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HOLOMORPHIC FACTORIZATION OF MAPPINGS INTO Sp4(C)
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We prove that any null-homotopic holomorphic map from a Stein space X to the symplectic group Sp4(C)

can be written as a finite product of elementary symplectic matrices with holomorphic entries.
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1. Introduction

The continuous or holomorphic parameter dependence of classical linear algebra results over the fields R

or C form a circle of very natural questions of general mathematical interest. For example the factorization
of continuous matrices as a product of continuous elementary matrices has been studied and solved by
Vaserstein [1988]. The corresponding holomorphic problem for the special linear group SLn was posed
by Gromov [1989] and was finally solved by the first two authors in [Ivarsson and Kutzschebauch 2012].
The study of algebraic dependence is connected with famous work by Suslin [1977], Cohn [1966], Bass,
Milnor, and Serre [Bass et al. 1967] and many others.
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These parameter dependence questions are a part of algebraic K-theory and the study of linear algebra
over general rings. Factorization of Chevalley groups over R and C into elementary matrices is classically
well known. For Chevalley groups over general rings this is much more difficult and studied a lot. For an
overview, see, for example, [Vavilov and Stepanov 2011].

We are mainly interested in the rings of holomorphic functions on Stein spaces. The only known
holomorphic result is the existence for the special linear groups in [Ivarsson and Kutzschebauch 2012],
where Gromov’s problem is solved in full generality. In the special case of an open Riemann surface the
problem was solved earlier (absolutely unnoticed) by Klein and Ramspott [1987]. The authors [Ivarsson
et al. 2020] also proved the main result of this paper for any size of symplectic matrices in the special
case of an open Riemann surface.

In the present paper we consider the symplectic groups over rings of holomorphic functions on Stein
spaces. The main result is (see Section 2 for notation)

Main Theorem (Theorem 3.1). Let X be a finite-dimensional reduced Stein space and f : X → Sp4(C)

be a holomorphic mapping that is null-homotopic. Then there exist a natural number K , depending only
on the dimension of X , and holomorphic mappings

G1, . . . ,G K : X → C3

such that

f (x)= M1(G1(x)) · · · MK (G K (x)).

We remind the reader that a mapping is null-homotopic if it is homotopic to a constant map. By the
Oka–Grauert principle it is equivalent for a holomorphic map from a Stein space into a complex Lie
group to be null-homotopic via holomorphic maps or via continuous maps (see Theorem 5.3.2 in the
standard reference [Forstnerič 2017]).

Our main tool is the Oka principle for stratified elliptic submersions, the most elaborate result in
modern Oka theory. In order to apply an Oka principle one needs a topological solution which we take
from our previous work on symplectic groups over rings of continuous functions on topological spaces.
The Oka principle lets us homotope the topological solution to a holomorphic one. The technical details
needed to prove that certain fibrations are stratified elliptic are considerable and we have so far only been
able to complete these details for Sp4. We expect that a similar result holds for Sp2n .

Factorization of symplectic groups over other rings (of mainly algebraic nature) has been considered
before for example by Kopeiko [1978], and Grunewald, Mennicke and Vaserstein [Grunewald et al. 1991].

The paper is organized as follows. In Section 2 we recall our results on factorization of continuous matri-
ces and prove a slight extension about the number of factors. In Section 3 we state our main results and give
an overview over the proof. In Section 4 we explain how our results can be reformulated in the language
used in algebraic K-theory. In Section 5 we recall the theorems from Oka theory which we use in our proof.

In Section 6 we give the proofs of Lemmas 3.3 and 3.4, where we prove that the most important
fibrations in this paper, the projections of products of elementary symplectic matrices onto their last row,
are surjective and we determine where they are submersive. This is done for symplectic matrices of all
sizes, since we hope to be able to prove in the future that these fibrations are stratified elliptic for all sizes.
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The rest of the paper is devoted to proving that our fibration (for (4 × 4)-matrices) is stratified elliptic
in order to be able to apply Oka theory. In Section 7 we describe the stratification with respect to which
we want to prove that the important fibration is stratified elliptic. This has to do with how the set of
2n algebraic equations defining a fiber in the fibration can be reduced to n equations. In the case of
the special linear group in [Ivarsson and Kutzschebauch 2012] we were able to reduce to one single
equation independent of the size of the matrices. This was the crucial trick to prove ellipticity by finding
complete vector fields, which corresponds to Gromov’s example of a spray. This inability to reduce to
fewer equations is the main difference between the situation of the symplectic group and the special linear
group. It leads to all the difficult technical work in the rest of the paper. In Section 8 we introduce our
method to find complete vector fields tangent to the fibration. However not all of them are complete and
we deduce that the Gromov-spray produced by them is not dominating. We determine which of them
are complete. In Section 9 we explain our strategy to enlarge the set of complete vector fields so that
this enlarged collection now spans the tangent space at all points and thus gives a fiber-dominating spray.
The realization of this strategy takes Section 10, where we introduce useful quantities, Sections 11, 12,
and 13, where we prove the result for three, four, and five (elementary symplectic) factors, and finally we
can give an inductive (over the number of factors) proof in Section 14. The reason for dealing with the
low numbers of factors separately is that some of the fibers of our fibration are reducible when there are a
small number of factors, and from five factors on all fibers are irreducible. In Section 15 we end the paper
with an application to the problem of a product of exponentials and formulate some open questions.

2. Continuous factorization

Let

ω =

n∑
j=1

dz j ∧ dz j+n

be the symplectic form in C2n. With respect to ω, symplectic matrices are those that can be written in
block form as (

A B
C D

)
,

where A, B,C and D are complex n × n matrices satisfying

AT C = CT A, (2.0.1)

BT D = DT B, (2.0.2)

AT D − CT B = In, (2.0.3)

where In is the n × n identity matrix. In the case B = C = 0 this means D = (AT )−1, and in the case
A = D = In this means B and C are symmetric and CT B = 0. Let Un denote an n×n matrix satisfying
Un = U T

n and 0n the n×n zero matrix. We call those matrices that are written in block form as(
In 0n

Un In

)
or

(
In Un

0n In

)
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elementary symplectic matrices. Let

Un(x1, . . . , xn(n+1)/2)=


x1 x2 . . . xn

x2 xn+1 . . . x2n−1
...

...
. . .

...
xn x2n−1 . . . xn(n+1)/2

 .
Given a map G : X → Cn(n+1)/2 let

Un(G(x))= Un(G1(x), . . . ,Gn(n+1)/2(x)),

where the G j ’s are components of the map G. For odd k let

Mk(G(x))=

(
In 0n

Un(G(x)) In

)
,

and for even k

Mk(G(x))=

(
In Un(G(x))
0n In

)
.

The following result is a refinement of [Ivarsson et al. 2020, Theorem 1.3].

Theorem 2.1 (continuous Vaserstein problem for symplectic matrices). There exists a natural number
K (n, d) such that given any finite-dimensional normal topological space X of (covering) dimension d
and any null-homotopic continuous mapping M : X → Sp2n(C) there exist K continuous mappings

G1, . . . ,G K : X → Cn(n+1)/2

such that
M(x)= M1(G1(x)) · · · MK (G K (x)).

Proof. Theorem 1.3 in [Ivarsson et al. 2020] does not give a uniform bound on the number of factors
depending on n and d . Suppose such a bound does not exist; i.e., for all natural numbers i there are normal
topological spaces X i of dimension d and null-homotopic continuous maps fi : X i → Sp2n(C) such that fi

does not factor over a product of less than i elementary symplectic matrices. Let X equal
⋃

∞

i=1 X i , the dis-
joint union of the spaces X i , and F : X → Sp2n(C) be the map that is equal to fi on X i . By Theorem 1.3 in
[Ivarsson et al. 2020] F factors over a finite number of elementary symplectic matrices. Consequently all fi

factor over the same number of elementary symplectic matrices, which contradicts the assumption on fi . □

3. Statement of the main result and overview of proof

We state the main result of this paper which is a holomorphic version of Theorem 2.1 for Sp4(C).

Theorem 3.1. There exists a natural number N (d) such that given any finite-dimensional reduced Stein
space X of dimension d and any null-homotopic holomorphic mapping f : X → Sp4(C) there exist
N holomorphic mappings

G1, . . . ,G N : X → C3

such that
f (x)= M1(G1(x)) · · · MN (G N (x)).
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We have the following corollary.

Corollary 3.2. Let X be a finite-dimensional reduced Stein space that is topologically contractible and f :

X → Sp4(C) be a holomorphic mapping. Then there exist a natural number N and holomorphic mappings

G1, . . . ,G N : X → C3

such that
f (x)= M1(G1(x)) · · · MN (G N (x)).

The strategy for proving Theorem 3.1 is as follows. Define

9K : (C3)K
→ Sp4(C)

as
9K (x1, . . . , x3K )= M1(x1, x2, x3) · · · MK (x3K−2, x3K−1, x3K ). (3.0.1)

We want to show the existence of a holomorphic map

G = (G1, . . . ,G K ) : X → (C3)K

such that
(C3)K

9K

��
X

f
//

G
<<

Sp4(C)

is commutative. Theorem 2.1 shows the existence of a continuous map such that the diagram above is
commutative.

We will prove Theorem 3.1 using the Oka–Grauert–Gromov principle for sections of holomorphic
submersions over X . One candidate submersion would be to use the pull-back of 9K : (C3)K

→ Sp4(C).
It turns out that 9K is not a submersion at all points in (C3)K. It is a surjective holomorphic submersion
if one removes a certain subset from (C3)K. Unfortunately the fibers of this submersion are quite difficult
to analyze and we therefore elect to study

(C3)K

π4◦9K
��

X
π4◦ f

//

F
<<

C4
\ {0}

where we define the projection π4 : Sp4(C)→ C4
\ {0} to be the projection of a matrix to its last row:

π4

z11 . . . z14
...
. . .

...
z41 . . . z44

= (z41, . . . , z44).

However, even the map 8K = π4 ◦9K : (C3)K
→ C4

\ {0} is not submersive everywhere. We have the
three results below (Lemmas 3.3 and 3.4 and Proposition 3.6) about that map which will be proved in
later sections.
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We introduce some notation. Projecting to the last row introduces an asymmetry between upper and
lower triangular elementary matrices and therefore we will denote by z’s the variables in the lower
triangular matrices and by w’s the variables in the upper triangular matrices. For example, the right-hand
side of (3.0.1) becomes

1 0 0 0
0 1 0 0
z1 z2 1 0
z2 z3 0 1




1 0 w1 w2

0 1 w2 w3

0 0 1 0
0 0 0 1

 · · ·


1 0 w3k−2 w3k−1

0 1 w3k−1 w3k

0 0 1 0
0 0 0 1


for even K = 2k.

Let

Z⃗ K =

{
(z1, z2, z3, w1, w2, w3, . . . , w3k−2, w3k−1, w3k) if K = 2k,
(z1, z2, z3, w1, w2, w3, . . . , z3k+1, z3k+2, z3k+3) if K = 2k + 1

and

WK =


(
w1 w2 w4 w5 . . . w3k−5 w3k−4

w2 w3 w5 w6 . . . w3k−4 w3k−3

)
if K = 2k,(

w1 w2 w4 w5 . . . w3k−2 w3k−1

w2 w3 w5 w6 . . . w3k−1 w3k

)
if K = 2k + 1.

Also, when K = 2k or K = 2k + 1, let

AK =

⋂
1≤ j≤k

{Z⃗ K ∈ (C3)K
: z3 j−1 = z3 j = 0},

BK = {Z⃗ K ∈ (C3)K
: Rank WK < 2}

and
SK = AK ∩ BK . (3.0.2)

We have Lemma 3.3, which follows from a simple calculation.

Lemma 3.3. The mapping
8K = π4 ◦9K : (C3)K

\ SK → C4
\ {0}

is surjective when K ≥ 3.

Lemma 3.4. For K ≥ 3 the mapping

8K = π4 ◦9K : (C3)K
→ C4

\ {0}

is a holomorphic submersion exactly at points Z⃗ K ∈ (C3)K
\ SK , where SK is defined by (3.0.2) above.

That is, SK is the set of points where the entries in the last row of each lower triangular matrix are zero,
except for the K -th matrix where no conditions are imposed, and the rank of the matrix WK , which does
not involve entries from the K -th matrix, is strictly less than 2.

Remark 3.5. Lemmas 3.3 and 3.4 both generalize to 2n×2n matrices and the proofs are identical. In
Section 6 we therefore consider the general case.
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Proposition 3.6. For n = 1 and n = 2 the map

(Cn(n+1)/2)K
\ SK

π2n◦9K
��

C2n
\ {0}

(3.0.3)

is a stratified elliptic submersion.

Corollary 3.7. Let n = 1 or n = 2. Let X be a finite-dimensional reduced Stein space and f : X →Sp2n(C)

be a holomorphic map. Assume that there exists a natural number K and a continuous map F :

X → (Cn(n+1)/2)K
\ SK such that

(Cn(n+1)/2)K
\ SK

π2n◦9K
��

X
π2n◦ f

//

F
88

C2n
\ {0}

is commutative. Then there exists a holomorphic map G : X → (Cn(n+1)/2)K
\ SK , homotopic to F via

continuous maps Ft : X → (Cn(n+1)/2)K
\ SK , such that the diagram above is commutative for all Ft .

Proof. The pull-back of (3.0.3) by π2n ◦ f is a stratified elliptic submersion over the Stein base X . Thus by
Theorem 5.6 there is a homotopy from the given continuous section to a holomorphic section. This is equiv-
alent to the desired homotopy Ft . An even better way to perform this proof is to say that the map (3.0.3)
is an Oka map, see [Forstnerič 2017, Corollary 7.4.5(i)], which yields the desired conclusion. □

Remark 3.8. The fact that the map (3.0.3) is an Oka map yields a parametric version of Corollary 3.7.
This means that the holomorphic map can be replaced by a continuous map fP : X × P → Sp2n(C),
which is holomorphic for each fixed parameter p ∈ P, where P is a compact Hausdorff topological space.

We need the following version of the Whitehead lemma:
1 0 0 0
a 1 0 0
0 0 1 −a
0 0 0 1

=


1 0 0 0
0 1 0 0

−a −1 1 0
−1 0 0 1




1 0 0 0
0 1 0 −a
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 1




1 0 0 0
0 1 0 a
0 0 1 0
0 0 0 1

 . (3.0.4)

Proof of Theorem 3.1. We will prove the theorem for a single map. The existence of a uniform bound
N (d) follows as in the proof of Theorem 2.1. Since a finite-dimensional Stein space is finite-dimensional
as a topological space there are K − 2 continuous mappings

G1, . . . ,G K−2 : X → C3

such that

f (x)= M1(G1(x)) · · · MK−2(G K−2(x)).



240 BJÖRN IVARSSON, FRANK KUTZSCHEBAUCH AND ERIK LØW

Let H : X → C3 be a constant map such that U2(H) has nonzero second row, let O : X → C3 be the
zero map, and replace the above factorization by

f (x)= M1(H)M2(O)M3(G1(x)− H)M4(G2(x)) · · · MK (G K−2(x))

(suppressing the variables in the constant maps H and O). Notice that the second factor is the identity
matrix.

This factorization by K continuous elementary symplectic matrices avoids the singularity set SK and
thus we find F : X → (C3)K

\ SK with 9K (F)= f .
Using Corollary 3.7 we know that F0 := F is homotopic to a holomorphic map G = F1, via continuous

maps Ft , such that
π4( f (x))= π4 ◦9K (Ft(x)), 0 ≤ t ≤ 1,

that is, the last row of the matrices 9K (Ft(x)) is constant. Therefore

9K (Ft(x)) f (x)−1
=


f̃11,t(x) f̃12,t(x) f̃13,t(x) f̃14,t(x)
f̃21,t(x) f̃22,t(x) f̃23,t(x) f̃24,t(x)
f̃31,t(x) f̃32,t(x) f̃33,t(x) f̃34,t(x)

0 0 0 1

 .
Since these matrices are symplectic, it automatically follows that f̃12,t(x) ≡ 0, f̃22,t(x) ≡ 1, and
f̃32,t(x)≡ 0 so that

9K (Ft(x)) f (x)−1
=


f̃11,t(x) 0 f̃13,t(x) f̃14,t(x)
f̃21,t(x) 1 f̃23,t(x) f̃24,t(x)
f̃31,t(x) 0 f̃33,t(x) f̃34,t(x)

0 0 0 1

 (3.0.5)

and in addition

f̃t(x)=

(
f̃11,t(x) f̃13,t(x)
f̃31,t(x) f̃33,t(x)

)
∈ Sp2(C)= SL2(C). (3.0.6)

Since 9K (F0(x))= f (x), we see that f̃0 = Id, and thus the holomorphic map f̃ := f̃1 : X → SL2(C) is
null-homotopic. Let ψ be the standard inclusion of Sp2 in Sp4; see for example [Grunewald et al. 1991].
By the main result from [Ivarsson and Kutzschebauch 2012] the matrix

ψ( f̃ (x)−1)=


f̃33(x) 0 − f̃13(x) 0

0 1 0 0
− f̃31(x) 0 f̃11(x) 0

0 0 0 1

 (3.0.7)

is a product of holomorphic elementary symplectic matrices. Therefore it suffices to show that

9K (G(x)) f (x)−1
·ψ( f̃ (x)−1)=


1 0 0 f̃14(x)

− f̃34(x) 1 f̃14(x) f̃24(x)
0 0 1 f̃34(x)
0 0 0 1

 (3.0.8)
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is a product of elementary symplectic matrices. In order to deduce that the right-hand side of (3.0.8) has
the claimed form one has to use the fact that (3.0.5) is symplectic. Since

1 0 0 f̃14(x)
− f̃34(x) 1 f̃14(x) f̃24(x)

0 0 1 f̃34(x)
0 0 0 1

=


1 0 0 0

− f̃34(x) 1 0 0
0 0 1 f̃34(x)
0 0 0 1




1 0 0 f̃14(x)
0 1 f̃14(x) f̃14(x) f̃34(x)+ f̃24(x)
0 0 1 0
0 0 0 1

 ,
the result follows by the Whitehead lemma, (3.0.4). □

Analyzing this proof and using Remark 3.8 one sees that we can actually prove a parametric version of
our main theorem.

Theorem 3.9. Let X be a finite-dimensional reduced Stein space, P be a compact Hausdorff topological
(parameter) space, and f : P × X → Sp4(C) be a continuous mapping, holomorphic for each fixed p ∈ P,
that is null-homotopic. Then there exist a natural number K and continuous mappings, holomorphic for
each fixed parameter p ∈ P,

G1, . . . ,G K : P × X → C3

such that

f (p, x)= M1(G1(p, x)) · · · MK (G K (p, x)).

To complete the proof of the theorem we need to establish Proposition 3.6 and Lemmas 3.4 and 3.3.

Remark 3.10. Proposition 3.6 is the crucial ingredient in the proof of Theorem 3.1. Its proof is by far
the most difficult part of the paper. As pointed out in Remark 3.5, Lemma 3.4 holds for general n. Also if
Proposition 3.6 holds for some n then Corollary 3.7 also holds for that n. Moreover the reduction of the
size of the symplectic matrix from Sp4 to Sp2 done in the proof of Theorem 3.1 generalizes easily to a
reduction from Sp2n to Sp2n−2 if Corollary 3.7 holds for n (see for example the proof of Lemma 4.4 in
[Grunewald et al. 1991]). Therefore if Proposition 3.6 can be proven for n = 1, . . . ,m then the following
holds true.

Conjecture 3.11. Let X be a finite-dimensional reduced Stein space and f : X → Sp2m(C) be a holomor-
phic mapping that is null-homotopic. Then there exist a natural number K and holomorphic mappings

G1, . . . ,G K : X → Cm(m+1)/2

such that

f (x)= M1(G1(x)) · · · MK (G K (x)).

In the case of a 1-dimensional Stein space, i.e., an open Riemann surface, this conjecture was established
in [Ivarsson et al. 2020]. The condition of null-homotopy is automatically satisfied in this case, since an
open Riemann surface is homotopy equivalent to a 1-dimensional CW-complex and the group Sp2m(C) is
simply connected. The proof uses the analytic ingredient that the Bass stable rank of O(X) is 1 for an
open Riemann surface and proceeds then by linear algebra arguments.
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4. Formulation in algebraic terms

We relate our results to algebraic K-theory and reformulate them in those terms. The following is a
standard notion:

Definition 4.1. For a commutative ring R the set Um(R) of unimodular rows of length m is defined as

{(r1, r2, . . . , rm) ∈ Rm
: r1, r2, . . . rm generate R as an ideal}.

In our main example, if O(X) is the ring of holomorphic functions on a Stein space X , a row
( f1, f2, . . . , fm) ∈ Om(X) is unimodular if and only if the functions f1, f2, . . . , fm have no common
zeros, a well-known application of Cartan’s Theorem B.

Since null-homotopy is an important assumption in our studies we denote the set of null-homotopic
unimodular rows in Um(O(X)) by U 0

m(O(X)). This set can be seen as the path-connected component of
the space of holomorphic maps from X to Cm

\ {0} containing the constant map (0, 0, , . . . , 0, 1)= em .
By the Oka–Grauert principle Cm

\ {0} = GLm(C)/GLm−1(C) is an Oka manifold; therefore the path-
connected components of continuous and holomorphic maps X → Cm

\ {0} are in bijection. This says
that unimodular rows in Um(O(X)) are null-homotopic in the holomorphic sense if and only if they are
null-homotopic in the continuous sense.

Algebraic K-theorists consider Chevalley groups over rings; in our example we consider the null-
homotopic elements of them.

Definition 4.2. Sp0
2n(O(X)) denotes the group of null-homotopic holomorphic maps from a Stein space X

to the symplectic group Sp2n(C), which in other words is the path-connected component of the group
Sp2n(O(X)) containing the identity.

Again by the Oka–Grauert principle holomorphic maps X → Sp2n(C) are homotopic via holomorphic
maps if and only if they are homotopic via continuous maps.

Clearly the last row of a matrix in Sp2n(O(X)) is unimodular, i.e., an element of U2n(O(X)). Whether
a unimodular row in U2n(O(X)) is the last row of a matrix in Sp2n(O(X)) is by Oka theory a purely
topological problem. Let us illustrate this by an example.

Extending a unimodular row to an invertible matrix can be reformulated as follows: given a trivial line
subbundle of the trivial bundle X × Cn of rank n over X , can it be complemented by a trivial bundle?

This of course is not always the case: The (nontrivial) tangent bundle T of the sphere S2n+1 (n ≥ 4) is
the complement of the trivial normal bundle N to the sphere S2n+1 in R2n+2. To make this a holomorphic
example consider X to be a Grauert tube around S2n+1, i.e., a Stein manifold which has a strong deformation
retraction ρ onto its totally real maximal-dimensional submanifold S2n+1. The bundle T is replaced by
the complexified tangent bundle to the sphere pulled back onto X by the retraction ρ and equipped with
its unique structure of holomorphic vector bundle (which is still not a trivial bundle). The pull-back of the
complexified trivial bundle N is still a trivial line subbundle of X × C2n. Thus we have found an example
of a holomorphic row which cannot be completed to an invertible matrix in GL2n(O(X)) and thus not to
a matrix in Sp2n(O(X)) either.

For null-homotopic rows the situation is better.



HOLOMORPHIC FACTORIZATION OF MAPPINGS INTO Sp4(C) 243

Lemma 4.3. Every element U 0
2n(O(X)) extends to a null-homotopic matrix A ∈ Sp0

2n(O(X)).

Proof. Let F = ( f1, . . . , f2n) : X → C2n
\{0} be a null-homotopic holomorphic map, and the homotopy to

the constant map F1(x)= e2n be denoted by Ft , t ∈ [0, 1]. The map π2n : Sp2n(C)→ C2n
\{0} is a locally

trivial holomorphic fiber bundle with typical fiber F ∼= Sp2n−2(C)× C4n−1 which is an Oka manifold.
Our problem is to find a global section of the pull-back of this fibration by the map F = F0. Since a
locally trivial bundle is a Serre fibration and the constant last row can be extended to a constant (thus
null-homotopic) symplectic matrix, we find a continuous section of this pull-back bundle over the whole
homotopy. Thus the restriction to X × {0} is a null-homotopic continuous symplectic matrix. Since the
fiber F is Oka, we find a homotopy to a holomorphic symplectic matrix, which is still null-homotopic. □

The notion of elementary symplectic matrices over a ring R is the same as explained in Section 2.
Let Wn denote an n×n matrix with entries in the ring R satisfying Wn = W T

n and 0n the n×n zero
matrix. We call those matrices that are written in block form as(

In 0n

Wn In

)
or

(
In Wn

0n In

)
elementary symplectic matrices over R. The group generated by them, the elementary symplectic group,
is denoted by Ep2n(R). We consider the group Ep2n(O(X)) which is easily seen to be a subgroup of
Sp0

2n(O(X)) (multiply the symmetric matrices Wn by a real number t ∈ [0, 1]).
The meaning of Corollary 3.7 in K-theoretic terms is now the following:

Proposition 4.4. Let n = 1 or n = 2. For a Stein space X the group Ep2n(O(X)) acts transitively on the
set of null-homotopic unimodular rows U 0

2n(O(X)).

Proof. Let u ∈ U 0
2n(O(X)) be a null-homotopic unimodular row. By the above lemma we can extend

it to a null-homotopic symplectic matrix A ∈ Sp0
2n(O(X)). Now we just follow the beginning of the

proof of Theorem 3.1. By Theorem 2.1 we can factorize A(x) as a product of elementary symplectic
matrices with continuous entries. Adding two more elementary symplectic matrices we can achieve
that the factorization avoids the singularity set SK . Applying Corollary 3.7 we know that A0 := A is
homotopic to a holomorphic map G = A1, via continuous maps At , such that

π4(A(x))= π4 ◦9K (At(x)), 0 ≤ t ≤ 1,

that is, the last row of the matrices 9K (At(x)) is constant. Therefore

9K (At(x))A(x)−1
=


ã11,t(x) ã12,t(x) ã13,t(x) ã14,t(x)
ã21,t(x) ã22,t(x) ã23,t(x) ã24,t(x)
ã31,t(x) ã32,t(x) ã33,t(x) ã34,t(x)

0 0 0 1

 .
This shows that the element 9K (G(x)) of Ep2n(O(X)) has the last row equal to u or equivalently moves
the constant row e2n to u. □
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Let ψ : SL2 → Sp4 be the standard embedding given by

(
a b
c d

)
7→


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

 . (4.0.1)

Continuing like in the proof of Theorem 3.1 we see that it gives the following “inductive step”.

Proposition 4.5. For a Stein space X we have

Sp0
4(O(X))= Ep4(O(X)) ·ψ(Sp0

2(O(X))).

In a similar way one can deduce from our earlier results (Proposition 2.8 and the proof of Theorem 2.3
in [Ivarsson and Kutzschebauch 2012]) the corresponding statements for the special linear groups. The
definition of the elementary group En and the inclusion ψ of SLn−1 into SLn are the usual ones.

Proposition 4.6. For a Stein space X and any n ≥ 2 the group En(O(X)) acts transitively on the set of
null-homotopic unimodular rows U 0

n (O(X)).

Proposition 4.7. For a Stein space X and any n ≥ 2 we have

SL0
n(O(X))= En(O(X)) ·ψ(SL0

n−1(O(X))).

5. Stratified sprays

We will introduce the concept of a spray associated with a holomorphic submersion following [Gromov
1989; Forstnerič and Prezelj 2002]. First we introduce some notation and terminology. Let h : Z → X be
a holomorphic submersion of a complex manifold Z onto a complex manifold X . For any x ∈ X the fiber
over x of this submersion will be denoted by Zx . At each point z ∈ Z the tangent space Tz Z contains the
vertical tangent space V Tz Z = ker Dh. For holomorphic vector bundles p : E → Z we denote the zero
element in the fiber Ez by 0z .

Definition 5.1. Let h : Z → X be a holomorphic submersion of a complex manifold Z onto a complex
manifold X . A spray on Z associated with h is a triple (E, p, s), where p : E → Z is a holomorphic
vector bundle and s : E → Z is a holomorphic map such that for each z ∈ Z we have

(i) s(Ez)⊂ Zh(z),

(ii) s(0z)= z, and

(iii) the derivative Ds(0z) : T0z E → Tz Z maps the subspace Ez ⊂ T0z E surjectively onto the vertical
tangent space V Tz Z .

Remark 5.2. We will also say that the submersion admits a spray. A spray associated with a holomorphic
submersion is sometimes called a (fiber-)dominating spray.

One way of constructing dominating sprays, as pointed out by Gromov, is to find finitely many
C-complete vector fields that are tangent to the fibers and span the tangent space of the fibers at all
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points in Z . One can then use the flows ϕt
j of these vector fields Vj to define s : Z × CN

→ Z via
s(z, t1, . . . , tN )= ϕ

t1
1 ◦ · · · ◦ϕ

tN
N (z), which gives a spray.

Definition 5.3. Let X and Z be complex spaces. A holomorphic map h : Z → X is said to be a submersion
if for each point z0 ∈ Z it is locally equivalent via a fiber-preserving biholomorphic map to a projection
p : U × V → U , where U ⊂ X is an open set containing h(z0) and V is an open set in some Cd.

We will need to use stratified sprays, which are defined as follows.

Definition 5.4. We say that a submersion h : Z → X admits stratified sprays if there is a descending chain
of closed complex subspaces X = Xm ⊃ · · · ⊃ X0 such that each stratum Yk = Xk \ Xk−1 is regular and
the restricted submersion h : Z |Yk → Yk admits a spray over a small neighborhood of any point x ∈ Yk .

Remark 5.5. We say that the stratification X = Xm ⊃ · · · ⊃ X0 is associated with the stratified spray.

In [Forstnerič and Prezelj 2001], see also [Forstnerič 2010, Theorem 8.3], the following is proved.

Theorem 5.6. Let X be a Stein space with a descending chain of closed complex subspaces X = Xm ⊃

· · · ⊃ X0 such that each stratum Yk = Xk \ Xk−1 is regular. Assume that h : Z → X is a holomorphic
submersion which admits stratified sprays. Then any continuous section f0 : X → Z such that f0|X0 is
holomorphic can be deformed to a holomorphic section f1 : X → Z by a homotopy that is fixed on X0.

6. Proofs of Lemmas 3.3 and 3.4

Lemmas 3.3 and 3.4 hold for square matrices of any size. In this section we therefore look at
2n×2n matrices. Given two vectors a⃗ and b⃗ in Cn (i.e., n × 1 matrices), we denote by(

a⃗
b⃗

)
the obvious vector in C2n .

We shall consider products of 2n×2n matrices(
In 0
Z1 In

)(
In W1

0 In

)(
In 0
Z2 In

)(
In W2

0 In

)
· · · ,

where Z1, Z2, . . . and W1,W2, . . . are n × n matrices of variables

Zk = (zk,i j ), Wk = (wk,i j ), 1 ≤ i, j ≤ n.

They are symmetric, i.e., zk,i j = zk, j i and wk,i j = wk, j i . We call the variables zk,n1, . . . , zk,nn last row
variables (this term does not apply to the w-variables). If we have K factors, there are K n(n + 1)/2
variables. We will also think of the K -tuple (Z1,W1, Z2,W2, . . .) as a point in CK n(n+1)/2. We will study
the last row of this product, which is a map 8K : CK n(n+1)/2

→ C2n
\ {0}. We prefer to work with the

transpose of this row, which we denote by P K, a vector in C2n. It follows that

P1
=

(
z⃗
e⃗n

)
,

where z⃗ = (z1,n1, . . . , z1,nn)
T and e⃗n is the last standard basis vector of Cn.
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The set SK for K ≥ 2 is now defined as the set of K -tuples of symmetric matrices (Z1,W1, . . .) such
that in the first K − 1 matrices all the last row variables (of the Z ’s) are 0 and the set of all columns of
the W ’s does not span Cn. (This means that the augmented matrix W1|W2| · · · has rank less than n.)

Lemma 6.1. P K
: CK n(n+1)/2

\ SK → C2n
\ {0} is surjective for K ≥ 3.

Proof. We prove the result for K = 3. For K > 3, simply put W2 = Z3 = W3 = · · · = 0. The proof uses an
easy fact from linear algebra; given two vectors c⃗ and d⃗ in Cn with c⃗ ̸= 0⃗ there is a symmetric matrix M
such that Mc⃗ = d⃗. Now let (

a⃗
b⃗

)
∈ C2n

\ {0}.

Pick any symmetric matrix Z2 such that z⃗ = a⃗ − Z2b⃗ ̸= 0⃗ and let Z1 be any symmetric matrix whose last
row is z⃗ and W1 a symmetric matrix such that W1 z⃗ = b⃗ − e⃗n . Then (Z1,W1, Z2) /∈ S3 and for this choice
we have

P3
=

(
In Z2

0 In

)(
In 0

W1 In

)(
z⃗
e⃗n

)
=

(
In Z2

0 In

)(
z⃗
b⃗

)
=

(
a⃗
b⃗

)
. □

Slightly abusing notation, we denote the Jacobian matrix of 8K by JP K. This is a (2n × K n(n +1)/2)-
matrix whose columns are the derivatives of P K with respect to one particular variable. We denote the
components of P K by P K

i , 1 ≤ i ≤ 2n. It follows that

P2k+1
=

(
In Zk+1

0 In

)
P2k, (6.0.1)

P2k+2
=

(
In 0

Wk+1 In

)
P2k+1. (6.0.2)

We shall look at the final part of JP2k+1, the part where we differentiate with respect to the new
variables zk+1,11, . . . , zk+1,n1, zk+1,22, . . . , zk+1,n2, . . . , zk+1,nn . This is a (2n × n(n + 1)/2)-matrix. The
column where we differentiate with respect to zk+1,i j will consist of P2k

n+i in row number j and P2k
n+ j

in row number i . Hence the bottom half of this matrix is zero and we only look at the upper half, an
(n × n(n + 1)/2)-matrix which we denote by Ak+1. If we consider just the columns which contain one
particular P2k

n+i , we get a square n×n-matrix whose i-th row is (P2k
n+1, . . . , P2k

2n ), has P2k
n+i along the

diagonal and is otherwise zero. The determinant of this submatrix is (P2k
n+i )

n.
The situation is similar for the final part of JP2k+2, except now the top half is zero and the bottom half

Bk+1 contains P2k+1
1 , . . . , P2k+1

n in the same pattern as for Ak+1.
In the proof of the next lemma it will be convenient to use the following notation: if A and B are two

matrices with the same column length, we let A | B denote the matrix obtained by augmenting A with B
to the right. By e2n we denote the last vector in the standard basis of C2n.

Lemma 6.2. P K is a submersion exactly on the set CK n(n+1)/2
\ SK . If K = 2k and all the last row

variables are zero, then P2k
= e2n and the span of the bottom half of the JP2k columns equals the span of

the columns of W1,W2, . . . ,Wk .
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Proof. For N = 1 the theorem is empty. P1
= (z1,n1, . . . , z1,nn, 0, . . . , 0, 1) and

JP1
=

(
In

0

)
,

where we have removed all zero columns. For N = 2 we have

P2
=

(
In 0

W1 In

)
P1.

This implies

JP2
=

(
In 0

W1 In

)(
In

0

) ∣∣∣∣ ( 0
B1

)
=

(
In

W1

) ∣∣∣∣ ( 0
B1

)
,

which has full rank if and only if B1 has full rank. Since P1
i = z1,ni , by the discussion preceding the

lemma, B1 has full rank if and only if at least one z1,ni is nonzero.
If all z1,ni are zero, then P1

= e2n and B1 = 0. Hence the statement about the span is trivially true.
We now assume that the theorem is true for N = 2k. We have

JP2k+1
=

(
In Zk+1

0 In

)
JP2k

∣∣∣∣ (Ak+1

0

)
. (6.0.3)

If at least one of the previous last row variables is nonzero, then JP2k has full rank by the induction
hypothesis and so does JP2k+1. If not, then P2k

= e2n and Ak+1 = In , after removing zero columns. If
JP2k

=
( A

B

)
, then

JP2k+1
=

(
A + Zk+1 B In

B 0

)
,

which has full rank if and only if B has full rank. But the column span of B equals the column span of
W1, . . . ,Wk . This proves the first part of the lemma for N = 2k + 1.

If all the previous last row variables are zero, it also follows that

P2k+1
= (zk+1,n1, . . . , zk+1,nn, 0, . . . , 0, 1)t .

Finally

JP2k+2
=

(
In 0

Wk+1 In

)
JP2k+1

∣∣∣∣ ( 0
Bk+1

)
, (6.0.4)

which has full rank if JP2k+1 does.
If not, then by the above all the previous last row variables are zero and

JP2k+2
=

(
A + Zk+1 B In

B + Wk+1(A + Zk+1 B) Wk+1

)
JP2k+1

∣∣∣∣ ( 0
Bk+1

)
,

which has full rank if and only if at least one zk+1,ni is nonzero by the discussion preceding the lemma.
This proves the first part of the lemma for N = 2k + 2.

If all the zk+1,ni also are zero, then P2k+1
= e2n and so P2k+2

= e2n . Also Bk+1 = 0 and since the
columns of Wk+1(A + Zk+1 B) are linear combinations of the columns of Wk+1, the span of the bottom
half of JP2k+2 equals the span of the columns of W1, . . . ,Wk+1 by the induction hypothesis. □
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7. The stratification

The goal in this section is to describe the stratification needed to understand that the submersion π4 ◦9K :

(C3)K
\ SK → C4

\ {0} is a stratified elliptic submersion. Let

Z⃗ K =

{
(z1, z2, z3, w1, w2, w3, . . . , w3k−2, w3k−1, w3k) if K = 2k,
(z1, z2, z3, w1, w2, w3, . . . , z3k+1, z3k+2, z3k+3) if K = 2k + 1

and
π4 ◦9K (Z⃗ K )= (P K

1 (Z⃗ K ), P K
2 (Z⃗ K ), P K

3 (Z⃗ K ), P K
4 (Z⃗ K )).

Remark 7.1. We will abuse notation in the following way in the paper. A polynomial not containing
a variable can be interpreted as a polynomial of that variable. More precisely, let L < K . We have
the projection π : CK

→ CL, π(x1, . . . , xL , . . . , xK ) = (x1, . . . , xL) and π∗
: C[CL

] → C[CK
]. For

p ∈ C[CL
] we still write p instead of π∗(p).

We want to study the fibers

F K
(a1,a2,a3,a4)

= (π4 ◦9K )
−1(a1, a2, a3, a4).

Assume first that K = 2k + 1 ≥ 3 is odd. We see that

π4 ◦9K (Z⃗ K )= π4 ◦9K−1(Z⃗ K−1)


1 0 0 0
0 1 0 0

z3k+1 z3k+2 1 0
z3k+2 z3k+3 0 1


and we get

P K
1 (Z⃗ K )= P K−1

1 (Z⃗ K−1)+ z3k+1 P K−1
3 (Z⃗ K−1)+ z3k+2 P K−1

4 (Z⃗ K−1),

P K
2 (Z⃗ K )= P K−1

2 (Z⃗ K−1)+ z3k+2 P K−1
3 (Z⃗ K−1)+ z3k+3 P K−1

4 (Z⃗ K−1),

P K
3 (Z⃗ K )= P K−1

3 (Z⃗ K−1),

P K
4 (Z⃗ K )= P K−1

4 (Z⃗ K−1).

We are led to the equations

a1 = P K
1 (Z⃗ K )= P K−1

1 (Z⃗ K−1)+ z3k+1 P K−1
3 (Z⃗ K−1)+ z3k+2 P K−1

4 (Z⃗ K−1),

a2 = P K
2 (Z⃗ K )= P K−1

2 (Z⃗ K−1)+ z3k+2 P K−1
3 (Z⃗ K−1)+ z3k+3 P K−1

4 (Z⃗ K−1),

a3 = P K
3 (Z⃗ K )= P K−1

3 (Z⃗ K−1),

a4 = P K
4 (Z⃗ K )= P K−1

4 (Z⃗ K−1).

(7.0.1)

Notice that these equations simplify to

a1 = P K−1
1 (Z⃗ K−1)+ a3z3k+1 + a4z3k+2,

a2 = P K−1
2 (Z⃗ K−1)+ a3z3k+2 + a4z3k+3,

a3 = P K−1
3 (Z⃗ K−1),

a4 = P K−1
4 (Z⃗ K−1).
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If (a3, a4) ̸= (0, 0) then we can solve the two first equations for two of the three variables z3k+1, z3k+2,
z3k+3 and we see that the fiber is a graph over GK−1

(a3,a4)
× C, where

GK−1
(a3,a4)

= {Z⃗ K−1 ∈ C3K−3
: a3 = P K−1

3 (Z⃗ K−1), a4 = P K−1
4 (Z⃗ K−1)}.

If (a3, a4) = (0, 0), we get F K
(a1,a2,0,0) = FK−1

(a1,a2,0,0) × C3. We see that we get two main cases, namely
(a3, a4)= (0, 0) and (a3, a4) ̸= (0, 0). The last case will break into the two subcases, namely (a3, a4) ̸=

(0, 1) and (a3, a4)= (0, 1). We need these subcases because GK−1
(0,1) is not smooth. We list the strata below:

• The strata of generic fibers: When (a3, a4) ̸= (0, 0), the fibers are graphs over GK−1
(a3,a4)

× C. This set is
divided into two strata as follows:

– Smooth generic fibers: When (a3, a4) ̸= (0, 1), the fibers are smooth.

– Singular generic fibers: When (a3, a4)= (0, 1), the fibers are nonsmooth.

• The stratum of nongeneric fibers: When (a3, a4)= (0, 0), the fibers are F K
(a1,a2,0,0) = F K−1

(a1,a2,0,0)× C3.
Moreover the fibers are smooth.

We now analyze the case when K = 2k ≥ 3 is even. Now we have

π4 ◦9K (Z⃗ K )= π4 ◦9K−1(Z⃗ K−1)


1 0 w3k−2 w3k−1

0 1 w3k−1 w3k

0 0 1 0
0 0 0 1

 ,
and F K

(a1,a2,a3,a4)
is the solution set of the equations

a1 = P K
1 (Z⃗ K )= P K−1

1 (Z⃗ K−1),

a2 = P K
2 (Z⃗ K )= P K−1

2 (Z⃗ K−1),

a3 = P K
3 (Z⃗ K )= P K−1

3 (Z⃗ K−1)+w3k−2 P K−1
1 (Z⃗ K−1)+w3k−1 P K−1

2 (Z⃗ K−1),

a4 = P K
4 (Z⃗ K )= P K−1

4 (Z⃗ K−1)+w3k−1 P K−1
1 (Z⃗ K−1)+w3k P K−1

2 (Z⃗ K−1).

(7.0.2)

As in the previous case these equations simplify:

a1 = P K−1
1 (Z⃗ K−1),

a2 = P K−1
2 (Z⃗ K−1),

a3 = P K−1
3 (Z⃗ K−1)+ a1w3k−2 + a2w3k−1,

a4 = P K−1
4 (Z⃗ K−1)+ a1w3k−1 + a2w3k .

Let
HK−1
(a1,a2)

= {Z⃗ K−1 ∈ C3K−3
: a1 = P K−1

1 (Z⃗ K−1), a2 = P K−1
2 (Z⃗ K−1)}.

An analysis similar to that above gives us the following strata:

• The stratum of generic fibers: When (a1, a2) ̸= (0, 0), the fibers are graphs over HK−1
(a1,a2)

×C. Moreover
the fibers are smooth.
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• The strata of nongeneric fibers: When (a1, a2) = (0, 0), the fibers are F K
(0,0,a3,a4)

= F K−1
(0,0,a3,a4)

× C3.
This set is divided into two strata as follows:

– Smooth nongeneric fibers: When (a3, a4) ̸= (0, 1), the fibers are smooth.

– Singular nongeneric fibers: When (a3, a4)= (0, 1), the fibers are nonsmooth.

8. Determination of complete vector fields

The description of the fibers in Section 7 leads us to study vector fields simultaneously tangent to the level
sets {P =c1}, {Q=c2} of two functions P, Q : CN

→ C. Such fields can be constructed in the following
way. Pick three variables x, y, z from the variables x1, . . . , xN on CN and consider the vector fields

Dxyz(P, Q)= det

 ∂/∂x ∂/∂y ∂/∂z
∂P/∂x ∂P/∂y ∂P/∂z
∂Q/∂x ∂Q/∂y ∂Q/∂z

 , (8.0.1)

which are simultaneously tangent to the level sets. As mentioned in Section 5 we want to use a finite
collection of complete vector fields spanning tangent space at every point to prove (stratified) ellipticity.
It is an easy exercise to show that the collection of these vector fields over all possible triples spans the
tangent space at smooth points of the variety {P =c1} ∩ {Q=c2}. It turns out that many of the vector
fields we get by this method are complete but unfortunately not all of them. The complete vector fields
from this collection will not span the tangent space at all points for all level sets. To overcome this
difficulty and still producing dominating sprays from this collection of available complete fields is the
main technical part of our paper explained in Section 9.

Now we will begin to describe the complete vector fields tangent to the fibers of π4 ◦ 9K =

(P K
1 , P K

2 , P K
3 , P K

4 ) that we get using (8.0.1). It will be convenient to group the variables as in Section 6,
Z1,W1, Z2,W2, . . . , where

Zk =

(
z3k−2 z3k−1

z3k−1 z3k

)
and similarly for Wk . Since the variable z1 never enters in P K, we omit it from the first group Z1. Note
that P1

= (z2, z3, 0, 1)T. We are going to study the vector fields

V K
i j (x, y, z)= Dxyz(P K

i , P K
j ).

The 2×2 minors occurring as coefficients are denoted by C K
i j ( · , · ), i.e.,

V K
i j (x, y, z)= C K

i j (y, z) ∂
∂x

− C K
i j (x, z) ∂

∂y
+ C K

i j (x, y) ∂
∂z
.

The description of the complete vector fields will be done inductively. We start with K = 2. We have
to study G 2

(a3,a4)
, or equivalently, the equations

a3 = P2
3 (z1, . . . , w3)= z2w1 + z3w2,

a4 = P2
4 (z1, . . . , w3)= 1 + z2w2 + z3w3.

(8.0.2)
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We are interested in which triples (x, y, z) of variables from the list z2, z3, w1, w2, w3 give complete
vector fields V 2

34(x, y, z) and we denote the set of these triples by T2. By definition T1 = ∅.
An easy computation gives that

T2 = {(w1, w2, w3), (z2, w2, w3), (z3, w1, w2),

(z2, w1, w3), (z3, w1, w3), (z2, z3, w1), (z2, z3, w3)}. (8.0.3)

For all the remaining noncomplete triples there is a variable such that the equation is quadratic for that
variable. We are now interested in determining at every stage the triples of variables (x, y, z) such that
V 2k+1

12 (x, y, z), for K = 2k + 1 odd, and V 2k+2
34 (x, y, z), for K = 2k + 2 even, are complete. We shall

denote the set of such triples by TK . The terms occurring in P K are of degree 1 in the occurring variables;
hence the coefficients C K

i j are either of degree 1 or 2 in the occurring variables. A triple giving a coefficient
which is quadratic in the integration variable (for instance if C K

i j (y, z) is quadratic in the x-variable) will
not be complete, and we shall refer to such a triple as a quadratic triple and the corresponding vector field
as a quadratic vector field. The content of the next lemma is that all the remaining triples give complete
vector fields. The variables that do not occur in a triple will have constant solutions and are therefore
treated as such in the proof.

Lemma 8.1. For k ≥ 1, we have T2k ⊂ T2k+1 ⊂ T2k+2. Moreover

T2k+1 \ T2k = {(z3k+1, z3k+2, z3k+3)}

∪ {(w3k−2, z3k+1, z3k+3), (w3k−2, z3k+2, z3k+3)}

∪ {(w3k, z3k+1, z3k+2), (w3k, z3k+1, z3k+3)}

∪ {(a, b, z3k+1), (a, b, z3k+3) : a and b are from the same group}

∪ {(a, b, z3k+1) : a the last variable of one group and b the first of the next}

∪ {(a, b, z3k+3) : a the last variable of one group and b the first of the next}

∪ {(a, b, z3k+1) : a the first variable of one group and b the last of the next}

∪ {(a, b, z3k+3) : a the first variable of one group and b the last of the next} (8.0.4)

and

T2k+2 \ T2k+1 = {(w3k+1, w3k+2, w3k+3)}

∪ {(z3k+1, w3k+1, w3k+3), (z3k+1, w3k+2, w3k+3)}

∪ {(z3k+3, w3k+1, w3k+2), (z3k+3, w3k+1, w3k+3)}

∪ {(a, b, w3k+1), (a, b, w3k+3) : a and b are from the same group}

∪ {(a, b, w3k+1) : a the last variable of one group and b the first of the next}

∪ {(a, b, w3k+3) : a the last variable of one group and b the first of the next}

∪ {(a, b, w3k+1) : a the first variable of one group and b the last of the next}

∪ {(a, b, w3k+3) : a the first variable of one group and b the last of the next}. (8.0.5)

In combination with (8.0.3) this gives us a complete description of the sets TL , L ≥ 2.
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Proof. The result is true for T2. The first group is interpreted as {z2, z3} and z3k+1 must be replaced by z2.
The missing triplets are precisely the quadratic triples.

We shall prove (8.0.4), the proof of (8.0.5) being identical. There is a lot of symmetry in the proof
and we will not repeat arguments already given in a situation symmetric to a proven statement. We first
consider triples (x, y, z) not containing any variables from the new group Zk+1, i.e., z3k+1, z3k+2 and
z3k+3. It then follows from (6.0.1) (omitting variables for shorter notation) that

V 2k+1
12 = V 2k

12 + z3k+1V 2k
32 − z3k+2V 2k

24 − z3k+2V 2k
31 + z3k+3V 2k

14 + (z3k+1z3k+3 − z2
3k+2)V

2k
34 . (8.0.6)

A quadratic triple will still be quadratic since V 2k
34 is. For a triple in T2k , notice that in all of the first

five terms the V 2k
i j is obtained by replacing one or two of the functions P2k

3 and P2k
4 by P2k

1 and/or
P2k

2 . By (6.0.2) all of the terms occurring in P2k
1 or P2k

2 divide a term occurring in P2k
3 and also a term

occurring in P2k
4 . This means that all terms occurring in the first five vector fields above are already

present in V 2k
34 and completeness is not destroyed. We also notice that for any pair x, y of previous

variables, the coefficient C2k+1
12 (x, y) will also satisfy (8.0.6).

We next consider triples containing some of the new variables z3k+1, z3k+2 and z3k+3. The Jacobian
matrix is now given by (6.0.3), where

Ak+1
=

(
P2k

3 P2k
4 0

0 P2k
3 P2k

4

)
. (8.0.7)

If the triple contains all three variables, then

V 2k+1
12 (zk+1, zk+2, zk+3)= (P2k

4 )2
∂

∂z3k+1
− (P2k

3 )(P2k
4 )

∂

∂z3k+2
+ (P2k

3 )2
∂

∂z3k+3
,

and the coefficients do not contain any of the Zk+1-variables; hence this is complete. (The solutions are
just affine functions.)

We now consider the case of two new variables. The first possibility is (x, z3k+1, z3k+2). The coefficient
of ∂/∂x is (P2k

3 )2. Since P2k
3 contains all previous variables except w3k , this is quadratic in all those vari-

ables and x =w3k is the only possibility. The solution for w3k is affine. The coefficient of ∂/∂z3k+2 is now

−

(
∂P2k

2

∂w3k
+ zk+3

∂P2k
4

∂w3k

)
,

which is just a constant and the solution is again affine. Finally the coefficient of ∂/∂z3k+1 is given by

∂P2k
1

∂w3k
+ zk+2

∂P2k
4

∂w3k
,

which is an affine function and the solution is entire. Hence this field is complete.
Precisely the same logic applies to the triple (x, z3k+2, z3k+3) except now w3k−2 is the only missing

variable (now in P2k
4 ).

The final possibility of two new variables is the triple (x, z3k+1, z3k+3). The coefficient of ∂/∂x is
now P2k

3 P2k
4 which is of degree 1 in w3k−2 and w3k and quadratic in all other previous variables. We

consider the case of x = w3k−2, the case x = w3k being identical. The coefficient is an affine function
of w3k−2; hence the solution is entire. The coefficient of ∂/∂z3k+1 is −z3k+1 P2k−1

1 P2k
4 , which is just a



HOLOMORPHIC FACTORIZATION OF MAPPINGS INTO Sp4(C) 253

linear function of z3k+1 and the solution is entire. The coefficient of ∂/∂z3k+3 is −z3k+2 P2k−1
2 P2k

4 , which
is just a constant and the solution is affine.

We finally consider the case of one new variable and two previous variables x, y. It follows that
C2k+1

12 (x, y) satisfies (8.0.6), and hence is quadratic in z3k+2, so this cannot be the new variable. In order
to investigate z3k+1 and z3k+3 we need to understand which variables are involved in the coefficients. To
do this we look at each previous group of variables Z j and Wj for 1 ≤ j ≤ k and see which variables
are involved in the first two rows of the Jacobian with respect to these variables at level 2k + 1. For a
Z j -group we need to consider the matrix(

∂P2k+1
1 /∂z3 j−2 ∂P2k+1

1 /∂z3 j−1 ∂P2k+1
1 /∂z3 j

∂P2k+1
2 /∂z3 j−2 ∂P2k+1

2 /∂z3 j−1 ∂P2k+1
2 /∂z3 j

)
and the same for a Wj -group. The Z1-group only consists of z2 and z3. The Z j -variables do not occur in
the above matrix. There is a simple formula for the above matrix which follows from (6.0.3) and (6.0.4).
The matrix is the first two rows of the matrix (I = I2) :(

I Zk+1

0 I

)
· · ·

(
I 0

Wj I

)(
Aj

0

)
and this formula makes it easy to track which variables are missing at each step, in addition to the
Z j -variables. We arrive at the following matrix of missing variables:(

w3 j−3, w3 j , z3k+3 z3k+3 w3 j−5, w3 j−2, z3k+3

w3 j−3, w3 j , z3k+1 z3k+1 w3 j−5, w3 j−2, z3k+1

)
.

In the case j = 1 the missing-variable matrix is(
w3, z3k+3 w1, z3k+3

w3, z3k+1 w1, z3k+1

)
.

We now consider a Wj -group. Again the Wj -variables do not enter. We now have to consider the first
two rows of the matrix (

I Zk+1

0 I

)
· · ·

(
I Z j+1

0 I

)(
0
Bj

)
,

and this leads to the following missing-variable matrix for j < k:(
z3 j , z3 j+3, z3k+3 z3k+3 z3 j−2, z3 j+1, z3k+3

z3 j , z3 j+3, z3k+1 z3k+1 z3 j−2, z3 j+1, z3k+1

)
.

For j = 1 we replace z3 j−2 by z2. For j = k the middle entries in the upper-left and the lower-right
corners are replaced by z3k+2.

We first investigate triples (x, y, z3k+1), where x and y are not from Zk+1. If x and y are from the
same group, then since z3k+1 occurs in every entry in the second row of the missing-variable matrix,
C2k+1

12 (x, z3k+1) and C2k+1
12 (y, z3k+1) do not depend on any of the variables x, y, z3k+1; hence x and y

are both affine functions. C2k+1
12 (x, y) does not depend on x, y and is of degree 1 in z3k+1; hence the

solution is entire.



254 BJÖRN IVARSSON, FRANK KUTZSCHEBAUCH AND ERIK LØW

Now assume that x and y are from different groups. If x is not a missing variable in ∂P2k+1
2 /∂y, then

y is not a missing variable in ∂P2k+1
2 /∂x . The variables x and y are not both w3k ; let’s say x is. Then

C2k+1
12 (y, z3k+1)= −

(
∂P2k+1

2

∂y

)
P2k

3

is quadratic in x and the field is not complete. Hence x and y must both appear in the second row of the
missing-variable matrix of each other.

We now look at possibilities for x and y. Assume first that x is in Z j group with 1< j ≤ k. There are
now four possibilities:

• x = z3 j−2 in which case y = w3 j−3 or y = w3 j , or

• x = z3 j in which case y = w3 j−5 or y = w3 j−2.

We consider the first case. Then

C2k+1
12 (w3 j−3, z3 j−2)=

∂P2k+1
1

∂w3 j−3

∂P2k+1
2

∂z3 j−2
−
∂P2k+1

2

∂w3 j−3

∂P2k+1
1

∂z3 j−2
,

and from the missing-variable matrix we see that this does not depend on z3 j−2 and w3 j−3 and is of
degree 1 in z3k+1; hence we have an entire solution for z3k+1. We also have

C2k+1
12 (w3 j−3, z3k+1)= −

∂P2k+1
2

∂w3 j−3
P2k

3 ,

C2k+1
12 (z3 j−2, z3k+1)= −

∂P2k+1
2

∂z3 j−2
P2k

3 .

The partial derivatives on the right-hand sides do not depend on any of the variables in the triple, and
hence are just constants. It also follows from the missing-variable matrix that P2k

3 does not contain the
product of z3 j−2 and w3 j−3; hence the equations for these two variables form a linear system with constant
coefficients. This has an entire solution. The three other cases all have similar structure and have entire
solutions. In the case j = 1, we either have x = z2 and y = w3, or x = z3 and y = w1 and the discussion
is the same. It also follows from the missing-variable matrix that x and y cannot come from different
W -groups. This proves the result in the case of picking z3k+1 from the last group. The proof in the case of
picking z3k+3 from the last group is completely symmetric. This provides the final detail in the proof. □

In order to produce complete fields that are also tangential to fibers of the submersion, we introduce
the following notation and terminology.

Definition 8.2. Let 43 = T2. For K ≥ 4 let

4K = TK−1 \ TK−2.

We say that the triples in 4K are introduced on level K .

We will now use these complete fields to produce complete fields which are tangential to the
fibers F K

(a1,a2,a3,a4)
. Here we will use triples introduced on level K to produce complete tangential fields.
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First consider the case K = 2k + 1 ≥ 3 odd.
If a3 ̸= 0, we use (7.0.1) to get

z3k+2 =
1
a3
(a2 − P2k

2 (Z⃗2k)− a4z3k+3)

and
z3k+1 =

1
a3
(a1 − P2k

1 (Z⃗2k)− a4z3k+2)

=
1
a3

(
a1 − P2k

1 (Z⃗2k)−
a4
a3
(a2 − P2k

2 (Z⃗2k)− z3k+3 P2k
4 (Z⃗2k))

)
=

1
a2

3
(a1a3 − a3 P2k

1 (Z⃗2k)− a2a4 + a4 P2k
2 (Z⃗2k)+ a2

4 z3k+3).

Using this we define a biholomorphism

α : G 2k
(a3,a4)

× Cz3k+3 → F K
(a1,a2,a3,a4)

.

On
G 2k
(a3,a4)

× Cz3k+3

we have the complete fields ∂2k
x1x2x3

for x1, x2, x3 in 42k+1 and also the complete field ∂/∂z3k+3. Using
the biholomorphism α we get complete fields on F K

(a1,a2,a3,a4)
for a3 ̸= 0 of the form

θ2k+1,∗
x1x2x3

= ∂2k
x1x2x3

+
1
a3
∂2k

x1x2x3
(P2k

2 (Z⃗2k))
∂

∂z3k+2
+

1
a2

3
∂2k

x1x2x3
(a3 P2k

1 (Z⃗2k)− a4 P2k
2 (Z⃗2k))

∂

∂z3k+1
(8.0.8)

and

γ 2k+1,∗
=

∂

∂z3k+3
+

a2
4

a2
3

∂

∂z3k+1
−

a4
a3

∂

∂z3k+2
. (8.0.9)

Since P2k
3 = a3 and P2k

4 = a4 on the fiber, we get meromorphic fields on (C3)K

θ2k+1,∗
x1x2x3

= ∂2k
x1x2x3

+
∂2k

x1x2x3
(P2k

2 (Z⃗2k))

P2k
3 (Z⃗2k)

∂

∂z3k+2

+

(
∂2k

x1x2x3
(P2k

1 (Z⃗2k))

P2k
3 (Z⃗2k)

−
P2k

4 (Z⃗2k)∂
2k
x1x2x3

(P2k
2 (Z⃗2k))

P2k
3 (Z⃗2k)2

)
∂

∂z3k+1
(8.0.10)

and

γ 2k+1,∗
=

∂

∂z3k+3
+

P2k
4 (Z⃗2k)

2

P2k
3 (Z⃗2k)2

∂

∂z3k+1
−

P2k
4 (Z⃗2k)

P2k
3 (Z⃗2k)

∂

∂z3k+2
(8.0.11)

(abusing notation), with poles on P2k
3 = 0. Since P2k

3 is in the kernel of these fields, we can multiply the
fields by (P2k

3 )2 and get the following complete fields that are globally defined on (C3)K and preserve
the fibers of π4 ◦9K :

θ2k+1
x1x2x3

= P2k
3 (Z⃗2k)

2θ2k+1,∗
x1x2x3

= P2k
3 (Z⃗2k)

2∂2k
x1x2x3

+ P2k
3 (Z⃗2k)∂

2k
x1x2x3

(P2k
2 (Z⃗2k))

∂

∂z3k+2

+
[
P2k

3 (Z⃗2k)∂
2k
x1x2x3

(P2k
1 (Z⃗2k))− P2k

4 (Z⃗2k)∂
2k
x1x2x3

(P2k
2 (Z⃗2k))

] ∂

∂z3k+1
(8.0.12)
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for x1, x2, x3 ∈42k+1, and

γ 2k+1
= P2k

3 (Z⃗2k)
2γ 2k+1,∗

= P2k
3 (Z⃗2k)

2 ∂

∂z3k+3
+ P2k

4 (Z⃗2k)
2 ∂

∂z3k+1
− P2k

3 (Z⃗2k)P2k
4 (Z⃗2k)

∂

∂z3k+2
. (8.0.13)

If a4 ̸= 0 we can define a biholomorphism

β : G 2k
(a3,a4)

× Cz3k+1 → F K
(a1,a2,a3,a4)

using (7.0.1) and

z3k+2 =
1
a4
(a1 − P2k

1 (Z⃗2k)− a3z3k+1)

and
z3k+3 =

1
a4
(a2 − P2k

2 (Z⃗2k)− a3z3k+2)

=
1
a4

(
a2 − P2k

2 (Z⃗2k)−
a3
a4
(a1 − P2k

1 (Z⃗2k)− a3z3k+1)
)

=
1
a2

4
(a2a4 − a4 P2k

2 (Z⃗2k)− a1a3 + a3 P2k
1 (Z⃗2k)+ a2

3 z3k+1).

On
G 2k
(a3,a4)

× Cz3k+1

we have the complete fields ∂2k
x1x2x3

for x1, x2, x3 in 42k+1 and ∂/∂z3k+1. Proceeding as above we get the
complete fields

φ2k+1
x1x2x3

= P2k
4 (Z⃗2k)

2∂2k
x1x2x3

+ P2k
4 (Z⃗2k)∂

2k
x1x2x3

(P2k
1 (Z⃗2k))

∂

∂z3k+2

+
[
P2k

4 (Z⃗2k)∂
2k
x1x2x3

(P2k
2 (Z⃗2k))− P2k

3 (Z⃗2k)∂
2k
x1x2x3

(P2k
1 (Z⃗2k))

] ∂

∂z3k+3
(8.0.14)

for x1, x2, x3 ∈92k+1. The field γ 2k+1 is the same as in the case a3 ̸= 0.
For the case K = 2k ≥ 3 even, an analogous procedure leads to the following complete fields on (C3)K

tangent to the fibers of π4 ◦9K :

θ2k
x1x2x3

=P2k−1
1 (Z⃗2k−1)

2∂2k−1
x1x2x3

+P2k−1
1 (Z⃗2k−1)∂

2k−1
x1x2x3

(P2k−1
4 (Z⃗2k−1))

∂

∂w3k−1

+
[
P2k−1

1 (Z⃗2k−1)∂
2k−1
x1x2x3

(P2k−1
3 (Z⃗2k−1))−P2k−1

2 (Z⃗2k−1)∂
2k−1
x1x2x3

(P2k−1
4 (Z⃗2k−1))

] ∂

∂w3k−2
(8.0.15)

for x1, x2, x3 ∈42k ,

φ2k
x1x2x3

= P2k−1
2 (Z⃗2k−1)

2∂2k−1
x1x2x3

+P2k−1
2 (Z⃗2k−1)∂

2k−1
x1x2x3

(P2k−1
3 (Z⃗2k−1))

∂

∂w3k−1

+
[
P2k−1

2 (Z⃗2k−1)∂
2k−1
x1x2x3

(P2k−1
4 (Z⃗2k−1))−P2k−1

1 (Z⃗2k−1)∂
2k−1
x1x2x3

(P2k−1
3 (Z⃗2k−1))

] ∂

∂w3k
(8.0.16)

for x1, x2, x3 ∈42k , and

γ 2k
= P2k−1

1 (Z⃗2k−1)
2 ∂

∂w3k
+ P2k−1

2 (Z⃗2k−1)
2 ∂

∂w3k−2
− P2k−1

1 (Z⃗2k−1)P2k−1
2 (Z⃗2k−1)

∂

∂w3k−1
. (8.0.17)
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Remark 8.3. It follows from the inductive formulas (7.0.1) and (7.0.2) that θK
x1x2x3

, φK
x1x2x3

and γ K,
considered as vector fields on (C3)L, are tangent to the fibers F L

(a1,a2,a3a4)
for L ≥ K . In other words, the

fields associated with triples introduced on level K are tangential to all fibers F L for L ≥ K .

9. Strategy of proof of stratified ellipticity

We outline the strategy for proving that the submersion is a stratified elliptic submersion. We have seen
that the fibers are given by four polynomial equations. We have also seen that these four equations can be
reduced to two equations. We then use the exact form of these two equations to find 4K so that ∂K

x1x2x3

are complete vector fields exactly when x1, x2, x3 ∈4K . This leads us to the globally defined complete
vector fields θK

x1x2x3
, φK

x1x2x3
and γ K described in Section 8. Find a big (a complement of an analytic

subset) “good” set on the fibers where the collection of these vector fields spans the tangent space of the
fiber. For points outside the good set find a complete field V whose orbit through the point intersects the
good set. At points along the orbit that are also in the good set, the collection of complete vector fields
above spans. Now pull back the collection of vector fields by suitable flow automorphisms of V and
add these fields to the collection (see Definition 10.7). This enlarged collection of complete vector fields
spans in a bigger set, thus enlarging the good set. Continue this enlarging of the collection of vector fields
until it spans the tangent space at every point of every fiber in the stratum. To accomplish this strategy we
need the following technical results.

Lemma 9.1. Let M be a Stein manifold and N0 ⊂ N ⊂ M analytic subvarieties. Given a finite collec-
tion θ1, . . . , θk of complete holomorphic vector fields on M which span the tangent space Tx M at all
points x ∈ M \ N and given another complete holomorphic vector field φ on M (whose flow we denote by
αt ∈ Authol(M), t ∈ C) with the property that the orbit through points of N \ N0 is leaving N ; i.e., for
all x ∈ N \ N0 we have {αt(x) : t ∈ C} ̸⊂ N. Then there are finitely many times ti ∈ C, i = 1, . . . , l, such
that for all x ∈ N \ N0 we have {αti (x)}

l
i=1 ̸⊂ N. In particular the finite collection {α⋆ti (θm)}

l,k
i=1,m=1 of

complete holomorphic vector fields on M spans the tangent space Tx M at all points x ∈ M \ N0.

Proof. The analytic subset N has at most countably many components. Denote by Bi those components
which are not entirely contained in N0. Define a0 to be the maximal dimension of them. Choose a point xi

from each of those Bi . For every i the set Ai := {t ∈ C : αt(xi ) ∈ N } is discrete. Since a countable union
of discrete sets is meager in C, we can find t1 such that t1 /∈ Ai for all i . Denote by B̃i those components
of the analytic subset N1 := {y ∈ N : αt1(y) ∈ N } which are not entirely contained in N0 and define a1 to
be the maximal dimension of them. By construction a1 < a0. Choose a point x̃i from each of those B̃i .
For every i the set Ãi := {t ∈ C : αt(x̃i ) ∈ N } is discrete. Since a countable union of discrete sets is
meager in C, we can find t2 such that t2 /∈ Ãi for all i .

Let a2 be the maximal dimension of those components of the analytic subset N2 := {y ∈ N :

αt1(y) ∈ N and αt2(y) ∈ N } which are not entirely contained in N0. By construction a2 < a1 and
continuing the construction after finitely steps we reach our conclusion. □

The next lemma is a generalized and parametrized version of the previous one. It is adapted to the
stratified spray situation. Namely, we have to produce sprays not on a single fiber but in a neighborhood
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of the fiber in each stratum (see Definition 5.4). In our case it will be on the whole stratum. The
following definitions are straightforward. The first one was introduced in [Andrist and Kutzschebauch
2018, page 918].

Definition 9.2. Let π : X → Y be a holomorphic map between complex manifolds and denote by
dπ : T X → T Y the tangent map. We call a holomorphic vector field θ on X fiber-preserving if dπ(θ)= 0.

Definition 9.3. A subset N of a complex manifold M is called invariant with respect to a collection of
vector fields on M if for each of the vector fields we have: for each starting point x ∈ N the local flow of
the field (which is defined in a neighborhood of time 0) remains contained in N.

Lemma 9.4. Consider a submersion π : M → Y with connected fibers My := π−1(y) and a finite
collection of complete fiber-preserving holomorphic vector fields on M such that in each fiber My there
is a point x ∈ My where they span the tangent space Tx My . Suppose there is no analytic subset N of M
contained in a fiber My which is invariant under the flows of θ1, . . . , θk . Then a finite subset of the set
0(θ1, . . . , θk) is spanning Tx Mπ(x) for all x ∈ M.

Proof. Let N ⊂ M be the set of points x where span{(θ1, . . . , θk)} ̸= Tx Mπ(x). By assumption N ∪ My

is a proper analytic subset of My for each y ∈ Y. Since there is no invariant analytic subset different
from the fibers for each x0 ∈ N, there is a field θi whose flow starting in x0 will leave N, i.e., go through
points where (θ1, . . . , θk) span Tx Mπ(x). Now choose (at most countably many) points, one from each
component of N. As in the proof of the proceeding lemma find finitely many times ti and enlarge the
collection θ1, . . . , θk by the pullbacks (αi (ti ))∗(θm)i , m = 1, . . . , k. We then get a new finite collection
of complete fields where the set of points where this new collection does not span the tangent space of
the π -fiber has smaller dimension. By finite induction on the dimension we get the desired result. □

10. Auxiliary quantities and results

Define

MK
x1x2x3

=


∂P K

1 /∂x1 ∂P K
1 /∂x2 ∂P K

1 /∂x3

∂P K
2 /∂x1 ∂P K

2 /∂x2 ∂P K
2 /∂x3

∂P K
3 /∂x1 ∂P K

3 /∂x2 ∂P K
3 /∂x3

∂P K
4 /∂x1 ∂P K

4 /∂x2 ∂P K
4 /∂x3

 (10.0.1)

for any triple x1, x2, x3 from Z⃗ K . Removing the j -th row from MK
x1x2x3

gives us 3×3 matrices which we
denote by MK , j

x1x2x3 . Let

RK , j
x1x2x3

= detMK , j
x1x2x3

.

The significance of the functions RK , j
x1x2x3 is understood if one notices, because of (8.0.1), that

R2k+1,1
x1x2x3

= ∂2k
x1x2x3

P2k
2 , (10.0.2)

R2k+1,2
x1x2x3

= ∂2k
x1x2x3

P2k
1 (10.0.3)
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and that

R2k,3
x1x2x3

= ∂2k−1
x1x2x3

P2k−1
4 , (10.0.4)

R2k,4
x1x2x3

= ∂2k−1
x1x2x3

P2k−1
3 . (10.0.5)

From (7.0.1) and (7.0.2) we get the relations
R2k+1,1

x1x2x3

R2k+1,2
x1x2x3

R2k+1,3
x1x2x3

R2k+1,4
x1x2x3

=


1 0 0 0
0 1 0 0

−z3k+1 z3k+2 1 0
z3k+2 −z3k+3 0 1



R2k,1

x1x2x3

R2k,2
x1x2x3

R2k,3
x1x2x3

R2k,4
x1x2x3

 (10.0.6)

and 
R2k,1

x1x2x3

R2k,2
x1x2x3

R2k,3
x1x2x3

R2k,4
x1x2x3

=


1 0 −w3k−2 w3k−1

0 1 w3k−1 −w3k

0 0 1 0
0 0 0 1



R2k−1,1

x1x2x3

R2k−1,2
x1x2x3

R2k−1,3
x1x2x3

R2k−1,4
x1x2x3

 . (10.0.7)

Consider the vector fields θ L
x1x2x3

and φL
x1x2x3

, where (x1, x2, x3) ∈ TL and 3 ≤ L ≤ K . Rewriting
(8.0.12), (8.0.14), (8.0.15) and (8.0.16) using these functions we get

θ2k+1
x1x2x3

= P2k
3 (Z⃗2k)

2∂2k
x1x2x3

+ P2k
3 (Z⃗2k)R2k+1,1

x1x2x3
(Z⃗2k)

∂

∂z3k+2

+
(
P2k

3 (Z⃗2k)R2k+1,2
x1x2x3

(Z⃗2k)− P2k
4 (Z⃗2k)R2k+1,1

x1x2x3
(Z⃗2k)

) ∂

∂z3k+1
, (10.0.8)

φ2k+1
x1x2x3

= P2k
4 (Z⃗2k)

2∂2k
x1x2x3

+ P2k
4 (Z⃗2k)R2k+1,2

x1x2x3
(Z⃗2k)

∂

∂z3k+2

+
(
P2k

4 (Z⃗2k)R2k+1,1
x1x2x3

(Z⃗2k)− P2k
3 (Z⃗2k)R2k+1,2

x1x2x3
(Z⃗2k)

) ∂

∂z3k+3
, (10.0.9)

θ2k
x1x2x3

= P2k−1
1 (Z⃗2k−1)

2∂2k−1
x1x2x3

+ P2k−1
1 (Z⃗2k−1)R2k,3

x1x2x3
(Z⃗2k−1)

∂

∂w3k−1

+
(
P2k−1

1 (Z⃗2k−1)R2k,4
x1x2x3

(Z⃗2k−1)− P2k−1
2 (Z⃗2k−1)R2k,3

x1x2x3
(Z⃗2k−1)

) ∂

∂w3k−2
, (10.0.10)

φ2k
x1x2x3

= P2k−1
2 (Z⃗2k−1)

2∂2k−1
x1x2x3

+ P2k−1
2 (Z⃗2k−1)R2k,4

x1x2x3
(Z⃗2k−1)

∂

∂w3k−1

+
(
P2k−1

2 (Z⃗2k−1)R2k,3
x1x2x3

(Z⃗2k−1)− P2k−1
1 (Z⃗2k−1)R2k,4

x1x2x3
(Z⃗2k−1)

) ∂

∂w3k
. (10.0.11)

We see that half of the functions RK , j
x1x2x3 occur in the coefficients of the last three directions. As already

observed the fields θ L
x1x2x3

and φL
x1x2x3

for L < K have zero components along the last three directions.
We have to make sure that the projection onto the last three variables of the collection of fields θK

x1x2x3

and φK
x1x2x3

spans a 3-dimensional space. If this is true for a point, we will say that the fields span all new
directions in the point. In order to determine if our fields span all new directions in a point Z⃗ K ∈F K

a1a2a3a4
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we will use the following. Let NK = |TK | be the number of complete triples. Define the (2 × NK−1)-
matrices

�K
x1x2x3

(Z⃗ K )=



(
RK−1,1

x1x2x3
(Z⃗ K ) · · ·

RK−1,2
x1x2x3

(Z⃗ K ) · · ·

)
when K odd,

(
RK−1,3

x1x2x3
(Z⃗ K ) · · ·

RK−1,4
x1x2x3

(Z⃗ K ) · · ·

)
when K even,

where (x1, x2, x3) run over all triples in TK−1. Using the formulas (10.0.8), (10.0.9), (10.0.10), (10.0.11),
and remembering that a fiber F K

(a1,a2,a3,a4)
is called generic if (a1, a2) ̸= (0, 0) when K is even and if

(a3, a4) ̸= (0, 0) when K is odd, it is an exercise in linear algebra to prove the lemma below.

Lemma 10.1. If in a point Z⃗ K ∈ F K
a1a2a3a4

in a generic fiber

Rank�K
x1x2x3

(Z⃗ K )= 2
then

{θK
x1x2x3

: (x1, x2, x3) ∈ TK−1} ∪ {φK
x1x2x3

: (x1, x2, x3) ∈ TK−1} ∪ {γ K
}

span all three new directions. If
Rank�K

x1x2x3
(Z⃗ K )= 1

then
{θK

x1x2x3
: (x1, x2, x3) ∈ TK−1} ∪ {φK

x1x2x3
: (x1, x2, x3) ∈ TK−1} ∪ {γ K

}

span two out of three new directions.

Because of the formulas (10.0.6) and (10.0.7) we have the lemma below.

Lemma 10.2. Let K ≤ L and put

ML
K (Z⃗L)=


RL ,1

x1x2x3
(Z⃗L) . . .

RL ,2
x1x2x3

(Z⃗L) . . .

RL ,3
x1x2x3

(Z⃗L) . . .

RL ,4
x1x2x3

(Z⃗L) . . .

 ,
where (x1, x2, x3) run over all triples in TK . For all L ≥ K

RankMK
K (Z⃗L)= RankML

K (Z⃗L).

The importance of Lemmas 10.1 and 10.2 is seen in the following corollary.

Corollary 10.3. Let L > K and Z⃗ K be a point where RankMK
K (Z⃗ K ) = 4. Then for all points Z⃗L

contained in a generic fiber F L
(a1,a2,a3,a4)

such that π(Z⃗L)= Z⃗ K , the complete fields

{θ L
x1x2x3

: (x1, x2, x3) ∈ TL−1} ∪ {φL
x1x2x3

: (x1, x2, x3) ∈ TL−1} ∪ {γ L
}

span all new directions (the directions along the last three variables in (C3)L ).

Proof. Two rows of the rank-4 matrix ML
K (Z⃗L) are linearly independent. □
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∂2
x1x2x3

R2,1
x1x2x3

R2,2
x1x2x3

R2,3
x1x2x3

R2,4
x1x2x3

∂2
w1w2w3

0 0 0 0
∂2

z2w2w3
0 z2

3 0 0
∂2

z3w1w2
z2

2 0 0 0
∂2

z2w1w3
0 z2z3 0 0

∂2
z3w1w3

z2z3 0 0 0
∂2

z2z3w1
z2w2 −z2w3 0 z2

∂2
z2z3w3

−z3w1 z3w2 z3 0

Table 1. The expressions for R2,i
x1x2x3

.

Corollary 10.4. Let L ≥ 3 and Z⃗L be a point that is contained in a generic fiber F L
(a1,a2,a3,a4)

and such that
z2z3 ̸= 0. Then

{θ L
x1x2x3

: (x1, x2, x3) ∈ TL−1} ∪ {φL
x1x2x3

: (x1, x2, x3) ∈ TL−1} ∪ {γ L
}

span all new directions in Z⃗L .

Proof. The corresponding matrix for L = 3 is contained in Table 1. From this table the claim is an easy
exercise in linear algebra. □

In order to use this corollary we need the following lemma.

Lemma 10.5. We have the following cases for the function P = z2z3 and the fibers F K :

(1) P is not identically zero on F K
(a1,a2,a3,a4)

for K ≥ 5. For these K the fibers F K
(a1,a2,a3,a4)

are irreducible.

(2) The fibers F 4
(a1,a2,a3,a4)

are irreducible except when

(a1, a2, a3, a4)= (0, 0, 0, 1).

The function P is not identically zero on fibers except for one component of F 4
(0,0,0,1).

(3) The fibers F 3
(a1,a2,a3,a4)

are irreducible except when

(a1, a2, a3, a4)= (a1, a2, 0, 1).

The function P is not identically zero on fibers except on F 3
(0,a2,0,0) or F 3

(a1,0,0,0) or on one component
of the reducible fiber F 3

(a1,a2,0,1) where it is identically zero.

Proof. We first prove (3). The fibers F 3
(a1,a2,0,0) are just biholomorphic to C5 and z2, z3 are constantly equal

to a1, a2. This shows that they are irreducible and that the assertion about P is true. The fibers F 3
(a1,a2,0,1)

are isomorphic to the variety G 2
(0,1) given by two equations which can be written in matrix form as(

w1 w2

w2 w3

)(
z2

z3

)
=

(
0
0

)
. (10.0.12)

From this it can be seen that G 2
(0,1) has two irreducible components. One is

A1 = {z2, z3 : z2 =z3 =0} ∼= C3
w1w2w3

(10.0.13)
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and the other is

A2 =

{(
w1 w2

w2 w3

)
:

(
w1 w2

w2 w3

)(
z2

z3

)
=

(
0
0

)
and det

(
w1 w2

w2 w3

)
= 0

}
. (10.0.14)

The singularity set of G 2
(0,1) is A1 ∩ A2. Clearly P is identically zero on A1 and not identically zero

on A2. Observe that F 3
(a1,a2,0,1) are connected, their smooth part consists of the two connected components

A1 \ A2 and A2 \ A1.
The smooth generic fibers F 3

(a1,a2,a3,a4)
for (a3, a4) /∈{(0, 0), (0, 1)} are isomorphic to the variety G 2

(a3,a4)

given by the two equations

z2w1 + z3w2 = a3, (10.0.15)

z2w2 + z3w3 + 1 = a4. (10.0.16)

In the case z2 ̸= 0 these equations can be used to express w2 and w3 by the other variables and we
get a chart isomorphic to C⋆z2

× Cz3 × Cw3 . In the case z3 ̸= 0 we can express w2 and w3 by other
variables, which gives us a similar chart. Thus G 2

(a3,a4)
is covered by two connected charts with nonempty

intersection which shows that it is connected. Thus the smooth generic fibers F 3
(a1,a2,a3,a4)

are irreducible.
The function P is not identically zero on both charts. The assertion (3) is completely proven.

Next we prove assertion (2). The nongeneric fibers F 4
(0,0,a3,a4)

are isomorphic to F 3
(0,0,a3,a4)

×C3, where
C3 corresponds to the new variables w4, w5, w6. All assumptions about these fibers follow therefore from
the corresponding assumptions about F 3

(0,0,a3,a4)
.

In the case of generic fibers which are known to be smooth (see Section 7) we just have to prove that
they are connected. For this consider

F 4
(a1,a2,a3,a4)

=

⋃
(w4,w5,w6)∈C3

F 3
(a1,a2,b3,b4)

, (10.0.17)

where b3 = a3 −w4a1 −w5a2 and b4 = a4 −w5a1 −w6a2. In other words we consider the surjective
projection ρ : F 4

(a1,a2,a3,a4)
→ C3, mapping a point to its last three coordinates (w4, w5, w6), where the

ρ-fibers are just fibers F 3
(a1,a2,b3,b4)

. Connectedness of the ρ-fibers implies that a connected component
of F 4

(a1,a2,a3,a4)
has to be ρ-saturated. Since ρ is a submersion in generic points of the fiber (it is not a

submersion only in singular points of an F 3-fiber), any connected component of F 4
(a1,a2,a3,a4)

is equal to
ρ−1(U ), where U is some open subset of the base C3. Since the base is connected and ρ is surjective,
connectedness of F 4

(a1,a2,a3,a4)
follows. The function P is not identically zero on any F 3-fiber contained

in F 4
(a1,a2,a3,a4)

, and thus not identically zero on F 4
(a1,a2,a3,a4)

itself. This concludes the proof of (2).
Last we prove assertion (1). The connectedness of the fibers F K

(a1,a2,a3,a4)
for K ≥ 5 can be proven by

induction in a way similar to the connectedness of the generic F 4-fibers is deduced from the properties
of F 3-fibers. As above we consider the surjective projection ρ : F K

(a1,a2,a3,a4)
→ C3 onto the last three

variables whose fibers are F K−1-fibers. Since again F K−1-fibers are connected and ρ is a submersion
in smooth points of the F K−1-fibers, any connected component of F K

(a1,a2,a3,a4)
is of the form ρ−1(U ),

where U is some open subset of the base C3.
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In addition we will prove by induction that the smooth part of the singular fibers

F K
(a1,a2,a3,a4)

\ SingF K
(a1,a2,a3,a4)

is connected for K ≥5. Together with connectedness of the fibers this implies the irreducibility of the fibers.
For even K , the singular fibers are the singular F K−1-fibers times C3 and therefore the connectedness

of the smooth part follows by the induction hypothesis.
For odd K = 2k + 1, we are faced with the following situation: The singular fiber is F K

(a1,a2,0,1) and
it is fibered by F K−1-fibers all of which are smooth except for the fibers F K−1

(0,0,0,1). The union of those
fibers forms a codimension-2 subvariety of F K

(a1,a2,0,1) (given by the equations z3k+2 = z3k+3 = 0). By the
argument above, the complement, call it W, of this union in F K

(a1,a2,0,1) is connected. The singular points
of F K

(a1,a2,0,1) are contained in that union and are contained in (but not equal to) the union of the singular
points of the fibers F K−1

(0,0,0,1). We want to prove that any smooth point p of F K
(a1,a2,0,1) which is contained

in a fiber F K−1
(0,0,0,1) is contained in the connected component containing W. Since the complement of

W has codimension 2 in F K
(a1,a2,0,1), an open neighborhood of p in F K

(a1,a2,0,1) has to intersect W, which
gives the desired conclusion.

As in the proof of (2), the function P cannot be identically zero on any fiber F K
(a1,a2,a3,a4)

since this
fiber contains F K−1-fibers on which, by the induction hypothesis, P is not identically zero. □

Remark 10.6. The fact that after a certain number of factors the fibers of the fibration all become
irreducible is very general. It was proven by J. Draisma as an outcome of an interesting discussion
with the second author. The irreducibility statement in our lemma is just an example of a much more
general property. We refer the interested reader to [Draisma 2022]. The exact number at and past which
irreducibility of the fibers holds (in our case 5) is not known in general, although Draisma gives a bound.

Definition 10.7. Let M be a manifold and A be a set of complete vector fields on M . The flows of
elements of A give one-parameter subgroups of Aut(M). Denote by S the group generated by elements
of those one-parameter subgroups (finite compositions of time maps of vector fields of elements from A).
Define

0(A)= {α∗X : α ∈ S and X ∈ A}.

Obviously 0(A) consists of complete vector fields and we call it the collection generated by A.

Definition 10.8. Let L ≥ 3. We define

QL = 0

( L⋃
J=3

{
{θ J

x1x2x3
: (x1, x2, x3) ∈4J } ∪ {φ J

x1x2x3
: (x1, x2, x3) ∈4J } ∪ {γ J

}
})
.

At each step of the induction we will prove the following proposition, which plays a crucial role in the
inductive proof of Proposition 3.6.

Proposition 10.9. For each L ≥ 4 we have: There are finitely many (complete) fields from QL which
span the tangent space TxF L at each smooth point of any generic fiber F L. For L = 3 there are finitely
many (complete) fields from Q3 which span the tangent space TxF 3 at each point of any smooth generic
fiber F 3.
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Remark 10.10. For L = 3 singular generic fibers F 3
(a1,a2,0,1) have two irreducible components and we

can prove the statement about smooth points on generic fibers only for one of those components. It is
false for the other component.

11. Proof of Proposition 3.6: three matrix factors

In Table 2 we list the coefficients of the fields ∂2
x1x2x3

for all x1, x2, x3 ∈ T2.
We first consider the stratum of smooth generic fibers, where we have

(a3, a4) /∈ {(0, 0), (0, 1)}.

Notice that z2 = z3 = 0 is contained in F 3
(z5,z6,0,1) and therefore z2 and z3 are never simultaneously zero

on any fiber in this stratum. It is enough to show that G 2
(a3,a4)

is elliptic. We see from the table that
the fields ∂2

z3w1w3
, ∂2

z2w1w3
, ∂2
w1w2w3

span the tangent space TZ⃗2
G 2
(a3,a4)

for all points Z⃗2 where z2z3 ̸= 0.
The complement of this good set is the disjoint union of the analytic subsets A = {Z⃗2 : z2 = 0} and
B = {Z⃗2 : z3 = 0}. From the table we see that ∂2

z2w2w3
(z2) = z2

3, which is nowhere-zero on A. Also
∂2

z3w1w2
(z3)= z2

2, which is nowhere-zero on B. By Lemma 9.1 there exist finitely many complete fields from

0({∂2
x1x2x3

: (x1, x2, x3) ∈ T2})

that span the tangent space TZ⃗2
G 2
(a3,a4)

for all points in the stratum. Therefore G 2
(a3,a4)

is elliptic. It follows
that there are finitely many complete fields from

0
(
{θ3

x1x2x3
: (x1, x2, x3) ∈ T2} ∪ {φ3

x1x2x3
: (x1, x2, x3) ∈ T2} ∪ {γ 3

}
)

that span the tangent space TZ⃗3
F 3
(a1,a2,a3,a4)

for all points in the stratum.
Now we consider the stratum of nonsmooth generic fibers (a3, a4)= (0, 1). The two equations defining

G 2
(0,1) can be written in matrix form as (

w1 w2

w2 w3

)(
z2

z3

)
=

(
0
0

)
. (11.0.1)

∂/∂z2 ∂/∂z3 ∂/∂w1 ∂/∂w2 ∂/∂w3

∂2
w1w2w3

0 0 z2
3 −z2z3 z2

2

∂2
z2w2w3

z2
3 0 0 −w1 z3 w1 z2−w2 z3

∂2
z3w1w2

0 z2
2 z3w3−w2 z2 −z2w3 0

∂2
z2w1w3

z2z3 0 −w1 z3 0 −z2w2

∂2
z3w1w3

0 z2z3 −w2 z3 0 −z2w3

∂2
z2z3w1

−z2w3 z2w2 w1w3−w
2
2 0 0

∂2
z2z3w3

w2 z3 w1 z3 0 0 w1w3−w
2
2

Table 2. Coefficients of complete vector fields. For example, ∂2
w1w2w3

= z2
3(∂/∂w1)−

z2z3(∂/∂w2)+z2
2(∂/∂w3).
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Recall that G 2
(0,1) has two irreducible components. The components are given by (see (10.0.13) and

(10.0.14))
A1 = {z2, z3 : z2 = z3 = 0} ∼= C3

w1w2w3
(11.0.2)

and

A2 =

{(
w1 w2

w2 w3

)
:

(
w1 w2

w2 w3

)(
z2

z3

)
=

(
0
0

)
and det

(
w1 w2

w2 w3

)
= 0

}
. (11.0.3)

The singularity set of G 2
(0,1) is A1 ∩ A2. We have to show that the smooth part of G 2

(0,1), that is, the
disjoint union of A1 \ A2 and A2 \ A1, is elliptic. In the proof for the smooth generic case it is shown
that on the set where z2 and z3 are not both zero, there exists a collection of complete spanning vector
fields. Since A2 \ A1 is contained in that set, we need only consider A1 \ A2. The set A1 \ A2 is
biholomorphic to C3

\ {w1w3 −w2
2 = 0}. The vector fields (w1w3 −w2

2)(∂/∂w1), (w1w3 −w2
2)(∂/∂w3),

2w2(∂/∂w1)+w3(∂/∂w2), 2w2(∂/∂w3)+w1(∂/∂w2) are complete on C3
\ {w1w3 −w2

2 = 0} and span
the tangent space in all points outside the analytic set A′

={w1 =w3 =0}∩(A1\ A2). Since w2 is nowhere-
zero on A′ any of the four complete fields points out of A′. By Lemma 9.1 the proof is complete. Observe
that we also have proved Proposition 10.9 for L = 3. Notice that the fields 2w2(∂/∂w1)+w3(∂/∂w2),
2w2(∂/∂w3)+w1(∂/∂w2) are not in Q3 and this explains the difference between L = 3 and L ≥ 4 in
Proposition 10.9. See Remark 10.10.

The stratum of nongeneric fibers is a locally trivial bundle with fibers C5(∼= F 3
(a1,a2,0,0)) which is an

elliptic submersion.

12. Proof of Proposition 3.6: four matrix factors

We begin the proof by studying the stratum of generic fibers, (a1, a2) ̸= (0, 0). We write

F 4
(a1,a2,a3,a4)

=

⋃
(w4,w5,w6)∈C3

F 3
(a1,a2,b3,b4)

, (12.0.1)

where b3 = a3 −w4a1 −w5a2 and b4 = a4 −w5a1 −w6a2. We need to find finitely many complete
vector fields spanning TZ⃗4

F 4
(a1,a2,a3,a4)

for points Z⃗4 in the stratum of generic fibers. Because of (12.0.1)
there are b3 and b4 so that Z⃗3 ∈F 3

(a1,a2,b3,b4)
and Z⃗4 = (Z⃗3, w4, w5, w6). We first consider the set of points

in these fibers having the property that (b3, b4) ̸= (0, 0) or (0, 1). Under these assumptions, Z⃗4 lies in a
generic smooth fiber F 3

(a1,a2,b3,b4)
and we know from Section 11 that there is a finite collection of fields

from Q3 which spans
TZ⃗4

F 3
(a1,a2,b3,b4)

⊂ TZ⃗4
F 4
(a1,a2,a3,a4)

.

Corollary 10.4 together with Lemma 10.5(3) shows that for the set defined by z2z3 ̸= 0 (which is a Zariski
open and dense set of points of the generic fiber F 4

(a1,a2,a3,a4)
) the fields

{θ4
x1x2x3

: (x1, x2, x3) ∈ T3} ∪ {φ4
x1x2x3

: (x1, x2, x3) ∈ T3} ∪ {γ 4
}

span the new directions w4, w5, w6. Since these new directions are complementary to

TZ⃗4
F 3
(a1,a2,b3,b4)

⊂ TZ⃗4
F 4
(a1,a2,a3,a4)

,
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we have found finitely many complete fields spanning TZ⃗4
F 4
(a1,a2,a3,a4)

for points in a Zariski open dense set
in all smooth generic fibers F 3

(a1,a2,b3,b4)
. Using Lemma 9.1 we get finitely many complete fields spanning

TZ⃗4
F 4
(a1,a2,a3,a4)

for all points in all generic fibers F 4
(a1,a2,a3,a4)

with the property that (b3, b4) ̸= (0, 0)
or (0, 1). Next we consider points Z⃗4 where (b3, b4)= (0, 1), i.e,

Z⃗4 ∈ F 3
(a1,a2,0,1) ⊂ F 4

(a1,a2,a3,a4)
.

Remember that
F 3
(a1,a2,0,1) = A1 ∪ A2 = A1∪̇(A2 \ A1) (12.0.2)

(see (10.0.13) and (10.0.14)), where A1 and A2 are irreducible components. In the proof for K = 3 we
saw that there is a finite collection from Q3 which spans all tangent spaces

TZ⃗4
F 3
(a1,a2,0,1) ⊂ TZ⃗4

F 4
(a1,a2,a3,a4)

for all points in A2 \ A1. Lemma 10.5(3) gives that z2z3 is not identically zero on A2 \ A1 and as above,
appealing to Lemma 9.1, we get spanning fields for the fiber F 4

(a1,a2,a3,a4)
in all points of A2 \ A1. Our

aim is to exclude the existence of a subset of the fiber invariant under the flows of fields from Q4. By the
reasoning above, such a subset must be contained in A1 or the set of points Z⃗4 where (b3, b4)= (0, 0).
Next we show that such a subset is disjoint from A1. A calculation shows that

∂3
z2z3z6

= (z4w2 + z5w3)
∂

∂z2
− (1 + z4w1 + z5w2)

∂

∂z3
+ · · · .

Therefore the complete fields
θ4

z2z3z6
= a2

1∂
3
z2z3z6

+ · · · ,

φ4
z2z3z6

= a2
2∂

3
z2z3z6

+ · · ·

move points out of A1 (into the big orbit) unless, in addition to z2 = z3 = 0, also

1 + z4w1 + z5w2 = z4w2 + z5w3 = 0. (12.0.3)

Points in an invariant subset must also satisfy these equations. A calculation gives that ∂3
z4z5z6

= ∂/∂z4

when z2 = z3 = 0. Therefore the complete fields

θ4
z4z5z6

= a2
1∂

3
z4z5z6

+ · · · ,

φ4
z4z5z6

= a2
2∂

3
z4z5z6

+ · · ·

move points out of this set since

θ4
z4z5z6

(1 + z4w1 + z5w2)= a2
1w1,

θ4
z4z5z6

(z4w2 + z5w3)= a2
1w2,

φ4
z4z5z6

(1 + z4w1 + z5w2)= a2
2w1,

φ4
z4z5z6

(z4w2 + z5w3)= a2
2w2

cannot all be zero, because this would contradict (12.0.3). We now turn to points Z⃗4 where (b3, b4)= (0, 0)
and again show that these points are not contained in an invariant subset and hence no such invariant subset
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exists. We will find fields θ4
x1x2x3

or φ4
x1x2x3

such that R3,3
x1x2x3

̸= 0 or R3,4
x1x2x3

̸= 0. We begin by noticing
that at points Z⃗4 with z2z3 ̸= 0 we can leave the invariant set. Also z2 = 0 = z3 cannot occur in F 3

(a1,a2,0,0).
Two cases, z2 ̸= 0 = z3 and z2 = 0 ̸= z3, remain. Assume first that z2 ̸= 0 = z3 (and b3 = b4 = 0). Here
we begin by choosing the triple (z3, w1, w2). Since R3,3

z3w1w2
= −z2

2z4 and R3,4
z3w1w2

= z2
2z5, we move out

of F 3
(a1,a2,0,0) unless z4 = z5 = 0. Assuming in addition that z4 = z5 = 0 we choose the triple (z2, z3, w1).

For such points, R3,4
z2z3w1

= z2 + z2w3 z6 (and R3,3
z2z3w1

= 0) so if 1 +w3 z6 ̸= 0 we move out of F 3
(a1,a2,0,0).

Choose (z2, z3, z6). Notice that

θ4
z2z3z6

= a2
1
∂

∂z6
and φ4

z2z3z6
= a2

2
∂

∂z6

at these points and θ4
z2z3z6

(1 +w3 z6)= a2
1w3, φ4

z2z3z6
(1 +w3 z6)= a2

2w3 which both cannot be zero since
1 +w3 z6 = 0 implies w3 ̸= 0 and we assume that (a1, a2) ̸= (0, 0).

Now assume that z2 = 0 ̸= z3 (and also b3 = b4 = 0) and choose the triple (z2, w2, w3). Since
R3,3

z2w2w3
= z2

3z5 and R3,4
z2w2w3

= −z2
3z6 we move out of F 3

(a1,a2,0,0) unless z5 = z6 = 0. Assuming in
addition that z5 = z6 = 0 we choose the triple (z2, z3, w3). For such points R3,3

z2z3w3
= z3 + z3w1 z4 (and

R3,4
z2z3w3

= 0) so if 1 +w1 z4 ̸= 0 we move out of F 3
(a1,a2,0,0). Therefore assume also that 1 +w1 z4 = 0

Choose (z2, z3, z4). Notice that

θ4
z2z3z4

= a2
1
∂

∂z4
and φ4

z2z3z4
= a2

2
∂

∂z4

at these points and θ4
z2z3z4

(1+w1 z4)= a2
1w1, φ4

z2z3z4
(1+w1 z4)= a2

2w1, which both cannot be zero since
1 +w1 z4 = 0 implies w1 ̸= 0 and we assumed that (a1, a2) ̸= (0, 0). This lets us conclude that there is
no invariant subset with respect to Q4 and we have handled the stratum of generic fibers. Note that this
proves Proposition 10.9 for K = 4.

We need to study the stratum of nongeneric fibers. This stratum consists of those fibers where
a1 = a2 = 0. We notice that these fibers satisfy

F 4
(0,0,a3,a4)

= F 3
(0,0,a3,a4)

× C3

and since F 3
(0,0,a3,a4)

is elliptic we have proven Proposition 3.6 for K = 4.

13. Proof of Proposition 3.6: five matrix factors

We assume that K = 5 and we have seen that the submersions 8L = π4 ◦ 9L are stratified elliptic
submersions when 3 ≤ L ≤ 4 and that Proposition 10.9 is true when 3 ≤ L ≤ 4.

We study
F 5
(a1,a2,a3,a4)

=

⋃
(z7,z8,z9)∈C3

F 4
(b1,b2,a3,a4)

, (13.0.1)

where b1 = a1 − z7 a3 − z8 a4 and b2 = a2 − z8 a3 − z9 a4. Let Z⃗5 ∈F 5
(a1,a2,a3,a4)

. Because of (13.0.1) there
are b1 and b2 so that Z⃗4 ∈ F 4

(b1,b2,a3,a4)
and Z⃗5 = (Z⃗4, z7, z8, z9).

First we study the stratum of smooth generic fibers. Fibers in this stratum are those satisfying
(a3, a4) ̸∈ {(0, 0), (0, 1)}. First notice that if (b1, b2) ̸= (0, 0) then F 4

(b1,b2,a3,a4)
is a generic smooth fiber
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∂/∂z2 ∂/∂z3 ∂/∂z5 ∂/∂z6

P4
1 1+w1 z4 w3 z4 1 0

P4
2 0 1 0 1

P4
3 w1+w4+w1w4 z4 w2+w5+w2w4 z4 w4 w5

P4
4 w2+w5+w1w5 z4 w3+w6+w2w5 z4 w5 w6

Table 3. The nonzero partial derivatives of P4
1 , P4

2 , P4
3 , and P4

4 .

for 84 and as above, Proposition 10.9 for L = 4, Corollary 10.4 and Lemma 10.5(2) show that for these
points we have spanning fields. If (b1, b2)= (0, 0) then F 4

(0,0,a3,a4)
is a nongeneric smooth fiber for84 and

F 4
(0,0,a3,a4)

= F 3
(0,0,a3,a4)

× C3.

Since we assume that (a3, a4) ̸= (0, 1) (in this case (a3, a4) ̸= (0, 0) is automatic), we know by
Corollary 10.4, Lemma 10.5(3) and Proposition 10.9 that we have spanning fields. This also shows that
Proposition 10.9 holds for these fibers when L = 5.

We now study the stratum of singular generic fibers. Here (a3, a4) = (0, 1). Again notice that if
(b1, b2) ̸= (0, 0) then

F 4
(b1,b2,0,1)

is a generic smooth fiber for 84, and Proposition 10.9 (for L = 4), Corollary 10.4 and Lemma 10.5 show
that for these points we have spanning fields as above. Next we study the case (b1, b2)= (0, 0). In this
case we see that

F 4
(0,0,0,1)

∼= F 3
(0,0,0,1) × C3.

We write, as in Section 11,
F 3
(0,0,0,1) = A1 ∪ A2.

In A2 \ A1 we can use the argument as in the smooth generic case in Section 11: z2z3 ̸≡ 0 and
∂2

z2w2w3
(z2)= z2

3 make it possible to leave the set where z2 = 0, and ∂2
z3w1w2

(z3)= z2
2 makes it possible to

leave the set where z3 = 0.
Now we need to deal with points in A1 ×C3

⊂ F 4
(0,0,0,1). Because of the inclusion we find z5 = z6 = 0.

Define C = {z2 = z3 = z5 = z6 = 0} ⊂ F 4
(0,0,0,1) ⊂ F 5

(0,0,0,1), which contains the set of singularities

Sing(F 5
(0,0,0,1))= C ∩

{
Rank

(
w1 w2 w4 w5

w2 w3 w5 w6

)
< 2

}
.

In order to prove Propositions 10.9 and 3.6 we need to show that fields from Q5 move out from
C \ Sing(F 5

(0,0,0,1)). Calculating the partial derivatives of P4
1 , . . . , P4

4 in points of C we find that the ones
that are nonzero are those listed in Table 3. We examine the complete field φ5

z2z3z6
. This field has some

complicated components which on C take the form

φ5
z2z3z6

= D1
∂

∂z2
+D2

∂

∂z3
+D3

∂

∂z6
+ · · · ,
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where

D1 = det
(
w2+w5+w2w4 z4 w5

w3+w6+w2w5 z4 w6

)
,

D2 = det
(
w1+w4+w1w4 z4 w5

w2+w5+w1w5 z4 w6

)
,

D3 = det
(
w1+w4+w1w4 z4 w2+w5+w2w4 z4

w2+w5+w1w5 z4 w3+w6+w2w5 z4

)
.

Whenever at least one of D1, D2 or D3 is nonzero we can move out of C . Suppose we are in a point of
C \ Sing(F 5

(0,0,0,1)) where D1 = D2 = D3 = 0. Observe that

Rank
(
w1 w2 w4 w5

w2 w3 w5 w6

)
= Rank

(
w1+w4+w1w4 z4 w2+w5+w2w4 z4 w4 w5

w2+w5+w1w5 z4 w3+w6+w2w5 z4 w5 w6

)
(in this case it is 2) since(

w1+w4+w1w4 z4

w2+w5+w1w5 z4

)
=

(
w1

w2

)
+ (1 +w1 z4)

(
w4

w5

)
,(

w2+w5+w2w4 z4

w3+w6+w2w5 z4

)
=

(
w2

w3

)
+

(
w5

w6

)
+w2 z4

(
w4

w5

)
.

The fact that D1 = D2 = D3 = 0 means that the rank drops when we remove the third column from
these matrices. This implies that the third column is nonzero and the other columns are multiples of a
nonzero vector v which moreover is linearly independent of the third column. Now we use the field γ 3

(see (8.0.13)) to show that the set

I = C \ Sing(F 5
(0,0,0,1))∩ {D1 =D2 =D3 =0}

does not contain an invariant subset under fields from Q5. In the points of I we have that γ 3
= ∂/∂z4.

We consider two cases.

Case 1: (w5, w6) ̸= (0, 0). In this case

det
(
w4 w5

w5 w6

)
̸= 0.

We have

γ 3(D1)= w2 det
(
w4 w5

w5 w6

)
.

Thus γ 3 moves points out of I unless w2 = 0. Looking at

γ 3(D2)= w1 det
(
w4 w5

w5 w6

)
we see that w1 = 0 for I to be invariant. Assuming in addition w1 = w2 = 0 we find that

D2 = det
(
w4 w5

w5 w6,

)
which is a contradiction since D2 = 0 on I.
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Case 2: (w5, w6)= (0, 0). This implies w4 ̸= 0. On these assumptions

D3 = (w1w3 −w2
2)(1 + z4w4)+w3w4

and
γ 3(D3)= (w1w3 −w2

2)w4.

Now γ 3(D3)= 0 implies that w1w3 −w2
2 = 0, which in combination with D3 = 0 implies that w3 = 0.

This in turn gives w2 = 0 and (
w1 w2 w4 w5

w2 w3 w5 w6

)
=

(
w1 0 w4 0
0 0 0 0

)
,

which contradicts the assumption that

Rank
(
w1 w2 w4 w5

w2 w3 w5 w6

)
= 2.

Finally we study the stratum of nongeneric fibers, that is, (a3, a4)= (0, 0). Here all fibers are smooth.
Also

F 5
(a1,a2,0,0) = F 4

(a1,a2,0,0) × C3

and since F 4
(a1,a2,0,0) is elliptic we are done.

14. Proof of Proposition 3.6: induction steps

Recall the description of the stratification for the submersion 8M = π4 ◦9M given in Section 7. When
M is odd we have the following strata:

• The strata of generic fibers: When (a3, a4) ̸= (0, 0), the fibers are graphs over GM−1
(a3,a4)

× C. This set is
divided into two strata as follows:

– Smooth generic fibers: When (a3, a4) ̸= (0, 1), the fibers are smooth.

– Singular generic fibers: When (a3, a4)= (0, 1), the fibers are nonsmooth.

• The stratum of nongeneric fibers: When (a3, a4)= (0, 0) the fibers are F M
(a1,a2,0,0) = F M−1

(a1,a2,0,0) × C3.
Moreover the fibers are smooth.

When M is even we have the following strata:

• The stratum of generic fibers: When (a1, a2) ̸= (0, 0), the fibers are graphs over HM−1
(a1,a2)

×C. Moreover
the fibers are smooth.

• The strata of nongeneric fibers: When (a1, a2) = (0, 0), the fibers are F M
(0,0,a3,a4)

= F M−1
(0,0,a3,a4)

× C3.
This set is divided into two strata as follows:

– Smooth nongeneric fibers: When (a3, a4) ̸= (0, 1), the fibers are smooth.

– Singular nongeneric fibers: When (a3, a4)= (0, 1), the fibers are nonsmooth.

We will now complete the proof by doing the induction steps necessary.
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14.1. Even number of factors. We begin by showing that the stratified submersion is elliptic when
the number of matrix factors is even. This case is easier than the case when the number of factors is
odd, which we will deal with in Section 14.2. Assume that K = 2k − 1 ≥ 5 and that the submersions
8L = π4 ◦9L are stratified elliptic submersions when 3 ≤ L ≤ K and that Proposition 10.9 is true when
3 ≤ L ≤ K .

We study
F K+1
(a1,a2,a3,a4)

= F 2k
(a1,a2,a3,a4)

=

⋃
(w3k−2,w3k−1,w3k)∈C3

F 2k−1
(a1,a2,b3,b4)

, (14.1.1)

where b3 = a3 −w3k−2a1 −w3k−1a2 and b4 = a4 −w3k−1a1 −w3ka2. That is, we use the new group of
variables w3k−2, w3k−1 and w3k to present F 2k

(a1,a2,a3,a4)
as a fibration over C3 with fibers F 2k−1.

Let us describe the strategy similar to the cases of four and five matrix factors. We want to use
Proposition 10.9 for K = 2k − 1, which gives us complete fields that span along that fibration. Next we
want to find complete fields among those that are tangential to F 2k

(a1,a2,a3,a4)
that also are transversal to the

fibers in the fibration. We will appeal to Corollary 10.4 and Lemma 10.5(1) to find these fields. Taken
together this will show that a subset A in the fiber F 2k

(a1,a2,a3,a4)
that is invariant with respect to vector

fields from Q2k must be contained in the union of nongeneric fibers F 2k−1 and singular points of generic
fibers F 2k−1. Call this union U 2k

(a1,a2,a3,a4)
. Our aim will then be to show that there cannot exist such an

invariant set A by showing that every point in U 2k
(a1,a2,a3,a4)

can be moved into F 2k
(a1,a2,a3,a4)

\U 2k
(a1,a2,a3,a4)

by vector fields in Q2k .
We now take care of the details. By (14.1.1) there are b3 and b4 so that Z⃗2k−1 ∈ F 2k−1

(a1,a2,b3,b4)
and

Z⃗2k = (Z⃗2k−1, w3k−2, w3k−1, w3k).

We begin by studying the stratum of generic fibers, that is, (a1, a2) ̸= (0, 0). For points where
(b3, b4) /∈ {(0, 0), (0, 1)} we have that F 2k−1

(a1,a2,b3,b4)
is a smooth generic fiber for the submersion 82k−1,

and Proposition 10.9 (for L = 2k − 1) together with Corollary 10.4 and Lemma 10.5(1) let us conclude
that we have complete vector fields spanning the tangent space of F 2k

(a1,a2,a3,a4)
at these points. For points

where (b3, b4)= (0, 0) we have
F 2k−1
(a1,a2,0,0) = F 2k−2

(a1,a2,0,0) × C3

and Proposition 10.9 (for L = 2k − 2 applied to the first factor) together with Corollary 10.4 and
Lemma 10.5(1) (Lemma 10.5(2) when 2k − 2 = 4) show that we have spanning fields in these points. If
(b3, b4)= (0, 1) then F 2k−1

(a1,a2,0,1) is a singular generic fiber for 82k−1 and at smooth points of the fiber we
have complete spanning fields by Proposition 10.9 (for L = 2k − 1), Corollary 10.4 and Lemma 10.5. It
remains to study

Z⃗2k−1 ∈ Sing(F 2k−1
(a1,a2,0,1)),

which is given by
z2 = z3 = z5 = z6 = · · · = z3k−4 = z3k−3 = 0 (14.1.2)

and

Rank
(
w1 w2 . . . w3k−5 w3k−4

w2 w3 . . . w3k−4 w3k−3

)
< 2. (14.1.3)
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A calculation assuming (14.1.2) shows that

∂2k−1
z3k−4z3k−3z3k

= (z3k−2w3k−4 + z3k−1w3k−3)
∂

∂z3k−4
− (1 + z3k−2w3k−5 + z3k−1w3k−4)

∂

∂z3k−3
+ · · · .

Therefore the complete fields

θ2k
z3k−4z3k−3z3k

= a2
1∂

2k−1
z3k−4z3k−3z3k

+ · · · ,

φ2k
z3k−4z3k−3z3k

= a2
2∂

2k−1
z3k−4z3k−3z3k

+ · · ·

move points out of Sing(F 2k−1
(a1,a2,0,1)) (into the big orbit) unless in addition to (14.1.2) and (14.1.3) also

z3k−2w3k−4 + z3k−1w3k−3 = 1 + z3k−2w3k−5 + z3k−1w3k−4 = 0. (14.1.4)

Points in an invariant subset must satisfy also these equations. A calculation assuming (14.1.2) gives that
∂2k−1

z3k−2z3k−1z3k
= ∂/∂z3k−2. Therefore the complete fields

θ2k
z3k−2z3k−1z3k

= a2
1∂

2k−1
z3k−2z3k−1z3k

+ · · · ,

θ2k
z3k−2z3k−1z3k

= a2
2∂

2k−1
z3k−2z3k−1z3k

+ · · ·

move points out of this set since

θ2k
z3k−2z3k−1z3k

(1 + z3k−2w3k−5 + z3k−1w3k−4)= a2
1w3k−5,

θ2k
z3k−2z3k−1z3k

(z3k−2w3k−4 + z3k−1w3k−3)= a2
1w3k−4,

φ2k
z3k−2z3k−1z3k

(1 + z3k−2w3k−5 + z3k−1w3k−4)= a2
2w3k−5,

φ2k
z3k−2z3k−1z3k

(z3k−2w3k−4 + z3k−1w3k−3)= a2
2w3k−4

cannot all be zero, because this would contradict (14.1.4). Notice that this proves Proposition 10.9 for
L = 2k.

Now we study the stratum of nongeneric fibers, that is, a1 = a2 = 0. In this case we know that

F 2k
(0,0,a3,a4)

= F 2k−1
(0,0,a3,a4)

× C3

and by the induction assumption we are done. This finishes the induction step for an even number of
factors.

14.2. Odd number of factors. We assume that K = 2k ≥ 6 and that the submersions 8L = π4 ◦9L are
stratified elliptic submersions when 3 ≤ L ≤ K and that Proposition 10.9 is true when 3 ≤ L ≤ K .

We study
F K+1
(a1,a2,a3,a4)

= F 2k+1
(a1,a2,a3,a4)

=

⋃
(z3k+1,z3k+2,z3k+3)∈C3

F 2k
(b1,b2,a3,a4)

, (14.2.1)

where b1 = a1 − z3k+1a3 − z3k+2a4 and b2 = a2 − z3k+2a3 − z3k+3a4. Let Z⃗2k+1 ∈ F 2k+1
(a1,a2,a3,a4)

. Because
of (14.2.1) there are b1 and b2 so that Z⃗2k ∈ F 2k

(b1,b2,a3,a4)
and

Z⃗2k+1 = (Z⃗2k, z3k+1, z3k+2, z3k+3).



HOLOMORPHIC FACTORIZATION OF MAPPINGS INTO Sp4(C) 273

Begin with the stratum of smooth generic fibers, that is,

(a3, a4) ̸∈ {(0, 0), (0, 1)}.

First notice that if (b1, b2) ̸= (0, 0) then F 2k
(b1,b2,a3,a4)

is a generic smooth fiber for 82k and as above,
Proposition 10.9 (for L = 2k), Corollary 10.4 and Lemma 10.5 show that for these points we have
spanning fields. If (b1, b2)= (0, 0) then

F 2k
(0,0,a3,a4)

∼= C3
×F 2k−1

(0,0,a3,a4)

is a nongeneric smooth fiber for 82k and, since F 2k−1
(0,0,a3,a4)

is a generic smooth fiber, Proposition 10.9 (for
L = 2k − 1), Corollary 10.4 and Lemma 10.5 show that for these points we have spanning fields.

We now study the stratum of singular generic fibers. Here (a3, a4) = (0, 1). Again notice that if
(b1, b2) ̸= (0, 0) then F 2k

(b1,b2,0,1) is a generic smooth fiber for 82k , and Proposition 10.9 (for L = 2k),
Corollary 10.4 and Lemma 10.5 show that for these points we have spanning fields as above. Next we
study the case (b1, b2)= (0, 0). In this case we see that F 2k

(0,0,0,1) is a singular nongeneric fiber of 82k and

F 2k
(0,0,0,1)

∼= F 2k−1
(0,0,0,1) × C3

w3k−2w3k−1w3k
.

The smooth points of F 2k−1
(0,0,0,1) (which is generic) are handled using Proposition 10.9 (for L = 2k − 1),

Corollary 10.4 and Lemma 10.5. We have the chain of inclusions

F 2k−1
(a1,a2,0,1) ⊃ F 2k

(0,0,0,1) = F 2k−1
(0,0,0,1) × C3

⊃ Sing(F 2k
(0,0,0,1))× C3

⊃ Sing(F 2k+1
(a1,a2,0,1)).

By the arguments above any possible invariant subset must be contained in

J = (Sing(F 2k
(0,0,0,1))× C3) \ Sing(F 2k+1

(a1,a2,0,1)).

Points in J are characterized by z2 = z3 = · · · = z3k−4 = z3k−3 = z3k−1 = z3k = 0,

Rank
(
w1 w2 . . . w3k−5 w3k−4

w2 w3 . . . w3k−4 w3k−3

)
< 2

and

Rank
(
w1 w2 . . . w3k−5 w3k−4 w3k−2 w3k−1

w2 w3 . . . w3k−4 w3k−3 w3k−1 w3k

)
= 2.

Take the largest l < k such that

Rank
(
w3l−2 w3l−1

w3l−1 w3l

)
= 1.

Let Ẑ =
∑k

j=l+1 z3 j−2. We examine the complete field φ2k+1
z3l−1z3l z3k

. This field has some complicated
components which on J take the form

φ2k+1
z3l−1z3l z3k

= D1
∂

∂z3l−1
+D2

∂

∂z3l
+D3

∂

∂z3k
+ · · · ,
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where

D1 = det
(
w3l−1+w3k−1+w3l−1w3k−2 Ẑ w3k−1

w3l+w3k+w3l−1w3k−1 Ẑ w3k

)
,

D2 = det
(
w3l−2+w3k−2+w3l−2w3k−2 Ẑ w3k−1

w3l−1+w3k−1+w3l−2w3k−1 Ẑ w3k

)
,

D3 = det
(
w3l−2+w3k−2+w3l−2w3k−2 Ẑ w3l−1+w3k−1+w3l−1w3k−2 Ẑ
w3l−1+w3k−1+w3l−2w3k−1 Ẑ w3l+w3k+w3l−1w3k−1 Ẑ

)
.

Whenever at least one of D1, D2 or D3 is nonzero we can move out of J. Now suppose we are in a
point of J where D1 = D2 = D3 = 0.

Let

C =

(
w3l−2+w3k−2+w3l−2w3k−2 Ẑ w3l−1+w3k−1+w3l−1w3k−2 Ẑ w3k−2 w3k−1

w3l−1+w3k−1+w3l−2w3k−1 Ẑ w3l+w3k+w3l−1w3k−1 Ẑ w3k−1 w3k

)
and observe that

2 = Rank
(
w3l−2 w3l−1 w3k−2 w3k−1

w3l−1 w3l w3k−1 w3k

)
= Rank C

by column operations.
The fact that D1 = D2 = D3 = 0 means that the rank drops when we remove the third column from

these matrices. This implies that the third column is nonzero and the other columns are multiples of a
nonzero vector v which, moreover, is linearly independent of the third column. Now we use the field γ 3l

(see (8.0.13) or (8.0.17)) to show that the set

I = J ∩ {D1 =D2 =D3 =0}

does not contain an invariant subset under fields from Q2k+1. In the points that we are considering,
γ 3l

= ∂/∂z3l+1. We consider two cases.

Case 1: (w3k−1, w3k) ̸= (0, 0). In this case

det
(
w3k−2 w3k−1

w3k−1 w3k

)
̸= 0.

We have

γ 3l(D1)= w3l−1 det
(
w3k−2 w3k−1

w3k−1 w3k

)
.

Thus γ 3l moves points out of I unless w3l−1 = 0. Looking at

γ 3l(D2)= w3l−2 det
(
w3k−2 w3k−1

w3k−1 w3k

)
,

we see that w3l−2 = 0 for I to be invariant. Assuming in addition w3l−2 = w3l−1 = 0 we find that

D2 = det
(
w3k−2 w3k−1

w3k−1 w3k

)
= 0,

which is a contradiction.
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Case 2: (w3k−1, w3k)= (0, 0). This implies w3k−2 ̸= 0. By these assumptions

D3 = (w3l−2w3l −w2
3l−1)(1 +w3k−2 Ẑ)+w3lw3k−2

and
γ 3l(D3)= (w3l−2w3l −w2

3l−1)w3k−2.

Now D3 = γ 3l(D3) = 0 implies that (w3l−2w3l − w2
3l−1) = 0 and w3l = 0. The first equality gives

w3l−1 = 0, which altogether contradicts the assumption that

Rank
(
w3l−2 w3l−1 w3k−2 w3k−1

w3l−1 w3l w3k−1 w3k

)
= 2.

Finally we study the stratum of nongeneric fibers, that is, (a3, a4)= (0, 0). Here all fibers are smooth.
Also

F 2k+1
(a1,a2,0,0) = F 2k

(a1,a2,0,0) × C3

and since F 2k
(a1,a2,0,0) is elliptic, by the induction hypothesis we are done.

15. Product of exponentials and open questions

For a Stein space X , a complex Lie group G and its exponential map exp :g→G, we say that a holomorphic
map f : X → G is a product of k exponentials if there are holomorphic maps f1, . . . , fk : X → g such
that

f = exp( f1) · · · exp( fk).

It is easy to see that any map f which is a product of exponentials (for some sufficiently large k) is
null-homotopic. In the case where G is the special linear group SLn(C) the converse follows from
[Ivarsson and Kutzschebauch 2012] as explained in [Doubtsov and Kutzschebauch 2019]. In the same
way we prove:

Theorem 15.1. For a Stein space X there is a number N depending on the dimension of X such that any
null-homotopic holomorphic map f : X → Sp4(C) can be factorized as

f (x)= exp(G1(x)) · · · exp(G K (x)).

where Gi : X → sp4(C) are holomorphic maps.

Proof. By Theorem 3.1 we find K elementary symplectic matrices Ai (x) ∈ Sp4(O(X)), i = 1, 2, . . . K ,
such that

f (x)= A1(x) · · · AK (x).

Now remark that the logarithmic series

ln(Id + B)=

∑ 1
n

Bn

is finite for the nilpotent matrices Bi = Ai − Id. □

Open Problem 15.2. Determine the optimal number K in Theorem 15.1.
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Open Problem 15.3. Determine the optimal numbers of factors in Theorem 3.1.

The smooth fibers
F K
(a1,a2,a3,a4)

= (π4 ◦9K )
−1(a1, a2, a3, a4)

of the fibration projecting the product of K elementary symplectic matrices to its last row are smooth
affine algebraic varieties. They are new examples of Oka manifolds, since we prove as a by-product
of Proposition 3.6 that they are holomorphically flexible (for a definition see the work of Arzhantsev,
Flenner, Kaliman, Kutzschebauch and Zaidenberg [Arzhantsev et al. 2013]). Our proof does not give the
algebraic flexibility of them, even if our initial complete fields obtained in Section 8 are algebraic. The
problem is that their flows are not always algebraic (not all of them are locally nilpotent). Therefore the
pull-backs by their flows are merely holomorphic vector fields.

Open Problem 15.4. Which other (stronger) flexibility properties like algebraic flexibility, algebraic
(volume) density property, or (volume) density property do the fibers F K

(a1,a2,a3,a4)
admit?

For the definition of these flexibility properties we refer to the overview article [Kutzschebauch 2014].
Let us remark that the fibers of the fibration for five elementary factors in [Ivarsson and Kutzschebauch

2012] have been thoroughly studied in [Kaliman and Kutzschebauch 2011; 2016, Section 7]. They
were the starting point for the introduction of the class of generalized Gizatullin surfaces whose final
classification was achieved by Kaliman, Kutzschebauch and Leuenberger [Kaliman et al. 2020]. The
topology of these fibers for any number of elementary factors has been studied in [De Vito 2020], where
it was also proven that they admit the algebraic volume density property. Such studies are interesting
since the possible topological types of Oka manifolds or manifolds with the density property are not
understood at the moment.

Open Problem 15.5. Determine the homology groups of the fibers F K
(a1,a2,a3,a4)

.

And finally:

Open Problem 15.6. Prove Conjecture 3.11.
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