Vol. 15, No. 3, 2022

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18, 1 issue

Volume 17, 10 issues

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Editors' interests
 
Subscriptions
 
ISSN 1948-206X (online)
ISSN 2157-5045 (print)
 
Author index
To appear
 
Other MSP journals
Algebraic approximation and the Mittag-Leffler theorem for minimal surfaces

Antonio Alarcón and Francisco J. López

Vol. 15 (2022), No. 3, 859–890
Abstract

We prove a uniform approximation theorem with interpolation for complete conformal minimal surfaces with finite total curvature in the Euclidean space n (n 3). As application, we obtain a Mittag-Leffler-type theorem for complete conformal minimal immersions M n on any open Riemann surface M.

Keywords
minimal surface, Riemann surface, meromorphic function
Mathematical Subject Classification
Primary: 30D30, 32E30, 53A10, 53C42
Milestones
Received: 6 May 2020
Accepted: 27 October 2020
Published: 10 June 2022
Authors
Antonio Alarcón
Departamento de Geometría y Topología e Instituto de Matemáticas (IMAG)
Universidad de Granada
Granada
Spain
Francisco J. López
Departamento de Geometría y Topología e Instituto de Matemáticas (IMAG)
Universidad de Granada
Granada
Spain