Vol. 14, No. 1, 2021

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 10, 3371–3670
Issue 9, 2997–3369
Issue 8, 2619–2996
Issue 7, 2247–2618
Issue 6, 1871–2245
Issue 5, 1501–1870
Issue 4, 1127–1500
Issue 3, 757–1126
Issue 2, 379–756
Issue 1, 1–377

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1948-206X (online)
ISSN 2157-5045 (print)
 
Author index
To appear
 
Other MSP journals
Local and global estimates for hyperbolic equations in Besov–Lipschitz and Triebel–Lizorkin spaces

Anders Israelsson, Salvador Rodríguez-López and Wolfgang Staubach

Vol. 14 (2021), No. 1, 1–44
Abstract

We establish optimal local and global Besov–Lipschitz and Triebel–Lizorkin estimates for the solutions to linear hyperbolic partial differential equations. These estimates are based on local and global estimates for Fourier integral operators that span all possible scales (and in particular both Banach and quasi-Banach scales) of Besov–Lipschitz spaces Bp,qs(n) and certain Banach and quasi-Banach scales of Triebel–Lizorkin spaces Fp,qs(n).

Keywords
Besov–Lipschitz spaces, Triebel–Lizorkin spaces, Fourier integral operators, hyperbolic equations
Mathematical Subject Classification 2010
Primary: 35S30, 42B20, 35L05
Secondary: 35L15, 42B35
Milestones
Received: 23 March 2018
Revised: 22 August 2019
Accepted: 20 December 2019
Published: 19 February 2021
Authors
Anders Israelsson
Department of Mathematics
Uppsala University
Uppsala
Sweden
Salvador Rodríguez-López
Department of Mathematics
Stockholm University
Stockholm
Sweden
Wolfgang Staubach
Department of Mathematics
Uppsala University
Uppsala
Sweden