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PERTURBED INTERPOLATION FORMULAE AND APPLICATIONS

JOÃO P. G. RAMOS AND MATEUS SOUSA

We employ functional analysis techniques in order to deduce some versions of classical and recent
interpolation results in Fourier analysis with perturbed nodes. As an application of our techniques, we
obtain generalizations of Kadec’s 1

4 -theorem for interpolation formulae in the Paley–Wiener space both
in the real and complex cases, as well as versions of the recent interpolation result of Radchenko and
Viazovska (Publ. Math. Inst. Hautes Études Sci. 129 (2019), 51–81) and the result of Cohn, Kumar,
Miller, Radchenko and Viazovska (Ann. Math (2) 196:3 (2022), 983–1082) for Fourier interpolation with
derivatives in dimensions 8 and 24 with suitable perturbations of the interpolation nodes. We also provide
several applications of the main results and techniques, relating to recent contributions in interpolation
formulae and uniqueness sets for the Fourier transform.
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1. Introduction

A fundamental question in analysis is that of how to recover a function f from some subset { f (x)}x∈A of
its values, together with some information on its Fourier transform f̂ : R → C, which we define to be

f̂ (ξ)=

∫
R

f (x)e−2π i xξ dx . (1-1)

Perhaps the most classical result in that regard is the Shannon–Whittaker interpolation formula: if f̂ is
supported on an interval [−δ/2, δ/2], then

f (x)=

∞∑
k=−∞

f (k/δ) sinc(δx − k), (1-2)

where convergence holds both in L2(R) and uniformly in compact sets of C, where we let sinc(x) =

sin(πx)/(πx). A major recent breakthrough in regard to the problem of determining which conditions
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on the sets A, B ⊂ R imply that a function f ∈ S(R) is uniquely determined by its values at A and the
values of its Fourier transform at B was made in [Radchenko and Viazovska 2019], where the authors
proved that, if f : R → R is even and Schwartz, then

f (x)=

∞∑
k=0

f (
√

k)ak(x)+
∞∑

k=0

f̂ (
√

k)âk(x). (1-3)

Radchenko and Viazovska’s result and its techniques were somewhat inspired by Viazovska’s recent
solution [2017] to the sphere-packing problem in dimension 8, and her subsequent work with Cohn,
Kumar, Miller and Radchenko [Cohn et al. 2017] to solve the same problem in dimension 24. Indeed, the
proof of (1-3) uses such tools from the theory of modular forms heavily for constructing and bounding
the basis functions {an}n≥0.

Subsequent to the Radchenko–Viazovska result, other recent works have successfully used a similar
approach in order to tackle what are now known as Fourier interpolation and Fourier uniqueness problems.
Among those, we mention the following:

(1) Cohn and Gonçalves [2019] used a modular form construction in order to obtain that there are cj > 0,
j ∈ N, so that, for each f ∈ Srad(R

12) real,

f (0)−
∑
j≥1

cj f (
√

2 j)= − f̂ (0)+
∑
j≥1

cj f̂ (
√

2 j). (1-4)

Such a formula enables the authors to prove a sharp version of a root uncertainty principle first raised by
Bourgain, Clozel and Kahane [Bourgain et al. 2010] in dimension 12; see, e.g., [Gonçalves et al. 2017;
2021; 2023] for more information on this topic.

(2) On the other hand, Cohn, Kumar, Miller, Radchenko and Viazovska [Cohn et al. 2022] built upon the
basic ideas of [Radchenko and Viazovska 2019] to be able to prove universal optimality results about the
E8 and Leech lattices in dimensions 8 and 24, respectively. In order to do so, they prove interpolation
formulae in such dimensions that involve the values of f (

√
2n), f ′(

√
2n), f̂ (

√
2n), f̂ ′(

√
2n), where f

is a radial, Schwartz function, and n ≥ n0, with n0 = 1 if d = 8, and n0 = 2 in case d = 24.

(3) Talebizadeh Sardari [2021] studied the problem of constructing interpolation formulae involving the
values f (

√
r), f ′(

√
r), f̂ (

√
r), f̂ ′(

√
r), where f is a radial, Schwartz function, in R2, and r is any point

in the set {(4
3

)1/4
√

n2 + nm + m2 : n,m ∈ Z
}
,

which would correspond to a Fourier interpolation formula with derivatives over the hexagonal lattice.
Such a formula was conjecture not to exist in [Cohn et al. 2022, Conjecture 7.5], and indeed that is the
case: there are infinitely many linearly independent Schwartz functions that cannot be recovered by these
values. This is perhaps surprising, since the hexagonal lattice is conjectured to be universally optimal
in the language of [Cohn et al. 2022], which suggests this problem is not amenable to the exact same
techniques in that work in dimensions 8 and 24.

(4) Finally, more recently, other developments in the theory of interpolation formulae given values
on both Fourier and spatial sides have been made by Stoller [2021], who considered the problem of
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recovering any function in Rd from its restrictions and the restrictions of its Fourier transforms to spheres
of radii

√
n, where n > 0, is an integer, and for any d > 0. Moreover, we mention also the more recent

work of Bondarenko, Radchenko and Seip [Bondarenko et al. 2023], which generalizes Radchenko and
Viazovska’s construction of the interpolating functions to prove interpolation formulae for some classes
of functions f that take into account the values of f̂ at log n/(4π), and the values of f at a sequence(
ρ−

1
2

)
/ i , where ρ ranges over nontrivial zeros of some L-function with positive imaginary part.

One fundamental point to stress is that, in a suitable way, all the previously mentioned results relate some
sort of summation formula, the most basic instance of such being the classical Poisson summation formula∑

m∈Z

f (m)=

∑
n∈Z

f̂ (n),

which is obtained in [Radchenko and Viazovska 2019] as a particular case of (1-3) by setting x = 0, with
some modular form construction. In this direction, the formula (1-4) is also a manifestation of such a
principle that implies rigidity between certain values of f and other values of f̂ .

The aforementioned connection between summation formulae and modular forms is classical, with the
modularity of the Jacobi theta series θ being a primal example of how one relates to the other. On the
other hand, this connection may be deepened through the following argument: Suppose that a summation
formula of the kind ∑

a∈A

ca f (a)=

∑
a∈A

ca f̂ (a) (1-5)

holds for all f ∈ S(R) a radial function. This is seen to be equivalent, by a density argument (see, for
instance, [Radchenko and Viazovska 2019, Section 6]), to (1-5) holding for f (x)= ei zπ |x |

2
, where z ∈ C

is fixed so that Im(z) > 0. This, on the other hand, is equivalent to the function M(z) =
∑

a∈A eiπ z|a|
2

satisfying the modular relationship (−i z)−d/2 M(−1/z) = M(z) in the upper half-space. In particular,
if A ⊂

√
Z+, then M satisfies additionally some periodicity condition, and thus a search for M can be

further narrowed to a certain space of modular forms.
From a similar yet not identical point of view, however, the topics described above can also be inserted

into the framework of crystalline measures. Indeed, if we adopt the classical definition of a crystalline
measure to be a distribution with locally finite support, such that its Fourier transform possesses the
same support property, we will see that the Poisson summation formula implies, for instance, that the
measure δZ is not only a crystalline measure, but also self-dual, in the sense that δZ = δ̂Z holds in S ′(R).

Outside the scope of interpolation formulae per se, we mention the works [Lev and Olevskii 2013; 2015;
Meyer 2017], where the authors explore on a deeper lever structural questions on crystalline measures. In
particular, Meyer [2017] exhibits examples of crystalline measures with self-duality properties, and uses
modular forms to construct explicitly examples of nonzero self-dual crystalline measures µ supported on
{±

√
k + a : k ∈ Z+} for a ∈ {9, 24, 72}. We also mention [Kurasov and Sarnak 2020], where the authors,

as a by-product of investigations of the additive structure of the spectrum of metric graphs, prove that
there are exotic examples of positive crystalline measures other than generalized Dirac combs.

Our investigation in this paper focuses on both classical and modern results in the theory of such
interpolation formulae and crystalline measures. In generic terms, we are interested in determining when,
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given an interpolation formula such as (1-2) or (1-3), we can perturb it suitably. That is, given a sequence
of real numbers {εk}k∈Z, under which conditions can we recover f from the values

{( f (sn + εn), f̂ (ŝn + εn))}n∈Z, (1-6)

given that we can recover f from {( f (sn), f̂ (ŝn))}n∈Z?
In this manuscript, the main idea is to study such perturbations of interpolation formulae for band-

limited and Schwartz functions through functional analysis. Indeed, most of our considerations are based
on the idea that, whenever an operator T : B → B, where B is a Banach space, satisfies

∥T − I∥B→B < 1,

then T is, in fact, a bijection with continuous inverse T −1
: B → B. In fact, in all our considerations on

interpolation formulae below, some form of this principle will be employed, and other proofs and results
in the paper, such as Theorem 1.6, which gives new bounds related to the Radchenko–Viazovska formula,
arise naturally when trying to employ this principle in different contexts.

1A. Perturbations and interpolation formulae in the band-limited case. The question of when we are
able to recover the values of a function such that its Fourier transform is supported in

[
−

1
2 ,

1
2

]
from its

values at n + εn is well known, having been asked in [Paley and Wiener 1934], where the authors proved
that recovery — and also an associated interpolation formula — is possible as long as supn |εn| < π

−2.
Many results relate to the original problem of Paley and Wiener, but the most celebrated of them all is the
so-called Kadec- 1

4 theorem, which states that, as long as supn |εn|<
1
4 , one can recover any f ∈ L2(R)

which has Fourier support on
[
−

1
2 ,

1
2

]
from its values at n + εn , n ∈ Z; see [Kadec 1964] for the original

proof and [Avantaggiati et al. 2016] for a generalization.
Our first results provide one with a simpler proof of a particular range of Kadec’s result. We recall,

for that matter, that the Paley–Wiener space PWπ (R) is defined as the aforementioned space of all
square-integrable functions on the real line such that f̂ has support in the interval

[
−

1
2 ,

1
2

]
.

Theorem 1.1. Let {εk}k∈Z be a sequence of real numbers and assume L = supk |εk | < L0, where
L0 = 0.239 . . . is defined to be the smallest positive solution to the equation

sin(πL0)

πL0
=
π

3
L0 sinπL0

1 − L0
+ sin(πL0).

Then any function f ∈ PWπ is completely determined by its values { f (n + εn)}n∈Z, and there is
C = C(L) > 0 such that

1
C

∑
n∈Z

| f (n + εn)|
2
≤ ∥ f ∥

2
2 ≤ C

∑
n∈Z

| f (n + εn)|
2

for all f ∈ PWπ .
Moreover, there are functions gn ∈ PWπ (R) such that for every f ∈ PWπ , the following identity holds:

f (x)=

∑
n∈Z

f (n + εn)gn(x),

where the right-hand side converges absolutely in compact sets of C.
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The condition in Theorem 1.1 is satisfied for L < 0.239, which possesses only a 0.011 difference from
Kadec’s result. The main difference, however, is that while Kadec’s proof relies on a clever expansion of
the underlying functions in a different orthonormal basis, we make a less direct use of orthogonality in
our considerations.

We also remark that, in the proof of Theorem 1.1, one can use complex numbers for perturbations.
The difference is that we have to take into account the sine of complex numbers, and the resulting bound
would be L < 0.2125 instead of L < 0.239. This only falls very mildly short of the results in [Avantaggiati
et al. 2016, Theorem 3], where L < 0.218 is achieved in the complex setting, and our methods of proof
are relatively simpler in comparison to those of that work, where the authors must enter the realm of
Lamb–Oseen functions and constants.

As another application of the idea of inverting an operator, we present a couple of results related to
Vaaler’s interpolation formula. J. Vaaler [1985] proved, as means to study extremal problems in Fourier
analysis, the following counterpart to the Shannon–Whittaker interpolation formula: Let f ∈ L2(R), and
suppose that f̂ is supported on [−1, 1]. Then

f (x)=
sin2(πx)
π2

∑
k∈Z

{
f (k)

(x − k)2
+

f ′(k)
x − k

}
. (1-7)

This can be seen as a natural tradeoff: (1-2) demands that we have information at 1
2 Z in order to recover

the functions f as stated above. On the other hand, Vaaler’s result only demands information at Z, but
one must pay the price of replacing the rest of the information by values of the derivative at Z.

The first result concerning (1-7) is a direct deduction of its validity from the Shannon–Whittaker
formula (1-2). We state it in the following form.

Theorem 1.2 [Vaaler 1985]. Fix a sequence {ak}k∈Z ∈ ℓ2(Z). Consider the function f ∈ PWπ given by

f (x)=

∑
n∈Z

an sinc(x − n)

for each x ∈ R. Then the interpolation formula

f (x)=
4 sin2(π

2 x
)

π2

∑
k∈Z

{
a2k

(x − 2k)2
+

b2k

x − 2k

}
(1-8)

holds, where the right-hand side converges uniformly on compact sets, and we let

bk =

∑
j ̸=k

aj

k − j
(−1)k− j .

It is a consequence of (1-8) that f ′(2k) = b2k in Theorem 1.2 above. Moreover, we note that one
readily obtains Vaaler’s formula from (1-8) above: indeed, in order to obtain (1-7) for a square-integrable
function g ∈ L2(R) with supp(ĝ) ⊂ [−1, 1], consider f (x) = g

( 1
2 x

)
. It follows that f satisfies the

hypotheses of Theorem 1.2, and substituting back allows one to conclude (1-7) from (1-8).
A main difference between our proof of Theorem 1.2 and the original proof in [Vaaler 1985] is the

absence of any significant use of the Fourier transform. Differently, however, from the de Branges spaces
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approach in [Gonçalves 2017], we do not delve deeply into any theory of function spaces, but rather we
make use of classical operators in ℓ2(Z) such as discrete Hilbert transforms and its properties. We believe
our approach might lead to derivations of other interesting interpolation formulae.

Our final contribution in the realm of interpolation formulae for band-limited function is a generalized
version of Vaaler’s formula (1-7) with perturbed nodes. We mention that, to the best of our knowledge,
this result in its present form is new, as Vaaler’s ideas are rigid to specific properties of integers and
Fourier transforms of special functions such as sinc(x)2.

Theorem 1.3. Let {εk}k∈Z be a sequence of real numbers and consider L = supk |εk |. Suppose that
L < 0.111. Then any function f ∈ PW2π is completely determined by its values { f (n + εn)}n∈Z and those
of its derivative { f ′(n + εn)}n∈Z, and there is C = C(L) > 0 such that

1
C

∑
n∈Z

(| f (n + εn)|
2
+ | f ′(n + εn)|

2)≤ ∥ f ∥
2
2 ≤ C

∑
n∈Z

|(| f (n + εn)|
2
+ | f ′(n + εn)|

2) (1-9)

for all f ∈ PW2π .
Moreover, there are functions gn, hn ∈ PW2π so that, for all f ∈ PW2π , we have

f (x)=

∑
n∈Z

{ f (n + εn)gn(x)+ f ′(n + εn)hn(x)},

where convergence holds absolutely.

This result and its method of proof resemble the ideas from Theorem 1.1 and its proof, with an increase
in technical difficulties, such as considering higher-order analogues of the perturbed discrete Hilbert
transforms we use for the proof of Theorem 1.1. We note also that some further technical changes, together
with [Littmann 2006], allow one to extend the perturbation results for arbitrarily many derivatives; see
Theorem 6.1 for a discussion on that.

We point the reader, for instance, to the remark following Corollary 2 in [Gonçalves 2017] together with
[Lyubarskii and Seip 2002; Ortega-Cerdà and Seip 2002] for related discussion on sampling sequences
with derivatives for PWπ ; see also [Gonçalves and Littmann 2018] for discussions involving higher-order
derivatives.

1B. Perturbations of symmetric interpolation formulae. Moving on from band-limited functions to
Schwartz functions instead, we notice that the Radchenko–Viazovska result (1-3), although being a major
breakthrough, is rigid in its statement: the interpolating functions are carefully tailored to interpolate at
the {

√
n}n≥0 nodes. The same sort of phenomenon happens to the result of [Cohn et al. 2022], as the

construction takes into account a specific property of {
√

2n}n≥n0 in dimensions 8 and 24.
A natural and yet unexplored question is that of determining whether formula (1-3) is rigid for its

interpolation nodes or not. In other words, a natural question concerns conditions when we can replace
a single interpolation node

√
k by a suitable perturbation of it, say

√
k + εk , where εk ∈ (−1, 1). To the

best of our knowledge, even this simple case remained open prior to this manuscript.
Such a question inspired the following result. Perhaps surprisingly, the idea of inverting an operator T

when it is reasonably close to the identity still works in this context. The next result may thus be regarded



PERTURBED INTERPOLATION FORMULAE AND APPLICATIONS 2333

as the main result and novelty of this paper, establishing criteria when we are allowed, not only to perturb
one node in the interpolation formula, but all of them simultaneously.

Theorem 1.4. There is δ > 0 so that, for each sequence of real numbers {εk}k≥0 such that εk ∈
(
−

1
2 ,

1
2

)
,

ε0 = 0, supk≥0 |εk |(1 + k)5/4 log3(1 + k) < δ, there are sequences of functions {θj } j≥0, {ηj } j≥0, with

|θj (x)| + |ηj (x)| + |θ̂j (x)| + |η̂j (x)| ≲ (1 + j)O(1)(1 + |x |)−10

and

f (x)=

∑
j≥0

(
f (

√
j + εj )θj (x)+ f̂ (

√
j + εj )ηj (x)

)
for all f ∈ Seven(R) real-valued functions.

In other words, we can perturb each interpolation node from
√

k to ∼
√

k + k−5/4 and still obtain a
valid interpolation formula converging for all Schwartz functions. In fact, one does not strictly need that
f ∈ S(R), but only that f, f̂ decay at least as fast as (1 + |x |)−M for some sufficiently large M ≫ 1.

Theorem 1.4 is related to [Cohn and Triantafillou 2021, §6]. Indeed, in that paper, they construct
summation formulae of the form

∞∑
n=0

an f (
√

n)=

(
2

√
N

)d/2 ∞∑
n=0

bn f̂ (2
√

n/N ),

where N is a suitable positive integer, where they aim to make the coefficients {an}n≥0, {bn}n≥0 non-
negative, in order to obtain better estimates for the linear programming bounds for the sphere-packing
problem. In §7 in [Cohn and Triantafillou 2021], the authors mention that a “modular” method as carried
out by them cannot achieve perturbed nodes in such an interpolation formula, which would be desirable
for numerical purposes.

Theorem 1.4, on the one hand, does prove that we can make this rigid property somewhat looser
when it comes to the Radchenko–Viazovska interpolation formula, but on the other hand, positivity of
coefficients can by no means be guaranteed in our present case. It would be, however, interesting if one
could explore further the connections between our methods and those in [Cohn and Triantafillou 2021] to
obtain better bounds, but we have not pursued such a path in this work.

As an immediate corollary of Theorem 1.4, we obtain the following:

Corollary 1.5. Let {εj } j≥0 satisfy the hypotheses of Theorem 1.4. Define a continuous family of measures

µx =
δx + δ−x

2
−

∑
j≥0

θj (x)
2

δ
±
√

j+εj
.

Then these measures possess Fourier transforms given by

µ̂x =

∑
j≥0

ηj (x)
2

δ
±
√

j+εj
.

In particular, these measures are nontrivial examples of crystalline measures supported on both space
and frequency on any set of the form {±x} ∪ {±

√
k + εk : |εk | ≪ log−3 (1 + k) · (1 + k)−5/4

}.
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This result, in particular, aligns well with the recent examples from [Bondarenko et al. 2023; Kurasov
and Sarnak 2020], which indicate that crystalline measures are, if not impossible, very hard to classify.
Its proof follows from the fact that µx is even and real-valued, so that its distributional Fourier transform
will also be an even and real-valued distribution. Therefore, it suffices to test against even, real-valued
functions f , and thus Theorem 1.4 gives us the asserted equality.

In order to prove Theorem 1.4, we need to find a suitable space to use the idea of inverting operators
close to the identity. It turns out that, in analogy to Sobolev spaces, the weighted spaces ℓ2

s (N) of
sequences square summable against ns are natural candidates to work with, as they are well-suited to
accommodate the sequence

{( f (
√

k + εk), f̂ (
√

k + εk))}k≥0

whenever f, f̂ decay sufficiently fast. In order to prove some perturbation result — that is, a weaker
version of Theorem 1.4 — using the spaces ℓ2

s (N) together with the polynomial growth bounds on {an}n≥0

from (1-3) is already enough.
On the other hand, the fact that we may push the perturbations up until the k−5/4 threshold needs a

suitable refinement to [Radchenko and Viazovska 2019] or even to the bound of [Bondarenko et al. 2023].
The next result, thus, represents an improvement over those in [Bondarenko et al. 2023; Radchenko and
Viazovska 2019], as besides obtaining uniform bounds, we are able to introduce exponential decay factors
to the interpolating functions.

Theorem 1.6. Let b±
n = an ± ân , where {an}n≥0 are the basis functions in (1-3). Then there is an absolute

constant c > 0 such that

|b±

n (x)| ≲ n1/4 log3(1 + n)e−c|x |/
√

n,

|(b±

n )
′(x)| ≲ n3/4 log3(1 + n)e−c|x |/

√
n

for all positive integers n ∈ N.

The proof of such a result employs a mixture of the main ideas for the uniform bounds in [Radchenko
and Viazovska 2019; Bondarenko et al. 2023], with the addition of an explicit computation of the best
uniform constant bounding |x |

k
|b±

n (x)+ (b
±
n )

′(x)| in terms of k and n. In order to obtain such a constant,
we employ ideas from characterizations of Gelfand–Shilov spaces, as in [Chung et al. 1996].

We remark that, with a modification of the growth lemma for Fourier coefficients of 2-periodic functions,
we are able to obtain a slight improvement over the growth stated in Theorem 1.6. As, however, this
modification does not yield any improvement on the perturbation range stated in Theorem 1.4, we postpone
a more detailed discussion about it to Corollary 4.6 below.

1C. Applications. As a by-product of our method of proof for Theorem 1.4, we are able to deduce some
interesting consequences in regard to some other interpolation formulae and uniqueness results.

Indeed, it is a not-so-difficult task to adapt the ideas employed before to the contexts of interpolation
formulae for odd functions. As remarked by Radchenko and Viazovska, the following interpolation
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formula is available whenever f : R → R is odd and belongs to the Schwartz class:

f (x)= d+

0 (x)
f ′(0)+ i f̂ ′(0)

2
+

∑
n≥1

(
cn(x)

f (
√

n)
√

n
− ĉn(x)

f̂ (
√

n)
√

n

)
,

where the interpolating sequence {ci }i≥0 possesses analogous properties to those of {ai }i≥0, and the
function

d+

0 (x)=
sin(πx2)

sinh(πx)

is odd and real and so it vanishes together with its Fourier transform at ±
√

n, n ≥ 0.
With our techniques, we are able to prove an analogous result to Theorems 1.6 and 1.4 for the odd

interpolation formula. Also, with our techniques, we are able to prove a version of Cohn–Kumar–Miller–
Radchenko–Viazovska interpolation results with derivatives in dimensions 8 and 24 with perturbed nodes
in a suitable range, as polynomial growth bounds for such interpolating functions are available in [Cohn
et al. 2022]; see Theorems 5.11 and 5.13 for more details.

Another interesting application of our techniques delves a little deeper into functional analysis tech-
niques. Indeed, in order to prove that the operator that takes the set of values { f (

√
k)}k≥0, { f̂ (

√
k)}k≥0

to the sequences
{ f (

√
k + εk)}k≥0, { f̂ (

√
k + εk)}k≥0

is bounded and close to the identity on a suitable ℓ2
s (N)× ℓ2

s (N) space, we explore two main options,
which are Schur’s test and the Hilbert–Schmidt test. Although there is no direct relation between them,
Schur’s test seems to hold, in generic terms, for more operators than the Hilbert–Schmidt test, and for that
reason we employ the former in our proof of Theorem 1.4. On the other hand, the Hilbert–Schmidt test
has the advantage that, whenever an operator is bounded in the Hilbert–Schmidt norm, it is automatically
a compact operator. This allows us to use many more tools derived from the theory of Fredholm operators,
and, in particular, deduce a sort of interpolation/uniqueness result in the case ε0 ̸= 0, which is excluded
by Theorem 1.4 above; see Theorem 5.3 below for such an application.

The final interesting application of Theorem 1.4 and its techniques the we present is to the problem of
Fourier uniqueness for powers of integers. In [Ramos and Sousa 2022], we have proven a preliminary
result on conditions on (α, β), 0< α, β, α+β < 1, so that the only f ∈ S(R) such that

f (±nα)= f̂ (±nβ)= 0

is f ≡ 0. In particular, we prove that, if α = β, then we can take α < 1 −

√
2

2 .
By an approximation argument, a careful analysis involving Laplace transforms and the perturbation

techniques and results above, we are able to reprove such a result for α = β in the α < 2
9 range in the

case f is real and even by a completely different method than that in [Ramos and Sousa 2022]. Although
the current method does not yield any improvement over [Ramos and Sousa 2022, Theorem 1], we obtain
additionally some strong annihilation properties of such pairs, in the form of Corollary 5.10, which are
novel in that context.

Still on the subject of annihilation, we obtain two other interesting results.
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Theorem 1.7. For each s > 1 sufficiently large, there are γ > s and ω > 0 such that both inequalities(∑
n≥0

(1 + n)s[| f (
√

n)|2 + | f̂ (
√

n)|2]
)1/2

≲ ∥ f ∥L2((1+|x |)γ ) + ∥ f̂ ∥L2((1+|x |)γ ), (1-10)

∥ f ∥L2((1+|x |)s) + ∥ f̂ ∥L2((1+|x |)s) ≲

(∑
n≥0

(1 + n)ω[| f (
√

n)|2 + | f̂ (
√

n)|2]
)1/2

(1-11)

hold for each f ∈ Seven(R) real.

Corollary 1.8. Let {εi }i∈N satisfy the hypotheses of Theorem 1.4. Then for s ≫ 1 sufficiently large, both
inequalities(∑

n≥0

(1+n)s[| f (
√

n+εn)|
2
+| f̂ (

√
n+εn)|

2
]

)1/2

≲ ∥ f ∥L2((1+|x |)γ )+∥ f̂ ∥L2((1+|x |)γ ),

∥ f ∥L2((1+|x |)s)+∥ f̂ ∥L2((1+|x |)s)≲

(∑
n≥0

(1+n)ω[| f (
√

n+εn)|
2
+| f̂ (

√
n+εn)|

2
]

)1/2

hold for each f ∈ Seven(R) real, where ω, γ are as in Theorem 1.7.

We refer the reader to discussion in Section 5C for more precise definitions about annihilating pairs
We should remark that it has been recently communicated to us by Kulikov, Nazarov and Sodin (personal

communication) that they have been able to significantly strengthen the results in [Ramos and Sousa 2022].
As a particular application of their results, they are able to obtain the whole range α+β < 1, conjectured
in [loc. cit.]. In fact, they can say quite a bit more even in the “critical” case α+β = 1, constructing also
suitable counterexamples to these uniqueness questions. It has also been communicated to us that they have
obtained strong annihilating properties in such a range as well. In spite of that, we have decided to maintain
this application of our work, as it contains interesting ideas that could be applied to other uniqueness
problems of similar flavor. In particular, Theorem 1.7 and Corollary 1.8 are a novelty of this present
work, and seem not to be included as a consequence of the results from Kulikov, Nazarov and Sodin.

1D. Organization. We comment briefly on the overall display of our results throughout the text. In
Section 2 below, we discuss generalities on background results needed for the proofs of the main theorems,
going over results in the theory of band-limited functions, modular forms and functional analysis. Next,
in Section 3, we prove, in this order, Theorems 1.1, 1.2 and 1.3 about band-limited perturbed interpolation
formulae. We then prove, in Section 4, Theorem 1.4, by first discussing the proof of Theorem 1.6 in
Section 4A. We then discuss the applications of our main results and techniques in Section 5, and finish
the manuscript with Section 6, talking about some possible refinements and open problems that arise
from our discussion throughout the paper.

2. Preliminaries

2A. Band-limited functions. We start by recalling some basic facts about band-limited functions. Given a
function f ∈ L2(R), we say that it is band-limited if its Fourier transform satisfies that supp( f̂ )⊂[−M,M]

for some M > 0. In this case, we say that f is band-limited to [−M,M].
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It is a classical result due to Paley and Wiener that a function f ∈ L2(R) is band-limited to [−σ, σ ] if
and only if it is the restriction of an entire function F : C → C to the real axis, and the function F is of
exponential type 2πσ , i.e., for each ε > 0, there is Cε such that

|F(z)| ≤ Cεe(2πσ+ε)|z|

for all z ∈ C. From now on we will abuse notation and let F = f whenever there is no danger of confusion,
and we may also write f ∈ PW2πσ (Paley–Wiener space) to denote the space of functions with such
properties.

Besides this fact, we will make use of some interpolation formulae for those functions. Namely:

(1) Shannon–Whittaker interpolation formula. For each f ∈ L2(R) band-limited to
[
−

1
2 ,

1
2

]
, the following

formula holds:

f (x)=

∑
n∈Z

f (n) sinc(x − n),

where sinc(x)= sin(πx)/(πx) and the sum above converges both in L2(R) and uniformly on compact
sets of C.

(2) Vaaler interpolation formula. For each f ∈ L2(R) band-limited to [−1, 1], the following formula
holds:

f (x)=

(
sinπx
π

)2 ∑
n∈Z

[
f (n)

(x − n)2
+

f ′(n)
x − n

]
,

where the right-hand side converges both in L2(R) and uniformly on compact sets of C.

For more details on these classical results, see, for instance, [Vaaler 1985; Littmann 2006; Paley and
Wiener 1934; Shannon 1949; Whittaker 1915].

2B. Modular forms. In order to prove the improved estimates on the interpolation basis for the Radchenko–
Viazovska interpolation result, we will need to make careful computations involving certain modular
forms defining the interpolating functions. For that purpose, we gather some of the facts we will need in
this subsection. For more information on the functions λ, J and the automorphy factors we just defined,
we refer the reader to [Chandrasekharan 1985; Radchenko and Viazovska 2019, Section 2; Berndt and
Knopp 2008; Zagier 2008].

We denote by H = {z ∈ C : Im(z) > 0} the upper half-plane in C. The special feature of this space is
that the group SL2(R) of matrices with real coefficients and determinant 1 acts naturally on it through
Möbius transformations:

γ =

(
a b
c d

)
∈ SL2(R), z ∈ H =⇒ γ z =

az + b
cz + d

∈ H.

Indeed, it suffices to look at the action of the quotient PSL2(Z)= SL2(Z)/{±I }, since clearly the action
by both matrices γ and −γ induces the same Möbius transformation. Some elements of this group will
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be of special interest to us. Namely, we let

I =

(
1 0
0 1

)
, T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
.

This already allows us to define the most valuable subgroup of SL2(Z) for us: the group 0θ is defined
then as the subgroup of SL2(Z) generated by S and T 2. This group has 1 and ∞ as cusps, and its standard
fundamental domain is given by

D = {z ∈ H : |z|> 1,Re(z) ∈ (−1, 1)}.

With these at hand, we define modular forms for 0θ . For that purpose, we will use the following notation
for the Jacobi theta series:

ϑ(z, τ )=

∑
n∈Z

exp(π in2τ + 2π inz).

We are interested in some of its Nullwerte, the so-called Jacobi theta series. These are defined in H by

22(τ )= exp
(
π
4 iτ

)
ϑ

( 1
2τ, τ

)
,

23(τ )= ϑ(0, τ )(=: θ(τ )),

24(τ )= ϑ
( 1

2 , τ
)
.

These functions satisfy the identity 24
3 =24

2 +24
4. Moreover, under the action of the elements S and T

of SL2(Z), they transform as

(−i z)−1/222(−1/z)=24(z), 22(z + 1)= exp
(
π
4 i

)
22(z),

(−i z)−1/223(−1/z)=23(z), 23(z + 1)=24(z),

(−i z)−1/224(−1/z)=22(z), 24(z + 1)=23(z).

(2-1)

These functions allow us to construct the classical lambda modular invariant given by

λ(z)=
22(z)4

23(z)4
.

Using q := q(z)= eπ i z, the lambda invariant can be alternatively rewritten as

λ(z)= 16q ×

∞∏
k=1

(
1 + q2k

1 + q2k−1

)8

= 16q − 128q2
+ 704q3

+ · · · . (2-2)

The function λ is also invariant under the action of elements of the subgroup 0(2)⊂ SL2(Z) of all matrices(a
c

b
d

)
so that a ≡ b ≡ 1 mod 2, c ≡ d ≡ 0 mod 2, and λ(z) never assumes the values 0 or 1 for z ∈ H.

Besides this invariance, (2-1) gives us immediately that

λ(z + 1)=
λ(z)

λ(z)− 1
, λ

(
−

1
z

)
= 1 − λ(z). (2-3)

We then define the following modular function for 0θ (which is a Hauptmodul for 0θ )

J (z)=
1
16λ(z)(1 − λ(z)).
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From (2-3), we obtain immediately that J is invariant under the action of elements of 0θ ; i.e.,

J (z + 2)= J (z), J
(
−

1
z

)
= J (z).

Other properties of the functions λ and J that we may eventually need will be proved throughout the text.
Finally, we mention that, for the proof in Section 4, we will need to use the so-called θ-automorphy

factor defined, for z ∈ H and γ ∈ 0θ , as

jθ (z, γ )=
θ(z)
θ(γ z)

.

We can then define a slash operator of weight k/2 to be

( f |k/2γ )(z)= jθ (z, γ )k f
(

az + b
cz + d

)
,

where γ =
(a

c
c
d

)
. These slash operators induce other sign slash operators given by

( f |
ε
k/2γ )= χε(γ )( f |k/2γ ),

where we let χε be the homomorphism of 0θ so that χε(S)= ε, χε(T 2)= 1.

2C. Functional analysis. We also recall some classical facts in functional analysis that will be useful
throughout our proof.

As our main goal and strategy throughout this manuscript is to prove that a small perturbation of
the identity is invertible, we must find ways to prove that the operators arising in our computations are
bounded. To this end, we use two major criteria to prove boundedness — and therefore to prove smallness
of the bounding constant. These are:

(1) Hilbert–Schmidt test [Brezis 2011, Chapter 6]. Let H be a (real or complex) Hilbert space, and let
there be given a linear operator T : H → H. If T satisfies additionally that∑

i, j

|⟨T ej , ei ⟩|
2 <+∞

for some orthonormal basis {ei }i∈Z of H, then the operator T is bounded. Moreover,

∥T ∥
2
H→H ≤

∑
i, j

|⟨T ej , ei ⟩|
2
=: ∥T ∥

2
H S.

(2) Schur test [Hedenmalm et al. 2000, Theorem 1.8]. Let (ai j )i, j≥0 denote a (possibly infinite) matrix of
complex numbers. Suppose that there are two sequences {vi }i≥0 and {wi }i≥0 of positive real numbers so
that ∑

i≥0

|ai j |wi ≤ λvj ,
∑
j≥0

|ai j |vj ≤ µqi

for some positive constants µ, λ> 0. Then the operator T : ℓ2(N)→ ℓ2(N) given by ai j =⟨T ei , ej ⟩ (where
{ei }i≥0 denotes the standard orthonormal basis of ℓ2(N)) extends to a bounded linear operator. Moreover,

∥T ∥ℓ2→ℓ2 ≤
√
µλ.
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Both tests will play a major role in the deduction of the validity of perturbed interpolation versions
of the Radchenko–Viazovska result. The main difference is that, while Schur’s test generally gives one
boundedness for more operators, the Hilbert–Schmidt test imposes stronger conditions on the operator. In
fact, let us denote by T ∈HS(H) the space of operators such that ∥T ∥H S <+∞. A classical consequence
of this fact is that T is compact. This compactness will be used when proving that a suitable version of our
interpolation results holds for small perturbations of the origin. See, for instance, [Brezis 2011, Chapter 6]

2D. Notation. We will use Vinogradov’s modified notation throughout the text; that is, we write A ≲ B
in the case there is an absolute constant C > 0 so that A ≤ C · B. If the constant C depends on some set
of parameters λ, we shall write A ≲λ B.

On the other hand, we shall also use the big-O notation f =O(g) if there is an absolute constant C such
that | f | ≤ C · g, although the usage of this will be restricted mostly to sequences. We may occasionally
use as well the standard Vinogradov notation a ≪ b to denote that there is a (relatively) large constant
C > 1 such that a ≤ C · b.

We shall also denote the spaces of sequences of complex numbers decaying polynomially by

ℓ2
s (Z+)=

{
(an)n ∈ ℓ2(Z+) : |a0|

2
+

∑
n∈N

|an|
2n2s <+∞

}
,

ℓ2
s (N)=

{
{an}n∈N :

∑
n∈N

|an|
2n2s <+∞

}
,

(2-4)

where N = {1, 2, . . . } denotes the set of natural numbers and Z+ denotes the nonnegative integers. We
remind the reader that we always normalize the Fourier transform as in (1-1), i.e,

f̂ (ξ)= F f (ξ)=

∫
Rn

f (x) e−2π i x ·ξ dx .

3. Perturbed interpolation formulae for band-limited functions

3A. Perturbed forms of the Shannon–Whittaker formula and Kadec’s result. Fix a sequence ε={εk}k∈Z

of real numbers such that supk |εk | < 1. We wish to obtain a criterion based solely on the value of
L = supn |εn| such that the sequence {n + εn}n∈Z is completely interpolating in PWπ , i.e, for every
sequence a = {an} ∈ ℓ2(Z) there is a unique f ∈ L2(R) of exponential type τ( f )≤ π that satisfies

f (n + εn)= an.

Our goal here is to obtain a simple proof of such a criterion going through new and simple ideas. We will
fall short of the 1

4 proven by Kadec by approximately 0.11, but it illustrates the power of our perturbation
scheme and does not go through the theory of exponential bases.

In this particular case, we need to invert in ℓ2(Z) the operator given by

Aε(a)(n)=

∑
k∈Z

ak sinc(n + εn − k),

where
sinc(x)=

sinπ(x)
πx

.
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The fact Aε is invertible will follow from proving that it is a close perturbation of the identity whenever L
is sufficiently small.

3A1. Auxiliary perturbations of the Hilbert transforms. Given a sequence a = {ak}k∈Z, we define the
following operators, which are akin to the discrete Hilbert transform:

Hε(a)(n)=

∑
k ̸=n

(−1)n−kak

n + εn − k
, H0(a)(n)=

∑
k ̸=n

(−1)n−kak

n − k
.

We start by comparing these two objects:

H0(a)(n)−Hε(a)(n)=

∑
k ̸=n

(−1)n−kak

(
1

n − k
−

1
n + εn − k

)

= εn

∑
k ̸=n

(−1)n−kak
1

(n − k)(n + εn − k)
.

This identity then gives us

|H0(a)(n)−Hε(a)(n)| ≤ |εn|
∑
k ̸=n

|ak |
1

|n − k|2

|n − k|

|n + εn − k|

≤
|εn|

1 − |εn|

∑
k ̸=n

|ak |
1

|n − k|2
.

This means that, in norm, one can compare these two operators. Indeed, it is a classical result that the
operator norm of H0 is π , and by Plancherel the operator norm of the transformation

S(a)=

∑
k ̸=n

ak
1

|n − k|2

is π2/3. This in turn implies

∥Hε∥ ≤ π +
π2

3
supn |εn|

1 − supn |εn|
. (3-1)

3A2. Norm estimates of the perturbation. It is worth noticing the estimate (3-1) is very crude, as it is
meant to depend only on L = supn |εn|. For instance, if {εn}n∈Z is a constant sequence, then the norm
∥Hε∥ is equal to π . We also note that the fact that we obtain invertibility by means of perturbations of
small norm of an invertible operator does not take into account other factors, such as cancellation.

In order to apply our perturbation scheme to the operator Aε, we need to bound the following family
of operators:

Pε(a)(n)=

∑
k∈Z

ak(sinc(n + εn − k)− δn,k).

We may rewrite them as

Pε(a)(n)=(sinc(εn)− 1)an +

∑
k ̸=n

ak(sinc(n + εn − k))

=(sinc(εn)− 1)an +

∑
k ̸=n

ak
(−1)n−k sinπεn

π(n + εn − k)
.
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This implies, on the other hand,

Pε(a)(n)= (sinc(εn)− 1)an +

(
sinπεn

π

)
Hε(a)(n),

which in turn implies that

∥Pε∥ ≤ sup
n

| sinc(εn)− 1| + sup
n

∣∣∣∣sinπεn

π

∣∣∣∣∥Hε∥

≤ sup
n

| sinc(εn)− 1| + sup
n

| sinπεn| +
π

3
supn | sinπεn| supn |εn|

1 − supn |εn|
.

Since Aε = Pε + Id, whenever

1 − sinc(L)+ | sinπL| +
π

3
L sinπL

1 − L
< 1,

we will have that Aε is invertible. In particular, a routine numerical evaluation implies that L < 0.239
satisfies the inequality above. Let then A−1

ε : ℓ2(Z)→ ℓ2(Z) be the inverse of Aε, which is continuous by
the considerations above. We know, by the Shannon–Whittaker interpolation formula (1-2) that Aε takes
{ f (k)}k∈Z, for f ∈ PWπ , to { f (k + εk)}k∈Z. This is enough to prove the assertion about recovery, and as
such implies that ∑

n∈Z

| f (n + εn)|
2

is an equivalent norm to the usual L2-norm on PWπ , by [Young 1980, Theorem 1.13].
Moreover, by writing

A−1
ε (b)(k)=

∑
n∈Z

bn · ρk,n,

we have immediately ∑
n∈Z

f (n + εn)ρk,n = f (k), (3-2)

and supn
(∑

k∈Z |ρk,n|
2
)
≲ 1. If (A−1

ε )
∗
: ℓ2(Z)→ ℓ2(Z) denotes the adjoint of the inverse of Aε, then we

see that for any compact set K ⊂ C there is a constant C = CK such that

∥(A−1
ε )

∗(sincz(k))∥ℓ2(Z) ≤ ∥A−1
ε ∥ℓ2→ℓ2∥(sincz(k))∥ℓ2(Z)

≤ C∥A−1
ε ∥ℓ2→ℓ2,

and C does not depend on z ∈ K and we let sincx(k) := sinc(x − k). Therefore, by letting gn(z) =∑
k∈Z ρk,n sinc(z − k), we have

sup
z∈R

(∑
n∈Z

|gn(z)|2
)1/2

≲ 1,

and thus, by the previous considerations, the sum
∑

n∈Z f (n + εn)gn(z) converges absolutely by Cauchy–
Schwarz. As ⟨(A−1

ε )
∗(sincz(k)), f (n +εn)⟩ = ⟨sincz(k), A−1

ε ( f (n +εn))⟩ = f (z) by Shannon–Whittaker,
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this implies
f (z)=

∑
n∈Z

f (n + εn)gn(x),

where the convergence happens uniformly in compact sets, as desired.
This finishes the proof of Theorem 1.1.

3B. From Shannon to Vaaler: the proof of Theorem 1.2. We now concentrate on proving that the usual
Shannon–Whittaker interpolation formula implies Vaaler’s celebrated interpolation result [1985] with
derivatives.

Indeed, as proving that the interpolation formula of Theorem 1.2 converges uniformly on compact sets
of C is a routine computation, given that {ak}k∈Z, {bk}k∈Z ∈ ℓ2(Z), we shall omit this part and focus on
proving that the asserted equality holds.

Given a sequence a = {ak}k∈Z, we define the operators

H(a)(k)=
1
π

∑
0̸= j∈Z

ak− j

j
=

1
π

∑
k ̸= j∈Z

aj

k − j
,

H1(a)(k)=
1
π

∑
j∈Z

ak− j

j +
1
2

=
1
π

∑
j∈Z

aj

k − j +
1
2

.

It is known that both H and H1 are bounded operators in ℓ2(Z), with H1 being also unitary with H2 its
inverse being given by

H2(a)(k)= −
1
π

∑
j∈Z

aj−k

j −
1
2

=
1
π

∑
j∈Z

aj

j − k +
1
2

.

Given a function f ∈ PWπ , as a consequence of the Shannon–Whittaker interpolation formula we
obtain, for every k ∈ Z, that

f ′(k)=

∑
j ̸=k

f ( j)
k − j

(−1)k− j .

We consider three sequences

a(k)= f (2k − 1), b(k)= f (2k), c(k)= f ′(2k).
We have, thus,

c(k)= f ′(2k)=

∑
j ̸=2k

f ( j)
2k − j

(−1)2k− j
=

1
2

∑
j ̸=k

f (2 j)
k − j

−
1
2

∑
j∈Z

f (2 j − 1)

k − j +
1
2

=
1
2

∑
j ̸=k

b( j)
k − j

−
1
2

∑
j∈Z

a( j)

k − j +
1
2

=
π

2
H(b)(k)− π

2
H1(a)(k).

This means that, for every k ∈ Z,

H1(a)(k)= H(b)(k)− 2
π

c(k).

Since H2 is the inverse of H1, this can be rewritten as

a(k)= (H2 ◦H)(b)(k)− 2
π
H2(c)(k).
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We know, by the Shannon–Whittaker interpolation formula, that

f (x)=

∑
k∈Z

f (k)
sinπ(x − k)
π(x − k)

.

This implies, on the other hand,

f (x)=

∑
k∈Z

f (2k)
sinπ(x − 2k)
π(x − 2k)

+

∑
k∈Z

[
(H2 ◦H)(b)(k)− 2

π
H2(c)(k)

]sinπ(x − 2k + 1)
π(x − 2k + 1)

=

∑
k∈Z

b(k)
sinπx

π(x − 2k)
+

∑
k∈Z

(H2 ◦H)(b)(k)
sinπ(x − 2k + 1)
π(x − 2k + 1)

−
2
π

∑
k∈Z

H2(c)(k)
sinπ(x − 2k + 1)
π(x − 2k + 1)

= A(x)+ B(x)+ C(x).

We shall investigate each term A, B and C thoroughly in order to obtain our final result.

3B1. Determining C. By considering the family of functions h j ∈ PWπ — which satisfy the important
property h j (k)= 0 if k ∈ 2Z — given by

h j (z)=
sin2(π

2 z
)

π2(z − 2 j)
,

we obtain

C(x)= −2
∑
k∈Z

∑
j∈Z

f ′(2 j)

π2
(

j − k +
1
2

) sinπ(x − 2k + 1)
π(x − 2k + 1)

= 4
∑
j∈Z

f ′(2 j)
∑
k∈Z

1
π2((2k − 1)− 2 j)

sinπ(x − (2k − 1))
π(x − (2k − 1))

= 4
∑
j∈Z

f ′(2 j)
∑
k∈Z

h j (2k − 1)
sinπ(x − (2k − 1))
π(x − (2k − 1))

= 4
∑
j∈Z

f ′(2 j)
∑
k∈Z

h j (k)
sinπ(x − k)
π(x − k)

.

Notice that one can use Fubini’s theorem to justify all the changes of order of summation by the fact that
h j ∈ PWπ . By applying the Shannon–Whittaker interpolation to h j , we have

C(x)= 4
∑
j∈Z

f ′(2 j)
sin2(π

2 x
)

π2(x − 2 j)
.

3B2. Determining B. For the second term, we expand

B(x)=

∑
k∈Z

H2 ◦H(b)(k)
sinπ(x − 2k + 1)
π(x − 2k + 1)

=
1
π

∑
k∈Z

sinπ(x − 2k + 1)
π(x − 2k + 1)

∑
j

H(b)( j)

j − k +
1
2

=
1
π2

∑
k∈Z

sinπ(x − 2k + 1)
π(x − 2k + 1)

∑
j

∑
l ̸= j

b(l)(
j − k +

1
2

)
( j − l)

.
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By Fubini’s theorem, this implies

B(x)=
1
π2

∑
l∈Z

b(l)
∑
j ̸=l

1
j − l

∑
k∈Z

1

j − k +
1
2

sinπ(x − 2k + 1)
π(x − 2k + 1)

=
1
π2

∑
l∈Z

b(l)
∑
j ̸=l

2
j − l

∑
k∈Z

1
2 j − 2k + 1

sinπ(x − 2k + 1)
π(x − 2k + 1)

=
1
π2

∑
l∈Z

b(l)
∑
j ̸=l

2
j − l

sin2(π
2 x

)
2 j − x

=
sin2(π

2 x
)

π2

∑
l∈Z

b(l)
∑
j ̸=0

1

j
(

j + l −
1
2 x

) .
But it is a well-known fact that the summation formula∑

j ̸=0

1
j ( j + z)

=
ψ(1 + z)−ψ(1 − z)

z

holds, where ψ(z)=
d
dz log0(z) is the digamma function. This implies

B(x)=
2 sin2(π

2 x
)

π2

∑
l∈Z

b(l)
ψ

(
1 + l −

1
2 x

)
−ψ

(
1 − l +

1
2 x

)
2l − x

.

3B3. Determining A + B. Using that sin(2x)= 2 sin x cos x , we obtain

A(x)= −
2 sin2(π

2 x
)

π2

∑
l∈Z

b(l)
π cot

(
π
2 x

)
2l − x

.

The digamma function satisfies the functional equations

ψ(1 − z)= ψ(z)+π cotπ z,

ψ(1 + z)= ψ(z)+ 1/z.

Using these relations with z =
1
2 x − l in the equations above, we obtain readily

A(x)+ B(x)=
4 sin2(π

2 x
)

π2

∑
l∈Z

b(l)
1

(x − 2l)2
.

3B4. A + B + C. Summing the analysis undertaken for the terms above, we have

f (x)= A(x)+ B(x)+ C(x)=
4 sin2(π

2 x
)

π2

∑
k∈Z

{
f (2k)

(x − 2k)2
+

f ′(2k)
x − 2k

}
.

This finishes the proof of Theorem 1.2.

3C. Perturbed interpolation formulae with derivatives. By the arguments in the previous section, the
formula we just derived for PW2π , i.e.,

f (x)=
sin2(πx)
π2

∑
k∈Z

{
f (k)

(x − k)2
+

f ′(k)
x − k

}
,
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converges in compact sets of C. We fix, for shortness, the notation

g(x)=
sin2(πx)
π2x2 , h(x)=

sin2(πx)
π2x

,

which means we can read Vaaler’s interpolation as

f (x)=

∑
k∈Z

{ f (k)g(x − k)+ f ′(k)h(x − k)}.

Because of uniform convergence, we can differentiate term by term in the above formula. This implies

f ′(x)=

∑
k∈Z

{ f (k)g′(x − k)+ f ′(k)h′(x − k)}.

We record, for completeness, the formulae for the derivatives of g and h. For x /∈ Z we have

g′(x)=
2 sin(πx)(πx cos(πx)− sin(πx))

π2x3 ,

h′(x)=
sin(πx)(2πx cos(πx)− sin(πx))

π2x2 ,

and, for n ∈ Z,

g(n)= h′(n)= 0, g′(n)= h(n)= δ0.

Our goal now is to invert the operator A = Aε defined in ℓ2(Z)× ℓ2(Z) by

A1(a, b)n =

∑
k∈Z

ak · g(n + εn − k)+
∑
k∈Z

bk · h(n + εn − k),

A2(a, b)n =

∑
k∈Z

ak · g′(n + εn − k)+
∑
k∈Z

bk · h′(n + εn − k),
(3-3)

where A(a, b) = (A1(a, b),A2(a, b)) for (a, b) ∈ ℓ2(Z)× ℓ2(Z). Furthermore, we wish to establish a
criterion that depends only on L = sup |εn|. For that purpose, we estimate when the operator norm of
Aε − Id from ℓ2(Z)× ℓ2(Z) to itself is small, in terms of L .

3C1. Auxiliary perturbations for the derivative case. Given a sequence a = {ak}k∈Z, we define the
operators

Hp
ε (a)n =

∑
k ̸=n

ak

(n + εn − k)p ,

and denote by Hp
0 the operator associated to the sequence εn = 0 for all n ∈ Z. In an analogous manner

to the proof of Theorem 1.1, we compare

Hp
0 (a)n −Hp

ε (a)n =

∑
k ̸=n

ak

(
1

(n − k)p −
1

(n + εn − k)p

)

=

p−1∑
j=0

( p
j

)
ε p− j

n

∑
k ̸=n

ak

(n + εn − k)p(n − k)p− j .
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Therefore,

|Hp
0 (a)n −Hp

ε (a)n| ≤

p−1∑
j=0

( p
j

)
|εn|

p− j
∑
k ̸=n

ak

|n − k|2p− j

|n − k|
p

(|n − k| − |εn|)p

≤
1

(1 − |εn|)p

p−1∑
j=0

( p
j

)
|εn|

p− jS2p− j (a∗)n,

where

Sq(a)n =

∑
k ̸=n

ak

|n − k|q

and a∗
= (|an|). Since Sq+1(a∗)n ≤ Sq(a∗)n , we have

|Hp
0 (a)n −Hp

ε (a)n| ≤
S p+1(a∗)n

(1 − |εn|)p

p−1∑
j=0

( p
j

)
|εn|

p− j
=

(
(1 + |εn|)

p
− 1

(1 − |εn|)p

)
S p+1(a∗)n.

This means that we have the following estimate on the norm of the perturbed operator:

∥Hp
ε ∥ ≤ γp(L), (3-4)

where we let

γp(L)= ∥Hp
0 ∥ +

(1 + L)p
− 1

(1 − L)p ∥S p+1
∥.

Now, in order to estimate the value of γp(L), we resort to [Littmann 2006, Corollary 2], which gives us

∥Hp
0 ∥ =

(2π)mbm

m!
,

where bm is the maximum of |Bm(x)| when x ∈ [0, 1], and Bm denotes the m-th Bernoulli polynomial.1

Therefore,

∥H1
0∥ = π, ∥H2

0∥ =
π2

3
, ∥H3

0∥ =
π3

9
√

3
.

On the other hand, by Plancherel’s theorem it is easy to see that

∥S p
∥ = 2ζ(p).

Joining all these data into (3-4), we obtain

∥H1
ε∥ ≤ π +

(
L

1 − L

)
π2

3
,

∥H2
ε∥ ≤

π2

3
+ 2

(
L2

+ 2L
(1 − L)2

)
ζ(3),

∥H3
ε∥ ≤

π3

9
√

3
+

(
L3

+ 3L2
+ 3L

(1 − L)3

)
π4

45
.

(3-5)

1It is worth mentioning that in [Carneiro et al. 2013, Corollary 22] the authors also obtain the same bounds.
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3C2. Norm estimates of the perturbations in the derivative case. In order to invert the operator Aε, we
estimate the norm of Pε = Aε − Id = (P1,P1), where

P1(a, b)n =

∑
k∈Z

ak · (g(n + εn − k)− δn,k)+
∑
k∈Z

bk · h(n + εn − k),

P2(a, b)n =

∑
k∈Z

ak · g′(n + εn − k)+
∑
k∈Z

bk · (h′(n + εn − k)− δn,k).
(3-6)

By a straightforward calculation,

P1(a, b)n = (g(εn)− 1)an +
sin(πεn)

2

π2 H2
ε(a)n + h(εn)bn +

sin(πεn)
2

π2 H1
ε(b)n,

P2(a, b)n = g′(εn)an +
2 sin(πεn)(πεn cos(πεn)− sin(πεn))

π2 H3
ε(a)

+ (h′(εn)− 1)bn +
sin(πεn)(2πεn cos(πεn)− sin(πεn))

π2 H2
ε(b).

(3-7)

Thus,

∥Pε∥ ≤
√

2 max{|g(L)− 1|, |h′(L)− 1|, |g′(L)|, |h(L)|} +
sin(πL)2

π2 ∥Gε∥,

where Gε = (G1
ε ,G2

ε ) and

G1
ε (a, b)n =H2

ε(a)n +H1
ε(b)n,

G2
ε (a, b)n =

2(πεn cos(πεn)− sin(πεn))

sin(πε)
H3
ε(a)+

(2πεn cos(πεn)− sin(πεn))

sin(πε)
H2
ε(b).

(3-8)

By taking L < 1
4 and using the Cauchy–Schwarz inequality, we have

∥Gε∥2

2
≤ max{∥H1

ε∥, ∥H
2
ε∥}

2

+ max
{(

2(πL cos(πL)− sin(πL))
sin(πL)

)2

∥H3
ε∥

2,

(
(2πL cos(πL)− sin(πL))

sin(πL)

)2

∥H2
ε∥

2
}

≤ max{γ1(L)2, γ2(L)2}

+ max
{(

2(πL cos(πL)− sin(πL))
sin(πL)

)2

γ3(L)2,
(
(2πL cos(πL)− sin(πL))

sin(πL)

)2

γ2(L)2
}
.

We note that we have abused the notation ∥Gε∥ to denote the operator norm of Gε when defined on
ℓ2(Z)× ℓ2(Z). One can further check that, for 0 ≤ L < 1

4 ,

|g(L)− 1|< |h′(L)− 1|, |h(L)|< |g′(L)|, γ1(L)2 < γ2(L)2,(
2(πL cos(πL)− sin(πL))

sin(πL)

)2

γ3(L)2 <
(
(2πL cos(πL)− sin(πL))

sin(πL)

)2

γ2(L)2,

which means, in turn,

∥Gε∥ ≤ γ2(L)

√
2
(

1 +

(
(2πL cos(πL)− sin(πL))

sin(πL)

)2)
,
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and directly implies the estimate

∥Pε∥ ≤ 1 −
sin(πL)(2πL cos(πL)− sin(πL))

π2L2 +
2 sin(πL)(sin(πL)−πL cos(πL))

π2L3

+
sin(πL)2

π2

(
π2

3
+ 2

(
L2

+ 2L
(1 − L)2

)
ζ(3)

)√
2
(

1 +

(
(2πL cos(πL)− sin(πL))

sin(πL)

)2)
.

By evaluating the last expression on the right-hand side above numerically, we obtain that we can go up to
L < 0.111 and maintain ∥Pε∥< 1. By invoking again [Young 1980, Theorem 1.13], we see immediately
that ∑

n∈Z

(| f (n + εn)|
2
+ | f ′(n + εn)|

2)

yields an equivalent norm for PW2π , as long as supn |εn|< 0.111.
Moreover, as A−1

ε : ℓ2(Z)× ℓ2(Z)→ ℓ2(Z)× ℓ2(Z) is bounded, the same argument as in the proof of
Theorem 1.1 shows that there are ϱk,n , ϑk,n , ϱ′

k,n , ϑ ′

k,n such that

f (k)=

∑
n∈Z

f (n + εn)ϱk,n + f ′(n + εn)ϑk,n,

f ′(k)=

∑
n∈Z

f (n + εn)ϱ
′

k,n + f ′(n + εn)ϑ
′

k,n,
(3-9)

and

sup
n

(∑
k∈Z

{|ϱk,n|
2
+ |ϑk,n|

2
+ |ϱ′

k,n|
2
+ |ϑ ′

k,n|
2
}

)
≲ 1.

By using the adjoint (A−1
ε )

∗
: ℓ2(Z)× ℓ2(Z) → ℓ2(Z)× ℓ2(Z) in an analogous manner to that of the

proof of Theorem 1.1 together with (3-9) and (1-7), we obtain the asserted existence of the functions
gn, hn ∈ PW2π so that

f (x)=

∑
n∈Z

f (n + εn)gn(x)+ f ′(n + εn)hn(x),

where the right-hand side converges absolutely, as desired. This proves the desired version of Vaaler’s
interpolation formula with perturbed nodes, given in Theorem 1.3.

4. Perturbed Fourier interpolation on the real line

4A. Improved estimates on the interpolation basis. As our goal is to obtain versions of the formula

f (x)=

∑
n≥0

[ f (
√

n)an(x)+ f̂ (
√

n)ân(x)]

with perturbed nodes
√

k + εk deviating from
√

k as much as possible, and in order to run our argument of
estimating the operator norm of a perturbation of the identity, we will need better decay estimates for the
interpolating functions an than the ones readily available in the literature. In [Radchenko and Viazovska
2019, Section 5], the authors prove that an/n2 is uniformly bounded in n ≥ 0, x ∈ R. In order to be able
to make the perturbations larger, we need to improve that result substantially, as even the refined bound
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|an| = O(n1/4 log3(1 + n)) from [Bondarenko et al. 2023] does not seem to be enough for our purposes.
This first subsection is, therefore, devoted to the proof of Theorem 1.6.

A tool of major importance in our proof is the Fourier characterization of Gelfand–Shilov spaces.
These are spaces where, in a nutshell, both the function and Fourier transform decay as fast as the negative
exponential of a certain monomial. Several results connect these spaces with specific decay for both the
function and its Fourier transform. See, e.g., [Chung et al. 1996, Theorem 2.3] for more details.

In what follows, we will use the idea behind the characterization described in [Chung et al. 1996]:
from bounds for certain L2-norms of derivatives of f and f̂ , we run an optimization procedure to obtain
decay bounds in both space and frequency. This will be achieved through careful estimates involving the
reproducing functions of the interpolation basis {an}n≥0, which joins elements of classical analysis and
estimates for modular forms.

Indeed, let ε ∈ {±} be a sign. In [Radchenko and Viazovska 2019], the authors consider the generating
functions ∞∑

n=0

gεn(z)e
iπnτ

=: Kε(τ, z), (4-1)

where gεn are weakly holomorphic modular forms of weight 3
2 with growth and coefficient properties so

that the functions
bεn(x)=

1
2

∫ 1

−1
gεn(z)e

iπx2z dz

are eigenvectors of the Fourier transform associated to the eigenvalues ε satisfying that b±
n = an ± ân for

{an}n≥0 defined as in (1-3).
These functions satisfy (see [Radchenko and Viazovska 2019, Proposition 1])

bεm(
√

n)= δn,m if n ≥ 1,m ≥ 0,

b+

m(0)= δm,0 if m ≥ 0,

b−

0 = 0, b+

0 (
√

n)= δn,0 if n ≥ 0,

b−

m(0)= −2 if m = k2 for some k ∈ Z≥1,

b−

m(0)= 0 otherwise. (4-2)

Moreover, we mention for completeness the following result regarding Kε. We refer the reader to
[Radchenko and Viazovska 2019] for its proof.

Proposition 4.1 [Radchenko and Viazovska 2019, Theorem 3]. For any fixed z ∈ H, there is y0 > 0
so that for all τ ∈ H with Im(τ ) > y0, the series on the left-hand side of (4-1) converges. Under these
assumptions, we have the following equalities for the kernels:

K+(τ, z)=
θ(τ )(1 − 2λ(τ))θ(z)3 J (z)

J (z)− J (τ )
,

K−(τ, z)=
θ(τ )J (τ )θ(z)3(1 − 2λ(z))

J (z)− J (τ )
,

(4-3)

where θ, J and λ are as previously defined. In particular, Kε(τ, z) are meromorphic functions with poles
at τ ∈ 0θ z.
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The authors then define the natural candidate for the generating function for the {bεn}n≥0 to be

Fε(τ, x)=
1
2

∫ 1

−1
Kε(τ, z)eiπx2z dz, (4-4)

where the contour is the semicircle in the upper half-plane that passes through −1 and 1, which is defined,
a priori, for each fixed x ∈ R and τ ∈ {z ∈ H : for all k ∈ Z, |z − 2k| > 1} ⊃ D + 2Z, where D is the
standard fundamental domain for 0θ . By Proposition 4.1, there holds that, whenever Im(τ ) > 1,

Fε(τ, x)=

∞∑
n=0

bεn(x)e
iπnτ . (4-5)

As Fε(τ, x) admits an analytic continuation to H (see [Radchenko and Viazovska 2019, Proposition 2]),
they are able to extend (4-5) to the entire upper half-space H. Moreover, the following functional equations
hold:

Fε(τ, x)− Fε(τ + 2, x)= 0,

Fε(τ, x)+ ε(−iτ)−1/2 Fε
(
−

1
τ
, x

)
= eiπτ x2

+ ε(−iτ)−1/2eiπ(−1/τ)x2
.

The proof of Theorem 1.6 follows the same essential philosophy as the proof of [Radchenko and Viazovska
2019, Theorem 4]: in order to bound each of the terms b±

n , we bound, uniformly on x ∈ R, the analytic
function F±(τ, x). Relating the two bounds is achieved by employing the idea behind the proof of
the following lemma, originally attributed to Hecke (see for instance [Radchenko and Viazovska 2019,
Lemma 1] and [Berndt and Knopp 2008, Lemma 2.2(ii)] for a proof).

Lemma 4.2. Let f : H → C be a 2-periodic analytic function admitting an absolutely convergent Fourier
expansion

f (τ )=

∑
n≥0

cneiπnτ .

Suppose, additionally, that for some α > 0 it satisfies that | f (τ )| ≤ C Im(τ )−α for Im(τ ) < c0. Then there
is C̃ > 0, depending only on C and α, such that for all n > 1/c0

|cn| ≤ C̃nα.

Moreover, there is C ′ > 0, depending only on C and α, such that if n > α/(πc0), the improved estimate

|cn| ≤ C ′

(
eπ
α

)α
nα

holds.

Before proving Theorem 1.6, we need one more crucial tool in our analysis. Indeed, we consider the
functions

Fk
ε (τ, x) := xk Fε(τ, x).

By Lemma 4.2, if we prove that, for some 1> 0,

|Fk
ε (τ, x)| ≤ Ck(k!) Im(τ )−k/2−1 (4-6)



2352 JOÃO P. G. RAMOS AND MATEUS SOUSA

for all k ≥ 1, then we will have
sup
x∈R

|xkbεn(x)| ≤ C̃kn1nk/2(k!).

As bεn = εb̂n , the strategy of relating norms of derivatives with Fourier decay will then imply that each of
the functions bεn satisfies

|bεn(x)| ≲ n1e−θ |x |/
√

n,

which is the content of Theorem 1.6. Therefore, we focus on proving a suitable version of (4-6). By
the functional equation for Fε, we see that Fk

ε is a 2-periodic function on H that satisfies the functional
equation

Fk
ε (τ, x)+ ε(−iτ)−1/2 Fk

ε (−1/τ, x)= xk(eiπτ x2
+ ε(−iτ)−1/2eiπ(−1/τ)x2

). (4-7)

The strategy, in analogy to that in [Radchenko and Viazovska 2019], is of splitting into cases: if τ ∈ D,
then estimates for Fk

ε are available directly by analytic methods. Otherwise, we need to use (4-7) to
obtain the bound (4-6) for all τ ∈ H.

More explicitly, we have the following:

Proposition 4.3. There is a positive constant C > 0 such that, for each k ≥ 1, the inequality

|Fk
ε (τ, x)| ≤ Ck(k!)(1 + Im(τ )−k/2)

holds, whenever τ ∈ D.

This proposition can be directly compared to [Radchenko and Viazovska 2019, Lemma 4]. In fact, it is
nothing but a carefully quantified version of it.

Proof of Proposition 4.3. As the proof follows thoroughly the main ideas in Lemma 4 in [Radchenko and
Viazovska 2019], we will mainly focus on the points where we have to sharpen bounds.

We see directly from the definition of Fk
ε that we are allowed to consider only values of τ ∈ D1 =

D∩ {τ ∈ H : Re(τ ) ∈ (−1, 0)}. By subsequent considerations from that reduction, we see that the bound

|xk Fε(τ, x)| ≤ 10
∫
ℓ

|Kε(τ, z)|xk(e−πx2 Im(τ )
+ |z|−1/2e−πx2 Im(−1/z)) |dz| (4-8)

holds, where ℓ is the path joining i to 1 on the upper half-space, defined to be

ℓ=
{
w ∈ D : Re(J (w))=

1
64 , Im(J (w)) > 0

}
. (4-9)

An explicit computation gives us that the maximal value of

xke−πx2 Im(z)

is attained at x = (k/(2π Im(z)))1/2. Therefore, as any z ∈ ℓ has norm bounded from above and below by
absolute constants, we find that there is C > 0 so that

|Fk
ε (τ, x)| ≤ Ck/2

·

(
k

2πe

)k/2 ∫
ℓ

|Kε(τ, z)| Im(z)−k/2
|dz|. (4-10)

We have then three regimes to consider:
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Case 1: |τ − i |< 1
10 . Notice that if we prove that the proposition holds for any τ ∈ H so that |τ − i | = 1

10 ,
we can use the maximum modulus principle on Fk

ε on that circle to conclude that the proposition
holds inside as well. Moreover, by the functional equation (4-7), we see that the proposition holds for
A =

{
τ ∈ H : |τ − i | =

1
10 , |τ | ≤ 1

}
in the case it holds for the image of the circle arc A under the action

of S. But a simple computation shows that SA is just another circle arc contained (up to endpoints) in{
τ ∈ D1 :

1
4 > |τ − i |> 1

10

}
. This shows that in order to prove the proposition for this case, it suffices to

show it for the other cases.

Case 2: |τ−i |> 1
10 , Im(τ )> 1

2 . For this case, we use the fact that |Kε(τ, z)|≲ |θ(z)|3 ≲ Im(z)−2e−π/ Im(z)

for z ∈ ℓ, Im(τ ) > 1
2 , with constants independent of τ . Using this bound in (4-8) yields

|Fk
ε (τ, x)| ≤ (1 + |x |

k+2)e−c|x | ≲ Ck
(

k + 2
e

)k+2

for some C > 0. Applications of Stirling’s formula imply that this bound is controlled by Ck
1(k!), with

C1 > 0 an absolute constant. This shows the result in this case.

Case 3: |τ−i |> 1
10 , Im(τ )≤ 1

2 . Again, we resort to the estimates in the proof of Lemma 4 in [Radchenko
and Viazovska 2019]: there, the authors prove that

|K+(τ, z)| ≲ Im(τ )−1/2 |J (τ )|3/8|J (z)|5/8 Im(z)−3/2

|J (z)− J (τ )|
,

|K−(τ, z)| ≲ Im(τ )−1/2 |J (τ )|7/8|J (z)|1/8 Im(z)−3/2

|J (z)− J (τ )|
.

Due to the not-so-symmetric nature of these bounds, we focus on the one for K+, and the analysis for K−,
as well as the bounds, will be almost identical, and thus the details will be omitted.

Taking advantage of the explicit structure of the curve we are integrating over (4-9), and the fact that there
is an absolute constant C > 0 so that Im(z)−1

≤ C log(1+|J (z)|) and that z ∈ ℓ⇐⇒ J (z)= 1
64 +i t , t ∈ R,∫

ℓ

|K+(τ, x)| Im(z)−k/2
|dz| ≤ Ck/2 Im(τ )−1/2

∫
∞

0

|J (τ )|3/8t−3/8 log(k−1)/2(1 + t)√
t2 + |J (τ )|2

dt

= Ck/2 Im(τ )−1/2
∫

∞

0

t−3/8 log(k−1)/2(1 + t |J (τ )|)
√

1 + t2
dt. (4-11)

Now, the last integral in (4-11) can be estimated as follows: if k − 1 is even, by using that log(1 + ab)≤

log(1 + a)+ log(1 + b) whenever a, b > 0, the integral∫
∞

0

t−3/8 log(k−1)/2(1 + t |J (τ )|)
√

1 + t2
dt

is bounded by

(k−1)/2∑
i=0

(
(k−1)/2

i

)
logi (1 + |J (τ )|)

∫
∞

0

t−3/8 log(k−1)/2−i (1 + t)
√

1 + t2
dt. (4-12)
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Each summand above can be easily estimated. Indeed,
(
(k−1)/2

i

)
≤ 2k/2 trivially, logi (1 + |J (τ )|) ≤

C i Im(τ )−i, and the integrals can be explicitly bounded in terms of gamma functions. In fact, we first
split the integrals in question as(∫ 1

0
+

∫
∞

1

)
t−3/8 log(k−1)/2−i (1 + t)

√
1 + t2

dt.

For the first part, we simply bound the integrand by t−3/8 log(2)(k−1)/2−i, and this yields a bound uniform
in k. For the second, we change variables log(1 + t) 7→ s in (4-12) above. A simple computation shows
that it is bounded by

10
∫

∞

0
e−3s/8s(k−1)/2−i ds ≲ Ck

∫
∞

0
e−rr (k−1)/2−i dr = Ck0

(
k − 1

2
− i + 1

)
.

Thus, (4-12) is bounded by

Ck Im(τ )(1−k)/20

(
k − 1

2

)
.

Putting together the estimates in (4-11) and (4-10) and using Stirling’s formula for the approximation
of 0, we conclude that

|Fk
ε (τ, x)| ≤ Ck(k!) Im(τ )−k/2,

which was the content of the proposition when k is odd. In the case where k is an even number, the
fact that F j

ε (τ, x)2 = F j−1
ε (τ, x)F j+1

ε (τ, x) allows one to use the bounds of the case where k is odd to
conclude the proof. □

We are now finally able to finish the proof of Theorem 1.6.

Proof of Theorem 1.6. We first notice that Fk
ε is 2-periodic, so we lose no generality in assuming that

τ ∈ {z ∈ H : Re(z) ∈ [−1, 1]} = S1. If Re(τ ) ∈ [−1, 1], then we have two cases:

Case 1: If τ ∈ D, we can use Proposition 4.3 directly, and the decay obtained by the assertion of the
proposition remains unchanged.

Case 2: If τ ∈ S1\D, the strategy is to use (4-7) to reduce it to the previous case. In fact, we define the
0θ -cocycle {φk

A}A∈0θ by
φk

T 2(τ, x)= 0,

φk
S(τ, x)= xk(eiπx2τ

+ ε(−iτ)−1/2eiπx2(−1/τ)),

together with the cocycle relation

φk
AB = φk

A +φk
A |B. (4-13)

For a fixed τ ∈ S1 \D, we associate τ ′
∈ D through the following process: Let{
γ0 = τ,

γi = −1/(γi−1)− 2ni ,
(4-14)



PERTURBED INTERPOLATION FORMULAE AND APPLICATIONS 2355

where ni =
⌊ 1

2((−1/γi−1)+ 1)
⌋

. We define m = m(τ ) to be the smallest positive integer so that γm ∈ D.
In this case, we let γm(τ ) =: τ ′. In other words, we have that the sequence{

τ0 = τ ′,

τi+1 = −1/τi + 2ni
(4-15)

satisfies the hypotheses of Lemma 3 in [Radchenko and Viazovska 2019]. We therefore have that |τj |> 1,
Im(τj ) is nonincreasing and Im(τj )≤ 1/(2 j − 1). An inductive procedure shows us that

γm−i = −
1
τi
.

In particular, the sequence {τi }i≥0 is in fact finite, with at most m(τ ) terms. This implies that

m + 1 ≤ 4m − 2 ≤ 2 Im(τ )−1. (4-16)

We will use (4-16) in the following computation with the cocycle condition. We write τ ′
= Aτ , where

A ∈ 0θ is of the form
A = ST 2nm ST 2nm−1 S · · · T 2n1 S.

As {φk
A}A∈0θ satisfies the cocycle condition (4-13), the proof of Lemma 3 in [Radchenko and Viazovska

2019] gives us that

Im(τ ′)1/4|φk
A(τ

′)| ≤

m∑
j=1

Im(τj )
1/4

|φk
S(τj )|.

By the definition of φk
S , we see that

|φk
S(τj , x)| ≤ C0

(
k + 1

2

)
(Im(τj )

−k/2
+ |τj |

−1/2 Im(−1/τj )
−k/2). (4-17)

As γm−i = −1/τi = τi+1 − 2ni , |τj |> 1, and the sequence Im(τj ) is nonincreasing, the right-hand side
of (4-17) is bounded from above by C ·0((k + 1)/2) Im(τ )−k/2. From (4-16), it follows that

|φk
A(τ

′)| Im(τ ′)1/4 ≤ C0
(

k + 1
2

)
Im(τ )−k/2

( m∑
j=1

Im(τj )
1/4

)
.

If we use the aforementioned facts about Im(τj ), we will see that, in fact,

|φk
A(τ

′)| Im(τ ′)1/4 ≤ C0
(

k + 1
2

)
Im(τ )−k/2m(τ )3/4. (4-18)

Now, using the functional equation for Fk
ε implies

Fk
ε − (Fk

ε )|A = φk
A,

which then gives us

|Fk
ε (τ, x)||Im(τ )|1/4 ≤ |Im(τ ′)|1/4|Fk

ε (τ
′, x)| + |φk

A(τ
′, x)||Im(τ ′)|1/4.

Defining Im(τ ′)=: I (τ ) and using Proposition 4.3 and (4-18) to estimate this expression, it follows that

|Fk
ε (τ, x)| ≤ Im(τ )−k/2−1/4(Ck(k!) · I (τ )1/4 +0((k + 1)/2)m(τ )3/4

)
. (4-19)
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In order to estimate (4-19), we must resort not only to the general idea of obtaining bounds for Fourier
coefficients based on decay at infinity, as in Lemma 4.2, but also to the following estimate of the average
values of m(τ ) and I (τ ), recently available by the work of Bondarenko, Radchenko and Seip. We refer
the reader to Propositions 6.6 and 6.7 in [Bondarenko et al. 2023] for a proof.

Lemma 4.4. Whenever y ∈
(
0, 1

2

)
, we have∫ 1

−1
I (x + iy)1/4 ≲ 1 and

∫ 1

−1
m(x + iy)3/4 ≲ log3(1 + y−1).

An application of Lemma 4.4 together with the bound (4-19) to the proof of the first bound in Lemma 4.2
implies

sup
x∈R

|xkb±

n (x)| ≲ Ckn1/4nk/2 log3(1 + n)(k!) (4-20)

for n > 1/c0, k ≥ 1. Also, in the case n ≥ k/(πc0), the sharper bound

sup
x∈R

|xkb±

n (x)| ≲ (C
′)kn1/4nk/2 log3(1 + n)(k!)1/2 (4-21)

holds instead. We now proceed to optimize in k > 0, completing the outline devised in the beginning of
this section.

Indeed, let us start by optimizing (4-20). We postpone the discussion on the improved bound (4-21) to
a later remark.

Notice that we may assume |x | ≥ C ′
√

n, as for if |x |< C ′
√

n, the bound (4-20) with k = 0 gives us
already the result, as 1 ≲c e−c|x |/

√
n . If we then set k = |x |/C ′

√
n, where C ′ > 0 will be a fixed positive

constant, whose exact value shall be determined later, we have that

|b±

n (x)| ≲ n1/4 log3(1 + n) · exp(k log(Cn1/2)+ k log(k)− k log |x |).

The exponential term above is

exp
(

|x |

C ′
√

n
log(Cn1/2)+

|x |

C ′
√

n
(log(|x |)− log(C ′

√
n))−

|x |

C ′
√

n
log |x |

)
= exp

(
|x |

C ′
√

n
log

(
C
C ′

))
.

We only need to set C ′
≥ 2C above, and this quantity will grow like exp(−c|x |/

√
n). This finishes the

first assertion in Theorem 1.6.
For the second one, we notice that the proof above adapts in many instances. Indeed, if we shift our

attention to the function ∂x Fk
ε (τ, x) instead, we will see that, in an almost identical fashion to that of the

proof of Proposition 4.3, we are able to prove that, for all τ ∈ D,

|∂x Fk
ε (τ, x)| ≲ Ck(k!) Im(τ )−(k+1)/2.

On the other hand, the partial derivative ∂x of the cocycle {φk
A}A∈0θ is itself a cocycle with respect to the

same slash operator. Moreover, for A = S, the following formula holds:

∂xφ
k
S(τ, x)= (2π i)xk+1(τeπ i x2τ

+ iε(−iτ)−3/2eπ i x2(−1/τ)).
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In that case, using the notation from above for the elements τ ′, τj ∈H associated to τ ∈H∩{|z|≤1}, we see

Im(τ ′)1/4|∂xφ
k
A(τ

′)| ≤ Im(τ ′)1/4|∂xφ
k
S(τ

′)| +

m∑
j=1

Im(τj )
1/4

|∂xφ
k
A(τj )|.

For j ∈ {0, 1, 2, . . . ,m}, the definition of our new cocycle implies

|∂xφ
k
S(τj , x)| ≲ 0

(k+3
2

)
(|τj | Im(τj )

−(k+1)/2
+ |τj |

−3/2 Im(τj+1)
−(k+1)/2)

≤ 0
(k+3

2

)
Im(τ )−(k+1)/2.

This follows as before from the fact that Im(τj+1)= Im(τj )/|τj |
2
≥ Im(τ ) and that |τj |> 1. Analyzing

the functional equations for ∂x Fk
ε (τ, x) in the same way as before readily gives that

|∂x Fk
ε (τ, x)| ≤ Ck Im(τ )−(k+1)/2−1/4(k!)(I (τ )1/4 + m(τ )3/4).

Lemma 4.4 and the considerations employed for Fk
ε apply almost verbatim here, and thus we conclude

|(b±

n )
′(x)| ≲ n3/4 log3(1 + n)e−c|x |/

√
n,

as wished. □

As a consequence of Theorem 1.6, we are able to establish the following bound for the interpolation
basis taking into account both decay and zeros.

Corollary 4.5. Let {an} be the interpolation sequence of functions from (1-3). Then there is c > 0 so that

|an(x)| ≲ n3/4 log3(1 + n) dist(|x |,
√

N)e−c|x |/
√

n

for all positive integers n ∈ N.

Proof. We simply use the fundamental theorem of calculus on the an: Without loss of generality, we
suppose x > 0. We then have

|an(x)| = |an(x)− an(
√

m)+ δn,m | ≤

∫ x

√
m

|a′

n(x)| dx + δn,m

≤ n3/4 log3(1 + n) dist(x,
√

N)e−c|x |/
√

n
+ δm,n

≲ n3/4 log3(1 + n) dist(x,
√

N)e−c|x |/
√

n,

as the δm,n factor is only one if |x | ∈ [
√

n,
√

n + 1), where 1 ≲ e−c|x |/
√

n. □

Remark. Although the exponential bound n1/4 log3(1 + n)e−c|x |/
√

n suffices for our purposes, below we
sketch how to deduce a slightly improved decay for the interpolation basis {an}n≥0.

We again wish to optimize (4-21). If we set k = |x |
2/C ′n, where C ′ > 0 will be chosen soon, we have

|b±

n (x)| ≲ n1/4 log3(1 + n) · exp(k log(Cn1/2)+ k log(k1/2)− k log |x |).

This bound holds as long as πn ≳ k ≥ 1. If instead k < 1, that means, |x | ≤
√

C ′
√

n, we use the bound
in either (4-20) or (4-21) for k = 0, which yields |b±

n (x)| ≲ n1/4 log3(1 + n)≲ n1/4 log3(1 + n)e−c|x |
2/n ,

for c > 0.
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On the other hand, in the case k > 1, the first exponential term above becomes

exp
(

|x |
2

C ′n
log(Cn1/2)+

|x |
2

C ′n
(log(|x |)− log(

√
C ′n))−

|x |
2

C ′n
log |x |

)
= exp

(
|x |

2

C ′n
log

(
C

√
C ′

))
.

We only need to set C ′
≥ (2C)2 above, and this quantity will grow like exp(−c|x |

2/n).
For the remaining |x | >

√
C ′n case, we need to refine the analysis of the proof of Lemma 4.2 and

Theorem 1.6. Indeed, it is easy to see that if n ∈ (2− jα, 21− jα), j ≥ 1, then evaluating the Fourier
coefficients of a 2-periodic function f : H → C such that | f (τ )| ≲ Im(τ )−α(I (τ )1/4 + m(τ )3/4) for
Im(τ )≤ 1 as

2cn =

∫ 1+iα/(2 jπn)

−1+iα/(2 jπn)
f (τ )e−π inτ dτ

implies

|cn| ≲

(
2 jπe1/2 j

α

)α
nα log3(1 + n).

Using this new bound in (4-19), we obtain that, when n ∈ (2− j−1k, 2− j k),

|b±

n (x)| ≲ n1/4 log3(1 + n) · exp
(
k( j/2 + log(C

√
n)+ log(k1/2)− log |x |)

)
.

This suggests that we take k = |x |
2/C ′2 j n, which is admissible to the condition n ∈ (2− j−1k, 2− j k) if

|x | ∼
√

C ′2 j n. A similar computation to the ones above implies that

|b±

n (x)| ≲ n1/4 log3(1 + n) exp
(
−c

|x |
2

2 j n

)
≲ n1/4 log3(1 + n) exp(−c′

|x |),

whenever C ′
≫ C . The next corollary then follows as a natural consequence.

Corollary 4.6. Let an : R → R be the interpolating functions in the Radchenko–Viazovska interpolation
formula. Then there are c,C > 0 so that

|an(x)| ≲ n1/4 log3(1 + n)(e−c|x |
2/n1|x |<Cn + e−c|x |1|x |>Cn)

for each n ≥ 1.

Indeed, the application of Lemma 4.2 requires that we take n ≥ C for C > 0 some absolute constant. In
order to prove such a result for n ≲ 1, we may simply use the definition of b±

n as a Laplace transform of a
the weakly holomorphic modular form g±

n . Indeed, in order to extend Corollary 4.6 to n = 0, we write

a0(x)= â0(x)=
1
4

∫ 1

−1
θ(z)3 eπ i x2z dz.

In order to prove that a0 decays exponentially, we employ a similar technique to that of [Radchenko and
Viazovska 2019, Proposition 1]. Indeed, we have

|θ(z)|3 ≲ Im(z)−2 e−π/ Im(z) for z → ±1,
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and moreover that |θ(z)| ≲ 1 whenever z ∈ H, |z| = 1. We also suppose without loss of generality that
x > 0. This implies that, for δ > 0,

|a0(x)| ≲
∫ δ

0

e−1/(2t)

t2 dt + e−πx2δ ≲ e−1/(2δ)
+ e−πx2δ.

We then choose, for x ≫ 1, δ = 1/(
√

2πx). This implies that |a0(x)| ≲ e−(
√
π/2)x, which is the desired

bound. For other bounded values of n such a proof can be easily adapted.

4B. Proof of the main result. For this part, we shall use the definitions of ℓ2
s (Z≥0) and ℓ2

s (N), as in (2-4)
from Section 2. Let then I : ℓ2

s (Z+)× ℓ
2
s (Z+)→ ℓ2

s (Z+)× ℓ
2
s (Z+) denote the identity operator. Recall

the Radchenko–Viazovska interpolation result: for f ∈ Seven(R) a real-valued function,

f (x)=

∑
n≥0

( f (
√

n)an(x)+ f̂ (
√

n)ân(x)), (4-22)

where an : R → R is a sequence of interpolating functions independent of the Schwartz function f . In
particular,

f (
√

k)=

∑
n≥0

( f (
√

n)an(
√

k)+ f̂ (
√

n)ân(
√

k)).

In fact, for any pair of sequences ({xi }i , {yi }i ) decaying sufficiently fast and satisfying∑
n∈Z

xn2 =

∑
n∈Z

yn2, (4-23)

the function
G(t)= Gx,y(t)=

∑
n≥0

(xnan(t)+ yn ân(t)) (4-24)

is well-defined and satisfies G(
√

k)= xk, Ĝ(
√

k)= yk . In fact, let ({xi }i , {yi }i )∈ ℓ
2
s (N)×ℓ

2
s (N) for s > 0

sufficiently large. The operator

T : ℓ2
s (Z+)× ℓ

2
s (Z+)→ ℓ2

s (Z+)× ℓ
2
s (Z+)

given by T = (T 1, T 2), where

T 1({xi }, {yi })k =

∑
n≥0

(xnan(
√

k)+ yn ân(
√

k)),

T 2({xi }, {yi })k = T 1({yi }, {xi })k,

has an explicit form as a consequence of (4-2). Indeed, for k ≥ 1, we have

T 1({xi }, {yi })k = xk, T 2({xi }, {yi })= yk,

whereas for k = 0, we have

T 1({xi }, {yi })0 =
x0 + y0

2
−

∑
n≥1

xn2 +

∑
n≥1

yn2,

T 2({xi }, {yi })0 =
x0 + y0

2
−

∑
n≥1

yn2 +

∑
n≥1

xn2 .

(4-25)
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In particular, it is then easy to see that T = I whenever ({xi }i , {yi }i ) satisfy the relation (4-23). This
relation is always satisfied by sequences of the type xk = f (

√
k) and yk = f̂ (

√
k) because of the Poisson

summation formula. Inspired by this fact, we define the perturbed operator associated to a sequence
εk > 0, k ∈ Z+, to be

T̃ defined on ℓ2
s (Z+)× ℓ

2
s (Z+),

where T̃ = (T̃ 1, T̃ 2), with

T̃ 1({xi }, {yi })k =

∑
n≥0

(xnan(
√

k + εk)+ yn ân(
√

k + εk)),

T̃ 2({xi }, {yi })k = T̃ 1({yi }, {xi })k

for k ≥ 1, and T̃ 1({xi }, {yi })0 = x0, T̃ 2({xi }, {yi })0 = y0. At first, such an operator might not be defined
in the entire space ℓ2

s (Z+)× ℓ
2
s (Z+) because of summability issues, but a way to avoid this trouble is to

initially define the operator in the dense subspace of pairs of sequences with finitely many nonzero entries.
A posteriori, we will prove the fundamental fact that this operator is bounded from ℓ2

s (Z+)× ℓ
2
s (Z+)→

ℓ2
s (Z+)× ℓ

2
s (Z+), which will allow to extend it to the entirety of the space ℓ2

s (Z+)× ℓ
2
s (Z+). One way to

see this will be provided in the proof of our main theorem, by showing that the operator norm satisfies
∥I − T̃ ∥ℓ2

s (Z+)×ℓ2
s (Z+)→ℓ2

s (Z+)×ℓ2
s (Z+)

<+∞. This is, incidentally, our main device to prove our result: if

∥I − T̃ ∥ℓ2
s (Z+)×ℓ2

s (Z+)→ℓ2
s (Z+)×ℓ2

s (Z+)
< 1,

then T̃ is an invertible operator defined on ℓ2
s (Z+)× ℓ

2
s (Z+). Therefore, its inverse

T̃ −1
: ℓ2

s (Z+)× ℓ
2
s (Z+)→ ℓ2

s (Z+)× ℓ
2
s (Z+)

is well-defined and bounded. In particular, for f ∈ Seven(R) real, given the lists of values

f (0), f (
√

1 + ε1), f (
√

2 + ε2), . . . ,

f̂ (0), f̂ (
√

1 + ε1), f̂ (
√

2 + ε2), . . . ,

there is a unique pair ({xi }i , {yi }i ) ∈ ℓ2
s (Z+)× ℓ

2
s (Z+) so that

T̃ ({xi }, {yi })= ({ f (
√

k + εk)}k, { f̂ (
√

k + εk)}k).

But we also know that

T̃ ({ f (
√

i)}i , { f̂ (
√

i)}i )= T ({ f (
√

i)}i , { f̂ (
√

i)}i )= { f (
√

k + εk)}k, { f̂ (
√

k + εk)}k .

This implies x j = f (
√

j), yj = f̂ (
√

j). By writing the k-th entry of the inverse of T̃ as

T̃ −1({wi }, {zi })k =

∑
j≥0

(γj,kwj + γ̂j,kz j )

for two sequences {γj,k} j,k≥0, {γ̂j,k} j,k≥0 so that |γj,k | + |γ̂j,k | ≲ ( j/k)s, we must have

f (
√

k)=

∑
j≥0

(γj,k f (
√

j + εj )+ γ̂j,k f̂ (
√

j + εj )). (4-26)
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This implies, by (1-3), that we can recover f from its values and those of its Fourier transform at
√

k + εk .
Moreover, as the adjoint of T̃ −1 is also bounded from ℓ2

s (Z+)× ℓ
2
s (Z+) to itself, we conclude that, for

s ≫ 1 sufficiently large and f, f̂ both being O((1 + |x |)−10s), we can use Fubini’s theorem in (1-3)
together with (4-26). This proves the existence of two sequences of functions {θj } j≥0, {ηj } j≥0 so that

|θj (x)| + |ηj (x)| + |θ̂j (x)| + |η̂j (x)| ≲ (1 + j)s(1 + |x |)−10

and
f (x)=

∑
j≥0

(
f (

√
j + εj )θj (x)+ f̂ (

√
j + εj )ηj (x)

)
.

Thus, we focus on the proof of the invertibility of T̃ for s > 0 suitably chosen.

Proof of invertibility of T̃ . We use, for this part, the Schur test. For that, define the auxiliary infinite
matrices A = {Ai j }i, j>0 and Â = { Âi j }i, j>0 by

Ai j = (aj (
√

i + εi )− δi j )× (i/j)s,

Âi j = âj (
√

i + εi )(i/j)s .

For a given vector (x, y) ∈ ℓ2(N)× ℓ2(N), we write then

B(x, y)= (A · x + Â · y, A · y + Â · x),

or, in matrix notation,

B =

(
A Â
Â A

)
.

Furthermore, define the operator B0 : C2
→ ℓ2(Z≥0)× ℓ

2(Z≥0) by

B0(r, s)=

((
r · a0(

√
k + εk)+ s · â0(

√
k + εk)

)
ks,

(
s · a0(

√
k + εk)+ r · â0(

√
k + εk)

)
ks

)
k≥0
.

Notice that the operator norm of T̃ − I acting on ℓ2
s (Z+)× ℓ2

s (Z+) is, by virtue of our definitions,
bounded by the operator norm of B acting on ℓ2(N)× ℓ2(N) plus the norm of B0 acting on C2, since

(T̃ − I )(x, y)k = B0(x0, y0)k + B(x ′, y′)k, k ≥ 1,

(T̃ − I )(x, y)0 = (0, 0),
where

(x ′, y′)n = (xn, yn), n > 0.

First of all, bounds for the operator B0 are simple to obtain. In fact, by the Cauchy–Schwarz inequality

∥B0(x0, y0)∥
2
ℓ2(N)×ℓ2(N)

≤ 2(x2
0 + y2

0)

(∑
k>0

{|a0(
√

k + εk)|
2
+ |â0(

√
k + εk)|

2
}k2s

)
.

Since a0(
√

k)= â0(
√

k)= 0 for k ≥ 1, and a0 ∈ S(R), for any fixed M > 0 there is C = CM > 0 such
that

max{|a0(
√

k + εk)|, |â0(
√

k + εk)|} ≤ CM
|εk |

k M . (4-27)
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This implies the norm of B0 is sufficiently small, assuming that we make supk≥0 |εk | sufficiently small,
depending on s.

We now turn to bounding the operator norm of B. By Schur’s test, it suffices to find α, β > 0, such
that

√
αβ ≪ 1, and positive sequences {pi }i≥0, {qi }i≥0 so that the following inequalities hold:∑

j>0

(i/j)s×[|aj (
√

i + εi )− δi j |pj + |âj (
√

i + εi )|qj ] ≤ αpi ,∑
j>0

(i/j)s×[|aj (
√

i + εi )− δi j |qj + |âj (
√

i + εi )|pj ] ≤ αqi ,∑
i>0

(i/j)s×[|aj (
√

i + εi )− δi j |pi + |âj (
√

i + εi )|qi ] ≤ βpj ,∑
i>0

(i/j)s×[|aj (
√

i + εi )− δi j |qi + |âj (
√

i + εi )|pi ] ≤ βqj .

(4-28)

Now, we make the ansatz that, for all i > 0, pi = qi = i θ, for some real number θ ∈ R. By making use of
Theorem 1.6, we know that

|aj (
√

i + εi )− δi j | + |âj (
√

i + εi )| ≲
εi
√

i
j3/4log3(1 + j)e−c

√
i/j .

Therefore, (4-28) reduces to verifying∑
j>0

(i/j)s × j θ ×
εi
√

i
j3/4 log3(1 + j)e−c

√
i/j

≤ αi θ , (4-29)

∑
i>0

(i/j)s × i θ ×
εi
√

i
j3/4 log3(1 + j)e−c

√
i/j

≤ β j θ . (4-30)

Estimate of (4-29). For this term, we rewrite it as

i s−1/2
× εi

(∑
j>0

j3/4−s log3(1 + j)e−c
√

i/j j θ
)
.

In order to estimate this last sum, we break it into j < i1/3 and j > i1/3 contributions. Therefore,∑
j>0

j3/4−s log3(1 + j)e−c
√

i/j j θ

≲ i1/3imax(3/4−s+θ,0) log3(1 + i1/3)e−ci1/3
+

∑
j>i1/3

j3/4−s log3(1 + j)e−c
√

i/j j θ . (4-31)

Because of the presence of the exponential, the first term is always bounded by an absolute constant
times i θ, so we treat it as negligible. For the second term, notice that the summand is bounded by a
constant times

∫ j+1
j x3/4−s+θ log3(1 + x)e−c

√
i/x dx . Indeed, the inverse of the ratio between both is

bounded from below by∫ j+1

j
(x/j)3/4−s+θ log3(1 + x)

log3(1 + j)
ec(

√
i/j−

√
i/x) dx ≥ min

{(
1 +

1
j

)3/4−s+θ
, 1

}
≳θ,s 1. (4-32)
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Thus, we obtain that the second term on the right-hand side of (4-31) is bounded by∫
∞

i1/3
x3/4−s+θ log3(1 + x)e−c

√
i/x dx =

∫ i−1/3

0

(
1 +

1
y

)3/4−s+θ
log3

(
1 +

1
y

)
y−2e−c

√
iy dy

≲s,θ

∫ i−1/3

0
y−11/4+s−θ log3

(
1 +

1
y

)
e−c

√
iy dy

= i7/4−s+θ
∫ i2/3

0
y−11/4+s−θ log3

(
1 +

i
y

)
e−c

√
y dy

≲s,θ i7/4−s+θ log3(1 + i),

as long as −
11
4 + s − θ >−1, that is, θ < s −

7
4 . Thus, (4-29) is bounded under such a condition by

Cs,θ |εi |i s−1/2 log3(1 + i)i7/4−s+θ
= i5/4+θ log3(1 + i)|εi |.

In order for this last quantity to be less than αi θ, we must have |εi | ≲s,θ αi−5/4 log−3(1 + i). We will
assume that we have this bound while estimating the second term.

Estimate of (4-30). For this term, the strategy is similar, only now the estimates become somewhat simpler
by the arithmetic of the bounds given by Theorem 1.6. Indeed, (4-30) is bounded by

cs,θ j3/4−s
(∑

i>0

i s+θ−7/4 log−3(1 + i) e−c
√

i/j
)
.

Much as before, each summand above is bounded by
∫ i+1

i x s+θ−7/4 log−3(1 + x)e−c
√

x/j dx . Thus, the
expression within the parenthesis above is bounded by∫

∞

1
x s+θ−7/4 log−3(1 + x) e−c

√
x/j dx ≲s,θ j s+θ−3/4

∫
∞

0
x s+θ−7/4 log−3(1 + j x) e−c

√
x dx

≲s,θ j s+θ−3/4
∫

∞

0
x s+θ−7/4 log−3(1 + x) e−c

√
x dx .

This last integral converges given that s + θ −
7
4 >−1 ⇐⇒ s + θ > 3

4 . In the end, we obtain that (4-30) is
bounded by cs,θ j θ if these conditions on s, θ hold.

Finally, we gather these two estimates to get that, if s −θ > 7
4 , s +θ > 3

4 and if εi <γ i−5/4 log−3(1+i)
for γ > 0 sufficiently small, then (4-29) and (4-30) are bounded by small constants times i θ and j θ.
Notice that picking s = 10 and θ > 0 sufficiently small yields that both conditions above hold true, and
thus the result follows from Schur’s test, as previously indicated. □

As mentioned in the beginning of this manuscript, the usage of Schur’s test here was instrumental in
order to expand the range of our perturbations. In fact, in Section 5A, we employ the Hilbert–Schmidt
test successfully to our operator T̃ and obtain that, as long as there is δ > 0 such that εi ≲ i−5/4−δ, then
T̃ is bounded on ℓ2

s (N)× ℓ
2
s (N) for s sufficiently large, but we seem to be unable to include 5

4 , even with
a log-loss, in our considerations with the Hilbert–Schmidt method.

On the other hand, we will see in that subsection that the Hilbert–Schmidt method provides us with a
way to suitably perturb the origin, a feature we could not obtain with Schur’s test.
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5. Applications of the main results and techniques

5A. Interpolation formulae perturbing the origin. In the main results of this manuscript, the only
interpolation node that remains unchanged in every scenario is 0. One of the reasons for that is aesthetic:
we are concerned mainly with even functions here, so the origin keeps a sense of symmetry. The other
main reason is technical: we recall that the operator

T : ℓ2
s (Z+)× ℓ

2
s (Z+)→ ℓ2

s (Z+)× ℓ
2
s (Z+)

defined in Section 4B is the identity only when restricted to the set of pairs of sequences satisfying∑
n∈Z

xn2 =

∑
n∈Z

yn2 .

For general sequences, the first entries of this operator possess a correction factor due to the lack of
Poisson summation. Indeed, the kernel of T is the set of all (x, y) ∈ ℓ2

s (Z+)× ℓ
2
s (Z+) such that

xn = yn = 0 for all n ≥ 1,

x0 = −y0.

Furthermore, the cokernel of T is the set where

x0 − y0 + 2
∑
n∈N

x2
n − 2

∑
n∈N

y2
n = 0.

This means dim(ker(T ))= dim(coker(T ))= 1. Therefore we can no longer prove invertibility. Nonethe-
less, since the kernel and cokernel of T are finite-dimensional, T is a Fredholm operator; see the comments
on [Brezis 2011, p. 168] for more details.

We denote by en ∈ ℓ2
s (Z+) the vector consisting of max{1, n}

−s on the n-th entry, and zero otherwise.
With this definition, the set

{(en, 0) : n ∈ Z+} ∪ {(0, en) : n ∈ Z+}

forms an orthonormal basis of ℓ2
s (Z+)× ℓ

2
s (Z+). Thus, for a general operator,

∥A∥
2
H S(ℓ2

s (Z+)×ℓ2
s (Z+))

=

∑
n≥0

(∥A(en, 0)∥2
(s,s) + ∥A(0, en)∥

2
(s,s)),

where we denote by ∥ · ∥(s,s) the norm of ℓ2
s (Z+)× ℓ

2
s (Z+). Next we estimate the Hilbert–Schmidt norm

in the case where A = I − T̃.

Claim 5.1. ∥I − T̃ ∥H S(ℓ2
s (Z+)×ℓ2

s (Z+))
<+∞ holds whenever there is δ > 0 so that |εk | ≲ k−5/4−δ for all

k ≥ 1.

Proof of Claim 5.1. As mentioned before, we can write the identity on ℓ2
s (Z+)× ℓ

2
s (Z+) as

I ({xi }, {yi })= ((x0,G(1),G(
√

2), . . . ), (y0, Ĝ(1), Ĝ(
√

2), . . . )),

where we define the function G as in (4-24). With this notation, the operator T̃ becomes

T̃ ({xi }, {yi })=
(
(x0,G(

√
1 + ε1),G(

√
2 + ε2), . . . ), (y0, Ĝ(

√
1 + ε1), Ĝ(

√
2 + ε2), . . . )

)
.
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Therefore, evaluating at the basis vectors gives us that (I − T̃ )(en, 0) equals(
(0,max{1, n}

−s(an(1)− an(
√

1 + ε1)),max{1, n}
−s(an(

√
2)− an(

√
2 + ε2)), . . . ),

(0,max{1, n}
−s(ân(1)− ân(

√
1 + ε1)),max{1, n}

−s(ân(
√

2)− ân(
√

2 + ε2)), . . . )
)
.

We readily see then that

∥I − T̃ ∥
2
H S(ℓ2

s (Z+)×ℓ2
s (Z+))

≤ 22s+1
∑
n≥0

(∑
k≥1

(1 + k)2s(1 + n)−2s
|an(

√
k)− an(

√
k + εk)|

2
)

+ 22s+1
∑
n≥0

(∑
k≥1

(1 + k)2s(1 + n)−2s
|ân(

√
k)− ân(

√
k + εk)|

2
)
. (5-1)

To bound the terms involving a0 and â0, we simply appeal to the fact these functions are of Schwartz
class to use an estimate like (4-27) and obtain∑
k≥1

(1 + k)2s(
|a0(

√
k + εk)− a0(

√
k)|2 + |â0(

√
k + εk)− â0(

√
k)|2

)
=

∑
k≥1

(1 + k)2s(
|a0(

√
k + εk)|

2
+ |â0(

√
k + εk)|

2)
≤ Cs

∑
k≥1

|εk |
2 (1 + k)2s

k2s+2 .

From Theorem 1.6, we know that when n > 1 there is a c > 0 such that

|an(
√

k)− an(
√

k + εk)| ≤

∫ √
k+εk

√
k

|a′

n(t)| dt ≤
Cεk
√

k
n3/4 log3(1 + n) e−c

√
k/n (5-2)

for every k ≥ 1. Analogously, for n > 1,

|ân(
√

k)− ân(
√

k + εk)| ≤
Cεk
√

k
n3/4 log3(1 + n) e−c

√
k/n.

These estimates plus the condition |εk | ≤ ak−5/4−δ for some a > 0 imply that (5-1) may be bounded from
above by a constant that depends on s times

a2
∑
n≥1

(∑
k≥1

k2sk−5/2−2δ
· k−1e−2c

√
k/n

)
n3/2−2s log6(1 + n)+ a2

∑
k≥1

k−15/2−2δ. (5-3)

The second term in the sum above is convergent, so it is not a problem. Now, in order to prove convergence
of the first term, we first investigate the inner sum. A Riemann sum approach together with a change of
variables shows that the first term in (5-3) is bounded by a constant times

(1 + n)2s−5/2−2δlog6(1 + n)
(∫

∞

0
t2s t−5/2−2δ

· t−1e−c
√

t dt
)

=: (1 + n)2s−5/2−2δlog6(1 + n)Is,δ.

Clearly, the inner integral converges given that s > 5
4 + δ. Putting these estimates together with (5-1), we

obtain that

∥I − T̃ ∥
2
H S(ℓ2

s (Z+)×ℓ2
s (Z+))

≲ a2 Is,δ

(∑
n≥0

(1 + n)−1−2δlog6(1 + n)
)
<+∞,

as desired. □
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As a direct corollary, we see that, for each δ > 0, there is a > 0 so that, if |εi | ≤ ai−5/4−δ for every
i > 0, then

∥I − T̃ ∥H S(ℓ2
s (Z+)×ℓ2

s (Z+))
< 1.

In particular, we shall make use of the fact that T is a Fredholm operator by means of such an inequality,
with the aid of the following result.

Lemma 5.2 [Schechter 1967, Theorems 2.8 and 2.10]. Let 8(X, Y ) denote the set of bounded Fredholm
operators between Banach spaces X and Y. If A ∈ 8(X, Y ) and K ∈ K(X, Y ) is a compact operator,
then A + K ∈8(X, Y ) and i(A)= i(A + K ), where we define the index i :8(X, Y )→ N by

i(A)= dim(ker(A))− dim(coker(A))=: α(A)−β(A).

Furthermore, if ∥K∥op is small enough, then it also holds that α(A + K )≤ α(A).

Let us then define a new perturbed operator S, defined on ℓ2
s (Z+)× ℓ

2
s (Z+), such that

S1({xi }, {yi })k =

∑
n≥0

(xnan(
√

k + εk)+ yn ân(
√

k + εk)),

S2({xi }, {yi })k = S1({yi }, {xi })k

for all k ≥ 0. Notice that we may write S −T = T̃ − I + K0, where K0 has finite rank and is bounded, and
thus also compact. Therefore, S = T + (S − T )= T + (T̃ − I )+ K0 can be written as sum of a Fredholm
operator T and a compact operator T̃ − I + K0. This already implies that, modulo a finite-dimensional
subspace, the sequences ({ f (

√
k + εk)}, { f̂ (

√
k + εk)}) determine the sequences ({ f (

√
k)}, { f̂ (

√
k)}).

That is, we can determine the function f ∈ Seven(R) from its (Fourier) values at the set {
√

k + εk}k∈Z+
,

modulo subtracting functions belonging to a finite-dimensional space.
If, however, we make |εk |<ϵk−5/4−δ , and |ε0| ≤ ϵ, with ϵ small enough, it is now a routine calculation

to conclude that the operator norms of both I − T̃ = A and K0 can be made bounded by a sum of an
arbitrarily small factor plus something that will depend on a convergent series multiplied by the value
of |ε0|, which can made arbitrarily small by choosing ϵ properly. Thus,

i(S)= i(T + (S − T ))= i(T )= 0 ⇐⇒ α(S)= β(S),

and, moreover,
α(S)≤ α(T ),

as the Hilbert–Schmidt norm of the difference is small. Thus, either

α(S)= β(S)= 0,

in which case we can perfectly invert the operator S, or

α(S)= β(S)= 1,

which implies that there is essentially at most one function f0 ∈ Seven(R) that vanishes at
√

k + εk . As
({ f (

√
k + εk)}, { f̂ (

√
k + εk)}) ∈ Im(S) for every real f ∈ Seven(R), we have proved the following result.
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Theorem 5.3. Let T, S, {εi }i≥0 be as above. Then one of the following holds:

(1) either S is an isomorphism from ℓ2
s (Z+)× ℓ

2
s (Z+) onto itself , and thus the values

({ f (
√

j + εj )}, { f̂ (
√

j + εj )})

determine any real-valued function f ∈ Seven(R),

(2) or ker(S) has dimension 1, and therefore S is an isomorphism from ker(S)⊥ onto Im(S).
In particular, any real-valued function f ∈ Seven(R) is uniquely determined by

({ f (
√

j + εj )}, { f̂ (
√

j + εj )}),

together with the value of

⟨({ f (
√

j + εj )}, { f̂ (
√

j + εj )}), ({αi }, {βi })⟩(s,s)

∥({αi }, {βi })∥
2
(s,s)

,

where ({αi }, {βi }) ∈ ker(S) is a generator for the kernel of S.

Notice that the first option in Theorem 5.3 yields immediately an interpolation formula, in the spirit of
(4-26). For the second one, the operator is now only invertible if restricted to ker(S)⊥, and the process
of recovering f ∈ Seven(R : R) has to take into account the inner product with the kernel vector and the
structure of the range.

5B. Uniqueness for small powers of integers. Let α ∈
(
0, 1

2

)
. Bearing in mind the overall framework of

uniqueness formulae in which Theorem 1.4 situates itself, we address the question of determining when
the only function f ∈ Seven(R) that vanishes together with its Fourier transform at ±nα is the identically
zero function.

Indeed, we would like to study the natural operator that sends the sequence of values at the roots
of integers ({ f (

√
k)}k, { f̂ (

√
k)}k}) to the sequence ({ f (nα)}n, { f̂ (nα)}n). Our goal is to show that this

operator is injective. In order to do that, we will first study simpler operators.
In fact, let K0 ∈ N be a fixed positive integer. Fix a set of 2K0 positive real numbers t1< t2< · · ·< t2K0

such that t1 >
√

K0 and none of the tj can be written as a square root of a positive integer. We fix s > 0
sufficiently large and define the operator

TK0 : ℓ2
s (N)× ℓ

2
s (N)→ℓ2

s (N)× ℓ
2
s (N),

({xi }i , {yi }i ) 7→
(
(x0,G(t1),G(t2), . . . ,G(t2K0), xK0+1, xK0+2, . . . ),

(y0, Ĝ(t1), Ĝ(t2), . . . , Ĝ(t2K0), yK0+1, yK0+2, . . . )
)
.

Here, we denoted by G the function defined as in (4-24). Recall that G depends itself on {xi }i , {yi }i , and
thus, for fixed t , G(t) and Ĝ(t) are both linear functionals on ℓ2

s (Z≥0)× ℓ
2
s (Z≥0).

Lemma 5.4. For any K0 ≥ 1 and {tj } j=1,...,2K0 as above, the operator TK0 is bounded and injective.

Proof. We begin with the boundedness assertion. As TK0 differs only in at most the first 2K0 + 1
coordinates from an iteration of the shift operator

s(({xi }i , {yi }i )= ((0, x0, x1, . . . ), (0, y0, y1, . . . )),
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boundedness follows from boundedness of the operator that maps a pair of sequences ({xi }i , {yi }i ) ∈

ℓ2
s (N)× ℓ

2
s (N) to(
(x0,G(t1),G(t2), . . . ,G(t2K0), 0, . . . ), (y0, Ĝ(t1), Ĝ(t2), . . . , Ĝ(t2K0), 0, . . . )

)
.

As G, Ĝ ∈ L∞(R) for any pair of sequences {xi }, {yi }, with bounds depending only on the ℓ2
s (N)-norms

of the sequences, it follows that this new finite-rank operator is bounded.
The injectivity part is subtler. Indeed, fix a pair of sequences ({xi }, {yi }) ∈ ℓ2

s (N) × ℓ2
s (N), and

suppose that TK0({xi }, {yi }) = 0. It follows that the special function G(t) is a linear combination of
a1, . . . , aK0, â1, . . . , âK0 . In order to analyze such functions, we will need to investigate further the
intrinsic form of the interpolating functions an , and thus those of b±

n . As the reader will see in the analysis
below, we will show that the functions G±Ĝ have at most K0+1 zeros on (

√
K0,+∞) from the assertions

above. This is, indeed, the reason why we need to use 2K0 different values in order to prove injectivity.
Indeed, it follows from the Fourier expansion of g±

n near infinity and the formula

b±

n (x)=
1
2

∫ 1

−1
g±

n (z)e
π i x2z dz (5-4)

that, whenever |x |>
√

n, it can also be represented as

b±

n (x)= sin(πx2)

∫
∞

0
g±

n (1 + i t)e−πx2t dt. (5-5)

To see this, one shifts contours in (5-4) over the rectangular path passing through −1,−1 + iT, 1 + iT
and 1. The condition |x |>

√
n comes into play in order to guarantee that one may safely send T to ∞,

and the results in [Radchenko and Viazovska 2019] show that gεn(s + i R) grows as eπn R at infinity for
fixed s ∈ R. With (5-5) in mind and the facts that an = (b+

n + b−
n )/2 and ân = (b+

n − b−
n )/2, we see that

the Fourier invariant part of G may be written as

(G+ Ĝ)(x)= sin(πx2)

∫
∞

0

( K0∑
j=1

αj g+

j (1 + i t)
)

e−πx2t dt

for some sequence αj of real numbers, and an analogous identity holds for G− Ĝ, with g−
n instead. We

recall that the weakly holomorphic modular forms g±
n satisfy that

g+

n (z)= θ(z)3 P+

n (1/J (z)),

g−

n (z)= θ(z)3(1 − 2λ(z))P−

n (1/J (z)),

where the monic polynomials P−
n , P+

n are of degree n. Therefore, there are polynomials Q, R of
degree ≤ K0 such that

G+ Ĝ = sin(πx2)

∫
∞

0
θ(1 + i t)3 Q

(
1

J (1 + i t)

)
e−πx2t dt,

G− Ĝ = sin(πx2)

∫
∞

0
θ(1 + i t)3(1 − 2λ(1 + i t))R

(
1

J (1 + i t)

)
e−πx2t dt.

Before moving forward, we need the following result:
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Lemma 5.5. The factors θ(1 + i t)3 and (1 − 2λ(1 + i t)) do not change sign for t ∈ (0,∞), and the
function 1/J (1 + i t) is real-valued and monotonic for t ∈ (0,∞).

Proof. By using (2-1), we get that

θ(1 + i t)=

∑
n∈Z

(−1)ne−πn2t
=

∑
n∈Z

e−4πn2t
−

∑
n∈Z

e−π(2n+1)2t .

We now consider the function ft(x)= e−π(2x)2t. Then the sum above equals∑
n∈Z

ft(n)−
∑
n∈Z

ft
(
n +

1
2

)
.

By the Poisson summation formula, the difference above equals

1
2
√

t

(∑
n∈Z

e−π(n/(2
√

t))2
−

∑
n∈Z

eπ ine−π(n/(2
√

t))2
)

=
1

√
t

∑
n odd

e−π(n/(2
√

t))2
≥ 0.

This proves the first assertion.
For the second, we simply see from (2-2) that λ(1 + z) has only nonpositive coefficients in its q-series

expansion. This implies that λ(1 + i t) is nonpositive for t ∈ (0,∞), which implies that 1 − 2λ(1 + i t) is
always nonnegative.

Finally, for the third assertion, we notice that, as J (1 + z)=
1
16λ(1 + z)(1 − λ(1 + z)), and thus, from

the analysis above, the q-series expansion of J (1 + z) contains only nonpositive coefficients. Therefore,
the function 1/J (1 + i t) is nonpositive for t ∈ (0,∞), and it is monotonically decreasing there. □

By Lemma 5.5, we get that the part of the integrand in the expressions above multiplying the e−πx2t

factor changes sign at most K0 + 1 times. Notice that we can embed both integrals in (5-6) into the
framework of Laplace transforms: defining

Q(t)= θ(1 + i t)3 Q(1/J (1 + i t)), R(t)= θ(1 + i t)3(1 − 2λ(1 + i t))R(1/J (1 + i t)),

we are interested in studying the positive zeros of L[Q](πx2),L[R](πx2), where

L[φ](s)=

∫
∞

0
φ(t)e−st dt

denotes the Laplace transform of φ evaluated at the point s. We may reduce even further our task to
studying the positive zeros of L[Q],L[R]. The following result, a version of the Descartes rule for the
Laplace transform, is the tool we need to bound the number of positive zeros of such expressions as a
function of the number of sign changes of the function being transformed.

Proposition 5.6 (Descartes rule for the Laplace transform). Let φ : R → R be a smooth function such
that its Laplace transform L[φ] converges on some open half-plane Re(s) > s0. Then the number of zeros
of L[φ] on the interval (s0,+∞) is at most the number of sign changes of φ.

Proof. The proof follows by induction on the number of sign changes of the function φ. Indeed, if φ ≥ 0,
it follows easily that the Laplace transform satisfies L[φ] ≥ 0, with equality if and only if φ ≡ 0.
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Suppose now that φ changes sign n + 1 times on (0,∞). Number its zeros on the positive half-line as
a0 < a1 < · · · < an . Then L[φ] has as many zeros as ea0sL[φ](s) = F(s). The derivative of F is then
given by

F ′(s)= −

∫
∞

0
(t − a0)φ(t)e−(t−a0)s dt = ea0sL[(t − a0)φ(s)](s).

Notice that the new smooth function (t − a0)φ(t) still satisfies the same properties as φ, but now has
exactly n sign changes. By inductive hypothesis, F ′ has at most n zeros, which, by the mean value
theorem, implies that F has at most n + 1 zeros. □

Using this claim for Q,R, we see that their respective Laplace transforms possess at most K0 zeros
on the interval (

√
K0,+∞). With this information, we can already finish: From (5-6), the functions

G± Ĝ can only vanish at at most K0 points on the interval (
√

K0,∞) which are not roots of positive
integers, in the case G ̸≡ 0. But, according to our assumption that ({xi }, {yi }) ∈ ker(TK0), we have
G(tj )= Ĝ(tj )= 0, j = 1, . . . , 2K0. By the properties we chose for the sequence tj , G ≡ 0, and thus the
map TK0 is injective. □

We need one more result in order to infer results about uniqueness for small powers of integers. In
contrast to the full perturbation case of our main theorem, we must prove that the injective operators TK0

are also somewhat stable with respect to injectivity under perturbations. In order to do this, the following
result is essential.

Lemma 5.7. The range of TK0 is closed.

Proof. Suppose the sequence in ℓ2
s (N)×ℓ

2
s (N) given by {TK0({x j

i }, {y j
i })} j≥0 is a Cauchy sequence. This

implies that the sequence {{x j
i }i=0,K0+1,..., {y j

i }i=0,K0+1,...} j≥0 is a Cauchy sequence, and therefore it
converges to a certain limiting sequence

{{xi }i=0,K0+1,..., {yi }i=0,K0+1,...} ∈ ℓ2
s (N)× ℓ

2
s (N).

Define, thus, the 4K0 × 2K0 matrix AK0 given by taking

(a1(tj ), a2(tj ), . . . , aK0(tj ), â1(tj ), â2(tj ), . . . , âK0(tj ))

and
(â1(tj ), â2(tj ), . . . , âK0(tj ), a1(tj ), a2(tj ), . . . , aK0(tj ))

to be its lines for j = 1, . . . , 2K0. We first claim that this matrix is injective. Indeed,

G̃(t)=

K0∑
i=1

(xi ai (t)+ yi âi (t))

vanishes, together with its Fourier transform, at tj , j = 1, . . . , 2K0, where ({xi }
K0
i=1, {yi }

K0
i=1) belongs to

ker(AK0). By the proof of Lemma 5.4, this implies xi = yi = 0, i = 1, . . . , K0.
As AK0 is injective, there is a constant cK0 > 0 so that

∥AK0v∥4K0 ≥ cK0∥v∥2K0, (5-6)
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where we denote by ∥ · ∥d the usual euclidean norm on a d-dimensional space. Translating to our original
problem, as {TK0({x j

i }, {y j
i })} j≥0 is a Cauchy sequence in ℓ2

s (N)× ℓ
2
s (N),

{{x j
i }i=0,K0+1,..., {y j

i }i=0,K0+1,...} j≥0

is a convergent sequence, and thus we get that the sequences
K0∑

i=1

(xk
i ai (tj )+ yk

i âi (tj )), j = 1, . . . , 2K0,

are also Cauchy in k ≥ 0. By (5-6), ({xk
i }

K0
i=1, {yi }

K0
i=1)k≥0 is Cauchy. This implies that there is a limiting

sequence ({xi }, {yi }) ∈ ℓ2
s (N)× ℓ

2
s (N) so that

TK0({x j
i }, {y j

i })→ TK0({xi }, {yi }) as j → ∞. □

We are finally able to prove the following uniqueness result:

Corollary 5.8. Let α ∈
(
0, 2

9

)
. There exists cα > 0 such that the following holds. For each c ∈ (0, cα),

if f ∈ Seven(R) is a real-valued function that vanishes together with its Fourier transform at ±c · nα,
then f ≡ 0.

Moreover, for each n0 > 1, the same assertion as before holds under the weaker assumption that f
vanishes together with f̂ at ±c ·mα, where m ∈ {0}∪(mα(n0),+∞) and mα(n0)= min{n ∈ N : cnα > n0}.

Notice that the second assertion above, albeit technical, merely means we may start the sequences of
nonzero roots of f, f̂ as far away from the origin as we wish, as long as one keeps it under a certain
threshold in terms of denseness.

Proof. Fix α ∈
(
0, 2

9

)
and let c> 0 be a constant, to be precisely chosen later, which is allowed to depend

only on α. We start by noticing that, for each α ∈
(
0, 2

9

)
, there is n0(α) ≥ 1 such that whenever n ∈ N

is greater than n0(α), then there is m ∈ N so that for all n ≥ n0(α), there exists m ∈ N so that we can
write c · mα

=
√

n + εn , where {εn}n satisfies the conditions of Theorem 1.4. Indeed, start by noticing
that simply letting m = ⌈(n/c2)1/(2α)⌉ implies |

√
n − cmα

| ≲ c1/αn(α−1)/(2α).
Indeed,

|
√

n − cmα
| = cα

∫
⌈(n/c2)1/(2α)⌉

(n/c2)1/(2α)
tα−1 dt ≲ c1/ααn(α−1)/(2α). (5-7)

In particular, if (α− 1)/(2α) <−
5
4 −

1
2 ⇐⇒ α < 2

9 , the assertion follows. Let us single out the sequence
of numbers selected above, which we index as {c · m(n)α}n≥n0(α). We then consider the operator Tn0(α)

associated to some sequence of 2n0(α) positive real numbers tj , j = 1, . . . , 2n0(α), satisfying the
hypotheses of Lemma 5.4.

We claim that the perturbed operator

T̃n0(α) : ℓ
2
s (N)× ℓ

2
s (N)→ ℓ2

s (N)× ℓ
2
s (N) that takes a pair ({xi }, {yi }) to(

(x0,G(t1),G(t2), . . . ,G(t2n0),G(c · m(n0 + 1)α),G(c · m(n0 + 2)α), . . . ),

(y0, Ĝ(t1), Ĝ(t2), . . . , Ĝ(t2n0), Ĝ(c · m(n0 + 1)α), Ĝ(c · m(n0 + 2)α), . . . )
)

(5-8)



2372 JOÃO P. G. RAMOS AND MATEUS SOUSA

is injective for some s > 0 that depends on α. Indeed, from Lemma 5.7 there must exist a constant Cn0

so that
∥Tn0v∥(s,s) ≥ Cn0∥v∥(s,s)

holds for all v ∈ ℓ2
s (N)× ℓ

2
s (N). But, by the same calculation as in the previous subsection, we have that

∥T̃n0(α) − Tn0(α)∥H S(ℓ2
s (N)×ℓ

2
s (N))

<
Cn0

2

holds, as long as we take α < 2
9 and c = c(α) sufficiently small, because (5-7) implies we satisfy the

conditions of Theorem 5.3. This implies, in particular, that

∥T̃n0v∥(s,s) ≥
Cn0

2
∥v∥(s,s)

for each v ∈ ℓ2
s (N)× ℓ

2
s (N), and thus the operator T̃n0 is, indeed, injective, as desired.

In order to conclude, we notice that the operator

Tn0(α) : ℓ
2
s (N)× ℓ

2
s (N)→ ℓ2

s (N)× ℓ
2
s (N) that takes a pair ({xi }, {yi }) to(

(x0,G(ckα1 ),G(ckα2 ), . . . ,G(ckα2n0
),G(c · m(n0 + 1)α),G(c · m(n0 + 2)α), . . . ),

(y0, Ĝ(ckα1 ), Ĝ(ckα2 ), . . . , Ĝ(ckα2n0
), Ĝ(c · m(n0 + 1)α), Ĝ(c · m(n0 + 2)α), . . . )

)
, (5-9)

for some sequence kj , j = 1, . . . , 2n0, of integers not belonging to the sequence m(n) we selected above,
is still injective. In fact, it only differs from the operator T̃n0 in at most 2n0 entries. But, on the other
hand, for kj = ⌊(tj/c)1/α⌋, j = 1, . . . , 2n0, and c > 0 sufficiently small, we see by Theorem 1.6 that

|G(ckαj )−G(tj )| ≤

∞∑
i=0

(|xi∥ai (tj )− ai (ckαj )| + |yi ||âi (tj )− âi (ckαj )|)

≲ sup
1≤l≤2n0

|tl − ckαl |

( ∞∑
i=0

(1 + i)5/2(|xi | + |yi |)

)
≲ ϵ∥({xi }, {yi })∥(s,s).

Here, note that ϵ depends on c > 0 and α, and tends to 0 as c → 0. For ϵ > 0 sufficiently small, we see
from the previous argument that Tn0(α) still has closed range and is injective. Thus, by taking cα > 0
sufficiently small we have that the sequence ({ f (±nα)}, { f̂ (±nα)}) determines uniquely the sequence
({ f (

√
n)}, { f̂ (

√
n)}). This finishes the proof of the first assertion.

The assertion about being able to restrict the first node cαmα to be as large as we want follows in the
exact same way, and we thus omit it. □

One can inquire about the importance of such a result; as in [Ramos and Sousa 2022] we have shown
that the uniqueness result stated in Corollary 5.8 holds for α ∈

(
0, 1 −

√
2

2

)
, which is significantly larger

than the range stated here. Nonetheless, Corollary 5.8 gives us automatic results. Indeed, if one manages
to prove that for all δ > 0 there is ϵ > 0 so that, if |εk | ≤ ϵ for all k ∈ N, then

∥I − T̃ ∥op < δ,

it implies automatically that we can extend the results in Corollary 5.8 to the full diagonal range α ∈
(
0, 1

2

)
.
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We also note that Corollary 5.8 is not all we can say about the problem of determining the best
exponents (α, β) so that

f (±nα)= f̂ (±nβ)= 0, f ∈ Seven(R) =⇒ f ≡ 0.

Indeed, we can easily go further than the diagonal case detailed above: if α, β ∈
(
0, 2

9

)
are arbitrary

exponents, we notice that we can still pick n0 ∈ N so that for each n > n0 = n0(α, β), there exists a pair
(m1(n),m2(n)) ∈ N2 so that

|cm1(n)α −
√

n| + |cm2(n)β −
√

n| ≲ c1/ααn(α−1)/(2α)
+ c1/ββn(β−1)/(2β),

and the right-hand side can be made ≪ n−5/4−δ for some δ > 0. This induces us to consider the operator

Tn0(α,β) : ℓ
2
s (N)× ℓ

2
s (N)→ ℓ2

s (N)× ℓ
2
s (N) taking pairs ({xi }, {yi }) to(

(x0,G(ckα1 ),G(ckα2 ), . . . ,G(ckα2n0
),G(m1(n0 + 1)α),G(m1(n0 + 2)α), . . . ),

(y0, Ĝ(clβ1 ), Ĝ(clβ2 ), . . . , Ĝ(clβ2n0
), Ĝ(m2(n0 + 1)β), Ĝ(m2(n0 + 2)β), . . . )

)
(5-10)

for two sequences of integers (kj , lj ), j = 1, . . . , 2n0, so that |tj − ckαj | + |tj − clβj | is sufficiently small
for all j ∈ [0, 2n0], where we select tj , j = 1, . . . , 2n0, satisfying the hypotheses of Lemma 5.4.

By the same strategy outlined in the proof of Corollary 5.8, the Hilbert–Schmidt norm as operators
acting on ℓ2

s (N)× ℓ2
s (N) of the difference Tn0(α,β) − Tn0(α,β) is arbitrarily small, as long as we make

the value of c = c(α, β) smaller. As a consequence, Tn0 is also injective and its range is closed. These
considerations prove, therefore, the following:

Corollary 5.9. Let α, β ∈
(
0, 2

9

)
. Then there is cα,β > 0 so that the following holds. For all c ∈ (0, cα,β), if

f ∈ Seven(R) is a real-valued function that vanishes at ±cnα and its Fourier transform vanishes at ±cnβ,
then f ≡ 0.

Moreover, for each n0>1, the same assertion above holds under the weaker assumption that f vanishes
for ±c · mα and f̂ vanishes for ±c · kβ, where m ∈ {0}∪ (mα,β(n0),+∞), k ∈ {0}∪ (kα,β(n0),+∞), and
mα,β(n0), nα,β(n0) are the least positive integers such that c · mα > n0 and c · kβ > n0, respectively.

Remark. In the end, we do not quite attain the primary goal of this section of proving Fourier uniqueness
results for the sequences ({±nα}, {±nβ}), but only a slightly weaker version of it, with a small constant
c(α, β) in front. The main reason for that in the proofs above is the location of the positive reals ti :
although their exact values do not matter in the end, it is crucial, in order to use Proposition 5.6, that they
lie after the node n0. We must therefore either force n0 not to be too large in order not to make the norm
of the matrix AK0 too small, or fix them from the beginning and make the perturbations of TK0 fall closer
to it. In any case, this implies nontrivial use of the constant c multiplying the sequences ({±nα}, {±nβ}).

We believe that further studying operators resembling TK0 above and their injectivity properties could
yield better results in this regard. In order not to make this exposition even longer, we will not pursue this
matter any further.
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5C. Annihilating pairs. As an application of the results above, we will prove some strong annihilating
properties of the sets {±cαnα}n∈N, {±cβnβ}n∈Z.

Indeed, let A, B ⊂ R be two discrete sets. Inspired by the results and definitions of [Benedicks 1985;
Amrein and Berthier 1977] (see also [Nazarov 1993]), we say that (R \ A,R \ B) is a weakly annihilating
pair for a class C ⊂ L2(R) if whenever f (A)= f̂ (B)= {0}, f ∈ C, then f ≡ 0.

This definition implies directly that (R \ {±
√

n}n≥0,R \ {±
√

n}n≥0) is a weakly annihilating pair for
Seven(R; R) due to (1-3). On the other hand, under the hypotheses of Theorem 1.4, it follows directly that
(R \ {±

√
n + εn}n≥0,R \ {±

√
n + εn}n≥0) is also weakly annihilating for Seven(R; R).

As a natural counterpart, we define a pair (R \ A,R \ B) to be ω-strongly annihilating for a class
C ⊂ L2(R), ω ∈ R, if there is a real number γ ∈ R such that the inequality

∥ f ∥L2((1+|x |)γ ) + ∥ f̂ ∥L2((1+|x |)γ ) ≲

(∑
a∈A

| f (a)|2(1 + |a|)ω +

∑
b∈B

| f̂ (b)|2(1 + |b|)ω
)1/2

holds for all f ∈ C.
Our first contribution is Theorem 1.7; i.e., the pair (R \ {±

√
n}n≥0,R \ {±

√
n}n≥0) is ω-strongly

annihilating for some ω > 0.

Proof of Theorem 1.7. We start with (1-10). Indeed, consider a sequence {εn}n≥0 of real numbers. We
begin by observing that, for all integers n ≥ 1, we have, by (1-3) together with Theorem 1.6,

| f (x)− f (
√

n)| ≲
|εn|
√

n

∑
m≥0

(1 + m)3/4 log3(m + 1)e−c
√

n/m
[| f (

√
m)| + | f̂ (

√
m)|],

whenever x ∈ [
√

n,
√

n + εn). Suppose then |εn| ≤ δ(1 + |n|)−θ holds for all n ≥ 1, for some θ > 0 and
δ > 0. If one uses the bound above together with the triangle inequality, an integration over the interval
[
√

n,
√

n + εn) and the Cauchy–Schwarz inequality, one obtains

(1 + n)s | f (
√

n)|2 ≲
(∫ √

n+1

√
n

| f (y)|2(1 + |y|)2(θ+2s)+1 dy
)

+ δ
∑
m≥0

(| f (
√

m)|2 + | f̂ (
√

m)|2)(1 + m)3/2 log6(1 + m)e−2c
√

n/m(1 + n)−2θ−1+s .

If 2θ+1− s > 1 ⇐⇒ θ > s/2, we may sum the right-hand side above in n ≥ 1 and get a uniform constant
in m ≥ 0. This yields∑
n≥1

(1 + n)s | f (
√

n)|2 ≲
∫

R

| f (y)|2(1 + |y|)2(θ+2s)+1 dy

+ δ
∑
m≥0

(| f (
√

m)|2 + | f̂ (
√

m)|2)(1 + m)3/2 log6(1 + m).

An entirely analogous calculation implies the same on the level of Fourier transforms; that is,∑
n≥1

(1 + n)s | f̂ (
√

n)|2 ≲
∫

R

| f̂ (y)|2(1 + |y|)2(θ+2s)+1 dy

+ δ
∑
m≥0

(| f (
√

m)|2 + | f̂ (
√

m)|2)(1 + m)3/2 log6(1 + m).
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Summing these two bounds, if s > 3
2 and δ ≪ 1 is sufficiently small, we obtain∑

n≥1

(1 + n)s[| f (
√

n)|2 + | f̂ (
√

n)|2] ≤ C(∥ f ∥L2((1+|x |)γ ) + ∥ f̂ ∥L2((1+|x |)γ )), (5-11)

which was the desired inequality, except for the n = 0 term. In that regard, we notice that a Sobolev
embedding argument allows us to include it in the left-hand side of (5-11), which proves (1-10). Notice
that we may take, for this part, any γ > 5s + 1.

For (1-11), we will use once more Theorem 1.6. Indeed, it follows from that and Cauchy–Schwarz that

| f (x)| + | f̂ (x)| ≲
∑
n≥0

[| f (
√

n)| + | f̂ (
√

n)|](1 + n)1/4 log3(1 + n)e−c|x |/
√

1+n

≲

(∑
n≥0

[| f (
√

n)|2 + | f̂ (
√

n)|2](1 + n)5/2 log6(1 + n)e−2c|x |/
√

1+n
)1/2

.

Thus, we readily obtain that

∥ f ∥L2((1+|x |)s) + ∥ f̂ ∥L2((1+|x |)s) ≲

(∑
n≥0

[| f (
√

n)|2 + | f̂ (
√

n)|2](1 + n)(5+s)/2 log6(1 + n)
)1/2

for any s > 0. This proves the Theorem for any ω > s/2 + 4. □

Furthermore, as a corollary we can also obtain that the pair (R \ {±
√

n + εn}n≥0,R \ {±
√

n + εn}n≥0)

is ω-strongly annihilating for some ω > 0, which was the content of Corollary 1.8.

Proof of Corollary 1.8. Notice that the operator T̃ : ℓ2
r (N)×ℓ

2
r (N)→ ℓ2

r (N)×ℓ
2
r (N) given in Section 4B is,

under our given hypotheses, bounded and invertible for r ≫1 sufficiently large. Moreover, it takes, for each
f ∈ Seven(R), the pair ({ f (

√
n)}n∈N, { f̂ (

√
n)}n∈N) to the pair ({ f (

√
n + εn)}n∈N, { f̂ (

√
n + εn)}n∈N).

Therefore, if ω > s > r , then the comparison of

∥({ f (
√

n)}n∈N, { f̂ (
√

n)}n∈N)∥ℓ2
s (N)×ℓ

2
s (N)

with

∥({ f (
√

n + εn)}n∈N, { f̂ (
√

n + εn)}n∈N)∥ℓ2
s (N)×ℓ

2
s (N)

holds with comparing constants independent of f ∈Seven(R). The same assertion holds with ℓ2
ω(N)×ℓ

2
ω(N)

norms instead of ℓ2
s (N)× ℓ

2
s (N). This is enough to conclude the asserted statement. □

Finally, we conclude that, whenever cα, cβ are sufficiently small, then (R \ {±cαnα},R \ {±cβnβ}) is
ω-strongly annihilating for ω sufficiently large.

Corollary 5.10. For α, β < 2
9 and cα, cβ sufficiently small and for any γ > 0 sufficiently large, we have

∥ f ∥L2((1+|x |)) + ∥ f̂ ∥L2((1+|x |)γ ) ≲

(∑
n≥0

(1 + n)ω[| f (cαnα)|2 + | f̂ (cβnβ)|2]
)1/2

,

whenever ω > (5 + γ )/4 and f ∈ Seven(R) is a real-valued function.
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Proof. Under the hypotheses above, we know that the operator Tn0(α,β) from (5-10) is still injective and
has closed range on ℓ2

s (N)× ℓ
2
s (N) for s ≫ 1. For that reason, the norm

∥({ f (
√

n)}n∈N, { f̂ (
√

n)}n∈N)∥ℓ2
s (N)×ℓ

2
s (N)

can be controlled by a constant independent of f times

∥Tn0(α,β)({ f (
√

n)}, { f̂ (
√

n)})∥ℓ2
s (N)×ℓ

2
s (N)

.

However, the sequences constituting Tn0(α,β)({ f (
√

n)}, { f̂ (
√

n)}) are subsequences of each entry of
({cαnα}, {cβnβ}), respectively. As the weight n 7→ (1 + n)ω is monotonic on N, adding more terms only
increases the weighted norm, and thus the conclusion follows. □

5D. The Cohn–Kumar-Miller-Radchenko–Viazovska result and perturbed interpolation formulae with
derivatives. As another illustration of our main technique, we prove that the interpolation formulae with
derivatives in dimension 8 and 24 from [Cohn et al. 2022] can be suitably perturbed.

Indeed, we first recall one of the main results of [Cohn et al. 2022]: let (d, n0) be either (8, 1) or
(24, 2). Then every f ∈ Srad(R

d) can be uniquely recovered by the sets of values

{ f (
√

2n), f ′(
√

2n), f̂ (
√

2n), f̂ ′(
√

2n)}, n ≥ n0,

through the interpolation formula

f (x)=

∑
n≥n0

f (
√

2n)an(x)+
∑
n≥n0

f ′(
√

2n)bn(x)+
∑
n≥n0

f̂ (
√

2n)ân(x)+
∑
n≥n0

f̂ ′(
√

2n)b̂n(x). (5-12)

We also have uniform estimates on the functions an, ân, bn, b̂n: indeed, there is τ > 0 so that

sup
l∈{0,1,2}

sup
x∈Rd

(1 + |x |)100(|a(l)n (x)| + |â(l)n (x)| + |b(l)n (x)| + |b̂(l)n (x)|)≲ nτ (5-13)

for all n ∈ N. Here and throughout this section, we shall denote by g′(x) the derivative of the (radial)
function g regarded as a one-dimensional function.

By [Cohn et al. 2022, Theorem 1.9], we know that the matrices

Mn(x)=


an(x) a′

n(x) ân(x) â′
n(x)

bn(x) b′
n(x) b̂n(x) b̂′

n(x)
ân(x) â′

n(x) an(x) a′
n(x)

b̂n(x) b̂′
n(x) bn(x) b′

n(x)

 (5-14)

satisfy that Mn(
√

2m)= δm,n I4×4 for m, n ≥n0. As we know that the map that takes a vector of sufficiently
rapidly decaying sequences

({αn}, {βn}, {α̃n}, {β̃n})n≥n0

onto the function

f(x)=

∑
n≥n0

(αnan(x)+βnbn(x)+ α̃n ân(x)+ β̃n b̂n(x))
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is, in fact, injective (and moreover an isomorphism if we consider the set of all arbitrarily rapidly decaying
sequences), we shall make use of this function in our estimates. Indeed, we have that the map that takes
the quadruple of sequences

({αn}, {βn}, {α̃n}, {β̃n})

onto

(f(
√

2n), f′(
√

2n), f̂(
√

2n), f̂′(
√

2n))n≥n0

is, in fact, the identity. Another way to represent this map is as the series∑
n≥n0

(αn, βn, α̃n, β̃n) · Mn(
√

2n).

We define, therefore, the operator that takes the same quadruple onto(
f(

√
2n + εn), f

′(
√

2n + εn), f̂(
√

2n + εn), f̂
′(
√

2n + εn)
)

n≥n0
.

In the alternative notation, this operator, which we shall denote by T, is given by∑
n≥n0

(αn, βn, α̃n, β̃n) · Mn(
√

2n + εn).

As before, we seek to prove that T is invertible when defined over some space

ℓ2
s (N)× ℓ

2
s (N)× ℓ

2
s (N)× ℓ

2
s (N)=: (ℓ2

s (N))
4,

where we may take s ≫ 1 sufficiently large. As our aim here is not to establish the sharpest possible results,
but only to prove that we may prove versions of the above interpolation formula with some perturbed nodes;
we shall make use of the Hilbert–Schmidt test, as in Section 5A above. Indeed, the same remark about
the definition of the perturbed operators in the proof of Theorem 1.4 holds here as well: we first define
T over quadruples of sequences with finitely many nonzero terms, and then we use a priori boundedness
of I −T over this space to define T in the whole space (ℓ2

s (N))
4 by density. Thus, we wish to prove that

∥I −T∥H S((ℓ2
s (N))

4) < 1.

A simple computation with the Hilbert–Schmidt norm using (5-14) shows that this quantity is bounded by∑
m,n>n0

m2sn−2s(|an(
√

2m)−an(
√

2m+εm)|
2
+|ân(

√
2m)−ân(

√
2m+εm)|

2

+|a′

n(
√

2m)−a′

n(
√

2m+εm)|
2
+|â′

n(
√

2m)−â′

n(
√

2m+εm)|
2
+|bn(

√
2m)−bn(

√
2m+εm)|

2

+|b̂n(
√

2m)−b̂n(
√

2m+εm)|
2
+|b′

n(
√

2m)−b′

n(
√

2m+εm)|
2
+|b̂′

n(
√

2m)−b̂′

n(
√

2m+εm)|
2).

Notice that we have used, as in the proof of Theorems 1.4 and 5.3, the standard orthonormal basis for
the space ℓ2

s (N), which induces the additional (m/n)2s factor in the summand above. By (5-13) and the
mean value theorem, the sum above is bounded by (an absolute constant times)∑

m,n>0

m2sn−2s
× m−100n2τε2

m .
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The sum above is representable as a product of a sum in m and one in n. The one in n is convergent if
s > τ + 1. We then fix such a value of s. For such values, the second sum is∑

m>0

m2s−100ε2
m,

which converges in the case εm ≲m49−s. For all such sequences, the difference I −T is a Hilbert–Schmidt
operator. Moreover, if εm ≤ δm49−s for δ > 0 sufficiently small, we will have ∥I − T∥H S(ℓ2

s (N)
4) < 1.

Summarizing, we have shown the following result:

Theorem 5.11. There are C0 > 0 and δ > 0 so that the following holds: for each sequence εk so that
|εk |< δk−C0, any function f ∈ Srad(R

d) is uniquely determined by the values(
f (

√
2n + εn), f ′(

√
2n + εn), f̂ (

√
2n + εn), f̂ ′(

√
2n + εn)

)
n≥n0

, (5-15)

where we let (d, n0)= (8, 1) or (24, 2).

In the same spirit of Section 4B, one can obtain an interpolation formula with the values (5-15) from
Theorem 5.11.

We remark that, in the same way that we undertook our analysis for the Radchenko–Viazovska
interpolating functions, we expect the functions an, bn in [Cohn et al. 2022, Theorem 1.9] should also
satisfy some exponential-like decay. This fact, although possible, should be sensibly more technically
involved than Theorem 1.6, due to the more complicated nature of the construction of the interpolating
functions with derivatives in dimensions 8 and 24.

5E. Perturbed interpolation formulae for odd functions. Finally, in the same spirit of the results in
Section 4, we briefly comment on interpolation formulae for odd functions. Recall the following results
from [Radchenko and Viazovska 2019, Section 7]:

Theorem 5.12 [Radchenko and Viazovska 2019, Theorem 7]. There exist sequences of odd functions
d±

m : R → R, m ≥ 0, belonging to the Schwartz class so that

d̂±
m = (∓i)d±

m , d±

m (
√

n)= δn,m
√

n, n ≥ 1.

Moreover, limx→0 d+
m (x)/x = δ0m . These functions satisfy the uniform bound

|d±

n (x)| ≲ n5/2 for all x ∈ R, n ≥ 0,

and, finally, for each odd and real Schwartz function f : R → R,

f (x)= d+

0 (x)
f ′(0)+ i f̂ ′(0)

2
+

∑
n≥1

(
cn(x)

f (
√

n)
√

n
− ĉn(x)

f̂ (
√

n)
√

n

)
, (5-16)

where cn = (d+
n + d−

n )/2, and the right-hand side of the sum above converges absolutely.

As a direct consequence, we see that any real, odd, Schwartz function on the real line is determined
uniquely by the union of its values at

√
n and the values of its Fourier transform at

√
n with f ′(0)



PERTURBED INTERPOLATION FORMULAE AND APPLICATIONS 2379

and f̂ ′(0). By employing the results in Section 4, we will show that we can actually recover any such
function from { f (

√
n + εn)}n≥1 ∪ { f̂ (

√
n + εn)}n≥1 ∪ { f ′(0)} ∪ { f̂ ′(0)} instead.

Indeed, first of all, we start by noticing that the same techniques employed to refine the uniform
estimates from [Radchenko and Viazovska 2019] can be applied to the functions d±

m , as they are defined
in a completely analogous way to the b±

n from Section 4. By carrying out the same kind of estimates, we
are able to obtain

|d±

n (x)| ≲ n3/4 log3(1 + n)e−c′
|x |/

√
n for all x ∈ R, n ≥ 1, (5-17)

for some absolute constant c′ > 0. By the same analysis of the ∂x -partial derivative of the generating
function used in Section 4A, this readily implies that the derivatives of the d±

n satisfy essentially the same
decay; in fact, |(d±

n )
′(x)| ≲ n5/4 log3(1 + n)e−c′′

|x |/
√

n for all x ∈ R, n ≥ 1, with c′′ > 0 another absolute
constant.

We consider now the operator that takes a pair of sequences ({αn}, {βn}) ∈ ℓ
2
s (N)× ℓ

2
s (N), s > 0 to be

chosen, into {∑
n≥0
(αn, βn)Cn(

√
m + εm)

}
m≥0

,

where we abbreviate

Cn(x)=

(
cn(x)/

√
n ĉn(x)/

√
n

−ĉn(x)/
√

n cn(x)/
√

n

)
.

Let us denote this operator by V . From (5-16) and the fact that the function d+

0 (x)= sin(πx2)/sinh(πx)
vanishes together with its Fourier transform at ±

√
n, n ∈ N, we know that the identity operator on

ℓ2
s (N)× ℓ

2
s (N) may be written as {∑

n≥0
(αn, βn)Cn(

√
m)

}
m≥0

.

Therefore, the techniques from Sections 4B, 5D and 5A, together with our previous considerations in this
subsection, allow us to deduce the following result:

Theorem 5.13. There is δ > 0 so that, in the case |εn| ≤ δn−7/4, for each f ∈ Sodd(R) real, the values

( f (
√

1 + εn), f (
√

2 + ε2), . . .) and ( f̂ (
√

1 + εn), f̂ (
√

2 + ε2), . . .)

allow us to recover uniquely the values ( f (1), f (
√

2), f (
√

3), . . .) and ( f̂ (1), f̂ (
√

2), f̂ (
√

3), . . .). In
particular, given the values

{ f (
√

n + εn)}n≥1 ∪ { f̂ (
√

n + εn)}n≥1 ∪ { f ′(0)} ∪ { f̂ ′(0)},

we can uniquely recover any real-valued function f ∈ Sodd(R).

As previously mentioned, we do not carry out the details here, for their similarities with the proof of
Theorems 1.6 and 1.4.

6. Comments and remarks

In this section, we gather some remarks about the problems and techniques discussed and state some
results we expect to be true.



2380 JOÃO P. G. RAMOS AND MATEUS SOUSA

6A. Asymmetric perturbations. In the statement of Theorem 1.4, we have assumed that the perturbations
made to the Radchenko–Viazovska interpolation formula were the same on the function and Fourier
sides for fixed j . We remark that, by the exact same proof as given above, one may obtain results with
different perturbations: in that regard, Theorem 1.4 can be immediately reinterpreted as stating that one
may recover f from the values of f (

√
n + εn), f̂ (

√
n + δn), n ≥ 0, where one assumes ε0 = δ0 = 0, and

supn(1 + n)5/4 log(1 + n)3 · (|εn| + |δn|) is sufficiently small.
Similarly, one can safely introduce four different perturbation parameters in Theorem 5.11 — one for f ,

one for f ′, one for f̂ and a last one for f̂ ′ — as long as they still satisfy the conditions predicted in that
result. The same holds for Theorem 1.3, where one may select two different perturbation parameters, one
for the function and another for its derivative. As these generalizations are immediate from our proofs,
we chose to keep all results with one perturbation parameter, in order to simplify the exposition.

6B. Maximal perturbed interpolation formulae for band-limited functions. In Section 3, we have seen
how our basic functional analysis techniques can be employed in order to deduce new interpolation
formulae for band-limited functions. Although Kadec’s proof also uses the basic fact that, whenever a
perturbation of the identity is sufficiently small, we can basically “invert” an operator, he then proceeds to
find that the set of exponentials {exp(2π i(n + εn)x)}n≥0 is a Riesz basis for L2

(
−

1
2 ,

1
2

)
if supn |εn|<

1
4

by means of orthogonality considerations. Indeed, one key strategy in his estimates is to expand in the
different complete orthogonal system

{1, cos(2πnt), sin((2n − 1)π t)}n≥1

and use the properties of this expansion. Our results, as much as they do not come so close to Kadec’s thresh-
old, follow a slightly different path: instead of using the orthogonality of a different system, we choose to
work directly with discrete analogues of the Hilbert transform and estimate over those. Although we do
not reach — by a 0.011 margin — the sharp 1

4 -perturbation result, one advantage of our approach is that it
yields bounds for perturbing any kind of interpolation formulae with derivatives. Indeed, following the line
of thought of Vaaler, many authors have investigated the property of recovering the values of a function
f ∈ L2(R) band-limited to [−k/2, k/2] from the values of its (k−1)-first derivatives (see, e.g., [Littmann
2006; Gonçalves and Littmann 2018]). Our approach in Section 3 in order to prove Theorem 1.3 generalizes
easily to the case of several derivatives by an easy modification. It can be summarized as follows:

Theorem 6.1. There is L(k) > 0 so that if max0≤l<k supn∈Z |ε
(l)
n |< L(k), then any function f ∈ L2(R)

band-limited to [−k/2, k/2] is uniquely determined by the values of

f (l)(n + ε(l)n ), n ∈ Z, l = 0, 1, . . . , k − 1.

A natural question that connects our results to Kadec’s results is about the best value of L(k) so that
Theorem 6.1 holds. We do not have evidence to back any concrete conjecture, but we find possible that
the threshold L(k) =

1
4 is kept for higher values of k ∈ N. We speculate that, in order to prove such a

result, one would need to find an appropriate hybrid of our techniques and Kadec’s techniques (see for
instance Section 10 in [Young 1980, Chapter 1]), taking into account properties of the discrete Hilbert
transforms as well as orthogonality results.
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6C. Theorem 1.6, optimal decay rates for interpolating functions and maximal perturbations. In
Theorem 1.6, we have improved the uniform bound obtained in [Radchenko and Viazovska 2019] and,
more recently, the sharper uniform bound of [Bondarenko et al. 2023] on the interpolating functions an to
one that decays with x ; namely, we have that

|an(x)| ≲ n1/4 log3(1 + n)(e−c|x |
2/n1|x |<Cn + e−c|x |1|x |>Cn)

holds for all n ∈ N, where C, c > 0 are two fixed positive constants. Although this improves the decay
rates from before, the power n1/4 found here and in [Bondarenko et al. 2023] in the growth seems likely
not to be optimal; to that regard, we pose the following:

Question 1. What is the best decay rate for an as in Theorem 1.6? Can one prove that supx∈R |an(x)| =

O((log n)C) in n for some absolute constant C > 0?

This conjectured growth seems to be the best possible, due to the recent findings of [Bondarenko et al.
2023], which show that, for each N ≫ 1, the average

1
N +1

∑
k≤N

|ak(x)|2

grows slower than some power of log N.
Notice that, by a simple modification of the computations made in Section 4B, an affirmative answer

to Question 1 yields an immediate improvement in the range of εi that we allow for the theorems in
Section 4B. Indeed, we get automatically that |εi | ≲ i−1 is allowed in such results. On the other hand,
this seems to be the best possible result one can achieve with our current methods, as the mean value
theorem implies that supx∈R |a′

n(x)| ≳
√

n.
In particular, everything indicates that one needs a new idea in order to prove the following conjecture:

Conjecture 6.2 (maximal perturbations). Let f ∈ Seven(R) be a real-valued function. Then there is θ > 0
so that, if |εi | + |δi |< θ for all i ∈ N, then f can be uniquely recovered from its values

f (0), f (
√

1 + ε1), f (
√

2 + ε2), . . . ,

together with the values of its Fourier transform

f̂ (0), f̂ (
√

1 + δ1), f̂ (
√

2 + δ2), . . . .

It might not be an easy task to prove Conjecture 6.2 even with a new idea starting from our techniques,
but we believe that the following version stands a chance of being more tractable with the current methods:

Conjecture 6.3 (maximal perturbations, weak form). Let f ∈ Seven(R) be a real-valued function. Then,
for each a > 0, there is δ > 0 so that, if |εi |+|δi | ≤ δk−a, then f can be uniquely recovered from its values

f (0), f (
√

1 + ε1), f (
√

2 + ε2), . . . ,

together with the values of its Fourier transform

f̂ (0), f̂ (
√

1 + δ1), f̂ (
√

2 + δ2), . . . .

In this framework, the results in Section 4B may be regarded as partial progress towards this conjecture.
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