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We investigate the volume comparison with respect to scalar curvature. In particular, we show the volume
comparison holds for small geodesic balls of metrics near a V -static metric. For closed manifolds, we
prove the volume comparison for metrics near a strictly stable Einstein metric. As applications, we give a
partial answer to a conjecture of Bray and recover a result of Besson, Courtois and Gallot, which partially
confirms a conjecture of Schoen about closed hyperbolic manifolds. Applying analogous techniques, we
obtain a different proof of a local rigidity result due to Dai, Wang and Wei, which shows it admits no
metric with positive scalar curvature near strictly stable Ricci-flat metrics.

1. Introduction

The volume comparison theorem is a fundamental result in Riemannian geometry. It is a powerful tool in
geometric analysis and frequently used in solving various problems.

The classic volume comparison theorem states that the volume of a complete manifold is upper bounded
by the round sphere if its Ricci curvature is lower bounded by a corresponding positive constant. A natural
question is whether we can replace the assumption on Ricci curvature by the one on scalar curvature.

In general, scalar curvature is not sufficient to control the volume. This is a straightforward consequence
of a result by Corvino, Eichmair and Miao [Corvino et al. 2013]. In order to state it, we need the following
fundamental concept, which was introduced in [Miao and Tam 2009].

Definition. Let (Mn, ḡ) be an n-dimensional Riemannian manifold. We say ḡ is a V-static metric if there
is a smooth function f ̸≡ 0 and a constant κ ∈ R that solve the V-static equation

γ ∗

ḡ f = ∇
2
ḡ f − ḡ1ḡ f − f Ricḡ = κ ḡ, (1-1)

where γ ∗

ḡ : C∞(M)→ S2(M) is the formal L2-adjoint of γḡ := DRḡ, the linearization of scalar curvature
at ḡ. We also say a quadruple (M, ḡ, f, κ) is a V-static space.
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Remark 1.1. A fundamental property of a V-static metric is that its scalar curvature Rḡ is a constant
for M connected; see Proposition 2.1 in [Corvino et al. 2013]. By taking the trace of (1-1), we can see
that f satisfies the linear elliptic equation

1ḡ f +
Rḡ

n−1
f +

nκ
n−1

= 0. (1-2)

In particular, f is an eigenfunction for the Laplacian if κ = 0.

Einstein metrics are in particular V-static, which can be easily seen by taking the function f to be a
constant. In this sense, we can view V-static metrics as a generalization of Einstein metrics. Another class
of special V-static metrics are vacuum static metrics when we take κ = 0. They can be used to construct
an important category of solutions to Einstein field equations in general relativity [Qing and Yuan 2013].
The classification of V-static spaces is a crucial problem in understanding the interplay between scalar
curvature and volume. For more results, please refer to [Baltazar and Ribeiro 2017; Barros et al. 2015;
Corvino et al. 2013; Miao and Tam 2009; 2012].

Now we state a deformation result associated with the concept of V-static metrics.

Theorem 1.2 (Corvino, Eichmair and Miao [Corvino et al. 2013]). Let (Mn, ḡ) be a Riemannian manifold
and � ⊂ M be a precompact domain with smooth boundary. Suppose (�, ḡ) is not V-static, i.e., the
V-static equation (1-1) only admits the trivial solution: f ≡ 0 and κ = 0 in C∞(�)× R. Then for any �0

compactly contained in �, there exists a constant δ0 > 0 such that for any (ρ, V ) ∈ C∞(M)× R with
supp(Rḡ − ρ)⊂�0 and

∥Rḡ − ρ∥C1(�,ḡ) + |V�(ḡ)− V |< δ0,

there exists a metric g on M such that supp(g − ḡ)⊂�, Rg = ρ and V�(g)= V.

This result suggests that for a non-V-static domain, the information of scalar curvature is not sufficient
to give a volume comparison: we can take either V > V�(ḡ) or V < V�(ḡ), but with ρ > Rḡ in �. In
either case, we can find a metric g realizing (ρ, V ) on � and it shows that no volume comparison holds
for non-V-static domains.

However, the volume comparison with respect to scalar curvature indeed holds for some special metrics.
For instance, Miao and Tam [2012] proved a rigidity result for the upper hemisphere with respect to
nondecreasing scalar curvature and volume. They also showed that a similar result holds for Euclidean
domains. Note that since all space forms are V-static, it is natural to ask whether all V-static spaces admit
such a volume comparison result.

Inspired by the rigidity of vacuum static metrics [Qing and Yuan 2016] and related work [Miao and
Tam 2012], we obtain a volume comparison theorem with respect to scalar curvature for sufficiently small
geodesic balls, if appropriate boundary conditions on induced metric g|T ∂Br (p) and mean curvature Hg

are posed.

Theorem A. For n ≥ 3, suppose (Mn, ḡ, f, κ) is a V-static space. For any p ∈ M with f (p) > 0, there
exist positive constants r0 and ε0 such that for any geodesic ball Br (p)⊂ M with radius r ∈ (0, r0) and
metric g on Br (p) satisfying
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• Rg ≥ Rḡ in Br (p),

• Hg ≥ Hḡ on ∂Br (p),

• g|T ∂Br (p) = ḡ|T ∂Br (p),

• ∥g − ḡ∥C2(Br (p),ḡ) < ε0,

the following volume comparison holds:

• if κ < 0, then
V�(g)≤ V�(ḡ),

• if κ > 0, then
V�(g)≥ V�(ḡ),

with equality holding in either case if and only if the metric g is isometric to ḡ.

Remark 1.3. If f (p) < 0, we only need to replace ( f, κ) by (− f,−κ), and the reversed volume
comparison follows.

Remark 1.4. If κ = 0, then V-static metrics are in particular vacuum static, and hence g is isometric to ḡ
according to [Qing and Yuan 2016]. Thus Theorem A is an extension for the rigidity of vacuum static
metrics.

In general, the function f may change its sign on a closed V-static manifold. For example, we can
take f := 1 + 2xn+1 on the unit sphere Sn, where xn+1 is the height-function of Sn ↪→ Rn+1. Hence the
volume comparison may not hold in this case. However, for some special V-static spaces, the volume
comparison with respect to scalar curvature might still hold for closed manifolds. Here and throughout
this article, we say a manifold is closed if it is compact without boundary.

Schoen [1989] proposed a well-known conjecture that the Yamabe invariant of a given closed hyperbolic
manifold is achieved by its canonical metric. This problem involves all possible metrics on a given
hyperbolic manifold and it is obviously very difficult to solve. However, it can be shown that this
conjecture is in fact equivalent to the following volume comparison problem.

Schoen’s conjecture. For n ≥ 3, let (Mn, ḡ) be a closed hyperbolic manifold. Then for any metric g
on M with

Rg ≥ Rḡ,

the volume comparison
VM(g)≥ VM(ḡ)

holds.

The equivalence of the aforementioned Schoen’s conjectures are known by experts. For the convenience
of readers, we include a proof in the appendix.

Schoen’s conjecture is known to hold for 3-manifolds due to works of Hamilton [1999] on nonsingular
Ricci flow and Perelman [2002; 2003] on geometrization of 3-manifolds (also see [Agol et al. 2007]
for a generalization). For higher dimensions, Besson, Courtois and Gallot [Besson et al. 1991] verified
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it for metrics C2-close to the canonical metric. They also proved that the volume comparison holds
without assuming g is close to ḡ if one replaces the assumption on scalar curvature by Ricci curva-
ture [Besson et al. 1995], which can be viewed as evidence that Schoen’s conjecture holds for higher
dimensions.

For the case of positive curvature, Bray proposed the following conjecture.

Bray’s conjecture. For n ≥ 3, there is a positive constant εn < 1 such that for any complete manifold
(Mn, g) with scalar curvature

Rg ≥ n(n − 1)

and Ricci curvature
Ricg ≥ εn(n − 1)g,

the volume comparison
VM(g)≤ VSn (g

Sn )

holds, where Sn is the unit round sphere and g
Sn is the canonical metric.

Remark 1.5. Unlike Schoen’s conjecture, there is an additional assumption on Ricci curvature in the
positive curvature case. In fact, this assumption is necessary; see [Bray 1997] for details.

For this conjecture, Bray [1997] verified it for three dimensional manifolds and gave an estimate for ε3.
Later, Gursky and Viaclovsky [2004] showed that ε3 ≤

1
2 , and Brendle [2012] proved the rigidity of

volume comparison for ε3 =
1
2 . For higher dimensions, Zhang [2019] gave a partial answer.

Before stating our result, we first recall the following well-known concept associated with an Einstein
metric.

Definition 1.6 (stability of Einstein metrics). For n ≥ 3, suppose (Mn, ḡ) is a closed Einstein manifold.
The metric ḡ is said to be stable if

min spec
TT
(−1

ḡ
E)= inf

0̸≡h∈STT
2 (M)

∫
M⟨h,−1ḡ

E h⟩ḡ dvḡ∫
M |h|

2
ḡ dvḡ

≥ 0, (1-3)

where 1ḡ
E :=1ḡ + 2 Rmḡ is the Einstein operator and

STT
2,ḡ(M) := {h ∈ S2(M) : δḡh = 0, trḡ h = 0}

is the space of transverse-traceless symmetric 2-tensors on (M, ḡ). Moreover, ḡ is called strictly stable if
the inequality in (1-3) is strict.

Stability is a crucial concept in the study of Einstein manifolds. There are several equivalent way to
define it, we adopt the one involving the Einstein operator for our convenience. For more information,
please refer to [Besse 1987; Dai et al. 2005; 2007; Kröncke 2013].

Our main result about volume comparison for Einstein manifolds is the following:

Theorem B. Suppose (Mn, ḡ) is a closed strictly stable Einstein manifold with

Ricḡ = (n − 1)λḡ,
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where λ ̸= 0 is a constant. There exists a constant ε0 > 0 such that for any metric g on M which satisfies

Rg ≥ n(n − 1)λ

and
∥g − ḡ∥C2(M,ḡ) < ε0,

the following volume comparison holds:

• if λ > 0, then
VM(g)≤ VM(ḡ),

• if λ < 0, then
VM(g)≥ VM(ḡ).

Moreover, the equality holds in either case if and only if the metric g is isometric to ḡ.

Remark 1.7. Suppose the reference metric ḡ is Kähler–Einstein with negative scalar curvature and all
infinitesimal complex deformations of its complex structure are integrable. Applying a delicate utilization
of the functional

K (g)=

∫
M

|Rg|
n/2 dvg

and the Yamabe functional

Y (g)=

∫
M Rg dvg

(VM(g))(n−2)/n ,

Dai, Wang and Wei proved that the volume comparison with respect to scalar curvature holds for metrics
near ḡ; see Theorem 1.5 in [Dai et al. 2007]. In fact, their result can be extended to strictly stable Einstein
metrics with negative scalar curvature.

Remark 1.8. The above volume comparison does not hold for Ricci-flat metrics: by taking g = c2ḡ for a
constant c > 0, we have the scalar curvature Rg = Rḡ = 0, but the volume VM(g) can be either larger or
smaller than VM(ḡ) depending on whether c > 1 or c < 1.

Remark 1.9. The stability assumption in the theorem is necessary. Macbeth constructed an example of an
Einstein manifold which shows the volume comparison fails if we lack stability (personal communication,
2019). See Proposition 5.9 for more details.

Remark 1.10. Our approach in fact works for other curvatures as well. Please see [Lin and Yuan 2022]
for a volume comparison theorem of Q-curvature for strictly stable positive Einstein manifolds.

It is well known that hyperbolic metrics are strictly stable as special Einstein metrics and hence
Theorem B provides a partial answer to Schoen’s conjectures, which recovers the following result.

Corollary A (Besson, Courtois and Gallot [Besson et al. 1991]). For n ≥ 3, let (Mn, ḡ) be a closed
hyperbolic manifold. There exists a constant ε0 > 0 such that for any metric g on M with scalar curvature

Rg ≥ Rḡ

and
∥g − ḡ∥C2(M,ḡ) < ε0,
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we have
VM(g)≥ VM(ḡ),

where equality holds if and only if the metric g is isometric to ḡ.

Similarly, the spherical metric is also strictly stable (Example 3.1.2 in [Kröncke 2013]), and we obtain
a partial answer to Bray’s conjecture.

Corollary B. For n ≥ 3, let (Sn, g
Sn ) be the unit round sphere. There exists a constant ε0 > 0 such that

for any metric g on Sn with scalar curvature

Rg ≥ n(n − 1)

and
∥g − g

Sn ∥C2(Sn,g
Sn )
< ε0,

we have
VSn (g)≤ VSn (g

Sn ),

where equality holds if and only if the metric g is isometric to g
Sn .

Remark 1.11. For metrics close to the canonical spherical metric, the assumption on Ricci curvature in
Bray’s conjecture holds automatically.

Remark 1.12. Corvino, Eichmair and Miao constructed a metric on the upper hemisphere which satisfies
the scalar comparison but has arbitrarily large volume; see Proposition 6.2 in [Corvino et al. 2013]. In
fact, by gluing a lower hemisphere, we can get a metric on the whole sphere with scalar curvature no less
than n(n − 1) but with larger volume.

In the research of scalar curvature, a fundamental question is whether a given manifold admits a metric
of positive scalar curvature. A well-known result due to Schoen and Yau [1979a; 1979b] and Gromov
and Lawson [1980; 1983] is the rigidity of tori, which states that there is no metric of positive scalar
curvature on tori. For an excellent survey, please refer to [Rosenberg 2007].

In [Dai et al. 2005], Dai, Wang and Wei studied the existence of metrics with positive scalar curvature
on a Riemannian manifold with nonzero parallel spinors. Through investigations of variational properties
for the first eigenvalue of the conformal Laplacian, they proved the local rigidity of scalar curvature near
the reference metric. Note that their proof can be applied to closed strictly stable Ricci-flat manifolds.

Applying techniques similar to the argument for Theorem B, we obtain the local rigidity of strictly
stable Ricci-flat manifolds, which generalizes a result of Fischer and Marsden [1975] about local rigidity
of tori with a different approach than in [Dai et al. 2005]:

Theorem C (Dai, Wang and Wei [Dai et al. 2005]). Suppose (Mn, ḡ) is a strictly stable Ricci-flat manifold.
Then there exists a constant ε0 > 0 such that for any metric g on M satisfying

Rg ≥ 0

and
∥g − ḡ∥C2(M,ḡ) < ε0,
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we have g is homothetic to ḡ. That is, we can find a constant c > 0 such that g = c2ḡ. In particular, there
is no metric with positive scalar curvature near ḡ.

Remark 1.13. Note that flat tori are merely stable, since the kernel of the Einstein operator is nontrivial
and in fact

dim ker1ḡ
E ≥

n(n+1)
2

− 1.

It will be interesting to see whether there is an example of closed stable Ricci-flat manifold which admits
a metric of positive scalar curvature near the reference metric.

Remark 1.14. Similar to Theorem B, our approach can also be applied to other curvatures. Please see
[Lin and Yuan 2022] for an analogous result for Q-curvature.

The article is organized as follow: In Section 2, we collect notation and conventions used frequently
in this article. In Section 3, we calculate some geometric variational formulas involved in the next two
sections. In Section 4, we study the volume comparison for geodesic balls in V-static spaces. In Section 5,
we investigate the volume comparison for non-Ricci-flat strictly stable Einstein manifolds and the rigidity
phenomenon of strictly stable Ricci-flat manifolds. In the Appendix, we present a proof for equivalence
of two conjectures proposed by Schoen.

2. Notation and conventions

In this section, we collect notation frequently used and conventions adopted in this article for the
convenience of readers. Please note that all calculations are performed in the reference metric ḡ.

Let (�n, ḡ) be an n-dimensional compact manifold possibly with C1-boundary 6 := ∂�:

(1) Indices of coordinates components:

• Greek indices run through 1, . . . , n;
• Latin indices run through 1, . . . , n − 1.

(2) Connections:

• connection on � with respect to ḡ: ∇ḡ;
• connection on 6 with respect to ḡ|T6 : ∇

6.

(3) Volume forms:

• volume form on � with respect to ḡ: dvḡ;
• volume form on 6 with respect to ḡ|T6 : dσḡ.

(4) Curvatures:

• Riemann curvature tensor Rmḡ: Rαβγ δ;
• Ricci curvature tensor Ricḡ: Rβγ = ḡαδRαβγ δ;
• scalar curvature Rḡ: Rḡ = ḡβγ Rβγ ;
• second fundamental form Aḡ: Aḡ

i j =
1
2∂νḡ ḡi j ;

• mean curvature Hḡ: Hḡ = ḡi jAḡ
i j .
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(5) Spaces:

• space of all smooth Riemannian metrics on �: M�;
• space of all smooth diffeomorphisms of �: D(�);
• a local slice through the metric ḡ: Sḡ;
• symmetric 2-tensors on �: S2(�);
• TT-tensors on (�, ḡ): STT

2,ḡ(�)= {h ∈ S2(�) : δḡh = 0, trḡ h = 0}.

(6) Operators:

• Multiplication and inner product of symmetric 2-tensors:

(h × k)αδ := ḡβγ hαβkγ δ and ⟨h, k⟩ḡ = h · k := ḡαδ(h × k)αδ = ḡαδ ḡβγ hαβkγ δ.

In particular,
(h2)αβ = ḡγ δhαγ hδβ and Ricḡ ·h := Rβγ hβγ.

• Riemann curvature tensor as an operator on symmetric 2-tensors:

(Rmḡ ·h)βγ := Rαβγ δhαδ and ⟨Rmḡ ·h, h⟩ḡ := Rαβγ δhαδhβγ.

• A combination involving curvature:

Rḡ(h, h) := ⟨Rmḡ ·h, h⟩ḡ + 2(Ricḡ ·h)(trḡ h)−
2Rḡ

n−1
(trḡ h)2.

• Formal L2-adjoint of covariant differentiation:

δḡ = − divḡ, (δḡh)β = −∇
α
ḡ hαβ .

• Einstein operator:
1

ḡ
E h =1ḡh + 2 Rmḡ ·h.

• Linearization of scalar curvature:

γḡh = −1ḡ(trḡ h)+ δ2
ḡh − Ricḡ ·h.

• Formal L2-adjoint of γḡ:
γ ∗

ḡ f = ∇
2
ḡ f − ḡ1ḡ f − f Ricḡ .

3. Geometric variational formulas

In this section, we give variational formulas for geometric functionals involved later in the argument.
Throughout this section, � is assumed to be a compact manifold possibly with C1-boundary 6 := ∂�. In
the case 6 ̸= ∅, let

{e1, . . . , en−1, en = νḡ}

be an orthonormal frame on 6 such that the {ei }
n−1
i=1 are tangent to 6 and νḡ is the outward normal vector

field of 6 with respect to the metric ḡ. We also denote the induced connection on 6 by ∇
6.
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We begin with recalling well-known variational formulas of scalar curvature; for detailed calculations,
please refer to [Fischer and Marsden 1975; Yuan 2015].

Lemma 3.1. The first and second variations of scalar curvature are

DRḡ · h = −1ḡ(trḡ h)+ δ2
ḡh − Ricḡ ·h, (3-1)

and

D2 Rḡ · (h, h)= −2γḡ(h2)−1ḡ|h|
2
ḡ −

1
2 |∇ḡh|

2
ḡ −

1
2 |d(trḡ h)|2ḡ

+ 2⟨h,∇2
ḡ(trḡ h)⟩ḡ − 2⟨δḡh, d(trḡ h)⟩ḡ + ∇αhβγ∇βhαγ (3-2)

for any h ∈ S2(�).

For the mean curvature, its variations for the fixed induced boundary metric are given as follow, which
was first shown in [Brendle and Marques 2011].

Lemma 3.2. The first and second variations of mean curvature are

DHḡ · h =
1
2 hnn Hḡ − ∇i h i

n +
1
2∇nh i

i (3-3)

and

D2 Hḡ · (h, h)=

(
−

1
4 h2

nn +

n−1∑
i=1

h2
in

)
Hḡ + hnn

(
∇i h i

n −
1
2∇nh i

i
)

(3-4)

for any h ∈ S2(�) with h|T ∂� ≡ 0.

For the volume functional, we provide a proof mainly based on a technique from linear algebra, which
would be useful in calculating higher order variational formulas.

Lemma 3.3. The first and second variations of volume are

DV�,ḡ · h =
1
2

∫
�

(trḡ h) dvḡ (3-5)

and
D2V�,ḡ · (h, h)=

1
4

∫
�

[(trḡ h)2 − 2|h|
2
ḡ] dvḡ (3-6)

for any h ∈ S2(�).

Proof. Let A be an n × n symmetric matrix. Its characteristic polynomial is given by

pA(λ)= det(λI − A)=

n∑
k=0

(−1)kσk(A)λn−k

= λn
− (tr A)λn−1

+
1
2((tr A)2 − tr A2)λn−2

+

n∑
k=3

(−1)kσk(A)λn−k,

where σk(A) is the k-th elementary symmetric polynomial associated to the matrix A.
We choosing normal coordinates with respect to ḡ centered at an interior point x ∈�, so that ḡαβ = δαβ

at x . From the linear algebra fact mentioned above, we have the expansion

det(ḡ + h)= 1 + (trḡ h)+ 1
2((trḡ h)2 − |h|

2
ḡ)+ O(|h|

3
ḡ),
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and hence √
det(ḡ + h)= 1 +

1
2(trḡ h)+ 1

8((trḡ h)2 − 2|h|
2
ḡ)+ O(|h|

3
ḡ).

Immediately, this implies

DV�,ḡ · h =
1
2

∫
�

(trḡ h) dvḡ and D2V�,ḡ · (h, h)=
1
4

∫
�

((trḡ h)2 − 2|h|
2
ḡ) dvḡ,

respectively. □

In the rest of this section, we calculate variational formulas for some particularly designed functionals
involving scalar curvature, mean curvature and volume.

Proposition 3.4. For any h ∈ S2(�) and f ∈ C∞(�),∫
�

(DRḡ ·h) f dvḡ =

∫
�

⟨h, γ ∗

ḡ f ⟩ḡ dvḡ +

∫
6

[−(∂νḡ (trḡ h)+⟨δḡh, νḡ⟩ḡ) f +(trḡ h)∂νḡ f −h(νḡ,∇ḡ f )] dσḡ.

Proof. It is straightforward to see that∫
�

(DRḡ ·h) f dvḡ =

∫
�

(−1ḡ(trḡ h)+δ2
ḡh−Ricḡ ·h) f dvḡ

=

∫
�

⟨h,γ ∗

ḡ f ⟩ḡ dvḡ +

∫
6

[−(∂νḡ (trḡ h)+⟨δḡh,νḡ⟩ḡ) f +(trḡ h)∂νḡ f −h(νḡ,∇ḡ f )] dσḡ,

using Lemma 3.1 and integration by parts. □

Proposition 3.5. For any h ∈ S2(�) and f ∈ C∞(�),∫
�

(D2 Rḡ ·(h, h)) f dvḡ

=

∫
�

[
−

1
2 |∇ḡh|

2
ḡ −

1
2 |d(trḡ h)|2ḡ +|δḡh|

2
−2⟨δḡh, d(trḡ h)⟩ḡ +2(trḡ h)(δ2

ḡh)+Rḡ(h, h)
]

f dvḡ

+

∫
�

[
2(trḡ h)

(
⟨h, γ ∗

ḡ f ⟩ḡ −2⟨δḡh, d f ⟩ḡ −
1

n−1
(trḡ h)(trḡ(γ

∗

ḡ f ))
)
−2⟨h, δḡh⊗d f ⟩ḡ −⟨γ ∗

ḡ f, h2
⟩ḡ

]
dvḡ

+

∫
6

[∂νḡ |h|
2
ḡ +⟨δḡ(h2), νḡ⟩ḡ +2h(νḡ, δḡh)+2h(νḡ,∇ḡ trḡ h)+2(trḡ h)⟨δḡh, νḡ⟩ḡ] f dσḡ

+

∫
6

[h2(νḡ,∇ḡ f )−|h|
2
ḡ∂νḡ f −2(trḡ h)h(νḡ,∇ḡ f )] dσḡ,

where

Rḡ(h, h) := ⟨Rmḡ ·h, h⟩ḡ + 2(Ricḡ ·h)(trḡ h)−
2Rḡ

n − 1
(trḡ h)2.

Proof. By Lemma 3.1, we have∫
�

(D2 Rḡ · (h, h)) f dvḡ =

∫
�

[−2γḡ(h2)−1ḡ|h|
2
ḡ + 2⟨h,∇2

ḡ(trḡ h)⟩ḡ + ∇αhβγ∇βhαγ ] f dvḡ

+

∫
�

[
−2⟨δḡh, d(trḡ h)⟩ḡ −

1
2 |∇ḡh|

2
ḡ −

1
2 |d(trḡ h)|2ḡ

]
f dvḡ.
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Integrating by parts,

−2
∫
�

(γḡ(h2)) f dvḡ

= −2
∫
�

⟨γ ∗

ḡ f, h2
⟩ḡ dvḡ − 2

∫
6

[(trḡ(h2))∂νḡ f − f ∂νḡ (trḡ(h2))− h2(νḡ,∇ f )− ⟨δḡ(h2), νḡ⟩ḡ f ] dσḡ

= −2
∫
�

⟨γ ∗

ḡ f, h2
⟩ḡ dvḡ + 2

∫
6

[(∂νḡ |h|
2
ḡ + ⟨δḡ(h2), νḡ⟩ḡ) f + h2(νḡ,∇ f )− |h|

2
ḡ∂νḡ f ] dσḡ

and

−

∫
�

(1ḡ|h|
2) f dvḡ = −

∫
�

(|h|
21ḡ f ) dvḡ −

∫
6

[ f ∂νḡ |h|
2
ḡ − |h|

2
ḡ∂νḡ f ] dσḡ.

Also,

2
∫
�

⟨h,∇2
ḡ(trḡ h)⟩ḡ f dvḡ

= 2
∫
�

[⟨δḡh, d(trḡ h)⟩ f − ⟨h, d(trḡ h)⊗ d f ⟩ḡ] dvḡ + 2
∫
6

h(νḡ,∇ḡ(trḡ h)) f dσḡ

= 2
∫
�

(trḡ h)[(δ2
ḡh) f − 2⟨δḡh, d f ⟩ḡ + ⟨h,∇2

ḡ f ⟩ḡ] dvḡ

+ 2
∫
6

[(h(νḡ,∇ḡ(trḡ h))+ (trḡ h)⟨δḡh, νḡ⟩ḡ) f − (trḡ h)h(νḡ,∇ḡ f )] dσḡ

= 2
∫
�

(trḡ h)[(δ2
ḡh) f − 2⟨δḡh, d f ⟩ḡ + ⟨h, γ ∗

ḡ f ⟩ḡ + (trḡ h)1ḡ f + (Ricḡ ·h) f ] dvḡ

+ 2
∫
6

[(h(νḡ,∇ḡ(trḡ h))+ (trḡ h)⟨δḡh, νḡ⟩ḡ) f − (trḡ h)h(νḡ,∇ḡ f )] dσḡ

and∫
�

[∇αhβγ∇βhαγ ] f dvḡ

= −

∫
�

h β
γ [∇α∇βhαγ f + ∇βhαγ∇α f ] dvḡ +

∫
6

[hβγ νḡα∇
βhαγ ] f dσḡ

= −

∫
�

h β
γ [(∇β∇αhαγ + R α

αβδ hδγ + R γ

αβδ hαδ) f + ∇βhαγ∇α f ] dvḡ +

∫
6

[hβγ νḡα∇
βhαγ ] f dσḡ

= −

∫
�

[−∇βh β
γ ∇αhαγ f − 2h β

γ ∇αhαγ∇β f − h β
γ hαγ∇β∇α f + (⟨Ricḡ, h2

⟩ḡ − ⟨Rmḡ ·h, h⟩ḡ) f ] dvḡ

+

∫
6

[(hβγ νḡα∇
βhαγ − hβγ νḡβ∇αhαγ ) f − hβγ hαγ νḡβ∇α f ] dσḡ

=

∫
�

[|δḡh|
2
ḡ f − 2⟨h, δḡh ⊗ d f ⟩ḡ + ⟨∇

2
ḡ f − f Ricḡ, h2

⟩ḡ + ⟨Rmḡ ·h, h⟩ḡ f ] dvḡ

−

∫
6

[(⟨δḡ(h2), νḡ⟩ḡ − 2h(νḡ, δḡh)) f + h2(νḡ,∇ḡ f )] dσḡ

=

∫
�

[|δḡh|
2
ḡ f − 2⟨h, δḡh ⊗ d f ⟩ḡ + ⟨γ ∗

ḡ f + ḡ1ḡ f, h2
⟩ḡ + ⟨Rmḡ ·h, h⟩ḡ f ] dvḡ

−

∫
6

[(⟨δḡ(h2), νḡ⟩ḡ − 2h(νḡ, δḡh)) f + h2(νḡ,∇ḡ f )] dσḡ.
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Combining the calculations above, we obtain∫
�

(D2 Rḡ ·(h, h)) f dvḡ

=

∫
�

[
−

1
2 |∇ḡh|

2
ḡ −

1
2 |d(trḡ h)|2ḡ +|δḡh|

2
ḡ −2⟨δḡh, d(trḡ h)⟩ḡ +⟨Rmḡ ·h, h⟩ḡ +2(trḡ h)(Ricḡ ·h)

]
f dvḡ

+

∫
�

[2(trḡ h)((δ2
ḡh) f +⟨h, γ ∗

ḡ f ⟩ḡ −2⟨δḡh, d f ⟩ḡ +(trḡ h)1ḡ f )−2⟨h, δḡh⊗d f ⟩ḡ −⟨γ ∗

ḡ f, h2
⟩ḡ] dvḡ

+

∫
6

[(∂νḡ |h|
2
ḡ +⟨δḡ(h2), νḡ⟩ḡ +2h(νḡ, δḡh)) f −|h|

2
ḡ∂νḡ f +h2(νḡ,∇ḡ f )] dσḡ

+2
∫
6

[(h(νḡ,∇ḡ(trḡ h))+(trḡ h)⟨δḡh, νḡ⟩ḡ) f −(trḡ h)h(νḡ,∇ḡ f )] dσḡ

=

∫
�

[
−

1
2 |∇ḡh|

2
ḡ −

1
2 |d(trḡ h)|2ḡ +|δḡh|

2
ḡ −2⟨δḡh, d(trḡ h)⟩ḡ +2(trḡ h)(δ2

ḡh)+Rḡ(h, h)
]

f dvḡ

+

∫
�

[
2(trḡ h)

(
⟨h, γ ∗

ḡ f ⟩ḡ −2⟨δḡh, d f ⟩ḡ −
1

n−1
(trḡ h)(trḡ(γ

∗

ḡ f ))
)
−2⟨h, δḡh⊗d f ⟩ḡ −⟨γ ∗

ḡ f, h2
⟩ḡ

]
dvḡ

+

∫
6

[∂νḡ |h|
2
ḡ +⟨δḡ(h2), νḡ⟩ḡ +2h(νḡ, δḡh)+2h(νḡ,∇ḡ(trḡ h))+2(trḡ h)⟨δḡh, νḡ⟩ḡ] f dσḡ

+

∫
6

[h2(νḡ,∇ḡ f )−|h|
2
ḡ∂νḡ f −2(trḡ h)h(νḡ,∇ḡ f )] dσḡ,

where we used the fact that

trḡ(γ
∗

ḡ f )= −(n − 1)
(
1ḡ f +

Rḡ

n − 1
f
)

and

Rḡ(h, h)= ⟨Rmḡ ·h, h⟩ḡ + 2(Ricḡ ·h)(trḡ h)−
2Rḡ

n − 1
(trḡ h)2. □

In particular, for V-static metrics we have the following identity.

Corollary 3.6. Suppose (�, ḡ, f, κ) is a V-static space. Then for any h ∈ ker δḡ with h|T6 ≡ 0,∫
�

(D2 Rḡ ·(h, h)) f dvḡ = −
1
2

∫
�

[
(|∇ḡh|

2
ḡ +|d(trḡ h)|2ḡ −2Rḡ(h, h)) f +2κ

(
|h|

2
ḡ +

2
n−1

(trḡ h)2
)]

dvḡ

−

∫
6

[
Ai j

ḡ hinh jn −

(
h2

nn −3
n−1∑
i=1

h2
in

)
Hḡ +4hnn

(
∇i h i

n −
1
2
∇nh i

i

)]
f dσḡ

−

∫
6

[(
2h2

nn +

n−1∑
i=1

h2
in

)
∂n f +2hnn

n−1∑
i=1

hin∂i f
]

dσḡ.

Proof. Applying Proposition 3.5 with our assumptions,∫
�

(D2 Rḡ · (h, h)) f dvḡ = −
1
2

∫
�

[
(|∇ḡh|

2
ḡ + |d(trḡ h)|2ḡ − 2Rḡ(h, h)) f + 2κ

(
|h|

2
ḡ +

2
n−1

(trḡ h)2
)]

dvḡ

+

∫
6

[
(∂νḡ |h|

2
ḡ + ⟨δḡ(h2), νḡ⟩ḡ + 2h(νḡ,∇ḡ(trḡ h))) f + h2(νḡ,∇ḡ f )

− |h|
2
ḡ∂νḡ f − 2(trḡ h)h(νḡ,∇ḡ f )

]
dσḡ.
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For the boundary integral, we will rewrite it in terms of the orthonormal frame chosen for the boundary.
Note that the identities

0n
i j = −Aḡ

i j , 0k
jn = Ak

j , 0i
in = Hḡ (3-7)

hold on 6. Since
δḡh = 0 and hi j = 0, i, j = 1, . . . , n − 1,

we have

⟨δḡ(h2), νḡ⟩ḡ = (δḡ(h2))n = −∇α(h α
β h β

n )= −h α
β ∇αh β

n = −hnn∇nhnn − h i
n ∇i hnn − h i

n ∇nhin,

∂νḡ |h|
2
ḡ = ∇n|h|

2
ḡ = 2hnn∇nhnn + 4h i

n ∇nhin

on 6. Thus,

∂νḡ |h|
2
ḡ + ⟨δḡ(h2), νḡ⟩ḡ + 2h(νḡ,∇ḡ(trḡ h))

= hnn∇nhnn + 3h i
n ∇nhin − h i

n ∇i hnn + 2hnn∇n(trḡ h)+ 2h i
n ∇i (trḡ h)

= 3hnn∇nhnn + 3h i
n ∇nhin − h i

n ∇i hnn + 2hnn∇nh i
i + 2h i

n ∇
6
i hnn

= −3hnn∇i h i
n − 3h i

n ∇ j h
j

i − h i
n ∇i hnn + 2hnn∇nh i

i + 2h i
n ∇

6
i hnn,

where we used the fact that
∇nhnα = −(δḡh)α − ∇i h i

α = −∇i h i
α .

Moreover, from
∇ j h

j
i = ∂ j h

j
i +0

j
jαh α

i −0αj i h
j

α = Aḡ
i j h

j
n + Hḡhin

and
∇i hnn = ∂i hnn − 20αinhαn = ∇

6
i hnn − 2Aḡ

i j h
j

n ,

we obtain

∂νḡ |h|
2
ḡ + ⟨δḡ(h2), νḡ⟩ḡ + 2h(νḡ,∇ḡ(trḡ h))

= −Ai j
ḡ hinh jn − 3Hḡ

n−1∑
i=1

h2
in + h i

n ∇
6
i hnn − 3hnn∇i h i

n + 2hnn∇nh i
i .

On the other hand,

h2(νḡ,∇ḡ f )− |h|
2
ḡ∂νḡ f − 2(trḡ h)h(νḡ,∇ḡ f )= −

(
2h2

nn +

n−1∑
i=1

h2
in

)
∂n f − hnn

n−1∑
i=1

hin∂i f.

Integrating by parts,∫
6

[(∂νḡ |h|
2
ḡ +⟨δḡ(h2), νḡ⟩ḡ +2h(νḡ,∇ḡ(trḡ h))) f + h2(νḡ,∇ḡ f )−|h|

2
ḡ∂νḡ f −2(trḡ h)h(νḡ,∇ḡ f )] dσḡ

= −

∫
6

[(
Ai j

ḡ hinh jn + 3Hḡ

n−1∑
i=1

h2
in

)
f +

(
2h2

nn +

n−1∑
i=1

h2
in

)
∂n f + 2hnn

n−1∑
i=1

hin∂i f
]

dσḡ

+

∫
6

(−hnn∇
6
i h i

n − 3hnn∇i h i
n + 2hnn∇nh i

i ) f dσḡ.
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Note that
∇i h i

n = ∂i h i
n +0i

iαh α
n −0αinh i

α

= ∇
6
i h i

n + Hḡhnn,

and hence∫
6

[(∂νḡ |h|
2
ḡ +⟨δḡ(h2), νḡ⟩ḡ +2h(νḡ,∇ḡ(trḡ h))) f + h2(νḡ,∇ḡ f )−|h|

2
ḡ∂νḡ f −2(trḡ h)h(νḡ,∇ḡ f )] dσḡ

= −

∫
6

[
Ai j

ḡ hinh jn −

(
h2

nn − 3
n−1∑
i=1

h2
in

)
Hḡ + 4hnn

(
∇i h i

n −
1
2∇nh i

i
)]

f dσḡ

−

∫
6

[(
2h2

nn +

n−1∑
i=1

h2
in

)
∂n f + 2hnn

n−1∑
i=1

hin∂i f
]

dσḡ. □

In particular, for a special class of V-static spaces we have the following.

Corollary 3.7. Suppose (Mn, ḡ) is a closed Einstein manifold with

Ricḡ = (n − 1)λḡ.

Then for any h ∈ STT
2,ḡ(M)⊕ (C∞(M) · ḡ) we have∫

M
(D2 Rḡ · (h, h)) dvḡ = −

1
2

∫
M

(
−⟨h,1ḡ

E h⟩ḡ +
n2

−2
n2

|d(trḡ h)|2ḡ − 2(n − 1)λ|h|
2
ḡ

)
dvḡ.

Proof. According to the V-static equation (1-1), it is obvious that the Einstein manifold (Mn, ḡ) is a
V-static space with f ≡ 1 on M and κ = −(n − 1)λ. By Corollary 3.6 we obtain∫

M
(D2 Rḡ ·(h, h)) dvḡ =

∫
M

[
−

1
2 |∇ḡh|

2
ḡ−

1
2 |d(trḡ h)|2ḡ+|δḡh|

2
ḡ+Rḡ(h, h)+2λ(trḡ h)2+(n−1)λ|h|

2
ḡ
]

dvḡ.

From our assumption,

δḡh = −
1
n

d(trḡ h),

and hence∫
M
(D2 Rḡ · (h, h)) dvḡ =

∫
M

[
−

1
2 |∇ḡh|

2
ḡ −

n2
−2

2n2
|d(trḡ h)|2ḡ +Rḡ(h, h)+2λ(trḡ h)2 + (n −1)λ|h|

2
ḡ

]
dvḡ.

Since

Rḡ(h, h)= ⟨Rmḡ ·h, h⟩ḡ + 2(Ricḡ ·h)(trḡ h)−
2Rḡ

n − 1
(trḡ h)2

= ⟨Rmḡ ·h, h⟩ḡ − 2λ(trḡ h)2,

we have∫
M
(D2 Rḡ · (h, h)) dvḡ = −

1
2

∫
M

(
−⟨h,1ḡ

E h⟩ḡ +
n2

−2
n2

|d(trḡ h)|2ḡ − 2(n − 1)λ|h|
2
ḡ

)
dvḡ. □
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4. Volume comparison for V-static spaces

In this section, we will investigate the volume comparison for geodesic balls in generic V-static spaces.
Let � be an n-dimensional compact domain in a V-static space (Mn, ḡ, f, κ) with C1-boundary

6 := ∂�. We define the functional

F�,ḡ[g] :=

∫
�

R(g) f dvḡ + 2
∫
6

H(g) f dσḡ − 2κV�(g), (4-1)

where

g ∈ M�,6,ḡ := {g ∈ M� : g|T6 = ḡ|T6}

is a Riemannian metric on � that induces the same metric as ḡ on the boundary 6.
This functional is particularly designed for a given V-static space. The information of both volume and

curvature is encoded in this single functional. It has excellent variational properties.

Proposition 4.1. The V-static metric ḡ is a critical point of the functional F�,ḡ[g]. That is,

DF�,ḡ · h = 0 (4-2)

for any h ∈ S2(�) with h|T ∂� ≡ 0.

Proof. Applying Proposition 3.4 together with Lemmas 3.2 and 3.3,

DF�,ḡ · h =

∫
�

(DRḡ · h) f dvḡ + 2
∫
∂�

(DHḡ · h) f dσḡ − 2κ(DV�,ḡ · h)

=

∫
�

[⟨h, γ ∗

ḡ f ⟩ḡ − κ(trḡ h)] dvḡ

+

∫
∂�

[−(∂n(trḡ h)+ (δḡh)n + 2∇i h i
n − ∇nh i

i − hnn Hḡ) f − h i
n ∂i f ] dσḡ,

where we used that trḡ h = hnn on ∂�. Since

∇i h i
n = ∂i h i

n +0i
iαh α

n −0αinh i
α = ∇

6
i h i

n + Hḡhnn,

we have

(δḡh)n = −∇αh α
n = −∇

6
i h i

n − ∇nhnn − Hḡhnn.

Therefore

DF�,ḡ · h =

∫
�

⟨h, γ ∗

ḡ f − κ ḡ⟩ḡ dvḡ −

∫
∂�

[(∇6
i h i

n ) f + h i
n ∂i f ] dσḡ = −

∫
∂�

∇
6
i (h

i
n f ) dσḡ = 0,

i.e., ḡ is a critical point of F�,ḡ[g]. □

The second variation that follows is a straightforward application of Lemmas 3.2 and 3.3 together with
Corollary 3.6.
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Proposition 4.2. For any h ∈ ker δḡ with h|T6 ≡ 0, we have

D2F�,ḡ · (h, h)= −
1
2

∫
�

[
(|∇ḡh|

2
ḡ + |d(trḡ h)|2ḡ − 2Rḡ(h, h)) f +

n+3
n−1

(trḡ h)2κ
]

dvḡ

−

∫
6

[(
Ai j

ḡ hinh jn −
1
2

(
h2

nn − 2
n−1∑
i=1

h2
in

)
Hḡ + 2hnn

(
∇i h i

n −
1
2
∇nh i

i

))
f
]

dσḡ

−

∫
6

[(
2h2

nn +

n−1∑
i=1

h2
in

)
∂n f + 2hnn

n−1∑
i=1

hin∂i f
]

dσḡ.

In general, geometric functionals are invariant under actions of diffeomorphisms and it would cause
degenerations on their second variations. In order to get rid of these degenerations, we need to find a
metric modulo diffeomorphisms. This is usually referred to be gauge fixing and it can be obtained by
applying basic elliptic theory and the implicit function theorem. For manifolds with boundary, this can be
achieved if one poses appropriate boundary conditions.

Lemma 4.3 [Brendle and Marques 2011, Proposition 11]. Suppose (�n, ḡ) is a compact Riemannian
manifold with boundary. Fix a real number p > n. Then there exists a constant ε1 > 0 such that for a
metric g on � with

g|T ∂� = ḡ|T ∂�

and
∥g − ḡ∥W 2,p(�,ḡ) < ε1,

there exists a diffeomorphism ϕ :�→� such that ϕ|
∂�

= id and h := ϕ∗g − ḡ ∈ ker δḡ. Moreover,

∥h∥W 2,p(�,ḡ) ≤ N∥g − ḡ∥W 2,p(�,ḡ)

for some constant N > 0 that depends only on (�, ḡ).

In particular, we take � to be a geodesic ball Br (p) at an interior point p ∈ M with radius r > 0.

Proposition 4.4. Suppose (Mn, ḡ, κ, f ) is a V-static space and p ∈ M is an interior point. Then there is
a constant ε1 > 0 such that for any metric g on Br (p) satisfying

• Rg ≥ Rḡ in Br (p),

• Hg ≥ Hḡ on ∂Br (p),

• g|T ∂Br (p) = ḡ|T ∂Br (p),

• ∥g − ḡ∥C2(Br (p),ḡ) < ε1,

we can find a diffeomorphism ϕ ∈ D(Br (p)) such that ϕ|∂Br (p) = id and

h := ϕ∗g − ḡ ∈ ker δḡ

satisfies |h|ḡ <
1
2 in Br (p), h|T ∂Br (p) ≡ 0 on ∂Br (p) and

∥h∥C2(Br (p),ḡ) ≤ N∥g − ḡ∥C2(Br (p),ḡ)
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for some constant N > 0 depending only on (Br (p), ḡ). Additionally, we have

• Rϕ∗g ≥ Rḡ in Br (p),

• Hϕ∗g ≥ Hḡ on ∂Br (p).

Proof. The existence of a constant ε1 and diffeomorphism ϕ is a straightforward application of Lemma 4.3.
Furthermore, we have

• Rϕ∗g = Rg ◦ϕ ≥ Rḡ in Br (p),

• Hϕ∗g = Hg ◦ϕ = Hg ≥ Hḡ on ∂Br (p),

because of the fact that the scalar curvature Rḡ is a constant on M (see Remark 1.1) and ϕ|
∂Br (p)

= id. □

Let ĝh = ḡ + h be a metric on Br (p), where h ∈ S2(Br (p)) satisfies |h|ḡ <
1
2 and h|T ∂Br (p) ≡ 0. From

Propositions 4.1 and 4.2, the remainder of the expansion for F�,ḡ up to second order can be written as

rBr (p),ḡ
[h] := FBr (p),ḡ[ĝh ] − FBr (p),ḡ[ḡ] − DFBr (p),ḡ · h −

1
2 D2FBr (p),ḡ · (h, h)

=

∫
Br (p)

(Rĝh
− Rḡ) f dvḡ − 2κ(VBr (p)(ĝh )− VBr (p)(ḡ))+ IBr (p)[h] + I∂Br (p)[h], (4-3)

where

IBr (p)[h] :=
1
4

∫
Br (p)

[
(|∇ḡh|

2
ḡ + |d(trḡ h)|2 − 2Rḡ(h, h)) f +

n+3
n−1

(trḡ h)2κ
]

dvḡ

and

I∂Br (p)[h] :=

∫
∂Br (p)

[
2(Hĝh

− Hḡ)+
1
2

Ai j
ḡ hinh jn −

1
4

(
h2

nn −2
n−1∑
i=1

h2
in

)
Hḡ +hnn

(
∇i h i

n −
1
2
∇nh i

i

)]
f dσḡ

+

∫
∂Br (p)

[(
h2

nn +
1
2

n−1∑
i=1

h2
in

)
∂n f + hnn

n−1∑
i=1

hin∂i f
]

dσḡ.

The estimate for the remainder rBr (p),ḡ[h] plays a key role in our proof. It mainly relies on estimates for
lower bounds of integrals IBr (p) and I∂Br (p).

The estimate for a lower bound of interior integral IBr (p) is essentially due to the solution of the
variational problem

µ(�, ḡ)= inf

{∫
�
|∇ḡh|

2
ḡ dvḡ∫

�
|h|

2
ḡ dvḡ

: h ∈ S2(�), h ̸≡ 0 and h|T ∂� ≡ 0

}
.

A basic estimate was obtained by Qing and the author in [Qing and Yuan 2016, Lemma 3.7]:

Lemma 4.5. Suppose (Mn, ḡ) is a Riemannian manifold with dimension n ≥ 3 and Br (p) is a geodesic
ball of radius r centered at any interior point p ∈ M. Then there are positive constants r̄ and c0 such that

µ(Br (p), ḡ)≥
c0
r2 (4-4)

for all 0< r < r̄ .

From this, we are ready to obtain an estimate for a lower bound of IBr (p).
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Proposition 4.6. Suppose p ∈ M is an interior point with f (p) > 0. Then there is a constant r1 > 0 such
that

f (x) > 0

for all x ∈ Br1(p)⊆ M. Furthermore, for all r ∈ (0, r1) and any h ∈ S2(Br (p)) with h|T ∂Br (p) ≡ 0,

IBr (p)[h] ≥
1
8

(
inf

Br (p)
f
)
∥h∥

2
W 1,2(Br (p),ḡ)

. (4-5)

Proof. By continuity, we can choose a constant r ′

1 > 0 such that f (x) > 0 for all x ∈ Br ′

1
(p).

It is straightforward to see that

|Rḡ(h, h)| =

∣∣∣∣⟨Rmḡ ·h, h⟩ḡ + 2(Ricḡ ·h)(trḡ h)−
2Rḡ

n − 1
(trḡ h)2

∣∣∣∣ ≤3r ′

1
|h|

2
ḡ

on Br ′
1
(p), where 3r ′

1
= 3(n, ḡ, ∥Rmḡ∥C0(Br ′

1
(p),ḡ)) is a positive constant independent of h. Thus for

any r < r ′

1 and h ∈ S2(Br (p)) with h|T ∂Br (p) ≡ 0, we have

IBr (p)[h] ≥
1
4

∫
Br (p)

[(|∇ḡh|
2
ḡ − 2|Rḡ(h, h)|) f − 3n|κ||h|

2
ḡ] dvḡ

≥
1
4

∫
Br (p)

[(
inf

Br (p)
f
)
|∇ḡh|

2
ḡ −

(
23r ′

1

(
sup
Br (p)

f
)
+ 3n|κ|

)
|h|

2
ḡ
]

dvḡ

=
1
8

(
inf

Br (p)
f
)
∥h∥

2
W 1,2(Br (p),ḡ)

+
1
8

(
inf

Br (p)
f
) ∫

Br (p)
[|∇ḡh|

2
ḡ −µr |h|

2
ḡ] dvḡ,

where

µr :=
43r ′

1
(supBr (p) f )+ (infBr (p) f )+ 6n|κ|

infBr (p) f
≤

(43r ′

1
+ 1)(supBr ′

1
(p) f )+ 6n|κ|

infBr ′
1
(p) f

:= µ̄r ′

1
.

Applying Lemma 4.5, we can choose a positive constant r1 < r ′

1 sufficiently small such that∫
Br (p)

|∇ḡh|
2
ḡ dvḡ ≥ µ̄r ′

1

∫
Br (p)

|h|
2
ḡ dvḡ

for all r ∈ (0, r1). Therefore
IBr (p)[h] ≥

1
8

(
inf

Br (p)
f
)
∥h∥

2
W 1,2(Br (p),ḡ)

for any r ∈ (0, r1). □

For a lower bound estimate for the boundary integral I∂Br (p) we have the following.

Proposition 4.7. Suppose p ∈ M is an interior point with f (p) > 0. Then there is a constant r2 > 0 such
that

f (x) > 0

for all x ∈ Br2(p)⊆ M. Furthermore, for all r ∈ (0, r2) and any metric ĝh := ḡ + h in Br (p) satisfying

• h ∈ S2(Br (p)) with |h|ḡ <
1
2 and h|T ∂Br (p) ≡ 0,

• Hĝh
≥ Hḡ on ∂Br (p),
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we have
I∂Br (p)[h] ≥ −C0

(
sup
Br (p)

f
)
∥h∥C1(Br (p),ḡ)∥h∥

2
W 1,2(Br (p),ḡ)

, (4-6)

where C0 > 0 is a constant depending only on (Br (p), ḡ).

Proof. By continuity, we can choose a constant r ′

2 > 0 such that f (x) > 0 for all x ∈ Br ′

2
(p).

As observed in [Brendle and Marques 2011], for all r ∈ (0, r ′

2) and any metric ĝh = ḡ + h satisfying
h ∈ S2(Br (p)) with |h|ḡ <

1
2 and h|T ∂Br (p) ≡ 0, we have

hnn(Hĝh
− Hḡ)=

1
2 h2

nn Hḡ − hnn
(
∇i h i

n −
1
2∇nh i

i
)
+ Fḡ(h)

due to Lemma 3.2, where the tail term Fḡ(h) satisfies

|Fḡ(h)|ḡ ≤ C̃1|h|
2
ḡ(|∇ḡh|ḡ + |Aḡ|ḡ|h|ḡ),

and C̃1 > 0 is a constant depending only on the dimension n. From this,

I∂Br (p)[h] =

∫
∂Br (p)

[
(2 − hnn)(Hĝ − Hḡ)+

1
2

Ai j
ḡ hinh jn +

1
4

(
h2

nn + 2
n−1∑
i=1

h2
in

)
Hḡ

]
f dσḡ

+

∫
∂Br (p)

[(
h2

nn +
1
2

n−1∑
i=1

h2
in

)
∂n f + hnn

n−1∑
i=1

hin∂i f
]

dσḡ + F̃ḡ(h),

where the tail term F̃ḡ(h) satisfies

|F̃ḡ(h)| ≤ C̃2
(

sup
Br (p)

f
) ∫

∂Br (p)
|h|

2
ḡ(|∇ḡh|ḡ + |Aḡ|ḡ|h|ḡ) dvḡ

for a constant C̃2 > 0 depending only on the dimension n.
For r > 0 sufficiently small, it is well known that the second fundamental form and mean curvature of

the geodesic sphere ∂Br (p) behave similarly to round spheres in Euclidean space (see Exercise 1.123 in
[Chow et al. 2006]):

Aḡ
i j =

1
r

ḡi j + O(r) and Hḡ =
n−1

r
+ O(r)

on ∂Br (p). Thus we can choose r ′′

2 ∈ (0, r ′

2) such that

Aḡ
i j ≥

1
2r

ḡi j and Hḡ ≥
n−1
2r

for any geodesic sphere ∂Br (p) with r < r ′′

2 .
For r ∈ (0, r ′′

2 ), we have

I∂Br (p)[h] ≥
1
2

∫
∂Br (p)

[
1
4r

(
(n − 1)h2

nn + 2n
n−1∑
i=1

h2
in

)
f −

(
3h2

nn + n
n−1∑
i=1

h2
in

)
|∇ḡ f |ḡ

]
dσḡ + F̃ḡ(h)

=
1
2

∫
∂Br (p)

[
3
(

n − 1
12r

−
|∇ḡ f |ḡ

f

)
h2

nn + n
(

1
2r

−
|∇ḡ f |ḡ

f

) n−1∑
i=1

h2
in

]
f dσḡ + F̃ḡ(h).
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Since f is positively lower bounded and |∇ḡ f |ḡ is upper bonded on Br ′′

2
(p), we can pick a constant

r2 ∈ (0, r ′′

2 ) such that
|∇ḡ f |ḡ

f
≤ min

{
n − 1
12r

,
1
2r

}
holds in Br (p) for any r ∈ (0, r2) and hence

I∂Br (p) ≥ F̃ḡ(h)≥ −C̃3
(

sup
Br (p)

f
)
∥h∥C1(∂Br (p),ḡ)∥h∥

2
L2(∂Br (p),ḡ)

for any r ∈ (0, r2), where C̃3 > 0 is a constant depending only on n and r .
Recall the Sobolev trace inequality

∥h∥
2
L2(∂Br (p),ḡ)

≤ θ0 ∥h∥
2
W 1,2(Br (p),ḡ)

,

where θ0 > 0 is a constant depending only on (Br (p), ḡ). Therefore the estimate

I∂Br (p) ≥ −C0
(

sup
Br (p)

f
)
∥h∥C1(Br (p),ḡ)∥h∥

2
W 1,2(Br (p),ḡ)

holds for any r ∈ (0, r2), where C0 := θ0C̃3 > 0 is a constant depending only on (Br (p), ḡ). □

Now we are ready to prove the main theorem in this section.

Proof of Theorem A. Let
r0 := min{r1, r2}> 0,

where r1 and r2 are given by Propositions 4.6 and 4.7.
For all r ∈ (0, r0), applying Proposition 4.4, we can find a constant ε1 > 0 such that for any metric g

on Br (p)⊂ M satisfying

• Rg ≥ Rḡ in Br (p),

• Hg ≥ Hḡ on ∂Br (p),

• g|T ∂Br (p) = ḡ|T ∂Br (p),

• ∥g − ḡ∥C2(Br (p),ḡ) < ε1,

there is a diffeomorphism ϕ ∈ D(Br (p)) such that ϕ|∂Br (p) = id and

h := ϕ∗g − ḡ ∈ ker δḡ

satisfies |h|ḡ <
1
2 in Br (p), h|T ∂Br (p) ≡ 0 on ∂Br (p) and

∥h∥C2(Br (p),ḡ) ≤ N∥g − ḡ∥C2(Br (p),ḡ)

for some constant N > 0 depending only on (Br (p), ḡ). Additionally, we have

• Rϕ∗g ≥ Rḡ in Br (p),

• Hϕ∗g ≥ Hḡ on ∂Br (p).
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Fix an r ∈ (0, r0) and assume the contrary of the claimed volume comparison:

κ(VBr (p)(g)− VBr (p)(ḡ))≤ 0, (4-7)

which implies
κ(VBr (p)(ϕ

∗g)− VBr (p)(ḡ))≤ 0.

By Propositions 4.6 and 4.7, the lower bound estimate for the remainder is

rBr (p),ḡ
[h] = FBr (p),ḡ[ϕ

∗g] − FBr (p),ḡ[ḡ] − DFBr (p),ḡ · h −
1
2 D2FBr (p),ḡ · (h, h)

=

∫
Br (p)

(Rϕ∗g − Rḡ) f dvḡ − 2κ(VBr (p)(ϕ
∗g)− VBr (p)(ḡ))+ IBr (p)[h] + I∂Br (p)[h]

≥
( 1

8

(
inf

Br (p)
f
)
− C0

(
sup
Br (p)

f
)
∥h∥C1(Br (p),ḡ)

)
∥h∥

2
W 1,2(Br (p),ḡ)

.

On the other hand, if we write

τr := max
{

sup
Br (p)

f, sup
Br (p)

|∇ḡ f |ḡ
}
,

then the upper bound of the remainder can be estimated using Taylor’s formula:

rBr (p),ḡ
[h] =

1
6 D3FBr (p),ḡ+ξh · (h, h, h)

≤ C1τr

∫
Br (p)

|h|ḡ(|∇ḡh|
2
ḡ + |h|

2
ḡ) dvḡ + C2τr

∫
∂Br (p)

|h|
2
ḡ(|∇ḡh|ḡ + |Aḡ|ḡ|h|ḡ) dvḡ

≤ C1τr∥h∥C0(Br (p),ḡ)∥h∥
2
W 1,2(Br (p),ḡ)

+ C3τr∥h∥C1(Br (p),ḡ)∥h∥
2
L2(∂Br (p),ḡ)

,

where ξ ∈ (0, 1) is a constant and C1,C2,C3 are positive constants depending only on (Br (p), ḡ). Recall
again the Sobolev trace inequality

∥h∥
2
L2(∂Br (p),ḡ)

≤ θ0 ∥h∥
2
W 1,2(Br (p),ḡ)

,

where θ0 > 0 is a constant depending only on (Br (p), ḡ). From this we obtain

rBr (p),ḡ
[h] ≤ C ′

0τr∥h∥C1(Br (p),ḡ)∥h∥
2
W 1,2(Br (p),ḡ)

,

where C ′

0 = C1 + θ0C3 is a positive constant depending only on (Br (p), ḡ).
Combining both lower and upper bound estimates of rBr (p),ḡ

, we obtain( 1
8

(
inf

Br (p)
f
)
−

(
C0

(
sup
Br (p)

f
)
+ C ′

0τr
)
∥h∥C1(Br (p),ḡ)

)
∥h∥

2
W 1,2(Br (p),ḡ)

≤ 0. (4-8)

Take
ε0 :=

1
N

min
{
ε1,

1
8

(
C0

(
sup
Br (p)

f
)
+ C ′

0τr
)−1( inf

Br (p)
f
)}
.

Then for the metric g satisfying
∥g − ḡ∥C2(Br (p),ḡ) < ε0

we have

∥h∥C1(Br (p),ḡ) ≤ N∥g − ḡ∥C2(Br (p),ḡ) < Nε0 <
1
8

(
C0

(
sup
Br (p)

f
)
+ C ′

0τr
)−1( inf

Br (p)
f
)
.
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According to inequality (4-8), we see h vanishes identically on Br (p) and hence ϕ∗g = ḡ, which shows
that ϕ : Br (p)→ Br (p) has to be an isometry. Therefore the reverse of inequality (4-7) holds:

κ(VBr (p)(g)− VBr (p)(ḡ))≥ 0. (4-9)

That is, the following volume comparison holds:

• if κ < 0, then
VBr (p)(g)≤ VBr (p)(ḡ);

• if κ > 0, then
VBr (p)(g)≥ VBr (p)(ḡ);

with equality holding in either case if and only if the metric g is isometric to ḡ. □

5. Volume comparison for closed Einstein manifolds

Suppose (Mn, ḡ, f, κ) is a closed V-static manifold. Then the functional FM,ḡ introduced in the previous
section can be simplified as

FM,ḡ[g] =

∫
M

R(g) f dvḡ − 2κVM(g). (5-1)

According to Proposition 4.1, the metric ḡ is still a critical point of FM,ḡ. However, it is obvious
that this functional is not compatible with actions of dilations, which would cause subtle issues in its
second variation. Geometrically speaking, dilations introduce additional degeneracy besides actions of
diffeomorphisms, since they make no essential change to the geometry of the manifold. In order to obtain
volume comparison for closed manifolds, we need to construct a new functional instead, which is invariant
under dilations.

Definition 5.1. Suppose (Mn, ḡ, f, κ) is an n-dimensional closed V-static manifold. We define the
functional

GM,ḡ[g] := (VM(g))2/n
∫

M
R(g) f dvḡ (5-2)

for any Riemannian metric g on M.

Obviously, this functional is dilation-invariant:

GM,ḡ[c2g] = (VM(c2g))2/n
∫

M
R(c2g) f dvḡ = GM,ḡ[g]

for any constant c ̸= 0.
Now we focus on a special type of V-static metrics: Einstein metrics. According to the V-static

equation (1-1), we get
γ ∗

ḡ 1 = − Ricḡ = κ ḡ

by taking the function f to be constantly 1 on M. This means (Mn, ḡ, 1, κ) is a V-static space if and only
if the metric ḡ is an Einstein metric with scalar curvature Rḡ = −nκ . Moreover, if we write

λ :=
Rḡ

n(n − 1)
, (5-3)
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then the Ricci curvature tensor is given by

Ricḡ = (n − 1)λḡ

and
κ = −(n − 1)λ.

As a functional designed for V-static metrics, GM,ḡ shares analogous variational properties with FM,ḡ.

Proposition 5.2. Suppose (Mn, ḡ) is a closed Einstein manifold with Ricci curvature tensor

Ricḡ = (n − 1)λḡ.

Then the metric ḡ is a critical point of the functional GM,ḡ.

Proof. From Proposition 3.4 and Lemma 3.3,

DGM,ḡ · h = (VM(ḡ))2/n
∫

M
(DRḡ · h) dvḡ +

2
n
(VM(ḡ))(2/n)−1(DVM,ḡ · h)

∫
M

Rḡ dvḡ

= (VM(ḡ))2/n
[∫

M
(γ ∗

ḡ 1) dvḡ +
1
n

Rḡ

∫
M
(trḡ h) dvḡ

]
= −(VM(ḡ))2/n

∫
M

⟨Ricḡ −(n − 1)λḡ, h⟩ḡ dvḡ = 0,

for any h ∈ S2(M). □

For the second variation, we have the following.

Proposition 5.3. Suppose (Mn, g) is an Einstein manifold with Ricci curvature tensor

Ricḡ = (n − 1)λḡ.

Then

D2GM,ḡ·(h, h)= −
1
2
(VM(ḡ))2/n

∫
M

[
−⟨hTT,1

ḡ
E hTT⟩ḡ+

(n−1)(n+2)
n2

(|d(trḡ h)|2ḡ−nλ(trḡ h−trḡ h)2)
]

dvḡ

for any h = hTT +
1
n (trḡ h)ḡ ∈ STT

2,ḡ ⊕ (C∞(M) · ḡ).

Proof. From Lemmas 3.1 and 3.3 and Corollary 3.7 we obtain

D2GM,ḡ · (h, h)

=
2
n
(VM(ḡ))(2/n)−1(D2VM,ḡ · (h, h))

∫
M

Rḡ dvḡ +
4
n
(VM(ḡ))(2/n)−1(DVM,ḡ · h)

∫
M
(DRḡ · h) dvḡ

−
2(n−2)

n2
(VM(ḡ))(2/n)−2(DVM,ḡ · h)2

∫
M

Rḡ dvḡ + (VM(ḡ))2/n
∫

M
(D2 Rḡ · (h, h)) dvḡ

= −
1
2
(VM(ḡ))2/n

∫
M
(−⟨h,1ḡ

E h⟩ḡ +
n2

−2
n2

|d(trḡ h)|2ḡ − (n − 1)λ(trḡ h)2) dvḡ

−
(n−1)(n+2)

2n
λ(VM(ḡ))2/n

∫
M
(trḡ h)2 dvḡ.
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Now the decomposition
h = hTT +

1
n
(trḡ h)ḡ

implies

(D2GM,ḡ) · (h, h)

= −
1
2
(VM(ḡ))2/n

∫
M

[
−⟨hTT,1

ḡ
E hTT⟩ḡ +

(n−1)(n+2)
n2 (|d(trḡ h)|2ḡ − nλ(trḡ h − trḡ h)2)

]
dvḡ. □

As a key step of the proof for our volume comparison theorem, we need to give a characterization
of the second variation of the functional GM,ḡ at ḡ. This is closely related to spectrum problems of two
operators: one is about the Einstein operator and can be characterized by the stability of Einstein metrics,
the other is about the Laplace–Beltrami operator whose eigenvalue estimate is given by the well-known
Lichnerowicz–Obata theorem; see Theorem 5.1 in [Li 2012].

Lemma 5.4 (Lichnerowicz–Obata’s eigenvalue estimate). Suppose (Mn, ḡ) is an n-dimensional closed
Riemannian manifold with Ricci curvature tensor

Ricḡ ≥ (n − 1)λḡ,

where λ > 0 is a constant. Then for any function u ∈ C∞(M) that is not identically a constant, we have∫
M

|du|
2 dvḡ ≥ nλ

∫
M
(u − ū)2 dvḡ, (5-4)

where equality holds if and only if (Mn, ḡ) is isometric to the round sphere Sn (r) with radius r = 1/
√
λ

and u is a first eigenfunction of the Laplace–Beltrami operator.

Applying this to Proposition 5.3, immediately we get the nonpositive definite property of the second
variation of GM,ḡ at ḡ.

Proposition 5.5. Suppose (Mn, ḡ) is a closed stable Einstein manifold with Ricci curvature tensor

Ricḡ = (n − 1)λḡ.

Then
D2GM,ḡ · (h, h)≤ 0

for any h ∈ STT
2,ḡ(M)⊕ (C∞(M) · ḡ). Moreover, equality holds if and only if

• h ∈ Rḡ ⊕ ker1ḡ
E , when (M, ḡ) is not isometric to the round sphere up to a rescaling of the metric,

• h ∈ (R ⊕ Enλ)ḡ, when (M, ḡ) is isometric to the round sphere Sn(r) with radius r = 1/
√
λ,

where
Enλ := {u ∈ C∞(Sn(r)) :1Sn(r)u + nλu = 0}

is the space of first eigenfunctions for the spherical metric.

Proof. Recall that the Einstein metric ḡ is stable if and only if (−1ḡ
E) is a nonnegative operator. Then the

conclusion follows by applying this fact and Lemma 5.4 to Proposition 5.3. □
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Intuitively speaking, a slice is a subset of metrics in the space of all Riemannian metrics which is
transverse to the orbit of diffeomorphism actions. The following refined version of the slice theorem
reveals the local structure of Einstein metrics in the space of all metrics. To the best of the author’s
knowledge, it does not appear in the literature. We hope it can be useful in problems involving Einstein
metrics. The proof is standard; please refer to [Brendle and Marques 2011; Viaclovsky 2016].

Theorem 5.6 (Ebin–Palais slice theorem). Suppose (Mn, ḡ) is a closed n-dimensional Einstein manifold
with Ricci curvature tensor

Ricḡ = (n − 1)λḡ,

where λ ∈ R is a constant. Let M be the space of all Riemannian metrics on M. There exists a local
slice Sḡ though ḡ in M. That is, for a fixed real number p > n, one can find a constant ε1 > 0 such that,
for any metric g ∈ M with ∥g − ḡ∥W 2,p(M,ḡ) < ε1, there is a diffeomorphism ϕ ∈ D(M) with ϕ∗g ∈ Sḡ.
Moreover, for a smooth local slice Sḡ, we have the decomposition

S2(M)= TḡSḡ ⊕ (TḡSḡ)
⊥,

where the tangent space of Sḡ at ḡ and its L2-orthogonal complement are given by

TḡSḡ = STT
2,ḡ(M)⊕ (C∞(M) · ḡ)

and
(TḡSḡ)

⊥
= {Lḡ(X) : ⟨X,∇ḡu⟩L2(M,ḡ) = 0 for all u ∈ C∞(M)}

when (Mn, ḡ) is not isometric to the round sphere Sn(r) up to a scaling, and

TḡSḡ = STT
2,ḡ(M)⊕ (E⊥

nλ · ḡ)

and
(TḡSḡ)

⊥
= {Lḡ(X) : ⟨X,∇ḡu⟩L2(M,ḡ) = 0 for all u ∈ E⊥

nλ}

when (Mn, ḡ) is isometric to the round sphere Sn(r) with r = 1/
√
λ. Here

Enλ = {u ∈ C∞(Sn(r)) :1Sn(r)u + nλu = 0}

is the space of first eigenfunctions for the spherical metric.

Now we restrict the functional GM,ḡ on a local slice Sḡ and denote it by

G S
M,ḡ := GM,ḡ|S .

In order to investigate the local behavior of G S
M,ḡ near ḡ, we need the following Morse lemma on Banach

manifolds.

Lemma 5.7 (Morse lemma [Fischer and Marsden 1975]). Let P be a Banach manifold and F : P → R

a C2-function. Suppose Q ⊂ P is a submanifold, F = 0 and d F = 0 on Q and that there is a smooth
normal bundle neighborhood of Q such that if Ex is the normal complement to TxQ in TxP then d2 F(x)
is weakly negative definite on Ex (i.e., d2 F(x)(v, v)≤ 0 with equality only if v= 0). Let ⟨ · , · ⟩x be a weak
Riemannian structure with a smooth connection and assume that F has a smooth ⟨ · , · ⟩x -gradient, Y (x).
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Assume DY (x) maps Ex to Ex and is an isomorphism for x ∈ Q. Then there is a neighborhood U of Q
such that y ∈ U and F(y)≥ 0 implies y ∈ Q.

Applying it to our case, we obtain the following local rigidity result.

Proposition 5.8. Suppose (Mn, ḡ) is a strictly stable Einstein manifold and Sḡ is a local slice through ḡ.
Then there is a neighborhood Uḡ of ḡ in Sḡ such that for any metric ĝS ∈ Uḡ satisfying

G S
M,ḡ[ĝS ] ≥ G S

M,ḡ[ḡ],

there is a constant c > 0 such that ĝS = c2ḡ.

Proof. Let
Q̃ḡ := {gS ∈ Sḡ : gS is Einstein}

be the subset of the local slice Sḡ consisting of Einstein metrics near the reference metric ḡ. By [Koiso
1980, Corollary 3.4], strict stability implies that ḡ is rigid. That is, we can find a neighborhood Ũḡ ⊆ Sḡ

of ḡ such that
Qḡ := Q̃ḡ ∩ Ũḡ = {gS ∈ Ũḡ : gS = c2ḡ, c > 0}.

In particular, the tangent space of Qḡ at ḡ is given by

TḡQḡ = Rḡ

and its L2-orthogonal complement in TḡSḡ can be expressed as

Eḡ := (TḡQḡ)
⊥

= STT
2,ḡ(M)⊕ (9ḡ(M) · ḡ)

due to Theorem 5.6, where

9ḡ(M)=

{
u ∈ E⊥

nλ :

∫
M

u dvḡ = 0
}

if ḡ is spherical and

9ḡ(M)=

{
u ∈ C∞(M) :

∫
M

u dvḡ = 0
}

otherwise.
Consider a weak Riemannian structure on the local slice Sḡ,

⟨⟨ · , · ⟩⟩gS
: TgS

Sḡ × TgS
Sḡ → R for all gS ∈ Sḡ,

which is defined to be

⟨⟨h, k⟩⟩gS
:=

∫
M

[⟨∇gS
h,∇gS

k⟩gS
+ ⟨h, k⟩gS

] dvgS
=

∫
M

⟨(−1gS
+ 1)h, k⟩gS

dvgS

for any h, k ∈ TgS
Sḡ. According to [Ebin 1970] it has a smooth connection. The ⟨⟨ · , · ⟩⟩gS

-gradient
of G S

M,ḡ is given by

Y (gS )= PgS
(−1gS

+ 1)−1
[
(VM(gS ))

2/n
(
γ ∗

gS
fgS

+
1
n

gS (VM(gS ))
−(n+2)/nGM,ḡ[gS ]

)]
,
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where PgS
is the orthogonal projection on TgS

Sḡ and fgS
is a smooth function on M with dvḡ = fgS

dvgS
.

Obviously, Y (gS ) is a smooth vector field on Sḡ. For simplicity, we write

Z(gS ) := (VM(gS ))
2/n

(
γ ∗

gS
fgS

+
1
n

gS (VM(gS ))
−(n+2)/n GM,ḡ[gS ]

)
.

It is straightforward to see that Z(ḡ)= 0 and the linearization of Z at ḡ is given by

(DZ ḡ) · h =
1
2
(VM(ḡ))2/n

(
1

ḡ
E hTT +

(n−1)(n+2)
n2

ḡ(1ḡ + nλ)(trḡ h − trḡ h)
)

= D2GM,ḡ · (h, · )

for any h = hTT +
1
n (trḡ h)ḡ ∈ Eḡ. Thus

(DYḡ) · h = Pḡ(−1ḡ + 1)−1(D2GM,ḡ · (h, · ))

and DYḡ is an isomorphism on Eḡ due to the fact that D2G S
M,ḡ is strictly negative definite on Eḡ from

Proposition 5.5.
Since the functional G S

M,ḡ is dilation-invariant, applying Lemma 5.7, we can find a neighborhood
Uḡ ⊆ Sḡ of ḡ such that for any ĝS ∈ Uḡ satisfying

G S
M,ḡ[ĝS ] ≥ G S

M,ḡ[ḡ],

we have ĝS ∈ Qḡ. That is, ĝS = c2ḡ for some constant c > 0. □

Now we can prove the volume comparison of Einstein manifolds with respect to scalar curvature.

Proof of Theorem B. According to Theorem 5.6, we can find a local slice Sḡ through the reference metric ḡ.
Moreover, there exists a constant ε0 > 0 such that for any metric g̃ with

∥g̃ − ḡ∥C2(M,ḡ) < ε0,

we can find a diffeomorphism ψ ∈ D(M) with the property that ψ∗g̃ ∈ Uḡ ⊆ Sḡ, where the subset Uḡ is
given by Proposition 5.8.

For λ ̸= 0, suppose g is a metric on M with scalar curvature

Rg ≥ n(n − 1)λ
and

∥g − ḡ∥C2(M,ḡ) < ε0.

In addition, we assume the reverse inequality of the claimed volume comparison:

λ(VM(g)− VM(ḡ))≥ 0. (5-5)

This implies there is a diffeomorphism ϕ ∈ D(M) such that ϕ∗g ∈ Uḡ ⊆ Sḡ and

G S
M,ḡ[ϕ

∗g] = VM(ϕ
∗g)2/n

∫
M
(Rg ◦ϕ) dvḡ ≥ VM(ḡ)2/n

∫
M

Rḡ dvḡ = G S
M,ḡ[ḡ],

due to our assumptions and the fact that Rḡ = n(n − 1)λ is a constant. According to Proposition 5.8,
there exists a constant c > 0 such that ϕ∗g = c2ḡ.

From our assumptions,
Rϕ∗g = c−2 Rḡ ≥ Rḡ = n(n − 1)λ,
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and hence
λ(1 − c)≥ 0.

However, inequality (5-5) suggests that

0 ≤ λ(VM(ϕ
∗g)− VM(ḡ))= λ(cn

− 1)VM(ḡ),

which implies that λ(1 − c)≤ 0. Therefore, we conclude c = 1 and hence ϕ∗g = ḡ. That is, (Mn, g) is
isometric to (Mn, ḡ), and this concludes the theorem. □

With analogous techniques, we can prove the local rigidity of Ricci-flat manifolds.

Proof of Theorem C. Similar to the proof of Theorem B, we can find a constant ε0 > 0 such that for any
metric g̃ satisfying

∥g̃ − ḡ∥C2(M,ḡ) < ε0,

there exists a diffeomorphism ϕ ∈ D(M) such that ϕ∗g ∈ Uḡ ⊆ Sḡ, where Uḡ is given in Proposition 5.8.
Suppose g is a Riemannian metric with scalar curvature

Rg ≥ 0

and
∥g − ḡ∥C2(M,ḡ) < ε0.

Then there is a diffeomorphism ϕ ∈ D(M) such that

G S
M,ḡ[ϕ

∗g] = VM(ϕ
∗g)2/n

∫
M
(Rg ◦ϕ) dvḡ ≥ 0.

However,

G S
M,ḡ[ḡ] = VM(ḡ)2/n

∫
M

Rḡ dvḡ = 0,

and hence there is a constant c > 0 such that ϕ∗g = c2ḡ due to ḡ being strictly stable Ricci-flat and
Proposition 5.8. The conclusion follows. □

According to Proposition 5.3, the second variation of GM,ḡ at an unstable Einstein metric ḡ is indefinite
and hence ḡ is a saddle point instead of a local maximum. This suggests that the volume comparison
may fail for unstable Einstein manifolds and counterexamples can be constructed. It is well known that
a product of positive Einstein manifolds with identical Einstein constants is still Einstein but unstable;
see [Kröncke 2013]. Due to this reason and its simple structure, it can be our first choice.

The following example is constructed by Macbeth (personal communication, 2019), which shows the
stability assumption is necessary for our volume comparison theorem.

Proposition 5.9. There is a family of metrics {gt }t∈[0,1) on S2
× S2 such that

• g0 is the canonical product metric on S2
× S2,

• Rgt = Rg
S2×S2

= 4 for all t ∈ [0, 1),

• VM(gt) > VM(g
S2×S2 ) for all t ∈ (0, 1).
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Proof. Let
gt = (1 + t)−1g1

S2
+ (1 − t)−1g2

S2

with t ∈ [0, 1), where gi
S2

is the canonical metric on the i-th S2 factor, i = 1, 2. It is easy to see that their
scalar curvature is given by

Rgt = 2(1 + t)+ 2(1 − t)= 4

for all t ∈ [0, 1). However, its volume is

VS2×S2(gt)= (1 − t2)−1VS2×S2(ḡ) > VS2×S2(ḡ). □

It is straightforward to generalize this example to more general product cases. It would be interesting
to see whether we can find an explicit example of an unstable Einstein manifold which is not of this type
but where the volume comparison fails.

Appendix: Equivalence of Schoen’s conjectures

In this appendix, we show that two well-known conjectures proposed by Schoen [1989] on hyperbolic
manifolds actually are equivalent to each other. We believe the proof is known to experts. Unfortunately,
we could not find an appropriate reference. Thus we present a proof here for interested readers.

We start with a well-known concept in conformal geometry; see [Viaclovsky 2016].

Definition A.1. For n ≥ 3, let (Mn, g) be a connected closed n-dimensional Riemannian manifold. The
Yamabe constant of the conformal class [g] is defined to be

Y (Mn, [g]) := inf
g∈[g]

∫
M Rg dvg

(VM(g))(n−2)/n .

Moreover, we can define a min-max invariant

Y (Mn) := sup
[g]

Y (Mn, [g])

called the Yamabe invariant or σ -invariant.

It is well known that
Y (Mn)≤ Y (Sn)

for any closed smooth manifold Mn and the canonical spherical metric achieves the Yamabe invariant
of Sn. For a given closed hyperbolic manifold with dimension at least three, its hyperbolic metric is
unique up to a dilation due to the well-known Mostow rigidity theorem; see Theorem C.0 in [Benedetti
and Petronio 1992]. Similar to the spherical case, Schoen [1989] conjectures that its Yamabe invariant is
achieved by the canonical hyperbolic metric.

Conjecture A (Schoen’s hyperbolic Yamabe invariant conjecture). For n ≥ 3, suppose (Mn, ḡ) is an
n-dimensional closed hyperbolic manifold. Then

Y (Mn)= Y (Mn, [ḡ]),

i.e., the Yamabe invariant is achieved by its canonical hyperbolic metric.
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Another conjecture about closed hyperbolic manifolds concerns volume comparison, which is also
referred to as Schoen’s conjecture.

Conjecture B (Schoen’s hyperbolic volume comparison conjecture). For n ≥ 3, suppose (Mn, ḡ) is an
n-dimensional closed hyperbolic manifold. Then for any metric g on M with scalar curvature

Rg ≥ Rḡ,

its volume satisfies
VM(g)≥ VM(ḡ).

Obviously, Conjecture A involves all metrics on the given hyperbolic manifold and in general it is
difficult to solve. Conjecture B only involves the comparison of a special metric with the reference metric,
which seems easier to solve than Conjecture A. However, Conjectures A and B are in fact equivalent
to each other and hence they are equally difficult in this sense. The bright side of this equivalence is
that we only need to solve Conjecture B, then Conjecture A will hold automatically. This seems to be a
promising approach to Conjecture A.

In the rest of the appendix, we will show the equivalence of Conjectures A and B.
We first show Conjecture A implies Conjecture B. In order to do this, we need the following lemma

adapted from an observation of Kobayashi [1987].

Lemma A.2. Let (Mn, g) be a closed manifold and Y (Mn, [g]) be the Yamabe constant of the conformal
class [g]. Then

−

(∫
M

|R−

g |
n/2 dvg

)2/n

≤ Y (Mn, [g])≤

(∫
M

|R+

g |
n/2 dvg

)2/n

,

where R+
g := max{Rg, 0} and R−

g := max{−Rg, 0}.

Proof. By the conformal transformation law of scalar curvature,

Y (Mn, [g])= inf
u>0

∫
M(a|∇gu|

2
g + Rgu2) dvg(∫

M u2n/(n−2) dvg
)(n−2)/n ,

where a := 4(n − 1)/(n − 2). Then we have

Y (Mn, [g])≥ inf
u>0

∫
M Rgu2 dvg(∫

M u2n/(n−2) dvg
)(n−2)/n ≥ − inf

u>0

∫
M R−

g u2 dvg(∫
M u2n/(n−2) dvg

)(n−2)/n ,

since Rg = R+
g − R−

g . By Hölder’s inequality,∫
M

R−

g u2 dvg ≤

(∫
M

|R−

g |
n/2 dvg

)2/n(∫
M

u2n/(n−2) dvg

)(n−2)/n

,

and hence

Y (Mn, [g])≥ −

(∫
M

|R−

g |
n/2 dvg

)2/n

.

Similarly,

Y (Mn, [g])≤

∫
M Rgdvg

(VM(g))(n−2)/n ≤

∫
M R+

g dvg

(VM(g))(n−2)/n .
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By Hölder’s inequality, ∫
M

R+

g dvg ≤

(∫
M

|R+

g |
n/2 dvg

)2/n

(VM(g))(n−2)/n,

and hence

Y (Mn, [g])≤

(∫
M

|R+

g |
n/2 dvg

)2/n

. □

Immediately, this implies the following conformal volume comparison.

Proposition A.3. Suppose (Mn, ĝ) is a closed Riemannian manifold with strictly negative constant scalar
curvature Rĝ. Then for any metric g ∈ [ĝ] with scalar curvature

Rg ≥ Rĝ,

we have

VM(g)≥ VM(ĝ).

Proof. Since Rĝ is a strictly negative constant, then its Yamabe constant satisfies

Y (Mn, [ĝ]) < 0,

and hence ĝ is a Yamabe metric in the conformal class [ĝ] due to the uniqueness of the Yamabe metric of
negative Yamabe constant. Thus,

Y (Mn, [ĝ])= Rĝ(VM(ĝ))2/n.

By Lemma A.2,(
min

M
Rg

)
(VM(g))2/n

−

(∫
M

|R−

g |
n/2dvg

)n/2

≤ Y (Mn, [ĝ])= Rĝ(VM(ĝ))2/n.

Therefore,
Rĝ(VM(g))2/n

≤
(
min

M
Rg

)
(VM(g))2/n

≤ Rĝ(VM(ĝ))2/n,

and hence
VM(g)≥ VM(ĝ). □

Proposition A.4. Conjecture A =⇒ Conjecture B.

Proof. Let (Mn, ḡ) be a closed hyperbolic manifold. Suppose g is a metric on M with scalar curvature

Rg ≥ Rḡ.

We are going to show
VM(g)≥ VM(ḡ),

assuming ḡ achieves its Yamabe invariant Y (Mn).
From Conjecture A, the Yamabe constant of the conformal class [g] satisfies

Y (Mn, [g])≤ Y (Mn)= Y (Mn, [ḡ]) < 0.
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Let ĝ ∈[g] be the unique Yamabe metric in [g] which is normalized such that Rĝ = Rḡ. By Proposition A.3,
we have

VM(g)≥ VM(ĝ).

On the other hand,

RĝVM(ĝ)2/n
= Y (Mn, [g])≤ Y (Mn)= Y (Mn, [ḡ])= RḡVM(ḡ)2/n,

which implies
VM(ĝ)≥ VM(ḡ).

Therefore
VM(g)≥ VM(ĝ)≥ VM(ḡ),

and hence Conjecture B holds. □

Proposition A.5. Conjecture B =⇒ Conjecture A.

Proof. Let (Mn, ḡ) be a closed hyperbolic manifold. We will show that its Yamabe invariant satisfies

Y (Mn)= Y (Mn, [ḡ]),

assuming the volume comparison holds.
We first recall a classic result of Gromov and Lawson [1983, Corollary A] which states that there is no

metric with nonnegative scalar curvature on a compact hyperbolic manifold. That means the Yamabe
invariant satisfies

Y (Mn)≤ 0,

and there is no metric on M with identically vanishing scalar curvature. Thus for any metric g on M, the
Yamabe constant of the conformal class [g] is strictly negative:

Y (Mn, [g]) < 0.

Let ĝ be the Yamabe metric in the conformal class [g] with Rĝ = Rḡ < 0. According to Conjecture B,

VM(ĝ)≥ VM(ḡ).

Therefore, the Yamabe constant of [g] satisfies

Y (Mn, [g])=

∫
M Rĝ dvĝ

(VM(ĝ))(n−2)/2 = Rĝ(VM(ĝ))2/n
≤ Rḡ(VM(ḡ))2/n

= Y (Mn, [ḡ]).

Since g is arbitrary, we conclude

Y (Mn)= sup
[g]

Y (Mn, [g])= Y (Mn, [ḡ]),

and hence Conjecture A holds. □

In summary, we have the equivalence of Schoen’s Conjectures A and B.

Theorem A.6. Conjecture A ⇐⇒ Conjecture B.
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