Vol. 15, No. 3, 2022

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 6, 1871–2245
Issue 5, 1501–1870
Issue 4, 1127–1500
Issue 3, 757–1126
Issue 2, 379–756
Issue 1, 1–377

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
 
Author index
To appear
 
Other MSP journals
Algebraic approximation and the Mittag-Leffler theorem for minimal surfaces

Antonio Alarcón and Francisco J. López

Vol. 15 (2022), No. 3, 859–890
Abstract

We prove a uniform approximation theorem with interpolation for complete conformal minimal surfaces with finite total curvature in the Euclidean space n (n 3). As application, we obtain a Mittag-Leffler-type theorem for complete conformal minimal immersions M n on any open Riemann surface M.

Keywords
minimal surface, Riemann surface, meromorphic function
Mathematical Subject Classification
Primary: 30D30, 32E30, 53A10, 53C42
Milestones
Received: 6 May 2020
Accepted: 27 October 2020
Published: 10 June 2022
Authors
Antonio Alarcón
Departamento de Geometría y Topología e Instituto de Matemáticas (IMAG)
Universidad de Granada
Granada
Spain
Francisco J. López
Departamento de Geometría y Topología e Instituto de Matemáticas (IMAG)
Universidad de Granada
Granada
Spain