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WANDERING DOMAINS ARISING FROM LAVAURS MAPS WITH SIEGEL DISKS

MATTHIEU ASTORG, LUKA BOC THALER AND HAN PETERS

The first example of polynomial maps with wandering domains was constructed in 2016 by the first and
last authors, together with Buff, Dujardin and Raissy. In this paper, we construct a second example with
different dynamics, using a Lavaurs map with a Siegel disk instead of an attracting fixed point. We prove
a general necessary and sufficient condition for the existence of a trapping domain for nonautonomous
compositions of maps converging parabolically towards a Siegel-type limit map. Constructing a skew-
product satisfying this condition requires precise estimates on the convergence to the Lavaurs map, which
we obtain by a new approach. We also give a self-contained construction of parabolic curves, which are
integral to this new method.

1. Introduction

Rational functions do not have wandering domains, a classical result due to [Sullivan 1985]. Recently
in [Astorg et al. 2016] it was shown that there do exist polynomial maps in two complex variables with
wandering Fatou components. The maps constructed in [Astorg et al. 2016] are polynomial skew products
of the form

.z; w/ 7! .fw.z/; g.w//;

where g.w/ and fw.z/ D f .z; w/ are polynomials in respectively one and two variables. While the
construction holds for families of maps with arbitrarily many parameters, the constructed examples are
essentially unique: they all arise from similar behavior and cannot easily be distinguished in terms of the
geometry of the components or qualitative behavior of the orbits in the components. The goal in this
paper is to modify the construction in [Astorg et al. 2016] to obtain quite different examples of wandering
Fatou components. Our construction requires much more precise convergence estimates, forcing us to
revisit and clarify the original proof, obtaining a better understanding of the methodology.

The maps considered in [Astorg et al. 2016] are of the specific form

P W .z; w/ 7!
�
f .z/C �2

4
w; g.w/

�
; (1)

where f .z/D zC z2CO.z3/ and g.w/D w�w2CO.w3/. Recall that the constant �
2

4
is essential to

guarantee the following key result in [Astorg et al. 2016]:
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Proposition A. As n!C1, the sequence of maps

.z; w/ 7! P ı2nC1.z; gın
2

.w//

converges locally uniformly in Bf �Bg to the map

.z; w/ 7! .Lf .z/; 0/:

Throughout this paper Bf and Bg refer to the parabolic basins of, respectively, f and g, and Lf refers
to the Lavaurs map of f with phase 0; see for example [Lavaurs 1989; Shishikura 2000]. By carefully
choosing the higher-order terms of f , one can select Lavaurs maps with desired dynamical behavior.

In Proposition B of [Astorg et al. 2016] it was shown that Lf can have an attracting fixed point. The
fact that P has a wandering Fatou component is then a quick corollary of Proposition A. It seems very
likely that one can similarly construct wandering domains when Lf has a parabolic fixed point, using the
refinement of Proposition A presented here.

We will construct wandering domains arising when Lf has a Siegel fixed point: an irrationally indifferent
fixed point with Diophantine rotation number. Compositions of small perturbations of Lf behave so
subtly that it is far from clear that Lavaurs maps with Siegel disks can produce wandering domains.

In order to control the behavior of successive perturbations, we prove a refinement of Proposition A
with precise convergence estimates, showing that the convergence towards the Lavaurs map is “parabolic”.
Moreover, we study the behavior of nonautonomous systems given by maps converging parabolically to a
limit map with a Siegel fixed point. We introduce an easily computable index characterizing the behavior
of the nonautonomous systems.

In the next section we give more precise statements of our results, and prove how the combination of
these results provides a new construction of wandering domains.

2. Background and overview of results

2A. Polynomial skew products and Fatou components. There is more than one possible interpretation
of Fatou and Julia sets for polynomial skew products; see for example [Jonsson 1999] for a thorough
discussion. When we discuss Fatou components of skew products here, we consider open connected sets
in C2 whose orbits are uniformly bounded, which of course implies equicontinuity. Since the degrees
of f and g in (1) are at least 2, the complement of a sufficiently large bidisk is contained in the escape
locus, which is connected; all other Fatou components are therefore bounded and have bounded orbits.

Given a Fatou component U of P, normality implies that its projection onto the second coordinate
�w.U / is contained in a Fatou component of g, which must therefore be periodic or preperiodic. Without
loss of generality we may assume that this component of g is invariant, and thus either an attracting basin,
a parabolic basin or a Siegel disk.

The behavior of P inside a Siegel disk of g may be very complicated and has received little attention
in the literature, but see [Peters and Raissy 2019] for the treatment of a special case.

There have been a number of results proving the nonexistence of wandering domains inside attracting
basins of g. The nonexistence of wandering domains in the superattracting case was proved in [Lilov
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2004], but it was shown in [Peters and Vivas 2016] that the arguments from Lilov cannot hold in the
geometrically attracting case. The nonexistence of wandering domains under progressively weaker
conditions was proved in [Peters and Smit 2018; Ji 2020].

Here, as in [Astorg et al. 2016], we will consider components U for which �w.U / is contained in a
parabolic basin of g. We assume that the fixed point of g lies at the origin, and that g is of the form
g.w/D w�w2C h.o.t., so that orbits approach 0 tangent to the positive real axis. We will in fact make
the stronger assumption g.w/D w�w2Cw3C h.o.t.

2B. Fatou coordinates and Lavaurs’ theorem. Consider a polynomial f .z/D z� z2Caz3Ch.o.t. For
r > 0 small enough we define incoming and outgoing petals

P �f D fjzC r j< rg and P of D fjz� r j< rg:

The incoming petal P �
f

is forward invariant, and all orbits in P �
f

converge to 0. Moreover, any orbit which
converges to 0 but never lands at 0 must eventually be contained in P �

f
. Therefore we can define the

parabolic basin as
Bf D

[
f �nP �f :

The outgoing petal P o
f

is backwards invariant, with backwards orbits converging to 0.
On P �

f
and P o

f
one can define incoming and outgoing Fatou coordinates ��

f
WP �
f
!C and �o

f
WP o
f
!C

solving the functional equations

��f ıf .z/D �
�
f .z/C 1 and �of ıf .z/D �

o
f .z/C 1;

where ��
f
.P �
f
/ contains a right half-plane and �o

f
.P o
f
/ contains a left half-plane. By the first functional

equation the incoming Fatou coordinates can be uniquely extended to the attracting basin Bf . On the
other hand, the inverse of �o

f
, denoted by  o

f
, can be extended to the entire complex plane, still satisfying

the functional equation
f ı of .Z/D  

o
f .zC 1/:

The fact that the exceptional set of f is empty implies that  o
f
W C! C is surjective. We note that

both incoming and outgoing Fatou coordinates are (on the corresponding petals) of the form Z D

�1=zC b log.z/C o.1/, where the coefficient b vanishes when aD 1. This is one reason for working
with maps f of the form f .z/D zC z2C z3C h.o.t.

Let us now consider small perturbations of the map f . For � 2 C we write f�.z/D f .z/C �2, and
consider the behavior as �! 0. The most interesting behavior occurs when � approaches 0 tangent to the
positive real axis.

Lavaurs’ theorem [1989]. Let �j ! 0, nj 2 N and ˛ 2 C satisfy

nj �
�

�j
! ˛ as j !1:

Then
f
nj
�j ! Lf .˛/D  of ı �˛ ı�

�
f ;

where �˛.Z/DZC˛.
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The map Lf .˛/ is called the Lavaurs map, and ˛ is called the phase. In this paper we will only
consider phase ˛ D 0, and write Lf instead of Lf .0/.

2C. Propositions A and B. The construction of wandering domains in [Astorg et al. 2016] follows
quickly from two key propositions, the aforementioned Propositions A and B. In this paper we will prove
a variation to Proposition B, and a refinement to Proposition A, which we will both state here.

Our main technical result is the following refinement of Proposition A. As before we write P.z;w/D�
f .z/C �2

4
w; g.w/

�
, with f .z/D zC z2C z3C bz4C h.o.t., and g.w/D w�w2Cw3C h.o.t.

Proposition A0. There exists a holomorphic function h W Bf �Bg ! C such that

P 2nC1.z; gn
2

.w//D .Lf .z/; 0/C
�
h.z; w/

n
; 0

�
CO

�
logn
n2

�
;

uniformly on compact subsets of Bf �Bg . The function h.z; w/ is given by

h.z; w/D
L0
f
.z/

.��
f
/0.z/

� .C C��f .z/��
�
g.w//;

where the constant C 2 C depends on b.

Proposition A0 will be proved in Section 5; see Theorem 5.33.
Proposition B in [Astorg et al. 2016] states that the Lavaurs map Lf of a polynomial f .z/ D

z C z2 C az3 CO.z4/ has an attracting fixed point for suitable choices of the constant a 2 C. We
recall very briefly the main idea in the proof of Proposition B: For aD 1 the “horn map” has a parabolic
fixed point at infinity. By perturbing a ' 1, the parabolic fixed point bifurcates, and for appropriate
perturbations this guarantees the existence of an attracting fixed point for the horn map, and thus also for
the Lavaurs map.

In this paper we will consider a more restrictive family of polynomials of the form f .z/D zC z2C

z3CO.z4/, which means that we cannot use the above bifurcation argument. Using a different line
of reasoning, using small perturbations of a suitably chosen degree-7 real polynomial, we will prove a
variation to Proposition B, namely Proposition B0 below. The proof of Proposition B0 will be given in
Section 6.

Before stating the proposition we recall that a fixed point z0 D Lf .z0/ is said to be of Siegel type if
�D L0

f
.z0/D e

2�i�, where � 2RnQ is Diophantine, i.e., if there exist c; r > 0 such that j�n�1j � cn�r

for all integers n > 0. Recall that neutral fixed points with Diophantine rotation numbers are always
locally linearizable:

Theorem 2.1 [Siegel 1942]. Let p.z/D e2�i�zCO.z2/ be a holomorphic germ. If � is Diophantine
then there exist a neighborhood of the origin �p and a biholomorphic map ' W�p!Dr.0/ of the form
'.z/D zC a2z

2CO.z3/ satisfying

'.p.z//D e2�i�'.z/:
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Proposition B0. There exist polynomials of the form f .z/D zC z2C z3CO.z4/ for which the Lavaurs
map Lf has a Siegel fixed point z0, with �D L0

f
.z0/. Moreover we can guarantee that

L00
f
.z0/.�

�
f
/0.z0/

�.1��/
� .��f /

00.z0/¤ 0: (2)

Condition (2) is necessary to guarantee the existence of wandering domains; see the discussion of the
index � later in this section, and the discussion in Section 5C.

A more precise description of the derivatives � for which p is locally linearizable was given in [Bruno
1971; 1972; Yoccoz 1995]. As we are only concerned with constructing examples of maps with wandering
Fatou components, we find it convenient to work with the stronger Diophantine condition. Proposition B0

will be proved in Section 6.

2D. Perturbations of Siegel disks. A key element in our study is the following question:

Let f1; f2; : : : be a sequence of holomorphic germs, converging locally uniformly to a holomorphic
function f having a Siegel fixed point at 0. Under which conditions does there exist a trapping region?

By a trapping region we mean the existence of arbitrarily small neighborhoods U; V of 0 and n0 2 N

such that
fm ı � � � ıfn.z/ 2 V

for all z 2 U and m� n� n0. In other words, any orbit .zn/n�0 that intersects U for sufficiently large n
will afterwards be contained in a small neighborhood of the origin. Note that this in particular guarantees
normality of the sequence of compositions fm ı � � � ı f0 in a neighborhood of z0, which is the reason for
our interest in trapping regions.

We are particularly interested in the case where the differences fn�f are not absolutely summable,
i.e., when X

n�n0

kfn�f kU D1

for any n0 and U. In this situation one generally does not expect a trapping region. However, motivated
by Proposition A0, we will assume that fn� f is roughly of size 1=n, and converges to zero along some
real direction. More precisely, we assume that

fn.z/�f .z/D
h.z/

n
CO

�
1

z1C�

�
; (3)

where h is a holomorphic germ, defined in a neighborhood of the origin.

Theorem 2.2. There exists an index �, a rational expression in the coefficients of f and h, such that the
following hold:

(1) If Re.�/D 0, then there is a trapping region, and all limit maps have rank 1.

(2) If Re.�/ < 0, then there is a trapping region, and all orbits converge uniformly to the origin.

(3) If Re.�/ > 0, then there is no trapping region. In fact, there can be at most one orbit that remains in
a sufficiently small neighborhood of the origin.
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Theorem 2.2 holds under more general assumptions regarding the convergence towards the limit map,
but the above statement is sufficient for our purposes. An example of a more general statement is given
in Remark 3.15. An explicit formula for the index � is given in Section 3, which contains the proof of
Theorem 2.2.

Remark 2.3. The nonautonomous dynamics of the functions fn satisfying (3) is closely related to the
autonomous dynamics of the quasiparabolic map

F.z;w/D .f .z/Cwh.z/CO.w2/; w�w2CO.w2//:

The case Re.�/ < 0 in Theorem 2.2 corresponds to F being dynamically separating and parabolically
attracting, using the terminology of [Bracci and Zaitsev 2013]; by Corollary 6.3 of that work the map F
has a connected basin of attraction at the origin. In particular this implies the existence of a trapping
region for the sequence .fn/.

2E. Parabolic curves. An important idea in the proof of Lavaurs’ theorem is that in a sufficiently small
neighborhood of the origin, the function f� D f C �2 can be interpreted as a near-translation in the
“almost Fatou coordinates”: functions that converge to the ingoing and outgoing Fatou coordinates as
�!1. This idea is especially apparent in the treatment given in [Bedford et al. 2017]. The almost Fatou
coordinates are defined using the pair of fixed points �˙.�/ “splitting” from the parabolic fixed point.

When iterating two-dimensional skew products P.z;w/D .fw.z/; g.w// it does not make sense to
base the almost Fatou coordinates on the pair of fixed points of the maps fw.z/D f .z/C �2

4
w, as the

parameterw changes after every iteration of P. Instead, the natural idea would be to base these coordinates
on a pair of invariant curves fz D �˙.w/g, so-called parabolic curves, defined over a forward-invariant
parabolic petal in the w-plane. The invariance of these parabolic curves is equivalent to the functional
equations

�˙.g.w//D fw.�˙.w//:

In [Astorg et al. 2016], it is asked whether such parabolic curves exists. Instead, in that work it was
shown that there exist almost parabolic curves, approximate solutions to the above functional equation
with explicit error estimates. The proof of Proposition A relies to a great extent on these almost parabolic
curves, and the fact that these are not exact solutions causes significant extra work.

In [López-Hernanz and Rosas 2020] it is shown that the parabolic curves indeed exist, in fact, the
authors prove the existence of parabolic curves for any characteristic direction for diffeomorphisms in
two complex dimensions. However, to be used in the proof of Proposition A, it is necessary to also obtain
control over the domain of definition of the two parabolic curves. The result from [López-Hernanz and
Rosas 2020] does not give the needed control.

In Section 4, Proposition 4.1, we give an alternative proof of the existence of parabolic curves, with
control over the domains of definition. The availability of these parabolic curves forms an important
ingredient in the proof of Proposition A0. The method of proof is a variation to the well-known graph
transform method, and can likely be used to prove the existence of parabolic curves in greater generality.
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2F. Wandering domains. Let us conclude this section by proving how Propositions A0 and B0 together
imply the existence of wandering Fatou components. As before we let

P.z;w/D
�
f .z/C �2

4
w; g.w/

�
;

where g.w/D w �w2Cw3C h.o.t. and the function f .z/D zC z2C z3C h.o.t. is chosen such that
Lf has a neutral fixed point z0 with Diophantine rotation number. The existence of such f is given by
Proposition B0.

Proposition A0 states that

P 2nC1.z; gn
2

.w//D .Lf .z/; 0/C
�
h.z; w/

n
; 0

�
CO

�
logn
n2

�
;

uniformly on compact subsets of Bf �Bg .
Recall from Proposition A0 that the function h.z; w/ is given by

h.z; w/D
L0
f
.z/

.��
f
/0.z/

� .C C��f .z/��
�
g.w//;

from which it follows directly that the index � depends affinely on ��g.w/, although it is conceivable that
the multiplicative constant in this dependence vanishes.

As will be explained in detail in Section 5C, the index � is independent from w if and only if, denoting
the fixed point of Lf again by z0, we have

L00
f
.z0/.�

�
f
/0.z0/

�.1��/
� .��f /

00.z0/D 0; (4)

in which case � is constantly equal to C1. The second statement in Proposition B0 therefore implies
that f can be chosen in order to obtain an inequality in (4), which implies that the affine dependence of �
on ��g.w/ is nonconstant.

It follows that there exists an open subset of Bg where the w-values are such that Re.�/ is strictly
negative. Let D2 � Bg be a small disk contained in this open subset, so that Re.�/ is negative for all
w 2D2.

Let D1 be a small disk centered at z0, the Siegel-type fixed point of Lf . We claim that, for n 2N large
enough, the open set D1 �gn

2

.D2/ is contained in a wandering Fatou component.
Indeed, it follows from Proposition A0 that the nonautonomous one-dimensional system given by

compositions of the maps z 7! �z ıP
2nC1.z; gn

2

.w// satisfies case (2) of Theorem 2.2, where �z is the
projection onto the z-coordinate. Thus Theorem 2.2 implies that

Pm
2�n2.z; w/! .z0; 0/

uniformly for all .z; w/ 2D1 �gn
2

.D2/. The remainder of the proof follows the argument from [Astorg
et al. 2016]. Since the complement of the escape locus of P is bounded, it follows that the entire
orbits Pm.z; w/ must remain uniformly bounded, which implies normality of .Pm/ on D1 �gn

2

.D2/,
which is therefore contained in a Fatou component, say U. The fact that on an open subset of U the



42 MATTHIEU ASTORG, LUKA BOC THALER AND HAN PETERS

subsequence Pm
2�n2 converges to the constant .z0; 0/ implies convergence of this subsequence to .z0; 0/

on all of U, since limit maps of convergent subsequences are holomorphic. But if U was periodic or
preperiodic, the limit set would have been periodic. The point .z0; 0/ is however not periodic: its orbit
converges to .0; 0/. Thus U is wandering, which completes the proof.

Remark 2.4. From the above discussion we can conclude that all possible limit maps of the convergent
subsequence P nj jU are points. In fact these points form (the closure of) a bi-infinite orbit of .z0; 0/,
converging to .0; 0/ both under backward and forward iteration.

We note however that there are fibers fw D w0g, with w0 2 Bg , for which Re.�/D 0. Let D1 again
be a sufficiently small disk centered at z0, the Siegel-type fixed point of Lf . Proposition A0 together with
case (1) of Theorem 2.2 implies that for sufficiently large n the disk D1�fgn

2

.w0/g is a Fatou disk for P,
i.e., the restriction of the iterates P n to the disk form a normal family. For this Fatou disk the sequence of
iterates Pm

2�n2 converges to a rank-1 limit map, whose image is a holomorphic disk containing .z0; 0/.
All the limit sets together form (the closure of) a bi-infinite sequence of disks, converging under backward
and forward iteration to the point .0; 0/.

3. Perturbations of Siegel disks

3A. Notation. The following conventions will be used throughout this section:

(i) Given a holomorphic function f , we will write Of for the nonlinear part of f .

(ii) For a sequence of constants �n 2 C we will write

�n;m D

nY
jDmC1

�j and �.n/D �n;0 D

nY
jD1

�j ;

and similarly for a sequence of functions .fn/

fn;m D fn ı � � � ıfmC1:

(iii) Given two sequences of holomorphic functions .fn/ and .gn/ defined on some uniform neighborhood
of the origin, we will write fn � gn if the norms of the sequence of differences .fn�gn/ is summable
on some uniform neighborhood of the origin.

3B. Preparation. In this section we introduce nonautonomous analogies of attracting, repelling, and
locally linearizable indifferent fixed points and make a few initial observations. In the next subsection we
introduce the index � and show that the local behavior of the nonautonomous systems we consider can be
deduced from the real part of the index.

Definition 3.1. Two sequences of functions .fn/ and .gn/ are said to be nonautonomously conjugate if
there exist a uniformly bounded sequence of local coordinate changes . n/n�n0 , all defined in a uniform
neighborhood of the origin, satisfying

fn ı n D  nC1 ıgn

for all n� n0.
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Definition 3.2. A sequence of functions .fn/ is said to be nonautonomously linearizable if there exists a
sequence .�n/n�n0 in C n f0g and a sequence of coordinate changes . n/n�n0 , defined and uniformly
bounded in a uniform neighborhood of the origin, and with derivative  0n.0/ uniformly bounded away
from zero, so that

fn ı n.z/D  nC1.�n � z/

for all n � n0. If the sequence j�.n/j is bounded, both from above and away from 0, then we say that
.fn/ is rotationally linearizable.

Definition 3.3. A sequence of functions .fn/ is said to be collapsing if there is a neighborhood of the
origin U and an n0 2 N such that fn;m! 0 on U as n!1 for any m� n0.

An example of a collapsing sequence is given by a sequence of functions fn converging to a function f
with an attracting fixed point at the origin.

Definition 3.4. We say that sequence .fn/ is expulsive if there exists r > 0 such that for every m � 0
there exists at most one exceptional point Oz such that for every z 2 Dr.0/ n fOzg there exist n > m for
which fn;m.z/ …Dr.0/. Here Dr.0/ denotes the disk of radius r centered at the origin.

An example of an expulsive sequence can be obtained by considering a sequence of maps .fn/
converging locally uniformly to a map with a repelling fixed point. Since f maps a small disk around
the origin to a strictly larger holomorphic disk, the same holds for sufficiently small perturbations. A
nested sequence argument shows that, starting at a sufficiently large time n0, there is a unique orbit which
remains in the small disk.

Lemma 3.5. Consider a sequence .fn/ of univalent holomorphic functions, defined in a uniform neigh-
borhood of the origin. Suppose the compositions fn;0 are all defined in a possibly smaller neighborhood
of the origin, and form a normal family. Then the sequence .fn/ is either rotationally linearizable, or
there exist subsequences .nj / for which fnj ;0 converges to a constant.

Proof. By normality the orbit fn;0.0/ stays bounded. By nonautonomously conjugating with a sequence
of translations we may therefore assume that fn.0/D 0 for all n. Note that normality is preserved under
nonautonomous conjugation by bounded translations.

Write �n D f 0n.0/. Normality implies that j�.n/j is bounded from above. The functions

 nC1.z/ WD fn;0.�.n/
�1
� z/

are tangent to the identity, and they satisfy the functional equation

f ı n.z/D  nC1.� � z/:

If the sequence j�.n/j is bounded away from the origin then the maps  n are uniformly bounded, and the
sequence .f .n// is rotationally linearizable. Suppose that the sequence �.n/ is not bounded from below,
in which case there is a subsequence �.nj / converging to 0. By the Hurwitz theorem the sequence of
maps fnj ;0 converges to a constant. �
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Lemma 3.6. If the sequence .fn/ is rotationally linearizable, and .�n/ is a sequence of absolutely
summable holomorphic functions, i.e., X

k�nkDr .0/ <1

for some r > 0, then the sequence .fnC �n/ is also rotationally linearizable.

Proof. Write gnDfnC�n. We consider the errors due to the perturbations in linearization coordinates, i.e.,

 �1nC1 ıgn ı n.z/� 
�1
nC1 ıfn ı n.z/D  

�1
nC1 ıgn ı n.z/��n � z:

By the definition of the nonautonomous linearization, it follows that after restricting to a smaller neighbor-
hood of the origin the derivatives of the maps  n and their inverses are uniformly bounded. It follows that
the above errors are also absolutely summable, which guarantees normality of the sequence  �1nC1ıgn;0 in
a small neighborhood of the origin, and hence normality of the sequence gn;0. It follows from Lemma 3.5
that .fnC �n/ is either rotationally linearizable or has subsequences converging to the origin. It follows
from the summability of the errors that the latter is impossible. �

3C. Introduction of the index. Let f .z/D�zCb2z2CO.z3/ be a holomorphic function with �D e2�i�

and � 2 RnQ Diophantine. Let h.z/ D c0 C c1z C O.z
2/ be a holomorphic function defined in a

neighborhood of the origin. Let .�n.z// be a sequence of holomorphic functions that is defined and
absolutely summable on some uniform neighborhood of the origin. We consider the nonautonomous
dynamical system given by compositions of the maps

fn.z/D f .z/C
1

n
h.z/C �n.z/:

We introduce the index �, depending rationally on the two-jet of f at the origin and the one-jet of h at
the origin, by

� WD
2b2c0

�.1��/
C
c1

�
: (5)

We claim that the index � is invariant under local autonomous changes of coordinates, i.e., when all the
maps fn are conjugated by a single analytic transformation. One easily observes that the index is invariant
under affine changes of coordinates and is unaffected by terms of order 3 and higher. It is therefore
sufficient to only consider local changes of the form z 7! zC˛z2. It is clear that � and c0 are unaffected
by such a coordinate change, while computation shows that b2 is replaced by b2C˛��˛�2 and c1 is
replaced by c1�˛�c0. Indeed, � is invariant under these changes.

Since � is Diophantine, the function f is linearizable. Let us write �.z/D zCh:o:t: for the linearization
map of f , i.e., f ı�.z/D �.�z/.

We define
�n.z/ WD zC

1

n

c0

1��
:

Lemma 3.7. With the above definitions we can write

fn WD ��1 ı ��1nC1 ıfn ı �n ı� D � � e
�=n
� zC

1

n

1X
kD2

dkz
k
C �n.z/; (6)
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where .�n/ is a sequence of holomorphic functions that are defined and whose norms are summable on a
uniform neighborhood of the origin.

Proof. First observe that

��1nC1 ıfn ı �n � f

�
zC

1

n

c0

1��

�
C
1

n
h

�
zC

1

n

c0

1��

�
�

1

nC 1

c0

1��

� f .z/Cf 0.z/
1

n

c0

1��
C
1

n
h.z/�

1

nC 1

c0

1��
:

Using the power series expansions of f 0 and h we can therefore write

��1nC1 ıfn ı �n � f .z/C

�
1

n

�c0

1��
C
1

n
c0�

1

nC 1

c0

1��

�
C
1

n

�
2b2c0

1��
C c1

�
zC

1

n

1X
kD2

ˇkz
k

� f .z/C
c0

1��

�
1

n
�

1

nC 1

�
C
1

n
��zC

1

n

1X
kD2

ˇkz
k

� f .z/C
1

n
��zC

1

n

1X
kD2

ˇkz
k :

It follows that

fn���1.f .�.z///C.��1/0.f .�.z///
�
1

n
���.z/C

1

n

1X
kD2

ˇk�.z/
k

�
��

�
1C

�

n

�
zC

1

n

1X
kD2

dkz
k

��e�=nzC
1

n

1X
kD2

dkz
k :

For the last equality we used that

1C
�

n
D e�=nCO

�
1

n2

�
: �

Corollary 3.8. If Re.�/ < 0 the sequence fn is collapsing.

Proof. Observe that f 0n.z/� �e
�=nCO.z=n/ and note that there is a small disk Dr.0/ such that for n

sufficiently large
kf 0nkDr .0/ < e

Re.�/=.2n/;

and thus
jfn.z/� fn.w/j � eRe.�/=.2n/

jz�wj: (7)

Since Re.�/ < 0 it follows that
Q
n�1 e

Re.�/=.2n/ D 0.
Let us write

'n.z/D � � e
�=n
� zC Ofn.z/;

i.e., we drop the term �n from fn. By decreasing the radius r if necessary we can choose m0 such thatX
j�m0

k�j kDr .0/ <
1
2
r:
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By increasing m0 if necessary we can also guarantee that 'n;m.z/ 2 Dr=2.0/ for all z 2 Dr=4.0/ and
m�m0. Using (7) it follows by induction on n that whenever z 2Dr=4.0/ and m�m0 we have

kfn;m.z/�'n;m.z/k �
nX

jDm

� nY
kDjC1

eRe.�/=.2k/
�
k�j kDr .0/:

Indeed, the inequality is trivially satisfied for nDm, and assuming the inequality holds for some n�m
implies

kfnC1;m.z/�'nC1;m.z/k D kfnC1 ı fn;m.z/� fnC1 ı'n;m.z/C �nC1.'n;m.z//k

�

nC1X
jDm

� nC1Y
kDjC1

eRe.�/=.2k/
�
k�j kDr .0/:

Note that
nX

jDm

� nY
kDjC1

eRe.�/=.2k/
�
k�j kDr .0/! 0

as n!1; hence the fact that the sequence .'n/ collapses implies the sequence .fn/ collapses as well. �

Since the sequence .fn/ collapses, it follows immediately that the sequence .fn/ collapses as well,
concluding the case Re.�/ < 0.

Corollary 3.9. If Re.�/ > 0, the sequence fn is expulsive.

Proof. Note that there are r; n0 > 0 such that for every z; w 2Dr.0/ and every n > n0 we have

jfn.z/� fn.w/j D jz�wj �
ˇ̌̌
e�=nC

1

n
O.z;w/

ˇ̌̌
> eRe.�/=.2n/

jz�wj:

Expulsion of all but one orbit follows immediately. �

Again it follows that .fn/ is expulsive, completing the case Re.�/ > 0.

3D. Rotationally linearizable case .Re.�/D 0/. Let us define

Ln.z/D e
� logn

� z:

We obtain
gn D L

�1
nC1 ı fn ıLn

D �zC e�� log.nC1/ 1

n

1X
`D2

d`e
�` lognz`CL�1nC1 ı �n ıLn

� �zC
1

n

1X
`D2

d`e
�.`�1/ lognz`:

Since Re.�/D 0, the maps Ln are rotations; hence it is sufficient to prove that the sequence .gn/ is
rotationally linearizable.
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By Lemma 3.6 we may ignore the absolutely summable part of gn; hence with slight abuse of notation
we may assume that

gn D �zC
1

n

1X
`D2

d`e
�.`�1/ lognz`:

Recall that �D e2�i�, where � is Diophantine.

Lemma 3.10. There exist constants C; r > 0 such that for every integer `� 1 and for every 0 < m <N
we have ˇ̌̌̌ NX

jDm

� j̀
ˇ̌̌̌
< C`r :

Proof. Since � is assumed to be Diophantine, there exist c; r > 0 such that j�n�1j � cn�r for all n. This
gives the boundˇ̌̌̌ NX

jDm

� j̀
ˇ̌̌̌
D

ˇ̌̌̌ NX
jDm

�`.jC1/�� j̀

�`� 1

ˇ̌̌̌
D

ˇ̌̌̌
1

�`� 1

NX
jDm

.�`.jC1/�� j̀ /

ˇ̌̌̌
<

ˇ̌̌̌
2

�`� 1

ˇ̌̌̌
< C`r : �

Lemma 3.11. There exist eC ; r > 0 such that for all integers n; ` > 0 we haveˇ̌̌̌ 1X
kDn

e�` logk

k
�k`

ˇ̌̌̌
<
eC`rC1
n

:

Proof. Summation by parts gives

NX
kDn

e�` logk

k
�k` D

e�` logN

N

NX
kDn

�k`�

N�1X
kDn

�
e�` log.kC1/

kC 1
�
e�` logk

k

� kX
jDn

�j`

D
e�` logN

N

NX
kDn

�k`�

N�1X
kDn

e�` logk
�
1C �l=kCO.1=k2/

kC 1
�
1

k

� kX
jDn

�j`:

Observe that
1C �`=kCO.1=k2/

kC 1
�
1

k
DO

�
1

k2

�
is absolutely summable; hence using Lemma 3.10 we obtainˇ̌̌̌ NX

kDn

e�` logk

k
�k`

ˇ̌̌̌
<
1

N

ˇ̌̌̌ NX
kDn

�k`
ˇ̌̌̌
C

N�1X
kDn

ˇ̌̌̌
1C �`=kCO.1=k2/

kC 1
�
1

k

ˇ̌̌̌ ˇ̌̌̌ kX
jDn

�j`
ˇ̌̌̌

<
C`r

N
CC`r

N�1X
kDn

ˇ̌̌̌
`� � 1

k.kC 1/
CO

�
1

k3

�ˇ̌̌̌

<
eC`rC1
n

: �
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Let us introduce one more change of coordinates

SnC1.z/D z��
�1
1X
`D2

�.nC1/.1�`/d`z
`
1X

kDnC1

e�.`�1/ logk

k
�k.`�1/:

Lemma 3.12. Writing Sn.z/D zC ySn.z/ we obtain

ySnC1.�z/D � ySn.z/C Ogn.z/:

Proof. Computing ySnC1.�z/� Ogn.z/ gives

���1
1X
`D2

�.nC1/.1�`/d`�
`z`

1X
kDnC1

e�.`�1/ logk

k
�k.`�1/�

1

n

1X
`D2

e�.`�1/ lognd`z
`

D�

1X
`D2

�n.1�`/d`z
`
1X

kDnC1

e�.`�1/ logk

k
�k.`�1/�

1X
`D2

e�.`�1/ logn

n
�n.`�1/�n.1�`/d`z

`

D�

1X
`D2

�n.1�`/d`z
`
1X
kDn

e�.`�1/ logk

k
�k.`�1/ D � ySn.z/: �

Lemma 3.13. The maps Sn satisfy Sn D zCO.1=n/, with uniform bounds.

Proof.

j ySn.z/j D

ˇ̌̌̌
��1

1X
`D2

�n.1�`/d`z
`
1X
kDn

e�.`�1/ logk

k
�k.`�1/

ˇ̌̌̌
<
eC
n

1X
`D2

jd`z
`
j.`� 1/rC1: �

Let us define

hn WD S
�1
nC1 ıgn ıSn:

Lemma 3.14. The maps hn are of the form

hn D �zCO.n
�2/:

Proof. The definition of hn immediately gives that hn.z/D �zCO.1=n/,

gn ıSn D SnC1 ı hn;

and thus

�zC� ySn.z/C Ogn.zC ySn/D �zC Ohn.z/C ySnC1.�zC Ohn/;

which gives

� ySn.z/C Ogn.z/C Og
0
n.z/
ySn.z/CO. yS

2
n/D

Ohn.z/C ySnC1.�z/C yS
0
nC1.�z/

OhnCO. Oh
2
n/:

Hence by Lemma 3.12 we obtain

Og0n.z/
ySn.z/CO. yS

2
n/D

Ohn.z/.1C yS
0
nC1.�z//CO.

Oh2n/:
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Since Ogn DO.1=n/ and ySn DO.1=n/, we get

Ohn.z/.1C yS
0
nC1.�z//CO.

Oh2n/DO

�
1

n2

�
:

Since hn.z/D �zCO.1=n/, it follows that Ohn.z/DO.1=n2/. �

Lemma 3.6 implies that the sequence .hn/ is rotationally linearizable; hence the same holds for .gn/,
.fn/ and finally .fn/, which completes the proof of Theorem 2.2.

Remark 3.15. The proof of Theorem 2.2 also works for more general perturbations, for example

fn.z/� f .z/C
1

n
h1.z/C

logn
n
h2.z/;

where h1 and h2 are holomorphic around the origin. In this case we have two indexes �j , j 2 f1; 2g, that
can be computed using (5), where constants c0 and c1 are the coefficients of the linear part of the Taylor
series of hj at the origin. The following is a general version of Theorem 2.2:

(1) If Re.�2/ > 0 then the sequence .fn/ is expulsive.

(2) If Re.�2/ < 0 then the sequence .fn/ is collapsing.

(3) If Re.�2/D 0 and:

(a) Re.�1/ > 0, then the sequence .fn/ is expulsive.

(b) Re.�1/ < 0, then the sequence .fn/ is collapsing.

(c) Re.�1/D 0, then the sequence .fn/ is rotationally linearizable; hence all limit maps have rank 1.

4. Existence of parabolic curves

The purpose of this section is to prove the following proposition.

Proposition 4.1. Let P.z;w/ WD
�
f .z/C �2

4
w; g.w/

�
, with f .z/D zC z2C bz3CO.z4/ and g.w/D

w�w2CO.w3/. Then P has at least three parabolic curves: one is contained in the invariant fiberwD 0
and is an attracting petal for f ; the other two are graphs over the same petal P in the parabolic basin Bg .
Moreover they are of the form

�˙.w/D˙c1
p
wC c2w˙ c3w

3=2
CO.w2/;

where c1 D �
2
i and c2 D �2

8
b� 1

4
.

Proposition 4.1 gives a positive answer to a question posed in [Astorg et al. 2016]. We note that the
result does not follow from the results [Hakim 1998], as the two characteristic directions we consider are
degenerate, in the language used by Hakim. The existence of three parabolic curves can be derived from
[López-Hernanz and Rosas 2020]. However, their proof gives no guarantee that the parabolic curves �˙

are graphs over the same petal in Bg , which is crucial for our purpose.
Let us start by observing that P is semiconjugate to a map Q, holomorphic near the origin, given by

Q.z; �/D
�
f .z/C �2

4
�2; �� 1

2
�3CO.�5/

�
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(with �2 Dw). The map Q has three characteristic directions: � D 0, z D �
2
i� and z D��

2
i�. It is clear

that there is a parabolic curve tangent to the characteristic direction � D 0, namely the attracting petal
for f in the invariant fiber f� D 0g. We call this parabolic curve the trivial curve. For the existence of the
two other parabolic curves we will use a graph transform argument.

Let us write Q.z; �/ D .f�.z/; Qg.�//, so that f�.z/ D f .z/C �2

4
�2 and Q� WD Qg.�/ D

p
g.�2/ D

� � 1
2
�3CO.�5/. We are looking for parabolic curves of the form �! .�.�/; �/, hence satisfying the

equation
Q.�.�/; �/D .�.Q�/; Q�/: (8)

Equivalently we are looking for a function �, defined for � in a parabolic petal of Qg, satisfying the
functional equation

�. Qg.�//D f�.�.�//:

We will prove that Q has two parabolic curves �˙, corresponding to the characteristic directions
zD˙�

2
i�, which are graphs over the same attracting petal of Qg in the right half-plane. This will complete

the proof of Proposition 4.1, since these two parabolic curves can be lifted to parabolic curves of P
satisfying the desired properties.

The key idea in proving the existence of �.�/ is to start with sufficiently high-order jets �1.�/ of the
formal solution to (8), and then apply a graph transform argument, starting with �1. By starting with
higher-order jets, we obtain higher-order error estimates, but the constants in those estimates are likely to
deteriorate. However, these estimates can be controlled by dropping the order of the error estimates by 1,
and working with j�j < ı, with ı depending on the order of the jets. It turns out that starting with jets
of order 20 is sufficient to obtain convergence of the graph transforms. We do not claim that 20 is the
minimal order for which convergence can be obtained, only that the order suffices for our purposes.

Lemma 4.2. For every integer n > 0 there exists �1.�/D c1�C c2�2C c3�2C� � �C cn�n and ı > 0 such
that j�1.Q�/�f�.�1.�//j< j�jn for all j�j< ı. Moreover we have c1 D˙�2 i and c2 D �2

8
b� 1

4
.

Proof. Recall from [Astorg et al. 2016] that by choosing �1.�/ D c1� C c2�
2, with c1 D ˙�2 i and

c2 D
�2

8
b� 1

4
, we obtain

j�1.Q�/�f�.�1.�//j<O.j�j
4/:

Now suppose that c1; : : : ; cn are found such that for �.�/D c1�C � � �C cn�n we have

j�1.Q�/�f�.�1.�//j<O.j�j
nC2/:

Let En.�/ WD f�.�1.�//� �1.Q�/. For cnC1 2 C, let

EnC1.�/ WD f�.�1.�/C cnC1�
nC1/� �1.Q�/� cnC1 Q�

nC1
I

we shall prove that there exists some cnC1 such that EnC1 DO.�nC3/. Indeed,

f�.�1.�/C cnC1�
nC1/D f�.�1.�//Cf

0.�n.�//cn�
nC1
CO.�2nC2/

D f�.�1.�//C .1C 2c1�/cnC1�
nC1
CO.�nC3/:
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On the other hand, we have cnC1 Q�nC1 D cnC1�nC1CO.�nC3/; so

EnC1.�/DEn.�/C 2c1cnC1�
nC2
CO.�nC3/:

Since En.�/DO.�nC2/ (and c1 ¤ 0), we may therefore find some value of cnC1 for which EnC1.�/D
O.�nC3/.

We conclude that if ı is small enough then j�1.Q�/�f�.�1.�//j< j�jn for all j�j< ı. �

Remark 4.3. The choice of parabolic curve is determined by the choice of c1. From now on we will
assume that c1 D �

2
i ; for the case c1 D��2 i the proofs are essentially the same.

For R 2 C we write HR D
˚
Z 2 C W arg.Z �R/ 2

�
�
�
2
� �0;

�
2
C �0

�	
for some �0 > 0, and

Pı D
˚
� 2 C W ��2 2 Hı�2 and Re.�/ > 0

	
:

For ı > 0 sufficiently small the petal Pı is forward-invariant under Qg, i.e., Qg.Pı/ � Pı . Recall the
existence of Fatou coordinates on Pı : the function Qg is conjugate to the translation T1 WZ 7!ZC 1 via a
conjugation of the form

Z D
1

�2
C˛ log.�/C o.1/;

where the constant ˛ depends on g. All forward orbits in Pı converge to 0 tangent to the positive real
axis, and the conjugation gives the estimates

jRe. Qgk.�//j<
C
p
k

and jIm. Qgk.�//j<
C

k
(9)

for a uniform C > 0 depending on ı. We note that by choosing ı sufficiently small, the constant C can
be chosen arbitrarily small as well.

Lemma 4.4. Let n > 0 and �1.�/ be as in Lemma 4.2. There exist ı; A > 0 such that for every j�j< ı we
have

jf �1.f .�1.�//C 3�
4/� �1.�/j � Aj�j

4:

Proof. The Taylor series expansion of f gives

jf �1.f .�1.�//C 3�
4/� �1.�/j �

1X
iD1

ˇ̌̌̌
.f �1/.i/.f .�1.�///

i Š

ˇ̌̌̌
3i j�4ji ;

and the desired estimate follows immediately. �

Lemma 4.5. Let n > 0 and �1.�/ be as in Lemma 4.2, A> 0 and ı > 0 sufficiently small. Let .�k.�// be
any sequence of holomorphic functions defined on Pı and satisfying

j�k.�/� �1.�/j< Aj�j
4:

Then there exists C1 > 0, depending on �1, such thatˇ̌̌̌ kY
sD`

f 0.�s. Qg
kC1�s.�///

ˇ̌̌̌�1
< C1 � .kC 1� `/

for all � 2 Pı and every 0 < `� k.
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Proof. Let us write xk D Re. Qgk.�// > 0 and yk D Im. Qgk.�//. Estimates (9) imply
1X
kD0

j Qgk.�/j3 <K <1 for all � 2 Pı : (10)

Since by assumption j�s.�/� �1.�/j<Aj�j4 for every s � 1, it follows that �s.�/D c1�C c2�2CO.�3/
and

jf 0.�s.�//�f
0.�1.�//j< Bj�

4
j;

where B > 0 depends only on �1 and A.
Observe that f 0.z/D 1C 2zC 3bz2CO.z3/D e2zC.3b�2/z

2CO.z3/; hence we obtain

f 0.�s.�//D e
�i�C. 1

2
�2.1�b/� 1

2
/�2CO.�3/;

where the bound O.�3/ is uniform with respect to s.
Therefore we can find C1 > 0 such thatˇ̌̌̌ kY
sD`

f 0.�s. Qg
kC1�s.�///

ˇ̌̌̌
>
ˇ̌
e
Pk
sD` Re .�i QgkC1�s.�/C. 1

2
�2.1�b/� 1

2
/. QgkC1�s.�//2/CO.. QgkC1�s.�//3/ˇ̌

>
1

C1

ˇ̌
e
Pk
sD`��ykC1�sC.

1
2
�2.1�Re.b//� 1

2
/x2
kC1�s

ˇ̌
>

1

C1

ˇ̌
e�

Pk
sD` 1=.kC1�s/

ˇ̌
>

1

C1.kC 1� `/
:

In the first inequality we used the fact that jezj D eRe.z/. The second inequality follows from estimates
(9) and (10). The third inequality depends on the constant C from (9) being sufficiently small, which can
be guaranteed by taking sufficiently small ı. �

Remark 4.6. Note that the estimates in Lemmas 4.2, 4.4 and 4.5 hold regardless of the choice of n in the
definition of �1. If n is increased, then all estimates hold, with the same constants, for ı sufficiently small.
It turns out that it will be sufficient for us to work with nD 20, and we will work with this choice from
now on.

Lemma 4.7. There exists sufficiently small ı > 0 such that for every k � 2 and every � 2 Pı we have

j Qgk.�/j19kCj Qgk.�/j39.k� 1/C

k�1X
`D2

j QgkC1�`.�/j23.k� `/

.`� 1/4
C
j Qg.�/j23

.k� 1/4
<
4j�j12

k2
:

Proof. We will prove that each of the four terms in the left-hand summation is bounded by j�j12=k2. It
follows from (9) that for every 0� `� 19 we have

j Qgk.�/j19k <
C 19k

jkC 1=�2j19=2
<
C 19j�j`k

k.19�`/=2
:
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If we choose `D 13 and assume that ı is small enough, then we get

j Qgk.�/j19k <
j�j12

k2

for � 2 Pı . The desired bound for a second term follows immediately from the inequality

j Qgk.�/j39.k� 1/ < j Qgk.�/j19k:

Next observe that for every k � 2 we have

j Qg.�/j23

.k� 1/4
<

22j�j23

.2.k� 1/2/2
<
j�j12

k2
;

where the last inequality holds for sufficiently small ı. Finally, for the third term in the summation we
use (9) to obtain

k�1X
`D2

j QgkC1�`.�/j23.k� `/

.`� 1/4
<

k�1X
`D2

C 10j�j13.k� `/

.kC 1� `/5.`� 1/4
< C 10j�j

k�1X
`D2

j�j12

.k� `/4.`� 1/4
:

In order to obtain the desired bound it suffices to prove that
k�1X
`D2

1

.k� `/4.`� 1/4
<
44

k2
:

First observe that
1

.`� 1/.k� `/
�
4

k

for every k � 3 and 2� `� k� 1. To see this let us set s D `� 1 and t D k� 1. The above inequality
now translates to

1

s.t � s/
�

4

t C 1

for t � 2 and 1� s � t � 1, and hence to

pt .s/ WD 4s
2
� 4tsC t C 1� 0:

Observe that pt .1/ < 0 and that roots of pt .s/ lie outside the closed interval Œ1; t � 1�. Therefore we
obtain

k�1X
`D2

1

.k� l/4.`� 1/4
<

k�1X
`D2

44

k4
<
44

k2
;

and hence for ı sufficiently small

k�1X
`D2

j QgkC1�`.�/j23.k� `/

.`� 1/4
<
j�j12

k2
: �

Proof of Proposition 4.1. As we remarked at the beginning of this section, it is enough to prove that Q
has two parabolic curves �˙ corresponding to the characteristic directions z D ˙�

2
i�, both curves
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graph over the same attracting petal of Qg in the right half-plane. By Lemma 4.2 there exist ı > 0 and
�1.�/D c1�C c2�

2C � � � C c20�
20 such that j�1.Q�/� f�.�1.�//j < j�j20 for j�j < ı. Let A > 0 be as in

Lemma 4.4, and let C1 > 0 be the constant defined in Lemma 4.5.
We will show that the sequence of functions defined inductively by

�kC1.�/ WD f
�1
� .�k.Q�//

is convergent and that the limit satisfies the functional equation (8). Let us define

Ek.�/ WD �k.Q�/�f�.�k.�//

and observe that
�kC1.�/D f

�1
� .�k.Q�//D f

�1
� .f�.�k.�//CEk.�//

and hence

f�.�kC1.�//D f�.�1.�//C

kX
`D1

E`.�/:

Note that we can replace f� by f on both sides, giving

�kC1.�/D f
�1

�
f .�1.�//C

kX
`D1

E`.�/

�
;

and hence

�kC1.�/D �1.�/C

1X
iD1

.f �1/.i/.f .�1.�///

i Š

� kX
`D1

E`.�/

�i
:

We will prove that jEk.�/j< j�j4=jk� 1j2 for every k � 2 on some small petal Pı . This will imply
that the sequence �kC1 converges to a parabolic curve � on Pı for sufficiently small ı.

We claim there exists ı >0 such that for every � 2Pı and every k >1 the following two statements hold:

Ik.1/: j�k.�/� �1.�/j< Aj�j4, and

Ik.2/: jEk.�/j< 4j�j12=jk� 1j2 < j�j4=jk� 1j2.

We will prove these two statements simultaneously by induction on k.

Step 1: First we prove I2.1/. By definition

�2 D �1.�/C

1X
iD1

.f �1/.i/.f .�1.�///

i Š
.E1.�//

i
I

hence by Lemma 4.4 we obtain the desired inequality.
Next we prove that I2.2/. Observe that for sufficiently small ı we get

jE2.�/j<

ˇ̌̌̌
E1.Q�/

f 0.�1.Q�//

ˇ̌̌̌
CC2jE1.Q�/j

2 < C1j Qg.�/j
20
CC2j�jj Qg.�/j

40

< C1j�jj Qg.�/j
19
CC2j�jj Qg.�/j

39 < 4j�j12:

Here C1 is the constant introduced in Lemma 4.5.
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Step 2: Now let us assume that I`.1/ and I`.2/ hold for every 2� `� k. Observe that

j�kC1.�/� �1.�/j<

1X
iD1

ˇ̌̌̌
.f �1/.i/.f .�1.�///

i Š

ˇ̌̌̌ ˇ̌̌̌ kX
`D1

E`.�/

ˇ̌̌̌i
:

Since jE`.�/j< j�j4=j`� 1j2 for `� 2 and jE1.�/j< j�j4, we getˇ̌̌̌ kX
`D1

E`.�/

ˇ̌̌̌
< 3j�j4I

hence by Lemma 4.4 inequality IkC1.1/ holds.
Observe that

EkC1.�/D �kC1.Q�/�f�.�kC1.�//D �kC1.Q�/� �k.Q�/

D f �1
Q� .fQ�.�k.Q�//CEk.Q�//� �k.Q�/

D f �1.f .�k.Q�//CEk.Q�//� �k.Q�/

D .f �1/0.f .�k.Q�/// �Ek.Q�/CO.Ek.Q�/
2/;

where the constant in the order can be chosen independently from k. It follows that there exists C2 > 0
independent of k such that

jEkC1.�/j<

ˇ̌̌̌
Ek.Q�/

f 0.�k.Q�//

ˇ̌̌̌
CC2jEk.Q�/j

2: (11)

Using the inequality (11) successively we obtain

jEkC1.�/j<

ˇ̌̌̌
Ek. Qg.�//

f 0.�k. Qg.�///

ˇ̌̌̌
CC2jEk. Qg.�//j

2

<

ˇ̌̌̌
Ek�1. Qg

2.�//

f 0.�k�1. Qg
2.�/// �f 0.�k. Qg.�///

ˇ̌̌̌
CC2

jEk�1. Qg
2.�//j2

jf 0.�k. Qg.�///j
CC2jEk. Qg.�//j

2

<
jE1. Qg

k.�//jQk
`D1 jf

0.�`. Qg
kC1�`.�///j

CC2

k�1X
`D1

jE`. Qg
kC1�`.�//j2Qk

sD`C1 jf
0.�s. QgkC1�s.�///j

CC2jEk.Q�/j
2: (12)

Combining (12) and Lemma 4.5 gives

jEkC1.�/j

<C1j Qg
k.�/j20kCC1C2j Qg

k.�/j40.k�1/C16C1C2

k�1X
`D2

j QgkC1�`.�/j24.k�`/

.`�1/4
C16C1

j Qg.�/j24

.k�1/4

<C1j�jj Qg
k.�/j19kCC1C2j�jj Qg

k.�/j39.k�1/C16C1C2j�j

k�1X
`D2

j QgkC1�`.�/j23.k�`/

.`�1/4
C16C1j�j

j Qg.�/j23

.k�1/4
:

If ı is sufficiently small this last inequality together with Lemma 4.7 implies

jEkC1.�/j<
4j�j12

k2
<
j�j4

k2
;
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completing the proof of IkC1.2/ and thus the induction argument. We emphasize that throughout the
proof ı can be chosen dependently of k.

To summarize, the equation

�kC1.�/D f
�1

�
f .�1.�//C

kX
`D1

E`.�/

�
implies that for sufficiently small ı the sequence �k converges on Pı to a parabolic curve � satisfying
�.Q�/D f�.�.�//. Recall that we have only proven the existence of a parabolic curve for c1 D �

2
i . For

c1D�
�
2
i we can use same arguments as above, but we might get a different value for ı. Since the parabolic

petals are nested and forward invariant, both parabolic curves are graphs over the petal with minimal ı. �

From the proof it follows that

�˙.�/D˙c1�C c2�
2
˙ c3�

3
CO.�4/;

where c1 D �
2
i and c2 D �2

8
b� 1

4
.

5. Estimates on convergence towards Lavaurs map

5A. Preliminaries. The goal of this section is to obtain explicit estimates for one of the main objects to
appear in our arguments: the functions A.�; z/ and A0.z/, which measure how much the dynamics differ
from a translation after a certain change of coordinates. The key difference between this section and the
corresponding computations in [Astorg et al. 2016] is that we now know that we have two exactly invariant
parabolic curves �˙, instead of invariant jets. This is used crucially in the proof of Proposition 5.5.

Definition 5.1. Let fw.z/ WD f .z/C �2

4
w, where f .z/D zCz2Cz3CO.z4/ is a degree-d polynomial.

Let g.w/D w�w2CO.w3/ be a degree-d polynomial.

In what follows, we set � WD
p
w, working throughout with the branch that takes positive values on the

positive real axis. We note that this branch is well-defined on the parabolic basin of the polynomial g.
Abusing notation, we write f�.z/ WD f .z/C �2

4
�2 and �˙.�/D˙i �

2
�C c2�

2CO.�3/, where �˙ are
the parabolic curves constructed in the preceding section. Let Qg.�/ WD

p
g.�2/ D � � 1

2
�3 CO.�5/

( Qg is analytic near � D 0).
Let us first record here the following lemma for later use:

Lemma 5.2. Let w0 2 Bg and let �j WD
p
gn

2Cj .w0/. For 1� j � n, we have

�j D
1

n
�

j

2n3
�
��g.w0/

2n3
C o

�
1

n3

�
:

Proof. Let us write wn2Cj WD g
n2Cj .w0/. We have

�g.wn2Cj /D �
�
g.w0/Cn

2
C j D

1

wn2Cj
C o.1/
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(note that we assume here g.w/D w�w2Cw3CO.w4/). Therefore

wn2Cj D
1

n2C j C��g.w0/C o.1/
;

and

�j D
p
wn2Cj D

1

n

�
1C

j C��g.w0/

n2
C o

�
1

n2

���1=2
D
1

n

�
1�

1

2

j C��g.w0/

n2
C o

�
1

n2

��
: �

Definition 5.3. Let

 ��.z/ WD
1

i�
log
�
�C.�/� z

z� ��.�/

�
C 1;

 o� .z/ WD
1

i�
log
�
�C.�/� z

z� ��.�/

�
� 1;

where log is the principal branch of the logarithm.

Note with that choice of branch,  is defined on CnL�, where L� is the real line through �C.�/
and ��.�/ minus the segment Œ��.�/; �C.�/�. In particular,  �� and  o� are both defined in a disk centered
at z D 0 whose radius is of order �.

It will also be useful to note that

. �=o� /�1.Z/D
�C.�/� e˙i�Z��.�/

1� e˙i�Z
D�

�

2
� cot

�
˙
�Z

2

�
CO.�2/: (13)

Definition 5.4. Let

(1) A.�; z/ WD  �=o
Qg.�/
ıf�.z/� 

�=o
� .z/� �,

(2) A0.z/ WD �1=f .z/C 1=z� 1.

Note that the formula for A.�; z/ does not depend on whether the ingoing or outgoing coordinate  � is
used, and is therefore well-defined.

Proposition 5.5. We have

(1) A0 is analytic near zero,

(2) there exists r > 0 such that for all � ¤ 0 in a neighborhood of zero, A.�; � / is analytic on D.0; r/.

Proof. (1) A quick computation shows that

A0.z/D
f .z/� z� zf .z/

zf .z/
D

O.z2/

1CO.z/
;

from which the conclusion easily follows.
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For (2), note that

A.�; z/D
1

i�
log
�
�C. Qg.�//�f�.z/

f�.z/� ��. Qg.�//
W
�C.�/� z

z� ��.�/

�
� �

D
1

i�
log
�
f�.�

C.�//�f�.z/

�C.�/� z
W
f�.z/�f�.�

�.�//

z� ��.�/

�
� �:

From the above expression we see that the singularities at z D �˙.�/ are in fact removable, unless one of
the points coincides with a critical point of f . The fact that these critical points are bounded away from
zero completes the proof. �

Lemma 5.6. Let K be a compact subset of C�. There exists C D CK > 0 such that, for all z 2K,ˇ̌̌̌
z� �C.�/

z� ��.�/
�

�
1�

i�

z
��

�2

2z2
�2
�ˇ̌̌̌
� C�3:

Proof. For z 2K, we have

�C.�/� z

z� ��.�/
D

�C.�/

z� ��.�/
�

z

z� ��.�/

D
�C.�/

z

�
1

1� ��.�/=z

�
�

1

1� ��.�/=z

D
�C.�/

z

�
1C

��.�/

z
CO.�2/

�
�

�
1C

��.�/

z
C

�
��.�/

z

�2
CO.�3/

�

D
c1�C c2�

2�
c21
z
�2

z
� 1�

�c1�C c2�
2

z
�
c21�

2

z2
CO.�3/

D�1C
2c1

z
��

2c21
z2
�2CO.�3/

D�1C
i�

z
�C

�2

2z2
�2CO.�3/: �

Lemma 5.7. Let K be a compact subset of C�. Then

f�.z/�f�.�
C.�//

f�.z/�f�.��.�//
D 1�

i�

f .z/
��

�2

2f .z/2
�2CO.�3/:

As in the previous lemma the constant in the O depends on K.

Proof. The invariance of the parabolic curves gives

f�.z/�f�.�
C.�//

f�.z/�f�.��.�//
D
f�.z/� �

C. Qg.�//

f�.z/� ��. Qg.�//
D 1�

i�

f�.z/
Qg.�/C

�2

2f�.z/2
Qg.�2/CO.�3/

D 1�
i�

f .z/
�C

�2

2f .z/2
�2CO.�3/:

The last equality uses the fact that Qg.�/D �CO.�3/. �



WANDERING DOMAINS ARISING FROM LAVAURS MAPS WITH SIEGEL DISKS 59

Proposition 5.8. There exists a constant C0 2 C (depending only on f and g) such that

A.�; z/D �A0.z/C �
3C0CO.�

4; �3z/;

where the constants in the O are uniform for .z; �/ 2 C2 near .0; 0/ (with Re.�/ > 0).

Proof. Let K be a compact of C�. Then by the two previous lemmas, we have

A.�; z/D
1

i�
log
�
z� ��.�/

z� �C.�/
�
f�.z/�f�.�

C.�//

f�.z/�f�.��.�//

�
� �

D�
1

i�
log
�
1�

i�

z
��

�2

2z2
�2CO.�3/

�
C

1

i�
log
�
1�

i�

f .z/
��

�2

2f .z/2
�2CO.�3/

�
� �

D
�

z
�

�

f .z/
� �CO.�3/D �A0.z/CO.�

3/:

Here the constant in the O still depends on K � C�. Let ��.z/ WD .A.�; z/ � �A0.z//=�
3. By

Proposition 5.5, �� is holomorphic on D.0; r/. We have proved that for all compact K � C�, for
all z 2 K, and for all small � ¤ 0 with Re.�/ > 0, we have j��.z/j � CK . By taking K D

˚
jzj D 1

2
r
	

we therefore obtain the same estimate j��.z/j � CK for all jzj � 1
2
r because of the maximum modulus

principle. This gives the desired uniformity. �

Lemma 5.9. If �˙.�/D˙�
2
i�C c2�

2C c˙3 �
3CO.�4/ and f .z/D zC z2C z3C bz4CO.z5/, then

C0 D
�3b�3C 2�3C 12c2� C 12i.c

�
3 � c

C
3 /

12�
:

Proof. By repeating the computations from Lemmas 5.6 and 5.7 with one additional order of significance,
one obtains

z� �C.�/

z� ��.�/
D 1�

i�

z
��

�2

2z2
�2C

�
c�3 � c

C
3

z
�
i�c2

z2
C
i�3

4z3

�
�3CO.�3/;

f�.z/�f�.�
C.�//

f�.z/�f�.��.�//
D 1�

i�

f .z/
��

�2

2f 2.z/
�2C

�
i�3

4f 2.z/
C
c�3 � c

C
3

f .z/
�
i�c2

f 2.z/
C

i�3

4f 3.z/

�
�3CO.�4/:

Plugging these two equations into the formula for A.�; z/, and using the power series expansions of
1=f .z/j for j D 1; : : : ; 3, one notices again that all terms involving negative powers of z cancel, either
by the argument used in the proof of the previous proposition, or by lengthy computations using

c2 D
�2

8
�
1

4
:

Summing the terms that do not depend on z gives the desired result. �

Lemma 5.10. We have

cC3 D�c
�
3 D

1

i�

�
3

16
C
5�4

64
�
b�4

16
�
�2

4

�
:

We will omit the proof, which is a long but direct computation, starting from the functional equation
f� ı �

˙.�/D �˙ ı Qg.�/ and identifying coefficients in powers of �.



60 MATTHIEU ASTORG, LUKA BOC THALER AND HAN PETERS

In particular, it follows that

C0 D�
b�2

4
�
1

4
C
7�2

24
C

�
b�2

8
C
1

2
�
5�2

32
�

3

8�2

�
D
�b�2

8
C
13�2

96
�

3

8�2
C
1

4
:

5B. Convergence result. For the rest of Section 5 we fix a compact subset K �K 0 � Bf �Bg and a
point .z0; w0/ 2K �K 0. Moreover we assume that n is sufficiently large so that gn

2

.K 0/ is contained in
a petal P from Proposition 4.1. Unless otherwise stated, all the constants appearing in estimates depend
only on the compact K �K 0, but not on the point .z0; w0/ nor the integer n.

Let fj .z/ WD f .z/C �2

4
wn2Cj , where wn2Cj WD g

n2Cj .w0/. Let zj WD fj ıfj�1 ı � � � ıf1.z0/. Let
Fm;p WD fm ı � � � ıfpC1, and let �j WD

p
wn2Cj .

The strategy of the proof of Theorem 5.33 is as follows: we will use approximate Fatou coordinates ��=on
and prove that on some appropriate domains ��=on converges locally uniformly to ��=o

f
(with a known error

term of order 1=n). Moreover, we will compute ��n.z0/ and �on.z2nC1/, again at a precision of order 1=n.
This will allow us to compare accurately z2nC1 and Lf .z0/D .�of /

�1 ı ��
f
.z0/. This approach differs

from [Astorg et al. 2016] in that approximate Fatou coordinates in that work were only used at small
scale near 0, while here they are defined on a whole petal: this simplifies the comparison with the actual
Fatou coordinates ��=o

f
. The approach used here is strongly inspired by [Bedford et al. 2017].

Definition 5.11. Let

Z
i=o
j WD  �=o�j .zj /D

1

i�
log

�C.�j /� zj

zj � ��.�j /
˙ 1:

Observe that by definition of A.�; z/,

A.�j ; zj /DZ
i
jC1�Z

i
j � �j : (14)

Proposition 5.12. We have

 �=o�j .z0/D�
�j

z0
CO

�
1

n3

�
:

Proof. This follows from computations similar to those appearing in the proof of Proposition 5.5 (recall
as well that �j DO.1=n/). �

We now introduce approximate incoming Fatou coordinates:

Definition 5.13. Let

��n.z0/ WD
1

�n
Zn�

1

�n

n�1X
jD1

�j :

Let D� be the disk of radius 1
2
j�C.�/� ��.�/j centered at 1

2
.�C.�/C ��.�//. Let S.�; r/ be the union

of the two disks of radius r that both contain the points �C.�/; ��.�/ on their boundary. Here r will be
a sufficiently small number, to be fixed in the paragraph before Lemma 5.14. The definition of S.�; r/ of
course only makes sense when the distance between �C.�/ and ��.�/ is less than 2r , which once r is fixed
will be satisfied for � sufficiently small. We note that the choice of r will depend on the map f , but not on �.



WANDERING DOMAINS ARISING FROM LAVAURS MAPS WITH SIEGEL DISKS 61

� 0

�C.�/

��.�/

0
� 1 � 1

� 0 � 2

w 7!
log.w/
i�
C1z 7! �C.�/�z

z���.�/

Figure 1. The sets D� � S.�; r/ and their images under  ��.

The line L� through �C.�/ and ��.�/ cuts the complex plane into the left half-plane H �
� and the

right half-plane H o
� . We define S�=o.�; r/ WD S.�; r/\H �=o

� . The map  �� maps the disk D� to the strip�
1
2
; 3
2

�
� iR. The image of S�.�; r/ is bounded by two vertical lines, intersecting the real line in a point of

the form 0CO.�/ and in the point 1; see Figure 1. In particular we can find 0 < ˛ < ˇ such that

Œˇ�; 1�� iR�  ��.S
�.�; r//� Œ˛�; 1�� iR

for all �. We define S�.0; r/ WD D.�r; r/.
Recall that A.�; � / is analytic on a small disk D.0; R/ centered at the origin. Moreover there exists

R> 0 such that jA.�; z/j � 1
12
j�j for all z 2D.0; R/ and � in the petal Pı defined in Section 4. By taking

smaller R if necessary we my assume that f is 1-Lipschitz on D.�R;R/.
Now let us assume that r �R is sufficiently small so that S.�; r/� D.0; R/ for all � > 0, and note

that for every compact set K � Bf there exist n0; �0 > 0 so that f n.K/ � S�.�; r/\D.�R;R/ for all
n� n0 and all � � �0. We now fix this r .

Lemma 5.14. Let K � K 0 � Bf � Bg be a compact set. There exist n0; m0 > 0 such that for all
.z0; w0/ 2K �K

0 and all n > n0 we have

(1) zj 2 S�.�j ; r/[D�j for all m0 � j � n� 1,

(2) zj 2D�j for all 2
3
n� j � n� 1,

(3) If zk 2 S.�k; r/ for all m0 � k � j , then jIm. ��jC1.zjC1//j< 1,

where �j WD
p
wn2Cj D 1=nCO.j=n

3/.

Proof. There exists m0 > 0 so that f m0.K/ � S �.0; r/. Let n0 be sufficiently large so that for all
.z0; w0/ 2K �K

0 we have:

(i) ˇj�m0 j< Re. ��m0 .zm0// <
1
6

.

(ii) jIm. ��m0 .zm0//j<
1
2

.

(iii) j�j j< 2Re.�j / < R for 0� j � 2nC 1.

Indeed, (i) and (ii) follow from the equality  ��.z/D��=zCO.�
3/ and (iii) follows from the fact that

�j D 1=nCO.j=n
3/. Note that the constants in O depend only on the compact K�K 0 and not on n or j .
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Recall that by our assumption S�.�j ; r/ � D.0; R/ for all j and that jA.�j ; z/j � 1
12
j�j j for all

z 2 D.0; R/. By (i) we have zm0 2 S�.�m0 ; r/ and observe that for zj 2 S�.�j ; r/ we have

5

6
Re.�j / < Re. ��jC1.zjC1/� 

�
�j
.zj // <

7

6
Re.�j /:

It follows that

ˇj�m0 jC
5

6

j�1X
kDm0

Re.�k/ < Re. ��j .zj // <
1

6
C
7

6

j�1X
kDm0

Re.�k/; (15)

and since Re.�k/D 1=nCO.k=n3/ we have

ˇj�m0 j< Re. ��j .zj // <
3

2

for all m0 � j � n� 1 as long as n is sufficiently large. This proves (1).
For (2) observe that

�
1

2
< �1C

5

6

j�1X
kD0

Re.�k/

for all 2
3
n� j � n� 1 as long as n is sufficiently large.

Finally for (3) observe that (15) implies that zk 2 S.�k; r/ for all 0� k � j can only hold for some
j < 3n. By (ii) and (iii) we have

Im.�j /�
1

6
Re.�j / < Im. ��jC1.zjC1/� 

�
�j
.zj // < Im.�j /C

1

6
Re.�j /

for zj 2 S�.�j ; r/; hence

�
1

2
C

j�1X
kDm0

Im.�k/�
1

6
Re.�k/ < Im. �j .zj // <

1

2
C

j�1X
kDm0

Im.�k/C
1

6
Re.�k/:

Since Im.�k/DO.k=n3/ we can conclude that .3/ holds as long as n is sufficiently large. �

Lemma 5.15. For 0� j � n� 1 we have

zj �f
j .z0/DO

�
j

n2

�
:

Proof. Let m0 be as in Lemma 5.14. Since m0 is independent from n it is easy to see that for all
0� j �m0 we have

zj �f
j .z0/D

�2

4

j�1X
kD0

�
�2kCO

�
1

n3

��
DO

�
j

n2

�
:

Let V� WD fz 2 S�.�; r/ W jIm. ��.z//j < 1g and observe that V�nD� � D.�R;R/ for all sufficiently
small �. Since by our assumption f is 1-Lipschitz on D.�R;R/, it follows by (1) in Lemma 5.14 that
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for all m0 < j < 2
3
n we have

jzj �f
j .z0/j< jzj�1�f

j�1.z0/jC
�2

4
�2j�1

< jzm0 �f
m0.z0/jC

�2

4

j�1X
kDm0

�2k D
�2

4

j�1X
kD0

�
1

n2
CO

�
1

n3

��
DO

�
j

n2

�
:

Finally for 2
3
n� j � n�1, by item .2/ of Lemma 5.14, we have zj 2D�j , and in particular zj DO.1=n/.

It follows that

zj �f
j .z0/DO

�
1

n
;
1

j

�
DO

�
j

n2

�
;

where the last equality follows from the fact that 2
3
n� j � n� 1. �

Lemma 5.16. We have
n�1X
jD0

A0.zj /�A0.f
j .z0//D .b� 1/

n�1X
jD0

z2j �f
j .z0/

2
CO

�
logn
n2

�
:

Proof. Recall that f .z/D zC z2C z3C bz4CO.z5/ and A0.z/D�1=f .z/C 1=z� 1. An elementary
computation gives A0.0/D A00.0/D 0 and A000.0/D 2.b� 1/.

To simplify the notation, let yj WD f j .z0/. We have

A0.zj /�A0.yj /D A
0
0.yj /.zj �yj /C

1
2
A000.yj /.zj �yj /

2
CO..zj �yj /

3/

D .yjA
00
0.0/CO.y

2
j //.zj �yj /C

1
2
.A000.0/CO.yj //.zj �yj /

2
CO..zj �yj /

3/:

By Lemma 5.15 we have zj �yj DO.j=n2/; hence

A0.zj /�A0.yj /D yjA
00
0.0/.zj �yj /C

1
2
A000.0/.zj �yj /

2
CO

�
1

jn2
;
j

n4
;
j 3

n6

�
D .b� 1/.2yj .zj �yj /C .zj �yj /

2/CO

�
1

jn2
;
j

n4
;
j 3

n6

�
D .b� 1/.z2j �y

2
j /CO

�
1

jn2
;
j

n4
;
j 3

n6

�
:

It follows that
n�1X
jD0

A0.zj /�A0.yj /D .b� 1/

n�1X
jD0

z2j �y
2
j CO

�
logn
n2

�
: �

Lemma 5.17. For 0� j � n� 1, let

j WD j C

j�1X
kD0

A0.f
k.z0// and xj WD

j�1X
kD0

�kCA.�k; zk/: (16)

Then

xj D
j

n
CO

�
j 2

n3

�
D
j

n
CO

�
1

n

�
:
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In particular, there exists k 2 N independent from n such that for all k � j � n� k

j̨ WD cot
�
�

2
xj

�
is well-defined and strictly positive.

Proof. According to Lemma 5.15, for 0� j � n� 1 we have that zj �f j .z0/DO.j=n2/. In particular,
zj DO.1/. By Proposition 5.8, we have for every 0� k � n� 1

A.�k; zk/D �kA0.zk/CO.�
3
k; zk�

3
k/D �kA0.zk/CO

�
1

n3

�
(17)

(indeed, by Lemma 5.15, zk D f k.z0/ C O.k=n
2/, so in particular zk D O.1/). By Lemma 5.2,

�k D 1=nCO.k=n
3/; hence

xj D

j�1X
kD0

�kCA.�k; zk/D

j�1X
kD0

1

n
C
1

n
A0.zk/CO

�
k

n3

�

D
j

n
C
1

n

j�1X
kD0

A0.f
k.z0//CO

�
k

n2
; A00.f

k.z0//.zk �f
k.z0//

�

D
j

n
C
1

n

j�1X
kD0

A0.f
k.z0//CO

�
k

n2
;
1

k
�
k

n2

�
D
j

n
CO

�
j 2

n3

�
:

Since j D j CO.1/, we also have
j

n
D
j

n
CO

�
1

n

�
:

Finally, the last assertion follows from the preceding equality and the fact that, for x2
�
0; �
2

�
, cot.x/>0. �

Lemma 5.18. Let

u.x/ WD
2

�
tan
�
�

2
x

�
; ˆ.x/ WD

x2�u.x/2

x2u.x/2
and ǰ WD

2n

� j̨
:

We have
2j �ˇ

2
j

2j ˇ
2
j

D
1

n2
ˆ.xj /CO

�
1

jn2

�
:

Proof. We have
2j �ˇ

2
j

2j ˇ
2
j

D
n2

n4

.2j =n
2/�u.xj /

2

u.xj /2.
2
j =n

2/
:

Now recall that by Lemma 5.17, j =nD xj CO.j 2=n3/, so that 2j =n
2 D x2j CO.j

3=n4/. So

2j �ˇ
2
j

2j ˇ
2
j

D
1

n2

x2j �u.xj /
2CO.j 3=n4/

u.x2j /.x
2
j CO.j

3=n4//
D

1

n2

x2j �u.xj /
2

u.x2j /.x
2
j CO.j

3=n4//
CO

�
j 3

x2j u.xj /
2n6

�
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and note that
1

x2j u.xj /
2
DO

�
1

x4j

�
DO

�
n4

j 4

�
:

Therefore
2j �ˇ

2
j

2j ˇ
2
j

D
1

n2

x2j �u.xj /
2

u.x2j /.x
2
j CO.j

3=n4//
CO

�
1

jn2

�

D
1

n2

x2j �u.xj /
2

u.x2j /x
2
j .1CO.j

3=.n4x2j ///
CO

�
1

jn2

�
D
ˆ.xj /

n2

�
1CO

�
j

n2

��
CO

�
1

jn2

�
D
ˆ.xj /

n2
CO

�
1

jn2

�
:

Note that in the last line, we used the fact that ˆ has only removable singularities at x D 0 and x D 1, so
that ˆ.xj /DO.1/. �

Proposition 5.19. There exists a universal constant C1 2 R such that

n�1X
jD0

A0.zj /�A0.f
j .z//D

C1.b� 1/

n
CO

�
logn
n2

�
:

More precisely, C1 WD
R 1
0 ˆ.x/ dx D

1
4
.4��2/.

Proof. We have, for 0� j � n� 1,

zj D  
�1
�j
.Z�j /D�

�

2n
cot
�
�

2
Z�j

�
CO

�
1

n2

�
and

Z�j DZ
�
0C

j�1X
kD0

�kCA.�k; zk/:

Recalling the notation xj WD
Pj�1

kD0
�kCA.�k; zk/ and j̨ WD cot..�=2/xj / from Lemma 5.17, and using

the trigonometric formula

cot.aC b/D
cot a cot b� 1
cot aC cot b

;

we therefore obtain

zj D�
�

2n

cot..�=2/Z�0/ j̨ � 1

j̨ C cot..�=2/Z�0/
CO

�
1

n2

�
: (18)

Let k be as in Lemma 5.17, so that j̨ > 0 for k � j � n� k. We have

cot
�
�

2
Z�0

�
D�

2n

�
z0CO

�
1

n

�
;
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so that

zj D�
�

2n

cot..�=2/Z�0/ j̨
j̨ C cot..�=2/Z�0/

CO

�
1

n2

�
D

z0 j̨

j̨ � z0.2n=�/
CO

�
1

n2

�
: (19)

Finally, with ǰ WD 2n=.� j̨ /, we get

zj D�
1

�1=z0C ǰ
CO

�
1

n2

�
: (20)

On the other hand, from the definition of A0 it follows that
Pj�1

kD0
A0.f

k.z0//D 1=z0� 1=f
j .z0/� j ,

which we may rewrite as

f j .z0/D�
1

�1=z0C j
: (21)

Therefore

zj �f
j .z0/D

ǰ � j

.�1=z0C ǰ /.�1=z0C j /
CO

�
1

n2

�
: (22)

Now note that j DO. ǰ /; indeed,

1

ǰ
DO

�
cot.j�=nCO.1=n//

n

�
DO

�
n=j

n

�
DO

�
1

j

�
:

Therefore
1

.�1=z0C j /.�1=z0C ǰ /
D

1

.j CO.1//. ǰ CO.1//

D
1

j ǰ CO. ǰ /
D

1

j ǰ
CO

�
1

2j ǰ

�
:

Thus, setting yj WD f j .z0/,

z2j �y
2
j D .zj �yj /.zj Cyj /

D

�
ǰ � j

ǰ j
CO

�
ǰ � j

2j ǰ

���
�

ǰ C j

ǰ j
CO

�
ǰ C j

2j ǰ

��

D
2j �ˇ

2
j

ˇ2j 
2
j

CO

�
ˇ2j � 

2
j

ˇ2j 
3
j

�
D

1

n2
ˆ.xj /CO

�
1

jn2

�
by Lemma 5.18:

Therefore by Lemma 5.16,

n�1X
jD0

A0.zj /�A0.yj /D

�
b� 1

n2

n�1X
jD0

ˆ.xj /

�
CO

�
logn
n2

�

D
b� 1

n

Z 1

0

ˆ.x/ dxCO

�
logn
n2

�
:
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In the last equality, we recognize a Riemann sum with subdivision .xj /0�j�n�1. Finally, we haveZ 1

0

ˆ.x/ dx D
�

2

Z �
2

0

cot2 t � 1

t2
dt D�

�

2

h�
cot t � 1

t

�
C t

i�
2

0
D 1�

�2

4
: �

5B1. Incoming part. The following error estimate is one of the two crucial estimates that we will obtain
in this section: it measures accurately how close ��n is to the incoming Fatou coordinate ��

f
. This estimate

differs from those obtained in [Astorg et al. 2016] in that we compare ��n with ��
f

on a definite region
of Bf (independent from n), instead of comparing the two at small scale near the origin, compare with
[Astorg et al. 2016, Property 1, p. 10]. Moreover, the point of Proposition 5.20 is to push the precision of
the estimate further and obtain the first error term E�.z0/=n, which cannot be easily obtained from the
computations in [Astorg et al. 2016].

Proposition 5.20. We have

��n.z0/D �
�
f .z0/C

E�.z0/

n
CO

�
logn
n2

�
;

where E�.z/ WD C0C .C1� 1/.b� 1/C 1
2
��.z0/.

Proof. Recall that by definition,

��f .z/D lim
n!1

�
1

f n.z/
�nD lim

n!1
�
1

z
C

n�1X
jD0

A0.f
j .z//:

Similarly, we have
n�1X
jD0

A.�j ; zj /D

n�1X
jD0

Z�jC1�Z
�
j � �j DZ

�
n�Z

�
0�

n�1X
jD0

�j ;

and thus

��n.z0/D
Z�n
�n
�
1

�n

n�1X
jD0

�j D
Z�0
�n
C
1

�n

n�1X
jD0

A.�j ; zj /:

Therefore
��n.z0/��

�
f .z0/DE1CE2CE3; (23)

where

E1 WD
Z�0
�n
C
1

z0
;

E2 WD
1

�n

n�1X
jD0

A.�j ; zj /�

n�1X
jD0

A0.f
j .z0//;

E3 WD �

1X
jDn

A0.f
j .z0//:

We will now estimate each of the error terms Ei separately. For j 2 N, we set yj WD f j .z0/.

Lemma 5.21. We have
E1 D�

1

2nz0
CO

�
1

n2

�
:
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Proof of lemma. We have

Z�0
�n
D
1

�n
 �0.z0/D�

�0

�nz0
CO

�
�30
�n

�
.by Proposition 5.12/

D�
1

z0

s
n2CnCO.1/

n2CO.1/
CO

�
1

n2

�
D�

1

z0
�

1

2nz0
CO

�
1

n2

�
: �

Lemma 5.22. We have

E2 D
1

n

�
1

2z0
C
1

2
��f .z0/CC0CC1.b� 1/

�
CO

�
logn
n2

�
:

Proof of lemma. Recall that we have

A.�; z/D �A0.z/CC0�
3
CO.z�3; �4/;

so that

E2 D
1

�n

n�1X
jD0

A.�j ; zj /�

n�1X
jD0

A0.yj /

D
1

�n

n�1X
jD0

�jA0.zj /CC0�
3
j CO

�
zj

n3

�
� �nA0.yj /:

Therefore

E2 D

�n�1X
jD0

�j

�n
A0.zj /�A0.yj /

�
C

�n�1X
jD0

C0
�3j

�n
CO

�
zj

n2

��
and

n�1X
jD0

C0
�3j

�n
CO

�
zj

n2

�
D C0

n�1X
jD0

1

n2
CO

�
1

n2j

�
D
C0

n
CO

�
logn
n2

�
:

On the other hand, we have

n�1X
jD0

�j

�n
A0.zj /�A0.yj /D

n�1X
jD0

�
�j

�n
� 1

�
A0.zj /C

n�1X
jD0

A0.zj /�A0.yj /: (24)

Now note that
n�1X
jD0

�
�j

�n
� 1

�
A0.zj /D

n�1X
jD0

�
�j

�n
� 1

�
A0.yj /C

n�1X
jD0

�
�j

�n
� 1

�
.A0.zj /�A0.yj //;

and thatˇ̌̌̌n�1X
jD0

�
�j

�n
� 1

�
.A0.zj /�A0.yj //

ˇ̌̌̌
� max
0�j�n�1

ˇ̌̌̌
1�

�j

�n

ˇ̌̌̌
�

n�1X
jD0

jA0.zj /�A0.yj /j DO

�
1

n2

�
;
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by Lemma 5.2 and Proposition 5.19. Another consequence of Lemma 5.2 is that

�j

�n
� 1D

1

2n

�
1�

j

n
CO

�
1

n

��
: (25)

Therefore, by (24), (25) and Proposition 5.19,

n�1X
jD0

�j

�n
A0.zj /�A0.yj /D

C1.b� 1/

n
C

1

2n

n�1X
jD0

A0.yj /CO

�
logn
n2

�

D
C1.b� 1/

n
C

�
1=z0C�

�
f
.z0/

2n

�
CO

�
logn
n2

�
:

Therefore, as announced, we have

E2 D
1

n

�
1

2z0
C
1

2
��f .z0/CC0CC1.b� 1/

�
CO

�
logn
n2

�
: �

Lemma 5.23. We have

E3 D
1� b

n
CO

�
1

n2

�
:

Proof. By explicit computations, A0.z/D .b� 1/z2CO.z3/, so that A0.yj /D .b� 1/j�2CO.j�3/.
Therefore

E3 D .1� b/

1X
jDn

j�2CO.j�3/

and
1X
jDn

j�3 DO

�Z 1
n

dx

x3

�
DO

�
1

n2

�
:

Similarly,
1X
jDn

j�2 �

Z 1
n

dx

x2
D
1

n
;

so that E3 D .1� b/=nCO.1=n2/. �

Finally, putting together the three preceding lemmas, the proof of Proposition 5.20 is finished. �

5B2. Outgoing part. We will now work to obtain estimates for the outgoing part of the orbit, that is, for
n� j � 2nC 1. The method is largely similar to the incoming case. Recall that the estimates we obtain
only depend on the chosen compact set K � Bf .

We will first need a rough preliminary estimate on the boundedness of z2nC1. Of course, by [Astorg
et al. 2016], we know that z2nC1 converges to L.z0/, and we could deduce this preliminary estimate
from there. However, we prefer to present here a direct argument, so that the proof of Theorem 5.33
remains self-contained.

Proposition 5.24. There exists k 2 N (independent from n) such that z2nC1�k belongs to a repelling
petal D.r; r/ for f . In particular, z2nC1 DO.1/.
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Proof. Recall that by Proposition 5.20, we have that

��n.z/ WD
Z�n
�n
�
1

�n

n�1X
jD0

�j D �
�.z0/C o.1/DO.1/:

In particular,

Z�n D

�n�1X
jD0

�j

�
CO.�n/D 1CO

�
1

n

�
and therefore Zon D�1CO.1=n/.

LetRn denote the rectangle defined by the conditions�1�C=n�Re.Z/��3=n and�1� Im.Z/�1,
where C > 0 is a constant chosen large enough that Zon 2Rn. Let

jn WDmaxfk � 2nC 1 WZok 2Rng: (26)

Recall that for j � 2n, we have ZojC1 DZ
o
j CA.�j ; zj /, and that by Proposition 5.8, we have

A.�k; zk/D �kA0.zk/CO.�
3
k; �

3
kzk/DO.�kz

2
k/: (27)

Moreover, for n� j � jn, we have

Zoj D�
�

2n
cot
�
�

2
Zoj

�
CO

�
1

n2

�
;

and therefore there exists a constant C > 0 such that, for all n� j � jn,

jA.�j ; zj /j �
C 0

n3

ˇ̌̌̌
cot
�
�

2
Zoj

�ˇ̌̌̌2
�

C

jZj j2n3
; (28)

and thus ˇ̌̌̌
Zoj �Z

o
n �

j�1X
kDn

�k

ˇ̌̌̌
�
C

n3

j�1X
kDn

1

jZkj
2
: (29)

From (29), we can prove inductively on j that, for n� j � jn,ˇ̌̌̌
Zoj �Z

o
n �

j�1X
kDn

�k

ˇ̌̌̌
DO

�
1

n

�
and hence jn D 2nCO.1/.

Let r > 0 be small enough such that D.r; r/ is a repelling petal for f . By the argument above and the
definition of Rn, we have that Zojn DO.1=n/, so that

z2nC1�k D�
�

2
cot
�
�

2
Zo2nC1�k

�
CO

�
1

n2

�
D

1

kCO.1/
:

Therefore, we can find some k bounded independently from n such that z2nC1�k 2 D.r; r/. �

We now introduce approximate outgoing Fatou coordinates:
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Definition 5.25. For n�m� 2nC 1, let

�on.zm/ WD
Zon
�n
C
1

�n

m�1X
jDn

�j :

Lemma 5.26. We have

�on.zm/D
Zom
�n
�
1

�n

m�1X
jDn

A.�j ; zj /:

Proof. We have
m�1X
jDn

A.�j ; zj /D

m�1X
jDn

ZojC1�Z
o
j � �j DZ

o
m�Z

o
n �

m�1X
jDn

�j

so that

Zon
�n
C
1

�n

m�1X
jDn

�j D �
o
n.zm/D

Zom
�n
�
1

�n

m�1X
jDn

A.�j ; zj /: �

Proposition 5.27. Let k 2 N be the integer from Proposition 5.24. Let y2nC1�k WD z2nC1�k and
y2nC1 D f

k.y2nC1�k/. For n� j � 2n we define

yj WD f
�.2nC1�j /.y2nC1/;

where f �1 is the local inverse of f fixing 0: f �1.z/D z� z2C z3� bz4CO.z5/. We have

2nX
jDn

A0.zj /�A0.yj /D
C1.b� 1/

n
CO

�
logn
n2

�
:

Proof. The proof mirrors the incoming case, so we will only sketch it and leave the details to the reader.
Recall that y2nC1 DO.1/ by Proposition 5.24 and that z2nC1�k belongs to a repelling petal for f for
some k 2 N independent from n, so that the .yj /n�j�2nC1 are well-defined.

By a straightforward adaptation of Lemma 5.15,

zj �yj DO

�
2nC 1� j

n2

�
for n� j � 2nC1. More precisely, this applies for n� j � 2nC1�k; but it is clear from the definition of
the yj that for 2nC1�k � j � 2nC1 we have zj �yj DO.1=n2/. Therefore the proof of Lemma 5.16
can be repeated to yield that

2nX
jDn

A0.zj /�A0.yj /D .b� 1/

2nX
jDn

z2j �y
2
j CO

�
logn
n2

�
: (30)
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Next, we have, for n� j � 2n,

zj D . 
o
�j
/�1.Zoj /D . 

o
�j
/�1

�
Zo2nC1�

2nX
kDj

�kCA.�k; zk/

�
D�

�

2n
cot
�
�

2
Zo2nC1�

�

2

2nX
kDj

�kCA.�k; zk/

�
CO

�
1

n2

�
:

Through computations similar to those appearing in the proof of Proposition 5.19, we deduce that

zj D�
1

�1=z2nC1� ǰ
CO

�
1

n2

�
; (31)

with

ǰ WD
2n

�
tan
�
�

2
xj

�
D
2n

�
tan
�
�

2

2nX
kDj

�kCA.�k; zk/

�
:

On the other hand,

�
1

yj
D�

1

y2nC1
�

2nX
kDj

A0.yj /;

from which it follows that

yj D�
1

�1=y2nC1� j
;

with j WD
P2n
kDj A0.yj /. Then, again, similar computations show that

z2j �y
2
j D

1

n2
ˆ.xj /CO

�
1

n2.2nC 1� j /

�
;

and xj D .2n� j CO.1//=n for n� j � 2n. Therefore, we finally obtain

2nX
jDn

A0.zj /�A0.yj /D
b� 1

n

Z 1

0

ˆ.x/ dxCO

�
logn
n2

�
D
C1.b� 1/

n
CO

�
logn
n2

�
: �

In what follows, a slight technical complication comes from the fact that the expected endpoint of
the orbit, z2nC1, needs not lie in a small enough repelling petal in which �o

f
is well-defined. In order to

overcome this issue, we stop a few iterations short and work instead with z2nC1�k .
We now come to the main proposition of this subsection:

Proposition 5.28. We have

�on.z2nC1�k/D �
o
f .z2nC1�k/C

Eo.z2nC1�k/

n
CO

�
logn
n2

�
;

where Eo.z/D�1
2
�o
f
.z/�C0� .C1� 1/.b� 1/.
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Proof. We proceed similarly to the proof of Proposition 5.20. We have, for z in a small enough repelling
petal,

�of .z/D�
1

z
�

1X
jD1

A0.f
�j .z//; (32)

where f �1 is the inverse branch of f fixing 0. With the same notation as in Proposition 5.27, we set

yj WD f
j�.2nC1�k/.z2nC1�k/:

We have

�on.z2nC1�k/��
o
f .z2nC1�k/D

Zo
2nC1�k

�n
C

1

z2nC1�k
C

2n�kX
jDn

�
1

�n
A.�j ;zj /CA0.yj /C

n�1X
jD�1

A0.yj /

DE1CE2CE3; (33)

where

E1 D
Zo
2nC1�k

�n
C

1

z2nC1�k
;

E2 D

2n�kX
jDn

�
1

�n
A.�j ; zj /CA0.yj /;

E3 D

n�1X
jD�1

A0.yj /:

(34)

Lemma 5.29. We have

E1 D
1

n

1

2z2nC1�k
CO

�
1

n2

�
:

Proof of the lemma. By Proposition 5.12, we have

Zo2nC1�k D�
�2nC1�k

z2nC1�k
CO

�
1

n3

�
so that

E1 D
1

z2nC1�k
�
�2nC1�k

�n

1

z2nC1�k
CO

�
1

n2

�
D

1

z2nC1�k

�
1�

r
n2CnCO.1/

n2C 2nCO.1/

�
CO

�
1

n2

�
D
1

n

1

2z2nC1�k
CO

�
1

n2

�
: �

Lemma 5.30. We have

E2 D
1

n

�
�

1

2z2nC1�k
�
1

2
�of .z2nC1�k/�C0�C1.b� 1/

�
CO

�
logn
n2

�
:



74 MATTHIEU ASTORG, LUKA BOC THALER AND HAN PETERS

Proof of the lemma. We have

E2 D

2n�kX
jDn

A0.yj /�
1

�n
A.�j ; zj /

D

�2n�kX
jDn

A0.yj /�
�j

�n
A0.zj /

�
�

�2n�kX
jDn

C0�
3
j CO.zj �

3
j /

�
:

As before, we have

1

�n

2n�kX
jDn

C0�
3
j CO.zj �

3
j /D

C0

n
CO

�
1

n2

�
:

On the other hand, we have

2n�kX
jDn

A0.yj /�
�j

�n
A0.zj /D

2n�kX
jDn

�
1�

�j

�n

�
A0.zj /C

2n�kX
jDn

A0.yj /�A0.zj /:

Now note that
2n�kX
jDn

�
1�

�j

�n

�
A0.zj /D

2n�kX
jDn

�
1�

�j

�n

�
A0.yj /C

2n�kX
jDn

�
1�

�j

�n

�
.A0.zj /�A0.yj //;

and thatˇ̌̌̌2n�kX
jDn

�
1�

�j

�n

�
.A0.zj /�A0.yj //

ˇ̌̌̌
� max
n�j�2n�k

ˇ̌̌̌
1�

�j

�n

ˇ̌̌̌
�

2n�kX
jDn

jA0.zj /�A0.yj /j DO

�
1

n2

�
;

by Proposition 5.27. Therefore, as in the proof of Proposition 5.20,

2n�kX
jDn

A0.yj /�
�j

�n
A0.zj /D�

C1.b� 1/

n
C

1

2n

2n�kX
jDn

A0.yj /CO

�
logn
n2

�

D�
1

n

�
C1.b� 1/C

1

2z2nC1�k
C
1

2
�of .z2nC1�k/

�
CO

�
logn
n2

�
from which the lemma follows. �

Lemma 5.31. We have

E3 D
b� 1

n
CO

�
1

n2

�
:

Proof of the lemma. The proof is the same as in the incoming case: it follows from the fact that
A0.y/D .b� 1/y

2CO.y3/ and

yj D
1

2n� j
CO

�
1

.2n� j /2

�
: �

This completes the proof of Proposition 5.28. �
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5B3. Conclusion.

Proposition 5.32. We have

1

�n

�� 2nX
jD0

�j

�
� 2

�
D�

1

n

�
1

2
C��g.w0/

�
CO

�
1

n2

�
:

Proof. We have
2nX
jD0

�j D

2nX
jD0

1
p
n2C j C��g.w0/C o.1/

D

2nX
jD0

1

n

�
1�

j

2n2
�
��g.w0/

2n2
C o

�
1

n2

��

D 2C
1

n
�
��g.w0/

n2
C o

�
1

n2

�
�

1

2n3

2nX
jD0

j

D 2C
1

n
�
��g.w0/

n2
C o

�
1

n2

�
�

1

2n3
2n.2nC 1/

2

D 2�
��g.w0/

n2
�

1

2n2
C o

�
1

n2

�
:

On the other hand
1

�n
D

p
n2CnCO.1/D n

�
1C

1

2n
CO

�
1

n2

��
D nC

1

2
CO

�
1

n

�
;

and therefore
1

�n

�� 2nX
jD0

�j

�
� 2

�
D

�
�
��g.w0/

n2
�

1

2n2
C o

�
1

n2

���
nC

1

2
CO

�
1

n

��
D�

1

n

�
1

2
C��g.w0/

�
CO

�
1

n2

�
: �

We are now finally ready to prove the following theorem:

Theorem 5.33 (Lavaurs’ theorem with an error estimate). Let K � Bf �Bg be a compact set. For all
.z0; w0/ 2K and all sufficiently large n we have

z2nC1 D Lf .z0/C
h.z0; w0/

n
CO

�
logn
n2

�
;

where

h.z; w/D
L0
f
.z/

.��
f
/0.z/

�
2C0C 2.C1� 1/.b� 1/�

1
2
C��f .z/��

�
g.w/

�
is holomorphic on Bf �Bg and the constant in O..logn/=n2/ is independent of the point .z0; w0/ and
the integer n.

Proof. We have, by definition

�on.z2nC1�k/D
1

�n
ZonC

1

�n

2n�kX
jDn

�j D
Z�n
�n
�
2

�n
C
1

�n

2n�kX
jDn

�j D �
�
n.z0/�

2

�n
C
1

�n

2n�kX
jD0

�j ;
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and therefore

�of .z2nC1�k/C
Eo.z2nC1�k/

n
D ��f .z0/C

E�.z0/

n
�
��g.w0/C

1
2

n
�
1

�n

2nX
jD2n�k

�j CO

�
logn
n2

�
;

by Propositions 5.20, 5.28 and 5.32.
On the other hand, we have

1

�n

2nX
jD2n�k

�j D
1

1=n� 1=.2n2/CO.1=n3/

�
k

n
� k

2n

2n3
CO

�
1

n3

��
.by Lemma 5.2/

D

�
1C

1

2n
CO

�
1

n2

���
k�

k

n
CO

�
1

n2

��
D k�

k

2n
CO

�
1

n2

�
:

Therefore

�of .z2nC1�k/C kC
Eo.z2nC1�k/�

1
2
k

n
D ��f .z0/C

E�.z0/

n
�
��g.w0/C

1
2

n
CO

�
logn
n2

�
:

Recall that the outgoing Fatou coordinate �o
f

has a well-defined inverse  f W C ! C satisfying the
functional equation  f .ZC 1/D f ı f .Z/. Observe that since k DO.1/, we have

 f .�
o
f .z2nC1�k/C k/D f

k.z2nC1�k/CO

�
1

n2

�
D z2nC1CO

�
1

n2

�
:

Therefore, composing on both sides by  f and setting Eo.z2nC1/ WDEo.z2nC1�k/� 1
2
k, we get

z2nC1 D .�
o
f /
�1

�
��f .z0/C

E�.z0/�E
o.z2nC1/�

1
2
���g.w0/

n
CO

�
logn
n2

��
D Lf .z0/C ..�of /

�1/
0
.��f .z0//

�
E�.z0/�E

o.z2nC1/�
1
2
���g.w0/

n

�
CO

�
logn
n2

�
D Lf .z0/C

L0
f
.z0/

.��
f
/0.z0/

�
E�.z0/�E

o.z2nC1/�
1
2
���g.w0/

n

�
CO

�
logn
n2

�
:

In particular, we have proved that z2nC1 D Lf .z0/CO.1=n/. From there, we deduce that

�of .z2nC1�k/C k D �
o
f .z0/CO

�
1

n

�
:

Plugging this into the expression for Eo.z2nC1/, we finally obtain

z2nC1 D Lf .z0/C
1

n

L0
f
.z0/

.��
f
/0.z0/

�
2C0C 2.C1� 1/.b� 1/�

1
2
C��f .z0/��

�
g.w0/

�
CO

�
logn
n2

�
: �
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5C. Choice of index. Assume that z0 is a Siegel fixed point for the Lavaurs map Lf , and let � be its
multiplier. Denote by �z0 the index from Theorem 2.2: it is given by the formula

�z0 D
2b2c0

�.1��/
C
c1

�
;

with 2b2 D L00
f
.z0/, c0 D h.z0/, c1 D h0.z0/, and

h.z/ WD
L0
f
.z/

.��
f
/0.z/

�
2C0C 2.C1� 1/.b� 1/�

1
2
C��f .z/��

�
g.w0/

�
: (35)

The function h is the error term computed in the previous section.
A straightforward computation gives us that

�z0 D 1C
C C��

f
.z0/��

�
g.w0/

..��
f
/0.z0//2

�L00
f
.z0/.�

�
f
/0.z0/

�.1��/
� .��f /

00.z0/

�
(36)

for some universal constant C 2 R.
Observe that Re.�z0/ is independent from w0 if and only if

L00
f
.z0/.�

�
f
/0.z0/

�.1��/
� .��f /

00.z0/D 0: (37)

If condition (37) is satisfied, then �z0 D 1, and accordingly, Theorem 2.2 implies that there are no
wandering domains for P converging to the bi-infinite orbit of .z0; 0/, since we are then in the expulsion
scenario of the trichotomy.

On the other hand, if the equality (37) is not satisfied, then w0 7! �z0.w0/ is a nonconstant holomorphic
function (defined on the parabolic basin Bg ) of the form w0 7! a��g.w0/Cb, with a; b 2 C (independent
from w0) and a ¤ 0. Therefore, the condition for Re.�z0.w0// to be negative is equivalent to ��g.w0/
belonging to some half-plane, but ��g.Bg/ contains a domain of the form

U WD fW 2 C W Re.W / > R� kjIm.W /jg

for some R > 0 and k 2 .0; 1/; see, e.g., [Shishikura 2000, Proposition 2.2.1, p. 330]. Since U intersects
any open half-plane, if condition (37) is not satisfied, then there exists some open subset U0 � U for
which Re.�z0.w0// < 0, and so by Theorem 2.2 there is a wandering domain accumulating on .z0; 0/.

6. A Lavaurs map with a Siegel disk

The goal of this section is to construct a polynomial f of the form f .z/D zC z2C z3CO.z4/, whose
Lavaurs map has a Siegel fixed point with Diophantine multiplier �, which does not satisfy equality (37).
The outline of the argument is as follows:

� We start by finding a degree-7 real polynomial whose Lavaurs map has a superattracting fixed point,
and for which a suitable reformulation of (37) does not hold.
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� We perturb that polynomial to get an attracting but not superattracting fixed point, in a way that
equality (37) still does not hold.

� We apply quasiconformal surgery to get a multiplier arbitrarily close to 1.

� We show that in the limit, we get a polynomial whose Lavaurs map has a parabolic fixed point that
does not exit the parabolic basin.

� We perturb that last polynomial to get a Siegel fixed point, leaving the family of real polynomials;
we prove that condition (37) does not hold for that last polynomial.

Recall that in [Astorg et al. 2016], there are two constructions of a Lavaurs map with an attracting
fixed point. One is based on a residue computation near infinity in the Ecalle cylinder and makes use of
the fact that in the family fa.z/ WD zC z2C az3, the multiplier of the horn map ea of fa at the ends of
the Ecalle cylinder is a nonconstant holomorphic function of a. This method cannot be used in a family
of polynomials of the form f .z/D zC z2C z3CO.z4/, where those fixed points for the horn map are
persistently parabolic. This is why we adapt the second strategy for the first two steps described above.

Remark. From now on we will be using slightly different notation than in previous sections. Namely
we will drop the subscript f from the Fatou coordinates and the Lavaurs map in order to have space for
other indexes in the subscript. It will be clear from the context to which function the Fatou coordinates or
Lavaurs maps correspond.

Let �� be the incoming Fatou coordinate, and  o the outgoing Fatou parametrization. Recall that
the Lavaurs map is given by LD  o ı �� W Bf ! C, the lifted horn map is E D �� ı o W V ! C, with
V � C containing fZ W jIm.Z/j > Rg for R large enough. We have E ı �� D �� ıL, and E.ZC 1/ D
E.Z/C 1, so E descends to a self-map of C=Z. Conjugating by the isomorphism Z 7! e2i�Z, we obtain
a map e W U � f0;1g! C�, where U is an open set containing 0 and1. The map extends to U, and
fixes 0 and1. Since we consider polynomials with f .z/D zC z2C z3CO.z4/, both of those fixed
points have multiplier 1.

6A. Construction a polynomial. Let f .z/D zCz2CO.z3/ be a polynomial and �DL.�/ a fixed point
of its Lavaurs map, with multiplier �.

Definition 6.1. If � … f0; 1g we say that the pair .f; �/ is degenerate if and only if

L00.�/.��/0.�/
�.1��/

� .��/00.�/D 0: (38)

Lemma 6.2. We have

L00.�/.��/0.�/
�.1��/

� .��/00.�/D
�

1��

�
. o/00.��.�//.��/0.�/

. o/0.��.�//2
C .��/00.�/

�
: (39)

Proof. Since LD  o ı�� we obtain

L0.z/D . o/0.��.z//�0.z/;

L00.z/D . o/00.��.z//�0.z/2C . o/0.��.z//.��/00.z/:
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Recalling that L0.�/D � it follows that

�0.�/

�
D

1

. o/0.��.�//
;

and so
L00.�/�0.�/

�
D
. o/00.��.�//.��/0.�/2

. o/0.��.z//
C .��/00.�/:

It follows that

L00.�/.��/0.�/
�.1��/

� .��/00.�/D
1

1��

�
. o/00.��.�//.��/0.�/2

. o/0.��.�//
C .��/00.�/

�
� .��/00.�/

D
. o/00.��.�//.��/0.�/2

.1��/. o/0.��.�//
C .��/00.�/

�

1��

D
�

1��

�
. o/00.��.�//.��/0.�/

. o/0.��.�//2
C .��/00.�/

�
: �

For the rest of the paper we shall set

F.f; �/ WD
. o/00.��.�//.��/0.�/

. o/0.��.�//2
C .��/00.�/; (40)

where  o and �� are the Fatou parametrization and coordinates associated to f . Note that for � … f0; 1g
the pair .f; �/ is degenerate if and only if F.f; �/D 0.

We record here for later use the following lemma:

Lemma 6.3. Let f .z/D zCz2Caz3CO.z4/ and let �� denote its incoming Fatou coordinate. Let c be
a critical point in the parabolic basin of f . Then we have .��/00.c/D 0 if and only if either c is multiple
critical point of f , or if the orbit of c meets another critical point of f .

Proof. The sequence of functions

�n.z/ WD �
1

f n.z/
�n� .1� a/ logn

converges locally uniformly on the parabolic basin to

��.z/ WD lim
n!1

�n.z/:

Therefore .��/00.c/ equals limn!1 �00n.c/. Moreover, �0n.z/D .f
n/0.z/=Œf n.z/�2 and

�00n.c/D
d

dz

ˇ̌̌
zDc

.f n/0.z/

Œf n.z/�2

D
.f n/00.c/Œf n.c/�2� 2Œ.f n/0.c/�2f n.c/

Œf n.c/�4

D
.f n/00.c/

Œf n.c/�2
D f 00.c/

Qn�1
kD1 f

0.f k.c//

Œf n.c/�2
:
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For the third and fourth equalities we used the fact that f 0.c/D 0. Since c is in the parabolic basin
of f , we have Œf n.c/�2 � 1=n2. Moreover, for k � k0 with k0 large enough, f 0.f k.c//¤ 0 and

f 0.f k.c//D 1�
2

k
CO

�
log k
k2

�
D exp

�
�
2

k
CO

�
log k
k2

��
:

Therefore
n�1Y
kDk0

f 0.f k.z//D

n�1Y
kDk0

exp
�
�
2

k
CO

�
log k
k2

��
D

exp.O.1//
n2

:

In particular,

lim
n!1

Qn�1
kDk0

f 0.f k.c//

Œf n.c/�2
¤ 0;

so .��/00.c/D 0 if and only if f 00.c/D 0 or .f k/0.c/D 0, which concludes the proof. �

For t 2 R, a real polynomial P.z/D zC z2C z3CO.z4/ and n > degP odd, let

ft .z/D P.z/�
P 0.t/

ntn�1
zn:

Note that f 0t .t/D 0; the choice of this family ensures that we have a marked critical point in R. By Lt
we denote the Lavaurs map of phase 0 for the polynomial ft .

Proposition 6.4. Assume that there exists P; n and t1 < 0 as above such that:

(1) ft1.t1/D 0.

(2) .d=dt/jtDt1ft .t/ < 0.

(3) ft1 has negative leading coefficient.

(4) There exists x > 0 in the repelling petal of ft1 that escapes to infinity.

Then there is a sequence tn! t1 such that Ltn.tn/D tn.

Proof. We will rely on the following two claims:

Claim 1. For t 2 .t1; t1C �/ with � > 0 small enough, the critical point t is in the parabolic basin of ft .

Proof of the claim. It is enough to show that there is r > 0 such that .�r; 0/ is in the parabolic basin of ft
for all t close enough to t1. Indeed, by (1) and (2), we have that for all r > 0 there exists � > 0 such that
ft .t/ 2 .�r; 0/ for all t 2 .t1; t1C �/. Let

rt WD supfr > 0 W for all y 2 .�r; 0/; 0 < ft .y/=y < 1g:

For all y 2 .�rt ; 0/, we have t < ft .y/ < 0; hence y is in the parabolic basin of ft . Finally, t 7! rt is
continuous and rt1 > 0. �

Claim 2. There exists a sequence Qtn! t1 (with Qtn > t1) such that LQtn.Qtn/D f
n
Qtn
.x/.
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Proof of the claim. We adapt here the argument from [Astorg et al. 2016]. The desired equality LQtn.Qtn/D
f n
Qtn
.x/ is equivalent to

 o
Qtn
ı��
Qtn
.Qtn/D  Qton .�

o
Qtn
.x/Cn/:

In particular, it is enough to find Qtn such that ��
Qtn
.Qtn/D �

o
Qtn
.x/Cn. We look for Qtn under the form

Qtn D t1�
˛

nCu
; with ˛ D

1

d
dc

ˇ̌
cDt1

fc.c/
:

By the preceding claim, it is in the parabolic basin for n large enough.
We have �o

Qtn
.x/CnD nC�ot1.x/C o.1/ since the map t 7! �ot is continuous. Additionally,

��
Qtn
.Qtn/D �

�
Qtn
.fQtn.

Qtn//� 1

D�
1

fQtn.
Qtn/
� 1C o.1/ .according to the asymptotic expansion of ��/

D nCu� 1C o.1/:

Therefore, we have reduced the problem to solving the equation u � 1C o.1/ D �ot1.x/ for u 2 R,
where the o.1/ term is a continuous function of u. By the intermediate value theorem there is a solution
uD un 2 .�

o
t1
.x/; �ot1.x/C2/. We can take QtnD t1�˛=.nCun/, and since .un/n2N is bounded from

below, the sequence .tn/ is well-defined for n large enough and converges to t1. �

We now come back to the proof of Proposition 6.4. For n large enough, GQtn.x/ > 0 (by continuity
of the Green’s function G). Therefore LQtn.Qtn/D f

n
Qtn
.x/ tends to1, and more precisely, C1 or �1

depending on the parity of n, thanks to condition (3). Therefore the continuous function F.t/ WDLt .t/� t
alternates sign between two consecutive Qtn, so by the intermediate value theorem must have a zero tn
between them. �

Proposition 6.5. Let P.z/ WD zCz2Cz3C 23
7
z4C 17

7
z5, let t1 WD�1 and let n WD 7. Then P, n and t1

satisfy conditions (1)–(4) in Proposition 6.4.

Proof. Observe that ft1.t1/D 0 and P 0.t1/D 1. That second property implies that ft1 has negative
leading coefficient. Therefore, conditions .1/ and .3/ are satisfied.

Let us check that condition .2/ is also satisfied. We have

d

dt

ˇ̌̌
tDt1

ft .t/D
d

dt

ˇ̌̌
tDt1

P.t/�
t

n
P 0.t/D

n� 1

n
P 0.t1/�

t1

n
P 00.t1/D

6
7
C
1
7
P 00.�1/D�50

49
< 0:

Finally, condition .4/ is satisfied for x WD 1. Indeed, recall here that if f .z/D
Pn
kD0 akz

k is a complex
polynomial and

RDmax
�
1;
1Cja0jC � � �C jan�1j

janj

�
then for all jzj>R we have jf .z/j � jzjn=R; hence if an orbit at any point leaves the disk of radius R,
then it must converge to infinity. Observe that for our polynomial ft1 we have R D 68 and that a
straightforward computation yields ft1.1/D

60
7

and jf 2t1.1/j> 68.
This proves rigorously that x WD 1 has unbounded orbit under ft1 . �
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Lemma 6.6. For �0 > 0 small enough, there exists t > �1 such that the following properties hold for ft :

(1) Lt has a fixed point xt with multiplier �0 ¤ 0.

(2) F.ft ; xt/¤ 0.

(3) ft has four real critical points, ordered from left to right, c1; c2; c3; c4, with t D c2, and two nonreal
complex conjugate critical points c0 and Nc0.

(4) The critical points c1 and c4 lie in the basin of infinity; the critical points c2 and c3 are in the
parabolic basin.

(5) There is a unique repelling fixed point � 2 .c1; c2/, and the intersection of R and the immediate basin
of attraction of 0 is .�; 0/.

(6) There is a unique y 2 .�; c2/ such that ft.y/D c2.

Proof. We will find t by taking a perturbation of one of the tn0 constructed above, with n0 large enough.
First, note that properties (3)–(6) hold for

f WD ft1 W z 7! zC z2C z3C 23
7
z4C 17

7
z5� z7

7
I

we leave the details to the reader; see Figure 2. Therefore, for n0 large enough, properties (3)–(6) still
hold for ftn0 , as these properties are clearly open (in R) near t D t1. To lighten the notation, we let
f WD ftn0 and c2 WD tn0 .

We now claim that F is well-defined at .f; c2/, and that F.f; c2/¤ 0. According to Lemma 6.3, since
f satisfies conditions (3)–(6), we have .��/00.c/¤ 0. Indeed, c2 is a simple critical point of f , and we
claim that the forward orbit of c2 does not meet any other critical point of f . To see this, note that the
critical point c2 is simple for f , and real. Since c0 and Nc0 are not real, the orbit of c2 cannot land on
either of them. Since the critical points c1 and c4 do not belong to the parabolic basin, the orbit of c2
cannot land on them either. Finally, since f .c2/ > c3, and since f .c2/ belongs to a small attracting petal
in which the sequence of iterates .f n.c2//n2N is increasing, the orbit of c2 cannot land on c3 either.

Now that we have proved that .��/00.c2/¤ 0, it is sufficient to prove that

. o/00.��.c2//.�
�/0.c2/

. o/0.�.c2//2
D 0:

In fact, since .��/0.c2/ D 0, it is suffices to prove that . o/0.��.c2// ¤ 0. Recall that for any Z 2 C,
. o/0.Z/ D 0 if and only if there exists n � 1 such that . o/0.Z � n/ is a critical point for f ; here,
Z D ��.c2/ and  o ı ��.c2/ D c2, so we must prove that for all n � 1 and any critical point ci of f ,
f n.ci /¤ c2. Since c1 and c4 escape, neither of their orbits can land on c2, and since c2 is not periodic
under f , its own orbit cannot land on itself either. Since c3 is in the immediate parabolic basin, the orbit
.f n.c3//n2N is increasing, and so does not contain c2 since c3 > c2.

Finally, it remains to argue that the orbits of the two nonreal critical points c0 and Nc0 do not eventually
land on c2. To see that it cannot be the case, note that since the horn map e of f has two parabolic
fixed points at 0 and1 corresponding to the ends of the Ecalle cylinder, each of those fixed points must
attract singular values of e distinct from themselves; see [Astorg et al. 2016]. The singular values of e are
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Figure 2. The graph of f WD ft1 (blue), with the line y D x in red. We have c1 ��2:8,
c2D�1, c3��0:4, and c4� 4. The critical values f .c1/ and f .c4/ are out of the picture.

the fixed points at 0 and1, as well as the �.ci /, where ci are the critical points of f in the parabolic
basin and �.z/D e2i��

�.z/. If f n.c0/D c2 for some n� 1, then by real symmetry we would also have
f n. Nc0/D c2, and so �.c0/D �. Nc0/D �.c2/; but then �.c3/ would be the only nonfixed singular value
of e, which is impossible.

Therefore f has no critical relation, and so . o/0.��.c2//¤ 0, and F.f; c2/¤ 0 as announced.
To summarize, we have proved that for n0 large enough, the polynomial ftn0 satisfies properties (2)–(6).

Since tn0 is a superattracting fixed point of Ltn0 but persistently fixed, for �0>0 small enough, there exists t
close to tn0 such that ft satisfies (1), and by openness, if �0 is small enough, ft still satisfies (2)–(6). �

The next step is to use quasiconformal deformations to construct an immersed disk D in parameter
space passing through ft , made of polynomials pu, whose Lavaurs map has an attracting fixed point of
multiplier e2i�u, u 2H. We purposely use the notation pu instead of ft to emphasize the fact that except
for ft , the polynomials pu do not a priori belong to the family .ft /t2R� .

Proposition 6.7. Let p WD ft and �0>0 be as in Lemma 6.6. There exists a holomorphic mapˆ WH!P7
such that:

(1) ˆ.u0/D p for some u0 2 H with e2i�u0 D �0.

(2) For all u 2 H, the Lavaurs map of ˆ.u/DW pu has a fixed point zu of multiplier e2i�u 2 D�, and
u 7! zu is holomorphic.

(3) All the maps pu are quasiconformally conjugated to p, the conjugacy being holomorphic outside of
the grand orbit under p of the attracting basin of zu0 WD xt .

(4) If e2i�u 2 .0; 1/, then the conjugacy preserves the real line.

(5) The set ˆ.H/ is relatively compact in P7.

Proof. Let e W U ! P1 be the horn map of g; since L has an attracting fixed point zu0 WD xt , so does e
(since they are semiconjugated). Denote this attracting fixed point by x.
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Let u 2 H and � be a Beltrami form invariant by e (i.e., e�� D �) such that the corresponding
quasiconformal homeomorphism h� conjugates e to some holomorphic map e� with an attracting fixed
point of multiplier e2i�u: h� ı e D e� ı h� and e0�.h�.x// D e2i�u. We recall here briefly how to
construct such a Beltrami form, and refer the reader to [Branner and Fagella 2014] for more details. If �
is a linearizing coordinate for the horn map e near x, i.e., a holomorphic map defined near p satisfying
the functional equation � ı e D �0� , we set

�D �.u/ WD ��
�
u�u0

uCu0

z

Nz

d Nz

dz

�
; (41)

where u0 2 H is any point such that e2i�u0 D �0. Notice that u 7! �.u/ is holomorphic. In the rest of
the proof, we fix u 2 H and just use the notation � instead of �.u/.

We choose the normalization of h� so that it fixes 0; 1 and1. Let E.z/ WD e2i�z and T1.z/ WD zC 1.
We define

(1) � WDE�� so that � D T �1 �, and � D E��,

(2) � WD ��� so that � D g�� and � D L�� ,

(3) the quasiconformal homeomorphisms h� and h� associated to �; � respectively.

Since � D T �1 �, the map h� ıT1 ı h�1� W C! C is holomorphic; since it is conjugated to T1, it is also a
translation (distinct from the identity), and we choose the normalization of h� so that h�ıT1ıh�1� DT1 and
h�.0/D 0. Similarly, since � D g�� , the map pu WD h� ıpıh�1� is holomorphic, and hence a polynomial
(since it has the same topological degree as f ); it also has a parabolic fixed point with one attracting
petal at the origin. We choose the unique normalization of h� such that pu.z/D zC z2CO.z3/. We
set ˆ.u/ WD pu; the holomorphic dependence u 7! �.u/ and the parametric version of the Ahlfors–Bers
theorem imply that ˆ is holomorphic on H.

We now define

(1) �� WD h� ı� ı h�1� W h� .B/! C, where B is the parabolic basin of f ,

(2)  � WD h� ı ı h�1� W C! C.

Lemma 6.8. The map �� is an incoming Fatou coordinate for pu, and the map  � is an outgoing Fatou
parametrization for pu.

Proof of the lemma. We start with �� . First, note that since � D ���, the map �� is holomorphic on
B� WD h� .B/, which is exactly the parabolic basin of pu. Then, note that

�� ıpu D h� ı� ı h
�1
� ıpu D h� ı� ıg ı h

�1
�

D h� ıT1 ı� ı h
�1
� D T1 ı h� ı� ı h

�1
� D T1 ı�� :

So �� conjugates pu on the whole parabolic basin to a translation, which means it is a Fatou coordinate.
The proof is completely analogous for  � : first, to prove that  � is holomorphic, note that � D  �� .

Indeed, � D E�� D  ���� D  �� . To conclude, one can check directly that  � ıT1 D pu ı � . �
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As a consequence of the lemma, E� WD h� ıE ıh�1� is a lifted horn map of pu, and L� WD h� ıLıh�1�
is a Lavaurs map of pu, and they have the same phase. The phase could a priori be a nonzero, but we
will prove that it is not the case. In order to do that, first we will prove that E ı E� D e� ıE, i.e., that e�
is a horn map that lifts to E� .

Since � DE��, the map E� WD h� ıE ıh�1� W C! C� is holomorphic. Moreover, since E W C! C�

is a universal cover, so is E� . So E� is of the form E�.z/D �e
˛z, and with our choices of normalizations

we find E�.z/D e2i�z DE.z/. So E ı h� D h� ıE.
From this, we deduce

E ı E� DE ı h� ı E ı h�1� D h� ıE ı E ı h
�1
�

D h� ı e ıE ı h
�1
� D h� ı e ı h

�1
� ıE D e� ıE:

Finally, it remains to observe that since e� is topologically conjugated to e, it also has two parabolic fixed
points at 0 and1 respectively, each of multiplier 1. Recall that the horn map of phase 0 of a parabolic
polynomial f .z/D zC z2C az3CO.z4/ has multipliers at 0 and1 both equal to e2�

2.1�a/, and that
the horn map of phase ' 2C=Z is obtained from the horn map e of phase 0 by multiplication by e2i�'. In
particular, its multipliers at 0 and1 are respectively e2�

2.1�a/C2i�' and e2�
2.1�a/�2i�'. In this case,

since both multipliers are equal to 1, we must have aD 1 and ' D 0. Therefore, L� is the Lavaurs map
of phase 0 of pu, and pu.z/D zC z2C z3CO.z4/.

Finally, if �� .z/ WD e2i��� .z/, then �� ıL� D e� ı�� , and �� is locally invertible near zu WD h� .zu0/,
and �� .zu/D h�.x/. Therefore, zu as a fixed point of L� has the same multiplier e2i�u as h�.x/. This
proves claims (1)–(3) of the proposition.

To prove claim (4), note that if e2i�u 2 .0; 1/ then the Beltrami form

u�u0

uCu0

z

Nz

d Nz

dz

has real symmetry (since then .u � u0/=.uC u0/ 2 R). We claim that this implies that � has real
symmetry. Indeed, since g.R/D R, its Lavaurs map L maps a small interval I � R centered at xt into
itself. Moreover, the map � ı� semiconjugates L to the multiplication by �0 > 0; so � ı� maps I into R,
which means that the holomorphic map � ı� is real: � ı�. Nz/D � ı�.z/ for all z in the parabolic basin
of g. Therefore

� D .� ı�/�
�
u�u0

uCu0

z

Nz

d Nz

dz

�
has real symmetry; hence h� restricts to a real homeomorphism.

Finally, ˆ W H! P7 is bounded in the space of polynomials of degree 7. Indeed, by [Bassanelli and
Berteloot 2011, Proposition 4.4] the set of polynomials of given degree with given values of the Green’s
function at the critical points is bounded, and since the conjugacy between the pu and p is analytic
outside of the parabolic basin, their Green’s functions have the same values at critical points. �

Proposition 6.9. With the same notation as before, there exists p0 in the closure of ˆ.H/ such that the
Lavaurs map of p0 has a parabolic fixed point of multiplier 1.
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Proof. Applying Proposition 6.7 with un D i=n, we get a sequence of polynomials pun such that
pun.z/D zCz

2Cz3CO.z4/, and the Lavaurs map Ln of pun has a fixed point xn of multiplier e�2�=n.
Each of the pun are quasiconformally conjugate to the real polynomial ft from Lemma 6.6 by a

homeomorphism whose restriction to the real line is real and increasing, so the pun still satisfy the
properties (3)–(6) from Lemma 6.6.

By item (5) in Proposition 6.7, the sequence .pun/n2N is bounded in the space of degree-7 polynomials.
So up to extracting, we may assume that:

(1) pun converges to a degree 7 polynomial p0.

(2) The critical points ci;n of pun converge to critical points ci of p0.

(3) The repelling fixed point �n converges to a nonattracting fixed point � of p0.

(4) xn converges to x 2 R and yn to y 2 R.

We denote by L the Lavaurs map of p0. If we can prove that x lies in the parabolic basin of p0, then we
will get that L.x/Dx and L0.x/D 1. To do that, it is enough to prove that x 2 .�; 0/. But for all n, we have

�n < yn < xn < c2;n < 0I

hence � < y � x � c2 < 0. The inequality � < y is strict because as a limit of repelling fixed points, we
have jf 0.�/j � 1, so we cannot have y D � , for otherwise we would have � D f .�/D f .y/D c2 and so
f 0.�/D 0, a contradiction. Similarly, we cannot have c2 D 0 since p00.0/D 1¤ 0. So x 2 .�; 0/ and �
is in the parabolic basin of f , and so L0.x/D 1 and L.x/D x. Therefore p0 has the desired property. �

Proposition 6.10. There exists a polynomial g.z/D zC z2C z3CO.z4/ of degree 7 such that

(1) L has a Siegel fixed point � with Diophantine multiplier, and

(2) the pair .g; �/ is nondegenerate.

Proof. Recall that P7 denotes the space of degree-7 polynomials of the form f .z/D zCz2Cz3CO.z4/,
and let V D f.f; �/ 2 P7 �C W � 2 Bf g. V may be identified with an open set in C5. Finally, we consider
F WD f.f; �/ 2 V W L.�/D �g, which is an analytic hypersurface of V .

We consider the functions � W F ! C and F W F ! C defined as �.f; �/D L0.�/ and

F.f; �/D
. o/00.��.�//.��/0.�/

. o/0.��.�//2
C .��/00.�/;

where �� and  o are the Fatou coordinate and parametrization of f . The function � is analytic on F, and
F is meromorphic on F and analytic on ��1.C�/, since . o/0.��.z//D 0 implies that L0.z/D 0.

Let ˆ W H! P7 be the map defined in Proposition 6.7, and let ê W H! F be the map given by
ˆ.u/ D .pu; zu/, where zu is the fixed point of the Lavaurs map of pu with multiplier e2i�u. Then
D WD ê.H/ is contained in one irreducible component F0 of F.

Let p0 be the polynomial given by Proposition 6.9 such that its Lavaurs map has a parabolic fixed
point z0. By Proposition 6.9, .p0; z0/ is in the closure of D in V ; therefore .p0; z0/ 2 F0.

Assume for a contradiction that all pairs .f; �/ 2 F0 for which L0.�/ has modulus 1 and Diophantine
argument are degenerate. Then by the density of Diophantine numbers on the real line, we must have
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F.f; �/ D 0 on ��1.S1/\F0. Since for all u 2 H, we have � ı ê.u/ D e2i�u, the analytic map � is
nonconstant on F0. In particular, ��1.S1/ is a real-analytic subset of F0 of real codimension 1, nonempty
since �.p0; z0/ D 1. By Proposition 6.7, D contains .ft ; xt/, where ft is the polynomial given by
Lemma 6.6, and such that F.ft ; zt/ ¤ 0. So the analytic map F is not identically zero on F0, and
therefore it cannot vanish identically on ��1.S1/\F0, a contradiction. �
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