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We show that under generic conditions, the quantisation of a 1-parameter family of KAM perturbations
P(x, ξ ; t) of a completely integrable and Kolmogorov nondegenerate Gevrey smooth Hamiltonian is not
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1. Introduction

1A. Hamiltonian dynamics. Let M be a compact boundaryless Riemannian Gρ smooth manifold of
dimension n ≥ 2, and let P(x, ξ)∈ C∞(T ∗M) be a completely integrable Hamiltonian with P(x, ξ)→ ∞

as |ξ |→∞. Complete integrability is the assumption that there exist n functionally independent conserved
quantities of the Hamiltonian flow that are pairwise in involution.

The Liouville–Arnold theorem asserts that we can locally choose symplectomorphisms

χ : Tn
× D → T ∗M (1A.1)

such that the transformed Hamiltonian

H 0(θ, I )= (P ◦χ)(θ, I ) (1A.2)

is independent of θ . It follows that the Hamiltonian flow is quasiperiodic and constrained to n-dimensional
Lagrangian tori, given in local coordinates by

İ = 0, θ̇ = ∇ H(I ). (1A.3)

Under the Kolmogorov nondegeneracy condition det(∇2
I H) ̸= 0, we can locally index the invariant

Lagrangian tori 3ω by the frequency ω = ∇I H of their quasiperiodic motion.
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If we now consider a smooth one-parameter family of perturbed Hamiltonians given by H(θ, I ; t)
in action-angle coordinates with H(θ, I ; 0)= H 0(I ), a natural question is whether or not an invariant
tori 3ω with quasiperiodic motion of frequency ω still exists in the perturbed Hamiltonian dynamics.

This question was resolved positively by Kolmogorov [1954], Arnold [1983], and Moser [1966]. In
particular, they established that the Lagrangian invariant tori corresponding to all but an o(1)-symplectic-
measure subset of frequencies survive this perturbation as the size of the perturbation tends to zero.

In particular persisting tori are those with frequencies ω in a set �κ determined by the Diophantine
condition (3B.2), where τ > n − 1 is fixed and the choice of κ then dictates the measure of the union of
preserved tori.

Popov [2004b] used a local version of the KAM theorem to construct a Birkhoff normal form for Gevrey
class Hamiltonians H about 3. This normal form generalises the notion of “action-angle” variables of
a completely integrable Hamiltonian as discussed in [Arnold 1989]. As a consequence of the normal
form construction, Popov obtained an effective stability result for the Hamiltonian flow near the union
of remaining invariant tori. The natural setting for the estimates is that of Gevrey regularity. This work
generalises earlier work in [Popov 2000a; 2000b], where a Birkhoff normal form is constructed for
real-analytic Hamiltonians.

1B. Quantum ergodicity. We now consider the quantisation of a KAM Hamiltonian system given by a
family of self-adjoint and uniformly elliptic semiclassical pseudodifferential operators

Ph(t)=

m∑
j=0

Pj (x, h D; t)h j , (1B.1)

with real-valued full symbol in the Gevrey class Sℓ(T ∗M) from Definition B.5, analytic in the parameter t ,
where ℓ = (ρ, µ, ν), with ρ(τ + n)+ 1 > µ > ρ ′

= ρ(τ + 1)+ 1 and ν = ρ(τ + n + 1). Furthermore,
we assume Ph(t) acts on half-densities in C∞(M;�1/2) with principal symbol P0(x, ξ ; t) completely
integrable and nondegenerate at t = 0, and with vanishing subprincipal symbol. The operator Ph(t) then
has an orthonormal basis of eigenfunctions u j (t; h) and corresponding real eigenvalues E j (t; h)→ ∞

for each fixed t, h.
The Bohr correspondence principle asserts that aspects of the classical dynamics should be reflected in

the spectral theory of Ph(t) in the semiclassical limit h → 0. A rigorous manifestation of this correspon-
dence principle is the celebrated quantum ergodicity theorem, due to [Shnirelman 1974; Colin de Verdière
1985; Zelditch 1987], which asserts that billiards with ergodic geodesic flow have eigenfunctions satisfying
a quantum notion of equidistribution, made precise using the machinery of pseudodifferential operators.

We work with a semiclassical formulation of quantum ergodicity. Let dµE denote the measure on the
energy surface 6E = p−1(E) induced by the symplectic measure |dξ ∧ dx | on T ∗M by

|dµE ∧ d E | = |dξ ∧ dx |. (1B.2)

If a Hamiltonian p(x, ξ) ∈ C∞(T ∗M) generates an ergodic Hamiltonian flow on every energy surface 6E

with E ∈ [a, b] and dp|p−1([a,b]) ̸= 0, then for any semiclassical pseudodifferential operator A of
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semiclassical order 0, the quantum ergodicity theorem states that

hn
∑

E j (h)∈[a,b]

∣∣∣∣⟨Ahu j (h), u j (h)⟩ −
1

µE j (6E j )

∫
6Ej

σ(A) dµE j

∣∣∣∣2

→ 0. (1B.3)

The quantum ergodicity theorem is originally due to Shnirelman [1974], Zelditch [1987], and Colin
de Verdière [1985]. The semiclassical formulation of the quantum ergodicity theorem (1B.3) is a
straightforward consequence of the sharper formulation in [Helffer et al. 1987], or [Dyatlov and Guillarmou
2014], in which the statement is localised to O(h) energy bands. From (1B.3), a standard diagonal
argument introduced in [Colin de Verdière 1977] shows that

lim
h→0

∣∣∣∣⟨Ahu j (h), u j (h)⟩ −
1

µE j (6E j )

∫
6Ej

σ(A) dµE j

∣∣∣∣ = 0 (1B.4)

uniformly for a family 3(h)⊂ {E j (h) ∈ [a, b]} of full density, in the sense that

#3(h)
#{E j (h) ∈ [a, b]}

→ 1. (1B.5)

We say that a semiclassical pseudodifferential operator of the form (1B.1) is quantum ergodic if its
eigenfunctions satisfy (1B.3).

In the appendix to [Marklof and O’Keefe 2005], Zelditch raises the question of converse quantum
ergodicity: to what extent is it possible for nonergodic Hamiltonian systems such as those in the KAM
regime to have quantum ergodic quantisations? In the extreme situation of quantum complete integrability,
rigorous results on eigenfunction microlocalisation onto unions of Lagrangian tori have been established
in [Toth and Zelditch 2003], which clearly rules out quantum ergodicity. In the intermediate regimes
between complete integrability and ergodicity, fewer rigorous results on the question of converse quantum
ergodicity are known. In the appendix to [Marklof and O’Keefe 2005], Zelditch shows that the “pimpled
spheres”, which are S2 with a metric deformed polar cap, are not quantum ergodic, exploiting the
periodicity of the flow in a strong way. In [Gutkin 2009] it is shown that the “racetrack billiard” is
quantum ergodic but not ergodic, with phase space splitting into two disjoint invariant sets of equal
measure.

As KAM dynamics are far from ergodic dynamics in character, the Bohr correspondence principle
suggests that Ph(t) is typically not quantum ergodic, and that under generic conditions on the perturbation,
there could exist sequences of eigenfunctions for Ph(t) with semiclassical mass entirely supported on
individual invariant tori.

This localisation was proven for quasimodes in [Popov 2004a], where semiclassical Fourier inte-
gral operators were used to construct a quantum Birkhoff normal form for a class of semiclassical
pseudodifferential operators Ph(t). This quantum Birkhoff normal form is used to obtain a family of
quasimodes microlocalised near the union of KAM Lagrangian tori of a Hamiltonian associated to Ph . A
similar construction was previously made in [Colin de Verdière 1977], which establishes the existence of
quasimodes microlocalised near the Lagrangian tori of a completely integrable Hamiltonian on a compact
smooth manifold.
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As pointed out in [Zelditch 2004], however, the passage from quasimode microlocalisation statements
to microlocalisation statements for genuine eigenfunctions typically requires information on the spectral
concentration of the operator in question.

One way in which this information can be obtained is by considering the spectral flow of Ph(t) in an
analytic parameter t as in this paper. The Hadamard variational formula allows us to rule out spectral
concentration for full measure t , given suitable information on the expectation of the quantum observable

⟨∂tPh(t)u j (t; h), u j (t; h)⟩, (1B.6)

which can be obtained from conditions like (1B.4). One can then draw conclusions about eigenfunction
microlocalisation from those about quasimode microlocalisation.

In [Hassell 2010], this technique was exploited to obtain the existence of a sequence of Laplacian
eigenfunctions on the Bunimovich stadium that does not equidistribute, at least for a full-measure set of
aspect ratios. This strategy was also exploited in [Gomes 2018], where the author establishes a weak
form of Percival’s conjecture for the mushroom billiard.

It is the purpose of this paper to use the same technique to show that quantisations of KAM Hamiltonian
systems in the sense of (1B.1) are typically not quantum ergodic, at least for full measure t ∈ (0, δ).

We follow [Popov 2004a] in working in the category of Gevrey regularity for our Hamiltonian P, due to
the availability of explicit and full details of the quantum Birkhoff normal form construction in this setting.

1C. Statement of results. The following is the main result of this paper.

Theorem 1.1. Suppose M is a compact boundaryless Gρ manifold and Ph(t) is a family of self-adjoint
elliptic semiclassical pseudodifferential operators acting on C∞(M;�1/2) with fixed positive differential
order such that:

(i) The operator Ph(t) has full symbol real-valued, analytic in t , and in the Gevrey class Sℓ(T ∗M) from
Definition B.5, where ℓ= (ρ, µ, ν), with ρ(τ+n)+1>µ>ρ ′

= ρ(τ+1)+1 and ν = ρ(τ+n +1).

(ii) The principal symbol P0(x, ξ ; t) lies in Gρ,1(T ∗M × (−1, 1)).

(iii) P0(x, ξ ; 0) is a completely integrable and nondegenerate Hamiltonian.

(iv) The subprincipal symbol of Ph(t) vanishes.

(v) In an action-angle variable coordinate patch Tn
×D for the unperturbed Hamiltonian P0(x, ξ ; 0), the

KAM Hamiltonian can be written as H(θ, I ; t)= P0( · , · ; t)◦χ , and we define H 0(I ) := H(θ, I ; 0).

(vi) The KAM perturbation is such that ∫
Tn
∂t H(θ, I ; 0) dθ

is nonconstant on some regular energy surface {I ∈ D : H 0(I )= E} in the action-angle coordinate
patch.

Then for any regular energy band P−1
0 ([a, b]) with E ∈ (a, b) for the energy surface in condition (vi),

there exists δ > 0 such that the family of operators Ph(t) is not quantum ergodic in [a, b] for full
measure t ∈ (0, δ).



GENERIC KAM HAMILTONIANS ARE NOT QUANTUM ERGODIC 123

Remark 1.2. Though we choose to work with Gevrey class Hamiltonians, it should be noted that we only
require quasimodes for Ph(t) of order O(h(3n+2)/2) to carry out the arguments in Section 2. In particular
this implies that Theorem 1.1 should hold in the C∞ setting, where O(h∞) quasimodes are constructed
in [Colin de Verdière 1977].

Remark 1.3. The condition (vi) is a rather mild one. Indeed for Hamiltonian perturbations of the form
H 0(I )+ t H 1(θ, I ), it is equivalent to the functional independence of H 0(I ) and

∫
Tn H 1(θ, I ) dθ . This

holds for generic choice of H 1.

1D. Examples. The broad class of operators satisfying the assumptions of Theorem 1.1 are perturbations
of completely integrable Schrödinger-type operators

Ph = −h21g + V (x). (1D.1)

In particular, Theorem 1.1 applies to the case of the semiclassical Laplace–Beltrami operator (V =0) on
a manifold with perturbed metric (M, gt), where (M, g0) has completely integrable and nondegenerate
geodesic flow.

The model example of a completely integrable geodesic flow is that of the flat torus

Tn
= Rn/Zn. (1D.2)

The Hamiltonian that generates the geodesic flow on Tn can be written as |I |2, where I ∈ Rn is dual to
the spatial variable θ ∈ Tn. This is clearly a nondegenerate and completely integrable Hamiltonian system.
Similarly, in [Knörrer 1980], it is shown that the geodesic flow on an n-axial ellipsoid E is completely
integrable and nondegenerate. Thus the Laplace–Beltrami operator for metric perturbations of both of
these manifolds is covered by Theorem 1.1, provided the generic condition (vi) is satisfied.

For an explicit family of examples, one can consider T2, equipped with the metric

g = dθ2
1 + dθ2

2 + tχ(θ1, θ2) dθ1 dθ2

for t > 0 small and χ ∈ C∞(T2) arbitrary. The Hamiltonian corresponding to −h21g is

H(θ, I )= I 2
1 + I 2

2 + tχ(θ1, θ2)I1 I2,

and we have that ∫
T2
∂t H(θ, I ) dθ = I1 I2

∫
T2
χ(θ) dθ (1D.3)

is nonconstant over any energy surface |I | = E > 0; thus condition (vi) of Theorem 1.1 is satisfied.

1E. Outline of paper. In Section 3A, we introduce some definitions and notations that are prevalent
throughout the paper.

In Section 2, we prove Theorem 1.1 by contradiction. We now outline the strategy of the proof. In
Section 2B, under the assumptions of (vi) in Theorem 1.1, Proposition 2.5 makes use of the calculation in
Section 3E to obtain an upper bound for the flow speed of a positive density family of the quasieigenvalues
constructed in Section 4C. On the other hand, the assumption of quantum ergodicity of Ph(t) for large



124 SEÁN GOMES

measure t yields an estimate for the variation of a large density subset of exact eigenvalues in (2B.22).
The results in this section establish a gap (2B.23) between the flow speed of these quasieigenvalues and
exact eigenvalues that ensures that individual eigenvalues cannot spend large measure t ∈ (0, δ) within
O(hn+1) distance of any of the quasieigenvalues. This is formalised in Section 2C, where it is deduced
that there exists t∗ ∈ (0, δ) at which there are very few actual eigenvalues within O(hn+1) distance of the
union of quasieigenvalue windows. An elementary spectral theory contradiction is arrived at from this
spectral nonconcentration, completing the proof.

In Section 3, we construct a Gevrey class Birkhoff normal form for the family of Hamiltonians
P(x, ξ ; t). The construction is that of [Popov 2004b], with our only additional concern being establishing
the regularity of this Birkhoff normal form construction in the parameter t . In Section 3E, we compute
the derivative of the integrable term K (I ; t) of the Birkhoff normal form in the parameter t . This is
done by applying two KAM iterations to P(x, ξ ; t) prior to the application of the Birkhoff normal form
construction of Theorem 3.10.

In Section 4, we recall the quantum Birkhoff normal form construction of [Popov 2004a], formulated
in Theorem 4.1. This construction yields a Gevrey family of quasimodes microlocalising on the KAM
Lagrangian tori of the Hamiltonian P(x, ξ ; t). For the spectral flow arguments in Section 2C we require
that the associated quasieigenvalues are smooth in t , which is a statement entirely about the symbols of
this quantum Birkhoff normal form.

In Appendix A, we introduce the anisotropic classes of Gevrey functions that are used throughout this
paper as well as some of their basic properties.

In Appendix B, we introduce the semiclassical pseudodifferential calculus for Gevrey class symbols.
In Appendix C, we collect two elementary assertions about analytic functions.
In Appendix D, we state and prove a version of the Whitney extension theorem for the anisotropic

class of Gevrey functions.

2. Proof of Theorem 1.1

2A. Introduction. We begin by assuming that Ph(t) is a family of operators satisfying the assumptions
of Theorem 1.1.

Condition (vi) in Theorem 1.1 implies that there exists a nonresonant frequency ω0 ∈ �̃κ with associated
Lagrangian torus 3ω0 such that the average of ∂t P0(x, ξ ; 0) over the torus 3ω0 differs from the average
of ∂t P0(x, ξ ; 0) over the associated energy surface

{(x, ξ) ∈ T ∗M : P0(x, ξ ; 0)= H 0(I (ω0))}. (2A.1)

Moreover, we can ensure that 3ω0 lies in an arbitrarily small energy window [a, b] about the regular
energy E from the condition (vi). Without loss of generality, the hypotheses of Theorem 1.1 thus guarantee
the existence of what we shall call a slow torus.

Definition 2.1. A slow torus in the energy band [a, b] for the unperturbed Hamiltonian

H(θ, I ; 0)= H 0(I ), (2A.2)
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written in action-angle coordinates, is a Lagrangian invariant torus 3ω0 with nonresonant frequency
ω0 ∈ �̃κ and energy H 0(I (ω0)) ∈ (a, b) in the notation of Theorem 3.10 that satisfies

(2π)−n
∫

Tn
∂t H(θ, I (ω0); 0) dθ < inf

E∈[a,b]

1
µE(6E)

∫
6E

∂t P0(x, ξ ; 0) dµE (2A.3)

at t = 0.

We call such a torus a slow torus to draw intuition from the special case where ∂tPh(t) is a positive
operator. In this case, as t evolves, the quasieigenvalues associated to such a torus increase as t evolves at
a slower rate than the typical increase of eigenvalues at the same energy. The intuition behind this stems
from the Hadamard variational formula (2B.8), and the fact that the associated quasimodes microlocalise
onto 3ω0 . This intuition is confirmed in Section 3E, by a more careful analysis of the leading-order
behaviour as t → 0 of the integrable term in the Birkhoff normal form established in Theorem 3.10.
Under the assumption of quantum ergodicity, this analysis implies a discrepancy (2B.23) in the spectral
flow of genuine eigenvalues and quasieigenvalues attached to slow tori. Consequently, we obtain the
spectral nonconcentration statement Proposition 2.10.

We begin by using the slow torus condition and choosing c > 0 sufficiently small so that

(2π)−n
∫

Tn
∂t H(θ, I (ω0; 0); 0) dθ < inf

E∈[a,b]

1
µE(6E)

∫
6E

∂t P0(x, ξ ; 0) dµE − 3c (2A.4)

is satisfied.
As the quantum ergodicity condition (1B.3) is preserved upon passing to energy subintervals, we can

assume that [a, b] is an arbitrarily small energy window containing H 0(I (ω0; 0)). In particular, we can
scale our interval [a, b] by a small factor λ to ensure that the condition

sup
E∈[a,b]

1
µE(6E)

∫
6E

∂t P0 dµE − inf
E∈[a,b]

1
µE(6E)

∫
6E

∂t P0 dµE =: Q+(0)− Q−(0) < ϵ < c (2A.5)

is satisfied for any particular ϵ < c. From the regularity of P0, one can achieve this by taking

λ= O(ϵ). (2A.6)

Through the course of this section, we will track the size of various small quantities in terms of this ϵ,
which we will eventually take small in the proof of Proposition 2.10.

Proposition 3.14 applies to H, and we obtain a family of symplectomorphisms

χ ∈ Gρ,ρ′,ρ′(
Tn

× D ×
(
−

1
2 ,

1
2

)
,Tn

× D
)

(2A.7)

and a family of diffeomorphisms

ω ∈ Gρ′,ρ′(
D ×

(
−

1
2 ,

1
2

)
, �

)
(2A.8)

such that

H(χ(θ, I ; t); t)= K (I ; t)+ R(θ, I ; t), (2A.9)
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where ∂αI R(θ, I ; t) = 0 for nonresonant actions I ∈ Eκ(t). Using the diffeomorphism (2A.8), we can
define an action map I ∈ Gρ′,ρ′(

�×
(
−

1
2 ,

1
2

))
implicitly by

ω̃ = ω(I (ω̃; t); t) (2A.10)

and we can use this map to specify the action coordinates of a nonresonant torus with fixed frequency at
any t ∈

(
−

1
2 ,

1
2

)
in the Birkhoff normal form furnished by χ( · , · ; t).

We first obtain a positive-measure family of slow tori near 3ω0 .

Proposition 2.2. There exists r > 0 and δ > 0 such that for any ω ∈ � := B(ω0, r) ∩ �̃κ , the torus
3ω = χ(Tn

× {I (ω, t)}) has energy

K (I (ω; t), t) ∈ [a, b] (2A.11)

for all t ∈ (0, δ).
In particular, the family of tori

3(t) :=

⋃
ω∈�

3ω (2A.12)

is a positive-measure family of KAM tori entirely contained within the energy band [a, b].
Moreover, r and δ can be chosen small enough to ensure

(2π)−n
∫

Tn
∂t H(θ, I (ω; t); t) dθ < (2π)−n

∫
Tn
∂t H(θ, I (ω; 0); t) dθ + ϵ

< inf
t∈(0,δ)

Q−(t)− 2c (2A.13)

for each ω ∈� and each t ∈ (0, δ).
We can also choose δ > 0 small enough to ensure that

Q+ − Q− := sup
t∈(0,δ)

Q+(t)− inf
t∈(0,δ)

Q−(t) < 2ϵ. (2A.14)

In particular r, δ can be taken to be O(ϵ), with constant independent of t and h.

Proof. From the regularity of χ , I , and K established in Theorem 3.10, it follows that we can take
r = O(λ) to ensure that (2A.11) is satisfied at t = 0, where λ= O(ϵ) is as in (2A.6). Similarly, we can
ensure that

(2π)−n
∫

Tn
∂t H(θ, I ; 0) dθ < (2π)−n

∫
Tn
∂t H(θ, I (ω0); t) dθ + ϵ/2 (2A.15)

holds for |I − I (ω0)| = O(λ). Since (2A.4) is satisfied at t = 0, it follows that

(2π)−n
∫

Tn
∂t H(θ, I (ω; 0); 0) dθ < Q−(0)− 3c + ϵ/2 (2A.16)

for all ω ∈�= B(ω0, r)∩ �̃κ upon taking r = O(λ).
The regularity of χ , I and K in the parameter t then allows us to deduce that (2A.11) and (2A.13)

are satisfied for t ∈ (0, δ), for sufficiently small δ > 0 and for each ω ∈ �. In particular, we can take
δ = O(λ)= O(ϵ).
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Finally, the estimate (2A.14) for small δ follows from the regularity of

1
µE(6E)

∫
6E

∂t P0 dµE (2A.17)

in t and E . □

We can now apply the quantum Birkhoff normal form construction outlined in Section 4. From
Theorem 4.5, we obtain a family of quasimodes that microlocalise onto the family of KAM tori 3(t)
introduced in (2A.12).

In particular, following Section 4C, we take S(t)= {I (ω; t) : ω ∈�} and define the index set Mh(t) as
in (4C.2). Then for each m ∈Mh(t)⊂Zn, we have a quasimode vm with corresponding quasieigenvalueµm

as in (4C.3). We introduce notation for the union of hn+1-width energy windows about the quasieigenvalue
associated to tori in 3(t):

W (t; h) :=

⋃
m∈Mh(t)

[µm(t; h)− hn+1, µm(t; h)+ hn+1
]. (2A.18)

We also introduce the index set

G(h)= { j ∈ N : E j (t) ∈ [a, b] for some t ∈ (0, δ)} (2A.19)

of the eigenvalues that can possibly play a role in the spectral flow considerations in Section 2C.
To conclude this section, we collect asymptotic estimates for the number of eigenvalues and the number

of quasieigenvalues that are in the energy window [a, b] as h → 0.

Proposition 2.3. We have the asymptotic estimate

#Mh(t)∼ (2πh)−nµ(Tn
× {I (ω, t) : ω ∈�}) (2A.20)

for each t ∈ (0, δ).
Furthermore, we have

lim sup
h→0

(2πh)n#G(h)≤ µ({(x, ξ) : P0(x, ξ ; 0) ∈ [a − Mδ, b + Mδ]}), (2A.21)

where M is the uniform bound on spectral flow speed in (2B.11) and G(h) is as in (2A.19).
Here µ denotes the symplectic measure dξ dx on T ∗M.

Proof. The estimate (2A.20) is a consequence from (4C.8), and (2A.21) follows from (2B.11) and an
application of the semiclassical Weyl law [Zworski 2012, Theorem 14.11]. □

From Proposition 2.3, it follows that we can bound

#G(h)
inf

t∈(0,δ)
#Mh(t)

(2A.22)

for t ∈ (0, δ(ϵ)) and h < h0(ϵ). Moreover, this upper bound is uniform in ϵ. By the nature of their
construction in Proposition 2.2, the quasieigenvalues µm(t; h) lie in [a, b] for all t ∈ (0, δ).

It is convenient to introduce the subset G̃(h)⊂ G(h) given by

G̃(h)= { j ∈ N : E j (t) ∈ [a, b] for all t ∈ (0, δ)}. (2A.23)
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By choosing δ(ϵ) > 0 appropriately small, we can ensure that a large proportion of eigenvalues that lie in
[a, b] for some t ∈ (0, δ) lie in [a, b] for all t ∈ (0, δ).

Proposition 2.4. We can choose δ(ϵ)= O(ϵ2) such that

#G̃(h)
#G(h)

≥ 1 − Cϵ (2A.24)

for all ϵ < ϵ0 and h < h0(ϵ), where C > 0 is a constant.

Proof. We have the bound
#G(h)

#G̃(h)
≤

Nh([a + Mδ, b − Mδ])
Nh([a − Mδ, b + Mδ])

, (2A.25)

where Nh(I ) counts the semiclassical eigenvalues of the operator Ph(0) in I. Recalling that the interval
[a, b] is of scale λ= O(ϵ), it follows that for any choice of δ = O(ϵ2), the ratio of phase space volumes

µ(P0(x, ξ ; 0) ∈ [a − Mδ, a + Mδ] ∪ [b − Mδ, b + Mδ])
µ(P0(x, ξ ; 0) ∈ [a − Mδ, a + Mδ])

(2A.26)

can be bounded by a constant multiple of ϵ for all sufficiently small ϵ. Application of the semiclassical
Weyl asymptotics to (2A.25) completes the proof. □

2B. Eigenvalue and quasieigenvalue variation. We now turn our attention to the variation of quasieigen-
values and eigenvalues as t ∈ (0, δ) varies. The quasieigenvalues can be handled rather explicitly.

Proposition 2.5. For any all sufficiently small δ(ϵ) > 0 and all t ∈ (0, δ), we have

lim sup
h→0

∂tµm(t; h)≤ Q− − c (2B.1)

for all m ∈
⋃

t∈(0,δ)Mh(t) uniformly in t.

Proof. From Proposition 3.14, we have

K0(I ; t)= H 0(I )+ t · (2π)−n
∫

Tn
∂t H(θ, I ; 0) dθ + O(t9/8) (2B.2)

for any I ∈ D. Hence we have

∂t(K0(h(m +ϑ/4); t)) < (2π)−n
∫

Tn
∂t H(θ, h(m +ϑ/4); 0) dθ + ϵ (2B.3)

for all t ∈ (0, δ(ϵ)), taking δ sufficiently small. From the definition of Mh(t), we know that

|h(m +ϑ/4)− I (ω; t)|< Lh

for some ω ∈�, and so from the regularity of I in t it follows that

∂t(K0(h(m +ϑ/4); t)) < (2π)−n
∫

Tn
∂t H(θ, I (ω; t); t) dθ + ϵ+ O(h) (2B.4)
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for some ω ∈�. This allows us to compute

∂tµm(t; h)= ∂t(K 0(h(m +ϑ/4); t, h))

= ∂t(K0(h(m +ϑ/4); t))+ O(h)

< (2π)−n
∫

Tn
∂t H(θ, I (ω; t); t) dθ + ϵ+ O(h)

< Q− − 2c + ϵ+ O(h) (2B.5)
which implies

lim sup
h→0

∂tµm(t; h) < Q− − 2c + ϵ, (2B.6)

using (2B.4), (2A.13), and (2A.14). □

In particular, we can choose B > 0 and h0 > 0 such that

∂tµm(t; h) < B < Q− − c (2B.7)

for all t ∈ (0, δ) and all h < h0.

Remark 2.6. We abused notation slightly here by writingµm(t; h) even when m /∈Mh(t). That is, we track
the behaviour of K 0(h(m+ϑ/4), t;h) even for t ∈ (0, δ) such that this does not correspond to a quasieigen-
value in our family. This is a necessity due to the rough nature of the set {I (ω; t) :ω∈�} of nonresonant
actions. Indices m ∈ Zn will typically be elements of Mh(t) for only O(h)-sized t-intervals at a time.

Remark 2.7. This is the last part of the argument that involves placing an additional restriction on the
size of δ > 0.

We now consider the variation of eigenvalues. For each fixed h > 0, the operators Ph(t) comprise
an holomorphic family of type A in the sense of [Kato 1966] and so we can choose eigenvalues and
corresponding eigenprojections holomorphic in the parameter t . Thus if at each time t we order our
eigenpairs E j (t; h) in order of increasing energy, by holomorphy it follows that E j will be continuous
and piecewise smooth in (0, δ). On the cofinite set where E j is differentiable in t , we have

∂t E j (t; h)= ⟨∂tPh(t)u j (t; h), u j (t; h)⟩, (2B.8)

since (u j ) is an orthonormal basis. We will control (2B.8) using our assumption of quantum ergodicity.
To this end, we now suppose for the sake of contradiction that there exists a positive-measure set

B ⊂ (0, δ) such that Ph(t) is quantum ergodic in the sense of (1B.3) for every t ∈ B.

Proposition 2.8. For every t ∈ B and ϵ > 0, there exists h0(t, ϵ) such that, for all h < h0(t, ϵ), we have

|⟨∂tPh(t)u j (t; h), u j (t; h)⟩ −

∫
6Ej (t;h)

∂t P0 dµE j (t;h)|< ϵ (2B.9)

for a family of indices S(t; h)⊂ { j ∈ N : E j (t; h) ∈ [a, b]} with

#S(t; h)
{ j ∈ N : E j (t; h) ∈ [a, b]}

> 1 − ϵ. (2B.10)

Proof. This is a direct application of (1B.4). □
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We also note that we have a global-in-time bound

∂t E j (t; h)≤ M <∞ (2B.11)

from differentiation of the expression

E j (t; h)= ⟨Ph(t)u j (t; h), u j (t; h)⟩ (2B.12)

and using a routine elliptic parametrix construction that is uniform in t ∈ (0, 1) to bound the quantity

⟨∂tPh(t)u j (t; h), u j (t; h)⟩ (2B.13)

given that E j (t; h) lies in a fixed energy band [a, b].
Recalling (2A.5), Proposition 2.8 implies that

⟨∂tPh(t)u j , u j ⟩ ∈ [Q− − ϵ, Q+ + ϵ] (2B.14)

for all j ∈ S(t; h) such that E j is smooth at t , and all h < h0(t, ϵ).
Now, from the outer regularity of the Lebesgue measure, we may then choose a subinterval J ⊂ (0, δ)

such that
m(B∩ J )

m(J )
> 1 − ϵ. (2B.15)

We can then apply the monotone convergence theorem to upgrade Proposition 2.8 for t ∈ B to a statement
that is uniform in a large-measure subset of J.

Proposition 2.9. There exists a subset B̃ ⊆ B∩ J and an h0(ϵ) > 0 such that

m(B̃)
m(J )

> 1 − 2ϵ (2B.16)

and, for any h < h0(ϵ) and any t ∈ B̃, there exists a subset

Z(t, h)⊂ { j ∈ N : E j (t, h) ∈ [a, b]} (2B.17)

such that
#Z(t, h)

#{ j ∈ N : E j (t, h) ∈ [a, b]}
> 1 − 2ϵ for all 0< h < h0 (2B.18)

and
⟨∂tPh(t)u j , u j ⟩ ∈ [Q− − ϵ, Q+ + ϵ] for all j ∈ Z(t, h), (2B.19)

for all Z(t; h) such that E j is smooth at t and all h < h0(ϵ).

Proof. For fixed η, ϵ > 0, we define

Bη := {t ∈ B∩ J : h0(t, ϵ) > η}, (2B.20)

where h0(t, ϵ) is as in Proposition 2.8. As B ∩ J =
⋃
η>0 Bη, countable additivity implies that for

sufficiently small η0 > 0, we have

m(Bη0) >
1 − 2ϵ
1 − ϵ

m(B∩ J ) > (1 − 2ϵ)m(J ). (2B.21)
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We now take B̃ = Bη0 and Z(t; h)= S(t; h) in the notation of Proposition 2.8, and (2B.19) follows from
(2B.14). □

In light of Proposition 2.9, we redefine Q−, Q+ to be the endpoints of the enlarged interval in (2B.19).
Hence

⟨∂tPh(t)u j , u j ⟩ ∈ [Q−, Q+] for all j ∈ Z(t, h). (2B.22)

In terms of the redefined Q−, Q+, we have

Q− − B > c − ϵ > 0, (2B.23)

and so we have established a discrepancy between the typical speed of eigenvalue flow and the upper
bound for the speed of quasieigenvalue flow.

2C. Spectral nonconcentration. We can now complete the proof of Theorem 1.1 by proving a spectral
nonconcentration result that follows from the results of Section 2B.

Proposition 2.10. Under the quantum ergodicity assumption m(B) > 0 imposed in Section 2B, for
sufficiently small ϵ > 0 there exists t∗ ∈ B̃ ⊂ B such that

N (t∗; h)
#Mh(t∗)

<
1
2

(2C.1)

for a sequence h j → 0, where
N (t; h) := #{ j ∈ N : E j (t; h) ∈ W (t; h)} (2C.2)

is the number of exact eigenvalues lying in the union W (t, h) of the quasieigenvalue windows as introduced
in (2A.18).

Proof. The method of proof is by averaging in t and using Proposition 2.9 to show that most individual
eigenfunctions cannot lie in W (t, h) for a significant proportion of t ∈ J. We begin by defining

Aj (h)= {t ∈ J : E j (t; h) ∈ [a, b]}, (2C.3)

Bj (h)= {t ∈ J : j ∈ Z(t; h)}, (2C.4)

C j (h)= {t ∈ J : E j (t; h) ∈ W (t; h)}. (2C.5)

From Proposition 2.9, for each t ∈ B̃ we have∑
j∈N

1Bj ≥ (1 − 2ϵ)
∑
j∈N

1Aj (2C.6)

for h < h0(ϵ). Integrating, we obtain∑
j∈N

∫
B̃

1Bj dt ≥ (1 − 2ϵ)
∑
j∈N

∫
B̃

1Aj dt. (2C.7)

Hence ∑
j∈N

∫
J

1Bj dt ≥ (1 − 2ϵ)
∑

j∈G(h)

(∫
J

1Aj dt −

∫
J\B̃

1Aj dt
)

≥ (1 − 2ϵ)
∑

j∈G(h)

(∫
J

1Aj dt − 2ϵm(J )
)
, (2C.8)
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which can be rewritten as ∑
j∈N

m(Bj )≥ (1 − 2ϵ)
∑

j∈G(h)

(m(Aj )− 2ϵm(J )). (2C.9)

From the definitions (2A.19) and (2A.23), we know that m(Aj ) > 0 only if j ∈ G(h) and m(Aj )= m(J )
if j ∈ G̃(h). Thus we can estimate

1
#G(h)

∑
j∈N

m(Bj )≥ (1 − 2ϵ)
(

#G̃(h)
#G(h)

− 2ϵ
)

m(J )

≥ (1 − 2ϵ)(1 − O(ϵ))m(J )

=: (1 − η)m(J ), (2C.10)

where lim suph→0 η(ϵ; h)= oϵ(1). Consequently we have

m(Bj )≥ (1 − η1/2)m(Aj ) (2C.11)

for a subfamily F(h)⊂ G̃(h) with

#F(h)
#G(h)

≥ 1 − η1/2
− O(ϵ) (2C.12)

in the limit h → 0, where we have made use of Proposition 2.4.
Taking E(t; h) := E j (t; h) for some j ∈ F , the bound from the Hadamard variational formula (2B.22)

yields

E(t2; h)− E(t1; h)≥ ((1 − η1/2)Q− − Mη1/2)m(J ), (2C.13)

where M is the uniform bound on eigenvalue flow speed for eigenvalues in [a, b] and J = [t1, t2].
On the other hand, we now bound E(t2; h)− E(t1; h) above. To do this, we define

Ẽ(t; h)= E(t; h)− Bt and µ̃m(t; h)= µm(t; h)− Bt,

where B was the upper bound in (2B.7). Then the transformed quasieigenvalue windows

W̃m(t; h)= [µ̃m(t; h)− hn+1, µ̃m(t; h)+ hn+1
]

are nonincreasing. From this it follows that if Ẽ(s; h)∈[µ̃m(s; h)−hn+1, µ̃m(s; h)+hn+1
] and m ∈Mh(s)

for some s ∈ J, then Ẽ(s ′
; h)− Ẽ(s; h) < 2hn+1, where s ′ is the final time t ∈ J such that m ∈ Mh(t)

and Ẽ(t; h) ∈ [µ̃m(t; h)− hn+1, µ̃m + hn+1
]. This implies E(s ′

; h)− E(s; h) < 2hn+1
+ B(s ′

− s).
Generalising this idea, we can cover each C j (h) with a finite union of intervals

⋃
k Ik with Ik = [sk, s ′

k]

defined as follows:

(i) We define s0 := inf{t ∈ J : E(t; h) ∈ W (t; h)}, and we choose an m(0) ∈ Mh(s0) such that E(t; h) ∈
[µm(0)(t; h)− hn+1, µm(0)(t; h)+ hn+1

] and m(0) ∈ Mh(t) for all sufficiently small t − s0 > 0.

(ii) We then define s ′

0 := sup{t ∈ J : E(t; h) ∈ [µm(0)(t; h)− hn+1, µm(0)(t; h)+ hn+1
]}.
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(iii) If {t ∈ J : t > s ′

k−1 and E(t; h) ∈ W (t; h)} is empty, we terminate the inductive process; otherwise
we proceed inductively by defining sk := inf{t ∈ J : t > s ′

k−1 and E(t; h)∈ W (t; h)} and choosing a corre-
sponding m(k) ∈Mh(sk) such that E(t; h) ∈ [µm(k)(t; h)−hn+1, µm(k)(t; h)+hn+1

] and m(k) ∈Mh(t)
for all sufficiently small t − sk−1 > 0.

(iv) We then define s ′

k := sup{t ∈ J : E(t; h) ∈ [µm(k)(t; h)− hn+1, µm(k)(t; h)+ hn+1
]}.

From the Weyl asymptotics, this procedure must terminate after finitely many iterations.

Remark 2.11. In the case that E(t; h) is still in a quasieigenvalue window for t arbitrarily close to, but
greater than s ′

k , we will have sk+1 = s ′

k . This is the only kind of overlap possible between the intervals Ik .
We also remark that the m(k) are necessarily distinct, by the nature of this construction.

For each such interval Ik = [sk, s ′

k], we have that E(s ′

k; h)− E(sk; h)≤ 2hn+1
+ B(s ′

k − sk). As there
can be at most O(h−n) intervals Ik , we obtain∑

k

E(s ′

k; h)− E(sk; h)≤ B
∑

k

(s ′

k − sk)+ O(h). (2C.14)

For such eigenvalues, we thus obtain the upper bound

E(t2; h)− E(t1; h)≤

∑
k

(E(s ′

k; h)− E(sk; h))+
(

m(J )(1 − η1/2)−
∑

k

(s ′

k − sk)

)
Q+ + m(J )η1/2 M

≤ (B − Q+)
∑

k

(s ′

k − sk)+ m(J )(1 − η1/2)Q+ + m(J )η1/2 M + O(h)

≤ (B − Q+)m(C j )+ ((1 − η1/2)Q+ + Mη1/2)m(J )+ O(h) (2C.15)

in the limit h → 0. Rearranging (2C.15) and using (2C.13), we arrive at

(Q+ − B)
m(C j )

m(J )
≤ 2Mη1/2

+ (1 − η1/2)(Q+ − Q−). (2C.16)

Hence by taking ϵ sufficiently small and then passing to sufficiently small 0< h < h0(ϵ) we can bound
m(C j )/m(J ) by an arbitrarily small positive constant γ for all j ∈ F . Hence we have∫

J
N (t; h) dt ≤

∫
J

∑
j∈N

1C j dt ≤

∫
J
γ

∑
j∈F

1Aj + #(G \F ) dt

≤ (γ #F + (η1/2
+ O(ϵ))#G)m(J )

≤ (γ + η1/2
+ O(ϵ))(#G)m(J ), (2C.17)

where we used Proposition 2.4 in the final line. Fixing sufficiently small ϵ > 0, for all h< h0(ϵ) we have

1
m(J )

∫
J

N (t; h)
#Mh(t)

dt ≤
1
4
. (2C.18)

It follows that for each such h < h0, the set{
t ∈ J :

N (t; h)
#Mh(t)

≤
1
2

}
(2C.19)
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has measure at least m(J )/2. Taking a sequence h j → 0 and applying the Borel–Cantelli lemma completes
the proof. □

Remark 2.12. In fact, the above argument demonstrates the existence of a family of such t∗ with measure
bounded below by |J |/2; however, we shall only require a single such t∗ in what follows.

We now prove an elementary spectral theory result that will show that the conclusion of Proposition 2.10
is in fact absurd, hence establishing that m(B) = 0 and completing the proof of Theorem 1.1. We
denote by U the h-dependent span of all eigenfunctions with eigenvalues in W (t; h), and as in (4C.3),
{(vm(t; h), µm(t; h))}m∈Mh(t) denotes the family of quasimodes and associated quasieigenvalues.

Proposition 2.13. For sufficiently small h > 0, the projections

wm(t∗, h)= πU (vm(t∗, h)) (2C.20)
are linearly independent.

Proof. First, we show that the estimate from Definition 4.4 on the error of quasimodes implies that the
projections πU (vm(t∗, h)) are large. In particular, for m ∈ Mh(t∗), we have∥∥∥∥(Ph(t∗)−µm(t∗, h))

∑
j∈N

⟨vm(t∗, h), u j (t∗, h)⟩u j

∥∥∥∥2

= O(h2γ+2)

=⇒

∑
|E j −µm |>hn+1

|E j (t, h)−µm(t, h)|2|⟨vm(t∗, h), u j (t∗, h)⟩|2 = O(h2γ+2)

=⇒ πU⊥(vm(t∗, h))= O(hγ−n).

Hence for sufficiently small h, we have

∥wm∥
2
= ∥πU (vm(t∗, h))∥2

= 1 + O(hγ+1)+ O(h2γ−2n). (2C.21)

From the almost-orthogonality condition that our quasimodes vm satisfy (see Definition 4.4), together
with (2C.21), it follows that the wm are almost orthogonal for distinct m ∈ Mh(t). In particular, for
m ̸= k, we have

|⟨πU (vm(t∗, h)), πU (vk(t∗, h))⟩| ≤ |⟨vm(t∗, h), vk(t∗, h)⟩| + |⟨πU⊥(vm(t∗, h)), πU⊥(vk(t, h))⟩|

= O(hγ+1)+ O(h2γ−2n).

Hence
|⟨πU (vm(t∗, h)), πU (vk(t∗, h))⟩ − δk,m | = O(hγ+1)+ O(h2γ−2n) (2C.22)

for all sufficiently small h. If we enumerate the quasimodes vm(t∗, h) by positive integers rather than
m ∈ Zn, we can then form the Gram matrix M(h) ∈ Mat(#Mh(t∗),R), with entries given by

Mi j (h)= ⟨wi , wj ⟩. (2C.23)

Since
∥M − I∥H S = (#Mh(t∗))(O(hγ+1)+ O(h2γ−2n))= O(hγ+1−n)+ O(h2γ−3n), (2C.24)

we can invert M = I + (M − I ) as a Neumann series for sufficiently small h, provided the exponents
of h are positive. This can be ensured by taking γ > 3n/2. Since M is nonsingular, we can therefore
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conclude that the functions in the collection

{πU (vm(t∗, h)) : m ∈ Mh(t∗)} (2C.25)

are linearly independent. □

We are now in a position to complete the proof of Theorem 1.1.

Completion of proof of Theorem 1.1. Having fixed ϵ > 0 in Proposition 2.5, we showed in Proposition 2.10
that there exists a t∗ ∈ (0, δ) at which we have the spectral nonconcentration result (2C.1) for a sequence
h j → 0.

On the other hand, we showed in Proposition 2.13 that the projections πU (vm(t∗, h)) are #Mh(t∗)
linearly independent vectors in a vector space of dimension dim(U ) = N (t∗, h) < #Mh(t∗)/2. This
contradiction completes the proof. □

3. Birkhoff normal form

In this section we construct a family of Birkhoff normal forms corresponding to a family of Gevrey
smooth Hamiltonians H(θ, I ; t), real-analytic in the parameter t ∈ (−1, 1). The introduction of this
parameter leads to only minor changes in the argument of [Popov 2004b].

We formulate the KAM theorem from [Popov 2004b] in Section 3B and outline the proof in Section 3C.
We then complete the Birkhoff normal form construction following [Popov 2004b] in Section 3D.

In Section 3E, we compute the leading-order behaviour of this Birkhoff normal form as t → 0, which
was used in Proposition 2.5 to obtain an expression for the derivatives of the quasieigenvalues of the
operator Ph(t) constructed in Section 4.

3A. Notation. We begin by introducing some notational conventions that will be used several times in
this section.

Definition 3.1. For s, r > 0 we write

Ds,r := {θ ∈ Cn/2πZn
: |Im(θ)|< s} × {I ∈ Cn

: |I |< r}, (3A.1)

where | · | denotes the sup-norm on Cn induced by the 2-dimensional ℓ∞ norm on C.

These domains arise from considering the analytic extension of real-analytic Hamiltonians in action-
angle variables. In this area it is common to bound derivatives of analytic functions using Cauchy
estimates, which requires keeping track of shrinking sequences of domains.

For simplicity of nomenclature, we call an analytic function of several complex variables real-analytic
if its restriction to a function of n real variables is real-valued.

As a final notational convenience, we use | · | to denote the ℓ1 norm when applied to elements of Zn

throughout this paper, as well as the matrix norm induced by the sup norm on Cn.

3B. Formulation of the KAM theorem. Let D ⊂ Rn be a bounded domain, and consider a completely
integrable Hamiltonian H 0(I )= H 0(θ, I ) : Tn

× D → R in action-angle coordinates. To begin, we shall
assume that this Hamiltonian is real-analytic.
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In addition, we assume the nondegeneracy condition det(∂2 H/∂ I 2) ̸= 0. This assumption implies that
the map relating the action variable I to the frequency ω = ∇ H 0(I ) is locally invertible. In fact, we
assume that

I 7→ ∇ H 0(I ) (3B.1)

is a diffeomorphism from D to � ⊂ Rn. The inverse to this map is given by ∇g0, where g0 is the
Legendre transform of H 0. The phase space Tn

× D is then foliated by the family of Lagrangian tori
{Tn

× {I } : I ∈ D} that are invariant under Hamiltonian flow associated to H 0.
The KAM theorem asserts that small perturbations of H 0(I ), written as H(θ, I )= H 0(I )+ H 1(θ, I )

on Tn
× D still possess a family of Lagrangian tori which fill up phase space up to a set of Liouville

volume o(1) in the size of the perturbation. More precisely, if � := {ω : ω = ∇I H 0
} is the set of

frequencies for the quasiperiodic flow of H 0, the frequencies satisfying

|⟨ω, k⟩| ≥
κ

|k|τ
(3B.2)

for all nonzero k ∈ Zn and fixed κ > 0 and τ > n − 1 also correspond to Lagrangian tori for the
perturbed Hamiltonian H, provided ∥H − H 0

∥< ϵ(κ) in a suitable norm. Such frequencies are said to be
nonresonant, and we denote the set of nonresonant frequencies by �∗

κ , suppressing the dependence on τ
from our notation. These sets are obtained by taking the intersection of the sets{

ω ∈� : |⟨ω, k⟩| ≥
κ

|k|τ

}
(3B.3)

over all nonzero k ∈ Zn, and hence
⋂
κ>0�

∗
κ is closed and perfect, with

⋃
κ>0�

∗
κ of full measure in �,

as can be seen from the observation that

m
({
ω ∈ Rn

: |⟨k, ω⟩|<
κ

|k|τ

})
= O

(
κ

|k|τ+1

)
. (3B.4)

We work with the sets

�κ := {ω ∈�∗

κ : dist(ω, ∂�)≥ κ}, (3B.5)

which have positive measure for sufficiently small κ . It is also convenient to introduce notation for the set
of points of Lebesgue density in �κ , which we denote by

�̃κ :=

{
ω ∈� :

m(B(ω, r)∩�κ)
m(B(ω, r))

→ 1 as r → 0
}
. (3B.6)

From the Lebesgue density theorem we have that m(�̃κ)= m(�κ). We also note that a smooth function
vanishing on �κ is necessarily flat on �̃κ .

The construction of the Birkhoff normal form is a consequence of Theorem 3.2, which is a version of
the KAM theorem localised around the frequency ω which is taken as an independent parameter. The
idea of treating ω as an independent parameter in this problem was originally due to Moser [1967]. This
version is particularly useful for the Birkhoff normal form construction, as it makes it an easier task to
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check the regularity of the invariant tori with respect to the frequency parameter. To illustrate the setup of
this theorem, we set

�′
= {ω ∈� : dist(ω,�κ)≤ κ/2}, D′

= ∇g0(�′). (3B.7)

Taking z0 ∈ D′, we let I = z − z0 lie in a small ball of radius R about 0. That is, R is chosen such that
BR(z0)⊂ D. Taylor expanding gives us the expression

H 0(z)= H 0(z0)+ ⟨∇z H 0(z0), I ⟩ +

∫ 1

0
(1 − t)⟨∇2

z H 0(z0 + t I )I, I ⟩ dt. (3B.8)

We now take ω ∈�0 to be the corresponding frequency ∇ H 0(z0). The inverse of the frequency map is

ψ0(ω)= ∇g0(ω), (3B.9)

where g0 is the Legendre transform of H 0. Hence we can write

H 0(z)= H 0(ψ0(ω))+ ⟨ω, I ⟩ + ⟨P0(I ;ω)I, I ⟩, (3B.10)

where P0 is the quadratic remainder term in (3B.8). Expanding about the point z0 = ∇g0(ω), we can
write our perturbation H 1 locally as

H 1(θ, z)= H 1(θ,∇g0(ω)+ I )= P1(θ, I ;ω). (3B.11)

This leads us to consider perturbed real-analytic Hamiltonians in the form

H(θ, I ;ω)= H 0(ψ0(ω))+ ⟨ω, I ⟩ + P(θ, I ;ω)=: N (I ;ω)+ P(θ, I ;ω), (3B.12)

where
N (I ;ω)= H 0(ψ0(ω))+ ⟨ω, I ⟩, (3B.13)

P(θ, I ;ω)= ⟨P0(I ;ω)I, I ⟩ + P1(θ, I ;ω). (3B.14)

The traditional formulations of the KAM theorem assert the existence of a Cantor family of tori that persist
under small perturbations of a single Hamiltonian H 0 with domain D. In the framework laid out above, we
now have a Cantor family of Hamiltonians parametrised by ω ∈�κ . Note that each of these Hamiltonians
consists of a component N (I ;ω) that is only linear in I, and a nonlinear perturbation P(θ, I ;ω).

The essence of the frequency-localised KAM theorem in Theorem 3.2 is that for sufficiently small P we
can find a symplectic change of variables that transforms H to a linear normal form in I with remainder
quadratic in I for ω ∈ �κ . This establishes the persistence of the Lagrangian torus with frequency ω.
From Theorem 3.2, one can obtain Theorem 3.9, which establishes the existence of a Cantor family of
invariant tori for the original Hamiltonian H as with traditional formulations of the KAM theorem.

To work with Gevrey smooth Hamiltonians, we fix L2 ≥ L0 ≥ 1 and A0 > 1, and assume that
H 0

∈ Gρ,1
L0,L2

(D0
× (−1, 1)) and g0

∈ Gρ,1
L0,L2

(�0) with the estimates

∥H 0
∥L0,L2, ∥g0

∥L0,L2 ≤ A0. (3B.15)

For L2 ≥ L1 ≥ 1 we now consider the analytic family of Gevrey perturbations

H 1
∈ Gρ,ρ,1

L1,L2,L2
(Tn

× D × (−1, 1)),
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with the perturbation norm
ϵH := κ−2

∥H 1
∥L1,L2,L2 . (3B.16)

The estimate (3B.15) implies that there is a constant C(n, ρ) dependent only on n and ρ such that taking

R ≤
C(n, ρ)κ

A0L2
0

(3B.17)

is sufficient to ensure that BR(z0)⊂ D for any z0 ∈ D′.
At this point we introduce the notational convention for this section that C represents an arbitrary

positive constant, dependent only on n, τ, ρ and L0. Similarly, c will represent a positive constant strictly
less than 1, also only dependent on n, τ, ρ and L0. We will be explicit when we stray from this convention.

The estimates (3B.15) and (3B.16), together with Proposition A.3 in [Popov 2004b] show that our
constructed functions P0 and P1 are in the Gevrey classes

Gρ
C L0,C L2,C L2

(BR ×�′
× (−1, 1))⊂ Gρ

C L2,C L2
(BR ×�′

× (−1, 1)),

Gρ,ρ,ρ,1
L1,L2,C L2,L2

(Tn
× BR ×�′

× (−1, 1))

respectively, where the C does not depend on L0 or L2. Additionally we have the estimate

∥P1
∥L1,C L2,C L2,C L2 ≤ κ−2ϵH . (3B.18)

Dropping the factors in our Gevrey constants dependent only on n, τ, ρ, L0 for brevity of notation, we
are in a position to state the local KAM theorem in terms of the weighted norm

⟨P⟩r := r2
∥P0

∥L2,L2,L2 + ∥P1
∥L1,L2,L2,L2 (3B.19)

for 0< r < R.

Theorem 3.2. Suppose 0 < ζ ≤ 1 is fixed and κ < L−1−ζ

2 . Then there exists N (n, ρ, τ ) > 0 and ϵ > 0
independent of κ, L1, L2, R, � such that whenever the Hamiltonian

H(θ, I ;ω, t)= H 0(ψ0(ω); t)+ ⟨ω, I ⟩ + ⟨P0(I ;ω, t)I, I ⟩ + P1(θ, I ;ω, t) (3B.20)

and 0< r < R are such that
⟨P⟩r < ϵκr L−N

1 (3B.21)

we can find
φ ∈ Gρ(τ+1)+1,1(�×

(
−

3
4 ,

3
4

)
, �

)
and

8= (U, V ) ∈ Gρ,ρ(τ+1)+1,1(Tn
×�×

(
−

3
4 ,

3
4

)
,Tn

× BR
)

such that

(i) For all ω ∈ �κ and all t ∈
(
−

3
4 ,

3
4

)
, the map 8ω,t = 8( · ;ω, t) : Tn

→ Tn
× BR is a Gρ embed-

ding, with image 3ω,t an invariant Lagrangian torus with respect to the Hamiltonian Hφ(ω,t),t(θ, I )=

H(θ, I ;φ(ω, t), t). The Hamiltonian vector field restricted to this torus is given by

X Hφ(ω,t),t ◦8ω,t = D8ω,t ·Lω, (3B.22)
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where

Lω =

n∑
j=1

ωj
∂

∂θj
∈ T Tn. (3B.23)

(ii) There exist positive constants A and C dependent only on n, τ, ρ, L0 such that

|∂αθ ∂
β
ω(U (θ;ω, t)− θ)| + r−1

|∂αθ ∂
β
ωV (θ;ω, t)| + κ−1

|∂βω(φ(ω; t)−ω)|

≤ A(C L1)
|α|(C Lτ+1

1 /κ)|β|α!
ρ β!

ρ(τ+1)+1 ⟨P⟩r

κr
L N

1 (3B.24)

uniformly in Tn
×�×

(
−

3
4 ,

3
4

)
.

We remark that at the endpoint t = 0, this result is trivial by taking φ(ω, 0)= ω, U (θ, ω, 0)= θ and
V (θ, ω, 0)= ∇g0(ω).

Theorem 3.2 can be proved in the same way as [Popov 2004b, Theorem 2.1], based on the rapidly
converging iterative procedure introduced in [Kolmogorov 1954]. Indeed, much of the technicality in
[Popov 2004b] involves the approximation of Gevrey class Hamiltonians by real-analytic Hamiltonians.
Thanks to the assumption of analyticity in t in Theorem 3.2, no such approximation is necessary in the
t-parameter.

In the next section, we sketch the key steps in the proof of Theorem 3.2, highlighting the points at
which the presence of the t-parameter requires a modification of the argument in [Popov 2004b].

First, we discuss the result that will comprise the steps of the iterative construction. Given a Hamiltonian
in the form

H(θ, I ;ω, t)= e(ω; t)+ ⟨ω, I ⟩ + P(θ, I ;ω, t)

= N (I ;ω, t)+ P(θ, I ;ω, t), (3B.25)

we aim to construct a t-dependent symplectomorphism 8 and a t-dependent frequency transformation φ
such that for F = (8, φ) we have

(H ◦F )(θ, I ;ω, t)= N+(I ;ω, t)+ P+(θ, I ;ω, t), (3B.26)

where N+(I, ω, t)= e+(ω)+ ⟨I, ω⟩ and with |P+| controlled by |P|
r for some r > 1. This construction

is analogous to that in [Pöschel 2001].

Theorem 3.3. Suppose ϵ, h, v, s, r, η, σ, K are positive constants such that

s, r < 1, v < 1
6 , η < 1

8 , σ < 1
5 s, ϵ ≤ cκηrσ τ+1, ϵ ≤ cvhr, h ≤ κ/2K τ+1, (3B.27)

where c is a constant dependent only on n and τ .
Suppose H(θ, I ;ω, t) = N (I ;ω, t) + P(θ, I ;ω, t) is real-analytic on Ds,r × Oh × (−1, 1), and

|P|s,r,h ≤ ϵ. Here, Ds,r is as in Definition 3.1,

Oh := {ω ∈ Cn
: dist(ω,�κ) < h}, (3B.28)

and | · |s,r,h denotes the sup-norm on Ds,r × Oh . Then there exists a real-analytic map

F = (8, φ) : Ds−5σ,ηr × O(1/2−3v)h × (−1, 1)→ Ds,r × Oh, (3B.29)
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where the maps

8 : Ds−5σ,ηr × Oh × (−1, 1)→ Ds,r , (3B.30)

φ : O(1/2−3v)h × (−1, 1)→ Oh (3B.31)

are such that
H ◦F = e+(ω, t)+ ⟨ω, I ⟩ + P+(θ, I ;ω, t)

= N+(I ;ω, t)+ P+(θ, I ;ω, t) (3B.32)

and we have the new remainder estimate

|P+|s−5σ,ηr,(1/2−2v)h ≤ C
(

ϵ2

κrσ τ+1 + (η2
+ K ne−Kσ )ϵ

)
. (3B.33)

Moreover 8 is symplectic for each (ω, t) and has second component affine in I. Finally, we have the
uniform estimates on the change of variables

|W (8− id)|, |W (D8− Id)W −1
| ≤

Cϵ
κrσ τ+1 , (3B.34)

|φ− id|, vh|Dφ− Id| ≤
Cϵ
r
, (3B.35)

where W = diag(σ−1Id, r−1Id). All estimates are uniform in the analytic parameter t ∈ (−1, 1).

This theorem is identical to [Popov 2004b, Proposition 3.2], with all estimates uniform in the parameter t .
The proof is identical, with a detailed exposition in [Pöschel 2001]. The application of [Popov 2004b,
Lemma 3.4] to obtain the frequency transformation φ is replaced by Proposition C.2 in our setting.

As in [Pöschel 2001; Popov 2000a], Theorem 3.3 can be used to prove the KAM theorem for
real-analytic Hamiltonians H(θ, I ;ω, t). However, in order to treat the more general class of Gevrey
smooth Hamiltonians H ∈ Gρ,ρ,ρ,1((Tn

× D × �) × (−1, 1)), we require the approximation result
Proposition 3.4.

3C. Proof of the KAM theorem. Following the proof of Theorem 3.2 in [Popov 2004b, Section 3], we
extend the P j (θ, I, ω, t) to Gevrey functions

P̃ j
∈ Gρ,ρ,1

C L1,C L2,C L2
(Tn

× R2n
× (−1, 1)), (3C.1)

where C depends only on n and ρ. We do this whilst preserving analyticity in t by making use of an
adapted version of the Whitney extension theorem for anisotropic Gevrey classes, from Proposition 3.8.

We thus obtain the estimate

∥P̃ j
∥ ≤ ALn+1

1 ∥P j
∥, (3C.2)

where A also only depends on n and ρ. We then cut off P̃ j without loss to have (I, ω) supported in
B1 × BR ⊂ R2n, where 1 ≪ R is such that �0

⊂ BR−1. From here, we suppress the tilde in our notation, as
well as the factor C in our Gevrey constant. We require the following approximation result for functions
in anisotropic Gevrey classes that plays a key role in the KAM iterative scheme.



GENERIC KAM HAMILTONIANS ARE NOT QUANTUM ERGODIC 141

Proposition 3.4. Suppose P ∈ Gρ,ρ,1
L1,L2,L2

(Tn
× R2n

× (−1, 1)) satisfies supp(I,ω)(P)⊂ B1 × BR . If
u j , wj , vj are positive real sequences monotonically tending to zero such that

vj L2, wj L2 ≤ u j L1 ≤ 1, v0, w0 ≤ L−1−ζ

2 , (3C.3)

where 1 ≤ L1 ≤ L2 and 0 < ζ ≤ 1 are fixed, then we can find a sequence of real-analytic functions
Pj : Uj → C such that

|Pj+1 − Pj |Uj+1 ≤ C(Rn
+ 1)Ln

1 exp
(
−

3
4(ρ− 1)(2L1u j )

−1/(ρ−1))
∥P∥, (3C.4)

|P0|U0 ≤ C(Rn
+ 1)

(
1 + Ln

1 exp
(
−

3
4(ρ− 1)(2L1u0)

−1/(ρ−1))), (3C.5)

|∂αx (P − Pj )(θ, I ;ω, t)| ≤ C(1 + Rn)Ln
1 L2 exp

(
−

3
4(ρ− 1)(2L1u j )

−1/(ρ−1)) (3C.6)

in Tn
× B1 × BR × (−1, 1) for |α| ≤ 1, where

U m
j := {(θ, I ;ω, t) ∈ Cn/2πZn

× Cn
× Cn

× C :

|Re(θ)| ≤ π, |Re(I )| ≤ 2, |Re(ω)| ≤ R + 1, |Re(t)| ≤ 1,
|Im(θ)| ≤ 2u j , |Im(I )| ≤ 2vj , |Im(ωk)| ≤ 2wj , |Im(t)| ≤ (2L2)

−1
} (3C.7)

and
Uj := U 1

j , (3C.8)

where we have identified [−π, π]
n with Tn for simplicity of notation.

The proof of Proposition 3.4 can be found in [Popov 2004b, Section 3]. The first step is to extend P to
functions Fj : U 2

j → C that are almost analytic in (θ, I, ω) and are analytic in t . The Gevrey estimate
on t-derivatives of P implies that the Taylor expansions in t have radius of convergence L−1

2 , and so the
expression

Fj (θ + i θ̃ , I + i Ĩ , ω+ iω̃, t + i t̃ ) :=

∑
Mj

∂αθ ∂
β

I ∂
γ
ω P(θ, I ;ω, t)

(i θ̃ )α(i Ĩ )β(iω̃)γ (i t̃ )δ

α!β! γ ! δ!
(3C.9)

is convergent on U 2
j , where the index set is as in [Popov 2004b].

The remainder of the proof in [Popov 2004b] can be followed without change. As P is analytic in t ,
we do not need to consider shrinking domains of analyticity as in the other variables.

The iterative scheme in [Popov 2004b, Section 3.3] can then be carried out, defining decreasing
sequences of our parameters sj , rj , h j , ηj , ϵj , σj , K j such that the hypotheses of Theorem 3.3 are always
satisfied, as well as decreasing sequences of the parameters u j , vj , wj such that the hypotheses of the
Proposition 3.4 are always satisfied. Due to the modifications made in Theorem 3.3 and Proposition 3.4
from their analogues in [Popov 2004b], all estimates are uniform in the analytic parameter t ∈ (−1, 1).

Writing Uj = U 1
j ∩ {|I |< rj }, where U 1

j is defined as in Proposition 3.4, and applying Proposition 3.4
to the terms P0, P1 from (3B.14), we obtain sequences P0

j , P1
j of real-analytic functions in U 1

j that are
good approximations to P0 and P1.

Setting
Pj (θ, I ;ω, t) := ⟨P0

j (I ;ω, t)I, I ⟩ + P1
j (θ, I ;ω, t), (3C.10)
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Proposition 3.4, together with the factors picked up during the Whitney extension of P0, P1 in (3C.2),
implies the estimates

|P0|U0 ≤ ϵ̃0, (3C.11)

|Pj − Pj−1|Uj ≤ ϵ̃j , (3C.12)

where ϵ̃j is a positive sequence rapidly converging to zero.
Defining the Hamiltonian

Hj (θ, I ;ω, t)= N0(I ;ω)+ Pj (θ, I ;ω, t)= ⟨ω, I ⟩ + Pj (θ, I ;ω, t), (3C.13)

which is real-analytic in Uj , one can now perform the KAM iterative scheme as in [Popov 2004b,
Proposition 3.5], using the key ingredient of Theorem 3.3. For j ≥ 0 we denote by Dj the class of
real-analytic diffeomorphisms from Dj+1 × Oj+1 × (−1, 1)→ Dj × Oj of the form

F(θ, I ;ω, t)= (8(θ, I ;ω, t), φ(ω; t))= (U (θ;ω, t), V (θ, I ;ω, t), φ(ω; t)), (3C.14)

where 8 is affine in I and canonical for fixed (ω, t). The domains are defined in terms of the parameters
by Dj = Dsj ,rj and Oj = Oh j .

Proposition 3.5. Suppose Pj is real-analytic on Uj for each j ≥ 0 and that we have the estimates

|P0|U0 ≤ ϵ̃0, (3C.15)

|Pj − Pj−1|Uj ≤ ϵ̃j (3C.16)

for each j ≥ 1.
Then for each j ≥ 0 we can find a real-analytic normal form Nj (I ;ω, t) = ej (ω, t)+ ⟨ω, I ⟩ and a

real-analytic map F j given by

F j+1
= F0 ◦ · · · ◦Fj : Dj+1 × Oj+1 × (−1, 1)→ (D0 × O0)∩ Uj , (3C.17)

with the convention that the empty composition is the identity and where the Fj ∈ Dj are such that

Hj ◦F j+1
= Nj+1 + Rj+1, (3C.18)

|Rj+1|j+1 ≤ ϵj+1, (3C.19)

|W j (Fj − id)|j+1, |W j (DFj − Id)W −1
j |<

Cϵj

rj h j
, (3C.20)

|W 0(F j+1
−F j )|j+1 <

Cϵj

rj h j
, (3C.21)

where the constants C depend only on n and ρ and W j = diag(σ−1
j Id, r−1

j Id, h−1
j Id).

To show that this iterative scheme converges in the Gevrey class Gρ,ρ(τ+1)+1,ρ(τ+1)+1,1 requires Gevrey
estimates for the Sj := F j+1

−F j. To this end we introduce the domains

D̃j := {(θ, I ) ∈ Dj : |Im(θ)|< sj/2}, Õj := {ω ∈ Cn
: dist(ω,�κ) < h j/2}. (3C.22)
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For multi-indices α, β with |β| ≤ m, we also introduce the following notation for the (m−|β|)-th Taylor
remainder in the frequency variable, centred at ω:

Rm
ω (∂

α
θ ∂

β
ωS

j )(θ, I, ω′, t) := ∂αθ ∂
β
ωS

j
−

∑
|γ |≤m−|β|

(ω′
−ω)γ ∂αθ ∂

β+γ
ω S j (θ, I, ω, t)/γ ! . (3C.23)

We then have the following Gevrey estimates of [Popov 2004b, Lemma 3.6] uniformly in the t-parameter.

Lemma 3.6. We have

|W 0∂
α
θ ∂

β
ωS

j (θ, 0, ω, t)| ≤ ϵ̂AC |α|+|β|L |α|+|β|(τ+1)+1
1 κ−|β|α!

ρ β!
ρ′

E1/2
j (3C.24)

for all (θ, 0;ω, t) ∈ D̃j+1 × Õj+1 × (−1, 1), where ρ ′
= ρ(τ + 1)+ 1, and

|W 0(Rm
ω ∂

α
θ ∂

β
ωS

j )(θ, 0, ω′, t)|

≤ ϵ̂ACm+|α|+1L |α|+(m+1)(τ+1)+1
1 κ−m−1 |ω−ω′

|
m−|β|+1

(m − |β| + 1)!
α!
ρ (m + 1)!ρ

′

E1/2
j (3C.25)

for all θ ∈ Tn, ω,ω′
∈�κ and |β| ≤ m, where the constants A,C only depend on n, ρ, τ , ζ .

We can now bound derivatives in t ; we use the Cauchy estimate from Proposition C.1. This yields the
following corollary.

Corollary 3.7. We have

|W 0∂
α
θ ∂

β
ω∂

γ
t S j (θ, 0;ω, t)| ≤ ϵ̂AC |α|+|β|+|γ |L |α|+|β|(τ+1)+1

1 κ−|β|α!
ρ β!

ρ′

γ ! E1/2
j (3C.26)

for all (θ, 0;ω, t) ∈ D̃j+1 × Õj+1 ×
(
−

3
4 ,

3
4

)
, where ρ ′

= ρ(τ + 1)+ 1, and

|W 0(Rm
ω ∂

α
θ ∂

β
ω∂

γ
t S j )(θ, 0, ω′, t)|

≤ ϵ̂ACm+|α|+|γ |+1L |α|+(m+1)(τ+1)+1
1 κ−m−1 |ω−ω′

|
m−|β|+1

(m − |β| + 1)!
α!
ρ (m + 1)!ρ

′

γ ! E1/2
j (3C.27)

for all θ ∈ Tn, ω,ω′
∈�κ , t ∈

(
−

3
4 ,

3
4

)
and |β| ≤ m, where the constants A,C only depend on n, ρ, τ, ζ .

From Proposition 3.5 and Corollary 3.7, the rapid decay of E j implies that the limit

∂αθ ∂
γ
t Hβ(θ, ω; t) := lim

j→∞

∂αθ ∂
β
ω∂

γ
t (F j (θ, 0;ω, t)− (θ, 0, ω)) (3C.28)

exists for each (θ;ω, t) ∈ Tn
×�κ ×

(
−

3
4 ,

3
4

)
, and each triple of multi-indices α, β, γ . Convergence is

uniform, and the limit is smooth in θ and t and continuous in ω, with ∂αθ ∂
γ
t (Hβ)= ∂αθ ∂

γ
t Hβ, justifying

the notation in (3C.28).
We now need to use the jet H= (∂αθ ∂

γ
t Hβ) of continuous functions Tn

×�κ ×
(
−

3
4 ,

3
4

)
→ Tn

× D ×�

to obtain a Gevrey function on Tn
×�×

(
−

3
4 ,

3
4

)
by using a Gevrey version of the Whitney extension

theorem. We define

(Rm
ω ∂

α
θ ∂

γ
t H)β(θ, ω′, t) := ∂αθ ∂

γ
t Hβ(θ, ω′, t)−

∑
|δ|≤m−|β|

(ω′
−ω)δ∂αθ ∂

γ
t Hβ+δ(θ;ω, t)/γ ! . (3C.29)
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In this notation, the results of Corollary 3.7 yield

|W 0∂
α
θ ∂

γ
t Hβ(θ;ω, t)| ≤ ϵ̂AL1(C L1)

|α|(C Lτ+1
1 /κ)|β|Cγα!

ρ β!
ρ′

γ !, (3C.30)

|W 0(Rm
ω ∂

α
θ ∂

γ
t H)β(θ,ω′, t)| ≤ ϵ̂AL1(C L1)

|α|(C Lτ+1
1 /κ)m+1Cγ |ω−ω′

|
m−|β|+1

(m−|β|+1)!
α!
ρ (m+1)!ρ

′

γ ! (3C.31)

for |β| ≤ m, and (θ, ω, ω′, t) ∈ Tn
×�κ ×�κ ×

(
−

3
4 ,

3
4

)
, where A and C depend only on n, ρ, τ . These

estimates allow us to apply the following consequence of Theorem D.3.

Proposition 3.8. Suppose K ⊂ Rn is compact, and 1 ≤ ρ < ρ ′. If the jet ( f α,β,γ ) of functions f α,β,γ :

Tn
× K ×

(
−

3
4 ,

3
4

)
→ R is continuous on Tn

× K ×
(
−

3
4 ,

3
4

)
and is smooth in (θ, t) ∈ Tn

×
(
−

3
4 ,

3
4

)
for

each fixed ω ∈ K, where
∂α

′

θ ∂
γ ′

t ( f α,β,γ )= f α+α′,β,γ+γ ′

, (3C.32)

and we have the estimates

| f α,β,γ (θ;ω, t)| ≤ AC |α|

1 C |β|

2 C |γ |

3 α!
ρ β!

ρ′

γ !, (3C.33)

|(Rm
ω ∂

α
θ ∂

γ
t f )β(θ, ω′, t)| ≤ AC |α|

1 Cm+1
2 C |γ |

3
|ω−ω′

|
m−|β|+1

(m − |β| + 1)!
α!
ρ (m + 1)!ρ

′

γ ! (3C.34)

then there exist positive constants A0,C0, dependent only on (n, ρ, τ ) (in particular, independent of the
set K ) such that we can extend f to f̃ ∈ Gρ,ρ′,1

(
Tn

× Rn
×

(
−

3
4 ,

3
4

))
such that ∂αθ ∂

β
ω∂

γ
t f̃ = f α,β,ω on

Tn
× K ×

(
−

3
4 ,

3
4

)
and

|∂αθ ∂
β
ω∂

γ
t f̃ (θ, ω)| ≤ A0 A max(C1, 1)C |α|+|β|+|γ |+n

0 C |α|+n
1 C |β|

2 C |γ |

3 α!
ρ β!

ρ′

γ ! . (3C.35)

The proof of Proposition 3.8 is identical to that in [Popov 2004b, Theorem 3.7], making use of
Theorem D.3 involving the parameter t . Having established Proposition 3.8, the proof of Theorem 3.2
can be completed as in [Popov 2004b, Section 3.5] without modification.

3D. Birkhoff normal form. We obtain a Birkhoff normal form for near-integrable Hamiltonians using
a version of the KAM theorem that is a consequence of Theorem 3.2. The Gevrey index ρ(τ + 1)+ 1
frequently appears in these results, and so we introduce ρ ′

:= ρ(τ + 1)+ 1.

Theorem 3.9. Fix 0< ζ ≤ 1 and let H 0(I ; t) be a real-valued nondegenerate smooth family of Hamilto-
nians in Gρ,1(D0

× (−1, 1)) and let D be a subdomain with D ⊂ D0. We define � = ∇H 0(D) and fix
L2 ≥ L1 ≥ 1 and κ ≤ L−1−ζ

2 such that L2 ≥ L0 and �κ ̸=∅. Then there exists N = N (n, ρ, τ ) and ϵ > 0
independent of κ, L1, L2 and D ⊂ D0 such that for any H ∈ Gρ,ρ,1

L1,L2,L2
(Tn

× D × (−1, 1)) with norm

ϵH := κ−2
∥H − H 0

∥L1,L2,L2 ≤ ϵL−N
1 (3D.1)

there exists a map
8= (U , V ) ∈ Gρ,ρ′,1(Tn

×�×
(
−

3
4 ,

3
4

)
,Tn

× D
)

(3D.2)

such that:

(i) For each ω ∈ �κ and each t ∈
(
−

3
4 ,

3
4

)
, 3ω = {8(θ;ω, t) : θ ∈ Tn

} is an embedded invariant
Lagrangian torus of H, and X H ◦8( · ;ω, t)= D8( · ;ω, t) ·Lω.
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(ii) There exist constants A,C > 0 independent of κ, L1, L2 and D ⊂ D0 such that

|∂αθ ∂
β
ω(U (θ;ω, t)− θ)| + κ−1

|∂αθ ∂
β
ω(V (θ;ω, t)− ∇g0(ω))|

≤ A(C L1)
|α|(C Lτ+1

1 /κ)|β|α!
ρ β!

ρ′

L N/2
1 ϵ

1/2
H (3D.3)

uniformly in Tn
×�×

(
−

3
4 ,

3
4

)
.

The proof of Theorem 3.9 is identical to [Popov 2004b, Theorem 1.1], making use of Theorem 3.2.
We can now use Theorem 3.9 to obtain the Birkhoff normal form as done in [Popov 2004b].

Theorem 3.10. Suppose the assumptions of Theorem 3.9 hold. Then there exist N (n, ρ, τ ) > 0 and ϵ > 0
independent of κ, L1, L2, D such that for any H ∈ Gρ,ρ,1

L1,L2,L2
(Tn

× D × (−1, 1)) with

ϵH ≤ ϵL−N−2(τ+2)
1 , (3D.4)

where ϵH is as in (3D.1), there is a family of Gρ′,ρ′

maps ω : D ×
(
−

1
2 , 1, 2

)
→� and a family of maps

χ ∈ Gρ,ρ′,ρ′(
Tn

× D ×
(
−

1
2 , 1, 2

)
,Tn

× D
)

that are diffeomorphisms and exact symplectomorphisms
respectively for each fixed t ∈

(
−

1
2 , 1, 2

)
. Moreover, we can choose the maps ω and χ such that family of

transformed Hamiltonians
H̃(θ, I ; t) := (H ◦χ)(θ, I ; t) (3D.5)

is of Gevrey class Gρ,ρ′,ρ′(
Tn

× D ×
(
−

1
2 , 1, 2

))
and can be decomposed as

K (I ; t)+ R(θ, I ; t) := H̃(0, I ; t)+ (H̃(θ, I ; t)− H̃(0, I ; t)) (3D.6)

such that:

(i) Tn
× {I } is an invariant Lagrangian torus of H̃( · , · ; t) for each I ∈ Eκ(t) = ω−1(�̃κ; t) and each

t ∈
(
−

1
2 , 1, 2

)
.

(ii) ∂βI (∇K (I ; t)−ω(I ; t))= ∂
β

I R(θ, I ; t)= 0 for all (θ, I ; t) ∈ Tn
× Eκ(t)×

(
−

1
2 , 1, 2

)
, β ∈ Nn.

(iii) There exist A,C > 0 independent of κ, L1, L2, and D ⊂ D0 such that we have the estimates

|∂αθ ∂
β

I ∂
δ
t φ(θ, I ; t)| + |∂

β

I ∂
δ
t (ω(I ; t)− ∇H 0(I ; t))| + |∂αθ ∂

β

I ∂
δ
t (H̃(θ, I ; t)− H 0(I ; t))|

≤ AκC |α|+|β|+|δ|L |α|

1 (L
τ+1
1 /κ)|β|α!

ρ β!
ρ′

δ!ρ
′

L N/2
1 ϵ

1/2
H (3D.7)

uniformly in Tn
× D ×

(
−

1
2 , 1, 2

)
for all α, β, where φ ∈ Gρ,ρ′,ρ′(

Tn
× D ×

(
−

1
2 , 1, 2

))
is such that

⟨θ, I ⟩ +φ(θ, I ; t) generates the symplectomorphism χ in the sense of (3E.8).

Remark 3.11. For our purposes, high regularity in the t-parameter is not required, so we have dropped
from analyticity to Gρ′

regularity in t at this point in order to simplify the proceeding arguments. We
expect that analyticity in t could be preserved by using a stronger variant of the Komatsu implicit function
theorem than Corollary A.5.

Proof. We begin by taking ϵ, N as in Theorem 3.9 and noting that ϵH ≤ ϵL−N−2
1 by assumption.

This implies that the factor (AC L1)L
N/2
1

√
ϵH occurring in the Gevrey estimate (3D.3) can be bounded

above by AC
√
ϵ. Hence, taking ϵ small enough that both the conclusion to Theorem 3.9 holds as

well as AC
√
ϵ < 1

2 , we can first apply the Cauchy estimate from Proposition C.1 to (3D.3) in t , and
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then apply a variant of the Komatsu implicit function theorem, Corollary A.5, to obtain a solution
θ(γ ;ω, t) : Tn

×�×
(
−

1
2 , 1, 2

)
→ Tn to the implicit equation

U (θ;ω, t)= γ. (3D.8)

Moreover, this solution satisfies the Gevrey estimate

|∂αγ ∂
β
ω∂

δ
t (θ(γ ;ω, t)− γ )| ≤ AC |α|+|β|+|δ|L |α|

1 (L
τ+1
1 /κ)|β|α!

ρ β!
ρ′

δ!ρ
′

L N/2
1

√
ϵH (3D.9)

uniformly on Tn
×�×

(
−

1
2 , 1, 2

)
.

We set F(γ ;ω, t) := V (θ(γ ;ω, t);ω, t). In terms of (γ ;ω, t), the Lagrangian torus 3ω is now given
by (γ, F(γ ;ω, t) : γ ∈ Tn) for each ω ∈�κ and each t ∈

(
−

1
2 , 1, 2

)
. Moreover, Proposition A.7 on the

composition of Gevrey functions gives us the estimate

|∂αγ ∂
β
ω∂

δ
t (F(γ ;ω, t)− ∇g0(ω))| ≤ AκC |α|+|β|+|δ|L |α|

1 (L
τ+1
1 /κ)|β|α!

ρ β!
ρ′

δ!ρ
′

L N/2
1

√
ϵH . (3D.10)

We next construct functions ψ ∈ Gρ,ρ′,ρ′(
Rn

×�×
( 1

2 , 1, 2
))

and R ∈ Gρ′,ρ′(
�×

( 1
2 , 1, 2

))
such that the

function

Q(x;ω, t) := ψ(x;ω, t)− ⟨x, R(ω, t)⟩ (3D.11)

is 2π -periodic in x and satisfies

∇xψ(x;ω, t)= F(p(x), ω, t) (3D.12)

in Rn
×�κ ×

( 1
2 , 1, 2

)
, where p : Rn

→ Tn is the canonical projection, as well as the estimate

|∂αx ∂
β
ω∂

δ
t Q(x;ω, t)| + |∂βω∂

δ
t (R(ω, t)− ∇g0(ω))|

≤ AκC |α|+|β|+|δ|L |α|

1 (L
τ+1
1 /κ)|β|α!

ρ β!
ρ′

δ!ρ
′

L N/2
1

√
ϵH (3D.13)

for (x;ω, t) ∈ Rn
×�×

( 1
2 , 1, 2

)
.

We do this by first integrating the canonical 1-form I dx over the chain

cx := {(sx, F(p(sx);ω, t)) : 0 ≤ s ≤ 1} ⊂ Rn
× D. (3D.14)

We define

ψ̃(x;ω, t) :=

∫
cx

σ =

∫ 1

0
⟨F(p(sx);ω, t), x⟩ ds (3D.15)

in Rn
×�×

(1
2 , 1, 2

)
. From the estimate (3D.10) it follows that ψ̃(x;ω, t)− ⟨∇g0(ω), x⟩ is bounded

above by the right-hand side of (3D.13) in [0, 4π ]
n
×�×

( 1
2 , 1, 2

)
. Hence if we define Rj (ω, t) =

(2π)−1ψ̃(2πej ;ω, t), then R − ∇g0 satisfies the required estimates in (3D.13).
Since for ω ∈�κ we know that 3ω is a Lagrangian torus, it follows that the integral of the canonical

1-form over any closed chain in 3ω is homotopy invariant. This means that such an integral is a
homomorphism from the fundamental group of 3ω to R. Hence

ψ̃(x + 2πm;ω, t)− ψ̃(x;ω, t)= ⟨2πm, R(ω, t)⟩ (3D.16)
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and so the function

Q̃(x;ω, t) := ψ̃(x, ω)− ⟨x, R(ω, t)⟩ (3D.17)

both satisfies the Gevrey estimate in (3D.13) and is 2π -periodic in x for (ω, t) ∈�κ ×
( 1

2 , 1, 2
)
.

To obtain the sought Q in (3D.11) from Q̃, we use an averaging trick. Choosing f ∈ Gρ
C(R

n) for some
positive constant C such that f is supported in [π/2, 7π/2]

n and∑
k∈Zn

f (x + 2πk)= 1 (3D.18)

for each x ∈ Rn, it then follows that

Q(x;ω, t) :=

∑
k∈Zn

f (x + 2πk)Q̃(x + 2πk;ω, t) (3D.19)

is 2π-periodic in x for every ω ∈� and coincides with Q̃ for ω ∈�κ . Moreover, Q satisfies the same
Gevrey estimate (3D.13) as Q̃. We define

ψ(x;ω, t) := Q(x;ω, t)+ ⟨x, R(ω, t)⟩. (3D.20)

Note that by multiplying Q and R − ∇g0 by a cut-off function h ∈ Gρ′

C/κ which is equal to 1 in a
ω-neighbourhood of �κ and vanishes for dist(ω,Rn

\�)≤ κ/2, where C > 0 is independent of �⊂�0,
we can assume that ψ(x;ω, t)= ⟨x,∇g0(ω)⟩ for dist(ω,Rn

\�)≤ κ/2. This cutoff preserves the Gevrey
estimates on ψ .

Now since ϵH L N+2(τ+2)
1 ≤ ϵ, we have that κA(C L1)(C Lτ+1

1 /κ)L N/2
1

√
ϵH ≤ AC2√ϵ. By taking

ϵ sufficiently small we have that ω 7→ ∇xψ(x;ω, t) is a diffeomorphism for any fixed x ∈ Rn from
the Gevrey estimate (3D.13). Hence we have a Gρ,ρ′

-foliation of Tn
× D by Lagrangian tori 3ω =

{(p(x),∇xψ(x, ω)) : x ∈ Rn
}, where ω ∈�.

In the sought coordinate change, the action I (ω, t) of the Lagrangian torus3ω will be given by R(ω, t).
Hence from (3D.13) and Proposition A.4, it follows that for ϵ sufficiently small, the map

(ω, t) 7→ (I (ω, t), t)= (R(ω, t), t) (3D.21)

is a Gρ′,ρ′

-diffeomorphism and we have the Gevrey estimate

|∂αI ∂
β
t (ω(I, t)− ∇H 0(I ; t))| ≤ AκC |α|+|β|(Lτ+1

1 /κ)|α|α!
ρ′

β!
ρ′

L N/2
1

√
ϵH (3D.22)

uniformly for (θ, I, t) ∈ Tn
× D ×

( 1
2 , 1, 2

)
.

We construct the sought symplectomorphism χ using the generating function 8(x, I ; t), setting

8(x, I ; t)= ψ(x, ω(I ; t); t) (3D.23)

and noting that we have the required 2π-periodicity of φ(x, I ; t) := 8(x, I, t) − ⟨x, I ⟩, and from
Proposition A.7, we also have the estimate

|∂αx ∂
β

I ∂
δ
t (8(x, I ; t − ⟨x, I ⟩))| ≤ AκC |α|+|β|+|δ|L |α|

1 (L
τ+1
1 /κ)|β|α!

ρ β!
ρ′

δ!ρ
′

L N/2
1

√
ϵH . (3D.24)
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We can then apply Corollary A.5 to solve the implicit equation

∂I8(γ, I, t)= θ (3D.25)
for γ with the estimate

|∂αθ ∂
β

I ∂
δ
t (γ (θ, I, t)− θ)| ≤ AκC |α|+|β|+|δ|L |α|

1 (L
τ+1
1 /κ)|β|α!

ρ β!
ρ′

δ!ρ
′

L N/2
1

√
ϵH . (3D.26)

This completes the construction of a symplectomorphism χ satisfying

χ(∂I8(θ, I, t), I )= (θ, ∂θ8(θ, I, t)). (3D.27)
It follows that

(θ, F(θ;ω, t))= χ(∂I8(θ, I (ω), t), I (ω))= χ(θ, I (ω), t) (3D.28)
for ω ∈�κ and so

3ω = {χ(θ, I (ω), t) : θ ∈ Tn
} (3D.29)

for (ω, t) ∈�κ ×
( 1

2 , 1, 2
)
.

We now set H̃ , K , R as in the theorem statement in terms of the symplectomorphism χ . Since H is
constant on 3ω for each ω ∈ �κ , it follows that R( · , I ; t) is identically zero for each I = I (ω) with
ω ∈�κ . Hence R is flat at I ∈ Eκ(t), since each point in Eκ(t) is of positive density in I (�κ).

Finally, the Gevrey estimate in (3D.7) for H̃(θ, I, t)− H(I, t) follows from Proposition A.7. □

3E. Calculation of ∂t K0(I, 0). A crucial ingredient in the proof of Theorem 1.1 is the calculation of the
derivative of quasieigenvalues in Proposition 2.5 in the semiclassical limit h → 0. From the truncated
quantum Birkhoff normal form in Theorem 4.1, this can be reduced to the study of the t-dependence of
the integrable term K (I ; t) in the classical Birkhoff normal form established in Theorem 3.10.

We now consider a 1-parameter family of Hamiltonians H(θ, I ; t) satisfying the assumptions of
Theorem 1.1. We can write

H(θ, I ; t)= H 0(I )+ H 1(θ, I ; t), (3E.1)
with

H 0(I ) := H(θ, I ; 0) (3E.2)

H 1(θ, I ; t) := t∂t H(θ, I ; 0)+
∫ t

0
(1 − s)∂2

t H(θ, I ; s) ds = t∂t H(θ, I ; 0)+ O(t2), (3E.3)

and we assume that H additionally satisfies the assumptions of Theorem 3.10 with this choice of H 0, H 1.
By applying two KAM stem iterations to H(θ, I ; t), we obtain a transformed completely integrable com-
ponent and reduce the order of magnitude of the θ -dependent remainder. An application of Theorem 3.10
to this transformed Hamiltonian produces a Birkhoff normal form, and (3D.7) yields an expression for
K (I ; t) up to order o(t).

The KAM step iterations required differ from that in Theorem 3.3, in that they are not parametrised by
ω ∈� and instead take place in the action-angle space Tn

× D. Such a KAM step appears in the proof of
the KAM theorem found in [Gallavotti 1983]. We first describe the KAM step without the presence of
the parameter t for simplicity. One begins with a perturbation

H(θ, I )= H 0(I )+ H 1(θ, I ) (3E.4)
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of a completely integrable Hamiltonian H 0(I ), and a fixed perturbation H 1(θ, I ), both analytic on the
complex domain

θ ∈ 2πCn
\ 2πRn, |Im(θ)|< s, (3E.5)

Re(I ) ∈ D, |Re(I )|< r. (3E.6)

We assume that |H 1
|s,r = O(ϵ) in the uniform sense.

By consideration of the linearised Hamilton–Jacobi equation, we choose a symplectic transformation
χ : Tn

× D → Tn
× D with the aim to write

H̃(θ, I )= (H ◦χ)(θ, I )= H̃ 0(I )+ H̃ 1(θ, I ), (3E.7)

with H̃ 1
= O(ϵα) for some α > 1. Then we have transformed a sufficiently small perturbation of an

integrable Hamiltonian to an even smaller perturbation of a new integrable Hamiltonian, in a way we can
hope to iterate.

Obtaining the “new” error bound for H̃ 1 necessarily requires a shrinking of the domains of analyticity,
through the use of Cauchy estimates to control derivatives. Moreover, there is a more subtle shrinking of
domain required in the I -variable, due to the infamous “small-divisor” problem. Specifically, χ is found
using terms of the generating function

8(I ′, θ)= i
∑

k∈Zn :0<|k|≤M

H 1
k (I

′)eik·θ

ω(I ′) · k
, (3E.8)

where H 1
k denotes the k-th Fourier coefficient of H 1, and ω = ∇I H 0(I ); see [Gallavotti 1983, (2.10)].

The denominators in (3E.8) can generally be zero, and so one must restrict to values of I ′ for which
we have a nonresonance condition

ω(I ′) · k ≥
C

|k|2
(3E.9)

for all 0< |k| ≤ M, where C and M are chosen suitably. We also need to remove those actions I ′ with
dist(I ′, ∂�)≤ ρ̃ so that the perturbed tori do not escape the coordinate patch; see [Gallavotti 1983, (3.12)]
for the choice of the constant ρ̃. This leads to the definition of the set

D̃1 = {I ∈ D : dist(I, ∂D) > ρ̃ and ω(I ) · k ≥ C/|k|
2 for all 0< |k| ≤ M}. (3E.10)

For any Ĩ ∈ D̃1 the expression (3E.8) is certainly defined, but as the domain might have rather rough
boundary, it is convenient to slightly enlarge D̃1 to the open set

D1 =

⋃
I∈D̃1

B(I, ρ̃/2). (3E.11)

Upon restricting to this action set for suitable C and M, the objective of (3E.7) can indeed be achieved,
and the “integrable part” of the new Hamiltonian can be written as

H̃ 0(I )= H 0(I )+ (2π)−n
∫

H 1(θ, I ) dθ; (3E.12)

see [Gallavotti 1983, (3.38)]. The overall transformed Hamiltonian is then given by

H̃(θ̃ , Ĩ )= H̃ 0( Ĩ )+ H̃ 1(θ̃ , Ĩ ) (3E.13)
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in the domain Tn
× D1, with

∥H̃ 1
∥ = O(ϵ3/2). (3E.14)

The classical KAM theorem is then proven in [Gallavotti 1983] by iterating this procedure, carefully
choosing the C,M, ρ̃ and the analyticity parameters r, s so that the estimate (3E.14) is satisfied with
every step, ensuring convergence, and so that the limiting domain

⋂
j Dj of nonresonant actions is of

large measure. A full discussion of this procedure can be found in [Gallavotti 1983].
We now return to our setting of the one-parameter family of Hamiltonians

H(θ, I ; t)= H 0(I )+ H 1(θ, I ; t).

One iteration of the KAM step outlined above yields a family of symplectomorphisms

χ1 : Tn
× D1 → Tn

× D (3E.15)

parametrised by t such that

H̃(θ, I ; t)= (H ◦χ1)(θ, I ; t)= H 0(I )+ t · (2π)−n
∫

Tn
∂t H(θ, I ; 0) dθ + H̃ 1(θ, I ; t), (3E.16)

where the second term comes from (3E.3) and the error term H̃ 1(θ, I ; t) = O(t3/2). Regarding this
transformed Hamiltonian as a small perturbation of the integrable Hamiltonian

H̃ 0(I ; t)= H 0(I )+ t · (2π)−n
∫

Tn
∂t H(θ, I ; 0) dθ, (3E.17)

we perform one more KAM iteration to obtain another family of symplectomorphisms

χ2 : Tn
× D3 → Tn

× D2 (3E.18)

parametrised by t such that˜̃H(θ, I ; t)= (H̃ ◦χ2)(θ, I ; t)

= H 0(I )+ t · (2π)−n
∫

Tn
∂t H(θ, I ; 0) dθ + (2π)−n

∫
Tn

H̃ 1(θ, I ; t) dθ + ˜̃H1
(θ, I ; t).

Moreover, by taking our initial choice of nonresonance parameter C sufficiently small, we can ensure
that the action domain D3 contains a collection of nonresonant actions Eκ(t), with

∇I (
˜̃H0
(Eκ(t)))=�κ , (3E.19)

where

˜̃H0
(I ; t)= H 0(I )+ t · (2π)−n

∫
Tn

H 1(θ, I ) dθ + (2π)−n
∫

Tn
H̃ 1(θ, I ; t) dθ. (3E.20)

We now summarise the preceding discussion.

Proposition 3.12. Suppose H(θ, I ; t) is a family of real-analytic perturbations of the completely inte-
grable nondegenerate Hamiltonian H 0(I ) in Tn

× D × (−1, 1) that has an analytic extension to

Ws,r (D) := {(θ, I ) ∈ Cn/(2πZ)× Cn
: |Im(θ)|< s, dist(I, D) < r}. (3E.21)
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Suppose further that the conditions ∣∣∣∣∂H 0

∂ I

∣∣∣∣ ≤ E, (3E.22)∣∣∣∣(∂2 H 0

∂ I 2

)−1∣∣∣∣ ≤ η, (3E.23)(∣∣∣∣∂H 1

∂ I

∣∣∣∣ + r−1
∣∣∣∣∂H 1

∂θ

∣∣∣∣) ≤ ϵ (3E.24)

are satisfied.
Then for sufficiently small δ > 0, there exists a subdomain D̃ ⊂ D and a family of real-analytic

symplectic maps
χ : Tn

× D̃ × (−δ, δ)→ Tn
× D (3E.25)

that analytically extend to a new domain of holomorphy

Ws+,r+
(D̃) (3E.26)

such that
(H ◦χ)(θ, I ; t)= H̃ 0(I ; t)+ H̃ 1(θ, I ; t), (3E.27)

with
∂t H̃ 0(I ; 0)= (2π)−n

∫
Tn
∂t H(θ, I ; 0) dθ (3E.28)

and
|H̃ 1

|s+,r+
= O(t9/4), (3E.29)

with constant depending only on n and E. Moreover, this domain D̃ contains a collection Eκ(t) of actions
such that

∇I (H̃ 0)(Eκ(t))=�κ . (3E.30)

We can also generalise this result to the Gevrey setting.

Proposition 3.13. Suppose H(θ, I ; t)∈ Gρ,ρ,1(Tn
×D×(−1, 1) is a family of Hamiltonians satisfying the

assumptions of Theorem 3.10, where H 0(I ) := H(θ, I ; 0) for fixed ρ > 1, and choose κ > 0 small. Then
for sufficiently small ∥H(θ, I ; t)− H 0(I )∥L1,L2,L2 , there exists a subdomain D̃ ⊂ D and a Gρ,ρ,1 family
of symplectic maps

χ : Tn
× D̃ × (−1, 1)→ Tn

× D (3E.31)
such that

(H ◦χ)(θ, I ; t)= H̃ 0(I ; t)+ H̃ 1(θ, I ; t), (3E.32)
with

∂t H̃ 0(I ; 0)= (2π)−n
∫

Tn
∂t H(θ, I ; 0) dθ (3E.33)

and
∥H̃ 1

∥C L1,C L2,C L2 = O(t9/4), (3E.34)

with constant independent of κ and with C dependent only on n and ρ.
Moreover, the domain D̃ contains Eκ(t)= ω−1(�κ; t)= (∇I H̃ 0)−1(�κ; t).
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Proof. This result is established via the approximation of Gevrey functions by real-analytic functions.
First, we define

H 0(I )= H(θ, I ; 0), (3E.35)

H 1(θ, I ; t)= H(θ, I ; t)− H(θ, I ; 0)=

∫ t

0
∂t H(θ, I ; s) ds (3E.36)

and use Proposition 3.8 to boundedly extend H 0 and H 1 to the domain Tn
×Rn

× (−1, 1), before cutting
off in I to a ball BR̃ with D ⊂ BR̃−1. From the same methods used in the proof of Proposition 3.4, we
may then construct sequences of real-analytic functions P0

j and P1
j on shrinking j-dependent complex

domains Uj containing Tn
× Rn

× (−1, 1) with a corresponding sequence u j → 0 such that

|Pk
j+1 − Pk

j |Uj+1 ≤ C(D0, L1, L2) exp
(
−

3
4(ρ− 1)(2L1u j )

−1/(ρ−1))
∥H k

∥, (3E.37)

|∂αx (P
k
j − H k)(θ, I ; t)| ≤ C(D0, L1, L2) exp

(
−

3
4(ρ− 1)(2L1u j )

−1/(ρ−1)) (3E.38)

in Tn
× BR̃ ×(−1, 1) for |α| ≤ 1. These sequences Pk

j are convergent in Gρ,ρ,1(Tn
× Rn

× (−1, 1)), as is
shown in [Hou and Popov 2016, Proposition 2.2]. (This fact can be readily obtained by applying Cauchy
estimates to (3E.37).)

Now for each j ∈ N, we can carry out the first KAM step for the real-analytic Hamiltonian Pj = P0
j +P1

j
to obtain a real-analytic symplectic map

χ j : Tn
× D1 → Tn

× D (3E.39)

defined in shrinking holomorphy domains such that

((P0
j + P1

j ) ◦χ j )(θ, I ; t)= P0(I )+ t · (2π)−n
∫

Tn
∂t P1

j (θ, I ; 0) dθ + P̃1(θ, I ; t), (3E.40)

with ∥P1
j ∥ = O(t3/2). Note that for an individual KAM step, the symplectic map χ j is defined using a

generating function 8j that is a weighted sum of finitely many Fourier components of P1
j ; see (3E.8) and

[Gallavotti 1983, (3.14)]. This implies that as P0
j + P1

j → H 0
+ H 1 in Gρ,ρ,1(Tn

× D1 × (−1, 1)), the
generating functions 8j converge to some

8 ∈ Gρ,ρ,1(Tn
× D1 × (−1, 1)) (3E.41)

in the Gρ,ρ,1 sense. From Corollary A.5, it follows that the corresponding symplectic maps χ j converge
to some

χ1
∈ Gρ,ρ,1(Tn

× D1 × (−1, 1)) (3E.42)

in the Gevrey sense.
Similarly, the symplectic maps χ̃ j that comprise a single KAM step for the Hamiltonians

(P0
j + P1

j ) ◦χ j (3E.43)

can also be seen to converge to some

χ2
∈ Gρ,ρ,1(Tn

× D2,Tn
× D1). (3E.44)
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It follows that the family of symplectic maps χ j ◦ χ̃ j whose existence is asserted by applying
Proposition 3.12 to P0

j + P1
j converge to some χ := χ1

◦χ2 in the Gρ,ρ,1-sense. Moreover, if we write

(P0
j + P1

j ) ◦χ j ◦ χ̃ j = H̃ 0
j (I ; t)+ H̃ 1

j (θ, I ; t), (3E.45)

in the notation of Proposition 3.12, we have that H̃ k
j are convergent sequences in Gρ,ρ,1, and so it follows

that their limits H̃ 0, H̃ 1 satisfy

∂t H̃ 0(I ; 0)= (2π)−n
∫

Tn
∂t H(θ, I ; 0) dθ (3E.46)

and
∥H̃ 1

∥C L1,C L2,C L2 = O(t9/4) (3E.47)

as required. □

Finally, we complete our computation of ∂t K0(I ; 0) for a given Hamiltonian H(θ, I ; t) satisfying the
conditions of Theorem 3.10 by applying Proposition 3.13 to H, prior to applying Theorem 4.1 to compute
the Birkhoff normal form of the transformed Hamiltonian H̃(θ, I ; t).

By applying Proposition 3.13 to H(θ, I ; t) with ∥H(θ, I ; t)− H(θ, I ; 0)∥ sufficiently small, we can
then apply Theorem 3.10 to the Hamiltonian

H̃(θ, I ; t)= H̃ 0(I ; t)+ H̃ 1(θ, I ; t), (3E.48)

with an improved error term.

Proposition 3.14. Suppose the assumptions of Theorem 3.9 hold for the Hamiltonian

H(θ, I ; t) ∈ Gρ,ρ,1(Tn
× D × (−1, 1)). (3E.49)

Then there exist N (n, ρ, τ ) > 0 and ϵ > 0 independent of L1, L2, D such that for any

H ∈ Gρ,ρ,1
L1,L2,L2

(Tn
× D × (−1, 1)),

with
κ−2

∥H(θ, I ; t)− H(θ, I ; 0)∥L1,L2,L2 = ϵH ≤ ϵL−N−2(τ+2)
1 , (3E.50)

there is a subdomain D̃ ⊂ D containing Eκ(0) and a family of Gρ′,ρ′

maps ω : D̃ ×
( 1

2 , 1, 2
)

→ �

and a family of maps χ ∈ Gρ,ρ′,ρ′

(Tn
× D̃ ×

( 1
2 , 1, 2

)
,Tn

× D̃) that are diffeomorphisms and exact
symplectomorphisms respectively for each fixed t ∈

( 1
2 , 1, 2

)
. Moreover, we can choose the maps ω and χ

such that family of transformed Hamiltonians

H̃(θ, I ; t) := (H ◦χ)(θ, I ; t) (3E.51)

is of Gevrey class Gρ,ρ′,ρ′(
Tn

× D̃ ×
( 1

2 , 1, 2
))

and can be decomposed as

K (I ; t)+ R(θ, I ; t) := H̃(0, I ; t)+ (H̃(θ, I ; t)− H̃(0, I ; t)) (3E.52)

such that:

(i) Tn
× {I } is an invariant Lagrangian torus of H̃( · , · ; t) for each I ∈ Eκ(t) = ω−1(�̃κ) and each

t ∈
(1

2 , 1, 2
)
.
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(ii) ∂βI (∇K (I ; t)−ω(I ; t))= ∂
β

I R(θ, I ; t)= 0 for all (θ, I ; t) ∈ Tn
× Eκ(t)×

( 1
2 , 1, 2

)
, β ∈ Nn.

(iii) There exist A,C > 0 independent of κ , L1, L2, and D ⊂ D0 such that we have the estimates

|∂αθ ∂
β

I ∂
δ
t φ(θ, I ; t)| + |∂

β

I ∂
δ
t (ω(I ; t)− ∇ H̃ 0(I ; t))| + |∂αθ ∂

β

I ∂
δ
t (H̃(θ, I ; t)− H̃ 0(I ; t))|

≤ AC |α|+|β|+|δ|L |α|

1 (L
τ+1
1 /κ)|β|α!

ρ β!
ρ′

δ!ρ
′

L N/2
1 |t |9/8 (3E.53)

uniformly in Tn
× D̃ ×

( 1
2 , 1, 2

)
for all α, β, where φ ∈ Gρ,ρ′,ρ′(

Tn
× D̃ ×

( 1
2 , 1, 2

))
is such that

⟨θ, I ⟩ + φ(θ, I ; t) generates the symplectomorphisms χ in the sense of (3E.8) and H̃ 0, H̃ 1 are as
in Proposition 3.13.

(iv) ∂t K (I ; t)= (2π)−n
∫

Tn
∂t H(θ, I ; 0)+ o(1) (3E.54)

uniformly in Tn
× D̃ ×

( 1
2 , 1, 2

)
.

Proof. The only new claim in this proposition is (3E.54), which follows from (3E.53) and the expression
(3E.33) for H̃ 0. Note that the exponent 9

8 in (3E.53) comes from (3E.34) and the square root in (3D.7). □

4. Quantum Birkhoff normal form

Through the work in Section 3, we have now established that the Birkhoff normal form construction
in [Popov 2004b] preserves smoothness in the t-parameter when applied to the Hamiltonian P0(x, ξ ; t)
that is the principal symbol of the operator introduced in (1B.1). This regularity in t propagates through
the quantum Birkhoff normal form construction in [Popov 2004a], which we discuss in this section.
The upshot of this regularity in t is that the quasimodes constructed in [Popov 2004a, Section 2.4] can
be chosen to have associated quasieigenvalues varying smoothly in the parameter t . We discuss these
quasimodes in Section 4C.

4A. Quantum Birkhoff normal form. In [Popov 2004a], a quantum Birkhoff normal form is constructed
for semiclassical pseudodifferential operators of the form (1B.1) after first obtaining a classical Birkhoff
normal form for the principal symbol of regularity Gρ,ρ′

as in Theorem 3.10. This normal form uses the
Gevrey symbol classes introduced in Section B and is stated in Theorem 4.1. We remark that the proof is
presented in [Popov 2004a] for differential operators, but can be carried out without change if the Ph is a
pseudodifferential operator.

We denote by χ1 the symplectomorphism that transforms the completely integrable Hamiltonian
P(x, ξ ; 0) into action-angle coordinates H = P ◦ (χ1) and we denote by χ0(t) the symplectomorphism
that transforms the perturbed Hamiltonian H(θ, I ; t) into Birkhoff normal form, as constructed in
Theorem 3.10. For the purpose of stating the quantum Birkhoff normal form for Ph(t), the Maslov class
of the KAM tori 3ω : ω ∈�κ} (as defined in Section 3.4 of [Duistermaat 1996]) can be identified with
elements of ϑ ∈ H 1(Tn

; Z) via the family of symplectomorphisms χ0(t)◦χ1 : Tn
× D → T ∗M. Following

[Popov 2000b; Colin de Verdière 1977], we can then associate a smooth line bundle –L over Tn with the
class ϑ such that smooth sections f ∈ C∞(Tn, –L) can be canonically identified with smooth functions
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f̃ ∈ C∞(Rn,C) satisfying the quasiperiodicity condition

f̃ (x + 2πp)= exp
(

iπ
2

⟨ϑ, p⟩

)
f̃ (x) (4A.1)

for all p ∈ Zn.
The quantum Birkhoff normal form in [Popov 2004a] is far sharper than is necessary for the purposes

of this paper, with remainders of order O(e−ch−1/ν
). We require only the following truncated version,

with error terms of order O(hγ+1) for some fixed γ > 0.

Theorem 4.1. Suppose Ph(t) is as in (1B.1). Then for each fixed t there exists a uniformly bounded family
of semiclassical Fourier integral operators

Uh(t) : L2(Tn
; L)→ L2(M), 0< h < h0, (4A.2)

that are associated with the canonical relation graph of the Birkhoff normal form transformation χ(t)
such that we have

(i) Uh(t)∗Uh(t)− Id is a pseudodifferential operator with symbol in the Gevrey class Sℓ(Tn
× D) which

restricts to an element of hγ+1Sℓ(Tn
× Y ) for some subdomain Y of D that contains Eκ(t),

(ii) Ph(t) ◦ Uh(t)− Uh(t) ◦P0
h (t)= Rh(t) ∈ hγ+1Sℓ, where the operator P0

h (t) has symbol

p0(θ, I ; t, h)= K 0(I ; t, h)+ R0(θ, I ; t, h)=

∑
j≤γ

K j (I ; t)h j
+

∑
j≤γ

Rj (θ, I ; t)h j , (4A.3)

with both K 0 and R0 in the symbol class Sℓ(Tn
× D) from Definition B.5 where η > 0 is a constant,

K0(I ; t), R0(θ, I ; t) are the components of the Birkhoff normal form of the Hamiltonian P0 ◦ χ1 as
constructed in Theorem 3.10, and

∂αI Rj (θ, I ; t)= 0 (4A.4)

for (θ, I ; t)∈ Tn
×Eκ(t)×(−1, 1). Moreover, the symbols K j , Rj in (4A.3) are smooth in the parameter t .

Our statement of Theorem 4.1 differs from [Popov 2004a, Theorem 2.1] only in the presence of the
parameter t , the smoothness of the symbols K j , Rj in t , and the truncation to fixed finite order O(hγ+1).
We sketch the details of the proof of Theorem 4.1 in this section, following the argument of [Popov 2004a].

The construction of Uh(t) can be broken into multiple steps. We begin by constructing a family of
semiclassical Fourier integral operators Th(t) that conjugate Ph(t) to a family of semiclassical pseudodif-
ferential operators P1

h (t) : C∞(Tn
; L) with principal symbol equal to K0(I ; t)+ R0(θ, I ; t), the Birkhoff

normal form of H, and with vanishing subprincipal symbol. The conjugating semiclassical Fourier integral
operators arise by quantising the Gρ symplectomorphisms

χ1 : Tn
× D → T ∗M, (4A.5)

χ0 : Tn
× D → Tn

× D (4A.6)

that transform the unperturbed Hamiltonian P(x, ξ ; 0) to action-angle variables and transform the per-
turbed Hamiltonian to Birkhoff normal form respectively, and composing these two operators. Full details
for this construction can be found in [Popov 2000b, Section 2].
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From the regularity of the symplectomorphisms, it follows that there exists a semiclassical expansion
for P1

h (t) with symbols smooth in t .
The symbol of the operator P1

h (t) satisfies the property (4A.3) to O(h2), and to improve this, we
replace the conjugating Fourier integral operator Th with Th Ah for a suitable elliptic pseudodifferential
operator Ah whose symbol is determined iteratively on the family of Cantor-like sets

{(θ, I ; t) ∈ Tn
× Rn

× (−1, 1) : I ∈ Eκ(t)}

by solving equations of the form
⟨∇K0, ∂θ ⟩ f (θ, I ; t)= g(θ, I ; t), (4A.7)

referred to in the literature as homological equations. In this manner the “flatness condition” of (4A.4) is
obtained for j > 0, where the j = 0 statement is established by Theorem 3.10. We outline this procedure
in Section 4B.

The key fact is that the homological equation can be solved smoothly in the parameter t , which is the
content of Theorem 4.3. One can then apply Theorem 4.3 as in [Popov 2004a, Section 2.3] to complete
the construction of the quantum Birkhoff normal form, with the additional consequence of smoothness of
symbols K j , Rj .

4B. Construction of the quantum Birkhoff normal form. After conjugating Ph(t) by semiclassical
Fourier integral operators as described in the previous section, we obtain a family of self-adjoint semiclas-
sical operators P1

h (t) with symbol p̃ ∈ Sℓ̃(T
n
× D) satisfying the flatness condition (4A.4) to order h2,

where ℓ̃= (ρ, ρ ′, ρ+ ρ ′
− 1). That is to say, the formal summation of p̃,

∞∑
j=0

p̃j (θ, I ; t)h j , (4B.1)

satisfies
p̃0(θ, I ; t)= K0(I ; t)+ R0(θ, I ; t), (4B.2)

p̃1(θ, I ; t)= 0. (4B.3)

The next step of the proof of Theorem 4.1 is the improvement of the order of the flatness condition by
composition with a suitable elliptic semiclassical pseudodifferential operator

Ah(t)= Id + O(h)

with symbol

a(θ, I ; t)=

∞∑
j=1

aj (θ, I ; t)h j . (4B.4)

To motivate the method, we suppose that a quantum Birkhoff normal form P0
h exists in the sense of

Theorem 4.1. Our current operator P̃h is equal to P0
h up to order h2 by construction. Hence, we have

Th(t)Ah(t)P̃h(t)= Th(t)P̃h(t)Ah(t)+ Th(t)[Ah(t), P̃h(t)]

= P1
h (t)Th(t)Ah(t)+ h2T (t)B(t)A(t)+ Th(t)[Ah(t), P̃h(t)]

(4B.5)



GENERIC KAM HAMILTONIANS ARE NOT QUANTUM ERGODIC 157

for some semiclassical pseudodifferential operator Bh(t) in the symbol class Sℓ̃(T
n
× D). From composi-

tion formulae, the symbol of the commutator is equal to

−(∂αθ a1∂
α
I p̃0)h2

= −LωI ;t a1, (4B.6)

where Lω = ⟨ω, ∂θ ⟩a1(θ, I ; t). Thus to improve the order of the flatness condition, it suffices to choose
a1 solving the homological equation

Lω(I ;t)a1 = b0, (4B.7)

where b0 denotes the principal symbol of Bh(t). Indeed, if (4B.7) is solvable, then we have

Th(t)Ah(t)Ph(t)= P0
h (t)Th(t)Ah(t)+ O(h3). (4B.8)

Extending this idea, it was shown in [Popov 2000b] that we can choose higher-order terms of the symbol a
in an iterative fashion by the solution of such a homological equation for each power of h that we gain.
The consequence is the following result.

Proposition 4.2. There exist a, K 0, r ∈ Sℓ(Tn
× D), where ℓ= (ρ, µ, ν), such that

a(θ, I ; t, h)∼

∞∑
j=0

aj (θ, I ; t)h j , (4B.9)

K 0(I ; t, h)∼

∞∑
j=0

K j (I ; t)h j , (4B.10)

r(θ, I ; t, h)∼

∞∑
j=0

rj (θ, I ; t)h j , (4B.11)

where a0 = 1, r0 = R0, K1 = 0, and
p̃ ◦ a − a ◦ K 0

∼ r, (4B.12)

where each rj (θ, I ; t) is flat in I on Tn
× Eκ(t).

The symbol K 0 in the statement of theorem corresponds to the sought symbol K 0 in Theorem 4.1,
while the symbol R0 is then constructed by solving a ◦ R0

= r , which is possible by ellipticity.
The completion of the proof of Theorem 4.1 after establishing Proposition 4.2 is contained in [Popov

2000b, Section 3]. For our additional requirement of smoothness in t in Theorem 4.1, it thus suffices to
verify that the homological equation can be solved smoothly in the parameter t . In particular, we require
the following.

Theorem 4.3. Suppose f ( · , · ; t) ∈ Gρ,µ(Tn
× D) satisfies the estimate

|∂αθ ∂
β

I f (θ, I ; t)| ≤ d0C |α|+µ|β|0(ρ|α| +µ|β| + q) (4B.13)

uniformly in the smooth parameter t ∈ (−1, 1) for some q > 0 and some C ≥ 1 and that for each I ∈ D,
we have ∫

Tn
f (θ, I ; t) dθ = 0. (4B.14)
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Then for any smooth family ω( · ; t) ∈ Gρ′

L0
(D, �) there is a solution u( · , · ; t) ∈ Gρ,µ(Tn

× D) to the
equation

Lωu(θ, I ; t)= f (θ, I ; t), (θ, I ) ∈ Tn
× Eκ(t), (4B.15)

u(0, I ; t)= 0, I ∈ D, (4B.16)

where Lω = ⟨ω(I ; t), ∂/∂θ⟩. Moreover, u is smooth in the parameter t and satisfies the estimate

|∂αθ ∂
β

I u(θ, I ; t)| ≤ Ad0Cn+τ+|α|+µ|β|+10(ρ|α| +µ|β| + ρ(n + τ + 1)+ q), (4B.17)

where A depends only on n, ρ, τ and µ.

This theorem statement differs from [Popov 2004a, Proposition 2.3] only in the presence of the smooth
parameter t , and indeed an identical proof based on taking the Fourier expansion

u(θ, I ; t)=

∑
k∈Zn

ei⟨k,θ⟩uk(I ; t) (4B.18)

and solving for uk can be pursued. The rapid decay of Fourier coefficients established in [Popov 2004a]
implies that the limit u(θ, I ; t) is smooth in t as required. The proof is then identical to that in [Popov
2004a], with the uniformity in (4B.17) following from the uniformity in (4B.13).

4C. Quasimode construction. We now briefly outline how the construction of Gevrey class quasimodes
for Ph(t) follow from the quantum Birkhoff normal form Theorem 4.1. These quasimodes microlocalise
onto a family of nonresonant tori and moreover have quasieigenvalues that are smooth in the parameter
t ∈ (−1, 1).

Definition 4.4. An O(hγ+1) family of Gρ quasimodes Q(t) for Ph(t) is a family

{(vm(x; t, h), µm(t, h)) : m ∈ Mh(t)} ⊂ C∞(M ×Dh(m))× C∞(Dh(m)) (4C.1)

parametrised by h ∈ (0, h0], where

• Mh(t)⊂ Zn is an h-dependent finite index set,

• Dh(m)= {t ∈ (−1, 1) : m ∈ Mh(t)},

• each vm( · ; t, h) is uniformly of class Gρ ,

• ∥Ph(t)vm( · ; t, h)−µm(t; h)vm( · ; t, h)∥L2 = O(hγ+1) for all m ∈ Mh(t),

• |⟨vm( · ; t, h), vl( · ; t, h)⟩ − δml | = O(hγ+1) for all m, l ∈ Mh(t).

Theorem 4.5. Suppose now that t ∈ (−1, 1) is fixed and S ⊂ Eκ(t) is a closed collection of nonresonant
actions. For an arbitrary constant L > 1, we define the index set

Mh := {m ∈ Zn
: dist(S, h(m +ϑ/4)) < Lh}, (4C.2)

where ϑ ∈ Zn is the Maslov class of any Lagrangian tori {χ(Tn
× {I })} with I ∈ S. Note that this class is

independent of the choice of torus by the local constancy of the Maslov class.
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Then
{(vm(x; t, h), µm(t; h)) : m ∈ Mh(t)} := (Uh(t)em, K 0(h(m +ϑ/4); t, h) (4C.3)

defines a Gρ family of quasimodes for Ph(t) that has Gevrey microsupport on the family of tori

3S =

⋃
I∈S

3ω(I ;t) =
⋃
I∈S

χ(Tn
× {I })⊂ T ∗M, (4C.4)

where {em}m∈Zn is the orthonormal basis of L2(Tn
; L) associated to the quasiperiodic functions

ẽm(x) := exp(i⟨m +ϑ/4, x⟩). (4C.5)

Proof. From the definition of the functions em , it follows that

P0
h (t)(em)(θ)= σ(P0

h (t))(θ, h(m +ϑ/4))em(θ)

= (K 0(h(m +ϑ/4); t, h)+ R0(θ, h(m +ϑ/4); t, h))em(θ)

= (λm(t; h)+ R0(θ, h(m +ϑ/4))em(θ). (4C.6)

From the definition (4C.2) of the index set Mh(t) and from A.2, it thus follows that

Ph(t)(Uh(t)em)= Uh(t)P0
h (t)em = O(hγ+1) (4C.7)

upon an application of Theorem 4.1. The almost-orthogonality of the Uh(t)em then follows from the fact
that Uh(t) is almost unitary by Theorem 4.1, and that the em are exactly orthogonal by construction. □

These quasimodes are as numerous as we could hope for; indeed the index set Mh(t) satisfies the
local Weyl asymptotic

lim
h→0

(2πh)n #Mh = m(Tn
× S)= µ(3S), (4C.8)

where m denotes the (2n)-dimensional Lebesgue measure and µ denotes the symplectic measure dξ dx .
To see this, we can denote by U the union of n-cubes centred at the lattice points in Mh with side length h.
The containment

S ⊂ U ⊂ {I : dist(I, S) < L̃h} (4C.9)

for a constant L̃ then yields the claim by monotone convergence of measures, noting that since S is closed
we have

S = S =

⋂
h>0

{I : dist(I, S) < L̃h}. (4C.10)

In the special case of S = {I }, we have a family of Gρ quasimodes with microsupport on an individual
torus χ(Tn

× {I }).

Appendix A: Anisotropic Gevrey classes

In this appendix, we define the Gevrey function spaces used throughout the paper and collect several of
their properties from the appendix of [Popov 2004b].
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Definition A.1. For ρ ≥ 1 and X ⊂ Rn open, the Gevrey class of order ρ is given by

Gρ
L(X) :=

{
f ∈ C∞(X) : sup

α

sup
x∈X

|∂αx f (x)|L−|α|α!
−ρ <∞

}
. (A.1)

If f ∈ Gρ
L(X), the supremum in (A.1) is denoted by ∥ f ∥L . We will frequently suppress the L in our

notation. Equipped with this norm, Gρ
L(X) is a Banach space. Gevrey regularity is generally weaker the

real-analyticity (they coincide when ρ = 1 as can be seen by using the Cauchy–Hadamard theorem to
characterise analytic functions by the growth of their Taylor coefficients) and importantly, there exist
bump functions in the Gevrey class for ρ > 1.

An important property of the Gevrey class that follows from Taylor’s theorem is that if a Gevrey
function has vanishing derivatives, then locally it is superexponentially small.

Proposition A.2. Suppose f ∈ Gρ(X), and ρ > 1. Then there exist positive constants c,C, η and r0 only
dependent on the Gevrey constant L , the norm ∥ f ∥L , and the set X such that

f (x0 + r)=

∑
|α|≤η|r |1/(1−ρ)

fα(x0)rα + R(x0, r), (A.2)

where fα = (∂α f )/α! and

|∂βx R(x0, r)| ≤ C1+|β|β!
ρ e−c|r |

−1/(ρ−1)
for all 0< |r | ≤ min(r0, d(x0,Rn

\ X)). (A.3)

We also need to consider anisotropic Gevrey classes, which are classes of Gevrey functions with
differing regularity in individual variables.

Definition A.3. Suppose X and Y are open subsets of Euclidean spaces. Suppose that ρ1, ρ2 ≥ 1 and
L1, L2 > 0. Then

Gρ1,ρ2
L1,L2

(X × Y )=
{

f ∈ C∞(X × Y ) : sup
(x,y)∈X×Y

|∂αx ∂
β
y f |L−|α|

1 L−|β|

2 α!
−ρ1 β!

−ρ2 <∞
}
. (A.4)

If f ∈ Gρ1,ρ2
L1,L2

, then we denote the supremum in (A.4) by ∥ f ∥L1,L2 . Equipped with this norm, Gρ1,ρ2
L1,L2

is a Banach space. This definition extends in the natural way to k ≥ 3 variables. Furthermore, some of
these variables might lie in complex domains.

In anisotropic Gevrey classes, one has the following implicit function theorem due to Komatsu.

Proposition A.4. Suppose that F ∈ Gρ,ρ′

L1,L2
(X ×�0,Rn), where X ⊂ Rn, �0

⊂ Rm and

L1∥F(x, ω)− x∥L1,L2 ≤
1
2 .

Then there exists a local solution x = g(y, ω) to the implicit equation

F(x, ω)= y (A.5)

defined in a domain Y ×�. Moreover, there exist constants A,C dependent only on ρ, ρ ′, n,m such that
g ∈ Gρ,ρ′

C L1,C L2
(Y ×�, X), with ∥g∥C L1,C L2 ≤ A∥F∥L1,L2 .

A consequence of this theorem is established in [Popov 2004b].
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Corollary A.5. Suppose F ∈ Gρ,ρ′

L1,L2
(Tn

×�,Tn), where �0
⊂ Rm and L1∥F(θ, ω)− θ∥L1,L2 ≤

1
2 . Then

there exists a local solution x = g(y, ω) to the implicit equation

F(x, ω)= y (A.6)

defined on Tn
×�. Moreover, there exist positive constants A,C dependent only on ρ, ρ ′, n,m such that

g ∈ Gρ,ρ′

C L1,C L2
(Tn

×�) with ∥g∥C L1,C L2 ≤ A∥F∥L1,L2 .

Finally, we have two results on the composition of functions of Gevrey regularity, which can also be
found in [Popov 2004b].

Proposition A.6. Let X ⊂ Rn, Y ⊂ Rm , and � ⊂ Rk be open sets. Suppose g ∈ Gρ′

L1
(�, Y ), with

∥g∥L1 = A1, and f ∈ Gρ,ρ′

B,L2
(X × Y ), with ∥ f ∥B,L2 = A2. Then the composition F(x, ω) := f (x, g(ω))

is in Gρ,ρ′

B,L (X ×�), where

L = 2l+ρ′

lρ
′

L1 max(1, A1L2),

with l = max(k,m, n). Moreover we have the Gevrey norm estimate

∥F∥B,L ≤ A2.

Proposition A.7. Let X ⊂ Rn, Y ∈ Rm , and �⊂ Rk be open sets. Suppose g ∈ Gρ,ρ′

B1,L1
(X ×�, Y ) with

∥g∥B1,L1 = A1 and f ∈ Gρ,ρ′

B2,L2
(Y ×�). Then the composition

F(x, ω) := f (g(x, ω), ω)

is in Gρ,ρ′

B,L (X ×�), where
B = 4l(4l)ρB1 max(1 + A1 B2),

L = L2 + 4l(4l)ρL1 max(1, A1 B2),

with l = max(k,m, n). Moreover we have the Gevrey norm estimate

∥F∥B,L ≤ A2.

Appendix B: Gevrey class symbols

In this appendix, we introduce the class of Gevrey symbols used throughout this paper. We suppose D is
a bounded domain in Rn, and take X = Tn or a bounded domain in Rm. We fix the parameters σ,µ > 1
and ϱ ≥ σ +µ− 1, and denote the triple (σ, µ, ϱ) by ℓ.

Definition B.1. A formal Gevrey symbol on X × D is a formal sum

∞∑
j=0

pj (θ, I )h j , (B.1)

where the pj ∈ C∞

0 (X × D) are all supported in a fixed compact set and there exists a C > 0 such that

sup
X×D

|∂
β
θ ∂

α
I pj (θ, I )| ≤ C j+|α|+|β|+1β!

σ α!
µ j !ϱ. (B.2)
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Definition B.2. A realisation of the formal symbol (B.1) is a function p(θ, I ; h) ∈ C∞

0 (X × D) for
0< h ≤ h0, with

sup
X×D×(0,h0]

∣∣∣∣∂βθ ∂αI (
p(θ, I ; h)−

N∑
j=0

pj (θ, I )h j
)∣∣∣∣ ≤ hN+1C N+|α|+|β|+2

1 β!
σ α!

µ (N + 1)!ϱ. (B.3)

Lemma B.3. Given a formal symbol (B.1), one choice of realisation is

p(θ, I ; h) :=

∑
j≤ϵh−1/ϱ

pj (θ, I )h j , (B.4)

where ϵ depends only on n and C1.

Definition B.4. We define the residual class of symbols S−∞

ℓ as the collection of realisations of the zero
formal symbol.

Definition B.5. We write f ∼ g if f − g ∈ S−∞

ℓ . It then follows that any two realisations of the same
formal symbol are ∼-equivalent. We denote the set of equivalence classes by Sℓ(X × D).

We now discuss the class of pseudodifferential operators corresponding to these symbols.

Definition B.6. To each symbol p ∈ Sℓ(X × D), we associate a semiclassical pseudodifferential operator
defined by

(2πh)−n
∫

X×Rn
ei(x−y)·ξ/h p(x, ξ ; h)u(y) dξ dy (B.5)

for u ∈ C∞

0 (X).

The above construction is well-defined modulo exp(−ch−1/ϱ), as for any p ∈ S−∞

ℓ (X × D) we have

∥Phu∥ = OL2(exp(−ch−1/ϱ)) (B.6)

for some constant c > 0.

Remark B.7. The exponential decay of residual symbols is a key gain that comes from working in a
Gevrey symbol class.

The operations of symbol composition and conjugation then correspond to composing operators and
taking adjoints respectively. Moreover, if p ∈ S(σ,σ,2σ−1), then Gσ -smooth changes of variable preserve
the symbol class of p. This coordinate invariance allows us to extend the Gevrey pseudodifferential
calculus to compact Gevrey manifolds.

Appendix C: Estimates for analytic functions

In this appendix we prove several elementary but important estimates for analytic functions.

Proposition C.1. Suppose �̃j ⊂ C are open sets and �j ⊂ �̃j are such that dist(�j ,C \ �̃j ) > rj . Define

�=

n∏
j=1

�j and �̃=

n∏
j=1

�̃j . (C.1)
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If the analytic function f : �̃→ C satisfies

∥ f ∥� = A <∞ (C.2)

then we have

∥∂αz f ∥� ≤ Ar−αα! (C.3)

for each multi-index α.

Proof. For z ∈�, the Cauchy integral formula implies

f (z)=
1

(2π i)n

∮
∂B(z1,r1)

∮
∂B(z2,r2)

· · ·

∮
∂B(zn,rn)

f (w)
w− z

dw1 dw2 · · · dwn, (C.4)

which yields

∂αz f (z)=
α!

(2π i)n

∮
∂B(z1,r1)

∮
∂B(z2,r2)

· · ·

∮
∂B(zn,rn)

f (w)
(w− z)α+1 dw1 dw2 · · · dwn (C.5)

upon repeated differentiation, where 1 denotes the multi-index (1, 1, . . . , 1). Hence

∥∂αz f ∥� ≤ Ar−αα! (C.6)

as required. □

We also have an implicit function theorem for real-analytic functions. Defining

Oh = {ω ∈ Cn
: dist(ω,�) < h}, (C.7)

where distances in Cn are taken with the sup-norm, we have the following.

Proposition C.2. Suppose f : Oh × (−1, 1)→ Cn is real-analytic, and we have the estimate

| f |h <∞. (C.8)

Then, for any 0< v < 1
6 such that

| f − id|h ≤ vh, (C.9)

the function has a real-analytic inverse g : O(1/2−3v)h × (−1, 1)→ O(1−4v)h that satisfies the estimate

max(|g − id|(1/2−3v)h, 3vh|Dφ− Id|(1/2−3v)h)≤ | f − id|h (C.10)

uniformly in t ∈ (−1, 1). The norm | · |h denotes the sup-norm over Oh and the matrix norm in (C.10) is
the norm induced by equipping Cn with the sup-norm.

Proposition C.2 can be proven in the same way as in Lemma 3.4 of [Popov 2004b]. The only difference
is that we need to work on domains of the form Oλh × BC

1 , and invert maps of the form

f̃ (ω, t) := ( f (ω, t), t) (C.11)

for given f satisfying the assumptions of the proposition uniformly in t .
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Appendix D: Whitney extension theorem

In this appendix, we prove a version of the Whitney extension theorem for anisotropic Gevrey classes.
The proof is adapted from [Bruna 1980] in the non-anisotropic case.

Definition D.1.

C∞

M,M̃(X ×Y )=
{

f ∈ C∞(X ×Y,R) : sup
(x,y)∈X×Y

sup
α,β

(
|(∂αx ∂

β
y f )(x, y)|

L |α|

1 L |β|

2 M|α|M̃|β|

)
<∞ for some L j > 0

}
, (D.1)

where X, Y are open sets in Euclidean spaces of possibly differing dimension, α, β are multi-indices of
the appropriate dimension, and M and M̃ are positive sequences satisfying

(1) M0 = 1,

(2) M2
k ≤ Mk−1 Mk+1,

(3) Mk ≤ Ak Mj Mk− j ,

(4) Mk
k+1 ≤ Ak Mk+1

k ,

(5) Mk+1/(k Mk) is increasing,

(6)
∑

k≥0 Mk/Mk+1 ≤ ApMp/Mp+1 for p > 0,

where A > 0 is a positive constant.

In the Gevrey case of interest to us, Mk = k!
ρ1, M̃k = k!

ρ2. For fixed L j > 0, the supremum in (D.1)
defines a norm which equips a subspace of C∞

M,M̃
(X × Y ) with a Banach space structure. The space

C∞

M,M̃
(X × Y ) is then the inductive limit of these spaces as L = L1 = L2 → ∞, which identifies it a Silva

space.
For f ∈ C∞

M,M̃
(X × Y ), and z = (z1, z2) ∈ X × Y, x ∈ X we define

(T m
x f )(z) :=

∑
|α|≤m

(∂αx f )(x, z2)

α!
(z1 − x)α, (D.2)

(Rm
x f )(z) := f (z)− (T m

x f )(z). (D.3)

To slightly generalise this notation, for a jet f α,β of continuous functions, we write

(Rm
x f )α,β(z) := f α,β(z)− (T m−|α|

x f α,β)(z). (D.4)

We can now pose the question:

Given a compact set K ⊂ X , under what conditions is it true that an arbitrary continuous jet
( f α,β) : K × Y → R is the jet of a function f̃ ∈ C∞

M,M̃
(X × Y )?

We assume without loss of generality here that the set X is a full Euclidean space Rd, rather than
just an open subset thereof. This question is the anisotropic non-quasianalytic analogue of Whitney’s
extension theorem from classical analysis, which deals with the C∞ case.

We begin by finding necessary conditions for the existence of such an extension, before proving that
these conditions are indeed sufficient.
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Proposition D.2. Suppose f ∈C∞

M,M̃
(X × Y ) with Gevrey constants L1, L2. Then there exists a constant A

dependent only on the dimensions of X , Y and on M, M̃ such that the jet f α,β = ∂
(α,β)
z f satisfies

| f α,β | ≤ AL |α|

1 L |β|

2 M|α|M̃|β|, (D.5)

|(Rn
x f )k,l(z)| ≤ AL̃n+1

1 Mn+1L |l|
2 M̃|l|

|z1 − x |
n+1

(n + 1)!
(D.6)

for all nonnegative integers m, n and all multi-indices |k| ≤ m, |l| ≤ n, where L̃1 = C L1 with C dependent
only on the dimension of X.

Proof. The first estimate (D.5) follows immediately from the definition of C∞

M,M̃
(X × Y ). We prove the

second claim (D.6) by making use of the estimate (D.5) on the jet f α,β = ∂αx ∂
β
y f and Taylor expansion:

Rn
x f (z)=

∑
|α|=n+1

n + 1
α!

(z1 − x)α
∫ 1

0
(1 − t)n f α,0(x + t (z1 − x), z2) dt

≤
(

sup
|α|=n+1

sup
z∈X×Y

| f α,0(z)|
) ∑

|α|=n+1

∣∣∣∣(z1 − x)α

α!

∣∣∣∣
≤

(
sup

|α|=n+1
sup

z∈X×Y
| f α,0(z)|

)Cn+1
|z1 − x |

n+1

(n + 1)!
. (D.7)

Hence

|(Rn
x f )k,l(z)| = |(Rn−|k|

x f )(z)| ≤ AL̃n+1
1 Mn+1L |l|

2 M̃|l|
|z1 − x |

n+1

(n + 1)!
(D.8)

as required. □

Subsequently, for simplicity of notation, we omit the tilde in L̃1 with the understanding that we are
allowed to absorb constants that are dependent only on the dimensions of X , Y and on the sequences M, M̃.

Theorem D.3. Suppose ( f α,β) : K × Y → R is a jet of continuous functions smooth in y that satisfies

∂γy ( f α,β)= f α,β+γ , (D.9)

as well as the conditions (D.5) and (D.6) on K × Y. Then there exists a function f ∈ C∞

M,M̃
(X × Y ) such

that ∂α,βx f = f α,β on K × Y.
Moreover, there exist constants C0,C1 dependent only on the dimensions of X and Y and the weight

sequences Mk , M̃k such that
∥ f ∥C1 L1,L2 ≤ C0 A. (D.10)

Before proving Theorem D.3, we need to collect some lemmas, the proofs of which can be found in
[Bruna 1980].

Proposition D.4. Suppose K ⊂ Rd is compact. Then there exists a collection of closed cubes {Q j }j∈N

with sides parallel to the axes such that:

(i) Rd
\ K =

⋃
j Q j .

(ii) int(Q j ) are disjoint.



166 SEÁN GOMES

(iii) δj := diam(Q j )≤ dj := d(Q j , K )≤ 4δj .

(iv) For 0< λ < 1
4 , we have d(z, K )∼ δj for z ∈ Q∗

j := (1 + λ)Q j .

(v) Each Q∗

i intersects at most D = (12)2d cubes Q∗

j .

(vi) δi ∼ δj if Q∗

i ∩ Q∗

j ̸= ∅.

Proposition D.5. For each η > 0, there exists a family of functions φi ∈ C∞

M (R
d) such that:

(i) 0 ≤ φi .

(ii) supp(φi )⊂ Q∗

i .

(iii)
∑

i φi (z)= 1 for z ∈ Rd .

(iv) |∂αφi (z)| ≤ Ah(Bηd(z, K ))η|α|M|α| for z ∈ Q∗

i , where A, B > 0 are constants and

h(t) := sup
k

k!

tk Mk
. (D.11)

Proposition D.6. Suppose T ∈ L(E, F) is a continuous linear surjection between Silva spaces. Then for
any bounded set B ⊂ F, there exists a bounded set C ⊂ E with T (C)= B.

We also require an anisotropic version of Carleman’s theorem, which is the special case of Theorem D.3
with K = {0}, and the Gevrey analogue of Borel’s theorem from classical analysis.

Proposition D.7. Let (gα)α∈Nd be a multisequence of functions in C∞

M̃
(Y ) such that

|∂ l
ygα(y)| ≤ K L |α|

1 L |l|
2 M|α|M̃|l| (D.12)

for some constant K > 0.
Then there exists a function f ∈ C∞

M,M̃
(X × Y ) such that gα(y)= ∂αx f (0, y) for all y ∈ Y. Moreover,

∥ f ∥C L1,L2 ≤ AK for some constants A,C > 0 independent of f , L1, and L2.

Proof. We adapt the solution of [Petzsche 1988] of the classical Carleman problem to this setting. Key is
that the assumptions on M imply that the hypotheses of [Petzsche 1988] are satisfied. Hence as in the
proof of [Petzsche 1988, Theorem 2.1(ai)], we can construct compactly supported χp(x) ∈ C∞

Mp
(R) for

each nonnegative integer p such that
χ (k)p (0)= δ(k, p) (D.13)

and

∥χp∥L(2+A−1) ≤
1

Mp

(
Ae
L

)p

(D.14)

for some dimensional constant A and any L > 0. Hence we can define

χα(x) :=

d∏
j=1

χαj (x j ) (D.15)

for α ∈ Nd which satisfies
χ (β)α (0)= δ(β, α). (D.16)
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Moreover, we have the estimate

|χ (β)α | =

d∏
j=1

|χ
βj
αj | ≤

d∏
j=1

1
Mαj

(
Ae
L

)αj

(L(2 + A−1))βj Mβj

≤

(
Aec(d,M)

L

)|α|

M−1
|α|
(L(2 + A−1))|β|M|β|. (D.17)

By taking L = 2C L1 = 2Aec(d,M)L1, we can estimate

|∂k
x ∂

l
y(χα(x)gα(y))| ≤ K ((C/L)|α|M−1

|α|
(L(2 + A−1))|k|M|k|)(L

|α|

1 L |l|
2 M|α|M̃|l|)

≤ K · 2−|α|(2C L1(2 + A−1))|k|L |l|
2 M|k|M̃|l|, (D.18)

where A, C , and K are constants independent of f , L1, and L2.
Hence we have that ∥χα(x)gα(y)∥2C L1(2+A−1),L2 ≤ K · 2−|α|. It follows that

f (x, y) :=

∑
α∈Nd

χα(x)gα(y) (D.19)

converges in the C∞

M,M̃
(X × Y ) sense, and satisfies ∂αx f (0, y)= gα(y) as required. □

Equipped with these tools, we are ready to prove Theorem D.3.

Proof of Theorem D.3. We begin by estimating the difference in Taylor expansions about different points
in K. Using the identity

(T n
x f )(z)− (T n

y f )(z)=

∑
|α|≤n

(z1 − x)α

α!
(Rn

y f )α,0(x, z2), (D.20)

we can estimate

∂k,l
z ((T n

x f )(z)− (T n
y f )(z))=

∑
|α|≤n−|k|

(z1 − x)α

α!
(Rn

y f )k+α,l(x) (D.21)

using the assumed estimate (D.6) for (Rm,n
y f )k,l . This yields

|∂k,l
z ((T n

x f )(z)− (T n
y f )(z))| ≤ ALn+1

1 Mn+1L |l|
2 M̃|l|

(|z1 − x | + |z1 − y|)n−|k|+1

(n − |k| + 1)!
. (D.22)

We now invoke Proposition D.7. For x ∈ X consider the map Tx : C∞

M,M̃
(X × Y ) → Gx given by

(Tx f )α(y) := f α,0(x, y), where the space Gx consists of all multisequences of analytic functions
fα : Y → R satisfying | fα| ≤ AL |α|

1 L |β|

2 M|α|M̃|β| for some A > 0. From the assumed estimate (D.5)
on f α,β, Proposition D.7 applies, and for each x ∈ K we can find a function fx ∈ C∞

M,M̃
(X × Y ) such that

∂α,βz fx(x, z2)= f α,β(x, z2) (D.23)

for each α, β. Moreover, the conclusion of Proposition D.7 implies that there exist constants B = C0 A,
K1 = C1L1, K2 = L2 > 0 such that the estimate

|(∂α,βz fx)(z)| ≤ BK |α|

1 K |β|

2 M|α|M̃|β| (D.24)

holds uniformly, where the C j depend only on the dimensions of X and Y and the weight sequences Mk , M̃k .
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Hence we can bound

∂k,l
z ( fx(z)− (T m,n

x fx)(z))= (Rm,n fx)k,l(z) (D.25)

using the same calculation as in Proposition D.2. We obtain

|∂k,l
x ( fx(z)− (T n

x f )(z))| = |(Rn fx)k,l(z)|

≤ A(C1L1)
n+1 Mn+1L |l|

2 M̃|l|
|z1 − x |

n−|k|+1

(n − |k| + 1)!
.

(D.26)

The upshot of this estimate is that we can replace T n
x f and T n

y f in (D.22) with fx and fy respectively.
That is, we have

|∂k,l
z ( fx(z)− fy(z))| ≤ A(C1L1)

n+1 Mn+1L |l|
2 M̃|l|

(|z1 − x | + |z1 − y|)n−|k|+1

(n − |k| + 1)!
. (D.27)

We now fix k, l and vary n ≥ k in order to optimise the upper bound (D.27). By defining the quantity

h(t) := sup
k≥0

k!

tk Mk
(D.28)

as in [Bruna 1980] we obtain

|∂k,l
z ( fx(z)− fy(z))| ≤ A(C1L1)

|k|M|k|L
|l|
2 M̃|l|h((C1L1)(|z1 − x1| + |z1 − y|))−1 (D.29)

by using property (3) following (D.1).
The next step in the construction is to use Proposition D.5 to piece together the functions fx using

a C∞

M partition of unity subordinate to the cover arising from the decomposition of X \ K by cubes in
Proposition D.4. Taking the collection {Q j }j∈N of cubes in X = Rd constructed by Proposition D.4, we
choose x j ∈ K such that d(x j , Q j )= d(Q j , K ). Note that the conclusion of Proposition D.4 implies that

|z − x j | ∼ d(z, K ) (D.30)

for all z ∈ Q∗

j . Now taking φj as in Proposition D.5, we define

f̃ (z) :=

{
f (z) if z1 ∈ K ,∑

i φi (z1) fx j (z) if z1 ∈ X \ K .
(D.31)

Note that since the partition of unity {φj } is locally finite, the function f̃ (z) is smooth in (X \ K )× Y.
It remains to check that f̃ is smooth elsewhere, and moreover that f̃ ∈ C∞

M,M̃
(X × Y ). To this end, for

x ∈ K and z1 ∈ X \ K, we estimate

∂α,βz ( f̃ (z)− fx(z))=

∑
k≤α

(
α

k

) ∑
i

(∂kφi )(z1) ∂
α−k,β
z ( fxi (z)− fx(z)). (D.32)

First we estimate the k = 0 term. If z1 ∈ spt(φi )= Q∗

i , we have

d(z1, xi )∼ d(z1, K )≤ d(z1, x) (D.33)
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and hence we have∣∣∣∣∑
i

φi (z1) ∂
α,β
z ( fxi (z)− fx(z))

∣∣∣∣ ≤ A(C1L1)
|α|M|α|L

|β|

2 M̃|β|h((C1L1)|z1 − x |)−1 (D.34)

from (D.29).
We now estimate the terms with |k| > 0. For x ∈ X \ K, we choose x̄ ∈ K with d(x, x̄) = d(x, K ).

Since
∑

i ∂
kφi = 0, we have∑

i

(∂kφi )(z1) ∂
α−k,β
z ( fxi (z)− fx(z))=

∑
i

(∂kφi )(z1) ∂
α−k,β
z ( fxi (z)− f z̄1(z)). (D.35)

Now as before, we exploit the fact that d(z1, xi )∼ d(z1, K ) to bound

|∂α−k,β
z ( fxi (z)− f z̄1(z))| ≤ A(C1L1)

|α|−|k|M|α|−|k|L
|β|

2 M̃|β|h((C1L1)d(z1, K ))−1. (D.36)

Since log(Mj ) is an increasing convex sequence with first term 0, it is also superadditive, and we have
M|k|M|l| ≤ M|k|+|l|. Hence for |k| ≥ 1, we can use property (4) in Proposition D.5 to conclude that∣∣∣∣∑

i

(∂kφi )(z1) ∂
α−k,β
z ( fxi (z)− fx(z))

∣∣∣∣ ≤ AM|α|M̃|β|(C1L1)
|α|−|k|L |β|

2 η|k|
h(Bηd(z1, K ))

h((C1L1)d(z1, K ))
, (D.37)

where η remains to be chosen. Equation (15) from [Bruna 1980] implies the existence of a constant c> 0
such that

h(t)
h(ct)

≤
A

h(t)
(D.38)

for some A > 0. Hence we choose η = C1L1/(cB) to arrive at the estimate∣∣∣∣∑
i

(∂kφi )(z1) ∂
α−k,β
z ( fxi (z)− fx(z))

∣∣∣∣ ≤ A(C1L1)
|α|−|k|L |β|

2 M|α|M̃|β|η
|k|h((C1L1)|z1 − x |)−1. (D.39)

Combining (D.34) and (D.39), we arrive at

|∂α,βz ( f̃ (z)− fx(z))| ≤ AL |β|

2 M|α|M̃|β|((C1L1)+ η)
|α|h((C1L1)|z1 − x |)−1 (D.40)

for z ∈ (X \ K )× Y.
The estimate (D.40) is key to proving f̃ ∈ C∞(X × Y ) (and that the derivatives coincide with the those

given by the jet f α,β), as well as the subsequent deduction of C∞

M,M̃
regularity. We write

f̃ α,β(z) :=

{
∂
α,β
z f̃ (z) if z1 ∈ X \ K ,

f α,β(z) if z1 ∈ K .
(D.41)

The smoothness of each f̃ α,β : X × Y → R readily follows from the fact that each f α,β : K × Y → R is
smooth in y, together with the estimate

| f̃ α,β(z)− ∂α,βz T m
x f (z)| = o(|z1 − x |

m−|α|). (D.42)
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For z with z1 ∈ K, the estimate (D.42) comes immediately from (D.6) on K × Y. Otherwise, it is a
consequence of the estimate (D.40), the defining property (D.23) of the functions fx , and the fact that the
function h(t) increases faster than any polynomial in t−1 as t → 0.

Finally, we need to check C∞

M,M̃
regularity. That is, we need to verify the Gevrey estimate

∥ f ∥C1 L1,L2 ≤ C0 A (D.43)

for some constants C0,C1 dependent only on the dimensions of the spaces X and Y and the weight
sequences Mk, M̃k . In light of (D.5), it only remains to prove (D.43) on (X \ K )×Y, and by multiplication
by a cutoff function we may assume d(z1, K ) is bounded. Then, by applying (D.40) with x = z̄1 we can
further reduce the problem to verifying (D.43) for fx , uniformly in x ∈ K. However this was established
earlier in (D.24). Hence, the proof is complete. □
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