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1. Introduction

We study decoupling theory for functions f : R — C with Fourier support near certain convex sequences.
As a model case of decoupling, consider the truncated parabola P! = {(¢,#2):|t| <1}. Let R>1bea
large parameter and write AN'g—1 (P!) as a disjoint union of caps & = Ng—1(P') N (I x R), where I is an
R™Y2.interval. The decoupling inequality of [Bourgain and Demeter 2015] says that if 2 < p < 6, then
for any e > 0 there exists C, such that

1
2
S5 <G (L)
6 0

whenever fy : R? — C are Schwartz functions satisfying supp fé cé.
This paper explores analogues between decoupling for P! and short Dirichlet sequences {logn}
as well as sequences with similar convexity properties described in the following definition.

L7 (R2)

N+Nl/2
n=N+1"
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Definition 1.1. Let N > 2. We call {a, },11\’:1 a generalized Dirichlet sequence (with parameter N) if it
satisfies the property

I 4 1 4
ar—ax € [Wﬁ] (@giv2—aiv1) —(@iy1—a;) € [mm] €]
We will call {a, },]:]:12 satisfying (1) an N V/2- short generalized Dirichlet sequence.

1/2

For simplicity, we say short (generalized) Dirichlet sequence to mean N */“-short (generalized) Dirichlet

sequence, unless otherwise specified. Note that the reflected short Dirichlet sequence,

{—log(N +N™2 —n+ D}y,
satisfies (1).

Now we describe our decoupling set-up. From now on C, ¢ > 0 will denote absolute constants that
may vary from line to line. For convenience of reading, we may regard C,c as 1. For 1 <L <c¢N 1/2
andeach j =1,.. .,NI/Z/L, define

iL
Iy = U Bi2/n2(ai),
i=(j—1)L+1
where Bj2/y2(a;) means the L?/N? interval centered at a;. Let Q be the L2?/N ?-neighborhood of
Nl/2 . L)
{an},—, - We consider the partition

Q=] |1. 2)
J

We choose the L2/ N ?-neighborhood of {a;, },]1\]:12 because every /; is essentially an L2/ N2-neighborhood
of an arithmetic progression, which we call a fat AP. To see this we calculate, for | <n < N 12 _ L,
L
apn+p —an—L(ap+1—an) = Z (@n+m —an+m—1— An+1—an)) ~ Z
Soindeed /; liesina C L?/N?-neighborhood of an L-term AP with common difference a—1)L+1—

m—1 L2
N2 T NZ

a(j—1y and starting point a(;_1)z,. Also, note that the common differences for distinct /; are cL/N 2.
separated.

We denote the partition {/; }j]y:l/lz/ L by Z. The first main result of this paper is the following decoupling
theorem for Q@ = | ;¢ 1.

Theorem 1.2. Let Q2 and T be defined as in the last paragraphs. Then for 2 < p <6 and every ¢ > 0

1
Sh| N (L) )
I1eT

L7 (R) VEASIA

for functions fr with supp f} Cc L

The range of p is sharp in the sense that (3) cannot hold for p > 6, which can be seen by taking fl to be
a smooth bump with height 1 adapted to I for every I. Indeed for this choice of f7, we have ‘Z I fl} ~
(L2/N?)NY2 on B.y112(0), and || fr Loy ~ /1l Lo @y ~ (L(L2/N?)Y P where 1/p+1/p' = 1.
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So
E J1

IeT

1 1 L 1
L? 1 11 5 2 Nz2\2/ L3\\7»
zNzNz(Nz)p’ (E ||f]”LP(R)) N( L ) (Nz) .

L7 (®R) l1eT

Then (3) would imply

and hence p < 6. We shall compare Theorem 1.2 with the £2L? decoupling inequality of the parabola
in [Bourgain and Demeter 2015], which has the same critical exponent 6. Indeed we will see many
similarities between short generalized Dirichlet sequences and P! from a Fourier analytic point of view.

The notion of strict convexity of a sequence {a,} in R will parallel the role of curvature of the parabola
in decoupling. Some key geometric aspects in the proof of decoupling for P! are identifying caps 6 as
approximate R™YV2x R1 rectangles, which give rise to dual tubes 8* of dimension RY2x R, and noting
that 0 are separated in angle and so are 6*. The | fy| are roughly constant on translates of 6*.

In the {a, },1:;1/12 setting, corresponding to fg we have f7, which are functions f7, : R — C satisfy-
ing supp ]?Ij C I;. We may identify the (L?/N?)-neighborhood of I as approximately an (L?/N?)-
neighborhood of an arithmetic progression (called a fat AP), giving rise to dual /* defined in Definition 2.1,
which are also fat APs, and note that distinct / are separated in step-size of the corresponding arithmetic
progressions (and the same for 7*). The | f7| are also roughly constant on translates of /* [Bourgain
1991; 1993].

Bourgain [1991; 1993] made use of this locally constant property to connect a conjecture of Montgomery
with the Kakeya conjecture. To prove a decoupling inequality we need to identify another geometric
analogy, the “ball”, which is roughly the smallest set restricting to which in the physical space essentially
preserves the frequency support.

For the R™!-neighborhood of the parabola, the “ball” is a ball By of radius of R. We will define the
“ball” P(L) in the short generalized Dirichlet sequence setting in Section 3B. P(L) will be a fat AP
which sometimes degenerates to a Euclidean ball. With these notions of caps, tubes, and balls in the short
generalized Dirichlet sequence setting, we are able to exploit the wave packet structure of a function with
frequency support on / € Z, and prove a bilinear Kakeya-type estimate (Proposition 3.3) and a bilinear
restriction-type estimate (Proposition 3.5) that look almost identical to those in the parabola setting. The
choice of N1/2 plays an important role in making this resemblance possible, which we will discuss at the
end of Section 7.

The proof of Theorem 1.2 is based on the high-low decomposition method in [Guth et al. 2022]. We
do not intend to get a logarithmic decoupling constant as in that work, but we want to prove a refined
decoupling inequality as in [Guth et al. 2020], which creates some technical differences.

The partition Q = | |; </ is maximal in the sense that if Q =| | I/, where I’ is the union of more
than C L many adjacent intervals, then I’ is no longer essentially a fat AP. Because of this, we will call
Q = | |;¢7 I the canonical partition and refer to Theorem 1.2 as decoupling for the canonical partition,
or simply decoupling. In the spirit of small cap decoupling as in [Demeter et al. 2020], we may also
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consider the “small cap” decoupling for short generalized Dirichlet sequences. Now we let L1 € [1, L] be
an integer, and we partition €2 into L consecutive intervals J;:

N2/, NV2/L, JL1

|_| Jj= |_| ( U BL2/N2(ai))- 4)
j=1

Jj=1 ‘i=(j-DLi+1
1/2
We let J denote the partition {J; };V:l IV The next decoupling result in this paper is small-cap-type
decoupling inequalities.

Theorem 1.3. Ler 1 < L; <L < NY2 and {J}jes be defined as in the paragraph above. Suppose
p > 4. Then, for every ¢ > 0,

> i

JeJg

1 1

1_2 2 1 11 1
N2"5Ls  (N2\277 5
v (1) ) Ziite) ®
L@ Ly Ly 2 /0y

Jeg

for a function fy:R — C with supp f] CJ.

Inequality (5) is sharp up to C.N? for every fixed p, L, L satisfying the condition in Theorem 1.3.
The first factor in front of (3~ ¢/ Il /717 ,,(R)) Vr i sharp because of the example f 7 equals a smooth
bump adapted to J with height 1 for every J € J. The calculation is similar to the one in the paragraph
below Theorem 1.2. The second factor is sharp because of the example f] equals a random sign times
a smooth bump adapted to a ball of radius L2/N? inside J with height 1 for every J € 7, where the
random signs are chosen so that fMZ g 17 }p ~ Ja (Z 7 fr |2)p /2 by Khintchine’s inequality.

The structure of the proof of Theorem 1.3 is similar to that of Theorem 3.1 in [Demeter et al. 2020],
consisting of three ingredients: refined decoupling for the canonical partition, refined flat decoupling, and
an incidence estimate. Refined decoupling for the canonical partition is a refined version of Theorem 1.2,
which we will prove in Sections 4, 5, and 6 in order to derive Theorem 1.2. We show the other two
counterparts in Section 8.

1A. LP estimates for short generalized Dirichlet polynomials. A straight corollary of Theorem 1.3 is
. . . . . . 1/2 i
essentially sharp L? estimates for short generalized Dirichlet polynomials Z,Zlvzl bue'tén,

Corollary 1.4. Let {ay }flvzl/lz be a short generalized Dirichlet sequence. Suppose p>4and N <T < N2
We have for every € > 0

N1/2
" ita,

<. NS(NZ 4+ T7 N 25)||by g0 (6)
L?P(Br)

]/2

for every Bt and every {b, }n , cC

If welet L €[1, N /2] be the integer such that N2/ L2 = T, then Corollary 1.4 follows from Theorem 1.3
with that L, and L = 1, applied to functions f7(t) = bpe'*@n¢(t) for every J, where ¢ is a Schwartz
function adapted to Bt with Fourier support inside Br—1(0).

The inequality (6) is sharp up to C, N % This is from discrete versions of the examples described below
Theorem 1.3, taken with L = 1: b, =1 for every n, and b, equal to random signs.



DECOUPLING INEQUALITIES FOR SHORT GENERALIZED DIRICHLET SEQUENCES 2405

We will in fact prove a more general version of Theorem 1.3 which allows us to get essentially sharp
(¢4, LP) estimates for ZiV:l/lz bpe''@n in the range p > 4, % + c—? < 1. See Theorem 8.5 and Corollary 8.2.

After this work was done we learned from James Maynard a general transference method, which can
in particular transfer the L? estimate on a short generalized Dirichlet polynomial to a 2-dimensional
L? estimate on an exponential sum with frequency support near a convex curve in R?. This allows us to
derive Corollary 1.4 directly from the small cap decoupling inequalities for the parabola in [Demeter et al.
2020]. We provide that particular argument in detail in the Appendix.

The starting point of this paper was to see whether decoupling methods could be used to make progress
on Montgomery’s conjecture on Dirichlet polynomials [1971; 1994]. Our investigation led us in a different
direction, proving decoupling inequalities for short generalized Dirichlet sequences.

Conjecture 1.5 (Montgomery’s conjecture). For every p > 2 and every € > 0 we have

2N
Z bnnit

n=N+1

< CTENE(NE +T)7||by oo 7
LP(BT)

for every ball Bt of radius T and every {by, }:%ZNH cC.

Conjecture 1.5 is widely open. In fact it has significant implications which are also hard conjectures.
It is shown in [Montgomery 1971] that Conjecture 1.5 implies the density conjecture for the Riemann
zeta function. Bourgain [1991; 1993] observed that a stronger version of Conjecture 1.5 on large value
estimate of Dirichlet polynomials implies the Kakeya maximal operator conjecture in all dimensions.
Conjecture 1.5 itself also implies a weaker statement that a Kakeya set has full Minkowski dimension;
see [Green 2002].

Our Corollary 1.4 proves some L? estimates for “short” Dirichlet polynomials which do not directly
connect to Montgomery’s conjecture. In fact we believe to make progress on Montgomery’s conjecture
significant new ideas are needed.

On the other hand, combining Theorem 1.2 with flat decoupling we obtain £2 L? decoupling inequalities
for generalized Dirichlet sequences (with N many terms instead of N 1/2) and the decoupling inequalities
we get are essentially sharp for the class of generalized Dirichlet sequences. As a corollary we have
essentially sharp (£2, L?) estimates on generalized Dirichlet polynomials, but the Dirichlet polynomial
Ziﬁ N 41 bne'" 18" has more structure and admits better estimates. This has to do with examples of

1/2_term AP with common difference CN ~V 2 which

generalized Dirichlet sequences containing a ¢ N
{log n}ﬁﬁ N 41 cannot contain by a number theory argument. We discuss these in detail in Section 7.
The paper is structured as follows. In Section 2 we will illustrate the wave packet structure of functions
with frequency support in a fat AP. In Section 3 we prove a bilinear Kakeya-type estimate and a bilinear
restriction-type estimate for functions with frequency support in a neighborhood of a short generalized
Dirichlet sequence {a, },]1\]:1/12 Sections 4, 5, and 6 are dedicated to proving Theorem 1.2. Section 4
introduces a refined decoupling inequality for the canonical partition (Theorem 4.4), which implies
Theorem 1.2, and which we will actually prove. Section 5 sets up a high-low frequency decomposition
for square functions at different scales, and in Section 6 we finish the proof of Theorem 4.4. Section 7

discusses the decoupling problem for (N -term) generalized Dirichlet sequences. In Section 8 we prove
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Theorem 1.3. The Appendix is about the transference method for one-dimensional exponential sum
estimates like (6).

Notation. C will denote a positive absolute constant that may vary from line to line, and it may be either
small or large. A < B means A < CB,and A ~ B means A < B and B < A. We will also use O(A)
to denote a quantity that is less than or equal to CA. A <, B will mean A < C;B for some constant
depending on ¢. Similarly O, (A) denotes a quantity that is less than or equal to C;A. There will be a
parameter N and A $ B denotes A <, N¢B for every ¢ > 0.

2. Locally constant property

We set up some notation and describe the locally constant property related to fat APs in this section.

Definition 2.1. We let P{f (a) denote the §-neighborhood of the arithmetic progression on R which
contains a and has common difference v. We call Pg (x0) N BRr(xp), or simply Pg N Bg, a fat AP with
thickness §, common difference v, and diameter R. We will call P vall N Bs—1 a fat AP dual to P2 N Bg.

To exploit the locally constant property of a function with frequency support in a fat AP, we first
construct a family of functions ¥ : R — C adapted to a fat AP (in the frequency space).
Lemma 2.2. Forevery xo € R, § <v/2, M > 1, and k > 1 there exists a function V¥, : R — C with the
property
Uk =1 on P{(x0) N Buy(xo).  suppPix C Py’ (x0) N By pry (x0). ®)

and Y. decays at order k outside of the dual fat AP Plf%v)_l (0) N Bg—1(0):

d(x,v"12) )—k (1 d(x, Bs-1 (0)))—k_ ©

< <
) Sk v s (14 S0 By

(MS)IPIfT]”)fl (0)NBs—1 (0

We say such a v is adapted to the fat AP Pg (x0) N Bagy(xp) in the frequency space with order of
decay k.

Proof. Since translation in frequency space corresponds to modulation in the physical space, we may
assume xg = 0.
We start with the Dirichlet kernel

DM(.X') — Z eZnijx —
ljl=M
We define Dj(x) = Dps(x). Then we define Dy (x) inductively by

Di(x) = di7 ' Di—1 (x) Dgr—1 7/5 (%),

where dj = ||58k—lM/2”L1(R) is the total measure of ﬁsk_lM/z. Equivalently we can define Dy

sin((2M + 1)z x)
sin(7 x) ’

explicitly as
DkZdDM l_[ DgsM/z
B 1<s<k—-2
for some suitable constant d > 0.
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Since D; = Dy has the property
Di(§) =Y ot —j).

ljl=M
by induction we can show that

De® =Y boc—N+ Y. bdoc—J)

ljl<M M<|j|<8kM/4

for some 0 < b; x < 1. From the explicit expression of the Dirichlet kernel we see that D, decays at
order 1 outside of PM ~0):

|Bo)] = | Dar ()] < M

1 +d(x,Z)/M T

By induction on k we obtain D decays at order k outside of PlM - (0):

d(x,2) )—k

(10)

Bl s M (1457

Now let ¢(x) be a Schwartz function such that $ is a smooth bump adapted to B (0):

$(E)=1 on B1(0), supp¢ C B2(0).
Let ¢ps—1 (x) be the function ¢ (6x). Note that ¢ps—1 decays rapidly outside of Bs—1(0). Let yx be given by
Uk =g x DO /o= g E—jv)+ Y bixs-i(E—jv).
jl<M M<|j|<sk M
From this definition we immediately see property (8) holds. Writing % as
Vi (x) = ps—1 (x) Dy (vx)
we observe from (10) and the rapid decay of ¢5—1 outside Bg—1(0) that (9) holds. O

For every fat AP P = Pv‘ﬁﬂ”)_l(xo) N Bg—1(xg) with § < v, and every k > 100, let Wp . be the weight
function

d(x,xo+v712) )—k (1 . d(x, Bs—1 (xo)))_k

Wpk(x) = (1 + (Mv)-1 51

We will use the notation

fdri= [ f@Wpids,

Wp k

fyde=— 1 / £ W i (x) dox,

W i [Wp k||Ll(R)

1 o = (][W 17 () dx)”.
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For measurable sets £ C R we use similar notation for average integrals and L? norms:

1
]gf(x)dx.:m/Ef(x)dx,

1) = (][E Iflp(x)dx)ll).

For a fat AP P, consider another fat AP P’ C P. Let P/ C P denote an indexing set of translates of P’
which form an O(1)-overlapping tiling of P. Then we have the pointwise inequality

1p(x) Sk Y Wpra(x) S Wp(x). (11)
P'CP
If we look at translated copies P” of P, we have
> Werk()Wp i (P") Sg Wp g (x). (12)
P"CR
Here ) p,x means summing over a tiling (with O(1) overlap) of R by P”, and Wp  (P") is defined to
be Wp i (sup P”), which is comparable to Wp x (x) for any x € P”.

Proposition 2.3 (locally g:onstant property). Suppose f satisfies supp f C P{f N Bagy. Then for every
dual fat AP P = Plffllv) N Bg—1 and every 1 < g < p < 0o we have

. qk
I Nlerwps) Spagi 1 lgaw ) o — =100,
P p

I/ lLee Py Sk I1F £ (wp )-

Proof. We first prove the second inequality. Fix k > 100. From (8) we have
10 = v = [ Ot = ).

where ¥ is the function in Lemma 2.2 adapted to Pv8 N Bpry in the frequency space with order of
decay k. Therefore for x € P we have

lf(0)] = /R | f OOk (x —y)| dy

< i | /(D) sup [Yr(x —y)|dy

xeP

< 5M /R O We i () dy ~i ][ £ dy.

Wp k

For the third inequality we used (9). Now we prove the first inequality in the proposition. We claim that
from (12) (applied with k replaced by gk /p) and the assumption ¢ < p we only need to show

I/l zrpy <p.gi 1/ lzaqwp - (13)



DECOUPLING INEQUALITIES FOR SHORT GENERALIZED DIRICHLET SEQUENCES 2409

Indeed if (13) holds, then

/WM S N ML

P/'CR

D

_p q

<ok P75 Y Wp,k<P')( / |f|4)
Wpr ak/p

P’'CR »

|P|1‘(/ @ Y WP} Wy g5 (51 dx)

P'CR

Spak IPIE ([ LA S Wy (PO s ()

P/CR
p

2 g
Spas PIE ([ 17000 ) oy 120

which is exactly the first inequality in the proposition. To show (13) we observe that the second inequality
in the proposition together with Holder’s inequality implies that

1A lercpy = I llLeepy Spagk 1 leaqw, ge)-
P
which is (13). O

3. Bilinear Kakeya-type and restriction-type estimates

Kakeya and restriction-type estimates are closely related to decoupling, and we will use the bilinear
version of them in the proof of Theorem 1.2, but first we need to introduce a more general decoupling
set-up for the purpose of induction.

3A. General set-up. To prove Theorem 1.2 we will do a broad-narrow argument which involves rescaling
of a segment of {a, },11\’;/12. To properly set up our induction hypothesis we consider the following more
general class of generalized Dirichlet sequences.

Definition 3.1 (generalized Dirichlet sequence). Let 6 € (0, 1] and N > 2. We call {a, },11\’=1 a generalized
Dirichlet sequence (with parameters N, 0) if it satisfies the property

1 4 949]

az—aj € [4N N] (@git2—ai+1) —(@i+1—ai) € [4N_2m : (14)

1/2

We will call {aj, }flvzl/lz satisfying (1) an N '/~-short generalized Dirichlet sequence (with parameters N, ).

As before we write “short” for “N /2-short” for simplicity. Comparing with Definition 1.1 we see an
extra parameter 6 which measures the convexity of the sequence. From now on we use Definition 3.1 for
the definition of generalized Dirichlet sequence.

We shall also incorporate 8 in our decoupling set-up. Let {an} 1/2 be a short generalized Dirichlet
sequence with parameter 0 € (0, 1]. From the spacing property (14) of {an} 1 we see that, for every
l<j=N"/L, {an}n (j—1L+1
progression. Indeed, if we define v; = a(;_1)L4+2 —a(j—1)L+1, then {an}

is essentially contained in an L26/N? nelghborhood of an arithmetic

n=(—1)L+1 18 contained in
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the CL26/ N2-neighborhood of the arithmetic progression containing a ;L with common difference v;,
that is,
iL 2 2
{an}f,=(j_1)L+1 C PS-L 6/N"(ajL) N Beryn (ajL).

Now we let Q be the 6§12 /N 2-neighborhood of {an},11V=1/12. For 1 < L < ¢NY2 and each j =
1,...,NY2/L, define
JjL
Ij = U Bng/Nz(ai).
i=(-1)L+1
We denote the collection of /; by Z, and consider the partition

Q=] |1

Iez
This will be our new decoupling set-up for the canonical partition, and from now on the notation here
supersedes that in the Introduction. For small-cap-type decoupling we postpone the description of the
corresponding general set-up to Section 8.

3B. Analogies between {a,,}fl\:/l2 and P1. For I =1 i €T, we let

~ 2 2
I; =P N (a;1) N Bopn ().

with C large enough so that
I=Lcl;=1.

Here Vj =4a(j—-1)L+2 —4(j—-1)L+1 and Vj ~ N_l. 5
For each I € Z, we denote by Py (x) the fat AP dual to / and centered at x, that is,

Pr(x):= PUC__]:[/L(X) N Bz 20y (x) (15)
J

if I = I;, and we simply write Py if stressing the center x is unnecessary. For I = I;, we also write vy
to denote v;. We let P(L, y) denote a larger fat AP

CN3/2/L2
P(L,y):= Pvl—l / (¥) N Benzy26)(3), (16)

and we simply write P (L) if stressing the center y is unnecessary. If L < N/4 we have N3/2/L2 > N
and in that case P(L) is a ball Bcy2/(z26). Comparing (15) and (16), we see P(L) has a larger thickness
size CN3/2 /L?. We will see shortly (Lemma 3.2 and the paragraph following it) that CN 3/2 /L? is the
smallest thickness that allows us to fit a Py in any fixed P(L) for every I € 7.

. . . . . 1/2
The starting point of this paper is to make use of an analogy between the extension operator on {ay, }.

n=1
N1/2
1/2 ;
{bn};llv=1 = Z bnelm"
n=1

and the extension operator on the truncated parabola P!

[ f(§) e CEHED g
[-1,1]
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Ty T, P(L)

Bgr

T — — — —

Nl/Z/L_

TRI/Z

Figure 1. The ball Bg C R? contains the union of tubes T} having the same center, each
of which is dual to 6;, where |_|; 6; partitions Nz—1(P!). On the right, we see analogous
dual fat APs, one Py, per I; which partition €2 into L consecutive intervals. We see that
P (L) contains the union of the P, which have the same starting point.

We list the correspondence between objects in this paper and in the parabola setting. For simplicity we
assume 6 = 1 in the following list:

(1) The parameter L € [1, N'/2] is the length of the “cap” that we are looking at, and that determines a
canonical neighborhood € with width L?/N?2. The corresponding parameter in the parabola setting
is R, which determines the length (R ~1/2 of the cap and a canonical neighborhood with width R™!.

(2) The I, Py defined above is analogous to the cap and tube in the context of parabola decoupling. Let
® be a partition of Ng—1(P!), the R™!-neighborhood of the truncated parabola P! (over [—1, 1]),
into R~Y2 x R~ caps 6. The dual object of 6 is a tube T of dimension RY2 x R.

(3) P(L) is defined to be the smallest fat AP with the property that, for a function F with frequency
support on 2, “restricting” F in the physical space to P (L) will essentially preserve its frequency
support. The corresponding object for the parabola is Bg, a ball of radius R.

See Figure 1 which illustrates the analogous properties of tubes 7' with the ball Bg and fat APs Py
with P(L). Bourgain [1991; 1993] made use of the first two analogies. The new ingredient we need is
the third analogy, which gives an appropriate notion of ball in the short generalized Dirichlet sequence
setting. It is very important that we define P (L) to be the smallest fat AP with such a property. If we
naively use By2,;2 as the ball P(L), the whole argument that follows will break down.

To make the third point precise, we prove the following lemma. We introduce one more notation. For
a general fat AP P = Pf (x0) N Bpry(x0) and s > 0, sP will denote the fat AP sz‘s (x0) N Bsprv(x0).

Lemma 3.2. Fixa P(L). Forevery I € T and every Py with Pf N P(L) # @, Py is contained in 2P (L).

Proof. In fact for every j, the difference of differences hypothesis in (14) implies that [v; —v{| S N —3/2¢,
It follows that |vj_1 -l < N2 Therefore P; N P(L) # @ implies
N2/(L%6) N3

N =
which implies P; C 2P (L) if C is large enough in the definition of P(L). O

d(P;. P(L)) S (N26) (17)
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To put it in another way, the proof above shows that, for every x € R,

| Prx) c P(L.x) (18)

Iez
if C is large enough in the definition of P(L). Since the inequality (17) is sharp up to a constant, the
choice of CN3/2 /L? as the thickness in the definition of P (L) makes (18) and Lemma 3.2 barely hold.
We note that the above lemma holds if we replace I, Z, Py, P(L) by 8, ®, T, By respectively.

3C. Transversality and bilinear Kakeya-type estimate. We say I, J € T are transversal if |vI_1 — v;l | =
N129, or equivalently, if d(I, J) = N~Y2 on R. We now prove a bilinear Kakeya-type estimate for two
transversal families of Pj.

Proposition 3.3 (bilinear Kakeya-type estimate). Suppose g1 =Y ;arlp, and go =Y ;bylp,, where
ay, by are positive real numbers, 1, J € T and Py are transversal to Py. Then

][ glng,][ gl][ g2. (19)
P(L) 2P(L) 2P(L)

For comparison we state the bilinear Kakeya-type estimates for RY2 x R tubes in R2.

Proposition 3.4. Suppose g1 =) ; a;lr, and g> = Zj bjlr;, where a;, b; are positive real numbers,
T;,Tj are RY2 x R tubes and every T; is transversal to every T} (in the sense that the angle between

T;,Tjis 2 1). Then
][ g1gz§][ g1][ 82-
Br 2BRr 2BR

Proof of Proposition 3.3. For simplicity of notation we assume C =1 in (15), (16). For general C the
argument works the same way. Since

][ g182 =< > arby|P(L)|7'[Pr N Py
P(L) 1,J: PiAP(L)#3, PyNP(L)£%

it suffices to show that for 7, J transversal we have
| Pr|?
|P(L)|

|PrNPy| < (20)

We consider two cases L > C1 N 14 and L <C1N 1/4 separately, where C is a sufficiently large constant
that will be chosen.

Case 1: L > C;N'/4. Without loss of generality we assume Py, Py both start at the origin (meaning that
the first term of the underlying AP is 0). Let Py ; denote the k-th interval in Py. If V;, V; are the common
difference of Py, Py respectively, then from the transversality assumption we have |V; —Vy| ~ N 1729,
So for some integer

N/L N2

K~—"1—" ="—"
N1/2¢ Lo

we have
d(Pri Pri) < if1<k<K
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and

1
2

N2 9 0
Since L > C;N'/* we know that if C; is sufficiently large then NY2/0N = N3/2/9 is larger than
N?2/(L?6), which is the diameter of P;. Therefore we have

N:N N2 |P?
PNPy<—— =" =11
PrOPIIS T T =12 = |P(L)]

Case2: L <CiN 1/4 " From the first case we know that

d(Pri,Pji) € [%,N] if K<k=<

< N?
|P1 mP_] mBCNS/Z/gl ~ m
Therefore by the triangle inequality we have
N3 N2/(L26) N2 _ |P]?

PINPs| S == :
PEORIR g N2/9 L% |P(L)

Here we recall that P (L) degenerates to the Euclidean ball By2 /729y if L <N 174So we have shown
(20) and hence (19). O

3D. Bilinear restriction-type estimate. To prove a bilinear restriction estimate, we will use the above
bilinear Kakeya estimate and induction on L. First we identify where the (square of the) square function

> ;<7 | f11? is locally constant on. Note that supp | f7 |2 cl-1ICcC PCL o/N* (0) N Bcr/n(0). Since
lvr —vi| S N~3/20 for every I € T, we have

3/2
Jua-ncPSEN" " nBepyn.
Iez
Therefore Y, | f1]? is locally constant on dual fat AP of the form P, —1/ N Bensrzyrgy- Observe that
if we define Ly = (NY2L)"2, then

CN, CN3/2/L3
P "0 Bensinye = Pt TN Beyayaze = CP(LY).

Now suppose I’, I” are unions of I in Z, and I’, I" are transversal in the sense that d(I’, I"") 2 N2
on R. Then we have the following bilinear restriction estimate. The proof closely resembles the multilinear
Kakeya implies multilinear restriction proof in [Bennett et al. 2006].

Proposition 3.5 (bilinear restriction-type estimate). Suppose supp Fi C I’ and supp F» C I". Then we

have
][ |F11?| F2)? <e N8|P(L)|‘2/ |F1|2/ | Fy|?. 1)
P(L) R R

Before proving the proposition, we remark that under the conditions of Proposition 3.5, the seemingly
stronger inequality

][ P21 Fal? <o N P(L)] 2 / | F1PWpz).100 / B Wa i 100 22)
P(L) R R
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holds. This is essentially by applying Proposition 3.5 to the functions Fjvy, Foy, where ¢ is from
Lemma 2.2 and is adapted to the fat AP dual to P (L), with order of decay 100.

Proof of Proposition 3.5. We define BR(L) to be the smallest constant such that
f, nPIEE <sR@P@ [1AE [ 18P
P(L) R R

holds for all Fy, F, with supp F; C I’ and supp F» C I”. We let BK(L) be the smallest constant such that

][ glgngK(L)lP(L)I_Z/gI/gZ
P(L) R JR

holds for all g1 = ) aylp, and go =) bylp,, where ay, by are positive real numbers and /,J € Z
with I C I, J C I"”. Equivalently, we have

|PI|_2][ (Z g1,1 % 1P,(o))( > g 1PJ(0))
PUL) \jcr Jcrr
fBK(L)IP(L)I‘Z( / Zgu) ( / Zgz,J) 23)
RT Ry

for all finite measures g1,7, g2,7 which are linear combinations of Dirac measures with nonnegative
coefficients. By a density argument (linear combinations of Dirac measures are dense in the weak*
topology on Co(R)*), (23) also holds for all finite measures g;,7, g2.s. In particular, (23) holds for all
nonnegative L! functions 81,1, 82,J-
We have shown in Proposition 3.3 that
BK(L) £ 1.

Now we want to show BR(L) <, Né. First we prove
BR(L) <BR(L{)BK(L). (24)

From the definition of BR and local L? orthogonality (Lemma 3.6 below) we have

FLFoJ? s][ |F1 a2 dx
]{,( H o) £2(P(L1,%)

2 2
S BR(L1) ][;’(L) I1F1 ”Ez(WP(Ll,x),zoo) ||F2||’52(WP(L1 ,X),200)

2 2
5 BR(Ll) fP(L) ( Z ||F1,I ||£2(WP(L1.X).200))( Z ||F2,J ||£2(WP(L1.X).200))‘

_ Icr’ Jcl1”
‘We claim that

2 2 -2 2 2
]i o D FLIN 2w, o200 P20 W, o 200) SBRUDI P 2Pl oy 1 P2l 2y (25)
1,J

which together with previous arguments will imply (24). Since ) PLy)CcR WPy ,x),200(P(L1)) S 1, it
suffices to show that

]fp o Y N FL 2 p a1 P2 22 (pr, ) Sk BRIDIPL 2 FilF 2 | F2117 2 gy
1,J
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We choose Y7 200 adapted to Py (0) in the frequency space with order of decay 200 as in Lemma 2.2. Let

o1 = J1,200/|P1 |. If we define G1,; = (ﬁl,l/qAﬁ])V, then due to the support property of 131,1 we have
pointwise

1Grr|~|Figl. (26)

Also by definition we have F; ; = Gy, * ¢7. We define G j = (ﬁz"]/(;b\])v for F, j in the same way.
Now for y € R such that x + y € P(L1, x), we have

|F11(x + ) = [(G1,1 *¢1)(x + ¥)[> S (G171 * * |1 ) (x + ¥) S |G1,11* * 1cp, /| P1l,

where we used Jensen’s inequality for the first inequality. Therefore we have

”Fl’IlliZ(P(Ll,x)) 5 |G1,I|2 * 1CP1/|PI|-
and similarly
12,0122 p(z, ey S 1G2.0 P % 1cp, /I Prl.

Hence using (23) we obtain
T 1 Fa 2 <Py ][ (G117 % 1cp,)(Gars 2 % 1cp))
]i(l‘)l,zj L£2(P(L1,x)) £2(P(L1,x)) I,ZJ P(L) 7 J
ok [ Siou?)( [ Sieasr)
Ry Ry
sekIP@( [ S1raP)( [ Sirar)
I J

SBK(L)IP(L)I_z(/R|F1|2)(/R|Fz|2),

where the second-to-last inequality is due to (26). So we have proved (25) and therefore (24). Now we
prove BR(L) <; Né. Define L, = (Lyy—1 N 1/2)1/2. Fix an ¢ > 0. We define M to be the smallest integer
such that Lys > NY27¢ So M <, 1. Plugging in BK(L,,) < 1 and applying (24) repeatedly we get

BR(L) < CM BR(Lyy).

Since BR(Lys) <, NC¢ for some universal constant C (because of the locally constant property
Proposition 2.3) we conclude BR(L) <, N Ce which is what we want. O

The L* bilinear restriction inequality for the parabola in R? has a more straightforward proof exploiting
the fact that #{(63, 64) : d(03,604) = 1, Ng—1/2(03 + 04) N Ng—1/2(61 + 62)} < 1 for every fixed 61, 02,
with d(61,6,) = 1, where 6; are R™12 x 1 caps that cover the compact parabola [Cordoba 1977,
Fefferman 1973]. However, it is not obvious whether a similar property would hold for Z in our setting,
so we took the approach in [Bennett et al. 2006] instead.

Now we give a proof of the local L? orthogonality used in the proof above. We denote (LN 172172
by L. So P(L') = P(Ly) = PUCI_’IV/L N BensnywLo):
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Lemma 3.6 (local L? orthogonality). For every f7 with supp ﬁ C I we have

2
D i k) I 12w 0 27)

rer "LPWpunk)  Jez
Proof. Due to (12) it suffices to prove

> o fi

2

< 2
<k D f1lz2 oy
L2(P(L")) é L@

Iez
n# . pCLO/N3/? . .
We choose v adapted to P(L')* := P (0) N Bcryn(0) in the frequency space with or-

der of decay k as in Lemma 2.2. Here P(L’)* is dual to P(L’). Since supp ¥x C 8K P(L’)*, and
{I 4+ 8K P(L")*} ez is O (1)-overlapping, we conclude

2 2
Dot Sk IPUNNY five
Jez NL2(P(L) Iez L2(R)
Sk IPUDY 072y Sk D0 il 2wy, O
IeT IeT

4. Decoupling for the canonical partition

We focus on proving Theorem 1.2 in Sections 4, 5, and 6, and in these three sections decoupling will
refer to decoupling for the canonical partition.
Recall that {a, },lezl/lz satisfies
1 0
it1—ai ~ 5. (@42 = ait1) = (@i41—ai) ~ 57 (28)
where, here, ~ means within a factor of 4. The parameter 6 is in (0, 1], Q2 is the L2/ N 2-neighborhood

of {a, },11\721/12, and
Q=| |1

Iez
. . . . 1/2
where each [ is an L2?6/N ?-neighborhood of L consecutive terms in {a,, },]1\’:/1 .

We restate Theorem 1.2 but for all short generalized Dirichlet sequences with 6 € (0, 1].

Theorem 4.1. Let Q2 and T be defined as in the last paragraphs. Then for 2 < p < 6 and every ¢ > 0 we
have

DA
Iez

for functions f7 with supp f} cll

1
2
< N 106 401 o) 29)

L7 ®) IeT

Comparing (29) with (3) we see an extra factor logc (=1 4 1). This factor appears as a consequence
of dyadic pigeonholing in our proof.

4A. Local decoupling and refined decoupling inequalities. We first formulate a local decoupling in-
equality which implies (in fact is equivalent to) the global decoupling inequality (29).
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Proposition 4.2. Let p > 2. Suppose that, for some k > 100,

J1

1
2
< NologC (67 + 1)(2 i ||ip(W,J(L),k)) (30)
IeT

Lr(P(L)) IeT

holds for every fr with supp ﬁ C 1. Then (29) is true.

Proof. Suppose (30) holds for some k > 100. Since ZP(L)CIR Wp L),k <k 1 and p > 2, by Minkowski’s
inequality, we have

, 5
VA NED O NI IS 3O ST A
1

L"(R)_P(L)CR P(L) " I

C/p—1 2
<N 10g G0 ( L1 00
I

ya
2

< N¥10g€ (071 +1) (Z I ||ip(R))2 ,
which is (29). ' O
The following local decoupling inequality will imply Theorem 4.1 by Proposition 4.2.
Theorem 4.3 (local decoupling). Suppose 2 < p < 6. Then

N—

S

Iz

for f1 with supp]?] C I

e NglogC(Q—l + 1)(2 /1 ||ip w ) (31)
L7(P(L)) = Wp(1).100)

Theorem 4.3 is a consequence of the following refined decoupling theorem, which we focus on proving
in the next two sections. The analogous result for the parabola can be found in [Guth et al. 2020; Demeter
et al. 2020]. We will show how Theorem 4.4 implies Theorem 4.3 in Section 6E.

Theorem 4.4 (refined decoupling). Suppose 2 < p < 6. For every P(L) and every X C P(L), we have

N =

Do fi

27 p
C/n—1 2 2
, < N*logC (6 +1)(§:§§j||f1||L2(WP,WO)) (;nﬁnLZ(WmLHOO)) (32)

for fr with suppf[ c I

We remark that Theorem 4.4 implies that for every X C P, where P is a fat AP larger than P(L) in
the sense that P(L) C P for at least one P(L), and, for 2 < p <6,

YA
I

for f; with supp f] C 1. Indeed, (33) follows from taking (32) to the p-th power and summing over
XN P(L) with P(L) C P.

LP(X)

1 1 1

27 p 2
SN0 40 (500 X Ui 0) (2 1 e ) O
1 1

L7 (X) xeX
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4B. Induction scheme for proving Theorem 4.4. We fix p, L and let Dec(N, ) = Dec, (N, L, 6) denote

the smallest constant such that
1 1

> (S oy 0) O
1 1

holds for every sequence {aj },11\7:1/12 satisfying (14), every P(L), every X C P(L), and every f; with

1
"
< Dee(V,) (590 Y 1 B )
1

L7 (X) xeX
supp ﬁ C 1. For a specific choice of the short generalized Dirichlet sequence {a, }'lezl/f satisfying (14)
we will call the smallest constant the refined decoupling constant of {an}fl\’;/lz such that (34) holds for
every X C P(L), and every f; with supp f7 C I. Note that Dec, (N, L, 0) is the supremum of all refined
decoupling constants of sequences {ay },]1\7:1/12 satisfying (14).

We will deduce Theorem 4.4, which now is equivalent to Dec(N, 0) <, N1og® (=1 + 1), from the
following main proposition.

Proposition 4.5. For everye > 0andeveryl < K <N &/2 satisfying N 1/2 /K> L,
N ¢ D pre D p—1
Dec(N,0) <¢ sup  Dec| —,— |+ K" N log” (67" +1). (35)
0/€[6/4,6] K= K
Here D is an absolute constant.

We postpone the proof of Proposition 4.5 to Section 6. Here we show how it implies Theorem 4.4.
Proof of Theorem 4.4 assuming Proposition 4.5. For some sufficiently large Sy we have Dec(N, 0) <
CsNS < CgN¥1ogP (0~! 4+ 1) for s > Sy. Now suppose Dec(N, 0) < CsN* log? (6~1 + 1) for some
s < So. Then from (35) we have, for every ¢ > 0 and K with NI/Z/K > L,

N S
Dec(N, 0) < Cs( sup Cg (—2) log? (K20 1+ 1)+ KPN®1ogP (67! + 1)).
oelo/a0)  \K

N S
<C, (CCS(F) log? (K207' + 1) + KPN®1ogP (07! + 1))
N N
<C, (ccs (ﬁ) (ClogP (071 4+ 1) + C log? (K?)) + KP N¥1ogP (67" + 1)).

If we choose ¢ to be s/2 and let N¥/K?® = KPNe = KPNS/2 thatis, K = N3/2@2s+D)) then for
some constant C; depending only on s,

1

Dec(N, 0) < C.N*(=245) (10g2 (671 + 1) + log? N)

if NV2N=s/QQ2s+D)) > [ 1f NYV2N—5/Q2s+D)) < [ then |Z| < NS/2@5+D)) and by the triangle
inequality and Cauchy—Schwarz inequality we have

S

Dec(N, 0) < N2@s+D),

We can assume that D is large enough such that max{2, So} < D. Then 1/(2s+ D)~ D! and K < N¢/2,
so for some absolute constant ¢ > 0,

Dec(N, 0) <g N*1=10gP (671 +1).
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Therefore we conclude
Dec(N, 0) < N¥logP (071 +1)

for every ¢ > 0, since So(1 —¢)™ is arbitrarily small for large enough m. O

4C. Two applications. Before ending this section, we record two applications of Theorem 4.1. Technically
these are corollaries of the {2 L6 decoupling inequality for the parabola in [Bourgain and Demeter 2015],
by deriving the corresponding (£2, L) estimate on short generalized Dirichlet polynomials using the
method described in the Appendix.

First we may estimate approximate solutions to the equation ay, + an, + an; = an, + ans + an, for
a short generalized Dirichlet sequence {a, },11\]:1/12 The number of exact solutions of such equations for
general convex sequences was studied in [losevich et al. 2006].

Corollary 4.6. Let {a, },]1\]:1/12 be a short generalized Dirichlet sequence with parameter 6 € (0, 1]. Then
1
#(any. .. ang) 1 <nj N2, |(@n, + an, + any) — (@ny + dns + ang)| < 0/N?}
< log€ (B~ +1)N3FE. (36)
This estimate is sharp up to CcN® logc O '+ 1)dueto N 3/2 many diagonal solutions.

In particular if we take a, = log(n + N 4+ 1) in the above corollary, then 8 ~ 1 and (36) reads
#{(n1.....n6) N +1=n; <N+ N2 |ninons —nansne| < N} Se N2¥°. (37)

We note that the triple products ninonsy with N + 1 < ny,ny,n3 < N+ N 1/2 Jies in the interval
[N3, N3+ CN>/2]. So (37) implies that the triple products {n1nan3: N +1 <ni,ns,n3 <N + N2}
are roughly evenly distributed in [N3, N34+ CN 5/ 2] with ¢ N separation. Indeed if we split the interval
[N3>,N3+CN 5/ 2] into intervals of length ¢ N and let E; denote the number of ¢ N -intervals which
contain at least A many triple products 711,73, then (37) says that

A2E; < C.N3+e.

Consequently if we choose A > 10C,N¥¢, then we have AE, < %N 3/2 and AE; is the number of triple
products n1n,n3 that lie in a ¢ N -interval which contains at least A many triple products. The total number
of triple products is N 3/2 50 we can conclude most of the triple products lie in ¢ N -intervals, each of
which contains few triple products.

Proof of Corollary 4.6. We let ¢ be a Schwartz function whose Fourier transform is given by a smooth
bump function adapted to By, y2(0):

q3=1 on By, n2(0), supp$CBzg/N2(O), 0§$51, $iseven.

Applying Theorem 4.1 with p = 6, L = 1 we obtain
N1/2

/ ijleianxd)(x)

6 N2 3
<s N°log€ (0! + 1)(2 ||€la”x¢(x)||ié(R))
R n n=1

< N®1og€ (8~ + 1)N295N 10, (38)
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We expand the left-hand side of (38) as

N1/2
/ dx — Z / i(an, +an2+an3—an4—an5—an6)x|¢|6 dx

Z el (x)

= Z |¢| (an1 +an2 +an3_an4_an5_an6)-

—

Since $ is even we know that ¢ is real-valued and hence |¢|® = $ Kook $ is nonnegative and |$|® >
>N~ on B,y / Nz(O) for some small absolute constant ¢ > 0. Therefore

Nl/2
ianx (x)
2 6°N 10#{(an1,...,a,,6) 1 <n; < N%, |(an, + any, + any) — (an, + ans + ang)| < 6/N2}.
Combining the above estimate and (38) we obtain (36). O

Another application of Theorem 4.1 is estimating the size of the intersection of an AP with a generalized
Dirichlet sequence.

Corollary 4.7. Let {an},]lv=1 be a generalized Dirichlet sequence with parameter 0 € (0, 1] and let
a=N"%witha €0,2]. Then

a : 1
amr=Y nazy 4N el

CoNflogt (071 + DN3TS  ifae[3.2].

When 6 = 1, Corollary 4.7 is sharp for « € [ ] (see Lemma 7.3), but we do not know if it is sharp
fora € [%, ] Corollary 4.7 has a slight connection to a conjecture of Rudin which states in an N-term
AP we can find at most O(N /2) many squares (numbers of the form n? for some n € Z). The best
result so far seems to be in [Bombieri and Zannier 2002], which proves at most O(N 3/3 logo(l) N) many
squares can be found in an N -term AP. We note that {n?/N 2}2N N1 1s a generalized Dirichlet sequence.
However we shall not expect to solve Rudin’s conjecture exploiting only the convexity of the sequence
{n? :n € N}, as shown by the example given in Lemma 7.3.

Proof of Corollary 4. 7 The case o € [0 ] is trivial as {an} —; 1s contained in a ball of radius < 1 and
aZ has at most < a~ " = N% many terms in such a ball. Now we suppose a € [ 2]. It suffices to show

that, for a short generalized Dirichlet sequence {an}N_/lz, H:=|{n:1<n<N 1/ 2, an € aZ}| satisfies

H <; Celog€ (67 + )N E—s+e,

We consider the function

f(X) — Z eZTritan.

n:1<n<N1/2 a,ecaz
Case 1: o €[1,2]. We apply Theorem 4.3 with p =6, L =1 and P(L) = P(L,0). Since | f|> H/10
on NV, y1/2(a~1Z) with ¢ 2 1, we obtain

N2p—1
H( N
N(x

W=

6
) <o N¥log€ (0~ + 1) HZ (N0~ V)5
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where we used that P (L) is approximately an N26~! interval. Simplifying the above displayed math,
H <. Cslog€ (0~ + )N s+e,

Case2: o € [%, 1]. We apply Theorem 4.3 with p = 6, L = N!=* and P(L) = P(L,0). Since
| f| > H/10 on N, x1/2(a~'Z) with ¢ 1, we obtain
1
N2026~1 1\o
H(TNi) <. N¢log€ (07! + 1) H2 (N2220™ )5,
that is, 1
H <:Colog€ (07  + 1)N376Fe, O

5. High-low frequency decomposition for the square function

The proof of Proposition 4.5 is based on the method in [Guth et al. 2022], which uses a high-low frequency
decomposition for the square function. Such a decomposition is also used in [Guth et al. 2019] to study inci-
dence estimates for tubes. We set up the preliminaries in this section and prove Proposition 4.5 in Section 6.
We begin in Section SA with an overview of the argument, at a symbolic and heuristic level, and refer
readers to Section 2 of [Guth et al. 2022] for a more detailed description of the intuition behind this method.

5A. Overview of the argument. Let2 < p < 6. We will present a heuristic overview of the high-low
proof of Theorem 4.4 (which is our goal to prove via Proposition 4.5). By a pigeonholing argument, we
may assume that there is a parameter o > 0 so that

/XXI:fI

where Uy = {x eX: }Z 1 J1 (x)| ~ a}. A “broad/narrow” argument (written in our context in Section 6A)
roughly allows us to reduce to the case that, on most of Uy, (Y _; f1| is bounded by a bilinear expression
{lecl’ Jn e flz}l/z where ', 1" are transverse, meaning d(I’, 1) > N2 The high-low
frequency proof of decoupling involves upgrading the bilinear restriction theorem (Proposition 3.5) to the
refined decoupling theorem (Theorem 4.4).

p
’\'ap|Ua|,

We split Uy, into < &~ many sets on which we know certain square functions are high- or low-frequency
dominated. Consider scales 1 <L < L,;;4+1 <Ly <N 1/ 2 where L,, /Lm+1 < N& Define the (square
of the) square functions gm = >y | /1, 1%, gm+1 = Zlm—l—l | f1,0s11%, Where Ly, Iy41 are unions of
L, Lm+1 many consecutive intervals in €, respectively. Also write g =Y | f7|?. Suppose that on most
of Uy, gm+1(x) < g(x). Observe the pointwise inequality that, for x € Uy satisfying g +1(x) < g(x),

A~ | Y fr (| S > | frsr (O > S ()
Im+1 Lnt1:| fry 4y ()] >Ne £ In1: f1, 4 ()| <Ne £
(0%
5 N‘gg(x) Z |f1m+1(x)|2+‘ Z f1m+l(x)
Ing1:l 1y ()| >NEEE Lnt1:| f, 4 ()| <Ne £
(04
< ng(x)gm+1(x)+ Z St (X))

Lnt1:] fry, 4, (0)| <N £
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This type of reasoning means that on most of U, we may perform a wave packet decomposition of f at
scale 1,41 and replace f with a version which only preserves the “small” wave packets, ensuring the

property that || /7, lLeo®) < g llLoex) /et

Case 1: high-dominance. Suppose that on most of Uy, gm(X) < [&m *N>L,,,,/N(X)|, Where n>1, . /N
is a smooth bump function with supportin L,,+1/N < |w| <2, on most of U,. A combination of a broad-
narrow argument, Proposition 3.5, the locally constant property, and the assumption of high-frequency
dominance of g, leads to the inequality

4 ~ 2
o |Ua|s/|gm*nsz+l/N| .

Next, by Plancherel’s theorem, we analyze the integral on the right-hand side. A geometric argument
shows that the supports of the | f7,, |2 from g, are sparsely overlapping on the support of N>Loms1/N-
This allows us to bound the right-hand side of the previous displayed inequality by

CENEZ/ |flm|4’
I

which is bounded by C N 106 3~ Ln1 /1, +1 |4 using Cauchy—Schwarz. Finally, use the good L bound
for each f7,,, from the pruning of the wave packets to get

lg13 o x
S [t 55O [l

It L+
A pigeonholing argument may be used to show that without loss of generality, we may assume that
lglloo(x) < @?. By L? orthogonality, the integral on the right-hand side of the previous displayed line
equals Y ; [ | f1 |2. The conclusion of the argument in this case is then

Il lgl 2o

8lliLoo(x 8lipoo(x

Ul O S il s — 2 3 [ 1411
1 I

which is a version of the statement of Theorem 4.4.

Case 2: low-dominance. The remaining case is if gn(x) < |gm * f<L,,, /N (x)| on most of Uy. A
local L?-orthogonality argument shows that |g,, * N<Lypy/N(X)|is bounded by gm+1* <L, /N [(X),
which by the locally constant heuristic, is roughly the same as g,,+1(x). We conclude in this case that,
on most of Uy, gm(x) < gm+1(x) < g(x). This is the same type of assumption we made before consider
the cases, except at the scale L, instead of L. This allows us to reinitiate the argument beginning
with the assumption that g5, (x) < g(x) in place of gy +1(x) < g(x).

1

In the case that we are “low”-dominated for €™ many scales, then

|Ua| ~ [{x € Ug : g1(x) < g(x)}],

where g7 is a square function corresponding to partitions of €2 into /1, which are N® many adjacent
intervals. Since | ) ; f7(x)| < N®g1(x) by Cauchy—Schwarz, the statement of Theorem 4.4 becomes
trivial. In the next sections, we set up the argument in full technical detail.
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5B. Wave-packet decomposition. We start with a few definitions. Write f =) ;.; f7, where f7 will
always denote a function with frequency support in /.

Fix2<p<6ande>0. FormeN, let L,, = NY2N~¢™_Without loss of generality we assume
Ly =L forsome M eN. So M <. 1. Forevery 1 <m < M we let Z,;, be the partition of €2 into N1/2/Lm
many /,,, each of which is the union of L,,-consecutive intervals in €2. L,, can be thought of as scales.

Note that

CL2,0/N?
Im C Py, NBcr,,/N-

where v, ~ % We denote the right-hand side as I, m:

~ CL26/N?
Iy == Py, / NBcr,,/N-
Let Py, be a tiling of R by Py, . For each I,, we will now construct a partition of unity {¢y,, }p,, ep,,,
which will be used to perform the wave packet decomposition

flm = Z ¢P1m flm'

P,
We regard each summand ¢p, f7,, as a wave packet. Specifically, we let ¥, be adapted to I — I,
which is of the form PIE)L%O/ NZ (0)N Bcp,,/n(0), in the frequency space as in Lemma 2.2, with order
of decay 200 outside of the dual fat AP Py, . For each Pj,, € Py, , define

br1 = W Ny [ W e =P . (39)
Im

Proposition 5.1 (wave-packet decomposition). {¢p, }p, ep,, forms a partition of unity, that is,
> ¢p,, =1,¢p, >0. Each¢p, isatranslated copy of the others, and

supp $P’m - 8400(7m - im)» 1P1m S d)le S WP[m ,200- (40)

Proof. By definition we see that ¢p, ~forms a partition of unity, and each ¢p,  is a translated copy of
the others. Also it follows from the definition that

1P1m < |¢P1m |
Note that ¢p(z,,) equals ||w12m ||Zl1 ® /MEES! py,,- Therefore ¥y, decays at order 200 outside Py, (0)
implies that ¢p(r,,) decays at order 400 outside Py, , and in particular

P, | < Wh,,, 200

The support property supp $ je g400 (fm — ~m) follows from the fact that

~ 2 =1 (. 27
¢P1m = ||1ﬁ1m||L1(R)WIm| 1P1m

and from Lemma 2.2. O

5C. A pruning process and modified square functions. Now we define “square functions” (squared) at
scales L,,, which differ from the usual square functions by a pruning process of wave packets and taking
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spatial averages. The pruning process will depend on two parameters « and r, which can be thought
of as the values of | f| and }_; |/, |2 =", | f1|*> which dominate the L? norm of f. We define
A = A(a,r) by

A= égNgé, (41)

where C; is a sufficiently large constant depending on ¢ which will be chosen later in the proof of
Lemma 5.4.

We first do the pruning process (with parameters «, r), which inductively removes wave packets at
each scale whose height exceeds A. As we shall see (Lemma 5.4), those wave packets do not play a
dominant role in the L? norm of f. This process produces a family of functions f, 1., fm,1,—i+ fm
that depend on «, r, which is implicit in the notation. We will write fi 1,,.0.r» fm.Ly—1.c.r fm,ar tO
emphasize such dependence when necessary.

Let Pry, 0 = {Prps € PLyy 2 PPy, f1asllLoor) = A}, and define

Sy =Y bpy, S Sui= ZfM In-
Pryr €Prpy .2
Welet fu, 10 =D 14,c1pyy JM.1n- Now we define fi, and fi, 1, inductively form=1,..., M —1by
Sy =Y OGP St 1Dy fmi= Z Foto (42)
le €EPln. A

where fni1,1, =21, . c1,y fm1,0,4, and Pr, 3 ={Pr,, € Py, ||¢P1m Jm+1,1, Loy < A}. For
notational convenience we also define fas+1 = f and fayrv1.1,, = f12y = f1-
We note that

W) fn =21, St = 2oty S
(ii) supp ﬁn,[m C Cfm,
(iii) SUPP fon, oy C C It
V) | fm, 10| = | fm+1,1,,| pointwise.

Item (i) follows from the definitions, and (iv) holds because {qﬁp,m } Py, 1s a partition of unity. To see (ii)
and (iii) we may induct on m and note that

U C T m C 27 m—1
I;nCliy—
when N is sufficiently large depending on €.
To define the “square function” g, at scale L,, we introduce py,,, which is an L'-normalized nonneg-
ative function adapted to Py, (0) with decay order 100

Wp,,.(0),100(X)

1P, 7 P, 0 (%) S P, (X) S (43)

W, (©0),100llL1®)

and supp pr,, C C (In — In). Such a function can be constructed by taking |¥|?/||¥2|| .1 for ¥ adapted
to I, with decay order 100 as in Lemma 2.2.
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Finally we define the “square function” by

. 2
I,

for1 <m < M —1 and for m = M we define
&M = ZlfIMlz*pIM'
Iy

We note here that g, for 1 <m < M —1 implicitly depends on «, r, and we will write g, ¢ to emphasize
such dependence when necessary; gas does not depend on «, 7.

5D. High-low decomposition. To set up a high-low frequency decomposition for gy,, we let 1, (§) be
an even smooth bump function that equals to 1 on By, .,/ (0) and vanishes outside By, . ,/n (0) for
every 1 <m < M — 1. We also assume that 5, are rescalings of each other.
Define, for 1 <m < M —1,
gr i =gm*7m and gh:=gm—gr.

which are low- and high-frequency parts of g,,. Both gfn and g,},‘1 satisfy some proprieties. We discuss
them in the following two lemmas.

Lemma 5.2 (low lemma). For 1 <m < M — 1, we have the pointwise inequality

18] < gm1.
Proof. By definition

= (S Umraal?) 01, = (Ui 1a?) 1,
I, I,

Using Plancherel’s theorem,

1.1y, |2 5 i () = / ottt ) 2m G — ) dy

- [ Gort 1 * Pt )(6) 75, (6) d
= Y Uit T )OO @ e @)

Imt1.1}, 4 Clm

We note that f+1,7,,, * ]Tm+1,1,;+1 is supported in Cfm_,.l — Cf,;1+1 and 7m+1 is of the form

CL?¢/N?
PU]m+1 n BCLm+1/

In+1 there are only O(1) many I, ; such that the integral in (44) is nonzero, and for those I, _ ,

N- Since 1y, is supported on By, . /N (0) we conclude that for every fixed

we write 111/1+1 ~ Im+1. We let ¢, ., be adapted to C(im_l,_l — fm+1) as in Lemma 2.2 with order of
decay 200. Then, using Cauchy—Schwarz in the first two inequalities, we have

2 - ra v
otz T () = > > Jm+ 1. Ly S 1,1, ¥ Tim

Lpy1CIn I,;+1~Im+1

2 - 1 2 - 1
< D Y Wty P*mD2 (g, 2 [im)2

Im+lCIm Ir:'t—l—lN m+1
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2 i~
S Z | fn+1,Lp1 |~ * |1m]

In+1CIn

2 Y ~
S Y Uttt P 5 [V h | * [Fim]
In+1CIm

2 Y ~
< > a2 P * Wt | % il
Ipn+1CIn

where the last inequality is because of | fp+1,1,,1 | < | fm+2,1,,4, | pointwise. Now to finish the proof, it
suffices to observe that

|7Tm | * |wlm+1 | % pr1,, < PLyyi>

since |17 | decays rapidly outside By, 1., ., (0), |1Z ILns1 | decays atorder 200 outside Pp,, , (0), py,, decays
at order 100 outside Py, (0), and By, ,,n(0) + Pp,,(0) C CPy, ., (0). O

Recall that
C N

(which degenerates to BCNZ/(L%HH) if Ly, < CN1/4) as defined in (16). Let ¢p(r,,) be a function such
that

CL2,6/N?

SUPPPp(Ly) C Po, M (ONBe 2. n32OC(YUT=D).  where 1p(z,) S|P Ly SWP(La).200-

IeT

To construct such a function we can take a ¥ in Lemma 2.2 adapted to certain fat AP and apply a
translation in the physical space to it.

Lemma 5.3 (high lemma). For 1 <m < M — 1 we have
[ 16 P Wewanio0 < N [ 3w Woiwan o0
Im

Proof. Because of (12), it suffices to show for every P(Lys)

/ lgml® S Ng/Z | fnt 1.1 | We(Lag),100-
P(Lnm) I,

Calculate
2
/|g;};,|2WP(LM),100§/|g£l1¢P(LM)|2:/ 1)1, (1 = 1) * B (L ar)
I
Note that

SUpP((| frnt 1,2, 1P, (1= 1m) % S p(L2r)) € C (T — ) \ BL,, ., /23y (0).

Indeed, the high-frequency cutoff (1 —7,,) removes the ball Bz, .,/ (0). The support of m ) is
contained in a ball of radius < le w/N 3/2 (if the C in the definition of P(L) as in (16) is large enough),
so convolution with m) shrlnks the high-frequency cutoff by an amount smaller than L,,+1/(2N).
The structure of I, — I is unchanged by convolution by m y because the thickness of Tmis~ Ly /N
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and %L%/[ /N32 < Lyui1/(2N) < N~¢L,,/N. We claim that at every point on R, the collection of sets
{(C(Ty—Im) \ Br,,+1/eN)(0)}1,, has at most O(N¥?) overlap. Assuming this claim, by the Cauchy—
Schwarz inequality we obtain

B .
/|gf'n|2WP(LM),1oo5Ns/Z\(|fm+1,1m|2)le(1—nm)*¢P(LM)| :
I

So we have

/ |gfln|2WP(LM),1oo

—_—
N [l o TP brcea
I
) - 2
SNEZ(/“fm—i-l,ImF*pIm‘ |¢P(LM)|2+/||fm+1’lm|2*plm * lim| |¢P(LM)|2)
I

< NEZ( [ st 80P o1+ [ Ui 1,408 P 5 o, |ﬁm|)),
I,

where we used Cauchy—Schwarz and that py,, and 7,, have L' norms ~ 1 to justify

“fm"l'l,lm| *plm‘ 5|.fl’l’l+151m| *plm’ “fm+1glm| *plm*lﬂm” §|fm+lglml *plm*|77m|

Noting that [¢p(z) | * o1, S Wp(Las),100 a0d [$p )12 % o1, * [Tim| S Wp(Lyy),100- We conclude

/|gfi,|2WP(LM),1oo SNSZ/ | fnt 1.1 | We (Lag),100-
Iy,

. ~ CL?0/N? 1
Now we prove the claim. Recall that 7, is a fat AP of the form Py, - N Bcr,,/N»wWhere vy, ~ N7,

Suppose x € C(I, —Tm)\BLm+1/(2N)(O) and x € C(I}, — ~,;1)\BLm+1/N(0) for distinct I, and I/,. We
denote the common difference of I,,, and I by v and v’ respectively. Recalling that vy,, are COL,,/N 2
separated, and the maximal separation is C(N Y2/ L,,)(0Lm/N?%) = C0/N3/2, we have

OLm/N2<|v—v/|<6O/N2.

Suppose x € Bey2 o/ y2(kv)andx € By g/ y2 (k'v") for some k, k" €N. Thensince x ¢ By, ., /¢2n)(0),
Lm+1 Sk, k" < Ly,. By definition Ly, = N°Ly 41 < N1Y2=¢ 50 we have

OLp _ ., 0L2 6 1
N2 zN ¢ N2 5 Lm_ S =<

0
Lm+1 N% N1+e — Nyl1+e’

It follows that |k —k’| < 1 and

L
either [v—V|S N2 or [v—0|Z—
N2 N2—¢
The second case cannot happen if N is sufficiently large (depending on ¢). Since common differences v are
O(OL, / N?)-separated, we conclude that there are at most O(N¢) many I/, such that x € C(I', — I"))\

BLm+1/(2N) (0) g
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SE. Thesets Ry ,r and Ug . The last part of our high-low decomposition set-up is to partition P (L)
into Q2 ¢ r, for a fixed pair (o, 7). For 1 <m < M —1 we define Q,, o - to be

Qumar i={x € P(Lar) : gm(x) <2|gm ()], gmr1(x) < 21851 (O], gr—1(x) < 2[g5_ ()]}

Here gx = gk,a,r- Also define 29,4, to be

Qoar = {x € P(La): g1(x) <2[gf(0)], g2(x) <2g5(0)|,..., gm—1(x) <2lgs_ (X)}.

Clearly

P(LM) = U S-zm,ot,r
o<m<M-1

for every «, r. For notational convenience we let Qa7 = P(Lp).
We define Uy, by

Uy i={x€P(Lpy):r'/2<gm(x)<2r', &'/2 <|f(x)] <2} (45)

Recall that gpr = Y Ins | f1,s |2 % o1,, 1s defined without the pruning process so in particular it does not
depend on the pruning parameters o, r.

We prove the following lemma, which shows that, on Uy N Qm.a,rs | fm — fm.e.r| is very small
so that | fiu| ~ | fm.,«,r|- We define fo = f1 for notational convenience. Also recall we have defined

M1 =fand fyiin, = f1y = 11

Lemma 5.4. [f the constant C, in the definition of A is large enough depending on &, then for every o, r,
every 1 <m < M — 1, and any subset S of the partition T, = {1, }, we have

Z fIm - Z fm,a,r,Im

I,€S I,€S

o
<
— 100

onUy,r N Qm,a,r, and also on Uy y N Qo q,r if m = 1. In particular if(?g in the definition of A is large
enough depending on ¢, then for every o, r, every 0 <m < M — 1,

o
| fm,o,r | € [1’40‘]’
onUyr N Q. r
Proof. Fix a, r. In the following proof gx means gx o ,,and fi 1., fi,1,_,» fik mean fi 1. o rs o, 110

Jk.a,r respectively. First suppose 1 <m < M — 1. By the definition of 2, 4 and Lemma 5.2 we know
that on Uy r N Q2 a,rs

Em+1 S8m42 S - SEM ST
We also have by the Cauchy—Schwarz inequality g, <¢ N°gm+1. Recall that M <. 1 so we have, for
m=<k<M,

gk Se N®r on Us,r N Qma,r.
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Let /' be an integer between m and M and let I,» € Z,. By the definition of fy 7 , and fonr41,7,, We
have for x € Uy,r N Q. a,r

| ot Q)= frr 1,0, = D bpy (%) fowrt1,1,, (%)

Pr  €Pr1 ;.2

S Y 195, (w0165, @)

Pr P12

1 1
_1 53 bl
S Y A Nee,, fwrid lLe@l3,  forii, L@ 93, (%)
m m
Pr EPL, A

1 1
-1 2 2 2
sk Z ||¢;1m/ fm/—l—l,]m/ “L‘X’(R) d)}%lm’(X)

Pr, €Pr1, ;.2

A Z ZH¢P / m+1lm/||Loo(p, )¢p, (x)

le/ ¢plm/,)» le/

<A™ Z Z I¢p, /||L°°(P1 /)”fm 1.1, 1121 W5, )¢p, (x),

le/ le/

where we used ¢ P, < ¢ . We also used the locally constant property Proposition 2.3 for the last in-
equality. If we use ¢1 , (PI 1,) to denote ¢y, (sup le,) which is comparable to ¢; ,(y) forany y € ﬁlm,,
then we have

| fon Ly () = fora 1,0, G| S A7 Py, |~ 12 Z( [ W5, op, (Em,>|fm/+1,1m,|2)¢,%,m,(x)

I Pr,.,

<7 ey, Y ([ W, Vs Im/|2)¢2 (Py,, ()
7
SANPYI [Uowsr, POY Y Wa, (0067, (P (o) dy
P "

\
P [ st POV 02, 0 d.
Noting that |21, [~ 932 () 5 1 (x— ), we get

|fm’,Im/ () = fonr+1, Ly OO S AT o 1,1, 12 % 1, ().

Summing the above over I, C | J I,,€8 I,,, we conclude

Yo Sy = Y fwrrg, ()

Ly CUppes Im Ly CUppes Im

<A g P * o1, ()

Im’ S

= )L_lgm’(x) Se NP~
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Therefore if we choose the constant Cs in the definition of A = CSN €L to be large enough depending
on ¢, then we have, for x € Uy » N Qo7

> X Iwae@= D S )‘_100

m=<m’<M 'L, CU;,. cs Im L CUrpes Im

Since by definition Zlm’CUImes 1, Jm' 1, = Zlm’—ICUImGS 1,, Jm'.1,,_,» We have by the triangle

inequality that
D St D Sidn| S 7oe

~ 100"
In,€S In€es

The case m = 0 follows from the above argument for m = 1 as by definition fo = f]. O

From now on we will assume that Cs is chosen large enough such that the conclusion of Lemma 5.4
holds.

6. Proof of Proposition 4.5

We prove Proposition 4.5 in this section, and consequently Theorem 4.4. We also give the proof of
Theorem 4.3 assuming Theorem 4.4 in the last subsection. Still fix 2 < p <6, ¢ >0, and P(Lps) C R.
Suppose 1 < K < N¥/2and NY/2/K > L. Let I’ be a partition of./\/N 1x—1({an}; _1/12) into K many /’,
which is a union of N /2/ K consecutive intervals in Ay —1 g1 (fan}N_ ) We call I’, I € 7’ nonadjacent
if there exist at least two other I””” € 7’ between I’ and I"” on the real line. Alternatively, we can list
1" €T as I] sothat I} is on the right side of /] on the real line for every j. Then we define I, I/, to
be nonadjacent if |j — j’| > 3. In displayed math we write “nonadj.” as the shorthand for nonadjacent.
For f with supp f C Q, we let f7/ denote the projection of f to I’ in the frequency space. So

frr=31ycr Jiu-

6A. Broad-narrow decomposition. The following lemma is a broad-narrow analysis on f with some
complication. For parameters «,r > 0 and m, 0 <m < M — 1, define

fm,oe,r,I’ = Z fm,a,r,[m,

InCl’

where we recall that f,, o .1, is defined in (42).

Lemma 6.1. For every X C P(Lyy), there exist some o, r with o > rY2 and some m such that 0 <m<

M —1 and
1 C C
117 5 3 [ 117+ Gog N tog6™! + 1) oy ma [ mar P a2
Py U1 JX Uy r NQma.r
I'et nonadj.

21
2
+((sup Znﬁuy(WPHX)JOOQ (Z 51070 00) 40
1

First we prove a technical lemma which is a pointwise broad-narrow analysis.
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By taking all parameters to have dyadic values, we may assume that for each I,,, 0 <m < M, and
any I/, either I, C ' or I, NI = @.

Lemma 6.2. Foreveryoa,r >0and0<m <M —1,
[ fonsr ()1 S max | f (O + K max | fonor,t (1 o, 17()

nonadj.

foreveryx € X NUyr N Qm -
Proof. Let x € X NUq,r N2y a,r. If there exist I, I” € T’ nonadjacent such that | fo o .1, | frn.ar 17| =
ﬁ|fm,a,r (x)|, then we have
fonar P S K2 mX | fon 1Ol e (). “7)
noﬁadj.

Now we assume there do not exist I/, I” € 7’ nonadjacent with | f1 .o r.1/], | frn.a0.r.17]> ﬁ | frn,r (X)].
Note that fi .- (X) = Y7/ fin,a.r,17(x) and the number of I’ is bounded by K. So if we choose " € 7’
with | fim,a,r, 17 (x)| = maxprer | fm,a.r1/(x)|, then

| frn,r 07 (X)| = %|fm,a,r(x)|- (48)
By Lemma 5.4 we have | fn,a,r(x)| € [a/4,4a], and | fin,a,r, 177 (x) — f17(x)| < 15g- Therefore by
the triangle inequality and (48) we obtain
| /17 ()| 2 o ~ | fma,r (X)].
This combined with (47) proves the lemma. O
Proof of Lemma 6.1. Since P(Ly) = ||, - dyadic Ua,r» We have
[GER 3
X a,r: dyadic VX NUa.r

Without loss of generality we assume
1 1 1

p

27 P
2 2 _
(550 Z 1 By o0) (S5 By ) =1 @)
1 1

Then X N Uy, = @ if max{a, r} > CNCO~C for some sufficiently large constant C. Also

%
/ 7)<
Xﬂ(Umin{a,r}sC_lN_Cec Ua,r)

if C is sufficiently large. So now we write

P < 4 C, 50
/lel _;/)mlefl (50)

where the number of pairs (c, r) in the summation is O(log N log(6~! 4+ 1))?2, since the number of dyadic
numbers between C !N ~C0C and CNC0~C is O(log N +1og(0~" + 1)) = O(log N log(6~! + 1)).
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We also observe that by Holder’s inequality and Fubini’s theorem we have

D 2_q
2 2
s (;mﬁ*m) S| Sk (S 1wty )

Lee(X) \ g

/XﬂUasrl/z Ua.r

Since

Z | f11% * pr < sup Z | f11? % pr(x) < sup Z Il /1 “iZ(Wp,(x),loo)’
7 xeX I xeX Ja

Loo(X)
we obtain
D

£-1
= Z 2 = 1.
fX Uy aas (jgg ; 1711w, (x),wo)) (; /2 ||L2(WP(LHOO))

So in summary

[irs ¥ /m 1P+ (51)

a,ro>rl/2 a.r

Next we further decompose X N Uy, into | J,,,(X N Uy,r N Qi a,r):

M-1
| o=y | 1.
XUy, 0 XU N

By Lemma 5.4 we have, for0 <m <M —1,

/ f17 ~ [ Fonaerl?.
XﬂUa,rﬂQm,a_r XﬂUa_rﬂQm,a,r

It then follows from Lemmas 6.2 and 5.4 that

/lelp

s X ¥(% 1+ G s | it P )
a,r:azrl/zfn=0 I’eT’ XﬂUtx.erm.a.r nIOI;a{dj. XﬂUot.erm.a.r
p Kc 2 2
SIHC Y | P+ ) Y = max a2 fmar 12
X @ 1’1 XNUq,r N2 a7

I'eT’ a,ra>rl/2 m nonadj.

where we used M <. 1 in the last inequality. Recall that the number of pairs (¢, r) in the summation is
O(log N log(6~1 + 1))? (see (50)); by the pigeonhole principle we have

K€ 2 2
> Y [ | oo/ 1]
a,ra>rt/2 m nonadj. XWor.r . cr.r c
_ K
e (g N log6 ™ + 1) max [ et foner 712
o I'1” JX0Uy N2 a0 r
nonadj.

for some «, r with o > rl/ 2 0<m <M —1, which completes the proof. O
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Now fix X C P(Lps). We have identified a pair («, r) from Lemma 6.1, and we fix that pair of «,
and suppress the dependence on «, r from now on in the notation. In particular write g = gm.a,r
Qm=CQmar, fm.1’ = fmar,r’ a0d fn 1, = fm.a.r1, Where a,r are those chosen in Lemma 6.1.

We estimate the broad and narrow parts separately, which together with Lemma 6.1 will imply
Proposition 4.5.

6B. Narrow part.

Proposition 6.3. For every I' € I' we have

/X L

N 6\ 21 2
(s vee(g5z) ) (50 X 1) (1B, ) 52

07€l6/4.0] XX jcr icr
Proof. In this proof, the notation cA with ¢ € [R{, A C R will denote the set {ca :a € A}. s
We first prove (52) for I’ = /\/'ng/Nz({an},]lv ). Note that K21’ = = Nkar29/82({K an})N /K
and if we let @ = K2a,, N=N/K? and 0 = 9/K2, then

_ . [K? 4K? 1 4 . . T[K?% 4K?0 6 46
a—ace —,=|, (@—a)y—(@—a)e , =|—,=—|,
4N' N 4N N 4N2° N2 AN2" N2

and K21' = N5, 52 (@h— ).

We define ﬁ(L), ﬁKZI by (16), (15) respectively with N, L, 6, v; replaced by ]\7 L, é szj. Then for
any xo we have ﬁKzI(K_zxo) = K2 P;(xg), and ﬁ(L, K~2x9) C K~2P(L, xo). Now by the change
of variable formula,

/ o (OIP dx = K / f (K2x)|P dx.
X -2y

We have supp f7/(K?-)CK?1'= NL20/N2({a}n 1 ) Let f(x) denote the function f]/(sz) Therefore

by the definition of the refined decoupling constant for NV, »5 / Nz({a}n 1 ) and (33) (as P(L K™ 2x9) C
K~2P(L,xp)), we have

21
[ CE T T SV N M O DY Vi .

X€X rp Icr

By the change of variable formula,
||f||£2(WFK21(K_2X)!100) < ||f1||£2(WP1(x),100)’

||f||L2(WK—2P(L).100) <K ”fIHLz(WP(L),loo)'

So we conclude

N 6V 5!
/X | fr1? < Dec(ﬁ, ﬁ) (sup Z /1 ||£2(WP1(x> 100)) (Z ||fIl|L2(WP(L) 100))

X€X rep Icl’
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. . . 1/2
Now we consider a general I’ € Z'. Suppose a; is the first term in I’ N {a, },]1\7:/1 ,and let v; = aj4+q1 —ay.

Because of (14) we have v; € [v1, 2v1]. So we may choose K; € [K/~/2, K] such that
1 4
KIZU] € |:—~, _~]
4N N

Then

OK? 40K? 9 40
2 l l . l
Ki((an+1—an) —(an —an-1)) € [4N2’ N2 } = [4ﬁ2’_ﬁ2}

for some 6 € [é/4, é] Let 6; = K20, which lies in [6/4,40]. So by a change of variable argument

again we have
y4

N 6\ 2 =7 2
[11 svee( 255 ) (590 X 10w 0) (X 10, )

X€X rep Icl’

Therefore we have shown (52) for every I’ € 7'. O
The proof of Proposition 6.3 actually shows that (52) holds for every f with frequency support in €

(not only alternately spaced f) and every X C P(L).

6C. Broad part.

Proposition 6.4. For 1 <m <M — 1 and I’, 1" € T’ nonadjacent we have

2
r
/};nU . |fm’11|2|fm’11/|2 53 NCSKC (&) (Z ||f] ”IZJZ(WP(L)’]()()))' (53)

Iez
Proof. Fix a P(L!,) such that P(L,) N X N Uy, N Qm # @. Recall that L), = (L, NY?)/2 as
defined in Section 3. Suppose the distance between /" and I” is 1/K’. Since I’, 1" are nonadjacent,
we have 1/K <1/K’ < 1. Let f (x) denote the function fy, 1/ ((K’ )2x), and f (x) denote the function
fin.17((K')2x). Then supp f; C (K')21’, supp f> C (K')21”, and d((K')21’,(K")21") = 1. By (22)
and a change of variable argument similar to that in the proof of Proposition 6.3, we have

/( oy apau T Se NEKDEIPL)IT f [ FPWkry-2p(es,200 f S PWikry-2 P2 200

By the local L? orthogonality Lemma 3.6, we further obtain

/ LRI
(K")~2P(Ly,)

ssNS(K/)CIP(Lin)I”/Z |(f)(1</)21m|2W(Kf)—2P(L;ﬂ),200/ Z () k21, *Wikry-2 p(s,).200-
InCl’ InCl”

Here the notation cA with ¢ € R, A C R denotes the set {ca : a € A}. Applying the change of variable
x — (K’)72x to both sides of the above inequality, and using K’ < K, we get

/ o VPl PN K P | X Ut PWoiwipao0 | 3 1omtn P Woci o0

InCI’ InCI”
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By Holder’s inequality,
2
[ P 5 NKE [ (3210 2) Wocas0m
m I’n

and due to | fyn.1,,| <|/fm+1,1,,| we further have

2
[y, Pt 5 VK (32 e ) Wz
m I,

Now applying Proposition 2.3 we obtain

2
/P(L/ ) | fon 0P| fom, 17 Se N‘?KCIP(L;,)I_I(/ (Z |fm+1,1m|2) WP(L;n)’IOO)
m I,

< N¢KC / g2.
P(L}y)

Note that from the definition of 2, and the definition of g, 1= ) 1, | fm+1,1,, |2 % py,, we have x € Qp,
implies |gm (X)| ~ sup,ep(r/, (x)) [&€m (V)] < |gfln (x)|. Therefore we have (by Proposition 2.3)

[ =PIl 5 [ 1P Wrig.i00
P(Ljy)
where x € P(L},) N Q. Summing over disjoint P(L},) that intersect X N Uy, N 2, wWe obtain

2 2 2 2 4
/ o 21 172 <o NKC / 1€ PWpL,.100 S N2 K€ / S s 1 WoLary.100.
XN\Uqg.r N2 o

where the last inequality is due to Lemma 5.3. By Holder’s inequality and the definition of fp, 41,1,
we have

4 c 4
/Z|fm+1,lm| Wp(La).100 SN 8/ > 1t *We (L. 100
Im Im+1

2
.
SNCS(E)/ Y Umt i PWewan, 100-

L1

By the pointwise inequality | fin+1,7,,4 | < | fm+2,1,,4, | and local L? orthogonality (Lemma 3.6),

2 2
/Z | fmt 1, L | WP(LM),woi/Z | fm42, 141 " WP(Lap),100
Im+1 Im+2

2
5/2 | fm+2, 142" WP (La1),100-
Inyo

Continuing this process we obtain

/Z |fm+1,1m+1|2WP(LM),100 5s/Z|fM,IM|2WP(LM),100- (54)
Ing

I+
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Recalling that | far.1,,| < | /1., | = | f1| we conclude

2
)
/ Pl 1o <o NCEKC (5) [ SV Wit i00 O
1

NUq,rNQm

Proposition 6.5. For I’, 1" € T’ nonadjacent we have

21
)2 D
2 2 < N°¢ E 2 E

/XﬂUa,rﬂQo | fo,r1% | fo,17|% < N (;g’( - ”fI”LZ(WP, (x),lOO)) ( “fI”LZ(WP(L) 100))

Proof. By the Cauchy—-Schwarz inequality we have

ya P
/ | fo,0/| % | fo,1]> SNE/ (Zlfl I )
XNUgy.rN2o XNUy rN20
21
N® sup (Zlfu] ) /Z|f111| Wp(Lar),100-

XEXNo I

We have shown in the proof of Proposition 6.4 (inequality (54)) that

/ E | f1.0 P We(Lay).100 Sa/ E | f11*Wp(L).100-
I I
So it suffices to show

sup (Z | /1.1, ) Se EEEZ IIfIIIiz(WP[(mOO). (55)
1

xX€XNo

From the locally constant property (Proposition 2.3) we have

S AP s Zm L% () S 1o, 1P % pr, (x) = g1.(x)

I I

(recall that py, is an L' normalized nonnegative function adapted to Pr, (0) satisfying (43)), and by
Lemma 5.2 we have, for x € X N Qp, g1(x) <S¢ gum (x). So we conclude

sup |finP(x)Se sup  gm(x) S sup Il f711% 0
xeXNo ; ! xeXﬂQO Z £2(Wp, (x).100)"

6D. Proof of Proposition 4.5. Let X C P(L). We choose «, r as in Lemma 6.1. Note that

SR
1

r<2

Lo (X)

since otherwise X N Uy = &. So

r<2 < sup I f71135
Loo(X) | xeX I;’ £2(Wp; (x).100)°
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Also « > r¥/2 implies that r3~2/2 /¢®~P <1 as p < 6. Therefore combining Propositions 6.3, 6.4, and 6.5
and Lemma 6.1 we obtain

N 0\
|f|p < ( sup Dec(—, _) + 10gC (9—1 4 I)NCSKC)
/X *\oreo/4.461 K?' K?

L1

2
x (sup Z /7 ||£2(Wp, (x>,100))
1

xeX

(Z I fi ||iz(W,,(mo)). (56)
1

6E. Proof of Theorem 4.3. Finally, in this section we show how Theorem 4.4 implies Theorem 4.3. Let
f =>"; f1. Taking X = P(L) in (32) we see that

1_ 1 1

P

27 p
1 ey 5o N 10 @ 4 0( s S B o0) (22 i sarpisy )
1

xeP(L) I

To prove Theorem 4.1 we will do dyadic pigeonholing on the LZ-norm of wave packets of f, using
Proposition 5.1. More precisely we write

f=2fi=2.2 9 fi= ) 2 P, 1
1 1 P ks dyadic LPENG P, Sl 20wy, 00 €4/2:0)

Without loss of generality we assume (Z 1 1 )l/ > — 1. Then

17
L?(Wp(L).100)

Z ¢P1f]

I,P[Z||¢PI fr "LZ(WPI loo)gé[N—CGC,NCO—C] L?P(P(L))

<1

~

for sufficiently large C. Therefore there exists a A such that

Z ¢P1f]

LPr:\op, f1 ”LZ(WP,Joo)e[MZ’M L?(P(L))

1f |lLrcpy < CeNelog€ (07 + 1) + 1.

By a further dyadic pigeonholing argument on /, we may assume, for every I, either

#{PI : ||¢PI fI”Lz(WP(L)!lO()) € [A‘/Q"A‘)} =0

or
# Pr:|op, f1||L2(WP(L).100) €[A/2,1)} €[A/2,A) for some constant A.

We denote by #/ the number of I such that #{ Py : |¢p, f1 ||L2(WP(L),100) €[A/2,A)} €[A/2, A). For
simplicity of notation we will also drop writing the condition (¢p, /7 llL2w, (Ly.100) € [A/2,A) in the
summation. Now apply Theorem 4.4 to get

> ¢p fi <e 1ogc<9—1+1>N8( sup Y | ¢p, J1
Py

1,P; LP(P(L)) xeP(L) 7
X ( E
I

N =

2 )5—
£2(Wp; (x).100)

s :
Y ¢p, fi ) . (57)
P; L2(Wp(1).100)
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To estimate the first factor on the right-hand side of (57) we note that, for every x € P(L),

2

1

because of (Y_p, ¢p, (y))2 < supp, ¢p, (¥) < X p, ¢p, () and (12). Therefore

2
sup > > ¢, J1

XEP(L) I
To estimate the second factor on the right-hand side of (57) we calculate

2

I

2

<Y lige fr ||iz(WP](WOO) < #DA? P

£2(Wp; (x).100) I P

Z ¢P1 fI
Py

S #DA?| P
£2(Wp,; (x).100)

2

< Z Z ||¢P1 fI “iz(WP(L).loo) < (#I)AZA-

L2(Wp(1),100) I P

Z¢P1 fI
Py

To summarize, (57) implies that

Z ¢P1 f]

1,P;

C —1 & 1_1 1 1
<, 1ogC (O + 1)NE| Py |7 Z(H#)2 AP A.
L7(P(L))

Now by Holder’s inequality we have

2 1

1
2 1 7 \2
2 p
(Z ”fI”Lp(Wp(L),lo())) = (Z (Z ||¢12)1 fI“Lp(WP(L),lOO)) )
I 1 ~PpPf

_D

2 (X001 1)
I “P;

> |Pr|7 3 (#I)2 AT A

1

j

NS

Hence we have (31).

7. A decoupling inequality for generalized Dirichlet sequences

In this section we focus only on generalized Dirichlet sequences with parameter & = 1. That is, we say
{an },]1\]=1 is a generalized Dirichlet sequence if it satisfies (14) with 8 = 1. We will present a decoupling
inequality for generalized Dirichlet sequences, by combining Theorem 4.1 and the flat decoupling
(Proposition 7.2 below). Then we show that for certain choices of the generalized Dirichlet sequences
{an },]lv=1 the decoupling inequality that we obtain in this way is sharp (up to C.N¥?).

More precisely, for | < L < N 172 we let Q' denote the L2 /N 2—neighborhood of {an}rjlv:l, and
let {J}ses be a partition of Q" into Q' N By-1/2, where By —1/2 runs over a tiling of R by balls of
radius N ~%/2. So there are about N /2 many J and each J contains O(N 1/ 2) many consecutive intervals
in Q'. For each J we let Z; be the partition of J into I, which is a union of L many consecutive intervals
in .

We have the following decoupling inequality for the partition Q' = |, 7Urez L L
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Theorem 7.1. For2 < p <6, we have

1/ Moy e N3¢ (Z 3 ||f1||L,,(R)) (58)

Jeglely

forevery f :R — C with supp fC Q. There exists a choice of {an} — (satisfying (14) with 0 = 1) such
that the above estimate is sharp up to an N¥ factor.

7A. Proof of (58). From Theorem 4.1 we have, forevery J € J and 2 < p <6,

%
1o S 8 ( 5 Wil o) - (59)

VESIN
Next we decouple f into f7 using the flat decoupling:

Proposition 7.2. Let U denote the partition
M-1

[0, M) = |_|[mm+1)

Then for p > 2 we have

M=

1_1 2
1/ ey <p M3 (Z ||fU||i,,(R))

Ueu
for every f : R — C with supp fC [0, M).

Flat decoupling inequality is well known (see for example Proposition 2.4 in [Demeter et al. 2020])
but we include a proof here for the sake of completeness.

Proof. Fix p > 2. It suffices to prove that

1
11 2
||f||LP(B1) <Mz » ( Z “fU”IZJ’(WBl.lOO))

Ueu
for f with supp f C [0, M). We calculate

112050 < 1122 g 1 122a,

p—2
< (Sileman) (S 100 )
U U
p—2
< (Z ||fU||LP(WBl.100)) (Z I fu ||124”(WB, .100))
U U

p—2

2
2
M (Sl ) (1010, 0)
U

p
T (Z I.fu ”LP(WBI,IOO)) :
U

Here we used the locally constant property similar to Proposition 2.3 and local L? orthogonality similar
to Lemma 3.6. O
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Now we prove the decoupling inequality in Theorem 7.1.
Proof of (58) in Theorem 7.1. Combining (59) with Proposition 7.2 we obtain

1 1
2 11 2
anjnip(m) <w? 2p+8(2 ) ||f1||%p(m)

Jeg Jegleily
for f with supp fC Q. O

T Na(

7B. An example and sharpness of (58). To prove the sharpness part, we construct a sequence {a, },]lv=1
satisfying (14) (with 8 = 1) and for which (58) is sharp. We will use the function

4x + (N2 — /N —4x)?
AN

glx) =
to define the sequence. Forn =0, ..., %, let
an = g(n).
Distinguish the subsequence a,,, where ny = kN2 — k2.

Lemma 7.3. There is an absolute constant Ny > 0 such that for every N > Ny, the sequence {ay, }ivi ?
constructed above satisfies property (14) (with 8 = 1). Furthermore, there is an absolute constant ¢ > 0

so that _
J

. j=1.....|cN2]
N2

is a subsequence of {an },Ilvfi

Proof. First we verify the presence of the subsequence: Let ny and a,, be as above. Calculate directly that

4ng + (N2 — VN —4dng)?

an, = g(ng) = N
ANZ —K2)+ (N2 — VN —4(kN? —k2))?
- 4N
4(kN?2 —k2)+ (N2 — (N2 —2k))?
- 4N
4KNZ —4K2 +4k> &
- AN e

This calculation holds as long as k < N'/2/2. Also note that ny = kN /2 —k? is increasing as a function
of k as long as k < N'/2/2, so the ny define a subsequence a,,. . . ., an, where K = |N2/2].
To verify property (14), it suffices to check that for N large enough

1 2
ay—aop < [ﬁ,ﬁ] (60)
and that . A
(an+1—an) —(an —an—1) € [MV_Z’W] (61)

whenever 1 <n < % — 1, since (60) together with (61) will imply a, —a; € [ﬁ, %] for N large enough.
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First we check (60). Note that ag = 0 and

4+ (N2 —/N—4)?2
AN ‘

ay=g(l) =
Then

1 16 1 2
o= (1 Jeloh2]
4N (N2 4+ /N —4)2 2N N
if N is large enough.
Next we check (61). First calculate

44+ (N2 —/N—dx—4)2— (N2 — /N —4x)?

gx+1)—gx)=

4N
4+2N2(/N—dx—/N—dx—4)—4
- 4N
VN -4x—VJN—-4x—4 2
B IN? CON3(IN —dx+ VN —dx—4)
Use this formula to calculate the difference
(an+1—an) — (an —an—1)
2 1 1
- E(\/N—4n+«/N—4n—4_ «/N—4n+4+\/N—4n)
2 VN—4n+4—/N—4n—4
N2 (VN —an+ VN —an—4) (VN —dn+ 4+ /N —4n)
16

B N2(WN—4n+~N—dn—4) (VN —dn+ 4+ N —an) (VN —dn+4+/N—dn—4)

Aslong asn < &, and N is sufficiently large, this lies in [ﬁ, %] and we are done. O

Now we can finish the sharpness part of Theorem 7.1.

Proof of the sharpness part of Theorem 7.1. For N > Ny, we take {ay }rll\lisl to be the sequence constructed
in Lemma 7.3, extended arbitrarily to {a, },11\’:1 so that (14) is satisfied with 6 = 1. We take f =) ; f7

to be the function
leN1/2]

Pnzr2(x) Y e,

n=1
where ¢ is the constant in Lemma 7.3, and ¢p2,72(x) is an L°°-normalized Schwartz function whose

Fourier transform is a smooth bump adapted to By2,y2(0). Then we have

1

3. L
1 N2 \»
I lrer 2 ()
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since | f(x)| ~ NY2 on PSW(O) N Ben2/12(0). Since | f1| = ¢n2/12, we have

(Z ) ||f1||Lp(R)) ~N(1Z22) |

Jeglezy

Therefore (58) is sharp up to N°. O

7C. Some discussions. If we take L = 1 and p = 4 in Theorem 7.1, we get

N
Z bneianx
n=1

On the other hand, for the Dirichlet polynomial we have, by unique factorization in Z and local L?

<o N2TETe B, | o (62)

L4(BN2)

orthogonality, that

2N
b eix logn
E n

n=N+1

2N 2N

Z Z b b eleog(nm)

m=N+1n=N+1

L4(BN2)

<e N3 |byllge. (63)
L2(B2)

Comparing (62) with (63) we see that while we can construct a generalized Dirichlet sequence that

1/2

contains an AP with about N /< many terms and common difference N —1/2 50 that (62) is sharp for that

sequence, the Dirichlet sequence {log n}2Y does not contain such an (N ~2-approximate) AP and

n=N+1
therefore allows a better estimate (63).

X /72 .. g e

However we notice that the example Dg(x) = Zjﬁ 1 eI XIIN'? qoes not exclude the possibility that

Montgomery’s conjecture may hold for generalized Dirichlet polynomials. By Montgomery’s conjecture

for generalized Dirichlet polynomials we mean, for every ¢ > 0,

N
Z bneixan
n=1

for every generalized Dirichlet sequence {aj },1:;1 with 8 = 1. Indeed we know |Do(x)| = N
PIS 1,2(0), so

Se TENE(NE +T)7 |[bylgoo (64)
L?(BT)

1/2 on

1 1_ 1
| DollLrB;y 2 TP N2 2P,

On the right-hand side of (7) we have C;TéN V2(N?/24T)1/P > NV2T1/P S0 there is no contradiction
to (64). Note that if we apply Holder’s inequality ||b, |,z < N 12| b,y || goo to (63) then we obtain

2N
Z b eixlogn
n

n=N+1

Se N1+8||bn||£°°»

L4(BN2)

which is exactly (7) with p = 4, T = N 2. However although we know (62) is sharp (up to Cz N ¢) for our
example Dg(x), the Holder step ||y, |2 < NY2||b, || ¢ is not sharp because Dg(x) has only N /2
nonzero coefficients.

many
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On the other hand we may construct a periodic generalized Dirichlet polynomial
¢ ()

N
£y
n=1

which contradicts (64) for p > 4, T > N2720 with any & > 0. We notice that | f| = N on N¢(N?Z). So

1

T \¢ -
1 lercan 2 N () ="

Under the condition p > 4 we have

N =

T

SN

1-2 .1 & 1 1
NY"3T7 24 NNZT?
for some &1 > 0 depending on p. Under the condition T > N 270 we have
1-2 1 £
N " »TrP >NN

for some &5 > 0 depending on p. Therefore when p > 4 and T > N27€0 with any g9 > 0, (64) fails for
the generalized Dirichlet polynomial f.

At the end of this section we discuss briefly what makes N /2

special. Suppose we consider the
sequence {a, }rjlvzal for some « € (%, 1], and {an },11\':1 is a generalized Dirichlet sequence with 8 = 1. For
simplicity we will omit constants C in the following discussion. Still we look at (L2 /N 2)-neighborhood
of {a, }flvjl with L > 1. For L > N2, the (L?/N?)-neighborhood is essentially the same as the (1/N)-
neighborhood (as long as L < N), which is an interval of length about 1. So the induction scheme in this
paper fails to work for L > N 172,

Another difficulty is about the “bush” structure of | J; (/ — I') in the frequency space. To illustrate this,
we let L < N2 and define I, Py as before that is, / is the (L?/N?)-neighborhood of an L-segment
{an}n G-1)L+1 of the sequence {an} _1, and P; denotes a fat AP of the form P N/ N Ben2/p2s
where v = a(j_1)L+2 —a¢j—1)L+1 (see (15)). So now there are N%/L many I, v1 ~1/N are L/N?
separated, and the maximal separation of vy is 1/N27%. For « > %, we no longer have an essentially
linear decaying pattern of the bush | J; (I —I) if L > N17%, which is exploited in the proof of Lemma 5.3.
To be precise, we consider the function ) ; 17_7(), which counts the number of overlap of the sets

I—-Tatt. fa<s then we can verify that

£ 65
~ = (65)

le z(r)' + hen — < [x| <

See Figure 2 for a rough graph of the function ) ; 1;_;(t). However if o > % then we no longer have
(65). This is because % is the largest value for « such that for every L < N 1/ 2, the k-th intervals in all
I — I are within about N ! distance from each other for every 1 <k < L. For comparison, we note that
for R™Y/2 x R™1 caps 6 that tile the R~!-neighborhood of the truncated parabola, the bush {# — 6} has a
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y

— y ZZi lr—1(x)

L/N %

Figure 2. The overlap number of the / — I has a linear decay pattern provided
L/N?7% < N~L This condition is guaranteed as long as a < % Controlling the
overlap number of the I — I outside of a certain neighborhood of the origin is a central
step in Lemma 5.3.

similar linear decay pattern:

> lg_p(x)

0

<_R_i 1< |x|<R 3
< when R™" < |x| SR 2.

x|

On the physical side, how Pj interact also becomes more complicated when « > 2. One important

property we used in the o = % case is that the maximal separation of vI_1 (which is about N /2) is less
than the thickness of P; (which is about N/L) forevery | <L <N 1/2 However for a > %, the maximal
separation is about N 1~ which is greater than the thickness N/L for L > N17% In particular this makes
the pattern of the intersection Py N Py more complicated and the notion of transversal less clear.

8. Small-cap-type decoupling

In this section we prove Theorem 1.3, which is about small-cap-type decoupling inequalities in the spirit
of [Demeter et al. 2020].

First we restate Theorem 1.3 but with the more general definition of generalized Dirichlet sequence. Let
{an },]:’;/12 be a short generalized Dirichlet sequence with parameter 8 € (0, 1] as defined in Definition 3.1.
Let L, Ly be two integers such that 1 < L; < L < N2, Denote by Q the §L2/ N 2-neighborhood of
{ay },]lvzl/l2 We let {J}jes = {Jr} ]Lcli;ﬂ/ Ll be the partition of € into unions of L; many consecutive

intervals, that is,
Ly

T = Bor2yw2(akr, +1).
i=1
Let {I}7e7 be the partition of 2 into unions of L many consecutive intervals, which we called the

canonical partition.
A more general version of Theorem 1.3 is the following, which we prove in the rest of this section.
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Theorem 8.1. Let {J } jc s be defined as in the above paragraph. Suppose p > 4, é + % < 1. If either of
the two conditions

(a) L1 =1,
®) p=gq.

is satisfied, then, for every € > 0,

1

(X 1) 0

JeJg

Q=

1_1_3 2 1 1
N2 2¢ 22> N2\2
P q 1

> fi

Jeg

<s N°log€ (67! + 1)(

L7 (R) Ll

for all functions fj : R — C with supp f} CJ.

As a corollary we have a more general version of Corollary 1.4.

Corollary 8.2. Let {a, }flv;/lz be a short generalized Dirichlet sequence with parameter 0 € (0, 1]. Suppose
p =>4, % + % <1l,and NO=! < T < N20~1. We have, for every e > 0,

N1/2

§ bneitan
n=1

for every Bt and every {by}

<, Nelog€ (@ 1+ )N 2Ot 50075 4 TINT 20)|byllga (67)
L?(Br)

NP e,

To prove results of the form (66), we may use the small cap decoupling method for P! developed
in [Demeter et al. 2020], which is based on refined decoupling for the canonical partition, refined flat
decoupling and an incidence estimate for tubes with spacing conditions. We have three analogous results
in the short generalized Dirichlet sequence setting. Theorem 4.4 is the analogy of the refined canonical

cap decoupling for P1. Now we state and prove the other two.

8A. An incidence estimate for fat APs. We start with the incidence estimate. First we introduce some
notation. Suppose P, P’ are fat APs such that P = P;(y) and P’ = Py/(y’) for some 1,1’ € . We
say P, P’ are parallel if I = I'. For a collection P = { P} of fat APs, we say x € R is an r-rich point if
r many P contain it.

Proposition 8.3. Ler 1 < L; < L < NY2 and let {J} ;e 7, {1 }1e7 be defined as in the beginning of
Section 8. Suppose we have a collection of fat AP P = { P} inside a fixed P(L), where each P = Py for
some I € I. Assume for every J € J and every Py C P(L), Py contains either M or 0 parallel P € P.
Denote by Q the set of r-rich points of P. Suppose Q, # . Then one of the two cases below happens:

(1) There exists a dyadic s € [1, min{L, NY2/L}] and My € N such that

M
10,] S —5#P)|P|, (68)
sr2
MyN'/?
< 69
'x s2L (69)

L
M < sM max{l,sfl}. (70)
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(2) We have
Q- = |P(L)], (71)

P
r=< (#P)|Il(l|,)|'

(72)

Here #P denotes the cardinality of P.

Proof. For each dyadic 1 <s <min{L, N¥2/L}, we let n; denote a smooth bump with height 1 adapted
to the anr;ulu; |€] ~ (L /s)v in the frequency space, and let ¢ denote a smooth bump with height 1 adapted
to PUCIGL /N (0) N Ber2/n3/2(0) (Which degenerates to Begr2/n2(0) when L < N1/4) such that

no + > ns=1 on | JU-D).
1

1<s<min{L,NY2/L},
s dyadic

For each P € P we let vp (x) be a positive smooth function (with height 1) adapted to P in the physical
space with frequency support in C(I — 1), where P = Py. If we define g = ) p vp, then we can write

g=gx*io+ > g * ;.
1<s<min{L,N1/2/L}
. . 1/2 . . L _ CGSLZ/I\’2
Fix s € [I,min{L, N /*/L}]. There exists a collection of fat APs Z; consisting of /s = Py, )N

Bc 1./~ (0) with the properties that vy, ~ N “landv 1, are ~SOL/N 2 separated such that for every I € Z,
I — I is contained in one and only one /s € Z;. In fact we may let v;, = vy for any I with (I — 1) C Ij.
The cardinality of Z; is N 1/2 /(sL). For Iy € Zy we let Py, be the tiling of R by fat APs of the form
PUH_CISN/L N BCNz/(ng). For every P = Pj € P there exists a unique /5 € Z; and Py € Py, such that
I X1 cIyand P C Ps. For every | < M < 52, we define Ps 3 be the subcollection of P consisting

of P such that Py contains ~ M many P’ € P. For 1 <s <min{L, NY2/L} let
8s,M = Z vp *ﬁs-
PePs m

By the pigeonhole principle, for every x € Q, there either exist an s and My such that g(x) < |gs,m, (X)]
or g(x) S |go(x)]. Again by the pigeonhole principle either we can find s, M such that, for x in a
subset E of Q, with measure g, |Q |,

g(x) X 18s,m, ()]
or, for x in a subset E of Q, with measure g |Q/|,
g(x) < 180(x)].
We consider these two cases separately.
Case 1: Suppose g(x) S |gs.m, (x)| for x in a subset E of Q, with measure 3, |Q,|. We write

wu=YY Y =Y Y.

I P[S PCP]S,PG'PSQMS I Pl.v

Here the sum over Py is over Py, € Py, such that g Py, is nonzero.
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We note that ) Pr, 8P with I varying are almost orthogonal (meaning that the Fourler support of
them has O(1)-overlap). This is because supp gp,, C (Uycz, (I —1)) N{ : €] ~ £2}, and for every
distinct Iy, I} € Zg, and every 1,1’ € T with I C I, I’ C I}, the distance dy 1/ between the ;—th terms

in I and I’ satisfies

OL? sOL L N29L 1

W=F—<d11 <

N2 S N’
Therefore supp m are O(1)-overlapping.

Hence
2 2 2
10125 [ &5 [ lgom P <
E R J;

We note that for P C Py,

o 1
lop * 75| < EWP,s,loo,

SO
1 > M2
S
[[Ten <[(X % bwnw) s %
Py Prg, PCPrg, PEPs Mg Py
Hence
2 < MS >
|Orlr zZZ|PIs| 5 )
Iy Py,

Since | Pr,|/s ~|P|and }_; > p, Ms < (#P), we obtain

M
r210,| S #P)IPI==,
which is (68).
Now we show (69). We choose x € E. Then

N 2 M
r$g() S8 m (=D lgp (0] S |Is|— < ——.

P sL s
Finally we prove (70). When s < L /L1, every Py, is contained in a single P; and therefore can contain
< M parallel P € P. For every Py, there are < s many / € 7 such that there could exist Py such that
Py C Py, so we conclude Py, contain < sM many P € P. When s > L/Lq, every Py, is contained in
at most sL1/L many P; and therefore can contain < sMslL;/L many P € P. Hence we obtain (70).

Case 2: Suppose g(x) 5 |go(x)| for x in a subset of Q, with measure %, |Q,|. Inequality (71) is trivial
since Q, C P(L). To show (72) we choose x € E. Then

L

r 5800 5800 £ HP)

where the last inequality is because

— (#P) Pl

1go(X)| = 1g * o ()| < llgll1 7ol < HP)|P] P(L)] P(L)|
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8B. Refined flat decoupling for fat APs. Next we have the following refined flat decoupling inequality
for fat APs.

Proposition 8.4. Suppose 2 <q < p,and let {J}je7,{I}1c1 be defined as in the beginning of Section 8.
Fix I € Z. Write fi = ZP, ep, J1,P; for the wave packet decomposition of fy. Suppose that PrCcPr
is a collection of Py for which f1 p, are nonzero, | f1,p; |1 ) are roughly constant, and for every
J C I, and every Py (in a tiling of R), Py contains either ~ M or 0 wave packets fr p, (in the sense
that Py C Py). Then

1 1 1
L1 L\ rTe q
s (E) T (S ie) 73)

JclI

L?[R)

> i
Py 6'731

Proof. Fix a P that contains ~ M many wave packets f7 p,. We first show

Z f[,P]
P1€731

1

1 1
L1 L7 a 7
> 5 = q
S Y O TR (74)

JclI

LP(Py)

Assume || 1, p; || oo @) ~ H for every nonzero fy p,, P € P;. By assumption we have

Z f],P]

P1€73[

S H(M|P;|)7.
LP(Py)

On the other hand by local L? orthogonality we have

> fip

P[E']BI

1

2
< Uil < (X 15, 00)

L2(Py) JciI

H(M|P;])? <

(where we used that }Z p, B, J1.P; ! <|fr]), and by Holder’s inequality the right-hand side is bounded by

1 1
L \2~— 1_1 d
1_1 q
(_Ll) PyIE (} j ||fJ||Lp(W,,,,mo)) -

Jci
Noting that | Py|/|Py| = L1/L, we conclude

' > fue

Py 6731

Q =

=

1 1_
S HMI|P)2(M|Pr|)»
L2(Py) 1—1_1

1

11 LY P4 2 : ’
11 q

SMP Z(L—l) ( ||fJ||Lp(WPJ,100)) ’

JcI

So (74) holds. Since g < p, (73) follows from (74) by raising (74) to the p-th power, summing over Py
in a tiling of R, and applying Minkowski’s inequality (see Proposition 4.2). O

8C. Proof of Theorem 8.1. Now we are ready to prove Theorem 8.1. We first show a bilinear version
of Theorem 8.1 and then conclude Theorem 8.1 by a broad-narrow argument. Still let {J};cs be
defined as in the beginning of Section 8. We say two subcollections of 7, J1 and J>, are transversal if
d(Jy,J2) = N~V2 for every J1 € N1, J» € .
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Theorem 8.5. Suppose 4 <g <p <6, é + % < 1. If either of the two conditions
1/2—1 _3/p—
(a) L1/ /a <! 3/p 1/q’

(b) p=gq,

is satisfied, then, for every ¢ > 0,

IT 1> 5

ie{1,2}' Jeg;

1
2

LP(R)
1

L )_) [1 (anjn;{pm))“ (75)

1 ie{1,2} “JeJ;

A

™
=

(v}

5
(0)°]
a

~~
9
+
=
N
=
~ |7
¥
|
(8]
| S
h

N

+
N
‘2
[Nl

for all transversal subcollections J1, J2 of J, and all functions fj : R — C with supp fAJ C J.

Proof. By a local-to-global argument similar to Proposition 4.2, to show (75), it suffices to show, for a
sufficiently large k and for every ball By2/(g12),

[T %

1
2

ie{1,2}' JeJ; LP(BN2/(0L2))
e JE I %
q 2p].p 2 q q
Se N¥log€ (67! + 1)(# + (L_) ) I1 (Z 171 o ey oo !k)) . (76)
L, 7 ¢ ! ie{1,2} \JeJ; NZ/OLD
We will assume that f; has been replaced by f wBNz/sz), where wBN2/(9L2) is a Schwartz func-

tion sitisfying |1//BN2/(0L2)| ~ 1 on By2,g12) ‘PBNz/(ng) decays rapidly away from By2 /(g1 2), and
supp wBNZ/(GLZ) C (—0L?/N?,0L?/N?). Then f; wBNz/(ng) has Fourier support which is contained
in a (OL?/N?)-neighborhood of J. The arguments which follow apply equally well to the L%/ N?
neighborhoods of J (which are contained in 2J) as they do to J. Note also that || f; VB, » o2 lzr®) Sk

so abusing notation by letting f; mean f;i{'p from here on in the proof,

Illerws s 0o
the inequality

[T 7

ie{1,2}' Jeg;

k)’ N2/(8L2)

1
2

Lp(BN2/(9L2))

1 1 2 1 1
N272a7 35> N2\2 "4 2q
& C n—1 q
st 40 () ) (X ) om
L, ie{1,2} “JeJ;
implies (76). Now we fix a By2 /972 and prove (77). Write F1 = _;c; frand Fo =3 ;. f;. For
ie{l,2} wewrite F; =) p ep, Fi,p for the wave packet decomposition with respect to { }7ez. So

Fi = ZFi,I = ZZE,LP} =! Z Fip.

IeT €T Py Pep;
WriteZy ={l €Z:1 CUyeqpJyand Iy ={l €Z:1 CUjepJ}. Let F = F1 4+ F,. By a dyadic
pigeonholing argument and rescaling which we detail in Proposition 8.6 directly following this proof, we
may assume that, for every nonzero F; p, || F; p|lL~ ~ 1. We assume P; contains only nonzero F; p.
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By a further dyadic pigeonholing argument we may assume that for every Py (in a tiling of R), Py
either contains M; or 0 many wave packets F; j p,, where J C I, for i € {1, 2}. Lastly, by one more
dyadic pigeonholing argument we may assume that, for each i € {1,2}, || F||z»®) are comparable for
nonzero Fy with I € Z;. For dyadic 1 <rj,r, <N 1/2 /L we let Q, r, denote the collection of P(L’) (in
the tiling of P (L)) that intersect ~ r; many P € Pp, and ~ r, many P € P,. Recall that L' = (N 12112,
From the refined decoupling inequality (Theorem 4.4) we have

1
1 1 1 C ot 11 )\ 12
I B oo,y o SIFi oo, I P2l oo, ) Se N I0€ 0 + i rg ( / IFi| )
ie{1,2} “I€;
On the other hand from bilinear restriction (Proposition 3.5) we have for every P(L’) C O, r,
1 11 1
I(F1F2)2 || Lacprry) Se Neriry |[P(L)]*
and thus L
1 11 1
I(FLF2)2 g, ) Se NOTT5 10l .
Therefore by the interpolation inequality we obtain
1_1
1 e 3_1 4 p
I(F1F2)2|Lr(o,, ) Se N¥1og€ (07" + Drf 12 |0 a3 [1 (Z 1 Fr ||L2) . (T8)
ie{1,2} M ez;
We assumed each nonzero wave packet F; p satisfies || F; p|po ~ 1, so
DN EZ2 ~ @POIPI~ Y IIFTIIE,.
1€7; 1€7;
where #P; denotes the total number of nonzero wave packets in Fj, that is, |P;|. Hence we may rewrite
(78) as
1
I(F1F2)  rcon, 1) 1 1
e1. Crn_l 3_1 2 g V¥ 1.3 1_1)\2
Se Nlog€ (07 + 1[0y |22 [T (7 ( D NF1E,) (PPN "2 #1777 )
ie{1,2} 1€7;
where #1; denotes the total number of / € Z; such that F7 is nonzero. By Proposition 8.4 we have (note
that in (73) the left-hand side involves pigeonholed wave packets while the right-hand side includes all
wave packets)

S IF 4, < 5’"3( L )q__l(anJan) 19)

I€z; JEeT;

Therefore we conclude

1

1
I(F1F2)2lLr(Q,, )
— 3_1
Se N¥1og® (07! + DI Qry s |72 N .

11 117 r q
< T1 (7 @rolpt S (£ ) (anjnm) ). o

ie{1,2} JeT;
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So (75) follows if we may show for i € {1, 2},

1 1 1 3 2 1 1_1

3.1 2 1.3 11 Ll pNYTPTG _ N2T2aT 5 LY N2\27«
10nnlFAf @rplpn Rty () T s S ()
1

2451

. (8D

We show (81) using Proposition 8.3. Fix i € {1,2}. We split the proof into two cases depending on which

case happens in Proposition 8.3 when applied to { P} pep; With r =r;.

Case 1: (1) in Proposition 8.3 happens. Let s, M be the s, M given in case (1) of Proposition 8.3. By

(68) we have

1 1
S JETIEN- S B T S ) J S
LHS of 81) Sr; "s2 7 M) >(#1)7 "7 M/’ (L_) :
1
Case 1.1: s < L/Ly. Then (70) reads My < sM;. Note that we have
(#I) 2 ri

since we have assumed || F; p||Lo ~ 1. Therefore by (69) and (70) we have

N7 3.1 1.1 —5=7
LHSof(Sl)é(M“;]]\jz) B S TR VI z(i) roa
S

Ly
= N; 1_;_5 L 1_%_5 3,3,2 1.1
:MSZ “| - Ky §+;+3M'p 2
L L1 i
l _l_l —l_l . 1
e (YT (LT gz e
L Ly i

Since p > ¢, é + % <1, and s, M; > 1, we conclude

LHS of 811 < NIN“Pa/ L\"F 7 N 2 3L7
0 <= — -
s () " (z)

Case 1.2: s > L /Lq. This is the case where we see the two conditions in Theorem 8.5. Now (70) reads

My <s?M;L{/L. By (#1) = r; and (69) we have

1 1
1-3.1 4 3 3.1 117 71\"57g
LHS of 81) Sr; 2 P52 7 M >M7” Z(L—)
1
My N3NTP™4 3 3.1 11/ \Thg
(= s2TMP M
s¢ L Ly
1
+
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Plugging in (70) we obtain

L1\~
LHS of (81) S (s2M; 1)

1 1 1
Liy @(Nz\ »a(L R e A
L L L1 !
11 NIN'"774/L\"7
L 1.3
= M? CIS_§+; - _
) G

Since M; > 1 and g < p, we conclude

3 1 1
s (NINTETa LT
LHS of (81) S 5 5+i(—) ’ (—) "

~

If we use s < L, then

if and only if

On the other hand if we use s < NY/2/L, then

3 1.1-3_-1 1_1 1 . 1_1 1_1
p (N2 p af [ \2" »r N2\2 a( L \2 »
() @) =) @)
1 11 1_1
N2\X2 p( L \2 »r
(7) (%)

if p = ¢g. In conclusion we have shown (81) holds in this case if either condition (a) or (b) is satisfied.

1 1

Nz\ 2T
LHS of (81) 5 (T)

The last line equals

Case 2: (2) in Proposition 8.3 happens. By (71), (72) we have

3_1((#P)|P]| » 11 L1/ L 74 1_3
< p 2| —— 2L N~ a M. J— . 27 p
LHS of (81) S |P(L)] ( P ) (#I;) M, (Ll) (#P)|P) . (82)

Note that we have
|P(L)| |P(L)| Ly
#P;) < (#IHM; ————— ~ (#1; ) M; —
( Z)N( l) l |P_]| ( l) 1 |P| L

since the right-hand side is the maximal number of P one can fit into a P (L) under the assumption that
each Py can contain < M; many P € P;. Substituting the above for M; in (82) and simplifying the
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algebra we obtain

1_1
2 q

L
LHS of (81) < (#1;)2 "« (L—)
1

Since #1; < NY2/L and ¢ > 2, we conclude

1 1_1
N2 \2
LHS of (81) (—) ‘.
Ly
Hence (81) holds in this case.
In conclusion we have shown (81) and therefore (77) and (75). O

The following proposition shows that it was justified in the proof of Theorem 8.5 to treat functions
ﬁi =) Pep; F; p whose wave packets with respect to {/ }je7 satisfied certain extra assumptions. Here,
each wave packet F; p equals ¢p, f1 for some I € 7 and some Py, as in the definition of wave packet
decomposition from Section 5B, except we assume the extra condition that ¢p, decays at a rate of 1032
away from Py.

Write Z; = {I eZ:IC UJej,- J}. For each I € Z;, write

fi=Y_ fir,
Prepy
where f7 p, = ¢p, f1 and Py denotes the collection of translates of Py which tile R, from the definition
of wave packet decomposition. Fix collections Py of translates of Py which tile R and with the property
that Py N Py is either P; or @ whenever J C I. Note that the set P; does not vary for J C I.

Proposition 8.6 (pigeonholing of the wave packets). Assume the hypotheses of Theorem 8.5. There exist
subsets fi CZ; and 731 C Py as well as integers M;, H; with the following properties:

1 ~ 1
[T 172 [ 52

<log(8~'+1)(log N)? +N73%RHS of (77)),

ie{1,2} LP(By2g12)) ie{1,2} LP(By2,9L2))
where 1;; = Z[GZ‘ ZP1€751 fI,Pl’
#{PrePr:PrCPsy~M; or =0 forall PyePy, JCIeT;, (83)
#P; ~#Pp forallI,1' €7, (84)
I f1.p, Loy ~ Hi  forall I € I; and Py € Py. (85)

It follows that, for Fr = ZP,E%, J1,p, with I € 7;, ||f1||f,,(R) is within a factor of C¢N¥ of
Hip#{PI € 7Di}|PI| + N300 maxyjeyz; ||fJ ||£p(R)-

The collection P; from the proof of Theorem 8.5 is the union of the 751, where I € Z-.

Proof. First we will show that ”|F1F2|1/2”L”(BN2/<9L2)) < |||F1ﬁ2|1/2||Lp(B
term. The argument showing ||| Fy F2|1/2||LP(BN2/(9L2)) SR Y2 Lo

N2612) plus the remainder

N2@12) plus the remainder
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term is analogous, so we omit it. Split F, into
Fo=Y" > fue,+Y, > fup. (86)
I1€T; P ePy 1€, P; ePf
where the close set is
Pf :={Pr €Pr: PN By2q12) # 2}
and the far set is

Plf ={PrePr:PrnN NlOBNz/(ng) = g}

Using Holder’s inequality, Cauchy—Schwarz, and Minkowski’s inequality with ¢ < p, we have

55 5

1€l Py E'Pf Lp(BNZ/(9L2))
1_7
( Sl DAL zqu,fh
J1€N Iel, JoCI Pre LP(BNZ/(HLZ))
1 11 11
1- q q q q q
> Sl > Z ¢P1f12
Jien LD(BNz/(HLz) Ie, JhCI Pre LP(BNZ/(6L2))
N 1- é g ﬁ q 2q
s(L—l) (Z 1) (Z X] X omn )
J1€T 1€, 12Cl'p ep/ L?(By2,g12))
N\'"7 29 2 =
q q q
< = q max 1
_(Ll) ( 2 1/ ||LP(BN2/(9L2))) Iez, 2 o Loo(B ) 2 1752020 B2 120
Jied Prep/ N2/0L2)) “J2€T2
1
1 2q
q
<y 1 ( Z1altns,s )
i€{1,2} “J;€T;

This takes care of the far portion of F5.
For each I € 75, the close set has cardinality #73[" < NW, Let

Hp = max max || f7,p, | Loow)- (87)
1€, P;ePy

By Proposition 2.3 and Hélder’s inequality,

7
Hz = max [ frllLeow) S N( 2 ”thLp(R)) -

Jo€T
Split the close part of F, into

SN fam=). D S fir+Y. D fip (89)

I1€1; PrePy Ie1, gN—1035,151 P,e??;’,l IeZ> P,ePfJ
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where A is a dyadic number in the range [ON 107 1],

AH
Pra = {PI ePr |l f1,p Lo € (TZ,AHz]},
and
0. _103
Pl 5= {PI €PN fr.p Loy < 5N 10 Hz}.
Handle the small term from (89) by

H‘ﬂ S fue ’

1€, Py eP;’ LP(BNz/(GLZ))

1 1
N2\272
() T S
! J1€T IeT
1 2
1

| 1
N2 27 2q E
< (H) ( > I ”L"(BN2/<9L2>))

J1ET

q
Z fI,P] -

=

Lp(BNZ/(9L2))

D=

(#I max#PI m:;ljx | f1,P; |l Lo (BNz/(ng))lBNZ/(9L2)|”)

Py

1 1
2q N\« 2\2
q 11 —103 2
S( > I fn ||L”(BN2/<9L2))) ((Z) NON H2|BN2/(0L2)|")

J1eN 1
2q
—150 q 100 q
=N ( > ||LP(BN2/(9L2))) Hy N7 ] (leffllm))
JI€T ie{1,2} "JeJ;

Decompose the remaining term from (89) using the fact that for J C I € 7, Py € Py, the number

# Py €Py, P CPy}isin{0,...,L/L1} (and does not depend on the specific J C I), which allows
us to write

Z Z Z Jrp = Z Z Z Z J1.P; s (90)

ON—103 <p<1 €2 PrePy ON—103 <) <1 1<2K<L/L{1€I2 P;€P] ; 4
where, for J C I,
Ph={P;ePs #{PreP,: PrC Ps}~2K,
Piax= \J (Prepf,:PrcPy.

PJE'P§

Finally, note that the number of P; € Py which intersect N 0B /(L2) 1s bounded by N 07, <N
Further decompose the right-hand side from (90) as

Z Z Z Z Z f1,P; 5 91)

ON—10% <A<11=2K<L/Ly 1=2/ <N'! je7k-] PrePy; 4

k,j . i
where, for J C I, T, = {I € To : #P ~ 27},
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Because 2%, 2/, and A are dyadic numbers, by the pigeonhole principle, there is a choice of (k, j, 1)
so that

lhny = L Y o

ON—103<) <1 1=<2K<L/Ly 1<2/ <Nl 1€ ; PI€P];

Lp(BNZ/(9L2))

3 z f,,P, ’

Iezh] PIePp,

<log(0~! 4+ 1)(log N)?

LP(BN2/(9L2))

Let 7, = I§ A and for each I € 7,, let Py = PIC Ak It follows from Proposition 2.3 and properties of
weight functions ¢p, and Wp, = Wp, 600 that, for each I € Iz,

I oy = D “ > fie

P’e731 P[E'P

=X [ X en

L?(P})

||f1||Loo(P) > (P71 max ge, (PP ISt Los

P €Py 1 PIE'PI P €Py
< D 1P Y e (PDP IS ooy S D Z | P16, 117 oo pry
PI/EPI P;ePy PI/E'PI PPy
> % [wn w3 [en sl
P;eP; PjeP; PrePy

The assumption that ¢p, decays at order 10362 allows us to write, for each I € fz and Py € 731,

‘/ |¢P'f1|p_/1vsp, \pp, f117

= CeN_IOOO”fI ”]I:p([R)

—=500 p
= CeN7" T max || frllp o )

and

/ |6, f117 < CeN®|Pr|BY < CeNS/ | f1.p, 17,
NeéPr
which proves the final property about || f7, p, ||z »(w) from the proposition. O

Proof of Theorem 8.1 using Theorem 8.5. The proof resembles Section 5.1 in [Demeter et al. 2020]. First
we fix (p, ¢) with 4 < p <6, and either 1 vl ; =1 or p = ¢q. Note that under such assumptlon we always
have p > ¢ and g > 2. Recall that €2 is the (AL?/ N?)-neighborhood of {an} _1 , which is a union of
N2 many intervals of length CAL%/N2. We let t denote the union of / many consecutive intervals
in Q, and write £(t) =/, so in this notation Z(I) Land {(J)=Ly.Let F =} ;. f7,and denote
by F; the Fourier projection of F to 7, that is, (1 F) Fix K > 1. We have the inequality

Fl= Y, [F@[=C max |Fr(x)|+KC max | Fy, F
(N2 t="g> Ue)=t(r2)="¢/
K d(fl,‘fz)fvw
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Iterating this (for the first term) we obtain

IFND @ SC™ Y IFellfp+C™KE > 3 »

1
|(Fer Fe) 12 0 -
L(r)=L

N2 t:(r)=l T1,12CT
1=N-0" foraez L)) =b(r))=K"] (92)
KL<I<N2 d(t1,12)2 K1
Here m satisfies NY2/K™ = L.

By Proposition 7.2 and Holder’s inequality we have

p Ly 2 2 Ly™'a
> s X (1) (Tike) = 2 (5] (Z1mle) -
{(v)=L =L ! Jcrt 1

L(r)=L JCrt

N

Since E+ 3 <1land L <N1/2 we have

P =
1_1_3 2 1—1_1
N2 2¢ 2p],p» L a »
P 4q P q
L, L,
Therefore,
p=1-3 7 N%_ﬁ_ZPLP 7
> IRLws(5) (S 1) 5(1—) (Z 1) o9
((r)=L Jeg L, JeJ

Now we estimate the second term on the right-hand side of (92). Let s =

NY2/]. Then using the change
of variable x > 52

x as in the proof of Proposition 6.3, and by Theorem 8.5 we have

~1_ 1 _ 3 ~2 ~1 1_1 1
1 - N2 2¢a 2 »p N2\2 ¢ q
I Fo o 5 0¥ 1og“ @+ 0 (2 4 (5] ) (S 100
L, 7 19 L JCrt
1

1
where N = N/s2, 6 = 0/s2, Ly = Li, L = L. Plugging in the expressions for N, 6, L1, L we obtain
1
[(Fey Foo)2 e @)

1

2 1 1_1 1
_q41,.3N22¢"2pp _1,1(N2\2 4 q
<e NologC (@~ + (s ot 2 52ty YISl ) - O
Ll_p_q Ly
1

JCt

We let K = N¢ for some &' > 0 which will be chosen depending on &. Then from (93) and (94) we
conclude

1 1 2
/ 1.3\N2 2¢ 22 p
I FllLe@) Seer N¥TCE 10g€ (071 + 1)(( E s‘”ﬁz)—

s=K¢4 foraeZ Ll rod
157
1 % 1 1
1,1 2 4
2 o)) NE e
s=K¢% foracZ 1 JeJg
157
N2"2q732 LZ 1 % 1 1
, _ a 2r [ p 2 q
N 10l (6 1+1)( - +(L—) )(Z ||fJ||L,,(R))
L, 4 1 Jeg
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Therefore we have shown Theorem 8.1 under condition (a) and the extra condition % + % =1,p=<6,or
under condition (b) with the extra condition p < 6.

First assume (a) and we want to remove the condition é + % =1, p < 6. First we note that it suffices
to show (66) for every (p, q) with p > 4, é + % = 1. This is because for a general (p, g) with p > 4,
é + % < 1 we may consider (66) with (p, ¢) replaced by (p, qo), where % + % = 1. Then (66) with
(p, q) follows from Holder’s inequality applied in the index J to the right-hand side of (66) with (p, go),
since | 7| < NY2/L;. Second we note that it suffices to show (66) for every (p,q) with 4 < p < 6,
é + % = 1. This is because when p > 6, we always have

N2"247 35 Lo (Ni)i—é
> —
Li—%—é ~\ L
and (66) reduces to
Ni_%_zlL; i
q p p q
> fi Se Nolog€ (67! + 1)f(2 ||f1||ip(R) :
—1_1 )
Jeg L7 (R) Ll P q Jeg

So (66) with g > 6, % + % = 1 follows from interpolating (66) with (p, q) = (6, 2), and with (p,q) =
(00, 1). (For the interpolation of decoupling inequalities, see Exercise 9.21 of [Demeter 2020].) When
p = 00,q = 1, (66) becomes the triangle inequality which holds trivially. Hence we have shown
Theorem 8.1 under condition (a).

Now assume (b) and we want to remove the condition p < 6. As in the previous paragraph, when
p > 6 we always have

and therefore (66) with ¢ > 6, p = g follows from interpolating (see Exercise 9.21 of [Demeter 2020]) (66)
with (p, g) = (6, 6), and with (p, g) = (00, 00). So Theorem 8.1 holds under condition (b) as well. [

Appendix

Corollary 1.4 can be derived from small-cap decoupling inequalities for the parabola in [Demeter et al.
2020]. This is through a transference method which we learned from James Maynard. We record a
detailed proof here. The same argument would also imply Corollary 8.2 if the corresponding £9 L7 small
cap decoupling inequalities for the parabola are known.

We first recall the small-cap decoupling inequalities in [Demeter et al. 2020].

Theorem A.1 [Demeter et al. 2020]. Suppose o € [, 1], and let T = {y} be the partition of Ng—1 (P')
into R® many R=* x R~ rectangles y. Assume p =2 + %. Then for every ¢ > 0 we have

1
1_1 P
S <e ROC p’“(Z ||fy||§p(R2)) (95)
Y

yel’

LP(R2)

for every f, : R% — C with supp f, C y.
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Theorem A.1 continues to hold, by essentially the same proof, with P! replaced by a C? curve of
the form {(x, g(x)) : x € [0, 1]}, with g’(0) = 0, g”(x) ~ 1 for x € [0, 1]. See for example Section 7 of
[Bourgain and Demeter 2015] (whose argument we think actually requires a bit more regularity of the
curve than C?), or the appendix of [Guth et al. 2022]. Additionally we may interpolate (see Exercise 9.21
of [Demeter 2020]) between (95) and the elementary inequalities

YhH s (; 14 ||12(W))é

yel L2(R?)
Z Sy < R*(sup || fy | Loor2))
yer Lo°(R2) 14

to obtain the following version of Theorem A.1.

Theorem A.2 [Demeter et al. 2020]. Suppose G is a C? convex curve of the form {(x, g(x)) : x € [0, 1]},
where g'(0) = 0, g”(x) ~ 1 for x € [0,1]. Suppose o € [% 1], and let T = {y} be the partition of
Ng-1(G) into R* many R™* x R™! rectangles y. Assume p > 2. Then for every & > 0 we have

D f

yel

1

11 _1y_ 1 »
e Rs(Rot(z ») 4+ R*1-%) (1+a)p)(z ”fV”iP(RZ)) (96)
Y

LP(R2)
for every f, : R? — C with supp f;, Cy.

For the rest of this section we work under the assumption of Corollary 1.4. In particular & = 1. For
simplicity we assume a; =0, and v :=a; —a; = N7l Letl<L< N2 1t suffices to show (67)
for 4 < p < 6 and we assume that (since the p > 6 case follows from interpolating between p = 6 and
p = 00).

By (14) we may write a, = (n —1)/N + ey, where e, = a, —(n —1)/N ~ (n —1)2/N?2. For every
t € R we may write it as 1 + ¢, where t; € 2r NZ and t, € [0, 2w N). Without loss of generality we
assume 27 N divides T, so 27)"'N~™!T € Z. Now we may write

N1/2 N1/2

T ' D 2N . 1 p
Z bneltan dt = Z [ Z bnel(t1+t2)(T+en) dt,
0 Th=1 n1e2xNzN[0,T—27N] " © n=1
N1/2 »

dts.

_ Z /(;ZnN

t1€2rNZN[0,T—27 N]

Z byeitient 25l 4 hen)
n=1

We write e(n) = e, and let e : [1, N¥2] — R be the piecewise linear function such that, for every
neZN[l, NY2 1], e(x) is linear on [n,n + 1] and e(n) = e,,. Since e, 11 —en ~n/N2, we have
le'(x)| S 1/N3/2 for x € [1, NV2]\ Z.
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By Abel’s summation formula we have

N1/2 N2 Lu)
l(tle;1+tz +12€n) l(tlen-‘r-tz 1) / Zb el(tle"+t2 N ) |),‘2€ (u)|du
1
n=1
N1/2 1 N2, lul
l(tlen-i-l‘z ) / Zb el(t1en+t2 N ) du. (97)
N 2
The last inequality uses t < N.
We first estimate
N1/2

2aN
A:=
Z /(; n=1

11€2rNZN[0,T—27N]

p
. —1
, l(tlen+12"zv)‘ dty.

. 1/2 . . .
Since ¢, < % forevery 1 <n < N2, 2111\;1 bpe'tient2(n=1)/N) jq locally constant on intervals of
length N in ¢q, that is, for every y € R,
N
<(/
RI“—

1/2
. n—1 4
§ bnel(tlen-i-tzT)
n=1

We note that the above is also a special case of Proposition 2.3, applied to a fat AP that is just a single
interval. Since >, crr nzn[0, 72281 Wiy.y+22N1,100(11) S Wio, 71,100 (1), we have

N1/2
. —1
sup bnel(l‘len-i-tznT)

1
4
W[y,y+2nN],1oo(11)dl1) .
t1€ly,y+2nN]l, —

N1/2

27N
A < —// ‘Z b el(t1€n+t2 N )‘ dtzI/V[O Tl, 100([1)d[1 (98)

We consider two cases, T > N3/2and T < N3/2,

Case 1: T > N3/2. We observe that Z,JLV bpeltient2(=1/N) js 27 N -periodic in 5, so we have

TN™1/2
A<i&//

By a change of variable #; — Nt to > Nl/ztz, we obtain

LI

Now we let g(x) be a C2 strictly convex function defined on [0, 1] such that |g((n —1)/NY2)—e,N| <
N~Y/4forn=1,...,NY2 (See Lemma A.3 below.) Since N~! < T~ N, we have for every n, the
ball of radius 7' N/4 centered at ((n — 1)/ N2, e, N) fits in exactly one of the y in the partition of the
T~!N neighborhood of G = {(x, g(x)) : x € [0, 1]} by N™V2x T~ N rectangles. Under our assumption
that T € [N3/2, N?] we have log(N ~"/2)/log(T~'N) € [%, 1]. Therefore we may apply Theorem A.2

N1/2 P
Z b el(lle"thzn}Vl)‘ dtzWio,11,100(11) d 11

N

D
: —1
nel (tlenN+t2 ;\1,1/2)

D=

ASN Wh_.\.—10),100(71.12) diz d1y.
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with R = TN_I, RY = N2 to the curve G, which yields for every T € [N3/2, N2],

[z

Hence

l(tlenN+t2Nl/2) WBTN 1(0) 100(tl’t2) dtzdtl

e NS(TPNZT7 + ToNE3)P b, |2, (99)

ASe NS (N3 +TPNT20)P b2,

Case2: T <N 3/2 From (98) and a change of variable we have

/ /ZJTNI/Z

Since T < N3/2, we may bound the right-hand side trivially by

v

50 by (99) with T = N3/2 we have

N1/2

Z b, l(tlenN-l-tle/z)

Nl—

ASN dtzWio, rn-11,100(11) d11.

l(tlenN'H‘ZNl/Z) WBNI/Z(O) 100([1 [2) d[z dl],

SIS
(][]

A<, N°N3(NZ# N2 5 + N %N%‘%)”Ilbnllé’p-

Since p > 4 we may verify

— 1_5
4 2p

N—=
SN

N
SN
=

N35N2"5 >N

Hence
1
A Ze NS(N2)P||ball},

In conclusion we have shown
1 1 1
A< NSN3+ T2 N3720)P b2, (100)

Next we estimate the second term in (97). We define

27N | N1/2
Iy
Z 0 N% 1

t1€2xNZN[0,N2/L2—2n N]

[u]
Zb el(t1€n+t2 N )

du

p
dty.

By Minkowski’s inequality we have
Lu]

1 N1/2( Z /ZTIN
<
0 n=1

1
» 1
. n—1 pr
E l)ne’(“e”“2 N )‘ dtz) du.
N? t1€2xNZN[0,T—27N] =

‘m\—'

B

Then applying (100) to the expression in the brackets we obtain

N =
A

e 1 N2y L1 1
B SNF , VR ToNEEnballer du
2

= NN+ T7N3720) by
= nllee -
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Combining the estimates for A and B we conclude

N1/2
itan <, NE(N%+T%N%_ﬁ)||bn||eP-
L?(BT)

We used the following lemma in the proof above.

Lemma A.3. Suppose {a, },11\’:1/12 is a short generalized Dirichlet sequence with § =1, ap —a; = N7},
ay =0. Let e, = a, —(n—1)/N. Then, for every ¢ > 0, there exists a C? curve g : [0, 1] — R with
g"(x) ~ 1 for x €[0,1] such that |g((n —1)/NY2)—e,N| <cN~ foreveryn =1,...,NV2.

Proof. We first define g : [0, 1] = R to be a C'! piecewise quadratic polynomial with 20(0) = 0 such that
go restricted to [n/N Y2, (n 4+ 1)/N'2] is a quadratic polynomial for every n =0,..., NY2 —1, and

n—1
go( : ):enN.
N2

N(en+1—2en +en—1)
N1

Since

’\/1’

we have g ~ 1 on [0, 1]\ N~Y27, and consequently lIgollzoo(j0,17) < 1 because g((0) = 0. Now we
let g = go * ¢ be the ¢/ N ™! mollification of go. Here ¢ is an L!-normalized smooth bump adapted to
B_./n;—1(0) and ¢’ > 0 is sufficiently small depending on c. Then we have, for every x € [0, 1],

¢ (x) = /R ZlNBCr—y)dy ~ 1.

and

-1
«(r) =]
N2 R

if ¢’ =c/(llgpllLeoqo,p + 1- )

n—1 _ _
go(y)—go( )‘¢( y)dySC’N ' sup |gol <eNT!
y€l[o,1]

We can use the same approach to transfer an L2 estimate for a longer generalized Dirichlet polynomial
to an L? estimate on an exponential sum with frequency support near a C? convex curve.

Suppose {a, },11\’:1 is a generalized Dirichlet sequence with 8 =1, a, —a; = 1/N, a; =0, and let
o€ (% 1]. As before we write e, = (n—1)/N ~ ((n—1)?)/ N?2. The same calculation as above shows that

/ Zb eltan dt< Z /ZnN
[0, 711, 0

t1€2x NZN[0,T -2 N]
One difficulty that appears is that we cannot treat ¢//2¢7 as an error term as before. This is because

Nl—oz/1

dts.

Z b el(tlen+t2 an +129n)

n=1

when we apply the partial summation formula we get

[u]
Zb el(tlen+t2 N )

du.

Zb el(l‘len-i-tzn l+t2en) Zb el(tlen-i-tz l)
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However now N17% > N* and we cannot estimate the second term on the right-hand side as before using
the estimate for the first term and Minkowski’s inequality. We could still find a C? convex curve such
that ((n — 1)/N + ey, e,) lies in an N ~!-neighborhood of it, but the extra e,, doesn’t allow us to use the
27 N -periodicity in the #,-variable.

Another difficulty we find is the integrand is locally constant on intervals of length N272% in the
t1-variable, and since N < N272% that prevents us from transferring the discrete summation into
D otean NzN[0,T—27N] 1DtO f[o,T]' We may though transfer the discrete sum into an integral over a fat
AP f Nz 2 0By
for es‘umatmg longer generalized Dirichlet polynomials.

, and that might suggest some new decoupling problems in R? that might be helpful

Finally we remark that for the Dirichlet sequence {logn}?¥ we may implement this transference

n=N+1’
method to higher-order approximations of log#n. For examples we can write

N+N<*

b eitlogn
E n

n=N+1

—_ +Ne ]\2/_2}}\72—’_8]/’!)

Zb Neltlog(l—i—N)

where

n 1’12 I’l3

=log(1+ 1) = + 357 ~

If we write t = t{ + to + t3 with t; € 2nN?Z, t, € 2nNZ, t3 € [0,27N), then we could transfer
LP estimates on 2}11\/: I\yjl bpe't1°8" to 3-dimensional L? estimates on exponential sums with frequency
supported on a nondegenerate curve in R3. More generally one can exploit more terms in the Taylor
expansion and get higher-dimensional estimates. We do not know how much this would help with

estimates on Dirichlet polynomials using decoupling techniques.
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