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We study decoupling theory for functions on R with Fourier transform supported in a neighborhood of
short Dirichlet sequences flogngNCN

1=2

nDNC1 , as well as sequences with similar convexity properties. We
utilize the wave packet structure of functions with frequency support near an arithmetic progression.
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1. Introduction

We study decoupling theory for functions f W R! C with Fourier support near certain convex sequences.
As a model case of decoupling, consider the truncated parabola P1 D f.t; t2/ W jt j � 1g. Let R � 1 be a
large parameter and write NR�1.P1/ as a disjoint union of caps � DNR�1.P1/\ .I �R/, where I is an
R�1=2-interval. The decoupling inequality of [Bourgain and Demeter 2015] says that if 2� p � 6, then
for any " > 0 there exists C" such thatX

�

f�


Lp.R2/

� C"R
"

�X
�

kf�k
2
Lp.R2/

�1
2

whenever f� W R2! C are Schwartz functions satisfying supp yf� � � .
This paper explores analogues between decoupling for P1 and short Dirichlet sequences flogngNCN

1=2

nDNC1 ,
as well as sequences with similar convexity properties described in the following definition.
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Definition 1.1. Let N � 2. We call fangNnD1 a generalized Dirichlet sequence (with parameter N ) if it
satisfies the property

a2� a1 2
h
1

4N
;
4

N

i
; .aiC2� aiC1/� .aiC1� ai / 2

h
1

4N 2
;
4

N 2

i
: (1)

We will call fangN
1=2

nD1 satisfying (1) an N 1=2- short generalized Dirichlet sequence.

For simplicity, we say short (generalized) Dirichlet sequence to meanN 1=2-short (generalized) Dirichlet
sequence, unless otherwise specified. Note that the reflected short Dirichlet sequence,

f� log.N CN�
1
2 �nC 1/gN

1=2

nD1 ;

satisfies (1).
Now we describe our decoupling set-up. From now on C; c > 0 will denote absolute constants that

may vary from line to line. For convenience of reading, we may regard C; c as 1. For 1 � L � cN 1=2

and each j D 1; : : : ; N 1=2=L, define

Ij D

jL[
iD.j�1/LC1

BL2=N 2.ai /;

where BL2=N 2.ai / means the L2=N 2 interval centered at ai . Let � be the L2=N 2-neighborhood of
fang

N 1=2

nD1 . We consider the partition
�D

G
j

Ij : (2)

We choose theL2=N 2-neighborhood of fangN
1=2

nD1 because every Ij is essentially anL2=N 2-neighborhood
of an arithmetic progression, which we call a fat AP. To see this we calculate, for 1� n�N 1=2�L,

anCL� an�L.anC1� an/D

LX
mD1

.anCm� anCm�1� .anC1� an//�

LX
mD1

m� 1

N 2
�
L2

N 2
:

So indeed Ij lies in a CL2=N 2-neighborhood of an L-term AP with common difference a.j�1/LC1�
a.j�1/L and starting point a.j�1/L. Also, note that the common differences for distinct Ij are cL=N 2-
separated.

We denote the partition fIj g
N 1=2=L
jD1 by I. The first main result of this paper is the following decoupling

theorem for �D
F
I2I I.

Theorem 1.2. Let � and I be defined as in the last paragraphs. Then for 2� p � 6 and every " > 0X
I2I

fI


Lp.R/

." N "

�X
I2I

kfIk
2
Lp.R/

�1
2

(3)

for functions fI with supp yfI � I.

The range of p is sharp in the sense that (3) cannot hold for p >6, which can be seen by taking yfI to be
a smooth bump with height 1 adapted to I for every I. Indeed for this choice of fI , we have

ˇ̌P
I fI

ˇ̌
�

.L2=N 2/N 1=2 on BcN 1=2.0/, and kfIkLp.R/ � k yfIkLp0 .R/ � .L.L
2=N 2//1=p

0

, where 1=pC 1=p0 D 1.
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So X
I2I

fI


Lp.R/

&
L2

N 2
N
1
2 .N

1
2 /

1
p ;

�X
I2I

kfIk
2
Lp.R/

�1
2

�

�
N

1
2

L

�1
2
�
L3

N 2

�1� 1
p

:

Then (3) would imply �
N
1
2

L

�1
2
� 3
p

." N ";

and hence p � 6. We shall compare Theorem 1.2 with the `2Lp decoupling inequality of the parabola
in [Bourgain and Demeter 2015], which has the same critical exponent 6. Indeed we will see many
similarities between short generalized Dirichlet sequences and P1 from a Fourier analytic point of view.

The notion of strict convexity of a sequence fang in R will parallel the role of curvature of the parabola
in decoupling. Some key geometric aspects in the proof of decoupling for P1 are identifying caps � as
approximate R�1=2�R�1 rectangles, which give rise to dual tubes �� of dimension R1=2�R, and noting
that � are separated in angle and so are ��. The jf� j are roughly constant on translates of ��.

In the fangN
1=2

nD1 setting, corresponding to f� we have fIj which are functions fIj W R! C satisfy-
ing supp yfIj � Ij . We may identify the .L2=N 2/-neighborhood of I as approximately an .L2=N 2/-
neighborhood of an arithmetic progression (called a fat AP), giving rise to dual I� defined in Definition 2.1,
which are also fat APs, and note that distinct I are separated in step-size of the corresponding arithmetic
progressions (and the same for I�). The jfI j are also roughly constant on translates of I� [Bourgain
1991; 1993].

Bourgain [1991; 1993] made use of this locally constant property to connect a conjecture of Montgomery
with the Kakeya conjecture. To prove a decoupling inequality we need to identify another geometric
analogy, the “ball”, which is roughly the smallest set restricting to which in the physical space essentially
preserves the frequency support.

For the R�1-neighborhood of the parabola, the “ball” is a ball BR of radius of R. We will define the
“ball” P.L/ in the short generalized Dirichlet sequence setting in Section 3B. P.L/ will be a fat AP
which sometimes degenerates to a Euclidean ball. With these notions of caps, tubes, and balls in the short
generalized Dirichlet sequence setting, we are able to exploit the wave packet structure of a function with
frequency support on I 2 I, and prove a bilinear Kakeya-type estimate (Proposition 3.3) and a bilinear
restriction-type estimate (Proposition 3.5) that look almost identical to those in the parabola setting. The
choice of N 1=2 plays an important role in making this resemblance possible, which we will discuss at the
end of Section 7.

The proof of Theorem 1.2 is based on the high-low decomposition method in [Guth et al. 2022]. We
do not intend to get a logarithmic decoupling constant as in that work, but we want to prove a refined
decoupling inequality as in [Guth et al. 2020], which creates some technical differences.

The partition �D
F
I2I I is maximal in the sense that if �D

F
I 0, where I 0 is the union of more

than CL many adjacent intervals, then I 0 is no longer essentially a fat AP. Because of this, we will call
�D

F
I2I I the canonical partition and refer to Theorem 1.2 as decoupling for the canonical partition,

or simply decoupling. In the spirit of small cap decoupling as in [Demeter et al. 2020], we may also
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consider the “small cap” decoupling for short generalized Dirichlet sequences. Now we let L1 2 Œ1; L� be
an integer, and we partition � into L1 consecutive intervals Jj :

�D

N 1=2=L1G
jD1

Jj D

N 1=2=L1G
jD1

� jL1[
iD.j�1/L1C1

BL2=N 2.ai /

�
: (4)

We let J denote the partition fJj g
N 1=2=L1
jD1 . The next decoupling result in this paper is small-cap-type

decoupling inequalities.

Theorem 1.3. Let 1 � L1 � L � N 1=2, and fJ gJ2J be defined as in the paragraph above. Suppose
p � 4. Then, for every " > 0,X

J2J

fJ


Lp.R/

." N "

�
N
1
2
� 2
pL

2
p

L
1� 2

p

1

C

�
N

1
2

L1

� 1
2
� 1
p
��X

J2J

kfJ k
p

Lp.R/

�1
p

(5)

for a function fJ W R! C with supp yfJ � J.

Inequality (5) is sharp up to C"N " for every fixed p;L;L1 satisfying the condition in Theorem 1.3.
The first factor in front of

�P
J2J kfJ k

p

Lp.R/

�1=p is sharp because of the example yfJ equals a smooth
bump adapted to J with height 1 for every J 2 J. The calculation is similar to the one in the paragraph
below Theorem 1.2. The second factor is sharp because of the example yfJ equals a random sign times
a smooth bump adapted to a ball of radius L2=N 2 inside J with height 1 for every J 2 J, where the
random signs are chosen so that

R
R

ˇ̌P
J fJ

ˇ̌p
�
R

R

�P
J jfJ j

2
�p=2 by Khintchine’s inequality.

The structure of the proof of Theorem 1.3 is similar to that of Theorem 3.1 in [Demeter et al. 2020],
consisting of three ingredients: refined decoupling for the canonical partition, refined flat decoupling, and
an incidence estimate. Refined decoupling for the canonical partition is a refined version of Theorem 1.2,
which we will prove in Sections 4, 5, and 6 in order to derive Theorem 1.2. We show the other two
counterparts in Section 8.

1A. Lp estimates for short generalized Dirichlet polynomials. A straight corollary of Theorem 1.3 is
essentially sharp Lp estimates for short generalized Dirichlet polynomials

PN 1=2

nD1 bne
itan .

Corollary 1.4. Let fangN
1=2

nD1 be a short generalized Dirichlet sequence. Suppose p � 4 and N � T �N 2.
We have for every " > 0N

1=2X
nD1

bne
itan


Lp.BT /

." N ".N
1
2 CT

1
pN

1
4
� 1
2p /kbnk`p (6)

for every BT and every fbngN
1=2

nD1 � C.

If we letL2 Œ1; N 1=2� be the integer such thatN 2=L2DT , then Corollary 1.4 follows from Theorem 1.3
with that L, and L1 D 1, applied to functions fJ .t/D bneitan�.t/ for every J, where � is a Schwartz
function adapted to BT with Fourier support inside BT�1.0/.

The inequality (6) is sharp up to C"N ". This is from discrete versions of the examples described below
Theorem 1.3, taken with L1 D 1: bn D 1 for every n, and bn equal to random signs.
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We will in fact prove a more general version of Theorem 1.3 which allows us to get essentially sharp
.`q; Lp/ estimates for

PN 1=2

nD1 bne
itan in the range p� 4, 1

p
C
3
q
� 1. See Theorem 8.5 and Corollary 8.2.

After this work was done we learned from James Maynard a general transference method, which can
in particular transfer the Lp estimate on a short generalized Dirichlet polynomial to a 2-dimensional
Lp estimate on an exponential sum with frequency support near a convex curve in R2. This allows us to
derive Corollary 1.4 directly from the small cap decoupling inequalities for the parabola in [Demeter et al.
2020]. We provide that particular argument in detail in the Appendix.

The starting point of this paper was to see whether decoupling methods could be used to make progress
on Montgomery’s conjecture on Dirichlet polynomials [1971; 1994]. Our investigation led us in a different
direction, proving decoupling inequalities for short generalized Dirichlet sequences.

Conjecture 1.5 (Montgomery’s conjecture). For every p � 2 and every " > 0 we have 2NX
nDNC1

bnn
it


Lp.BT /

� C"T
"N

1
2 .N

p
2 CT /

1
p kbnk`1 (7)

for every ball BT of radius T and every fbng2NnDNC1 � C.

Conjecture 1.5 is widely open. In fact it has significant implications which are also hard conjectures.
It is shown in [Montgomery 1971] that Conjecture 1.5 implies the density conjecture for the Riemann
zeta function. Bourgain [1991; 1993] observed that a stronger version of Conjecture 1.5 on large value
estimate of Dirichlet polynomials implies the Kakeya maximal operator conjecture in all dimensions.
Conjecture 1.5 itself also implies a weaker statement that a Kakeya set has full Minkowski dimension;
see [Green 2002].

Our Corollary 1.4 proves some Lp estimates for “short” Dirichlet polynomials which do not directly
connect to Montgomery’s conjecture. In fact we believe to make progress on Montgomery’s conjecture
significant new ideas are needed.

On the other hand, combining Theorem 1.2 with flat decoupling we obtain `2Lp decoupling inequalities
for generalized Dirichlet sequences (with N many terms instead of N 1=2), and the decoupling inequalities
we get are essentially sharp for the class of generalized Dirichlet sequences. As a corollary we have
essentially sharp .`2; Lp/ estimates on generalized Dirichlet polynomials, but the Dirichlet polynomialP2N
nDNC1 bne

it logn has more structure and admits better estimates. This has to do with examples of
generalized Dirichlet sequences containing a cN 1=2-term AP with common difference CN�1=2, which
flogng2NnDNC1 cannot contain by a number theory argument. We discuss these in detail in Section 7.

The paper is structured as follows. In Section 2 we will illustrate the wave packet structure of functions
with frequency support in a fat AP. In Section 3 we prove a bilinear Kakeya-type estimate and a bilinear
restriction-type estimate for functions with frequency support in a neighborhood of a short generalized
Dirichlet sequence fangN

1=2

nD1 . Sections 4, 5, and 6 are dedicated to proving Theorem 1.2. Section 4
introduces a refined decoupling inequality for the canonical partition (Theorem 4.4), which implies
Theorem 1.2, and which we will actually prove. Section 5 sets up a high-low frequency decomposition
for square functions at different scales, and in Section 6 we finish the proof of Theorem 4.4. Section 7
discusses the decoupling problem for (N -term) generalized Dirichlet sequences. In Section 8 we prove
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Theorem 1.3. The Appendix is about the transference method for one-dimensional exponential sum
estimates like (6).

Notation. C will denote a positive absolute constant that may vary from line to line, and it may be either
small or large. A . B means A � CB , and A � B means A . B and B . A. We will also use O.A/
to denote a quantity that is less than or equal to CA. A .q B will mean A � CqB for some constant
depending on q. Similarly Oq.A/ denotes a quantity that is less than or equal to CqA. There will be a
parameter N and A/ B denotes A." N "B for every " > 0.

2. Locally constant property

We set up some notation and describe the locally constant property related to fat APs in this section.

Definition 2.1. We let P ıv .a/ denote the ı-neighborhood of the arithmetic progression on R which
contains a and has common difference v. We call P ıv .x0/\BR.x0/, or simply P ıv \BR, a fat AP with
thickness ı, common difference v, and diameter R. We will call PR

�1

v�1
\Bı�1 a fat AP dual to P ıv \BR.

To exploit the locally constant property of a function with frequency support in a fat AP, we first
construct a family of functions  k W R! C adapted to a fat AP (in the frequency space).

Lemma 2.2. For every x0 2 R, ı � v=2, M � 1, and k � 1 there exists a function  k W R! C with the
property

y k.�/D 1 on P ıv .x0/\BMv.x0/; supp y k � P
2ı
v .x0/\B8kMv.x0/; (8)

and  k decays at order k outside of the dual fat AP P .Mv/�1

v�1
.0/\Bı�1.0/:

.Mı/1
P
.Mv/�1

v�1
.0/\B

ı�1
.0/
.k j k.x/j.k Mı

�
1C

d.x; v�1Z/

.Mv/�1

��k�
1C

d.x; Bı�1.0//

ı�1

��k
: (9)

We say such a  k is adapted to the fat AP P ıv .x0/\BMv.x0/ in the frequency space with order of
decay k.

Proof. Since translation in frequency space corresponds to modulation in the physical space, we may
assume x0 D 0.

We start with the Dirichlet kernel

DM .x/D
X
jj j�M

e2�ijx D
sin..2M C 1/�x/

sin.�x/
:

We define zD1.x/DDM .x/. Then we define zDk.x/ inductively by

zDk.x/D d
�1
k
zDk�1.x/D8k�1M=2.x/;

where dk D k yD8k�1M=2kL1.R/ is the total measure of yD8k�1M=2. Equivalently we can define zDk
explicitly as

zDk D QdDM
Y

1�s�k�2

D8sM=2

for some suitable constant Qd > 0.
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Since zD1 DDM has the property
yzD1.�/D

X
jj j�M

ı0.� � j /;

by induction we can show that

yzDk.�/D
X
jj j�M

ı0.� � j /C
X

M<jj j�8kM=4

bj;kı0.� � j /

for some 0 � bj;k � 1. From the explicit expression of the Dirichlet kernel we see that zD1 decays at
order 1 outside of PM

�1

1 .0/:

j zD0.x/j D jDM .x/j.
M

1C d.x;Z/=M�1
:

By induction on k we obtain zDk decays at order k outside of PM
�1

1 .0/:

j zDk.x/j.k M
�
1C

d.x;Z/

M�1

��k
: (10)

Now let �.x/ be a Schwartz function such that y� is a smooth bump adapted to B1.0/:

y�.�/D 1 on B1.0/; supp y� � B2.0/:

Let �ı�1.x/ be the function �.ıx/. Note that �ı�1 decays rapidly outside of Bı�1.0/. Let  k be given by

y k WD y�ı�1 �
yzDk.v

�1�/=v D
X
jj j�M

y�ı�1.� � jv/C
X

M<jj j�8k M
4

bj;k y�ı�1.� � jv/:

From this definition we immediately see property (8) holds. Writing  k as

 k.x/D �ı�1.x/ zDk.vx/

we observe from (10) and the rapid decay of �ı�1 outside Bı�1.0/ that (9) holds. �

For every fat AP P DP .Mv/�1

v�1
.x0/\Bı�1.x0/ with ı � v, and every k � 100, let WP;k be the weight

function

WP;k.x/D

�
1C

d.x; x0C v
�1Z/

.Mv/�1

��k�
1C

d.x; Bı�1.x0//

ı�1

��k
:

We will use the notation Z
WP;k

f .x/ dx WD

Z
R

f .x/WP;k.x/ dx;

�

Z
WP;k

f .x/ dx WD
1

kWP;kkL1.R/

Z
R

f .x/WP;k.x/ dx;

kf k�Lp.WP;k/ WD

�
�

Z
WP;k

jf jp.x/ dx

�1
p

:
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For measurable sets E � R we use similar notation for average integrals and Lp norms:

�

Z
E

f .x/ dx WD
1

jEj

Z
E

f .x/ dx;

kf k�Lp.E/ WD

�
�

Z
E

jf jp.x/ dx

�1
p

:

For a fat AP P, consider another fat AP P 0 �P. Let P 0 �P denote an indexing set of translates of P 0

which form an O.1/-overlapping tiling of P. Then we have the pointwise inequality

1P .x/.k
X
P 0�P

WP 0;k.x/.k WP;k.x/: (11)

If we look at translated copies P 00 of P, we haveX
P 00�R

WP 00;k.x/WP;k.P
00/.k WP;k.x/: (12)

Here
P
P 00�R means summing over a tiling (with O.1/ overlap) of R by P 00, and WP;k.P 00/ is defined to

be WP;k.supP 00/, which is comparable to WP;k.x/ for any x 2 P 00.

Proposition 2.3 (locally constant property). Suppose f satisfies supp yf � P ıv \BMv. Then for every
dual fat AP P D P .Mv/�1

v�1
\Bı�1 and every 1� q < p <1 we have

kf k�Lp.WP;k/ .p;q;k kf k�Lq.W
P;
qk
p
/ if

qk

p
� 100;

kf kL1.P / .k kf k�L1.WP;k/:

Proof. We first prove the second inequality. Fix k � 100. From (8) we have

f .x/D f � k.x/D

Z
R

f .y/ k.x�y/ dy;

where  k is the function in Lemma 2.2 adapted to P ıv \ BMv in the frequency space with order of
decay k. Therefore for x 2 P we have

jf .x/j �

Z
R

jf .y/jj k.x�y/j dy

�

Z
R

jf .y/j sup
x2P

j k.x�y/j dy

.k ıM
Z

R

jf .y/jWP;k.y/ dy �k �

Z
WP;k

jf .y/j dy:

For the third inequality we used (9). Now we prove the first inequality in the proposition. We claim that
from (12) (applied with k replaced by qk=p) and the assumption q < p we only need to show

kf k�Lp.P / .p;q;k kf k�Lq.WP;k/: (13)
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Indeed if (13) holds, thenZ
WP;k

jf jp .k
X
P 0�R

Z
P 0
jf jpWP;k.P

0/

.p;q;k jP j1�
p
q

X
P 0�R

WP;k.P
0/

�Z
WP 0;qk=p

jf jq
�p
q

� jP j1�
p
q

�Z
R

jf .x/jq
X
P 0�R

WP;k.P
0/
q
pW

P 0;qk
p

.x/ dx

�p
q

.p;q;k jP j1�
p
q

�Z
jf .x/jq

X
P 0�R

W
P;qk

p

.P 0/W
P 0;qk

p

.x/ dx

�p
q

.p;q;k jP j1�
p
q

�Z
jf jqW

P;qk
p

�p
q

.by (12)/;

which is exactly the first inequality in the proposition. To show (13) we observe that the second inequality
in the proposition together with Hölder’s inequality implies that

kf k�Lp.P / � kf kL1.P / .p;q;k kf k�Lq.W
P;
qk
p
/;

which is (13). �

3. Bilinear Kakeya-type and restriction-type estimates

Kakeya and restriction-type estimates are closely related to decoupling, and we will use the bilinear
version of them in the proof of Theorem 1.2, but first we need to introduce a more general decoupling
set-up for the purpose of induction.

3A. General set-up. To prove Theorem 1.2 we will do a broad-narrow argument which involves rescaling
of a segment of fangN

1=2

nD1 . To properly set up our induction hypothesis we consider the following more
general class of generalized Dirichlet sequences.

Definition 3.1 (generalized Dirichlet sequence). Let � 2 .0; 1� and N � 2. We call fangNnD1 a generalized
Dirichlet sequence (with parameters N; �) if it satisfies the property

a2� a1 2
h
1

4N
;
4

N

i
; .aiC2� aiC1/� .aiC1� ai / 2

h
�

4N 2
;
4�

N 2

i
: (14)

We will call fangN
1=2

nD1 satisfying (1) an N 1=2-short generalized Dirichlet sequence (with parameters N; � ).

As before we write “short” for “N 1=2-short” for simplicity. Comparing with Definition 1.1 we see an
extra parameter � which measures the convexity of the sequence. From now on we use Definition 3.1 for
the definition of generalized Dirichlet sequence.

We shall also incorporate � in our decoupling set-up. Let fangN
1=2

nD1 be a short generalized Dirichlet
sequence with parameter � 2 .0; 1�. From the spacing property (14) of fangN

1=2

nD1 we see that, for every
1� j �N 1=2=L, fang

jL

nD.j�1/LC1
is essentially contained in an L2�=N 2-neighborhood of an arithmetic

progression. Indeed, if we define vj D a.j�1/LC2 � a.j�1/LC1, then fang
jL

nD.j�1/LC1
is contained in



2410 YUQIU FU, LARRY GUTH AND DOMINIQUE MALDAGUE

the CL2�=N 2-neighborhood of the arithmetic progression containing ajL with common difference vj ,
that is,

fang
jL

nD.j�1/LC1
� PCL

2�=N 2

vj
.ajL/\BCL=N .ajL/:

Now we let � be the �L2=N 2-neighborhood of fangN
1=2

nD1 . For 1 � L � cN 1=2 and each j D
1; : : : ; N 1=2=L, define

Ij D

jL[
iD.j�1/LC1

B�L2=N 2.ai /:

We denote the collection of Ij by I, and consider the partition

�D
G
I2I

I:

This will be our new decoupling set-up for the canonical partition, and from now on the notation here
supersedes that in the Introduction. For small-cap-type decoupling we postpone the description of the
corresponding general set-up to Section 8.

3B. Analogies between fangN
1=2

nD1
and P1. For I D Ij 2 I, we let

zIj WD P
CL2�=N 2

vj
.ajL/\BCL=N .ajL/;

with C large enough so that
I D Ij � zIj D zI:

Here vj D a.j�1/LC2� a.j�1/LC1 and vj �N�1.
For each I 2 I, we denote by PI .x/ the fat AP dual to zI and centered at x, that is,

PI .x/ WD P
CN=L

v�1
j

.x/\BCN 2=.L2�/.x/ (15)

if I D Ij , and we simply write PI if stressing the center x is unnecessary. For I D Ij , we also write vI
to denote vj . We let P.L; y/ denote a larger fat AP

P.L; y/ WD P
CN 3=2=L2

v�11
.y/\BCN 2=.L2�/.y/; (16)

and we simply write P.L/ if stressing the center y is unnecessary. If L.N 1=4 we have N 3=2=L2 �N

and in that case P.L/ is a ball BCN 2=.L2�/. Comparing (15) and (16), we see P.L/ has a larger thickness
size CN 3=2=L2. We will see shortly (Lemma 3.2 and the paragraph following it) that CN 3=2=L2 is the
smallest thickness that allows us to fit a PI in any fixed P.L/ for every I 2 I.

The starting point of this paper is to make use of an analogy between the extension operator on fangN
1=2

nD1

fbng
N 1=2

nD1 7!

N 1=2X
nD1

bne
itan

and the extension operator on the truncated parabola P1

f 7!

Z
Œ�1;1�

f .�/ ei.x�Ct�
2/ d�:
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BR

T1 T2

TR1=2

PI1

PI2

PI
N1=2=L

P .L/

Figure 1. The ball BR �R2 contains the union of tubes Ti having the same center, each
of which is dual to �i , where

F
i �i partitions NR�1.P1/. On the right, we see analogous

dual fat APs, one PIi per Ii which partition � into L consecutive intervals. We see that
P.L/ contains the union of the PIi which have the same starting point.

We list the correspondence between objects in this paper and in the parabola setting. For simplicity we
assume � D 1 in the following list:

(1) The parameter L 2 Œ1; N 1=2� is the length of the “cap” that we are looking at, and that determines a
canonical neighborhood � with width L2=N 2. The corresponding parameter in the parabola setting
is R, which determines the length (R�1=2) of the cap and a canonical neighborhood with width R�1.

(2) The zI; PI defined above is analogous to the cap and tube in the context of parabola decoupling. Let
‚ be a partition of NR�1.P1/, the R�1-neighborhood of the truncated parabola P1 (over Œ�1; 1�),
into R�1=2 �R�1 caps � . The dual object of � is a tube T of dimension R1=2 �R.

(3) P.L/ is defined to be the smallest fat AP with the property that, for a function F with frequency
support on �, “restricting” F in the physical space to P.L/ will essentially preserve its frequency
support. The corresponding object for the parabola is BR, a ball of radius R.

See Figure 1 which illustrates the analogous properties of tubes T with the ball BR and fat APs PI
with P.L/. Bourgain [1991; 1993] made use of the first two analogies. The new ingredient we need is
the third analogy, which gives an appropriate notion of ball in the short generalized Dirichlet sequence
setting. It is very important that we define P.L/ to be the smallest fat AP with such a property. If we
naively use BN 2=L2 as the ball P.L/, the whole argument that follows will break down.

To make the third point precise, we prove the following lemma. We introduce one more notation. For
a general fat AP P D P ıv .x0/\BMv.x0/ and s > 0, sP will denote the fat AP P sıv .x0/\BsMv.x0/.

Lemma 3.2. Fix a P.L/. For every I 2 I and every PI with PI \P.L/¤∅, PI is contained in 2P.L/.

Proof. In fact for every j , the difference of differences hypothesis in (14) implies that jvj �v1j.N�3=2� .
It follows that jv�1j � v

�1
1 j.N 1=2� . Therefore PI \P.L/¤∅ implies

d.PI ; P.L//. .N
1
2 �/

N 2=.L2�/

N
D
N
3
2

L2
; (17)

which implies PI � 2P.L/ if C is large enough in the definition of P.L/. �
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To put it in another way, the proof above shows that, for every x 2 R,[
I2I

PI .x/� P.L; x/ (18)

if C is large enough in the definition of P.L/. Since the inequality (17) is sharp up to a constant, the
choice of CN 3=2=L2 as the thickness in the definition of P.L/ makes (18) and Lemma 3.2 barely hold.

We note that the above lemma holds if we replace I , I, PI , P.L/ by �;‚; T; BR respectively.

3C. Transversality and bilinear Kakeya-type estimate. We say I; J 2 I are transversal if jv�1I �v
�1
J j&

N 1=2� , or equivalently, if d.I; J /&N�1=2 on R. We now prove a bilinear Kakeya-type estimate for two
transversal families of PI .

Proposition 3.3 (bilinear Kakeya-type estimate). Suppose g1 D
P
I aI1PI and g2 D

P
J bJ 1PJ , where

aI ; bJ are positive real numbers, I; J 2 I and PI are transversal to PJ . Then

�

Z
P.L/

g1g2 . �
Z
2P.L/

g1 �

Z
2P.L/

g2: (19)

For comparison we state the bilinear Kakeya-type estimates for R1=2 �R tubes in R2.

Proposition 3.4. Suppose g1 D
P
i ai1Ti and g2 D

P
j bj 1Tj , where ai ; bj are positive real numbers,

Ti ; Tj are R1=2 �R tubes and every Ti is transversal to every Tj (in the sense that the angle between
Ti ; Tj is & 1). Then

�

Z
BR

g1g2 . �
Z
2BR

g1 �

Z
2BR

g2:

Proof of Proposition 3.3. For simplicity of notation we assume C D 1 in (15), (16). For general C the
argument works the same way. Since

�

Z
P.L/

g1g2 �
X

I;J WPI\P.L/¤∅; PJ\P.L/¤∅

aIbJ jP.L/j
�1
jPI \PJ j

it suffices to show that for I; J transversal we have

jPI \PJ j.
jPI j

2

jP.L/j
: (20)

We consider two cases L�C1N 1=4 and L�C1N 1=4 separately, where C1 is a sufficiently large constant
that will be chosen.

Case 1: L�C1N 1=4. Without loss of generality we assume PI ; PJ both start at the origin (meaning that
the first term of the underlying AP is 0). Let PI;k denote the k-th interval in PI . If VI ; VJ are the common
difference of PI ; PJ respectively, then from the transversality assumption we have jVI �VJ j �N 1=2� .
So for some integer

K �
N=L

N 1=2�
D
N 1=2

L�
we have

d.PI;k; PJ;k/�
N

L
if 1� k �K
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and

d.PI;k; PJ;k/ 2
h
N

L
;N
i

if K � k .
N

N
1
2 �
D
N
1
2

�
:

Since L � C1N 1=4 we know that if C1 is sufficiently large then N 1=2=�N D N 3=2=� is larger than
N 2=.L2�/, which is the diameter of PI . Therefore we have

jPI \PJ j.
N
1
2

L�

N

L
D
N
3
2

L2�
D
jPI j

2

jP.L/j
:

Case 2: L� C1N 1=4. From the first case we know that

jPI \PJ \BCN 3=2=� j.
N
3
2

L2�
:

Therefore by the triangle inequality we have

jPI \PJ j.
N
3
2

L2�

N 2=.L2�/

N
3
2 =�

D
N 2

L4�
D
jPI j

2

jP.L/j
:

Here we recall that P.L/ degenerates to the Euclidean ball BN 2=.L2�/ if L�N 1=4. So we have shown
(20) and hence (19). �

3D. Bilinear restriction-type estimate. To prove a bilinear restriction estimate, we will use the above
bilinear Kakeya estimate and induction on L. First we identify where the (square of the) square functionP
I2I jfI j

2 is locally constant on. Note that supp1jfI j2 � I � I � PCL
2�=N 2

vI .0/\BCL=N .0/. Since
jvI � v1j.N�3=2� for every I 2 I, we have[

I2I

.I � I /� PCL�=N
3=2

v1
\BCL=N :

Therefore
P
I jfI j

2 is locally constant on dual fat AP of the form P
CN=L
v�11

\BCN 3=2=.L�/. Observe that
if we define L1 D .N 1=2L/1=2, then

P
CN=L

v�11
\BCN 3=2=.L�/ D P

CN 3=2=L21
v�11

\BCN 2=.L21�/
D CP.L1/:

Now suppose I 0; I 00 are unions of I in I, and I 0; I 00 are transversal in the sense that d.I 0; I 00/&N�1=2

on R. Then we have the following bilinear restriction estimate. The proof closely resembles the multilinear
Kakeya implies multilinear restriction proof in [Bennett et al. 2006].

Proposition 3.5 (bilinear restriction-type estimate). Suppose supp yF1 � I 0 and supp yF2 � I 00. Then we
have

�

Z
P.L/

jF1j
2
jF2j

2 ." N "
jP.L/j�2

Z
R

jF1j
2

Z
R

jF2j
2: (21)

Before proving the proposition, we remark that under the conditions of Proposition 3.5, the seemingly
stronger inequality

�

Z
P.L/

jF1j
2
jF2j

2 ." N "
jP.L/j�2

Z
R

jF1j
2WP.L/;100

Z
R

jF2j
2WP.L/;100 (22)
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holds. This is essentially by applying Proposition 3.5 to the functions F1 ;F2 , where  is from
Lemma 2.2 and is adapted to the fat AP dual to P.L/, with order of decay 100.

Proof of Proposition 3.5. We define BR.L/ to be the smallest constant such that

�

Z
P.L/

jF1j
2
jF2j

2
� BR.L/jP.L/j�2

Z
R

jF1j
2

Z
R

jF2j
2

holds for all F1; F2 with supp yF1� I 0 and supp yF2� I 00. We let BK.L/ be the smallest constant such that

�

Z
P.L/

g1g2 � BK.L/jP.L/j�2
Z

R

g1

Z
R

g2

holds for all g1 D
P
aI1PI and g2 D

P
bJ 1PJ , where aI ; bJ are positive real numbers and I; J 2 I

with I � I 0, J � I 00. Equivalently, we have

jPI j
�2 �

Z
P.L/

�X
I�I 0

g1;I � 1PI .0/

�� X
J�I 00

g2;J � 1PJ .0/

�
� BK.L/jP.L/j�2

�Z
R

X
I

g1;I

��Z
R

X
J

g2;J

�
(23)

for all finite measures g1;I , g2;J which are linear combinations of Dirac measures with nonnegative
coefficients. By a density argument (linear combinations of Dirac measures are dense in the weak*
topology on C0.R/�), (23) also holds for all finite measures g1;I , g2;J . In particular, (23) holds for all
nonnegative L1 functions g1;I , g2;J .

We have shown in Proposition 3.3 that
BK.L/. 1:

Now we want to show BR.L/." N ". First we prove

BR.L/. BR.L1/BK.L/: (24)

From the definition of BR and local L2 orthogonality (Lemma 3.6 below) we have

�

Z
P.L/

jF1F2j
2 . �

Z
P.L/

kF1F2k
2
�L2.P.L1;x//

dx

. BR.L1/ �
Z
P.L/

kF1k
2
�L2.WP.L1;x/;200/

kF2k
2
�L2.WP.L1;x/;200/

. BR.L1/ �
Z
P.L/

�X
I�I 0

kF1;Ik
2
�L2.WP.L1;x/;200/

�� X
J�I 00

kF2;J k
2
�L2.WP.L1;x/;200/

�
:

We claim that

�

Z
P.L/

X
I;J

kF1;Ik
2
�L2.WP.L1;x/;200/

kF2;J k
2
�L2.WP.L1;x/;200/

.BK.L/jP.L/j�2kF1k2L2.R/kF2k
2
L2.R/

; (25)

which together with previous arguments will imply (24). Since
P
P.L1/�RWP.L1;x/;200.P.L1//. 1, it

suffices to show that

�

Z
P.L/

X
I;J

kF1;Ik
2
�L2.P.L1;x//

kF2;J k
2
�L2.P.L1;x//

.k BK.L/jP.L/j�2kF1k2L2.R/kF2k
2
L2.R/

:
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We choose  I;200 adapted to PI .0/ in the frequency space with order of decay 200 as in Lemma 2.2. Let
�I WD { I;200=jPI j. If we define G1;I D . yF1;I=y�I /L, then due to the support property of yF1;I we have
pointwise

j yG1;I j � j yF1;I j: (26)

Also by definition we have F1;I DG1;I ��I . We define G2;J D . yF2;J =y�J /L for F2;J in the same way.
Now for y 2 R such that xCy 2 P.L1; x/, we have

jF1;I .xCy/j
2
D j.G1;I ��I /.xCy/j

2 . .jG1;I j2 � j�I j/.xCy/. jG1;I j2 � 1CPI =jPI j;

where we used Jensen’s inequality for the first inequality. Therefore we have

kF1;Ik
2
�L2.P.L1;x//

. jG1;I j2 � 1CPI =jPI j:

and similarly

kF2;J k
2
�L2.P.L1;x//

. jG2;J j2 � 1CPJ =jPI j:

Hence using (23) we obtain

�

Z
P.L/

X
I;J

kF1;Ik
2
�L2.P.L1;x//

kF2;J k
2
�L2.P.L1;x//

. jPI j�2
X
I;J

�

Z
P.L/

.jG1;I j
2
� 1CPI /.jG2;J j

2
� 1CPJ /

. BK.L/jP.L/j�2
�Z

R

X
I

jG1;I j
2

��Z
R

X
J

jG2;J j
2

�
. BK.L/jP.L/j�2

�Z
R

X
I

jF1;I j
2

��Z
R

X
J

jF2;J j
2

�
. BK.L/jP.L/j�2

�Z
R

jF1j
2

��Z
R

jF2j
2

�
;

where the second-to-last inequality is due to (26). So we have proved (25) and therefore (24). Now we
prove BR.L/."N ". Define LmD .Lm�1N 1=2/1=2. Fix an "> 0. We define M to be the smallest integer
such that LM &N 1=2�". So M ." 1. Plugging in BK.Lm/. 1 and applying (24) repeatedly we get

BR.L/� CM BR.LM /:

Since BR.LM / ." NC" for some universal constant C (because of the locally constant property
Proposition 2.3) we conclude BR.L/." NC", which is what we want. �

The L4 bilinear restriction inequality for the parabola in R2 has a more straightforward proof exploiting
the fact that #f.�3; �4/ W d.�3; �4/& 1, NR�1=2.�3C �4/\NR�1=2.�1C �2/g. 1 for every fixed �1; �2,
with d.�1; �2/ & 1, where �i are R�1=2 �R�1 caps that cover the compact parabola [Cordoba 1977;
Fefferman 1973]. However, it is not obvious whether a similar property would hold for I in our setting,
so we took the approach in [Bennett et al. 2006] instead.

Now we give a proof of the local L2 orthogonality used in the proof above. We denote .LN 1=2/1=2

by L0. So P.L0/D P.L1/D P
CN=L

v�11
\BCN 3=2=.L�/.
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Lemma 3.6 (local L2 orthogonality). For every fI with supp yfI � I we haveX
I2I

fI

2
L2.WP.L0/;k/

.k
X
I2I

kfIk
2
L2.WP.L0/;k/

(27)

Proof. Due to (12) it suffices to proveX
I2I

fI

2
L2.P.L0//

.k
X
I2I

kfIk
2
L2.WP.L0/;k/

:

We choose  k adapted to P.L0/� WD P
CL�=N 3=2

v1 .0/ \ BCL=N .0/ in the frequency space with or-
der of decay k as in Lemma 2.2. Here P.L0/� is dual to P.L0/. Since supp y k � 8kP.L0/�, and
fI C 8kP.L0/�gI2I is Ok.1/-overlapping, we concludeX

I2I

fI

2
L2.P.L0//

.k jP.L0/j
X
I2I

fI k

2
L2.R/

.k jP.L0/j
X
I2I

kfI kk
2
L2.R/

.k
X
I2I

kfIk
2
L2.WP.L0/;k/

: �

4. Decoupling for the canonical partition

We focus on proving Theorem 1.2 in Sections 4, 5, and 6, and in these three sections decoupling will
refer to decoupling for the canonical partition.

Recall that fangN
1=2

nD1 satisfies

aiC1� ai �
1

N
; .aiC2� aiC1/� .aiC1� ai /�

�

N 2
; (28)

where, here, � means within a factor of 4. The parameter � is in .0; 1�, � is the L2�=N 2-neighborhood
of fangN

1=2

nD1 , and

�D
G
I2I

I;

where each I is an L2�=N 2-neighborhood of L consecutive terms in fangN
1=2

nD1 .
We restate Theorem 1.2 but for all short generalized Dirichlet sequences with � 2 .0; 1�.

Theorem 4.1. Let � and I be defined as in the last paragraphs. Then for 2� p � 6 and every " > 0 we
have X

I2I

fI


Lp.R/

." N " logC .��1C 1/
�X
I2I

kfIk
2
Lp.R/

�1
2

(29)

for functions fI with supp yfI � I.

Comparing (29) with (3) we see an extra factor logC .��1C 1/. This factor appears as a consequence
of dyadic pigeonholing in our proof.

4A. Local decoupling and refined decoupling inequalities. We first formulate a local decoupling in-
equality which implies (in fact is equivalent to) the global decoupling inequality (29).
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Proposition 4.2. Let p � 2. Suppose that, for some k � 100,X
I2I

fI


Lp.P.L//

." N " logC .��1C 1/
�X
I2I

kfIk
2
Lp.WP.L/;k/

�1
2

(30)

holds for every fI with supp yfI � I. Then (29) is true.

Proof. Suppose (30) holds for some k � 100. Since
P
P.L/�RWP.L/;k .k 1 and p � 2, by Minkowski’s

inequality, we haveX
I

fI

p
Lp.R/

�

X
P.L/�R

Z
P.L/

jf jp ."N " logC .��1C1/
X
P.L/

�X
I

kfIk
2
Lp.WP.L/;k/

�p
2

.N " logC .��1C1/
�X
I

kfIk
2
Lp.

P
P.L/WP.L/;k/

�p
2

.N " logC .��1C1/
�X
I

kfIk
2
Lp.R/

�p
2

;

which is (29). �

The following local decoupling inequality will imply Theorem 4.1 by Proposition 4.2.

Theorem 4.3 (local decoupling). Suppose 2� p � 6. ThenX
I2I

fI


Lp.P.L//

." N " logC .��1C 1/
�X
I2I

kfIk
2
Lp.WP.L/;100/

�1
2

(31)

for fI with supp yfI � I.

Theorem 4.3 is a consequence of the following refined decoupling theorem, which we focus on proving
in the next two sections. The analogous result for the parabola can be found in [Guth et al. 2020; Demeter
et al. 2020]. We will show how Theorem 4.4 implies Theorem 4.3 in Section 6E.

Theorem 4.4 (refined decoupling). Suppose 2� p � 6. For every P.L/ and every X � P.L/, we haveX
I

fI


Lp.X/

."N " logC .��1C1/
�

sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

�1
2
� 1
p
�X
I

kfIk
2
L2.WP.L/;100/

�1
p

(32)

for fI with supp yfI � I.

We remark that Theorem 4.4 implies that for every X � P, where P is a fat AP larger than P.L/ in
the sense that P.L/� P for at least one P.L/, and, for 2� p � 6,X

I

fI


Lp.X/

." N " logC .��1C 1/
�

sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

�1
2
� 1
p
�X
I

kfIk
2
L2.WP;100/

�1
p

(33)

for fI with supp yfI � I. Indeed, (33) follows from taking (32) to the p-th power and summing over
X \P.L/ with P.L/� P.
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4B. Induction scheme for proving Theorem 4.4. We fix p;L and let Dec.N; �/DDecp.N;L; �/ denote
the smallest constant such thatX

I

fI


Lp.X/

� Dec.N; �/
�

sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

�1
2
� 1
p
�X
I

kfIk
2
L2.WP.L/;100/

�1
p

(34)

holds for every sequence fangN
1=2

nD1 satisfying (14), every P.L/, every X � P.L/, and every fI with
supp yfI � I. For a specific choice of the short generalized Dirichlet sequence fangN

1=2

nD1 satisfying (14)
we will call the smallest constant the refined decoupling constant of fangN

1=2

nD1 such that (34) holds for
every X �P.L/, and every fI with supp yfI � I. Note that Decp.N;L; �/ is the supremum of all refined
decoupling constants of sequences fangN

1=2

nD1 satisfying (14).
We will deduce Theorem 4.4, which now is equivalent to Dec.N; �/." N " logC .��1C 1/, from the

following main proposition.

Proposition 4.5. For every " > 0 and every 1�K �N "=2 satisfying N 1=2=K � L,

Dec.N; �/." sup
� 02Œ�=4;��

Dec
�
N

K2
;
� 0

K2

�
CKDN " logD.��1C 1/: (35)

Here D is an absolute constant.

We postpone the proof of Proposition 4.5 to Section 6. Here we show how it implies Theorem 4.4.

Proof of Theorem 4.4 assuming Proposition 4.5. For some sufficiently large S0 we have Dec.N; �/ �
CsN

s � CsN
s logD.��1C 1/ for s � S0. Now suppose Dec.N; �/ � CsN s logD.��1C 1/ for some

s � S0. Then from (35) we have, for every " > 0 and K with N 1=2=K � L,

Dec.N; �/� C"

�
sup

� 02Œ�=4;��

Cs

�
N

K2

�s
logD.K2.� 0/�1C 1/CKDN " logD.��1C 1/

�
:

� C"

�
CCs

�
N

K2

�s
logD.K2��1C 1/CKDN " logD.��1C 1/

�
� C"

�
CCs

�
N

K2

�s
.C logD.��1C 1/CC logD.K2//CKDN " logD.��1C 1/

�
:

If we choose " to be s=2 and let N s=K2s D KDN " D KDN s=2, that is, K D N s=.2.2sCD//, then for
some constant C 0s depending only on s,

Dec.N; �/� C 0sN
s.1� 1

2sCD
/.logD.��1C 1/C logD N/

if N 1=2N�s=.2.2sCD// � L. If N 1=2N�s=.2.2sCD// � L, then jIj . N s=.2.2sCD// and by the triangle
inequality and Cauchy–Schwarz inequality we have

Dec.N; �/.N
s

2.2sCD/ :

We can assume thatD is large enough such that maxf2; S0g�D. Then 1=.2sCD/�D�1 andK�N "=2,
so for some absolute constant c > 0,

Dec.N; �/.s N s.1�c/ logD.��1C 1/:
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Therefore we conclude
Dec.N; �/." N " logD.��1C 1/

for every " > 0, since S0.1� c/m is arbitrarily small for large enough m. �

4C. Two applications. Before ending this section, we record two applications of Theorem 4.1. Technically
these are corollaries of the `2L6 decoupling inequality for the parabola in [Bourgain and Demeter 2015],
by deriving the corresponding .`2; L6/ estimate on short generalized Dirichlet polynomials using the
method described in the Appendix.

First we may estimate approximate solutions to the equation an1 C an2 C an3 D an4 C an5 C an6 for
a short generalized Dirichlet sequence fangN

1=2

nD1 . The number of exact solutions of such equations for
general convex sequences was studied in [Iosevich et al. 2006].

Corollary 4.6. Let fangN
1=2

nD1 be a short generalized Dirichlet sequence with parameter � 2 .0; 1�. Then

#f.an1 ; : : : ; an6/ W 1� ni �N
1
2 ; j.an1 C an2 C an3/� .an4 C an5 C an6/j � �=N

2
g

." logC .��1C 1/N
3
2
C": (36)

This estimate is sharp up to C"N " logC .��1C 1/ due to N 3=2 many diagonal solutions.

In particular if we take an D log.nCN C 1/ in the above corollary, then � � 1 and (36) reads

#f.n1; : : : ; n6/ WN C 1� ni �N CN
1
2 ; jn1n2n3�n4n5n6j.N g." N

3
2
C": (37)

We note that the triple products n1n2n3 with N C 1 � n1; n2; n3 � N C N 1=2 lies in the interval
ŒN 3; N 3CCN 5=2�. So (37) implies that the triple products fn1n2n3 WN C 1� n1; n2; n3 �N CN 1=2g

are roughly evenly distributed in ŒN 3; N 3CCN 5=2� with cN separation. Indeed if we split the interval
ŒN 3; N 3CCN 5=2� into intervals of length cN and let E� denote the number of cN -intervals which
contain at least � many triple products n1n2n3, then (37) says that

�2E� � C"N
3
2
C":

Consequently if we choose �� 10C"N ", then we have �E� � 9
10
N 3=2, and �E� is the number of triple

products n1n2n3 that lie in a cN -interval which contains at least �many triple products. The total number
of triple products is N 3=2 so we can conclude most of the triple products lie in cN -intervals, each of
which contains few triple products.

Proof of Corollary 4.6. We let � be a Schwartz function whose Fourier transform is given by a smooth
bump function adapted to B�=N 2.0/:

y� D 1 on B�=N 2.0/; supp y� � B2�=N 2.0/; 0� y� � 1; y� is even.

Applying Theorem 4.1 with p D 6;LD 1 we obtainZ
R

ˇ̌̌̌N 1=2X
nD1

eianx�.x/

ˇ̌̌̌6
." N " logC .��1C 1/

�N 1=2X
nD1

keianx�.x/k2
L6.R/

�3
.N " logC .��1C 1/N

3
2 �5N�10: (38)
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We expand the left-hand side of (38) asZ
R

ˇ̌̌̌N 1=2X
nD1

eianx�.x/

ˇ̌̌̌6
dx D

X
n1;:::;n6

Z
R

ei.an1Can2Can3�an4�an5�an6 /xj�j6 dx

D

X
n1;:::;n6

b
j�j6.an1 C an2 C an3 � an4 � an5 � an6/:

Since y� is even we know that � is real-valued and hence b
j�j6 D y� � � � � � y� is nonnegative and b

j�j6 &
�5N�10 on Bc�=N 2.0/ for some small absolute constant c > 0. ThereforeZ

R

ˇ̌̌̌N 1=2X
nD1

eianx�.x/

ˇ̌̌̌6
& �5N�10#f.an1 ; : : : ; an6/ W 1� ni �N

1
2 ; j.an1 C an2 C an3/� .an4 C an5 C an6/j � �=N

2
g:

Combining the above estimate and (38) we obtain (36). �
Another application of Theorem 4.1 is estimating the size of the intersection of an AP with a generalized

Dirichlet sequence.

Corollary 4.7. Let fangNnD1 be a generalized Dirichlet sequence with parameter � 2 .0; 1� and let
aDN�˛ with ˛ 2 Œ0; 2�. Then

jfang
nDN
nD1 \ aZj.

�
N ˛ if ˛ 2

�
0; 1
2

�
;

C"N
" logC .��1C 1/N

1
3
C˛
3 if ˛ 2

�
1
2
; 2
�
:

When � D 1, Corollary 4.7 is sharp for ˛ 2
�
0; 1
2

�
(see Lemma 7.3), but we do not know if it is sharp

for ˛ 2
�
1
2
; 2
�
. Corollary 4.7 has a slight connection to a conjecture of Rudin which states in an N -term

AP we can find at most O.N 1=2/ many squares (numbers of the form n2 for some n 2 Z). The best
result so far seems to be in [Bombieri and Zannier 2002], which proves at most O.N 3=5 logO.1/N/ many
squares can be found in an N -term AP. We note that fn2=N 2g2NnDNC1 is a generalized Dirichlet sequence.
However we shall not expect to solve Rudin’s conjecture exploiting only the convexity of the sequence
fn2 W n 2 Ng, as shown by the example given in Lemma 7.3.

Proof of Corollary 4.7. The case ˛ 2
�
0; 1
2

�
is trivial as fangNnD1 is contained in a ball of radius . 1 and

aZ has at most . a�1 DN ˛ many terms in such a ball. Now we suppose ˛ 2
�
1
2
; 2
�
. It suffices to show

that, for a short generalized Dirichlet sequence fangN
1=2

nD1 , H WD jfn W 1� n�N 1=2; an 2 aZgj satisfies

H ." C" logC .��1C 1/N
˛
3
� 1
6
C":

We consider the function
f .x/D

X
nW1�n�N 1=2; an2aZ

e2�itan :

Case 1: ˛ 2 Œ1; 2�. We apply Theorem 4.3 with p D 6, LD 1 and P.L/D P.L; 0/. Since jf j �H=10
on NcN 1=2.a�1Z/ with c & 1, we obtain

H

�
N 2��1

N ˛
N
1
2

�1
6

." N " logC .��1C 1/H
1
2 .N 2��1/

1
6 ;
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where we used that P.L/ is approximately an N 2��1 interval. Simplifying the above displayed math,

H ." C" logC .��1C 1/N
˛
3
� 1
6
C":

Case 2: ˛ 2
�
1
2
; 1
�
. We apply Theorem 4.3 with p D 6, L D N 1�˛ and P.L/ D P.L; 0/. Since

jf j �H=10 on NcN 1=2.a�1Z/ with c & 1, we obtain

H

�
N 2˛2��1

N ˛
N
1
2

�1
6

." N " logC .��1C 1/H
1
2 .N 2˛2��1/

1
6 ;

that is,
H ." C" logC .��1C 1/N

˛
3
� 1
6
C": �

5. High-low frequency decomposition for the square function

The proof of Proposition 4.5 is based on the method in [Guth et al. 2022], which uses a high-low frequency
decomposition for the square function. Such a decomposition is also used in [Guth et al. 2019] to study inci-
dence estimates for tubes. We set up the preliminaries in this section and prove Proposition 4.5 in Section 6.
We begin in Section 5A with an overview of the argument, at a symbolic and heuristic level, and refer
readers to Section 2 of [Guth et al. 2022] for a more detailed description of the intuition behind this method.

5A. Overview of the argument. Let 2 � p � 6. We will present a heuristic overview of the high-low
proof of Theorem 4.4 (which is our goal to prove via Proposition 4.5). By a pigeonholing argument, we
may assume that there is a parameter ˛ > 0 so thatZ

X

ˇ̌̌̌X
I

fI

ˇ̌̌̌p
� ˛pjU˛j;

whereU˛D
˚
x 2X W

ˇ̌P
I fI .x/

ˇ̌
� ˛

	
. A “broad/narrow” argument (written in our context in Section 6A)

roughly allows us to reduce to the case that, on most of U˛ ,
ˇ̌P

I fI
ˇ̌

is bounded by a bilinear expressionˇ̌P
I1�I 0

fI1
P
I2�I 00

fI2
ˇ̌1=2 where I 0; I 00 are transverse, meaning d.I 0; I 00/ & N�1=2. The high-low

frequency proof of decoupling involves upgrading the bilinear restriction theorem (Proposition 3.5) to the
refined decoupling theorem (Theorem 4.4).

We splitU˛ into� "�1 many sets on which we know certain square functions are high- or low-frequency
dominated. Consider scales 1� L� LmC1 � Lm �N 1=2, where Lm=LmC1 �N ". Define the (square
of the) square functions gm D

P
Im
jfIm j

2, gmC1 D
P
ImC1

jfImC1 j
2, where Im; ImC1 are unions of

Lm; LmC1 many consecutive intervals in�, respectively. Also write gD
P
I jfI j

2. Suppose that on most
of U˛ , gmC1.x/. g.x/. Observe the pointwise inequality that, for x 2 U˛ satisfying gmC1.x/. g.x/,

˛�

ˇ̌̌̌X
ImC1

fImC1.x/

ˇ̌̌̌
.

X
ImC1WjfImC1 .x/j>N

" g.x/
˛

jfImC1.x/jC

ˇ̌̌̌ X
ImC1WjfImC1 .x/j�N

" g.x/
˛

fImC1.x/

ˇ̌̌̌

.
˛

N "g.x/

X
ImC1WjfImC1 .x/j>N

" g.x/
˛

jfImC1.x/j
2
C

ˇ̌̌̌ X
ImC1WjfImC1 .x/j�N

" g.x/
˛

fImC1.x/

ˇ̌̌̌

.
˛

N "g.x/
gmC1.x/C

ˇ̌̌̌ X
ImC1WjfImC1 .x/j�N

" g.x/
˛

fImC1.x/

ˇ̌̌̌
:
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This type of reasoning means that on most of U˛ we may perform a wave packet decomposition of f at
scale ImC1 and replace f with a version which only preserves the “small” wave packets, ensuring the
property that kfImC1kL1.R/ / kgkL1.X/=˛.

Case 1: high-dominance. Suppose that on most of U˛ , gm.x/. jgm�{��LmC1=N .x/j, where ��LmC1=N
is a smooth bump function with support in LmC1=N � j!j � 2, on most of U˛ . A combination of a broad-
narrow argument, Proposition 3.5, the locally constant property, and the assumption of high-frequency
dominance of gm leads to the inequality

˛4jU˛j.
Z
jgm � {��LmC1=N j

2:

Next, by Plancherel’s theorem, we analyze the integral on the right-hand side. A geometric argument
shows that the supports of the 1

jfIm j
2 from ygm are sparsely overlapping on the support of ��LmC1=N .

This allows us to bound the right-hand side of the previous displayed inequality by

C"N
"
X
Im

Z
jfIm j

4;

which is bounded by C"N 10"
P
ImC1

R
jfImC1 j

4 using Cauchy–Schwarz. Finally, use the goodL1 bound
for each fImC1 from the pruning of the wave packets to getX

ImC1

Z
jfImC1 j

4 /
kgk2

L1.X/

˛2

X
ImC1

Z
jfImC1 j

2:

A pigeonholing argument may be used to show that without loss of generality, we may assume that
kgkL1.X/ . ˛2. By L2 orthogonality, the integral on the right-hand side of the previous displayed line
equals

P
I

R
jfI j

2. The conclusion of the argument in this case is then

jU˛j/
kgk2

L1.X/

˛6

X
I

kfIk
2
L2.R/

.
kgk

p
2
�1

L1.X/

˛p

X
I

Z
jfI j

2;

which is a version of the statement of Theorem 4.4.

Case 2: low-dominance. The remaining case is if gm.x/ � jgm � {�<LmC1=N .x/j on most of U˛. A
local L2-orthogonality argument shows that jgm� {�<LmC1=N .x/j is bounded by gmC1�j{�<LmC1=N j.x/,
which by the locally constant heuristic, is roughly the same as gmC1.x/. We conclude in this case that,
on most of U˛ , gm.x/. gmC1.x/. g.x/. This is the same type of assumption we made before consider
the cases, except at the scale Lm instead of LmC1. This allows us to reinitiate the argument beginning
with the assumption that gm.x/. g.x/ in place of gmC1.x/. g.x/.

In the case that we are “low”-dominated for "�1 many scales, then

jU˛j � jfx 2 U˛ W g1.x/. g.x/gj;

where g1 is a square function corresponding to partitions of � into I1, which are N " many adjacent
intervals. Since j

P
I fI .x/j . N "g1.x/ by Cauchy–Schwarz, the statement of Theorem 4.4 becomes

trivial. In the next sections, we set up the argument in full technical detail.
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5B. Wave-packet decomposition. We start with a few definitions. Write f D
P
I2I fI , where fI will

always denote a function with frequency support in I.
Fix 2 � p � 6 and " > 0. For m 2 N, let Lm D N 1=2N�"m. Without loss of generality we assume

LM DL for someM 2N. SoM ." 1. For every 1�m�M we let Im be the partition of� intoN 1=2=Lm

many Im, each of which is the union of Lm-consecutive intervals in �. Lm can be thought of as scales.
Note that

Im � P
CL2m�=N

2

vm \BCLm=N ;

where vm � 1
N

. We denote the right-hand side as zIm:

zIm WD P
CL2m�=N

2

vm \BCLm=N :

Let PIm be a tiling of R by PIm . For each Im, we will now construct a partition of unity f�ImgPIm2PIm
which will be used to perform the wave packet decomposition

fIm D
X
PIm

�PImfIm :

We regard each summand �PImfIm as a wave packet. Specifically, we let  Im be adapted to zIm� zIm,
which is of the form PCL

2
m�=N

2

v0
.0/\BCLm=N .0/, in the frequency space as in Lemma 2.2, with order

of decay 200 outside of the dual fat AP PIm . For each PIm 2 PIm , define

�PIm WD k 
2
Im
k
�1
L1.R/

Z
PIm

j Im.x�y/j
2 dy: (39)

Proposition 5.1 (wave-packet decomposition). f�PIm gPIm2PLm forms a partition of unity, that is,P
�PIm D 1, �PIm � 0. Each �PIm is a translated copy of the others, and

supp y�PIm � 8
400. zIm� zIm/; 1PIm . �PIm .WPIm ;200: (40)

Proof. By definition we see that �PIm forms a partition of unity, and each �PIm is a translated copy of
the others. Also it follows from the definition that

1PIm . j�PIm j:

Note that �P.Lm/ equals k 2Imk
�1
L1.R/

j Im j
2 � 1PIm . Therefore  Im decays at order 200 outside PIm.0/

implies that �P.Lm/ decays at order 400 outside PIm , and in particular

j�PIm j.WPIm ;200:

The support property supp y�PIm � 8
400. zIm� zIm/ follows from the fact that

y�PIm D k 
2
Im
k
�1
L1.R/

2
j Im j

2 y1PIm

and from Lemma 2.2. �

5C. A pruning process and modified square functions. Now we define “square functions” (squared) at
scales Lm, which differ from the usual square functions by a pruning process of wave packets and taking
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spatial averages. The pruning process will depend on two parameters ˛ and r , which can be thought
of as the values of jf j and

P
IM
jfIM j

2 D
P
I jfI j

2 which dominate the Lp norm of f . We define
�D �.˛; r/ by

�D zC"N
" r

˛
; (41)

where zC" is a sufficiently large constant depending on " which will be chosen later in the proof of
Lemma 5.4.

We first do the pruning process (with parameters ˛; r), which inductively removes wave packets at
each scale whose height exceeds �. As we shall see (Lemma 5.4), those wave packets do not play a
dominant role in the Lp norm of f . This process produces a family of functions fm;Im ; fm;Im�1 ; fm
that depend on ˛; r , which is implicit in the notation. We will write fm;Im;˛;r ; fm;Im�1;˛;r ; fm;˛;r to
emphasize such dependence when necessary.

Let PIM ;� D fPIM 2 PLM W k�PIM fIM kL1.R/ � �g, and define

fM;IM WD
X

PIM 2PIM ;�

�PImfIM ; fM WD
X
IM

fM;IM :

We let fM;IM�1D
P
IM�IM�1

fM;IM . Now we define fm and fm;Im inductively formD1; : : : ;M�1 by

fm;Im WD
X

PIm2PIm;�

�PImfmC1;Im ; fm WD
X
Im

fm;Im ; (42)

where fmC1;Im D
P
ImC1�Im

fmC1;ImC1 and PIm;� D fPIm 2 PIm W k�PImfmC1;ImkL1.R/ � �g. For
notational convenience we also define fMC1 D f and fMC1;IM WD fIM D fI .

We note that

(i) fm D
P
Im
fm;Im D

P
Im�1

fm;Im�1 ,

(ii) supp yfm;Im � C zIm,

(iii) supp yfm;Im�1 � C zIm�1,

(iv) jfm;Im j � jfmC1;Im j pointwise.

Item (i) follows from the definitions, and (iv) holds because f�PIm gPIm is a partition of unity. To see (ii)
and (iii) we may induct on m and note that[

Im�Im�1

C zIm � 2 zIm�1

when N is sufficiently large depending on ".
To define the “square function” gm at scale Lm we introduce �Im , which is an L1-normalized nonneg-

ative function adapted to PIm.0/ with decay order 100

jPIm j
�11PIm.0/.x/. �Im.x/.

WPIm .0/;100.x/

kWPIm .0/;100kL1.R/
; (43)

and supp y�Im � C. zIm� zIm/. Such a function can be constructed by taking j j2=k 2kL1 for  adapted
to zIm with decay order 100 as in Lemma 2.2.
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Finally we define the “square function” by

gm WD
X
Im

jfmC1;Im j
2
� �Im

for 1�m�M � 1 and for mDM we define

gM WD
X
IM

jfIM j
2
� �IM :

We note here that gm for 1�m�M�1 implicitly depends on ˛; r , and we will write gm;˛;r to emphasize
such dependence when necessary; gM does not depend on ˛; r .

5D. High-low decomposition. To set up a high-low frequency decomposition for gm, we let �m.�/ be
an even smooth bump function that equals to 1 on BLmC1=N .0/ and vanishes outside B2LmC1=N .0/ for
every 1�m�M � 1. We also assume that �m are rescalings of each other.

Define, for 1�m�M � 1,
g`m WD gm � {�m and ghm WD gm�g

`
m;

which are low- and high-frequency parts of gm. Both g`m and ghm satisfy some proprieties. We discuss
them in the following two lemmas.

Lemma 5.2 (low lemma). For 1�m�M � 1, we have the pointwise inequality

jg`mj. gmC1:
Proof. By definition

g`m D

�X
Im

jfmC1;Im j
2

�
� �Im � {�m D

�X
Im

jfmC1;Im j
2

�
� {�m � �Im :

Using Plancherel’s theorem,

jfmC1;Im j
2
� {�m.x/D

Z
jfmC1;Im.y/j

2
{�m.x�y/ dy

D

Z
. yfmC1;Im �

y
f mC1;Im/.�/ e

2�ix��m.�/ d�

D

X
ImC1;I

0
mC1
�Im

Z
. yfmC1;ImC1 �

y
f mC1;I 0

mC1
/.�/ e2�ix��m.�/ d�: (44)

We note that yfmC1;ImC1 �
y
f mC1;I 0

mC1
is supported in C zImC1 � C zI 0mC1 and zImC1 is of the form

P
CL2�=N 2

vImC1
\BCLmC1=N . Since �m is supported on B2LmC1=N .0/ we conclude that for every fixed

ImC1 there are only O.1/ many I 0mC1 such that the integral in (44) is nonzero, and for those I 0mC1
we write I 0mC1 � ImC1. We let  ImC1 be adapted to C. zImC1� zImC1/ as in Lemma 2.2 with order of
decay 200. Then, using Cauchy–Schwarz in the first two inequalities, we have

jjfmC1;Im j
2
� {�m.x/j D

X
ImC1�Im

X
I 0
mC1
�ImC1

fmC1;ImC1f mC1;I 0mC1
� {�m

�

X
ImC1�Im

X
I 0
mC1
�ImC1

.jfmC1;ImC1 j
2
� j{�mj/

1
2 .jfmC1;I 0

mC1
j
2
� j{�mj/

1
2
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.
X

ImC1�Im

jfmC1;ImC1 j
2
� j{�mj

.
X

ImC1�Im

jfmC1;ImC1 j
2
� j { ImC1 j � j{�mj

�

X
ImC1�Im

jfmC2;ImC1 j
2
� j { ImC1 j � j{�mj;

where the last inequality is because of jfmC1;ImC1 j � jfmC2;ImC1 j pointwise. Now to finish the proof, it
suffices to observe that

j{�mj � j { ImC1 j � �Im . �ImC1 ;

since j{�mj decays rapidly outsideBN=LmC1.0/, j { ImC1 j decays at order 200 outsidePImC1.0/, �Im decays
at order 100 outside PIm.0/, and BLmC1=N .0/CPIm.0/� CPImC1.0/. �

Recall that
P.Lm/D P

CN 3=2=L2m
v�11

\BCN 2=.L2m�/

(which degenerates to BCN 2=.L2m�/ if Lm � CN 1=4) as defined in (16). Let �P.LM / be a function such
that

supp 2�P.LM /�P
CL2M �=N

2

v1 .0/\BCL2M =N 3=2
.0/�

\
I2I

. zI�zI/; where 1P.LM /.j�P.LM /j.WP.LM /;200:

To construct such a function we can take a  in Lemma 2.2 adapted to certain fat AP and apply a
translation in the physical space to it.

Lemma 5.3 (high lemma). For 1�m�M � 1 we haveZ
jghmj

2WP.LM /;100 .N
"

Z X
Im

jfmC1;Im j
4WP.LM /;100:

Proof. Because of (12), it suffices to show for every P.LM /Z
P.LM /

jghmj
2 .N "

Z X
Im

jfmC1;Im j
4WP.LM /;100:

CalculateZ
jghmj

2WP.LM /;100 .
Z
jghm�P.LM /j

2
D

Z ˇ̌̌̌X
Im

^

.jfmC1;Im j
2/y�Im.1� �m/�

2�P.LM /
ˇ̌̌̌2
:

Note that
supp.
^

.jfmC1;Im j
2/y�Im.1� �m/�

2�P.LM //� C. zIm� zIm/ nBLmC1=.2N/.0/:
Indeed, the high-frequency cutoff .1� �m/ removes the ball BLmC1=N .0/. The support of 2�P.LM / is
contained in a ball of radius � 1

2
L2M=N

3=2 (if the C in the definition of P.L/ as in (16) is large enough),
so convolution with 2�P.LM / shrinks the high-frequency cutoff by an amount smaller than LmC1=.2N /.
The structure of zIm� zIm is unchanged by convolution by 2�P.LM / because the thickness of zIm is�Lm=N
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and 1
2
L2M=N

3=2 � LmC1=.2N /�N
�"Lm=N . We claim that at every point on R, the collection of sets

fC. zIm � zIm/ nBLmC1=.2N/.0/gIm has at most O.N "/ overlap. Assuming this claim, by the Cauchy–
Schwarz inequality we obtainZ

jghmj
2WP.LM /;100 .N

"

Z X
Im

ˇ̌̂
.jfmC1;Im j

2/y�Im.1� �m/�
2�P.LM /

ˇ̌2
:

So we haveZ
jghmj

2WP.LM /;100

.N "
X
Im

Z ˇ̌
jfmC1;Im j

2
� �Im �

S.1� �m/
ˇ̌2
j�P.LM /j

2

.N "
X
Im

�Z ˇ̌
jfmC1;Im j

2
� �Im

ˇ̌2
j�P.LM /j

2
C

Z ˇ̌
jfmC1;Im j

2
� �Im � j{�mj

ˇ̌2
j�P.LM /j

2

�
.N "

X
Im

�Z
jfmC1;Im j

4.j�P.LM /j
2
� �Im/C

Z
jfmC1;Im j

4.j�P.LM /j
2
� �Im � j{�mj/

�
;

where we used Cauchy–Schwarz and that �Im and {�m have L1 norms � 1 to justifyˇ̌
jfmC1;Im j

2
� �Im

ˇ̌2 . jfmC1;Im j4 � �Im ; ˇ̌
jfmC1;Im j

2
� �Im � j{�mj

ˇ̌2 . jfmC1;Im j4 � �Im � j{�mj:
Noting that j�P.LM /j

2 � �Im .WP.LM /;100 and j�P.LM /j
2 � �Im � j{�mj.WP.LM /;100, we concludeZ

jghmj
2WP.LM /;100 .N

"
X
Im

Z
jfmC1;Im j

4WP.LM /;100:

Now we prove the claim. Recall that zIm is a fat AP of the form P
CL2�=N 2

vIm
\BCLm=N , where vIm �N

�1.
Suppose x 2C. zIm� zIm/nBLmC1=.2N/.0/ and x 2C. zI 0m� zI

0
m/nBLmC1=N .0/ for distinct zIm and zI 0m. We

denote the common difference of zIm and zI 0m by v and v0 respectively. Recalling that vIm are C�Lm=N 2

separated, and the maximal separation is C.N 1=2=Lm/.�Lm=N
2/D C�=N 3=2, we have

�Lm=N
2 . jv� v0j. �=N

3
2 :

Suppose x2BCL2m�=N 2.kv/ and x2BCL2m�=N 2.k
0v0/ for some k; k02N. Then since x 62BLmC1=.2N/.0/,

LmC1 . k; k0 . Lm. By definition Lm DN "LmC1 �N
1=2�", so we have

LmC1
�Lm

N 2
&N�"

�L2m
N 2

; Lm
�

N
3
2

�
�

N 1C"
�

1

N 1C"
:

It follows that jk� k0j. 1 and

either jv� v0j.N "�
Lm

N 2
or jv� v0j&

1

N
3
2
�"
:

The second case cannot happen ifN is sufficiently large (depending on "). Since common differences v are
O.�Lm=N 2/-separated, we conclude that there are at most O.N "/ many zI 0m such that x 2 C. zI 0m� zI

0
m/ n

BLmC1=.2N/.0/. �
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5E. The sets �m;˛;r and U˛;r . The last part of our high-low decomposition set-up is to partition P.LM /
into �m;˛;r , for a fixed pair .˛; r/. For 1�m�M � 1 we define �m;˛;r to be

�m;˛;r WD fx 2 P.LM / W gm.x/� 2jg
h
m.x/j; gmC1.x/� 2jg

`
mC1.x/j; : : : ; gM�1.x/� 2jg

`
M�1.x/jg:

Here gk D gk;˛;r . Also define �0;˛;r to be

�0;˛;r WD fx 2 P.LM / W g1.x/� 2jg
`
1.x/j; g2.x/� 2jg

`
2.x/j; : : : ; gM�1.x/� 2jg

`
M�1.x/jg:

Clearly

P.LM /D
[

0�m�M�1

�m;˛;r

for every ˛; r . For notational convenience we let �M;˛;r D P.LM /.
We define U˛0;r 0 by

U˛0;r 0 WD fx 2 P.LM / W r
0=2 < gM .x/� 2r

0; ˛0=2 < jf .x/j � 2˛0g: (45)

Recall that gM D
P
IM
jfIM j

2 � �IM is defined without the pruning process so in particular it does not
depend on the pruning parameters ˛; r .

We prove the following lemma, which shows that, on U˛;r \�m;˛;r , jfm � fm;˛;r j is very small
so that jfmj � jfm;˛;r j. We define f0 D f1 for notational convenience. Also recall we have defined
fMC1 D f and fMC1;IM D fIM D fI .

Lemma 5.4. If the constant zC" in the definition of � is large enough depending on ", then for every ˛; r ,
every 1�m�M � 1, and any subset S of the partition Im D fImg, we haveˇ̌̌̌ X

Im2S

fIm �
X
Im2S

fm;˛;r;Im

ˇ̌̌̌
�

˛

100

on U˛;r \�m;˛;r , and also on U˛;r \�0;˛;r if mD 1. In particular if zC" in the definition of � is large
enough depending on ", then for every ˛; r , every 0�m�M � 1,

jfm;˛;r j 2
h
˛

4
; 4˛

i
;

on U˛;r \�m;˛;r .

Proof. Fix ˛; r . In the following proof gk means gk;˛;r , and fk;Ik , fk;Ik�1 , fk mean fk;Ik ;˛;r , fk;Ik�1;˛;r ,
fk;˛;r respectively. First suppose 1�m�M � 1. By the definition of �m;˛;r and Lemma 5.2 we know
that on U˛;r \�m;˛;r ,

gmC1 . gmC2 . � � �. gM . r:

We also have by the Cauchy–Schwarz inequality gm ." N "gmC1. Recall that M ." 1 so we have, for
m� k �M,

gk ." N "r on U˛;r \�m;˛;r :
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Let m0 be an integer between m and M and let Im0 2 Im0 . By the definition of fm0;Im0 and fm0C1;Im0 we
have for x 2 U˛;r \�m;˛;r

jfm0;Im0 .x/�fm0C1;Im0 .x/jD

ˇ̌̌̌ X
PIm0

…PIm0 ;�

�PIm0
.x/fm0C1;Im0 .x/

ˇ̌̌̌

.
X

PIm0
…PIm0 ;�

j�
1
2

PIm0
.x/fm0C1;Im0 .x/j�

1
2

PIm0
.x/

.
X

PIm0
…PIm0 ;�

��1k�PIm0
fm0C1;Im0kL1.R/k�

1
2

PIm0
fm0C1;Im0kL1.R/�

1
2

PIm0
.x/

.��1
X

PIm0
…PIm0 ;�

k�
1
2

PIm0
fm0C1;Im0k

2
L1.R/�

1
2

PIm0
.x/

.��1
X

PIm0
…PIm0 ;�

X
zPIm0

k�PIm0
f 2m0C1;Im0

k
L1. zPIm0

/
�
1
2

PIm0
.x/

.��1
X
PIm0

X
zPIm0

k�PIm0
k
L1. zPIm0

/
kf 2m0C1;Im0

k�L1.W zPIm0
/�

1
2

PIm0
.x/;

where we used �PIm0 . �
1=2
PIm0

. We also used the locally constant property Proposition 2.3 for the last in-
equality. If we use �Im0 . zPIm0 / to denote �Im0 .sup zPIm0 /, which is comparable to �Im0 .y/ for any y 2 zPIm0 ,
then we have

jfm0;Im0 .x/�fm0C1;Im0 .x/j. �
�1
jPIm0 j

�1
X
PIm0

X
zPIm0

�Z
W zPIm0

�PIm0
. zPIm0 /jfm0C1;Im0 j

2

�
�
1
2

PIm0
.x/

. ��1jPIm0 j
�1

X
zPIm0

�Z
W zPIm0

jfm0C1;Im0 j
2

�
�
1
2

zPIm0
.PIm0 .x//

. ��1jPIm0 j
�1

Z
jfm0C1;Im0 j

2.y/
X
zPIm0

W zPIm0
.y/ �

1
2

zPIm0
.PIm0 .x// dy

. ��1jPIm0 j
�1

Z
jfm0C1;Im0 j

2.y/ �
1
2

PIm0
.x/
.y/ dy:

Noting that jPIm0 j
�1�

1=2

PIm0
.x/
.y/. �Im0 .x�y/, we get

jfm0;Im0 .x/�fm0C1;Im0 .x/j. �
�1
jfm0C1;Im0 j

2
� �Im0 .x/:

Summing the above over Im0 �
S
Im2S Im we concludeˇ̌̌̌ X

Im0�
S
Im2S Im

fm0;Im0 .x/�
X

Im0�
S
Im2S Im

fm0C1;Im0 .x/

ˇ̌̌̌
� ��1

X
Im02Im0

jfm0C1;Im0 j
2
� �Im0 .x/

D ��1gm0.x/." N " r

�
:
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Therefore if we choose the constant zC" in the definition of �D zC"N " r
˛

to be large enough depending
on ", then we have, for x 2 U˛;r \�m;˛;r ,X

m�m0�M

ˇ̌̌̌ X
Im0�

S
Im2S Im

fm0;Im0 .x/�
X

Im0�
S
Im2S Im

fm0C1;Im0 .x/

ˇ̌̌̌
�

˛

100
:

Since by definition
P
Im0�

S
Im2S Im

fm0;Im0 D
P
Im0�1�

S
Im2S Im

fm0;Im0�1 , we have by the triangle
inequality that ˇ̌̌̌ X

Im2S

fIm �
X
Im2S

fm;Im

ˇ̌̌̌
�

˛

100
:

The case mD 0 follows from the above argument for mD 1 as by definition f0 D f1. �

From now on we will assume that zC" is chosen large enough such that the conclusion of Lemma 5.4
holds.

6. Proof of Proposition 4.5

We prove Proposition 4.5 in this section, and consequently Theorem 4.4. We also give the proof of
Theorem 4.3 assuming Theorem 4.4 in the last subsection. Still fix 2� p � 6, " > 0, and P.LM /� R.

Suppose 1�K�N "=2 andN 1=2=K�L. Let I 0 be a partition of NN�1K�1.fangN
1=2

nD1 / intoK many I 0,
which is a union ofN 1=2=K consecutive intervals in NN�1K�1.fangN

1=2

nD1 /. We call I 0; I 002I 0 nonadjacent
if there exist at least two other I 000 2 I 0 between I 0 and I 00 on the real line. Alternatively, we can list
I 0 2 I 0 as I 0j so that I 0jC1 is on the right side of I 0j on the real line for every j . Then we define I 0j ; I

0
j 0 to

be nonadjacent if jj � j 0j � 3. In displayed math we write “nonadj.” as the shorthand for nonadjacent.
For f with supp yf � �, we let fI 0 denote the projection of f to I 0 in the frequency space. So

fI 0 D
P
IM�I 0

fIM .

6A. Broad-narrow decomposition. The following lemma is a broad-narrow analysis on f with some
complication. For parameters ˛; r > 0 and m, 0�m�M � 1, define

fm;˛;r;I 0 WD
X
Im�I 0

fm;˛;r;Im ;

where we recall that fm;˛;r;Im is defined in (42).

Lemma 6.1. For every X � P.LM /, there exist some ˛; r with ˛ � r1=2 and some m such that 0�m�
M � 1 andZ
X

jf jp ."
X
I 02I0

Z
X

jfI 0 j
p
C .logN log.��1C1//C

KC

˛4�p
max
I 0;I 00

nonadj.

Z
X\U˛;r\�m;˛;r

jfm;˛;r;I 0 j
2
jfm;˛;r;I 00 j

2

C

�
sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

�p
2
�1�X

I

kfIk
2
L2.WP.L/;100/

�
: (46)

First we prove a technical lemma which is a pointwise broad-narrow analysis.
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By taking all parameters to have dyadic values, we may assume that for each Im, 0 �m �M, and
any I 0, either Im � I 0 or Im\ I 0 D∅.

Lemma 6.2. For every ˛; r > 0 and 0�m�M � 1,

jfm;˛;r.x/j
2 .max

I 0
jfI 0.x/j

2
CKC max

I 0;I 00

nonadj.

jfm;˛;r;I 0.x/jjfm;˛;r;I 00.x/j

for every x 2X \U˛;r \�m;˛;r .

Proof. Let x 2X\U˛;r\�m;˛;r . If there exist I 0; I 00 2 I 0 nonadjacent such that jfm;˛;r;I 0 j; jfm;˛;r;I 00 j �
1

100K
jfm;˛;r.x/j, then we have

jfm;˛;r.x/j
2 .K2 max

I 0;I 00

nonadj.

jfm;˛;r;I 0.x/jjfm;˛;r;I 00.x/j: (47)

Now we assume there do not exist I 0; I 002I 0 nonadjacent with jfm;˛;r;I 0 j; jfm;˛;r;I 00 j� 1
100K

jfm;˛;r.x/j.
Note that fm;˛;r.x/D

P
I 0 fm;˛;r;I 0.x/ and the number of I 0 is bounded by K. So if we choose I 000 2 I 0

with jfm;˛;r;I 000.x/j DmaxI 02I0 jfm;˛;r;I 0.x/j, then

jfm;˛;r;I 000.x/j �
1
2
jfm;˛;r.x/j: (48)

By Lemma 5.4 we have jfm;˛;r.x/j 2 Œ˛=4; 4˛�, and jfm;˛;r;I 000.x/� fI 000.x/j � ˛
100

. Therefore by
the triangle inequality and (48) we obtain

jfI 000.x/j& ˛ � jfm;˛;r.x/j:

This combined with (47) proves the lemma. �

Proof of Lemma 6.1. Since P.LM /D
F
˛;rW dyadic U˛;r , we haveZ

X

jf jp �
X

˛;rW dyadic

Z
X\U˛;r

jf jp:

Without loss of generality we assume�
sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

�1
2
� 1
p
�X
I

kfIk
2
L2.WP.L/;100/

�1
p

D 1: (49)

Then X \U˛;r D∅ if maxf˛; rg � CNC ��C for some sufficiently large constant C . Also�Z
X\.

S
minf˛;rg�C�1N�C�C U˛;r /

jf jp
� 1
p

. 1

if C is sufficiently large. So now we writeZ
X

jf jp �
X
˛;r

Z
X\U˛;r

jf jpCC; (50)

where the number of pairs .˛; r/ in the summation is O.logN log.��1C1//2, since the number of dyadic
numbers between C�1N�C �C and CNC ��C is O.logN C log.��1C 1//DO.logN log.��1C 1//.



2432 YUQIU FU, LARRY GUTH AND DOMINIQUE MALDAGUE

We also observe that by Hölder’s inequality and Fubini’s theorem we haveZ
X\

S
˛�r1=2

U˛;r

jf jp .
Z
X

�X
I

jfI j
2
� �I

�p
2

.
X
I

jfI j
2
� �I

p2�1
L1.X/

�X
I

kfIk
2
L2.WP.L/;100/

�
:

Since X
I

jfI j
2
� �I


L1.X/

� sup
x2X

X
I

jfI j
2
� �I .x/. sup

x2X

X
I

kfIk
2
�L2.WPI .x/;100/

;

we obtainZ
X\

S
˛�r1=2

U˛;r

jf jp .
�

sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

�p
2
�1�X

I

kfIk
2
L2.WP.L/;100/

�
D 1:

So in summary Z
X

jf jp .
X

˛;rW˛�r1=2

Z
X\U˛;r

jf jpC 1: (51)

Next we further decompose X \U˛;r into
S
m.X \U˛;r \�m;˛;r/:Z

X\U˛;r

jf jp �

M�1X
mD0

Z
X\U˛;r\�m;˛;r

jf jp:

By Lemma 5.4 we have, for 0�m�M � 1,Z
X\U˛;r\�m;˛;r

jf jp �

Z
X\U˛;r\�m;˛;r

jfm;˛;r j
p:

It then follows from Lemmas 6.2 and 5.4 thatZ
X

jf jp

. 1C
X

˛;rW˛�r1=2

M�1X
mD0

�X
I 02I0

Z
X\U˛;r\�m;˛;r

jfI 0 j
p
C
KC

˛4�p
max
I 0;I 00

nonadj.

Z
X\U˛;r\�m;˛;r

jfm;˛;r;I 0 j
2
jfm;˛;r;I 00 j

2

�

. 1CC"
X
I 02I0

Z
X

jfI 0 j
p
C

X
˛;rW˛�r1=2

X
m

KC

˛4�p
max
I 0;I 00

nonadj.

Z
X\U˛;r\�m;˛;r

jfm;˛;r;I 0 j
2
jfm;˛;r;I 00 j

2;

where we used M ." 1 in the last inequality. Recall that the number of pairs .˛; r/ in the summation is
O.logN log.��1C 1//2 (see (50)); by the pigeonhole principle we haveX
˛;rW˛�r1=2

X
m

KC

˛4�p
max
I 0; I 00

nonadj.

Z
X\U˛;r\�m;˛;r

jfm;˛;r;I 0 j
2
jfm;˛;r;I 00 j

2

." .logN log.��1C 1//2
KC

˛4�p
max
I 0; I 00

nonadj.

Z
X\U˛;r\�m;˛;r

jfm;˛;r;I 0 j
2
jfm;˛;r;I 00 j

2

for some ˛; r with ˛ � r1=2, 0�m�M � 1, which completes the proof. �



DECOUPLING INEQUALITIES FOR SHORT GENERALIZED DIRICHLET SEQUENCES 2433

Now fix X � P.LM /. We have identified a pair .˛; r/ from Lemma 6.1, and we fix that pair of ˛; r
and suppress the dependence on ˛; r from now on in the notation. In particular write gm D gm;˛;r ,
�m D�m;˛;r , fm;I 0 D fm;˛;r;I 0 and fm;Im D fm;˛;r;Im where ˛; r are those chosen in Lemma 6.1.

We estimate the broad and narrow parts separately, which together with Lemma 6.1 will imply
Proposition 4.5.

6B. Narrow part.

Proposition 6.3. For every I 0 2 I 0 we haveZ
X

jfI 0 j
p

.
�

sup
� 02Œ�=4;��

Dec
�
N

K2
;
� 0

K2

�p��
sup
x2X

X
I�I 0

kfIk
2
�L2.WPI .x/;100/

�p
2
�1�X

I�I 0

kfIk
2
L2.WP.L/;100/

�
: (52)

Proof. In this proof, the notation cA with c 2 R; A� R will denote the set fca W a 2 Ag.
We first prove (52) for I 0 DNL2�=N 2.fang

N 1=2=K
nD1 /. Note that K2I 0 DNK2L2�=N 2.fK2ang/

N 1=2=K
nD1 ,

and if we let QaDK2an, zN DN=K2 and Q� D �=K2, then

Qa� Qa 2

�
K2

4N
;
4K2

N

�
D

�
1

4 zN
;
4

zN

�
; . Qa� Qa/� . Qa� Qa/ 2

�
K2�

4N 2
;
4K2�

N 2

�
D

�
Q�

4 zN 2
;
4 Q�

zN 2

�
;

and K2I 0 DN
L2 Q�= zN 2

.f Qag
zN 1=2

nD1 /.

We define zP.L/, zPK2I by (16), (15) respectively with N;L; �; vj replaced by zN;L; Q�;K2vj . Then for
any x0 we have zPK2I .K

�2x0/DK
�2PI .x0/, and zP.L;K�2x0/�K�2P.L; x0/. Now by the change

of variable formula, Z
X

jfI 0.x/j
p dx DK2

Z
K�2X

jfI 0.K
2x/jp dx:

We have supp 3fI 0.K2 �/�K2I 0DN
L2 Q�= zN 2

.f Qag
zN 1=2

nD1 /. Let Qf .x/ denote the function fI 0.K2x/. Therefore
by the definition of the refined decoupling constant for N

L2 Q�= zN 2
.f Qag

zN 1=2

nD1 /, and (33) (as zP.L;K�2x0/�
K�2P.L; x0/), we haveZ
K�2X

j Qf .x/jp dx�Dec. zN; Q�/p
�

sup
x2X

X
I�I 0

k Qf k2
�L2.W zP

K2I
.K�2x/;100

/

�p
2
�1�X

I�I 0

k Qf k2
L2.W

K�2P.L/;100
/

�
:

By the change of variable formula,

k Qf k�L2.W zP
K2I

.K�2x/;100
/ . kfIk�L2.WPI .x/;100/;

k Qf k2
L2.W

K�2P.L/;100
/
.K�2kfIk2L2.WP.L/;100/:

So we concludeZ
X

jfI 0 j
p . Dec

�
N

K2
;
�

K2

�p�
sup
x2X

X
I�I 0

kfIk
2
�L2.WPI .x/;100/

�p
2
�1�X

I�I 0

kfIk
2
L2.WP.L/;100/

�
:
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Now we consider a general I 0 2 I 0. Suppose al is the first term in I 0\fangN
1=2

nD1 , and let vl D alC1� al .
Because of (14) we have vl 2 Œv1; 2v1�. So we may choose Kl 2 ŒK=

p
2;K� such that

K2l vl 2

�
1

4 zN
;
4

zN

�
:

Then

K2l ..anC1� an/� .an� an�1// 2

�
�K2

l

4N 2
;
4�K2

l

N 2

�
D

�
Q� 0

4 zN 2
;
4 Q� l
zN 2

�
for some Q� l 2 Œ Q�=4; Q��. Let �l D K2 Q� l , which lies in Œ�=4; 4��. So by a change of variable argument
again we haveZ

X

jfI 0 j
p . Dec

�
N

K2
;
�l

K2

�p�
sup
x2X

X
I�I 0

kfIk
2
�L2.WPI .x/;100/

�p
2
�1�X

I�I 0

kfIk
2
L2.WP.L/;100/

�
:

Therefore we have shown (52) for every I 0 2 I 0. �

The proof of Proposition 6.3 actually shows that (52) holds for every f with frequency support in �
(not only alternately spaced f ) and every X � P.L/.

6C. Broad part.

Proposition 6.4. For 1�m�M � 1 and I 0; I 00 2 I 0 nonadjacent we haveZ
X\U˛;r\�m

jfm;I 0 j
2
jfm;I 00 j

2 ." NC"KC
�
r

˛

�2�X
I2I

kfIk
2
L2.WP.L/;100/

�
: (53)

Proof. Fix a P.L0m/ such that P.L0m/ \ X \ U˛;r \�m ¤ ∅. Recall that L0m D .LmN
1=2/1=2 as

defined in Section 3. Suppose the distance between I 0 and I 00 is 1=K 0. Since I 0; I 00 are nonadjacent,
we have 1=K � 1=K 0 . 1. Let Qf .x/ denote the function fm;I 0..K 0/2x/, and Qf .x/ denote the function
fm;I 00..K

0/2x/. Then supp yQf1 � .K 0/2I 0, supp yQf2 � .K 0/2I 00, and d..K 0/2I 0; .K 0/2I 00/ & 1. By (22)
and a change of variable argument similar to that in the proof of Proposition 6.3, we haveZ
.K0/�2P.L0m/

j Qf j2j Qf j2 ." N ".K 0/C jP.L0m/j
�1

Z
j Qf j2W.K0/�2P.L0m/;200

Z
j Qf j2W.K0/�2P.L0m/;200:

By the local L2 orthogonality Lemma 3.6, we further obtainZ
.K0/�2P.L0m/

j Qf j2j Qf j2

."N ".K 0/C jP.L0m/j
�1

Z X
Im�I 0

j. Qf /.K0/2Im j
2W.K0/�2P.L0m/;200

Z X
Im�I 00

j. Qf /.K0/2Im j
2W.K0/�2P.L0m/;200:

Here the notation cA with c 2 R; A� R denotes the set fca W a 2 Ag. Applying the change of variable
x 7! .K 0/�2x to both sides of the above inequality, and using K 0 �K, we getZ
P.L0m/

jfm;I 0 j
2
jfm;I 00 j

2."N "KC jP.L0m/j
�1

Z X
Im�I 0

jfm;Im j
2WP.L0m/;200

Z X
Im�I 00

jfm;Im j
2WP.L0m/;200:
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By Hölder’s inequality,Z
P.L0m/

jfm;I 0 j
2
jfm;I 00 j

2 .e N "KC
Z �X

Im

jfm;Im j
2

�2
WP.L0m/;200;

and due to jfm;Im j � jfmC1;Im j we further haveZ
P.L0m/

jfm;I 0 j
2
jfm;I 00 j

2 ." N "KC
Z �X

Im

jfmC1;Im j
2

�2
WP.L0m/;200:

Now applying Proposition 2.3 we obtainZ
P.L0m/

jfm;I 0 j
2
jfm;I 00 j

2 ." N "KC jP.L0m/j
�1

�Z �X
Im

jfmC1;Im j
2

�
WP.L0m/;100

�2
.N "KC

Z
P.L0m/

g2m:

Note that from the definition of �m and the definition of gm WD
P
Im
jfmC1;Im j

2 ��Im we have x 2�m
implies jgm.x/j � supy2P.L0m.x// jgm.y/j. jg

h
m.x/j. Therefore we have (by Proposition 2.3)Z

P.L0m/

g2m . jP.L
0
m/jjg

h
m.x/j

2 .
Z
jghmj

2WP.L0m/;100;

where x 2 P.L0m/\�m. Summing over disjoint P.L0m/ that intersect X \U˛;r \�m we obtainZ
X\U˛;r\�m

jfm;I 0 j
2
jfm;I 00 j

2."N "KC
Z
jghmj

2WP.LM /;100.N
2"KC

Z X
Im

jfmC1;Im j
4WP.LM /;100;

where the last inequality is due to Lemma 5.3. By Hölder’s inequality and the definition of fmC1;ImC1
we have Z X

Im

jfmC1;Im j
4WP.LM /;100 .N

C"

Z X
ImC1

jfmC1;ImC1 j
4WP.LM /;100

.NC"

�
r

˛

�2Z X
ImC1

jfmC1;ImC1 j
2WP.LM /;100:

By the pointwise inequality jfmC1;ImC1 j � jfmC2;ImC1 j and local L2 orthogonality (Lemma 3.6),Z X
ImC1

jfmC1;ImC1 j
2WP.LM /;100 .

Z X
ImC2

jfmC2;ImC1 j
2WP.LM /;100

.
Z X
ImC2

jfmC2;ImC2 j
2WP.LM /;100:

Continuing this process we obtainZ X
ImC1

jfmC1;ImC1 j
2WP.LM /;100 ."

Z X
IM

jfM;IM j
2WP.LM /;100: (54)
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Recalling that jfM;IM j � jfIM j D jfI j we concludeZ
X\U˛;r\�m

jfm;I 0 j
2
jfm;I 00 j

2 ." NC"KC
�
r

˛

�2Z X
I

jfI j
2WP.LM /;100: �

Proposition 6.5. For I 0; I 00 2 I 0 nonadjacent we haveZ
X\U˛;r\�0

jf0;I 0 j
p
2 jf0;I 00 j

p
2 ." N "

�
sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

�p
2
�1�X

I

kfIk
2
L2.WP.L/;100/

�
:

Proof. By the Cauchy–Schwarz inequality we haveZ
X\U˛;r\�0

jf0;I 0 j
p
2 jf0;I 00 j

p
2 .N "

Z
X\U˛;r\�0

�X
I1

jf1;I1 j
2

�p
2

.N " sup
x2X\�0

�X
I1

jf1;I1 j
2

�p
2
�1Z X

I1

jf1;I1 j
2WP.LM /;100:

We have shown in the proof of Proposition 6.4 (inequality (54)) thatZ X
I1

jf1;I1 j
2WP.LM /;100 ."

Z X
I

jfI j
2WP.L/;100:

So it suffices to show

sup
x2X\�0

�X
I1

jf1;I1 j
2

�
." sup

x2X

X
I

kfIk
2
�L2.WPI .x/;100/

: (55)

From the locally constant property (Proposition 2.3) we haveX
I1

jf1;I1 j
2.x/.

X
I1

jf1;I1 j
2
� �I1.x/.

X
I1

jf2;I1 j
2
� �I1.x/D g1.x/

(recall that �I1 is an L1 normalized nonnegative function adapted to PI1.0/ satisfying (43)), and by
Lemma 5.2 we have, for x 2X \�0, g1.x/." gM .x/. So we conclude

sup
x2X\�0

X
I1

jf1;I1 j
2.x/." sup

x2X\�0

gM .x/. sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

: �

6D. Proof of Proposition 4.5. Let X � P.L/. We choose ˛; r as in Lemma 6.1. Note that

r � 2

X
I

jfI j
2


L1.X/

since otherwise X \U˛;r D∅. So

r � 2

X
I

jfI j
2


L1.X/

. sup
x2X

X
I�I 0

kfIk
2
�L2.WPI .x/;100/

:
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Also ˛� r1=2 implies that r3�p=2=˛6�p � 1 as p� 6. Therefore combining Propositions 6.3, 6.4, and 6.5
and Lemma 6.1 we obtainZ
X

jf jp ."
�

sup
� 02Œ�=4;4��

Dec
�
N

K2
;
� 0

K2

�p
C logC .��1C 1/NC"KC

�
�

�
sup
x2X

X
I

kfIk
2
�L2.WPI .x/;100/

�p
2
�1�X

I

kfIk
2
L2.WP.L/;100/

�
: (56)

6E. Proof of Theorem 4.3. Finally, in this section we show how Theorem 4.4 implies Theorem 4.3. Let
f D

P
I fI . Taking X D P.L/ in (32) we see that

kf kLp.P.L// ." N " logC .��1C 1/
�

sup
x2P.L/

X
I

kfIk
2
�L2.WPI .x/;100/

�1
2
� 1
p
�X
I

kfIk
2
L2.WP.L/;100/

�1
p

:

To prove Theorem 4.1 we will do dyadic pigeonholing on the L2-norm of wave packets of f , using
Proposition 5.1. More precisely we write

f D
X
I

fI D
X
I

X
PI

�PIfI D
X

�W dyadic

X
I;PI Wk�PI fI kL2.WPI ;100/

2Œ�=2;�/

�PIfI :

Without loss of generality we assume
�P

I kfIk
2
Lp.WP.L/;100/

�1=2
D 1. Then X

I;PI Wk�PI fI kL2.WPI ;100/
…ŒN�C �C ;NC ��C �

�PIfI


Lp.P.L//

. 1

for sufficiently large C . Therefore there exists a � such that

kf kLp.P.L// . C"N "logC .��1C 1/
 X
I;PI Wk�PI fI kL2.WPI ;100/

2Œ�=2;�/

�PIfI


Lp.P.L//

C 1:

By a further dyadic pigeonholing argument on I, we may assume, for every I, either

#fPI W k�PIfIkL2.WP.L/;100/ 2 Œ�=2; �/g D 0

or

#fPI W k�PIfIkL2.WP.L/;100/ 2 Œ�=2; �/g 2 ŒA=2;A/ for some constant A:

We denote by #I the number of I such that #fPI W k�PIfIkL2.WP.L/;100/ 2 Œ�=2; �/g 2 ŒA=2;A/. For
simplicity of notation we will also drop writing the condition k�PIfIkL2.WP.L/;100/ 2 Œ�=2; �/ in the
summation. Now apply Theorem 4.4 to getX
I;PI

�PIfI


Lp.P.L//

." logC .��1C 1/N "

�
sup

x2P.L/

X
I

X
PI

�PIfI

2
�L2.WPI .x/;100/

�1
2
� 1
p

�

�X
I

X
PI

�PIfI

2
L2.WP.L/;100/

�1
p

: (57)
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To estimate the first factor on the right-hand side of (57) we note that, for every x 2 P.L/,

X
I

X
PI

�PIfI

2
�L2.WPI .x/;100/

.
X
I

X
PI

k�PIfIk
2
�L2.WPI .x/;100/

. .#I /�2jPI j�1

because of
�P

PI
�PI .y/

�2 . supPI �
2
PI
.y/�

P
PI
�2PI .y/ and (12). Therefore

sup
x2P.L/

X
I

X
PI

�PIfI

2
�L2.WPI .x/;100/

. .#I /�2jPI j�1:

To estimate the second factor on the right-hand side of (57) we calculate

X
I

X
PI

�PIfI

2
L2.WP.L/;100/

.
X
I

X
PI

k�PIfIk
2
L2.WP.L/;100/

. .#I /�2A:

To summarize, (57) implies thatX
I;PI

�PIfI


Lp.P.L//

." logC .��1C 1/N "
jPI j

1
p
� 1
2 .#I /

1
2A

1
p �:

Now by Hölder’s inequality we have�X
I

kfIk
2
Lp.WP.L/;100/

�1
2

�

�X
I

�X
PI

k�
1
2

PI
fIk

p

Lp.WP.L/;100/

�2
p
�1
2

&
�X
I

�X
PI

k�PIfIk
p

L2.WP.L/;100/
jPI j

1�p
2

�2
p
�1
2

& jPI j
1
p
� 1
2 .#I /

1
2A

1
p �:

Hence we have (31).

7. A decoupling inequality for generalized Dirichlet sequences

In this section we focus only on generalized Dirichlet sequences with parameter � D 1. That is, we say
fang

N
nD1 is a generalized Dirichlet sequence if it satisfies (14) with � D 1. We will present a decoupling

inequality for generalized Dirichlet sequences, by combining Theorem 4.1 and the flat decoupling
(Proposition 7.2 below). Then we show that for certain choices of the generalized Dirichlet sequences
fang

N
nD1 the decoupling inequality that we obtain in this way is sharp (up to C"N ").

More precisely, for 1 � L � N 1=2, we let �0 denote the L2=N 2-neighborhood of fangNnD1, and
let fJ gJ2J be a partition of �0 into �0 \ BN�1=2 , where BN�1=2 runs over a tiling of R by balls of
radius N�1=2. So there are about N 1=2 many J and each J contains O.N 1=2/ many consecutive intervals
in �0. For each J we let IJ be the partition of J into I, which is a union of L many consecutive intervals
in �0.

We have the following decoupling inequality for the partition �0 D
F
J2J

F
I2IJ I.
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Theorem 7.1. For 2� p � 6, we have

kf kLp.R/ ." N
1
4
� 1
2p
C"

�X
J2J

X
I2IJ

kfIk
2
Lp.R/

�1
2

(58)

for every f WR!C with supp yf ��0. There exists a choice of fangNnD1 (satisfying (14) with � D 1) such
that the above estimate is sharp up to an N " factor.

7A. Proof of (58). From Theorem 4.1 we have, for every J 2 J and 2� p � 6,

kfJ kLp.R/ ." N "

�X
I2IJ

kfIk
2
Lp.R/

�1
2

: (59)

Next we decouple fJ into fI using the flat decoupling:

Proposition 7.2. Let U denote the partition

Œ0;M/D

M�1G
mD0

Œm;mC 1/:

Then for p � 2 we have

kf kLp.R/ .p M
1
2
� 1
p

�X
U2U

kfU k
2
Lp.R/

�1
2

for every f W R! C with supp yf � Œ0;M/.

Flat decoupling inequality is well known (see for example Proposition 2.4 in [Demeter et al. 2020])
but we include a proof here for the sake of completeness.

Proof. Fix p � 2. It suffices to prove that

kf kLp.B1/ .M
1
2
� 1
p

�X
U2U

kfU k
2
Lp.WB1;100/

�1
2

for f with supp yf � Œ0;M/. We calculate

kf k
p

Lp.B1/
� kf k

p�2

L1.B1/
kf k2

L2.B1/

.
�X
U

kfU kL1.B1/

�p�2�X
U

kfU k
2
L2.WB1;100/

�
.
�X
U

kfU kLp.WB1;100/

�p�2�X
U

kfU k
2
Lp.WB1;100/

�

.M
p�2
2

�X
U

kfU k
2
Lp.WB1;100/

�p�2
2
�X
U

kfU k
2
Lp.WB1;100/

�
.M

p�2
2

�X
U

kfU k
2
Lp.WB1;100/

�p
2

:

Here we used the locally constant property similar to Proposition 2.3 and local L2 orthogonality similar
to Lemma 3.6. �
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Now we prove the decoupling inequality in Theorem 7.1.

Proof of (58) in Theorem 7.1. Combining (59) with Proposition 7.2 we obtain

kf kLp.R/ ." N "

�X
J2J

kfJ k
2
Lp.R/

�1
2

.N
1
4
� 1
2p
C"

�X
J2J

X
I2IJ

kfIk
2
Lp.R/

�1
2

for f with supp yf ��0. �

7B. An example and sharpness of (58). To prove the sharpness part, we construct a sequence fangNnD1
satisfying (14) (with � D 1) and for which (58) is sharp. We will use the function

g.x/D
4xC .N

1
2 �
p
N � 4x/2

4N

to define the sequence. For nD 0; : : : ; N
8

, let

an D g.n/:

Distinguish the subsequence ank where nk D kN 1=2� k2.

Lemma 7.3. There is an absolute constant N0 > 0 such that for every N �N0, the sequence fang
N=8
nD1

constructed above satisfies property (14) (with � D 1). Furthermore, there is an absolute constant c > 0
so that �

j

N
1
2

W j D 1; : : : ; bcN
1
2 c

�
is a subsequence of fang

N=8
nD1.

Proof. First we verify the presence of the subsequence: Let nk and ank be as above. Calculate directly that

ank D g.nk/D
4nkC .N

1
2 �
p
N � 4nk/

2

4N

D
4.kN

1
2 � k2/C .N

1
2 �

p
N � 4.kN

1
2 � k2//2

4N

D
4.kN

1
2 � k2/C .N

1
2 � .N

1
2 � 2k//2

4N

D
4kN

1
2 � 4k2C 4k2

4N
D

k

N
1
2

:

This calculation holds as long as k �N 1=2=2. Also note that nk D kN 1=2�k2 is increasing as a function
of k as long as k �N 1=2=2, so the nk define a subsequence an0 ; : : : ; anK where K D bN 1=2=2c.

To verify property (14), it suffices to check that for N large enough

a1� a0 2
h
1

2N
;
2

N

i
(60)

and that
.anC1� an/� .an� an�1/ 2

h
1

4N 2
;
4

N 2

i
(61)

whenever 1� n� N
8
�1, since (60) together with (61) will imply a2�a1 2

�
1
4N
; 4
N

�
for N large enough.
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First we check (60). Note that a0 D 0 and

a1 D g.1/D
4C .N

1
2 �
p
N � 4/2

4N
:

Then

a1� a0 D
1

4N

�
4C

16

.N
1
2 C
p
N � 4/2

�
2

�
1

2N
;
2

N

�
if N is large enough.

Next we check (61). First calculate

g.xC 1/�g.x/D
4C .N

1
2 �
p
N � 4x� 4/2� .N

1
2 �
p
N � 4x/2

4N

D
4C 2N

1
2 .
p
N � 4x�

p
N � 4x� 4/� 4

4N

D

p
N � 4x�

p
N � 4x� 4

2N
1
2

D
2

N
1
2 .
p
N � 4xC

p
N � 4x� 4/

:

Use this formula to calculate the difference

.anC1� an/� .an� an�1/

D
2

N
1
2

�
1

p
N � 4nC

p
N � 4n� 4

�
1

p
N � 4nC 4C

p
N � 4n

�
D

2

N
1
2

p
N � 4nC 4�

p
N � 4n� 4

.
p
N � 4nC

p
N � 4n� 4/.

p
N � 4nC 4C

p
N � 4n/

D
16

N
1
2 .
p
N � 4nC

p
N � 4n� 4/.

p
N � 4nC 4C

p
N � 4n/.

p
N � 4nC 4C

p
N � 4n� 4/

:

As long as n� N
8

, and N is sufficiently large, this lies in
�
1
4N
; 4
N

�
and we are done. �

Now we can finish the sharpness part of Theorem 7.1.

Proof of the sharpness part of Theorem 7.1. For N �N0, we take fang
N=8
nD1 to be the sequence constructed

in Lemma 7.3, extended arbitrarily to fangNnD1 so that (14) is satisfied with � D 1. We take f D
P
I fI

to be the function

�N 2=L2.x/

bcN 1=2cX
nD1

eixan ;

where c is the constant in Lemma 7.3, and �N 2=L2.x/ is an L1-normalized Schwartz function whose
Fourier transform is a smooth bump adapted to BL2=N 2.0/. Then we have

kf kLp.R/ &N
1
2

�
N
3
2

L2

�1
p
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since jf .x/j �N 1=2 on PC
N 1=2

.0/\BCN 2=L2.0/. Since jfI j D �N 2=L2 , we have

�X
J2J

X
I2IJ

kfIk
2
Lp.R/

�1
2

�N
1
4

�
N 2

L2

�1
p

:

Therefore (58) is sharp up to N ". �

7C. Some discussions. If we take LD 1 and p D 4 in Theorem 7.1, we get NX
nD1

bne
ianx


L4.B

N2
/

." N
1
2
C 1
8
C"
kbnk`2 : (62)

On the other hand, for the Dirichlet polynomial we have, by unique factorization in Z and local L2

orthogonality, that 2NX
nDNC1

bne
ix logn


L4.B

N2
/

D

 2NX
mDNC1

2NX
nDNC1

bmbne
ix log.nm/

 12
L2.B

N2
/

." N
1
2
C"
kbnk`2 : (63)

Comparing (62) with (63) we see that while we can construct a generalized Dirichlet sequence that
contains an AP with about N 1=2 many terms and common difference N�1=2 so that (62) is sharp for that
sequence, the Dirichlet sequence flogng2NnDNC1 does not contain such an (N�2-approximate) AP and
therefore allows a better estimate (63).

However we notice that the example D0.x/D
PcN 1=2

jD1 eixj=N
1=2

does not exclude the possibility that
Montgomery’s conjecture may hold for generalized Dirichlet polynomials. By Montgomery’s conjecture
for generalized Dirichlet polynomials we mean, for every " > 0, NX

nD1

bne
ixan


Lp.BT /

." T "N
1
2 .N

p
2 CT /

1
p kbnk`1 (64)

for every generalized Dirichlet sequence fangNnD1 with � D 1. Indeed we know jD0.x/j & N 1=2 on
PC
N 1=2

.0/, so

kD0kLp.BT / & T
1
pN

1
2
� 1
2p :

On the right-hand side of (7) we have C"T "N 1=2.Np=2CT /1=p�N 1=2T 1=p . So there is no contradiction
to (64). Note that if we apply Hölder’s inequality kbnk`2 �N

1=2kbnk`1 to (63) then we obtain 2NX
nDNC1

bne
ix logn


L4.B

N2
/

." N 1C"
kbnk`1 ;

which is exactly (7) with pD 4; T DN 2. However although we know (62) is sharp (up to C"N ") for our
example D0.x/, the Hölder step kbnk`2 �N

1=2kbnk`1 is not sharp because D0.x/ has only N 1=2 many
nonzero coefficients.
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On the other hand we may construct a periodic generalized Dirichlet polynomial

f D

NX
nD1

e
it .NCn/

N2 ;

which contradicts (64) for p > 4, T >N 2C"0 with any " > 0. We notice that jf j&N on NC .N 2Z/. So

kf kLp.BT / &N
�
T

N 2

�1
p

DN 1� 2
p T

1
p :

Under the condition p > 4 we have

N 1� 2
p T

1
p &"0 N

"1N
1
2T

1
p

for some "1 > 0 depending on p. Under the condition T > N 2C"0 we have

N 1� 2
p T

1
p >N "2N

for some "2 > 0 depending on p. Therefore when p > 4 and T > N 2C"0 with any "0 > 0, (64) fails for
the generalized Dirichlet polynomial f .

At the end of this section we discuss briefly what makes N 1=2 special. Suppose we consider the
sequence fangN

˛

nD1 for some ˛ 2
�
1
2
; 1
�
, and fangNnD1 is a generalized Dirichlet sequence with � D 1. For

simplicity we will omit constants C in the following discussion. Still we look at .L2=N 2/-neighborhood
of fangN

˛

nD1 with L� 1. For L�N 1=2, the .L2=N 2/-neighborhood is essentially the same as the .1=N /-
neighborhood (as long as L�N ), which is an interval of length about 1. So the induction scheme in this
paper fails to work for L�N 1=2.

Another difficulty is about the “bush” structure of
S
I .I � I / in the frequency space. To illustrate this,

we let L�N 1=2, and define I; PI as before, that is, I is the .L2=N 2/-neighborhood of an L-segment
fang

jL

nD.j�1/LC1
of the sequence fangN

˛

nD1, and PI denotes a fat AP of the form P
CN=L

v�1I
\BCN 2=L2 ,

where vI D a.j�1/LC2� a.j�1/LC1 (see (15)). So now there are N ˛=L many I, vI � 1=N are L=N 2

separated, and the maximal separation of vI is 1=N 2�˛. For ˛ > 1
2

, we no longer have an essentially
linear decaying pattern of the bush

S
I .I �I / if L�N 1�˛ , which is exploited in the proof of Lemma 5.3.

To be precise, we consider the function
P
I 1I�I .t/, which counts the number of overlap of the sets

I � I at t . If ˛ � 1
2

then we can verify thatˇ̌̌̌X
I

1I�I .t/

ˇ̌̌̌
.
N=L

jt j
when

1

N
. jxj.

L

N
: (65)

See Figure 2 for a rough graph of the function
P
I 1I�I .t/. However if ˛ > 1

2
then we no longer have

(65). This is because 1
2

is the largest value for ˛ such that for every L�N 1=2, the k-th intervals in all
I � I are within about N�1 distance from each other for every 1� k � L. For comparison, we note that
for R�1=2�R�1 caps � that tile the R�1-neighborhood of the truncated parabola, the bush f� � �g has a
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y D
P
i 1I�I .x/

y

x
L=N

Figure 2. The overlap number of the I � I has a linear decay pattern provided
L=N 2�˛ . N�1. This condition is guaranteed as long as ˛ � 1

2
. Controlling the

overlap number of the I � I outside of a certain neighborhood of the origin is a central
step in Lemma 5.3.

similar linear decay pattern:ˇ̌̌̌X
�

1��� .x/

ˇ̌̌̌
.
R�

1
2

jxj
when R�1 . jxj.R�

1
2 :

On the physical side, how PI interact also becomes more complicated when ˛ > 2. One important
property we used in the ˛ D 1

2
case is that the maximal separation of v�1I (which is about N 1=2) is less

than the thickness of PI (which is about N=L) for every 1�L�N 1=2. However for ˛ > 1
2

, the maximal
separation is about N 1�˛ which is greater than the thickness N=L for L�N 1�˛. In particular this makes
the pattern of the intersection PI \PJ more complicated and the notion of transversal less clear.

8. Small-cap-type decoupling

In this section we prove Theorem 1.3, which is about small-cap-type decoupling inequalities in the spirit
of [Demeter et al. 2020].

First we restate Theorem 1.3 but with the more general definition of generalized Dirichlet sequence. Let
fang

N 1=2

nD1 be a short generalized Dirichlet sequence with parameter � 2 .0; 1� as defined in Definition 3.1.
Let L;L1 be two integers such that 1 � L1 � L � N 1=2. Denote by � the �L2=N 2-neighborhood of
fang

N 1=2

nD1 . We let fJ gJ2J D fJkg
bN 1=2=L1c

kD0
be the partition of � into unions of L1 many consecutive

intervals, that is,

Jk D

L1[
iD1

B�L2=N 2.akL1Ci /:

Let fI gI2I be the partition of � into unions of L many consecutive intervals, which we called the
canonical partition.

A more general version of Theorem 1.3 is the following, which we prove in the rest of this section.
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Theorem 8.1. Let fJ gJ2J be defined as in the above paragraph. Suppose p � 4, 1
q
C

3
p
� 1. If either of

the two conditions

(a) L1 D 1,

(b) p D q,

is satisfied, then, for every " > 0,X
J2J

fJ


Lp.R/

." N " logC .��1C 1/
�
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

C

�
N
1
2

L1

�1
2
� 1
q
��X

J2J

kfJ k
q

Lp.R/

�1
q

(66)

for all functions fJ W R! C with supp yfJ � J.

As a corollary we have a more general version of Corollary 1.4.

Corollary 8.2. Let fangN
1=2

nD1 be a short generalized Dirichlet sequence with parameter � 2 .0; 1�. Suppose
p � 4, 1

q
C

3
p
� 1, and N��1 � T �N 2��1. We have, for every " > 0,N

1=2X
nD1

bne
itan


Lp.BT /

." N " logC .��1C 1/.N
1
2
.1C 1

p
� 1
q
/��

1
p CT

1
pN

1
4
� 1
2q /kbnk`q (67)

for every BT and every fbngN
1=2

nD1 � C,

To prove results of the form (66), we may use the small cap decoupling method for P1 developed
in [Demeter et al. 2020], which is based on refined decoupling for the canonical partition, refined flat
decoupling and an incidence estimate for tubes with spacing conditions. We have three analogous results
in the short generalized Dirichlet sequence setting. Theorem 4.4 is the analogy of the refined canonical
cap decoupling for P1. Now we state and prove the other two.

8A. An incidence estimate for fat APs. We start with the incidence estimate. First we introduce some
notation. Suppose P;P 0 are fat APs such that P D PI .y/ and P 0 D PI 0.y0/ for some I; I 0 2 I. We
say P;P 0 are parallel if I D I 0. For a collection P D fP g of fat APs, we say x 2 R is an r-rich point if
r many P contain it.

Proposition 8.3. Let 1 � L1 � L � N 1=2 and let fJ gJ2J , fI gI2I be defined as in the beginning of
Section 8. Suppose we have a collection of fat AP P D fP g inside a fixed P.L/, where each P D PI for
some I 2 I. Assume for every J 2 J and every PJ � P.L/, PJ contains either M or 0 parallel P 2 P .
Denote by Qr the set of r-rich points of P . Suppose Qr ¤∅. Then one of the two cases below happens:

(1) There exists a dyadic s 2 Œ1;minfL;N 1=2=Lg� and Ms 2 N such that

jQr j/
Ms

sr2
.#P /jP j; (68)

r /
MsN

1=2

s2L
; (69)

Ms . sM max
�
1; s

L1

L

�
: (70)
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(2) We have
jQr j � jP.L/j; (71)

r . .#P /
jP j

jP.L/j
: (72)

Here #P denotes the cardinality of P .

Proof. For each dyadic 1� s �minfL;N 1=2=Lg, we let �s denote a smooth bump with height 1 adapted
to the annulus j�j� .L=s/v in the frequency space, and let �0 denote a smooth bump with height 1 adapted
to PC�L

2=N 2

v1 .0/\BCL2=N 3=2.0/ (which degenerates to BC�L2=N 2.0/ when L�N 1=4) such that

�0C
X

1�s�minfL;N 1=2=Lg;
sW dyadic

�s D 1 on
[
I

.I � I /:

For each P 2 P we let vP .x/ be a positive smooth function (with height 1) adapted to P in the physical
space with frequency support in C.I � I /, where P D PI . If we define g D

P
P vP , then we can write

g D g � {�0C
X

1�s�minfL;N 1=2=Lg

g � {�s:

Fix s 2 Œ1;minfL;N 1=2=Lg�. There exists a collection of fat APs Is consisting of Is DP
C�sL2=N 2

vIs
.0/\

BCL=N .0/ with the properties that vIs �N
�1 and vIs are � s�L=N 2 separated such that for every I 2 I,

I � I is contained in one and only one Is 2 Is . In fact we may let vIs D vI for any I with .I � I /� Is .
The cardinality of Is is N 1=2=.sL/. For Is 2 Is we let PIs be the tiling of R by fat APs of the form
P
�CsN=L

v�1Is
\BCN 2=.L2�/. For every P D PI 2 P there exists a unique Is 2 Is and Ps 2 PIs such that

I � I � Is and P � Ps . For every 1 �M . s2, we define Ps;M be the subcollection of P consisting
of P such that Ps contains �M many P 0 2 P . For 1� s �minfL;N 1=2=Lg let

gs;M D
X

P2Ps;M

vP � {�s:

By the pigeonhole principle, for every x 2Qr there either exist an s and Ms such that g.x// jgs;Ms .x/j
or g.x/ / jg0.x/j. Again by the pigeonhole principle either we can find s;Ms such that, for x in a
subset E of Qr with measure ' jQr j,

g.x// jgs;Ms .x/j

or, for x in a subset E of Qr with measure ' jQr j,

g.x// jg0.x/j:
We consider these two cases separately.

Case 1: Suppose g.x// jgs;Ms .x/j for x in a subset E of Qr with measure ' jQr j. We write

gs;Ms D
X
Is

X
PIs

X
P�PIs ; P2Ps;Ms

vP � {�s DW
X
Is

X
PIs

gPIs :

Here the sum over PIs is over PIs 2 PIs such that gPIs is nonzero.
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We note that
P
PIs

gPIs with Is varying are almost orthogonal (meaning that the Fourier support of
them has O.1/-overlap). This is because supp ygPIs �

�S
I�Is

.I � I /
�
\
˚
� W j�j � Lv

s

	
, and for every

distinct Is; I 0s 2 Is , and every I; I 0 2 I with I � Is; I 0 � I 0s , the distance dI;I 0 between the L
s

-th terms
in I and I 0 satisfies

�L2

N 2
D
s�L

N 2

L

s
. dI;I 0 .

N
1
2 �

N 2

L

s
.
1

N
:

Therefore supp
P̂
PIs
gPIs are O.1/-overlapping.

Hence

jQr jr
2 /

Z
E

g2 /
Z

R

jgs;Ms j
2 .

X
Is

Z
R

ˇ̌̌̌X
PIs

gPIs

ˇ̌̌̌2
:

We note that for P � PIs ,

jvP � {�sj.
1

s
WPIs ;100;

so Z
R

ˇ̌̌̌X
PIs

gPIs

ˇ̌̌̌2
.
Z

R

�X
PIs

X
P�PIs ; P2Ps;Ms

1

s
WPIs ;100

�2
.
X
PIs

M 2
s

s2
jPIs j:

Hence

jQr jr
2 /

X
Is

X
PIs

jPIs j

�
Ms

s

�2
:

Since jPIs j=s � jP j and
P
Is

P
PIs

Ms � .#P /, we obtain

r2jQr j/ .#P /jP j
Ms

s
;

which is (68).
Now we show (69). We choose x 2E. Then

r . g.x// jgs;Ms .x/j �
X
Is

X
PIs

jgPs .x/j. jIsj
Ms

s
.
N
1
2

sL

Ms

s
:

Finally we prove (70). When s � L=L1, every PIs is contained in a single PJ and therefore can contain
.M parallel P 2 P . For every PIs , there are . s many I 2 I such that there could exist PI such that
PI � PIs , so we conclude PIs contain . sM many P 2 P . When s � L=L1, every PIs is contained in
at most sL1=L many PJ and therefore can contain . sMsL1=L many P 2 P . Hence we obtain (70).

Case 2: Suppose g.x// jg0.x/j for x in a subset of Qr with measure ' jQr j. Inequality (71) is trivial
since Qr � P.L/. To show (72) we choose x 2E. Then

r . g.x// jg0.x/j. .#P /
jP j

jP.L/j
;

where the last inequality is because

jg0.x/j D jg � {�0.x/j � kgkL1k{�0kL1 . .#P /jP j
1

jP.L/j
D .#P /

jP j

jP.L/j
: �
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8B. Refined flat decoupling for fat APs. Next we have the following refined flat decoupling inequality
for fat APs.

Proposition 8.4. Suppose 2� q � p, and let fJ gJ2J , fI gI2I be defined as in the beginning of Section 8.
Fix I 2 I. Write fI D

P
PI2PI fI;PI for the wave packet decomposition of fI . Suppose that zPI � PI

is a collection of PI for which fI;PI are nonzero, kfI;PI kL1.R/ are roughly constant, and for every
J � I, and every PJ (in a tiling of R), PJ contains either �M or 0 wave packets fI;PI (in the sense
that PI � PJ ). Then X

PI2zPI

fI;PI


Lp.R/

.M
1
p
� 1
2

�
L

L1

�1� 1
p
� 1
q
�X
J�I

kfJ k
q

Lp.R/

�1
q

: (73)

Proof. Fix a PJ that contains �M many wave packets fI;PI . We first show X
PI2zPI

fI;PI


Lp.PJ /

.M
1
p
� 1
2

�
L

L1

�1� 1
p
� 1
q
�X
J�I

kfJ k
q

Lp.WPJ ;100/

�1
q

: (74)

Assume kfI;PI kL1.R/ �H for every nonzero fI;PI , PI 2 zPI . By assumption we have X
PI2zPI

fI;PI


Lp.PJ /

.H.M jPI j/
1
p :

On the other hand by local L2 orthogonality we have

H.M jPI j/
1
2 .

 X
PI2zPI

fI;PI


L2.PJ /

� kfIkL2.PJ / .
�X
J�I

kfJ k
2
L2.WPJ ;100/

�1
2

(where we used that
ˇ̌P

PI2zPI fI;PI
ˇ̌
� jfI j), and by Hölder’s inequality the right-hand side is bounded by�

L

L1

�1
2
� 1
q

jPJ j
1
2
� 1
p

�X
J�I

kfJ k
q

Lp.WPJ ;100/

�1
q

:

Noting that jPI j=jPJ j D L1=L, we conclude X
PI2zPI

fI;PI


L2.PJ /

.H.M jPI j/
1
2 .M jPI j/

1
p
� 1
2

.M
1
p
� 1
2

�
L

L1

�1� 1
p
� 1
q
�X
J�I

kfJ k
q

Lp.WPJ ;100/

�1
q

:

So (74) holds. Since q � p, (73) follows from (74) by raising (74) to the p-th power, summing over PJ
in a tiling of R, and applying Minkowski’s inequality (see Proposition 4.2). �

8C. Proof of Theorem 8.1. Now we are ready to prove Theorem 8.1. We first show a bilinear version
of Theorem 8.1 and then conclude Theorem 8.1 by a broad-narrow argument. Still let fJ gJ2J be
defined as in the beginning of Section 8. We say two subcollections of J , J1 and J2, are transversal if
d.J1; J2/&N�1=2 for every J1 2 J1; J2 2 J2.
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Theorem 8.5. Suppose 4� q � p � 6, 1
q
C

3
p
� 1. If either of the two conditions

(a) L1=2�1=q1 � L1�3=p�1=q ,

(b) p D q,

is satisfied, then, for every " > 0, Y
i2f1;2g

ˇ̌̌̌ X
J2Ji

fJ

ˇ̌̌̌ 1
2

Lp.R/

." N " logC .��1C 1/
�
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

C

�
N
1
2

L1

�1
2
� 1
q
� Y
i2f1;2g

�X
J2Ji

kfJ k
q

Lp.R/

�1
2q

(75)

for all transversal subcollections J1;J2 of J , and all functions fJ W R! C with supp yfJ � J.

Proof. By a local-to-global argument similar to Proposition 4.2, to show (75), it suffices to show, for a
sufficiently large k and for every ball BN 2=.�L2/, Y
i2f1;2g

ˇ̌̌̌ X
J2Ji

fJ

ˇ̌̌̌ 1
2

Lp.B

N2=.�L2/
/

." N " logC .��1C 1/
�
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

C

�
N
1
2

L1

�1
2
� 1
q
� Y
i2f1;2g

�X
J2Ji

kfJ k
q

Lp.WB
N2=.�L2/

;k/

�1
2q

: (76)

We will assume that fJ has been replaced by fJ B
N2=.�L2/

, where  B
N2=.�L2/

is a Schwartz func-
tion satisfying j B

N2=.�L2/
j � 1 on BN 2=.�L2/,  BN2=.�L2/ decays rapidly away from BN 2=.�L2/, and

supp y B
N2=.�L2/

� .��L2=N 2; �L2=N 2/. Then fJ B
N2=.�L2/

has Fourier support which is contained
in a .�L2=N 2/-neighborhood of J. The arguments which follow apply equally well to the �L2=N 2

neighborhoods of J (which are contained in 2J ) as they do to J. Note also that kfJ B
N2=.�L2/

kLp.R/.k
kfJ kLp.WB

N2=.�L2/
;k/, so abusing notation by letting fJ mean fJ B

N2=.�L2/
from here on in the proof,

the inequality Y
i2f1;2g

ˇ̌̌̌ X
J2Ji

fJ

ˇ̌̌̌ 1
2

Lp.B

N2=.�L2/
/

." N " logC .��1C 1/
�
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

C

�
N
1
2

L1

�1
2
� 1
q
� Y
i2f1;2g

�X
J2Ji

kfJ k
q

Lp.R/

�1
2q

(77)

implies (76). Now we fix a BN 2=�L2 and prove (77). Write F1 D
P
J2J1 fJ and F2 D

P
J2J2 fJ . For

i 2 f1; 2g we write Fi D
P
P2Pi Fi;P for the wave packet decomposition with respect to fI gI2I . So

Fi D
X
I2I

Fi;I D
X
I2I

X
PI

Fi;I;PI DW
X
P2Pi

Fi;P :

Write I1 D fI 2 I W I � [J2J1J g and I2 D fI 2 I W I � [J2J2J g. Let F D F1CF2. By a dyadic
pigeonholing argument and rescaling which we detail in Proposition 8.6 directly following this proof, we
may assume that, for every nonzero Fi;P , kFi;P kL1 � 1. We assume Pi contains only nonzero Fi;P .
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By a further dyadic pigeonholing argument we may assume that for every PJ (in a tiling of R), PJ
either contains Mi or 0 many wave packets Fi;I;PI , where J � I, for i 2 f1; 2g. Lastly, by one more
dyadic pigeonholing argument we may assume that, for each i 2 f1; 2g, kFIkLp.R/ are comparable for
nonzero FI with I 2 Ii . For dyadic 1� r1; r2 �N 1=2=L we let Qr1;r2 denote the collection of P.L0/ (in
the tiling of P.L/) that intersect� r1 many P 2P1, and� r2 many P 2P2. Recall that L0D .N 1=2L/1=2.
From the refined decoupling inequality (Theorem 4.4) we have

k.F1F2/
1
2 kL6.Qr1;r2 /

�kF1k
1
2

L6.Qr1;r2 /
kF2k

1
2

L6.Qr1;r2 /
."N " logC .��1C1/r

1
6

1 r
1
6

2

Y
i2f1;2g

�X
I2Ii

Z
jFI j

2

� 1
12

:

On the other hand from bilinear restriction (Proposition 3.5) we have for every P.L0/�Qr1;r2

k.F1F2/
1
2 kL4.P.L0// ." N "r

1
4

1 r
1
4

2 jP.L
0/j

1
4

and thus

k.F1F2/
1
2 kL4.Qr1;r2 /

." N "r
1
4

1 r
1
4

2 jQr1;r2 j
1
4 :

Therefore by the interpolation inequality we obtain

k.F1F2/
1
2 kLp.Qr1;r2 /

." N " logC .��1C 1/r
1
p

1 r
1
p

2 jQr1;r2 j
3
p
� 1
2

Y
i2f1;2g

�X
I2Ii

kFIk
2
L2

�1
4
� 1
p

: (78)

We assumed each nonzero wave packet Fi;P satisfies kFi;P kL1 � 1, soX
I2Ii

kFIk
2
L2
� .#Pi /jP j �

X
I2Ii

kFIk
p
Lp ;

where #Pi denotes the total number of nonzero wave packets in Fi , that is, jPi j. Hence we may rewrite
(78) as

k.F1F2/
1
2 kLp.Qr1;r2 /

." N " logC .��1C 1/jQr1;r2 j
3
p
� 1
2

Y
i2f1;2g

�
r
2
p

i

�X
I2Ii

kFIk
q
Lp

�1
q

..#Pi /jP j/
1
2
� 3
p .#Ii /

1
p
� 1
q

�1
2

;

where #Ii denotes the total number of I 2 Ii such that FI is nonzero. By Proposition 8.4 we have (note
that in (73) the left-hand side involves pigeonholed wave packets while the right-hand side includes all
wave packets) X

I2Ii

kFIk
q
Lp .M

q
p
�
q
2

i

�
L

L1

�q� q
p
�1�X

J2Ji

kfJ k
q
Lp

�
: (79)

Therefore we conclude

k.F1F2/
1
2 kLp.Qr1;r2 /

." N " logC .��1C 1/jQr1;r2 j
3
p
� 1
2

�

Y
i2f1;2g

�
r
2
p

i ..#Pi /jP j/
1
2
� 3
p .#Ii /

1
p
� 1
qM

1
p
� 1
2

i

�
L

L1

�1� 1
p
� 1
q
�X
J2Ji

kfJ k
q
Lp

�1
q
�1
2

: (80)
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So (75) follows if we may show for i 2 f1; 2g,

jQr1;r2 j
3
p
� 1
2 r

2
p

i ..#Pi /jP j/
1
2
� 3
p .#Ii /

1
p
� 1
qM

1
p
� 1
2

i

�
L

L1

�1� 1
p
� 1
q

/
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

C

�
N
1
2

L1

�1
2
� 1
q

: (81)

We show (81) using Proposition 8.3. Fix i 2 f1; 2g. We split the proof into two cases depending on which
case happens in Proposition 8.3 when applied to fP gP2Pi with r D ri .

Case 1: (1) in Proposition 8.3 happens. Let s;Ms be the s;Ms given in case (1) of Proposition 8.3. By
(68) we have

LHS of (81)/ r
1� 4

p

i s
1
2
� 3
pM

3
p
� 1
2

s .#Ii /
1
p
� 1
qM

1
p
� 1
2

i

�
L

L1

�1� 1
p
� 1
q

:

Case 1.1: s � L=L1. Then (70) reads Ms . sMi . Note that we have

.#I /& ri

since we have assumed kFi;P kL1 � 1. Therefore by (69) and (70) we have

LHS of (81)/
�
MsN

1
2

s2L

�1� 3
p
� 1
q

s
1
2
� 3
pM

3
p
� 1
2

s M
1
p
� 1
2

i

�
L

L1

�1� 1
p
� 1
q

DM
1
2
� 1
q

s

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1� 1
p
� 1
q

s�
3
2
C 3
p
C 2
qM

1
p
� 1
2

i

. .sMi /
1
2
� 1
q

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1� 1
p
� 1
q

s�
3
2
C 3
p
C 2
qM

1
p
� 1
2

i

DM
1
p
� 1
q

i s�1C
3
p
C 1
q

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1� 1
p
� 1
q

:

Since p � q, 1
q
C

3
p
� 1, and s;Mi � 1, we conclude

LHS of (81)/
�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1� 1
p
� 1
q

D
N

1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

:

Case 1.2: s � L=L1. This is the case where we see the two conditions in Theorem 8.5. Now (70) reads
Ms . s2MiL1=L. By .#I /& ri and (69) we have

LHS of (81)/ r
1� 3

p
� 1
p

i s
1
2
� 3
pM

3
p
� 1
2

s M
1
p
� 1
2

i

�
L

L1

�1� 1
p
� 1
q

.
�
Ms

s2
N
1
2

L

�1� 3
p
� 1
q

s
1
2
� 3
pM

3
p
� 1
2

s M
1
p
� 1
2

i

�
L

L1

�1� 1
p
� 1
q

DM
1
2
� 1
q

s

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1� 1
p
� 1
q

s�
3
2
C 3
p
C 2
qM

1
p
� 1
2

i :
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Plugging in (70) we obtain

LHS of (81)/
�
s2Mi

L1

L

�1
2
� 1
q
�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1� 1
p
� 1
q

s�
3
2
C 3
p
C 2
qM

1
p
� 1
2

i

DM
1
p
� 1
q

i s�
1
2
C 3
p

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1
2
� 1
p

:

Since Mi � 1 and q � p, we conclude

LHS of (81)/ s�
1
2
C 3
p

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1
2
� 1
p

:

If we use s � L, then

s�
1
2
C 3
p

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1
2
� 1
p

� L�
1
2
C 3
p

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1
2
� 1
p

:

We may then verify that

L�
1
2
C 3
p

�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1
2
� 1
p

�
N

1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

if and only if

L
1
2
� 1
q

1 � L1�
3
p
� 1
q :

On the other hand if we use s �N 1=2=L, then

LHS of (81)/
�
N
1
2

L

�� 1
2
C 3
p
�
N
1
2

L

�1� 3
p
� 1
q
�
L

L1

�1
2
� 1
p

D

�
N
1
2

L

�1
2
� 1
q
�
L

L1

�1
2
� 1
p

:

The last line equals �
N
1
2

L

�1
2
� 1
p
�
L

L1

�1
2
� 1
p

if p D q. In conclusion we have shown (81) holds in this case if either condition (a) or (b) is satisfied.

Case 2: (2) in Proposition 8.3 happens. By (71), (72) we have

LHS of (81)/ jP.L/j
3
p
� 1
2

�
.#Pi /jP j
jP.L/j

�2
p

.#Ii /
1
p
� 1
qM

1
p
� 1
2

i

�
L

L1

�1� 1
p
� 1
q

..#Pi /jP j/
1
2
� 3
p : (82)

Note that we have

.#Pi /. .#Ii /Mi
jP.L/j

jPJ j
� .#Ii /Mi

jP.L/j

jP j

L1

L

since the right-hand side is the maximal number of P one can fit into a P.L/ under the assumption that
each PJ can contain .Mi many P 2 Pi . Substituting the above for Mi in (82) and simplifying the
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algebra we obtain

LHS of (81)/ .#Ii /
1
2
� 1
q

�
L

L1

�1
2
� 1
q

:

Since #Ii �N 1=2=L and q � 2, we conclude

LHS of (81)/
�
N
1
2

L1

�1
2
� 1
q

:

Hence (81) holds in this case.
In conclusion we have shown (81) and therefore (77) and (75). �

The following proposition shows that it was justified in the proof of Theorem 8.5 to treat functions
zFi D

P
P2Pi Fi;P whose wave packets with respect to fI gI2I satisfied certain extra assumptions. Here,

each wave packet Fi;P equals �PIfI for some I 2 I and some PI , as in the definition of wave packet
decomposition from Section 5B, except we assume the extra condition that �PI decays at a rate of 103"�2

away from PI .
Write Ii D

˚
I 2 I W I �

S
J2Ji J

	
. For each I 2 Ii , write

fI D
X
PI2PI

fI;PI ;

where fI;PI D �PIfI and PI denotes the collection of translates of PI which tile R, from the definition
of wave packet decomposition. Fix collections PJ of translates of PJ which tile R and with the property
that PJ \PI is either PI or ∅ whenever J � I. Note that the set PJ does not vary for J � I.

Proposition 8.6 (pigeonholing of the wave packets). Assume the hypotheses of Theorem 8.5. There exist
subsets zIi � Ii and zPI � PI as well as integers Mi , Hi with the following properties: Y
i2f1;2g

jFi j
1
2


Lp.B

N2=.�L2/
/

. log.��1C1/.logN/2
 Y
i2f1;2g

j zFi j
1
2


Lp.B

N2=.�L2/
/

CN�50.RHS of (77)/;

where zFi D
P
I2zIi

P
PI2zPI fI;PI ,

#fPI 2 zPI W PI � PJ g �Mi or D 0 for all PJ 2 PJ ; J � I 2 zIi ; (83)

#zPI � #zPI 0 for all I; I 0 2 zIi ; (84)

kfI;PI kL1.R/ �Hi for all I 2 zIi and PI 2 zPI : (85)

It follows that, for zFI D
P
PI2zPI fI;PI with I 2 zIi , k zFIk

p

Lp.R/
is within a factor of C"N " of

H
p
i #fPI 2 zPigjPI jCN�500 maxJ2Ji kfJ k

p

Lp.R/
.

The collection Pi from the proof of Theorem 8.5 is the union of the zPI , where I 2 zIi .

Proof. First we will show that kjF1F2j1=2kLp.B
N2=.�L2/

/ . kjF1 zF2j1=2kLp.B
N2=.�L2/

/ plus the remainder
term. The argument showing kjF1 zF2j1=2kLp.B

N2=.�L2/
/ . kj zF1 zF2j1=2kLp.B

N2=.�L2/
/ plus the remainder
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term is analogous, so we omit it. Split F2 into

F2 D
X
I2I2

X
PI2P cI

fI;PI C
X
I2I2

X
PI2P

f
I

fI;PI ; (86)

where the close set is

P cI WD fPI 2 PI W PI \N
10BN 2=.�L2/ 6D∅g

and the far set is

PfI WD fPI 2 PI W PI \N
10BN 2=.�L2/ D∅g:

Using Hölder’s inequality, Cauchy–Schwarz, and Minkowski’s inequality with q � p, we haveˇ̌̌̌F1 X
I2I2

X
PI2P

f
I

fI;PI

ˇ̌̌̌ 1
2

Lp.B

N2=.�L2/
/

.
�
N

L1

�1� 1
q
ˇ̌̌̌ X
J12J1

jfJ1 j
q
X
I2I2

X
J2�I

ˇ̌̌̌ X
PI2P

f
I

�PIfJ2

ˇ̌̌̌q ˇ̌̌̌ 1
2q

Lp.B

N2=.�L2/
/

�

�
N

L1

�1� 1
q
ˇ̌̌̌ X
J12J1

jfJ1 j
q

ˇ̌̌̌ 1
q
 12
Lp.B

N2=.�L2/
/

ˇ̌̌̌X
I2I2

X
J2�I

ˇ̌̌̌ X
PI2P

f
I

�PIfJ2

ˇ̌̌̌q ˇ̌̌̌ 1
q
 12
Lp.B

N2=.�L2/
/

�

�
N

L1

�1� 1
q
� X
J12J1

kfJ1k
q

Lp.B
N2=.�L2/

/

� 1
2q
�X
I2I2

X
J2�I

 X
PI2P

f
I

�PIfJ2

q
Lp.B

N2=.�L2/
/

� 1
2q

�

�
N

L1

�1� 1
q
� X
J12J1

kfJ1k
q

Lp.B
N2=.�L2/

/

� 1
2q

max
I2I2

 X
PI2P

f
I

�PI

 12
L1.B

N2=.�L2/
/

� X
J22J2

kfJ2k
q

Lp.B
N2=.�L2/

/

� 1
2q

�
1

N 100

Y
i2f1;2g

� X
Ji2Ji

kfJik
q

Lp.B
N2=.�L2/

/

� 1
2q

:

This takes care of the far portion of F2.
For each I 2 I2, the close set has cardinality #P cI �N

11. Let

H2 D max
I2I2

max
PI2P cI

kfI;PI kL1.R/: (87)

By Proposition 2.3 and Hölder’s inequality,

H2 � max
I2I2
kfIkL1.R/ .N

� X
J22J2

kfJ2k
q

Lp.R/

�1
q

: (88)

Split the close part of F2 intoX
I2I2

X
PI2P cI

fI;PI D
X
I2I2

X
�N�10

3
���1

X
PI2PcI;�

fI;PI C
X
I2I2

X
PI2PcI;s

fI;PI ; (89)
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where � is a dyadic number in the range Œ�N�10
3

; 1�,

PcI;� WD
n
PI 2 P cI W kfI;PI kL1.R/ 2

�
�H2
2
; �H2

io
;

and

PcI;s WD
n
PI 2 P cI W kfI;PI kL1.R/ �

�

2
N�10

3

H2

o
:

Handle the small term from (89) byˇ̌̌̌F1 X
I2I2

X
PI2PcI;s

fI;PI

ˇ̌̌̌ 1
2

Lp.B

N2=.�L2/
/

�

�
N 2

L1L

�1
2
� 1
2q
ˇ̌̌̌ X
J12J1

jfJ1 j
q
X
I2I2

ˇ̌̌̌ X
PI2PcI;s

fI;PI

ˇ̌̌̌q ˇ̌̌̌ 1
2q

Lp.B

N2=.�L2/
/

�

�
N 2

L1L

�1
2
� 1
2q
� X
J12J1

kfJ1k
q

Lp.B
N2=.�L2/

/

� 1
2q

�
�
#I

1
q

2 max
I2I2

#P cI max
PI2PcI;s

kfI;PI kL1.BN2=.�L2//
jBN 2=.�L2/j

2
p
� 1
2

�

� X
J12J1

kfJ1k
q

Lp.B
N2=.�L2/

/

� 1
2q
��
N

L

�1
q

N 11�N�10
3

H2jBN 2=.�L2/j
2
p

�1
2

�N�150
� X
J12J1

kfJ1k
q

Lp.B
N2=.�L2/

/

� 1
2q

H
1
2

2 .N
�100

Y
i2f1;2g

�X
J2Ji

kfJ k
q

Lp.R/

� 1
2q

:

Decompose the remaining term from (89) using the fact that for J � I 2 I2, PJ 2 PJ , the number
#fPI 2 PcI;� W PI � PJ g is in f0; : : : ; L=L1g (and does not depend on the specific J � I ), which allows
us to write X

�N�10
3
���1

X
I2I2

X
PI2PcI;�

fI;PI D
X

�N�10
3
���1

X
1�2k�L=L1

X
I2I2

X
PI2PcI;�;k

fI;PI ; (90)

where, for J � I,
PkJ D fPJ 2 PJ W #fPI 2 P

c
I;� W PI � PJ g � 2

k
g;

PcI;�;k D
[

PJ2PkJ

fPI 2 PcI;� W PI � PJ g:

Finally, note that the number of PJ 2 PJ which intersect N 10BN 2=.�L2/ is bounded by N 10L1 �N
11.

Further decompose the right-hand side from (90) asX
�N�10

3
���1

X
1�2k�L=L1

X
1�2j�N 11

X
I2Ik;j

2;�

X
PI2PcI;�;k

fI;PI ; (91)

where, for J � I, Ik;j
2;�
D fI 2 I2 W #PkJ � 2

j g.



2456 YUQIU FU, LARRY GUTH AND DOMINIQUE MALDAGUE

Because 2k , 2j , and � are dyadic numbers, by the pigeonhole principle, there is a choice of .k; j; �/
so thatˇ̌̌̌F1 X

�N�10
3
���1

X
1�2k�L=L1

X
1�2j�N 11

X
I2I2;k;j

X
PI2PcI;�;k

fI;PI

ˇ̌̌̌ 1
2

Lp.B

N2=.�L2/
/

. log.��1C 1/.logN/2
ˇ̌̌̌F1 X

I2Ik;j
2;�

X
PI2PcI;�;k

fI;PI

ˇ̌̌̌ 1
2

Lp.B

N2=.�L2/
/

:

Let zI2 D Ik;j
2;�

and for each I 2 zI2, let zPI D Pc
I;�;k

. It follows from Proposition 2.3 and properties of
weight functions �PI and WPI DWPI ;600 that, for each I 2 zI2,

k zFIk
p

Lp.R/
D

X
P 0I2PI

 X
PI2zPI

fI;PI

p
Lp.P 0I /

�

X
P 0I2PI

Z
P 0I

ˇ̌̌̌ X
PI2zPI

�PI

ˇ̌̌̌p
kfIk

p

L1.P 0I /
�

X
P 0I2PI

jP 0I j max
PI2zPI

�PI .P
0
I /
p
kfIk

p

L1.P 0I /

�

X
P 0I2PI

jP 0I j
X
PI2zPI

�PI .P
0
I /
p
kfIk

p

L1.P 0I /
.

X
P 0I2PI

X
PI2zPI

jP 0I jk�PIfIk
p

L1.P 0I /

.
X
PI2zPI

X
P 0I2PI

Z
j�PIfI j

pWP 0I
�

X
PI2zPI

Z
j�PIfI j

p:

The assumption that �PI decays at order 103"�2 allows us to write, for each I 2 zI2 and PI 2 zPI ,ˇ̌̌̌Z
j�PIfI j

p
�

Z
N "PI

j�PIfI j
p

ˇ̌̌̌
� C"N

�1000
kfIk

p

Lp.R/

� C"N
�500 max

J�I
kfJ k

p

Lp.R/

and Z
N "PI

j�PIfI j
p
� C"N

"
jPI jB

p
2 . C"N

"

Z
jfI;PI j

p;

which proves the final property about kfI;PI kLp.R/ from the proposition. �

Proof of Theorem 8.1 using Theorem 8.5. The proof resembles Section 5.1 in [Demeter et al. 2020]. First
we fix .p; q/ with 4� p � 6, and either 1

q
C
3
p
D 1 or pD q. Note that under such assumption we always

have p � q and q � 2. Recall that � is the .�L2=N 2/-neighborhood of fangN
1=2

nD1 , which is a union of
N 1=2 many intervals of length C�L2=N 2. We let � denote the union of l many consecutive intervals
in �, and write `.�/D l , so in this notation `.I /D L and `.J /D L1. Let F D

P
J2J fJ , and denote

by F� the Fourier projection of F to � , that is, Q.1� yF/. Fix K > 1. We have the inequality

jF.x/j �
X

`.�/DN
1=2

K

jF� .x/j � C max
`.�/DN

1=2

K

jF� .x/jCK
C max
`.�1/D`.�2/D

N1=2

K

d.�1;�2/&
1

KN1=2

jF�1F�2 j
1
2 :
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Iterating this (for the first term) we obtain

kF k
p

Lp.R/
.Cm

X
`.�/DL

kF�k
p

Lp.R/
CCmKC

X
lDN

1=2

Ka
for a2Z

KL�l�N 1=2

X
� W`.�/Dl

X
�1;�2��

`.�1/D`.�2/DK
�1l

d.�1;�2/&K
�1l

k.F�1F�2/
1
2 k
p

Lp.R/
:

(92)
Here m satisfies N 1=2=Km D L.

By Proposition 7.2 and Hölder’s inequality we haveX
`.�/DL

kF�k
p

Lp.R/
.

X
`.�/DL

�
L

L1

�p
2
�1�X

J��

kFJ k
2
Lp.R/

�p
2

�

X
`.�/DL

�
L

L1

�p�1�p
q
�X
J��

kFJ k
q

Lp.R/

�p
q

:

Since 1
q
C

3
p
� 1 and L�N 1=2, we have

N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

�
L1�

1
q
� 1
p

L
1� 1

p
� 1
q

1

:

Therefore,X
`.�/DL

kF�k
p

Lp.R/
.
�
L

L1

�p�1�p
q
�X
J2J

kFJ k
q

Lp.R/

�p
q

�

�
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

�p�X
J2J

kFJ k
q

Lp.R/

�p
q

: (93)

Now we estimate the second term on the right-hand side of (92). Let s DN 1=2=l . Then using the change
of variable x 7! s2x as in the proof of Proposition 6.3, and by Theorem 8.5 we have

k.F�1F�2/
1
2 kLp.R/ ." N " logC . Q��1C 1/

�
zN
1
2
� 1
2q
� 3
2p zL

2
p

zL
1� 1

p
� 1
q

1

C

�
zN
1
2

zL1

�1
2
� 1
q
��X

J��

kfJ k
q

Lp.R/

�1
q

;

where zN DN=s2, Q� D �=s2, zL1 D L1, zL D L. Plugging in the expressions for zN; Q�; zL1; zL we obtain

k.F�1F�2/
1
2 kLp.R/

." N " logC .��1C 1/
�
s�1C

1
q
C 3
p
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

C s�
1
2
C 1
q

�
N
1
2

L1

�1
2
� 1
q
��X

J��

kfJ k
q

Lp.R/

�1
q

: (94)

We let K D N "0 for some "0 > 0 which will be chosen depending on ". Then from (93) and (94) we
conclude

kF kLp.R/ .";"0 N "CC"0 logC .��1C 1/
�� X

sDKa for a2Z

1�s�N
1=2

KL

s�1C
1
q
C 3
p

�
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

C

� X
sDKa for a2Z

1�s�N
1=2

KL

s�
1
2
C 1
q

��
N
1
2

L1

�1
2
� 1
q
��X

J2J

kfJ k
q

Lp.R/

�1
q

.";"0 N "CC"0 logC .��1C 1/
�
N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

C

�
N
1
2

L1

�1
2
� 1
q
��X

J2J

kfJ k
q

Lp.R/

�1
q

:
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Therefore we have shown Theorem 8.1 under condition (a) and the extra condition 1
q
C

3
p
D 1, p � 6, or

under condition (b) with the extra condition p � 6.
First assume (a) and we want to remove the condition 1

q
C

3
p
D 1, p � 6. First we note that it suffices

to show (66) for every .p; q/ with p � 4, 1
q
C

3
p
D 1. This is because for a general .p; q/ with p � 4,

1
q
C

3
p
� 1 we may consider (66) with .p; q/ replaced by .p; q0/, where 1

q0
C

3
p
D 1. Then (66) with

.p; q/ follows from Hölder’s inequality applied in the index J to the right-hand side of (66) with .p; q0/,
since jJ j . N 1=2=L1. Second we note that it suffices to show (66) for every .p; q/ with 4 � p � 6,
1
q
C

3
p
D 1. This is because when p � 6, we always have

N
1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

�

�
N
1
2

L1

�1
2
� 1
q

and (66) reduces toX
J2J

fJ


Lp.R/

." N " logC .��1C 1/
N

1
2
� 1
2q
� 3
2pL

2
p

L
1� 1

p
� 1
q

1

�X
J2J

kfJ k
q

Lp.R/

�1
q

:

So (66) with q > 6, 1
q
C

3
p
D 1 follows from interpolating (66) with .p; q/D .6; 2/, and with .p; q/D

.1; 1/. (For the interpolation of decoupling inequalities, see Exercise 9.21 of [Demeter 2020].) When
p D 1; q D 1, (66) becomes the triangle inequality which holds trivially. Hence we have shown
Theorem 8.1 under condition (a).

Now assume (b) and we want to remove the condition p � 6. As in the previous paragraph, when
p � 6 we always have

N
1
2
� 1
2p
� 3
2pL

2
p

L
1� 1

p
� 1
p

1

�

�
N
1
2

L1

�1
2
� 1
p

;

and therefore (66) with q >6, pD q follows from interpolating (see Exercise 9.21 of [Demeter 2020]) (66)
with .p; q/D .6; 6/, and with .p; q/D .1;1/. So Theorem 8.1 holds under condition (b) as well. �

Appendix

Corollary 1.4 can be derived from small-cap decoupling inequalities for the parabola in [Demeter et al.
2020]. This is through a transference method which we learned from James Maynard. We record a
detailed proof here. The same argument would also imply Corollary 8.2 if the corresponding `qLp small
cap decoupling inequalities for the parabola are known.

We first recall the small-cap decoupling inequalities in [Demeter et al. 2020].

Theorem A.1 [Demeter et al. 2020]. Suppose ˛ 2
�
1
2
; 1
�
, and let � D fg be the partition of NR�1.P1/

into R˛ many R�˛ �R�1 rectangles  . Assume p D 2C 2
˛

. Then for every " > 0 we haveX
2�

f


Lp.R2/

." R˛.
1
2
� 1
p
/C"

�X


kfk
p

Lp.R2/

�1
p

(95)

for every f W R2! C with supp yf �  .
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Theorem A.1 continues to hold, by essentially the same proof, with P1 replaced by a C 2 curve of
the form f.x; g.x// W x 2 Œ0; 1�g, with g0.0/D 0, g00.x/� 1 for x 2 Œ0; 1�. See for example Section 7 of
[Bourgain and Demeter 2015] (whose argument we think actually requires a bit more regularity of the
curve than C 2), or the appendix of [Guth et al. 2022]. Additionally we may interpolate (see Exercise 9.21
of [Demeter 2020]) between (95) and the elementary inequalitiesX

2�

f


L2.R2/

.
�X


kfk
2
L2.R2/

�1
2

X
2�

f


L1.R2/

.R˛.sup

kfkL1.R2//

to obtain the following version of Theorem A.1.

Theorem A.2 [Demeter et al. 2020]. Suppose G is a C 2 convex curve of the form f.x; g.x// W x 2 Œ0; 1�g,
where g0.0/ D 0, g00.x/ � 1 for x 2 Œ0; 1�. Suppose ˛ 2

�
1
2
; 1
�
, and let � D fg be the partition of

NR�1.G/ into R˛ many R�˛ �R�1 rectangles  . Assume p � 2. Then for every " > 0 we haveX
2�

f


Lp.R2/

." R".R˛.
1
2
� 1
p
/
CR˛.1�

1
p
/�.1C˛/ 1

p /

�X


kfk
p

Lp.R2/

�1
p

(96)

for every f W R2! C with supp yf �  .

For the rest of this section we work under the assumption of Corollary 1.4. In particular � D 1. For
simplicity we assume a1 D 0, and v WD a2 � a1 D N�1. Let 1 � L � N 1=2. It suffices to show (67)
for 4� p � 6 and we assume that (since the p > 6 case follows from interpolating between p D 6 and
p D1).

By (14) we may write an D .n� 1/=N C en, where en D an� .n� 1/=N � .n� 1/2=N 2. For every
t 2 R we may write it as t1C t2, where t1 2 2�NZ and t2 2 Œ0; 2�N/. Without loss of generality we
assume 2�N divides T, so .2�/�1N�1T 2 Z. Now we may write

Z T

0

ˇ̌̌̌N 1=2X
nD1

bne
itan

ˇ̌̌̌p
dt D

X
t122�NZ\Œ0;T�2�N�

Z 2�N

0

ˇ̌̌̌N 1=2X
nD1

bne
i.t1Ct2/.

n�1
N
Cen/

ˇ̌̌̌p
dt2

D

X
t122�NZ\Œ0;T�2�N�

Z 2�N

0

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2

n�1
N
Ct2en/

ˇ̌̌̌p
dt2:

We write e.n/ D en and let e W Œ1; N 1=2� ! R be the piecewise linear function such that, for every
n 2 Z\ Œ1; N 1=2 � 1�, e.x/ is linear on Œn; nC 1� and e.n/ D en. Since enC1 � en � n=N 2, we have
je0.x/j. 1=N 3=2 for x 2 Œ1; N 1=2� nZ.
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By Abel’s summation formula we haveˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2 n�1N Ct2en/

ˇ̌̌̌
�

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌
C

Z N 1=2

1

ˇ̌̌̌ bucX
nD1

bne
i.t1enCt2

n�1
N
/

ˇ̌̌̌
jt2e
0.u/jdu

.
ˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌
C

1

N
1
2

Z N 1=2

1

ˇ̌̌̌ bucX
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌
du: (97)

The last inequality uses t2 .N .
We first estimate

A WD
X

t122�NZ\Œ0;T�2�N�

Z 2�N

0

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌p
dt2:

Since en . 1
N

for every 1 � n � N 1=2,
PN 1=2

nD1 bne
i.t1enCt2.n�1/=N/ is locally constant on intervals of

length N in t1, that is, for every y 2 R,

sup
t12Œy;yC2�N�

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌
.
�Z

R

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌p
WŒy;yC2�N�;100.t1/ dt1

�1
p

:

We note that the above is also a special case of Proposition 2.3, applied to a fat AP that is just a single
interval. Since

P
y22�NZ\Œ0;T�2�N�WŒy;yC2�N�;100.t1/.WŒ0;T �;100.t1/, we have

A.
1

N

Z
R

Z 2�N

0

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌p
dt2WŒ0;T �;100.t1/ dt1: (98)

We consider two cases, T �N 3=2 and T �N 3=2.

Case 1: T �N 3=2. We observe that
PN 1=2

nD1 bne
i.t1enCt2.n�1/=N/ is 2�N -periodic in t2, so we have

A.
1

N

N
3
2

T

Z
R

Z TN�1=2

0

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌p
dt2WŒ0;T �;100.t1/ dt1

By a change of variable t1 7!N 1t1, t2 7!N 1=2t2, we obtain

A.N
1
2
N
3
2

T

Z
R

Z
R

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enNCt2 n�1

N1=2
/
ˇ̌̌̌p
WB

TN�1
.0/;100.t1; t2/ dt2 dt1:

Now we let g.x/ be a C 2 strictly convex function defined on Œ0; 1� such that jg..n�1/=N 1=2/� enN j �

N�1=4 for nD 1; : : : ; N 1=2. (See Lemma A.3 below.) Since N�1 � T �1N , we have for every n, the
ball of radius T �1N=4 centered at ..n�1/=N 1=2; enN/ fits in exactly one of the  in the partition of the
T �1N neighborhood of GDf.x; g.x// W x 2 Œ0; 1�g by N�1=2�T �1N rectangles. Under our assumption
that T 2 ŒN 3=2; N 2� we have log.N�1=2/=log.T �1N/ 2

�
1
2
; 1
�
. Therefore we may apply Theorem A.2
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with RD TN�1, R˛ DN 1=2 to the curve G, which yields for every T 2 ŒN 3=2; N 2�,Z
R

Z
R

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enNCt2 n�1

N1=2
/
ˇ̌̌̌p
WB

TN�1
.0/;100.t1; t2/ dt2 dt1

." N ".T
1
pN

1
2
� 2
p CT

2
pN

1
4
� 5
2p /pkbnk

p

`p
: (99)

Hence
A." N ".N

1
2 CT

1
pN

1
4
� 1
2p /pkbnk

p

`p
:

Case 2: T �N 3=2. From (98) and a change of variable we have

A.N
1
2

Z
R

Z 2�N 1=2

0

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enNCt2 n�1

N1=2
/
ˇ̌̌̌p
dt2WŒ0;TN�1�;100.t1/ dt1:

Since T �N 3=2, we may bound the right-hand side trivially by

N
1
2

Z
R

Z
R

ˇ̌̌̌N 1=2X
nD1

bne
i.t1enNCt2 n�1

N1=2
/
ˇ̌̌̌p
WB

N1=2
.0/;100.t1; t2/ dt2 dt1;

so by (99) with T DN 3=2 we have

A." N "N
1
2 .N

3
2pN

1
2
� 2
p CN

3
2
2
pN

1
4
� 5
2p /pkbnk

p

`p
:

Since p � 4 we may verify

N
3
2pN

1
2
� 2
p �N

3
2
2
pN

1
4
� 5
2p :

Hence
A." N ".N

1
2 /pkbnk

p

`p
:

In conclusion we have shown
A." N ".N

1
2 CT

1
pN

1
4
� 1
2p /pkbnk

p

`p
: (100)

Next we estimate the second term in (97). We define

B WD
X

t122�NZ\Œ0;N 2=L2�2�N�

Z 2�N

0

ˇ̌̌̌
1

N
1
2

Z N 1=2

1

ˇ̌̌̌ bucX
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌
du

ˇ̌̌̌p
dt2:

By Minkowski’s inequality we have

B
1
p �

1

N
1
2

Z N 1=2

1

� X
t122�NZ\Œ0;T�2�N�

Z 2�N

0

ˇ̌̌̌ bucX
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌p
dt2

�1
p

du:

Then applying (100) to the expression in the brackets we obtain

B
1
p ." N " 1

N
1
2

Z N 1=2

0

.N
1
2 CT

1
pN

1
4
� 1
2p /kbnk`p du

DN ".N
1
2 CT

1
pN

1
4
� 1
2p /kbnk`p :
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Combining the estimates for A and B we concludeN
1=2X

nD1

bne
itan


Lp.BT /

." N ".N
1
2 CT

1
pN

1
4
� 1
2p /kbnk`p :

We used the following lemma in the proof above.

Lemma A.3. Suppose fangN
1=2

nD1 is a short generalized Dirichlet sequence with � D 1, a2� a1 DN�1,
a1 D 0. Let en D an � .n� 1/=N . Then, for every c > 0, there exists a C 2 curve g W Œ0; 1�! R with
g00.x/� 1 for x 2 Œ0; 1� such that jg..n� 1/=N 1=2/� enN j � cN

�1 for every nD 1; : : : ; N 1=2.

Proof. We first define g0 W Œ0; 1�!R to be a C 1 piecewise quadratic polynomial with g00.0/D 0 such that
g0 restricted to Œn=N 1=2; .nC 1/=N 1=2� is a quadratic polynomial for every nD 0; : : : ; N 1=2� 1, and

g0

�
n� 1

N
1
2

�
D enN:

Since
N.enC1� 2enC en�1/

N�1
� 1;

we have g000 � 1 on Œ0; 1� nN�1=2Z, and consequently kg0kL1.Œ0;1�/ . 1 because g00.0/D 0. Now we
let g D g0 �� be the c0N�1 mollification of g0. Here � is an L1-normalized smooth bump adapted to
Bc0N�1.0/ and c0 > 0 is sufficiently small depending on c. Then we have, for every x 2 Œ0; 1�,

g00.x/D

Z
R

g000.y/�.x�y/ dy � 1;

and ˇ̌̌̌
g

�
n� 1

N
1
2

�
� enN

ˇ̌̌̌
�

Z
R

ˇ̌̌̌
g0.y/�g0

�
n� 1

N
1
2

�ˇ̌̌̌
�

�
n� 1

N
1
2

�y

�
dy � c0N�1 sup

y2Œ0;1�

jg00j � cN
�1

if c0 D c=.kg00kL1.Œ0;1�/C 1/. �

We can use the same approach to transfer an Lp estimate for a longer generalized Dirichlet polynomial
to an Lp estimate on an exponential sum with frequency support near a C 2 convex curve.

Suppose fangNnD1 is a generalized Dirichlet sequence with � D 1, a2 � a1 D 1=N , a1 D 0, and let
˛2

�
1
2
; 1
�
. As before we write enD .n�1/=N � ..n�1/2/=N 2. The same calculation as above shows thatZ
Œ0;T �

ˇ̌̌̌N˛X
nD1

bne
itan

ˇ̌̌̌p
dt .

X
t122�NZ\Œ0;T�2�N�

Z 2�N

0

ˇ̌̌̌N˛X
nD1

bne
i.t1enCt2

n�1
N
Ct2en/

ˇ̌̌̌p
dt2:

One difficulty that appears is that we cannot treat eit2en as an error term as before. This is because
when we apply the partial summation formula we getˇ̌̌̌N˛X

nD1

bne
i.t1enCt2 n�1N Ct2en/

ˇ̌̌̌
.
ˇ̌̌̌N˛X
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌
C

1

N 1�˛

Z N˛

1

ˇ̌̌̌ bucX
nD1

bne
i.t1enCt2 n�1N /

ˇ̌̌̌
du:
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However now N 1�˛ >N ˛ and we cannot estimate the second term on the right-hand side as before using
the estimate for the first term and Minkowski’s inequality. We could still find a C 2 convex curve such
that ..n� 1/=N C en; en/ lies in an N�1-neighborhood of it, but the extra en doesn’t allow us to use the
2�N -periodicity in the t2-variable.

Another difficulty we find is the integrand is locally constant on intervals of length N 2�2˛ in the
t1-variable, and since N < N 2�2˛, that prevents us from transferring the discrete summation intoP
t122�NZ\Œ0;T�2�N� into

R
Œ0;T �. We may though transfer the discrete sum into an integral over a fat

AP
R
PN

2�2˛

2�N \BŒ0;T �
, and that might suggest some new decoupling problems in R2 that might be helpful

for estimating longer generalized Dirichlet polynomials.
Finally we remark that for the Dirichlet sequence flogng2NnDNC1, we may implement this transference

method to higher-order approximations of logn. For examples we can writeˇ̌̌̌NCN˛X
nDNC1

bne
it logn

ˇ̌̌̌
D

ˇ̌̌̌N˛X
nD1

bnCN e
it log .1C n

N
/
ˇ̌̌̌
D

ˇ̌̌̌N˛X
nD1

bnCN e
it. n

N
� n2

2N2
Ce0n/

ˇ̌̌̌
;

where

e0n WD log
�
1C

n

N

�
�
n

N
C

n2

2N 2
�
n3

N 3
:

If we write t D t1 C t2 C t3 with t1 2 2�N 2Z, t2 2 2�NZ, t3 2 Œ0; 2�N/, then we could transfer
Lp estimates on

PNCN˛

nDNC1 bne
it logn to 3-dimensional Lp estimates on exponential sums with frequency

supported on a nondegenerate curve in R3. More generally one can exploit more terms in the Taylor
expansion and get higher-dimensional estimates. We do not know how much this would help with
estimates on Dirichlet polynomials using decoupling techniques.
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