus and Stilgenbauer
2013; Angst, Bailleul, and Tardif 2015; Li 2016].

A key step in the proof of convergence in [Drouot 2017] was controlling the subelliptic estimates for
Ph as h→ 0. We emphasize that the estimates we prove are the same as in that paper, with an occasional
improvement in the remainder terms. The aim here is to obtain a finer microlocal understanding of the
parametrix. We obtain a parametrix valid on the region h1 ≥ 1, strictly larger than the semiclassical
region h21 ≥ 1. The restriction h1 ≥ 1 arises from the largest region of phase space on which the
uncertainty principle holds for the parametrix. The estimates in [Drouot 2017] were obtained through
commutator methods, analogous to the work of [Hörmander 1967]. Our approach is more similar to
that of [Rothschild and Stein 1976], in that we use an approximation to the operator at each point by a
model nilpotent Lie group, and construct a parametrix from the inverse of the model operator on that
group. Estimates are then obtained from mapping properties for the parametrix. In contrast to [Rothschild
and Stein 1976], which lifted the operator to a higher-dimensional Lie group on which the parametrix
is represented as a singular integral kernel, we construct the parametrix in pseudodifferential form on
the space itself. This procedure is motivated by the author’s work [Smith 1994] on the ∂̄b problem on
three-dimensional CR manifolds of finite type.

When constructing a parametrix for Ph of the form (1-1), it is more natural from the semiclassical
viewpoint to consider h Ph = h X0+

∑d
j=1(h X j )

2, and quantize symbols in terms of hη. This leads to
placing an extra factor of h on the variables η′′ dual to X j for d+1≤ j ≤ 2d , since [h X0, h X j ] ∼ h2 X j+d .
The quantization of symbols is naturally carried out using exponential coordinates with respect to an
extension of {X j }

d
j=0 to a frame {X j }

2d
j=0. We will require that:

Assumption 2. If 1≤ i ≤ d, then [X0, X i ] − 2X i+d ∈ span(X0, . . . , Xd).

This can of course be arranged by setting X i+d = 2[X0, X i ]. In the model nilpotent Lie group setting
where all other commutators vanish, there is a natural nonisotropic dilation structure using powers (2, 1, 3).
Precisely, we split η ∈ R2d+1

= R×Rd
×Rd into (η0, η

′, η′′), and similarly use X ′ as abbreviation for
the collection (X1, . . . , Xd), and X ′′ = (Xd+1, . . . , X2d). Then the dilation that respects the fundamental
solution for the model operator is

δr (η)= (r2η0, rη′, r3η′′).

We now summarize the main result of this paper, leaving details to be expanded upon in later sections.
For simplicity consider an open set U ⊂ R2d+1. For a multi-index α ∈ N2d+1, let

order(α)= 2α0+ |α
′
| + 3|α′′|.

We use expx(y) to denote the time-1 flow of x along
∑2d

j=0 y j X j .
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Proposition 3. Given ρ(x) ∈ C∞c (U ), there is χ0 ∈ C∞c (R
2d+1) and an h-dependent family of symbols

a(x, η) satisfying

|∂βx ∂
α
η a(x, η)| ≤ Cα,βh(h

1
2 + |η0|

1
2 + |η′| + |η′′|

1
3 )−2−order(α),

with Cα,β independent of h ∈ (0, 1], so that the operator ah(x, h D) defined by

ah(x, h D)=
1

(2π)2d+1

∫
e−i〈y,η〉a(x, hη0, hη′, h2η′′) f (expx(y))χ0(y) dy dη

satisfies

ah(x, h D) ◦ Ph = ρ(x)+ rh(x, h D),

where rh(x, h D) is an operator that satisfies the following with C p1,p2 independent of h ∈ (0, 1], for any
polynomials p j (η) on R2d+1:

‖p1(X0, h
1
2 X ′, h

1
2 X ′′) ◦ rh(x, h D) ◦ p2(X0, h

1
2 X ′, h

1
2 X ′′) f ‖L2 ≤ C p1,p2‖ f ‖L2 .

For example, one can take p1 or p2 to yield the operator (1+ X∗0 X0)
N1(1+ h1)N2, where 1 is the

Laplacian on R2d+1. These bounds roughly say that the parametrix inverts Ph on the region

{1≥ h−1
} ∪ {|X0| ≥ 1}.

In particular, the remainder term rh will be of order h∞ if the solution is localized to a region where
1≥ h−1−ε for some ε > 0.

We remark that in the calculus developed here Ph is of order 2, and thus distinct from the standard
semiclassical calculus where h Ph is of order 2. This is related to the fact that we are working on the region
|η| ≥ h1/2 rather than |η| ≥ 1. Symbols of order j are weighted by a factor h− j/2 to ensure that symbols of
negative order (but not necessarily their derivatives) remain bounded as h→ 0. With this accounting, X0

is an operator of order 2, h1/2 X j is of order 1 for 1≤ j ≤ d , and h1/2 X j is of order 3 for d+ 1≤ j ≤ 2d .
Together with the composition calculus, pseudolocality arguments, and L2 mapping bounds for

operators, we deduce the regularity results on S∗(M) for Ph that were established in [Drouot 2017]. These
are stated in Theorems 20 and 21.

The outline of this paper is as follows. In Section 2 we introduce a model operator of Ph on a step-2
nilpotent group, and discuss the homogeneous fundamental solution in this setting. In Section 3 we study
the degree to which the model operator, attached to M by exponential coordinates, approximates Ph .
Careful estimates of the Taylor expansion of vector fields and exponential coordinates are needed to
obtain uniform estimates as h→ 0. In Section 4 we prove that operators of the form ah(x, h D) form
an algebra under composition. This allows for the construction of parametrices from the inverse for
the model operator on the nilpotent Lie group. In Section 5 we establish L2 boundedness of order-0
operators in local coordinates, using a nonisotropic Littlewood–Paley decomposition of the operator
and the Cotlar–Stein lemma. Finally, in Section 6 we establish the main regularity estimates for Ph in
h-Sobolev spaces, leading to the proof of the bounds in [Drouot 2017].
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2. Operators on model domains

In this section we consider a nilpotent Lie group structure on R2d+1 that captures the commutation relations
of the vector fields X j , and we introduce a left-invariant model of Ph . The top-order term in the parametrix
for Ph at a point x ∈U will be given by the fundamental solution for the model operator, attached to U via
exponential coordinates at x relative to the frame {X j }

2d
j=0. In subsequent sections we show that the model

operator agrees to leading order with the expression of Ph in exponential coordinates, and develop a graded
pseudodifferential calculus that allows us to produce a parametrix for Ph modulo a smoothing operator.
We start by considering h = 1, and then obtain the fundamental solution for all h by a suitable dilation.

We use the variables y = (y0, y′, y′′) ∈R×Rd
×Rd, with dual variables η= (η0, η

′, η′′), and introduce
the dilation structure

δr (η)= (r2η0, rη′, r3η′′), δr−1(y)= (r−2 y0, r−1 y′, r−3 y′′).

We also introduce a corresponding nonisotropic homogeneous weight m ∈ C∞(R2d+1
\{0}),

m(η)= (|η0|
6
+ |η′|12

+ |η′′|4)
1
12 ,

so that m(δr (η))= rm(η), and 3−12/5
≤ m(η)≤ 1 when |η| = 1.

Consider the frame of vector fields on R2d+1 given by

• Y0 = ∂0−
∑d

j=1 y j∂ j+d ,

• Yj = ∂ j + y0∂ j+d for 1≤ j ≤ d ,

• Yj = ∂ j for j ≥ d + 1,

and observe that
[Y0, Yj ] = 2Y j+d if 1≤ j ≤ d,

with all other commutators equal to 0. The collection {Y j }
2d
j=0 forms a nilpotent (step-2) Lie algebra.

These are left-invariant vector fields associated to the nilpotent Lie group structure on R2d+1 with product

y×w = (y0+w0, y′+w′, y′′+w′′+ y0w
′
−w0 y′).

The exponential map at base point y, and corresponding exponential coordinates, are given by

expy(w)= (y0+w0, y′+w′, y′′+w′′+ y0w
′
−w0 y′),

2y(z)= (z0− y0, z′− y′, z′′− y′′− y0z′+ z0 y′),
(2-1)

so in particular 20(w)= w.
The vector field Y0 is homogeneous of order 2 under δr in that

Y0( f ◦ r−1)= r−2(Y0 f ) ◦ δr−1,

which we summarize by writing order(Y0)= 2. Similarly, order(Yj )= 1 for 1≤ j ≤ d , and order(Yj )= 3
for d + 1≤ j ≤ 2d . More generally, if we define the order of a multi-index α by

order(α)= 2α0+α1+ · · ·+αd + 3αd+1+ · · ·+ 3α2d = 2α0+ |α
′
| + 3|α′′|,
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then the monomial differential operator yβ∂αy will be homogeneous, with order given by

order(yβ∂αy )= order(α)− order(β). (2-2)

The left-invariant differential operator Y0−
∑d

j=1 Y 2
j is subelliptic and homogeneous of order 2. By

[Folland 1975], it has a unique homogeneous fundamental solution K (y) ∈ C∞(R2d+1
\{0}),(

Y0−

d∑
j=1

Y 2
j

)
K (y)= δ(y), K (δr−1(y))= r (2+4d)−2K (y).

The homogeneous inverse for Y0−
∑d

j=1 Y 2
j is given by convolution with K , which we will express in

pseudodifferential form. Precisely, if we let q0(η)= K̂ , then q0(δrη)= r−2q0(η), and the operator

q0(D) f (y)=
1

(2π)2d+1

∫
R2d+1

e−i〈2y(z),η〉q0(η) f (z) dz dη

is a left and right inverse for Y0−
∑d

j=1 Y 2
j on the space of Schwartz functions.

To conclude this section we consider the semiclassical subelliptic operator hY0−
∑d

j=1 h2Y 2
j . This is

naturally associated to dilating y0 and y′ by h, and y′′ by h2, in that(
Y0−

d∑
j=1

Y 2
j

)
( f (hy0, hy′, h2 y′′))=

(
hY0 f −

d∑
j=1

h2Y 2
j f
)
(hy0, hy′, h2 y′′).

Consequently, if we introduce the operation on symbols

ah(η)= a(η0, η
′, hη′′),

then the inverse for hY0−
∑d

j=1 h2Y 2
j is given by the semiclassical quantization of qh ,

q0,h(h D) f (y)=
1

(2πh)2d+1

∫
R4d+2

e−i〈2y(z),ζ 〉/hq0,h(η) f (z) dz dζ

=
1

(2π)2d+1

∫
R4d+2

e−i〈z,ζ 〉q0,h(η) f (expy(hz)) dz dζ.

3. Approximation by the model domain

Recall that we consider a spanning collection {X0, X1, . . . , X2d} of vector fields on an open subset U of
R2d+1 satisfying the following conditions:

• The collection {X1, . . . , Xd} is involutive (closed under commutation of vector fields).

• If 1≤ i ≤ d , then [X0, X i ] − 2X i+d ∈ span(X0, . . . , Xd).

We will use x, x̃ to denote variables in U and y, z to denote variables in R2d+1.
Let expx(y) be exponential coordinates with base point x in the frame {X0, . . . , X2d}. That is, expx(y)=

γ (1), where γ (0) = x and γ ′(t) =
∑2d

j=0 y j X j (γ (t)). Define exponential coordinates 2x as the local
inverse of expx in a neighborhood of x :

2x(expx(y))= y, expx(2x(x̃))= x̃ .
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Recall the definition (2-2) of the order of a monomial differential operator in y. Consistent with this
we have order(Y0)= 2, order(Yj )= 1 if 1≤ j ≤ d , and order(Yj )= 3 if d + 1≤ j ≤ 2d .

Lemma 4. For 0≤ j ≤ 2d , we can write

(X j f )(expx(y))= Yj ( f (expx(y)))+ R j (x, y, ∂y) f (expx(y)),

where order(R j ) < order(Yj ), in the sense that the Taylor expansion

R j (x, y, ∂y)=
∑
α,k

c j,α,k(x)yα∂k

includes only terms with order(yα∂k) < order(Yj ).
Additionally, c0,α,k(x)≡ 0 unless there is at least one factor of y j with j ≥ 1 occurring in yα.

Proof. Any term yα∂k with |α|> 2 is of order ≤ 0, so we need examine the Taylor expansion of X j in
exponential coordinates only to second power in y. Additionally, order(yi y j∂k)≤ 1, and equals 1 only if
1≤ i, j ≤ d and k ≥ d+ 1. To see that such a term cannot arise in R j for 1≤ j ≤ d , the only case where
order(Yj )≤ 1, we use involutivity of {X1, . . . , Xd} and the Frobenius theorem to see that this collection
remains tangent to the flowout of the subspace y0= y′′= 0, and hence we can write X j =

∑d
k=1 ck(x, y)∂k

if y0 = y′′ = 0 and 1≤ j ≤ d .
Thus, we need show that in the expansion of R j about y = 0 the terms linear in y are of order strictly

less than order(Yj ). For j ≥ d + 1 this is immediate, since X j = ∂ j = Yj at y = 0, and any vector field
that vanishes at 0 includes terms of order at most 2. For 0≤ j ≤ d we expand

X j = ∂ j +
∑
i,k

c j ik(x)yi + (y2)∂y .

Since radial lines in exponential coordinates are integral curves of
∑2d

j=0 y j X j , we have

2d∑
j=0

y j X j =

2d∑
j=0

y j∂ j , (3-1)

from which we deduce
ci jk =−c j ik .

Also, since [X0, X j ] − 2X j+d ∈ span(X0, . . . , Xd), we deduce for j = 1, . . . , d that

c j0k =

{
1, k = j + d,
0, k > d and k 6= j + d.

Since order(yi∂k) < 2 unless k > d , we deduce order(R0(x, y, ∂y)) < 2.
By involutivity of {X1, . . . , Xd}, if 1 ≤ i, j ≤ d then c j ik = 0 unless also 1 ≤ k ≤ d, in which case

order(yi∂k)= 0. And if i > d then order(yi∂k)≤ 0 for all k. So if 1≤ j ≤ d then all terms c j ik yi∂k for
i 6= 0 have order ≤ 0, and since c j0k = δk, j+d we conclude order(R j (x, y, ∂y))≤ 0 if 1≤ j ≤ d .

To conclude the lemma, we note by (3-1) that if y′ = y′′ = 0 then X0 = ∂y0 , from which we obtain
R0 ≡ 0 along y′ = y′′ = 0. �
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For x ∈U, and y, z in a neighborhood of 0 in R2d+1, we introduce the functions

2(x, y, z)=2expx (y)(expx(z)), 2̃(x, y, w)=2x(expexpx (y)
(w)), (3-2)

where we recall 2x(x̃) denotes exponential coordinates in X j centered at x . For fixed x and y these are
inverse functions of each other on their domains:

z = 2̃(x, y, w) ⇐⇒ w =2(x, y, z).

To invert in the y-variable we note that v = 2̃(x, y, w) implies y = 2̃(x, v,−w).
Observe that 2(x, y, z)=−2(x, z, y), and 2(x, y, z)= z− y+O(y, z)2. For more precise estimates

on 2 and 2̃ we consider their Taylor expansions in exponential coordinates at x . We first assign a notion
of order to a smooth function f (x, y, z). Consistent with (2-2), we make the following definition.

Definition 5. For a smooth function f (x, y, z) defined on an open subset of U×R2d+1
×R2d+1 containing

U ×{0, 0}, we say that order( f ) <− j if for all x ∈U

(∂αy ∂
β
z f )(x, 0, 0)= 0 for all α, β : order(α+β)≤ j.

Equivalently, the Taylor expansion of f in y, z about y = z = 0 contains only monomials yαzβ with
order(α+β) > j . We let order( f ) be the least n ∈ Z such that order( f ) < n+ 1.

Recalling the definition (2-1) of 2y(z), which are exponential coordinates in the frame Yj on the model
domain, we have the following.

Lemma 6. We have 2(x, y, z)=2y(z)+ R(x, y, z), where order(R j ) < order(y j ) for each j . Similarly,
2̃(x, y, w)=2−y(w)+ R̃(x, y, w), where order(R̃ j ) < order(y j ) for each j .

Proof. We work in exponential coordinates y =2x( · ) centered at x , and use Lemma 4 to consider X j

as a vector field in y. Then z = 2̃(x, y, w) means that z = γ (1), where γ (t) is the integral curve of
w · X ≡

∑
wk Xk with γ (0)= y. Taking the Taylor expansion of γ (t) about t = 0 and evaluating at t = 1

gives the following expansion of z = 2̃(x, y, w) in terms of w:

z j = y j + (w · X) j (y)+
∞∑

k=1

1
(k+ 1)!

(w · X)k(w · X) j (y), (3-3)

where (w · X)(y, ∂y) acts on y and (w · X) j (y) is its ∂ j coefficient as a function of y. It is seen from
Lemma 4 that w · X does not increase the order of a function f (x, y, w), and w · X −w ·Y decreases the
order of f (x, y, w) by at least 1. Also, as functions of (y, w)

order((w · Y ) j (y))= order(y j ), order((w · X) j (y)− (w · Y ) j (y)) < order(y j ).

Thus, if we replace w · X by w ·Y in the expansion (3-3) then the right-hand side is changed by terms of
strictly lower order than y j . It follows that we can write

(z0, z′, z′′)= (y0+w0, y′+w′, y′′+w′′+ y0w
′
−w0 y′)+ (R̃0, R̃′, R̃′′), (3-4)

where order(R̃0) < −2, order(R̃′) < −1, and order(R̃′′) < −3 as functions of (y, w). Recalling the
formula (2-1), this completes the second statement of the lemma.
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We next invert the map w→ z to express w = w(y, z)=2(x, y, z), and use (3-4) to write

w(y, z)=2y(z)− (R̃0, R̃′,−y0 R̃′+ y′ R̃0+ R̃′′)≡2y(z)− R(x, y, z),

where R̃ = R̃(y, w(y, z)). Since w is equal to z− y plus quadratic terms in (y, z), we see that R(x, y, z)
has no linear terms in y or z, and hence order(w0)≤−2 and order(w′)≤−1, since quadratic terms are
of order at most −2. This also shows that order(−y0 R̃′+ y′ R̃0)≤−3.

To conclude the lemma it suffices to show that order(R̃′′(y, z))≤−3, since together with the preceding
this shows that order(w j (y, z))≤ order(y j ) for all j , from which it follows that order(R̃ j (y, w(y, z)))≤
order(R̃ j (y, w)) < order(y j ). We know that order(w′′(y, z))≤−2 since quadratic terms are order ≤−2,
and by the above that order(w j (y, z)) ≤ order(y j ) for j ≤ d. Since order(R̃′′) < −3 as a function of
(y, w), it is easy to see by examining terms in (y, w) of order ≤−4 that order(R̃′′)≤−3 as a function
of (y, z), concluding the proof. �

We make a few important additional observations about the terms that can occur in the Taylor expansion
of 2(x, y, z) about y = z = 0 and 2̃(x, y, w) about y = w = 0. First, we have

2(x, y, z)= z0− y0 if y′ = z′ = y′′ = z′′ = 0,

2̃(x, y, w)= y0+w0 if y′ = w′ = y′′ = w′′ = 0.

Consequently, every nonvanishing term in the Taylor expansion of R(x, y, z) about y = z = 0 must
include a factor of either y′, z′, y′′, or z′′. Similarly, every nonvanishing term in the Taylor expansion of
R̃(x, y, w) about y = w = 0 must include a factor of either y′, w′, y′′, or w′′.

Additionally, since the collection {X j }
d
j=1 is involutive it follows that R0 and R′′ vanish if y0 = z0 =

y′′ = z′′ = 0, and hence every nonvanishing term in the Taylor expansions of R0 and R′′ must contain a
factor other than (y′, z′). Similarly R̃0 and R̃′′ must each contain a factor other than (y′, w′). Combining
this with the fact that R(x, y, z)= 0 if z = y, we can write

R j (x, y, z)=
∑

|α|+|β|=2
|β|≥1

c j,α,β(x)yα(z− y)β +
∑

|α|+|β|=3
|β|≥1

c j,α,β(x, y, z)yα(z− y)β (3-5)

for smooth functions c j,α,β , where c j,α,β ≡ 0 unless order(yαzβ) < order(y j ), and also unless one of α′,
β ′, α′′, or β ′′ is nonzero. Additionally, if j = 0 or j ≥ d+1 then c j,α,β ≡ 0 unless one of α0, β0, α′′, or β ′′

is nonzero.
The same conditions also hold on c̃ j,α,β in the following expansion of R̃(x, y, w):

R̃ j (x, y, w)=
∑

|α|+|β|=2
|β|≥1

c̃ j,α,β(x)yαwβ +
∑

|α|+|β|=3
|β|≥1

c̃ j,α,β(x, y, w)yαwβ .

4. The semiclassical calculus on U

In this section we introduce the nonisotropic semiclassical quantization and h-dependent symbol classes
that we use to construct the parametrix for Ph . As seen for the model operator, the phase variables
associated to X ′′ need to be scaled by h2, as opposed to the h-scaling for variables associated to X0
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and X ′. The symbol classes are naturally associated to the nonisotropic dilation structure δr . We will
define them using the nonisotropic norm

m(η)= (|η0|
6
+ |η′|12

+ |η′′|4)
1
12 ≈ |η0|

1
2 + |η′| + |η′′|

1
3 ,

which is smooth for η 6= 0 and homogeneous of degree 1, in that m(δr (η))= rm(η).
We assume that K is compactly contained in U, and choose r1 so that the exponential map y→ expx(y)

is a diffeomorphism on the ball {|y| ≤ r1} for all x ∈ K . We also fix r0 < r1 such that⋃
x̃∈expx (Br0 )

expx̃(Br0)⊂ expx(Br1).

We fix functions χ j ∈ C∞c (Br j ) with χ0(y)= 1 for |y| ≤ 1
2r0 and

χ1(2x( · ))= 1 on a neighborhood of
⋃

x̃∈expx (Br0 )

expx̃(Br0).

Given a symbol a(x, η) ∈ C∞(U ×R2d+1) supported where x ∈ K , we let

ah(x, η)= a(x, η0, η
′, hη′′),

and define a nonisotropic semiclassical quantization of a by the rule

ah(x, h D) f (x)=
1

(2πh)2d+1

∫
R4d+2

e−i〈y,η〉/hah(x, η)χ0(y) f (expx(y)) dy dη

=
1

(2π)2d+1

∫
R4d+2

e−i〈y,η〉ah(x, η)χ0(hy) f (expx(hy)) dy dη. (4-1)

Thus the Schwartz kernel of ah(x, h D) is supported in K × Kr0 , where Kr0 is the image of K × Br0

under (x, y)→ expx(y). In contrast to the usual semiclassical scaling η→ hη, the nonisotropic scaling
(hη0, hη′, h2η′′) arises from the missing directions X ′′ being obtained from commutators of X0 and X ′.

If p(x, η)=
∑
|α|≤n cα(x)ηα is a polynomial in η, then

(ph(x, h D) f )(x)= ph(x, (−i∂y)) f (expx(hy))
∣∣

y=0.

In particular, we have the following correspondence of symbols to operators:

iη j : h X j , 0≤ j ≤ d, iη j : h2 X j , d + 1≤ j ≤ 2d. (4-2)

Suppose that the symbol a satisfies homogeneous order-0 type estimates of the form

|∂βx ∂
α
η a(x, η)| ≤ Cα,βm(η)− order(α).

The uncertainty principle, needed for example for proving L2 continuity of ah(x, h D), requires uniform
bounds on ∂αx (h∂η)

αah(x, η). On the other hand,

|∂αx (h∂η)
αah(x, η)| = h|α0|+|α

′
|+2|α′′|

|(∂αx ∂
α
η a)h(x, η)|

≤ Cαh|α0|+|α
′
|+2|α′′|m(η0, η

′, hη′′)−2|α0|−|α
′
|−3|α′′|.
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To have uniform bounds as h→ 0 for every α would require truncating a(x, η) to where m(η)≥ h1/2. It
is convenient to work with bounded symbols; hence for symbols of order n we will multiply by a factor
of h−n/2 to ensure that symbols of any order be of size . 1 when m(η)≤ h1/2.

Definition 7. Let m(h, η)= (h1/2
+m(η)). A h-dependent family of symbols a(x, η) belongs to Sn(m)

if, for all α, β, there is Cα,β independent of h such that, for 0< h ≤ 1,

|∂βx ∂
α
η a(x, η)| ≤ Cα,βh−

n
2 m(h, η)n−order(α).

We let 9n
h (m) denote the collection of operators ah(x, h D) as in (4-1) with a ∈ Sn

h (m).
We also define S−∞(m)=

⋂
k∈N S−k(m), and let 9−∞h (m) denote operators that can be written in the

form (4-1) with χ0 replaced by χ1, and a ∈ S−∞(m).

Remark 8. We define 9−∞h (m) using χ1 in the quantization rule (4-1) since the composition of operators
defined using χ0 need not have Schwartz kernel supported inside Br0 (in local exponential coordinates).
We also note that results below concerning continuity and composition of symbols are independent of the
particular choice of χ0. We show in Lemma 13 that replacing χ0 by another function in C∞c (Br0) that
equals 1 on Br0/2 changes ah(x, h D) by a term in 9−∞h (m).

For polynomial symbols we note that

h−
1
2 order(α)ηα ∈ Sorder(α)(m). (4-3)

By (4-2) we then have the following examples, which will show that Ph ∈9
2
h (m):

X0 ∈9
2
h (m),

h
1
2 X j ∈9

1
h (m), 1≤ j ≤ d,

h
1
2 X j ∈9

3
h (m), d + 1≤ j ≤ 2d.

(4-4)

A more general example of a symbol in Sn(m) is h−n/2a(η)(1−φ(h−1/2m(η))), where φ ∈ C∞c (R
2d+1)

equals 1 on a neighborhood of 0, and a ∈ C∞(R2d+1
\{0}) satisfies a(δrη)= rna(η).

It is easy to verify the following properties:

Sn(m) · Sn′(m)⊂ Sn+n′(m),

Sn(m)⊃ Sn′(m) if n′ < n,

a ∈ Sn(m) =⇒ h
1
2 order(α)∂αη ∂

β
x a ∈ Sn−order(α).

(4-5)

Definition 9. Given a sequence of symbols a j ∈ Sn− j (m) we say that a ∼
∑

j a j if for all N

a−
N−1∑
j=0

a j ∈ Sn−N (m).

Consequently, a is uniquely determined up to a symbol in S−∞(m).
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We note the following simple example of a symbol in S−∞(m):

If φ ∈ S(R) and φ(s)= 1 when |s| ≤ 1 then φ(h−
1
2 m(η)) ∈ S−∞(m). (4-6)

That this symbol belongs to S−∞(m) is seen by noting that

(1+ h−
1
2 m(η))−N

= h
N
2 m(h, η)−N ,

together with the bounds |∂αη m(η)| ≤ Cαm(η)1−order(α), where we use that all derivatives vanish unless
m(η)≥ h1/2; hence m(η)≈ m(h, η), since φ is assumed constant near 0.

Lemma 10. Suppose that a j ∈ Sn− j (m), j ∈ N. Then there exists a ∈ Sn(m) with a ∼
∑

j a j .

Proof. Fix φ ∈ C∞c ((−2, 2)) with φ = 1 for |s|< 1. We will construct a sequence of real numbers R j ≥ 1
with R j →∞ such that for all N

∞∑
j=N

(1−φ(R−1
j h−

1
2 m(η)))a j (x, η) converges in Sn−N (m). (4-7)

Defining a to be this sum for N = 0 then gives the result since by (4-6), for each j ,

φ(R−1
j h−

1
2 m(η))a j (x, η) ∈ S−∞(m).

The proof of (4-6) shows that the S0(m) seminorms of φ(R−1h−1/2m(η)) are uniformly bounded inde-
pendent of R for R ≥ 1. The result (4-7) follows if we choose R j so that for all |α| + |β| ≤ j

|∂βx ∂
α
η (1−φ(R

−1
j h−

1
2 m(η)))a j (x, η)| ≤ 2− j h−

n+1− j
2 m(h, η)n+1− j−order(α).

Such R j can be chosen by observing that on the support of 1− φ(R−1
j h−1/2m(η)) we have the bound

h1/2m(h, η)−1
≤ (1+ R j )

−1. �

We now turn to the composition result for operators. Due to support considerations of the Schwartz
kernels involved, expressing the composition of two operators quantized using the cutoff χ0 requires
quantizing the symbol of the composition using the cutoff χ1, but we shall later see that the difference is
an operator with symbol in S−∞. For simplicity we consider the case where the order of the composition
is negative, which is the case needed to produce an inverse for Ph modulo 9−∞h (m).

In the proof we decompose an operator ah(x, h D) into a sum of nonisotropic dilates of unit-scale
convolution kernels. This decomposition is also used in establishing L2 bounds for order 0 operators. Let
φ and ψ generate a smooth Littlewood–Paley decomposition of [0,∞):

1= φ(s)+
∞∑
j=1

ψ(2− j s), supp(φ)⊂ [0, 2), supp(ψ)⊂
( 1

2 , 2
)
. (4-8)

Given a symbol a ∈ Sn(m), we make the decomposition

a(x, η)= φ(h−
1
2 m(η))a(x, η)+

∞∑
j=1

ψ(h−
1
2 2− j m(η))a(x, η)=

∞∑
j=0

a j (x, η). (4-9)
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Then a j is supported where m(h, η)≈ 2 j h1/2, and thus

|∂βx ∂
α
η a j (x, η)| ≤ Cα,β2 jn(2 j h

1
2 )− order(α).

It follows that a0(x, δh1/2(η)) ∈ C∞c (K × {|η| < 8}) with bounds uniform over h, and for j ≥ 1 that
2− jna j (x, δ2 j h1/2(η)) is uniformly bounded in C∞c

(
K ×

{ 1
8 < |η|< 8

})
over h and j .

Theorem 11. Given a ∈ Sn(m) and b ∈ Sn′(m), with n+ n′ < 0, there is c ∈ Sn+n′(m) so that

ah(x, h D) ◦ bh(x, h D) f (x)=
1

(2πh)2d+1

∫
e−i〈y,ξ〉/hch(x, ξ)χ1(y) f (expx(y)) dy dξ. (4-10)

Proof. For x ∈ K and h > 0 we can write

χ1(2x(x̃)) f (x̃)=
1

(2πh)2d+1

∫
ei〈2x (x̃),ξ〉/h−i〈y,ξ〉/hχ1(y) f (expx(y)) dy dξ.

Since ah(x, h D)bh(x, h D) f (x)= ah(x, h D)bh(x, h D)
(
χ1(2x( · )) f

)
(x), we know (4-10) holds with

ch(x, ξ)=
(
ah(x, h D)bh(x, h D)ei〈2x ( · ),ξ〉/h)(x).

We thus need to show that c(x, ξ)= ch(x, ξ0, ξ
′, h−1ξ ′′) ∈ Sn+n′(m).

Let ai and b j be the nonisotropic Littlewood–Paley decomposition of a and b as in (4-9), and define
ci j by

(ci j )h(x, ξ)=
(
(ai )h(x, h D)(b j )h(x, h D)ei〈2x ( · ),ξ〉/h)(x),

so that c =
∑

i j ci j . From (4-1) we can write (ci j )h(x, ξ) as

1
(2π)4d+2

∫
e−i〈y,η〉−i〈w,ζ 〉+ih−1

〈2̃(x,hy,hw),ξ〉(ai )h(x, η)(b j )h(expx(hy), ζ )χ0(hy)χ0(hw) dw dζ dy dη.

Consider first the case i ≥ j . We substitute w = h−12(x, hy, hz), defined in (3-2), to write this as

1
(2π)4d+2

∫
e−i〈y,η〉−ih−1

〈2(x,hy,hz),ζ 〉+i〈z,ξ〉ai (x, η0, η
′, hη′′)b j (expx(hy), ζ0, ζ

′, hζ ′′)

×χ0(hy)χ0(2(x, hy, hz))|Dz2|(x, hy, hz) dz dζ dy dη.

By the comments following (4-9) applied to b j , we write

b j (expx(hy), ζ0, ζ
′, hζ ′′)χ0(hy)χ0(2(x, hy, hz))|Dz2|(x, hy, hz)

= 2 jn′ b̃ j (x, hy, hz, δ2− j h−1/2(ζ0, ζ
′, hζ ′′)),

where b̃ j ∈ C∞c (K × Br0 × Br1 × B8), with bounds uniform over h and j , and a similar representation
holds for ai with 2 j replaced by 2i and n′ replaced by n. We make a nonisotropic dilation of ζ and η by
the factors (22 j h, 2 j h1/2, 23 j h1/2), and of z and y by the reciprocal factors, to write

ci j (x, ξ)= 2 j (n+n′)c̃i j (x, δ2− j h−1/2(ξ)),
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where c̃i j (x, ξ) is given by

2(i− j)n 1
(2π)4d+2

∫
e−i〈y,η〉−i〈2y(z)+R(h,x,y,z),ζ 〉+i〈z,ξ〉ãi (x, δ2 j−i (η))

× b̃ j
(
x, δ2− j (y0, h

1
2 y′, h

1
2 y′′), δ2− j (z0, h

1
2 z′, h

1
2 z′′), ζ

)
dz dζ dy dη, (4-11)

where, recalling Lemma 6,

〈R(h, x, y, z), ζ 〉 =22 j R0
(
x, δ2− j (y0, h

1
2 y′, h

1
2 y′′), δ2− j (z0, h

1
2 z′, h

1
2 z′′)

)
ζ0

+ 2 j h−
1
2 R′

(
x, δ2− j (y0, h

1
2 y′, h

1
2 y′′), δ2− j (z0, h

1
2 z′, h

1
2 z′′)

)
· ζ ′

+ 23 j h−
1
2 R′′

(
x, δ2− j (y0, h

1
2 y′, h

1
2 y′′), δ2− j (z0, h

1
2 z′, h

1
2 z′′)

)
· ζ ′′.

By the support condition on b̃ j we have |ζ | ≤ 8. Also, if i ≥ 1 then ãi (x, η)= 0 when |η| ≤ 1
8 .

We next apply the expansion (3-5) to the right-hand side. The condition on order(yαzβ) ensures that
we bring out strictly more powers of 2− j than needed to cancel the powers of 2 j in front, and since there
is at least one factor of (y′, z′, y′′, z′′) we also bring out a factor h1/2 to cancel off the h−1/2 in front. We
conclude that, on the support of the integrand,

|R(h, x, y, z)| ≤ C2− j
|z− y|(|y| + |z− y| + |y|2+ |z− y|2),

and also

|∂γx ∂
α
y ∂

β
z R(h, x, y, z)| ≤ Cγ,α,β2− j (1+ |y|3+ |z− y|3). (4-12)

Additionally, if we let w =2(x, y, z)+ R(h, x, y, z), then with analogous notation we see from (3-2)
and Lemma 6 that z =2−y(w)+ R̃(h, x, y, w), where

|R̃(h, x, y, w)| ≤ C2− j
|w|(|y| + |w| + |y|2+ |w|2).

Consequently, since 2̃ is the inverse function to 2 for fixed y, uniformly over j we have

|2y(z)+ R(h, x, y, z)| ≤ C |z− y|(1+ |y|2+ |z− y|2),

|z− y| ≤ C |2y(z)+ R(h, x, y, z)|(1+ |y|2+ |2y(z)+ R(h, x, y, z)|2),

and hence

(1+ |y|2)−1
|z− y| ≤ C |2y(z)+ R(h, x, y, z)|(1+ |2y(z)+ R(h, x, y, z)|2). (4-13)

Considering the function

gi j (x, y)=
1

(2π)4d+2

∫
e−i〈y,η〉ãi (x, δ2 j−i (η)) dη,

simple estimates show that

|∂αx gi j (x, y)| ≤ CN ,α,β2(4d+2)(i− j)(1+ 22(i− j)
|y0| + 2i− j

|y′| + 23(i− j)
|y′′|)−N . (4-14)
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Additionally, if i > j , hence i ≥ 1, then ãi (x, η) vanishes for |η| ≤ 1
8 , and thus can be assumed to be of

the form |η|2k ãi (x, η) for similar ãi (x, η). Thus, if i > j then for all k ∈ N we can write

gi j (x, y)=
∑
|γ |=2k

2( j−i) order(γ )∂γy gi j,γ (x, y), (4-15)

where gi j,γ (x, y) satisfies the same estimates (4-14) as gi j (x, y). On the other hand, if we set

f j (x, y, z)=
∫

e−i〈2y(z)+R(h,x,y,z),ζ 〉b̃ j
(
x, δ2− j (y0, h

1
2 y′, h

1
2 y′′), δ2− j (z0, h

1
2 z′, h

1
2 z′′), ζ

)
dζ,

then

f j (x, y, z)= ρ(x, y, z,2y(z)+ R(h, x, y, z)),

where ρ(x, y, z, w) is smooth in (x, y, z) and Schwartz in w. By (4-12) and (4-13) we have

|∂αx ∂
β
y ∂

θ
z f j (x, y, z)| ≤ CN ,α,β,θ (1+ |y| + |y− z|)3(|α|+|β|+|θ |)(1+ (1+ |y|2)−1

|y− z|)−N .

Applying (4-15) and integrating by parts in y leads to the bound, for all N , α, β,∣∣∣∣∂αx ∂βz ∫ gi j (x, y) f j (x, y, z) dy
∣∣∣∣≤ CN ,α,β22k( j−i)(1+ |z|)−N .

Since c̃i j (x, ξ), defined in (4-11), is 2(i− j)n times the Fourier transform in z of this integral, we obtain
uniform (over i and j) Schwartz bounds on 2i− j c̃i j (x, ξ), with compact support in x .

In the case j ≥ i , we can similarly write ci j (x, ξ)= 2i(n+n′)c̃i j (x, δ2−i h−1/2(ξ)), where we have uniform
Schwartz bounds over i and j on 2 j−i c̃i j (x, ξ). The analysis is similar to the case i ≥ j , using instead
the following representation for ci j (x, ξ):

1
(2π)4d+2

∫
e−ih−1

〈2̃(x,hv,−hw),η〉−i〈w,ζ 〉+i〈v,ξ〉ai (x, η0, η
′, hη′′)b j (expexpx (hv)

(−hw), ζ0, ζ
′, hζ ′′)

×χ0(2̃(x, hv,−hw))χ0(hw)|Dv2̃|(x, hv,−hw) dw dζ dv dη.

It thus suffices to show that
∑

i≥ j 2 j (n+n′)c̃i j (x, δ2− j h−1/2(ξ)) ∈ Sn+n′(m). We prove that∣∣∣∣∑
i≥ j

2 j (n+n′)c̃i j (x, δ2− j h−1/2(ξ))

∣∣∣∣≤ C(1+ h−
1
2 m(ξ))n+n′ .

Estimates on derivatives will follow similarly since applying ∂αξ has the effect of multiplying the j-th
term by (2− j h−1/2)order(α). We use the uniform Schwartz bounds on c̃i j to bound the sum by

CN

∑
i≥ j≥0

2 j (n+n′)2 j−i (1+ 2− j h−
1
2 m(ξ))−N .

The sum over i is trivial. Given ξ , take j0 so that 2 j0 = h−1/2m(ξ). We then split∑
j≥0

2 j (n+n′)(1+ 2− j h−
1
2 m(ξ))−N

≤

∑
j≥ j0

2 j (n+n′)
+

∑
j< j0

2 j (n+n′+N )(h−
1
2 m(ξ))−N .



PARAMETRIX FOR A SEMICLASSICAL SUBELLIPTIC OPERATOR 2389

Recall that we assume n+n′ < 0. We take N so N +n+n′ > 0. If h−1/2m(ξ)≤ 1, we have only the first
sum, which is bounded by a constant. If h−1/2m(ξ) > 1, then the two terms are convergent geometric
sums that both are bounded by (h−1/2m(ξ))n+n′. �

Remark 12. The result of Theorem 11 still holds if one replaces the function χ0(y) used in quantizing a
or b by any function χ(x, y) ∈ C∞c (K × Br0), since this is harmlessly absorbed into b̃ j without changing
the estimates for b̃ j nor the condition on the support of the Schwartz kernel.

Lemma 13. Suppose that β, χ ∈ C∞c (Br1), and β(y) = 0 for |y| ≤ δ, where δ > 0. Suppose also that
χ = 1 on supp(β). Then if a ∈ Sn(m) for some n, one can write

1
(2πh)2d+1

∫
e−i〈y,ξ〉/hah(x, ξ)β(y) f (expx(y)) dy dξ

=
1

(2πh)2d+1

∫
e−i〈y,ξ〉/hrh(x, ξ)χ(y) f (expx(y)) dy dξ,

where r ∈ S−∞(m).

Proof. We write β(y) = |y|2NβN (y) for βN ∈ C∞c (Br1). Since χβN = βN , following the first part of
Theorem 11 we have equality of the two sides if rh is the symbol

rh(x, ξ)=
1

(2πh)2d+1

∫
e−i〈y,ξ−η〉/h((h21η0,η′ + h41η′′)

N a)h(x, η)βN (y) dy dη.

By (4-5), aN = (h21η0,η′ + h41η′′)
N a ∈ Sn−2N (m). We then write

r(x, ξ)=
1

(2π)2d+1h3d+1

∫
β̂N

(
ξ0− η0

h
,
ξ ′− η′

h
,
ξ ′′− η′′

h2

)
aN (x, η) dη.

We have |aN (x, η)| ≤ CN (1+m(δh−1/2(η)))n−2N, and Peetre’s inequality yields

(1+ |δh−1/2(ξ − η)|)−|n|−2N (1+m(δh−1/2(η)))n−2N
≤ CN (1+m(δh−1/2(ξ)))n−2N ,

which shows that |r(x, ξ)| ≤ CN hN m(h, ξ)−2N for all N. The term ∂
β
x ∂

α
ξ r(x, ξ) comes from the same

convolution applied to ∂βx ∂αη aN (x, η), and we conclude r ∈ S−∞. �

Corollary 14. Suppose Ph is as in (1-1). Given ρ ∈ C∞c (K
o), there is a symbol q(x, ξ) ∈ S−2(m), with

principal symbol hρ(x)(1−φ(h−1/2m(ξ)))q0(ξ), so that

qh(x, h D) ◦ Ph = ρ(x)+ R, R ∈9−∞h (m).

Proof. Fix ρ̃(x) ∈ C∞c (K ) with ρ̃ = 1 on a neighborhood of supp(ρ). Define

q̃0(ξ)= h(1−φ(h−
1
2 m(ξ)))q0(ξ),

where q0(ξ) is the Fourier transform of the fundamental solution for Y0−
∑d

j=1 Y 2
j , as defined in Section 2,

and φ is as in (4-8). Then ρ̃(x)q̃0(ξ) ∈ S−2(m). We first show that

ρ̃(x)q̃0,h(h D) ◦ Ph = ρ̃(x)− r1
h (x, h D), r1

∈ S−1(m).



2390 HART F. SMITH

By the construction of q0(ξ) we have

1
(2πh)2d+1

∫
e−i〈y,ξ 〉/hhq0,h(ξ)

(
Y0− h

d∑
j=1

Y 2
j

)
χ0(y) f (expx(y)) dy dξ = f (x),

where the Yj are the model vector fields acting in the y-variable. Replacing hq0 by q̃0 changes the
composition by an order-0 symbol supported where m(ξ)≤ 2h1/2, hence by a symbol in S−∞.

Generally, we see that for f (x, y) compactly supported in y we can write∫
e−i〈y,ξ〉/h q̃0,h(ξ)yα∂βy f (x, y) dy dξ =

∫
e−i〈y,ξ〉/hbh(ξ) f (x, y) dy dξ,

where
b(x, ξ)= i |β|−|α|hα0+|α

′
|+2|α′′|−|β|∂αξ ξ

β q̃0(ξ).

By (4-3) and (4-5), we know that

h
1
2 order(α)− 1

2 order(β)∂αξ ξ
β q̃0(ξ) ∈ Sorder(β)−order(α)−2(m).

Recall that
(X j f )(expx(y))= (Yj + R j (x, y, ∂y)) f (expx(y)),

where the Taylor expansion of R j contains terms yα∂βy of order strictly less than order(Yj ), and where
|β| = 1. Since commutators of X j with χ0 lead to terms of order −∞, we need show that

1
(2πh)2d+1

∫
e−i〈y,ξ〉/hhq0,h(ξ)R0(x, y, ∂y)χ0(y) f (expx(y)) dy dξ

is an operator of order −1 in f . For the terms that arise in the Taylor expansion of R0 we have
order(β)− order(α)≤ 1, so we need check for such terms we also have

α0+ |α
′
| + 2|α′′| − |β| ≥ 1

2 order(α)− 1
2 order(β),

in order to match up the powers of h. Since |β| = 1 and order(α)= 2α0+|α
′
|+3|α′′|, this holds provided

that |α′| + |α′′| ≥ 1, which is the case for R0 by Lemma 4.
We similarly need check that this is an operator of order −2 if R0 is replaced by h1/2 R j with 1≤ j ≤ d .

Since order(β)− order(α)≤ 0 in this case, this reduces to verifying that

α0+ |α
′
| + 2|α′′| − |β| + 1

2 ≥
1
2 order(α)− 1

2 order(β),

which always holds if |β| = 1.
We note that the remainder term in the Taylor expansion will also be of the desired order, but with

χ0(y) replaced by c j,α,k(x, y)χ0(y). By Remark 12 this does not affect the conclusion of the corollary,
since the form for qh will involve composition with r1

h (x, h D).
By Theorem 11 we can recursively define symbols r j

∈ S− j (m) for j ≥ 2 by the rule

r j
h (x, h D) ◦ r1

h (x, h D) f (x)=
1

(2πh)2d+1

∫
e−i〈y,ξ〉/hr j+1

h (x, ξ)χ1(y) f (expx(y)) dy dξ,
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where we recall that r j
h (x, h D) is quantized using χ0. Let r ∼

∑
∞

j=0 r j, so r ∈ S−1(m). Also define
q ∈ S−2(m) so that

ρ(x)(I + rh(x, h D))ρ̃(x)q̃0,h(h D) f (x)=
1

(2πh)2d+1

∫
e−i〈y,ξ〉/hqh(x, ξ)χ1(y) f (expx(y)) dy dξ.

By the above and Lemma 13, the following operator is in 9−∞h (m):

R f (x)=
1

(2πh)2d+1

∫
e−i〈y,ξ〉/hqh(x, ξ)(χ1(y)−χ0(y))(Ph f )(expx(y)) dy dξ.

Thus, modulo 9−∞h (m) we have

qh(x, h D) ◦ Ph = ρ(x)(I + rh(x, h D))(ρ̃(x)− r1
h (x, h D)).

Next we choose δ > 0 so that ρ̃(expx(y)) = 1 if x ∈ supp(ρ) and |y| ≤ δ, and take χδ ∈ C∞c (Bδ) with
χδ = 1 on Bδ/2. Then

ρ(x)rh(x, h D)((1− ρ̃) f )(x)

=
1

(2πh)2d+1

∫
e−i〈y,ξ〉/hρ(x)rh(x, ξ)(χ0(y)−χδ(y))((1− ρ̃) f )(expx(y)) dy dξ,

so by Lemma 13 we have, modulo 9−∞h (m),

qh(x, h D) ◦ Ph = ρ(x)(I + rh(x, h D))(I − r1
h (x, h D)).

Finally, since the difference between using χ1 instead of χ0 in the quantization of r j+1 gives a term in
9−∞h (m), we see that qh(x, h D) ◦ Ph = ρ(x) modulo 9−∞h (m). �

Remark 15. The above proof shows the following composition result concerning partial differential
operators. Suppose

Ph =
∑

order(α)≤n′
cα(x)X

α0
0 (h

1
2 X ′)α

′

(h
1
2 X ′′)α

′′

, cα(x) ∈ C∞c (K ).

Then if a ∈ Sn(m), we can write ah(x, h D) ◦ Ph f and Ph ◦ ah(x, h D) f in the form

1
(2πh)2d+1

∫
e−i〈y,ξ〉/hbh(x, ξ)χ(y) f (expx(y)) dy dξ

for χ ∈ C∞c (Br0) and b ∈ Sn+n′(m).

5. L2 boundedness for order-0 operators

Given a symbol in Sn(m) we decompose a =
∑

j a j as in (4-9). The operator a j,h(x, h D) is given by the
following integral kernel on U×U with respect to the measure dm(x̃), where w(x, x̃)dm(x̃)= exp∗x(dy):

K j (x, x̃)= w(x, x̃)χ0(2x(x̃))
∫

e−i〈2x (x̃),η〉a j,h(x, hη) dη.
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We can write a j,h(x, hη) = 2 jn ã j (x, 2−2 jη0, 2− j h1/2η′, 2−3 j h1/2η′′), where ã j (x, η) ∈ C∞c (K × B8),
with uniform bounds over j . Furthermore, ã j vanishes for |η| ≤ 1

8 if j ≥ 1.
Consequently, there are Schwartz functions ρ j (x, y), supported for x ∈ K with Schwartz norms

independent of j , so that

(w−1K j )(x, expx(y))= 2 jn2 j (2+4d)h−dρ j (x, 22 j y0, 2 j h−
1
2 y′, 23 j h−

1
2 y′′)χ0(y), (5-1)

and in particular, for all N,

|K j (x, x̃)| ≤ CN 2 jn2 j (2+4d)h−d(1+ 22 j
|2x(x̃)0| + 2 j h−

1
2 |2x(x̃)′| + 23 j h−

1
2 |2x(x̃)′′|

)−N
. (5-2)

If a ∈ S−∞ then (5-1) holds for all n ∈ Z, and summing over j we obtain the following.

Corollary 16. If a ∈ S−∞(m), then ah(x, h D) is given by a smooth integral kernel K (x, x̃) in the measure
dm(x̃), so that for some Schwartz function ρ(x, y), supported for x ∈ supp(a),

(w−1K )(x, expx(y))= h−dρ(x, y0, h−
1
2 y′, h−

1
2 y′′)χ0(y).

We next observe that the vector fields 2−2 j Y0, 2− j h1/2Y ′, and 2−3 j h1/2Y ′′ acting as differential
operators in y all preserve the form (5-1) of w−1K j ; that is, they give an expression of the same form
with ρ j uniformly bounded over j in each Schwartz seminorm.

The same holds for the operators 2−2 j X0, 2− j h1/2 X ′, and 2−3 j h1/2 X ′′, acting on K j (x, x̃) as differential
operators in either the x- or x̃-variable. For action in the x̃-variable, this follows by Lemma 4, where
we use that there is at least one factor of y′ or y′′ in the expansion of R0(x, y, ∂y) to compensate for the
factor of h−1/2 coming from the ∂y′ and ∂y′′ terms in the expansion of X0. For action in the x-variable we
work in coordinates x = expx̃(y), hence x̃ = expx(−y), to write

(w−1K j )(expx̃(y), x̃)= 2 jn2 j (2+4d)h−dρ j
(
expx̃(y),−22 j y0,−2 j h−

1
2 y′,−23 j h−

1
2 y′′

)
χ0(−y). (5-3)

To summarize, for a ∈ Sn(m), we can write

(2−2 j X0)
α0(2− j h

1
2 X ′)α

′

(2−3 j h
1
2 X ′′)α

′′

K j (x, x̃)

= 2 jn2 j (2+4d)h−dρ j,α
(
x, 22 j2x(x̃)0, 2 j h−

1
22x(x̃)′, 23 j h−

1
22x(x̃)′′

)
χα(x, x̃), (5-4)

where the functions ρ j,α and χα satisfy seminorm bounds that depend on α, but are uniform over j and h.
This holds with any given vector X in the product acting as a vector field in x or x̃ .

Conversely, suppose that j ≥ 1, so that ã j (x, η) ∈ C∞c
(
K ×

{1
8 ≤ |η| ≤ 8

})
. Then for any `, dividing

ã j by |η|2` shows that we can write

(w−1K j )(x,expx(y))

= 2 jn2 j (2+4d)h−d
∑
|α|=2`

χα(x, y)(2−2 j∂y0)
α0(2− jh

1
2 ∂y′)

α′(2−3 j h
1
2 ∂y′′)

α′′ρ j,α(x,22 j y0,2 j h−
1
2 y′,23 j h−

1
2 y′′)

for Schwartz functions ρ j,α that are uniformly bounded over j , and χα ∈ C∞c (K × Br0).
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Using Lemma 4, we write

∂y0 = X0+ y′ · X ′′− R0(x, y, ∂y)− y′ · R′′(x, y, ∂y),

∂y′ = X ′− y0 X ′′− R′(x, y, ∂y)+ y0 R′′(x, y, ∂y),

∂y′′ = X ′′− R′′(x, y, ∂y),

where the X j act in y. Substituting this into R(x, y, ∂y), and using that the X j form a smooth frame, we
can expand each ∂y j as a finite sum over 2≤ |α| ≤ 3:

∂y0 = X0+ y′ · X ′′+
∑
α,k

c0,α,k(x, y)yαXk, order(Yk)− order(α) < 2,

∂y j = X j − y0 X j+d +
∑
α,k

c j,α,k(x, y)yαXk, order(Yk)− order(α) < 1, 1≤ j ≤ d,

∂y j = X j +
∑
α,k

c j,α,k(x, y)yαXk, order(Yk)− order(α) < 3, d + 1≤ j ≤ 2d.

Additionally, c0,α,k ≡ 0 unless either α′ 6= 0 or α′′ 6= 0.
Let X j denote the transpose of the differential operator X j with respect to dy. Taking the transpose of

the above identities, it follows that, with the X j acting on y, we can write

(w−1K j )(x,expx(y))

=2 jn2 j (2+4d)h−d
∑
|α|=2`

χα(x, y)(2−2 j X0)
α0(2− jh

1
2 X ′)α

′

(2−3 j h
1
2 X
′′
)α
′′

ρ j,α(x,22 j y0,2 j h−
1
2 y′,23 j h−

1
2 y′′),

where the ρ j,α may depend on h, but with uniform Schwartz bounds over 0≤ h≤ 1 and j ∈N. Expressing
the action of X in terms of x̃ , this leads to the expansion

K j (x, x̃)=
∑
|α|=2`

∑
β≤α

2− j order(α)(X0)
β0(h

1
2 X ′)β

′

(h
1
2 X
′′
)β
′′

K j,α,β(x, x̃)

for kernels K j,α,β satisfying (5-2) with CN depending on ` but uniform over j, α, β. Here we can take
X j to be the transpose of X j with respect to dm(x̃), since that differs from the transpose with respect to
dy by a smooth function.

Theorem 17. If a ∈ S0(m), then ah(x, h D) is a bounded linear operator on L2(U ), with operator norm
depending on only a finite number of seminorm bounds for a(x, ξ). In particular, the operator norm is
uniformly bounded over 0< h ≤ 1.

Proof. We decompose ah(x, h D)=
∑
∞

j=0 a j,h(x, h D). Using (5-1) and (5-3) it is easily verified that the
kernel K j (x, x̃) of a j,h(x, h D) satisfies the Schur test,

sup
x

∫
K j (x, x̃) dm(x̃)≤ C, sup

x̃

∫
K j (x, x̃) dm(x)≤ C.
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We deduce L2 boundedness from the Cotlar–Stein lemma (see [Knapp and Stein 1971; Stein 1993]), by
showing that, for any N ∈ N,

‖ai,h(x, h D)∗a j,h(x, h D)‖L2→L2 +‖ai,h(x, h D)a j,h(x, h D)∗‖L2→L2 ≤ C2−N |i− j | (5-5)

for a constant C uniform over h and j . If i = j this follows from L2 boundedness of each term, so
without loss of generality we consider j > i ≥ 0, and in particular j ≥ 1. Given ` ∈ N we then write the
integral kernel of ai,h(x, h D)a j,h(x, h D)∗ as∫

Ki (x, w)K j (x̃, w) dm(w)

=

∫
Ki (x, w)

∑
|α|=2`

∑
β≤α

2− j order(α)(X0)
β0(h

1
2 X ′)β

′

(h
1
2 X
′′
)β
′′

K j,α,β(x, w) dm(w)

=

∑
|α|=2`

∑
β≤α

2i order(β)− j order(α)
∫

Ki,β(x, w)K j,α,β(x, w) dm(w),

where Ki,β(x, w) = (2−2i X0)
β0(2−i h1/2 X ′)β

′

(2−3i h1/2 X ′′)β
′′

Ki (x, w), and in all cases X acts on w.
Since i order(β)− j order(α)≤ 2`(i− j), by using (5-4) and the Schur test on the composition we obtain
the bound (5-5) with N = 2` for the term ai,ha∗j,h . To handle the term a∗i,ha j,h we use the same argument,
together with symmetry of the derivative estimates in x and x̃ . �

We note the following result for a ∈ Sn(m), which holds since 2− jna j (x, η) ∈ S0(m),

sup
j≥0

2− jn
‖a j,h(x, h D) f ‖L2(U ) ≤ C‖ f ‖L2(U ), a ∈ Sn(m). (5-6)

6. Estimates on S∗(M)

Let (M, g) be a compact Riemannian manifold of dimension d+1, and S∗(M)⊂ T ∗(M) its unit cosphere
bundle. We consider the Hamiltonian function 1

2 |ζ |
2
g(z) =

1
2

∑d+1
i,k=1 gik(z)ζiζk , and recall that S∗(M) is

the level set |ζ |g(z) = 1. We use X0 = H to denote the Hamiltonian field for 1
2 |ζ |

2
g(z),

X0 =

d+1∑
i,k=1

gik(z)ζi∂zk −
1
2

d+1∑
i, j,k=1

∂z j g
ik(z)ζiζk∂ζ j ,

which is tangent to S∗(M).
We cover S∗(M) by a finite collection of open coordinate charts as follows. Let {Vα} form a finite

covering of M by coordinate charts, over which we can identity T ∗(M) with Vα×Rd+1 and S∗(M) with
Vα ×Sd. We cover Sd by two coordinate charts W± over each of which there is a section of the frame
bundle. We thus obtain a cover of S∗(M) by open charts {Vα ×W±}, which by counting each Vα twice
we can label as Uα, such that on Uα there is an orthonormal collection {X j }

d
j=1 of vertical vector fields

that span the tangent space to S∗z (M) over each z ∈ Vα. The collection {X j }
d
j=1 is involutive, since it

spans the vertical vector fields on Uα.



PARAMETRIX FOR A SEMICLASSICAL SUBELLIPTIC OPERATOR 2395

There is a natural isometric identification Tζ (T ∗z (M))∼ Tz(M), which identifies {X j |(z,ζ )}
d
j=1 with an

orthonormal collection of vectors {X̃ j }
d
j=1 ⊂ Tz(M), which are also orthogonal to π∗(X0|(z,ζ )). We let

X j+d |(z,ζ ) be − 1
2 times the horizontal lift of X̃ j . We observe that

π∗[X j , X0] =

d+1∑
i,k=1

gik(z)X j (ζi )∂zk = X̃ j ,

so that [X0, X j ] − 2X j+d ∈ span{X j }
d
j=1. Thus the assumptions of the Introduction are satisfied for the

collection {X j }
2d
j=0.

Let 1S be the induced nonnegative Laplacian acting on the fibers S∗z (M) of the bundle, and let 1 be
the nonnegative Laplacian on S∗(M). See for example [Drouot 2017, Section 2.1] for details, where it is
shown that 1 and 1S commute. One verifies that, over each Uα, one has

1S =−

d∑
j=1

X2
j +

d∑
j=1

c j (z, ζ )X j .

We now use x ∈ R2d+1 to denote the variables on Uα, and define

Ph = H + h1S = X0−

d∑
j=1

h X2
j +

d∑
j=1

c j (x)h X j .

Thus on each Uα , the operator Ph differs from the sum of squares considered previously by an operator in
h1/291

h (m), and the pseudodifferential calculus shows that, given χα ∈C∞c (Uα), there exists a symbol qα ∈
S−2(m), the quantization of which depends on χα through the choice of χ0 in (4-1), so that on Uα we have

qα,h(x, h D) ◦ Phu = χα(x)u+ Rαu, Rα ∈9−∞h (m).

Note that both qα,h(x, h D) and Rα are properly supported in Uα. We now take a partition of unity χα
subordinate to the cover Uα, and define

Qhv =
∑
α

qα,h(x, h D)v, Rv =
∑
α

Rαv.

Then Qh ◦ Ph = I + R, and for all N1, N2 we have

‖(h1)N1 R(h1)N2u‖L2(S∗(M)) ≤ CN1,N2‖u‖L2(S∗(M)). (6-1)

This follows from Theorems 11 and 17 and the fact that h1∈96
h (Uα) for each α, which follows from (4-4).

More generally, we define 9σ
h (m) on S∗(M) as sums

∑
α aα,h(x, h D) with aα ∈ Sσ (m) on Uα. The

function χ0 in the quantization (4-1) depends on the x-support of aα(x, η), which is always assumed to
be a compact subset of Uα.

The semiclassical Sobolev spaces are defined on S∗(M) using the spectral decomposition of 1, with
norm

‖ f ‖Hσ
h
= ‖(1+ h21)σ/2 f ‖L2 .

We will consider cutoffs ρ(s) satisfying, for some c′ > c > 0,

ρ(s) ∈ C∞(R), ρ(s)= 0 if s ≤ c, ρ(s)= 1 if s ≥ c′. (6-2)
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The operator ρ(h21) is then defined as a spectral multiplier. We observe the following simple result for
R ∈9−∞h (m) on S∗(M). For all N and σ we have

‖ρ(h21)Ru‖Hσ
h
+‖Rρ(h21)u‖Hσ

h
≤ CN ,σhN

‖u‖L2 . (6-3)

This follows by writing ρ(h21)(1+ h21)σ = f (h21) ◦ (h21)N, where the function f (s) is a bounded
function provided N > σ , and using (6-1).

Theorem 18. Suppose that σ ≤ 0, that Ah ∈9
σ
h (m), and that ρ satisfies (6-2). Then

‖ρ(h21)Ahu‖H−σ/3h
+‖Ahρ(h21)u‖H−σ/3h

≤ Ch−σ/6‖u‖L2 .

Proof. Choose k so 6k+ σ > 0. For each h ∈ (0, 1], we show that Ah = A0,h + A1,h , where

‖(h21)k A0,hu‖L2 +‖A0,h(h21)ku‖L2 +‖A1,hu‖H−σ/3h
≤ Ch−σ/6‖u‖L2 .

The result then follows since ρ(s) ≤ min(sk, 1). Using the Littlewood–Paley decomposition as in the
proof of Theorem 17, applied to each aα in the sum defining a, we let

A0,h =
∑

2 j≤h−1/6

a j,h(x, h D), A1,h =
∑

2 j>h−1/6

a j,h(x, h D).

Recalling the form (5-4), we see that applying h21 to a j,h(x, h D) is equivalent to multiplying it by at
most 26 j h. As in the proof of (5-5) we conclude that

‖(1+ h21)ka j,h(x, h D)ai,h(x, h D)∗(1+ h21)k‖L2→L2 ≤ (1+ 26i h)k(1+ 26 j h)k2σ(i+ j)−|i− j |.

For 2 j , 2i
≥ h−1/6, we interpolate with the L2 bounds (5-6) to obtain

‖(1+ h21)−σ/6a j,h(x, h D)ai,h(x, h D)∗(1+ h21)−σ/6‖L2→L2 ≤ Ch−σ/32−|i− j |.

This estimate also holds for the transposed operators. The Cotlar–Stein lemma then implies the bounds
for A1,h .

Similarly, we have

‖(h21)ka j,h(x, h D)‖L2→L2 +‖a j,h(x, h D)(h21)k‖L2→L2 ≤ C(26 j h)k2σ j ,

which we may sum over 2 j
≤ h−1/6 to conclude the bounds involving A0,h . �

Corollary 19. Suppose that σ ≤ 0 and Ah ∈9
σ
h (m). Then

‖(1+ h1)−σ/6 Ahu‖L2 ≤ C‖u‖L2 .

Proof. As in the proof of Theorem 18 we observe that, for k = 0, 1, 2, . . . ,

‖(1+ h1)ka j,h(x, h D)ai,h(x, h D)∗(1+ h1)k‖L2→L2 ≤ 26k(i+ j)2σ(i+ j)−|i− j |.

We interpolate between k = 0 and any k >−σ/6 to obtain

‖(1+ h1)−σ/6a j,h(x, h D)ai,h(x, h D)∗(1+ h1)−σ/6‖L2→L2 ≤ C2−|i− j |.

This estimate also holds for the transposed operators. The Cotlar–Stein lemma then implies the result. �
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Theorem 20. The following bound holds for h ∈ (0, 1] and all N ∈ N:

‖Hu‖L2 + h‖1Su‖L2 +‖(1+ h1)
1
3 u‖L2 ≤ C‖Phu‖L2 +CN‖(1+ h1)−N u‖L2 .

Proof. Write u= Qh Phu+Ru, where Qh ∈9
−2
h (m), and note that H Qh, h1S Qh ∈9

0
h (m) by Remark 15.

Also, for all N we have H R(1+ h1)N, h1S R(1+ h1)N
∈90

h (m); hence

‖H Ru‖L2 + h‖1S Ru‖L2 ≤ CN‖(1+ h1)−N u‖L2 .

Since Qh, R(1+ h1)N
∈9−2

h (m), the result then follows by Corollary 19. �

Theorem 21. Suppose that ρ1 and ρ2 satisfy (6-2), and ρ2 = 1 on a neighborhood of supp(ρ1). Given
λ0 > 0, the following holds for all N, and all |λ| ≤ λ0 and h ∈ (0, 1]:

h−
1
3 ‖ρ1(h21)u‖H2/3

h
+ h

1
3

d∑
j=1

‖X jρ1(h21)u‖H1/3
h
+‖X0ρ1(h21)u‖L2 +‖h1Sρ1(h21)u‖L2

≤ CN ,λ0(‖ρ2(h21)(Ph − λ)u‖L2 + hN
‖u‖L2).

Proof. We follow the scheme of the proof of Theorem 2 of [Drouot 2017], using the parametrix Qh of Ph

to replace the positive commutator arguments. Write

ρ1(h21)u = Qhρ1(h21)(Ph − λ)u+ Qh[Ph, ρ1(h21)]u+ λQhρ1(h21)u+ Rρ1(h21)u.

To handle the commutator term, we use that [1S, ρ1(h21)] = 0; hence [Ph, ρ1(h21)] = [X0, ρ1(h21)].
Now let ρ̃1(s) be any function satisfying (6-2) which equals 1 on a neighborhood of supp(ρ1). Then
following [Drouot 2017], we use that the essential support of [X0, ρ1(h21)] is contained within the
elliptic set of ρ̃(h21), and we can thus bound

‖[Ph, ρ1(h21)]u‖L2 ≤ C‖ρ̃1(h21)]u‖L2 +CN hN
‖u‖L2 .

Applying Theorem 18 and (6-3) we obtain

h−
1
3 ‖ρ1(h21)u‖H2/3

h
+ h−

1
6

d∑
j=1

‖h
1
2 X jρ1(h21)u‖H1/3

h
+‖X0ρ1(h21)u‖L2 +‖h1Sρ1(h21)u‖L2

≤ C
(
‖ρ1(h21)(Ph − λ)u‖L2 +‖ρ̃1(h21)u‖L2 + (1+ |λ|)‖ρ1(h21)u‖L2

)
+CN hN

‖u‖L2 .

For h bounded away from 0 we can absorb the term (1+ |λ|)‖ρ1(h21)u‖L2 into CN hN
‖u‖L2 , and for h

small we can subtract it from both sides.
From this we deduce the following bound for any such ρ̃1:

‖ρ1(h21)u‖L2 ≤ CN ,λ0

(
h

1
3 ‖ρ2(h21)(Ph − λ)u‖L2 + h

1
3 ‖ρ̃1(h21)u‖L2 + hN

‖u‖L2
)
.

We now choose a sequence of cutoffs ρ̃ j for 1 ≤ j ≤ 3N, satisfying (6-2), such that for all j we have
ρ̃ j+1 = 1 on a neighborhood of supp(ρ̃ j ), and ρ2 = 1 on a neighborhood of supp(ρ̃ j ). Then replacing ρ1

by ρ̃ j , the preceding estimate shows that

‖ρ̃ j (h21)u‖L2 ≤ CN ,λ0

(
h

1
3 ‖ρ2(h21)(Ph − λ)u‖L2 + h

1
3 ‖ρ̃ j+1(h21)u‖L2 + hN

‖u‖L2
)
.



2398 HART F. SMITH

We conclude by iteration that

‖ρ̃1(h21)u‖L2 ≤ CN ,λ0

(
h

1
3 ‖ρ2(h21)(Ph − λ)u‖L2 + hN

‖ρ2(h21)u‖L2 + hN
‖u‖L2

)
≤ CN ,λ0

(
h

1
3 ‖ρ2(h21)(Ph − λ)u‖L2 + hN

‖u‖L2
)
.

Together with the above this yields the statement of the theorem. �
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