Download this article
 Download this article For screen
For printing
Recent Issues

Volume 17, 1 issue

Volume 16, 10 issues

Volume 15, 8 issues

Volume 14, 8 issues

Volume 13, 8 issues

Volume 12, 8 issues

Volume 11, 8 issues

Volume 10, 8 issues

Volume 9, 8 issues

Volume 8, 8 issues

Volume 7, 8 issues

Volume 6, 8 issues

Volume 5, 5 issues

Volume 4, 5 issues

Volume 3, 4 issues

Volume 2, 3 issues

Volume 1, 3 issues

The Journal
About the Journal
Editorial Board
Editors’ Interests
Submission Guidelines
Submission Form
Policies for Authors
Ethics Statement
ISSN: 1948-206X (e-only)
ISSN: 2157-5045 (print)
Author Index
To Appear
Other MSP Journals
Global well-posedness of Vlasov–Poisson-type systems in bounded domains

Ludovic Cesbron and Mikaela Iacobelli

Vol. 16 (2023), No. 10, 2465–2494

In this paper we prove global existence of classical solutions to the Vlasov–Poisson and ionic Vlasov–Poisson models in bounded domains. On the boundary, we consider the specular reflection boundary condition for the Vlasov equation and either homogeneous Dirichlet or Neumann conditions for the Poisson equations.

Vlasov–Poisson, well-posedness, massless electrons, bounded domains
Mathematical Subject Classification
Primary: 35Q82, 35Q83, 76N10, 82C70
Received: 30 August 2021
Accepted: 22 March 2022
Published: 11 December 2023
Ludovic Cesbron
Department of Mathematics
ETH Zürich
Laboratoire AGM
CY Cergy Paris Université
Mikaela Iacobelli
Department of Mathematics
ETH Zürich

Open Access made possible by participating institutions via Subscribe to Open.